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Abstract

We study alternative estimators of the impacts of  higher level variables in multilevel models. This is
important since many of the important variables in demographic research, such as community level access
to family planning facilities, prices for services, and media campaigns  are higher level factors having
impacts on lower level outcomes such as contraceptive use. We present theoretical and Monte Carlo
evidence about point estimation and standard error estimation for both two and three level models for
continuous dependent variables, and we discuss the extension of these results to models with discrete
dependent variables.  A major conclusion of the paper is that readily available commercial software can
be used to obtain both reliable point estimates and coefficient standard errors in models with two or more
levels as long as appropriate corrections are made for possible error correlations at the highest level.
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I.  Introduction

Multilevel models have found widespread use in demography and related disciplines in recent

years.  These types of models are used when the outcome of interest, and its observed and unobserved

determinants, have an hierarchical structure.  By an hierarchical structure, we mean that there are

important factors influencing decisions and outcomes that arise from a variety of levels of aggregation or

observation. For example, whether individuals use contraception might depend on whether there are

easily accessible clinics that provide family planning in the community where they live.  The presence of

a clinic in a community, of course, could influence the contraceptive choice of many individuals living

there, and this gives rise to the multilevel structure of observed determinants of contraceptive use.  Kreft

and de Leeuw (1998) provide an excellent introductions to multilevel models, and Goldstein (1995) and

Byrk and Raudenbush (1992) present more advanced treatments of these modeling approaches. 

Typically the outcome of interest takes place at an individual level, and this usually is referred to

as the lower- or micro-level outcome.  In analyses with more than two levels, this is called the level-one

outcome. These lower level, individual outcomes are usually influenced in part by individual, micro-level

characteristics. In the family planning literature, for example, a woman’s age and education and measures

of her wealth have all been shown to have important effects on her use of contraceptives (Gertler and

Molyneaux, 1994; Guilkey and Cochrane, 1995; Guilkey and Jayne, 1997). 

What distinguishes the hierarchy in these types of analyses is the fact that some characteristics

from a higher level also influence the lower-level outcomes.  Researchers have found that food prices, for

example, can influence whether a couple practices contraception (Stewart et al., 1991; Rous, 2001). High

prices might indicate food shortages, or that it would be expensive to raise children. Couples might tend

to be more likely to attempt to limit fertility when food prices are high than when food prices are low.

Food prices, like many other contraceptive determinants, vary across communities but individuals within

a single community all face the same level of food prices.  In addition, it has been found that family

planning clinics  located within communities, and the availability of these sources for contraceptives and

of contraceptive knowledge can affect whether individuals adopt family planning (Tsui, 1985; Bollen,
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Guilkey and Mroz, 1995; Thomas and Maluccio, 1995;  Guilkey and Jayne, 1997;  Angeles et al., 2001). 

Often such higher level determinants of contraceptive use are observed, and researchers usually include

these measures  as explanatory variables in their empirical analyses when they are available.  

At a basic level, there is nothing special about these higher level determinants that distinguishes

them from individual characteristics like age and education. One can readily incorporate observed

community-level characteristics along with observed individual-level characteristics as determinants of

individual-level behaviors. The fact that these higher level characteristics do not differ within groups of

individuals is, for the most part, irrelevant in the interpretation of impacts of observed covariates on

individual-level outcomes.  However, there can also be unobserved or unmeasured factors at the higher

level that influence the lower-level outcomes. Such unmeasured factors give rise to multilevel error

structure. These factors give rise to the important statistical considerations discussed extensively in the

following sections.

The statistical properties of various estimators for multilevel models have been studied in detail

(see Matyas, 1992, for a review), but the focus has been on the properties of the estimated coefficients of

individual level variables in models with a two-level error structure.  The impacts of community level

(level two) variables, however, are frequently of considerable substantive interest because these are often

policy variables than can be modified to effect individual level outcomes. In addition, longitudinal data

sets with individuals sorted into communities, or data at a province, municipality, and individual levels,

depend on three-levels of unobserved determinants.  The purpose of this paper is to fill these gaps in the

literature by focusing on the correct measurement and statistical testing of the impact of community level

variables on individual level outcomes in multilevel models.  We do so by presenting new theoretical

results based on analytical derivations and Monte Carlo simulations.   We then illustrate the methods in

an analysis of children’s weight using a data set from Cebu, Philippines with three levels of observed and

unobserved determinants: the community, the individual, and over time for the individual.

While the theoretical and simulation results we present are specific to models with continuous

dependent variables, our experiences with a wide variety of statistical models indicate that the major
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conclusions of the paper should carry over to models with limited dependent variables.  We demonstrate

this in an empirical  model of the determinants of contraception at the province, municipality and

individual level. The data for this second application come from a different data set covering all of the

Philippines.  

II.  Theoretical Results

This section summarizes the results presented in Angeles and Mroz (2001).  We present

analytical results for the two level model followed by Monte Carlo evidence for both two and three level

models.

A.  Analytical Results

Consider the following model:

(1)

where Yic is a continuous outcome variable for respondent i (i=1,2,...,Nc) from community c (c=1,2,...,C).

The �’s are unknown regression coefficients,  is a community level variable,  is an individual level

variable with covariance � with the community level variable (Cov( ,  )=�), and  is an individual

level variable that is not correlated with either the community level variable or the other individual level

variable.  All the explanatory variables are independent of the error terms.

The error term is assumed to have two components.  The first is a term that is specific to each

individual, ; it is assumed to have mean zero and variance  and to be independent for all i and c.  The

second unobserved component, , affects the outcome Y for all individuals within each community; it is

assumed to have mean zero, variance , and to be independent across communities. We define the total
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error variance as .  The fraction of the total error variance due to the community level

component of the error term is frequently referred to as the intra-class error correlation, and it is defined

by .  Let   be the total number of individual level (level one) outcomes.  After

ordering observations by communities the ( NTOT  x NTOT  ) covariance matrix takes on the following form:

Ac is the (Nc  x Nc ) covariance matrix for community c and it is given by
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The two-level error structure results in a block diagonal covariance matrix for the disturbance term where

the non-zero blocks (i.e. cases where the error term has non-zero correlation) correspond to individuals

within the same community.  This parsimonious specification assumes that the level of correlation is

constant for all individuals within the same community and all communities have the same level of

correlation. 

Three estimators for the �’s and their standard errors are commonly used: ordinary least squares

(OLS), ordinary least squares with a corrected covariance matrix (OLS-C), and the maximum likelihood

estimator (MLE) which is identical to the generalized least squares (GLS) estimator if � is known and the

errors are normally distributed.  To define these estimators, let  be the (Nc x 4)

matrix of explanatory variables for community c and X be the   ( NTOT x 4) matrix formed by stacking all

the community observations. Define a similar vector Y for the ordered NTOT observed outcomes. The OLS

estimator is:

The naive estimate of the covariance matrix generated by a standard statistical package would be:

(2)

The correct covariance matrix of the OLS estimator, however, would take account of the multilevel error

structure. It takes on the following form:

(3)
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The MLE or GLS estimator is:

with covariance matrix:

(4)

In order to make a simple comparisons among  (2), (3) , and (4), we assume that there is no

constant in the model, all the X’s have mean zero,  there are exactly N individuals in each community,

and all the correlation in the correlated individual level variable is due to the community level variable

(i.e. Cov( ,  )=�2) .  After some tedious algebra (see Angeles and Mroz, 2001), one can show that:
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and 

The variances of the estimators for the coefficients of the community level variables are given by

the  (1,1) elements of theses matrices, the variances of the correlated individual level variable coefficients

are given by the (2,2) elements, and the variances of the independent individual level variable coefficients

is given by the (3,3) elements.  A comparison of the three covariance matrices yields several interesting

results:

1.  The naive OLS estimated variance for the effect of the community level variable understates

the true variance for  ��0, and the degree of understatement increases as � or N (of individuals per

community) increases. [Compare the (1,1) elements of ].Cov and CovOLS OLS C( ) ( )
^ ^
� �

