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This book covers basic network analysis at an intermediate level. It is
designed as a one-semester course for technikon students studying
Electrical Engineering.

The language in the text is simple, conversational English. Difficult
concepts and technical terminology are explained throughout the book.

The book consists of § units. Each unit starts with a list of outcomes or
study objectives. These outcomes set out what you should be able to do
at the end of each unit.

The text is set out in such a way that you should be able to work
through the book by yourselves. New concepts are explained and
reinforced by providing examples with solutions to work through. Try to
work through these on your own first, before looking at the solution for
guidance. The figures throughout the text help you to understand the
material and clarify concepts. The mathematics in this course is thereby
made clear and understandable.

Because this is a problem-solving course, there are also many activities
for you to work through. These activities allow you to make sure that
you have understood the work you have just covered.

The summary at the end of each unit enables you to see at a glance
what you should have learnt in the unit. The summary is followed by a
section with self-evaluation exercises for assessing your progress.

Answers to the activities and self-evaluation exercises appear at the end
of each unit.



We have used four icons in this book:

Y Activity 2

/ This 1s an ACTIVITY icon. When you see this icon you will know
that it is time to DO something! The activities are active and enjoyable,
and they help you to understand the subject. Feel free to do them with a

friend or group of friends. The solutions to the activities are given at the
end of each unit.

This is a DEFINITION icon. Read the definitions carefully
because the details are important.

The TAKE NOTE icon appears alongside all the extremely
important information. '

W Self-evaluation

This is a self-evaluation icon. The self-evaluation exercises at the
end of each unit enable you to assess your own progress.



Symbeols used in this book:

Physical parameter Unit
voltage V (Volt)
current A {(Ampere)
resistance 1 (Ohm)
inductance H (Henry)
capacitance F (Farad)
impedance £2 (Ohm)
admittance S (Siemens)
time s (second)
angular velocity rad/s (fadan)
period $ (second)
frequency Hz (Hertz)
angles °, rad (degree or radian)
active power W (watt)

reactive power
total (apparent) power
power factor

energy
resistivity
permittivity
permeability
complex number

in: rectangular form
polar form

VAr (volt-ampere reactive)
VA (volt-ampere)

J, Wh (joule or watt-hour)

Qm (ohm meter)

F Farad
meter

H (Hency

m \meter




Basic concepts

OUTCOMES |-

After studying this unit, you should be able to;

review the concepts of electric current and voltage
apply Ohm’s law

explain Kirchhoff's current and voltage laws and use these to
determine currents and/or voltages in simple resistive
circuits

determine when resistors are connected in series or in
parallel, and calculate the equivalent resistance for any
combination of these

explain what voltage and current dividers are and how to use
their rules

calculate electrical power and energy for simple resistive
circuits

explain the meaning of ‘short circuit’ and ‘open circuit’ in
circuit analysis

practically analyse any common resistive DC circuit, and
solve for its parameters using any of the above methods (in
terms of current, voltage, power and energy)

review your mathematical knowledge in the fields of
trigonometry, complex numbers, calculus and matrices




Basic Circuit Analysis

@ Introduction

In today’s world, most of us live with electricity around us. Electricity can
be a very good friend if it is used properly, but a deadly enemy if it is
misused. Because we cannot see, hear or smell electrical current, it is
important that we have an understanding of basic electrical principles.

All basic electrical systems have the following main components:

B a source;

B a transmission system;
B a control apparatus; and
M a load.

An ideal electric circuit is a mathematical model of a physical circuit that
allows us to transmit energy from a supply or source to a point of
application or load.

The parameters of such an ideal circuit that we need to determine are the
voltage and the current associated with any element of the circuit.

The ideal circuits we study allow us to theoretically predict the behaviour
of any electric circuit and its components, without having to use real
(physical) elements.

Electrical engineers and technicians should be able to analyse or design
models for any circuit and then, based on their observations, construct
the physical system that performs the desired task. When there is a fault
in an existing circuit, they should be able to make observations and take
measurements that enable them to pinpoint the fault and repair the
circuit. These are some of the aspects we will consider in this subject.

In this course we use the international unit system known as the SI unit
system. This system has the advantage of being consistent and, as you
already know, is based on seven basic quantities (length, mass, time,
electric current, temperature, luminous intensity and amount of substance)
and their base units (metre, kilogram, second, ampere, degree Kelvin or
Celsius, candela and mole). I hope you can remember some of the units
commonly used in electrical engineering, like ampere for current, coulomb
for charge, volt for voltage, and ohm for resistance. '

In most technical fields, measurements range from very small to very
large. So we need to refresh our memories about the SI unit prefixes, like
‘tera-’, ‘giga-’, ‘mega- etc. They are very convenient and often used
instead of writing long numbers.



Unit 1 — Basic concepts

The symbols and the Greek letters used in this book are the ones that
are commonly used in our field and appear in all electrical engineering
textbooks.

To study Electrical Engineering, you will need a basic mathematical
background. You may remember studying some special functions called
trigonometric functions in high school. For easy reference, there are basic
trigonometric identities in Appendix I at the end of this unit.

When you do calculations, remember that all answers should have the
correct number of significant digits and must adhere to the rules for
rounding off (you probably have studied this in Maths). Where
appropriate, try to use engineering notation. Find out how your
calculator works in ‘engineering mode’ if you do not already know this.

In the first part of this unit, we will revise some of the basic concepts you
studied in the previous level. After that, we will review some mathematical
concepts, but since this is engineering and not a mathematics course, we
will not go into great detail.

All of these concepts form the basic theoretical knowledge you will need
to study circuit components and their interaction. Let’s get started!

@ Revision of basic concepts

Electrical engineering involves the production, transmission, application
and control of electrical energy.

In this book we will focus on direct current (DC) and alternating current
(AC) electrical circuits, which are mathematical models of physical
circuits. The ideal electrical circuit includes current, voltage, resistance,
inductance and capacitance (I, ¥V, R, L and C).

The materials used in electrical circuits are typically conductors, insulators,
and semiconductors. '

1.2.1 Current and voltage

Current is the rate of movement of charge in an electrical
circuit:

i) = 92
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Current can be described as the movement of free electrons in a circuit.
For current to flow continuously, we must have a complete circuit that
includes an electromotive force (emf) provided by the voltage source.

When any electric current flows, it produces forces known as ‘magnetic’
forces.

Voltage is the ‘potential’ difference between two points and
characterises the ability of an electrical force field to do work.

- Y

=
= il

In the following equation, the + sign indicates the assumed high
potential point and the — sign indicates the low potential point:
v, =—V

ba ab
Vo = V= VY,
vba = Vb“ Va Oa(+)

Voo~ Vs

1

© )
Fig. 1.0

1.2.8 Electrical resistance and Ohm's law

Resistance is a measure of the extent to which a material opposes the flow
of current through it.

Conductors have a small resistance. Insulators have a large resistance.

For a conductor R = pAL and % = ( (conductance), where p = resistivity

of material, / = length, A = cross-sectional area

When we want to replace a resistor, or if we want to build a circuit and
need a resistor, it is very important to know the resistor’s power rating and
the effect of temperature on the value of the resistor.
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\\7\‘1@“‘

We say that metals have a positive temperature coefficient
(O.’Q > 0)

Ry = Ro(1 + aptly)
where Ry = resistance at temperature T
R; = resistance at temperature T,
#; = T, — Ty, difference in temperature
= temperature coefficient

In this unit, we will refer to linear resistors only. For these, Ohm’s law
states that v = Ri, and is a linear relationship. (Do you remember that
the graph v = f{i) is a straight line that passes through the origin and has
a slope equal to R?)

The current flowing through resistors found in resistive networks is
always directly proportional to the voltage applied to the resistor. The
resistor 18 then called a linear resistor.

Alternative mathematical forms for Ohm’s law are:

I:%orR:%

Activity 1.1

LAY Y The field coil of a shunt motor has a res1stance of 10.5 2 at 0°C.
Determine the current that will flow through the coil if the supply
Voltage is constant at 220 V and the témperature of the coil
increases to 60°C. The resistance temperature coefficient of copper
at 0°C is 0.00426/°C

)

1.2.3 Kirchhoff's Laws

@X‘ﬂ,\ﬁ Kirchoff’s current law (K.CL) states that the sum of the currents
\““ entering a junction (node) is equal to the sum of the currents
leaving the junction:

‘ﬁ For metals, resistance increases with the increase in temperature.
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3 = 0 (for the junction)
1

>~ currents entering the node = 3 currents coming out
of the node

Fig. 1.1

Just as KCL applies to any node of a circuit (in other words, to satisfy
the physical law of conservation of charge, the current going in must
equal the current coming out), so KCL must hold for any closed region
(see fig. 1.1).

Kirchoff’s voltage law (K VL) states that the sum of the voltage
drops around any closed loop equals the sum of the voltage rises
around the loop. -

Xﬂj V = 0 (for the closed loop)
1

> voltage rises = Y . voltage drops

Fig. 1.2

KVL is, in fact, an expression of conservation of energy.
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1.2.4 Series and parallel combinations of resistors

The series connection of resistors means that the same current flows
through each resistor, since the output node of one is the input node
for the next one, and so on.

We can have two, three, four or more resistors in series. To write a
general formula, we will call the last resistor the ‘#’th resistor, where
n>2.

Fig. 1.3

The equivalent series resistance:
— S R=Ri+Ro+...+R,
1

eqlseries)

The parallel connection of resistors, as in fig. 1.4, means that the resistors
have the same voltages (potential difference) across them.
1 _ 1,1 1
R,"RYTRT %

eg]|

or,
Geq=G1+G2+...+Gn

v Rl Rz R,
C{} _— — =
Fig. 1.4
: . : _ _RR,
For two parallel resistors, the equivalent resistance R, = iy
i 2

For ‘n’ resistors with equal value, in parallel: R,, = %
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The ‘#’th resistor is the number of resistors in a combination.
For example, for three resistors n = 3, for 21 resistors n = 21.

AT .

#4' Activity 1.2

/ ' 1. Determine the combined resistance of four resistors in series of
3Q,60,7Qand 12 Q respectively.

2. Determine the combined resistance of four resistors in parallel
of 3Q,6Q,7Q and 12 Q respectively.

1.2.5 Voltage and current dividers
A voltage divider is a circuit with ‘»’ resistors in series. The rule for the
voltage divider is:

v — RV
R
And for two resistors in series we have:
Ry

V1=R1+R2 s
sz_RZ__V

R+ RS
Om___.
RI
RZ
V |
i
R,V
|
Rn

Fig. 1.5(a)



Unit 1 — Basic concepts

L

h

=

Fig. 1.5(b}

A current divider is a circuit with ‘%’ resistors in parallel. The rule for the
current divider is:

Ii:KZ g‘I
k%6
I — a— — ———
T A T VA
= v ia o in 3x r,
| mp(g> (G) (G,)

Fig. 1.6(a)

And for two resistors in parallel we have:

__ G I i
h=grg!=r+r!

and

G, ._ R
G +G6! "F+r!

I

I =

=

Fig. 1.6(b)
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1

1.8.6 Short and open circuits

Short circuits are paths in which current flows through zero resistance.
The voltage drop across the short circuit is always zero and in some cases
this can lead to very high currents. These currents are known as short-
circuit currents.

Open circuits are paths of infinite resistance. Since the resistance is infinite,
the current practically is always zero and the voltage across it is known as
open-circuit voltage.

1.2.7 Power and energy

Can you remember the concepts below? We are going to use them in
our studies.

Energy = ability to do work
Power = the rate of doing work

The relationship between electrical power (P) angi electrical energy (W) is:

W
P=37

When there is an electrical resistance in the circuit:

_vr_nrp_V?
P=VI=IR="

 EXAMPLE 1.1

Look at the circuit in fig. 1.7 and:

(a) calculate the current I in the resistance;

(b) find the current when the voltage is doubled; and

(¢) calculate the current when the voltage is 24 V and R is doubled.

I

i R
24V 40

Fig. 1.7
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Solution
(a)1=%=%m6A
(b)1=2}£_f,—_78=12A

Note: Double voltage = double current
=V .24 _
@ IT=5p=5=3A

Note: Double resistance = half of the current

» EXAMPLE 1.2

Study the network in Figure 1.8(a) and calculate the current in euch
resistor.

I=35A A
30 280
+
— 40V D B
14Q 40
9
C
Fig. 1.8(a)
Solution

Did you notice that there are five unknowns? Let’s apply KCL at the
nodes to reduce the number of unknowns.

At first we must assume the direction of the currents.

We can add in the direction we think
the current will flow.

flowing between A and D.

Fig. 1.8(b)

In node A we assume [; is the current
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I A The current flowing between A and B will be
I, 72\1% I — I;. So, we add this to fig. 1.8(b).
Fig. 1.8(c) ‘
In node;D we assume [, flows between
I D anw' B, so the current between D and C is
D:< R I — I,, We add this to fig. 1.8(b).
Ipc In node B the current between B and C is
I, + I — I;. We add this to fig. 1.8(b).
Fig. 1.8(c)
; -4 Let’s check node C. We know the current that
2 >3B comes out must be 7 (equal to the current going
g ' into this section of the network).
BC
Fig. 1.8(e)
11—12+I+12-"‘Il =I
I-1, I-I+1,
I \Q/ So, we now know that we have worked
C correctly up to here.
We still have two unknowns to solve,
namely {; and £,.

Fig. 1.8(f)

We will need to use KVL. Let’s look
at loop ABD.

28U —1)—-8L 31 =0
8 xS5—281,—8L 3L =0
140 =317 + 8 I,

Fig. 1.9(a)

Now let’s consider the loop source
ADC.

40:311 + 14([]—.[2)
40:1711— 141’2
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A Now we have two equations for the two
1, remaining unknowns:

Fig. 1.9(b)

140 = 31 I, + 8 I; multiply the equation by 7
40 = 17 I — 14 L; multiply the equation by 4

Now we can solve the system:

980 = 2171, + 56 I,
160 = 68 Il — 56 12

(217 + 68) 1, = 980 + 160 = 1 140
I, =1140/285 =4 Aand L =2A

So the flow of current in the circuit will be:

IAD=4A
IT'(5A) A Ipg =2 A
Iap=1A
I {48) I-1,(1A) [QCB: 3A
IDCZZA

1,-1,(2A) I-I+1,(3 A)

I(5A) C
Fig. 1.10

If we check the BCD loop we get:
2x14=8x2+4x3
28 = 28

Finally, we know the magnitude of all the currents and their directions.
This is shown in fig. 1.10.
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Analysing systems like these requires a lot of care. It is very easy to make
mistakes in your calcuiations.

In the example, we had to apply KCL and KVL simultaneously to solve
the unknowns. We needed to obtain five independent equations to find
the five unknowns.

If you come across a similar problem, try to follow these rules:

¢ First determine the number of unknowns.

e Then try to use Kirchhoff’s first law (current law) as many times as
possible. (KCL equations are simpler than KVL equations.) Apply
KCL to the number of the nodes minus one. (In the example we
applied KCL three times and checked the last node.)

e Choose a number of independent loops for KVL equal to the
number of unknowns, minus the number of times you applied KCL.

Note that the fourth equation for current came as an identity (I = I) so it
could not be used. However, it showed us that we worked correctly.

r EXAMPLE 1.3

In example 1.2 we could have considered the loop DBC instead of ABD, as
in fig. 1.11.

Solution

If we simultaneously solve this equation and the one for the loop source
ADC, this gives us the same solution for the system [; =4 A and I, = 2 A.
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+ EXAMPLE 1.4

Now find the power dissipated by the resistor in fig. 1.12 if a 15 A current
Sflows through the resistor. The voltage across the resistor is 30 V.

15A

Fig. 1.12

Solution

P=VI=30x15=450 W

=V_30_
R=F=13=2¢

P=PR=15%x2=225x2=450W

0
= _30_ 200 _
P=f=3-=5"=450W

Did you notice that you only need to know two parameters of the

circuit (voltage and current, or voltage and resistance, or current and
resistance) to work out the power in a resistive circuit? And, if you
know the value of any two parameters (R, I, ¥, P) of a circuit, you
can work out the other two.

Also remember that, when you calculate the power dissipated by a
resistor, you must use the voltage drop across that resistor and/or the

current flowing through that resistor.

If you have several resistors in series or parallel in a circuit, you can work
out the power of the circuit based on the equivalent resistances and the
rules mentioned earlier in this wnit.
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@ Useful mathematical concepts
1.3.1 Complex numbers

and b are real numbers and j, called the imaginary umt has the
property that j> = —1. The real numbers a and b are called,
respectively, the real and imaginary parts of @ + jb.

Some books use 7 instead of j, but to avoid confusing it with the
symbol for instantaneous value of current, we will only use j.

P Properties of complex numbers in rectangular form

The following five rules are very important and should always be used
when working with complex numbers:

1.  Equality of complex numbers
A+jB=C+jDifand onlyif 4 =Cand B= D
2. Addition of complex numbers
(A+jB) + (C+jD)y=(4+ C) + j(B + D)

3. Subtraction of complex numbers
(4 +jB) — (C+jD) = (4 -C) + jB - D)

Addition and subtraction of complex numbers are easier to do using
the above rectangular form.

4.  Multiplication of complex numbers
(4 + jBY{C + jD) = (AC — BD) + j(AD + BC)

When two complex conjugate numbers 4 + jBand A — jB are
multiplied we get:
(A + jB)(4 — jB) = A* + B*

5. Division of complex numbers

A+/B_A+jB C—jD _AC+BD  BC - AD
CyiD-Cc+yp c—p=~C+D»> “OoTD
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You have just revised the properties of complex conjugates!

However, we suggest you use the polar form for multiplying and dividing
complex numbers, as we will explain below.

p Polar form of a complex number

|

Look at fig. 1.13. Point P represents the complex number x + jy with the
coordinates (x, y).

Point P can also be represented by polar coordinates {r, 0).

Y
o P(xy) =P (6
¥ :y
0 |
0 x X
Fig. 1.13

Now we’re going to use trigonometry functions. Have you revised them?

Since x = rcos @ and y = r sin 6 we can write x + jy = r(cos 6 + j sin ),
which is the pelar form of the complex number.

We often call ‘¥ the modulus and ‘¢” the phase of a complex number.

So, we get r = «‘/x2 +y

The abbreviated notation for this is #/8°

Multiplication in polar form

[Fi(cos @y + jsindy)] x [ra{cos O, + j sin 6s)]
= rrfcos(8; + &) + j sin (67 + 8,))
or, in the abbreviated form: riry /(61 + 6;)

Division in polar form
r{cos 8, + jsinb,)
r,(cos 8, + jsin 6,)

or, abbreviated, ;—;((91 — 6y)

= Zcos (61 — 0) + j sin (0 — 6,)]
2

EXAMPLE 1.5
Calculate Z,y = Zy -+ Zif Z; = 2+ jSand Z, = 7 + j9.
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Solution
Zeg=Q+TD+j(G+9=9+j14

Divide V' = 4.5/0° by Z = 1.5/30°.

Solution
% /(0 — 30)° = 3/— 30°.

You can check your result by recalculating using rectangular
coordinates. Try it! This will be good practice for you.

N Activity 1.3

Find the real and imaginary part of the complex number z = i—i—%

1.3.2 Calculus in Electrical Engineering

p Derivatives

If y = f{x), the derivative of f{x) with respect to x is defined as:
dy _ py [0k AX) — /()

dx — aso X J
Some other possible notations for derivatives are E)é’ Fl(x) or

simply »’.

The derivative gives the slope of the curve associated with the initial function.

If we can calculate the value of the derivative at a specified point, we can
see if the function is increasing or decreasing at that point. In other words,
we can see the trend of the function.

To calculate the derivatives of any given function we need to know the
rules for differentiation. These can be found in any calculus book.
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r EXAMPLE 1.6

Differentiate the following exponential function: v = &'
Solution

_ iS _ sedu _ st &5t
Letu—5t=>dt(e’)—e =€ x5=75e

Differentiate the following sinusoidal function: i = sin 5t

Solution

%sin 5t = 5 cos 5¢

Calculate V = L% where L = constant and i = I, coswi

(I, and w are also constants)

Solution

dt

v=r9 - L%(Im coswi) = Lfmj‘;(cos wf) = — LLw sinwt =
=V sinwt = V,, cos (wt + %) where V,, = LI, w = constant

(Remember trigonometric identities!)

p Integrals

If % = f(x), then y is the function with derivative f{x) and is
called the anti-derivative of f{x) or the indefinite integral of
f(x). The symbol used for the integral is | f{x)dx. Since the
derivative of a constant is zero, all indefinite integrals differ by
an arbitrary constant, C.

To integrate, we need to know the rules for integration. Make sure you
know and can apply these ruies.

If we have an interval {a, b] and f{x) is piecewise continuous on this

interval, the definite integral of f(x) between x = a and x = b is defined as:
b

[ fx)dx = lim {fla)Ax + fla + Ax)Ax+ ... fla + (n — 1)Ax]Ax},
and the limit exists.
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If fix) = dii)gg(x), the definite integral can be evaluated as:

[Andx = [ g(x)dx = g(x)| = 2(0) - ()
(a fundamental calcuius theorem)

Another fundamental theorem is the mean value theorem that states:
5

[Ax)dx = (b — a)f(m), where m € [a, &]

Application of integrals:

M The definite integral is the area under the curve f(x) between the limits
a and b.
B The average value of a function on a given interval is defined:

1 b
f;v(erage) = b_—_a Jﬂx)dx

This formula shows that the area under the curve is equal to the area
of a rectangle with dimensions (b — a) x f,,. The average of the
| function can be determined from this.

fx)

f(x)
! continuous onfa,b]

ft.zvf

area under the curve
= !f (x)dx
Fig. 1.14

EXAMPLE 1.7

Assume a typical cosine wave i = i(t) where i = I, coswt, with I, =
constant = maximum value for the function i, and w is also a constant.

The square of i is then ¥ = I,° (coswt)?

Find the average of ©° for a full period.

Solution

wl=2r=T=2F
w
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Then,
_wzd_wz:'/wf = 5 (o
_.? it =5~ m(coswt)z—-g (cos wi)dt
IZ 1 1 ?:Tr/w
:%Bxi—ﬁn%xo-l-éxsin(%x%)—ﬁxsin(waO)]:
—27r[a—)*0+@><0—%><0] 2 w2

If we use the following notation: 1/12” = Lous (root mean square) =

R p
Ly = ==, = \/5 I

J-..

Remember this result, because you’ll see it again!

1.3.3 Matrices in Electrical Engineering

In Mathematics we learned to solve systems of equations with the help
of their associated matrices. Let’s see if we can use matrix calculations
to find the unknown elements of our electrical circuits.

Do you remember the examples of solving a system of equations in the
previous semester? You had to solve different given circuits by applying
Kirchhoff’s laws.

Let’s solve the problem in Example 1.8.

+ EXAMPLE 1.8
® 5 K0 ®ni20 0 L @
I4 15
I g §R4=9 0 R=9 () §R1=6 Q
Fig. 1.15 © ©
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Find the currents flowing in each branch of the circuit. The value of the
supply voltage is 100 V, and the resistors have the values indicated in

fig. LIS.

Solution

If we use the equations for the nodes first, we notice the following:

The current through Ry is equal to I, = I3 — I and the current through
Rsisequalto Is = I, — I}.

Remember to use the current law before writing the voltage
equations. This will make it easier for you to solve the problem!

After inaking the above observations, we only need to find the three
remaining unknowns: /;, I, and I.

The loop equations are:

For loop ABC: 100=15L+9(— 1)
For loop BCD:9 (I3 — L) =215+ 9 (I, — I)
For loop CDE: 9 (I, — I)) =61,

This can be wriften as:

100=1OI3—-912+OI] )
0=-95+200L—91I
0=0L-95L+15]

Or in matrix format:

100 10 -9 077[1
0 |=]-9 20 —9||L
0 0 -9 15]|f

Hint: If you worked correctly, you will have noticed that, for simple
networks, the square matrices are symmetrical (a; = ay).

To find the unknown currents, we have to solve the following matrix
equation. Rewrite it as:

I 10 -9 07 '[100
L|=1-9 20 -9 0
I 0 -9 15 0
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5

LRI

xxxxxxxxxxxxx

i
4
figd
i
i
it

Do you remember how to calculate the determinant for a 3 x 3 matrix
like the one above? Let’s see how it’s done ...

The determinant of the square matrix is:

Ox20x154+(NX(Nx0+0x{(-9)x(-9—-0x20x0-
(—9) x (=9) x 10 — 15 x (=9) x (-9)
=30004+0+0—-0-—810-1215
=975

So the inverse of the square matrix is:

1 20x15—(-Nx(-9) -9 x15-0x(-9)] (-Nx{(-9-0x20
575 —[(=9) x 15— (-9) x 0] 10x15—-0x0 —[10 x (=9) — 0 % (=9)]
(-9 x(=9)—-20x0 ~[10x{(-9)—(-9)x0] 10x20—(-9) x (-9

Which gives, after elementary calculations:

[ 219 135 81
=== 135 150 90
75 & 90 119

Now we can solve the matrix equation:

1 [ [219 135 817100 | [21900 22.46
Il=21135 150 90| 0 | =L {13500] = |13.85
Il st 90 19| o 975 g 100 8.31

1

=I=831A, L=1385Aand ; =2246 A

The flow of the currents in the circuit is shown in fig. 1.16:

(1) 20
@ 246a 01 13.85AN\A{4 D831A ®
8.61 A 554 A
(22.46-1385) - ¥(13.85-831)
¥=100 V
E 9 () % ©0) 60
'L 2246 A 13.85 A 8.31 A
| © ©
Fig. 1.16
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We could have arrived at the same result in a much easier way, but we
wanted to give you an example of matrix calculations in electrical
engineering. This was a very simple example, since we only worked in DC
and used pure resistors. In future, however, you can use these basic
principles for any typical network problem.

The matrix method is also very useful when there is a large number of
unknown values in circuits.

Let’s use another method for solving the same problem.

(6 X9 + 2) x 9
The total resistance of the circuit is R, = 650 + 1= 4450
So, the current /5 = 100 / 4.45 = 22.46 A, etc. (Apply Kirchhoff’s laws.
This also proves that you are working correctly.)

@ Summary

In the first part of this unit we revised some of the fundamental principles
you encountered in Electrical Engineering I:

B Current and voltage

B Electrical resistance

@ Ohm’s Law

M Kirchhoff’s Laws

B Scries and parallel combinations of resistors
M Voltage and current dividers

B Short circuits and open circuits

W Electrical power and energy

These principles form the basis of all other (more advanced) theories in
the field of electrical engineering.

The second part of this introductory unit, and appendices I and 11,
reviewed some of the basic concepts of trigonometry, complex numbers,
calculus and matrix calculations.

In Unit 2 we will start applying these concepts and principles. So, if you
are uncertain about anything, please page back to the relevant section and
make sure that you understand it.
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W Self-evaluation

1 CaleulateI=1I, - L it =6 —-j3and I, =4 + j3.
2 Write V' = 5,6 [—110° in rectangular form.
3 Divide V=45 [0° by | = 2,25/-45° .

4 Calculate i = C % if Cis a constant and v = V,,, cos wt, where V,,

and w are given constants. [v = f{¢)]

5  Assume a typical cosine wave i = f(¢) with the following expression:
i = I, cos wt, where I, = constant = the maximum value for the

function i. Calculate 7 4y(.rqg.) for an interval of time equal to the first

half-period of the wave,

Hint: Remember that 27 = wT = T/2 = 7jw.
So, you will have to integrate between 0 and 7/w.

6  Look at the following circuit and answer the questions below:

I
4A

Fig. 1,17

(a) Find the voltage across the resistor.

(b) Find the voltage when the current passing through the resistor
18 doubled.

(¢) Find the voltage if the current is again 4 A but the resistance
is doubled.

7  Find the currents flowing in, and the voltages across each resistor,
in the following circuit:

5 R=30 @5 R=20 @)fs R=4Q

NS RN ST,
_ |

1
.

Fig. 1.18

v 3 L L
©

T10V VL,SR54Q  V,SRF30 VSRSE20)
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8 Look at the following circuit:

Fig. 1.19

Knowing that ¥, = 4V, find V5, V3, i and R,, for the bridge.

9  Find the total resistance Ry of the following circuit:

160 30 80
VAVAVAV: VAVAVAV VAVAVAVESS
Rr §5 q 240 ém
140 90
VAVAVAV. VAVAVAY
Fig. 1.20

Hint: Work from A towards the terminals!

A

-~

10 A heater takes a current of 8 A from a 220 V source for 12 hours.

Calculate the energy consumed in kWh.

