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Over the past decade, the increasing power and reliability of microcom- 
puters and the development of sophisticated software designed specifi- 
cally for use with them has led to significant changes in the way that 
socioeconomic data are collected and analyzed. The venue of the com- 
putations has shifted from off-site mainframes, dependent on highly 
trained operators and significant capital investment in supporting equip- 
ment, to desktop and laptop computers, dependent only on the occasional 
availability of electricity. This means that it is now feasible to quickly 
transfer new statistical techniques between IFPRI and IFPRI's collabora- 
tors in developing countries, that data manipulation costs of policy analy- 
sis have been substantially reduced, and that a new level of complexity 
and accuracy is now possible in the collection and analysis of household 
survey data in developing countries. 

As with any new technology, however, there are substantial costs in 
time and money involved in learning the most efficient ways of using this 
new technology and then transmitting these lessons to others. This 
series, Microcomputers in Policy Research, represents IFPRI's collective 
ongoing experience in adapting microcomputer technology for use in food 
policy analysis in developing countries. The papers in the series are pri- 
marily for the purpose of sharing these lessons with potential users in 
developing countries, although persons and institutions in developed 
countries may also find them useful. The series is designed to provide 
hands-on methods for resolving statistical and data-collection problems 
encountered in food policy research. In our opinion, examples provide the 
best and clearest form of instruction; therefore, examples-including 
actual software codes wherever relevanGare used extensively through- 
out this series. 

This second book in the series, Strengthening Policy Analysis: 
Econometric Tests Using Microcomputer Software, by Lawrence Haddad, 
M. Daniel Westbrook, Daniel Driscoll, Ellen Payongayong, Joshua Rozen, 
and Melvyn Weeks, is a manual outlining how to conduct some fairly 
basic econometric tests and procedures to determine the robustness of 
the estimated parameters upon which policy decisions are frequently 
based. It is based on IFPRI experiences with cross-section econometric 
analysis over the past 10 years. The authors address a number of issues 
relating to the choice of model variables, the choice of estimation method, 
and the sensitivity of results to missing or extreme data values. 
Examples are provided throughout, using comparable programs from 
SPSS/PC+ ", SASB, and GAUSS-386". 

Howarth Bouis, Lawrence Haddad, and Stephen Vosti 
Editors 

vii 
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1 INTRODUCTION 

Observe a swimmer trying to simultaneously submerge five inflatable 
beach balls. The swimmer struggles for some time. When the swimmer 
finally succeeds, he or she has a photograph taken. The swimmer quickly 
loses control and the balls explode above the surface of the water. The 
photographer is an econometrician. 

-Anonymous econometrics professor 

In the absence of comprehensive and well-presented empirical analyses, 
we had no option but to follow our political instincts. 

-Anonymous policymaker 

Improvements in econometric methods and the machines that run them, 
alongside dramatic increases in the quality and quantity of information 
available to inform policymakers, are bridging the gap between what is 
known and what is needed to guide policy. These developments make it 
easier for econometricians to model policy with some degree of 
confidence. The developments also make empirically based research more 
accessible to policy analysts. Likewise, policymakers can and should have 
more options than the anonymous policymaker quoted above-and, 
indeed, this new wealth of information forces them to look beyond 
political instincts for guidance. This manual contains critical structural 
support for the evolving bridge between policy needs and knowledge. 

There is, however, both good and bad news associated with the 
explosion in the use of econometric procedures and tests in policy 
research witnessed in the past 10 years. The bad news is that this trend 
has led to a growing realization that estimated policy parameters are 
highly sensitive to the ways in which data are handled and the ways in 
which econometric models are constructed. The good news is that the 
ability to conduct tests that can gauge these sensitivities has improved 
with the emergence of powerful microcomputers, of statistical software 
that combines ease of use with statistical power, and of texts on applied 
econometrics. These developments permit econometricians and policy 
analysts to improve the accuracy and reliability of estimated policy 
parameters and, at the very least, to indicate where their models are 
most sensitive to specification error and departures from standard 
assumptions. The-following example illustrates the usefulness of these 
tests for policy formulation. 

Until recently, one widely accepted notion about development was 
that poverty alleviation was necessary and sufficient for reductions in 
undernutrition to occur. The implication was that the effect of income- 
generation policies on household food consumption and nutrition status 
is strong. Recent econometric work (Behrman and Deolalikar 1987; Bouis 



and Haddad 1992) has cast some doubt as to whether increasing income 
alone is sufficient to alleviate undernutrition. The policy choice revolves 
around the magnitude of the calorie-income elasticity, and by extension, 
the estimated coefficient of income (the marginal propensity to consume) 
when calorie consumption is the dependent variable. Bouis and Haddad 
(1992) found that, for the same households, two-stage least squares 
(2SLS) estimates differed from ordinary least squares (OLS) estimates. 
Calculation of the Levi bounds on the marginal propensity to consume 
indicated that income from the survey was measured with much error. 
A more formal Hausman-Wu test established that the differences 
between the OLS and 2SLS estimates were large enough to reject the use 
of OLS estimates because of their bias. The differences were due, in part, 
to the endogeneity of income on the right-hand side, which was caused 
in part by measurement error on income. The elasticity estimate was 
sensitive to the choice of estimator used. This sensitivity has 
consequences for policy formulation. If the larger elasticity estimates of 
approximately 0.5 are believed, policy can be more focused on income 
generation. If, on the other hand, the smaller elasticity estimates of 
approximately 0.1 are believed, the focus of policy perhaps should be 
expanded toward complementary factors for reducing undernutrition 
(such as education, community sanitation, water quality, and the 
availability of medical supplies), and toward the importance of other 
dimensions of undernutrition (such as micronutrient consumption and 
individual-level versus household-level consumption). 

This manual outlines how to conduct some of these basic econometric 
specification tests and procedures, how to interpret the results, and how 
to modify the econometric approach as a result of the tests. The tests and 
procedures are largely confined to cross-section analyses, as opposed to 
time-series analyses. This reflects IFPRI's current research orientation 
as well as the nature of existing data used to support policy research in 
developing countries. The tests address a number of issues: (1) the 
validity of the assumption of normality and constant variance of the 
error term, (2) selection of the most appropriate explanatory variables t o  
include in a model, (3) the appropriateness of the model under different 
structural conditions, (4) the need to account for measurement errors in 
explanatory variables, (5) how to  detect and respond to outlier 
observations, and (6) what can be done (if anything) about missing data 
points. 

Each test and procedure is described in terms of why, when, and how 
it might be used. Sample programs, with software code from SPSS/PC+,' 
the SAS system for personal computers (hereafter referred to  as 
SAS PC), and GAUSS-3~6~ are presented to demonstrate how the pro- 
cedure can be executed with the sample data set (an ASCII file named 
DATA.ASC). These sample programs are also on the diskette that 
accompanies the manual. Keep in mind that there may be several 
alternative programming strategies in any given instance; generally only 
one is presented in this manual. At the end of each section, several 

1 ~ ~ ~ ~ / ~ ~ +  for Windows, a recently released product, is not outlined in this manual. 
'companies producing the computer software mentioned in this manual are listed in 
the notes to Table 1, p. 6. 



widely used econometrics textbooks are listed that discuss the tests 
provided in the manual-and alternatives that are not. Unless otherwise 
noted, all programs run in under 3 minutes using the sample data set on 
a DOS-based ZEOS 486DX2 desktop computer running at 66 megahertz. 
The econometric procedures selected are not exhaustive; rather, they 
reflect IFPRI's collective ongoing experience in using econometrics and 
widely available software packages for food policy analysis in developing 
countries. 

In addition, it is important to remember that parameter estimates are 
sensitive to the quality of data used as well as the appropriateness of the 
econometric approach. To that end, the reader is encouraged to make use 
of the first paper in this Microcomputers in Policy Research series, 
Designing a Data Entry and Verification System, by Peter A. Tatian. 
Finally, it is hoped that readers will alert the authors t o  any errors found 
in this manual, together with their suggestions for additional materials 
to include in future versions of this manual, and in the series generally. 

Standard econometric notation is used throughout this manual. In 
general, Arabic letters refer to data matrices and Greek letters refer to 
model parameters and to stochastic error terms. The basic model is 
written as follows: 

In the model above, y is an N x  1 vector of observations on the dependent 
variable; X is an NXK matrix of observations on the K explanatory 
variables (including the constant term); /3 is a K X  1 vector of parameters; 
E is an N x l  vector of unobservable stochastic disturbance terms; and N 
is the sample size. 

I t  is generally assumed that the matrix X contains all of the 
appropriate regressors in the appropriate functional form, and that the 
classical normal assumptions concerning the stochastic disturbance 
terms hold: they have zero mean and are nonheteroskedastic, nonauto- 
correlated, uncorrelated with the regressors, and normally distributed. 
This manual is largely devoted to examining the definitions of X and to 
checking for heteroskedasticity and correlation between regressors and 
the stochastic disturbance term. 

Extensions of this notation are required periodically in the manual 
and are introduced as needed. Usually, however, the dimensions of 
vectors and matrices, unless required for clarity, will not be repeated. 



All the statistical software program files presented in this guide are in 
the form of "batch" files. Batch files are sets of software commands that 
can be created and edited in any text (ASCII)-editing package. 

SPSS/PC+ SPSS/PC+ is a statistical package that allows easy access to data. 
SPSS/PC+ provides tools for reading, aggregating, merging, recoding, 
and creating data. In addition, SPSS/PC+ includes numerous econo- 
metric and statistical procedures. 

There are three methods for executing SPSS/PC+ commands. The 
first method is a user-friendly menu system for building and executing 
commands. Second, the user can type commands at the SPSS/PC+ 
prompt in an interactive mode. Third, the user can create a text (ASCII) 
file and submit it for execution in batch mode. This last method can be 
done within SPSS/PC+, using the REVIEW text editor, or with any other 
text editor, such as EDLIN, NORTON EDITOR, or Wordperfect (saving 
the file as DOS text). For expositional purposes, this manual uses the 
latter format-although the SPSS/PC+ commands are identical- 
whichever method is chosen. Appendix 1 describes some interactive 
commands. A full exposition is given in Norusis (1990). 

SPSS/PC+ is the software of choice if ease of use and low start-up 
costs are important to the user. The user-friendly interface makes 
SPSS/PC+ an ideal choice for someone with little or no programming 
experience. 

To submit a batch program, type 

SPSSPC filename 

at the DOS prompt. 

SAS PC The SAS system for personal computers is a statistical package that 
allows easy access to data. SAS PC provides tools for reading, 
aggregating, merging, recoding, and creating data. In addition, SAS PC 
includes numerous preprogrammed econometric and statistical 
procedures. 

Although SAS PC can be run interactively, it is beyond the scope of 
this paper to describe its use (except for some notes in Appendix 2). 
Please consult the manual (SAS Institute Inc. 1988) for assistance. 

SAS PC is somewhat more difficult for novices to learn than 
SPSS/PC+. However, it is slightly more comprehensive and powerful 
than SPSS/PC+. Programs written for SAS PC will run with almost no 
changes on other platforms, such as LBM mainframes and DEC VAXs. 

To submit a batch program, type 



SAS f i l e n a m e  

at  the DOS prompt. 

GAUSS.386 GAUSS-386 is a programming language that uses syntax similar to that 
used in matrix algebra representations of econometric techniques. 
GAUSS-386 does not incorporate the extensive array of preprogrammed 
procedures found in SAS PC and SPSS/PC+, but allows much more 
flexibility and power to create specialized procedures. 

Although GAUSS-386 can be run interactively, i t  is beyond the scope 
of this guide to describe its use (except for some notes in Appendix 3). 
Please consult the manual (Aptech Systems Inc. 1992) for assistance. To 
submit a batch program, type 

G A U S S 3 8 6  f i l e n a m e  

at the DOS prompt. 

SUMMARY Each of the three software packages featured throughout this guide has 
strengths and weaknesses. At IFPRI, these packages tend to be used in 
a complementary manner, rather than being treated as strict sub- 
s t i t u t e ~ . ~  Each software package is described in greater detail in the 
appendixes-SPSS/PC+, in Appendix 1; SAS PC, in Appendix 2; and 
GAUSS-386, in Appendix 3. Related to their different capacities, each 
package has different budgetary implications, both in terms of the direct 
cost of the software and the indirect costs of hardware requirements. 
These resource requirements are summarized in Table 1. Appendixes 1, 
2, and 3 also summarize the common commands used in SAS PC, 
SPSS/PC+, and GAUSS-386, respectively, and the reader may find it 
useful to review the appropriate appendix before using the progra~ns.~ 

3 ~ n  fact, SAS PC and SPSS/PC+ data files can be converted into each other by a 
software program called DBMS/Copy Plus" (by Concepts Software, Inc.). 
4~hroughout the sample programs, the file naming convention shown in Table 2 is 
adopted. 



Table 1-Resource requirements of SPSS/PC+, SAS, and GAUSS-386 

aPrices may vary over time and location. 

GAUSS-386 

3.0 
Aptech Systems, Inc 
23804 SE Kent-Kangley Road 
Maple Valley, Washington 
98038 
U.S.A. 
U.S.A. 206-432-7855 
U.S.A. 206-432-7832 
U.S.A. 206-432-7855 

386 plus coprocessor 

4 megabytes 

4 megabytes 
$995 

SAS 

6.04 
SAS Institute Inc. 
SAS Circle 
Cary, North Carolina 27512 
U.S.A. 

U. S.A. 919-677-8000 
U. S .A. 919-677-8123 
U.S.A. 919-677-8008 

2 8 6 ( 38 6 recommended) 

640 kilobytes ( 2  megabytes 
recommended) 
15-25 megabytes 
$1 ,670  first year (forBase 
SAS and SAS/STAT); $595 
each additional year 
(license) 

Software Name 

Version 
'Company name 
Addzr e s s 

Telephone 
FAX 
Technical support 
telephone number 
Type of microchip 
processor required 
Memory requirement 

Hard disk space 
Priceda in U.S.A. 

SPSS/PC+ 

4.0 .1  
SPSS, Inc. 
444 N. Michigan Ave. 
Chicago, Illinois 60611 
U.S.A. 

U.S.A. 312-329-3500 
U.S.A. 312-329-3668 
U.S.A. 312-329-3410 

286 (386 recommended) 

640 kilobytes 

5-8 megabytes 
$1,090 (for Base and 
Stat modules) 



A DESCRlPTlON The data used in all of the following programs are taken from surveys of 

OF THE SAMPLE rural households residing in Bukidnon Province in the Philippines. 
Households were surveyed four times at four-month intervals (1984-85), 

DATA SET and data were collected on a wide range of topics, including landholdings, 
expenditure patterns, food intake, housing characteristics, assets, 
schooling, and food prices. See Bouis and Haddad (1992) for a more 
detailed description of how the data were collected. The data set consists 
of four observations on each of 406 rural households (N = 1,624) that 
were present for all survey rounds and whose livelihood depended 
primarily on the production of either corn or sugarcane. 

This data set was selected from among many at IFPRI, not because 
it is any cleaner or gives "better" results than others, but simply because 
it is the data set that the authors are most familiar with. Table 2 
provides labels and summary descriptive statistics for the 28 variables 
used in the following procedures. The data are provided as an ASCII file, 
DATA.ASC, on the diskette. 
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READ! NG ASCII Both SPSS/PC+ and SAS PC have procedures within the main product 

DATA INTO for reading ASCII files. These procedures are very flexible; the proce- 
dures can handle free format (data with at least one space between each 'OFTWARE value) or fixed format (each variable is to be found within columns and 
on rows specified by the user). Both packages can, in addition, read data 
with multiple lines per observation (or case). Figures 1, 2, and 3 are 
sample programs for reading ASCII files, in GAUSS-386, SAS PC, 
and SPSS/PC+, respectively. The READFREE.SAS (Figure 2a) and 
READFREE.SPS (Figure 3a) programs demonstrate how to read data in 
free format. Similarly, READFXD.SAS (Figure 2b) and READFIXD.SPS 
(Figure 3b) show how to read data in fixed format and on multiple lines. 

GAUSS-386 (Figure 1) has a separate utility to read in ASCII data. 
This utility, called ATOG (ASCII to GAUSS), will convert a free- 
formatted (space delimited) ASCII file into a GAUSS-386 data file, 
filename.DAT, and a companion label file, filename.DHT. To use ATOG, 
you must construct a program as shown, which contains the name of the 
ASCII file, the name you wish to give the new GAUSS-386 data file, and 
a complete list of the variable names. The name for this program must 
end in the extension "CMD." For example, Figure 1 is saved under 
READASCI.CMD. (Note that comments are not permitted in ATOG 
programs.) To use this program from within the GAUSS-386 shell, at the 
command line prompt, >, type the following: 

DOS ATOG f i l e n a m e .  CMD 

From DOS, simply type the following: 

ATOG f i l e n a m e .  CMD 

Figure I-Sample ATOG program for converting ASCII data to GAUSS-386 data 

INPUT DATA.ASC; 

OUTPUT DATA; 

INVAR X1  X2 X3  X4 D l  D3 D2 D4 D5 D7 D6 D8 X5 X6 X7 X8 Y1 X9 X 1 0  Y2 

X I 1  X12 X13  RD1 RD2 RD3 X14 X15; 

OUTTYP D; 



Figure 2-Sample programs for reading ASCII files, in SAS PC 

Pa-For free format 

......................................................... 
* PROGRAM: READFREE. SAS SOFTWARE: SAS PC 6.04 * 
* FILENAME DESCRIPTION * 
* INPUTS: DATA. ASC ASCII FILE * 
* OUTPUTS: DATA.SSD SAS PC DATA SET * 
* PURPOSE: READ ASCII FILE INTO A SAS PC SYSTEM * 
* FILE. THIS PROGRAM ASSUMES THAT THE DATA * 
*. ARE IN FREE FORMAT (VARIABLES ARE * 
* SEPARATED BY AT LEAST ONE SPACE). * 
......................................................... 

LIBNAME CDRV 'c:\DATA\'; 

DATA CDRV.DATA; 
INFILE 'C:\DATA\DATA.ASC'; 
INPUT X1 X2 X3 X4 Dl D3 D2 D4 D5 D7 D6 D8 X5 X6 X7 X8 Y1 X9 XI0 Y2 

XI1 X12 X13 RD1 RD2 RD3 X14 X15; 

LABEL 
Y1 =' HH CALORIE INTAKE, CAPITA, DAY (24-HOUR RECALL DATA) ' 
Y2 ='HH CALORIE INTAKE, CAPITA, DAY (FOOD EXPENDITURE DATA)' 
X1 ='RETAIL PRICE OF SHELLED CORN,KG (1984 PESOS; AVERAGE,BARRIO)' 
X2 ='RETAIL PRICE OF MILLED RICE,KG (1984 PESOS; AVERAGE,BARRIO)' 
X3 ='CULTIVATED AREA PER CAPITA (AVERAGE OF FOUR SURVEY ROUNDS)' 
X4 ='ZERO-ONE DUMMY FOR PRESENCE OF ELECTRICITY FOR HOUSE' 
X5 ='ZERO-ONE DUMMY FOR QUALITY OF FLOORING MATERIALS FOR HOUSE' 
X6 ='ZERO-ONE DUMMY FOR QUALITY OF ROOFING MATERIALS FOR HOUSE' 
X7 ='ZERO-ONE DUMMY FOR QUALITY OF MATERIALS USED FOR HOUSE WALLS' 
X8 ='AGE OF HEAD OF HOUSEHOLD (IN MONTHS) ' 
X9 ='NUMBER OF HOUSEHOLD MEMBERS ' 
X10 ='LOG OF HHOLD TOTAL EXPENDITURES,WK,CAP (1984 PESOS, ROUND)' 
XI1 ='VALUE OF ALL ASSETS (1984 PESOS; AVERAGE OF ROUNDS 1 AND 4)' 
X12 ='OWNED AREA PER CAPITA (AVERAGE OF FOUR SURVEY ROUNDS)' 
X13 ='MUNICIPAL POPULATION DENSITY (PERSONS PER SQUARE KILOMETER)' 
X14 ='YEARS IN SCHOOL, HEAD OF HOUSEHOLD' 
X15 ='YEARS IN SCHOOL, SPOUSE OF HEAD OF HOUSEHOLD' 
Dl =' % OF HH THAT ARE FEMALES < OR EQUAL TO 5 YRS OF AGE' 
D2 = ' %  OF HH THAT ARE FEMALES > 5 YRS AND < OR = TO 11 YRS OF AGE' 
D3 = ' %  OF HH THAT ARE FEMALES > 11 YRS AND < OR = 17 YRS OF AGE' 
D4 = ' %  OF HH THAT ARE FEMALES > 17 YRS OF AGE' 
D5 = ' %  OF HH THAT ARE MALES < OR EQUAL TO 5 YRS OF AGE' 
D6 = ' %  OF HH THAT ARE MALES > 5 YRS AND < OR = TO 11 YRS OF AGE' 
D7 =I% OF HH THAT ARE MALES > 11 YRS AND < OR = TO 17 YRS OF AGE' 
D8 = '% OF HH THAT ARE MALES > THAN 17 YRS OF AGE' 
RD1 ='ZERO-ONE DUMMY FOR FIRST ROUND SURVEY' 
RD2 = ' ZERO-ONE DUMMY FOR SECOND ROUND SURVEY ' 
RD3 ='ZERO-ONE DUMMY FOR THIRD ROUND SURVEY'; 

RUN; 

PROC PRINT DATA=CDRV.DATA(OBS=lO); 
VAR Y1 X1 X2 X3 X4 X5; 

RUN; 



2b--For fixed format 

PROGRAM: READFIXD.SAS SOFTWARE: SAS PC 6.04 * 
FILENAME DESCRIPTION c 

INPUTS: DATA.ASC ASCII FILE * 
OUTPUTS: DATA-SSD SAS PC DATA SET * 
PURPOSE: READ ASCII FILE INTO A SAS PC SYSTEM * 

FILE.THIS PROGRAM ASSUMES THE DATA ARE * 
IN FIXED FORMAT. VARIABLES TO BE READ IN * 
MUST BE IDENTIFIED BY A NAME AND COLUMN * 
LOCATION. SUBSEQUENT RECORDS ARE DENOTED * 
BY A l l / ' ' .  * 

...................................................... 

LIBNAME CDRV 'C:\DATA\'; 
DATA CDRV.DATA; 

INFILE 'C:\DATA\DATA.ASC'; 
INPUT 

X1 1-8 X2 10-17 X3 19-26 X4 28-35 
Dl 37-44 D3 46-53 D2 55-62 D4 64-71 

/ D5 1-8 D7 10-17 D6 19-26 D8 28-35 
X5 37-44 X6 46-53 X7 55-62 X8 64-71 

/ Y1 1-8 X9 10-17 XI0 19-26 Y2 28-35 
XI1 37-44 X12 46-53 X13 55-59 RD1 61-68 RD2 70-77 

/ RD3 1-8 X14 10-17 X15 19-26; 

LABEL 
Y1 ='HH CALORIE INTAKE, CAPITA, DAY (24-HOUR RECALL DATA)' 
Y2 = ' HH CALORIE INTAKE, CAPITA, DAY (FOOD EXPENDITURE DATA) ' 
X1 ='RETAIL PRICE OF SHELLED CORN,KG (1984 PESOS; AVERAGE,BARRIO)' 
X2 ='RETAIL PRICE OF MILLED RICE,KG (1984 PESOS; AVERAGE,BARRIO)' 
X3 ='CULTIVATED AREA PER CAPITA (AVERAGE OF FOUR SURVEY ROUNDS)' 
X4 ='ZERO-ONE DUMMY FOR PRESENCE OF ELECTRICITY FOR HOUSE' 
X5 ='ZERO-ONE DUMMY FOR QUALITY OF FLOORING MATERIALS FOR HOUSE' 
X6 ='ZERO-ONE DUMMY FOR QUALITY OF ROOFING MATERIALS FOR HOUSE' 
X7 ='ZERO-ONE DUMMY FOR QUALITY OF MATERIALS USED FOR HOUSE WALLS' 
X8 ='AGE OF HEAD OF HOUSEHOLD (IN MONTHS)' 
X9 ='NUMBER OF HOUSEHOLD MEMBERS' 
XI0 ='LOG OF HHOLD TOTAL EXPENDITURES,WK,CAP (1984 PESOS, ROUND)' 
XI1 ='VALUE OF ALL ASSETS (1984 PESOS; AVERAGE OF ROUNDS 1 AND 4)' 
XI2 ='OWNED AREA PER CAPITA (AVERAGE OF FOUR SURVEY ROUNDS)' 
XI3 ='MUNICIPAL POPULATION DENSITY (PERSONS PER SQUARE KILOMETER)' 
XI4 ='YEARS IN SCHOOL, HEAD OF HOUSEHOLD' 
X15 ='YEARS IN SCHOOL, SPOUSE OF HEAD OF HOUSEHOLD' 
Dl = ' %  OF HH THAT ARE FEMALES < OR EQUAL TO 5 YRS OF AGE' 
D2 = '% OF HH THAT ARE FEMALES > 5 YRS AND < OR = TO 11 YRS OF AGE' 
D3 = '%  OF HH THAT ARE FEMALES > 11 YRS AND < OR = 17 YRS OF AGE' 
D4 ='% OF HH THAT ARE FEMALES > 17 YRS OF AGE' 
D5 = I %  OF HH THAT ARE MALES < OR EQUAL TO 5 YRS OF AGE' 
D6 = ' %  OF HH THAT ARE MALES > 5 YRS AND < OR = TO 11 YRS OF AGE' 
D7 = ' %  OF HH THAT ARE MALES > 11 YRS AND < OR = TO 17 YRS OF AGE' 
D8 = '% OF HH THAT ARE MALES > THAN 17 YRS OF AGE' 
RD1 ='ZERO-ONE DUMMY FOR FIRST ROUND SURVEY' 
RD2 ='ZERO-ONE DUMMY FOR SECOND ROUND SURVEY' 
RD3 ='ZERO-ONE DUMMY FOR THIRD ROUND SURVEY'; 

RUN; 

I PROC PRINT DATA=CDRV.DATA(OBS=lO); VAR Y1 XI X2 X3 X4 X5; 



Figure 3-Sample programs for reading ASCII files, in SPSS/PC+ 

3a-For free format 

SET MORE = OFF. 
SET LIS='READFREE.LIS'. 
SET LOG='READFREE.LOGr. 
........................................................ 
* PROGRAM: READFREE.SPS SOFTWARE: SPSS/PC+ 4.01 * 
* FILENAME DESCRIPTION * 
* INPUTS: DATA-ASC ASCII FILE * 
* OUTPUTS: DATA-SYS SPSS/PC+ SYSTEM FILE * 
* PURPOSE: READ ASCII FILE INTO AN SPSS/PC+ SYSTEM * 
*. FILE. THIS PROGRAM ASSUMES THAT THE DATA * 
c ARE IN FREE FORMAT (VARIABLES ARE * 
* SEPARATED BY AT LEAST ONE SPACE). * 
........................................................ 

DATA LIST FREE FILE= ' DATA.ASC1 
/X1 X2 X3 X4 Dl D3 D2 ' ~ 4  D5 D7 D6 D8 X5 X6 X7 X8 Y1 X9 XI0 Y2 
XI1 X12 X13 RD1 RD2 RD3 X14 X15. 

VARIABLE LABEL 
Y1 'HH CALORIE INTAKE, CAPITA, DAY (24-HOUR RECALL DATA) ' 
Y2 'HH CALORIE INTAKE, CAPITA, DAY (FOOD EXPENDITURE DATA) ' 
X1 'RETAIL PRICE OF SHELLED CORN,KG (1984 PESOS; AVERAGE,BARRIO)' 
X2 'RETAIL PRICE OF MILLED RICE,KG (1984 PESOS; AVERAGE,BARRIO)' 
X3 'CULTIVATED AREA PER CAPITA (AVERAGE OF FOUR SURVEY ROUNDS)' 
X4 'ZERO-ONE DUMMY FOR PRESENCE OF ELECTRICITY FOR HOUSE' 
X5 'ZERO-ONE DUMMY FOR QUALITY OF FLOORING MATERIALS FOR HOUSE' 
X6 'ZERO-ONE DUMMY FOR QUALITY OF ROOFING MATERIALS FOR HOUSE' 
X7 'ZERO-ONE DUMMY FOR QUALITY OF MATERIALS USED FOR HOUSE WALLS' 
X8 'AGE OF HEAD OF HOUSEHOLD (IN MONTHS)' 
X9 'NUMBER OF HOUSEHOLD MEMBERS' 
XI0 'LOG OF HHOLD TOTAL EXPENDITURES,WK,CAP 11984 PESOS, ROUND)' 
XI1 'VALUE OF ALL ASSETS (1984 PESOS; AVERAGE OF ROUNDS 1 AND 4) ' 
XI2 'OWNED AREA PER CAPITA (AVERAGE OF FOUR SURVEY ROUNDS)' 
X13 'MUNICIPAL POPULATION DENSITY (PERSONS PER SQUARE KILOMETER)' 
X14 'YEARS IN SCHOOL, HEAD OF HOUSEHOLD' 
X15 'YEARS IN SCHOOL, SPOUSE OF HEAD OF HOUSEHOLD' 
Dl ' %  OF HH THAT ARE FEMALES < OR EQUAL TO 5 YRS OF AGE' 
D2 ' %  OF HH THAT ARE FEMALES > 5 YRS AND < OR = TO 11 YRS OF AGE' 
D3 ' %  OF HH THAT ARE FEMALES > 11 YRS AND < OR = 17 YRS OF AGET 
D4 ' 8  OF HH THAT ARE FEMALES > 17 YRS OF AGE' 
D5 ' %  OF HH THAT ARE MALES < OR EQUAL TO 5 YRS OF AGE' 
D6 ' %  OF HH THAT ARE MALES > 5 YRS AND < OR = TO 11 YRS OF AGE' 
D7 ' %  OF HH THAT ARE MALES > 11 YRS AND < OR = TO 17 YRS OF AGE' 
08 ' %  OF HH THAT ARE MALES > THAN 17 YRS OF AGE' 
RD1 'ZERO-ONE DUMMY FOR FIRST ROUND SURVEY' 
RD2 'ZERO-ONE DUMMY FOR SECOND ROUND SURVEY' 
RD3 'ZERO-ONE DUMMY FOR THIRD ROUND SURVEY'. 

SAV OUT = 'DATA.SYS1. 
N 10. 
FORMATS ALL (F6.2). 
LIST Y1 XI X2 X3 X4 X5. 
FINISH. 



3b--For fixed format 

SET MORE OFF. 
SET LIS='READFIXD.LIS1. 
SET LOG='READFIXD.LOG1. 
........................................................ 
* PROGRAM: READFIXD.SPS SOFTWARE: SPSS/PC+ 4.01 * 
* FILENAME DESCRIPTION * 
* INPUTS: DATA-ASC ASCII FILE * 
* OUTPUTS: DATA-SYS SPSS/PC+ SYSTEM FILE * 
* PURPOSE: READ ASCII DATA FILE INTO SPSS/PC+ * 
* SYSTEM FILE. THIS PROGRAM ASSUMES THE * 
* DATA ARE IN FIXED FORMAT. VARIABLES TO BE* 
* READ IN MUST BE IDENTIFIED BY A NAME * 
* AND COLUMN LOCATION; SUBSEQUENT Records * 
* ARE DENOTED BY A "/" . * 
........................................................ 
DATA LIST FIXED FILE= 'DATA.ASC1 

/X1 1-8 X2 10-17 X3 19-26 X4 28-35 Dl 37-44 D3 46-53 D2 55-62 
D4 64-71 

/D5 1-8 D7 10-17 D6 19-26 D8 28-35 X5 37-44 X6 46-53 X7 55-62 
X8 64-71 

/Y1 1-8 X9 10-17 XI0 19-26 Y2 28-35 XI1 37-44 XI2 46-53 XI3 55-59 
RD1 61-68 RD2 70-77 

/RD3 1-8 X14 10-17 X15 19-26. 
VARIABLE LABEL 
Y1 'HH CALORIE INTAKE, CAPITA, DAY (24-HOUR RECALL DATA)' 
Y2 'HH CALORIE INTAKE, CAPITA, DAY (FOOD EXPENDITURE DATA)' 
X1 'RETAIL PRICE OF SHELLED CORN,KG (1984 PESOS; AVERAGE,BARRIO)' 
X2 'RETAIL PRICE OF MILLED RICE,KG (1984 PESOS; AVERAGE,BARRIO)' 
X3 'CULTIVATED AREA PER CAPITA (AVERAGE OF FOUR SURVEY ROUNDS)' 
X4 'ZERO-ONE DUMMY FOR PRESENCE OF ELECTRICITY FOR HOUSE' 
X5 'ZERO-ONE DUMMY FOR QUALITY OF FLOORING MATERIALS FOR HOUSE' 
X6 'ZERO-ONE DUMMY FOR QUALITY OF ROOFING MATERIALS FOR HOUSE' 
X7 'ZERO-ONE DUMMY FOR QUALITY OF MATERIALS USED FOR HOUSE WALLS' 
X8 'AGE OF HEAD OF HOUSEHOLD (IN MONTHS)' 
X9 'NUMBER OF HOUSEHOLD MEMBERS' 
XI0 'LOG OF HHOLD TOTAL EXPENDITURES,WK,CAP (1984 PESOS, ROUND)' 
XI1 'VALUE OF ALL ASSETS (1984 PESOS; AVERAGE OF ROUNDS 1 AND 4)' 
X12 'OWNED AREA PER CAPITA (AVERAGE OF FOUR SURVEY ROUNDS)' 
X13 'MUNICIPAL POPULATION DENSITY (PERSONS PER SQUARE KILOMETER)' 
X14 'YEARS IN SCHOOL, HEAD OF HOUSEHOLD' 
XI5 'YEARS IN SCHOOL, SPOUSE OF HEAD OF HOUSEHOLD' 
Dl ' %  OF HH THAT ARE FEMALES < OR EQUAL TO 5 YRS OF AGE' 
D2 ' %  OF HH THAT ARE FEMALES > 5 YRS AND < OR = TO 11 YRS OF AGE' 
D3 ' %  OF HH THAT ARE FEMALES > 11 YRS AND < OR = 17 YRS OF AGE' 
D4 ' %  OF HH THAT ARE FEMALES > 17 YRS OF AGE' 
D5 ' %  OF HH THAT ARE MALES < OR EQUAL TO 5 YRS OF AGE' 
D6 ' %  OF HH THAT ARE MALES > 5 YRS AND < OR = TO 11 YRS OF AGE' 
D7 ' %  OF HH THAT ARE MALES > 11 YRS AND < OR = TO 17 YRS OF AGE' 
D8 ' %  OF HH THAT ARE MALES > THAN 17 YRS OF AGE' 
RD1 'ZERO-ONE DUMMY FOR FIRST ROUND SURVEY' 
RD2 'ZERO-ONE DUMMY FOR SECOND ROUND SURVEY' 
RD3 'ZERO-ONE DUMMY FOR THIRD ROUND SURVEY'. 
SAV OUT = 'DATA.SYS1. 
N 10. 
FORMATS ALL ( F6.2 ) . 
LIST Y1 X1 X2 X3 X4 X5 



WRITING DATA Sometimes it is necessary to write data from a software data set to an 

TO ASCII ASCII (text) data set. Typically, this is done to transfer the data into a 
different software package. It is becoming more and more easy, however, 
to translate software data sets into a data set in different software 

SOFTWARE without converting the data through ASCII (that is, without writing to 
DATA SET ASCII from one software package and then reading the data into another 

software package). DBMSCopy is an example of software that performs 
such conversions directly. SAS PC and GAUSS-386 permit the user to 
write data out in free or fned formats. SAS PC has programmed this 
option into its commands; GAUSS-386 requires the user to specify the 
format. SPSS/PC+ automatically writes the data out with each variable 
in a fixed position for each case, with each variable separated from other 
variables by at least one space. Thus, only one program for SPSS/PC+ 
(mTRITASCI.SPS) has been included since this will create an ASCII file 
that is, in effect, both in a fixed and free format. There is more than one 
way to write a GAUSS program, but only one is included here. Figures 
4,5, and 6 are sample programs for writing data to an ASCII data set, for 
GAUSS-386, SAS PC, and SPSS/PC+, respectively. 

Figure 4--Sample programs for writing data to an ASCII data set, in GAUSS-386 

........................................................ 
* PROGRAM: WRITASC1.G SOFTWARE: GAUSS-386 v3.0 * 
* FILENAME DESCRIPTION * 
* INPUTS: DATA.DAT * 
* OUTPUTS : DATA2. ASC ASCII FILE * 
* PURPOSE: CONVERT THE GAUSS-386 DATA SET DATA TO * 
* THE ASCII FILE DATA2.ASC. * 
........................................................ 

FORMAT /RD 12,6; 
OUTWIDTH 132; 

OUTPUT FILE = DATA2 .ASC RESET; 
SCREEN OFF; 

NAMES = GETNAME ( "DATA" ) ; 
OPEN D = DATA. DAT; 
NCASE = ROWSF(D); 
DATA = READR ( D, NCASE ) ; 
/* PRINT $NAMES1;; WILL ADD THE VARIABLE NAMES TO THE BEGINNING 

OF THE FILE. * /  
PRINT DATA; 

OUTPUT FILE = DATA2 .ASC OFF; 

SYSTEM; 



Figure &Sample programs for writing data to an ASCII data set, in SAS PC 

5a-For free form 

......................................................... 
* PROGRAM: WRITFREE.SAS SOFTWARE: SAS PC 6.04 * 
* FILENAME DESCRIPTION * 
* INPUTS: DATA.SSD SAS PC FILE * 
* OUTPUTS: DATA2.ASC ASCII FILE * 
* PURPOSE: WRITE AN ASCII FILE FROM A SAS PC SYSTEM * 
* FILE. THIS PROGRAM WRITES THE DATA IN FREE* 
* FORMAT (AT LEAST ONE SPACE BETWEEN * 
* VARIABLES) TO A NEW ASCII FILE. * 
......................................................... 

LIBNAME CDRV 'C:\DATAt; 

DATA -NULL-; 
SET CDRV . DATA; 
FILE 'C:\DATA\DATA2.ASCt; 
PUT X1 X2 X3 X4 Dl D3 D2 D4 D5 D7 D6 D8 X5 X6 X7 X8 Y1 X9 XI0 Y2 

XI1 XI2 X13 RD1 RD2 RD3 X14 X15; 
RUN; 

5 b F o r  fixed form 

........................................................ 
* PROGRAM: WRITFIXD. SAS SOFTWARE: SAS PC 6.04 * 
* FILENAME DESCRIPTION * 
* INPUTS: DATA.SSD SAS PC FILE * 
* OUTPUTS: DATA2.ASC ASCII FILE c 

* PURPOSE: WRITE AN ASCII FILE FROM A SAS PC SYSTEM * 
* FILE. THIS PROGRAM WRITES THE DATA IN * 
* FIXED FORMAT (EACH VARIABLE APPEARS IN * 
*. SAME COLUMN ON EACH CASE). THE '/I * 
* INDICATES WRITE TO A NEW LINE. * 
........................................................ 

LIBNAME CDRV 'C:\DATAt; 

DATA -NULL-; 
SET CDRV-DATA; 
FILE C: \DATA\DATA2 .ASC ; 
PUT 

X1 1-8 X2 10-17 X3 19-26 X4 28-35 
Dl 37-44 D3 46-53 D2 55-62 D4 64-71 

/ D5 1-8 D7 10-17 D6 19-26 D8 28-35 
X5 37-44 X6 46-53 X7 55-62 X8 64-71 

/ Y1 1-8 X9 10-17 XI0 19-26 Y2 28-35 
XI1 37-44 X12 46-53 XI3 55-59 RD1 61-68 RD2 70-77 

/ RD3 1-8 X14 10-17 X15 19-26; 
RUN; 



Figure 6--Sample programs for writing data to an ASCII data set, in SPSS/PC+ 

SET MORE OFF. 
SET LIS='WRITASCI.LISr. 
SET LOG='WRITASCI.LOGr. 
........................................................ 
* PROGRAM: WRITASCI.SPS SOFTWARE: SPSS/PCt 4.01 * 
* FILENAME DESCRIPTION * 
* INPUTS: DATA.SYS SPSS/PCt FILE * 
* OUTPUTS: DATA2.ASC ASCII FILE * 
* PURPOSE: WRITE AN ASCII FILE FROM AN SPSS/PCt * 
* SYSTEM FILE. * 
........................................................ 

* NOTE: THIS PROGRAM WRITES THE DATA IN FIXED FORMAT (EACH 
c VARIABLE APPEARS IN THE SAME COLUMN FOR EACH CASE) 
* SPECIFIED BY SPSS/PCt. SINCE SPSS/PC+ ADDS A SPACE BETWEEN 
* EACH FIELD, THIS ASCII FILE IS ALSO IN FREE FORMAT. 

GET FILE='DATA.SYST. 
SET RESULTS='DATA2 .ASC' . 
FORMATS ALL (F9.5). 
WRITE /VARIABLES=XI X2 X3 X4 Dl D3 D2 D4 D5 D7 D6 D8 X5 X6 X7 X8 

Y1 X9 XI0 Y2 XI1 X12 X13 RDI RD2 RD3 X14 X15. 
FIN1 SH . 

EXERCISE: The first step in any econometric work is to ensure that the data has 

READING DATA been correctly read and that the investigator can replicate any known 
sample statistics. This section provides three programs for reading the 

AND data and replicating the sample statistics presented in Table 2. It is 
REPLICATING assumed in each case that an appropriate program has been run to 

TABLE 2 convert the file DATA.ASC to a data set corresponding to the software 
being used. 

In the GAUSS-386 program (Figure 7), notice the use of the 
GETNAME command to create a vector of names associated with the 
columns of the data set. This vector is useful to have for reporting results 
that are associated with particular variable names. Note also the use of 
the VARINDXI option in the OPEN DATA command. VARINDXI creates 
indices of the form I N M  that associate columns of the data set with 
the variable names. These are useful for designing data vectors and 
matrices. For example, if you wish to create a vector of data for the 
variable, Y1, you only need to use Y1 = DATA[.,IYl]. 

For SPSS/PC+ (Figure 8), the descriptive statistics are reported in 
STATS.LIS (as specified). In SAS PC (Figure 9), the descriptive statistics 
are reported in STATS.LST (default), and in GAUSS-386, the descriptive 
statistics are reported in STATS.OUT (as specified). 



Figure 7-Sample program for reading data and reporting descriptive statistics, in GAUSS-386 

* PROGRAM: STATS.G SOFTWARE: GAUSS-386 V3.0 * 
* FILENAME DESCRIPTION * 
* INPUT: DATA.DAT GAUSS-386DATASET * 
* PURPOSE: COMPUTE SUMMARY STATISTICS TO COMPARE * 
* WITH TABLE 2. * 
......................................................... 