�

2.  The OLS estimator for the coefficient of the community level variable’s effect  is almost

always inefficient relative to the MLE whenever  ��0.  [A comparison of the (1,1) elements of

].Cov and CovOLS C( ) ( )
^ ~
� �

�

3. The interesting exception to the preceding result is when the community level covariates are

uncorrelated with all of the individual level covariates (i.e., �=0). In this instance, there is no efficiency

loss from using OLS instead of MLE.for the estimation of the impact of the community level covariate. A

pertinent example when there would be a zero correlation is for the case where particular treatments (e.g.,
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facilities or programs) are assigned randomly across communities. [Compare the (1,1) elements of

evaluated at ].Cov and CovOLS C( ) ( )
^ ~
� �

�

�
2 0�

4.  The standard errors reported by naive OLS for the impacts of both the individual level

covariates are correct even when there is a multilevel structure.  [Comparison of the (2,2) and (3,3)

elements across ]. This result, however, is an artifact of our simpleCov and CovOLS OLS C( ) ( )
^ ^
� �

�

example.  If there were correlations of the individual level covariates across individuals within the same

community that were not completely captured by the observed community level covariates,  then the

naive OLS standard errors would be too small.

5.    There can be significant improvements in the precision of the estimators of the impacts of

individual level covariates by using MLE instead of OLS. [Compare the (2,2) and (3,3) elements between

.]Cov and CovOLS C( ) ( )
^ ~
� �

�

B. Graphical Illustrations

The OLS estimator with corrected standard errors is much simpler computationally than the

MLE. Additionally, in more complex situations it might be able to produce  unbiased estimators better

than the maximum likelihood estimators because it does not depend upon auxiliary and often arbitrary

assumptions such as homoscedastic normally distributed error components.  Consequently, it is useful to

see how the efficiency gain from MLE varies by � and N (the number of individuals per community).  

We use the analytic formulae for the two covariance matrices to generates this comparison. 

Figures 1A and 1B  graph how the standard deviations of the OLS estimators of the impacts of the three

variables vary by the number of observations per community and  the level of correlation between the

community variable and the individual-level variable. Figure 1A examines the case when the intraclass

correlation, �, is 0.25, and Figure 1B examines the case for �=0.75.  Each of the four graphs within these

figures refers to a different value of the correlation between the community-level explanatory variable and
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1We evaluate the analytic formulae for the variances of the two estimators of each regression coefficient,
calculate their ratio and take the square root.  This provides a ratio of the standard deviations of the estimators. A
value of 1.10, for example, would mean that the OLS estimator would have a standard error of estimate 10 percent
higher than the maximum likelihood estimator of the coefficient for the same DGP; heuristically, t-statistics would
tend to be about 10% smaller for OLS estimator than they would be for maximum likelihood estimator.

the correlated individual-level explanatory variable (0.00, 0.25, 0.50, and 0.95).   The horizontal axis

measures the number of observations per community.  

The vertical axis measures the standard deviation of the OLS estimator as a fraction of the

standard deviation of the efficient maximum likelihood estimator.1  This provides a measure of how much

efficiency loss one can expect by using the less precise OLS estimator instead of the maximum likelihood

estimator. The relative efficiencies for the estimators of the impacts of the two individual-level variables

(indicated by the diamonds and plus signs) are identical analytically, and they do not depend on the

degree of correlation between the individual-level variables and the community-level variable. 

At the moderate level of the intraclass correlation in Figure 1A, �=0.25, there would be little

efficiency gain from using the maximum likelihood estimator instead of the OLS estimator.  When there

is no correlation among the community-level variables and the individual-level variables, there are zero

efficiency gains from using maximum likelihood in the estimation of the impact of the community level

variable.  Only when the correlation of the community-level variable and the individual-level variable is

quite high (� above 0.50) is there any discernable efficiency gain for the estimator of the impact of the

community-level variable from using maximum likelihood estimation.  The efficiency gain for the

estimation of the impact of the community-level variable initially increases as one adds more observations

per community, but then it falls.  But with �=0.25, even when the correlation of the regressors is as high

as 0.95 the standard error improves by using maximum likelihood by less than 10 percent.

Figure 1B examines the case where there is a high level of intraclass correlation, �=0.75.  As

above,  there is little efficiency gain from using maximum likelihood to estimate the impact of the

community-level variable, unless the correlation of the community-level variable and the individual-level

variable (�) is quite high. But even when there can be substantial efficiency gains in estimating the
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community-level variable impact by maximum likelihood, the gains diminish rapidly with increases in the

number of observations per community.

The interaction among the number of observations per community, the intraclass correlation, and

the correlation of the community-level regressor with the individual-level regressor appears to be the key

determinant of efficiency gains from maximum likelihood estimation when estimating the impact of the

community-level covariate. In Figures 2A and 2B we examine this relationship in finer detail along the

dimension of the correlation of the community-level variable and the individual-level variable.  As in

Figure 1, the top panel in Figure 2 is for �=0.25, and the lower panel is for �=0.75.  The graphs in each

figure are for different numbers of individuals per community (NIPC=2, 5, 25, and 50).  The horizontal

axis measures the level of correlation between the community level and individual level explanatory

variables(�).  In Figure 2 we only examine the relative efficiency for the estimators of the impact of the

community-level variable. 

For the estimation of the impact of the community level variable, there appears to be almost no

efficiency gain from using maximum likelihood estimators instead of OLS estimators for values of the

regressor correlation being less than 0.50.  For the moderate level of the intraclass correlation, 0.25, there

never are efficiency gains over 15 percent for all values of the regressor correlation at 0.99 or lower. 

When the intraclass correlation is high, �=0.75, there can be some substantial gains in efficiency, with the

larger gains happening when there are several individuals per community. These gains are quite small

unless the regressor correlation is well over 0.50. While not displayed in Figure 2, there are substantial

efficiency gains from using MLE instead of OLS for measuring the impacts of the two individual level

covariates. 

III.  Simulation Results

In Section II we showed that the efficiency gain from using the more complex MLE estimator

instead of the OLS estimator was not large for a wide range of true parameter values.  We also showed

that the naive OLS  standard error estimates could seriously understate the true coefficient standard errors



MEASURE Evaluation 11

which means that statistical hypotheses about the true impact of the explanatory variables would be

incorrect.  Equation (3) presents the correct formula for the covariance matrix for the OLS estimator

given the homoskedastic error components structure specified above.  Robust standard error estimators 

developed by Eicker (1963, 1967), Huber (1967) and  White (1980), however, provide for  more general 

corrections of the standard errors. They allow  for arbitrary forms of error correlation within communities

and for error variances that are arbitrary functions of the explanatory variables.  In addition this more

robust correction yields consistent standard errors even if the true regression coefficients are random, if

the error structure has more than two levels, or if the errors are heteroscedastic.  Finally, these standard

error estimators can be implemented using the cluster option in STATA, a widely available commercial

statistical software package.

Unfortunately, the robust standard errors are only asymptotically valid (i.e. as the number of

communities increases to infinity) and so it is important to see how well they work in sample sizes

typically encountered in standard demographic data sets.  To do this, we use Monte Carlo simulation

methods to assess their accuracy in comparison to the naive OLS standard errors and the standard errors

for the MLE.  We focus on statistical inference on the community level variable since it has not been

studied in the past and since it is typically the policy variable in demographic research.  Results for

individual level variables are discussed in Angeles and Mroz (2001).  Results for a two level error

structure are presented first followed by a discussion for a three level error structure.