Answers
Activity 1.1 (page 5)
16.67 A

Activity 1.2 (page 8)
1 280
2 1.38Q

Activity 1.3 (page 18)

Real part = 0.561
Imaginary part = 0.048
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Self-evaluation (page 25)

1 I=2-j6A
2 V=-191-7526V
3 V/I=2/45°
4 i=—wCCV,sinwt=wC V¥V, cos (wt+ 7/2)
5 0
6 (@ V=32V
(b) V=64V
() V=64V
7 L=2AL=1AL=1A1,=067A,Is=1,=033A,
M=06V, =4V, =2V, =2V, =132V, =067V
8 1 =8V,v3=4V,i=0,R,=36Q
9 Rr=2340Q
10 W=2112 kW
Appendix |

p Basic trigonometric identities

Let ¢ and @ represent two different angles. Then the following can

be proved:

1  sin (¢ + 0) = sin ¢ cos ¢ + cos ¢ sin &

2  sin (¢ — @) = sin ¢ cos @ — cos ¢ sin 0

3 cos{¢p+ 8)=cos ¢cos b — sin ¢ sin &

4 cos (¢ — 0) = cos ¢ cos & + sin ¢ sin §

5 sing-sin@=2sin % (¢ + 6) cos % (¢ — 6)
6 sing—sinf=2cos % (¢+Osin'a(d— 6
7 cos¢d+cos@=2¢cos Ya(¢p+Bcosa(d— 0
8 cos¢g—cosf=2sin Y (¢ + 0)sin Y2 (@ — ¢)
9 sin¢ —-sin@ =% fcos(¢p — 0) — cos (¢ + 01

10
11
12
13
14
15
16

cos ¢ — cos @ = Y2 [cos {(¢p — &) + cos (¢ + )]

sin ¢ cos @ = % [sin (¢ — 6) + sin (¢ + 6)]

sin 20 = 2 sin 6 cos 6

cos 26 = cos?0 — sin%d = 1 — 2 sin®0 = 2 cos’d — 1
sin®d = % ( 1 — cos 26)

cos?0 = Y% (1 + cos 26)

¢/? =cos @ + jsin @

Appendix i

p Indefinite integrals

Here are some important indefinite integrals that you need to understand
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1
2
3
4
3

6

10
11
12
13

14

15

to complete your st11.1dies successfully.

[ sin wedt = —= cos wt
W

[cos wedr = L sin we
w

-2 _ ¢t sin2wt
[ sin® wedt = 5 i

2 _ ¢ i
Jcos® widt = 5 + F5=
1

[ sin wi cos wrdr = o sin® wt
L)
J¢sin wedr = % (cos wt — wt cos wi)
[t cos wedt = % (cos wt + wt sin wi)
[ #* sin wedt = alu; (2wt sin wt + 2 cos wi — W’ cos wi)
| % cos wedt = % (2wt cos wt — 2 sin wt + w’F sin wt)
e . l i

[edt = =e
[e'dt = iz &Hwt — 1)

w
jtze“”dr = % e (Wt — 2wt + 2)

1

[ sin wotdt = € (w) sin wat — ws COS wai)

l w t .
€' cos whtdt = —5—— (W COS wWat + wy SiN wot
f 2 FF (w1 2 2 2t)
d 1 -i bt)
Jevre = o tan (E

1 [A#)dt = y(+ C) means that:
(1) f(#) is the derivative of y (dy/dr), and
(2) yis the anti-derivative (or indefinite integral, as it
is usually called) of f{r).

= The indefinite integrals table can be used for finding integrals
or derivatives!

2 These are only a few of the integrals you can use. If you need
more, look them up in a mathematics textbook or try to
calculate them yourself. '
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After studying this unit, you should be able to:

H identify the mathematical expression of sinusoidal alternat-
ing current and voltage, and describe what is meant by
maximum value, cycle, period, frequency and root-mean-
square value

B construct phasor diagrams and use them when studying
simple AC circuits (see also complex number theory in
Unit 1)

B describe the operating principles of all the passive
components in AC (R, L and C)

B define and determine impedances (resistance, inductive
and capacitive reactance) and admittances (conductance,
susceptance)

W calculate equivalent impedance for simple combinations
(series and/or parallel}

29
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@ Introduction

In Unit 1 we showed you how to apply basic concepts to DC circuits. In
this unit we will show you how to apply the same concepts in AC circuits.

Alternating current or AC is a current that periodically reverses direction.
The graph of the current versus time is called the waveform of the current.

An alternating voltage is a voltage that periodically reverses polarity.

The positive and negative terminals of an AC voitage source interchange at
regular intervals. This means that current flows out of one terminal to the
second terminal, then flows out of the second and returns to the first.
This type of voltage is mainly produced by AC generators (or alternators,
as they are often called).

The AC waveform studied most frequently is the sinusoidal waveform (the
sine wave). Its value at any instant in time can be determined by using
trigonometric sine or cosine functions. In sinusoidal waveform, the current
(voltage) gradually increases in one direction, reaches a maximum, then
decreases to zero, and finally reverses direction. After passing through
Zero it increases in the reverse direction until it again reaches a maximum,
after which it returns to zero.

Sinusoidal currents and voltages are very important, mainly because
electric power is normally transmitted in this way at a frequency of 50 Hz
(or 60 Hz in some places).

@ Useful concepts

2.2.1 Mathematical aspects and rms values

Current can be expressed as a sine function: i = I, sin wt, but for our
purposes the cosine function is more convenient. (This will be elaborated
on in the following section on phasor and phasor diagrams.)

The mathematical expression used generally for sinusoidal alternating
current is:

i=I,coswt

H

where i is the value for current at the instant ‘¢
I,,, is maximum current
w is angular velocity (w = 2xf, where f = frequency)
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In South Africa the supply frequency is f = 50 Hz

Wt

Fig. 2.1

A cycle is the time from one positive crest to the following positive crest:
wl =2m
where T = %u—ﬂ = the time for one cycle = one period.

The number of cycles per second is called frequency:
f= 2‘% = %,(cycles per second), and

w=2nf = 314% (at 50 Hz).

The methods and laws which a%pfy
to DC also apply to steady AC.
Sometimes DC is referred To as an

AC of zero frequency.

Did you know that the shape of ordinary household voltage is sinusoidal?
If you want to see the waveforms when measuring voltage and current,
you need to use an oscilloscope. Ask your lecturer to help you use an
oscilloscope at any of the ordinary plug sockets in the lab. This will show
you the waveform of the voltage.
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——————————— I, (maximum value, amplitude)
Imdeffective current, rms current) 0,7071 ,
****** \\‘ - T~ T I, (half cycle average) 0,6371

Fig. 2.2

In an AC circuit, the current varies from one instant to another. So the
question is: row is the amount of current specified?

Several methods can be used to do this. Let’s look at three of them.

Method 1. Specify the maximum current (the amplitude of the wave) I,
This method is sometimes misleading because it gives the false impression
that this would be the effective power-producing value of the current in
the circuit.

Method 2. Specify an average value
It is obvious that the average value of a cycle is zero, so this is pointless.
However, the average current for half a cycle can be worked out:

L, =21, = 06371,
‘ '
But even this method is not the most suitable for our purposes.

Method 3. Think: ‘Why do we generally measure AC?’

Normally, we want to be able to estimate what the current can do.
Whether it operates a bulb filament, a television set, a microwave oven
or any other equipment, we want to know its ability to do work and,
ultimately, what it will cost. We tend to think in terms of power, so we
must find a value for AC that gives the same ‘power’ as a DC of
equivalent value.

Do you remember that, for DC, power is IV or R*

Let’s assume that an AC flows through the same resistance. We should be
able to write: p = i°R (remember that the basic principles are the same for
AC and DC), so:

Average power = p = average (i R) = R (average i) (since R is constant)

So, what we are looking for is the (average i*). This average is sometimes
called the effective value or root-mean-square value (rms):

I=1Iy=1I, = \—"/% — 0.707 I,
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Page back to the section on integrals in Unit 1 and look at the example.
Do you now understand why we did this calculation? What was the

resuit? That’s right: \/5 This proves it is correct!

Another way to work out the average is:

Average power: p = i°R = I,2(cos wf)*R = IH%R%(COS 2wt + 1)

Since the average of cos 2w for any integer number of cycles is zero, we
can now write:

In%’; — 7«12 [ \/—] R
If you compare this result with the assumption P = P,,,,R, you’ll see that
I
Lyms = ﬁ !
The same method to determine average values applies to sinusoidal
voltages.

Vrms = %

From now on, when a numerical value is given for an alternating
voltage or current, this will always be the rms value unless otherwise
stated.

Most ordinary ac voltmeters and ammeters are calibrated to indicate rms
values. Some meters give the maximum value reading, but these are not
commonly used (see Method 1).

2.2.2 Phasors and phasor diagrams

Phasors are rotating lines, and their projections on the X-axis are
convenient representations for alternating quantities. They are very useful
when studying AC circuits.

{id]
_______ A=a+jb
&
0 a Re
Fig. 2.3
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The line OA in fig. 2.3 is at an angle 8 with the real axis. If 8 is constant,
the line is fixed.

If the angle increases in time, the line rotates.

If the line rotates with a constant angular velocity w, the angle
constantly increases and can be given at any time (7).

We know from physics that:
# = angle = wt = angular velocity x time

Each time the angle increases by 2a(wt = 27), the line wﬂl be in its
original position again.

The mathematical expression of the rotating line is: r&’, where:

M r is the (constant) length of the line, and
B w is the angular velocity at which the line rotates (about the origin of
the complex plane)

The real component of this line (the projection on the real axis) is:

Re{ré™’} = Re{r(cos wt + j sin wf)} = r cos wt

You will see that ‘sin’ disappears. Because it has j in front of it, it'is
obviously the imaginary component!

This proves that the projection of the rotating line is a sinusoidal varying
quantity, similar to the currents and voltages in AC.

Graphically, an alternating quantity can be conveniently represented by
the projection of a rotating line on a fixed axis. This rotating line is called
a phasor.

¥y

o

X

L, cos wt

Fig. 2.4
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If line I, in Figure 2.4 rotates like a wheel-spoke at a constant velocity,
the length of its projection on the X-axis will vary sinusoidally with time
(I cos wi). If I, is the length of the line, then:

B the length of the projection on the X-axis is [, cos wt and
W the length of the projection on the Y-axis is 7, sin wt
where:
e w is the constant angular velocity
e we assume the direction of w is counterclockwise

Now we can say that a phasor can represent a sinusoidal current or a
voltage. '

If we have an initial phase, we ‘advance’ the phasor by an angle 6,
L, cos(wt + 6). :

6 0+ wt

wé

Fig. 2.5
This is a very easy way to represent sinusoidally alternating currents and
voltages. The lines tell us all we need to know about these quantities. -
The only problem is that we must always assume a reference (in time).

We can either choose the reference as the instant the line for current is on
the positive X-axis (the angle of the phasor is then 0), or when the voltage
phasor has an angle zero. The voltage reference is usually preferred.

The first step is always to select one phasor as the reference. Remember
that all the other phasors must be drawn with the correct relative angles.

@ Passive elements in AC circuits

'An element that receives power from a network is called a passive
element. An active element delivers power to a network.
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All passive components have three electrical properties:

B Resistance
B Capacitance
8 Inductance

2.3.1 Electrical resistance in AC
Here’s a reminder of what we covered in Unit 1.

B Resistance is the real component of any impedance. Impedance generally
implies sinusoidal excitation of the circuit (single frequency, sine wave).
Although resistance is a simple electrical concept, it is probably the
most difficult to describe accurately.

M Theoretically, resistance is unaffected by the frequency of the applied
signal.

M Practically, real resistors are frequency dependent because they contain
some inductance and capacitance.

B A typical wire-wound resistor will be purely resistive only at power
frequencies below 1 kHz. At audio frequencies, it will show a strong
inductive component and at much higher frequencies it will show a
strong capacitive component.

Resistance is measured using:

B an ohmmeter (often one of the elements in the digital multimeter)
M the Wheatstone bridge (the most common of the resistance bridges)
B the Kelvin (or double) bridge (normally for small values of resistance)

Some of the basic practical resistor uses include:

B Room heating units

M Kitchen appliances, such as toaster and kettle heating coils, and the
spiral grids of oven heating elements

B Soldering irons

B Incandescent light bulb filaments (remember the change in resistance
with temperature)

B Limiting the current in other circuit components

In general, the DC measurement is inadequate for evaluating
resistances in power circuits because of the phenomenon known as
‘skin effect’ (see Introduction to Electrical Engineering (2nd ed.) by
CR Paul, published in 1992 by McGraw-Hill). Resistances and Josses
tend to increase with the frequency due to the skin effects in the
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wires. If possible, aiways try to measure resistance at the same level
of excitation that will be used in the resistor’s application.

In all the examples used in this book, we will consider only constant
resistance, ignoring frequency effects.

Alternating current through a resistance can be represented using
Ohm’s law:
=Y
R== o
(or G = conductance, where G = ¢ = %
v = Ri = R(I,, cos wf) = (RL,)coswt = V,, coswt

in which V,, = Rl,, is the maximum value of the voltage wave.

i R
————
Ve =7 =~ impedance
I mo M "
i
or R
0 R b 3n 2n
2 2
'Im A I R V
- V:” 1 [ ———
Vi phasors

Fig. 2.6

As you can see, on the positive X-axis we can use wi = angle, since
w = constant.

==

Using the conductance G =

i=Gv=G(V,coswt) = [%]coswt = I, coswt
V

where I, = GV, = -}T'"

2.3.2 Inductance

» Self-inductance

At the beginning of the 19th century, J Henry discovered that electric
circuits have a property similar to mechanical momentum: once 2 current
starts flowing, it tends to continue flowing.
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The mechanical momentum of an object is represented by My, where v 1s
the velocity of the object and M its mass (a characteristic of the object).
The ‘electrokinetic’ momentum, as it was originally called, is represented
by Li, where i is the current flowing through the circuit and L a
characteristic of the circuit known as ‘inductance’.

Faraday explained this momentum in terms of the magnetic field around
the conductor.

| ”

/ “S The symbol for inductance in a circuit is £, and we measure
- inductance in Henry [H], in honour of J Henry who discovered

the electromechanical analogy. '

Newton’s second law of mechanics states:

F=201) = M9 = Ma

where a represents acceleration. In words, ‘the force necessary to change
the velocity of an object is equal to the rate of change of mechanical
momentum’.

The analogous electrical relation is:
Ay =%
V= dz(m = Ldt
or ‘the voltage necessary to produce a change of current in an inductive
circuit is equal to the rate of the change of electrokinetic momentum’.

As you can see, L is a constant and it is called the ‘self-inductance’ of
the circuit.

The same relationship can be written:
i L
di = Lvdt
or
._ 1
i= vadt
p Mutual inductance

Faraday noticed that a changing current in one circuit induces a voltage in
another nearby circuit, The circuits are said to be ‘coupled’ together. If we
call the two circuits ‘circuit 17 and ‘circuit 2°, the voltage induced in circuit
2 by a changing current in circuit 1 can be written:

Vo = LZI%IIL
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Let’s assume that the current in circuit 2 is changing. The voltage induced
in circuit 1 will be:

V) = le%

L, and L, are called mutual inductances.

It can be proven from general energy relations that the two mutual
inductances of a pair of coupled circuits are equal:

Lp=Lh=M

Faraday explained self-inductance and mutual inductance in terms of a
magnetic field surrounding a conductor carrying current. This approach
allows you to work out inductance based on the circuit parameters.

Faraday computed flux linkages, N¢, which are equivalent to the
electrokinetic momentum of the circut:

N¢ = Li, where N = number of turns in the coil and ¢ = magnetic

flux (Wb)

So, L = @ (inductance is equal to the flux linkages produced by ampere
of current).

v="9(Li) = dwve)

Farady’s Law for induced voltages states: The magnitude of the
voltage induced in a conductor moving through a magnetic field
is directly proportional to the rate at which flux lines are
intersected.

V= —$(Ng)

The minus sign shows that the induced voltage opposes the applied
voltage that is responsible for the increase in current.

According to Lenz’s Law, an induced current will flow in such a
direction that its own magnetic flux will be directed to oppose
the change in flux that produced the induced current = The
self-induced voltage opposes the increase in current.
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If the current in the coil is decreasing, the induced and the applied
voltages have the same direction. In this case the induced voltage opposes
the decrease in the current.

It can be proved that the rules for series and parallel inductances are
similar to those for resistors:

Series inductance: L=L1+ L, +...+L;+ ...+ L,
(without mutual inductance)

If you consider the mutual inductance, you must calculate accordingly.

Taking the mutual inductance (M) into consideration we have, for two
inductances in series L. (%) = Ly + L, £2M.

2N

- L + + L,
o
Fig. 2.7
Parallel inductance: A = - + 1 + .ot L + ...+ 1.
- Leq Ll L2 P Li PR Ln,
i i . _ _LL
For two inductances in parallel: L,, = ﬁi_z
o
Ly, ——~--- Ly ———---- L,
O

Fig. 2.8
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Self-inductance of a coit depends on:

B the number of turns in the coil
W the cross-sectional area of the flux path
M the length of the flux path
L = uN2 = oy, N2
where, = permeability = popr (%)
N = number of turns in the coil
A = cross-sectional area of the flux path (m?%)
! = length of the flux path (m)

We have worked with ‘ideal’ inductances, but remember that real
inductors are a combination of resistance and inductance, since the

wire of the coil has a resistance.

Assuming a sinusoidal alternating current is flowing throungh the
conductor I = I, coswi, we get:

V= L"C%(Im coswt) = leéi—rcos wt = —wLl,, sin wt = wLl,, cos[wt + %]

The current and voltage waveforms in this case are shown i fig. 2.9.

H

¥ X
900
M L impedance
v
-900
/ 7
O L VIphasors
Lv
T e v
R I S |
L :
i wt
0 . T 3nt 2n
2 2
_____ = e - - - - — — _’,l'[_
2

Fig. 2.9
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Then V,, = wlLl,, the maximum voltage. We call wl the ‘inductive
reactance’ and normally use the symbol X for reactance:

Vv, = XI,

In fig. 2.9 the maximum value of the current is reached later than the
maximum value of the voltage. We say that the current ‘lags’ behind the
voltage. As you can see, the lag is ¥4 cycle (or %, or 90°) on the axis.

The formula used to calculate the energy stored by an inductor is:
wi(t) = SLED)

Let’s move on to capacitance.

R.3.3 Capacitance

Capacitance has been recognised since the 18th century. For capacitance
to exist, we need two electrical conductors at different potentials, separated
by an insulating material.

In practice a condenser or capacitor (both terms are used) is a device in an
electrical circuit that stores electric charge.

Most power capacitors we use are designed using metal ‘sheets’ as the two
conductors, and air, impregnated paper or plastic is used as an insulator
between the two conductors. There are other capacitor designs, but we
will not discuss these in this unit.

The charge on a capacitor ¢ = Cv , where:

N g is the charge;

M v is the voltage (or potential difference); and

B C is a factor of proportionality calied capacitance (of the capacitor)
measured in Farads (F).

p Capacitors in series

The following figure represents capacitors in series.
¢

et A

Fig. 2.10

[am—y

1 |

I
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To remember this formula, make an association with resistors, but note
that for capacitors in series, the formula resembles that for resistors in
parallel, and for capacitors in parallel, the formula resembles that for
resistors in series!

Capacitance depends on:

M the size and form of the plates;
MW the distance between the plates; and
M the insulating material used.

C=a%= €0 & 4 [F]

where € = g &, permittivity of the dielectric [%}
A = parallel area of the plates [m?]
d = distance between the plates [m]

An electric field appears between the plates of a capacitor each time the
capacitor is charged.

Remember that the symbol used for capacitors in a circuit is 4, and that

the value is measured in Farads (F).

%\/ Activity 2.1

a. What is the equivalent resistance of the circuit shown below?

R, R, R,

50 100 20Q

b. Now what is the equivalent capacitance of the circuit shown
below?
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» Capacitors in parallel

The circuit below represents capacitors in parallel. To remember the
formula, you must make an association with resistors in series.

C]
—

CZ
%. .

&
11|

i
Cn

—'H
Fig. 2.11

Ceq=C1+C2++C,++Cn

-

\ lV Activity 2.2

AN
T a. What is the equivalent resistance of the circuit shown below?
50
108
o O

200
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b. What is the equivalent capacitance of the circuit shown below?
5uF

10 uF

When voltage is applied to a capacitor’s terminals, the current is given by
the equation:

- d _ oy
[ = HE(CV) = ar
If it 1s a sinusoidal alternating voltage:

v=1"V, coswt

and the current is:

i= C%(Vm coswit) = —wCV,, sinwt = wCV,, cos(w? + %)

Current and voltage waves for sine excitation are shown in fig. 2.12.

L

v __C impedance of
i 0 T T 3n 27
c 2 2
e v N _—
- 2
V1 phasors

Fig. 2.12

Did vou notice that the current ‘leads’ the voltage (by a quarter of a cycle,
or 90°, or 7—2r rad)? So, the maximum value of current is:

I, =wCV,

If we call wC = B susceptance (in this case, ‘capacitive susceptance’), we
can write the equation as:

Ly = BioyVom
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Did you notice that all these equations are valid if we see the capacitor as
a ‘pure capacitor’ — a capacitor that presents only capacitance.

We normally call -w%.(z "B;') the capacitive reactance, by analogy with
wl = X, the inductive reactance.

Mathematically, the inductor is the ‘dual’ of the capacitor.

The following formula represents energy stored in the electric field
between the plates:

we(t) = 5CV(0)

Every practical component has a certain amount of resistance, inductance
and capacitance, but in this course we will look mainly at the
predominant characteristics.

Every inductor has resistance that must be taken into account. The
overhead lines used to transmit electricity are studied as combinations of
R, L and C, and for long lines you will have to consider distributed
parameters and other factors.

@ Impedance (£) and admittance (Y)

All network theory uses the concepts of impedance and admittance.

Impedance, Z, can be defined as the ratio of the applied voltage to the
forced current:

7 =2V
I

and is not a function of time.

Admittance, Y, is the reciprocal of impedance:

_1
Y=7
The real and the imaginary parts of the impedance Z are denoted by the
letters R and X:

Z=R+jX

where R and X may be the resistance and the reactance of a physical
element of the circuit. For example, if we have a coil of wire, R is its
resistance (& constant) and X its inductive reactance (proportional to
frequency).
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The admittance ¥ also -has a real and an imaginary component. This can
be written:

Y=G ¥ jB
where G is conductance and B is susceptance.
Since ¥ = %, there are some relations between the components:

1 1 R—jX

Y=G+B=z=rix~R+x "

Inductive reactance is positive,
capacitive reactance is negative.

If you look back at the formulas for Z and Y you will notice that:

Z| = VE + X and 6, = tan™" &
|¥] = VG + B and 6, = tan"lg

If you review the theory of capacitance and inductance, you will see that
the respective reactances are:

Xy =wL = 2xfL
and
_ 1 _ 1
Xe =5 = mre
The inductive reactance is shifted 90° in front of the resistance and the
capacitive reactance is shifted 90° behind the resistance.

In an RLC series, as seen in fig. 2.13, we normally add the two reactances
(in fact, it is a subtraction!) and then calculate the impedance using
Pythagoras in the right-angle triangle which remains:
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C
N e H
|
Fig. 2.13
X = X; — X, in this case, and
Z|=vR + X
§ = tan! %
X, }Xc
X—X
7 rAc
4}
R
XC
¥
Fig. 2.14

Simple combinations of resistors (#A),
inductors (1) and capacitators (C)

2.5.1 FALin series

Look at fig. 2.15 below, where you have a resistance connected in series
with an inductance.
L

i R CYYYY
o A d

Fig. 2.15

Z=R+jwlL
Z=R+jX;
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Phasor diagram
7' =R+ X7

1Z| = /R + X Q

P X,
0
R

Fig. 2.16
R0
X [90°
zie

X

To show the direction tand = ﬁ‘, and @ = tan™! iYRé

If we assume V as reference (V/0°), it is obvious (see complex numbers
theory) that:

Ve _ o
zje = I=8

Fig. 2.17

The current lags behind the voltage with an angle /—#°. Alternatively, we
can say the voltage leads the current by the same angle.

So, the current will have a modulus [ = Y and a direction [=6° (don’t

forget that we assumed the voltage as the reference).
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The waveforms in this case will be:

You know that the angle for a pure inductance would have been 90°
(or %). In this example, the new angle is 8.

2.8.2 ACin series
For fig. 2.19:

Z=R-jXc, Z"=R*+ X2

1Zz| = /R + X. Q

i R ¢
- AAAN | |
v
o,
Fig. 2.19

To show the direction:

_ X

tanG—Tg
_ -1 X
f# = tan —RQ

but here you must choose the negative angle from the family of solutions!
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R
-0
X
Z
Fig. 2.20
R/0°
X [=90°
Z[-¢
Assuming V as the reference:
V/iQ® _ ,ipe
z/—o = &
I
0
4
Fig. 2.21

and that the current ‘leads’ (in front of) the voltage with an angle &:

Fig. 2.22

(You already know that for pure czipacitance g = 90°.)
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2.5.3 RLCin series
Z =R+ juL ~ jom
Z=R+jX; —jXc or
Z =R+ jX, — Xo)

\Z] = \/R2 + (X, — XC)2 , and

9 = tan~' Loz Xe }EX

Fig. 2.23

Possible situations:

XL

R
"R z

®=X.) ®
o H%c

a) resonance: b) inductive characteristic C) capacitive characteristic

resistive characteristic
for the circuit

Fig. 2.24

In this example, if we assume the voltage as the reference point, the
current can be leading, lagging or in phase with the voltage, depending
on the overall character of the circuit. '
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+ EXAMPLE 2.1

Determine the current drawn by the following circuit:

L =23,85mH C=160uF

o I k=54 (‘V\/VL_] ’
r

125V, 30Hz
O

Fig. 2.25
Solution
Xp = 2nfL = 7.49 Q

Xo = 19.89 Q

1 _
2nfC
£=54+71.49 —j19.89 =5 — j12.4 = 13.37/-68° Q

50
Jreo 1=935/68°A
+68°
V=125/0°V
13.370Q &
Fig. 2.26

Let’s assume the supply voltage is the reference. Then:

_V_ 1S 935 g
1—7_13.37i—680_9.35 68 A

2.5.4 ALin parallel

Here one should think in terms of currents, since the currents flowing
through the elements are no longer the same.
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IT
S\ I
T L
v %R L
(J\;
Fig. 2.27
Ir[0°
I /=90°
[ =/ + 1
_ -1 1
f# = tan ji

the angle for current is /—6°

Fig. 2.28

The two impedances are now in parallel, so:
Zi=R + /0
Zz =0+ ]Xz

—_ le _ (-Rl +JO)(O+JX2) — 7 RIXZ — [
Zaq= 747 = RINTOFX — IR 14 =4l

You can check if this correct by doing the same calculation for current,
and finding whether you get the same value.

We can now draw an equivalent series circuit for the RL parallel circuit.
Since the impedance must be the same:
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R, = Re{Z,}
Xey = Im{Z,,}

Fig. 2.29

2.8.5 ACin parallel
Applying KCL in node A for fig. 2.30:

I, &
T Iy I
C
v R f: C
Fig. 2.30
Ir[0°
I [90°
\Ir| =/ + T

R <

N ~1 1,
g = tan T}f
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Equivalent impedance:
Zy = Ry +j0
Z, =0 - jXc

_ 4z _ (Rl +j0)@ “J-XC) _ —JRX. _ e
L= 7 = RIOF0_JX. — R —x. = =8

And in a series circuit with an equivalent impedance we will have:
Ry = Re{Z,}
Xeg = Im{Z,,}

Reg Xeg
Vv
S
Fig. 2.32

R.8.6 ALCin parallel

Considering the three types of elements in parallel:

o
Ip ! ;
(&
v R L f‘: C
&
Fig. 2.33
Ie=% 10°
I = -XV: 1—90°

Ie = [90°
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A]c {?
L =17 1} 4
R v |
1
Il
4 { AT
Y
4 I
capacitive resistive inductive
character character character
Fig. 2.34

If we combine Iy with I, and the result is combined with Iz using
Pythagoras, we get:

Iy = I; — I~ (will have an angle of —:—% or —%, depending which
current is bigger)

IT: Ii +1§,
_ -1,
# = tan IJR

Equivalent impedance:
I 1 1 1

AR A A A
21=R1+j0

22 = O +jX2 (Or_]XL)

Z3 =0 — jX;3 (or jX¢)

1 _ 1 1 1

Z-RYx T Ox T

i = (jXL)(_jXC) +Rl(_jXC) +RIUXL) — X, X +le(XL _Xc) =
RIUXL)('_.}:XC) RD(LXC

_ RX X
¢~ X X.+jR(X, = X2)

N

&

N

Another way to solve parallel circuits is by using admittance (conductance

and susceptance). Add the admittance for parallel branches, then the
equivalent impedance of the parallel group is directly obtained as the
reciprocal of its admittance.

87
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» EXAMPLE 2.2

Determine the current drawn by the following circuit:

R=200

C=— 500V;50Hz —=0

Fig. 2.35
Solution
¥V _ 500 _
Ir=%=35=25A

Zy =0+ /X, =0+ j2nfL = 0 + j29.97 Q

=00 _ _90° = —j
I = 355775 = 16.68/=90° = —j16.68 A

Ze=0—jXc= —ﬂ—%f = —/79.58 O

_ 500 _ o _
IC = m-— 628@ —]628 A

Lioe =25 — j16.68 + j6.28 = 25 — j10.4 = 27 /=22.58° A

ko
T I, 14
N
IL_IC t ________ Lot
Fig. 2.36 L
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B9

r EXAMPLE 2.3

A coil with a resistance of 5 §2 and an inductance of 0.03 H is connected in
series with a resistor R = 10 Q2 and a capacitor of 200 pF. The supply is
giving 220 V at 50 Hz. Determine the current drawn in the circuit and the
voltage drop across the coil.