I OUTPUT FILE = STATS-OUT ON; 

@ - - - - - - - - CREATE A VECTOR THAT CONTAINS THE VARIABLE - - - - - - - - @ 
@ - - - - - - - - NAMES ASSOCIATED WITH THE COLUMNS OF DATA. - - - - - - - @ 
@ - - - - - - - - ALSO CREATE A SET OF INDICES (VARINDXI) - - - - - - - - @ 
@ - - - - - - - - KEYED TO THE NAMES AND COLUMNS. - - - - - - - - @ 
@ - - - - - - - - THESE ARE USEFUL IN DESIGNING DATA MATRICES - - - - - - - - @ 
@ - - - - - - - - AND IN REPORTING RESULTS, AS IS ILLUSTRATED - - - - - - - - @ 
@ - - - - - - - - IN SUBSEQUENT PROGRAMS. -------- @ 

NAMES = GETNAME ( "DATA" ) ; 
OPEN D = DATA VARINDXI; 
N = ROWSF(D); 
DATA = READR(D,N); 
F = CLOSE(D); 

M = MEANC ( DATA ) ; 
S = STDC(DATA1; 
MI = MINC(DATA); 
MA = MAXC ( DATA ) ; 
PR = M I - M A - M - S ;  

I = ROWS (PR) ; 

@ MEANS OF COLUMNS OF DATA @ 
@ STD DEVS OF COLUMNS @ 
@ MIN VALUE IN EACH COLUMN @ 
@ MAX VALUE IN EACH COLUMN @ 
@ CONCATENATE RESULTS FOR @ 
@ PRINTING @ 

@ - - - - - - - - THE FOLLOWING LINES FORMAT THE OUTPUT. - - - - - - - - @ 

91 I ,  . 
II SUMMARY STATISTICS FOR DATA SET "; 

11 I, . 
FORMAT /M2 /RD 6,O; 
II SAMPLE SIZE: N =";; N; 
I, ( 1  . 
11 I, . 
" VARIABLE MINIMUM MAXIMUM MEAN STD DEV"; 
9, 11 . 

I = 1; 
DO WHILE I <= K; 
FORMAT /M1 /RD 12,8; $NAMES[I, -1;; FORMAT /M1 /RD 12,5; PR[I,.]; 

= I t l ;  

FILE = STATS. OUT OFF; 
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Figure 8--Sample program for reading data and reporting descriptive statistics, in SAS PC 

........................................................ 
* PROGRAM: STATS-SAS SOFTWARE: SAS PC 6.04 * 
* FILENAME DESCRIPTION * 
* INPUTS: DATA-SSD TEST DATA SET * 
* PURPOSE: COMPUTE SLPNARY STATISTICS TO COMPARE * 
* WITH TABLE 2. * 
........................................................ 

LIBNAME CDRV 'C:\DATA\'; 

PROC MEANS DATA=CDRV.DATA; 
VAR Y1 Y2 
X1 X2 X3 X4 X5 X6 X7 X8 X9 XI0 XI1 X12 X13 X14 X15 
Dl D2 D3 D4 D5 D6 D7 D8 
RD1 RD2 RD3; 

RUN; 

Figure %Sample program for reading data and reporting descriptive statistics, in SPSS/PC 

SET MORE OFF. 
SET LIS = 'STATS.LIS1. 
SET LOG = ' STATS . LOG' . 
........................................................ 
* PROGRAM: STATS.SPS SOFTWARE: SPSS/PC+ 4.01 * 
* FILENAME DESCRIPTION * 
* INPUTS: DATA.SYS TEST DATA SET * 
* PURPOSE: COMPUTE SUMMARY STATISTICS TO COMPARE * 
* WITH TABLE 2. * 
........................................................ 

GET FILE = 'DATA.SYSr. 
FORMATS ALL (F9.5). 

DESC Y1 Y2 
X1 X2 X3 X4 X5 X6 X7 X8 X9 XI0 XI1 X12 X13 XI4 X15 
Dl D2 D3 D4 D5 D6 D7 D8 
RD1 RD2 RD3. 

FINISH. 



TESTS FOR 
HETERO- 

The major consequence of heteroskedasticity (nonconstant variance of 
the stochastic disturbance term) is that it causes the OLS estimate of the 
stochastic error variance ( b 2, to be biased, rendering hypothesis tests 
on coefficients invalid. Most tests for heteroskedasticity involve 
examining the regression residuals; the White test involves comparison 
of the OLS coefficient covariance matrix with a heteroskedasticity- 
consistent covariance matrix. The Goldfeld-Quandt, Breusch-Pagan, and 
White tests are described below. These tests are quite general. The White 
test is the most general in the sense that it requires no specification of 
a model of the heteroskedastic error-generating process. The Goldfeld- 
Quandt test requires only that the heteroskedasticity be related to one 
of the regressors; the Breusch-Pagan test requires that it be related to 
some set of regressors. If heteroskedasticity is detected, the usual 
practice is t o  specify a model by which the standard deviation of the 
stochastic disturbance can be estimated at each observation, then used 
in a "weighted least-squares" procedure. White's method produces an 
estimate of the variance-covariance matrix of coefficients that is 
consistent in the presence of heteroskedasticity so that tests on the OLS 
coefficients may be conducted. See the references for details. 

The model is the usual one: 

The hypothesis to be tested is as follows: 

H,,: E[E:]  = u2 (constant variance-no heteroskedasticity); 
HI: E[E:] = oi2 (heteroskedasticity). 

Goldfeld-Quandt Test This older test is only applicable when there is a strong a priori reason 
to believe that the variance of the error term is explicitly related to one 
of the explanatory variables, say Xh. This test comprises the following 
steps: 

Step 1 Reorder the data by magnitude of the observations on 
Xk, from smallest t o  largest. 

Step 2 Partition the ordered data set into three subsets, each 
of size C = N/3. Delete the middle subset, then denote 
the subset with small values of Xk as set 1 and the 
subset with large values of Xk as set 2. 



Step 3 Perform OLS (using all of the regressors in X) on set 
1 and set 2 separately and get the residual sum of 
squares (RSS) from each set. 

Step 4 If set 2 has the higher RSS, the estimated variance of 
the residuals is positively correlated with the size of 
Xk. Calculate @ = RSS2/RSSI. If Set 1 has the higher 
RSS (negative correlation between X and the esti- 
mated variance of the residuals), then calculate @ = 
RSS1/RSS2. The test statistic is 

Compare to standard F-table; if 8' > FrriticoE at the desired level of sig- 
nificance, then reject Ho of homoskedasticity. 

The GAUSS-386 program (Figure 10) produces a Goldfeld-Quandt- 
statistic of 1.5164, with 541 numerator degrees of freedom and 542 
denominator degrees of freedom. The P-value is 0.0000, indicating a 
strong rejection of the hypothesis of no heteroskedasticity. The SAS PC 
(Figure 11) and SPSS/PC+ (Figure 12) F-statistics differ slightly 
(although not enough to alter the conclusions, @ = 1.4972) because the 
programs select slightly different numbers of observations for the lower- 
and upper-thirds of the data set. The sample programs for this section 
use the same basic model that will be used in subsequent sections. It is 
assumed that the error variance is monotonically related to variable X10. 

NOTE: Some authors recommend using relatively large significance 
levels (say, 25 percent to 50 percent) for tests of heteroskedasticity such 
as the Goldfeld-Quandt test since its consequences are severe and 
consistent estimators are readily available. 

Recommended References: Fornby, Hill, and Johnson (1984, 193-194); Goldfeld and 
Quandt (1965, 539-547); Greene (1990, 420); Griffiths, Hill, and Judge (1993, 
498499); Judge et  al. (1984, 449); Kennedy (1985, 97; 1992, 118); Kmenta (1986, 
292-294); Maddala (1988, 164). 



Figure I&Sample program for Goldfeld-Quandt test, in GAUSS-386 

....................................................... 
* PROGRAM: GQTEST-G SOFTWARE: GAUSS-386 V3.0 * 
* FILENAME DESCRIPTION * 
* INPUTS: DATA.DAT GAUSS-386 DATA SET * 
* PURPOSE : PERFORM THE GOLDFELD-QUANDT TEST. * 
....................................................... 

FORMAT /M2 /RD 12,4; 
OUTPUT FILE = GQTEST.OUT RESET; 

NAMES = GETNAME ( "DATA" ) ; 
OPEN D = DATA VARINDXI; 
NCASE = ROWSF (Dl ; 
DATA = READR(D,NCASE); 
F = CLOSE(D); 

@ - - - - - - - ASSUME THAT HETEROSKEDASTICITY IS RELATED TO XI0 -------- @ 
@ - - - - - - - AND SORT ENTIRE DATA SET ACCORDINGLY -------- @ 

DATA = SORTC(DATA,IXlO); 
Y = DATA[.,IYll; 
X = ONES(NCASE,l) - DATA[.,IXl 1x2 1x8 1x9 1x10 1x13 1x14 1x15 

ID1 ID2 ID3 ID5 ID6 ID7 ID8 IRDl IRD2 IRD31; 

NAMES = NAMES[IXl 1x2 1x8 1x9 1x10 1x13 1x14 1x15 
ID1 ID2 ID3 ID5 ID6 ID7 ID8 IRDl IRD2 IRD3, .I; 

@ - - - - - - - - CHOOSE LOWER-THIRD AND UPPER-THIRD DATA SUBSETS -------- @ 

NL = FLOOR(NCASE/3); 
Y L = Y[l:NL,.]; 
XL = X[l:NL,.]; 
NL = ROWS(XL); 

NU = FLOOR(2*NCASE/3) + 1; 
YU = Y [NU:NCASE, . I  ; 
XU = X[NU:NCASE,.]; 
NU = ROWS(XU); 

@ - - - - - - - - OLS REGRESSIONS ON DATA SUBSETS - - - - - - - - @ 

K = COLS (XL) ; 
BL = INV(XL'XL)*XLtYL; @ BETAS @ 
E = YL - XL*BL; @ RESIDUALS @ 
RSSL = E'E; @ RESIDUAL SUM OF SQUARES @ 
SER = SQRT ( INV (NL-K) *RSSL ) ; @ STD ERROR OF REGRESSION @ 
RSQ = 1 - RSSL/((NL-I)*(STDC(YL))~Z); @ R-SQUARED @ 
COV = INV(NL-K)*RSSL*INV(XL'XL); @ COV MATRIX OF BETAS @ 
SE = SQRT(DIAG(C0V) ) ;  @ STD ERRS OF BETAS @ 

T = BL ./ SE; @ T-STATISTICS @ 

PT = Z*CDFTC(ABS(T),(NL-K)); @ P-VALUES @ 

PRN = BL - SE - T - PT; @ FOR PRINTING @ 
I, I t  . 
I, It  . 
9 ,  91 . 
" OLS RESULTS FOR LOWER DATA SUBSET "; 
11 91  . 
It 11 . 

(continued) 



Figure 18-Continued 

" NUMBER OF OBSERVATIONS = II . . .. NL; 
1, 11 . 
" STANDARD ERROR OF REGRESSION = ,I . . .. SER; 
1, I, . 
" RESIDUAL SUM OF SQUARES = ,I . . , , RSSL; 
I, I, . 
" R-SQUARED = II r . r . RSQ; 
*t 1, . 
II 11 . 
" VARIABLE COEFF STD ERROR T-RATIO P-VALUE " ; 
*I ,I . 
" INTERCEPT";; PRN[l,.]; 
I = 1; 
DO WHILE I <= K-1; 
FORMAT /MI /RD 12,8; $NAMES[I,.];; FORMAT /M1 /RD 12,4; PRN[I+l,.]; 
I = I + 1 ;  

ENDO; 
I t  I, . 
lI\fl.; 

K = COLS(xV); 
BU = INV(XUIXU)*XU'YU; @ BETAS @ 
E = YU - XU*BU; @ RESIDUALS @ 
RSSU = E'E; @ RESIDUAL SUM OF SQUARES @ 
SER = SQRT(IMV(NU-K)*RSSUI; @ STD ERROR OF REGRESSION @ 
RSQ = 1 - RSSU/((NU-l]*(STDC(W))"2); @ R-SQUARED B 
COV = INV(NU-K)+RSSU*INV(XU1XU); @ COV MATRIX OF BETAS @ 
SE = SQRT(DIAG(C0V)); (? STD ERRS OF BETAS @ 
T = BU ./ SE; @ T-STATISTICS @ 
PT = 2*CDFTC(ABS (T) , (NU-K1 ) ; @ P-VALUE @ 
PRN = BU - SE - T  - PT; @ FOR PRINTING @ 

I t  11 . 
,I I ,  . 
I, 8 ,  . 
'' OLS RESULTS FOR UPPER DATA SUBSET "; 
t1 I t .  

11 11 . 
" NUMBER OF OBSERVATIONS = I , .  . . . NU; 
I, ,I . 
" STANDARD ERROR OF REGRESSION = ";; SER; 
I, I , .  

" RESIDUAL SUM OF SQUARES = $ 9  . . ,, RSSU; 
I ,  I,. 

" R-SQUARED = 11 . . . . RSQ; 
I ,  I, . 
1, I, . 
" VARIABLE COE FF STD ERROR T-RATIO P-VALUE" ; 
3 ,  I , .  

" IIITERCEPT";; PRtlIl,.]; 

I = 1; 
DO WHILE I <= K-1; 
FOKt?AT /P41 /RD 12,8; $PIAE4ES[I,.];; FORMAT /M1 /RD 12,4; PRN[I+l,.]; 

I = I + 1; 
EI4DO; 

(continued) 



Figure 10-Continued 

I @ - - - - - - - - CALCULATION OF G/Q TEST STATISTIC - - - - - - - - @ 

IF RSSL <= RSSU; 
F = RSSU/RSSL; 
NDF = NU-K; 
DDF = NL-K; 

ELSE; 
F = RSSL/RSSU; 
NDF = NL-K; 
DDF = NU-K; 

ENDIF; 
PROB = CDFFC (F, NDF, DDFI ; 

GOLDFELD/QUANDT RESULTS "; 
I, ,I . 
I, 1, . 
" NUMBER OF OBSERVATIONS IN LOWER DATA SET =";; NL; 
" NUMBER OF OBSERVATIONS IN UPPER DATA SET =";; NU; 
11 I t  . 
" RESIDUAL SUM OF SQUARES FOR LOWER REGRESSION =";; RSSL; 
" RESIDUAL SUM OF SQUARES FOR UPPER REGRESSION =";; RSSU; 
1, I, . 
" G/Q F-STATISTIC = ";; F;; " P-VALUE ="; ; PROB; 

1 OUTPUT FILE = GQTEST. OUT OFF; 



Figure I I-Sample program for Goldfeld-Quandt test, in SAS PC 

........................................................ 
* PROGRAM: GQTEST.SAS SOFTWARE: SAS PC 6.04 * 
* FILENAME DESCRIPTION * 
* INPUTS: DATA.SSD TEST DATA SET * 
* PURPOSE: PERFORM GOLDFELD-QUANDT TEST. *. 

........................................................ 

LIBNAME CDRV c : \DATA\ ; 

* WE SUSPECT THAT THE VARIANCE OF THE DISTURBANCE TERM IS RELATED TO X10; 

* PROC RANK CREATES A NEW VARIABLE (RX10) WITH VALUES OF 0, 1, OR 2 
* CORRESPONDING TO THREE EQUAL GROUPS; 

PROC RANK DATA=CDRV.DATA OUT=DRANK GROUP=3; 
VAR XIO; 
RANKS RX10; 

RUN; 

PROC REG DATA=DRANK; 
WHERE RXlO = 0; 

MODEL Yl=Xl X2 X8 X9 XI0 X13 XI4 X15 Dl D2 D3 D5 D6 D7 D8 RD1 RD2 RD3; 
RUN; 

PROC REG DATA=DRANK; 
WHERE RXlO = 2; 
MODEL Yl=X1 X2 X8 X9 XI0 X13 X14 X15 Dl D2 D3 D5 D6 D7 D8 RD1 RD2 RD3; 

RUN; 

* TEST STATISTIC CALCULATION FROM OUTPUT; 
* RSSl = RESIDUAL SUM OF SQUARES FROM THE FIRST REGRESSION; 
* RSS2 = RESIDUAL SUM OF SQUARES FROM THE SECOND REGRESSION; 
* CONSTRUCT F = RSSl/RSSZ IF RSSl>RSS2, OR F = RSS2/RSS1 IF RSSZ>RSSl; 
* DEGREES OF FREEDOM = ((N-C-2+K)/2), ((N-C-2*K)/2); 
* N=NUMBER OF OBSERVATIONS (1624), C = MIDDLE THIRD OF OBSERVATIONS 
* DROPPED (538); 
* K = NUMBER OF PARAMETERS IN MODEL (19). FOR THIS EXAMPLE, F=1.4972, AND THE 
* NULL HYPOTHESIS OF NO HETEROSKEDASTICITY (WITH RESPECT TO X10) IS REJECTED; 



Figure 12-Sample program for Goldfeld-Quandt test, in SPSS/PC+ 

SET MORE OFF. 
SET LIS = 'GQTEST.LISq. 
SET LOG = 'GQTEST.LOGq. 
........................................................ 
* PROGRAM: GQTEST-SPS SOFTWAFlE: SPSS/PC+ 4.01 * 
* FILENAME DESCRIPTION * 
* INPUTS: DATA.SYS TEST DATA SET * 
* PURPOSE: PERFORM GOLDFELD-QUANDT TEST. * 

GET FILE = 'DATA.SYS' . 

I * WE SUSPECT THAT THE VARIANCE OF THE DISTURBANCE TERM IS RELATED TO X10. 
* RANK CREATES A NEW VARIABLE (RX10) WITH VALUES OF 1, 2, OR 3 
* CORRESPONDING TO THREE EQUAL GROUPS, 

I RANK XlO/NTILE (31 INTO RX10. 
PROCESS IF ( RXlO = 1 ) .  

REGRESSION VARIABLES = Y1 XI X2 X8 X9 XI0 XI3 X14 X15 Dl D2 D3 D5 D6 
D7 D8 RD1 RD2 RD3 

/DEPENDENT=Yl 
/METHOD=ENTER. 

PROCESS IF ( RXlO = 3 ) .  

REGRESSION VARIABLES = Y1 XI X2 X8 X9 XI0 XI3 XI4 X15 Dl D2 D3 D5 D6 
D7 D8 RD1 RDZ RD3 

/DEPENDENT=Yl 
/METHOD=ENTER . 

* TEST STATISTIC CALCULATION FROM OUTPUT. 
* RSSl = RESIDUAL SUM OF SQUARES FROM THE FIRST REGRESSION. 
* RSS2 = RESIDUAL SUM OF SQUARES FROM THE SECOND REGRESSION. 
* CONSTRUCT F = RSSl/RSS2 IF RSSDRSS2, OR F = RSSZ/RSSl IF RSS2>RSSl. 
* DEGREES OF FREEDOM = ((N-C-2*K)/2), ((N-C-Z*K)/Z). 
* N = NUMBER OF OBSERVATIONS (16241, C = MIDDLE THIRD OF OBSERVATIONS 
* DROPPED (538). 
* K = NUMBER OF PARAMETERS IN MODEL (19) ; FOR THIS EXAMPLE, F=1.4 972, AND THE 
* NULL HYPOTHESIS OF NO HETEROSKEDASTICITY (WITH RESPECT TO X10) IS REJECTED. 

Breusch=Pagan Test This test assumes that the disturbance terms, q, are normally and 
independently distributed. Moreover, the variances of E~ are assumed to 
be of the form 8 = f(Za), where Z is a set of p variables (these may be 
a subset of the X variables) thought to influence the heteroskedasticity 
(2 also includes a constant term) and a is a conformable vector of coeffi- 
cients. This test does not depend on the functional form off. The test 
evaluates whether the variables in Z have explanatory power for the 
variation in squared standardized residuals from the original model. 

The model is the usual one: 



The Breusch-Pagan test follows the following steps: 

Step 1 Estimate the model by OLS and save the vector of 
residuals e. 

Step 2 Compute d2 = (1/N)iYei2 and the N X  1 vector v, 
where v = e;/ l3 2. 

Step 3 Specify the variables in Z, regress v on 2, and 
compute the explained sum of squares (ESS, some- 
times called the regression or model sum of squares). 

Step 4 Calculate the statistic Q = ESSI2. Q is asymptotically 
chi-squared (x2) with (P - 1) degrees of freedom. 

Step 5 Compare Q to Xt~t%d value at the desired level of sig- 
nificance. If Q > xWiticab then reject Ho. 

In the sample programs (Figures 13 through 15), the same model is 
used as before and the variables in Z are selected to be identical with 
those in X. The Q value is 68.1561 (P-value = 0.0000) and again, the 
hypothesis of no heteroskedasticity is strongly rejected. 

NOTE: As with the Goldfeld-Quandt test, some writers recommend 
using relatively large significance levels for the Breusch-Pagan test. 

Recomm.ended references: Breusch and Pagan (1979, 1287-1294); Fomby, Hill, and 
Johnson (1984,195-196); Greene (1990,421422); Griffiths, Hill, and Judge (1993, 
498-500); Judge et al. (1984, 446447); Kennedy (1985, 97-98, 108; 1992, 118, 
130-131); Kmenta (1986,294-295); Maddala (1988, 164). 



Figure 13-Sample program for Breusch-Pagan test, in GAUSS-386 

......................................................... 
* PROGRAM: BPTEST.G SOFTWARE: GAUSS-386 V3.0 * 
* FILENAME DESCRIPTION * 
* INPUTS: DATA.DAT TEST DATA SET * 
* PURPOSE: PERFORM BREUSCH-PAGAN TEST. * 
........................................................ 

I FORMAT /M2 /RD 12,4; OUTPUT FILE = BPTEST.OUT RESET; 

NAMES = GETNAME ( "DATA" ) ; 
OPEN D = DATA VARINDXI; 
NCASE = ROWSF(D1 ; 
DATA = READR ( D, NCASE ) ; 
F = CLOSE(D) ; 
Y = DATA[.,IYl]; 
X = ONES(NCASE,l) - DATA[.,IXl 1x2 1x8 1x9 1x10 1x13 1x14 1x15 

ID1 ID2 ID3 ID5 ID6 ID7 ID8 IRDl IRD2 IRD31; 

NAMES = NAMES[IXl 1x2 1x8 1x9 1x10 1x13 1x14 1x15 
ID1 ID2 ID3 ID5 ID6 ID7 ID8 IRDl IRD2 IRD3, .I; 

I@-------- OLS REGRESSION - - - - - - - - @ 

B = INV(XtX) *X'Y; @ OLS BETAS @ 
E = Y - X*B; @ OLS RESIDUALS @ 
RSS = E'E; @ RESIDUAL SUM OF SQUARES @ 
SER = SQRT(INV(NCASE-K)*RSS); @ S.E. OF REGRESSION @ 
RSQ = 1-RSS/((NCASE-l)*(STDC(Y))^2); @R-SQUARED @ 
COV = INV(NCASE - K) *RSS*INV(XtX) ; @ VAR-COV MATRIX OF B @ 
SE = SQRT(DIAG(C0V)); @ S.E. OF B ELEMENTS @ 
T = B ./ SE; @ T-STATISTICS @ 
PT = 2*CDFTC(ABS (T) , (NCASE - K) ) ; @ P-VALUES @ 
PRN = B - S E - T - P T ;  @ FOR PRINTING @ 

* 
@ - - - - - - - - PRINT OLS RESULTS - - - - - - - - @ 

I, 11 . 
I, I, . 
I, ,I . 
tt OLS RESULTS"; 
II I, . 
" NUMBER OF OBSERVATIONS = 'I;; NCASE; 
'I STANDARD ERROR OF REGRESSION = "; ; SER; 
" RESIDUAL SUM OF SQUARES = I* , . r . RSS; 
" R-SQUARED = " ; ; RSQ; 
11 I ,  . 
,I I , .  

" VARIABLE COEFF STD ERROR T-RATIO P-VALUE" ; 
1, I* . 
" INTERCEPT " ; ; PRN [ 1, . I  ; 

I = 1; 
DO WHILE I <= K-1; 
FORMAT /M1 /RD 12,8; $NAMES[I,.l;; FORMAT /M1 /RD 12,4; PRN[I+l,.]; 

I = I + 1 ;  
ENDO; 

(continued) 



Figure 13-Continued 

@ - - - - - - - - CONSTRUCTION OF STANDARDIZED SQUARED RESIDUALS - - - - - - - - @ 

G = (E ." 2)/(INV(NCASE)*E'E); 

I?-------- CHOOSE REGRESSORS THAT EXPLAIN HETEROSKEDASTICITY -------- @ 
@ - - - - - - - - A COMMON CHOICE IS Z = X - - - - - - - - @ 

z = X; 
K = COLS(Z); 
D = INV(ZIZ)*Z'G; @ B-P COEFFICIENTS @ 
E = G - Z*D; @ RESIDUALS FROM AUX REG @ 
RSS = E'E; @ B-P REG RSS @ 
COV = INV(NCASE-K)*RSS*INV(ZIZ); @ COV MATRIX FOR D COEFFS @ 
SE = SQRT(DIAG(C0V)); @ S.E. OF D ELEMENTS @ 
T = D ./ SE; @ T-STATISTICS FOR D @ 
PT = 2*CDFTC(ABS (T) , (NCASE - K) ) ; @ P-VALUES @ 
PRN = D - SE - T - PT; @ FOR PRINTING @ 

GHAT = Z*D; @ FITTED STANDARDIZED @ 
@ SQUARED RESIDUALS @ 

ESS = SUMC( (GHAT - MEANC(GHAT))"2 I ;  @ ESS FROM B-P REGRESSION @ 
Q = ESS/2; @ B-P TEST STATISTIC @ 
PCHI = CDFCHIC ( Q, K 1 ; @ P-VALUE FOR Q @ 

@ - - - - - - - - PRINT B-P REGRESSION AND B-P TEST STATISTIC - - - - - - - - @ 
,I 11 . 
1, ,I . 
I, It . 
I AUXILIARY B-P REGRESSION RESULTS"; 
I, 11 . 
" NUMBER OF OBSERVATIONS = II . . ,, NCASE; 
" EXPLAINED SUM-OF-SQUARES = ";; ESS; 
,I $1 . 
" VARIABLE COEFF STD ERROR T-RATIO P-VALUE" ; 
I t  11 . 
" INTERCEPT " ; ; PRN [ 1, . I ; 

I = 1; 
DO WHILE I <= K-1; 
FORM?iT/Ml /RD12,8; $NAMES[I,.];; FORMAT /M1 /RD12,4; PRN[I+l,.]; 

I = I + 1 ;  
ENDO; 

,1 I,. 

,I I, . 
I, BREUSCH-PAGAN TEST STATISTIC: Q = ";; Q; 
11 11 . 
,1 DEGREES OF FREEDOM = ";; K; 
I, I, . 

P-VALUE ="; ; PCHI; 

"\f"; 

OUTPUT FILE = BPTEST-OUT OFF; 
SYSTEM; 



Figure 14-Sample program for Breusch-Pagan test, in SAS PC 

........................................................ 
* PROGRAM: BPTEST.SAS SOFTWARE: SAS PC 6.04 * 
* FILENAME DESCRIPTION * 
* INPUTS: DATA-SSD TEST DATA SET * 
* PURPOSE: PERFORM BREUSCH-PAGAN TEST. * 
........................................................ 

LIBNAME CDRV 'C:\DATA\'; 

* VARIANCE OF DISTURBANCE TERM THOUGHT TO BE RELATED TO ALL 
* EXPLANATORY VARIABLES; 

PROC REG DATA=CDRV.DATA; 
MODEL Yl=Xl X2 X8 X9 X10 XI3 X14 X15 Dl D2 D3 D5 D6 D7 D8 RD1 RD2 RD3; 
OUTPUT OUT=PRED R=RES; 

RUN; 

DATA E2; 
SET PRED; 
E2 = RES**2; 
CONSTANT = 1; 

PROC SUMMARY DATA=E2; 
VAR E2; 
ID CONSTANT; 
OUTPUT OUT=MEANE2 MEANsMEANE2; 

RUN; 

DATA G; 
MERGE E2 MEANE2; 
BY CONSTANT; 
G = E2/MEANE2; 

I RUN; 
I PROC REG DATA=G; MODEL G=X1 X2 X8 X9 X10 XI3 X14 X15 Dl D2 D3 D5 D6 D7 D8 RD1 RD2 RD3; 
RUN; 

* TEST STATISTIC CALCULATION FROM OUTPUT; 
* FROM THIS REGRESSION GET THE EXPIIAINED SUM OF SQUARES (ESS); 
* (SOMETIMES CALLED THE REGRESSION OR MODEL SUM OF SQUARES); 
* THEN ESS/2 IS DISTRIBUTED CHI-SQUARED WITH P-1 DEGREES; 
* OF FREEDOM, SO COMPARE TO CHI-SQUARED CRITICAL TABLE.; 
* FOR THIS EXAMPLE, P = 19 AND THE CRITICAL VALUE = 28.869.; 
* FOR THIS EXAMPLE, THE CHI-SQUARED TEST STATISTIC IS Q = 68.156.; 
* REJECT NULL HYPOTHESIS OF NO HETEROSKEDASTICITY.; 



Figure 15--Sample program for Breusch-Pagan test, in SPSS/PC+ 

SET MORE = OFF. 
SET LIS = 'BPTEST.LIS1. 
SET LOG = 'BPTEST.LOG1. 
........................................................ 
* PROGRAM: BPTEST-SPS SOFTWARE: SPSS/PC+ 4.01 * 
* FILENAME DESCRIPTION * 
* INPUTS: DATA-SYS TEST DATA SET * 
* PURPOSE : PERFORM BREUSCH-PAGAN TEST. * 
........................................................ 

GET FILE = 'DATA.SYS1 . 

* VARIANCE OF DISTURBANCE TERM THOUGHT TO BE RELATED TO ALL 
* EXPLANATORY VARIABLES. 

REGRESSION VARIABLES = Y1 X1 X2 X8 X9 XI0 XI3 X14 X15 Dl D2 D3 D5 D6 
D7 D8 RD1 RD2 RD3 

/ DEPENDENT=Yl 
/METHOD=ENTER 
/SAVE = RESID(RES1 . 

COMPUTE E2 = RES**2. 
COMPUTE CONSTANT = 1. 
SAVE OUT='E2.SYS1. 

AGGREGATE OUTFILE='MEANEP.SYS' 
/BREAK=CONSTANT 
/MEANE2=MEAN (E2 1 . 

JOIN MATCH FILE='E2.SYS1 
/TABLE='MEANE2.SYS' 
/BY CONSTANT. 

COMPUTE G=(E2/MEANE2). 

REGRESSION VARIABLES = G X1 X2 X8 X9 XI0 X13 X14 X15 Dl D2 D3 D5 D6 
D7 D8 RD1 RD2 RD3 

/DEPENDENT=G 
/METHOD=ENTER. 

* TEST STATISTIC CALCULATION FROM OUTPUT. 
* FROM THIS REGRESSION GET THE EXPLAINED SUM OF SQUARES (ESS) (SOMETIMES 
* CALLED THE REGRESSION OR MODEL SUM OF SQUARES). 
* THEN ESS/2 IS DISTRIBUTED CHI-SQUARED WITH P-1 DEGREES. 
* OF FREEDOM, SO COMPARE TO CHI-SQUARED CRITICAL TABLE. 
* FOR THIS EXAMPLE, P = 19 AND THE CHI-SQUARED CRITICAL VALUE = 28.869. 
* FOR THIS EXAMPLE, THE CHI-SQUARED TEST STATISTIC IS Q = 68.156. 
* REJECT NULL HYPOTHESIS OF NO HETEROSKEDASTICITY. 
FINISH. 

The White Test The presence of heteroskedasticity makes the OLS variance-covariance 
matrix of coefficients inconsistent. White (1980) introduced an estimated 
variance-covariance matrix for the OLS coefficients that is consistent 
under heteroskedasticity. White also introduced a test statistic for 
heteroskedasticity based on the extent to which the OLS variance- 



covariance matrix departs from White's heteroskedasticity-consistent 
covariance matrix. 

One great advantage of White's procedure is that it produces an 
estimator for the variance-covariance matrix of coeff~cients that is con- 
sistent in the presence of heteroskedasticity, so that tests regarding the 
coefficients can be conducted without having to first correct for the 
heteroskedasticity. However, the White test may not be as powerful as 
some alternative tests that use more specific information about the form 
of the heteroskedasticity. 

White's heteroskedasticity-consistent covariance matrix and the 
original form of his test are clearly laid out in several references, 
including those listed below. The test using the full set of explanatory 
variables is only presented in GAUSS-386 (Figure 16). This is because it 
is quite time-consuming to compute White's test manually in SPSS/PC+ 
and SAS PC for anything but a small set of explanatory variables (see 
Figures 17 and 18). While SAS PC has options for computing the 
heteroskedasticity-consistent covariance matrix and White's test auto- 
matically (ACOV SPEC), the SPEC algorithm appears to have a bug that 
a patch could not completely correct. 

The GAUSS-386 program has two parts: first, the heteroskedasticity- 
consistent covariance matrix is computed, then the test for hetero- 
skedasticity is conducted. Note that the investigator must be vigilant t o  
avoid introducing redundancies among the constructed regressors for 
this test, especially if dummy variables are present. 

The procedure for computing the test is as follows: 

Step 1 Perform ordinary least squares on the model, save 
the residual vector e, and construct an N x  1 vector of 
squared residuals, e2. 

Step 2 Compute the squares and cross-products of all 
regressors, deleting all redundancies. The obvious 
redundancies are those produced by the constant 
term and dummy variables. Your final set of 
regressors should include the original variables and 
all nonredundant squares and cross-products. 

Step 3 Regress the squared residuals, e2, on the regressors 
from step 2, using OLS. Retain the R2 from this 
auxiliary regression. 

Step 4 Compute the test statistic, W = N  x  R2 

Step 5 W will be asymptotically distributed x2, with degrees 
of freedom equal to the number of regressors in step 
3. If W > Xt~,i,l, the null hypothesis of no hetero- 
skedasticity is rejected. 

The sample GAUSS-386 program produces the White hetero- 
skedasticity-consistent covariance matrix. Notice that the square roots 
of its diagonal elements are quite different from the OLS standard 



errors; it is expected that a formal test of the differences will find them 
significant. The test statistic, W, is 192.384 (df = 183). The null hypoth- 
esis of no heteroskedasticity is rejected. 

The SAS PC and SPSS/PC+ programs for the reduced explanatory 
variable set produce a test statistic, W = 24.3031 (df = 120). Again, the 
null hypothesis of no heteroskedasticity is rejected. 

Recommended references: Fomby, Hill, and Johnson (1984, 196); Greene (1990, 
403404); Kennedy (1985; 98,108; 1992,90,118,130-131); Kmenta (1986,295-296); 
Maddala (1988, 162); Messer and White (1984, 181-184); White (1980, 817-838). 

Figure 16-Sample program for White test, in GAUSS586 

.......................................................... 
* PROGRAM: WH1TE.G SOFTWARE: GAUSS-386 V3.0 * 
* FILENAME DESCRIPTION * 
* CONSISTENT STANDARD ERRORS * 
* INPUTS: DATA.DAT GAUSS-386 DATA SET * 
* PURPOSE: CONSTRUCT ESTIMATES OF VARIANCE-COVARIANCE * 
* MATRIX THAT ARE CONSISTENT IN PRESENCE OF * P 

* HETEROSKEDASTICITY AND DO WHITE TEST. * 
* THIS PROGRAM RUNS ABOUT AN HOUR ON A 386- * 
* 25 mHz MACHINE WITH 4 MB RAM. IT USES * 
* EXTENDED MEMORY EXTENSIVELY, HENCE ITS * 
* LONG RUN TIME. * 
.......................................................... 

FORMAT /M2 /RD 12,4; 
OUTPUT FILE = WHITE. OUT RESET; 
NAMES = GETNAME ( "DATA" ) ; 
OPEN D = DATA VARINDXI; 
NCASE = ROWSF(D); 
DATA = READR ( D, NCASE ) ; 
F = CLOSE (D) ; 

Y = DATA[.,IYl]; 

X = ONES(NCASE,l) - DATA[.,IXl 1x2 1x8 1x9 1x10 1x13 1x14 1x15 
ID1 ID2 ID3 ID5 ID6 ID7 ID8 IRDl IRD2 IRD31; 

NAMES = NAMES[IXl 1x2 1x8 1x9 1x10 1x13 1x14 1x15 
ID1 ID2 ID3 ID5 ID6 ID7 ID8 IRDl IRD2 IRD3,.]; 

@ - - - - - - - - OLS ESTIMATION - - - - - - - - @ 

K = COLS(X) ; 

B = INV(XIX) *XIY; @ BETAS @ 
E = Y - X*B; @ RESIDUALS @ 
RSS = E'E; @ RESIDUAL SUM OF SQUARES @ 
SER = SQRT (INV (NCASE-K) *RSS) ; @ STD ERROR OF REGRESSION @ 
RSQ = 1 - RSS/((NCASE-~)*(sTDc[Y))*z); @ R-SQUARED @ 
OLSC = INV(NCASE-K)*RSS*INV(XIX); @ OLS COV MATRIX @ 
SE = SQRT (DIAG (OLSC) ) ; @ STD ERRS OF BETAS @ 
T = B ./ SE; @ T-STATISTICS FOR BETAS @ 
PT = 2*CDFTC(ABS (TI, (NCASE-K) ) ; @ P-VALUES @ 
PRN = B - S E - T - P T ;  @ FOR PRINTING @ 

(continued) 



Figure 16--Continued 

I, II . 
" OLS RESULTS "; 
II II . 
11 II . 
" NUMBER OF OBSERVATIONS - I t .  . - , , NCASE; 
11 I8 . 
" STANDARD ERROR OF REGRESSION = ";; SER; 
I t  ( 1  . 
" RESIDUAL SUM OF SQUARES - - 1 1 . .  r ,  RSS; 
I, 11 . 
" R-SQUARED - - 11.. , , RSQ; 
11 ,I . 
" VARIABLE COEFF STD ERROR T-RATIO P-VALUE" ; 
11 II . 
" INTERCEPT "; ; PRN[l, . 1 ; 

I = 1; 
DO WHILE I <= K - 1; 
FORMAT /M1 /RD 12,E; $NAMES[I,.];; FORMAT /M1 /RD 12,4; PRN[I+l,.I; 

I = I + 1 ;  
ENDO; 
I, *f . 
@ - - - - - - - - SQUARE THE RESIDUAL FOR EACH OBSERVATION. - - - - - - - - @ 

S = E ."2; 

@ - - - - - - - - HETEROSKEDASTICITY-CONSISTENT COVARIANCE MATRIX -------- @ 

HETCM = ZEROS(K,K); 

I = 1; 

DO WHILE I <= . NCASE; 

HETCT = S[I,.].*((X[I,.])'(XII,.])); 

HETCM = HETCM + HETCT; 

I = I + 1; 

ENDO; 

HETC = INV[XrX)*HETCM*INV(X'X); 

HSE = SQRT (DIAG (HETC 1 ) ; 

,I II . 
,I I t  . 
" HETEROSKEDASTICITY-CONSISTENT STD ERRS"; HSE; 

I, I, . 
CLEAR HSE HETC HETCM HETCT PRN PT T SE OLSC RSQ SER RSS E B Y; 

@ - - - - - - - - CONSTRUCT VARIABLES FOR WHITE-AUGMENTED - - - - - - - - @ 
@ - - - - - - - - REGRESSION. NOTE THAT REDUNDANCIES - - - - - - - - @ 
@ - - - - - - - - ARE AVOIDED BY FIRST CONSTRUCTING THE - - - - - - - - @ 

@ - - - - - - - - SQUARES AND CROSS-PRODUCTS OF ALL NONDUMMY - - - - - - - - @ 

@ - - - - - - - - VARIABLES, THEN CONCATENATING THE DUMMIES AND - - - - - - - - @ 
@ - - - - - - - - THEIR INTERACTIONS WITH THE REGULAR REGRESSORS. -------- @ 

(continued) 



Figure 16--Continued 

OUTPUT FILE = WHITE-OUT OFF; 

X = X[.,l: [K-3)l; 

K = COLS(X); 

AUGX = X; 

I = 2; 

DO WHILE I <= K; 

AUGX = AUGX - (X[.,I] .* X[.,I:K]); 

"LOOP ="; ; I; 

I = 1 t 1 ;  

ENDO; OUTPUT FILE = WHITE.OUT ON; 

W = AUGX - (DATA[.,IRDlI .* X I  
- (DATA[.,IRDZ] - *  X) 
- (DATA[.,IRD3] .* X);  

CLEAR AUGX X DATA; 

K = COLS(W1; 

D = INV(W'W)*WIS; 

ES = S - W*D; 

CLEAR W; 

RSSW = ES'ES; 

RSQW = 1 - RSSW/((NCAsE-l)*(STDC(S))"2); 

DF = K - 1 ;  

WTEST = NCASE'RSQW; 

PW = CDFCHIC (WTEST, DF) ; 
t, ,I . 
"WTEST =";; WTEST;; " DF ="; ; DF; ; 'I P-VALUE =" ; ; PW; 

"\f"; 

OUTPUT FILE = WHITE.OUT OFF; 
SYSTEM; 



Figure 17-Sample program for White test, in SAS PC 

........................................................ 
* PROGRAM: WHITE. SAS SOFTWARE: SAS PC 6.04 * 
*. FILENAME DESCRIPTION * 
* INPUTS: DATA.SSD TEST DATA SET * 
* PURPOSE: CONSTRUCT ESTIMATES OF VARIANCE- * 
* COVARIANCE MATRIX THAT ARE CONSISTENT * 
* IN PRESENCE OF HETEROSKEDASTICITY, WITH * 
* A REDUCED SET OF EXPLANATORY VARIABLES * 
........................................................ 