A. Two Level Error Simulation Results

Equation (1) specifies the data generating process (DGP) for the Monte Carlo simulations.  We

set the true values of the constant term to zero and the other coefficients to one.  Even though the true

constant is zero, we estimate a constant in all models.  The rest of the specification of the DGP is as

follows:

1.  We set the squared correlation coefficients between , the community level variable  
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2We used this range of individuals to represent roughly the distribution of the number of adult women per
community in the Demographic and Health surveys. For each community in each replication of each data generating
process we selected the number of individuals per community by taking draw from a truncated normal distribution
with mean 25.5 and standard deviation 10 with the truncation points set at 1 and 50. We then took the integer portion
of this truncated normal random variable as the choice of the number of individual level observations per
community.  This yields a mean number of individuals per community of 25 and a standard deviation of 9.5.  Using
this procedure, 91% of the time the number of individuals per community lies in the range [9,41]. 

and  , the correlated individual level variable, to .5 ( �2 in the notation of the previous section).

2.  We examine 21 values for � (0, 0.05, 0.10, 0.15,..., 0.95,1.00).

3.  We focus on sample sizes with approximately 20,000 individual-level observations with 800

communities each containing between 1 and 50  individual observations, with a mean of 25 persons per

community.2  Angeles and Mroz (2001) also  present results for 400 communities each containing exactly

50 individual-level observations which are quite similar to the results presented here.

4. We choose an R2  = 0.10. This restriction has almost no substantive impact on our comparisons

of estimators.

All of our calculations were done using STATA.  For each specification of the data generating

process we draw 1000 independent samples, each with 800 communities. Each community contains, on

average, 25 individuals (standard deviation 9.5).  We simulate community- and individual-level

explanatory variables, community-level disturbances, and individual-level disturbances according to

fixed, specific rules.  For each of these 1000 replications of the DGP, we estimate the model specified in

equation (1) by OLS and by a maximum likelihood procedure that allows for the hierarchical error

structure. For the OLS estimates we calculate estimates of the standard errors of the point estimates by

using standard, naive OLS formulae and by using the robust (Eicker-Huber-White) formulae that adjust

for possible heteroscedasticity and clustering within communities (i.e., ��0).  For the maximum

likelihood procedure, we use STATA’s report of the square root of the diagonal elements of the inverse of

Hessian matrix as the standard error estimator.

We assess the accuracy of alternative estimators by determining whether hypothesis tests that use

the standard error estimator yield accurate probabilities under the null hypothesis. In particular, a standard
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error estimator would be considered accurate if hypothesis tests that use this estimator reject a true null

hypothesis with a frequency given by the specified size of a test.  If one tests at the 5% level, for example,

then one should reject correct null hypotheses  5% of the time.  Otherwise the standard error estimator

does not allow one to carry out meaningful tests. 

A standard, simple hypothesis test is of the form:  One typicallyH vs H0 0 1 0: : .� � � �� �

undertakes a hypothesis test of this form by using a two-tailed test under the assumption that the estimator

of � follows an approximate Student t or normal distribution.  To carry out such a test, one sets a size of

the test, �, the probability of rejecting the null hypothesis when the null hypothesis is actually true. Our

evaluation of the accuracy of the estimator for the standard error of the estimate is an assessment of how

closely the frequency of rejecting a true  null hypothesis in the Monte Carlo experiments matches the

specified size �.  If we specify � = 0.05, then we would want to have the null hypothesis that   �=�0 to be

rejected five percent of the time when � actually does equal the value �0. 

In the Monte Carlo experiments we know exactly the true parameter value (all �’s equal to 1), so

we can examine how frequently a true null hypothesis is rejected when we use various standard error

estimators for the different point estimation procedures. We examine the size of the tests for three

configurations of the test. If the �=0, all testing configurations should provide close to identical results.

Two configurations use the ordinary least squares point estimators for the parameter estimates.

The first of these uses the standard error of the estimate as reported by the simple ordinary least squares

procedure to evaluate the hypothesis test. This procedure corresponds to using a standard OLS procedure

and using the “default” estimators of the standard errors that assume uncorrelated, homoscedastic

disturbances.  This will usually provide biased tests when the intraclass correlation is non-zero for the

DGPs examined here.

The second testing configuration uses a robust standard error estimator that accounts for the fact

that there could be arbitrary correlations of disturbances within communities along with the simple OLS

parameter point estimator (Eicker-Huber-White).   The third testing configuration we examine uses the
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maximum likelihood estimator.  We use the point estimates and the standard error estimates from the

maximum likelihood procedure to carry out hypothesis tests. For each of these three testing

configurations, we examine whether the standard error estimators used with the point estimators provide

tests of the correct size.   

Figure 3 provides evidence on the probability that each of the testing procedures incorrectly

rejects a true null hypothesis about the impact of the community level variable (i.e., we test H0:�C =1 vs.

H1:�C �1 .)   The vertical axis measures the fraction of times out of the 1000 replications that the

hypothesis test rejects a true null hypothesis for a particular testing procedure. The horizontal axis

measures the level of the intraclass correlation coefficient.  The left-hand graph presents tests where the

desired size of the test is five percent (0.05), and the right hand graph contains tests where the desired size

of the test is ten percent (0.10). The vertical scales vary within Figure 3.

When the intraclass correlation coefficient (�) equals 0.00, all three of the testing procedures

yield approximately the correct size of 0.05.  As the intraclass correlation rises, the procedure using the

ordinary least squares point estimate with the simple OLS standard error estimate (labeled olstest, with

circles) has an empirical probability of false rejection that greatly exceeds the specified 5% size. For all

intraclass correlations above 0.10, the empirical size of this testing procedure exceeds 20% when one

specifies a probability of false rejection of only 5%.  With fewer communities and the same number of

total individual-level observations, the empirical size from this approach can be much greater than 50%

for a specified size of 5%.  

From the same graph in Figure 3, tests that use the same OLS point estimate for the coefficient on

the community-level variable but with the standard error adjusted to correct for arbitrary forms of

correlation within communities (labeled osthtest, with triangles) yield approximately the correct size for

all values of the intraclass correlation coefficient. Similarly the tests based upon the maximum likelihood

point estimates and the corresponding maximum likelihood estimates of the standard errors of the

estimates appear to have approximately the correct size. The right-hand graph provides similar evidence
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for the case where the requested size is increased to 10%.  Little of substance changes with this increase

in requested size.  

In summary for the community-level variable, relying on the OLS point estimates and simple,

default standard error estimates results in hypothesis tests that too frequently reject true null hypotheses.

The simple OLS standard error estimates are, in a sense, too small.  This propensity to reject null

hypotheses much too frequently can be fixed with either of the other approaches. One can use the same

OLS point estimates in conjunction with robust standard errors estimators to accommodate possible

residual correlations within communities.  Or, one can use maximum likelihood point and standard error

estimators that correctly specifies the form of the within community disturbance correlation. 

Given that there are estimators and testing procedures that appear to have the correct size for the

forms of multilevel models that we have examined, we can now examine the ability of these procedures to

reject null hypotheses that are incorrect. Holding the size of the test constant, one would prefer to have

estimators and procedures that reject false null hypotheses more frequently.  The ability of a test taking

the form    to reject the null hypothesis when the alternative is in fact correctH vs H0 0 1 0: :� � � �� �

depends crucially on the true value of the parameter.  If the true value is quite close to the value specified

under the null, then the probability of rejection is quite close to the specified size of the test (e.g., only

five or ten percent), while if the true parameter value differs dramatically the probability of rejection

should be close to 1.0.  A graph displaying the probability of rejecting H0 :�=�p versus H1 :���p for a

possible set of values �p when the true parameter �=�0 is one way of displaying the power of the test. We

assess the power of each test empirically by using the estimates and standard errors from the Monte Carlo

experiments. For each null hypothesis examined, we present the fraction of times (out of 1000

replications) that the testing procedure rejects each specified null hypothesis.    

Figures 4 contain graphs of the power functions corresponding to tests for involving the

coefficient of the community level variable of the form .  The definition ofH vs Hp p0 1: :� � � �� �

the power function displayed here is the probability of rejecting the null hypothesis �=�p (against the
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3This definition differs from the usual definition of a power function. For the more standard definition of
the power function, one tests an identical hypothesis (e.g. H0:�=2 vs.Ha:��2 ) and graphs the probability of rejection
as a function of a varying true value of the parameter. Here, we graph the probability of rejecting a varying null
hypothesis, when the true parameter value 1.0, as a function of hypothesized values specified in the null and
alternative hypotheses.  