50:003H R=10q  C7200F
— AAAA j |
Fig. 2.37 220V;50Hz

| Solution

Zeoa =5+ J2nfL) =5+ x 2 x 7 x 50 x 0.03 =5 + 9.4 = 10.65 /62° ©

Zype =5+ 9.4+ 10 wji%z, =15+ 94 — 28 =154 9.4 — j15.9
=15 — j6.5 = 16.35/=23.43° Q

Assume the voltage as reference:

_VA° 220/0° _ .
I= Z.  1633/-2343° 13.46/23.43° A

Vieoit = 1 Zooiy = 13.46/23.43° x 10.65/62° = 143.35/8543° V
|2

coil

85.430

23.430

s

Fig. 2.38

EXAMPLE 2.4

Determine the total current drawn by the following circuit, assuming the
supply voltage as reference:
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I[ R1=100

Ome 220V:50HzZ -9<L

Fig. 2.39

Solution

Zi =10 + /0 =10/0°Q

Zo=5+jwl=5+7x2nfL=5+7%x2xmx 50 x002=35+ 628

= 8.03/51.47° Q
= j = — 'L_ — 10° _ .
25 =10 = jXe =10 = Jpe = 10 ~ oo soscroo = 10 = 3183
= 33.36/—72.56° Q
_ 220/0° _ o _ .
L=T507 =229 =22+j0A
_220/0° et e ~
b= g5 tge = 21 41=514T° = 17.07 — 2143 A
___0/00 o _ .
L= 53567556 = 6.6/72.56° = 1.98 + j6.3 A

T=I + L+ L=22+j0+17.07 — 2143 + 1.98 + j6.3 = 41.05 — j15.13
= 43.75/-20.23° A
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or, with admittances:
Z;=10/0°Q
Z,==8.03/5147°Q
Zy = 33.36/=72.56° Q
_1l_ 1 o
= Y= Z —~—10£0 0.1/0° Siemens
— 1 _ o
— 1 _ / o
Y3 -—_ Wﬂ w —_ 0.03 72-56 S
Y1+ Y+ Y3 =0.1/0° - 0.125/=51.47° -+ 0.03/72.56° =
= (.1869 — j0.0691 = 0.1992/-20.29° S
= [=10.1992/-20.29° x 220/0° = 43.82/=20.29° A

(The difference between the results is due to the errors incurred by
rounding the decimals.)

V(220V)
< é -20.2°
7(43.82 A)
Fig. 2.40
L
» EXAMPLE 2.5

Look at the following circuit:

220V;50Hz

Fig. 2,41
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Determine the total current drawn if you know that:

Zi=34+j5Q

Z3;=54+j15Q

Zy=10 — 30 Q

Zs=20 - 30 Q
Solution

Yy =L+ =01/0°S

2
a1 o e
Ys = 7. = msgip7isre — 0003 =151 S

-1 _ 1 = °
Y4#Z_~3,1—.62—-——n w—0.0316[71.57 S

For the three parallel branches:
Yo=Y+ Y35+ Y4 =013 - 0038

1 _ | _ o .
Zeq = 03— 0.03  0.0334/—120y — /12997 =73 +j1.68 @

Zioe =21+ Zog+ Zs =3+ j5+20 — 30 + 7.3+ j1.68 = 30.3 — 23.32Q

_ 220000 o
Lot = 553 35 = 57513158 A

summary

1 The typical mathematical expressions for alternating cuxrrents/voltages
are:
i = I, coswt
v = V cOswi
where I, ¥, - maximum values

2 The frequency is the number of cycles per second:
f= %ﬂ, where T is the period

3 For a sinusoidal alternating current:
I,, = 0.6371,

Iows = ﬁIm = 0.7071,,
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The passive components in AC circuits have the following properties:

resistance, capacitance and inductance.
For R: current and voltage are in phase

For L: current is lagging the voltage by 90° (or % rad)
2

For C: current is leading the voltage by 90° (or rad)

For L: reactance is Xy = 2nfL = wL

For C: reactance is X = ﬁr@ = Eul_C

Impedance:
General: Z =R + jX where R: resistance
Z = R: pure resistive circuit X reactance

Z = + jX: pure reactive circuit

Admittance:
=1
Y=7

Y = G + jB (+ for capacitive, — for inductive)
where G represents conductance and B represents susceptance

For series circuits:
— RL series: Z = R+ jX; = R+ jwl = R + j2nfL
—RCseries:Z:R—jxczk—j&ﬂz—jz—;f—c-
— RLC series: Z = R + j(X; — X¢) for inductive circuit
Z = R — j(X¢ — Xp) for capacitive circuit
if X; = X : resonance (Z = R, resistive circuit)

For parallel circuits:
. ) . ZZ
e For two branches in parallel: Z,, = ZJ-I-_ZZ_Z

Do not directly add resistance and reactance!

e For three branches in parallel: Z_ Z1 + Zl + Zl
1 3

or you can work with admittance.

W Self-evaluation

A coil has an inductance of 200 mH. Calculate its inductive
reactance at the following frequencies:

a. 1000 Hz

' 83



64

Basic Circuit Analysis

b. 100 kHz
¢. 10 MHz

Assuming the supply voltage as reference, determine the current
flowing in the coil in the circuit:

R=9.078Q
X =421Q
(9.07+421) Q)
50V:50Hz
Fig. 2.42

Draw the impedance triangle for this coil.
Draw the phasor diagram for voitage and current.

A capacitor has a capacitance C = 0.025 pF. Find the capacitive
reactance for w = 10° r%d

A capacitor of 8 uF takes a current of 1 A when the alternating
voltage applied across it is 250 V (rms). Calculate:

a. the frequency of the applied voltage
b. the resistance to be connected in series with the capacitor to
reduce the current in the circuit to 0.5 A at the same frequency

A circuit consists of a 120 Q resistor in parallel with a 40 uF
capacitor and is connected to a 240 V, 50 Hz supply. Calculate the
current drawn by the circuit from the supply.

A parallel network consists of three branches. If the currents in the
three branches are 10/30° A, 10/0° A, and 10/30° A, calculate the
current flowing from the supply. Draw the phasor diagram for the
currents.

Three branches with a resistance of 50 Q, an inductance of 0.15 H,
and a capacitance of 100 pF are connected in parailel across a 100 V,
50 Hz supply. Assume V,,,, as reference and calculate the supply
current. Draw the phasor diagram for the currents.

A series circuit consisting of a resistor of 20 Q, an inductor of 0.3 H,
and a capacitor of 33.8 uF is connected to a 230 V, 50 Hz supply. .
Calculate the value of the current in the circuit,
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9  Analyse the following circuit:

10V;50Hz

Fig. 2.43

Obtain the values of all currents and construct the phasor diagram.
(Use the supply voltage as reference.)

Answers
Activity 2.1 (page 43)
a. Rpr=R + Ry, Tt R;

=54+ 10+ 20
=350

1 _ 1,1t ., 1

b. —C_T_C]+C2+C3

] 1,1, 1

G- 5tT07T 30
17
C, 20

Cr=%=2857 4F

. 65
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Self-evaluation (page 63)
1 1256 Q; 1.256 x 10° ©; 1.256 x 107 Q

2 =5/-249°A

Q //A
) 30
24.9°

9.079)
(R)

4210 (jx,)

V=50V 65.10
-24.9°
1=5A (2105 V)

v, (45.4V)

4 Xe=400Q

f=179.6Hz
R=4330

6 I=36/56.25 A
7 I=2732/0°A

A

10/30° R
! = ow
/00 | I R

It I I 3

10/-30° -
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8 I=2245/27° A

I.=3,14 A
(1=2.245/27° A)

Vi =212A

9 I=115/0°A

Observation: X; = X; resonance.
10 I, =171/=-157° A

I, = 1.49/—63.41° A

I =1.31/-419° A

Appendix |

» Dependent (controlled) sources

A dependent source is one with a value dependent on the voltage (or
current) at some other point in a circuit.

These sources are sometimes called ‘controlled’ sources and can be either
voltage or current sources.

When we discuss problems, we usually refer to ‘ideal’, independent
sources, but it helps to have some knowledge about these other sources.
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The four types of dependent sources you may find in your circuits are:

B voltage-controiled voltage source
B voltage-controlled current source
M current-controlled voltage source
B current-controlled current source

These are quite easy to remember. There are current and voltage sources,
both of which can be controlled by the two parameters I or V.

Let’s have a look at the first type of dependant source: voltage-controlled
voltage source:

+(ﬁ———4 ¥+

Vi 507,

==

Notice that the output voltage of the source (to the right of the drawing)
depends on vy (the voltage applied on the left of the drawing).

So, we can say that v, is ‘controlled’ by v,, which, in this case, is external
to the circuit containing your source.

If, for example, v, is 1 V then v = 50 x 1 = 50 V.
If viis 1,5 Vthen vo = 50 x 1.5 =75V, etc.

Note that the controlling voltage can sometimes belong to the same
circuit as the controlled source.

Let’s look at another example of controlled sources:
O— T o

+
] () s y
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What do you see?

This time the controlling parameter belongs to the same circuit as the
controlled source.

It should be obvious that this is a current-controlled source and that
the source is a voltage source (the third type of dependent source).

K is the constant that multiplies the value (of the current) and is not
dimensionless, like the 50 in the previous example.

In this example, the units are g = (), so it is a resistance.

Other, more advanced books use a diamond symbol to represent a
controlled source. This avoids confusing it with independent sources.

O O
dependent dependent
voltage current
source source

O O

Appendix ll

p Voltage and current dividers in AC

If you page back to Unit 1, you’ll find the definitions for voltage and
current dividers.

Previously, you studied DC circuits with resistors as loads. By now you
should know that the basic principles hold for AC theory. However, for
AC circuits you need to consider magnitudes and angles. This is quite
easy if you use the complex numbers theory.

Since you know that the series and parallel combinations of impedances
comply with the rules for resistances, it’s obvious that:

in AC, the voltage divider is a circuit with ‘#’ impedances in series:
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and the rule is:

V= £
2.Z,
1
For two impedances only:

__Z

n=z3z""7
__Z

Vz — Zl —‘_ZZZ . V

Remember that both impedances and voltages are complex numbers
and you need to calculate accordingly!
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In AC, the current divider is a circuit with ‘#” impedances in parallel:

i ¥ I 1,
8 Z] 22 Z; Z,,
X;) (%;) (i) (Ya)

and the rule is:

V Y, I
= = —=i—F= % Y,

Z, Z] Y ? Y.
where Y; (admittance) = —

For two impedances in parallel:
L=yiigi=r% 1
Y, 1+ 2y
and

I £ __Z
IZF_ l+2Y21_21 +IZZI

These two rules are useful for solving problems with series and/or

electrical machines.

parallel combinations. You’ll also come across them when you study
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'OUTCOMES |-~

After studying this unit, you should be able to:

M understand the behaviour of any basic load (R, L, C) in terms
of power and energy;

W calculate power — active, reactive and apparent — in AC
networks;

B determine the power factor for any ac circuit;
B adjust the power factor of a given circuit to a desired value;

B understand the power triangle (P S, Q) and iis relationship to
the PF for various types of load.

PREVIOUS PAGE BLANK -
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@ Introduction

In Unit 1 we introduced power in a DC circuit. In this unit we will
introduce you to power in an AC circuit.

Power is defined as the rate of doing work.

In circuits, power comes from the supply (battery, generator) and is
transmitted to the load. The load, in turn, gives out the desired form of
energy. Energy is defined as the capacity to do work.

For example, a resistor gives us heat (heat energy), a motor gives us the
shaft mechanical motion (mechanical energy) and a pump can raise the
water level (potential energy).

Up to now you only know that electrical power is measured in watts (W)
and that 1 W = 1. While this is enough for the DC resistive circuits you
have already studied, things can get a little more complicated for AC,

In this chapter, yow’ll learn more about power. So let’s start!

@ Power in AC circuits

3.8.1. AC power in resistive circuits

Do you remember that, when we had a look at the rms concept for AC
theory, we also discussed power? If you don’t, page back to the section on
‘Useful concepts’ in Unit 2. We found the effective (or root-mean-square)
value of an alternating current from the ‘average’ power dissipated in a
resistor.

In Unit 2 we also found that, for resistance, the current was in phase with
the voltage.

Keeping in mind that any combination of resistors can be equated with
a single (equivalent) resistance, this means that the same applies for any
resistive circuit.

We aiso know that instantaneous power is the product of instantaneous
values of the voltage across and the current through a resistive network.
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If we plot the curves for voltage, current and power of a resistor, we get:

i: V:P P

average power

ot [rad]

Fig. 3.1

The expression for instantaneous power can be written:
p=vi=iR= % (where i, v are instantaneous values)

But this doesn’t help much. A more practical and useful quantity is the
average power of the resistor, which can be written:

Pay = Vislyms 1 watts (W)
Po=LmR W, or

]’/2
Po=—p W

Remember that 7,,,, = 0.707 L, and V,,,, = 0.707 V...

The phasor diagram for the resistor was:

Fig. 3.2

No angle exists between current and voltage and, in this case, all the
power will be active power.

So, P = VI

and the cosine of the angle between the current and the voltage is

cos 0° = 1. You’ll see later that the cosine of the angle between current
and voltage is called the ‘power factor’.

Remember, for a pure resistive circuit:

N the angle between current and voltage is 0°;

|
| 786
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S —

M the cosine of this angle (power factor) is 1; and
W all the power in the circuit is active power.

There 1s an analogy between efficiency and power factor. Both
have values from 0 to 1 {or 0-100%) and the efficiency shows how
much input power can be used at the output of the element

n = S e 5 100%

Large power consumers are concerned with both the active and the
total power. The ratio of these two powers gives the power factor
of your network. In ideal conditions, we would like this ratio to be
near one. This will become clearer as we work through this unit.

Remember that neither the PF (Power Factor) nor the efficiency of a
network can ever be bigger than one {(or 100%).

3.8.2 AC power in an inductance

Do you remember the phasor diagram for voltage and current through
an inductance?

In Unit 2, we saw that, when a sinusoidal voltage is applied across a pure
inductance, current lags voltage by %(90").

In Figure 3.3 The current lags the voltage by 90°. So the angle between
current and voltage (¢) is 90°, and the power factor (cos ¢) is 0.

90°

Fig. 3.3

You will never find ‘pure’ inductances in physical circuits — all the
coils and windings present resistance. In this unit, we’ll consider
the case of a ‘pure’ inductor. After that, we can study the coils as
a combination of the inductor and resistance.
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There is a ‘lagging’ power factor because the current lags behind the
voltage.

Let’s look at the typical waveforms:
vy = V,, coswt
ir =1, cos(wt — %)

iv,p energy

ot

Fig. 3.4

The power curve crosses the zero axis every time the voltage or the
current is zero. When both the voltage and the current are positive or
negative, the power is positive. But when one is positive and the other
is negative, the power is negative.

What is ‘negative’ power? We know that the energy stored in the
magnetic field of an inductance is %Liz. This means that, during the cycle,
when power is positive, energy builds up in the field. When the power is
negative the energy is returned to the source.

This has the immediate effect that the average power is zero because all
the energy received from the source in a half cycle is returned to the
source in the next half cycle.

Can you see that the average power in a pure inductance is always zero
since the positive power values are cancelled out by the negative power
values over one full cycle?

Instantaneous energy is:

W= -12—Li2 = %L(Im sinwr)? = SLE, sin®wt

From this formula it is clear that the energy has no negative values

(constant > 0; I,,, is squared; sinwt is squared), the zeros are at m, 27
x 3n etc
5 s e CIC.
I added the curve for energy in fig, 3.4.

... etc., and the maximums are at
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The power curve is a double-frequency curve. One cycle = «.

Even if we cannot identify active power in an inductance, we still know
a power associated with it: O — the reactive power.

3.2.3 AC power in a capacitance

Have a look at the phasor diagram for capacitance which you studied
in Unit 2. In this case, the current leads the voitage by 90°. So, the
angle between current and voltage is 90° and cos ¢, the power factor,
will be zero.

9¢ °

Ve
—

Fig. 3.5

We can now say that the power factor is a ‘leading’ power factor, since
the current leads the voltage. Look again at the waveforms:

ve = V,, coswi
ic =1, cos(wt + 72—r)

i v,p energy

of

Fig. 3.6

When an alternating voltage is applied to a capacitance, the average
power supplied is zero and the power represents a double-frequency wave.

When it comes to a capacitor, it is important that the energy is maximum
when the voltage is maximum. This is different from inductance, where
energy is maximum when the current is maximum.
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Do you remember that energy in a capacitor is %C ¥2? Energy is returned
to the source in alternate half-cycles of the voltage. The capacitance
consumes no energy.

From now on the product v x i will be measured in volt-amperes instead
of watts.

Here’s a simple method to help you remember when the power factor is
leading or lagging: Think of the word ‘CIVIL’. In the case of capacitance
C, the current I is in front of (or leads) the voltage V, so the power will
lead. Similarly, V leads the current T in inductance L, so the current and
the power factor will be lagging.

T EXAMPLE 3.1

The instantaneous current in a pure inductance of 8 H is given as:
i=12 cos(314t - %)
Determine:

a. the rms value of the current
b. the maximum energy produced in the magnetic field

¢. the frequency

“Solution
a. Irms:%=%=8.49A
b Winax = dProax = 1% 8 x 122 = 576 ]
c. f= 5“;?

w= 314%, from the expression above, and then

fz%ESOHz

Y

What is the maximum instantaneous voltage across the inductance in
the example?

Imi%:;’ Vip=wLl, =314 x § x 12=30 144V
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» EXAMPLE 3.2

If a capacitor needs to be connected across a voltage of 30 144 V, what
should its capacitance be to receive a maximum energy of 576 J?

Solution

2OV ax = 576 = C = %51:4% = 0.000001267 F = 1.27 uF

Get used to seeing small values for capacitors and try to use the
prefixes for SI units when you write your results. Instead of using
F here, we used uF (microfarad).

3.2.4 AC power in impedances

p Power in a coil (RL series)

We know that a coil consists of a resistance in series with an inductance.

For a combination of RL series, we know that the phasor diagram looked
like this:

Fig. 3.7

or, more detailed now:

Icos§ =1,

Isin ¢=1I,
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I'was projected on the direction of ¥ and on the right-angle direction to V.

Icos¢ is the ‘in-phase’ component of the current (in phase with the
voltage!) or the active current. This is the only power producing part of
the total current.
We can calculate the power by multiplying this value by the voltage:

P = Vicosg
What happens to the other part of the current? Remember that the power

in the induction part, as we know it, is zero. Isin¢ is called the
‘quadrature component’ or the reactive current.

Although I'sing makes no active power contribution, when it is combined
with voltage, it produces ‘reactive’ power:

Q = Vising
Q is measured in VAr (volt-amperes reactive).

Since the product of V and [ is another type of power, |S! = VI,
measured in VA (volt-amperes):

§2 = P 4 @

S is called the ‘apparent power’.

The three powers can be represented in a right-angle triangle called the
‘power triangle’:

)
P Q= VIsin ¢
b
P= Vicos ¢
Fig. 3.9

The apparent power is the hypotenuse and the active and reactive powers
are the two other sides of the right-angle power triangle.

The equation P = VI cos¢, which shows the product of the voltage by the
in-phase current, is often used in power calculations. Since we are mainly
interested in active power, this equation holds true for a single
component, a network, and for a whole network.

Have you noticed anything interesting? If you go back to Unit 2, you’ll
see that your angle between current and voltage is the (—) angle from the
mpedance triangle:
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Fig. 3.10
The same angle appears in the power triaﬁgle, sO we can say that the
impedance and the power triangles are similar.

Later in this unit you'll find out that this angle is very important, since
cos¢ is the power factor of this system.

 EXAMPLE 3

A 100 V, 50 Hz voltage is applied across a coil with R = 20 Q and
X; = 15 Q. Calculate:

a  current

b  active power

C  apparent power
d  reactive power
e  power factor.
Solution

3 Z=20+15 = 25/3687° O
v 10007 T o e
I=2=5snber =4/-3687° A

b. P = Vicos¢ = 100-4-c0s36.87° = 320 W
(or, in our case, because we know R: P = RFF = 20 x 4* = 320 W)

c. |S|=VI=100 x4 =400 VA
d. 0=V§ — P =400 — 320° = 240 VAr
€. cos¢ = c0s36.87° = 0.80

» Power in a RLC series circuit

Let’s have a look at a RLC series circuit.



|
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You already know that any combination of loads can be simplified to a
RL series circuit, a RC series circuit, or a R circuit. Since R, L and C
cover (function of the values of the reactances) any of these possibilities,
it means that after we discuss this case you'll be able to calculate
practically the powers for any circuit.

For a RLC series circuit:

WY, > Xe= Z 6

mX: > XL=>ZZ—9°

W X; = Xc = Z /0° resonance (like a resistor)

For the above cases, the angles between currents and voltages are:
-0

| o°

W 0°

We can calculate further the real power (P), apparent (S) and reactive
power (() using:

P = VIcosd

Q = VIsing

IS|=VIi=+PF + ¢

EXAMPLE 3.4

An AC voltage of 100 V is applied to a series circuit of R = 20 Q,
Xy =15 Q, and X, = 30 Q. Calculate:

current

active power
reactive power
apparent power

a0 ow

Fig. 3.11

83
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Solution

Assuming V as the reference:

A Z =20+ 15 — j30 = 20 — j15 = 25 [=36.87°Q
I veoe __100/0° 436970 A
- Z T 25 /—36.87° - :

b. P = VIcosp = 100 x 4 x cos(—36.87°) = 320 W
(or P=RE =20x4*=320W)

c. Q= Vising =100 x 4 x sin(—36.97°) = —240 VAr

Keep the sign of Q in mind because, if you have to calculate sums of
reactive powers (for example for finding out the total reactive power
| in a circuit), youwll have to know how to do the algebraic sum!

d. S=P 4O =320 — j240 = 400/—36.87° VA

Let’s work out the solution for [S| = VI = 100 x 4 = 400 VA

OK! But where is the angle? Now try to calculate $ = VI =
100/0° x 4/36.87° VA

What did you get?
The right modulus, but not the right angle?

Remember, when the power is written in polar form, the angle (sign
included!) is the same as the one for impedance.

Where did you go wrong?
Let’s try to recalculate:
S=Vr

where I* is the complex conjugate of I (for example if 7 = modulus /6° =
F=modulus [~&,orI=a+jb=I=a-jb=>
S =100/0° x 4/—36.87° = 400/—36.87° VA

Have you got it right? But you still need to know why you have to use
the complex conjugate of 1.

Let’s suppose we choose an arbitrary reference and we know the voltage
for the circuit 1s ¥ = 220/45° V. If we calculate the current, we get a
value of 7 = 10/=15° A,
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If we work correctly (aﬁd we haven’t changed the reference!), the phasor
diagram should look like this:

AV
45°
0 \)K X
= ]
Fig. 3.12

It’s clear that the angle between the voltage and the current is 60° (the
phase angie). But 60° = 45° — (—15°), and not 45° + (—15°) which we
would have got for the angle by multiplying V" x I.

This is why we have to consider the complex conjugate of I.
In the example, the power would be:
§ = 220/45° x 10/15° = 2 200/60° VA
l

I*

We have calculated the modulus of S and we can work out power factor,
reactive power, etc. Why must we remember the formula?
Try to express S in rectangular form:

S = 2200/60° =1 100 + 71 905 VA
From this form we can identify the active (real) power and the reactive
power:

P=1100W; Q =1905VAr

We can also calculate the power factor (0.5).

As you can see, this a much faster method and it can be really useful
when it comes to more complicated circuits.

Do you remember how to calculate the equivalent impedance for different
series and parallel combinations of impedances? Every time you have a
more complicated circuit, first try to find out the equivalent impedance
and then calculate the power according to the formula.
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¢ EXAMPLE 3.5

Here is a circuit:

A, L2 zz=&4m B Iy Z=15/45°0
I Z£20/-300Q
7}; Ve
Ir _®V=220mfv
Fig. 3.13

From the information given in the figure, calculate:

Z,., — the total equivalent impedance of the circuit

Iio101 — the current flowing through the circuit, Iy

The voltages V45 and Ve

The currents flowing through each impedance (11, I, I, I,)

The active powers dissipated in each impedance, and the total active
power for the circuit

The reactive powers dissipated in each impedance, and the total
reactive power for the circuit

7. The apparent power for the circuit

Al

*

| Solution

Z, has an inductive character (R in series with L), Z, is a resistor,
and Z; has a capacitive character (R in series with C). These are
all the types of loads we have studied (R, L, C). Look carefully at
how each type of load influences the calculations.

L7 VA
NV AVAE A A AV A

20/30° x 10/0° x 20/—30° .
= 20730° % 10/0° + 20/30° x 20/ —30° + 10/0° X 20/=30° 15/45° =

4.000/0° o 4000/0° s
= 3007307 7 d00,0° 300730 T A = e a4 0 + 1545°=

= 3Rl + 15/45° = 5.36/0° + 15/45° = 15.97 + j10.6 =

= 19.17/33.57° Q

'+‘Z4=
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or:

Y, = le =L =005-30°8

20/30°
_ 1 _ 1 _ o
YZ - Z ~167/0° — 0-1& S
l ° g
Y3 20/ 300 - 0 05/30

Y) + Yy + Y3 = 0,05/=30° + 0.1/0°+ 0.05/30° = 0.186602 + jO =
= 0.186602 S = Yoon_n

Zogan = 3-— = 5.36/0°Q
Zoq = 5.36{0°+ 15/45° = 15.97 + j10.6 = 19.17/33.57° Q

Whatever method you use, you’ll get the same result if you work
correctly.

Knowing the supply voltage and the equivalent impedance of the
circuit:

Vo 220000 o
IT— ={917/335° — = 11.48/-33.57° A

VAB = ZAB X IT = 536@_0 X 1148/—“33570 = 6153/—33560 A\
Vae = Zpe % Iy = 15/45° x 11.48/—33.57° = 172.2/11.43° V

You can now check;

Vav + Ve = 61.53[=33.57° + 172.2/11.43°
= 220.05 + jO.1 ~ 220/0°V

I =Y = SLSBEBST 508/ 63 57° A

T Z 20/30°
_ Y  SLSEBST 6 y51 a3 570
1—2_'2‘;2_ 10& —"6-15 33.57 A.
Vs _ 61.53/-33.57° _ .
I = = 255 = 3.08/-3.57° A

Again we can check:
I + L+ I; =957 — j6.35 = 11.485/=33.565° A

And I, = Ir = 11.48/—33.57° A
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i 6.

We know that the formula for active power is P = V/cos¢

Replace in the formula the respective values for each impedance =
Py =61.53 x3.08 xcos30 =164.12 W

Py, = 61.53 x 6.15 x cosO = 37841 W

P; = 61.53 x 3.08 x cos(—30) = 164.12 W

Py=1722x 1148 x cos45 = 139785 W

The tota_l active power will be:

Py+ P+ P+ P,=21045W

The formula for reactive power is @ == VIsing
Again, by replacing the values we get:

Q1 = 61.53 x3.08 x sin 30 = 94.76 VAr

(O, =61.53x6.15xsin0 =0

3 = 61.53 x 3.08 x sin{—30) = — 94.76 VAr

Remember to keep the minus sign here!
Q4= 1722 x 1148 x sin45 =1 397.84 VAr
Q1+ Qs+ Qs + Qs =1397.84 VAr

For the total power remember:
S = VI* =220/0°x 11.48/33.57° = 2 525.6/33.57° =

= 2 104.36 -+ j1 396.54 VA

! i
~ P+ P+ P34+ Py 2O+ 02+ 03+ 04
(checked!) (checked!)

You could have written § = P + jQ, because we have already
calculated P and Q for the circuit. But it’s better to check that
you have worked correctly.

Now, let’s practice power calculations:

S) = ViIi* = 61.53/~33.57° x 3.08/63.57° = 189.51/30° VA
Sh = Vol* = 61.53/=33.57° x 6.15/33.57° = 378.41/0°VA

Sy = V3l* = 61.53/—33.57° x 3.08/3.57° = 189.51/—30° VA
Ss = Val* = 172.2/11.43° x 11.48/33.57° = 1 976.86/45° VA
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If we write in rectangular coordinates:
S = 164.12 + j94.76 VA = Py + jO, (checked!)
S, = 378.41 + /0 VA =P, +0 (checked!)
Sz = 164.12 — j94.76 VA = Py — jQ, (checked!)
Sa=1397.85 + ji 397.85VA = P, + jO, (checked!)

This means that we’ve also checked all the partial results for power!
And finally:
ST+ 8+ 8+ Sq=21045+ 71 397.84 = Siorw

Obviously, this last part is an alternative solution for solving S,,..

N Activity 3.1

| VY]

Calculate the average power of a network that has a supply voltage
of 100 sin(wt + 105°)V and draws a current of 4 sin(wt — 15°) A
Is the network delivering or absorbing power?

@ Power factor

From here on we're going to use S as the modulus, rather than |S).

3.3.1 Definition and generalities

The only difference between the equation for the amount of apparent
power and the one for amount of real power is the factor cos¢:

S=VI
P =VIcosp

The cosine of the angle ¢ in the power triangle, or cos ¢, has particular
significance. It is called the power factor or PF.

We can write:

PF = cos¢
P=Sxcos¢p =5 xPF

and
cos¢ = PF = §
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or

__P
S_cos¢

The angle ¢ is also the phase angle between voltage and current in
an element, branch or network.