LIBNAME CDRV 'C:\DATA\'; 
PROC REG DATA=CDRV.DATA; 

MODEL Yl=Xl X2 X9 X10; 
OUTPUT OUT=RDATA R=RES; 

RUN; 

DATA XRDATA; 
SET RDATA; 
RESSQ = RES**2; 

* EACH VARIABLE SQUARED; 
ZX1 = X1**2; 
zx2 = X2**2; 
ZX9 = X9**2; 
ZXlO = x10**2; 

* INTERACTION WITH XI; 
X1X2 = Xl"X2; 
XlX9 = Xl*X9; 
XlXlO = Xl*XlO; 

* INTERACTION WITH X2; 
X2X9 = X2*X9; 
X2X10 = x2*x10; 

I * INTERACTION WITH X9; X9X10 = X9*X10; 
RUN; 

PROC REG DATA=XRDATA; 
MODEL RESSQ=Xl X2 X9 XI0 

ZX1 2x2 ZX9 2x10 
X1X2 X1X9 XlXlO 
X2X9 X2X10 
X9X10 ; 

RUN; 

* TEST STATISTIC CALCULATION FROM OUTPUT; 
* THE WALD TEST STATISTIC, W, EQUALS R-SQUARED FROM THE SECOND REGRESSION 
* (WHICH CONTAINS THE TRANSFORMATIONS OF X1, X2, X9, AND X10) 
* MULTIPLIED BY THE NUMBER OF OBSERVATIONS USED IN THE REGRESSION. W IS 
* DISTRIBUTED AS CHI-SQUARED WITH K(K+l)/2 DEGREES OF FREEDOM (DF). IF W 
* IS GREATER THAN THE CRITICAL CHI-SQUARED VALUE, THEN THE NULL HYPOTHESIS 
* OF HOMOSKEDASTICITY IS REJECTED.; 

* FOR THIS EXAMPLE N=1624, K=15, R-SQ= 0.01496, AND W=24.295. DF=120. THE 
* NULL HYPOTHESIS OF NO HETEROSKEDASTICITY IS REJECTED.; 



Figure 18-Sample program for White test, in SPSS/PC+ 

SET MORE=OFF. 
SET LIS = 'WHITE.LISt . 
SET LOG = 'WHITE-LOG'. 
........................................................ 
* PROGRAM: WHITE.SPS SOFTWARE: SPSS/PC+ 4.01 * 
* FILENAME DESCRIPTION * 
* INPUTS: DATA.SYS TEST DATA SET * 
* PURPOSE: CONSTRUCT ESTIMATES OF VARIANCE- * 
* COVARIANCE MATRIX THAT ARE CONSISTENT * 
* IN PRESENCE OF HETEROSKEDASTICITY, WITH * 
* A REDUCED SET OF EXPLANATORY VARIABLES * 
........................................................ 

GET FILE = 'DATA.SYS1 . 
REGRESSION VARIABLES = 

Y1 X1 X2 X9 X10 
/DEPENDENT=Y~ 
/METHOD=ENTER 
/SAVE RESID(RES). 

COMPUTE RESSQ = RES**2. 

* EACH VARIABLE SQUARED. 
COMPUTE ZX1 = X1**2. 
COMPUTE ZX2 = X2**2. 
COMPUTE ZX9 = X9**2, 
COMPUTE ZXlO = XlO**2. 

* INTERACTION WITH XI. 
COMPUTE X1X2 = Xl*X2. 
COMPUTE X1X9 = Xl*X9. 
COMPUTE XlXlO = Xl*X10. 

* INTERACTION WITH X2. 
COMPUTE X2X9 = X2*X9. 
COMPUTE X2X10 = X2*X10. 

* INTERACTION WITH X9. 
COMPUTE X9X10 = X9*X10. 

REGRESSION VARIABLES = 

RESSQ X1 X2 X9 XI0 
2x1 ZX2 ZX9 ZXlO 
X1X2 X1X9 XlXlO 
X2X9 X2X10 
X9X10 
/DEPENDENT=RESSQ 
/METHOD=ENTER. 

* TEST STATISTIC CALCULATION FROM OUTPUT. 
* THE WALD TEST STATISTIC, W, EQUALS R-SQUARED FROM THE SECOND REGRESSION 
* (WHICH CONTAINS THE TRANSFORMATIONS OF X1, X2, X9, AND X10) 
* MULTIPLIED BY THE NUMBER OF OBSERVATIONS USED IN THE REGRESSION. W IS 
* DISTRIBUTED AS CHI-SQUARED WITH K(K+1)/2 DEGREES OF FREEDOM [DF). IF W 
* IS GREATER THAN THE CRITICAL CHI-SQUARED VALUE, THEN TKE NULL HYPOTHESIS 
* OF HOMOSKEDASTICITY IS REJECTED. 

* FOR THIS EXAMPLE N = 1624, K = 15, R - SQ = 0.01496, W = 24.295, AND DF = 120. 
* THE NULL HYPOTHESIS OF NO HETEROSKEDASTICITY IS REJECTED. 
FINISH. 



NORMALITY OF If the elements of the disturbance vector are not normally distributed, 

RESIDUALS: THE the OLS estimators for P are still best linear unbiased, but the usual t- 
tests and F-tests are no longer appropriate, and appropriate asymptot- 

JARQUEmBEw ically justified tests should be used. 
TEST The Jarque-Bera test checks whether the skewness (symmetry) and 

kurtosis (fatness of tails) of the distribution of residuals matches the 
skewness and kurtosis expected under the null hypothesis that the 
disturbances are normally distributed. Skewness is measured by JP1 = 
p3/p3'22 and kurtosis is measured by P2 = p4/p;, where estimates of the 
moments pr are given by l/NEe: (r = 2,3,4). Under the null hypothesis 
that the disturbances are normally distributed, PI = 0 and P2 = 3. Thus, 
the null hypothesis is 

Ho: p1 = 0 and p2 = 3. 

The alternative hypothesis is that the disturbances are not normal and 
belong to a class of distributions called the "Pearson family." 

The test statistic is 

where zl and zz are the estimates of and P2, and N is the number of 
observations. q has a X2 distribution with 2 degrees of freedom. Note 
that r l=Oi fz l=Oandz2=3 .  

Construction of the test proceeds by the following steps: 

Step 1 Estimate the model by OLS and save the residual 
vector, e. 

Step 2 Calculate the sample estimates of the second, third, 
and fourth moments of the residuals about their 
mean (which is zero by construction): 

where lu, is the rth moment about the mean and the 
cis are the OLS residuals. Denote these as P2, CL13, P4, 
respectively. 

Step 3 Calculate zl = [f i3/~$~'2]2 and z2 = $4/@-i22- 

Step 4 Calculate q and compare to the critical value at 
desired level of significance with two degrees of 
freedom. If q > X:ri,i,l, then reject the null hypo- 
thesis. This would imply that the disturbance terms 
are not normally distributed. 

For this model, the Jarque-Bera test statistic is 274.2360 (P-value = 
0.0000) and the null hypothesis of normality of disturbance terms is 
rejected. 



Figures 19,20, and 21 are sample programs for the Jarque-Bera test, 
in GAUSS-386, SAS PC, and SPSS/PC+, respectively. 

NOTE: For an additional normality test, see Shapiro and Wilks (1965) 
and Shapiro, Wilks, and Chen (1968). 

Recommended references: Bowman and Shenton (1975, 243-250); Jarque and Bera 
(1981); Kennedy (1992, 79); Kmenta (1986,260-267). 

Figure 19--Sample program for Jarque-Bera test, in GAUSS-386 

(continued) 

........................................................ 
* PROGRAM: JBTEST-G SOFTWARE: GAUSS-386 V3.0 * 
* FILENAME DESCRIPTION * 
* INPUTS: DATA. DAT GAUSS-386 DATA SET * 
* PURPOSE: EXECUTE AND REPORT THE JARQUE-BERA TEST * 
* FOR NORM7lLITY OF DISTURBANCES. * 
........................................................ 

FORMAT /M2 / RD 12,4 ; 
OUTPUT FILE = JBTEST. OUT RESET; 
NAMES = GETNAME ( "DATA" ) ; 
OPEN D = DATA VARINDXI; 
NCASE = ROWSF(D); 
DATA = READR ( D, NCASE ) ; 
F = CLOSE(D); 

Y = DATA[.,IYl]; 

X = ONES(NCASE,l) - DATA[.,IXl 1x2 1x8 1x9 1x10 1x13 1x14 1x15 
ID1 ID2 ID3 ID5 ID6 ID7 ID8 IRDl IRD2 IRD31; 

NAMES = NAMES(IX1 1x2 1x8 1x9 1x10 1x13 1x14 1x15 
ID1 ID2 ID3 ID5 ID6 ID7 ID8 IRDl IRD2 IRDS,.]; 

@ - - - - - - - - OLS ESTIMATION ------- - @ 

K = COLS(X); 

B = INV(X'X)*XIY; @ BETAS @ 
E = Y - X*B; @ RESIDUALS @ 
RSS = E'E; @ RESIDUAL SUM OF SQUARES @ 

SER = SQRT (INV(NCASE-K) *RSS) ; @ STD ERRROR OF REGRESSION @ 
RsQ = 1 - RSS/ ( (NCASE-1) * [STDC(Y) ) n2) ; @ R-SQUARED @ 
COV = INV(NCASE-K) *RSS*INV(XIX) ; @ OLS COVARIANCE MATRIX @ 
SE = SQRT [DIAG (COV) ) ; @ STD ERRS OF BETAS @ 

T = B ./ SE; @ T-STATISTICS FOR BETAS @ 

PT = 2*CDFTC (ABS (T ) , (NCASE-K) ) ; @ P-VALUES @ 
PRN = B - S E - T - P T ;  @ FOR PRINTING @ 

I, ,I . 
1, I, . 
1, ,I . 
" OLS RESULTS "; 
IS I, . 
l, n . 

1 



Figure 19-Continued 

" NUMBER OF OBSERVATIONS - I t .  . - ,, NCASE; 

" STANDARD ERROR OF REGRESSION = "; ; SER; 

" RESIDUAL SUM OF SQUARES - - 1 1 . .  r r  RSS; 

" R-SQUARED - 11 . - RSQ; 
It  1) . 
9, II  . 
" VARIABLE COEFF STD ERROR T-RATIO P-VALUE" ; 
I, I1 . 
" INTERCEPT" ; ;  P R N [ l , . ] ;  

I = 1; 
DO WHILE I <= K -1; 
FORMAT /M1 /RD 1 2 , 8 ;  $NAMES[I , . l ; ;  FORMAT /M1 /RD 1 2 , 4 ;  P R N [ I + l , . ] ;  

= I + 1 ;  
ENDO; 

I@-------- COMPUTATION OF SECOND, THIRD, AND FOURTH MOMENTS - - - - - - - @ 

@ - - - - - - - - OF OLS RESIDUALS ------- @ 

E 2 = EA2; 

E 3  = E"3; 

E4  = EA4; 

l PCH1 

= CDFCHIC (ETA, 2 ) ; 

I, I 1  . 
" JARQUE-BERA STATISTIC ETA =";; ETA; 
( 1  4, . 
" P-VALUE - 1 , .  . , , PCHI; 

OUTPUT FILE = JBTEST.OUT OFF; 

SYSTEM; 



Figure 20--Sample program for Jarque-Bera test, in SAS PC 

........................................................ 
* PROGRAM: JBTEST.SAS SOFTWARE: SAS PC 6.04 * 
* FILENAME DESCRIPTION * 
* INPUTS: DATA.SSD TEST DATA SET * 
* PURPOSE: EXECUTE AND REPORT THE JARQUE-BERA TEST * 
* FOR NORMALITY OF DISTURBANCES. * 
........................................................ 

LIBNAME CDRV 'C:\DATA\'; 
PROC REG DATA=CDRV.DATA; 

MODEL Yl=Xl X2 X8 X9 XI0 X13 X14 XI5 Dl D2 D3 D5 D6 D7 D8 RD1 RD2 RD3; 
OUT PUT OUT= JARQUE R=RES; 

RUN; 

DATA JARQUE2; 
SET JARQUE; 
E2=RES**2; 
E3=RES**3; 
E4=RES**4; 
CONST=l ; 

RUN; 

PROC SUMMARY DATA= JARQUE2 ; 
VAR E2 E3 E4 CONST; 
OUTPUT OUT=RESSUM SUM=SUME2 SUME3 SUME4 NCASE; 

RUN; 

DATA CALC; 
SET RESSUM; 
MUP=SUMEP/NCASE; 
MU3=SUME3/NCASE; 
MU4=SUME4/NCASE; 
Zl = t(MU3)/(MU2**[3/2)))**2; 
Z2 = MU4/ (MU2**2) ; 
ETA = NCASE*((Zl/G)+(((Z2-3)**21/24)); 

RUN; 

PROC PRINT DATA=CALC; 
VAR ETA; 

RUN; 
* TEST STATISTIC CALCULATION FROM OUTPUT. 
* ETA IS THE TEST STATISTIC AND IS DISTRIBUTED AS CHI-SQUARED WITH TWO 
* DEGREES OF FREEDOM. IF ETA IS GREATER THAN THE CRITICAL CHI-SQUARED 
* VALUE, THEN REJECT THE NULL HYPOTHESIS OF NORMALLY DISTRIBUTED RESIDUALS. 
* ETA IN THIS EXAMPLE IS 274.24, WHICH IS LARGER THAN THE CRITICAL CHI- 
* SQUARED VALUE. NORMALITY IS REJECTED.; 



Figure Pi-Sample program for Jarque-Bera test, in SPSS/PC+ 

SET MORE = OFF. 
SET LIS = 'JBTEST.LIS1. 
SET LOG = 'JBTEST.LOG1. 
........................................................ 
* PROGRAM: JBTEST.SPS SOFTWARE: SPSS/PC+ 4.01 * 
* FILENAME DESCRIPTION * 
* INPUTS: DATA.SYS TEST DATA SET * 
* PURPOSE: EXECUTE AND REPORT THE JARQUE-BERA TEST * 
* FOR NORMALITY OF DISTURBANCES. * 
....................................................... 

3ET FILE = 'DATA.SYSt . 
REGRESSION VARIABLES = Y1, X1 X2, X8 X9 X10 X13 X14 X15, 

Dl D2 D3 D5 D6 D7 D8, RD1 RD2 RD3 
/ DEPENDENT=Yl 
/METHOD=ENTER 
/SAVE RESID(RES). 

COMPUTE E2 = RES**2. 
COMPUTE E3 = RES**3. 
COMPUTE E4 = RES**4. 
COMPUTE CONST = 1. 
AGGREGATE OUTFILE = * 

/BREAK=CONST 
/NCASE = NU(RES) 
/SUME2 SUME3 SUME4 = SUM(E2 E3 E4). 

COMPUTE MU2 = SUME2/NCASE. 
COMPUTE MU3 = SUME3/NCASE. 
COMPUTE MU4 = SUME4/NCASE. 
COMPUTE Z1 = ((MU3)/(MU2**(3/2)))**2. 
COMPUTE 22 = MU4/MU2**2. 
COMPUTE ETA = NCASE*((Zl/G)+(((Z2-3)**2)/24)). 
LIST ETA. 
* TEST STATISTIC CALCULATION FROM OUTPUT. 
* ETA IS THE TEST STATISTIC AND IS DISTRIBUTED AS CHI-SQUARED WITH TWO 
* DEGREES OF FREEDOM. IF ETA IS GREATER THAN THE CRITICAL CHI-SQUARED 
* VALUE, THEN REJECT THE NULL HYPOTHESIS OF NORMALLY DISTRIBUTED RESIDUALS. 
* ETA IN THIS EXAMPLE IS 274.24, WHICH IS LARGER THAN THE CRITICAL CHI- 
* SQUARED VALUE. NORMALITY IS REJECTED. 

) FINISH. 

ERRORS 1 N A crucial assumption of the classical linear regression model is that the 

VARIABLES elements of the X matrix of regressors are nonstochastic. If any of the 
regressors are stochastic, then the problem of simultaneity bias or 
endogeneity may be faced. One common source of endogeneity is 
measurement error in the regressors. 

There is little doubt that almost all observed variables are measured 
with error. While the emergence of extensive household surveys repre- 
sents a wealth of information at the level of the household and indi- 
vidual, the possibility and consequences of measurement error in those 
data should be considered. 

This discussion focuses on the simple linear regression model, that is, 
the model with a single regressor. The extension to the multiple regres- 
sion context is straightforward and is illustrated in the sample programs 
(Figures 22 through 24). 



Assume that 

denotes the true model and that both x and y are measured with error. 
Let the errors be p and v, respectively. Assume that the errors are 
normally distributed, with mean zero, and with constant variances so 
that 

vi - N (0, 41, 
and 

Moreover, assume that v and p are uncorrelated with each other and 
are uncorrelated with all elements of x. 

Now write 

and 

* 
Xi = Xi + pi, 

where an asterisk denotes an observed as opposed to  a true value. 
Rewriting equation 1 gives 

where 

If x is measured with error, then the OLS assumption, cov (zu,x*) = 
0, is violated because x* and w both contain p. In fact, the covariance 
between the stochastic regressors, 3G*, and the error term is -pa; (see 
Maddala 1988, 381 for details), and the estimated coefficient on P is 
biased toward zero. 

In the multiple regression framework, the coefficient of the 
erroneously measured regressor is also biased toward zero. In addition, 
the coefficients on the remaining regressors are biased, but establishing 
the signs of the biases is more complicated. 

The consequences of measurement error on y as opposed to x are very 
different. For example, if x is not measured with error, then measure- 
ment error in the dependent variable, y, is merely absorbed into the 
additive error term ( E  + v), which does not violate any of the assump- 
tions of the classical OLS model. 



Below, two tests that examine the importance of measurement error 
in regressors are discussed. 

The Hausman Test The Hausman test takes advantage of the instrumental variables (IV) 
estimator, which (with appropriate instruments) is consistent in the 
presence of measurement error. Under the null hypothesis of no 
measurement error, the IV estimator is consistent but inefficient, while 
OLS is consistent and efficient. The essence of the Hausman test is to 
determine whether the difference between the OLS and N estimators is 
statistically significant. 

Now return to the multiple linear regression model, 

and assume that the kth variable in X is measured with error. As a 
consequence, all elements of the OLS estimator of /3 are biased. 

The Hausman test is implemented by first constructing an IV 
estimator for the model. The existence of a matrix of L additional 
regressors that are highly correlated with Xk but uncorrelated with E is 
assumed. A common method for constructing instruments is to regress 
the matrix X on a set of regressors Z that includes all variables in X 
except Xk and all of the additional regressors in L, so that Z has 
(K + L - 1) regressors. The fitted value of Xk is then used as an 
instrument for Xk. The columns of X excludingXk are simply replizated, 
but the kth column is replaced by fitted values. Call this matrix X. The 
instrumental variables estimator is then 

Let V' = (xX)-', Then a consistent estimator for the asymptotic 
variance-covariance matrix is 

where 

with 

Notice that X is used here rather than 2. By comparison, the OLS 
estimator is Bo, and Vo is defined as ( 2 ~ ) - l .  

The difference between the OLS and IV estimators is defined as 

Finally, the Hausman statistic is defined: 



where b2 may be estimated either from the OLS residuals or from the IV 
residuals, and where qk is the kth element of q and wN- v0lk-' is the kth 
diagonal element of [Vw- ~ ~ 1 - l .  Many presentations of this test statistic 
do not indicate that it is constructed with the subvectors and submatrices 
designated by k. As Griffiths, Hill, and Judge (1993,476) point out, those 
presentations assume that Z and X have no columns in common. When 
they do have columns in common, then the test statistic is constructed 
with the subvectors and submatrices that correspond with the columns 
ofXnot also in Z, namely the kth column that has been replaced by fitted 
values. 

W is asymptotically chi-square, with one degree of freedom. Sample 
values of W that exceed the selected critical value indicate significant 
differences between the OLS and IV estimators, hence indicate the 
presence of measurement error (or other source of endogeneity). Please 
refer t o  the references for cases in which more than one regressor is 
measured with error. 

The Hausman test may be implemented in the following steps: 

Step 1 Regress X on the set of instrumental variables Z and 
retain the fitted values: 

A 

Step 2 Regress y on the set of instruments, X, t o  give 

Step 3 Calculate the Hausman statistic as described above. 

If the Hausman statistic is statistically significant, then reject the 
hypothesis of no endogeneity and use the instrumental variables 
estimates. Otherwise, the OLS estimates are suitable. 

The Hausman-WU An alternative approach to  testing for endogeneity of a single variable in 
Test Xis provided by the Hausman-Wu test: 

Step 1 Regress Xk on the set of instrumental variables Z and 
retain the first-stage residuals: 

Step 2 Add the vector of first-stage residuals to the original 
regression specification, 

where W = [X,e] and 6 = 

Step 3 Estimate this equation by OLS and check whether 
the estimated coefficient on u is zero. If it is statis- 



tically significantly different from zero, then reject 
the hypothesis that Xh is not endogenous. 

Notice that the p estimators obtained here are identical to the IV 
estimators obtained above. Notice also that, to obtain correct IV 
residuals and covariance matrix, the influence of e must be omitted from 
the calculation of s2. The correct covariance matrix is given by s2(W'W)-l. 

Note that the classical distribution theory does not yield the result 
that the t-ratio on the coefficient of interest for the Wu test follows the 
t-distribution with the usual degrees of freedom. The t-ratio in this case 
is asymptotically normally distributed: a z-test (with a statement of 
asymptotic justification) is appropriate. If the same estimators of the 
error variance have been used to  construct the Hausman statistic and the 
Hausman-Wu test, then the square of the t-ratio on the residual e 
identically equals the Hausman statistic. 

Note that using SAS PC or SPSS/PC+ to perform a manual two-stage 
IV or Hausman-Wu estimation does not automatically produce the 
correct variance estimator. 

In GAUSS-386, two sample programs, l3AUSMAN.G and 
HAUSMNWU.G (Figure 22), illustrate the procedures described above. 
In both cases, the programs test whether variable XI0 is correlated with 
the stochastic disturbance terms. For SAS PC and SPSS/PC+, it is 
simpler to use the procedures as indicated in the sample programs, 
HAUSMNWU.SAS and HAUSMNWU.SPS. Notice that the coefficient 
estimates, standard errors, and t-ratios are identical for both types of 
programs (t = 1.6238) and that the Hausman statistic is equal to the 
square of the t-ratio on the residual u of the Hausman-Wu technique 
(W = 2.637). The null hypothesis of no endogeneity of XI0 cannot be 
rejected at the 5 percent level. 

Recommended refernces: Berndt (1991,379380); Greene (1990,303); Griffiths, Hill, 
and Judge (1993,458476); Hausman (1978); Kennedy (1985, 71,80, 119, 138, 187; 
1992,135,148,169-170); Kmenta (1986,365); Maddala (1988,435441). 



Figure 22--Sample programs for Hausman test and Hausman-Wu test, in GAUSS-386 

22a-HAUSMAN.G program 

........................................................ 
* PROGRAM: HAUSMAN. G SOFTWARE: GAUSS-386 V3.0 * 
* FILENAME DESCRIPTION * 
* INPUTS: DATA.DAT GAUSS-386 DATA SET * 
* PURPOSE: PERFORM OLS AND IV ESTIMATION, THEN * 
* COMPARE THEM VIA THE HAUSMAN TEST TO * 
* CHECK FOR EVIDENCE OF MEASUREMENT ERROR. * 
........................................................ 
FORMAT /M2 /RD 12,4; 
OUTPUT FILE = HAUSMAN-OUT RESET; 
NAMES = GETNAME ( "DATA" 1 ; 
OPEN D = DATA VARINDXI; 
NCASE = ROWSF(D); 
DATA = READR (D, NCASE) ; 
F = CLOSE(D); 
Y = DATA[.,IYl]; 

XO = ONES[NCASE,l) - DATA[.,IXl 1x2 1x8 1x9 1x13 1x14 1x15 
ID1 ID2 ID3 ID5 ID6 ID7 ID8 IRDl IRD2 IRD31; 

NAMESX = NAMES[IXl 1x2 1x8 1x9 1x13 1x14 1x15 
ID1 ID2 ID3 ID5 ID6 ID7 ID8 IRDl IRD2 IRD3,.]; 

XI0 = DATA[.,IX101; 

20 = DATA[.,IX$ 1x5 1x6 1x7 1x11 1x12 I; 

NAMESZ = NAMES[IX4 1x5 1x6 1x7 1x11 IX12,.]; 

@ - - - - - - - - OLS ESTIMATION 

X = xo-XlO; 
NAMESX = NAMESX I "X10"; 

K = COLS(X); 

B = INv(XIX)*X'Y; @ BETAS @ 

E = Y - X*B; @ RESIDUALS @ 
RSS = E'E; @ RESIDUAL SUM OF SQUARES @ 

SOLS = INV (NCASE-K) *RSS; @ LS ERROR VARIANCE @ 
SER = SQRT ( SOLS) ; @ STD ERROR OF REGRESSION @ 

RSQ = 1 - RSS/((NCASE-l)*(STDC(Y))"2); @ R-SQUARED @ 
COV = INV(NCASE-K)*RSS*INV(XIX); @ OLS COVARIANCE MATRIX @ 

SE = SQRT(DIAG(C0V)); @ STD ERRS OF BETAS @ 
T = B ./ SE; @ T-STATISTICS FOR BETAS @ 

PT = 2*CDFTC(ABS (T) , (NCASE-KI ) ; @ P-VALUES @ 
PRN = B - S E - T - P T ;  @ FOR PRINTING @ 

BOLS = B; 
COVOLS = cov; 

11 I, . 
1, II . 
11 1, . 
" OLS RESULTS "; 

(continued) 



I1  1, . 
3 ,  11 . 
" NUMBER OF OBSERVATIONS - 1 1 . .  - , , NCASE; 

" STANDARD ERROR OF REGRESSION = ";; SER; 
" RESIDUAL SUM OF SQUARES - 1, - ;; RSS; 

" R-SQUARED - - 1 1 . .  ,, RSQ; 
I1  I, . 
I ,  1, . 
" VARIABLE COE FF STD ERROR T-RATIO P-VALUE " ; 
II 1 1 .  

" INTERCEPT " ; ; PRN [I, . I ; 

I = 1; 
DO WHILE I <= K -1; 
FORMAT /M1 /RD 12,8; $NAMESX[I,.I;; FORMAT /M1 /RD 12,4; PRN[I+l,.]; 

I = 1 + 1 ;  
ENDO; 
, l \  fll ; 

@ - - - - - - - - INSTRUMENTAL VARIABLES ESTIMATION - - - - - - - - @ 

Z = XO - ZO; @ NOTE THAT Z HAS ZO @ 
@ AND ALL X EXCEPT X10 @ 

K = COLS(X); 

PZX = INV(X'Z*INV(Z'Z)*Z'X); @ X, Z PROJECTION INV @ 
BIV = PZX*X'Z*INV(Z'Z)*ZIY; @ IV ESTIMATOR @ 

E = Y - X*BIV; @ RESIDUALS (3 
RSS = E'E; @ RESIDUAL SUM OF SQUARES @ 
SIV = INV(NCASE-K)*RSS; @ IV ERROR VARIANCE @ 
SER = SQRT(INV(NCASE-K)*RSS); @ STD ERROR OF REGRESSION @ 
RSQ = 1 - RSS/((NCASE-l)*(STDC(X10))"2); @ R-SQUARED @ 
COV = INV(NCASE-K) *RSS*PZX; @ IV COVARIANCE MATRIX @ 
SE = SQRT(DIAG(C0V)); @ STD ERRS OF BETAS @ 
T = BIV ./ SE; @ T-STATISTICS FOR BETAS @ 
PT = 2*CDFNC(ABS(T)); @ P-VALUES @ 
PRN = BIV - SE - T - PT; @ FOR PRINTING @ 

II ,* . 
11 I,. 

I t  I, . 
" INSTRUMENTAL VARIABLES RESULTS " ; 
11 I t  . 
*I 9, . 

" NUMBER OF OBSERVATIONS - T , . .  - , , NCASE; 

" STANDARD ERROR OF REGRESSION = ";; SER; 
" RESIDUAL SUM OF SQUARES - I1 - ;; RSS; 

" R-SQUARED - - n.. r r RSQ; 
1, I, . 
I* I, . 
" VARIABLE COEFF STD ERROR ASY Z -RATIO P-VALUE" ; 
I* I, . 
" INTERCEPT " ; ; PRN [ 1, . I ; 

I = 1; 

(continued) 



DO WHILE I <= K - 1; 
FORMAT /M1 /RD 12,8; $NAMESX[I,.];; FORMAT /M1 /RD 12,4; PRN[I+l,.]; 

I = 1 + 1 ;  
ENDO; 

@ - - - - - - - - CALCULATION OF HAUSMAN TEST STATISTIC 

XXI = INV(XIX); 

Q = BOLS [K, . ] - BIVIK, . I ; 

V = SIV* ( PZXIK, K] - XXI [K, Kl 1 ; 

W = QIINV(V)*Q; 

DF = 1; 

PW = CDFCHIC (W, DF) ; 
,I ll . 
I, ,, . 
I, 1 1 .  

" WlUSMAN TEST STATISTIC: W ="-.  , , W; 
11 ,I . 
FORMAT /M1 /RD 3,O; 
" DEGREES OF FREEDOM: -,r. . - r r DF; 
l, t1 . 
FORMAT /M1 /RD 12,4; 
" P-VALUE -7 , .  . - , , PW; 
1, I t  . 
I , \  f,* ; 

OUTPUT FILE = HAUSW-OUT OFF; 
SYSTEM; 



Figure 22b-HAUSMNWU.G program 

........................................................ 
* PROGRAM: HAUSl4NWU.G SOFTWARE: GAUSS-386 V3.0 * 
* FILENAME DESCRIPTION * 
* INPUTS: DATA-DAT GAUSS-386 DATA SET * 
* PURPOSE: PERFORM OLS AND IV ESTIMATION, THEN * 
* CHECK FOR ENDOGENEITY VIA THE WU TEST. * 
........................................................ 

FORMAT /M2 /RD 12,4; 
OUTPUT FILE = HAUSMNWU.OUT RESET; 

NAMES = GETNAME I "DATA" ) ; 
OPEN D = DATA VARINDXI; 
NCASE = ROWSF(D1; 
DATA =READR(D,NCASE); 
F = CLOSE(D); 

Y = DATA[. , IYl] ; 

XO = ONES(NCASE,l) - DATA[.,IXl 1x2 1x8 1x9 1x13 1x14 1x15 
ID1 ID2 ID3 ID5 ID6 ID7 ID8 IRDl IRD2 IRDJ]; 

NAMESXO = NAMES[IXl 1x2 1x8 1x9 1x13 1x14 1x15 
ID1 ID2 ID3 ID5 ID6 ID7 ID8 IRDl IRD2 IRD3,.]; 

XI 0 = DATA[.,IXlO]; 

ZO = DATA[.,IX4 1x5 1x6 1x7 1x11 1x12 1; 

NAMESZO = NAMES[IX4 1x5 1x6 1x7 1x11 IX12,.]; 

@ - - - - - - - - OLS ESTIMATION 

X = XO - XIO; 
NAMESX = NAMESXO I "X10"; 
K = COLS(X); 

B = INV(X'X)*X'Y; @ BETAS @ 
E = Y - X*B; @ RESIDUALS @ 
RSS = E'E; @ RESIDUAL SUM OF SQUARES @ 

SER = SQRT(INV(NCASE-K)*RSS); @ STD ERROR OF REGRESSION @ 
RSQ =1-RSS/((NCASE-l)*(STDC(Y))"Z); @R-SQUARED @ 
COV = INV(NCASE-K)*RSS*INV(XIX); @ OLS COVARIANCE MATRIX @ 

SE = SQRT(DIAG(C0V)); @ STD ERRS OF BETAS @ 

T = B ./ SE; @ T-STATISTICS FOR BETAS @ 
PT = 2*CDFTC(ABS(T),(NCASE-K) 1; @ P-VALUES @ 
PRN = B - S E - T - P T ;  @ FOR PRINTING @ 

BOLS = B; 
COVOLS = cov; 

I1 I, . 
11 I, . , 
II ,1 . 
'I OLS RESULTS 'I;  

*I I t  . 
I. 1, . 

(continued) 



Figure 22b-Continued 

" NUMBER OF OBSERVATIONS - - 1 1 . -  , , NCASE; 
" STANDARD ERROR OF REGRESSION = ' I ; ;  SER; 
" RESIDUAL SUM OF SQUARES - - n . .  r r RSS; 
" R-SQUARED - - 1 1 . .  r .  RSQ; 
I t  ,I . 
11 II . 
" VARIABLE COEFF STD ERROR T-RATIO P-VALUE " ; 
I t  I, - 
" INTERCEPT ";; PRN[l,.]; 

I = 1; 
DO WHILE I <= K -1; 
FORMAT /M1 /RD 12,8; $NAMESX[I, . ] ; ; FORMAT /M1 /RD 12,4; PRN[I+l, . ] ; 

I = I + 1 ;  
ENDO; 
\ f" ; 

@ - - - - - - - - TWO-STAGE LEAST-SQUARES CALCULATION OF - - - - - - - - @ 
@ - - - - - - - - INSTRUMENTAL VARIABLES ESTIMATORS - - - - - - - - @ 

@ - - - - - - - - FIRST STAGE - - - - - - - - @ 

Z = XO - ZO; @ NOTE THAT Z HAS ZO @ 
@ AND ALL X EXCEPT XI0 @ 

K = COLS(Z); 
NAMESZ = NAMESXO I NAMESZO; 

G = INV(Z'Z)*Z'XlO; @ OLS OF XI0 ON Z @ 
XlOFIT = Z*G; @ FITTED X10 @ 
U = X10 - XIOFIT; @ RESIDUALS @ 
RSS = U'U; @ RESIDUAL SUM OF SQUARES @ 
SER = SQRT ( INV (NCASE-K) *RSS) ; @ STD ERROR OF REGRESSION @ 
RsQ = 1 - RSS/((NCASE-l)*[STDC(X10))"2); @ R-SQUARED @ 
COV = INV(NCASE-K)*RSS*INV(ZIZ); @ OLS COVARIANCE MATRIX @ 
SE = SQRT(DIAG(C0V)); @ STD ERRS OF BETAS @ 
T = G ./ SE; @ T-STATISTICS FOR BETAS @ 
PT = 2*CDFTC(ABS(T),(NCASE-K)); @ P-VALUES @ 
PRN = G - S E - T - P T ;  @ FOR PRINTING @ 

,I 11 . 
I, 11 . 
,I I t  . 
" FIRST-STAGE RESULTS "; @ LISTING FULL DETAIL HERE IS @ 
8 .  11 . @ OPTIONAL; ONE MAY WISH TO @ 
I, 11 . @ EXAMINE THE QUALITY OF THE @ 

@ FIRST STAGE. @ 

" NUMBER OF OBSERVATIONS - l r . .  - , , NCASE; 

" STANDARD ERROR OF REGRESSION = ";; SER; 
" RESIDUAL SUM OF SQUARES - I t . .  - , r  RSS; 
" R-SQUARED - t l . .  - , , RSQ; 
3 ,  I* . 
I, I, . 
" VARIABLE COEFF STD ERROR T-RATIO P-VALUE " ; 
I, I, . 
" INTERCEPT";; PRN[l,.]; 

(continued) 



Figure 22b--Continued 

SECOND STAGE ESTIMATION 
REPLACE X10 BY XlOFIT 

I = 1; 
DO WHILE I <= K - 1; 
FORMAT /M1 /RD 12,8; $NAMESZ[I,.l;; FORMAT /M1 /RD 12,4; PRN[I+l,.l; 

I = 1 + 1 ;  
ENDO; 
! I \  f l l  ; 

@ - - - - - - - - 
@ - - - - - - - - 

XH = XO - XIOFIT; 
NAMESX = NAMESXO I "XlOFIT"; 

K = COLS(XH); 

B = INV(XHIXH)*XH'Y; @ IV BETAS @ 
E = Y - X*B; @ NOTE THAT RESIDUALS @ 

@ USE X NOT XH! @ 
RSS = EVE; @ RESIDUAL SUM OF SQUARES @ 
SER = SQRT(INV(NCASE-K)*RSS); @ STD ERROR OF REGRESSION @ 
RSQ = 1 - RSS/((NCASE-1)*(STDC(Y))n2); @ R-SQUARED @ 
COV = INV(NCASE-K)*RSS*INV(XHVXH); @ IV COVARIANCE MATRIX @ 
SE = SQRT(DIAG(C0V)); @ STD ERRS OF BETAS @ 
T = B ./ SE; @ T-STATISTICS FOR BETAS @ 
PT = 2*CDFNC(ABS(T) ) ;  @ P-VALUES @ 
PRN = B - S E - T - P T ;  @ FOR PRINTING @ 

BIV = B; 
SIV = INV (NCASE-K) *RSS; 

I ,  1, . 
1, I t  . 
I ,  I, . 
" INSTRUMENTAL VARIABLES RESULTS "; 
11 I, . 
I, I, . 
" NUMBER OF OBSERVATIONS - 11 - ; ; NCASE; 

" STANDARD ERROR OF REGRESSION = ' I ; ;  SER; 
" RESIDUAL SUM OF SQUARES - ( 1 . .  - , RSS; 

" R-SQUARED = 11 ; ; RSQ; 
I, 11 . 
11 I t .  

" VARIABLE COEFF STD ERROR ASY Z-RATIO P-VALUE"; 
1, I t  . 
" INTERCEPT " ; ; PRN [ 1, . I ; 

I = 1; 
DO WHILE I <= K -1; 
FORMAT /M1 /RD 12,8; $NAMESX[I, .I;; FORMAT /M1 /RD 12,4; PRN[I+l, .I; 

I = I t 1 ;  
ENDO; 
T I \  f l l  ; 

@ - - - - - - - - THE WU TEST - - - - - - - - @ 
@ - - - - - - - - SPECIFY THE MATRIX OF REGRESSORS -------- @ 

(continued] 



Figure 22b--Continued 

@ - - - - - - - - TO INCLUDE THE RESIDUAL U FROM - - - - - - - - 
@ - - - - - - - - @ 

THE FIRST STAGE OF THE IV PROCEDURE - - - - - - - - @ 

XW = xo - XI0 - U; 
NAMESW = NAMESXO I "X10" I "U"; 

B = INV(XW'XW) *XWIY; @ WU BETAS @ 

K = COLS (XW) - 1; 

E = Y - XW[.,l:K]*B[l:K,.j; @ RESIDUALS @ 
@ OMIT EFFECT OF U @ 

RSS = E'E; @ RESIDUAL SUM OF SQUARES @ 

SER = SQRT (INV(NCASE-Kl *RSS) ; @ STD ERROR OF REGRESSION @ 
RSQ = 1 - RSS/((NCASE-l)*(STDC(YI)"Z); @ R-SQUARED @ 
COV = INV(NCASE-K)*RSSCINV(XW'XW); @ IV COVARIANCE MATRIX @ 
SE = SQRT(DIAG(C0V) ) ;  @ STD ERRS OF BETAS @ 
T = B ./ SE; @ T-STATISTICS FOR BETAS @ 
PT = 2*CDFNC(ABS(T)); @ P-VALUES @ 

PRN = B - S E - T - P T ;  @ FOR PRINTING @ 

BIV = B; 
SIV = INV(NCASE-K) *RSS; 

11 I, . 
l, I, . 
II  ,I . 
" RESULTS FOR WU TEST REGRESSION"; 
11 I, . , 
1, I, . 
" NUMBER OF OBSERVATIONS - - 1 1 . .  , , NCASE; 
" STANDARD ERROR OF REGRESSION = "; ; SER; 
" RESIDUAL SUM OF SQUARES - - 1,. ,, . RSS; 
" R-SQUARED - - 11 ;; RSQ; 
I, 1, . 
I, I, - 
" VARIABLE COEFF STD ERROR ASY 2-RATIO P-VALUE"; 
I, It  . 
" INTERCEPT " ; ; PRN [ 1, . I ; 
I = 1; 
DO WHILE I <= K; 
FORMAT /MI /RD 12,8; $NAMESW[I,.];; FORMAT /M1 /RD 12,4; PRN[I+l,.]; 

I = I + l ;  
ENDO; ,, I t  . 
"\f"; 

OUTPUT FILE = HAUSMNWU.OUT OFF; 
SYSTEM; 



Figure 23--Sample program for Hausman-Wu test, in SAS PC 

........................................................ 
* PROGRAM: HAUSMNWU. SAS SOFTWARE : SAS PC 6.04 * 
* FILENAME DESCRIPTION * 
* INPUTS: DATA-SSD TEST DATA SET * 
* PURPOSE: PERFORM HAUSMAN-WU TEST. * 
........................................................ 

I 
LIBNAME CDRV 'C:\DATAf; 
* HAUSMAN TEST WHERE VARIABLE XI0 IS SUSPECTED OF BEING ENDOGENOUS IN THE 
* FOLLOWING MODEL. 
* PROC REG DATA=CDRV.DATA; 
* MODEL Yl=Xl X2 X8 X9 XI0 X13 X14 XI5 Dl D2 D3 D5 D6 D7 D8 RD1 RD2 RD3; 

* VARIABLES X4, X5, X6, X7, Xllr AND X12 ARE USED AS 
* IDENTIFYING INSTRUMENTS FOR X10.; 

* STEP 1: REGRESS XI0 AGAINST EXOGENOUS EXPLANATORY VARIABLES (XI, X2, X8, X9, 
* X13, X14, X15, Dl, D2, D3, D5, D6, D7, D8, RD1, RD2, AND RD3) AND THE 
* IDENTIFYING INSTRUMENTS (X4, X5, X6, X7, X11, AND X12) AND SAVE THE 
* RESIDUALS OF XI0 AS RX10.; 

PROC REG DATA=CDRV.DATA; 
MODEL XlO=Xl X2 X8 X9 X13 X14 XI5 Dl D2 D3 D5 D6 D7 D8 RD1 RD2 RD3 

X4 X5 X6 X7 XI1 X12; 
OUTPUT OUT=HDATAl R = RX10; 

RUN; 

* STEP 2: RUN ORIGINAL REGRESSION MODEL WITH BOTH XI0 AND RXlO AS EXPLANATORY 
* VARIABLES. ; 

PROC REG DATA=HDATAl OUTEST=HBETA; 
MODEL Yl=Xl X2 X8 X9 X10 RXlO X13 X14 XI5 Dl D2 D3 D5 D6 D7 D8 RD1 RD2 RD3; 
OUTPUT OUT=HDATA2 R=RY1; 

RUN; 

I *  NEED TO ADD CONSTANT TO BOTH DATA SETS TO MERGE BY; 
DATA HDATA3; 

SET HDATA2; 
CONSTANT = 1; 

DATA HBETA2; 
SET HBETA(RENAME=(Xl=CXl X2=CX2 X8=CX8 X9=CX9 X10=CX10 RXlO=CRXlO 

Xl3=CX13 X14=CX14 X15=CX15 Dl=CDl D2=CD2 D3=CD3 
D5=CD5 D6=CD6 D7=CD7 D8=CD8 
RDl=CRDl RD2=CRD2 RD3=CRD3 Yl=CYl) ) ;  

CONSTANT = 1; 

* STEP 3: STEP 2 PRODUCES THE CORRECT INSTRUMENTAL VARIABLE (IV) ESTIMATES, BUT 
* GENERATES RESIDUALS (AND THEREFORE TEST STATISTICS) THAT ARE BASED ON 
* XI0 AND RX10, WHEREAS THEY SHOULD ONLY BE BASED ON THE IV ESTIMATES AND X10.; 
* SAVE THE IV COEFFICIENTS FROM STEP 2, AND GENERATE APPROPRIATE 
* RESIDUALS (DROPPING RlOX) AND SAVE CORRECT (E'E) ; 

DATA HWRESOK; I MERGE HDATA3 HBETA2; 

(continued) 



Figure 23-Continued 

RESOK = Y1 - (INTERCEP + CXl*Xl + CX2*X2 + CX8*X8 + CX9*X9 + 
CX10*X10 + CX13*X13 + CX14*X14 + CX15*X15 + 
CDl*Dl + CD2*D2 + CD3*D3 + CD5*D5 + CD6*D6 + 
CD7*D7 + CD8*D8 + CRDl*RDl + CRD2*RD2 + CRD3*RD3); 

RESOKSQ = RESOK ** 2; 
RYlSQ = RY1 ** 2; 

PROC SUMMARY DATA=HWRESOK; 
VAR RESOKSQ RYlSQ CONSTANT; 
OUTPUT OUT=SUMRES SUM=SRESOKSQ SRYlSQ N; 

PROC PRINT DATA=SUMRES; 

DATA RESULTS; 
SET SUMRES; 
SIGMAoK = SRESOKSQ / (N - 19) ; 
SIGMABAD = SRYlSQ / (N - 20); 
CORFACT = (SIGMABAD/ SIGMAOK * * 0.5; 

PROC PRINT DATA=RESULTS; 
VAR CORFACT; 

* STEP 4: MULTIPLY T'S FROM STEP 2 BY CORFACT TO GET APPROPRIATE T'S.; 

* TEST STATISTIC CALCULATION FROM OUTPUT. 
* IF THE CORRECTED T-STATISTIC ON RXlO IS GREATER THAN THE 
* CRITICAL T-VALUE, THEN THE 
* NULL HYPOTHESIS OF THE EXOGENEITY OF XI0 IS REJECTED. 
* FOR THIS EXAMPLE, THE UNCORRECTED T-RATIO ON RX10=1.6280. THE CORRECTION FACTOR 
* IS 0.99744, SO THE CORRECT T-RATIO ON RXlO IS 1.6238. 
* WE DO NOT REJECT THE NULL HYPOTHESIS OF NO ENDOGENEITY OF X10.; 



Figure 24-- Sample program for Hausman-Wu test, in SPSS/PC+ 

SET MORE. OFF. 
SET LIS = 'HAUSMNWU.LIS1. 
SET LOG = 'HAUSMNWU.LOG1. 
........................................................ 
* PROGRAM: HAUSMNWU.SPS SOFTWARE: SPSS/PC+ 4.01 * I: FILENAME DESCRIPTION * 

INPUTS: DATA.SYS TEST DATA SET * 

I * PURPOSE: PERFORM HAUSMAN-WU TEST. * 
........................................................ 
GET FILE = 'DATA.SYS'. 
* HAUSMAN TEST WHERE VARIABLE X10 IS SUSPECTED OF BEING ENDOGENOUS IN THE 
FOLLOWING MODEL. 