4The alternative hypothesis for all power and size tests discussed in this study is the complement of the null
hypothesis under examination.

alternative ���p) as a function of the value of �p when the true parameter value is 1.0.3   We set the size of

the tests to 0.05.

  Only two testing approaches had the correct size: OLS point estimates with standard errors

adjusted for possible clustering of disturbances within communities and maximum likelihood point

estimates and standard errors.   These are displayed in Figure 4 as “olshtest” and “mletest.” When the

intraclass correlation is 0.10 and the true value of   �c=1, one would reject the null hypothesis that 

�c=0.75 (or �c=1.25)4  about 76% of the time with OLS and 79% of the time with the maximum likelihood

procedure.  As the intraclass correlation rises to 0.25, the power to reject H0: �c=0.75 (or �c=1.25) when

the true value is 1  falls to 50% for the OLS-based procedure and 55% for the maximum likelihood

procedure; when the intraclass correlation is a high 0.75, the power for the same test is only 25% for the

OLS based test and 27% for the maximum likelihood based test.   In all cases examined here, the largest

discrepancy in size between the two testing procedures is only eight percentage points. In over half of the

tests displayed in Figure 4, the probability of rejection using the maximum likelihood estimator is less

than one percentage point larger than the probability of rejection from using the OLS point estimate with

a robust standard error estimator. 

Overall, one would conclude that there is little difference between the performance of tests based

on the OLS point estimates of the coefficient on the community-level variable (and with the standard

error adjustment for arbitrary within community correlation) and the tests based on the maximum

likelihood estimates. This should not be surprising;  the comparisons of the asymptotic standard

deviations of these two estimators discussed above indicates that there would only be sizable differences

if the intraclass correlation were exceptionally  high with only a few observations per community.   
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B.  Three Level Error Simulation Results

The analysis we reported on above indicated that one could obtain correct inferences from

ordinary least squares model estimates that ignored the multilevel error structure provided one adjusted

the standard errors to ex post account for the within community error correlation.  The approach we used

to adjust the standard errors of the estimates allowed for arbitrary forms of heteroscedasticity and error

correlation within communities, but we only examined the performance of the standard error estimators

when there were two levels in the analysis.  It could be the case, for example, that individuals live in

families which reside  in communities, and there may be determinants of the individuals’ behaviors that

depend on unobserved family characteristics as well as unobserved  individual and community

characteristics.  Another possibility is that we could have longitudinal data on individuals within

communities.  In either case, we could have an error term with more than two levels.  Here we consider

the performance of standard error estimators when the error term has up to three levels.

Extending the descriptive notation used above, the three levels in this model are the  individual

level, the family level, and the community level.  The DGPs we consider have the individual-level

outcome being influenced by one explanatory variable from each level.   Let  be the community-level

explanatory variable (c=1,2,...,C) ,  be the family level variable (f=1,2,...,Fc), and    level variable

(i=1,2,...,Nfc). We allow these explanatory variables to be correlated within communities and families, and

we set Cor[ , ]=Cor[ , ]=0.5 and Cor[ , ]=0.667.  We permit there to be unobservable

determinants of the individual-level outcomes associated with each of these three levels.

The linear regression model we examine takes the following form:

(5)
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�c gives rise to the within level three error correlation (community),  �fc gives rise to level-two error

correlation (family), and �ifc is the level-one error term (individual).  The �c  are independent across

different communities (level-three observations) with variance , the   � fc  are independent across

families (level-two observations) with variance , and the �i fc  are independent across all individuals

with variance .  If  is defined to be the sum of the three variances, we can define  and

 as the proportions of the overall error variance due to level 3 (community) and level 2 (family)

unobserved factors.

In the simulations, the community and family error components are distributed as independent

N(0,1) random variables. We set �C and  �F, to achieve different  correlation patterns for the error terms

and R2 values (R2 = .1 in the reported results).  We set the three regression coefficients equal to 1.0 and

we specify four level-one units (individuals) within each of 25 level-two units (families) for each of 200

level-three units (communities), for a total of 20,000 individual-level observations.  

Our primary concern here is how one can carry out unbiased tests on the coefficient of the

community level variable in these three-level models.  Figures 5, 6, and 7  contain pertinent information

about the size performance of various estimators of standard errors for different configurations of the

multilevel error correlations.  The left-hand side graphs examine various ways to estimate standard errors

for the OLS point estimators. We consider three standard error estimators for these OLS estimates. The

first is the naive standard errors as reported by standard OLS procedures assuming completely

uncorrelated disturbances (labeled olstest). The second is a robust standard error estimator assuming that

only observations within the second level are correlated (labeled olshfam).  These standard error

estimators would be appropriate, for example,  if  there could be non-zero error correlation among

individuals within the same family (�F �0) but no correlation of disturbances across families living within

the same community (�C=0).  The third standard error estimator is similar to the second, except that it
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5What we attempt to evaluate here are simple-to-use estimators that are available in many multi-purpose
statistical packages. Consequently we do not examine correctly specified maximum likelihood estimators that
recognize the possible three level error structure. Such models should provide accurate estimates and unbiased
hypothesis tests.

6If individuals are members of families located within communities, then the intraclass correlation we
consider is the correlation of the disturbances among individuals within the same family.  

7Figures 5, 6, and 7 only examine tests at size 0.05. We obtained quite similar results for size 0.10.

allows for possible error correlation at the third level among level-two units (e.g., error correlation among

families and individuals living within the same community, labeled olshcom). 

The right-hand side graphs are based on maximum likelihood point and standard error estimators

that naively assume a two-level error hierarchy.5  The first assumes that all level-one observations are

equally correlated within the level-three units (labeled mlecomm). This would be the case, for example, if

community-level unobserved factors could influence an individual’s outcomes (�C�0), but there are no

unobserved family-level factors influencing the individual-level outcome (�F=0).  The second set of

maximum likelihood point and standard error estimators again assumes that there is only error correlation

among level-one units within the same level-two unit (e.g., only disturbances for individuals within the

same family are correlated, i.e., �C =0 and  �F�0, labeled mlefam).

The graphs display the empirical Type I error (size) for null hypotheses of the form

where �0 is the true value of the parameter in the DGP (i.e., 1.00 for allH vs H0 0 1 0: : ,� � � �� �

parameters examined), as a function of the intraclass correlation coefficient among individuals at  level

one within each  level-two unit.6  Each of these tests take place at a five percent level, and we carry out

each test for each of the 1000 Monte Carlo replications. As in the analysis of standard error estimators in

the simpler models, a point on the graph represents the fraction of times the true null hypothesis is

rejected using that particular point and standard error estimator at the specified level of the intraclass

correlation. An accurate standard error estimator for a particular point estimator would exhibit a straight,

horizontal  line at 0.05 for all values of the intraclass error correlation. Note that the vertical scales vary

across graphs within these figures.7
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8There could be a cost of specifying the “clustering” level higher than is necessary. It is important for there
to be enough independent higher level observations for this estimator to work well. In fact, the estimator will not
provide a positive definite covariance matrix unless there are at least as many independent higher level units as
parameters being estimated. Typically, one would like to have many more than this number of observations in order
to obtain accurate estimators of the standard errors of the parameter estimates. If there is no community level error
correlation but one specifies that there could be error correlation within communities, this will yield valid standard
error estimators as long as the number of communities is large.  But, if there are only a few communities the
estimators might not work well. 