The angle is the same as the one found in the impedance diagram.

PF is never greater than one.

YO

» EXAMPLE 3.6

A single-phase, 200 V supply is connected to a single-phase motor delivering
2 kW at a power factor of 0.6. Also connected across the supply is an
inductive load with impedance Z = 15 + j20 Q . The efficiency of the motor
is 91%. Calculate the power factor as seen from the supply.

Solution
First sketch the circuit using the given information:

% 4

200V Z=(15+;20)Q2 [

2KW
@@ PF=0,6
n=91%

Again, we must assume a reference. Let’s say we choose Vi, as the
reference.

Fig. 3.14

Now, for the motor:

_ P _ 2000 _
P,—,,,——;;—— 001 — 2 198W

But P, = VI cosgp =

_ P, _ 2198 _
I = Veosg  200x0.6 18.3A

cosgp = 0.6 = ¢ = £53.1°
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The motor has an inductive characteristic, so we’ll have to choose the
negative angle from our values.

Remember that an inductive type of load means the power factor lags!
= [ =18.3/=53.1° =11 — jl46 A

For the inductive load:

Z =15+ j20 = 25/53° Q

1;:%: 8/—53° = 4.8 — j6.4 A
So the total current is:

L=L+L=11-j146+48 — j6.4 =158 — j21 = 26.3/=53° A
There are a few things that need to be highlighted here. ..

Did you notice that both the loads had a similar PF? (angle ~ 53° =
same PF = 0.6)

It is logical that the overall power factor will be the same — i.e. equal PFs
= the total PF is equal to the PF of any load. That’s what we got! The
angle for the total current was —53°, so the PF for the whole circuit is
again 0.6.

Did you notice that we didn’t always stick to the ‘rounding’ rules?
Sometimes you need to use your common sense to write down results
and not follow the ‘rules” word by word.

Let’s look at how the current flowing through the impedance, 1>, can be
calculated:

_200/0° _ o cno
I = 57y = 8/=53° A

According to the rules of mathematics, when we use the rectangular form
we do not have to write any decimals. Do you agree?
If we calculate:

8/—53°=4.814 ... —j6.389...,

theoretically we should write:
8/—53°=5 — jo!

Now, try this short calculation:

5 + 6> =25+ 36 = 61
Vel =781 A
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If we choose to use only one decimal, we’ll get:

48 — j6.4
48% + 6.4° = 64
V64 = 8,

which is the current you really used in your calculations.

These issues are debatable and, unfortunately, nobody can give you a set
of standard rules. These ‘feelings’ of significance usuaily come with
practise.

If you find yourself in any doubt about, or when you don’t trust yourself
to choose the number of digits to work with (and be able to explain
why!}, stick to the rules.

In the example, if we had worked strictly according to the ruies, we would
have obtained an error of :

g =BX _ 950,
X

But for the active component:

g, ~ 4%
g =~ 6%

If we accept the errors for current and for the active component, the error
for the reactive part is already unacceptable. What we need to establish is
how this will affect us. What was the purpose of solving the problem?
Sometimes it matters, sometimes not. This brings us to the next section:
the significance of power factor.

3.3.2 Significance of power factor

In the previous example, we worked out that the motor gets
approximately 2 200 W from a supply of 200 V which delivers a current
of 18.3 A, at a power factor of 0.6 (the phase angle being 53.1°).
Let’s assume that the phase angle is only 20° and see what happens:

— P _ 2200 _
Tnew = VoS, 200 x cos20 1L.7A

What happened?

We still have the same real power supplied by our 200 V source, but the
current decreased.

Why?
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The initial current was more than 18 A and the power factor was 0.6
(which is a poor PF!). By changing only the PF, the current dropped to
less than 12 A.

cos 20 = 0.94 (a very good power factor!)
So what?

Remember that the wires need to be larger to carry 18 A instead of 12 A,
and that the resistive losses are proportional to the square of the current!

It’s clearly uneconomical to have a poor power factor in this installation.

The high investment cost incurred (cables, transformers, etc.) means that
the power company (for example, ESKOM) will charge you more on a
monthly basis than they would if you had a good power factor.

So how can we improve the power factor of the consumer?

Activity 3.2

An electrical motor operates at 240 V. The motor absorbs an
average power of 8 kW at a lagging power factor of 0.8. Calculate
the complex power of the load and the impedance of the load.

3.3.3 Power factor correction

Let’s look again at the example 3.6 on page 90.

The current was lagging (behind) the voltage by an angle of (—)53°. If we
draw a phasor diagram for this situation, it will look like this:

~53°

3r

Remember, we assumed the voltage as reference, so we've drawn it on the
real axis! '

The two projections of J; on the real and imaginary axes are I3, (active
component) and I;, (reactive component).
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The question now is: can we draw a leading current to reduce the reactive
component of I5?

The angle by which the current lags the voltage will decrease and the
cosine of the angle will increase. In other words, we ‘improve’ or ‘correct’
the power factor. Ideally we would like a power factor of 1, which would
mean that § = P, making all the power in the circuit active!

Since this is not practically possible, we aim for a power factor of
approximately one. A PF of 0.90-0.95 is considered really good.

Let’s say we would like a power factor of 0.92 for our circuit. What can
we do?

Remember, if we can draw a leading current that reduces the reactive
component of /5, we will get a better PF.

The question is how?

Capacitors draw a leading current from the supply, so we’ll connect a
capacitor to our circuit:

I

3 new

200V _—cC D Z @@

Fig. 3.16

15 I

Revise the section on current dividers!

+ EXAMPLE 3.7

What capacitor must I choose to obtain a power factor of 0.92?

| Solution

To get a PF of 0.92, the angle between current and voltage must be:

arccos 0.92 = cos™' 0.92 = 23.07°

— ——  »

I don’t want to change the active current, so the phasor diagram will now
look like this:
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I
3r1| v
I -23.07°
3r new - - I&’new
0
-53 "
f
- 5
Fig. 3.17

From fig. 3.17 we can see that the capacitor must draw a current equal to
I3r - I3r Hew*

But we dont know the value of I3, ,,,. Can you find it in the information
you have?

I, 18 15.8 A and £, is 21 A (both of which we already know).

We also know that the desired angle is 23.07° (to obtain the 0.92 power
factor!).

If we calculate:

O_ :Irnew=lrnw
tan 23.07° = 0.43 -1—Isa _LLIS.S s

we get [0 = 6.7 A

(or, directly, I, pew = I3, % tan 23.07)

The problem is almost solved. The capacitor must draw a current of:
L =15 — I3y pew = 21 — 6.7 = 14.3A,

and then: Ic

and, for our capacitor:

¥ _ 200 _
XC—IC— 14.3-—13.990
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] = 0.000227 F = 225 uF

X = 1 _
c 2mfXe 2w50x13.99

1 —
mC > ¢ =
So, a capacitor of 225 uF would do the work.

There is another theoretical alternative. We didn’t mention whether we
wanted a leading or lagging power factor, so we could have chosen an
angle of 23.07° with (+) (again trigonometry: cos 23.07° = cos (—23.07°)
= 0.921) Remember that cos ¢ = cos{—¢)!

The phasor diagram would have looked like this:

I3
7 il naw
3r new
/jﬂ&zam"

3r

The current drawn by the capacitor in this case must be:
I.=05L — I3 pew =21 + 6.7=277A

and
X, = % =722 Q
_ 1 ~
C = 5meg—s5 = 0.000440 F = 440 uF

A capacitor of 440 uF would have improved the PF to 0.92, this time
leading.

If you study AC synchronous motors, you'll find that they also im-
prove the PF of a factory. While doing useful work, they can draw
a leading current with a quadrature component that has the same
effect as current in a capacitor!

TN Activity 3.3

' A 240 V 50 Hz induction motor of 500 W has a lagging power
factor of 0.7. Calculate the value of the paralle] connected
capacitor required to raise the overall power factor to unity.
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Power measurements in single-phase
circuits

The instrument that measures active power in a circuit is called a
wattmeter (from watt, the unit for power).

A wattmeter measures voltage, current, and power factor, since the
expression for P is:

P == VIcosg

For DC power measurement (since we normally discuss resistive
circuits), the power factor is 1 and we can use only an ammeter
and a voltmeter to measure current and voltage respectively. The
product of the two meausrements will give you the power.

A normal wattmeter measures average power and the scale calibration is
normally not linear.

Basically, a wattmeter has a fixed coil for current measurement and a
mobile coil for voltage measurement. Since the moving coil’s torque is
proportional to the product of current and voltage (in fact second
current), it also considers the PF.

Due to the inertia of the meter, the readings are not reversed during
negative power intervals.

Wattmeter connection in a circuit:

voltage coil
curtent coil

load

Fig. 320  o—

In this example, the
symbol for the wattmeter is:

Fig. 3.21

and indicates both coils.
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Remember to connect the current coil in series, like an ammeter, and the
voltage coil in parallel with your load, like a voltmeter.

Other accepted symbols for wattmeters are:

e

¢

Fig. 3.22

where the coils are not represented (used for more schematic diagrams),

e

Fig. 3.23

for more detailed circuits or when we want to underline some
connections.

There are two ways to connect a wattmeter. The first is illustrated in
fig. 3.20.

The total line voltage (across the load and the current coil) is applied to
the meter. This means that the loss in the current coil is included in the
meter reading. To work out the loss for correction purposes would
involve errors, because the resistance of the current coil is very small and
not usually given or accurately measurable.

In this example, the real power P would be the indication of the
wattmeter minus RIZ (R of the series coil). Normally R7? is only a few
watts and can be disregarded. This option is analog to the connection
for measuring resistors: °

o ] 10ad

(for DC)
Fig. 3.24
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The other possible connection is when through the current coil flows a
current greater than the current through the load. (The current divides
itself through the voltage coil and through the load, and the end of the
current coil is connected to the voltage coil). This would be analog to the
following {DC) measurement:

Fig. 3.25

The power in the voltage coil should be deducted from the reading.
Since Ry is usually stated, we can calculate:

P = (indication of the wattmeter) — £
v

Then we must use a voltmeter to measure the load voltage V.

» EXAMPLE 3.8

A wattmeter connected in a circuit reads 200 W. The line voltage is 200 V
and the resistance of the potential circuit is 3800 Q. What is the load power?

Solution
P = wattmeter reading — RE =
—200 - 20 _ 1595w

3 800

We had to assume that the current coil supplies both the voltage coil and
the load, aithough this wasn’t stated.

The first connection (fig. 3.24) is preferred for small load currents and the
second one (fig. 3.25) for high load currents and voltages.

Sometimes wattmeters can be damaged below their full-scale
readings. Can you work out why this happens? Suppose a

| wattmeter has a full-scale capacity of 1000 W, the rating for the
current coil is 10 A and the rated voltage is 120 V. If we measure
720 W at 120 V for a load witha PF = 1 =

P=Vi=I=4=780=56Al
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But we don’t usually know the PF of the load beforehand. Let’s see what
would have happened if our load had a small power factor like 0.20!
720 = 120 x I x 0.20 =
I=24 Al

As you can see, this current will burn out the wattmeter’s current coil
(>>10 A).

Because a wattmeter reading gives no indication of current and voltage,
always use an ammeter and a voltmeter in conjunction with a wattmeter
(especially when a low PF is suspected):

Fig. 3.26

This diagram is of immediate benefit. If we have all three measurements
we can calculate:

S=VI
cos ¢ = % (the PF. of the load)

and the reactive power:

Q = Ssing = SV/1 — cos’¢

Another option is to connect the meters in the following order:

\J
o N
N
' load
. |

Fig. 3.27

Then you must deduct the losses in A and V from the wattmeters reading.
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Have you noticed that both connections introduce errors to circuits? For
example, the ammeter will read the load current and the current flowing
through the voltmeter. Use your knowledge and common sense when you
connect meters.

o

Activity 3.4

Using the circuit diagram in fig. 3.26, measure the active power for
the following loads in the lab:

1 resistive load
2 (pure) inductive load
3 capacitive load

Now calculate the power factor for each one.
What did you find?

@ Summary

In this unit we studied mainly AC power (active, reactive and apparent)
For R, L and C loads we have:

1.

3.

For a resistor the power relations are:

(Real) P=S=VI
(Reactive) 0=20
(Power factor) PF = 1
(Phase shift) ¢ =10

For inductances and capacitances:

(Real) P=0

(Reactive) Q@ =S5S=VI

(Power factor) PF = 0

(Phase shift) ¢ = 3-90°

(For C you’ll have negative values for Q!)

For any impedance:

P = VI cosg

O = VIsing

S| = VI= + @
S=Vr

PF = cos¢ = —‘g

PF ¢ [0, 1]
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The power factor of any element, branch or circuit is defined as:
PF = cos¢

where ¢ is the angle between the current flowing in and the voltage

across the element, branch or circuit,

¢ is also the angle in the impedance triangle and power triangle.
Power factor varies between 0 and 1.

A power factor as close to 1 as possible is preferred. Inductance and
capacitors can be used to improve the power factor. Wattmeters are
used to measure power.

W Self-evaluation

1.

A supply of 550 V is connected to a load with an impedance of

34.41/35.54° Q.

Assuming the supply voltage as reference, calculate:
a. the current flowing through the impedance

b. active power

c. reactive power

d. apparent power

Two resistors of 8000 € and 6000 Q are connected in parallel.

A third resistor of 3000 Q is in series with the two. An AC supply
applies 100 V to this network.

a. What is the power in each resistor?

b. Calculate the total power using the applied voltage and the

current supplied by the source.
c.  What is the PF of the network?

A 120 V source supplies two loads: one carries 8 A at 0.85 PF
lagging, and the other 5 A at 0.80 PF leading. Work out the total
current, power, and overall power factor.

Determine the apparent power for each element in this circuit:

X100

!
V=240V R=4002 X;=400)

T

Fig. 3.28
Calculate the active, reactive, and apparent power for the circuit.
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5. Study the following circuit:

L Z,=(17.68;17.68)0)

A L Z,=250 B I Zy c
e I
L Z,=(17.68+/17.68)Q
VBC
=170/10.13°V (

%IT V=250/00V N
N

From the information given in the circuit, calculate:

Moo o

The voltage V4p

The currents flowing through each of the impedances (14, I, I3, 1)
I7 (101a1) — the current flowing through the circuit

Z4 and Z,, — the equivalent impedance of the circuit

The active power dissipated in Z;

The reactive power dissipated in Z,4

g. The apparent power for the whole circuit

6. A single-phase 250 V supply is connected to a single-phase motor
delivering 2.4 kW at a power factor of 0.62. Also connected to the
supply is an inductive load with an impedance Z = 25/53° Q. The
efficiency of the motor is 94%. Calculate:

a. The overall power factor (as seen from the supply)
b. The value of a parallel connected capacitor to improve the

power factor to 0.94 lagging

Answers
Activity 3.1 (page 89)
P=—-100 W

Q0 =173.2 VAr
Delivering power.

Activity 3.2 (page 93)
S=8+jJ6kVA
Z =461+ 346 Q

Activity 3.3 (page 96)
C =282 uF
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Activity 3.4 (page 101)
The wattmeter will show you:

Pror resistor = value (it depends on the values you have in the lab!)

Bor inductance =0 } (if you worked correctly!)
P for capacitance — 0

PFior resistor =1 (S =VI= P)

PFfor inductance = 0 (S = VI, P= 0)

PFror capacitance — 0 (S =VLP= 0)

Alternatively, if you have a power factor meter, you could simply read off
the power factors.

Your main observation is that, for the resistor, the apparent power is
equal to the active power, while for the other two (L, C) the apparent
power is equal to the reactive power, (Hence the denomination of ‘active’
and ‘reactive’ components.}

Now you can try any combinations of loads (R, L, and ()
and measure V, I, P. Then you can calculate: S = VI VA;
cos¢ =PF =% 0=V - P VAr; etc

Self-evaluation (page 102)

1. a.
b.
C.
d.
2. a.
b.
c

15.98/—35.54° A
7.15 kW

Il kVAr
8.79/35.54° kVA

Py =0355W
Py =0474 W
Py=0725W
Pt = 1.555 W
PF = 1

3. Ir=109/-64°A

hY

= 1300 + ji46 = 1 308/6.4° VA

PF =0.99%

4, Sp=P=1440W
SL = QL :]'2 560 VAr
Sc = Q¢ = — j6d0 VAr
Srorar = 2400/53.1° VA
Pty = 1440 W
Ororar & 1920 VAr
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Vap = 87.98/—19.87° V

I =3.52025.13° A
L =352/-19.87° A
I, = 3.52/—64.87° A
I, = 8.50/—19.87° A
Ir = 8.50/—19.87° A
Z4 = 20/30° O

Z., =2942/19.87° O
Py =218.98 W

Qa4 = 722.5 VAr
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S = 2125/19.87° = 1998.5 + j722.3 VA

PFoia1 = 0.60

C = 190 uF (191.52...)



Resonant circuits

- OUTCOMES

After studying this unit, you should be able to:

| ideritify the performances of networks subjected to
varying frequencies

B analyse simple series and parallel resonant circuits

B design circuits that operate at pre-determined
resonant conditions

* PREVIOUS PAGE BLANK 107
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Introduction

In Unit 2 you were introduced to the analysis of RLC circuits. In this unit
we will deal with the frequency response of such RLC circuits.

The frequency response of a circuit, instrument or electronic system is
an important measure of its performance. Each one is designed with a
specific operating range. For example, a stereo sound system has an
operating range of 20 Hz to 20 KHz. Within this frequency range, the
system components must detect and amplify signal frequencies that make
up the music we like to hear.

In communication engineering we study the performance of a given
network when subjected to varying frequencies. This is called the
frequency response of the circuit. At certain frequency values, the current
and/or voltage in a circuit reaches a maximum or minimum value. This
frequency 1s called the resonant frequency of the circuit. While this is
particularly significant in communications, resonance is also important in
switching circuits, transmission lines and other electric power circuits.
Resonance is fundamental in nature, finding its analog in mechanical
systems in relation to such problems as shock and vibration, in fluid
dynamics, and in many other fields. This unit focuses on electrical
resonance.

Series circuit

4.2.1 Resonance in RLC geries circuit

We have seen that the net reactance in an RLC circuit is;
X=X, - X¢
Z=R+jX - X¢)

and that

z= /R +x, - x.)
_ /R2+X2

If for some frequency of the applied voltage, X; = X (in magnitude)
then

X=0
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and
Z = R (see fig. 4.1(b))

In fig. 4.1(a):
VL = IQ]XL and VC == IQ]XC
These are equal in magnitude but opposite in phase, so they cancel out

each other. The two reactances together act as a short circuit since the
combined voltage develops across the combination.

A
&
e 1
,1
V=
&
Fig. 4.1(a)
X
Z:
Xe
Fig. 4.1(b)

The applied voltage V drops across R so that V' = V. The circuit
impedance Z = R. The phasor diagram for series resonance is shown
in fig. 4.1(c).

I
V

Fig. 4.1(c)
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The frequency (f,) at which net reactance is zero is given from the

relation:
XL - XC = 0
or XL-_— XC
- L
01; le—wC
W =1c
1
(27rf, 2= R
f _ 1
" am/LC

If L is in henry and C in farad then f, is given in hertz (H).

We have seen that, under these conditions, the impedance of the circuit
equals the ohmic resistance R, so current is maximum, limited by the
value of R alone. Its value is:

and it is in phase with V.

This condition is called series resonance and the frequency at which it
occurs is called resonant frequency (fr). So, a series RLC circuit is said to
be in resonance when its net reactance is zero. Since X = 0, series
resonance can be described as a condition of maximum admittance or
minimum impedance (both terms mean the same thing).

As current is maximum it produces large voltage drops across L and C.
These drops being equal and opposite to each other they cancel out.

=

2l Activity 4.1

v A 1 H coil is connected in series with a 1 pF capacitor. What is the
resonance frequency? o

HN Activity 4.2

i What capacitance is required to resonate with a 100 mH coil at
1 000 Hz?
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iV Activity 4.3

’ What inductance is needed to resonate at 10 MHz with a
capacitance of 100 pF?

4.2.2 Bandwidth of a resonant circuit

In an RLC circuit, the maximum current is solely determined by the
circuit resistance R. However, at frequencies far from resonance, the
amplitude of current becomes decreasingly dependant on R. For circuits
with low value of R, the resonance curve sharply peaks and such a circuit
is said to be sharply resonant or highly selective. Circuits with high value
of R have a flat resonance curve and are said to have poor selectivity.

Selectivities of different resonant circuits are compared according to their
bandwidths. Bandwidth of a circuit is given by the band of frequencies

that lic between two points on either side of the resonant

frequency where current falls to % of its maximum value (at resonance).

The narrower the bandwidth, the higher the selectivity of the circuit.

In fig. 4.2 the bandwidth AB is given by

Af=/fH- N
or
Aw=uwp — w =—§-
=V
Iﬂ_rﬁ —————
Iy
I==r -
2

1
[
1
[
|
|
|
|
1
1
1
1
1

1 |
I 1
I |
I b
1 b
| |
| 1
l |

fi fo 13
Fig. 4.2

Obviously, over this range of frequencies, current is equal to or greater
I
VoA

where [y = % — the maximum current at resonance.

than
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Power at points 4 and B = PR

= (5 x R

_ L’R

2
I°R
X

1
= ; |
= 5 X power at resonance.

This is why points 4 and B on the
response curve are known as half
power points,

It can be proven that the half power frequencies are:
R
h=Jr— gL

andfzzf,-l—%

4.2.3 Q-factor of a series circuit

Where you have an RLC series circuit, the Q-factor is defined as being -
equal to the voltage magnification in the circuit at resonance.

We have seen that at resonance

Voltage across either coil or capacitor = IyX; or IyX¢
Supply voltage V = LR
Ve _ X, _ X, _ wol

.. Voltage magnification = V=TE= R %

.'. Q-factor = % = 231% = tan ¢

where ¢ is the power factor angle of the coil.
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EXAMPLE 4.1

The parameters of a series R, L, C circuit are R=1 KQ, L = 8 mH,
C = 20 PF. The applied voitage is 20 V rms of variable frequency.

Calculate:
1 the resonant frequency
2 the current at resonance
3  the Q-factor
4  the voltage across the inductor and capacitor at resonance
5  the lower and upper half power frequencies
6  the bandwidth
Solution
R pp——
" 2m/LC
_ 1
T 2m/8x 10? x 20 X 10-2)
= 397.88 kHz
_r
2 Iy= R
_. 20
~1kQ
= 20 mA
3 Q-factor = 9‘%
_ 2w x 397 88 »x 10° x8 x 103
- 1x10°
=20

4  Voltage across inductor = Voltage across capacitor
ie. VL = VC
VL= VC:(Z’T[' Xf;-L) X Ig
= (21 x 397,88 x 10° x 8 x 107%) x 20 x 1073

— 400 V
S fi=h-
= 397.88 x 10° - —1x10

4dxg7x8x10-?
= 387.93 kHz

113
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L

fo=ht g
= 3, 1x10
= 397.88 x 10° + XL
= 407.82 kHz
R 1IxI0P
6 Bandwidth = T = 3% 107
= 1.25 x 10° rad/s

Parallel circuit

4.3.1 Resonance in a parallel circuit

In this section we will look at a practical case of a coil in parallel with
a capacitor as shown in fig. 4.3.

Such a circuit is said to be in electrical resonance when the reactive
component of line current is zero. The frequency at which this happens
is known as resonant frequency.
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R

Fig. 4.5

The vector diagram for this circuit is shown in fig. 4.4.
At resonance, the reactance is zero, so
IC — IL singbL = 0 or I SiH¢L = IC

The condition for resonance becomes:

zZ" Z X
XL X XCZZZ

Now X, = wL, X¢ = —

= R? + 2nfL)*

@il =5- R

1 2
o= \1e - T

1 1 R?
ofe=5\ie T T

This is the resonant frequency and is given in Hz if R is in ohm, L is in
henry and Cis in farad. If R is negligible (i.e. R < X}) then:

I ! same as for series resonance

T 2xv/IC T



116

Basic Circuit Analysis

p Current at resonance

As shown in fig. 4.4, since the wattless component of the current is zero,

the circuit current is I = I cos¢p = % X %
_ IR
I= Z2

Substituting Z? = % we get:

_FR
=7
C
_ ¥
- L
CR

The denominator LR is known as the equivalent or dynamic impedance of
the parallel circuit at resonance. Since current is minimum at resonance,

FIIQ" must represent the maximum impedance of the circuit. In fact, parallel
resonance is a condition of maximum impedance or minimum admittance.

Current at resonance i minimum, and such a circuit (when used in radio
work) is sometimes known as a rejector circuit because it rejects (or takes
minimum current of) the frequency to which it resonates.

4.3.2 Q-factor of a parallel circuit

The Q-factor of a parallel circuit is defined as the ratio of the current
circulating between the two branches to the line current drawn from the
supply — or, simply, the current magnification.

Obviously, the circulating current between capacitor and coil branches
is Ic.

So Q-factor = I

I
=7
Now I = X
_ ¥
Twe = WV
and [ = ¥
(&)

.. Q-factor = wCV + —E—
L CR
= YR
_ 2=nfL

- = tan ¢ (same as series)
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where ¢ is the power factor angle of the coil.

Resonant frequency when R is negligible can be written:

_ 1
fr= 2m/ LC

Substituting this value in %R& we get:
_2aL ., 1

Q-factor = == x T
-1 /L
T RYC

 EXAMPLE 4.5

A choke {coil) connected across a 500 V, 50 Hz supply takes 14 at 0.8
power factor. What capacitance must be placed in parallel to make the
power factor of the combination unity (PF = 1).

Solution
Impedance of coil Z = 5(1)—0
= 500
cos ¢ =0.8 . sin¢ =0.6
Xy = Zsin ¢
= 500 x 0.6
= 300 2
XL = 27l’fL
- X
L= 2xf
_ 300
T 2xwx 50
=094 H

The power factor of the combined circuit will become unity when it is
resonant at f = 50 Hz. The condition is:

_ L
C=%

_ 0,954
T 5002

= 3.81 uF

S —Y
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 EXAMPLE 4.6

A coil of resistance 20 Q0 and inductance 200 pH is in parallel with a
variable capacitor. The combination is in series with a resistor of 8 000 2.
The voltage of the supply is 200 V at a frequency of 10° Hz.

Calculate:

1  the value of C to give resonance

2 the Q-factor of the coil

3 the current in each branch of the circuit at resonance.

Solution 200 U
R=200 Sk

First draw the circuit
R=8000 (

C
/}/V
\
Fig. 4.6 @ 4
XL= 27TfL
= 27 x 10% x 200 x 10~°
=125 0Q

Coil resistance is 20 Q which is negligible compared to its reactance
(R < X;). Because coil resistance is negligible the resonant frequency

is given by:
1 fi=—1
; 2mvEC
. 6 _ 1
(107= 2m/200 x 10~ x C
C ~ 125 pF
_ 2w x 106 x 200 x 10-¢
20
= 62.8

3 Dynamic impedance of the circuit is:

L - 20010
CR = T25x 10 2% 20

= 80 kQ
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Total equivalent resistance of the tuned circuit is:

80 + 8
= 88 k&2
. __ 200
. Current I = 38000
= 2.27 mA

". p.d. across tuned circuit = current x dynamic impedance
=2.27 x 1077 x 80 000

= 1816V
o _ 1816
Current through inductive branch = /307 1236
=0.1445 A
= 144.5 mA

s ¥V
Current through capacitive branch = TwC

= wVC
= 181.6 x 27 x 10% x 125 % 10~1?
= 1427 mA

. @.d Summary

Remember the following points about series resonance:
e Net reactance is zero, 1.6. X =0 or X7 = X¢

e Therefore Vy =Veor Vp— Ve=0
¢ Impedance at resonance = R

e Line current at resonance is maximum and'equal to % and is in
phase with voltage.

e Power factor is unity i.e. cos¢p = 1
Remember the following points about paralle]l resonance:

® net susceptance is zero i.e. Al = & or X Xc=Z%or %, =7
<

¢ reactive (or wattless) component of line current is zero.
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e dynamic impedance = —C% Q

e line current at resonance is minimum and equal to _Tp: but is in
phase with the applied voltage.

e power factor of the circuit is unity.

CR

Here is a table comparing series and parallel resonant circuits.

Item

Series Circuit

Parallel Circuit

Impedance at resonance

Minimum

Maximum

Current at resonance

Maximum = ¥

Minimum = ¥
*

Effective impedance

R

L
TR
Power factor at resonance | Unity Unity
Resonant frequency 1 A
2nvVLC VIC ™ 2
It magnifies Voltage Current
. . . L L
Magnification (Q factor) is | wg Wi

W Self-evaluation

1 A series circuit, consisting of a coil (R =300, L = 0.5 H) and a
capacitor resonates at a frequency of 48 Hz. Calculate the
capacitance of a capacitor that, when connected in parallel with this
circuit, will increase the resonant frequency to 60 Hz. Calculate in
the latter case, the total current and the current in each branch of the
circuit if the line voltage is 100 V.

2 A 20 © resistor is connected in series with an inductor, a capacitor
and an ammeter across a 25 V variable frequency supply. When the
frequency is 400 Hz, the current is at its maximum value of 0.5 A
and the potential difference across the capacitor is 150 V. Calculate:

a. the capacitance of the capacitor.

b. the resistance and inductance of the inductor.