* REGRESSION VARIABLES = Y1 XI X2 X8 X9 XI0 XI3 X14 X15 Dl D2 D3 D5 D6 
c D7 08 RD1 RD2 RD3 

/DEPENDENT=Yl 
'/METHOD=ENTER. 

I * VARIABLES X4, X5, X6, X7, X11, AND X12 ARE USED AS * IDENTIFYING INSTRUMENTS FOR X10. 

STEP 1: REGRESS XI0 AGAINST EXOGENOUS EXPLANATORY VARIABLES (XI, X2, X8, X9, 
X13, X14, X15, Dl, D2, D3, D5, D6, D7, D8, RD1, RD2, AND RD3) AND THE 
IDENTIFYING INSTRUMENTS (X4, X5, X6, X7, X11, AND X12) AND SAVE THE 

* RESIDUALS OF XI0 AS RX10. 
REGRESSION VARIABLES = X10 X1 X2 X8 X9 X13 XI4 X15 Dl D2 D3 D5 D6 

D7 D8 RD1 RD2 RD3 
X4 X5 X6 X7 Xl1 XI2 

/ DEPENDENT=XlO 
/METHOD-ENTER 
/SAVE RESID(RX10). 

* STEP 2: RUN ORIGINAL REGRESSION MODEL WITH BOTH X10 AND RXlO AS EXPLANATORY 
* VARIABLES. 
REGRESSION VARIABLES = Y1 X1 X2 X8 X9 X10 RXlO X13 X14 X15 Dl D2 D3 D5 D6 

D7 D8 RD1 RD2 RD3 
/DEPENDENT=Yl 
/METHOD=ENTER 
/SAVE RESID(RY1). 

SAVE OUT='HDATA.SYS'. 

** VIEW THE OUTPUT FROM THIS REGRESSION AND USE THE ESTIMATED REGRESSION ** 
** COEFFICIENTS TO COMPUTE A PREDICTED VALUE FOR OKAY RESIDUATJ. ** 
............................................................................. 

FILE = 'HDATA.SYSf. 
PUTE RESOK = Y1-(XI 

X8 
XI0 
X13 
XI 5 
D2 
D5 
D7 
RD1 
RD3 

(continued) 



Figure 24-Continued 

COMPUTE RESOKSQ = RESOK ** 2. 
COMPUTE RYlSQ = RY1 ** 2. 
COMPUTE CONSTANT=l. 

AGGREGATE OUTFILE=* 
/BREAK=CONSTANT 
/COUNT=N 
/SRESOKSQ SRYlSQ = SUM(RES0KSQ RYlSQJ. 

COMPUTE SIGMAOK = SRESOKSQ / (COUNT - 19). 
COMPUTE SIGMABAD = SRYlSQ / (COUNT - 20). 
COMPUTE CORFACT = (sIGMABAD/SIGMAOK) ** 0.5. 

FORMATS ALL (F9.5). 
LIST CORFACT . 

* STEP 4: MULTIPLY TIS FROM STEP 2 BY CORFACT TO GET APPROPRIATE T'S. 

* TEST STATISTIC CALCULATION FROM OUTPUT. 
* IF THE CORRECTED T-STATISTIC ON RXlO IS GREATER THAN THE 
* CRITICAL T-VALUE, THEN THE 
* NULL HYPOTHESIS OF THE EXOGENEITY OF XI0 IS REJECTED. 
* FOR THIS EXAMPLE, THE UNCORRECTED T-RATIO ON RX10=1.6280. TKE CORRECTION FACTOR 
* IS 0.99744, SO THE CORRECT T-RATIO ON RXlO IS 1.6238. 
* WE DO NOT REJECT THE NULL HYPOTHESIS OF NO ENDOGENEITY OF X10. 

FINISH. - 

The Levi Bounds The Levi bounds may be calculated to indicate the presence of measure- 
(for Assessing ment error. It is well known that if only one regressor is measured with 

the Presence of error, the OLS coefficient of that regressor is biased toward zero. If the 
Measurement Error) roles of this regressor and the dependent variable are reversed in the 

regression, the coefficient on the artificial regressor is an estimator of 
the inverse of the coefficient on the original regressor. This estimator is 
also biased toward zero, but its inverse is biased away from zero. If the 
coefficient on the original regressor is taken as a lower bound for a 
consistent estimator and the inverse of the coefficient on the artificial 
regressor is taken as an upper bound for a consistent estimator, then it 
is expected that the size of this interval reflects the severity of the 
measurement error problem. 

Levi's procedure is very simple to execute, but no formal statistical 
test is performed. Whether the interval between lower and upper bounds 
is "large" is a matter of judgment for the investigator. The steps below 
are presented in terms of a simple regression model; extension to the 
multiple regression model is straightforward. 

Step 1 Estimate the regression, Yi = ell + PIXi + el, and get 
8 Call this PIL. 

Step 2 Run the "reverse" regression, Xi = clz + PzYi + e2 
and calculate bU = (I/ p2). 



Now, examine the interval 

As Kmenta notes, if this interval is small, the effect of measurement 
error is likely to be bearable and OLS results are unlikely to be severely 
biased. Note that the above discussion assumes that P1 is positive. If P1 
is negative, then the lower and upper bounds are reversed. 

The sample programs (Figures 25 through 27) treat variable XI0 as 
possibly susceptible to measurement error. The results are striking: bL 
= 217 and bU = 5,732 (5,747 in SAS PC and SPSS/PC+, due to 
rounding). This appears to be a very large interval, particularly in view 
of the statistical significance of this regressor. It is concluded that 
measurement error is a problem for X10. These estimated coefficients 
translate into calorie-income elasticities of 0.1 and 2.0, respectively. 
From an economic viewpoint, this is a very large interval. 

Recommended references: Krnenta (1986,346466); Levi (1977). 



Figure 25--Sample program for Levi bounds test, in GAUSS-386 

........................................................ 
* PROGRAM: LEV1.G SOFTWARE: GAUSS-386 V3.0 * 
* FILENAME DESCRIPTION * 
* INPUTS: DATA.DAT GAUSS-386 DATA SET * 
* PURPOSE: CALCULATE LEV1 BOUNDS FOR THE * 
*. COEFFICIENT OF A REGRESSOR THAT MAY BE * 
* MEASURED WITH ERROR. * 
........................................................ 

FORMAT /M2 /RD 12,4; 
OUTPUT FILE = LEVI-OUT RESET; 

NAMES = GETNAME ( " DATA" ) ; 
OPEN D = DATA VARINDXI; 
NCASE = ROWSF(D); 
DATA = READR ( D, NCASE ) ; 
F = CLOSE(D) ; 
Y = DATA[.,IYl]; 

X = ONES(NCASE,l) - DATA[.,IXl 1x2 1x8 1x9 1x10 1x13 1x14 1x15 
ID1 LD2 ID3 ID5 ID6 ID7 ID8 IRDl IRD2 IRD31; 

NAME1 = NAMES[IXl 1x2 1x8 1x9 1x10 1x13 1x14 1x15 
ID1 ID2 ID3 ID5 ID6 ID7 ID8 IRDl IRD2 IRD3,. I; 

@ - -- - - - - - OLS ESTIMATION - - - - - - - - @ 

K = COLS(X); 

B = INV(X'X)*XIY; @ BETAS @ 
E = Y - X*B; @ RESIDUALS @ 
RSS = EIE; @ RESIDUAL SUM OF SQUARES @ 
SER = SQRT ( INV (NCASE-K) *RSS ) ; @ STD ERROR OF REGRESSION @ 

RSQ = 1 - RSS/((NCASE-l)*(STDC(Y))"2); @ R-SQUARED @ 
COV = INVINCASE-K)*RSS*INV(X'X); @ OLS COVARIANCE MATRIX @ 
SE = SQRT (DIAG [COVI 1 ; @ STD ERRS OF BETAS @ 
T = B ./ SE; @ T-STATISTICS FOR BETAS @ 
PT = Z*CDFTC(ABS(T),(NCASE-K)); @ P-VALUES @ 
PRN = B - S E - T - P T ;  @ FOR PRINTING @ 

B1 = B[6,1]; @ COEFF OF INTEREST @ 

I t  I t  r 

I, 1, . 
l, 11 . 
" OLS RESULTS FOR THE STANDARD MODEL "; 
I t  11 - 
I. II  . 
" NUMBER OF OBSERVATIONS - ( I . .  - , , NCASE; 

" STANDARD ERROR OF REGRESSION = 'I;  ; SER; 
" RESIDUAL SUM OF SQUARES - - 8 1 .  , , . RSS; 
" R-SQUARED - ( I . .  - , , RSQ; 
I ,  11 - 
I ,  11 - 
" VARIABLE COEFF STD ERROR T-RATIO P-VALUE" ; 
1, II - 
'' INTERCEPT " ; ; PRN [ 1, . I ; 

(continued) 



60 

Figure 25-Continued 

I = 1; 
DO WHILE I <= K -1; 
FORMAT /M1 /RD 12,8; $NAMEl[I,.];; FORMAT /M1 /RD 12,4; PRN[I+l,.]; 

I = I + 1 ;  
ENDO; 
11 I ,  . 
"\f"; 

@ - - - - - - - - OLS ESTIMATION - - - - - - - - @ 
@ - - - - - - - - WITH Y AND XI0 REVERSED -------- @ 

XI0 = DATA[. ,IX10] ; 
X = ONES(NCASE,l) - DATA[.,IX1 1x2 1x8 1x9 IY1 1x13 1x14 1x15 

ID1 ID2 ID3 ID5 ID6 ID7 ID8 IRDl IRD2 IRD31; 

NAME2 = NAMES[IXl 1x2 1x8 1x9 IY1 1x13 1x14 1x15 
ID1 ID2 ID3 ID5 ID6 ID7 ID8 IRDl IRD2 IRD3,.]; 

K = COLS(X); 
B = INV(X'X) *XvX10; @ BETAS @ 
E = X10 - X*B; @ RESIDUALS @ 
RSS = E'E; @ RESIDUAL SUM OF SQUARES @ 
SER = SQRT (INV(NCASE-K) *RSS) ; @ STD ERROR OF REGRESSION @ 
RSQ = 1 - RSS/((NCASE-l)*[STDC(X10))"2); @ R-SQUARED @ 
COV = INV(NCASE-K)*RSS*INV(X'X); @ OLS COVARIANCE MATRIX @ 

SE = SQRT (DIAG (COV) ) ; @ STD ERRS OF BETAS @ 
T = B ./ SE; @ T-STATISTICS FOR BETAS @ 
PT = 2*CDFTC (ABS (T) , [NCASE-K) ) ; @ P-VALUES @ 
PRN = B - S E - T - P T ;  @ FOR PRINTING @ 

B2 = B[6, .I; @ COEFF OF INTEREST @ 

,I I, . 
I, 1, i 
I ,  11 . 
" OLS RESULTS FOR THE REGRESSION MODEL WITH Y AND XI0 REVERSED"; 
I, I, . r 

I, I, . 
" NUMBER OF OBSERVATIONS = 1 1 . .  ,, NCASE; 
" STANDARD ERROR OF REGRESSION = ";; SER; 
" RESIDUAL SUM OF SQUARES - - ( 1 . .  r RSS; 
" R-SQUARED - - II ;; RSQi 
( 1  I, . 
I t  11 i 

" VARIABLE COEFF STD ERROR T-RATIO P-VALUE" ; 
11 I, . 
" INTERCEPT " ; ; PRN [ 1, . ] ; 

I = 1; 
DO WHILE I <= K -1; 
FORMAT /M1 /RD 12,8; $NAMEB[I,.];; FORMAT /M1 /RD 12,4; PRN[I+l,.]; 

I = I + 1 ;  
ENDO; 
,I ( 1  . 
1, 11 . 

(continued) 



Figure 25-Continued 

,I I, . 
" BOUNDS FOR THE COEFFICIENT ON X10"; 
I, X I  . 
" LOWER BOUND: B =" ; ; B1; 
1) I, . 
B2 = 1/B2; 
" UPPER BOUND: B =";; B2; 

t r \ f l r ;  

OUTPUT FILE = LEVI-OUT OFF; 
SYSTEM; 

Figure 26-Sample program for Levi bounds test, in SAS PC 

........................................................ 
* PROGRAM: LEVI. SAS SOFTWARE: SAS PC 6.04 * 
* FILENAME DESCRIPTION * 
* INPUTS: DATA-SSD TEST DATA SET * 
* PURPOSE: CALCULATE LEVI BOUNDS. * 
........................................................ 

LIBNAME CDRV ' C : \DATA1 ; 

* XI0 IS THE VARIABLE WE SUSPECT IS MEASURED WITH ERROR. 
* STEP 1 : RUN THE MODEL IN OLS. ; 

PROC REG DATA=CDRV.DATA; 
MODEL Yl=X10 X1 X2 X8 X9 X13 X14 X15 Dl D2 D3 D5 D6 D7 D8 RD1 RD2 RD3; 

RUN; 

* STEP 2: REVERSE Yl AND XI0 AND RUN TKE MODEL IN OLS.; 

PROC REG DATA=CDRV.DATA; 
MODEL X10=Y1 X1 X2 X8 X9 XI3 XI4 X15 Dl D2 D3 D5 D6 D7 D8 RD1 RD2 RD3; 

RUN; 

* INTERPRETATION OF OUTPUT. 
* IF XI0 IS MEASURED WITH RANDOM ERROR AND THE TRUE PARAMETER ON XI0 
* IS POSITIVE, THE ESTIMATED OLS COEFFICIENT ON XI0 WILL BE BIASED TOWARDS ZERO. 
* SINCE THE ESTIMATED OLS COEFFICIENT ON Y1 IN STEP 2 IS AN ESTIMATE OF 
* THE RECIPROCAL OF THE PARAMETER ON XI0 IN STEP 1, IT WILL BE BIASED AWAY 
* FROM ZERO. IF THE INTERVAL BETWEEN THESE TWO OLS ESTIMATES IS NARROW (WITHIN 
* PLAUSIBLE BEHAVIORAL BOUNDS), THEN THE MEASUREMENT ERROR ON XI0 IS WITHIN 
* ACCEPTABLE LIMITS. ; 

* FOR THIS EXTMPLE, THE LEVI BOUNDS ON XlO'S OLS ESTIMATE ARE 216.97 AND 
* 5747 .I26 AT THE MEAN OF XI0 AND Y1. THESE TRANSLATE INTO ELASTICITIES OF 
* APPROXIMATELY 0.1 AND 2.0, RESPECTIVELY. FROM AN ECONOMIC VIEWPOINT, 
* THIS IS A VERY LARGE INTERVAL.; 



Figure 27-Sample program for Levi bounds test, in SPSS/PC+ 

SET MORE OFF. 
SET L I S  = ' L E V I . L I S f  . 
SET LOG = ' LEVI .LOGf .  
........................................................ 
* PROGRAM: LEVI .SPS  SOFTWARE: SPSS/PC+ 4 . 0 1  * 
* FILENAME DESCRIPTION * 
* INPUTS: DATA.SYS TEST DATA SET * 
* PURPOSE: CALCULATES LEV1 BOUNDS. * 
........................................................ 

I GET F I L E  = 'DATA.SYS1. I 
I * X I 0  I S  THE VARIABLE WE SUSPECT IS MEASURED WITH ERROR. 
* STEP 1: RUN THE MODEL I N  OLS. 

REGRESSION VARIABLES = Y 1  X I 0  X1  X2 X8 X9 X 1 3  X14 X I 5  D l  D2 D3 D5 D6 D7 D8 

RD1 RD2 RD3 
/DEPENDENT = Y 1  
/METHOD = ENTER. 

1 * STEP 2 :  REVERSE Y 1  AND X I 0  AND RUN THE MODEL I N  OLS. I 
REGRESSION VARIABLES = Y1 X I 0  X 1  X2 X8 X9 X 1 3  X14 X 1 5  D l  D2 D3 D5 D6 D7 D8 

RD1 RD2 RD3 
/DEPENDENT = X I 0  
/METHOD = ENTER. 

* INTERPRETATION OF OUTPUT. 

* I F  X I 0  I S  MEASURED WITH RANDOM ERROR AND THE TRUE PARAMETER ON X10  I S  
* POSITIVE,  THE ESTIMATED OLS COE'FFICIENT ON X I 0  WILL BE BIASED TOWARDS ZERO. 
* SINCE THE.ESTIMATED OLS COEFFICIENT ON Y 1  I N  STEP 2 I S  AN ESTIMATE OF 
* THE RECIPROCAL OF THE PARAMETER ON X 1 0  I N  STEP 1, I T  WILL BE BIASED AWAY 
* FROM ZERO. I F  THE INTERVAL BETWEEN THESE TWO OLS ESTIMATES I S  NARROW (WITHIN 
* PLAUSIBLE BEHAVIORAL BOUNDS), THEN THE MEASUREMENT ERROR ON X I 0  I S  WITHIN 
* ACCEPTABLE LIMITS.  
+ FOR T H I S  EXAMPLE, THE LEVI BOUNDS ON X l O ' S  OLS ESTIMATE ARE 2 1 6 . 9 7  AND 
* 5 7 4 7 . 1 2 6  AT THE MEAN OF X I 0  AND Y1. THESE TRANSLATE INTO ELASTICITIES  
* OF APPROXIMATELY 0 . 1  AND 2 . 0 ,  RESPECTIVELY. FROM AN ECONOMIC VIEWPOINT, 
* T H I S  I S  A VERY LARGE INTERVAL. 

I FINISH.  I 

TESTS FOR This class of tests is used to test the validity of one model for explaining 

NONNESTED y versus another model for explaining y when neither model can be 
obtained by imposing linear restrictions on the other model. These 

HYPoTHESEs 'model validity" tests are popular because they allow all competing 
models to be rejected if all are deficient (unlike "model selection'' 
methods-such as high R~ criteria, backwards elimination, or stepwise 
regression-in which one model will always be chosen). 

The following models are nonnested models, because Z is not a subset 
of W, nor is W a subset of 2: 



In these competing models that explain y, the explanatory variables 
are contained in X, 2 ,  and W, which are of the dimension NXKl, NxK,, 
and NxK3, respectively. The coefficient vectors are conformable. It is 
important to note that tests of these models all assume that the 
stochastic disturbance terms satisfy the classical assumptions. 

Two popular tests for nonnested models, the nonnested F-test and 
the nonnested J-test, are explained below. 

Nonnested The strategy of this test is to artificially nest the two competing models 
FTest in a more general model and then to test whether the restrictions that 

produce either original model (or both) are valid. 

Step 1 Form the general model: 

Step 2 Estimate the general model (4) using OLS. 

Step 3 Use F-tests for incremental explanatory power to test 
the following three sets of hypotheses: 

H,: y  = 0, 

H,: y =  6 = 0, 

HI: y  and 6 are not both 0. 

Note that the last hypothesis cannot be addressed 
using the F-tests for coefficients on Z and W: for the 
last hypothesis you need to construct an F-test for the 
joint incremental explanatory power of Z and W. 

Step 4 If t h e  estimates of y or 6 are not significantly 
different from zero, the model that includes the 
corresponding set of variables is rejected. If both sets 
of coefficients are significantly different from zero, 
then the general model (4) is preferred; if neither is 
significantly different from zero, then the restricted 
model, 

may be adequate. 



In the sample programs (Figures 28 through 30), X is taken to 
include a constant and variables XI, X2, X8, X9, X10, X13, X14, X15, Dl, 
D2,D3,D5, D6,D7,D8, RD1, RD2, and RD3. Then Z = [X3, X73 and W 
= [X6, X121. 

For the sample data set, the F-statistic for the hypothesis that y = 
0 is 2.5261 (P-value = 0.0803): the variables Z should be retained in the 
model. The F-statistic for the hypothesis that S = 0 is 1.9970 (P-value = 
0.1361): the variables W only have significant explanatory power at a 
significance level of, say 15 percent. Investigators who prefer to use 
smaller significance levels, say 10 percent or 5 percent, would fail to 
reject this null hypothesis and would choose model 2 over model 3 at this 
point (that is, include Z but not W). Finally, the F-statistic for the 
hypothesis y = 6 = 0 is 2.2438 (P-value = 0.0622), and, at  the 7 percent 
significance level, it is concluded that Z and Ware jointly significant. The 
completely unrestricted model is most appropriate. 

This test and several others in this manual are F-tests for linear 
restrictions on coefficients. Good general expositions of F-tests are given 
in Greene (1990, Chapter 7) and Kmenta (1986, Section 10-2). See 
Testing for Structural Change (p. 91) in this manual for a fuller 
exposition of an F-test. 

Recommended references: Davidson and MacKinnon (1981, 781-793); Greene (1990, 
231-234); Kennedy (1985, 70, 79-80, 85-87; 1992, 81, 87-88); Kmenta (1986, 
595-600); MacKinnon (1983, 85-158); Maddala (1988, 443446); McAleer and 
Pesaran (1986,2174371). 



Figure 28-Sample program for nonnested F-test, in GAUSS-386 

............................................................ 
* PROGRAM: NNESTF.G SOFTWARE: GAUSS-386 V3.0 * 
* FILENAME DESCRIPTION * 
* INPUTS: DATA-DAT GAUSS-386 DATA SET * 
* PURPOSE: PERFORM NONNESTED F-TEST. * 
............................................................ 

OUTPUT FILE = NNESTF.OUT RESET; 
FORMAT /M2 /RD 12,4; 
NAMES = GETNAME ( "DATA" ) ; 
OPEN D = DATA VARINDXI; 
NCASE = ROWSF(D); 
K = COLSF(D); 
DATA = READR ( D, NCASE ) ; 
F = CLOSE(D); 

@ - - - - - - - - SELECT VARIABLES THAT WILL BE USED - - - - - - - - @ 

Y1 = DATA[.,IYl]; 
XO = ONES(NCASE,l) - DATA[.,IXl 1x2 1x8 1x9 1x10 1x13 1x14 1x15 

ID1 ID2 ID3 ID5 ID6 ID7 ID8 IRDl IRD2 IRD31; 
Z = DATA[.,IX3IX7]; 
W = DATA[.,IX6IX12]; 

@ - - - - - - - - SELECT VARIABLE NAMES CORRESPONDING TO VARIABLES -------- @ 
@ - - - - - - - - USED IN ALTERNATIVE MODELS. NAMES MUST BE LISTED -------- @ 
@ - - - - - - - - IN THE SAME ORDER AS THE VARIABLES APPEAR FOR X. -------- @ 

NAMESU = NAMES[IXl 1x2 1x8 1x9 1x10 1x13 1x14 1x15 
ID1 ID2 ID3 ID5 ID6 ID7 ID8 IRDl IRD2 IRD3 
1x3 1x7 1x6 IX12,.1; 

NAMES1 = NAMES [IXl 1x2 1x8 1x9 1x10 1x13 1x14 1x15 
ID1 ID2 ID3 ID5 ID6 ID7 ID8 IRDl IRD2 IRD3 
1x3 IX7,.1; 

NAMES2 = NAMES[IXl 1x2 1x8 1x9 1x10 1x13 1x14 1x15 
ID1 ID2 ID3 ID5 ID6 ID7 ID8 IRDl IRD2 IRD3 
1x6 1x12, .I ; 

NAMES3 = NAMES[IXl 1x2 1x8 1x9 1x10 1x13 1x14 1x15 
ID1 ID2 ID3 ID5 ID6 ID7 ID8 IRDl IRD2 IRD3, . I ;  

@ - - - - - - - - MODEL U ---------- @ 

@ - - - - - - - - UNRESTRICTED MODEL THAT INCLUDES BOTH Z AND W ---------- @ 

X = x o - Z - W ;  

KO = COLS(X) ; 

B = INV(X'X)*XrY1; @ OLS ESTIMATION @ 
E = Y1 - X*B; @ RESIDUALS @ 
RSSU = ErE; @ UNRESTRICTED RSS @ 
SER = SQRT ( INV (NCASE-KO ) *RSSU) ; @ STD ERROR OF REGRESSION @ 

RSQ = 1 - RSSU/((NCASE-l)*(STDC(Y1))"2) ; @ R-SQUARED @ 
COV = INV(NCASE-KO)*RSSU*INV(XrX); @ VAR-COV MATRIX @ 
SE = SQRT(DIAG(C0V)); @ STD ERRS OF ESTIMATES @ 
T = B ./ SE; @ T-STATISTICS @ 
PT = 2*CDFTC (ABS (T I ,  (NCASE-KO) ) ; @ P-VALUES @ 
PRN = B - S E - T - P T ;  @ FOR PRINTING @ 

(continued) 



Figure 28-Continued 

MODEL 1 
RESTRICTED MODEL THAT EXCLUDES W 

P-VALUE" ; 

@ --------- PRINT RESULTS ----------- @ 

" OLS RESULTS FOR UNRESTRICTED MODEL "; 
I ,  I* . 
" NUMBER OF OBSERVATIONS = II , . , . NCASE; 
" STANDARD ERROR OF REGRESSION = ";; SER; 
" RESIDUAL SUM OF SQUARES = 11 , . , . RSSU; 
" R-SQUARED = XI  , . , . RSQ; 
I, I, . 
" VARIABLE COEFF. STD ERROR T-RATIO 
11 ,I . 
" INTERCEPT ";; PRN[l,.]; 

I = 1; 
DO WHILE I <= KO-1; 
FORMAT /M1 /RD 12,E; $NAMESU[I,.];; FORMAT /M1 /RD12,4; PRN[I+l,.]; 

I = I + 1 ;  
ENDO; 
11 ,I . 
l l \ f " ;  

@ --------- 
@ 

X = x o - 2 ;  
K1 = COLS(X1; 

B = INV(XZX)*XZY1; @ OLS ESTIMATION @ 
E = Y1 - X*B; @ RESIDUALS @ 
RSSR1 = E'E; @ RESTRICTED RSS 1 @ 
SER = SQRT(1NVlNCASE-Kl)*RSSRl); @ STD ERROR OF REGRESSION @ 
RSQ = 1 - RSSR~/ ( INCASE-1 ) * ( STDC ( ~ 1 )  ) "2) ; @ R-SQUARED @ 
COV = INV(NCASE-Kl)*RSSRl*INV(X'X); @ VAR-COV MATRIX @ 
SE = SQRT ( DIAG (COV) ) ; @ STD ERRS OF ESTIMATES @ 
T = B ./ SE; @ T-STATISTICS @ 
PT = Z*CDFTC(ABS(T),(NCASE-Kl)); @ P-VALUES @ 
PRN = B - S E - T - P T ;  @ FOR PRINTING @ 

@ --------- PRINT RESULTS ----------- @ 

" OLS RESULTS FOR RESTRICTED MODEL THAT EXCLUDES W"; 
I, ,I . 
" NUMBER OF OBSERVATIONS = ,, + . , , NCASE; 
" STANDARD ERROR OF REGRESSION = "; ; SER; 
" RESIDUAL SUM OF SQUARES = 'I;; RSSR1; 
" R-SQUARED = I, . . , , RSQ; 
I ,  I, . 
" VARIABLE COEFF. STD ERROR T-RATIO P-VALUE " ; 
I* 11 . 
" INTERCEPT " ; ; PRN [ 1, .I ; 

I = 1; 
DO WHILE I <= K1-1; 
FORMAT /M1 /RD 12,8; $NAMESl[I,.];; FORMAT /M1 /RD12,4; PRN[I+l,.]; 

I = I + 1 ;  

(continued) 



Figure 28-Continued 

ENDO; 

I, 1. . 
, l \ f l l ;  

@ --------- MODEL 2 
@ --------- RESTRICTED MODEL THAT EXCLUDES Z 

X = xo - W; 
K2 = COLS(X); 

B = INV(XIX)*X'Y1; @ OLS ESTIMATION @ 
E = Yl - X*B; @ RESIDUALS @ 
RSSR2 = E'E; @ RESTRICTED RSS 2 @ 
SER = SQRT (INV(NC9SE-K2 1 *RSSR2 ) ; @ STD ERROR OF REGRESSION @ 
RSQ = 1 - RSSRZ/((NCASE-l)*(STDC(Y1))"2); @ R-SQUARED @ 
COV = INV(NCASE-K2)*RSSR2*INV(XrX); @ VAR-COV MATRIX @ 
SE = SQRT ( DIAG ( COV) 1 ; @ STD ERRS OF ESTIMATES @ 

T = B ./ SE; @ T-STATISTICS @ 

PT = 2*CDFTC(ABS(T),(NCASE-K2)); @ P-VALUES @ 
PRN = B - S E - T - P T ;  @ FOR PRINTING @ 

@ --------- PRINT RESULTS ----------- @ 

" OLS RESULTS FOR RESTRICTED MODEL THAT EXCLUDES Z"; 
I, 11 . 
" NUMBER OF OBSERVATIONS = ,, . , NCASE; 
" STANDARD ERROR OF REGRESSION = ";; SER; 
" RESIDUAL SUM OF SQUARES = I, - . , , RSSR2; 
" R-SQUARED = I1 . . ,, RSQ; 
,1 It  . 
" VARIABLE COEFF. STD ERROR T-RATIO P-VALUE" ; 
I, It - 
" INTERCEPT "; ; PRN [ 1, . I ; 

I = 1; 
DO WHILE I <= K2-1; 
FORMAT /M1 /RD 12,8; $NAMES2[1,.];; EORMAT /M1 /RD 12,4; PRN[I+l,.]; 

I = 1 + 1 ;  
ENDO; 

1. 11 . 
,,\f"; 

@ --------- MODEL 3 ----------- @ 
@ --------- RESTRICTED MODEL THAT EXCLUDES Z AND W ----------- @ 

X = XO; 

K3 = COLS(X); 

B = INV(XtX)*X'Y1; @ OLS ESTIMATION @ 

E = Y1 - X*B; @ RESIDUALS @ 
RSSR3 = E'E; @ RESTRICTED RSS 3 @ 

SER = SQRT ( INV (NCASE-K2 ) *RSSR3) ; @ STD ERROR OF REGRESSION @ 

(continued) 



Figure 28-Continued 

RSQ = 1 - RSSR3/((NCASE-l)*(STDC(Y1))"2); @ R-SQUARED @ 
COV = INV(NCASE-K2)*RSSR3*INV(X1X); @ VAR-COV MATRIX @ 
SE = SQRT ( DIAG ( COV) ) ; @ STD ERRS OF ESTIMATES @ 
T = B ./ SE; @ T-STATISTICS @ 
PT = 2*CDFTC(ABS (T) , (NCASE-K3) ) ; @ P-VALUE @ 
PRN = B - S E - T - P T ;  @ FOR PRINTING @ 

I @ --------- PRINT RESULTS ----------- @ 

" OLS RESULTS FOR RESTRICTED MODEL THAT EXCLUDES Z AND W"; 
(1 It  . 
" NUMBER OF OBSERVATIONS = "; ; NCASE; 
" STANDARD ERROR OF REGRESSION = ";; SER; 
" RESIDUAL SUM OF SQUARES = ";; RSSR3; 
" R-SQUARED = II ,, . . RSQ; 
I* I, . 
" VARIABLE COEFF. STD ERROR T-RATIO P-VALUE" ; 
I 8  11 . 
" INTERCEPT " ; ; PRN [I, . ] ; 

I = 1; 
DO WHILE I <= K3-1; 
FORMAT /M1 /RD 12,8; $NAMES3[I1.];; FORMAT /M1 /RD 12,4; PRN[I+l,.]; 

= I + 1 ;  
ENDO; 

,, \ ,,, . 

@--------- F-TESTS FOR INCREMENTAL EXPLANATORY POWER ---------- @ 

= ( (RSSR1 - RSSU)/(KO - K1) ) / ( RSSU/(NCASE - KO) ) ;  

PROBl = CDFFC(Fl,(KO - Kl),(NCASE - KO)); I 
= ( (RSSR2 - RSSU)/(KO - K2) ) / ( RSSU/(NCASE - KO) ) ;  

PROB2 = CDFFC(F2,(KO - K2),(NCASE - KO)); 

= ( (RSSR3 - RSSU)/(KO - K3) ) / ( RSSU/(NCASE - KO) ) ;  

PROB3 = CDFFC(F3,(KO - K3),(NCASE - KO)); I P3 
" F-TESTS FOR INCREMENTAL EXPLANATORY POWER "; 

I, I, . 
1, I* . 

, , El; ; " PROB ="; ; PROBl; " F-TEST FOR MODEL 1 vs MODEL U: F ="- .  
9, 11 . 
I, ,I . 
" F-TEST FOR MODEL 2 vs MODEL U: F ="; ; F2; ; " PROB ="; ; PROB2; 

I " F-TEST FOR MODEL 3 vs MODEL U; F ="; ; F3; ; " PROB ="; ; PROB3; 

OUTPUT FILE = NNESTF.OUT OFF; 
SYSTEM; 



Figure 29-Sample program for nonnested F-test, in SAS PC 

........................................................ 
* PROGRAM: NNESTF-SAS SOFTWARE: SAS PC 6.04 * 
* FILENAME DESCRIPTION * 
* INPUTS: DATA.SSD TEST DATA SET * 
* PURPOSE: PERFORM NONNESTED F-TEST. * 
........................................................ 

LIBNAME CDRV C: \DATA\ ' ; 

* ALL VARIABLES EXCEPT X31 X7, X6, AND XI2 ARE COMMON TO ALL 
* MODELS. SPECIFICATION 1 CONTAINS X3 AND X7. 
* SPECIFICATION 2 CONTAINS X6 AND X12. ; 
* SPECIFICATION 3 DOES NOT CONTAIN X6, X121 X3, AND X7.; 
PROC REG DATA=CDRV.DATA; 

MODEL Yl=Xl X2 X8 X9 XI0 X13 X14 X15 Dl D2 D3 D5 
D6 D7 D8 RD1 RD2 RD3 X3 X7 X6 X12; 

B1 : TEST X6=X12=0; 
B2 : TEST X3=X7=0; 
B3 : TEST X3=X7=X6=X12=0; 

RUN; 

* THE 'TEST' COMMANDS PRODUCE THE 3 F-STATISTICS DESCRIBED IN THE TEXT; 
* F FROM TEST B1 = 1.9970 
* F FROM TEST B2 = 2.5261 
* F FROM TEST B3 = 2.2438; 
* CONCLUSION: RETAIN ALL FOUR VARIABLES: X3, X7, X6, AND a 2 ;  



70 

Figure 30-Sample program for nonnested F-test, in SPSS/PC+ 

SET MORE OFF. 
SET LIS = 'NNESTF.LISr. 
SET LOG = 'NNESTF.LOGr. 
........................................................ 
* PROGRAM: NNESTF.SPS .SOFTWARE: sBSS/PC+ 4.01 * 
* FILENAME DESCRIPTION * 
* INPUTS: DATA.SYS TEST DATA SET * 
* PURPOSE: PERFORM NONNESTED F-TEST. * 
........................................................ 

GET FILE = 'DATA.SYSr. 
* ALL VARIABLES EXCEPT X3, X7, X6 AND XI2 ARE COMMON TO ALL MODELS. 
* SPECIFICATION 1 CONTAINS X3 AND X7. 
* SPECIFICATION 2 CONTAINS X6 AND X12. 
* SPECIFICATION 3 DOES NOT CONTAIN X3, X7, X6, OR X12. 
* SPECIFICATION 4 CONTAINS X3, X7-, X6, AND X12. 

* STEP 1: ESTIMATE SPECIFICATION 1. 

REGRESSION VARIABLES = Y1 X1 X2 X8 X9 XI0 X13 X14 X15 Dl D2 D3 D5 D6 
D7 D8 RD1 RD2 RD3 X3 X7 

/ DEPENDENT=Yl 
/METHOD=ENTER. 

* STEP 2: ESTIMATE SPECIFICATION 2. 

REGRESSION VARIABLES = Y1 X1 X2 X8 X9 XI0 X13 X14 XI5 Dl D2 D3 D5 D6 
D7 D8 RD1 RD2 RD3 X6 X12 

/DEPENDENT=Yl 
/METHOD=ENTER. 

* STEP 3: ESTIMATE SPECIFICATION 3 (COMPLETELY RESTRICTED MODEL). 

REGRESSION VARIABLES = Y1 X1 X2 X8 X9 XI0 X13 X14 X15 Dl D2 D3 D5 D6 
D7 D8 RD1 RD2 RD3 

/DEPENDENT=Yl 
/METHOD=ENTER. 

* STEP 4: ESTIMATE SPECIFICATION 4 (COMPLETELY UNRESTRICTED MODEL). 

REGRESSION VARIABLES = Y1 X1 X2 X8 X9 X10 X13 X14 X15 Dl D2 D3 D5 D6 
D7 D8 RD1 RD2 RD3 X3 X7 X6 X12 

/ DEPENDENT=Yl 
/METHOD=ENTER. 

* TEST STATISTIC CALCULATION FROM OUTPUT. 
* CALCULATE 3 F-STATISTICS: 
* SPECIFICATION 1 VERSUS 4. * F = 1.9970. 
* SPECIFICATION 2 VERSUS 4. * F = 2.5261. 
* SPECIFICATION 3 VERSUS 4. * F = 2.2438. 
* THESE ARE THE 3 F-STATISTICS DESCRIBED IN THE TEXT. 
FINISH. 



Nonnested The J-test, developed by R. Davidson and J. G. MacKinnon, can be used 
&Test t o  test whether one of two models having different (but possibly 

overlapping) sets of regressors has greater explanatory power than the 
other. Once again, it is assumed that the stochastic disturbance terms 
satisfy the classical assumptions. Let the competing models be 

y = X/3 + E ~ ,  and (6) 

The J-test proceeds in the following steps: 

Step 1 Estimate the second equation by OLS and calculate 
the fitted values of y, 3. Variation in 3 reflects the 
linear influence on y of variation in the explanatory 
variables Z. 

Step 2 Specify the augmented regression model, 

where 1 is a scalar coefficient. Estimate this aug- 
mented model by OLS. If some of the explanatory 
variables in Z have significant explanatory power for 
y that is not captured by the regressors in X, then the 
estimate for A will be statistically significant. 

Step 3 The standard t-ratio produced by statistical packages 
is asymptotically distributed as standard normal and 
may be compared to  standard normal critical values 
to test the following hypothesis (see Greene 1990, 
231-233): 

H,,: R = 0 

H,: a $ 0. 

If H,, is rejected in favor of H I ,  then the second model 
has some explanatory power that is lacking in the 
first model. 

Step 4 Reverse the roles of the two models and repeat the 
exercise. 

Note that it is possible that, in both cases, the null hypothesis might 
be rejected. Ifboth are rejected, then each model explains some variation 
that the other fails to explain; the investigator may consider some 
augmented model that includes regressors from both X and Z. If the null 
hypothesis is not rejected in both cases, then neither is preferred on the 
basis of this test. The investigator must use economic theory and/or other 
statistical results to choose. 



The sample programs that illustrate this section (Figures 31 through 
33) specify and test the following models: 

These models are exactly the ones described in the preceding section, on 
the nonnested F-test. 

In these results, the coefficient for YHAT2 (the fitted y values from 
model 7) in augmented specification 1 is 1.0372 with t-statistic = 2.2322 
(P-value = 0.0258). This indicates that variables contained in W would 
contribute significant incremental explanatory power if included in 
model 6. By the same token the coefficient on YHATl in augmented 
specification 2 is 0.9560 with t-statistic = 1.8920 (P-value = 0.0586). 
This indicates that variables contained in Z would contribute significant 
incremental explanatory power if included in model 7. As expected, these 
results are qualitatively similar to those in the section on the nonnested 
F-test. Neither model dominates, and it appears that a model that 
includes variables from both specifications is called for. Notice that the 
t-statistics of the coefficients not associated with the fitted values in the 
augmented regressions are all quite small. This is because much of their 
explanatory power has been captured by the fitted y values and the fitted 
y values are collinear with the remaining variables. Figures 31 through 
33 are sample programs for the nonnested J-test. 

Recommended references: Davidson and MacKinnon (1981, 781-793); Greene (1990, 
231-234); Judge et al. (1984,8844385); Kennedy (1985, 70, 7940,8547; 1992, 81, 
8748); Kmenta (1986, 595-600); Maddala (1988, 443447); McAleer and Pesaran 
(1986). 