Figure 5 considers the case where there is only error correlation among level-one units within the

same level-two unit (e.g., only error correlation among individuals within the same family).  In particular,

�C =0, while �F�0.  We see that the naive standard error estimator for the OLS point estimator performs

quite poorly (olstest) .   The empirical size exceeds twice the specified size even for some intraclass

correlations below 0.50, with the empirical size rising to about 0.30 at the highest levels of intraclass

correlation. Both of the robust standard error estimators yield tests of the correct size.  It is important to

recognize that for these robust standard error estimators to perform correctly, one only needs to specify

the highest level at which there could be error correlations.8 Hence, the estimator allowing there to be

correlations among all individuals within the same community (olshcom) provides unbiased hypothesis

tests, even though there is no community-level (level 3) error correlation.  Its assumption of clustering up

to as high as the community level (level 3) incorporates as a special case clustering only within families

(level 2).  For this standard error estimator to perform well, there need not be the same form of error

correlation for all observations within the level specified as being the highest level with correlation.  

The maximum likelihood estimator does not generalize this way. The right-hand graph in Figure

5 indicates that the maximum likelihood estimator that models the within level two (family) correlation

does provide unbiased tests; this estimation procedure coincides with this specification of the DGP (only

level-two correlation).  The maximum likelihood estimator assuming only the higher level, community-

level error correlations, however, does appear increasingly biased as the level of the intraclass correlation

rises; this estimation method does not contain Figure 5's DGP as a special case.  But for � less than 0.50,

this bias appears quite small. Even at the highest levels of �  the incorrectly specified maximum
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9We obtained approximately the same probabilities of false rejections for all approaches and for all data
generating processes when we examined R2 values of 0.90 instead of the 0.10 examined in these figures.

likelihood estimator provides tests that reject at most about eight percent of the time when the requested

size is five percent.9

Figure 6 provides the same information as Figure 5, but the DGP used for Figure 6 has all of the

error correlation taking place at the community (third) level. Here �C >0, while �F=0. After controlling for

the level-three correlation (e.g., community), there is no additional correlation among level-one units

(e.g., individuals) within the same level-two unit (e.g., families).   The performance of the testing

procedures in this instance are somewhat different that those discussed for Figure 5. The naive OLS

standard error estimator continues to provide biased tests. The “robust” standard error estimator with only

family level (level two) error correlation and the maximum likelihood procedure that allows for error

correlation only at the family level (level two) now provide quite biased tests; this is because these

procedures do not recognize the level-three error correlation. The two-level maximum likelihood model

that allows there to be error correlation at the community level (level three), not surprisingly, provides

unbiased tests for the impact of the community-level covariate because it is correctly specified.  Tests

using the OLS point estimates along with the robust standard error estimators allowing for up to level-

three error correlation also provide unbiased tests for the impact of the community-level covariate.  

Figure 7 presents the perhaps more realistic case when there are error correlations at level two

(within the family) and at level three (within the community).  The OLS standard error estimator with

possible within community error (level three) correlations and the maximum likelihood approach that

allows for error correlation at the community level (level three) provide unbiased tests. It is somewhat

surprising that this maximum likelihood estimator performs correctly here. It performed somewhat poorly

when there was only family level (level two) error correlation as in Figure 5, while here there is family

error correlation as well as community error correlation. For the community-level variable effect, any

approach that fails to recognize that there can be correlated errors at the community level provides biased

hypothesis tests. 
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The main conclusion about the performance of standard error estimators when there are three-

level models is that it is most important to control for the error correlation at the highest possible level at

which it might exist.  For the OLS estimates with robust standard errors (Eicker-Huber-White), it does not

matter whether one “over-controls” and allows for possible error correlations at a higher level than is

actually the case.  For these Eicker-Huber-White standard error estimators, as long as the highest level of

actual error correlation is nested within the level specified in the estimation, hypothesis tests will be

unbiased. For the two-level maximum likelihood estimator, it is more important to specify exactly the

level at which the error correlation takes place.  But, if one is going to use two-level maximum likelihood

estimators in the presence of three level error components, these results suggest it would be best to

assume that all error correlation takes place at the highest level (e.g., community level).  

IV.  Continuous Dependent Variable Application: The Determinants of Child’s Weight

To illustrate the methods presented above, we estimate a reduced form model of the determinants

of child weight using data from the Cebu Longitudinal Health and Nutrition Survey (CLHNS).  This data

set provides an excellent illustration of the methods since there is data at three levels: community,

individual and time-varying individual.  The level one units are bi-monthly observations on an infant’s

weight from birth to age 2 (up to a maximum of 13 per infant). A level two unit is the child (or,

equivalently, its mother or its family), and the level three units are the Barangays (communities) where

the family resides.  There are 33 Barangays in this study, with 3,327 infants, and a total of 34,293 bi-

monthly recordings of the child’s weight.  Table 1 contains summary statistics, and Guilkey et al (1989)

provides a detailed description of the data.   This data set is 50% larger than the Monte Carlo data set and

has more observations per community (level 3) unit.  As a result, a priori, we would expect the naive OLS

standard errors to be badly biased

Table 2 reports six sets of estimation results for the effect of community, family and individual

level covariates on an infant’s weight in kilograms for up to 13 points in time from birth to age two:

1.  OLS with naive standard errors.
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2.  OLS with robust (Eicker-Huber-White) standard errors with correction at the person level.

3.   OLS with robust (Eicker-Huber-White) standard errors with correction at the Barangay level. 

4.   Two-level MLE at the person level.

5.  Two-level MLE at the Barangay level.

6.  Three-level GLS with Barangay and person levels.

All estimation methods provide consistent point estimates of the parameters, but in general only

methods 3 and 6 will provide correct standard errors. We used the MLwiN program (Goldstein, et. al.,

1998) to do iterated feasible GLS for the three-level model since three-level MLE cannot be estimated

using STATA.  Iterated feasible GLS  is asymptotically equivalent to MLE under the assumption of error

term normality.  As a check on the possible differences between MLwiN and STATA, we re-estimated

columns 4 and 5 using MlwiN (MLE with only two levels) and obtained results identical to the reported

STATA results.

The top half of Table 2 presents results for three Barangay level variables: the price of formula,

the price of corn, and whether or not the Barangay is urban; the columns refer, in order, to the estimation

procedures just outlined.  If we look at the first three columns of the table for these three variables, we see

that the point estimates of the coefficients are identical as they should be.  However, we see that the naive

OLS standard errors are badly biased and the OLS standard errors with the Eicker-Huber-White

correction at the individual level (column 2) understate the standard errors relative using the correction at

the Barangay (community) level – the outmost level. 

Consider the impact of the price of formula on child’s weight.  The positive sign is somewhat

unexpected for a price variable. However, we see that the p values for a two tailed test of significance

decline from 0.04, to 0.19 and 0.32 as one moves from OLS with naive standard errors to robust standard

errors with corrections first at the individual level and then at the Barangay level.  A similar pattern,

although not as pronounced is seen with the price of corn, the p values are 0.02, 0.05. and 0.07.  These

results are in line with the simulation results reported above:  any correction for error correlation that

ignores the outmost level of correlation can lead to seriously biased inferences and statistical tests.
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The last three columns of Table 2 present MLE results. The corrections to the standard errors we

observed in the first three columns suggest that there may be important correlations at both level 2 and

level 3 for these data. This implies that columns 4 and 5 could be incorrectly specified, as column 4

ignores the Barangay level error correlation and column 5 ignores the level two (child) error correlation.

The bottom of the table reports the estimated error component variances and we see that both the

Barangay level variance and the fixed individual level variance are highly significantly different from

zero in the three level model (p values of 0.03 and 0.00 respectively). The fraction of error variance due

to child level unobservables, from column 6, is 0.66, while the fraction of variance due to Barangay is

only 0.01.  The analytical results presented in Section II suggest that such a combination of a large

intraclasscorrelation with a small number of observations per level two unit (at most 13 observation per

child) is a case where there could be substantial efficiency gains from using MLE instead of OLS with

standard error corrections.  The results presented in columns 4 and 6,  where we typically find standard

error estimates substantially smaller than the those presented in column 3 (OLS with correct standard

errors),  are supportive of this possibility.  The results in columns 4 and 6 are quite similar in this case

because the Barangay level error variance, while quite significant, is not very large.