3 An RLC series circuit consists of a resistance of 1 000 Q, an
inductance of 100 mH and a capacitance of 10 PF. If a voltage of
100 V is applied across the combination, find:

a. the resonance frequency
b. QO-factor of the circuit
c. the half power points.
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A constant voltage at | MHz is applied to an inductor in series with
a variable capacitor. When the capacitor is set to 500 pF, the current

has its maximum value but is reduced to one half when the
capacitance is 600 pF. Find:
a. the resistance

b. the inductance
c. the @Q-factor of the inductor

5. A coil of resistance 10 €2 and inductance 0.5 H is connected in series

with a capacitor. On applying a sinusoidal voltage, the current is
maximum when the frequency is 50 Hz. A second capacitor is

connected in parallel with this circuit, What capacitance must this

second capacitor have so that the combination acts like a non
inductive resistor at 100 Hz?

Calculate the total current supplied in each case if the applied
voltage is 220 V.

6  The resonant frequency of series RLC circuit is 1.2 KHz, if
R=50and L =5 mH. Find C and the impedance and power
factor:

a. at resonance
b. at twice resonance frequency
¢.  at half resonant frequency

Answers
Activity 4.1 (page 110)
fr=—1
T 2mVLC
1

T 21X 10-¢
=0.159 x 103

= 159 Hz

Activity 4.2 (page 110)
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_ 1
C_47r3><L><f,z

_ 1
T 4w x 100 x 10-% x (1 000)°

= 0.253 uF

Activity 4.3 (page 111)

]
Jr= 2m/LC
2nvIC = 1

r

4r’LC =

r

_ 1
L_47r2><c><f,2

_ 1
T4 x a2 x 100 x 1012 x (10 x 106)

= 2.53 yH

Self-evaluation (page 120)

1 ¢, =327uF 2 C=1325uF
I=054A L=0119H
5L =j1.23 A R=300Q
L = 0.54 — j1.24
3 a f,=15KH:z 4 a R=306Q
b. Q=100 b. L =0.0507 mH
c. fi=1582KHz c. Q=104
£ = 159.8 KHz
5 C=69uF 6 a C=35uF
I(50Hz)=22A Z=R:5\Q
Ir=0.04 A PF=1
b. Z=56.8
PF = 0.09 (lag)
c. Z=25680Q

PF = 0.09 (lead)
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e

OUTCOMES |———

After studying this unit, you should be able to:

B Analyse various DC and AC circuits using Kirchhoff's
Laws.

W Solve different network problems using Superposition
Theorem.

B Apply Thevenin's Theorem and solve problems using it
(Thevenising).

B Explain Norton's Theorem and solve problems using it
(Nortonising).

W Develop circuit problem-solving techniques and methods
to check your answers.
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@ Introduction

In Unit 1 you were introduced to Kirchoff’s Laws. In this unit we will
discuss these laws as applicable to networks.

We will study some principles and special theorems that can be used to
analyse complex circuits. These technigues can be used to simplify both
DC and AC circuits and reduce the amount of work needed to study the
networks.

We will only refer to linear networks. A linear network responds directly
proportional to the magnitude of any stimulus applied to it.

A linear circuit consists of linear elements and ideal sources of voltage
and current. An ideal voltage source should supply an unlimited amount
of energy without a decrease in its terminal voltage and an ideal current
source delivers current that is independent of voltage. These are simplified
models of the reality.

A passive network is one that contains no energy source and an active
network is one that contains a minimum of one source of energy, for
example a battery;, an active clement.

Various techniques can be used to solve a circuit for its voltages and
currents. Remember, for any problem, that you can solve it at least two
ways. Try and understand all the methods you are introduced to in this
unit, because each one can be used to analyse circuits. Once you've
mastered these ‘tools’ you should be able to economise on the amount of
work and time you spend on solving problems. You will also be able to
check your work. After all, the final solution should be the same
regardless of which method you use!

Let’s get started!

@ Network theorems
8.2.1 Kirchhoff's laws

Let’s revise Kirchhoff’s two laws:

p Kirchhoff’s current law (KCL)

At any node of a circuit, at every instant of time, the sum of the
currents that enter the node is equal to the sum of the currents
coming out of that node.
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Another version of this law is: ‘The currents algebraically sum to zero in
any node of a circuit.’

Do you remember that, if we consider the currents directed into a node to
be positive and the currents directed out of a node to be negative their
algebraic sum will be zero?

This law can be applied to both DC and AC circuits.

This law is essentially the law of conservation of charge, which is why the
first expression ‘at every instant of time’ was mentioned. The law can be
generalised for any closed region of a network (the current going in the
region must equal the current coming out of the region).

p Kirchhoff’s voltage law (KVL)

\% In any loop of a circuit, at every instant of time, the sum of the

\Wiy voltage rises equals the sum of the voltage drops.

or

Around any loop in a circuit, the voltages algebraically sum to
zero (if we see the voltages across elements that are transversed
from plus to minus as being positive and the voltages across
elements that are transversed from minus to plus as being
negative, or vice-versa).

HHY Activity 5.1
* Look back in your notes and make sure you know what we mean

by ’node’ and ‘loop’. Try and soive again the example for
Kirchhoff’s laws in Unit 1 to remind you of this theory.

-t
[y
-

EXAMPLE 5.1

Let’s start with 2 DC example.

Look at the circuit in Fig. 5.1. Find the currents in each branch using
Kirchhoff’s laws.
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+ | E,=120V

T T

Solution
| _wolution

In node A:
I1ﬁ12+13=>12=11—13...®

Remember, KCL can only be used once in this example, because we have
only two nodes. However, KVL can be used twice because there are three
unknowns and, so far, only one equation.

For loop:
E; = Ry — Ry(— E)
E2 = R3I‘_>, - RzIz . @

Remember, we conventionally assume the current flows from + to
— in DC circuits.

For loop:
Ey — Ry — Ry(— Ey)
El — RIII + R3I3 e @

If we substitute J; = I; — I in equation (2 we get:
Ey = Ryly — Ry(I) — I)
= (R3 -+ Ryl — Ry

If we look at the system:
E; = (Rs + Ry)ls — Ryl
E] = _R3113 + RIII
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There are two equations with two unknowns (I; and I3)
RiE; = (RiRy + RiR3); — RiRy],
RzEl = R2R3I3 + R}th

Adding the two equations:

RiE; + RyEy = (RiRy + RyR3 + RiR3); =

_ R E + R E,
L= RR+RR, +RR;- @

Now substitute this value in equation (3) and:

=

R = RRE+RRE +RRE -RRE - RRE
RiR; + Ry Ry + Ry R,

=

1, = {R,+ Ry)E, — R,E, @
RR, + RRy + RRR,

Now we can calculate I, as Iy — I3 but we should rather keep this
equation for checking if we have worked correctly. So let’s use the
equation for loop:

El — Ry — Ry — Ex(— El)
— By = R, + Ry

=

— _ _ p R+ R)E — RE,
Roly = (B — BEo) - Ry g v R T RiRs
=

= RE-BER+R) o
T RER FRR FRR;

Using the data of the problem in equations @, &, (& we get:

_(6+4) x 120 -6 X 60 _ 840
h= 5 aTax676x3 — 54 — 64
meum-g+®x@:g£:3nA
and

127
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Let’s check these results:
Innode A: 1 =L+ &

Is 15.56 = 3.33 + 12.22? Not exactly (15.56 # 15.55), but the slight error
is due to the decimals rounding. So we worked correctly! Did you notice
that all the values ([, I», I3) are positive? This means that we incidentally
chose the correct directions for the currents from the beginning.

Let’s think about this problem. Why did we do such a simple problem?
Basically, because the example could be solved from the beginning to the
end literally (using only letters), in formulas. How does this help us?

The possiblity of you making a mistake in your calculations is reduced
and, later on, you’ll see that the results are general and can be extended
to other problems.

More than that, you have the opportunity to check your results. Did you
notice how we checked the currents? If you get the same answer (and you
worked correctly) the problem is solved and you can rely on your result;
if not (you’ve made a mistake) it is very easy to recalculate the values
(only three calculations in this example!). We also tend to work more
carefully and logically when we work in the formulas.

Try to use this way of solving probiems as many times as you can, unless
you need some partial results or special interpretations and observations.
But if you feel more comfortable working with numbers, do so. If you
work correctly you’ll get the same result!

Let’s take it a step further. ..

EXAMPLE 5.2

Study the circuit in fig. 5.2. Use Kirchhoff’s laws to find the currents
flowing in the circuit:

E; =60/0°V
Ey = 90/30°V
Zl :jBQ
Zy = 120
Z5; =8 — jofd 1 A I
s,
Z Z
! z, 3
E, E

Fig. 5.2
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Solution

Unlike the previous example, here we have an AC circuit. So let’s
write our equations accordingly:

Node A:

Il=12+173=>12——~11—f3...®

Did you notice that we’re now working in complex numbers?

KVL

Loop
By — Zy — Z3(—Ey)
Ey = Zshy — Zob .. ()

E| — Z) — Z3(—E))
E =2Z0 + Zss .0

Ey = Z3; — Z(I) — 1) = (Z, + Zy)Iz — Z>1; (multiply equation by Z;)
E| = Z35; + ZI; (multiply equation by Z5)

2By = (ZZy + Z32))5 — 2,251,
ZzEl = 222313 + Z]Zz]l

Z,Ey + ZoEy = (225 + ZoZs + Z\Zo)]a

=

_ 4,E + 2\ E,
L= Z\Z, + 2,2, + Z,Z, @

Substitute 7; in equation (3 and:

_ Z,E, + Z,F,
By =2Zidi + Zy 75
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Working out /) from the last equation (where all E’s and Z’s are given
data in the problem) we get:

I = E(Z;, + Z;) - Z,E, ©)
V= Z 2+ 2,2, ¥ Z,Z,

Again, write the equation for loop:
E\ — Z) = Zy — ExX—Ey)

and
E1 — E2 = ZlIl + ZZI2
=. _
Z I _ (lez + ZgZy, + Z3Z])(E1 -—_ Ez) — Z]E;(gz + Z3) + Z3Z]E2
a2 = ZiZy + ZoZy + 257,
=
I = Z;E, - (Z, -+ Z),)E,
2= YAV AV AR VAV AR
Zy = 8/90° Q
Z, = 12]0° Q
7y = 10/=36.87°.
2122 ='_]96 Qz

Z2Z5 = 96 — j72 QF

ZsZ, = 48 + j64 Q°

Z1\Zs + ZrZs + Z3Zy = 144 + j88 = 168.76/31.43° O*
Zo + Zy =20 — j6 = 20.88/—16.7° Q

Zi+ Zy =8+ 2 =2825/1404° Q

Thus

I = 60/0° x 20.88/—16.7° — 10/—36.87° x 90/30°
1= 168.76/31.43°
_1252.8/-16.7°—900/—-6.87° _ 396.96/—39.47°
- 168.76/31.43° ~ 7168.76/31.43°
=235/-70.9°A

I — 10/—36.87° x 60/0° — 8.25/14.04° x 90/30°

2= 168.76/31.43°

_ 600/—36.87° —742.5/44.04° _  877.52/86.49°
- 168.76/31.43° ~ 7 168.76/31.43°
= —5.2/55.06° A
I = 12/0° x 60/0° +8/90° x 90/30° _  720/60°
37 168.76/31.43° T 168.76/31.43°

=427[28.57T° A
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Let’s check the results:
I =235/=-70.9° =0.77T — j222 A
L =-52/5506°=—-298 — j4.26 A
I, =427[28.57° =375 + 204 A
L+ 1;=375—-298 + ;204 — j4.26 = 0.77 — j2.22
=1

so we worked correctly!

The general convention is to display current as positive with the
modulus of the phase angle less that 180°. So,
I, =52/-180° + 55.06°

=52/-12494° A

Before we go further let’s do a quick recap of the two examples. Have
you noticed any ‘coincidences’?

Look at the final formulas obtained for the currents. Are they similar?
The configurations of the two circuits are similar, the only difference
being that one is a DC circuit, containing only resistances (except the two
supplies) and the second is an AC circuit that, apart from the 2 (now) AC
supplies consists of impedances.

Did you expect that, if we replaced the resistances in the initial current
formulas with impedances, we would obtain the formulas for the currents
flowing in the AC circuit? You probably did! And as you will see, it’s
true.

Look at the following diagram:

- X
‘,_,_,,___,,__Oq_ﬁ__l
: 1
Z, ‘
Z, ﬂz
E
i E2 1
OYG— -

Fig. 5.3

Let’s assume that the above circuit is part of a laboratory testing stand.
Between the terminals X and Y, we want to study different types of loads
(impedances), so we change Z continuously.

131
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if we have the equations 4, 5 and 6 calculated in the previous example,
each time we study a new load only Z (in the problem marked Zs) will
change. With three calculations only you can work out all currents.

Now you can see why it helps to delay substitution of values to the end
of the problem (working literally).

Activity 5.2

11

“‘&
-

" A voltage of 2 V is applied between diagonally opposite corners of
a framework in the form of a cube, each member comprising a
resistor of 1 Q. Use Kirchoff’s laws to determine the combined
resistance of the cube.

5.2.8 Superposition theorem

You may have already learnt that methods other than Kirchhoff’s laws
can be used to study electric circuits.

One of the most frequently used methods is based on the ‘superposition
theorem’

‘In a linear network containing more than one emf source the resultant
current in any branch is the algebraic sum of the currents that would
be produced by each emf acting alone (all the other sources being set to
zero or eventually replaced by their internal resistances).’

Simply put: when we have two or more active sources in a network, the
current in any element of the network is the (phasor) sum of the separate
currents that are created by each source as if it were acting alone in that
circuit. The removed sources (all the others) must be replaced either by a
short-circuit, or by their internal resistances (when they cannot be
neglected).

You will see that the superposition principle has much broader
applications. For example, you can use it when you’ll study ‘complex’
waves as a superposition of two, three or more sine waves of different
frequencies.

Steps for solving a problem using the superposition theorem:

1 Select one of the sources and replace all the others either by their
internal impedance or by a zero resistance (short-circuit).

2 Determine the desired current(s) in the (different) branch(es) resulting
from this single source (as if it is acting alone in the circuit).
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3 Repeat steps 1 and 2 for each source (until the currents flowing in
the branches have all been calculated).

4  Sum algebraically all the component currents to obtain the actual
branch current (Remember, in AC, working with complex numbers
will give us a phasor sum!)

+ EXAMPLE 5.3

{ Superposition theorem applied in a DC circuit)

Calculate the currents in each branch of the following circuit:

R;=80 R;=400 %R2=120
Fig. 5.4
Solution
Looking at only the first source the circuit will be:
1 Iy
24V ljz
8Q 40 Q) 1202

Fig. 5.5

The internal resistances of the two sources are not mentioned, so it
is assumed they can be neglected.

_40x12 o _
Ryg=G5g5+8=17230
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With the rule of the current divider:
_ 12 _
L =139 % 5= 032 A
and
I3—139x —107A

Now look at the second source:

I, I
1, - 16v
8(2 40 O %129
Fig. 5.6
Ry =322 +12=1867Q
I4=i{/2’= 867 = 086 A

and, respectively

= 8 _
15«-—14Xm—8—-014A

Is =086 X ——= =072 A

40 -!— 8

Now do the algebraic sum in each branch:

For the branch containing the 8 Q resistor:
IL — =139 - 072=067A

For the branch containing the 40 Q resistor:
L+1s=032+014=046A

For the branch containing the 12 Q resistor:
L-1,=107 -086=021A

So the currents flowing in the circuit will be:
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CA39A _LO7TA
0.67 A 021 A
NN LN N NN
24V 0.72 A 0.j44 086A 16 V
032 A 0.46 A
8§02 40 0 120
Fig. 5.7

with the directions indicated in this figure.

Check for node A: 1.39 = 1.07 + 0.32 A
0.86 =0.14 + 0.72 A
0.67 = 0.46 + 0.21 A, so we worked correctly.

Let’s recalculate these currents using what we did in the first example
with Kirchhoff’s laws. You will notice that the configurations of the
circuits are similar, so we’ll use these formulas and replace the data
we have for this problem.

In the 8 Q resistor the current is:

_ (40412)x24-40 x 16 _ 608 _
=¥x1Z+12x 40440 x8 596~ 78 A

In the 40 Q resistor the current is:

- 896 — 896

In the 12 Q resistor the current is:

_40x24-(40+8)16 _ 192 _
= 296 = %96 = 0214 A

(0.464 + 0.214 = 0.678)

There are small differences in the results due to the rounding of decimals
and the accuracy used in other calculations. But it is obvious the results
are correct. Remember, no matter what method you use, if you work
correctly you will get the same result.

It is always a good idea to try and work out one problem using two
different methods and compare the results. If you calculate correctly
the results should coincide.
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EXAMPLE 5.4

( Superposition theorem applied in an AC circuit)

Calculate the currents flowing in each branch of the following circuit:

60/0°V 90/30°V
Z,=;80Q Z#={8-j6) Q Z,=120)
Fig. 5.8

Solution

Let’s say that we have only the first source in the circuit. Then our circuit
is:

d 15
60/0°V I,
j8n 8-76)Q 120
Fig. 5.9

L Activity 5.3

Try to explain what character your three impedances have.

The voltage given by this supply has an angle of 0°, so it is on the
reference axis.

Z o 12(8-j6) 96 —j72 _ 120/—36.87°
e23 T 12+8—j6  20—j6  20.88/-16.70°

= 5.75/~20.17° = 54 — j1.98 Q
Zogro3 =54 — j1.98 + j8 = 5.4 + j6.02 = 8.09/48.11° Q
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L= UC  _7a-4811° A

8.09/48.11°
_ oy 12/0° oy 1200
I = T42[=48.11° X [y = 742/ 48.11° X g o
=4.26/-31.41° A
and :
_ o 8—j6 3 o 10/-36.87°
I =742 =88.11° X sgerams = T42[=48.11° X 55—

= 3.55/—68.28° A
We can now partially check:
L+ I, =426/-31.41° 4 3.55/—68.28° = 4.95 — j5.52
= 7.414/-48.116° =~ I

Up to here it seems right.

Did you notice how we applied the rules for series and parallel
impedances (they are similar to the ones you know for resistance)
and those for current dividers in AC (again, similar to a DC
current divider, only that we work with impedances instead of
resistors and the currents are now complex numbers)?

Now use only the second source:

I I
Vs 90/30°V
784 (3-i6)Q 120
Fig. 5.10

_ jB(8—j6) _ 48 +j64 _ 80/53.13°
93T BB -6 8+,2  825/14.08°

= 9.70/39.09° = 7.53 -+ j6.12 Q-

Z,

Zogios = 1.53 4 j6.12 + 12 = 19.53 + j6.12 = 20.47/17.40° O

= 0300 o
Iy = sy ghiege = 4.40[12.6° A

_ . B . L 8/90°
Is =4.4/12.6° x =618 4.4/12.6° x St
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_ . 8/90° .
= 44[12.6° X gl = 4.27/88.56° A

- . §—j6 o 10/-36.87°
Is = 44/12.6° X gt = 44{12.6° X g

= 5.33/—38.31° A
Partial check:
Is + Is = 4.27/88.56° + 5.33/—38.31° = 4.29 + j0.96
= 4.4/12.61° A ~ I

Up to here, everything seems to make sense. Let’s calculate the real
currents flowing in the three branches:

I — Is = 7.42/—48.11° ~ 5.33/—38.31° = 0.77 — j2.22
= 2.35/=70.87° A
(for the branch containing Z;)
I+ Is=426/-31.41° + 4.27/88.56°= 3.74 + j2.05
= 4.26/28.73° A
(for the branch containing Z5)
and
Iy — Iy = 3.55/—68.28° — 4.4/12.6° = —2.98 — j4.26 A
(for the branch containing Z,)

If we change the direction of the last current (it flows in the direction of
1) we’ll get:
In — I, =298 + j4.26 = 5.2/55.03° A

Now we can check:
2.35/-70.87° + 5.2/55.03° = 3.75 + j2.04

= 4.268/28.55° A,
equal to the current flowing in Z;.
Could we have checked using another method?

Page back to example 5.2 on page 132. Is this the same problem? Did you
get the same results? Yes, you’re right! It is the same problem and you
got similar results (taking into account the small rounding errors).

This proves that no matter what method you use if you work correctly
yow’ll always get the right answer, and that there are different ways of
solving the same problem.
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5.8.3 Thevenin's theorem

Thevenin’s theorem states:
‘Any linear active network with output terminais A and B can be
replaced by a single voltage Vy, in series with a single impedance Z,y,.”

This means that the current in the load is the same if the network (besides
load) is replaced with a source voltage with an equivalent series impedance.

T A A
. Zy
linear —
active — Von
circuit
Fig. 5.11

Where:

Vi = Thevenin equivalent voltage (the open circuit voltage at the
terminals from which the load has been removed)

Zy, = Thevenin equivalent impedance (impedance between A and B after
all sources are removed and each has been replaced by its internal
resistance)

You may be asking, ‘What’s the use of this theorem? Let’s assume we
have a testing stand of different given elements and the only element we
change according to the test procedure is the load that we are testing.

It’s only logical that, in this case, we wish to determine current, voltage or
power in only one clement of the circuit — the load — without obtaining
other currents and voltages in the rest of the network. In this specific
case, Thevenin’s theorem becomes a powerful tool.

You’'ll also find the theorem useful for converting circuits containing
transistors into equivalent circuits for analysis and design. For example,
when you study amplifiers, you’ll realise that the output resistance is very
important (Ry,).

Here are the steps for ‘thevenising” a circuit:

B Calculate the open circuit voltage at the network terminals, A and B.

B Redraw the circuit with each voltage source replaced by its internal
resistance or by a short circuit, and each current source replaced by
an open circuit in parallel with its internal resistance.
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B Calculate the equivalent impedance Z, of this network as seen from
the output terminals.

EXAMPLE 5.5

Determine the Thevenin equivalent circuit between terminals A and B:
30 20

AAA 2
|
=12V :
'J_‘

SR 25 Q
0.5 Q |

B

Fig. 5.12
Solution

First redraw the circuit, grouping all the known elements.

! AN é
I . i
—_ 12V !
20 n
I 'RL
LIJ
0.5 0 250 :
B
Fig. 5.13
It follows that:
_ Vv _ 12 12 _
I=g=373725705 -3 - 1°A

And then
V=V =152+25=15x45=675V

To determine Ry, (the equivalent resistance in our case) the circuit is:
V = 0 (short-circuited)
Ry =034 92+2) _35x45 1979
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30 A
20
0.5 0
2510
B
Fig. 5.14

So, the Thevenin equivalent for the simple circuit is:

r---"=-""""=""=>"="=-"="=-"="=-"=-=-”"°7 =~ ! A
: Rp=197Q :
{ 1
Vb |
- I{,h= 6.75V :
.' : B
il
Fig. 5.15
+» EXAMPLE 5.6

Now work out the Thevenin equivalent for this circuit:

X=170

%

I

Fig. 5.16

Solution

Remember always to consider the phase when you calculate reactive
impedances. For capacitive reactance it is —jX¢ and for inductive
reactance it is +/X7. If you don’t remember, refer back to Unit 2.
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First choose a reference. In this example, assume V' = 98/0°V is the
reference.

The current I flowing in the circuit is:

=Y B % & = 14/0°A

o -7+ T+

Did you notice that you obtained the current in phase with the
voltage, since the equivalent impedance of the circuit is Z = 7 Q7
Keeping in mind that this is a RLC circuit, what do you have
here? Does this have anything to do with resonance?

Now:
Vi will be the voltage across the R 4 jX; impedance
R+ X, =7+ j7=99/45° Q

So:
Vin =1 % Z = 14/0° x 9.9/45° = 138.6/45° =98 4+ j98 V
But we still have to calculate Zy,.

If we redraw the circuit with the voltage supply short-circuited, it looks
like this:

i

X=-70

Fig. 5.17

And

_ O+ A+ _ 00/_4<o
Zo =7 = LU - 747 =094
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So, the Thevenin equivalent circuit is:

ZTk= 9.9& -45°()

1

1 !
1 1
| |
! @ }
| V= 138.6/45°V
t f
I f

Let’s take this problem a step further ..

» EXAMPLE 5.7

Using the information from the previous example, determine the current

Sflowing through two resistors of 1Q connected in series across the terminals
A and B:

I
VaAavay A
Z,,=9.9/-45 ()
10
)
V= 138.6/45°V
10
B
Fig. 5.19
Solution
I = Ve — 138.6/45° _ 138.6/45° _  138.6/45°
Zu+1+1 7 T—j7+141 9—77  11.4/-37.87°
= 12.16/82.87° A

Can you calculate the power d15$1pated by one of the resistors? And by
both resistors? Yes!

P=PFPR=1216"x 1= 14787 W
2P =29574 W
What is the voltage drop across one of the resistors? And across both?
V = 12.16/82.87° x 1/0°= 12.16/82.87° V
= 12.16/82.87° x 2/0° = 24.32/82.87° V
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Check if you worked correctly using another method.

| |
N

-i7Q 70 10

G\/ 98/0°V

Fig. 5.20

_ () x2 _99/45°x2 _ 19.8/45° o
Ul B ey Al VWV i EAL

Log=—jT+ 173 +,0.22 =1.73 — j6.78 = 7/-75.68° Q

I= 7—%8,},5068 = 14/75.68°A

The current flowing through the resistors is:

_ ol THT o _9.9/45°
Les = 14/75.68° x =L T = 14(75.68° X 17 ey

= 12.16/82.81°A

This shows we worked correctly.

5.2.4 Norton’s theorem

Norton’s theorem states that:

Z,

‘Any linear active network with output terminals A and B can be
replaced by a single current source Iy in parallel with a single
impedance Zy’

In other words:

‘The current in the load is the same if the network (besides load) was
replaced with a constant current source (/) in paraliel with an
impedance Zy’

— A A
linear —
active — Iy HZ Y
network

——B B

Fig. 5.21
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Where:

Zy = Norton equivalent impedance, seen ‘looking back’ into the circuit
after the load has been disconnected and all the sources have been
replaced by their internal resistances.

Iy = Norton equivalent current, that would flow in a short-circuit at
the terminals AB in the original circuit.

This theorem is sometimes called the short-circuit theorem (since we
calculate short-circuit current between A and B).

It can be proven that Thevenin resistance and Norton resistance are
identical, and that:

Vin = InRy
Y
IN - Rrh

Here are the steps for ‘nortonising’ a circuit:

B Calculate the short-circuit current / at the network terminals.

B Redraw the circuit with all the sources replaced as explained in the
theorem.

B Calculate the impedance Zy of this network as seen from the output
terminals.

. EXAMPLE 58

Determine the Norton equivalent circuit between terminals A and B:

1

0.5 Q

30 A 20

12V
254Q

Fig. 5.22
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Solution

The circuit can be redrawn:

30
VAYAVAV A’/’\
. I
- 12V 20 N
~short
050 250 circuit
B
Fig. 5.23
and the short-circuit current calculated:
12
IN_3+0.5— 343 A
To determine Ry, we must set the voltage source to zero:
VAVAVAV
3Q
20
§o.5 0 < z,
25 Q
Fig. 5.24

_ (34052425  35x45
Ry = 3+05+24+25 " 3 =197Q

Then the Norton equivalent circuit is:

A

L,=343A SR,=1970

B
Fig. 5.25
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If you ook back at Example 5 you’ll see that Ry = Ry, as stated when
we introduced the theorem. But this time, Ry is in parallel with the
current source, not in series,

Let’s calculate [y Ry =343 x 197 =675V

If you look at the Thevenin voltage in Example 5 you’ll see that this is
the value for V! What does this tell you? You can use the following
alternative formulas to find the Norton equivalent of a circuit if you have
already worked out the Thevenin equivalent:

Ry = R
V
— L
In= Ry

Now draw the circuit, paying attention to how you connect the elements!

If you have a circuit that contains no (independent) sources the Thevenin
and Norton equivalents are¢ identical and comprise only output resistance

(Ry = Ry)

The output resistance of a circuit can be worked out by finding ¥, and
Iy, the open-circuit voltage and short-circuit current respectively.

v, V.
Rth = Ry = Routpuz = “f;f = Tf

This is a very important observation. Keep it in mind, because you’ll
come across it again.

» EXAMPLE 5.9

Determine the Norton equivalent circuit for the following circuit, between
terminals A and B.

570
1+ A

70

V=98/0°V 70
B

Fig. 5.26
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Solution — 11— -
| wotution S0 A
70
P‘sl_'lort_
V=98/00V circuit
FJ10
-B
Fig. 5.27
Iy =L = 380 4000 A

T =7 T 7=9¢°

Now redraw the circuit:

570
I — A
70
: ZN
74
B
Fig. 5.28

_ T+ 5 g o

The Norton equivalent circuit is:

Iy=14/90°A | | Z,, =9.9/-45°Q)

Fig. 5.29

Activity 5.4

Compare the results from Example 9 with those worked out for the
Thevenin equivalent in Example 6.

foas et B L

Describe the equivalence of the two circuits.