Figure 31-Sample program for nonnested J-test, in GAUSS-386 

........................................................ 
* PROGRAM: NNESTJ-G SOFTWARE: GAUSS-386 V3.0 * 
* FILENAME DESCRIPTION * 
* INPUTS: DATA-DAT GAUSS-386 DATA SET * 
* PURPOSE: PERFORM NONNESTED J-TEST. * 
........................................................ 
OUTPUT FILE = NNESTJ.OUT RESET; 
FORMAT /M1 /RD 12,4; 
NAMES = GETNAME ( "DATA" ) ; 
OPEN D = DATA VARINDXI; 
NCAsE = ROWSF(D); 
DATA = READR[D,NCASE); 
F = CLOSE[D); 
Y = DATA[.,IYl]; 
XO = ONES(NCASE,l) - DATA[.,IXl 1x2 1x8 1x9 1x10 1x13 1x14 1x15 

ID1 ID2 ID3 ID5 ID6 ID7 ID8 IRDl IRD2 IRD31; 

NAMES1 = NAMES[IXl 1x2 1x8 1x9 1x10 1x13 1x14 1x15 
ID1 ID2 ID3 ID5 ID6 ID7 ID8 IRDl IRD2 IRD3 1x3 1x7, . I ;  

NAMES2 = NAMES[IXl 1x2 1x8 1x9 1x10 1x13 1x14 1x15 
ID1 ID2 ID3 ID5 ID6 ID7 ID8 IRDl IRD2 IRD3 1x6 1x12, .]; 

Z = DATA[.,IX3 1x71; 
W = DATA[.,IX6 1x121; 

@ - - - - -- - - CALCULATE FITTED Ys FROM THE ALTERNATIVE MODELS - - - - - - - - @ 

XI = xo - 2 ;  

B1 = INV(XltX1)*X1'Y; 
YHATl = Xl*Bl; 
X2 = xo - W; 
B2 = INV(X2'XZ)*X2'Y; 
YHAT2 = X2*B2; 

@ - - - - - - - - AUGMENTED REGRESSION 1 

X1 = X1 - YHAT2; 
K1 = COLS(X1) ; 
B1 = INv(XltX1)*XltY; 
El = Y - Xl*Bl; @ RESIDUALS @ 
RSSl = El'E1; @ RESID SUM SQUARES @ 
SER = SQRT(INV(NCASE-Kl)*RSSl); @ STD ERROR OF REGRESSION @ 

RSQ = 1 - RSSl/((NCASE-l)*(STDC(Y))"2); @ R-SQUARED @ 
COV = INV(NCASE-Kl)*RSSl*INV(Xl'Xl); @ VAR-COV MATRIX @ 
SE = SQRT(DIAG(C0V)); @ STD ERRS OF ESTIMATES @ 

T = Bl ./ SE; @ T-STATISTICS @ 
PT = 2*CDFTC(ABS (TI, (NCASE-K1) ) ; @ P-VALUES @ 
PRN = B1 - SE - T - PT; @ FOR PRINTING @ 

" REGRESSION RESULTS FOR AUGMENTED SPECIFICATION 1 "; 
I, 3 ,  . 
" NUMBER OF OBSERVATIONS = 11 . . , , NCASE; 
" STANDARD ERROR OF REGRESSION = r1 . . .. SER; 
" RESIDUAL SUM OF SQUARES = 11 ,, . . RSS1; 
" R-SQUARED = " ; ; RSQ; 
91 0 . 

(continued) 



Figure 31-Continued 

" VARIABLE COEFF STD ERROR T-RATIO P -VALUE " ; 
1, I t  . 
" INTERCEPT "; ; PRN [ 1, . ] ; 

I = 1; 
DO WHILE I <= K1-2; 
FORMAT /M1 /RD 12,8; $NAMESl[I,.];; FORMAT /M1 /RD 12,4; PRN[I+l,.]; 

= I + 1 ;  
ENDO; 

I @ - - - - - - - - AUGMENTED REGRESSION 2 

E2 
RSS2 
SER 
RSQ 
cov 
SE 
T 
PT 
PRN 

Y - X2*B2; @ RESIDUALS @ 
E2'E2; @ RESID SUM SQUARES @ 
SQRT(INV(NCASE-K2)*RSS2); @ STD ERROR OF REGRESSION @ 
1 - RSS2/( (NCASE-1)*[STDC(Y)lA2); @ R-SQUARED @ 
INV(NCASE-K2)*RSS2*INV(X2'X2); @ VAR-COV MATRIX @ 
SQRT(DIAG(C0V)); @ STD ERRS OF ESTIMATES @ 
B2 ./ SE; @ T-STATISTICS @ 
2*CDFTC(ABS(T),(NCASE-K2)); @ P-VALUES @ 
B2 - SE - T - PT: @ FOR PRINTING @ 

" REGRESSION RESULTS FOR AUGMENTED SPECIFICATION 2 "; 
1, I, . 
" NUMBER OF OBSERVATIONS = ";; NCASE; 
" STANDARD ERROR OF REGRESSION = "; ; SER; 
" RESIDUAL SUM OF SQUARES = II , . , . RSS2; 
" R-SQUARED = " ; ; RSQ; 
,I 11 . 
" VARIABLE COEFF STD ERROR T-RATIO P-VALUE" ; 
I 8  I, 

" INTERCEPT ";; PRN[l,.]; 

I = 1; 
DO WHILE I <= K2-2; 
FORMAT /M1 /RD 12,8; $NAMES2[I1.];; FORMAT /M1 /RD 12,4; PRN[I+l,.]; 

= I + 1 ;  
ENDO; 



Figure 32-Sample program for nonnested J-test, in SAS PC 

........................................................ 
* PROGRAM: NNESTJ-SAS SOFTWARE: SAS PC 6.04 * 
* FILENAME DESCRIPTION * 
* INPUTS: DATA-SSD TEST DATA SET * 
* PURPOSE: PERFORM NONNESTED J-TEST. * 
........................................................ 

LIBNAME CDRV 'C:\DATA\'; 

* ALL VARIABLES EXCEPT X3, X7, X6, AND X12 ARE COMMON TO ALL 
* MODELS. SPECIFICATION 1 CONTAINS X3, X7, AND 
* SPECIFICATION 2 CONTAINS X6, X12.; 

* TO TEST SPECIFICATION 1: FIRST ESTIMATE SPECIFICATION 2.; 

PROC REG DATA=CDRV.DATA; 
MODEL Yl=Xl X2 X8 X9 XI0 XI3 X14 X15 Dl D2 D3 D5 D6 D7 D8 

RDl RD2 RD3 X6 X12; 
OUTPUT OUT=HAT2 P=YHAT2; 

RUN ; 

* TO TEST SPECIFICATION 1: NEXT FORCE PREDICTED VALUE FROM SPECIFICATION 2 
* INTO SPECIFICATION 1; 

PROC REG DATA=HAT2; 
MODEL Yl=YHAT2 X1 X2 X8 X9 XI0 X13 XI4 X15 Dl D2 D3 D5 D6 D7 D8 

RD1 RD2 RD3 X3 X7; 
RUN; 

* TO TEST SPECIFICATION 2: FIRST ESTIMATE SPECIFICATION 1; 

PROC REG; 
MODEL Y1=X1 X2 X8 X9 XI0 X13 X14 XI5 Dl D2 D3 D5 D6 D7 D8 

RD1 RD2 RD3 X3 X7; 
OUTPUT OUT=HATl P=YHATl ; 

RUN; 

* TO TEST SPECIFICATION 2: NEXT FORCE PREDICTED VALUE FROM SPECIFICATION 1 
* INTO SPECIFICATION 2; 

PROC REG DATA=HATl; 
MODEL Yl=YHATl XI X2 X8 X9 XI0 X13 X14 X15 Dl D2 D3 D5 D6 D7 D8 

RD1 RD2 RD3 X6 X12; 
RUN; 

* TEST STATISTIC CALCULATION FROM OUTPUT; 
* THE T-STATISTIC FOR YHAT2 IS 2.2322, AND THE T-STATISTIC FOR YHATl IS 1.8920; 
* SEE TEXT FOR INTERPRETATION OF RESULTS; 



Figure 33-Sample program for nonnested J-test, in SPSS/PC+ 

SET MORE OFF. 
SET LIS = 'NNESTJ-LIS'. 
SET LOG = 'NNESTJ.LOGt. 
........................................................ 
* PROGRAM: NNESTJ.SPS SOFTWARE: SPSS/PC+ 4.01 * 
* FILENAME DESCRIPTION * 
* INPUTS: DATA.SYS TEST DATA SET * 
* PURPOSE: PERFORM NONNESTED J-TEST. * 
........................................................ 

I 
IGET FILE = 'DATA.SYSt. 

* ALL VARIABLES EXCEPT X3, X7, X6, AND X12 ARE COMMON TO ALL 
* MODELS. SPECIFICATION 1 CONTAINS X3, X7, AND 
* SPECIFICATION 2 CONTAINS X6, X12. 

I * TO TEST SPECIFICATION 1: FIRST ESTIMATE SPECIFICATION 2. 
REGRESSION VARIABLES = Y1 X1 X2 X8 X9 XI0 X13 X14 X15 Dl D2 D3 D5 D6 

D7 D8 RD1 RD2 RD3 X6 X12 
/ DEPENDENT=Yl 
/METHOD-ENTER 
/SAVE PRED(YHAT2). 

* TO TEST SPECIFICATION 1: NEXT FORCE PREDICTED VALUE FROM SPECIFICATION 2 
* INTO SPECIFICATION 1. 

REGRESSION VARIABLES = Y1 YHAT2 X1 X2 X8 X9 X10 X13 XI4 X15 Dl D2 D3 
D5 D6 D7 D8 RD1 RD2 RD3 X3 X7 

/ DEPENDENT=Yl 
/METHOD=ENTER. 

I * TO TEST SPECIFICATION 2: FIRST ESTIMATE SPECIFICATION 1. 
REGRESSION VARIABLES = Y1 X1 X2 X8 X9 X10 X13 XI4 X15 Dl D2 D3 D5 

D6 D7 D8 RD1 RD2 RD3 X3 X7 
/DEPENDENT=Yl 
/METHOD=ENTER 
/SAVE PRED(YHAT1). 

* TO TEST SPECIFICATION 2: NEXT FORCE PREDICTED VALUE FROM SPECIFICATION 1 
* INTO SPECIFICATION 2. 

REGRESSION VARIABLES = Y1 YHATl X1 X2 X8 X9 XI0 XI3 X14 X15 Dl D2 D3 D5 
D6 D7 D8 RD1 RD2 RD3 X6 XI2 

/DEPENDENT=YL 
/METHOD=ENTER. 

* TEST STATISTIC CALCULATION FROM OUTPUT. 
* THE T-STATISTIC FOR YHAT2 IS 2.2322 AND THE T-STATISTIC FOR YHATl IS 1.8920 
* SEE TEXT FOR INTERPRETATION OF RESULTS. 
FINISH. I 



OMlSSlON OF This version of the Regression Specification Error Test (RESET) may be 

VARIABLES: THE used to test for omission of relevant explanatory variables. When one or 
more relevant variables (either unobserved or unobservable) are omitted 

RESET from a model, the error term of the incorrect model includes the 
TEST influence of the omitted variables. If proxy variable(s), Z, can be 

constructed to stand in for the omitted variable(s), a specification error 
test may be formed by testing if Z has significant incremental 
explanatory power for y. 

In this version of RESET, a proxy variable matrix Z is constructed 
from the second, third, and fourth moments of the fitted values of y from 
the original model. 

Let the model of interest be 

This model is "restricted" in the sense that it does not contain the proxy 
variables in matrix 2. The "augmented" model does contain them. 

The RESET test is then conducted following the steps described 
below. 

Step 1 Using OLS, estimate the restricted model (10). 

Step 2 Calculate fitted values: Q = X 

Step 3 Form the proxy variables as powers of the fitted 
2 3 4  values: Q , Q ,9 . 

Step 4 Estimate the augmented model by OLS: regress y on 
-2  -3 -4  

X,Y , Y  ,Y 

Step 5 Using an F-test, check if the coefficients on the 
columns of the Z matrix are jointly significant. If so, 
the null hypothesis of no specification error is 
rejected. 

In the sample programs for the nonnested F-test and the nonnested 
J-test (previously discussed), we examined whether a model that con- 
tained variables X3 and X7 or variables X6 and XI2 was to  be preferred. 
Evidence was found that the preferred model would contain all four 
variables. In illustrating the RESET test, all of these variables will be 
omitted in forming the restricted model to check whether the RESET test 
detects this omission. 

In fact, the F-test for incremental explanatory power yields an F-value 
of 0.6024 (P-value = 0.6135), and it is concluded that specification error 
is absent. The previous tests used X3 and X7, and X6 and X12, directly, 
but the RESET test uses no specific information about these variables. 
Thus, it is illustrated that the RESET test may not be powerful for 
detecting misspecification. If specific variables are to be tested to 
determine whether they should be included in a regression model, they 
should be tested explicitly rather than through a nonspecific test like 
RESET. 



Figures 34 through 36 are sample programs for the Rarnsey RESET 
Test. 

- - -- - - - - 

NOTES: 
1. Thursby (1979,1981,1982) discusses using RESET in conjunc- 

tion with tests for other types of specification error. 
2. A method that has been shown by Monte Carlo studies to be 

preferable to using powers of y is  that of Thursby and Schmidt 
(1977). They used the second, third, and fourth powers of all 
explanatory variables to make up the proxy vector 2. However, 
with many explanatory variables, this may be unwieldy. 

Recommended references: Griffiths, Hill, and Judge (1993, 498-499); Judge et al. 
(1984, 364); Kennedy (1985, 71, 81; 1992, 95, 102, 104); Krnenta (1986, 452-455); 
Maddala (1988, 162, 407); Ramsey (1969, 350-371); Thursby (1979, 222-225; 1981, 
117-123; 1982,314-321); Thursby and Schmidt (1977,635-641). 



Figure 34--Sample program for the Ramsey RESET Test, in GAUSS-386 

........................................................ 
* PROGRAM: RESET-G SOFTWARE: GAUSS-386 V3.0 * 
* FILENAME DESCRIPTION * 
* INPUTS: DATA.DAT GAUSS-386 DATA SET *. 

* PURPOSE: PERFORM RAMSEY RESET TEST. * 
......................................................... 

FORMAT /M2 /RD 12,4; 
OUTPUT FILE = RESET-OUT RESET; 
NAMES = GETNAME ( "DATA" ) ; 
OPEN D = DATA VARINDXI; 
NCASE = ROWSF(D); 
DATA = READR(D,NCASE) ; 
F = CLOSE(D); 
Y = DATA[.,IYl]; 

X = ONES(NCASE,l) - DATA[.,IXl 1x2 1x8 1x9 1x10 1x13 1x14 1x15 
ID1 ID2 ID3 ID5 ID6 ID7 ID8 IRDl IRD2 IRD31; 

NAMES = NAMES[IXl 1x2 1x8 1x9 1x10 1x13 1x14 1x15 
ID1 ID2 ID3 ID5 ID6 ID7 ID8 IRDl IRD2 IRD3, . I ;  

@ - - - - - - - - OLS ESTIMATION OF "RESTRICTED'r MODEL - - - - - - - - @ 

KR = COLS(X); 

B = INV(X'X1 *XIY; @ BETAS @ 
YHAT = X*B; @ FITTED VALUES @ 
E = Y - YHAT; @ RESIDUALS @ 
RSSR = E'E; @ RESTRICTED RSS @ 
SER = SQRT(INV(NCASE-KR)*RSSR); @ STD ERROR OF REGRESSION @ 
RsQ = 1 - RssR/ ( (NCASE-1)* (STDC(Y) ) " 2 )  ; @ R-SQUARED @ 
COV = INV(NCASE-KR)*RSSR*INV(X'X); @ COV MATRIX OF BETAS @ 
SE = SQRT(DIAG(C0V)); @ STD ERRS OF BETAS @ 
T = B ./ SE; @ T-STATISTICS @ 
PT = 2*CDFTC (ABS (T ) , (NCASE-KR) I ; @ P-VALUES @ 
PRN = B - S E - T - P T ;  @ FOR PRINTING @ 

,I l, - 
11 ,I - 
1, I ,  . 
" OLS RESULTS "; 
,I I, . 
1, 1, 

" NUMBER OF OBSERVATIONS = 1 1 .  , , . NCASE; 
I, I t  . 
" STANDARD ERROR OF REGRESSION = ";; SER; 
1, I ,  . 
" RESIDUAL SUM OF SQUARES = 1 ) .  , , . RSSR; 
1, It . 
" R-SQUARED = 1 , .  . . . RSQ; 
I, If  . 
,I I. . 
" VARIABLE COEFF STD ERROR T-RATIO P-VALUE" ; 
It 1, . 
" INTERCEPT";; PRN[l,.]; 

(continued) 



Figure 34-Continued 

RESET VARIABLES 

I = 1; 
DO WHILE I <= KR-1; 
FORMAT /MI /RD12,8; $NAMES[I,.];; FORMAT /M1 /RD12,4; PRN[I+l,,]; 

I = I + l ;  
ENDO; 
1, I, . 
I I \ f l l ;  

@ - - - - - - - - 

Y 2 = YHATA2; 
Y 3 = YHATA3; 
Y 4 = YHATA4; 

@ - - - - - - - - OLS ESTIMATION OF "UNRESTRICTED" REGRESSION -------- @ 

X = X - Y2 - Y3 - Y4; 
KU = coLS(x1; 
B = INV(XtX)*X'Y; @ BETAS @ 
YHAT = X*B; @ FITTED VALUES @ 
E = Y - YHAT; @ RESIDUALS @ 
RSSU = E'E; @ UNRESTRICTED RSS @ 
SER = SQRT(INV(NCASE-KU)*RSSU); @ STD ERROR OF REGRESSION @ 
RSQ = 1-RSSU/((NCASE-l)*(STDC(Y))"2); @ R-SQUARED @ 
COV = INV(NCASE-KU)*RSSU*INV(XrX); @ COV MATRIX OF BETAS @ 

SE = SQRT(DIAG(C0V)); @ STD ERRS OF BETAS @ 
T = B ./ SE; @ T-STATISTICS @ 
PT = 2*CDFTC(ABS(T),(NCASE-KU) I ;  @ P-VALUES @ 
PRN = B - S E - T - P T ;  @ FOR PRINTING @ 

,1 I , .  

II ,I . 
I, I, . 
" OLS RESULTS FOR UNRESTRICTED REGRESSION "; 
I, I, . 
I F  ,I . 
" NUMBER OF OBSERVATIONS = ";; NCASE; 
It I, . 
" STANDARD ERROR OF REGRESSION = ";; SER; 
I 9  I, . 
" RESIDUAL SUM OF SQUARES = 'I;; RSSU; 
11 I, . 
'I R-SQUARED = 11 . , ; RSQ; 
I, 81 . 
( 1  I, . 
" VARIABLE COEFF STD ERROR T-RATIO P-VALUE" ; 
II I, . 
" INTERCEPT";; PRNLl,.]; 

I = 1; 
DO WHILE I <= KU-4; 
FORMAT /M1 /RD 12,8; $NAMES[I,.] ;; FORMAT /M1 /RD 12,4; PRNIItl,.]; 

I = I + 1 ;  
ENDO; 
I ,  11 . 

(continued) 



Figure 34--Continued 

I t  y2 ". . .. PRNI20, - 1 ;  
y3 ".- , , PRN[21,. I ; 

I, Y4";; PRN[22,.]; 
It I, . 
0 ,I . 

@--- F-STAT FOR INCREMENTAL EXPLANATORY POWER OF RESET VARIABLES ---@ 

F = ( (RSSR-RSSU) / (KU - KR) ) / (  RSSU / (NCASE-KU) ) ;  

PROB = CDFFC(F,(KU-KR),(NCASE-KU)); 

I, 11 . 
" RESET TEST STATISTIC F =";; F; ; " PROB = I r ; ;  PROB; 

"\f"; 

OUTPUT FILE = RESET. OUT OFF; 
SYSTEM; 

Figure 35-Sample program for the Rarnsey RESET Test, in SAS PC 

........................................................ 
* PROGRAM: RESET-SAS SOFTWARE: SAS PC 6.04 * 
* FILENAME DESCRIPTION *. 

* INPUTS: DATA.SSD TEST DATA SET * 
* PURPOSE: PERFORM RAMSEY RESET TEST. * 
........................................................ 

LIBNAME CDRV c : \DATA\ ; 

PROC REG DATA=CDRV.DATA; 
MODEL Yl=Xl X2 X8 X9 XI0 X13 X14 X15 Dl D2 D3 D5 D6 D7 D8 RD1 RD2 RD3; 
OUTPUT OUT=HAT P=YHAT ; 

RUN; 

DATA YHATX; 
SET HAT; 
YHAT2=YHAT**2; 
YHAT3=YHAT**3; 
YHAT4=YHAT**4; 

RUN; 

PROC REG DATA=YHATX; 
MODEL Yl=Xl X2 X8 X9 XI0 X13 X14 X15 Dl D2 D3 D5 D6 D7 D8 

RD1 RD2 RD3 YHAT2 YHAT3 YHAT4; 
FTEST : TEST YHAT2, YHAT3, YHAT4; 

RUN; 

* TEST STATISTIC CALCULATION FROM OUTPUT. 
* CALCULATE F = ( (RSSR-RSSU) /D) / (RSSU/ (N-K) . 
* WHERE RSSR IS THE RESIDUAL SUM OF SQUARES FOR THE RESTRICTED EQUATION. 
* RSSU IS THE RESIDUAL SUM OF SQUARES FOR THE UNRESTRICTED EQUATION. 
* N IS THE NUMBER OF CASES (1624). 
* D IS THE NUMBER OF RESTRICTIONS (3). 
* K IS THE NUMBER OF PARAMETERS IN UNRESTRICTED REGRESSION (22). 

* IF YHAT2, YHAT3, AND YHAT4 ARE NOT JOINTLY SIGNIFICANT THEN THE 
* NULL HYPOTHESIS OF OMITTED VARIABLES IS REJECTED (FTEST=0.6024); 



Figure 36-Sample program for the Ramsey RESET Test, in SPSS/PC+ 

SET MORE = OFF. 
SET LIS = 'RESET.LISf. 
SET LOG = 'RESET.LOG1. 
........................................................ 
* PROGRAM: RESET.SPS SOFTWARE: SPSS/PC+ 4.01 * 
* FILENAME DESCRIPTION * 
* INPUTS: DATA.SYS TEST DATA SET * 
* PURPOSE: PERFORM RAMSEY RESET TEST. v 
........................................................ 

I GET FILE = 'DATA.SYS' . I 
* RESTRICTED REGRESSION. 
REGRESSION VARIABLES = Y1 X1 X2 X8 X9 XI0 XI3 X14 XI5 Dl D2 D3 D5 D6 

D7 D8 RD1 RD2 RD3 
/ DEPENDENT=Y 1 
/METHOD=ENTER 
/SAVE PRED(YHAT). 

COMPUTE YHAT2 = YHAT**2. 
COMPUTE YHAT3 = YHAT**3. 
COMPUTE YHAT4 = YHAT**4. 

* UNRESTRICTED REGRESSION. 
REGRESSION VARIABLES = Y1 XI X2 X8 X9 XlO X13 X14 X15 Dl D2 D3 D5 D6 D7 D8 

RD1 RD2 RD3 YHATZ YHAT3 YHAT4 
/CRITERIA=TOLERANCE(.0000001) 
/ DEPENDENT=Y 1 
/METHOD=ENTER. 

* THE LOW TOLERANCE CRITERIA IS EXPLOYED TO FORCE YHATZ AND YHAT3 INTO 
* THE EQUATION. SPSS/PC+ WILL ISSUE A WARNING ABOUT THIS. SAS PC DOES NOT 
* ISSUE A WARNING ABOUT THIS. THE F-TESTS FROM SPSS/PC+ AND SAS PC ARE IDENTICAL. 

* TEST STATISTIC CALCULATION FROM OUTPUT. 
* CALCULATE F = ( (RSSR-RSSU) /D) / (RSSU/ (N-K) ) . 
* WHERE RSSR IS THE RESIDUAL SUM OF SQUARES FOR THE RESTRICTED EQUATION. 
* RSSU IS THE RESIDUAL SUM OF SQUARES FOR THE UNRESTRICTED EQUATION. 
* N IS THE NUMBER OF CASES (1624). 
* D IS THE NUMBER OF RESTRICTIONS (3). 
* K IS THE NUMBER OF PARAMETERS IN UNRESTRICTED REGRESSION (22). 

* IF YHAT2, YHAT3, AND YHAT4 ARE NOT JOINTLY SIGNIFICANT, THEN THE 
* NULL HYPOTHESIS OF OMITTED VARIABLES IS REJECTED (FTEST=0.6024). 



MULTI- Multicollinearity exists when there is a linear relationship among some 

COLJ NEAR~TY subset of regressors in a model. Multicollinearity exists in virtually every 
data set but is a problem only when the linear relationship among 
regressors is very strong. The main effects of high multicollinearity are 
that the variances of the estimated coefficients are inflated and the t- 
statistics are consequently small; and, in extreme cases, the coefficients 
may be very sensitive and unstable with respect to minor changes in 
model specification and data. 

Since multicollinearity is essentially a matter of degree, attention has 
focused on descriptions of its extent and on assessments of the extent t o  
which it inflates the variances of the coefficients. Two popular methods 
for assessing the strength of multicollinearity are discussed below. 

Auxiliary This is more useful than the popular method of simply looking at the 
Regressions correlation matrix of regressors, since the latter only reveals pair-wise 

relationships between variables. The auxiliary regression method makes 
use of the fact that the  s statistic is a measure of the extent to which one 
variable is a linear combination of a set of other variables. The strategy 
is to regress each continuous regressor, in turn, on all remaining 
regressors and to check the f120f each auxiliary regression. High  values 
indicate the existence of strong linear dependencies. If only one linear 
relationship is very strong, then it provides an indication of which 
variable is suspect. However, if more than one linear dependency is 
strong, then the multicollinearity is more generally distributed among 
the regressors. 

The steps for performing auxiliary regressions and interpreting their 
results are described below. 

Step 1 Specify the first explanatory variable as the depen- 
dent variable and perform OLS, using the remainder 
of the explanatory variables (including a constant) as 
regressors. 

Step 2 Calculate R~ for this regression. A high f12(one rule of 
thumb might be approximately 0.90 or above) indi- 
cates that the first explanatory variable is a strong 
linear function of the remaining explanatory vari- 
ables. This general rule of thumb should be used as a 
benchmark, not as a strict bound. 

Step 3 Repeat steps 1 and 2 for each of the continuous 
explanatory variables in turn. 

For the eight continuous regressors in the standard model in the sample 
programs (Figures 37 through 39), the R' values for the auxiliary regres- 
sions range from 0.0895 to 0.8241. Therefore, it is concluded that 
multicollinearity is not severe. 

Recommended references: Fomby, Hill, and Johnson (1984, 293-294); Greene (1990, 
277-281); Griffiths, Hill, and Judge (1993, 436-437); Judge et al. (1984, 902-904); 
Kennedy (1985, 150, 153; 1992, 179-180, 183-184). 



Figure 37-Sample program for performing auxiliary regressions, in GAUSS-386 

........................................................ 
* PROGRAM: AUXREG.G SOFTWARE: GAUSS-386 V3.0 * 
* FILENAME DESCRIPTION * 
* INPUTS: DATA-DAT GAUSS-386 DATA SET * 
* PURPOSE: EXECUTE AND REPORT AUXILIARY REGRESSIONS * 
* TO CHECK FOR MULTICOLLINEARITY. A 

. ....................................................... 

FORMAT /M2 /RD 12,4; 
OUTPUT FILE = AUXREG-OUT RESET; 
NAMES = GETNAME ( "DATA" ) ; 
OPEN D = DATA.DAT VARINDXI; 
NCASE = ROWSF(D); 
DATA = READR(D,NCASE); 
F = CLOSE(D); 

X = DATA[.,IXl 1x2 1x8 1x9 1x10 1x13 1x14 1x15 
ID1 ID2 ID3 ID5 ID6 ID7 ID8 IRDl IRD2 IRD31; 

K = COLS(X); 

NAMES = NAMES[IXl 1x2 1x8 1x9 1x10 1x13 1x14 1x15 
ID1 ID2 ID3 ID5 ID6 ID7 ID8 IRDl IRD2 IRDJ,.]; 

11 I, . 
,I 11 . 
,I I ,  . 
" AUXILIARY DEPENDENT I t  . 
" REGRESSION VARIABLE R-SQUARED " ; 
,I I, . 

I = 1; 
DO WHILE I <= K; 

XA = X[.,I]; 

IF I -- -- 1; 
XX = X[.,2:Kl; 

ENDIF; 

IF I >= 2 AND I <= (K-1); 
XX = X[.,l: (1-111 - X[., (I+l):Kl; 

END1 F; 

IF I -- -- K; 
XX = X[. ,I: (K-I)]; 

ENDIF; 

XX = ONES(NCASE,l) - XX; 
@ - - - - - - - - OLS ESTIMATION OF AUXILIARY REGRESSION - - - - - - - - @ 

KA = COLS(XX); 

B = INV(XXIXX) *XXIXA; @ BETAS @ 

E = XA - XX*B; @ RESIDUALS @ 

RSS = E'E; @ RESIDUAL SUM OF SQUARES @ 

(continued) 



Figure 37-Continued 

SER = SQRT(INV(NCASE-KA)*RSS); @ STD ERROR OF REGRESSION @ 
RSQ = 1 - RSS/((NCASE-l)*(STDC(XA) )"2); @ R-SQUARED @ 
COV = INV(NCASE-K) *RSS*INV(XXXXX) ; @ OLS COVARIANCE MATRIX @ 
SE = SQRT (DIAG [COV) ) ; @ STD ERRS OF BETAS @ 
T = B ./ SE; @ T-STATISTICS FOR BETAS @ 
PT = CDFTC(ABS(T),(NCASE-K)); @ P-VALUES @ 

PRN = B - S E - T - P T ;  @ FOR PRINTING @ 

FORMAT /M2 /RD 8,O; I;; FORMAT/M2 / ~ ~ 1 4 , 8 ;  $NAMES[I,.];; 
FORMAT /M2 /RD 12,4; RSQ; 

I = I i l ;  
ENDO; 

T , \ f , , ;  

OUTPUT FILE = AUXREG. OUT OFF; 
SYSTEM; 

Figure 38-Sample program for performing auxiliary regressions, in SAS PC 

.................................................. 
* PROGRAM: AUXREG.SAS SOFTWARE: SAS PC 6.04 * 
* FILENAME DESCRIPTION * 
* INPUTS: DATA.SSD TEST DATA SET * 
* PURPOSE: EXECUTE AND REPORT AUXILIARY REGRESSIONS * 
* TO CHECK FOR MULTICOLLINEARITY. * 
........................................................ 

LIBNAME CDRV C: \DATA\ ; 

* THE FOLLOWING IS THE MODEL TO BE ESTIMATED.; 
PROC REG DATA=CDRV.DATA; 
MM: MODEL Yl=Xl X2 X8 X9 XI0 X13 X14 XI5 Dl D2 D3 D5 D6 D7 D8 RD1 RD2 RD3; 

* BELOW ARE THE EIGHT AUXILIARY REGRESSIONS FOR THE CONTINUOUS VARIABLES; 

MI: MODEL Xl=X2 X8 X9 XI0 X13 X14 X15 Dl D2 D3 D5 D6 D7 D8 RD1 RD2 RD3; 
M2: MODEL X2=X1 X8 X9 XI0 X13 X14 X15 Dl D2 D3 D5 D6 D7 D8 RD1 RD2 RD3; 
M3: MODEL X8=X1 X2 X9 X10 X13 XI4 X15 Dl D2 D3 D5 D6 D7 08 RD1 RD2 RD3; 
M4: MODEL X9=X1 X2 X8 XI0 X13 X14 X15 Dl D2 D3 D5 D6 D7 D8 RD1 RD2 RD3; 
M5: MODEL X10=X1 X2 X8 X9 X13 X14 X15 Dl D2 D3 D5 D6 D7 D8 RD1 RD2 RD3; 
M6: MODEL X13=X1 X2 X8 X9 X10 X14 X15 Dl D2 D3 D5 D6 D7 D8 RD1 RD2 RD3; 
M7: MODEL X14=X1 X2 X8 X9 X10 X13 X15 Dl D2 D3 D5 D6 D7 D8 RD1 RD2 RD3; 
ME: MODEL X15=X1 X2 X8 X9 XI0 X13 X14 Dl D2 D3 D5 D6 D7 D8 RD1 RDZ RD3; 
RUN; 
* TEST STATISTIC CALCULATION FROM OUTPUT. 
* OBSERVE R-SQUARED IN EACH REGRESSION. ONE RULE OF THUMB IS THAT AN 
* R-SQUARED VALUE OF 0.9 OR HIGHER INDICATES SERIOUS COLLINEARITY. THIS 
* IS A GENERAL RULE OF THUMB, NOT A STRICT BOUND. NONE OF THE EIGHT 
* AUXILIARY REGRESSIONS IN THIS EXAMPLE HAS AN R-SQUARED VALUE ABOVE 0.9.; 



Figure 39--Sample program for performing auxiliary regressions, in SPSS/PC+ 

SET MORE = OFF. 
SET LIS='AUXREG.LIS'. 
SET LOG='AUXREG.LOG'. 
........................................................ 
* PROGRAM: AUXREG.SPS SOFTWARE: SPSS/PC+ 4.01 * 
* FILENAME DESCRIPTION * 
* INPUTS: MANUAL.SYS TEST DATA SET * 
* PURPOSE: EXECUTE AND REPORT AUXILIARY REGRESSIONS * 
* TO CHECK FOR MULTICOLLINEARITY. * 
........................................................ 

GET FILE = 'DATA.SYS1. 
* THE FOLLOWING IS THE MODEL TO BE ESTIMATED. 
REGRESSION VARIABLES = Y1 X1 X2 X8 X9 XI0 X13 XI4 XI5 Dl D2 D3 D5 D6 D7 D8 

RD1 RD2 RD3 
/ DEPENDENT=Yl 
/METHOD=ENTER . 

* BELOW ARE THE EIGHT AUXILIARY REGRESSIONS FOR THE CONTINUOUS VARIABLES. 
REGRESSION VARIABLES = X1 X2 X8 X9 XI0 X13 X14 X15 Dl D2 D3 D5 D6 D7 D8 

RD1 RD2 RD3 
/ DEPENDENT=Xl 
/METHOD=ENTER. 

REGRESSION VARIABLES = X1 X2 X8 X9 XI0 X13 X14 X15 Dl D2 D3 D5 D6 D7 D8 
RD1 RD2 RD3 

/DEPENDENT=XS 
/METHOD=ENTER. 

REGRESSION VARIABLES = X1 X2 X8 X9 XI0 X13 X14 XI5 Dl D2 D3 D5 D6 D7 D8 
RD1 RD2 RD3 

/DEPENDENT=X8 
/METHOD=ENTER . 

REGRESSION VARIABLES = X1 X2 X8 X9 X10 X13 X14 X15 Dl D2 D3 D5 D6 D7 D8 
RD1 RD2 RD3 

/ DEPENDENT=X9 
/METHOD=ENTER. 

REGRESSION VARIABLES = X1 X2 X8 X9 XI0 X13 X14 XI5 Dl D2 D3 D5 D6 D7 D8 
RD1 RD2 RD3 

/DEPENDENT=XlO 
/METHOD=ENTER. 

REGRESSION VARIABLES = X1 X2 X8 X9 X10 X13 X14 X15 Dl D2 D3 D5 D6 D7 D8 
RD1 RD2 RD3 

/ DEPENDENT=X13 
/METHOD=ENTER. 

REGRESSION VARIABLES = X1 X2 X8 X9 XI0 X13 X14 XI5 Dl D2 D3 D5 D6 D7 D8 
RD1 RD2 RD3 

/DEPENDENT=X14 
/METHOD=ENTER. 

REGRESSION VARIABLES = X1 X2 X8 X9 XI0 XI3 X14 XI5 Dl D2 D3 D5 D6 D7 D8 
RD1 RD2 RD3 

/DEPENDENT=X15 
/METHOD=ENTER. 

* TEST STATISTIC CALCULATION FROM OUTPUT. 
* OBSERVE R-SQUARED IN EACH REGRESSION. ONE RULE OF THUMB IS THAT AN' 
* R-SQUARED VALUE OF 0.9 OR HIGHER INDICATES SERIOUS COLLINEARITY. THIS 
* IS A GENERAL RULE OF THUMB, NOT A STRICT BOUND. NONE OF THE EIGHT 
* AUXILIARY REGRESSIONS IN THIS EXAMPLE HAS AN R-SQUARED VALUE ABOVE 0.9. 

1 FINISH. I 



Condition indices Strong multicollinearity among the regressors implies that at least one 
and the Condition eigenvalue or characteristic root of the (XX) matrix is small. Condition 

Number indices are the square roots of the ratios of the largest eigenvalue of the 
standardized (XX) matrix to the remaining eigenvalues. The condition 
number is the largest of these values, that is, the square root of the ratio 
of the largest to the smallest eigenvalue. SAS PC and SPSS/PC+ both 
produce multicollinearity diagnostics based on condition indices as 
options of their regression routines. It is also easy to produce them in 
GAUSS-386. The steps described below may be followed in GAUSS-386. 

Step 1 Compute the square roots of the diagonal elements of 
(X'X). Use these to form a diagonal matrix (zeros 
except on the diagonal), then invert the diagonal 
matrix and call this result S. 

Step 2 Form the KxK matrix Z = SXXS. 

Step 3 Calculate the vector L containing the K eigenvalues 
of Z; identify the smallest one as L ~ ,  and the largest 
one as A,,. 

Step 4 Compute the vector of condition indices C as follows: 

The largest of these indices is the condition number. 

Extensive experimentation conducted by Belsley, Kuh, and Welsch 
(1980) suggests that condition indices in excess of 30 indicate the pres- 
ence of multicollinearity; condition indices in excess of a few hundred 
indicate severe multicollinearity. In the sample programs, three condi- 
tion indices are larger than 30 and one is greater than 100, which is con- 
sistent with the results of the auxiliary regressions-multicollinearity is 
moderate. Figures 40 through 42 are sample programs for determining 
the condition number. 

NOTE: Belsley, Kuh, and Welsch (1980) present measures that describe 
the extent to which variances of estimated coefficients may be inflated 
because of the presence of multicollinearity; they also present measures 
to identify which regressors are most problematic. SPSS/PC+ and SAS 
PC have a preprogrammed option called Variance Decomposition Pro- 
portion, which helps to  identify the variables that are involved in 
multicollinearity. 

Recommended references: Belsley, Kuh, and Welsch (1980, chapter 3); Corlett (1990, 
158-159); Greene (1990,281); Johnston (1984,249-250); Judge et al. (1984,902,914, 
920); Kennedy (1985,150, 153; 1992,180,183); Kmenta (1986,439); Maddala (1988, 
228). 
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Figure 40-Sample program for determining the condition number, in GAUSS-386 

........................................................ 
* PROGRAM: CONDNUM. G SOFTWARE: GAUSS-386 V3.0 * 
* FILENAME DESCRIPTION * 
* INPUTS: DATA. DAT GAUSS-386 DATA SET * 
* PURPOSE: COMPUTE REGRESSION RESULTS AND PRODUCE * 
* MULTICOLLINEARITY DIAGNOSTICS. * 
.......................................................... 

FORMAT /M2 /RD 12,4; 
OUTPUT FILE = CONDNUM.OUT ON; 
NAMES = GETNAME ( "DATA" ) ; 
OPEN D = DATA VARINDXI; 
NCASE = ROWSF(D); 
DATA = READR ( Dl NCASE ) ; 
F = CLOSE(D); 

Y = DATA[.,IYl]; 

X = ONES(NCASE,l) - DATA[.,IXl 1x2 1x8 1x9 1x10 1x13 1x14 1x15 
ID1 ID2 ID3 ID5 ID6 ID7 ID8 IRDl IRD2 IRDJ]; 

NAMES = NAMES[IXl 1x2 1x8 1x9 1x10 1x13 1x14 1x15 
ID1 ID2 ID3 ID5 ID6 ID7 ID8 IRDl IRD2 IRDS,.]; 

@ - - - - - - - - OLS ESTIMATION - - - - - - - - @ 

K = COLS(X); 

B = INV(XIX) *X'Y; @ BETAS @ 

E = Y - X*B; @ RESIDUALS @ 
RSS = EVE; @ RESIDUAL SUM OF SQUARES @ 
SER = SQRT(INV(NCASE-K)*RSS); @ STD ERROR OF REGRESSION @ 
RSQ = 1 - RSS/((NCASE-l)*(STDC(Y))"2); @ R-SQUARED @ 
COV = INV(NCASE-K)*RSS*INV(XIX); @ OLS COVARIANCE MATRIX @ 
SE = SQRT(DIAG(COV1); @ STD ERRS OF BETAS @ 
T = B ./ SE; @ T-STATISTICS FOR BETAS @ 
PT = 2*CDFTC(ABS(T),(NCASE-K)); @ P-VALUES @ 
PRN = B - S E - T - P T ;  @ FOR PRINTING @ 

11 I, . 
11 I, . 
!, I, . 
" OLS RESULTS "; 
11 11 . 
1, I, . 
" NUMBER OF OBSERVATIONS _ I, - ;; NCASE; 

" STANDARD ERROR OF REGRESSION = ";; SER; 
" RESIDUAL SUM OF SQUARES _ 11 - ;; RSS; 

" R-SQUARED - 1 1 . .  - . . RSQ; 
t1 I, . 
11 It . 
" VARIABLE COEFF STD ERROR T-RATIO P-VALUE " ; 
I, ,I . 
" INTERCEPT " ; ; PRN [ 1, . I ; 
I = 1; 
DO WHILE I <= K -1; 

(continued) 



Figure 40-Continued 

FORMAT /M1 /RD 12,8; $NAMES[I,.];; FORMAT /M1 /RD 12,4; PRN[I+l,.]; 

I = I + 1 ;  
ENDO; 
,r I, . 

@ - - - - - - - FORM SCALED VERSION OF (X'X) 

D = SQRT(DIAG(XrX)); 
S = INV(DIAGRV(EYE(K),D)); 
Z = s*xlx*s; 

@ - - - - - - - - COMPUTE EIGENVALUES OF Z 

L = EIGRS(Z); 

LMIN = MINC(L); 
LMAX = MAxC(L); 

CONDINDX = SQRT(LMAX./L); 
COND = SQRT(LMAX/LMIN); 

11 1s - 
11 1, + 

'' CONDITION INDICES " ; 
l, If  . 
CONDINDX; 
*I If . 
I, If . 

CONDITION NUMBER: C =";; COND; 

,,\f"; 

OUTPUT FILE = CONDNUM. OUT OFF; 
SYSTEM; 
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Figure 41-Sample program for determining the condition number, in SAS PC 

........................................................ 
* PROGRAM: CONDNUM. SAS SOFTWARE: SAS PC 6.04 * 
* FILENAME . DESCRIPTION * 
* INPUTS: DATA.SSD TEST DATA SET * 
* PURPOSE: COMPUTE REGRESSION RESULTS AND PRODUCE * 
* MULTICOLLINEARITY DIAGNOSTICS. * 
........................................................ 