A somewhat interesting result is that the point estimate of the coefficient for the price of infant

formula is positive for OLS and negative for all MLE estimations.  However, only the naive OLS

coefficient is significantly different from zero (p=0.04), with 95% confidence intervals for any of the

three MLE coefficients including positive as well as negative values.  The estimated impacts of the price

of corn are always small and negative.  Confidence intervals using the three level MLE model, however,

are only half as large as those from the OLS model with corrected standard errors. This might be due to

the fact that these community level price variables are not constant across level one and level two units;

they vary by calendar month. Note that the price of corn is only statistically significant for the naive OLS

model that fails to account for correlated errors. All other specifications would fail to reject the null

hypothesis that the effect is zero at the 5% level (2-tailed tests). 
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Table 2 reveals similar impacts of the various estimation procedures on the estimates for the the

impact of the child’s gender and the mother’s age at birth, education , and height on the child’s weight.

Note that these maternal variables, unlike the community level variables, do not have any time series

variation that is not captured by the child age variables.  Naive OLS standard errors suggest that the

mother’s age is a significant determinant of the child’s weight; its significance disappears after controlling

appropriately for the multilevel error structure. Similarly, the naive OLS standard errors of the gender,

education, and height effects understate the corrected standard errors by factors of two to five. The three

level MLE model does provide somewhat more accurate estimators of these effects than the OLS model,

with the largest efficiency gains being for the level-one indicators of the child’s age.

This example clearly reflects the statistical and Monte Carlo evidence presented in the previous

two sections. It clearly demonstrates the need to correct the OLS standard errors using the outmost level

of clustering if one wants to make correct inferences. Maximum likelihood estimation for these data

provides a substantial efficiency gain over OLS estimation primarily because of the very large individual

level �.

V.  Extension to the Probit Model with an Application to Use of Family Planning in the Philippines

Probit and logit models are typically used for models with dichotomous dependent variables, and

extensions to multilevel models have been developed for both methods. Unlike the case of the continuous

outcome models, it is not possible to make simple, theoretical (analytic) statements about the relative

performance of estimators. Instead, in this section we point out some important interpretation issues that

arise when one considers multilevel models with discrete outcomes and present an example illustrating

the efficiency gains from using models that control for multilevel error structures. 

 Probit models are slightly more convenient for multilevel models because they depend on an

underlying normal error distribution. Sums of normal random variables from different level units will

remain in the class of a normal distributions, and models controlling for possible correlations across
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different levels can fit into a common and  internally consistent statistical model.  The probit extension 

involves modifying equation (1) as follows:

(6)

where all terms are defined as above except that  is a latent variable.  The observed variable, , is an

indicator variable that takes on the value “1" when the latent variable is positive and “0" otherwise.  As in

the continuous dependent variable case, we assume the two error components are independent. What

makes this a probit model instead of a logit or other binary outcome  model is the assumption that both �c

and �i c follow normal distributions. We define  and  where � is the fraction of the

total error variance due to the community level component of the error term.  

The difference from the continuous outcome case is that we only observe the sign of the

dependent variable ; we must therefore impose a normalization.   The normalization used in all simple

probit procedures is  (Heckman(1981)).  In more complex models some computer packages  instead

impose . Because of this need to make an arbitrary normalization, only ratios of coefficients (i.e.,�
�

2 1�

relative effects) and significance levels can be identified.  Robinson (1982) has shown that simple probit

applied to (6) will consistently estimate the model’s coefficients. Just as in the continuous case, however,

the coefficient standard errors from the simple estimation will be incorrect. Robust (Eicker-Huber-White)

standard errors will be asymptotically valid as long as one corrects at the highest level.  

In order to discuss the MLE for this two level probit model, and to see the effect of the

normalization on estimated coefficients, we re-write equation (6) with an arbitrary normalization as

follows:
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(7)

The only restriction on 	 � is that it is positive. Since the  are not observed, the MLE integrates out with

respect to the ‘s using either a simulation method or numerical quadrature (Bultler and Moffit, 1982). 

Some maximum likelihood procedures impose . The overall error variance is 1 and these

procedures estimate as coefficients .    Since they impose the same normalization as a� � �
�.. / 2 2
� u

simple probit procedure ( ), one can directly compare the coefficient estimates of these MLE to

simple probit.  Other maximum likelihood procedures, such as  STATA’s xtprobit for example,  impose

the normalization that  so that the estimated coefficients equal  .  This means that direct� �
�.. /

comparisons of the point estimates of simple probit and the MLE do not make sense unless �=0. 

However, significance levels are not affected and it is possible to compare ratios of coefficients across

estimation procedures.

A Monte Carlo study (Guilkey and Murphy, 1993) obtained results that were similar to the results

of Angeles and Mroz (2001) for the continuous dependent variable case: probit with Eicker-Huber-White

standard errors performed quite well while the naive probit model produced standard errors that were

badly biased.  In addition, there was only a small efficiency gain from using the much more complicated

MLE estimator in this case.  Note, however, that their Monte Carlo study was designed to examine

longitudinal data models with many individuals and a small number of observations per individual (either

2, 5, or 10 observations); it was not designed to examine the community level multilevel model with more

than 10 observations per community.

We can also extend the three level continuous dependent variable model to probit:

(8)
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where all terms are as defined above. As in the two-level model, numerical methods can be used to

integrate out with respect to  and  . Again, it is important to recognize that one needs to impose some

arbitrary normalization.  The most common are to normalize by  or by .  Ratios of� � �� � �
2 2 2
� � �

�

coefficients and significance levels do not depend on the chosen normalization.  Just as in the two level

model, Eicker-Huber-White standard errors are asymptotically correct as long as one corrects at the

outmost level – community in this example.  However, there is no Monte Carlo evidence on the finite

sample performance of these standard errors or the MLE.  

Our example for the probit model uses data with three levels from the Philippines where the

outcome is interest is whether a reproductive aged woman uses family planning.. The data is cross

sectional with province (level 3), municipality (level 2), and individual (level 1) observations. We use

province and municipality level health care expenditure data from 1998 matched to individual level

women from the 1998 Demographic and Health Survey (DHS).  The higher level data come from a

Commission on Audit survey; Schwartz et al (2000) provides a more detailed description of these data. 

Schwartz, Guilkey and Racelis (2001) provide more information about the DHS data and the merged data

set. There are 7,492 level one observations residing in 484 communities contained in 75 provinces. 

Descriptive statistics for all variables are presented on the right hand side of Table 1. In the multilevel

estimation models we impose the restriction that the total error variance is 1.00, so we can directly

compare coefficients to those from simple probit models.

The original reason for gathering the expenditure data was to measure the effect of devolution on

health outcomes.  In discussing the results, we focus on the effects of public health expenditures at the

province and municipality level on contraceptive use that are reported at the top of Table 3.  A

comparison of the standard errors of the three simple probit estimators shows that the standard errors

almost triple for both variables when we correct for possible error correlation at the municipality level and

further increase when we correct at the province level.  Province level public expenditures are



MEASURE Evaluation 29

insignificantly different from zero at any reasonable level of significance. The point estimate of the

impact of the public municipality health expenditures is much larger, with a two standard deviation

increase in municipal health expenditures implying, on average, a five percentage point increase the in

fraction of women using contraception. This effect, however, is not significantly different from zero at the

5% level  once one recognizes that there could be error correlations at the municipal (p=0.10) or province

level (p=0.13).

We now turn to the MLE results reported in the last three columns of Table 3.  When one only

estimates two level models, the intraclass correlations are .45 and .21 for municipality and province level

two components.  When the three level model is estimated, the municipality level � is .40 and the

province level � is.06.  The p-values for the �’s for the three level model are 0.00 and 0.05 respectively.

Corrections for error correlations at both levels are necessary, so correct inferences can only be made

using the standard errors reported in columns 3 and 6. 