Unit 5 — Networks Theory {Part 1) 149

Now let’s determine again the current flowing in and the voltage drop
across two resistors of 1 Q connected in series between the terminals of
this circuit:

A
AV 10
@8]N=14£90°A Z,=7-570 Y1
10
B
Fig. 5.30
_ (7 -jn2 _ 0y 9 99/45 o
Van = Iy x 502 = 140907 x 2 2pE s = 2438287V

If you look at Example 7 you’ll see that the same voltage drop occurs
across the resistors. This shows that we worked correctly through both
methods.

And
_ Vi _ 243/82.87° 12.15/82.87°A

las=2R = 2
— again, a value that we expected.

@ Summary

There are (almost) always alternative methods for studying the circuits, be
it AC or DC, simple or complex. In this unit we studied four methods of

analysis.

The most common way of solving network problems is using Kirchhoff’s
laws:

Kirchhoff’s current law: The algebraic sum of the currents in any node of
a circuit is zero.

Kirchhoff’s voltage law: The algebraic sum of the voltages around any
loop {mesh) in a circuit is zero.

>i=0
node
Sv=10

loop
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The superposition theorem states:

In a linear network containing more than one source of energy, the
current in each branch can be calculated as the algebraic sum of the
currents that would be produced by each source acting alone in the
circuit.

We often use this to analyse circuits with two or more active elements.
The results can be checked using another method.

Thevenin’s theorem is:

Any linear active network with output terminals A and B can be replaced
by a single voltage Vy, in series with a single impedance Zy,.

Zy
[ A
Vo
[ B
Fig. 5.31

Nortons theorem states:

Any linear active network with output terminals A and B can be repléced
by a current source [ in parallel with a single impedance Zy.

A

Fig. 5.32

The relation between Thevenin and Norton equivalent circuits is:

Zth = ZN
Vin = Indn
IN = K&



Unit 5 — Networks Theory (Part I)

Both methods can save you lots of time and energy, if they are used
appropriately and correctly.

Remember that all these theories can be used to analyse DC and AC
networks, and that it is always better to attempt to solve the problems
using at least two methods and comparing the results.

melf-evaluation

1. a. Look at the circuit in fig. 5.33 and use Kirchhoff’s laws to find
the currents in each branch.

II IZ
2
Z,=10Q Z,=100Q
" Zy=(4+;3) Q) 2
E, =150/120°V
E, =150/0°V ?
Fig. 5.33

b. Now attempt to solve the problem using the superposition
theorem and check if you get the same resuit.

2. a. Study the following circuit.

g U
Zi=5/3¢°Q2
= =j 40
Z;=90 HZ4=-j6Q Z=]
Z;=;j8Q
E;=50/60°V E,=65/0°V
Fig. 5.34

b. Calcuiate the current flowing through Z, using the superposition
theorem.
Check the result by applying Kirchhoff’s laws.

1151
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3.  Work out Thevenin’s equivalent circuit for fig. 5.35, between the
terminals A and B:

50 @+3) Q
———{ 3 L A

@ js0 60

E=558/-174V

Fig. 5.35

4.  For the circuit in Question 3, determine Norton’s equivalent circuit
between terminals A and B, without using the previous result. Then
check the results.

Answers
Activity 5.1 (page 125)
Starting at a node in a circuit we form a loop traversing through elements

and returning to the starting node, never encountering any other node
more than once.

Activity 5.2 (page 132)
R=102833Q

Activity 5.3 (page 136)

(78) Q — is a pure inductive reactance.
(8 — j6) Q — is a series combination of resistance and capacitance.
12 Q@ — is a resistance.

We have all the possible elements in the circuit (R, L, C)
Activity 5.4 (page 148) '

Zy = Zu, since we mentioned the same circuit and
In Zy = 14/90° x 9.9/—45° = 138.6/45° = Vyy, V from Example 6

So, the equivalence between Norton and Thevenin circuits holds for AC
circuits. It can be expressed as:

Zth = ZN
Vin = In Zn

or
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V
Iy =2t
N Zh‘r

* Fundamentals of Electrical Engineering, 2nd edition, by LS Bobrow, published by Oxford
University Press in 1996.

p Self-evaluation (page 151)

1. a. I, =1625/-8347° A
I, = 16.14/113.2° A
I; = 4.69/-163.85° A
(With the directions of flow marked in the figure)
b. The results should be the same (if you assume the same
directions for the currents).
2. a. Iy =3.46/23.7° A, (with direction from E, to Z,).
b. Same
3. V= 19.86/0°V
Ziyn =3.6/23.06° Q

4. Iy=552/-23.06° A
Zyn = 3.6/23.06° Q
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 OUTCOMES | ‘

After studying this unit, you should be able to:
@ analyse different circuits using the Loop-Current Theory
B solve problems applying the Node-Voltages Analysis

B perform star-delta and delta-star transformations to simplify
circuits when necessary

B apply the Maximum Power Transfer Theorem to networks
W generally solve any DC or AC circuit problem using an

appropriate method and be able to check your solution by
applying at least one other theory.

With the knowledge you accumulate from units 5 and 6, you should be
able to solve almost any DC or AC circuit problem.

185
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Introduction

In this unit we will introduce you to further techniques in analysing
network using Kirchoff’s laws.

Fig. 6.1

Can you work out the current flowing in each of the five resistors? You
should be able to do this using the knowledge you gained in Unit 5. But
is there another method that can simplify the calculations?

Do you remember star-delta and delta-star transformations from
Electrical Engineering I?7 Let’s try to solve the problem with a delta-star
transformation:

We replaced the ‘delta’ configuration of R3;, R4, Rs with an equivalent
‘star’ configuration of Ry, Rp and R

So, we now have R in series with R,, R, in series with Rc; the two
branches in parallel, etc.

In this unit, we are going to look at alternative methods of circuit analysis
that will help us to work much faster and easier.
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Other methods used in circuit analysis
6.2.1 Loop-current analysis

If circuits contain muitiple sources that are not connected in series
(voltage) or in parallel (current), we need to use special techniques in
our analysis.

One of these techniques is ‘loop” or ‘mesh’ analysis, which is a variation
of Kirchhoff’s laws (KVL and KCL).

This technique requires that we write KVL around two or more loops and
then solve the system of equations for the desired unknowns.

In this case, the unknowns are the loop currents. Once we know what
these are, we can work out the current flowing in any component and the
voltage across it.

For loop analysis, all the sources in the circuit are voltage sources. So, if
we have current sources we must transform them to equivalent voltage
sources before we go any further.

Then we need to select the closed loops in the circuit for which we will
write KVL.

After that, we can choose a reference direction that we think is positive
for that loop, be it clockwise or anti-clockwise.

For each loop we need to designate a current that flows around it: Iy, 1>
... etc. These will be our unknowns in equations.

Some books use J,, J5 ... ete. for these currents, to differentiate
them from normal currents flowing in the branches of the circuit,
| which they mark I, I, ... etc.

We will need to write an equation for each loop to reach a solution.

Then, superimposing the currents we can calculate the currents flowing in
cach element (branch) of the circuit and the corresponding voltage drops
if required (or powers), depending on the problem.



158 | Basic Circuit Analysis

+ EXAMPLE 6.1

Study the following circuit:

§R2= 120

E,=16V

Fig. 6.3

Use loop-current analysis to find the current flowing in Rj.
Solution

First choose the directions of loop currents that will be analysed:

In this example, we’ll make the clockwise direction positive. So, we’ll use
the following loops:

(1) El-—>R1—>R3—>E1'and
(2) Rzs—Ry— Ey— Ry

Now put the directions in the figure:

%RI 2, %Rz
OFREO
EL I . Tk

Fig. 6.4

Currents through the resistors R, Ry, Ry
Through R flows I

Through R, flows I,

Through R; flows I} — I,
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The next step is to write the two equations for the two loops:

Loop (1)
EI == .Rl L+ R I — R 12 (because in R flows I — Iz)

Loop (2)
—E2 = _R212+.R312—R3[1

If we refer to the known data, we get:

24=805+401 —40L ...(1)
—16=1265L+401L — 40 I, ... (2) (multiply the equation by —1)
=

24 = 48 I — 40 I, (muitiply the equation by 5)
16 = 40 I} — 52 I, (multiply the equation by 6)

120 = 240 I; — 200 I,
9% =240, - 312 1,

Subtract equation (2) from equation (1):

24=0+11212=>12=-12T4§=0.214A

Replacing [, in the first equation =
120 =240 I, — 200 x 0.214 = 240 I; — 42.8
= 162.8=2401, =

__162.8 _
n =128 <0678 A

In: R; flows I, = 0.678 A

Ry flows I, = 0.214 A

Ry flows I} — I, = 0.678 — 0.214 = 0.464 A
The direction is shown in fig. 6.5:

0.678A  0.214A

R, 0.464 A % R,

Fig. 6.5 1
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If you page back to Example 3 in Unit 5, youw’ll see that we’ve just solved
the same problem using loop (mesh) analysis instead of superposition. As
expected, we get exactly the same resuits for the currents flowing in the
resistors (only now we are working more accurately).

+ EXAMPLE 6.2

Calculate the current flowing through Z; in the following circuit using the
loop-current analysis:

+  E,=90/300V
E=60{0°V

z=80 T L @O0 o5 g

B
Fig. 6.6

Solulion

Again, we had to choose two loops and the positive directions for
the loops. This time, we tried loops (1) E; — Z; — Z; — E; and

(2) Ey —» E; — Z, — Z; — E;. The positive direction is clockwise
for both I; and L.

Now write the two equations:
E=2Z0I1+ Z (I, + L)
E\-E=2L+2Zi(L+1)
= E =(Zy+ Zy) I, + Z; I, (multiply the equation by —1)
Ei-E=@+Z)L+ 21 ]

= —Ei=—-(Zi+Z) L - Z; ]
—E2+ El SZ] 111 + (Zl +Zz) Iz

Add the two equations and you get:

~B = -Zh + Zh = L =2k
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Now substitute this value in the first equation:
E = (2 + Z)h + Z, 2t o

E+2E=(2Z+2;+525 =
2 2
E +2F,
I = 0——F
Z,+Z + 2R

In the example, this is the only current flowing through Z; so this is the
value the problem asks for.

Did you notice that we no longer have to calculate I, ?
Substituting the known values we have:

g SO0+ <9030 000 1 60/120°
P86+ 8+ AR B+2+/5+7

_60/0° 4+ 60/120° _ 60/60° 0
T 2+ EF T TA06[3LAT T 4.27/28.58°

=375+ 204 A

So, the current flowing in Z, is 4.27/28.58° and has the direction of [,
(from node A to node B).

Let’s check if we have worked correctly. Page back to Example 4 in
Unit 5 and yow’ll find that we analysed exactly the same circuit using
the superposition theorem and that the current flowing through Z,

was 4.26/28.73° A.

Ignoring the small errors you can see that we obtained the same current,
80 we don’t need to continue with the calculation.

We have solved literally up to the end (to the final result) and have
worked correctly.

The sources here are sinusoidal and both have the same frequency.

6.2.8 Node-voltage analysis

Node-voltage analysis or nodal analysis is another method of analysing
multisource circuits.
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This method requires that we solve a system of equations, so we could use
matrices and determinants. The equations are obtained when KCL is
applied for different nodes of the circuit.

First we must choose a ‘reference’ node, to which all the other nodes’
voltages can be compared, measured or calculated. This node is better
known as the ‘ground’ or ‘common’ node for the network.

The next step is to convert all voltage sources to their equivalent current
sources.

Now number all the nodes (except the ground node) 1, 2, ... and,
assuming the reference node has a 0(V) potential, designate all the
corresponding voltages ¥y, V>, ...

QOur task is to find the values of Vy, V5, ... and, since we have ‘n’
equations with ‘n’ unknowns, the equations system should give us an
unique solution.

To apply KCL we must assume the directions of our currents — in other
words, which currents enter the node and which leave the node.

Here are the steps involved in using this method:

1 Assume a direction for the current flowing in each branch of the
circuit (from the higher to the lower voltage).

2 Write on each arrow the value of the currents, expressed as a
function of the node voltages

In fig. 6.7 we assumed V7, > V>, so the current flows from node 1
to node 2

1 10 Q

Fig. 6.7

3  Write KCL for each node and solve the resulting system, working
out Vi, Vo, ... V. '

EXAMPLE 6.3

Use node-voltages analysis to work out the current flowing in the following
circuit and the value of V.
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Solution
First convert the two voltage sources to current sources:
L=%=3A

and

12={—g= 1333 A

The circuit is now:

3A <80 %400 2129 @) 1.33 A

Fig. 6.9

Now we need to choose a reference. Since the problem asks us to
determine the node voltage ¥ for the upper node of the circuit, it’s
obvious that we should choose the ground (reference) as the lower node.
This is marked on the circuit in fig. 6.9.

Assuming that J/; > 0, the currents in the three resistances will have the
direction |.

163
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Mark these on the circuit;

W

II 13 };

= Fig. 6.10

According to Ohm’s law, the current in each resistor will be:
L= AL=0ALn=0A
Now write KCL for node 1
3A 1 1334A

- =

I I,

s
Fig. 6.11

Did you notice that the hypothetical currents from the two sources enter
the nodes, whereas all the others go out of the node?

_n . n. "
3+1333=F+3+3

40
_ 1 1 1 _
o 4333 = V1(§ + L+ ﬁ) — 02337,
_ 4333 _
=V, = = 18.597 V

And the currents will be:
L =183T-2354

12=l8-T529—7-= 1.550 A

I, =334—55.9—7= 0.465 A
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Adding algebraically the currents for the & € resistos:
gt 1 =3 — 2325 =0.675 A

Remember that 7., is the true current flowing in R;.

Do the same for the 12 2 resistor:
Loar 2 = 1.333 - 1.550 = —0.217 A

This means that this current is flowing from node 1 to £, , and not vice
versa as we assumed.

Compare these results with those obtained in example 1 of this unit and
you’ll see that they are the same. We analysed the same circuit! This
shows that we worked correctly.

+ EXAMPLE 6.4

Calculate the current flowing through Zs in the following circuit using nodal
analysis:

+ + E=90/30PV
E]= 60[&0\[

Z4=(8-/6)0)
Z}=j8 Q Zz = 120

Fig. 6.12

Solution
First transform the two voltage sources to equivalent current sources:

_E _80/0°_ 60/0° _ 55 ggo
5= 2= = g = 75290 A

_E, _ 90/30°_ 90/30° _ o
I =2 == Thor = 1530 A

165
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Then the circuit becomes:

054

1,=7.5/-90°A I, =7.5/30°A

81 %Zf(S-jG)Q

Fig. 6.13

Choose a reference node (ground) and assume that node 1 is at a higher
potential than ground (V' > 0). Then the three currents will have the
direction from node 1 towards the ground (from up to down).

y
1 1,
I 1, 15
|
Fig. 6.14

The current in each impedance will be:

Z,  8/90°
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Now we can write KCL for node 1:

Fig. 6.15

o o __ l 1 1
7.5(=90° + 7.530° = ¥V(gos + To7=pswr + ) =
6.5 —3.75 = V(0.125/=90° + 0.1/36.87° + 0.083/0°) =

7.5[=30° = ¥(0.163 — j0.065) = V x 0.175/-21.74° =

_ 13307 _876°
V=515 oir = 42857/=8.26° V

And the current in Z; will be:

_V _ 42.857/-826° : o
L= 7 = o768 = 4.2857/28.61° A

=3.76 + j2.05 A

If we compare this result with the one obtained using a different method —

loop-current analysis in example 2 of this unit — we can see that we worked
correctly. Both nodal analysis and loop current analysis are useful when

studying multisource circuits.
—

8.2.3 Delta-star and star-delta transformations

Let’s analyse the following circuit:
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In fig. 6.16, b, ¢ and d form a triangle called ‘delta’. This delta can be
converted to star (or wye) configuration with the resistances connected
to a common point with the ends b, ¢ and d as shown in fig. 6.17 below.

There is a way to transform the configuration between the points b, ¢
and d in the circuit (where Ri, R4 and Rs are connected in a triangle —
the so-called ‘delta’ connection) into a new configuration containing three
resistances joined in a common point and with the other ends connected
to b, ¢ and d (where these new resistances are connected in a ‘star’ or
‘wye’ configuration).

Fig. 6.17

where Rg, R;, Ry are the new resistors connected in a common point S
(the star point) and between the star point and our initial nodes b, ¢, d.

You may be asking: “Why do we do this?

Look again at the circuit. Can you find the current I without using
simultaneous equations?

R, is in series with R4, R, is in series with R;. These two branches are in
parallel and everything is then in series with Rs.
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The circuit can be re-drawn:

I | E
E

Fig. 6.18

The equivalent resistance of the circuit is:

_ (Ri+R)(R, +Ry)
¢ = R+ R+ Rs + R

R + Ry

Then we can calculate the current flowing in the circuit as:

_E
I=¢

without writing the system of equations that would be necessary if we
tried to solve the problem using, for example, Kirchhoff’s laws.

So what are the transformation formulas we can use to calculate the three
replacement resistors Rg, Ry and Rg?

Based on the fact that the resistance between two terminals must be the
same before and after the change, we can deduct the formulas for the
replacement resistors.

Consider these equivalent circuits:

A A
R4
RAC RAB
®)
Re 7 RB
C W B c 44/\@ B
BC

Fig. 6.19
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The relations between the A and Y resistors can be written as:
RieRuc
Ra = Rt Ric+ Ruc
_ RysRac
" R+ Ric+ Ry
Re = —Ruckac
R+ Ruc+ Ryc

Rp

These are the equations for delta-star transformation.

This is how we calculate the equivalence if we know the delta-connected
resistors and want to transform the delta to a star.

Take note of the symmetry of these equations — it helps when vou have
to remember them in a hurry. More than that, the denominators are all
the same. So, for each numerator we have the product of the ‘adjacent’
resistors (i.e. Ryp and Ry for R,) divided by the sum of the three.

Let’s now assume that this time we know the star-connected resistors and
we want to find the equivalent delta-connection.

With this set of equations, it can be mathematically deduced that:

Rup = BeRact ReRert ReRy

RBC — RARB + ngzjjc + RCBA

RAC‘= RyRy+ RyRe + Re R,

Ry

These are the equations for star-delta transformation.

In some books, these equations are written:

RAB:RA‘FRB‘F—I%‘?%

RBC=RB+RC+5§§C
Rac= Ry + Re + B

They are exactly the same as the first set of equations we looked at
earljier. Again the formulas are symmetrical, only this time the numerators
are the same. '

You may prefer to use the first set of equations, because once you have
calculated R Rp + RgRc + RcR,4, you can use it in all three.
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The star-delta and delta-star sets of transformation can be generalised for
AC circuits. Then the formulas for the impedances become:

For delta-star transformation;
Z 52
Z, = Laslac
4 Zipt Zac+ Zac

ZZ,
—_ ABLNC
Zp Zapg+Zac+ 2Ly

22
i~ ACLBC
Ze VATE WATE WA
where Z 45, Zpc and Zc,4 are the impedances connected in delta and Z 4,
Zp and Z are the equivalent star impedances.

And for star-delta transformation:
Z4g = Lily+ ZsZo+ 207,

C

Zpeo = LyZytLyZe+ 27,y

A

225+ ZpZe + ZoF
Z 4c = Laten %fﬂ‘ifi

A specific case of stars and deltas is when all the three impedances are
equal. These are called ‘balanced’ stars (or deltas) and the relations
between the elements become:

Zar = Zaenna | 3 01, respectively
Zaena = 3 % Zsmr

These transformations are very useful when studying special
configurations of circuits, bridges etc. Later you’ll see how important they
are in three-phase circuits and electrical machines.

; ﬂ*\/ Activity 6.1

Three impedances each of 10/60° Q are connected in star. What

will their values be if they are transformed into an equivalent delta
configuration?

LV Activity 6.2

Three impedances each of 5/30° Q are connected in delta. What

will their value be if they are transformed into an equivalent star
configuration?
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1 EXAMPLE 6.5

A network of six resistances is connected like this:

A

Fig. 6.20
Calculate the equivalent resistance of the circuit between points A and B.
Solution

Transform the star-connection to a delta connection;

For the new connection:

RAB=2X3+3§4+4X2='24"§=6-59

And the total resistance between A and B is ;
Riptat = (RquC + -ReqCA)/ / RquB

_ (411+3.87)x283 _ 7.98x283 ., 21 Q
T 411+387+283 — 1081 T~
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f EXAMPLE 6.6

Let’s assume we have a star-connected load that consists of the following
three impedances:

ZA = 20@ Q
Zg = 20/=30° 2
Ze = 20/30° Q

Work out the equivalent delta-connected impedance.

Solution:

Don’t think, even though the modulus of the three impedances are
equal, that this is a balanced star. As you can see, the phase angles
differ (there is a resistive load Z 4, a resistive-capacitive combina-
tion Zz, and a resistive-inductive combination Z¢).

So, we’ll have to calculate the three delta impedances (Z 45, Zgc, Zca)
individually as they are unequal:

Fig. 6.21

Let’s write the sum ZZp + ZpZc + ZcZ 4 =%
Then:

5= 20/0° x 20/=30° + 20/=30° x 20/30° + 20/30° x 20/0°
= 400/=30° + 400/0° + 400/30°
=1092.82 +j0
= 1092.82/0° Q2
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3 1092.82/0° _ gy
ZAB b ZC - 20@0 = 5464& Q

N 1092.82/0° o
ZBC—Z_A_T&D = 5464&9

3 1092.82/0° _ o
ZCA - ZB - 20/_300 = 5464@ Q

Notes

1  The three values are unequal. They have the same modulus, but
different angles.

2 Now you can se¢ why using this set of formulas, especially when we
work with impedances (i.e. complex numbers) saves time. The only
risk is that, if you make a mistake when you calculate X, all the
values will be wrong,. '

» EXAMPLE 6.7

Assume we have a delta-connected load that consists of the following three
impedances:

Zap = 27.3/0° Q
ZBC = 273/—300 2
Z 40 =27.3/=30° Q

Work out the equivalent star-connected impedances.

Solution

Fig. 6.22

Zap+ Zpc+ Zyc
— 27.3/0° + 27.3/=30° + 27.3/30°
= 74.58 + j0

= 74.58/0° Q
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_ ZwZes _27.3/0° % 27.3/30° _ R
Zy= ZuptZoet+Zes 74.5/0° = 10/30° @

 ZpZee  213[0°x27.3/=30° ;
Zp = 248 — LS = 10/=30° ©

 ZenZpe _ 21.3/30°%273/-30° .o
Ze =" == s - 09
Did you expect this result? If you look at the previous example you’ll see
that the delta values were all double in modulus, but had the same angles.
We expected the star impedances to be half those in the other example
(although they are in a different sequence).

6.2.4 Maximum power transfer theorem

The theorem states that ‘maximum output power is obtained from a
network when the load impedance is the complex conjugate of the
impedance of the network as seen from the terminals of the load’.

In DC (since we deal only with resistors Z = R = Z*) the theorem can
be expressed:
‘Maximum output power is obtained from a network when the load

resistance is equal to the output resistance of the network as seen
from the load terminals.’

In AC we may have different situations depending of the types of loads
available:

M if there is a variable (pure) resistive load (no reactance!), maximum
power transfer takes place when:

2

Ripeq = |Znetwork| = \/ R

retwork network

B if there is a variable resistance and a fixed reactance, maximum power
transfer takes place when:

2
R[Oﬂd = \/Riﬂwork + (Xnelwork + Xfoad)

M if only the reactance of the load varies, maximum power transfer takes
place when:

X load = —Apnetwork
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@ when there is both variable resistance and reactance of load, maximum
power transfer takes place when:

Zload =7 *network

Remember, * is the symbol for complex conjugate.

» EXAMPLE 6.8

Let’s consider the following situation:
______ A

i x -
C oy !
: l
I ! % R
I 1
i 60 ! |
.' I |
1 ! J
Lomm oo o J B -

Fig. 6.23
The square block contains the Thevenin equivalent of a network. Between
terminals A and B we can connect a resistive load R.

a. What will the value of R be when there is maximum power transfer
between network and load?

b. Calculate the power for different loads:

R =20
R2=4\Q
R; =60
R,=89
.R5=10Q

and discuss the results.
Solutions

a. R =61, equal to the resistance of the network, as seen from the
output terminals A and B.

b. =R =20=Ruy=80=1Iy=2=15A

and the power in the resistor Py =2 x 1.5 =45 W
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— Ry=40= Rp=100=In=13=12 A

and the power in the resistor P, = 4 x 1.2° = 576 W
> R3=60=Rp=020=In=5=1A

and the power in the resistor Py =6 x 12 =6 W

—>R4=SQ=>Req4=14Q:>IT4=%=0.86A

and the power in the resistor Py = 8 x 0.86* = 5.92 W
— Rs=1002= Rys= 16 2= I;s =12 =075 A

and the power in the resistor Ps = 10 x 0.75% = 5.625 W

- e

If we look at the power values we can see that the maximum power
transfer is obtained for R = R,.;or = 0 £2.

This is generally proven by calculating

APpeq
dRiuad

and working out the value of Ry, from the equation:

dP logd 0
dRIoad

Mathematical proof:

In this example, make E, and R, the equivalent Thevenin voltage and
resistance for the active (generating) network, and R, the load.

Then:

E?
_ 2 _
PL—RLXIT RLX(I{?&R_&)E

ar, _ EX(R, + R —2R.E(R, + Ry) _ 0
dRL (RL+Rg)4 =

EZ(R, + R — 2R, EX(R, + Ry) =0

for maximum power transfer,
=
Rg+RL=2RL:>Rg=RL



178

Basic Circuit Analysis

» EXAMPLE 6.9

Having a Thevenin equivalent circuit of a network:
A
I ©

Zp=(2.5+j6.25)0)
@ V= 5.6/26.56°V

40
Fig. 6.24 B

how would you realise a load that, connected to the circuit, should absorb
maximum power?

Solution

From the maximum power transfer theorem, we know that we must look
for an impedance

Lioad = Z*network =
Zload =25 — j625 Q

We can realise this load by connecting in series a resistor of 2.5 Q with a
capacitor.

1 1
%, ~ 2nx 50 X 6.25

We assumed /= 50 Hz as this is the supply frequency in
South Africa.

So, the load would be:

R=250
O—AAAN | b—o0
C =500 uF

Fig. 6.25

Remember this is only one possible solution for this problem, but it is the
simplest one!




Unit 6 — Networks Theory (Part I1)

1ve

I Activity 6.3

i Show how you can use different combinations of R, L and C to
obtain the same load as in example 9.

Can you work out another combination for this load? Focus on the
elements you would use and how you would connect them, not necessarily
in calculated values!

summary

M In this unit we studied two methods that can be used to analyse

multisource circuits: loop (current). analysis and nodal (voltage)
analysis.

W These are special applications of Kirchhoff’s laws and, for both, you
must solve a system of ‘#’ equations with ‘#” unknowns.

B In loop analysis the unknowns are the loop currents. In nodal analysis
the unknowns are the nodes voltages.

M In loop (mesh) analysis the circuits have only voltage sources. In nodal
analysis the circuit must have only current sources.

B To determine the equations for loop analysis, you must write KVL for
the loops you choose. To determine the equations for nodal analysis,
you must write KCL for the nodes.

B Both methods need an assumed reference. For loop analysis choose a
reference direction. FFor nodal analysis choose a reference node (point
of zero potential).

B To transform a star to a delta use:

Zap = VA +Z%ZC+ZCZA etc.
C

And for a balanced star:

ZA = 3ZY
To transform a delta to a star use:
yATYA
= —— LAReCd
Za Zip+Zpc+Zey etc.

And for a balanced delta:

ZYZ%
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Remember that in the first case the numerator is common
=242+ Z3Zc + ZoZ,4) and in the second case the denominator
1s common (¥ = Z,p + Zzc + Zc4). This observation can save time
when you are solving problems.

B Transformations are normally used when studying bridges, three-phase
circuits, etc.

M The maximum power transfer theorem states that maximum power
transfer takes place when:

Rload = Rnetwork { Thevenin) for DC circuits

and _
Zload = Z*network { Thevenin) for AC circuits

B When maximum power transfer is desired, ‘match’ the load and the
source. If this is not required, avoid these values.

W Self-evaluation

1 Find the total impedance of the following circuit and the total
current flowing through it, ir, where:

Zo = ~j4
Z3=8Q

Z,=7110
Zs=-j2§2

Fig. 6.26

2 Convert the following star system into an equivalent delta:

Z, = 100/—25° Q
Zg = 175/=75° Q
Ze = 215[0° Q

Where Z,4, Zg and Z are the three star impedance’s.
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3

Study the following circuit:

A
o - -
20/0°V
Zy
Z=(6+j8)Q .
N
B

Fig. 6.27

Assume the following two loads:

) Z,=(6+8) O
2) Zr=(6-/8) Q

In which situation will the power be transmitted to the load greater?

Use loop analysis to work out the current in the capacitor in the

following circuit:

+ +
1200V ngQ (~ 6100V

Fig. 6.28
Check the result using another method (for example, Kirchhoff’s
laws or superposition theorem).

Also work out the current flowing through the inductor in the
circuit.
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5  Use nodal analysis to find the current flowing in each element of the
following circuit:

__—_r}_fm__('\___
5/0°A 40 —-j3Q )1 0°A
¢ =50 Puee
L
Fiy. 6.29

Check Kirchhoff’s current law at each node.

Hint: Choose the ground as in the figure (it’s the only node to which
four elements are connected), then you are left with two nodes
(1 and 2).