LIBNAME CDRV 'C:\DATA\'; 

* THE FOLLOWING IS THE MODEL TO BE ESTIMATED.; 
PROC REG DATA=CDRV.DATA; 

MODEL Yl=X1 X2 X8 X9 XI0 X13 X14 X15 Dl DZ D3 D5 D6 D7 D8 RD1 RD2 RD3 
/ COLLIN; 

RUN; 

* TEST STATISTIC CALCULATION FROM OUTPUT. 
* THE CONDITION INDEX IS AUTOMATICALLY CALCULATED IN SAS PC IF THE COLLIN 
* OPTION IS USED. THREE OF THE CONDITION NUMBERS ARE LARGER 
* THAN THE RULE-OF-THUMB CUTOFF OF 30, WITH ONE BEING LARGER THAN 100. THE VARIABLES 
* MOST RESPONSIBLE FOR THE LARGE CONDITION NUMBERS SEEM TO BE XI AND X2.; 

Figure 42-Sample program for determining the condition number, in SPSS/PC+ 

SET MORE OFF. 
SET LIS = 'CONDNUM.LIS'. 
SET LOG = 'CONDNUM.LOGS. 
........................................................ 
* PROGRAM: CONDNUM-SPS SOFTWARE: SPSS/PC+ 4.01 * 
* FILENAME DESCRIPTION * 
* INPUTS: DATA.SYS TEST DATA SET * 
* PURPOSE: COMPUTE REGRESSION RESULTS AND PRODUCE * 
c MULTICOLLINEARITY DIAGNOSTICS. * 
........................................................ 

GET FILE = 'DATA.SYSS . 
* THE FOLLOWING IS THE MODEL TO BE ESTIMATED. 
REGRESSION VARIABLES = Y1 X1 X2 X8 X9 XI0 X13 XI4 X15 Dl D2 D3 D5 D6 D7 D8 

RD1 RD2 RD3 
/STATISTICS = COLLIN 
/ DEPENDENT=Yl 
/METHOD=ENTER. 

* TEST STATISTIC CALCULATION FROM OUTPUT. 
* THE CONDITION INDEX FOR EACH EIGENVALUE IS AUTOMATICALLY 
* CALCULATED IN SPSS/PC+ IF THE COLLIN OPTION IS USED. THREE OF THE CONDITION 
* NUMBERS ARE LARGER THAN THE RULE-OF-THUMB CUTOFF OF 30, WITH ONE BEING LARGER THAN 100. 
* THE VARIABLES MOST RESPONSIBLE FOR THE LARGE CONDITION NUMBERS SEEM TO BE XI AND X2. 
FINISH. 



TESTING FOR The Chow F-test, more commonly known as the "Chow test," is a simple 

STRUCTURAL way to test if the underlying parameter values for a data set change 
across specified subsets of that data: across different time periods or 

CHANGE household types, for example. The Chow test compares the RSS from a 
restricted model (that assumes that the parameters are constant across 

The Chow PTest data subsets) with the RSS from an unrestricted model (that allows the 
parameters to vary across data subsets). The unrestricted RSS may be 
obtained by running separate regressions for the data subsets and 
summing the resulting RSSs or, alternatively, by running a single 
regression that includes a set of dummy and dummy-interaction vari- 
ables that distinguish among the subsets of the data. Both methods are 
simple and they have identical results. Both are presented below, in 
GAUSS-386. In SAS PC and SPSS/PC+, only the second approach is 
presented. For the programs discussed here, the question of whether the 
data from "round 1" surveys are distinct from the data drawn from the 
other three rounds is investigated. 

This example is slightly more complicated to program than typical 
examples of the Chow test because of the presence of two dummies to 
distinguish among the three rounds in the second data subset. In effect, 
distinct intercepts for all survey rounds are permitted, and this example 
only tests whether slope coefficients are distinct between round 1 and the 
other three rounds. The models used in this example are as follows: 

Round 1 model (RD2 = RD3 = RD4 = 0): 

where X contains neither an intercept nor any "round" dummies. 

Rounds 2 through 4 model (RD1 = 0): 

where X i s  as described in the round 1 model, and RD3 and RD4 
introduce intercept differentials for the third and fourth rounds. 

Note that RD4 is not contained in the data set, but can be 
constructed from knowledge of RD1, RD2, and RD3. 

Restricted model (only intercepts allowed to vary): 

First Approach: Estimating Separate Models for Two Data Sub- 
sets (GAUSS-386). In the first approach, the data are split into subsets 
and a separate model is estimated from each: 

Step 1 Separate the data into two data subsets: one from the 
first round of the survey (RD1 = 1) and one from the 
other rounds (RD1 = 0). 



Step 2 Run three regressions: 

First: Estimate the Round 1 model for the data 
set for which RD1 = 1 and retain the 
RSS. Call it RSSl. 

Second: Estimate the Round 2 through 4 model 
for the data set for which RD1 = 0 and 
retain the RSS. Call it RSSY 

Third: Estimate the restricted model for the full 
data set and retain the RSS. Call it RSSR 
for 'kestricted" RSS. 

Step 3 The unrestricted RSS is RSSu = RSSl + RSSY 

Step 4 Form the test statistic 

Here, the numerator degrees of freedom is equal to 
the number of restrictions (the number of slope 
coefficients that are forced to be equal across the two 
models equals 15 in the sample programs) and the 
denominator degrees of freedom is equal to the 
degrees of freedom associated with the unrestricted 
model (sample size minus the total number of 
coefficients estimated in the unrestricted model[s]). 

Second Approach: Dummy Variables (GAUSS-386, SAS PC, and 
SPSS/PC+ programs). In the second approach, dummy variables are 
used: 

Step 1 Let RD1 be the dummy variable that identifies the 
first-round survey observations. Form the matrix of 
interaction variables DX = RDl.*X, where .* is 
element-by-element multiplication of each row in X 
by corresponding elements of RD1 (15 rows in the 
sample programs). 

Step 2 Estimate the unrestricted model by OLS: 

y = Po + XP + DXS + 6 $ B  + S$D3 + d4RD4 + E. 

This is the unrestricted model, because the presence 
of the dummy interaction variables allows differential 
effects across subsamples for all slope coefficients. 

Step 3 Estimate the restricted model by OLS: 



Comparing the restricted and unrestricted models, it 
is evident that the hypothesis to be tested is 

Ho: 6 = 0, and 

H,: 6 # 0. 

Step 4 Compute the test statistic exactly as in step 4 above. 

Both approaches to the test produce an F-statistic of 1.191 (dfi, df2) 
= (15,190), hence the null hypothesis of equal slope coefficients in round 
1 versus rounds 2 through 4 (no structural change) cannot be rejected. 

The Chow test is applicable to a wide variety of hypotheses; this 
example shows only one case. Refer to the references for additional 
applications. Figures 43 through 45 are sample programs for the Chow 
test. 

Recommended references: Chow (1960, 591-605); Fomby, Hill, and Johnson (1984, 
197-199); Greene (1990,218-222); Johnston (1984,207-225); Kennedy (1985,87-88, 
186; 1992,98, 108-109); Kmenta (1986,42042); Maddala (1988, 134). 

Figure 43-Sample program for Chow test, in GAUSS-386 

............................................................ 
* PROGRAM: CHOW. G SOFTWARE: GAUSS-386 V3.0 * 
* FILENAME DESCRIPTION * 
* INPUTS: DATA-DAT GAUSS-386 DATA SET * 
* PURPOSE: ILLUSTRATE TWO APPROACHES TO CHOW TEST. * 
............................................................ 

FORMAT /M2 /RD 12,4; 
OUTPUT FILE = CHOW-OUT RESET; 

NAMES = GETNAME ( "DATA" ) ; 
OPEN D = DATA VARINDXI; 
NCASE = ROWSF(D); 
DATA = READR ( D, NCASE } ; 
F = CLOSE(D); 

Y = DATA[.,IYl]; 

X = ONES(NCASE,l) - DATA[.,IXl 1x2 1x8 1x9 1x10 1x13 1x14 1x15 
ID1 ID2 ID3 ID5 ID6 ID7 ID8 IRDl IRD2 IRD31; 

RD1 = DATA[.,IRDl]; 

NAMES = NAMES[IXl 1x2 1x8 1x9 1x10 1x13 1x14 1x15 
ID1 ID2 ID3 ID5 ID6 ID7 ID8 IRDl IRD2 IRD3, -1; 

@ - - - - - - - - FIRST APPROACH: RESTRICTED REGRESSION - - - - - - - - @ 
@ - - - - - - - - AND TWO SUBSET REGRESSIONS FOR THE - - - - - - - - @ 
@ - - - - - - - - UNRESTRICTED CASE - - - - - - - - a 
@ - - - - - - - - RESTRICTED REGRESSION - - - - - - - - @ 

(continued) 
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Figure 43-Continued 

K = COLS(X); 
B = INV(XfX) *XrY; @ BETAS @ 
E = Y - X*B; @ RESIDUALS @ 
RSSR = E'E; @ RESTRICTED RSS @ 
SER = SQRT(INV(NCASE-K)*RSSR); @ STD ERROR OF REGRESSION @ 
RSQ = 1 - RSSR/((NCASE-l)*(STDC(Y))"2); @ R-SQUARED @ 
COV = INV(NCASE-K)*RSSR*INV(XfX); @ OLS COVARIANCE MATRIX @ 
SE = SQRT(DIAG(C0V)); @ STD ERRS OF BETAS @ 
T = B ./ SE; @ T-STATISTICS FOR BETAS @ 
PT = 2*CDFTC (ABS (T) , (NCASE-K) ) ; @ P-VALUES @ 

PRN = B - S E - T - P T ;  @ FOR PRINTING @ 

I, It  . 
II I1 . 
1, ,I . 
" RESTRICTED REGRESSION RESULTS "; 
I1  I, . 
I, 11 . 
" NUMBER OF OBSERVATIONS = II ; . NCASE; 
" STANDARD ERROR OF REGRESSION = ";; SER; 
" RESIDUAL SUM OF SQUARES = 1 f . .  ,, RSSR; 
" R-SQUARED = II ;; RSQ; 
I, I, . 
I, I, . 
" VARIABLE COEFF STD ERROR T-RATIO P-VALUE " ; 
I, I, . 
" INTERCEPT";; PRN[1,.1; 

I = 1; 
DO WHILE I <= K -1; 
FORMAT /M1 /RD 12,8; $NAMES[I,.];; FORMAT /M1 /RD 12,4; PRN[I+l,.]; 

I = I + l ;  
ENDO; 
tt  11 . 
"\f"; 

@ - - - - - - - - REGRESSION ON FIRST-ROUND (RD1 = 1) SUBSET ------- @ 

Y1 = SELIF (Y, RD1) ; 
X1 = SELIF (X, RD1) ; 
N1 = ROWS (XI) ; 
XI = Xl[.,l:(K-3)]; 
K = COLS (XI) ; 

B = INV(X1'X1)*XlfY1; @ BETAS @ 
E = Y1 - Xl*B; @ RESIDUALS @ 
RSSl = EVE; @ UNRESTRICTED RSSl @ 

SER = SQRT (INV(N~-K) *RSS~) ; @ STD ERROR OF REGRESSION @ 

RSQ = 1 - RsS~/((NI-~)*(STDC(Y~))"~); @ R-SQUARED @ 
COV = INV(N1-K)*RSSl*INV(Xl'Xl); @ OLS COVARIANCE MATRIX @ 

SE = SQRT(DIAG(C0V)); @ STD ERRS OF BETAS @ 
T = B ./ SE; @ T-STATISTICS FOR BETAS @ 

PT = 2*CDFTC (ASS (T) , (Nl-K) ) ; @ P-VALUES @ 
PRN = B - S E - T - P T ;  @ FOR PRINTING @ 

[continued) 



Figure 43-Continued 

I, 1, * 

,I I, . 
,I 0 . 
" REGRESSION RESULTS FOR FIRST ROUND SUBSET (RD1 = 1) "; 
I* ,r . 
11 11 . 
" NUMBER OF OBSERVATIONS - - 1 1 . .  r r  N1; 
" STANDARD ERROR OF REGRESSION = ";; SER; 
" RESIDUAL SUM OF SQUARES _ - I,.. , , RSS1; 
" R-SQUARED - ".. - . . RSQ; 
1, I, . 
1, ,I - 
" VARIABLE COEFF STD ERROR T-RATIO P-VALUE " ; 
l r  I, . 

" INTERCEPT ";; PRN[l,.]; 

I = 1; 
DO WHILE I <= K - 1; 
FORMAT /MI. /RD 12,8; $NAMES[I,.];; FORMAT /MI /RD 12,4; PRN[I+l,.]; 

I = I t l ;  
ENDO; 
0 11 . 
"\f "; 

@ - - - - - - - - REGRESSION ON NON-FIRST-ROUND DATA 

Y2 = DELIF (Y, RD1) ; 
X2 = DELIF(X,RDl) ; 
N2 = ROWS (X2) ; 

X2 = X2[.,1:K Ki2 K+3]; 

NAME2 = NAMES[l:(K-l)KtlK+2,.]; 

K = COLS(X2); 
B = INV(X2'X2)*X2'YZ; @ BETAS @ 
E = Y2 - X2*B; @ RESIDUALS @ 
RSSX = E'E; @ UNRESTRICTED RSSZ @ 
SER = SQRT(INV(N2-K)*RSS2); @ STD ERROR OF REGRESSION @ 

RsQ = 1 - RSS2/((N2-1)*(STDC(YZ))"2); @ R-SQUARED @ 
COV = INV(N2-K) *RSS2*INV(X2'X2) ; @ OLS COVARIANCE MATRIX @ 

SE = SQRT(DIAG(C0V)); @ STD ERRS OF BETAS @ 
T = B ./ SE; @ T-STATISTICS FOR BETAS @ 

PT = 2*CDFTC(ABS (T) , (NZ-K) ) ; @ P-VALUES @ 
PRN = B - S E - T - P T ;  @ FOR PRINTING @ 

1, II . 
I, 11 . 
I, 1, . 
" REGRESSION RESULTS FOR NON-FIRST-ROUND SUBSET "; 
I, t, . 
I, It . 
" NUMBER OF OBSERVATIONS - , I . .  - , N2; 

" STANDARD ERROR OF REGRESSION = ";; SER; 

(continued) 



Figure 43-Continued 
- 

" RESIDUAL SUM O F  SQUARES - 11 - ; ; R S S 2 ;  

" R-SQUARED - t, . - r ;  RSQ; 
I t  II . 
,I I1 . 
" VARIABLE COEFF STD ERROR T-RATIO P-VALVE" ; 
I ,  I, . 
" INTERCEPT " ; ; PRN [ I ,  . ] ; 
I = 1; 
DO WHILE I <= K - 1; 

FORMAT /M1 /RD 1 2 , 8 ;  $ N A M E 2 [ I f . 1 ; ;  FORMAT /M1 /RD 1 2 , 4 ;  P R N [ I + l , . ] ;  

I = I + 1 ;  
ENDO; 
,I II . 

RSSU = R S S l  + R S S 2 ;  
DEN = C O L S ( X )  - 4;  
DFD = NCASE - (2*DFN + 4 ) ;  

I 

I F  = [ ( R S S R  - R s S U ) / D F N  ) / ( R s S U / D F D ) ;  

I PROBF = CDFFC ( F, DFN, DFD) ; 

I, 11 . 
I( t 8  . 
I, 11 . 

RESULTS FOR SUBSET REGRESSION APPROACH"; 
,, ( 1  . 
11 ,I . 
" CHOW TEST:  F ="; ; F;  ; " P-VALUE ="; ; PROBE; 
11 3 ,  . 
" NUMERATOR DF =";; DFN; 
" DENOMINATOR DF =";; DFD; 

@ - - - - - - - - SECOND APPROACH: RESTRICTED REGRESSION 
@ - - - - - - - - AND DUMMY -VARIABLE REGRESS1 ON 
@ - - - - - - - - FOR UNRESTRICTED CASE 

NAMES = NAMES 
I "DX1" I "DX2" I "DX8" I "DX9" I "DX10" I "DX13" I 

" ~ ~ 1 4 1 1  I "DX15" I "DD1" I "DD2" I "DD3" I "DD5" I 
"DD6" I "DD7" I "DD8" ; 

X = X - D X ;  

K = C O L S I X ) ;  

@ - - - - - - - - UNRESTRICTED DUMMY-VARIABLE REGRESSION -------- @ 

B = I N V ( X I X ) * X ' Y ;  @ BETAS @ 

(continued) 



Figure 43-Continued 

E = Y - X*B; @ RESIDUALS @ 
RSSU = E'E; @ UNRESTRICTED RSS @ 
SER = SQRT(INV(NCASE-K)*RSSU); @ STD ERROR OF REGRESSION @ 
RSQ = 1 - RSSU/((NCASE-l)*(STDC(Y))"Z); @ R-SQUARED @ 
COV = INV(NCASE-K)*RSSU*INV(XIX); @ OLS COVARIANCE MATRIX @ 
SE = SQRT(DIAG(C0V)); @ STD ERRS OF BETAS @ 
T = B ./ SE; @ T-STATISTICS FOR BETAS @ 
PT = 2*CDFTC (ABS (T) , (NCASE-K) ) ; @ P-VALUES @ 
PRN = B - S E - T - P T ;  @ FOR PRINTING @ 

11 I, . 
I ,  I, . 
3r 11 . 
" UNRESTRICTED DUMMY-VARIABLE REGRESSION RESULTS ' I ;  

1, 11 . 
I, 1, . 
" NUMBER OF OBSERVATIONS - 1 t . .  - , , NCASE; 

" STANDARD ERROR OF REGRESSION = 'I;; SER; 
" RESIDUAL SUM OF SQUARES - 0 . -  - , , RSSU; 

" R-SQUARED - ( I . .  - . . RSQ; 
I, I, - 
v t  ,I . 
" VARIABLE COEFF STD ERROR T-RATIO P-VALUE" ; 
II ,I . 
" INTERCEPT " ; ; PRN [ 1, .1; 

I = 1; 
DO WHILE I <= K - 1; 
FORMAT /M1 /RD 12,8; $NAMES[I,.];; FORMAT /M1 /RD 12,4; PRN[I+l,.]; 

I = I + 1 ;  
ENDO; 
1, I, . 

DEN = (K-4)/2; 
DFD = NCASE - K; 

F = ( (RSSR - RSSU)/DFN / (RSSU/DFD); 

PROBF = CDFFC (F, DEN, DFD) ; 

0 IS - 
1, I, . 
I ,  11 - 

,r RESULTS FOR DUMMY-VARIABLE APPROACH"; 
1, ,, + 

O I, . 
" CHOW TEST: F = I r ;  ; F; ; " P-VALUE =" ; ; PROBE; 
I, I* A 

1, t, . 
" NUMERATOR DF ="; ; DFN; 
" DENOMINATOR DF =";; DFD; 
I ,  I, . 
"\f"; 

OUTPUT FILE = CHOW. OUT OFF; 
SYSTEM; 



Figure 44--Sample program for Chow test, in SAS PC 

........................................................ 
* PROGRAM: CHOW. SAS SOFTWARE: SAS PC 6.04 * 
* FILENAME DESCRIPTION * 
* INPUTS: DATA-SSD TEST DATA SET * 
* PURPOSE: ILLUSTRATE TWO APPROACHES TO CHOW TEST. * 
........................................................ 

* THE NULL HYPOTHESIS BEING TESTED IS THAT THE SLOPE COEFFICIENTS ON 
* THE EXPLANATORY VARIABLES ARE IDENTICAL IN ROUND 1 VERSUS ROUNDS 2-4. 
* THE INTERCEPT IS ALLOWED TO VARY BY ROUND, EVEN IN THE RESTRICTED MODEL.; 

I LIBNAME CDRV 'C:\DATA\'; 
DATA DAT2; 1 SET CDRV. DATA; 

DX1 = RDl*Xl; 
DX2 = RDl*X2; 
DX8 = RDl*X8; 
DX9 = RDl*X9; 
DX10= RDl*X10; 
DX13= RDl*X13; 
DX14= RDl*X14; 
DX15= RDl*X15; 
DD1 = RDl*Dl; 
DD2 = RDl*D2; 

. DD3 = RDlCD3; 
DD5 = RDl*D5; 
DD6 = RDl*D6; 
DD7 = RDl*D7 ; 
DD8 = RDl*D8; 

RUN ; 

PROC REG DATA=DAT2; 
MODEL Y1= X1 X2 X8 X9 XI0 XI3 X14 XI5 Dl D2 D3 D5 D6 D7 D8 

RD1 RD2 RD3 
DX1 DX2 DX8 DX9 DXlO DX13 DX14 DX15 
DD1 DD2 DD3 DD5 DD6 DD7 DD8; 

B1 : TEST DXl=DX2=DX8=DX9=DXlO=DX13=DX14=DX15= 
DDl=DD2=DD3=DDS=DDG=DD7=DD8=0; 

* THE F-TEST STATISTIC IS CALCULATED FROM THE "Bl: TEST" COMMAND; 
* FOR THIS EXAMPLE, F-TEST = 1.1913 (DF=15, 1590). WE CANNOT REJECT THE NULL 
* HYPOTHESIS THAT THE SLOPE COEFFICIENTS ARE IDENTICAL IN THE TWO TIME PERIODS.; 



Figure 45--Sample program for Chow test, in SPSS/PC+ 

SET MORE = OFF. 
SET LIS = 'CHOW.LIS'. 
SET LOG = 'CHOW-LOG'. 
........................................................ 
* PROGRAM: CHOW-SPS SOFTWARE: SPSS/PC+ 4.01 * 
* FILENAME DESCRIPTION * 
* INPUTS: DATA. SYS TEST DATA SET * 
* PURPOSE: ILLUSTRATE TWO APPROACHES TO CHOW TEST. * 
........................................................ 

* THE NULL HYPOTHESIS BEING TESTED IS THAT THE SLOPE COEFFICIENTS ON 
* THE EXPLANATORY VARIABLES ARE IDENTICAL IN ROUND 1 VERSUS ROUNDS 2-4. 
* THE INTERCEPT IS ALLOWED TO VARY BY ROUND, EVEN IN THE RESTRICTED MODEL. 

GET FILE = 'DATA.SYS3 - 

COMPUTE DXI = RDl*X1. 
COMPUTE DX2 = RD1*X2. 
COMPUTE DX8 = RD1*X8. 
COMPUTE DX9 = RDl"X9. 
COMPUTE DX10= RDl*XlO. 
COMPUTE DX13= RDl*X13. 
COMPUTE DX14= RDl*X14. 
COMPUTE DX15= RDl*X15. 
COMPUTE DD1 = RDl*Dl. 
COMPUTE DD2 = RDl*D2. 
COMPUTE DD3 = RDl*D3. 
COMPUTE DD5 = RDl*D5. 
COMPUTE DD6 = RDlrD6. 
COMPUTE DD7 = RDl*D7. 
COMPUTE DD8 = RDl*D8. 

*UNRESTRICTED MODEL. 
REGRESSION VARIABLES = Y1 X1 X2 X8 X9 XI0 X13 X14 XI5 Dl D2 03 D5 D6 D7 D8 

RD1 RD2 RD3 
DX1 DX2 DX8 DX9 DXlO DXl3 DX14 DX15 
DD1 DD2 DD3 DD5 DD6 DD7 DD8 
/ DE PENDENT=Yl 
/METHOD=ENTER. 

*RESTRICTED MODEL. 
REGRESSION VARIABLES = Y1 X1 X2 X8 X9 XI0 X13 X14 XI5 Dl D2 D3 D5 D6 D7 D8 

RD1 RD2 RD3 
/ DEPENDENT=YL 
/METHOD=ENTER. 

* TEST STATISTIC CALCULATION FROM OUTPUT. 
* CALCULATE FTEST = ((RSSR-RssU)/D)/(RSSU/(N-K)). 
* WHERE RSSR IS THE RESIDUAL SUM OF SQUARES FOR THE RESTRICTED EQUATION. 
* RSSU IS THE RESIDUAL SUM OF SQUARES FOR THE UNRESTRICTED EQUATION. 
* N IS THE NUMBER OF CASES (FOR THIS EXAMPLE 1624). 
* D IS THE NUMBER OF RESTRICTIONS (FOR THIS EXAMPLE 15). 
* K IS THE NUMBER OF PARAMETERS IN THE UNRESTRICTED MODEL 
* (FOR THIS EXAMPLE, 34). 

* FOR THIS EXAMPLE, FTEST=1.1913 (DF=15, 1590) . WE CANNOT REJECT THE NULL 
* HYPOTHESIS THAT THE SLOPE COEFFICIENTS ARE IDENTICAL IN THE TWO TIME PERIODS. 
FINISH. 



TESTING FOR The "linearity" assumption of the Classical Linear Regression Model 

NON ~1 NEAR refers to the assumption that the parameters enter the equation linearly. 
No such assumption is required concerning the manner in which the 
variables enter the equation. However, it is common to specify that the 
variables enter linearly. If this is inappropriate, then the consequences 
are similar to other forms of misspecification, such as the omission of 
relevant explanatory variables. In fact, if the Taylor theorem is used, 
inappropriate functional forms may be viewed as a special case of the 
omitted variables problem (Kmenta 1986, 449-451). Because of the 
similarity of the two problems, test results that indicate inappropriate 
functional form may actually be revealing an omitted variable problem. 
One test that is less susceptible to this problem is Utts' Rainbow test. 

Utts' Rainbow Test This test is related to the Chow test for structural stability, with the 
sample divided into two subsamples according to  the observations' 
influence (or leverage) on the regression results. If observations with 
high leverage displace the regression results significantly, then it may be 
concluded that the specification of the regression function is inadequate. 
The test makes use of a measure of leverage that is also used to detect 
influential outliers in a regression. 

The model is the standard one: 

The test is based on the difference in the RSS from the restricted 
regression (same model applies to all observations) and the RSS from the 
unrestricted regression (on observations that have small leverage). The 
null hypothesis is that this difference is zero. Keep in mind that this test 
assumes that the stochastic disturbance terms satisfy the classical 
assumptions. If they do not, then the test is not valid. Here, proceed 
under the assumption that the classical assumptions are satisfied. 

Step 1 Perform OLS on the full data set and retain the 
residual sum of squares RSSR (restricted RSS). 

Step 2 Compute the leverage measure for each observation 
in X: 

where xi is the ith row of X. Sort the leverage 
measures into ascending order and select the half 
that are smallest. Identify observations in X and Y 
that correspond with the small leverage measures. 

Step 3 Perform OLS on the subsample selected in step 2, 
and retain the residual sum of squares RSSu (unre- 
stricted). 

Step 4 Calculate the statistic U: 



where K = the number of estimated coefficients. 

A rejection of the null hypothesis implies that the functional form is 
inadequate. For these sample programs, U = 1.195 (F-critical = 1, P- 
value = 0.0058), so that the null hypothesis is rejected. Recall, however, 
that this model omits X3, X6, X7, and X12, and that heteroskedasticity 
afflicts the disturbances. An improved test would be to include the 
additional variables known to be significant and to correct for hetero- 
skedasticity before conducting the Rainbow test. Figures 46 through 48 
are sample programs for Utts' Rainbow test. 

Recommended references: Kennedy (1992, 104); Krnenta (1986,454455); K r h e r  et 
al. (1985,120-121); Utts (1982,2801-2815). 



Figure 46-Sample program for Utts' Rainbow test, in GAUSS-386 

........................................................ 
* PROGRAM: RAINB0W.G SOFTWARE: GAUSS-386 V3.0 * 
* FILENAME DESCRIPTION * 
* INPUTS: DATA.DAT GAUSS-386 DATA SET * 
* PURPOSE: EXECUTE AND REPORT UTTS' FAINBOW TEST * 
* FOR ADEQUACY OF FUNCTIONAL FORM. * 
........................................................ 

FORMAT /M2 /RD 12,4; 
OUTPUT FILE = RAINBOW.OUT RESET; 

NAMES = GETNAME ( "DATA" ) ; 
OPEN D = DATA VARINDXI; 
NCASE = ROWSF(D); 
DATA = READR(D,NCASE); 
F = CLOSE(D) ; 

= ONES(NCASE,l) - DATA[.,IXl 1x2 1x8 1x9 1x10 1x13 1x14 1x15 
ID1 ID2 ID3 ID5 ID6 ID7 ID8 IRDl IRD2 IRD31; 

NAMES = NAMES[IXl 1x2 1x8 1x9 1x10 1x13 1x14 1x15 
ID1 ID2 ID3 ID5 ID6 ID7 ID8 IRDl IRDP IRD3,.1; 

I@-------- OLS ESTIMATION -------- k? I 
K 
B 
E 
RS S 
SER 

RSQ 
cov 
SE 
T 
PT 

COLS (X) ; 
INV(X'X)*X'Y; 
Y - X*B; 
E'E; 
SQRT(INV(NCASE-K)*RSS); 
1 - RSS/((NCASE-l)*(STDC(Y)) 
INV(NCASE-K)*RSS*INV(XIX); 
SQRT ( DIAG (COV) ) ; 
B ./ SE; 
2*CDFTC(ABS(T),(NCASE-K)); 

@ BETAS @ 
@ RESIDUALS @ 
@ RESIDUAL SUM OF SQUARES @ 
@ STD ERROR OF REGRESSION @ 

2 @ R-SQUARED @ 
@ OLS COVARIANCE MATRIX @ 
@ STD ERRS OF BETAS @ 
@ T-STATISTICS FOR BETAS @ 
@ P-VALUES k? 

PRN = B - S E - T - P T ;  @ FOR PRINTING @ 

I t  ,I . 
I, ,I . 
I, ,I . 
" OLS RESULTS "; 
11 ,I . 
I, 11 . 
" NUMBER OF OBSERVATIONS - I * . .  - , , NCASE; 

" STANDARD ERROR OF REGRESSION = "; ; SER; 
" RESIDUAL SUM OF SQUARES - 11 - ;; RSS; 

" R-SQUARED - I ,  - ;; RSQ; 
1, *t . 
I, 1, . 
" VARIABLE COEFF STD ERROR T-RATIO P -VALUE " ; 
11 II . 
I' INTERCEPT " ; ; PRN [ 1, . I  ; 

(continued) 



Figure 46-Continued 

@ LOOP OVER WHOLE SAMPLE @ 

@ Ith LEVERAGE MEASURE @ 

FORMAT /MI /RD 12,8; SNAMESII,.];; FORMAT /MI /RD 12,4; PRN[I+l,.]; 

I = I + 1 ;  
ENDO; 
,I 1, + 

e\ f I l ;  

@ - - - - - - - - CONSTRUCT VECTOR OF LEVERAGE MEASURES. 
@ - - - - - - - - THE MATRIX X CONTAINS "OBSERVATION 
@ - - - - - - - - NUMBER" IN THE FIRST COLUMN AND THE 
@ - - - - - - - - CORRESPONDING LEVERAGE MEASURE IN THE 
@ - - - - - - - - SECOND COLUMN. 

N = NCASE; 
I = 1; 

XXI = INV(XfX); 
H = ZEROS(N,Z]; 

DO WHILE I <= N; 

z = X[I,.I; 
HI I = Z*XXI*Zr; 
H[I,l] = I; 
H[I,2] = HII; 

I = I + 1 ;  

ENDO; @ END OF LOOP @ 

@ - - - - - - - - SORT H BY THE MAGNITUDE OF THE LEVERAGE - - - - - - - - @ 

H = SORTC(Hf2); 
M = H[l:N/Zf - 1 ;  @ SELECT LOWER HALF OF H @ 

M = SORTC (M, 1 ) ; @ ANDSORTBYOBSERVATION @ 

@ - - - - - - - - CHOOSE ELEMENTS OF X AND Y THAT CORRESPOND - - - - - - - - @ 

@ - - - - - - - - TO THE OBSERVATIONS IDENTIFIED IN M - - - - - - - - @ 

Y S = YlMl-r1lr.l; 
XS = XIMl.,lI,.l; 

@ - - - - - - - - OLS ON SUBSET OF DATA HAVING SMALL 
@ - - - - - - - - LEVERAGE VALUES 

NS = ROWS(XS); 
KS = COLS(XS); 
BS = INV(XSIXS) *XS'YS; 
E = YS - XS*BS; @ RESIDUALS t? 

RSSS = E'E; @ RESIDUAL SUM OF SQUARES @ 
SER = SQRT ( INV (NS-KS) *RSS) ; @ STD ERROR OF REGRESSION @ 
RSQ = 1 - RSSS/((NS-l)*(STDC(YS))"2); @ R-SQUARED @ 
COV = INV(NS-KS)*RSSS*INV(XSIXS); @ OLS COVARIANCE MATRIX @ 
SE = SQRT(DIAG(C0V) ) ;  @ STD ERRS OF BETAS @ 
T = B ./ SE; @ T-STATISTICS FOR BETAS @ 
PT = 2*CDFTC (ABS (T ) , (NS-KS) ) ; @ P-VALUES @ 

PRN = B - S E - T - P T ;  @ FOR PRINTING @ 

(continued) 



Figure 46--Continued 

19 11 . 
It II . 
I, 11 . 
" OLS RESULTS FOR SUBSAMPLE WITH SMALL LEVERAGE VALUES"; 
,I 11 . 
,I II . 
" NUMBER OF OBSERVATIONS _ I,.. - ,, NS; 

" STANDARD ERROR OF REGRESSION = ";; SER; 
" RESIDUAL SUM OF SQUARES - I t  - ; ; RSSS; 

" R- SQUARED - I , . .  - , RSQ; 
,I ,I . 
,I 11 . 
" VARIABLE COEFF STD ERROR T -RAT I0 P-VALUE" ; 
,I It  . 
" INTERCEPT "; ; PRN [l, . ] ; 

I = 1; 
DO WHILE I <= KS - 1; 
FORMAT /M1 /RD 12,8; $NAMES[I,.I;; FORMAT /M1 /RD 12,4; PRN[I+l,.]; 

I = I t 1 ;  
ENDO; 

I t  11 . 

@ - - - - - - - - CALCULATION OF THE RAINBOW TEST STATISTIC -------- @ 

@ NUMERATOR D.F. 
@ DENOMINATOR D. F. 

I = ( (RSS - RSSS) / DFN ) / ( RSSS / DFD ) ; 

I Pu = CDFFC (U, DFN, DFD) ; 

,* I, . 
II  I ,  . 
I, I ,  . 
" RAINBOW TEST STATISTIC: U =";; U; 
I1 11 . 
1, I, . 
" NUMERAT0RD.F. = I 1 ; ;  DEN; 
" DENOMINATOR D. F. =" ; ; DFD; 
I* I,. 

" P-VALUE -I,. . - . , PU; 

OUTPUT FILE = RAINBOW-OUT OFF; 
SYSTEM; 



Figure 47-Sample program for Utts' Rainbow test, in SAS PC 

........................................................ 
* PROGRAM: RAINBOW.SAS SOFTWARE: SAS PC 6.04 * 
* FILENAME DESCRIPTION * 
* INPUTS: DATA-SSD TEST DATA SET * 
* PURPOSE: EXECUTE AND REPORT UTTS' RAINBOW TEST * 
* FOR ADEQUACY OF FUNCTIONAL FORM. * 
........................................................ 

LIBNAME CDRV 'C:\DATA\'; 

* MODEL WITH ALL OBSERVATIONS (MODEL l).; 

PROC REG DATA=CDRV.DATA; 
MODEL Yl=Xl X2 X8 X9 XI0 XI3 X14 XI5 Dl D2 D3 D5 D6 Dl D8 RD1 RD2 RD3; 
OUTPUT OUT=HDATA H=LEV; 

RUN; 

* MODEL WITH HALF OF THE OBSERVATIONS (812) THAT HAVE 
* THE LEAST LEVERAGE [MODEL 2 ) . ; 

PROC RAM( DATA=HDATA OUT=RHDATA GROUP=Z; 
VAR LEV; 
RANKS RLEV; 

RUN; 

PROC REG DATA=RHDATA; 
WHERE RLEV=O; 
MODEL Yl=Xl X2 X8 X9 XI0 X13 X14 X15 Dl D2 D3 D5 D6 D7 D8 RD1 RD2 RD3; 

RUN; 

* RETAIN THE RESPECTIVE RESIDUAL SUM OF SQUARES (RSS) VALUES. 
* TEST STATISTIC CALCULATION FROM OUTPUT. 
* HERE, THE UTTS TEST STATISTIC, U, IS CALCULATED AS: 
* [(RSS MODELR - RSS MODELU)/(1624-812)l/[RSS MODELU/(812-19)]=1.195. 
* U IS DISTRIBUTED AS AN F STATISTIC WITH N/2, (N/21-K DEGREES OF FREEDOM. 
* THE NULL HYPOTHESIS IS REJECTED (F CRITICAL = 1). 
* SEE TEXT FOR INTERPRETATION.; 



Figure 48-Sample program for Utts' Rainbow test, in SPSS/PC+ 

SET MORE = OFF. 
SET LIS = 'RAINBOW.LIS'. 
SET LOG = 'RAINBOW.LOGt. 
........................................................ 
* PROGRAM: RAINBOW-SPS SOFTWARE: SPSS/PC+ 4.01 * 
* FILENAME DESCRIPTION * 
* INPUTS: DATA.SYS TEST DATA SET * 
* PURPOSE: EXECUTE AND REPORT UTTS' RAINBOW TEST * 
* FOR ADEQUACY OF FUNCTIONAL FORM. * 
........................................................ 

I GET FILE = 'DATA.SYSt . 

* MODEL WITH ALL OBSERVATIONS (RESTRICTED MODEL). 
REGRESSION VARIABLES = Y1 XI X2 X8 X9 XI0 X13 XI4 X15 Dl D2 D3 D5 D6 D7 DB 

RD1 RD2 RD3 
/DEPENDENT=YI 
/METHOD=ENTER 
/SAVE LEVER(LEV) . 

* THE LEV VARIABLE INDICATES THE INFLUENCE EACH OBSERVATION HAS ON THE 
* COEFFICIENT ESTIMATES. 
RANK LEV /NTILE (2) . 

* MODEL WITH HALF OF THE OBSERVATIONS (812) THAT HAVE 
* THE LEAST LEVERAGE (UNRESTRICTED MODEL). 

PROCESS IF (NLEV = 1). 
REGRESSION VARIABLES = Y1 XI X2 X8 X9 XI0 X13 X14 X15, Dl D2 D3 D5 D6 D7 D8 

RD1 RD2 RD3 
/ DEPENDENT=Yl 
/METHOD=ENTER. 

* RETAIN THE RESPECTIVE RESIDUa SUM OF SQUARES (RSS) VALUES. 
* TEST STATISTIC CALCULATION FROM OUTPUT. 
* HERE, THE UTTS TEST STATISTIC, U, IS CALCULATED AS: 
* [(RSS MODELR - RSS M O D E L U ) / ( ~ ~ ~ ~ - ~ ~ ~ ) ] / [ R S S  MODELU/(812-19)]=1.195. 
* U IS DISTRIBUTED AS AN F STATISTIC WITH N/2, (N/2)-K DEGREES OF FREEDOM. 
* THE NULL HYPOTHESIS IS REJECTED (F CRITICAL = 1). 
* SEE TEXT FOR INTERPRETATION. 



Linear Splines This technique is useful for approximating a curvilinear regression 
without specifying the mathematical form of the curvature. A linear 
spline is a continuous piecewise-linear function, that is, one in which the 
adjacent line segments meet at  the interval boundaries (or "knots"). As 
with other models that incorporate break points, the number and 
location of the intervals may be difficult to specify a priori. Attention 
should be paid to theoretical considerations, although a grid data search 
may also be employed, as in the example below. The linear spline is most 
appropriately used where the regression model is expected to be linear, 
but to have structural breaks at specific values of an explanatory 
variable. In the standard regression model the coefficients of the 
regression are restricted to  be equal across spline segments. The 
standard version of this model is 

However, it is expected that the response of y to changes in Z is 
distinct for three distinct regions of Z. In the example at hand, y is 
household calorie intake per day and Z is total weekly household 
expenditures. X contains all of the remaining regressors. The 
relationship between caloric intake and total expenditures might be 
expected to be different for low-expenditure, medium-expenditure, and 
high-expenditure families, but the precise dividing lines between low, 
medium, and high may not be known. The spline program will help to 
determine this. Note that this model has two knots; i t  is possible to 
develop models that have more, but the tensions among good fit, theory, 
and parsimonious parameterization should be kept in mind. 

I t  is useful to begin by considering this model as a dummy-variable 
model with Dl = 1 for medium-expenditure households, zero otherwise; 
and D2 = 1 for high-expenditure households, zero otherwise. Then the 
model is 

The dummy variable model does not guarantee that the piecewise 
segments join at the knots. Let the first knot be at  L, so that low- 
expenditure households have income Z < L. The second knot is at H, so 
that low- and medium-expenditure households have Z H. Then 
continuity at the knots is ensured if the model is specified as 

One way to proceed is to program the computer to do a grid search 
over L and H, performing OLS for each (L, H) pair and checking for the 
pair that minimizes the RSS. These sample programs illustrate this 
approach. Whether the spline function leads to a significant improve- 
ment in RSS may be tested with a standard F-test (note that this is a 
simple application of the Chow test for structural stability). In this 
version of the F-test, the numerator degrees of freedom is equal to the 
number of knots specified and the denominator degrees of freedom is 



equal t o  the sample size less the total number of coefficients estimated 
in the spline function model. An alternative approach to  spline modeling 
is given in Johnston 1984,392394, 

The sample programs determine that the knot dividing low- and 
medium-expenditure households is at a log-expenditure level of approx- 
imately Z = 2.45 and that the knot dividing medium- and high- 
expenditure households is at a log-expenditure level of approximately Z 
= 4.45. The F-test (performed only in GAUSS-386) for the restricted 
(linear) model versus the unrestricted model (spline) yields F = 5.3889 
(P-value = 0.0047), and the linear model is rejected in favor of the spline 
function. 

NOTE: Since SPSS/PC+ for DOS does not include looping or macro 
capabilities (although SPSS/PC+ for Windows does allow loops), the 
spline program is not feasible. To accomplish the grid-search procedure, 
the SPSS/PC+ program would include thousands of lines, with the same 
batch of 15 to 20 lines repeated hundreds of times. 

The spline program in SAS PC is feasible but a little clumsy. The 
program relies heavily on the macro facility included in SAS PC. This 
makes it difficult to understand. Basically, the macro feature allows the 
user to define hisher own procedure (in this case, SPLINE) and then 
run this new procedure with user-defined parameters (STARTI, STOP1, 
STOP2, INCRM, and DENOM). 

In GAUSS-386, the spline program is more straightforward. 
Techniques used in this program are not unusual for GAUSS code; most 
GAUSS programmers could easily understand the program. 

Notice that the sample programs (Figures 49 and 50) carry out an 
extensive grid search over a finely divided grid. This is not necessary: 
experimentation with large grid steps may enable the investigator to 
quickly narrow down the regions in which the knots lie; then a finer 
search may pinpoint them. Note also that the loops begin the grid search 
for the upper point (H or CUTOFFB) a specific distance above the lower 
point (L or CUTOFF1) to  avoid overlapping regions for low- and high- 
expenditure households. 

Recommended references: Greene (1990,248-251); Johnston (1984,392-396); Krnenta 
(1986,569); Stewart and Wallis (1981,202-204); Suits, Mason, and Chan (1978, 132- 
133). 