For the individual level coefficients in columns 3 and 6, the changes in point estimates and

standard errors follow the same patterns as seen in Table2 for the continuous outcome. The point

estimates change by relatively small amounts from using multilevel models, and one can obtain more

efficient estimators by using multilevel models instead of simple models.  A much different situation

arises for the higher level explanatory variables.  The estimated impact of  municipal health expenditures,

for example, falls by over 60% from the probit estimates to the multilevel estimates with controls for

province and municipal level correlations. With the multilevel model that has error correlation controls

only at the province level, the estimated effect actually becomes negative.  Such changes should not be

statistically significant if the underlying model is correct.

Even though neither estimate of the impact of municipal level expenditures in columns 3 and 6 is

significantly different from zero, the point estimate does change significantly between the two columns.

To see this, note that maximum likelihood estimation of the three level model is an efficient estimator.

The simple probit estimator should also be consistent in this situation, so one can carry out a simple

Hausman (1978) test.  The change in the point estimates is 0.1643 between columns 3 and 6. The estimate
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of the standard error of this difference, calculated from the differences in the estimated variances, is

0.056. This change has a p-value of 0.003, indicating a model specification problem.  This significant

change might be due to the fact that government health expenditures are not allocated independent of

perceived need, resulting in the endogeneity of the health expenditures.  Schwartz, Guilkey, and Racelis

(2001) tested the endogeneity of health expenditures using both the 1993 and 1998 data, and they found

strong evidence that health expenditures at the municipality level are endogenous to contraceptive use. 

When an important point estimates does change significantly when one uses a standard multilevel model,

it is an indication that the researcher should spend more time examining the underlying assumptions of

the model instead of trying to obtain a more refined multilevel model. 

V.  Conclusion

This paper presents both analytical and simulation evidence on the usefulness of the OLS

estimator in multilevel models with up to three levels of data in comparison to the MLE.  We focus on the

correct measurement of the impacts of community level variables which are often the variables of primary

policy interest.  Even though the OLS point estimators appear to perform quite well relative to the

maximum likelihood estimators in most applied situations, the standard error estimators provided by

standard Ordinary Least Squares formulae are incorrect in the presence of multilevel error correlations.

For two-level models, we find that the robust asymptotic approximations to the standard errors of the

OLS model due to Eicker, Huber, and White provide approximately unbiased tests for all parameter

estimators when one uses formulae that allow error correlations at the higher level. The maximum

likelihood standard error estimators perform flawlessly for these two-level models. 

When we examine three-level models, the robust standard error estimators allowing for error

correlations within the highest level continue to perform quite well, while the maximum likelihood

estimators that assume only two error levels often perform poorly. This failure of the maximum likelihood

estimators is due to the fact that they are incorrectly specified for the three-level models we examine.  It is

important to note that one will usually obtain biased tests with these “maximum likelihood” estimators
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even though they control for correlations at the highest level.  This could be an important factor to

consider when using maximum likelihood estimators if there could  be a missing “middle” level in a

researcher’s empirical model. Ordinary least squares estimators with the robust, Eicker-Huber-White

standard error estimators do not have this limitation.

If one is primarily interested in estimating the impacts of a community-level variable on

individual-level outcomes, as is frequently the case in the evaluation of health and family planning

programs in developing countries, then the results of this paper provide some important guidelines.  First,

unless intra-class correlations are large, there are typically small efficiency gains for the estimates of the

impacts of community-level factors on the individual-level behavior from using maximum likelihood

procedures instead of simple ordinary least squares estimation. Second, it is crucial to adjust the estimated

standard errors of the ordinary least squares estimators to reflect the fact that there can be correlated error

terms at higher levels; the robust standard error estimators appear to provide adequate adjustments. 

Third, even if there are complex multilevel error correlations in the data, the robust standard error

adjustments always provide unbiased tests, as long as one allows for error correlation at the highest level;

simple two-level maximum likelihood models do not provide unbiased tests when lower level error

correlations are present.

In addition to the theoretical results, we also present empirical illustrations of the methods for the

continuous dependent variable case and present extensions of the probit model to three level error

structures  along with an empirical example. The empirical examples dovetail nicely with the theoretical

results; they demonstrate how the standard error estimates change when one allows for error correlations

at higher levels. Our final example highlights what might be a most important concern: all estimation

approaches could yield potentially misleading results if the model is not correctly specified.  Since it is

straightforward to obtain robust standard error estimators for simple estimation approaches, a researcher’s

time might be spent better by evaluating key maintained assumptions in a model rather than by trying to

incorporate multilevel error structures into the estimation of point estimates.   
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Figure 1

Standard Deviations of Ordinary Least Squares Estimators as a Fraction of the
 Standard Deviations of the Maximum Likelihood Estimators as a Function

Number of Observations per Community

Figure 1A: Community Level, Correlated Individual Level, and Independent Individual 
Level Coefficient Estimators for Intraclass Correlation 0.25 and Four Regressor Correlations

Relative OLS Standard Errors by N, Rho=.25
NIPC
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Figure1B: Community Level, Correlated Individual Level, and Independent Individual 
Level Coefficient Estimators for Intraclass Correlation 0.75 and Four Regressor Correlations

Relative OLS Standard Errors by N, Rho=.75
NIPC
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Figure 2

Standard Deviation of Ordinary Least Squares Estimator as a Fraction of the Standard Deviation
of the Maximum Likelihood Estimator of the Impact of the Community Level Variable, 
as a Function of the Correlation of the Community and Individual Level Regressors (�)

Figure 2A: Community Level Coefficient Estimators with an Intraclass Correlation of  0.25 
and Four Specifications of the Number of Observations per Community
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Figure 2B: Community Level Coefficient Estimators with an Intraclass Correlation of  0.75 
and Four Specifications of the Number of Observations per Community
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Figure 3 

Performance of Standard Error Estimators:  Probability of Rejecting a True Null Hypothesis

Size = 0.05 Size = 0.10
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Figure 4

Power to Reject Null Hypotheses as a Function of the Intraclass Error Correlation
Ordinary Least Squares Estimators with Eicker-Huber-White Standard Errors and 

Two-Level Maximum likelihood Estimators 
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Figure 5

Performance (Size) of Standard Error Estimators for Three Level Models
Only Level Two Error Correlation
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Figure 6

Performance (Size) of Standard Error Estimators for Three Level Models
Only Level Three Error Correlation
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Figure 7

Performance (Size) of Standard Error Estimators for Three Level Models
Level Two and Level Three Error Correlations
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Table 1.  Descriptive Statistics

Cebu: Child’s Weight Philippines: Use of Family Planning

Variable Mean (SD) Variable Mean (SD)

Community Variables

Price of Formula (n=429) 4.4553
 (1.4513)

Public Province Health Exp.
(n=75)

.4353
(.4716)

Price of Corn (n=429) 5.9831
 (1.5006)

Public Mun. Health Exp.
(n=484)

.5094
(.3288)

Urban Barangay (n=33) .5151
 (.5000)

Individual Variables

Child’s Weight (n=34,297) 7.3889 (2.1513) Use of FP  (n=7,492) .6884 (.4631)

Mother’s Age (n=3073) 26.0680 (5.9915) Age 15 to 19 (n=7,492) .0119 (.1083)

Mother’s Education (n=3073) 7.1132 (3.3115) Age 20 to 24 (n=7,492) .1481 (.3552)

Mother’s Height (n=3073) 150.5611 (5.0042) Age 25 to 29 (n=7,492) .2714 (.4448)

Child is a Boy (n=3073) .5307 (.4991) Age 30 to 34 (n=7,492) .2474 (.4316)

Age 35 to 39 (n=7,492) .1817 (.3856)

Age 40 to 44 (n=7,492) .0874 (.2825)

Education 0 to 5 Yrs (n=7,492) .1517 (.3588)

Education 6 Yrs (n=7,492) .1969 (.3977)

Education 7 to 10 (n=7,492) .3812 (.4857)

Partner’s Ed. 0 to 5 Yrs
(n=7,492)

.1931 (.3948)

Partner’s Ed. 6 Yrs (n=7,492) .1771 (.3818)

Partner’s Ed. 7 to 10 Yrs
(n=7,492)

.3509 (.4773)

Respondent Lives in Urban Area
(n=7,492)          