Answers
Activity 6.1 (page 171)

ZLstar = 10@ 2

Zaena = 3 X Zg, (equal impedances)
=3 x 10/60°
= 30/60°

Activity 6.2 (page 171)
Zdetta = 5@ Y
Lstar = Za?;m

_spe
= l.g’i@ Q

Activity 6.3 (page 179)

Yes, a resistance (of 5 ) in parallel with another resistance (of 5 ),
and the two resistors in series with a capacitance (in this case the same
value C = 509 uF) ete. (Theoretically there are infinite solutions to
the problem.)
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Self-evaluation (page 180)

1 Zo, = 102/=78.69° Q
ir = 1.96/78.69° A

2 ZAB =~ 31588/—6730 9/
Zre = 679.14/—42.3° Q
Zcq = 388.08/7.68°

3 Obviously in the second case (see maximum power transfer theorem),
so we don’t need to calculate anything!

If we do calculate: Py = 6 W and P, = 16.7 W; s0 P, > Py.
4 Ic = 1.5/90°A = jl.5 A (flowing from left to right in the circuit)

Iy = 1.5/=90° A (flowing from the upper part of the circuit towards
the lower part)

5 Igr =2/[-53.13°A (flowing up to down)
Iy =4.12/-22.83° A (flowing from left to right)
I =322/29.74° A (flowing from top to bottom)

You can check for each node that ¥ currents entering the node = ¥
currents leaving the node.

For example, in node 1:

2/—=53.13° 4 4.12/22.83°= 5 — jO = 5/0° A
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OUTCOMES |—————

After studying this unit, you should be able to;
B [dentify a non-sinusoidal waveform
W Analyse a non-sinusoidal waveform

B Determine the effective value, the rms value, power and
the power factor in a circuit with a non-sinusoidal source.

E BLANK
PREVIOUS PAG L85
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@ Introduction

In the previous unit, when dealing with alternating currents and voltages,
we assumed they have a sinusoidal waveform or shape. Such a waveform
is ideal and much sought after by alternator designers and manufacturers.

However, it is nearly impossible to realise such a waveform in practice.
All the alternating waveforms deviate, to a greater or lesser degree, from
the ideal sinusoidal shape. These waveforms are referred to as non-
sinusoidal, distorted or complex waveforms.

@ Complex waveforms

Complex waveforms are produced by the superposition of sinusoidal
waves of different frequencies. On analysis, a complex wave essentially
consists of;

W a fundamental wave — it has the lowest frequency, say ‘f’
B a number of other sinusoidal waves whose frequencies are an integer
multiple of the fundamental or basic frequency, like 2f, 3f and 4f, etc.

The fundamental wave and its higher multiples form a harmonic series.

As shown in fig. 7.1, the fundamental wave is called the first harmonic.
The second harmonic has a frequency twice that of the fundamental, the
third harmonic has a frequency three times that of the fundamental, and
SO on.

Waves with frequencies of 2f, 4f and 6/ etc. are called even harmonics.
Those with frequencies of 3f, 5/ and 7f etc. are called odd harmonics.
Expressing these frequencies in angular form, we can say that successive
odd harmonics have frequencies of 3 w, 5 w and 7 w etc., and that even
harmonics have frequencies of 2 w, 4 w and 6 w etc.
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fundamental
‘ or 15t harmonic

28d harmonic

NN

f E i E f E 3% harmonic

4t harmonic

Fig. 7.1

Let’s find out graphically the shape of a complex wave when we combine
the fundamental with one of its harmonics.

In this example we only look at scenarios where the fundamental
and harmonic are in phase with each other and have equal
amplitudes. '

S S cotmplex wave
Fig. 7.2(a) '
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Fig. 7.2(b) indicates the fundamental and 4" harmonic, and fig. 7.2(c)
consists of the fundamental and 3* harmonic. Obviously, in all these
cases, there is no phase difference between the fundamental and the

harmonic.
fundamental
th .
// 4t harmonic

complex wave

fundamental

314 harmonic

/\ "
' v \\\%omplex wave

Fig. 7.2(c)

A careful examination of figs. 7.2(a), (b) and (c) leads us to the following
conclusions:

I  With odd harmonics, the positive and negative halves of the complex
waves are symmetrical, irrespective of the phase difference between
the fundamental and the harmonic.

2 a. When even harmonics are present and their phase difference
with the fundamental is O or =, the first and fourth quarters of
the complex wave are of the same phase but inverted. The same
holds true for the second and third guarters.

b.  When even harmonics are present and their phase difference

with the fundamental is E—T or 37”, there is no symmetry.

3 The displacement of the complex wave (whether it comprises odd or
even harmonics) is zero at wt = 0 only when the phase difference
between the fundamental and the harmonics is 0 or .

These conclusions are a great help when it comes to analysing a complex
waveform into its harmonic constituents. Looking at the complex wave
enables us to rule out the presence of certain harmonics. For example, if
the positive and negative half cycles of a complex wave are symmetrical
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(i.e. the wave is symmetrical about wt = (), then we don’t need to look
for even harmonics. In some cases, we may be able to anticipate the types
of harmonics to be expected from their mode of production. For example,
in symmetricall designed alternators, we should expect odd harmonics
only.

o .

i Activity 7.1

' Determine the fundamental and harmonic frequencies of the
following complex wave:

e = 60 sin 25127 + 20 cos 7536¢

@ General equation of a complex wave

Think about a complex wave that is built up of the fundamental and
a few harmonics, each having its own peak value and phase angle.
The fundamental may be represented:

e, = Ey, sin (wt + )
the 2" harmonic:

ey = Eon sin (2wt + 1)

and the 3™ harmonic:

e; = Eay sin But + 1)3)

The equation for the instantaneous value of the complex wave is given by:

e=¢e +é -+ ...e ‘
e = Ey,, sin (wt + ) + E,,, sin Qi + ) + ... + E,,, sin (nwt + 1,)

where Ei,n, Eo, and E,,, denote the maximum values (or the amplitude)
of the fundamental, 2°¢ harmonic and #»'™ harmonic, etc., and ¥y, 4» and
1, represent the phase differences of the complex wave.

The number of terms in the series depends on the shape of the complex
wave. In relatively simple waves, the number of terms in the series would
be less; in others more.

Similarly, the instantaneous value of the coniplex current is given by:

i= I, sin(wt + ¢1) + Ly, sinQRut + @) + ... + Ly, sin(aw? + ¢,)
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Obviously (¥, — ¢,) is the phase difference between the harmonic voltage
and current for the fundamental, (1, — ¢,) for the 2" harmonic and
(1, — ¢, for the #'® harmonic.

@ RMS value of a complex wave

Let the equation of a given complex current wave be:

i = Iy, sin(wt + @) + by, SInQuit + @) + ... + I, sin(rwt -+ ¢,)

Its rms. value is given by:

I = +/average values of i’ over whole cycle

It can be mathematically proven that:

2
Inm

2 2
Average valueofi2=%+%—+ s+

", r.m.s. value of I = +/average value of /

I, 2 Im2 I,-,,z
2 n
_\/Jﬂ'—+ W

This equation can also be written:
-+ (- (3]
I—\/(ﬂ 5 T\
which can be written as:

I= L2+ L2+ . I?

where I; = % is the rms value of fundamental,

L= 11'-\/5 is the rms value of the 2°¢ harmonic, and
I, = Jﬂ\/ﬁ is the rms value of the »'® harmonic.

@ Harmonics in single-phase circuits

If an alternating voltage, containing various harmonics, is applied to

a single-phase circuit containing linear circuit elements, the current
produced also contains harmonics. Each harmonic voltage will produce
its own current, independent of others. By the principle of superposition,
the combined current can be identified.
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We will now look at some of the well known elements like pure
resistance, pure inductance and pure capacitance and their various
combinations. In each case, we will assume that the applied complex
voltage is represented by:

e = Ey, sin wt + E,,, sin 2wt + ... + E,,, sin nwt

7.5.1 Pure resistance

Let the circuit have a resistance of R that is independent of frequency.
The instantancous current /; due to fundamental voltage, is:

i = E,, sinwt
R

Similarly, i, = %‘E‘ﬂ ... for 2nd harmonic

and i, = gms%%——m ... for nth harmoic

Total current i = i) + i + ... + i,

— £, s};‘nwt + Ezmsj’?Zwt -+ Emsjigmwt

= I, sin wt + Iy, sin 2wt + ... + 1, sin pwt

This shows that the waveform of the current is similar to that of the
applied voltage. In other words, the two waves are identical in form.

7.5.2 Pure inductance

Let the inductance of the circuit be L (henry) whose reactance varies
directly with the frequency of the applied voltage.

Its reactance would be:

W for the fundamental X; = wlL
B for the 2°¢ harmonic X, = 2wl
W for the »™ harmonic X, = nwl.

However, for every harmonic term, the current will lag behind the voltage
by 90°.

.. Current due to fundamental

i = glfsin(w: -3

Current due to 2° harmonic

iy = 22 sinQut — )

101
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Current due to 3™ harmonic

. Eyw o i
Fird
i3 = —-L—s 7 sin(3wt 2)

Current due to #'™® harmonic

.

. T
= 2% sin(nwt — —2—)
coTotalcurrent i = 0 4 4, + ... + i,

E o T o B i By o 7
= =lm — =am - £ m — £
= sin{w? 2) + 3.5 sin(2wt 2) R s 5 sin(awt 2) .

You can see from this equation that the current waveform differs from
that of the applied voltage.

7.5.8 Pure capacitance

Let the capacitance of the circuit be C (farads) whose reactance varies
indirectly with the frequency of the applied voltage. Its reactance is:

X; = -Jl-é — for fundamental

X, = 5—1—-— - for 2*¢ harmonic

wC
_ 1 rd :
Xy = 150 for 3' harmonic
_ 1 th :
X, = .vel for »* harmonic

iy = L sin(wr + 3)
wC

= wCEy,, sin(wt + )

and i, = E_Ef sin(2wt + 32{)
2wC

= 2wCE,,, sin(Qwt + 7—2T)

iy = E_{— sin{nwt + %)
nwC
= nwCE,,, sin(awt + %)

For every harmonic term the current will lead the voltage by 90°.
Nowi=i +h+...10
= wCE\,, sin(wt + g—) + 2wCE,,, sin(2wt + 12{) + ...+ nwCE,,, sin(nwt +

»
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This equation shows that the current and voltage waveforms are
dissimilar and that the percentage harmonic content of the current is
larger than that of the applied voltage wave. This means that the current
wave is more distorted that the voltage wave.

¢ EXAMPLE 7.1

Determine the rms value of the current represented by:

i =10 sing + sin(3¢ + 20°) + 0.5 sin(5¢ + 120°)
Solution
Remember that:

Y ER SR

- [1P+12+0.3
o 2

=7.115A

Irms

t EXAMPLE 7.2

Determine the rms value of the voltage represented by:

v = 50 sin wt + 5 sin(Bwt + 15°) + 2 sin(Swt + 120%)
Solution

Remember that:

V¥ VIE T
Vrms = : 3

_ /502 4 52 422
o 2

= 355V

EXAMPLE 7.3
An emf is given by

e = 100 sin wt + 30 sin(3wt + 20°) + 10 sin(5wt + 10°) V'
Knowing that the fundamental frequency is 60 Hz work out:

1. the rms value of the current for a series circuit consisting of a resistor
of 5 € and an inductance of 16.65 mH.
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2. the current expression for the circuit.
Solution
1. Xpi=2#fL =27 x 60 x 0.01665
=628 Q
X3 =302xfL) =3 x 628
= 18.84Q ‘
X715 =52nfL) =5 x 6.28
= 31.4Q)
Zy=5+76.28 Q = 8.03/51.47° Q
Zy =5+ j18.84 Q = 19.5/75.14° Q
Zs=5+j31.4 Q = 31.8/80.85° Q
g = B _100/0°
T Z T 8.03/5147
= 12.45/=51.47° A
B30/
Z, ~ 19.5/75.18°
= 1.54/=75.14° A
fo= B 100
Z; ~ 31.8/80.95°
= 0.314/—80.95° A
. _. 1245 + 1.54% + 0.314*
. Irms — 2
=887 A
2. i= 1245 sin(wt — 51.47°) 4+ 1.54 sin(3wt + 20° — 75.14°) +
0.314 sin(Swt + 10° — 80.95°)
1= 12.45 sin{wt —~ 51.47)° + 1.54 sin(3wr — 55.14°) +
0.314 sin(Swt — 70.95%)
EXAMPLE 7.4

The emf from Example 7.3 is applied to a circuit consisting of a 5 £
resistor in series with a capacitor C = 423 uF. Work out the rms value

of the current.
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S

[ Solution
X, = 1
el = 37 x 60 x 423 x10-%
= 6.27Q
X = 1 =1y
€37 3(27 x 60 x 423 x10-%) ~ 3¢l
= 2.09Q
XcS = %Xcl
=12540Q

and the impedances
Z,=5—j6.27 =8.02/-514°Q
Z3=5—j2.09 = 5.42/-22.68° Q
Zs =5 — j1.254 = 5.15/—14.08° Q

- = _100/0°

< 1T g03/=51.4°
= 12.47/51.4° A

o 30/0°

= 5.42/-22.68°

= 5.54/22.68°A

1040

37T 515/-14.08°

= 1.94/14.08°A

S 1247 4 5.542 4- 1.94?2
- Adrms = P

I3

I

=975A

—_———

H Activity 7.2

The voltage given below is applied to a 15 Q resistor.
e = 27.01 cos(400m¢ — 45°) + 19.1 cos (800mt — 90°) +
9 cos(1 200t — 135°)

Calculate the rms value of the vOItage_ and current in the
15 Q resistor. . '
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Power supplied by a complex wave
Let the complex voltage represented by the equation
e = E;,, sin wt + E,, sin 2wt + ... E,,, sin nwt

be applied to a circuit.

Let the equation of the resulting current waveform be:
i = I, sin(wt + ¢1) + by, sinQRwt + @) + ... + Ly, sin(nwt 4 ¢,,)
The instantaneous value of the power in the circuit is p = &f W.

To obtain the value of this product, we will have to multiply every term
of the voltage wave, in turn, by every term in the current wave. The
average power supplied during a cycle is equal to the sum of the average
values over one cycle of each individual product term.

However, the average value of all product terms involving harmonics of
different frequencies will be zero over one cycle. We only need to consider
the products of current and voltage harmonics of the same frequency.

Let’s look at a general term of this nature E,,, sinnwt x I, sin(nwt — ¢,,)
— and find its average value over one cycle of the fundamental.

Average value of power = Q_LLZWEnmInm sin nwt sin(pwt — ¢,)d(wi)

= —Eﬂ"@ fﬂsin nf sin(n — ¢,,)do
2 e 08¢, — cos(2n9 &,

)6

nm Zlﬂ J’

_ E,,mlmncown
2

‘——mX

= \/_ X COS¢y
= E,I, cos¢,

where E, and I, arc the rms values of the voltage and current respectively.
So, the total average power of a complex wave is the sum of the average
powers of cach harmonic component acting independently.

", total power = EjIy cosgy + E.lr cosgo + ... + E,l, cosd,

The overall power factor is given by:

PF = total watts ~ _ W
total voltamperes = VA4

E]Il COSQS] + EJ_I;;COS¢2
ExI
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where E = rms value of the complex voltage wave, and I = rms value of
the complex current wave.

» EXAMPLE 7.5

A single-phase voltage source ‘e’ is given by:

e = 141 sinwt + 42.3 sin 3wt + 28.8 sin Swi
The corresponding current in the load circuit is given by:

i=16.5 sin(wAt — 54.5°) + 8.43 sin(3wt — 38°) + 4.65 sin(Swt — 34.3°%)
Find the power supplied by the source.

Solution

Power at fundamental = Eil; cos¢; = E—\/'% X % COS¢1

El%ém COSgh

= M1_>§_1_§_5 c0s54.5°

= 675.50 W

Power at 3™ harmonic = Eiﬂfrﬂ COS¢s

— 42.3 E( 8.43 COS38°

= 14049 W

E;. 1.

th . il
5" harmonic = —57Lcos¢5

Power at
_ 2838 >2< 4.65 c0s34.3°
= 5531 W

.". Total power supplied = 675.50 + 140.49 + 55.31
= 871.30 W

Y
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t EXAMPLE 7.6

A complex voltage given by:
e = 60sinwt + 24sin(3wt + %) + 12sin(Swt + %)

is applied across a circuit and the resulting current is given by:
i = 0.6sin(wt — 2y + 0.12sin(wr — ) + 0.1sin(5wr — 55)

Calculate:

a. the total power supplied

b. the rms value of current and voltage
¢. the overall power factor

Solution

Power at fundamental = EI; cos¢ = E—IEAMCOS ol

= 50x06 30'6 X €0836°

= 14.56 W

Power at 3™ harmonic = E%!m cosd5°

= 24x012 4707
5 i

= 1.02 W

Power at 5" harmonic = Eﬁi—‘rﬁﬂ cos75°

= Exiﬂ % 0.2588

=016 W

a. Total power = 14.56 + 1.02 + 0.16
=15.74 W

b. RMS current:
I=+/F +F + F

1 3 5
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=[G+ '+ By

0.6 0.122 12 0.12
=5+ + 5
=0.438 A

RMS voltage:

. fe0? & 12.2
E= 0+ 2% +12

=46475V
c. Overall PF = —Waus __
volt amperes
- 15.74
T 46.475 x 0.438
=0.773
» EXAMPLE 7.7

An emf is represented by:
¢ = 200 sin 3141 + 40 sin(942¢ + J) + 20 sin(1 5701 + &

The emf is applied to a series circuit consisting of a resistor of 10 Q
in series with an inductance of 0.02 H.

Determine the total power and the power factor when the frequency
is 50 Hz.

Solution

X1 = 2af % 0.02 = 6.28 Q
X3 = 3(2nf % 0.02) = 18.84
Xis = 5Qnf x 0.02) = 31.41 Q

=10 + j6.28 = 11.8/32°Q
Z; =10 + /18.84 = 21.3/62°Q
Zs =10 + j31.4 = 32.9/72°Q

200/0 0.
L= El'ﬁﬁ 16.94/—32°; cos ¢, = 0.85
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=05 300 _ 188/ 62°; cosp, = 0.47

Z ~ 313065~
Is = 2 = 553 0.6/=72°; cos 65 = 031
— 449V

Lope = \/162—942 + 188 08 = posaA
Py = Binln o5 ¢ = 201693, 085 =

— 440 W |
Py =218 5 047

— 176 W
Py =20X0868, 031 =

= 1.86 W

Prorar = P+ Py + Ps
= 1440 + 17.6 - 1.86

= 145946 W
-
Power factor = 7
_ 45946
449 % 12.05
= (.83

t EXAMPLE 7.8

A 6.30 uF capacitor is connected in parallel with a resistance of 500 Q, and
the combination is connected in series with a 500 Q resistor. The whole
circuit is connected across an AC voltage given by e = 300 sinwt + 100
sin(3wt + ). (See fig. 7.3.)

If w = 314 rad/s find:

1. power dissipated in the circuit; and
2. an expression for the voltage across the series resistor.
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6.35 uF
500 ()

500 Q

Solution

Fig. 7.3

For fundamental:

_ 1 108
1= 0C ™ 314 x 6.36

= 500 Q

X

The impedance of the whole series-parallel circuit is given by:

7, = 500 4 300 x (=j500)

500 — 7500
= 750 — 250
=791/—18.5° Q

For third harmonic:

=1 300 _
Xc3-3wc— 3 = 167 Q

500 x (—/167)

23 =500 + 5517

= 550 — 7150
= 570/=15.3° Q

o 1= 3 sin(wr + 18.5°) + 190 sin(wr + 45.3°)

= 0.379 sin(wt + 18.5°) + 0.175 sin(3wt + 45.3°) A
1. Power dissipated = % cos ¢y + —E—i-'zléﬂ COS 3
= 300 % 0.379 o 0518.5° + 100X 0175 o 65153

2 2
=6235W
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2. The volt drop across the series resistor is:
ER = IR
= 500[0.379 sin (wt 4+ 18.5°) + 0.175 sin(Bwt + 45.3°)]
= 189.5 sin{wt + 18.5%) + 87.5 sin(Bwr + 45.3°)

@ Summary

Complex waveforms are superimposed waveforms of different
frequencies.

2.  Waveforms with frequencies 2f, 4f and 6f etc. are called even
harmonics.

3.  Waveforms with frequencies 3f, 5 and 7f etc. are called odd
harmonics.

4. Loy = \/(%)z + (%)2 S (%)2
Vims = \/(%)2 + R+

5. In a pure resistive circuit, the current wave and voltage wave are
similar (in phase).

6. In a pure inductive circuit, the current wave is behind (lags) the
voltage wave by 90°.

7. In a pure capacitive circuit, the current wave is ahead of (leads) the
voltage wave by 90°.
8. The overall power factor of a complex circuit is given by:

PF — total watts W
total voitamperes =~ VA

EJ, cospy + By, cosg, +
ExTI
where E and I are the rms values of voltage (emf) and current
respectively.

Wl seif-evaluation

1. A voltage given by V = 200 sin 3147 + 50 sin(943¢ + 45°) is applied
to a circuit consisting of a resistance of 20 Q, an inductance of
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20 mH and a capacitance of 56.3 uF, all connected in series.
Calculate the rms values of the applied voltage and current, and find
the total power absorbed by the circuit.

2. The current in a series circuit consisting of a 159 uF capacitor, a
resistance of 10 Q and an inductance of 0.025 H is given by:

i = +/2(8 sin wr + 2 sin 3wf) amperes.
Calculate the power input and the power factor if w = 1007 radian/sec.

3. A series circuit of a 60 Q resistor, a 2 H inductor and a 3 uF capacitor
is connected across a non-sinusoidal source. The emf of the source is
e = 20 sin(377¢) + 10 sin(754¢). Find:
the sinusoidal expression for the current.
the sinusoidal expression for the voltage across each component.
the effective value of the source voltage and current.
the power dissipated in the circuit.

aooe

4. The parallel circuit shown in fig. 7.4 is connected to a source of
e = 40 sin(377¢) + 20 sin 754: V

R=500) § L=2H —C=3nF

Fig. 7.4

Find:

a. the sinusoidal expression for the current in each branch.
b. the effective value of the source voltage and current.

¢. the power dissipated in the circuit.

Answers
Activity 7.1 (page 189)

Fundamental = 400 Hz
Third harmonic = 1200 Hz
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Activity 7.2 (page 195)
V=242V

TI=162A

Self-evaluation (page 203)
146 V; 3.16 A; 200 W

1.
2.

3.

680 W; 0.63

a.

i=0.14 sin (377t + 65.26°) + 0.0094 sin (7541 — 86.78°) A

Vg = 8.4 sin (377t + 65.26°) + 0.564 sin (754t — 86.78°) V
Vy = 105.56 sin (377t + 155.26°) + 14.18 sin (7547 + 3.22°) V
Ve == 123.8 sin (377t — 24.74°) + 4.16 sin (754¢t — 176.78°) V
Ey=158V

LIy=0.099 A

0.588 W
ir = 0.8 sin (3771) + 04 sin (754¢) A

iy = 0.053 sin (3777 — 90°) + 0.013 sin (7547 — 90°) A
ic = 0.045 sin (3771 + 90°) + 0.045 sin (7541 + 90°) A

Eur=31.62V
Ly=063 A

20W
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After studying this unit, you should be able to:
B understand the concept of three-phase systems
B explain how three-phase voltages are generated

B represent three-phase voltages and currents using phasor
diagrams

B determine the phase sequence rotation of phasors

explain a balanced system

B understand star and delta three-phase connections and their
applicable relationships between line and phase parameters
(for balanced star or delta)

W convert star connections to equivalent delta connections
and vice-versa;

B calculate power in three-phase balanced systems (for star
and delta connections), as a function of various phase or line
voltages and currents

B understand how power in three-phase circuits can be
measured using the three- or two-wattmeter method

208
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Introduction

In all the previous units, we have only considered single-phase systems.
In this unit we will deal with three-phase systems. Three-phase systems
are generally more economical than other systems.

From an electrical machines viewpoint, three-phase machines use copper
and iron more efficiently.

Three-phase generators are also more balanced in behaviour than their
single-phase counterparts — for example, in constant total power.
Single-phase generators vibrate badly and are very noisy, especially in
large machines, due to the pulsating power.

Three-phase transformers are more economical than three single-phase
transformers (which would do exactly the same job), but using special
types of three-phase transformers can even increase the number of phases
—up to 6 phases — supplying rectifiers. This is possible without any
significant extra costs.

Poly-phase systems are much more economical, especially for transmission
lines and sometimes for distribution. After all, it is much cheaper to build
one three-phase overhead line than to build three single-phase lines. Think
how much material you save by using one tower instead of three!

Some loads have a more convenient behaviour in three-phase systems —
for example in starting motors!

With these things in mind, it is important for us to elaborate on three-
phase systems and compare them to the single-phase circuits we studied
up to now.

Why don’t we use other poly-phase systems? The answer to this is that
the costs for additional phases are not compensated for by the slight
increase in operating efficiency.

A three-phase network has three or four wires entering or leaving it.
These networks are more complicated than single-phase networks, but
most of the three-phase systems are approximately balanced and the
analysis can be simplified.

A balanced three-phase system is a system in which three
voltages equal in magnitude and having the same frequency
but differing by 120° in phase angle are generated. These
balanced voltages are applied to equal impedances and
balanced currents result.
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Three-phase circuits offer several advantages over single-phase circuits.
These include:

B more balance in power generation;
B fess losses in transmitting power; and
W casier feeding of certain types of loads

For any balanced system, it is enough to analyse just one of the three
phases, no matter how complicated the transmission networks or the
generating facilities.

So, when we start studying the theory of three-phase circuits, we always
look at balanced systems first.

In more advanced courses you will find out more about the three-phase
system (unbalanced systems, power factor correction, etc.) and you will
have to remember and use all of the basic concepts in this unit. You will
also be able to use this knowledge in other courses like Electrical
Machines, Transmission, Transport and Distribution.

Let’s start!

Three-phase generation

e
in the arm

Fig. 8.7
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Remember that electromaghetic induction
occurs when there is relative motion between
a conductor and a magnetic field. In a three-

hase generator, the conductors are
stationary and the magnetic field is rotated.

As you can see in fig. 8.1, the conductors are placed in slots in the inner
surface of the armature.

The active part of the conductors, where the voltage is generated, is the
part lying in the armature slots. Fig. 8.1 is a schematic cross-section
through the centre of a machine where the axis of the machine is
perpendicular to the paper. The lines in the diagram only indicate the
end connections of the conductors.

For the machine to be cost effective, we try to use all the slots available
in the machine. So, how can we arrange the conductors to achieve this?

The first step would be to place a coil with its two active sides in opposite
slots, for example in x-x’. The moment the machine starts operating, that
is when the magnetic field structure starts turning within the armature, a
relative motion appears between the magnetic field and conductors. This
generates a voltage in the coil, similar to the single-phase principle of
generation.

Since we have more slots available, lets add two more coils in series — one
on each side of our initial x-x” coil. The terminals of this coil are brought
out of the machine at a and a’.

A coil formed by a conductor is also known as a winding when it is
wound around a core. .

Let’s place another winding, also of three coils connected in series,
shifted 120° compared to the first one. Its terminals will be b and b’.
This second coil is not connected to a-a’.

The remaining slots will be filled with the third winding, which, according
to our diagram, is shifted another 120° clockwise compared to the b-b’
winding and 240° compared to the initial a-a’ winding. The terminals for
the third winding are marked c-c’.

At this point all the slots in the machine are filled.
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Since the three windings a-a’, b-b’, and c-¢’ are not yet connected in any
way, we can study them as three separate single-phase generators. These
three windings are the so-called ‘three-phase’ windings of the machine.

Remember that we have simplified the example and that when you
study Electrical Machines, the theory of the three-phase generator

is explained in more detail. In fact, you’ll find that the three-phase
windings are interconnected. However, for our purposes, the above
description is adequate.

Let’s assume the clockwise direction is the normal direction of the rotation
of the rotor (the magnetic field structure) in the machine. In this example,
the direction is a-b-c. The three voltages will reach their corresponding

maximum values in the order v,y, vy, and vy, as in
fig. 8.2:

120° 120°
Vaa' B )beb' Vee!

- /C /’)-.\
~ # N ~
N\ s S N
\ - N N

N N
; Vg
\/\ h //Vaal ~ ( bb ; i/

Vc o /
s

~ - ~ - ~ -
- - - -

moment P ¥+, Ky —» Fo—

Fig. 8.2

A three-phase voltage is essentially three single-phase voltages, each
separated from the next by 120° of phase angle.

A machine designer must always try to obtain undistorted sinusoidal
voltages and identical waveforms for the three phases.

The corresponding phasor diagram for the three voltages is:




210

Basic Circuit Analysis

You can see that ¥, (assumed as reference)} is represented by /0°. Vi is
shifted 120 clockwise from ¥V, and Vv is shifted 240° clockwise from
Va‘a’.

The concept of ‘reference’ phasor, as explained in unit 2, section 2.2, will
also be used for three-phase systems (see example 1 in unit 2).