Figure 49-Sample spline program, in GAUSS-386 

........................................................ 
* PROGRAM: SPL1NE.G SOFTWARE: GAUSS-386 V3.0 * 
* FILENAME DESCRIPTION * 
* INPUTS: DATA.DAT GAUSS-386 DATA SET * 
* PURPOSE: USE SPLINE FUNCTION TO CHECK FOR NON- * 
* LINEARITY WITH RESPECT TO VARIABLE X10. * 
........................................................ 

@-NOTE: RUN TIME IS ABOUT 7 MINUTES ON 486DX2-66.-@ 

FORMAT /M2 /RD 12,4; 

OUTPUT FILE = SPLINE.OUT RESET; 

NAMES = GETNAME ( " DATA" ) ; 
OPEN D = DATA VARINDXI; 
NCASE = ROWSF(D1; 
DATA = READR ( D, NCASE ) F 

F = CLOSE(D); 

Y = DATA[.,IYl]; 

Z1 = DATA[.,IXlOl; 

X = ONES(NCASE,l) - DATA[.,IXl 1x2 1x8 1x9 1x13 1x14 1x15 , 

ID1 ID2 ID3 ID5 ID6 ID7 ID8 IRDl IRD2 IRD31 
- 21; 

NAMES = NAMES[IXl 1x2 1x8 1x9 1x13 1x14 1x15 
ID1 ID2 ID3 ID5 ID6 ID7 ID8 IRDl IRD2 IRD3 IXlO,.]; 

@ - - - - - - - - OLS ESTIMATION - - - - - - - - @ 

K = COLS(X); 
B = INV(XIX) *XIY; @ BETAS @ 
E = Y - X*B; @ RESIDUALS @ 
RSS = E'E; @ RESIDUAL SUM OF SQUARES @ 
SER = SQRT (INV(NCASE-K) *RSS) ; @ STD ERROR OF REGRESSION @ 
RsQ = 1 - RSS/ ( (NCASE-1) * (STDC(Y) ) "2) ; @ R-SQUARED @ 
COV = INV(NCASE-K)*RSS*INV(XIX); @ OLS COVARIANCE MATRIX @ 
SE = SQRT(DIAG(C0V)); @ STD ERRS OF BETAS @ 
T = B . /  SE; @ T-STATISTICS FOR BETAS @ 
PT = 2*CDFTC(ABS(T),(NCASE-K)); @ P-VALUES @ 
PRN = B - S E - T - P T ;  @ FOR PRINTING @ 

I, 11 . 
I ,  I, - 
11 I, - 
" OLS RESULTS "; 
I, I, . 
I t  I, . 
" NUMBER OF OBSERVATIONS - I t . .  - , , NCASE; 

" STANDARD ERROR OF REGRESSION = "; ; SER; 
" RESIDUAL SUM OF SQUARES - 1, - ;; RSS; 

" R-SQUARED _ l , . .  - . . RSQ; 
I, ,t . 
I, I, . 
" VARIABLE COEFF STD ERROR T-RATIO P-VALUE" ; 

(continued) 



Figure 49-Continued 

l r  ,I . 
" INTERCEPT " ; ; PRN [ 1, . 1 ; 
I = 1; 
DO WHILE I <= K -1; 
FORMAT /M1 /RD 12,8; $NAMES[I,. I ; ;  FORMAT /M1 /RD 12,4; PRN[I+l,. I; 

I = I + 1 ;  
ENDO; 
I, 11 . 
" \ f I l ;  

@ - - - - - - - - LOOPS FOR SPLINE FUNCTION - - - - - - - - @ 
@ - - - - - - - - L-LOOP IS OUTER LOOP (FOR LOWER KNOT AT L) ---- ---- @ 
@ - - - - - - - - H-LOOP IS INNER LOOP (FOR UPPER KNOT AT H )  - - - - - - - - @ 

OUTPUT FILE = SPLINE.OUT OFF; 

RSSR = RSS; @ RSS FOR ORIGINAL LINEAR MODEL @ 
@ THE "RESTRICTED" MODEL @ 

RSSMIN = RSS; 
L = 2.20; @ OUTER LOOP TAKES L FROM 2.20 @ 
DO WHILE L <= 4.25 ; @ TO 4.25 @ 
H = L + 0.5; @ INNER LOOP TAKES H FROM L+0.5 @ 

DO WHILE H <= 5.25; @ TO 5.25 @ 

Dl = DUMMYDN(Zl,L,2); 
D2 = DUMMYDN(Zl,H,2); 

XS = X - Dl.*(Zl - L*ONES(NCASE,l)) - D2.*(Z1 - HCONES(NCASE,I) ) ;  

BS = INV(XS'XS)*XS'Y; 

ES = Y - XS*BS; 

RSS = ES'ES; 

IF RSS < RSSMIN; 
RSSMIN = RSS; @ KEEP MINIMUM RSS @ 

LOPT = L; @ L ASSOCIATED WITH MIN RSS @ 

HOPT = H; @ H ASSOCIATED WITH MIN RSS @ 

ENDIF; 

@ - - - - - - - - SHOW PROGRESS OF ITERATIONS ON SCREEN -------- @ 

FORMAT /M1 /RD 5,2; "L = " . +  , I  L; ; IIH =". - , , H;; 
FORMAT /M1 /RD 12,O; "RSSMIN ="; ; RSSMIN; ; "RSSR ="; ; RSSR; 

H = H + 0.1; 

ENDO; 

L = L + 0.1; 

ENDO; 

OUTPUT FILE = SPLINE.OUT ON; 

(continued) 



Figure 49--Continued 

@ - - - - - - - - OLS REGRESSION FOR SELECTED SPLINE FUNCTION -------- @ 

NAMES = NAMES l"22" I"Z3"; 

Dl = DUMMYDN (21, LOPT, 2 ) ; 
D2 = DUMMYDN(Zl,HOPT,2); 

22 = D1.*(21 - LOPT*ONES(NCASE,l)); 
23 = D2.*(Z1 - HOPT*ONES(NCASE,l)); 

X = X - 22 - 23; 
K = COLS(X); 

B = INV(XIX)*X'Y; @ BETAS @ 
E = Y - X*B; @ RESIDUALS @ 
RSSU = EKE; @ RESIDUAL SUM OF SQUARES @ 
SER = SQRT ( INV (NCASE-K) *RSSU) ; @ STD ERROR OF REGRESSION @ 
RSQ = 1 - RSSU/((NCASE-1)*(STDC(Y)JA2); @ R-SQUARED @ 
COV = INV(NCASE-K)*RSSU*INV(XrX); @ OLS COVARIANCE MATRIX @ 
SE = SQRT(DIAG(C0V)); @ STD ERRS OF BETAS @ 
T = B ./ SE; @ T-STATISTICS FOR BETAS @ 
PT = 2*CDFTC (ABS (T) , (NCASE-K) ) ; @ P-VALUES @ 

PRN = B - S E - T - P T ;  @ FOR PRINTING @ 

@ - - - - - - - - PRINT RESULTS FOR SELECTED SPLINE FUNCTION ------- - @ 

FORMAT /M1 /RD 12,4 ; 

0 I, . 
I ,  ,I . 
( 1  1, - 
" RESULTS FOR SELECTED SPLINE FUNCTION "; 
1, I t  . 
II ( 1  . 
" KNOTS ARE LOCATED AT : "; 
r, I, . 
1, L - I , . .  - , , LOPT; 
,I H - n . .  - , , HOPT; 
1, 11 . 
" NUMBER OF OBSERVATIONS - , I . .  - , , NCASE; 

" STANDARD ERROR OF REGRESSION = " ; ; SER; 
" RESIDUAL SUM OF SQUARES - I , . .  - ., RSSU; 

" R-SQUARED - I , . .  - . . RSQ; 
,t 1, . 
II I* . 
" VARIABLE COEFF STD ERROR T-RATIO P-VALUE" ; 
II ,r . 
" INTERCEPT";; PRN[l,.J; 

I = 1; 
DO WHILE I <= K -1; 
FORMAT /MI /RD 12,8; $NAMES[I, . I ; ;  FORMAT /M1 /RD 12,4; PRN[I+l, . I ;  

I = I + 1 ;  
ENDO; 
1, 11 . 

(continued) 
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Figure 49-Continued 

@ - - - - - - - - F-TEST WHETHER (RSSR - RSSU) I S  SIGNIFICANT -------- @ 

DFN = 2; @ NUMERATOR DF = # BREAKS @ 
@ I N  SPLINE @ ' 

DFD = NCASE - K; 

F = ( (RSSR - RSSU) / DEN ) / (RSSU / DFD ) ;  

P F  = CDFFC ( F ,  DEN, DFD) ; 

1, 11 . 
I, I, . 
I, ,I . 
" F-TEST FOR RESTRICTING TO LINEAR MODEL: F =";; F; 
I, I t  . 
" NUMERATOR DF =";; DFN; 

" DENOMINATOR DF = I 1 ; ;  DFD; 
11 I, . 
" P-VALUE - I , .  . - r ,  PF; 

"\f"; 

OUTPUT F I L E  = SPLINE.  OUT OFF; 

SYSTEM; 



Figure 50-Sample spline program, in SAS PC 

........................................................ 
* PROGRAM: SPLINE-SAS SOFTWARE: SAS PC 6.04 * 
* FILENAME DESCRIPTION * 
* INPUTS: DATA. SSD TEST DATA SET * 
* OUTPUTS: SPLOUT-SSD RESULTS OF REGRESSIONS * 
* PURPOSE: USE SPLINE FUNCTION TO CHECK FOR NON- * 
* LINEARITY WITH RESPECT TO VARIABLE X10. * 
........................................................ 
* NOTE: RUN TIME IS ABOUT 30 MINUTES ON 486DX2-66; 
LIBNAME CDRV rC:\DATA\r; 
* NONLINEARITIES ARE SUSPECTED ALONG THE DIMENSION OF THE LOG OF 
* TOTAL EXPENDITURE PER CAPITA (X10). XI0 WILL BE SPLIT INTO 
* THREE SECTIONS. 

* THE FOLLOWING PROC SUMMARY AND DATA STEPS MERGE THE MINIMUM AND 
* MAXIMUM OF XI0 ONTO EACH OBSERVATION IN THE ORIGINAL DATA SET.; 

DATA DATAX; 
SET CDRV.DATA; 
CONSTANT=l; 

PROC SUMMARY DATA=DATAX; 
VAR X10; 
ID CONSTANT; 
OUTPUT OUT=MINMAX MIN=MINXlO MAX=MAXX10; 

DATA SDATA; 
MERGE DATAX MINMAX (DROP=-TYPE- -FREQ-) ; 
BY CONSTANT; 

* THE FOLLOWING DATA STEP WILL CREATE A TEMPORARY BINARY DATA FILE TO STORE 
* A MODEL NAME AND ROOT MEAN SQUARE ERROR {RMSE) FOR EACH REGRESSION. THIS 
* STEP IS JUST CREATING A FIRST DUMMY RECORD. ; 

FILENAME OUTPUT l ~ : \ ~ ~ ~ ~ \ ~ ~ ~ ~ ~ ~ . ~ ~ ~ l ;  

DATA -NULL-; 
MODEL- = 'DUMMY'; - 
RMSE- = . ; - 
FILE OUTPUT RECFM=N; 
PUT 

MODEL $8. - 
RMSE- RB4. ; - 

* THE FOLLOWING STATEMENT BEGINS THE DEFINITION OF THE SAS PC MACRO.; 
%MACRO SPLINE; 

* START, STOP, AND INCRM MUST BE INTEGERS. ; 
* THEREFORE, THE VALUES ARE DIVIDED BY DENOM IN THE DATA SET; 

%DO PNTl = &START1 %TO &STOP1 %BY &INCRM; 
%DO PNT2 = &PNTl + &INCRM2 %TO &STOP2 %BY &INCRM; 

* XI0 IS THE VARIABLE ACROSS WHICH WE SUSPECT NONLINEARITY OF THE 
* REGRESSION LINE. ; 
DATA SPLINE; 

SET SDATA (KEEP=Yl X1 X2 X8 X9 XI0 X13 X14 X15 
Dl D2 D3 D5 D6 D7 D8 RD1 RD2 RD3 MINX10 MAXXlOl; 

[continued} 



Figure 50-Continued 

* THE FOLLOWING USES MACRO VARIABLES T O  CREATE THE TWO CUTOFFS.; 

 CUTOFF^ = & P N T ~ .  / &DENOM. ; 
CUTOFF2 = &PNT2./&DENOM.; 

* THE FOLLOWING CREATES Z 1 ,  2 2 ,  2 3  A S  E X P W N E D  I N  TEXT.; 

I F  ( X I 0  LT M I N X 1 0 )  THEN Z1=0;  

I F  ( X I 0  GE MINX10 AND X 1 0  LT C U T O F F l l  THEN 

Zl=XlO-MINX10;  

I F  ( X I 0  GE CUTOFF1)  THEN 

Zl=&PNTl./&DENOM.-MINX10; 
I F  ( X I 0  LT CUTOFF1) THEN Z2=0;  

I F  ( X I 0  GE CUTOFFl  AND X I 0  LT CUTOFF2) 

THEN Z2=X10-CUTOFF1; 

I F  ( X I 0  GE CUTOFF21 THEN 

Z2=CUTOFF2-CUTOFF1; 

I F  ( X I 0  LT CUTOFF21 THEN 23=0;  

I F  ( X I 0  GE CUTOFF2 AND X I 0  LT MAXXlO) 

THEN Z3=XlO-CUTOFF2; 

I F  ( X 1 0  GE MAXXlO ) THEN Z3=MAXX10-CUTOFF2; 

* THE FOLLOWING REGRESSION SAVES THE RMSE AND A MODEL LABEL T O  THE BINARY ; 

* OUTPUT F I L E  C: \DATA\SPLINE.BIN.  ; 

PROC REG DATA=SPLINE 

OUTEST=SPLEST NOPRINT; 

P & P N T l . P & P N T 2 . :  MODEL Y1= 

X I  X 2  X 8  X9 Z 1  2 2  2 3  X I 3  X 1 4  X 1 5  D l  D2 D 3  D 5  D6 D7 D 8  RD1 RD2 RD3; 

DATA -NULL-; 
S E T  SPLEST;  

F I L E  OUTPUT RECE'M=N MOD; 

PUT 

MODEL- $a .  - 
- RMSE- RB4.  ; 

* THE FOLLOWING PROVIDES OUTPUT TO THE SCREEN TO MONITOR THE PROGRESS O F  THE 

* PROGRAM. ; 

DATA -NULL-; 

F I L E  ' CON ' ; 
CUTOFF1 = &PNTl./&DENOM.; 

CUTOFF2 = &PNT2./&DENOM.; 

PUT " CUTOFF1 = " CUTOFF1 " CUTOFF2 = " CUTOFF2; 

%END; 

%END; 

%MEND S P L I N E ;  

* THE USER MUST PROVIDE THE SEARCH RANGE FOR CUTOFFl  AND CUTOFF2 AND THE 

* INCREMENTS USED TO DETERMINE THE PRECISION O F  THE SEARCH. I N  SAS, MACRO 

* PARAMETERS MUST BE INTEGERS. THEREFORE, WE USE S T A R T I ,  STOP1,  STOP2,  

* INCRM, AND INCRM2 TO DEFINE P N T l  AND PNT2. THEN, WE D I V I D E  THESE INTEGERS 

* BY DENOM TO DERIVE CUTOFFl  AND CUTOFF2. THE VALUES O F  CUTOFFl  AND CUTOFF2 

* ARE I N  THE SAME U N I T S  A S  THE VARIABLE O F  INTEREST ( X 1 0 ) .  P N T l  VARIES 
+ FROM START1 TO STOP1,  INCREASING BY INCRM FOR EACH REGRESSION ( T H I S  

* CORRESPONDS TO CUTOFFl  VARYING FROM STARTl/DENOM TO STOPl /DENOM).  FOR 

* EACH P N T l  VALUE, PNT2 RANGES FROM P N T l  + INCRM2 TO STOP2,  ALSO 

* INCREASING BY INCRM FOR EACH REGRESSION. 

* FOR OUR EXAMPLE, CUTOFFl  RANGES FROM 2 . 2  TO 4 . 2 5  AT INCREMENTS O F  0 . 0 1 ,  
* AND CUTOFF2 RANGES FROM C U T O F F 1 + 0 . 5  TO 5 . 2 5  AT INCREMENTS O F  0 . 0 1 .  

* PRIOR TO T H I S  DETAILED SEARCH, AN I N I T I A L  ROUGH SEARCH COULD BE 

(continued) 



Figure 5CbContinued 

* CONDUCTED WITH LARGER GRID STEPS BY INCREASING THE INCRM. 
* FOR INSTANCE, IF INCRM = 25, THE CUTOFFS WILL CHANGE WITH INCREMENTS OF 
* 0.25. THE LARGER INCRM VALUE WILL RESULT IN A SUBSTANTIALLY REDUCED 
* EXECUTION TIME.; 

%LET START1 = 220; 
%LET STOP1 = 425; 
%LET STOP2 = 525; 
%LET INCRM = 10; 
%LET INCRM2 = 50; 
%LET DENOM = 100; 
%SPLINE; 

* THE FOLLOWNG DATA AND PROC STATEMENTS READ IN THE RESULTS FROM EACH 
* REGRESSION AND PROVIDE COMPLETE DESCRIPTIVE STATISTICS.; 

DATA CDRV-SPLOUT; 
INFILE OUTPUT RECE'M=N; 
INPUT 

MODEL- $8. - 
- RMSE- RB4. ; 

PROC UNIVARIATE DATA=CDRV.SPLOUT; 
VAR -RMSE-; 
ID -MODEL-; 

* INTERPRETING OUTPUT; 
* THE MODEL WITH THE OPTIMAL CUTOFFS IS INDICATED AS THE MODEL WITH THE 
* MINIMUM RMSE (ROOT MEAN SQUARE ERROR) THAT CORRESPONDS TO THE 
* MINIMUM RESIDUAL SUM OF SQUARES. 

* PROC UNIVARIATE LISTING DISPLAYS THIS MINIMUM AND THE 
* ACCOMPANYING MODEL LABEL (ID) UNDER THE "EXTREMES" HEADING.; 
* IN THIS EXAMPLE, THE OPTIMAL CUTOFFS (OR KNOTS) ARE 2.45 AND 4.45 
* FOR THE SEARCH INCREMENTS OF 0.25. WITH A SEARCH USING INCREMENTS 
* OF 0.1, THE CUTOFFS ARE 2.50 AND 4.50; 



5 DEFICIENT DATA PROBLEMS 

INFLUENTIAL When an observation has an unusually large or small value for the 

OBSERVAT~ONS dependent variable or for a regressor, that observation can substantially 
influence a regression. It is helpful to be able to detect and identify such 
observations in order to check whether they are erroneous values. The 
basic idea in detection is to examine how the omission of a suspect 
observation affects the overall regression fit and the parameter 
estimates. If the effect is "large," then the relevant data point is 
considered to be an "influential observation." 

DFFITS The DFFITS statistic is a standardized measure of the effect of dropping 
the ith observation on the fitted value of the dependent variable. DFFITS 
is calculated as 

where 

9 i = ith OLS fitted value of the dependent variable, yi; 
f ( i )  = fitted value of yi, after deleting the ith observation and 

reestimating the parameters; 

'i = standard error of the residuals, with ith observation 
deleted; 

' i i  = ith diagonal of the projection matrix, xi(X'x)-'x;; 
x'i - - ith row of X, the N x K  matrix of explanatory 

variables; 
N  = number of observations; and 
K  = number of explanatory variables, including the 

constant term. 

Formal critical values for DFFITS statistics have not been developed, 
but some rules of thumb have been suggested. One such rule states that 
an absolute DFFITSi value greater than ~(K/YV)''~ (DFFITS can be both 
positive or  negative) indicates an influential observation (Krasker, Kuh, 
and Welsch 1983). An alternative rule suggests 0.34 as a useful cutoff 
(Welsch 1980). 

DFFITS statistics are calculated following the steps described below. 

Step 1 Perform OLS on the full data set and retain the 
fittedy values. 

Step 2 Loop through the data, at the ith loop deleting the ith 
observation, and perform steps 3 through 5. 



Step 3 With the data set reduced by one observation, 
calculate the OLS coefficients and the standard error 
of the residuals. 

Step 4 using the Xi values, calculate the fitted value of yi, 
$6). 

Step 5 Calculate the DFFITS statistic according to the 
formula above. 

The sample programs for DFFITS calculation, Figures 51 through 53, 
estimate the model that has been used in all other sample programs. 
Using the  KIN)^'^ cutoff, all three sample programs find a total of 100 
(out of 1,624) influential observations. The largest 10 are printed. 

Note that SPSS/PC+ and SAS PC label these calculations differently 
in their preprogrammed options. In SAS PC, the option called DFFITS 
produces what is described in the text as DFFITS,. SPSS/PC+, however, 
calculates the same statistic for each observation, but the procedure that 
generated the numbers is called SDFIT. 

-- - 

NOTE: DFBETAS is another procedure in SPSS/PC+ that assesses the 
sensitivity of regression estimates to the deletion of the ith data point. 

Recommended references: Kennedy (1992, 284, 285); Kmenta (1986, 424-426); 
Krasker, Kuh, and Welsch (1983); Maddala (1988,417418); Welsch (1980). 
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Figure 51-Sample program for DFFITS calculation, in GAUSS-386 

........................................................ 
* PROGRAM: DFF1TS.G SOFTWARE: GAUSS-386 V3.0 * 
* FILENAME DESCRIPTION * 
* INPUTS: DATA.DAT GAUSS-386 DATA SET * 
* PURPOSE: CALCULATE DFFITS STATISTICS FOR ALL * 
* OBSERVATIONS AND REPORT THOSE THAT ARE * 
* LARGE. THE RUNNING TIME FOR THIS * 
* PROGRAM IS ABOUT 3 HOURS WITH THE * 
* FULL DATA SET. USE A SUBSET OF THE * 
* DATA FOR FASTER TURNAROUND TIME. * 
........................................................ 

* NOTE: RUN TIME IS ABOUT 110 MINUTES ON 486DX2-66; * 

FORMAT /M2 /RD 12,4; 
OUTPUT FILE = DFFITS.OUT RESET; 

NAMES = GETNAME ( "DATA" ) ; 
OPEN D = DATA VARINDXI; 
NCASE = ROWSF(D); 
DATA = READR(D,NCASE); 
F = CLOSE(D) ; 
Y = DATA[.,IYl]; 

X = ONES(NCASE,l) - DATA[.,IXl 1x2 1x8 1x9 1x10 1x13 1x14 1x15 
ID1 ID2 ID3 ID5 ID6 ID7 ID8 IRDl IRD2 IRD31; 

NAMES = NAMES[IXl 1x2 1x8 1x9 1x10 1x13 1x14 1x15 
ID1 ID2 ID3 ID5 ID6 ID7 ID8 IRDl IRD2 IRD3,.]; 

@ - - - - - - - - OiS ESTIMATION -------- @ 

K = COLS(X); 

B = INV (X'X) *X'Y; @ BETAS @ 
Y HAT = X*B; @ FITTED VALUES @ 
E = Y - YHAT; @ RESIDUALS @ 
RSS = E'E; @ RESIDUAL SUM OF SQUARES @ 
SER = SQRT(INV(NCASE-K)*RSS); @ STD ERROR OF REGRESSION @ 
RSQ = 1 - RSS/((NCASE-l)*(STDC(Y))"2); @ R-SQUARED @ 
COV = INV(NCASE-K)*RSS*INV(XIX); @ OLS COVARIANCE MATRIX @ 
SE = SQRT(DIAG(COV1); @ STD ERRS OF BETAS @ 
T = B ./ SE; @ T-STATISTICS FOR BETAS @ 
PT = Z*CDFTC(ABS(T), (NCASE-K)); @ P-VALUES @ 
PRN = B - S E - T - P T ;  @ FOR PRINTING @ 

( 1  ,I . 
0 11 . 
I, I, . 
" OLS RESULTS "; 
I, I, . 
I, 11 . 
" NUMBER OF OBSERVATIONS - I1 - ; ; NCASE; 

" STANDARD ERROR OF REGRESSION = ";; SER; 
" RESIDUAL SUM OF SQUARES - - n . .  r RSS; 
" R-SQUARED - ,,.. - , , RSQ; 
I, 11 . 

(continued) 



Figure 51-Continued 

11 11 . 
" VARIABLE COEFF STD ERROR T-RATIO P-VALUE" ; 
11 I ,  . 
" INTERCEPT 'I; ; PRN [I,. 1 ; 

I = 1; 
DO WHILE I <= K -1; 
FORMAT /M1 /RD 12,8; SNAMESLI,.];; FORMAT /MI /RD 12,4; PRN[I+l,.]; 

I = I + 1 ;  
ENDO; 
,I I, . 
"\f"; 

@ - - - - - - - - CONSTRUCT VECTOR OF DFFITS STATISTICS. 
@ -- - - --- - THE MATRIX DFFITS CONTAINS "OBSERVATION 
@ - - - - - - - - NUMBER" IN THE FIRST COLUMN AND THE 
@ - - - - - - - - CORRESPONDING DFFITS STATISTIC IN THE 
@ - - - - - - - - SECOND COLUMN. 

N = NCASE; 
I = I; 
YO - - Y; 
xo = X; 
COUNT = SEQA(l,l,NCASEI; 

CLEAR DATA COV SE T PT PRN Y X; 

XXI = INV(XO'X0); 
H = ZEROS(N,2); 

OUTPUT FILE = DFFITS.OUT OFF; 

DO WHILE I <= N; 

YI = YO[I, .I; 
XI = XO[I, . I ;  
Y = SELIF(YO,COUNT[.,Il .NE I); 
X = SELIF(XO,COUNT[.,l] .NE I); 
G = INV(XIX)*X'Y; 

YHATI = XO[I, . I *G; 

E = Y - X*G; 
SERI = SQRT(INV(NCASE - K - l)*EIE); 

HAT = XO[I, .l*XXI*XO[I, .Ii; 

DFFITS = (YHAT[I, .] - YHATI) / (SERI'SQRT(HAT) 1; 

H[I,l] = I; 
H[I,2] = DFFITS; 

"LOOP I = ";; I; 

I = I + 1 ;  

ENDO; @ END OF LOOP @ 

@ LOOP OVER WHOLE SAMPLE @ 

(continued) 
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Figure 51- Continued 

OUTPUT FILE = DFFITS.OUT ON; 

@----- - - -  SELECT IDFFITl VALUES GREATER THAN 2*SQRT(K/N) -------- @ 

CUT = 2*SQRT(K/N); 

H = ABS(H); 

H = SELIF(H,H[. ,2] .> CUT); 

ND = ROWS(H); 

H = REV(SORTC(H,2)); 

,, ,, . 
I, I, . 
11 I, . 
" TEN LARGEST ABS ( DFFITS) GREATER THAN 2*SQRT (K/N) " ; 
,I II . 
I, I, . 
FORMAT /M1 /RD 8,O; 
ND;; "OBSERVATIONS HAVE ABSOLUTE VALUES > ~*sQRT(K/N);"; 
FORMAT /M1 /RD 12,4; 
( 1  I ,  . 
I t  1, . 
" OBSERVATION DFFITS STATISTIC"; 
I, ,I . 

I = 1; 

DO WHILE I <= 10; 
FORMAT /M1 /RD 12,O; HII,lI;; FORMAT /M1 /RD 12,4; H[I121; 

I = I + 1 ;  
ENDO; 

"\f"; 

OUTPUT FILE = DFFITS.OUT OFF; 
SYSTEM; 



Figure 52-Sample program for DFFITS calculation, in SAS PC 

........................................................ 
* PROGRAM: DFFITS.SAS SOFTWARE: SAS PC 6.04 * 
* FILENAME DESCRIPTION * 
* INPUTS: DATA-SSD SAS PC DATA SET * 
* PURPOSE: CALCULATE DFFITS STATISTICS FOR a L  * 
* OBSERVATIONS AND REPORT THE 10 LARGEST. * 
........................................................ 

LIBNAME CDRV ' C : \DATA\ ' ; 

PROC REG DATA = CDRV.DATA; 
MODEL Y1 = XI X2 X8 X9 XI0 XI3 X14 X15 Dl D2 D3 D5 D6 D7 D8 

RD1 RD2 RD3; 
OUTPUT OUT = HAT1 DFFITS = ODFFIT; 

RUN; 

* LIST THE 10 LARGEST VALUES OF ODFFIT.; 

DATA HAT2; 
SET HAT1; 
AODFFIT=l/ABS(ODFFIT); 

RUN; 

PROC RANK DATA=HAT2 OUT=RHAT; 
VAR AODFFIT; 
RANKS RAODFFIT; 

RUN; 

PROC SORT DATA=RHAT; 
BY RAODFFIT; 

RUN; 

PROC PRINT DATA = RHAT (OBS = 10 1 ; 
VAR RAODFFIT ODFFIT Y1 X1 X2 X8 X9 XI0 RD1 RD2 RD3; 

RUN; 

* NOTE THAT SAS PC EMPLOYS A DIFFERENT CALCULATION FOR THE PROCEDURE IT 
* LABELS AS DFFITS THAN DOES SPSS/PC+. 
* SAS PC DFFITS = SPSS/PC+ SDFIT (STANDARDIZED VERSION OF WHAT SPSS/PC+ LABELS AS 
* DFFITS] . ; 
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Figure 53--Sample program for DFFITS calculation, in SPSS/PC+ 

SET MORE OFF. 
SET LIS = 'DFFITS.LISr. 
SET LOG = 'DFFITS.LOGr. 
........................................................ 
* PROGRAM: DFFITS.SPS SOFTWARE: SPSS/PC+ 4.01 * 
* FILENAME DESCRIPTION * 
* INPUTS: DATA-SYS SPSS/PC+ DATA SET * 
* PURPOSE: CALCULATE DFFITS STATISTICS FOR ALL * 
c OBSERVATIONS AND REPORT THE 10 LARGEST. * 
........................................................ 

GET FILE = ' DATA. SYS . 
REG VAR=Yl X1 X2 XB X9 X10 X13 X14 X15 Dl D2 D3 D5 D6 D7 DB RD1 RD2 RD3 

/DEP=Yl 
/METHOD=ENTER 
/SAVE SDFIT (ODFFIT ) . 

* LIST THE 10 LARGEST VALUES OF ODFFIT. 
COMPUTE ABSDFIT=ABS(ODFFIT). 
RANK ABSDFIT. 
SORT RABSDFIT (D). 
N 10. 
LIST RABSDFIT ODFFIT Y1 X1 X2 XB X9. 

* NOTE THAT SPSS/PC+ EMPLOYS A DIFFERENT CALCULATION FOR THE PROCEDURE IT 
* LABELS AS DFFITS THAN DOES SAS. 
* SPSS/PC+ SDFIT (STANDARDIZED VERSION OF WHAT SPSS/PC+ LABELS AS DFFITS) = 

* SAS PC DFFITS. 
FINISH. 

Bounded Influence As noted by Maddala (1988), the conventional approach to outliers based 
Estimation on least squares residuals is to delete observations with large residuals 

and reestimate the equation. Given that the OLS residuals do not 
provide any readily useful information as to the importance of a given 
observation for overall results, a number of alternative procedures for 
dealing with outliers have been developed. The Bounded Influence 
Estimation (BIE) of Welsch (1980) is designed to  evaluate the influence 
of individual observations, and to weight influential observations by a 
weight that is inversely related to the measure of influence. Thus, highly 
influential observations are not deleted (reducing the degrees of freedom 
and throwing out potentially useful information), but their influence is 
reduced. The measure of influence used is the DFFITS measure 
discussed in the previous section. 

The simple one-step BIE developed by Welsch is defined as the value 
of /3 that minimizes: 

where 



and 

Thus, for noninfluential observations, w i  = 1. If w i  = 1 for all i, then this 
is the OLS estimator. Essentially, this technique places observations into 
two distinct regimes, on the basis of their DFFITS values, and then 
observations are weighted accordingly. However, the BIE technique 
should not be used as a substitute for a careful examination of the data- 
generating process. It may be the case that the influential observations 
are only exceptional because the model is inappropriate or because 
observations are inappropriately pooled. 

The sample programs (Figures 54 through 56) are extensions of the 
DFFITS programs presented in the DFFITS section. The regression 
results do not change very much when the BIE technique is employed 
(for example, the OLS coefficient on XI0 is 216.97, and the BIE 
estimator for XI0 is 217.994). 

Recommended references: Kennedy (1992, 282, 284-285); Maddala (1988, 418); 
Welsch (1980). 



Figure 54--Sample program for estimating bounded influence, in GAUSS586 

........................................................ 
* PROGRAM: B1E.G SOFTWARE: GAUSS-386 V3.0 * 
* FILENAME DESCRIPTION * 
* INPUTS: DATA.DAT GAUSS-386 DATA SET * 
* PURPOSE: BOUNDED INFLUENCE ESTIMATION. * 
* RUNNING TIME FOR THIS PROGRAM IS * 
* APPROXIMATELY 3 HOURS WITH THE FULL *. 

c DATA SET. * 
........................................................ 

FORMAT /M2 /RD 12,4; 
OUTPUT FILE = BIE-OUT ON; 

NAMES = GETNAME ( " DATA" ) ; 
OPEN D = DATA VARINDXI; 
NCASE = ROWSF(D); 

DATA = READR(D,NCASE); 
F = CLOSE (D) ; 
Y = DATA[.,IYlJ; 

X = ONES(NCASE,l) - DATA[.,IXl 1x2 1x8 1x9 1x10 1x13 1x14 1x15 
ID1 ID2 ID3 ID5 ID6 ID7 ID8 IRDl IRD2 IRD3I; 

NAMES = NAMES[IXl 1x2 1x8 1x9 1x10 1x13 1x14 1x15 
ID1 ID2 ID3 ID5 ID6 ID7 ID8 IRDl IRD2 IRD3,.]; 

I @ - - - - - - - - OLS ESTIMATION -------- @ I 
B - - 

YHAT - - 
E - - 
RSS - - 

SER - - 

RSQ - - 
cov - - 
SE - - 

T - - 

PT - - 
PRN - - 

1NV(XfX)*X'Y; @ BETAS @ 
X*B; @ FITTED VALUES @ 
Y - YHAT; @ RESIDUALS @ 
EVE; @ RESIDUAL SUM OF SQUARES @ 
SQRT(INV(NCASE-K)*RSS); @ STD ERROR OF REGRESSION @ 
1 - RSS/((NCASE-l)*(STDC(Y))"2); @ R-SQUARED @ 
INV(NCASE-K)*RSS*INV(XIX); @ OLS COVARIANCE MATRIX @ 

SQRT(DIAG(C0V) ) ;  @ STD ERRS OF BETAS @ 
B ./ SE; @ T-STATISTICS FOR BETAS @ 

CDFTC(ABS(T), (NCASE-K) 1; @ P-VALUES @ 
B - SE - T - PT; @ FOR PRINTING @ 

11 I t  . 
9 ,  I,. 

11 I ,  . 
" OLS RESULTS "; 
0 I, . 
I, I, . 
" NUMBER OF OBSERVATIONS = I t . .  , , NCASE; 
" STANDARD ERROR OF REGRESSION = "; ; SER; 
" RESIDUAL SUM OF SQUARES _ - I , . .  ,, RSS; 
" R-SQUARED = I * . .  

r ,  RSQ; 
I, I, . 
,I ( 1  . 
" VARIABLE COE FF STD ERROR T-RATIO P-VALUE" ; 

(continued) 



Figure 54--Continued 

I, 1, . 
" INTERCEPT";; PRN[l,.]; 

I = 1; 
DO WHILE I <= K -1; 
FORMAT /M1 /RD 12,E; $NAMES[I,.];; FORMAT /M1 /RD 12,4; PRN[I+l,.]; 

I = I + 1 ;  
ENDO; 
1, 0 . 
l l \ f " ;  

@ - - - - - - - - CONSTRUCT VECTOR OF DFFITS STATISTICS. 
@ - - - - - - - - THE MATRIX DFFITS CONTAINS "OBSERVATION 
@ - - - - - - - - NUMBER" IN THE FIRST COLUMN AND THE 
@ - - - - - - - - CORRESPONDING DFFITS STATISTIC IN THE 
@ - - - - - - - - SECOND COLUMN. 

N = NCASE; 
I = 1; 
YO = Y; 
xo = X; 
COUNT = SEQA(l,l,NCASE); 

CLEAR DATA COV SE T PT PRN Y X; 

XXI = INV(XO'X0); 
H = ZEROS(N,2); 

OUTPUT FILE = BIE.OUT OFF; 

DO WHILE I <= N; 

YI = YOII,.]; 
XI = XO[I, . I ;  

Y = SELIF(YO,COUNT[.,l] .NE I); 
X = SELIF(XO,COUNT[.,ll .NE I); 

G = INV(X1X)*X'Y; 
YHATI = XO[I, .]*G; 

E = Y - X*G; 
SERI = SQRT(INV(NCASE - K - l)*EIE); 

HAT = XO[I,.I*XXI*XO[I,.I'; 

DFFITS = (YHAT[I,.] - YHATI) / [SERICSQRT(HAT)); 

H[I,l] = I; 
H[I,2] = DFFITS; 

"LOOP I = ";; I;; H[I,.]; 

I = I + 1 ;  

ENDO; @ END OF LOOP @ 
OUTPUT FILE = BIE-OUT ON; 

@ LOOP OVER WHOLE SAMPLE @ 

(continued) 



Figure 54-Continued 

@---- SELECT IDFFITI VALUES GREATER THAN 2*SQRT(K/N); CALC WEIGHTS ---- @ 

1 CUT = 2*SQRT(K/N); 

I A = SELIF(A,A[.,2] .> CUT); 

I, 1, . 
(I 1, . 
T I  I, . 
" TEN LARGEST ABS (DFFITS) GREATER THAN 2*SQRT (K/N) "; 
I, I, . 
FORMAT /M1 /RD 8,O; 
ND;; "OBSERVATIONS EXCEED 2*SQRT(K/N)lf; 
,I 0 ; 

FORMAT /M1 /RD 12,4; 
1 "  OBSERVATION DFFITSSTATISTIC"; 

FORMAT /M1 /RD 12,O; A[I,11;; FORMAT /M1 /RD 12,4; A[I,21; 

I = I t l ;  

ENDO; 
"\f"; 

@ - - - - - - - - CREATE WEIGHTS ACCORDING TO SIZE OF DFFITS ----- --- @ 

W = H[.,2]; 
I = 1; 

I DO WHILE I <= NCASE; 

IF W[I,l] <= CUT; 
WIII1] = 1.00; 

ELSE; 
WIIll] = CUT/W[I,ll; 

ENDIF; 

I ENDO; 
I @ - - - - - - - - WEIGHT THE VARIABLES AND ESTIMATE THE REGRESSION -------- @ 

I: = SQRT(W); 
= W .* YO; 

(continued) 



Figure 54--Continued 

B = INV(XIX) *XrY; @ BETAS @ 
E = Y - X*B; @ RESIDUALS @ 
RSS = E'E; @ RESIDUAL SUM OF SQUARES @ 
SER = SQRT (INV(NCASE-Kl *RSS) ; @ STD ERROR OF REGRESSION @ 
RSQ = 1 - RSS/((NCASE-lI*(STDC(Y))"21; @ R-SQUARED @ 
COV = INV(NCASE-Kl *RSS*INV(XIX) ; @ OLS COVARIANCE MATRIX @ 
SE = SQRT(DIAG(C0V)); @ STD ERRS OF BETAS @ 
T = B ./ SE; @ T-STATISTICS FOR BETAS @ 
PT = CDFTC(ABS(T),fNCASE-K)); @ P-VALUES @ 

PRN = B - S E - T - P T ;  @ FOR PRINTING @ 

II I t  . 
1, I t  . 
11 0 . 
" BOUNDED INFLUENCE ESTIMATION RESULTS "; 
( 1  1, . 
1, l, . 
" NUMBER OF OBSERVATIONS - ,. - ;; NCASE; 

" STANDARD ERROR OF REGRESSION = ' I ; ;  SER; 
" RESIDUAL SUM OF SQUARES _ - 3 1 . .  ,, RSS; 
" R-SQUARED - - 1 1 . .  , , RSQ; 
I, 11 . 
( 1  'I . 
" VARIABLE COEFF STD ERROR T-RATIO P-VALUE " ; 
It I, . 
" INTERCEPT";; PRN[l,.]; 

I = 1; 
DO WHILE I <= K -1; 
FORMAT /M1 /RD 12,8; $NAMES[I,.l;; FORMAT /MI /RD 12,4; PRN[I+l,.l; 

I = I + 1 ;  
ENDO; 
,I 11 - 

,,\f"; 

OUTPUT FILE = BIE.OUT OFF; 
SYSTEM; 



Figure 55-Sample program for estimating bounded influence, in SAS PC 

* PROGRAM: B I E . S A S  SOFTWARE: SAS PC 6 . 0 4  * 
* FILENAME DESCRIPTION * 
* INPUTS:  DATA.SSD SAS PC DATA SET * 
* PURPOSE: BOUNDED INFLUENCE ESTIMATION. * 
........................................................ 

LIBNAME CDRV ' C : \DATAr ; 

* S T E P  1: RUN REGRESSION U S I N G  COMPLETE DATA S E T  (MATRIXL) .  SAVE D F F I T S  S T A T I S T I C  I N  

VARIABLE DFT, AND WRITE TO F I L E ,  I N F L .  ; 

PROC REG DATA = CDRV.DATA; 

MODEL Y 1  = X I  X2 X 8  X 9  X I 0  X I 3  X 1 4  X 1 5  D l  D2 D3 D5 D 6  D7 D8 

RD1 RD2 RD3; 

OUTPUT OUT = HAT D F F I T S  = ODFFIT;  

* S T E P  2 :  MERGE DATA S E T S  MATRIX1 AND I N F L .  THE VARIABLE, DFT, I S  REPEATED FOR EACH 

OBSERVATION I N  MATRIXl .  EVALUATE CONDITION GIVEN BY EQN ** ABOVE, AND 

CREATE NEW (WEIGHT) VARIABLE, W. ; 

DATA DFDATA; 

MERGE CDRV.DATA HAT; 

CUTOFF = 2 * ( ( 1 9  / 1 6 2 4 )  ** - 5 ) ;  
I F  ABS ( O D F F I T )  LE CUTOFF THEN 

W = 1; 
ELSE 

w = CUTOFF/ABS(ODFFIT); 

RUN; 

* S T E P  3: RUN NEW (WEIGHTED LEAST SQUARES) REGRESSION.; 

PROC REG DATA = DFDATA; 

MODEL Y l = X l  X 2  X 8  X 9  X I 0  X I 3  X I 4  X I 5  D l  0 2  D 3  D5 D6 D7 D8 RD1 RD2 RD3; 

WEIGHT W; 

I RUN; 

* FOR T H I S  EXAMPLE, NOTICE THAT THE C O E F F I C I E N T S  CHANGE SLIGHTLY 

* BECAUSE O F  T H I S  PROCEDURE. FOR EXAMPLE, I N  THE OLS MODEL THE COEFFICIENT O F  

* X I 0  I S  2 1 6 . 9 7 ,  BUT I N  THE BOUNDED INFLUENCE ESTIMATES THE COEFFICIENT 



Figure 56-Sample program for estimating bounded influence, in SPSS/PC+ 

SET MORE OFF. 
SET LIS = 'BIE.LIS1. 
SET LOG = 'BIE. LOG' . 
........................................................ 
* PROGRAM: BIE.SPS SOFTWARE: SPSS/PC+ 4 .O1 * 
* FILENAME DESCRIPTION * 
* INPUTS: DATA-SYS TEST DATA SET * 
* PURPOSE: BOUNDED INFLUENCE ESTIMATION. * 
........................................................ 