.3990 (.4897)

Asset Index (n=7,492) 2.1307 (2.3751)

Religion is Catholic (n=7,492) .7623 (.4257)
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Table 2.  The Determinants of Child’s Weight in the Philippines (Standard Errors in Parentheses)

Variable OLS OLS
Individual
Correction

OLS
Community
Correction

MLE
Individual

Only

MLE
Community

Only

MLE
Both

Community Variables

Price of Formula .0108
(.0052)

.0108
(.0083)

.0108
(.0109)

-.0031
(.0033)

-.0031
(.0057)

-.0035
(.0033)

Price of Corn -.0138
(.0060)

-.0138
(.0070)

-.0138
(.0077)

-.0010
(.0035)

-.0084
(.0061)

-.0009
(.0035)

Urban -.0301
(.0122)

-.0301
(.0351)

-.0301
(.0635)

-.0371
(.0342)

-.0799
(.0459)

-.06444
(.0486)

Individual Variables

Mother’s Age -.0028
(.0008)

-.0028
(.0025)

-.0028
(.0023)

-.0029
(.0023)

-.0030
(.0008)

-.0032
(.0023)

Mother’s Years of Education .0570
(.0016)

.0570
(.0047)

.0570
(.0074)

.0531
(.0045)

.0591
(.0016)

.0544
(.0046)

Mother’s Height .0406
(.0010)

.0406
(.0029)

.0406
(.0031)

.0396
(.0029)

.0399
(.0010)

.0391
(.0028)

Child is a Boy .5127
(.0099)

.5127
(.0292)

.5127
(.0252)

.4782
(.0280)

.5062
(.0099)

.4754
(.0279)

Age 2 months 1.8941
(.0239)

1.8941
(.0111)

1.8941
(.0157)

1.8944
(.0134)

1.8983
(.0237)

1.8943
(.0134)

Age 4 months 3.1415
(.0243)

3.1415
(.0154)

3.1415
(.0213)

3.1393
(.0137)

3.1506
(.0242)

3.1394
(.0137)

Age 6 months 3.8753
(.0250)

3.8753
(.0184)

3.8753
(.0261)

3.8661
(.0141)

3.8860
(.0248)

3.8662
(.0141)

Age 8 months 4.3267
(.0259)

4.3267
(.0236)

4.3267
(.0285)

4.3120
(.0146)

4.3388
(.0257)

4.3122
(.0146)

Age 10 months 4.6715
(.0270)

4.6715
(.0236)

4.6715
(.0327)

4.6472
(.0153)

4.6841
(.0269)

4.6474
(.0153)

Age 12 months 4.9814
(.0283)

4.9814
(.0261)

4.9814
(.0371)

4.9511
(.0161)

4.9952
(.0282)

4.9513
(.0161)

Age 14 months 5.2641
(.0294)

5.2641
(.0282)

5.2641
(.0438)

5.2284
(.0167)

5.2783
(.0293)

5.2287
(.0167)

Age 16 months 5.5459
(.0301)

5.5459
(.0293)

5.5459
(.0478)

5.5109
(.0171)

5.5631
(.0300)

5.5112
(.0171)

Age 18 months 5.8302
(.0301)

5.8302
(.0301)

5.8302
(.0483)

5.7965
(.0172)

5.8487
(.0300)

5.7969
(.0172)

Age 20 months 6.1396
(.0296)

6.1396
(.0304)

6.1396
(.0509)

6.1085
(.0169)

6.1608
(.0296)

6.1090
(.0169)

Age 22 months 6.4593
(.0281)

6.4593
(.0286)

6.4593
(.0468)

6.4327
(.0160)

6.4776
(.0280)

6.4331
(.0160)

Age 24 months 6.8048
(.0268)

6.8048
(.0269)

6.8048
(.0443)

6.7748
(.0152)

6.8204
(.0267)

6.7750
(.0152)

Constant -3.7223
(.15414)

-3.7223
(.4454)

-3.7223
(.4221)

-3.4903
(.4269)

-3.5361
(.1575)

-3.3931
(.4266)
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Table 2. Continued

Variances

 columns 1,2,3
 columns 4,5,6

.8378
(.00004)

.8378
(.00004)

.8378
(.00004)

.2573
(.0021)

.8238
(.0063)

.2573
(.0020)

.5666
(.0153)

.5585
(.0151)

.0156
(.0042)

.0083
(.0039)
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Table 3.  Determinants of Contraceptive Use in the Philippines (Probit with standard errors in parentheses)

Variable Probit Probit
Municipality
Correction

Probit 
Province

Correction

MLE
Municipality

Only

MLE
Province

Only

MLE
Both

Province and Municpality

Public Province Health
Expenditures

.0006
(.0438)

.0006
(.1324)

.0006
(.1325)

-.0735
(.0948)

.0502
(.0965)

-.0556
(.1515)

Public Municipality Health
Expenditures

.2622
(.0559)

.2622
(.1614)

.2622
(.1733)

.1119
(.1607)

-.0381
(.0771)

.0979
(.1639)

Individual

Age 15 to 19 .9492
(.1533)

.9492
(.2900)

.9492
(.2906)

.9231
(.1791)

.7943
(.1528)

.9326
(.1797)

Age 20 to 24 1.3329
(.0823)

1.3329
(.1572)

1.3329
(.1612)

1.3860
(.0989)

1.3890
(.0803)

1.3834
(.0993)

Age 25 to 29 1.3994
(.0773)

1.3994
(.1439)

1.3994
(.1398)

1.6209
(.0924)

1.4565
(.0772)

1.6157
(.0930)

Age 30 to 34 1.2681
(.0773)

1.2681
(.1403)

1.2681
(.1259)

1.5868
(.0929)

1.3240
(.0744)

1.5775
(.0936)

Age 35 to 39 1.1715
(.0795)

1.1715
(.1544)

1.1715
(.1613)

1.4074
(.0960)

1.2444
(.0785)

1.4055
(.0956)

Age 40 to 44 .7975
(.0867)

.7975
(.1898)

.7975
(.1918)

.8808
(.1062)

.8880
(.0863)

.8774
(.1061)

Education 0 to 5 years -.4444
(.0657)

-.4444
(.1644)

-.4444
(.1508)

-.5286
(.0879)

-.4339
(.0716)

-.5329
(.0882)

Education 6 years -.1519
(.0577)

-.1519
(.1444)

-.1519
(.1574)

-.3116
(.0748)

-.2313
(.0624)

-.3209
(.0756)

Education 7 to 10 years .1269
(.0475)

.1269
(.1095)

.1269
(.1242)

.1609
(.0595)

.0599
(.0509)

.1495
(.0599)

Partner’s Education
0 to 5 Years

.1206
(.0608)

.1206
(.1683)

.1206
(.1611)

.0185
(.0777)

.0528
(.0657)

.0212
(.0785)

Partner’s Education
6 Years

.3344
(.0596)

.3344
(.1548)

3344
(.1529)

.2844
(.0762)

.3318
(.0644)

.2813
(.0770)

Partner’s Education
7 to 10 Years

.2607
(.0462)

.2607
(.1174)

.2607
(.1007)

.2010
(.0577)

.2855
(.0500)

.2102
(.0584)

Urban -.0484
(.0352)

-.0484
(.0894)

-.0484
(.0945)

-.1484
(.0627)

-.1293
(.0398)

-.1611
(.0678)

Asset Index .0082
(.0081)

.0082
(.0251)

.0082
(.0242)

-.0077
(.0109)

.0128
(.0093)

-.0066
(.0107)

Religion is Catholic .0675
(.0377)

.0675
(.0929)

.0675
(.1140)

.0213
(.0534)

-.0360
(.0443)

.0096
(.0542)

Constant -.9751
(.0964)

-.9751
(.2163)

-.9751
(.2649)

-.7323
(.1507)

-.8755
(.1078)

-.7477
(.1606)

.4542
(.0228)

.3960
(.0315)
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.2084
(.0267)

.0560
(.0288)