We can write these as:

Vaa = V&
Vbb’ = V/- 120° (OI‘Vf + 240°
Vee = V/120° (or ¥/ — 240°)

The sum of the three voltages is zero for a
balanced system:

Vad + Vir + Voo =V [0°+ ¥ [ —=120°
+ vV [120° =0

8.2.2 Phase sequence rotation

Let’s redraw fig. 8.1 on a piece of paper and re-label the windings c-c’
instead of b-b/, and b-V instead of c-c’. Alternatively, assume the rotor
rotates in the opposite direction.

It is easy to observe that the order in which the voltages will reach their
corresponding maximums will now be v,z, v.r, and vpy. If we assume V,y
is our reference, the phasor diagram looks like this:

2%

Fig. 8.4
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and the corresponding waveforms for the voltages:
Vaa' Vec' 143

N AXS

Fig. 8.5

Then we can write:

Vaa’ = V&o
Ve = V[=120°

Vbb’ = V/+1200
In the first case, v, leads vy by 120°, and v,y leads v, by 120°. This is
the a-b-c phase sequence called “positive phase sequence’.

In the second case, the a-c-b phase sequence is called the ‘negative phase
sequence’.

It should be obvious that any negative phase sequence can be converted
into a positive phase sequence simply by re-labelling the terminals. So we
normally consider only positive phase sequences in our studies.

Three-phase connections
8.3.1 General features

If we consider that a three-phase generator supplies a load, then the
equivalent circuit in which power is carried from the generator to the load

can be drawn as follows: <> %

Fig. 8.6
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Phase R, (4)
Phase ¥, (B)
Phase B, {(C)

The three phases are usually marked R,Y,B (red, yellow, blue) or a,b,c
(A4,B,C) in current textbooks.

If we use a single wire for the return path for all three phases, we’ll get:

{ ; Ia+1b+1c ]L
o O

Fig. 8.7

What current does the common return wire carry?

If we look at a balanced system (balanced voltages, as normally given by
any three-phase generator, and equal loads), the three currents are also
balanced:

I

Fig. 8.8

Since the return wire will carry the sum of the three currents (I, + I + L)
and their sum is zero, there will be no current flowing in the return wire.
But this only happens in ideal conditions. If the system is slightly
unbalanced, the sum of the currents is no longer zero, but it will be a
small value, I,
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Fig. 8.9

Since 1, is very small, or ideally non-existent, the fourth wire can be left
out completely for balanced loads:

Fig. 8.10

This is a typical ‘star’ or ‘wye’ connection, where the loads are connected
between one of the three lines 4, b, or ¢ and a neutral point n.

The star point is the point in which the 3(4) conductors come together.
If the system is balanced, it is also called a ‘neutral” point.

Looking back at fig 8.9 and fig. 8.10, you can see that we have two
possible star connections — one with four wires and the other with three
wires. Remember, for a balanced load we know that the current flowing
through the fourth wire will aiways be zero, and that’s the reason why
there are only three wires in fig. 8.10.

Another way of connecting the load in a three-wire system is as follows:
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Here the loads are connected between lines in a ‘delta’ or ‘triangle’
configuration.

For safety reasons, it is desirable to have a connection from the electrical
system to the ground/earth. In a star system, the logical point to connect
to ground/earth is the star point.

The star connection (3- or 4-wire) and the delta connection are the most
popular for three-phase systems. There are other possible connections in
three-phase systems, but for the time being we will only study these two.
For our purposes, it is adequate to understand the delta and the star
connections, and their relationships between voltages and currents, to
tackle any of the following possible connections.

Possible combinations for star and delta connections

If the supply side connection is: The load side connection can be:
star delta (i.e. fig. 8.11)
star star (i.e. fig. 8.9, fig. 8.10)
delta star
delta delta

8.3.2 Three-phase star connection

p Circuit diagrams and properties

This three-phase network is called Y (or star) connection, the symbol
suggested by the form of the circuit diagram.

This connection is a particular case of the eneral case of the ‘»’ terminal
star.

A ‘m’ terminal star has ‘n’ elements connected in a common point called
the star point.
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ip
—_—
R
L
T €p !
R,
iy
—_—
Y
L
Tey i =iptipti ?
¢ =lptiytip
Y, N
Ay
ip
“~ —_—
B A
T Ls
&,
B‘r B
Fig. 8.12

If the system is balanced, the star point is also the neutral point of the
system.
Assuming iz as reference:

iR = IM sin ¢

iy = IM sin (6 - 1200)

ig= IM sin (9 + 1200)

and

ii=ipr+iv+ig=

— I sin 8 + sin(@ — 120°) + sin(8 + 120°)] = 0

120°

1200

Fig. 8.13
In the phasor diagram for balanced systems given in fig. 8.13 you can see
that if you add the three phasors, you always get zero.

So, a 4-wire star-connected system, as in fig. 8.14, is equivalent to fig. 8.9
although it has a different appearance.
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O R~
R
N R
3 ! }C]YY; O Y  » line conductors
B o B
b b b
O N neutral conductor

Fig. 8.14

Since this is a balanced load, we know that there is no current flowing in
the neutral wire and that it can be discarded. The star-connected system
now looks like this:

Fig. 8.15

> Relationships between line and phase voltages and currents in a star-

connected system

It is very important to be able to explain the following two terms when
using three-phase systems:

M line — between R, Y, B (between two lines)

B phase — between R and N; Y and N; B and N (between line and
neutral)

We normally assume that the emf in each phase is positive when acting
from the neutral point outwards. If this is true, the emf; generated in the
three phases can be represented as Eng, Eyy and Eyp.

If we now assume Eyyyg positive, the value of the emf from ¥ to R is the
phasor difference of Exz and Eyy.
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Fig. 8.16

The angle between Eng and —Eyy is 180° — 120° = 60° and the angle
between Eyz and Eyng is thirty degrees =

Eygr = 2Eng c0s 30° = 2 x \/73_ x Exr = V3Enz
This means that the line voltage is v/3 x phase voltage. (The same can be
proved for all three phases and lines.)

The line currents are equal to the phase currents. You can see this in the
circuit diagram in fig. 8.15. The current flowing in the R line is the same
as the current flowing in the load between that line and the star point.

For a balanced star system:

e line voltage = +/3 phase voltage

e line current = phase current

Remember, for a balanced load the star connection can always be
studied as a three-wire connection as there will be no current flow-
ing through the neutral and this conductor can be discarded.
Sometimes it is better to have the neutral in place, because then
you can analyse only one phase of the circuit (between line and
neutral). However, when you study unbalanced loads, you’ll see
that a current flows through the neutral and there will be a poten-
tial difference between the star and neutral points.
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8.3.3 Three-phase delta connection

p» Circuit diagrams and properties

This three-phase network is called A (delta) or mesh connection. Again
the symbol is suggested by the form of the circuit diagram.

This connection is a particular case of the general case of the ‘n’ terminal
mesh.

A four-terminal delta connection will look like this:

A ‘%’ terminal mesh has @ elements.

The case of three terminals is a special situation. We will have three
elements for star and three clements for delta. This is a very important
observation, because it allows us to operate star-delta and delta-star
transformations.

@ % ngeR %L
R;

= e teytey

3-phase windings resultant emf
with 6 line in a connected
conductors winding

Fig. 8.17
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R g A
1
RN
C
Y 1
1
Y g v 3 line conductors
O
B i
1
1
KA
Fig. 8.18

The total emf between By and R is:

¢ =¢€ept+ey+ep=
= FE,[sin & -+ sin(6 — 120°) + sin{(@ + 120°)] = 0

As you can see, the algebraic sum of the emf; around the closed circuit is
zero and there is no circulating current set up when we connect B, and R,
So, we can connect the coils as in Figure 8.18.

» Relationships between line and phase voltages and currents in a delta-
connected system

An equivalent representation for the delta is:

vl

—a

I
L Y;-L,e
R L
Ly| 73
Ig Iz\
= B
I
Y
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Let I}, I, and I3 be the rms values of the phase currents having positive
directions as m fig. 8.19. You will see that:

Ip=1 — I3

IR=2><Ilxcos30°=2x%§><I1=\/§I;

= line current = /3 phase current

Look now at the circuit diagram in fig. 8.19 and you’ll notice that line
voltage = phase voltage. (The voltage between R and Y is the same as the
voltage across Li.)

For a delta connection:

e line voltage = phase voltage

e line current = /3 phase current

Remember:

B In a three-phase star connection the loads are connected between the
lines (R, Y, and B) and the neutral (N), and the point where the three
loads join at the neutral is called the star point.

M In a three-phase delta connection the loads are connected between two
lines (between R and ¥, Y and B, and B and R).

EXAMPLE 8.1

In a balanced star-connected load, asswme that the line voltages are
balanced and that they are 100 V (rms) and each of the phase impedances
Z,;, Z5, and Z3 is equal to Z = 8 + j6 Q. Determine the currents flowing in
the loads. Determine the current flowing through the neutral wire (consider
normal phase sequence RYB).

Remember, to solve a problem, always start by sketching the circuit using
the given information.

=Y 100 _
Von=k="2=511V
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Fig. 8.21
Now its time to assume a reference.
Assuming Vyy as reference, we find:
Van =57.7/0°V

VYN - 577/ ”1200 V
Ven = 57.7/+120° V

Ven
57.7(+120°V

577120 °V

Viw

Fig. 8.22
Then Z; = 8 + j6 = 10/36.87° §2; the same for R, ¥, B.
We can now calculate the three currents:

57.7/0° _ . _
o7ae g = 5-77[=36.87° = 4.616 — j3.462 A

Ipin) =

Vax
VA
= Vi _ 57.7/=120° o L
Ivv) = 3 = Tofar = 577 [=156.87° = —5.306 - j2.267 A
4

_ Ve _ 517/120° o _ o
IB(N) - _ZE - IO t3687o_ 5-77! 83v13 — 0.690 _]5.729 A

(phase current = line current in star)
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Iy=Ig+ Iy + Ip = 4.616 + 0.690 ~ 5.306 — j(3.462 + 2.267 — 5.729)
=0 —j0=0

If you encounter such problems, always assume a reference. Choose
one of the phasors as reference (¥ z in the example). Depending on
how you choose this reference, all the angles of voltages and currents
must be calculated. In the example, we assumed the phase voltage
for R as reference (angle 0°), since it is convenient for solving the
problem. Once you choose your reference, you must stick to it in
your calculations. If we assume any other reference, the angles of all
the phasors will change accordingly. For example, if we choose Viyy
as reference, Viey = 57.7/=30° Vyy = 57.5/150°, etc.).

+ EXAMPLE 8.2

A 380 V, 3-phase supply is connected to a delta-connected load. The phase
rotation sequence is A-B-C and the load consists of three equal impedances
Z = 38[—30° Q. Assuming Vg as reference, determine the values of the
phase currents and the values of the line currents.

Sclution

Always choose the currents in delta so that they form a closed
loop.
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Iy
-
380 vV
Lc
Iy

If we have a 380 V supply, we normally assume this is the line
voltage. For this delta connection we’ll use V,, = V;

Vip = 380/0°V
Vec=380L—-120V
Vea = 380/120°V

_ Ve _ 380/0° _ o
IAB_ZAB_385_300—1O@A
_ Ve _ 380/-120° o
Ipc = 2% = g5 = 10-90° A
_ Veq _ 380/120° 0
lea= Zeo  38/—30° 10/150° A

Being a balanced load, the sum of the currents is zero.

Now let’s calculate the line currents:

ly=1I,—Ics=10/30° - 10/150° = 17.32 + j0 = 17.32/0° A
Ip=1Ipc— Lip=10/-90° — 10/30° = —8.66 — j15 =17.32/-120° A
Ioe =104 — Igc=10/150° — 10/—90° = —8.66 + j15 = 17.32/120° A

What do you notice?
Ii+1Ig+ Ic=0!

In this example, I, is in phase with Vg, Ig is in phase with Ve, and L. is
in phase with V.
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If we look at the relationship between phase and line currents, we can see
that:
I

Iph = -\—/L§
_ 17.32
(10 = 73

as proved for the balanced delta. We can also see that the phase currents
are shifted by + 30° compared to the line currents.

The phasor diagram for the problem is:

Fig. 8.25

Three-phase power

8.4.1 Three-phase power for a star connection

The power calculated in a single-phase representation of a three-phase
system is the power produced, transmitted or consumed in one phase.

If the system is balanced, the total power for the whole system — not only
for one phase — is then three times as much as the power for one phase.

Consider a star-connected load. For one phase the power will be:
Pph = Vph.lrph COS¢

where cos¢ is the load power factor (cosine of the phase angle between a
sinusoidal voltage across the load and the current through that load).
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The total power will be:

Poy=P + Py + P4

(if the system is balanced, P; = P, = Py = P)
and

Py =3P

Prot = 3V ppdpy cOSO

Can you remember the relationship between phase and line voltages and
currents for a star load?
Vo = V. and L, = I, where Vi, I, are phase voltage and current, and

V3

Vy, I are line voltage and current.

If we substitute these in the expression of total power, we get:

P = 3%[; cos¢ = V3V, cosg

We have just proved that, for a star connected balanced load, we can
calculate the total power as:

Pior == 3V pplpy COSP
or
P.o: = V3V cosg

If you are unsure which expression has 3 as the multiplying factor
and which has /3, remember that the power you’re calculating is
one and the same. If you keep in mind that the line parameters (in

this case voltage) are +/3 times larger than the phase parameters, it
is only logical that you have to multiply by 3 where phase voltage
and current are known, and by v/3 if you worked with line values.

Do you remember from single-phase systems that in AC there is not only
active (real) power, but also reactive power.
For single-phase AC circuits we calculated:

S =VIVA
P = VIcosp W, and
O = VIising VAr

If you have forgotten, page back to Unit 3 and refresh your memory.
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For three-phase systems:

S = 3Vpulow = V3V,

P = 3Vl cosé = V3V cosg, and
Q = 3Vl sing = V3Vl sing

IV Activity 8.1

el )

Did you notice that we used the same ¢ (angle) all the time?
Are we allowed to do this? Explain your answer in == 50 words.

8.4.2 Three-phase power for a delta connection

The formulae for a star connection also apply to a balanced load
connected in delta. For one phase of the delta:

Poy = Vionlpy cOSG

B
where cos¢ is once again the load power factor, and

Pt = 3Vppl,p cOSG

Keeping in mind that, in this case,V,, = V;, but I, = %, we can write:

P = 3V; e/ cosp = V3V, cos¢

V3
Often, the line currents and the line-to-line voltages of a three-phase
system are known because these quantities can be measured in any three-
wire system. So, we can directly apply the formula. To measure the phase
voltage of a star connected load, you need access to the star point to
connect the wattmeter voltage coils.

A great advantage of a three-phase system is the uniformity of total
power.

Remember, for a single-phase system, the power is pulsating, but the total
power for a balanced three-phase load is constant. This is a very
important observation and one of its immediate consequences is that
three-phase motors present constant torque.

-

Rl

I Activity 8.2

Try to prove the statement: ‘the total power for a balanced three-
phase load is constant in the case of a resistive load’.
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Hint: Use trigonometry to prove that the sum of 3 cosine terms is zero.
The variation with time disappears leaving instantaneous total power
constant.

8.4.3 Measuring three-phase power

p Three-wattmeter method

When we use wattmeters to measure power in a three-phase system, the
obvious method is to use three wattmeters, connecting each meter to
measure the power consumed in one phase.

The simplest example is that of a 4-wire, star-connected load. For each
wattmeter, we have I, in the current coil and V), across the voltage
(potential) coil. The current coil for wattmeter 1 is connected in phase
(line) 1, and the voltage coil is connected between line 1 and neutral.
So, wattmeter 1 measures the power in phase one, as shown in fig. 8.26;

v,

o

9
w
3
C—

-

Fig. 8.26

where W) measures power for phase 1
W, measures power for phase 2
W5 measures power for phase 3
Ptot:P;+P2+P3

Since we are only dealing with balanced systems, this means that the
powers for the three phases are equal. Instead of using three wattmeters,
we can use one and multiply its reading by three:

Ptot = 3Pwattmeter
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Fig. 8.27

Unfortunately, a delta load or a 3-wire star load doesn’t have an available
neutral. In fact, in most three-phase networks, the loads normally have
only three terminals, like the induction motors. So, we have to find other
methods to measure power using different wattmeter connections.

Using three wattmeters:
P=P 4+ P+ P

load
{with 3
} terminals

only!}
commeoen connection j

for the 3 voltage coils

FQ’\[DI 3-phase

N?

Fig. 8.28

This is a general case, whether the three-phase load is balanced or
unbalanced, and the current and voltage can be complex waves. The only
observation that must be made is that, in a 3-wire system, the following
must be true: i, + i + i, = 0.

p Two-wattmeter method

As you can see in fig. 8.28, point P can have any potential. We can
choose P so that it has the potential of one of the lines — for example, the
potential of line b — which makes W, inoperative. There is no voltage
across its voltage coil and it will always indicate zero, so it can be
omitted.

We are left with the following connection:
Pyy= P+ P
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24 W
1
b O 3 terminals
3-phase load
o W
3

Fig. 8.29

This method is called the two-wattmeter method, and is the standard
connection for measuring power in a 3-wire system.

It is a very popular method, as it applies to star and delta, to balanced
and unbalanced systems, and for any waveform — even non-linear
impedances! The only restriction is that the sum of the three currents

iy + iy + i, = O

Let’s see if we can prove that two wattmeters measure the total power for
balanced loads.

We assume the phase angle for the load is ¢. Currents lag the
correspondent phase voltages by ¢ and is the same for all three phases as
it is a balanced system.

Current through the coil of W:
I,=1Ir

Voltage through the coil of Wiy:
Vo = Vi
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Current through the coil of Ws:
Ic = IL
Voltage through the coil of ¥,
Vcb =V
Reading on Wy: Py = IV, cos(30° + ¢)
Reading on Wi Py = I,V c0s(30° — ¢)
= P} = ILVL 008(300 + ¢)

P3 = ILVL COS(30o — ¢')

PI -+ P3 = ILVL [008(300 + QS) -+ 008(300 — ¢)] =
300+ 4300 — ¢

2

X COs

= Vy I x 2 X cos 30°+¢530°+¢=

= Vplrx2xcos 30°xcosp = Viplpx 2 x@xcosqﬁ =
=3V I, cosg

This is the same vaiue as the total power for the balanced load indicated
at the beginning of this section.

We can also prove that:
Py — Py = IV, sing, and then

_ ging Py — Py
tang = cos¢p \/§(P3 + P

By using this formula we can calculate ¢ and work out cos ¢, which is the
power factor of the load. :

Sometimes you will find that one of the two wattmeters in the
two-wattmeter connection indicates a negative power. Some watt-
meters allow readings of negative power. If you come across a ne-
gative reading, you will need to reverse the connection either for
the current coil or for the voltage coil. (Don’t reverse both or the
reading will be negative!)

Obviously, negative power has no physical support. What does this mean?

Let’s look at our balanced three-phase load. The negative reading
indicates that the power factor of the load is less than 1 (The phase angle
between load current and voltage is greater than 60° and the current in
the current coil of one of the wattmeters is greater than 90° out of phase
with the voltage across its voltage coil.)
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Activity 8.3

-

Can you calculate the reactive power (Q) for a three-phase
balanced system using the values measured by the two wattmeters
in the two-wattmeter method?

Hint: Remember that Py — P; = IV, sing!

Can you work out how to connect only one wattmeter in the same system
and compute the reactive power?

Let’s have a look at another method to measure total active power in a
balanced delta system if the circuit allows it:

Fig. 8.31

This figure is a more detailed sketch of the wattmeter to enable us to see
the connections of the two coils properly. The voltage coil is connected
between a and b, and the current coil is connected in series in the a-b
branch of the delta connection.

r EXAMPLE 8.3

A delta-connected balanced three-phase load is supplied from a three-phase,
380 V supply. The line current is 20 A and the power absorbed by the load
is 10 EW. Calculate:

a. the impedance in each branch
b. the line current, power factor and absorbed power if the same load
is star-connected.
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Solution
a. Delta;

Vphase = Vime = 380V

Lppase = fl/§ = -2;/% = 11.55 A, and

|z =72 = 3290,

P = 3Vl 00 =5 C0S¢ = 7=—ah000 = 0.76, and

¢ =cos10.76 = +£40.53°
Z = 329 /+40.53° Q

b. Since the load is the same, the PF of the load is the same:
0.76 (cos¢ = 0.76)

Star:

— ¥ _ 380 _
Vph—\/g 73 21939V

V. 21939
Ip;,—zii——ng = 6.67T A

Ly = I for star = I; = 6.67 A, and, since the PF is the same =

P =3V, cos¢ = v/3 x 380 x 6.67 x 0.76 = 3336 W

The power is one-third of the power absorbed in the delta connec-
tion (the small error appeared due to the decimal rounding).

+ EXAMPLE 8.4

The input power to a 1 200 V, 50 Hz, 3-phase motor, having at full load an
efficiency of 90%, is measured by two wattmeters. The readings of the two
wattmeters are 300 kW and 100 kW. Determine:

a. input power
b. power factor
c. line current
d. output power
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Solution

Since it is not mentioned, we’ll assume that 1 200 V is the line
voltage for this motor.

a. Input power: P, = Py + P, = 300 + 100 = 400 kW

b. Power factor:

P, — P 100 — 300 _
tang = /3211 35T =3x22 20 oo = — 0.866
¢ = — 40.893°
cosp = 0.756

Since motors are inductive types of loads, we obtained a negative angle
(current lagging the voltage) as expected.

¢. Line current:
P = 3V, cos =

P 400-10° _
I = V3V, cos¢ V3% 1200 % 0.756 254.564 A

d. Output power:

,r] ’PDINEW' i

Pmpur
Poutput = Pinput X 1= 400 x 0.9 = 360 kW

Summary

B Three-phase systems are more economical than single-phase systems.
Since most of them are relatively balanced, their analysis is not much
more complicated than that for single-phase circuits.

M Three-phase generators produce a three-phase voltage, which is
composed of three single-phase AC voltages, each separated by 120°,

B The positive (clockwise) phase sequence is the a-b-¢ phase sequence.
The negative sequence (a-c-b} is not normally used in our studies at
this stage.
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l The most popular three-phase connections are the star (¥) and the delta
connections. For a balanced system, we can prove that the 3- or 4-wire
stars are equivalent. The following relationships can be proved:

e for a balanced star connection:
Iphase = Liine
Vphase = %
e for a balanced delta connection:
Vphase = V!ine

7 phase

gy |
WlE

e For equivalent balanced star and delta:

2z,
Zstar = _(:t;fm

e For both balanced star and delta connections we proved that:
-Ptotal = 3Vph-[ph COS¢, or

Piotar = \/ngIl COS¢
where cos¢ = the power factor of the load.

Similarly:
Stotal - 3VphI ph = \/§ V[I[, and
Qrotal = 3Vphlph sing = \/gVifl sing
B For a three-phase balanced system, the power in the system is constant.

B The method normally used to measure power in a three-phase system is
the two-wattmeter method.

If we make the following notations:

W, — the reading on one of the wattmeters, and
* W, — the reading on the other wattmeter
we can calculate:

Prota = Wi + W
tang = \/_ T W = ¢ = cos¢ (the PF of the load)

Qto!al = \/g( Wl - WZ)

W, = W, for power factor = 1 (resistive); ¢ = 0.
W, = max for ¢ = 30°
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W, = 0 for ¢ = 60°
W, < 0 for ¢ > 60°

B Remember, for the purpose of this course, we focused on the study of

three-phase balanced system only. (Three voltages equal in amplitude
and having the same frequency, but shifted by 120° in phase angle,
applied to equal impedances with resulting balanced currents.)

W Self-evaluation

1.

In the balanced star-connected load of the following figure, assume
that the phase voltages are 240 V (rms) and each of the impedances
are Z = 25 + j40Q. Calculate the currents flowing through each of
the impedances and draw the phasor diagram for the currents. What
do you notice? (Assume Vgy as reference and a normal phase
sequence rotation.)

Fig. 8.32

A three-phase balanced delta-connected load is fed from a star that
has a phase voltage of 240 V. Assuming a normal phase rotation
sequence, and knowing that the impedances in each branch of the
delta are equal to 40 + ;25 Q, calculate the line and the phase
currents.

Three similar coils, each having a resistance of 20 Q and an
inductance of 0.05 H are connected:

a. In star
b. in delta

to a three-phase, 50 Hz supply with 400 V between the lines.
Calculate the total power absorbed and the line current in each case.
Draw the phasor diagrams of the voltages across the loads and of
the currents flowing through the load in each case.
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4. A 500V, 3-phase motor has an output power of 37.8 kW and
operates at a power factor of 0.85. The efficiency of the motor is
90%. Determine the reading on each of the two wattmeters used to
measure the input power.

5. Let’s consider a large three-phase induction motor. The two ends of
each phase of the stator windings are brought out to a starter that,
when moved to the starting position, connects the windings in a star.
After the motor has accelerated, the starter is quickly moved to the
running position, changing the connections to a delta.

a. Find out the ratio between the starting voltage and the rated
voltage (per phase).

b. Knowing that the output torque of the motor is directly
proportional to the square of the applied voltage, calculate the
ratio between the starting torque and the torque that would be
obtained if the motor is switched directly across the supply (with
the stator windings connected in delta).

¢. What would the ratio be of the phase currents in this case (star
connection/ delta connection)?

d. What would the ratio of the line currents be?

Answers
Activity 8.1 (page 226)

Yes. If the load is balanced, the power factor for all three phases will be |
the same. The PF refers to the load and has nothing to do with the angle
between V; and 1.

Activity 8.2 (page 226)
v, =V coswt
i =1 coswt
Pa = Vaa = Vel €0 w1 = Vb, 2L = Ly 1 (cos 2wt + 1)
v, =V, cos(wt—120°)
i, =1 cos(wt —120°)

Py = Vo, cos(wt — 120°) = V1, 952w = 240%) + 1

2

= 2Vl [cos(ut — 240°) + 1]

v =V _cos(wt+120°)
i =1, cos(wt + 120°)

Pe = Vil cos¥(wt + 120°) = —I-lem[cos(2wt + 240°) + 1]
2
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Pa+ Py + Pe = 5Vudnl00s 2wt + 1+ cos(Qut — 240°) + 1 + cos(2uwt + 240°) + 1] =
= 5V mll3 + 008 20t + COS(2ut — 240°) + c0S(2wt + 240°)]

cos(Qwt — 240°) + cos(Qwt + 240°) =

Duwt = 240° + Jwr + 240° 2wt — 240° — st — 240°
2 s 7

= 2 cos

= 2 cos % cos£$80°) =2 X cos2wt x cos(—240°) =

= 2 x cos2wi x cos(120°) = 2 x cos2wt X (—%) = - oS 2wt
€08 2wt — ¢0s 2wt =0

Do you notice anything?

For one phase:

_ 2y

v \/2_ -
2
2 L

rms

I =

FIHS

_ 2 V2, _ 2 _ Val,
Pav = TVm x “”Z_Im - meIm )

If you don’t remember this, revise Unit 2.

We can say that the instantaneous total power is constant and equal to
three times the average phase power.

The proof can be extended to include any load (PF # 1) by inserting a
phase angle ¢ in each expression for the instantaneous current. The result
will be: p = 3VT cos¢ — again a constant, three times the average phase
power. (Here cos¢ is the power factor of the load.)

However, remember that this proof is valid only for sinusoidal voltages
and curyents.
Activity 8.3 (page 231)

Multiply P; — P, by v/3 and then you’ll get exactly v/31, ¥, sing, which
is the reactive power (Q) for the three-phase system.
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R
' Lo
\iJ RE 3-phase load
5 T
Fig. 8.33

The reading must also be multiplied by v/3.

Self-evaluation (page 235)
1. 5.09/-58° A;5.09/—178° A; 5.09/62° A

1y
+620°
Iy - - == ¥, (reference)
-580
-1780
Ir
Fig. 8.34

If you look at the phasor diagram, you notice that I + Iy+ 1z = 0:

2. If we take Vg as assumed reference:
IAB = 881 &O A
Ipe=8.81/=152° A
Ics=881/88° A
I, =1526/—62° A
Ip=1526/-182° A = 15.26/178° A
Ic=1526/58° A

3. a 4948 W;9.08 A
Yy (V line)
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b, 14 850 W; 27.25 A (= 3 times the star values!)

4. 135 kW; 285 kW

Appendix |

p Transformations

The following transformations will help you change the star connection to
an equivalent delta connection or vice-versa. Remember these when you
are working with star or delta systems:

i)
A A

I
c c

I
B B
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I
4 4 A
Z o ZAB
VA
I C BC
C € vA B
IB
Fig. 8.38
Star to delta transformation:
Zip = ZaZy+ ZpZe ¥ 22y _ 7 o Zg -+ Z%ZB
C (44

Gpem DIt ZZ LLs L 7, | 7oy Bie

ZCA = ZAZB_i_Z%fC'i‘ZCZA = ZA + ZC+%€

Delta to star transformation:

— ZABZCA
Za= Zg+ Ly + Zey

Z 7
Z e — Al pe
5 Zap+ Zpc + Zeu

ZesZ
Z — CALBC
¢ Zig+ Zpe + Zey

For the special case of a balanced system, make the following notations:

Zy — impedance for the star connection (the same on ali three phases)
Za — impedance for the delta connection (again the same for the three
phases)

It can be proved that:

Ly = Z_,)A and respectively, Za = 3Zy