GET FILE = 'DATA-SYS'. 

* STEP 1: RUN REGRESSION USING COMPLETE DATA SET (MATRIXl). 
* SAVE DFFIT IN VARIABLE DFT. 

REG VAR=Yl X1 X2 X8 X9 X10 X13 X14 X15 Dl D2 D3 D5 D6 D7 D8 RD1 RD2 RD3 
/DEP=Yl 
/METHOD=ENTER X1 X2 X8 X9 XI0 X13 X14 X15 Dl D2 D3 D5 D6 D7 D8 

RD1 RD2 RD3 
/SAVE SDFIT (ODFFIT) . 

* STEP 2: UTILIZE A SIMPLE IF STATEMENT TO CREATE NEW VARIABLE, W, TO BE 
USED IN A WEIGHTED LEAST SQUARES. 

COMPUTE CUTOFF = 2 * ((19 / 1624) ** .5). 
COMPUTE W = CUTOFF/ABS(ODFFIT). 
IF (ABS (ODFFIT) LE CUTOFF) W = 1. 

* STEP 3: RUN A SECONDARY REGRESSION, UTILIZING THE NEWLY CONSTRUCTED 
VARIABLE, W, AS A WEIGHT. 

REGRESSION 
/VARIABLES = Y1 X1 X2 X8 X9 X10 X13 X14 X15 Dl D2 D3 D5 D6 D7 D8 

RD1 RD2 RD3 
/REGWGT = w 
/DEPENDENT = Y1 
/METHOD=ENTER. 

* FOR THIS EXAMPLE, NOTICE THAT THE COEFFICIENTS CHANGE SLIGHTLY 
* BECAUSE OF THIS PROCEDURE. FOR EXAMPLE, IN THE OLS MODEL THE COEFFICIENT OF 
* X10 IS 216.97, BUT IN THE BOUNDED INFLUENCE ESTIMATES THE COEFFICIENT 
* OF X10 IS 217.994. 
FINISH. 



MISSING DATA An obvious problem for estimation occurs when a data set is incomplete, 
such as when a survey respondent only partially completes a question- 
naire. The easiest solution is to simply drop the observations that are 
incomplete. If the quality of information for a particular observation is 
very poor, this may be the only reasonable solution. However, given the 
often high cost of gathering data and the fact that discarding data 
reduces the precision of estimators, this solution is often resisted. An 
alternative, if relatively few pieces of information are missing, is to try 
to fill in the blanks. As alternatives to dropping observations, the 
following two procedures are easily implemented: 

Zero-Order Regressions. If both regressors and dependent variables 
have missing values, these regressions-in which the missing data are 
replaced by sample means-may be used. 

First-Order Regressions. If only the regressors have missing values, 
these regressions-in which the missing values are first estimated by 
considering the relationships among all of the regressors-may be 
used. 

Simple Zero-Order LetX denote an NxK matrix of regressors. Assume that a single column 
Regressions (Mean of X, Xk, has a number of missing observations. 

Substitution) Let Y denote an N x l  dependent variable. Assume that Y also has a 
number of missing observations; they need not be the same observations 
as those missing from XK. 

The strategy is to simply replace the missing observations of Xk and 
Y by their mean values for the complete observations. Greene (1990, 
285-189) summarizes known results for this strategy and concludes that 
using mean Y values of complete observations to impute values for 
missing Ys is a poor strategy that is unlikely to yield any gain to the 
researcher. Greene also points out (footnote 16, page 287) that replacing 
missing X-values by their means does not yield unbiased results, as 
suggested by Krnenta (1986). Therefore the zero-order regression 
strategy is not pursued any further. 

Recommended references: Greene (1990,285-289); Krnenta (1986,379487). 

First-Order- In contrast to zero-order regressions, the incidental equations method 
Regressions may enable the researcher to exploit information contained in 

(Incidental correlations among Xs to impute some missing values of a regressor. In 
Equations) the sample programs, every twentieth observation on Xk (= X10) 

(beginning with number 20) is coded as missing. 

Step 1 Using only those observations with complete data, 
regress Xk on the variables in X for which no 
observations are missing (all variables except Xk). Let 
this matrix be 2. Retain the estimated coefficients 
from regressing Xk on 2. 



Step 2 Compute fitted values for the missing values of Xk, 
using the estimated regression coefficients and the 
relevant observations on Z. So, if the seventh obser- 
vation in XK is missing, use the seventh observation 
on Z together with the coefficients from Step 1 to  fit 

Xk,7' 

Step 3 Substitute these fitted values for the missing obser- 
vations in Xk. Now proceed with your intended 
regression. 

Figures 57 through 59 are sample programs for calculating first-order 
regressions when data are missing. 

- - 

NOTES: 
1. Maddala (1977) suggests that if the correlations among the 

regressors in an equation are moderately high, this first-order 
method is preferable to the zero-order method. 

2. Kmenta (1986) argues that the first-order method implicitly 
defines a system of simultaneous equations (because Xh is a 
dependent as well as an independent variable) and, therefore, 
this method may be theoretically unsound. In addition, Kmenta 
warns against the introduction of measurement error to Xk 
through this type of interpolation. 

3. All three programs produce estimates that are similar to 
estimates for no missing values. For instance, the estimated 
coefficient on XI0 with missing values (5 percent of observations 
onX10 are coded as missing) is 217.19 as opposed to 216.97 with 
no missing values on X10. 

Recommended references: Afifi and Elashoff (1966, 1967, 1969); Greene (1990, 
285-289); Haitovsky (1968, 67-82); Kmenta (1986, 379-388); Maddala (1977, 
201-207). 



Figure 57-Sample program for calculating first-order regressions when data are missing, in 
GAUSS-386 

........................................................ 
* PROGRAM: MISS1NGF.G SOFTWARE: GAUSS-386 V3.0 * 
x FILENAME DESCRIPTION * 
* INPUTS: DATA.DAT GAUSS-386 DATA SET * 
* PURPOSE: CALCULATES FIRST-ORDER REGRESSIONS * 
+ (FITTED VALUE SUBSTITUTION) WHEN SOME * 
* VALUES OF XI0 ARE MISSING. * 
.... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

FORMAT /M2 /RD 12,4; 
OUTPUT FILE = MISSINGF.OUT RESET; 

NAMES = GETNAME ( " DATA" ) ; 
OPEN D = DATA VARINDXI; 
NCASE = ROWSF(D); 
DATA = READR(D,NCASE); 
F = CLOSE(D) ; 
Y = DATA[.,IYl]; 

= ONES(NCASE,l) - DATA[.,IXl 1x2 1x8 1x9 1x10 1x13 1x14 1x15 
ID1 ID2 ID3 ID5 ID6 ID7 ID8 IRDl IRD2 IRD31; 

= NAMES[IXl 1x2 1x8 1x9 1x10 1x13 1x14 1x15 
ID1 ID2 ID3 ID5 ID6 ID7 ID8 IRDl IRDZ IRD3,.]; 

SET EVERY TWENTIETH OBSERVATION ON XI0 EQUAL TO -999 ----- @ 

NMI = FLOOR(NCASE/20); 
NM = SEQA(20,2OfNMI); 
X[NMr 61 = -999*ONES(NMII1) ; 

THE VARIABLE XI0 IS MISSING VALUES AT OBSERVATIONS:"; 

/MI /RD 8,O; 
NM1 ; 
FORMAT /M1 /RD 12,4; 
" \ f ' l ;  

@ - - - - -  CALCULATE FITTED VALUES FOR THE MISSING OBSERVATIONS ----- @ 
@-----  VIA AN INCIDENTAL REGRESSION AND REPLACE THE ----- @ 
@-----  MISSING OBSERVATIONS WITH THE FITTED ONES. ----- @ 

XNM = SELIF(X[.,6l1X[.,6] .NE -999); 
YNM = SELIF(Y[ .,I] ,X[.,6] .NE -999); 
XR = SELIF(X[., .I ,X[.,6] .NE -999); 

Z = X[.,12 3 4  5 7 8 9 1 0 1 1  12 1314 15161718191; 
ZNM = SELIF(Z,X[.,6] .NE -999); 
NAMES1 = NAMES[IXl 1x2 1x8 1x9 1x13 1x14 1x15 

ID1 ID2 ID3 ID5 ID6 ID7 ID8 IRDl IRD2 IRD3, .I; 

= COLS(ZNM); 
= ROWS (ZNM) ; 

G = INV(ZNM'ZNM)*ZNMIXNM; @ GAMMAS: INCIDENTAL EQ @ 

(continued) 



Figure 57-Continued 

XFIT = Z*G; @ FITTED VALUES: ALL OBS @ 
E = XNM - ZNM*G; @ RESIDUALS @ 
RSS = E'E; @ RESIDUAL SUM OF SQUARES @ 
SER = SQRT(INV(N1-K)*RSS); @ STD ERROR OF REGRESSION @ 

RSQ = 1 - RSS/((NI-l)*(STDC(XNM])^2); @ R-SQUARED @ 
COV = INV(N1-K)*RSS*INV(ZNM'ZNM); @ OLS COVARIANCE MATRIX @ 
SE = SQRT ( DIAG [ COV) ) ; @ STD ERRS OF GAMMAS @ 
T = G./SE; @ T-STATISTICS FOR GAMMAS @ 
PT = 2*CDFTC (ASS (TI, (NI-K) 1 ; @ P-VALUES @ 
PRN = G - S E - T - P T ;  @ FOR PRINTING @ 

I, T I  . 
I, 9, . 
11 II  . 
" INCIDENTAL EQUATION REGRESSION RESULTS "; 
I, II . 
1, -9 . 
" NON-MISSING OBSERVATIONS - 1 1 . .  - 6 ,  NI; 

" STANDARD ERROR OF REGRESSION = ";; SER; 
" RESIDUAL SUM OF SQUARES - I!.. - .. RSS; 
" R-SQUARED - I, - ;; RSQ; 
11 11 . 
,I 1, . 
" VARIABLE COEFF STD ERROR T-RATIO P-VALUE " ; 
81 9 1  . 
" INTERCEPT " ; ; PRN [ 1, . I ; 

I = 1; 
DO WHILE I <= K -1; 
FORMAT /Ml /RD 12,8; $NAMESI[I,.];; FORMAT /M1 /RD 12,4; PRN[I+l,.I; 

I = I + 1 ;  
ENDO; 
I, ,I . 
, , \ f t V  . 

@----- SELECT FITTED VALUES THAT CORRESPOND TO MISSING OBS ----- @ 

I = 1; 
DO WHILE I <= NMI ; 
X[NM[I, .],GI = XFIT[NM[I, .1,11; 
I = I + 1 ;  

ENDO; 

n 1, . 
It ,I . 

THE MISSING VALUES OF XI0 HAVE BEEN REPLACED BY FITTED VALUES"; 
I, ,I . 
(1 11 . 
" OBSERVATION FITTED VALUE"; 
11 '9 . 
I t  ,I . 
I = 1; 
DO WHILE I <= NMI; 
FORMAT /M1 /RD 8,O; NM[I,.];; FORMAT /M1 /RD 12,4; XFITLI,.]; 
I = I + l ;  

ENDO; 

(continued) 
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Figure 57-Continued 

I t \  ,,, . 

@ - - - - - - - - OLS ESTIMATION OF "FIRST-ORDER" MODEL - - - - - - - - @ 

K = COLS(X); 
B = INV(X1X) *XIY; @ BETAS @ 
E = Y - X*B; @ RESIDUALS @ 
RSS = EfE; @ RESIDUAL SUM OF SQUARES @ 
SER = SQRT (INV(NCASE-K) *RSS) ; @ STD ERROR OF REGRESSION @ 
RSQ = 1 - RSS/((NCASE-1)*(STDC(Y))"2); @ R-SQUARED @ 
COV = INV(NCASE-K)*RSS*INV(XVX); @ OLS COVARIANCE MATRIX @ 
SE = SQRT(DIAG(C0V)); @ STD ERRS OF BETAS @ 
T = B ./ SE; @ T-STATISTICS FOR BETAS @ 
PT = 2*CDFTC(ABS(T),(NCASE-K)); @ P-VALW3S @ 
PRN = B - S E - T - P T ;  @ FOR PRINTING @ 

8 ,  11 . 
It  I, ; 
I ,  I, . 
" FIRST-ORDER REGRESSION RESULTS "; 
11 I, ; 
11 I, i 
" NUMBER OF OBSERVATIONS - - ; NCASE; 
" STANDARD ERROR OF REGRESSION = ";; SER; 
" RESIDUAL SUM OF SQUARES - - II ; . RSS; 
" R-SQUARED - - 1 1 . .  , r RSQ; 
I, I, . 
1, I, , 

" VARIABLE COEFF STD ERROR T-RATIO P-VALUE" ; 
11 9 ,  . I 

" INTERCEPT ";; PRN[l,.]; 

I = 1; 
DO WHILE I <= K -1; 
FORMAT /M1 /RD 12,8; $NAME[I,.];; FORMAT /MI /RD 12,4; PRN[Itl,.]; 

I = I t l ;  
ENDO; 
I 1  I, , 

IV\f"; 

@ - - - - - - - - OLS ESTIMATION OF INTENDED MODEL -------- @ 
@ - - - - - - - - WHEN OBSERVATIONS WITH MISSING VALUES - - - - - - - - @ 
@ - - - - - - - - HAVE BEEN DELETED - - - - - - - - @ 

K = COLS(XR); 
NCASE = ROWS(XR); 
B = INV(XRfXR)*XR'YNM; @ BETAS @ 
E = YNM - XR*B; @ RESIDUALS @ 
RSS = EVE; @ RESIDUAL SUM OF SQUARES @ 

SER = SQRT(INV(NCASE-K)*RSS); @ STD ERROR OF REGRESSION @ 

RSQ = 1 - RSS/((NCASE-l)*(STDC(YNM))"2); @ R-SQUARED @ 
COV = INV(NCASE-K)*RSS*INV(XRIXR); @ OLS COVARIANCE MATRIX @ 
SE = SQRT(DIAG(COV1); @ STD ERRS OF BETAS @ 
T = B ./ SE; @ T-STATISTICS FOR BETAS @ 
PT = 2*CDFTC (ABS (T) , (NCASE-K) ) ; @ P-VALUES @ 
PRN = B - S E - T - P T ;  @ FOR PRINTING @ 

(continued) 



Figure 57-Continued 

( 1  1, r 

1, 0 . 
I, I, . 
" OLS REGRESSION RESULTS: OBSERVATIONS WITH MISSING VALUES DELETED"; 
11 ,, . 
l, II . 
" NUMBER OF OBSERVATIONS _ P I - .  - , , NCASE; 

" STANDARD ERROR OF REGRESSION = ";; SER; 
" RESIDUAL SUM OF SQUARES - - t r . .  , r  RSS; 
" R-SQUARED - , r . .  - r r RSQ; 
I, (I  . 
I, I, . 
" VARIABLE COEFF STD ERROR T-RATIO P-VALUE" ; 
I t  I S  . 
" INTERCEPT ";; PRN[l,.I; 

I = 1; 
DO WHILE I <= K -1; 
FORMAT /ML /RD 12,8; $NAME[I,.];; FORMAT /M1 /RD 12,4; PRN[I+l,.]; 

I = I + 1 ;  
ENDO; 
I, 11 . 
I t \  f ? t  . 

OUTPUT FILE = MISSINGF-OUT OFF; 
SYSTEM; 



Figure 58-Sample program for calculating first-order regressions when data are missing, 
in SAS PC 

* PROGRRM: MISSINGF.SAS SOFTWARE: SAS PC 6.04 * 
* FILENAME DESCRIPTION * 
* INPUTS: * 
* PURPOSE: CALCULATES FIRST-ORDER REGRESSIONS * 
+ (FITTED VALUE SUBSTITUTION) WHEN SOME * 
+ VALUES OF XI0 ARE MISSING. * 
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
LIBNAME CDRV 'C:\DATAV; 
* SINCE THE DATA SET HAS NO MISSING VALUES, CREATE A DATA SET 
* WITH EVERY 20TH VALUE OF XI0 MISSING.; 
DATA MISSING; 

SET CDRV.DATA; 
IF MOD(-N-,20) = 0 THEN XI0 = .; 

RUN; 

* STEP 1: IF XI0 IS THE EXPLANATORY VARIABLE WITH THE MISSING VALUES TO BE 
REPLACED, RUN REGRESSION WITH XI0 AS DEPENDENT VARIABLE.; 

PROC REG DATA=MISSING OUTEST=COEFF; 
MODEL X10=X1 X2 X8 X9 XI3 X14 X15 

Dl D2 D3 D5 D6 D7 D8 RD1 RD2 RD3; 
RUN; 

DATA CDATA; 
SET MISSING; 
CONSTANT=l; 

RUN ; 

DATA CCOEF; 
SET COEFF(RENAME=(Xl=CXl X2=CX2 X8=CX8 X9=CX9 XIO=DX10 

x13=cx13 X14=CX14 x15=cx15 
Dl=CDl D2=CD2 D3=CD3 D5=CD5 D6=CD6 D7=CD7 D8=CD8 
RDl=CRDl RD2=CRD2 RD3=CRD3)); 

CONSTANT=l; 
RUN ; 

DATA FIRST; 
MERGE CDATA CCOEF; 

BY CONSTANT; 
XlOFIRST = CXl*Xl + CX2 *X2 + CX8 *X8 + CX9 *X9 + 

CX13+X13 + CX14*X14 + CX15*X15 + CD1 *Dl + 
CD2 *D2 + CD3 *D3 + CD5 *D5 + CD6 *D6 + 
CD7 *D7 + CDB *D8 + CRDl*RDl + CRD2*RD2 + 
CRD3*RD3 + INTERCEP; 

IF X10=. THEN XI0 = XlOFIRST; 
RUN; 

* STEP 2: RUN REGRESSION (WITH Y1 AS DEPENDENT VARIABLE) USING COMPLETE SET 
OF OBSERVATIONS ON X10, WHERE MISSING VALUES IN XI0 HAVE BEEN 
SUBSTITUTED BY PREDICTED VALUES OF X10 (XlOFIRST).; 

PROC REG DATA=FIRST; 
MODEL Yl=Xl X2 X8 X9 XI0 XI3 XI4 X15 

Dl D2 D3 D5 D6 D7 D8 RD1 RD2 RD3; 
RUN; 
* FOR THIS EXAMPLE NOTE THAT THIS PROCEDURE FOR FILLING IN MISSING OBSERVATIONS 
* ON XI0 GIVES AN OLS ESTIMATE OF 217.19 AS COMPARED TO AN OLS ESTIMATE OF 
* 216.97 WITH NO MISSING DATA.; 



Figure 5SSample program for calculating first-order regressions when data are missing, in 
SPSS/PC+ 

SET MORE OFF. 

SET L I S  = 'MISSINGF.LIS ' .  

SET LOG = 'MISSINGF. LOG' . 
........................................................ 
* PROGRAM: MISSINGF.SPS SOFTWARE: SPSS/PC+ 4 . 0 1  * 
* FILENAME DESCRIPTION * 
* INPUTS: DATA.SYS TEST DATA SET * 
* PURPOSE: CALCULATES FIRST-ORDER REGRESSIONS * 
*. [F ITTED VALUE SUBSTITUTION) WHEN SOME * 
* VALUES OF X I 0  ARE MISSING. * 
........................................................ 

* SINCE THE DATA SET HAS NO MISSING VALUES, CREATE A DATA SET 

* WITH EVERY 20TH VALUE OF X I 0  MISSING. 

GET F I L E  = 'DATA. SYS ' . 
I F  (TRUNC($CASENUM/20)*20 = SCASENUM) X I 0  = -999 .  

MISSING VALUE X I 0  ( - 9 9 9 ) .  

SAVE FILE='MISSING.SYSt  . 

* STEP 1: I F  X 1  IS  THE EXPLANATORY VARIABLE WITH THE MISSING VALUES TO BE 

REPLACED, RUN REGRESSION WITH xi  AS DEPENDENT'VARIABLE. 

REGRESSION 

/VARIABLES X I  X2 X8 X9  X10  X 1 3  X14 X 1 5  

D l  D2 D3 D5 D6 D7 D8 RD1 RD2 RD3 

/DEPENDENT = X I 0  

/METHOD = ENTER, 

.............................................................................. 
** VIEW THE OUTPUT FROM T H I S  REGRESSION AND USE THE BETA COEFFICIENTS TO ** 
** COMPUTE A PREDICTED VALUE FOR X I  ** 
............................................................................... 

GET F I L E  = 'MISSING. SYS' . 

COMPUTE XlOFIRST= X I  * - 0 9 8 2 4 5  + X2 * - . 2 6 6 1 5 1  + X8 * . 0 0 0 8 1 5 7 9 7 0  + 
X9 * - . 0 3 1 4 6 9  + X13* . 0 0 0 1 1 8 2 7 7 6  + X I 4  * - 0 4 8 4 7 0  + 
X15* . 0 4 0 0 8 8  + D l  * - - 9 6 4 0 9 8  + D2 * - 1 . 0 6 5 8 9 1  + 
D3 * - . 0 9 8 8 9 3  + D5 * - - 9 6 9 6 4 0  + D6 * - . 7 7 4 0 0 9  + 
D7 * - - 2 3 4 3 9 2  + D8 * - - 0 8 6 5 1 2  + RDl* . 0 4 0 3 0 1  + 
RD2*-. I97204 + RD3* . 0 3 0 4 0 9  + 4 . 6 1 0 3 1 1 .  

I F  (MISSING(X101  ) X I 0  = XlOFIRST.  

* STEP 2 :  RUN REGRESSION (WITH Y 1  AS DEPENDENT VARIABLE) USING COMPLETE SET 

OF OBSERVATIONS ON X I ,  WHERE MISSING VALUES I N  X1  HAVE BEEN 

SUBSTITUTED BY PREDICTED VALUES OF X1  [ X I F I R S T ) .  

REGRESSION 

/VARIABLES = Y 1  X1  X2 X8 X9 X I 0  X 1 3  X14 X 1 5  

D l  D2 D3 D5 D6 D7 D8 RD1 RD2 RD3 

/DEPENDENT = YI 
/METHOD = ENTER. 

* FOR T H I S  EXAMPLE NOTE THAT THIS  PROCEDURE FOR FILLING I N  MISSING OBSERVATIONS 

* ON X I 0  GIVES AN OLS ESTIMATE OF 2 1 7 . 1 9  A S  COMPARED TO AN OLS ESTIMATE OF 

* 2 1 6 . 9 7  WITH NO MISSING DATA. 

F INISH.  



APPENDIX I: 
SPSS/PC+ ENVIRONMENT AND 
COMMANDS 

ENVIRONMENT Starting an SPSS/PC+ Interactive Session 

To start an SPSS/PC+ interactive session, from the DOS prompt, 
type SPSSPC. This takes you into the Menu and Help System, which 
is one of three ways you can enter commands in SPSS/PC+ . You may 
also enter commands directly from the SPSSPC+ prompt 
"SPSSPC:" or you may use the REVIEW text editor built into 
SPSS/PC+ or any other text editor to submit batches of commands. 
Other text editors that can be used are DOS EDLIN, NORTON 
EDITOR, or Wordperfect (saving as text). 

The Menu and Help System 

The top panel shows a Menu window on the left side and a Help 
window on the right side. By using the arrow keys you may move up 
and down the menu and into lower-level menus indicated by "t". The 
bottom panel is the scratch pad (filename = SCRATCH.PAD) where 
REVIEW works as a text editor. 

The Menu and Help System: Entering Commands. 

You enter commands by selecting from the menu and pasting it onto 
the scratch pad. For a guide on MENU commands and the REVIEW 
function keys, press a and select "Review Help." 

The Menu and Help System: Clearing and Calling up the 
Menu 

The menu may be cleared and called up at any time by pressing mm. Once the menu is cleared, the window displays the listing file 
(see SPSS/PC+ Default Files, SPSS.LIS, SPSS.LOG, and SCRATCH. 
PAD, below). 

The Menu and Help System: Moving Between Windows 

Once the menu is cleared, you may use to move between windows. 



The Menu and Help System: Editing Different Files 

You may also edit different files on either window by pressing a and 
selecting "Edit new fde." 

The Menu and Help System: To Run a Command or Batch of 
Commands 

Select command(s) from the menu and paste them on the scratch pad 
or clear the menu and type in the command directly on the scratch 
pad. Position the cursor on the first command you wish to execute, 
press m ,  and select "Run from cursor." Your command is saved 
automatically under SCRATCH.PAD. 

The REVIEW Text Editor 

To use the REVIEW text editor from DOS, type in 

SPSSPC/RE filename. ext ' 

where filename.& is the file you wish to edit or create. To use it from 
the SPSS.PC+ prompt, type in 

REVIEW ' filename. ext ' 

From within the editor, you may call up (and clear) the Menu and 
Help System at  any time by pressing mm. 
The REVIEW Text Editor: Running a Command or Batch of 
Commands 

You may write a batch of commands directly on to a file. Save the file, 
position the cursor on the first command you wish to run, press m, 
and select "Run from cursor." The commands read or executed by 
SPSS/PC+ will be saved under SPSS.LOG. (See SPSS/PC+ Default 
Files: SPSS.LIS, SPSS.LOG, SCRATCH.PAD, below.) 

Entering Commands Interactively 

You may enter a command directly by typing in the command at the 
SPSS/PC+ prompt and pressing YOU may also submit an 
entire batch file from the SPSSPC pt by typing 

INCLUDE 'filename.extl 

Customizing the Work Environment 

To change the starting environment, the SET commands in the 
automatic profile "SPSSPROF.IN1" must be changed. To change the 
work environment at any time from the Menu and Help System to the 
SPSS/PC+ prompt, press @ and select "Exit to prompt." From the 



Menu and Help System to  the REVIEW editor, using the scratch pad, 
. From the scratch pad to the Menu and Help System, 

press From the SPSS/PC+ prompt to the Menu and Help 
System, type REVIEW. 

Ending Your Interactive Session 

From the SPSS/PC+ prompt, type BYE or F I N .  &om within the 
REVIEW editor, type BYE or FIN, press @, and select "Run from 
cursor." 

The SPSS/PC+ Default Files: SPSS.LIS, SPSS.LOG, 
SCRATCH.PAD 

SPSS.LIS contains your display output, SPSS.LOG contains a log of 
your commands, and SCRATCH.PAD contains the commands typed 
or pasted into it. The default files--SPSS.LIS, SPSS.LOG, 
SCRATCH.PAD-are reinitialized at the beginning of each new 
session. You need to  rename these files to save their contents. 

Submitting an SPSS Command File from DOS 

To submit an SPSS command file from DOS, type the following: 

d :  \ s u b d i r > S P S S P C  filename. S P S  

DOS Interface 

DOS commands run from within SPSS/PC+. Type DOS 

command and . This executes the DOS command without 
directly entering the DOS shell. To get into DOS, type DOS. Use 
"EXIT" at  the DOS prompt to get back into SPSS/PC+. 

Interrupting a Sequence of Commandq 

To interrupt a sequence of commands, press the and keys 
simultaneously or the @ and @ keys simultaneously. 

SPSS/PC+ The following section describes a small subset of SPSS/PC+ commands 
~ ~ 

COMMiNDS that are essential for understanding the programs in this volume. There 
are three main categories of SPSS/PC+ commands: data definition and 
manipulation, procedure, and operation. 

Data Definition and Manipulation 

The commands for data definition and manipulation are as follows: 



GET FILE ' f i l e n a m e .  SYS ' . Retrieves SPSS system 
file fi1ename.SYS into the 
active file. 

SAVE FILE ' f i l e n a m e . S Y S  ' . Saves active file as SPSS 
system file fibname.SYS. 

D A T A L I S T  FILE ' f i l e n a m e . A S C 1  ReadsASCIIfile 
/ v a r l  v a r 2  v a r 3 .  filename.ASC into the 

active file. 

WRITE.  Writes active file into an 
ASCII file (default 
filename is SPSS.PRC). 

COMPUTE v a r 4  = v a r l / v a r Z .  Calculates a new variable 
var4, which is the ratio of 
varl and var2. 

RECODE v a r 3  (1 = ~ ) / v a r l  Changes all code in var3 
( 9 = s y s m i s ) .  with a value of 1 to 2 and, 

in varl, from 9 to  system- 
missing. 

SELECT IF  ( v a r 3  = 2)  . 

Temporarily selects cases 
where var3 is equal t o  2 
for the subsequent 
procedure. 

Permanently selects cases 
where var3 is equal t o  2 
for all subsequent 
procedures. 

Procedure 

The commands for procedures are as follows: 

RANK v a r 2 .  Creates a new 
variable called Rvar2, 
which assigns ranks 
to var2. 

REGRESSION Runs a repression - 
VARIABLES=var l  v a r 2  v a r 3  with varl as the 
/DE PENDENT=varl 
/METHOD=ENTER v a r 2  v a r 3 .  

dependent variable 
and var2 and var3 as 
the independent 
variables. 



LIST varl. 

AGGREGATE FILE='temp.SYS1 
/BREAK dummy. 
/ncase=N~ (var3) . 

JOIN MATCH 
/FILE = * 
/TABLE = 'temp.SYS1 
/BY dummy. 

Lists the value of varl 
for all cases. 

Creates a new system 
file temp.SYS, which 
contains as many 
cases as there are 
values of dummy. 
Each case includes 
two variables, dummy 
and ncase (which is 
the unweighted 
number of cases in 
the break group). 

Merges the ncase 
variable in temp .SYS 
created in the 
previous step with a 
corresponding value 
of dummy to the 
current active file. 

Operation 

The commands for operations are as follows: 

SET MORE OFF. 

SET LIS 'filename.LIS'. 

SET LOG ' filename. LOG' . 

* comment line. 

Causes the output to  
scroll continuously 
without pause to give 
the MORE prompt 
when the screen fills. 

Sends output to 
filename.LIS instead 
of the default 
SPSS .LIS. 

Sends all commands 
into filename.LOG 
instead of the default 
SPSS.LOG. 

Allows the user to 
insert comments into 
the program. 



APPENDIX 2: 
SAS PC ENVIRONMENT AND 
COMMANDS 

ENVI RQNMENT Starting a SAS PC Interactive Session 

To start a SAS PC interactive session, from the DOS prompt, type 
SAS. 

Ending an Interactive Session 

To end an interactive session, type BYE or END from any = = = > 
command line. 

Screen Panels or Windows 

The three screen panels or windows are as follows: 

PROGRAM EDITOR From here, you can submit and edit 
commands interactively or in batches. 

LOG 

OUTPUT 

This is a record of all SAS PC 
commands issued in the session; you 
should save this at the end of the 
session. 

This is a record of all results generated 
in the session; you should save this at  
the end of the session. 

Moving Between Windows 

To move between windows, use the function keys. Press 

to move to the LOG window, 
to move to the OUTPUT window, and 
to move back to the PROGRAM EDITOR window. 

Entering a Command Interactively 

To enter a command interactively, move from the = = = > command 
line to line 1 of the editor, type in your command, and then submit 



your command by pressing m. Groups of commands can also be 
submitted in this way. 

Recalling a Group of Commands from the Memory Buffer 

To recall a group of commands from the memory buffer, press m. 
Returning to the Command Line 

To return to the command line, = = = >, press @. 

Clearing a Window 

To clear a window, type CLEAR at  the window's = = = > prompt. 

Expanding a Window 

To expand the window you are working in, type ZOOM at the = = = > 
command line. 

The Program Editor 

You may edit commands by altering the 00000 lines on the left of the 
screen, as follows: 

Deletes that line and renumbers the lines. 
(The d can be in any position.) 

odd000 to odd00 o Deletes the blocked-off lines. 

OOibOO Inserts a blank line before the current line. 

OOiaOO Inserts a blank line after the current line. 

occoo o to occo o o Blocks lines for copying. 

A complete list of line commands is available on pages 339340 of the 
SAS Language Guide for Personal Computers (SAS Institute, Inc. 
1988). 

NOTE: You can use SAS PC perfectly well without being very 
proficient with this editor by editing program command files with 
Wordperfect (saving as text), or NORTON EDITOR, and then 
submitting as batch files (see Editing Input (Command) and Output 
(Log and Results) Files, below). 



Editing Input (Command) and Output (Log and Results) Files 

Files containing SAS PC commands can be brought into the 
PROGRAM EDITOR window with the INCLUDE command by typing 
the following at the = = = > prompt: 

INCLUDE 'filename.SAS1 

The command file can be created with any word processor/editor. 
After bringing the file into the program editor with INCLUDE, it can 
be submitted by pressing m. 
Saving Output or Log Windows 

To save output in the output or log windows, type the following at the 
--- --- > prompt of the output or log windows: 

FILE ' filename. out 

Submitting a SAS PC Command File from DOS 

Either of the following statements will execute the SAS PC commands 
in the file fi1ename.SAS: 

d: \subdir> SAS filename 

d: \subdir> SAS filename. SAS 

In addition, SAS PC will create a filename.LOG file and a 
filename.LST file for you. 

DOS Interface 

DOS commands can be run from within SAS PC by typing x at  the 
--- --- > prompt. For example, the following will execute the DOS 
command without directly entering the DOS shell: 

Typing only X at the = = = > prompt puts you into DOS. Typing EXIT 
at the DOS prompt will put you back in SAS PC. 

Interrupting a Sequence of Commands 

To interrupt a sequence of commands, press @@ and you will be 
asked if you want any of the submitted commands to be terminated. 
There is a default NOREPLACE option that does not allow a system 
file overwrite if there is a syntax error in the program, or if you 
terminate with B. However, whenever the program runs and 



you have the same name on the DATA and SET lines, your SAS PC 
data set will be automatically overwritten. 

SAS PC COMMANDS 

SAS PC commands fall into three categories (see inside cover of SAS 
Language Guide for Personal Computers [SAS Institute, Inc. 19881): 
statements used in DATA steps, statements used in PROC steps, and 
statements used anywhere. Nearly all of the SAS PC commands in the 
following sections must be issued from the OOOOn lines in the 
PROGRAM EDITOR (or from a command file), but not the = = = > 
line. 

The DATA Step 

Most operations that alter or create a SAS PC data set (similar to an 
SPSS/PC+ system file) are carried out within a DATA step. 
Examples: merging, creating new variables, and selecting subsamples. 

DATA; 
SAS statements 

RUN; 

The PROC Commands 

Most SAS PC data transformation procedures and all statistical 
procedures are carried out with PROC commands, for example, 
REGRESSION, FREQUENCIES, and MEANS. SAS PC procedures often 
include options such as BY, CLASS, WEIGHT, and others. 

PROC procedure; 
SAS statements 

RUN; 

The RUN Statement 

A SAS PC command, or set of SAS PC commands, will be executed 
when followed by 

RUN; 

Labeling DOS Subdirectories: The LIBNAME Command 

The statement 

LIBNAME label  ID: \subdir\ ' ; 

tells SAS PC that, for the rest of the session, l abe l  points to the 
subdirectory D:\subdir\. For example, 

LIBNAME e l a s t  'D:\calinc\ ';  



labels the CALINC subdirectory on the D drive as ELAST. Note that 
up to eight characters can be used to label the subdirectory. 

SAS PC Data Set Name Conventions 

There are two types of SAS PC data sets: permanent and temporary. 
The SAS internal and DOS names of these data sets are as follows: 

For example, the set of commands 

SAS internal 
name 
DOS internal 
name 

LIBNAME elast 'D:\calinc\'; 
DATA elast-hhcal; 

sascommands 
RUN; 

labels the CALINC subdirectory as ELAST, and constructs a 
permanent SAS PC data set ELAST.HHCAL, which, after the SAS 
PC session has ended, will be found in the CALINC subdirectory as 
HHCAL.SSD. 

Permanent 
label.filename 

D:L;ubdirFlename.SSD 

The set of commands 

Temporary 
filename 

C:\SAS\SASWORmlename.SSD 

DATA hhcal; 
sascommands 

RUN; 

will construct a temporary SAS PC data set, HHCAL, which will 
temporarily reside in C:\SAS\SASWORK as HHCAL.SSD, but will be 
deleted automatically when the session ends. 

Constructing a SAS PC Data Set from a Text (ASCII) File 

To construct a SAS PC data set from a text (ASCII) file, use the 
INPUT command: 

DATA irrigl; 
INFILE 'c:\DATA\MANUAL.ASC1; 
INPUT vl v2 v3 v4 v5; 

RUN; 

The five variables in text file WATER.DAT (and named by the user 
as v l  to  v5) will be read into a temporary SAS PC data set called 
IRRIG1. 



Constructing a SAS PC Data Set from Another SAS PC Data 
Set 

To construct a SAS PC data set from another SAS PC data set, use 
the SET command: 

LIBNAME water 'D:\ghana\'; 
DATA water.irrig3; 
SET water.irrig2; 
sascomrnands 

RUN ; 

This example brings in the permanent SAS PC data set 
WATER.IRRIG2-located in subdirectory D:\GHANA, which is 
labeled as WATER (using LIBNAME)-to serve as the starting point 
for the creation of a new permanent SAS PC data file. The new 
permanent file is called WATER.IRRIG3 and is located in D:\GHANA 
as IRRIG3.SSD. 

Writing to ASCII 

To write to  ASCII, use the PUT and FILE commands: 

DATA instrum; 
SET elast.jhl508; 
FILE 'instrum.datl; 
PUT vl v2 v3 ~4 ~ 5 ;  

RUN ; 

This example will construct a temporary SAS PC data file, 
INSTRUM, for the purpose of writing variables v l  to v5 from the 
permanent SAS PC data set, ELAST.JH1508, to a text file, 
1NSTRUM.DAT. 

Customizing the Work Environment 

The OPTIONS command is a stand-alone command used to customize 
the whole work environment. This command can appear anywhere 
outside of a DATA step. The following example sets output page 
length to 66 lines. 

OPTIONS PAGESIZE=66; 

Inserting Comments in the Program 

To insert comments, use the following format: 

* comment; 

SAS PC comment lines can appear anywhere outside of a DATA step. 



TheAUTOEXEC.SAS File 

This text file resides in C:\SAS and is similar to the 
AUTOEXEC.BAT file in C:\ in that i t  allows you to execute some of 
the commmds every time you enter SAS PC. For example, you may 
find it convenient for your AUTOEXEC.SAS file to include your most 
common LIBNAME commands; in this way, you do not have to enter 
them at each session. 



APPENDIX 3: 
GAUSS-386 ENVIRONMENT AND 
COMMANDS 

ENVIRONMENT Batch Program 

To submit a batch program, type 

GAUSS386 f i l e n a m e  

at  the DOS prompt. 

New programs may be constructed, or old ones edited, by then typing 
the following at the " > > " GAUSS-386 prompt: 

E D I T  f i l e n a m e .  ext 

From edit mode, the program can be saved and run by pressing m. 
The program can be filed and not run simply by pressing a. 
After running, the program may be brought into edit mode again by 
pressing m. 
GAUSS-386 MATRIX NOTATION 

To create the three-by-three matrix 

you could type the following: 

X = {l 2 3 ,  4  5 6,  7 8  9) ;  

The same statement without any commas creates a row vector of 
dimensions nine columns-by-one row: 

Similarly, the same statement with commas between each pair of 
numbers creates a column vector of one column-by-nine rows: 

Z = { 1 , 2 , 3 , 4 , 5 , 6 , 7 ,  8,  9 ) ;  



GAUSS.386 Creating a matrix 

COMMANDS 
The following multiplication will create a matrix that is nine 
columns by nine rows: 

The following command will horizontally concatenate two matrices 
side-by-side to create a matrix that is three rows by six columns: 

The next command vertically concatenates two matrices, one on top 
of the other to  create a matrix that is six rows by three columns: 

The following command selects just the first column of a matrix to 
create a colurnn vector. 

The period (.) tells GAUSS-386 to include all elements in this row or 
column. To transpose a matrix, use the following command: 

XTRAN = X'; 

GAUSS-386 includes numerous functions to facilitate matrix 
manipulation. 

Command 
ABS 

CDFCHIC 

CDFNC 

CDFTC 

CLOSE 

COLS 

DELIF 

D I A G  

EIGRS 

GETNAME 

Function 
Returns the absolute value of the argument 

Computes the complement of CDF of the chi- 
squared distribution 

Computes the complement (1-CDF) of the normal 
distribution (upper tail) 

Computes the complement of CDF of the t- 
distribution 

Closes an open data set (.DAT file) 

Returns the number of columns in a matrix 

Deletes rows from a matrix using a logical 
expression 

Extracts the diagonal of a matrix 

Computes eigenvalues of a real, general matrix 

Returns the column vector of variables' names in 
a data set 



INV 

MAXC 

MEANC 

MINC 

ONES 

OPEN 

READR 

ROWS 

ROWSF 

Inverts a matrix 

Returns the largest element in each column of a 
matrix 

Computes the sample mean of each column of a 
matrix 

Returns the smallest element in each column of 
a matrix 

Creates a matrix of ones 

Opens an existing data set 

Reads rows from an open data set 

Returns the number of rows in a matrix 

Returns the number of rows in an open GAUSS- 
386 data set 

SEQA Creates a sequence of numbers 

SELIF Selects rows from a matrix, using a logical 
expression 

SORTC Quick-sorts rows of a matrix on the basis of a 
numeric key 

SQRT Computes the square root of each element 

STDC Computes the standard deviation of the columns 
of a matrix 

SUMC Computes the sum of each column of a matrix 

ZEROS Creates a matrix of zeros 

Example: OLS Estimation 

Given an N x l  vector y, an N x K  matrix of regressors, X, the K x 1  
vector of unknown parameters, /I, may be estimated by ordinary least 
squares, using standard matrix manipulation (that is, (x'x)-'(xY)). 
The GAUSS-386 code to do this is 

BETA = INV (X'X) * X' Y ;  

where syntax to the right of the equality sign is actual programming 
syntax, and that to the left consists of user-assigned names. 

Creating comment statements 

Comment statements begin with a /* or @ and end with a */ or @, 
respectively: 



@This is a comment@ 
/*This is another comment*/; 

MODULES Although all GAUSS-386 procedures may be programmed by the user, 
optional modules axe available that provide access to relatively 
complicated linear and nonlinear models, for example, the Quantal 
Regression module facilitates estimation of logit, probit, and tobit 
models. In addition, the OPTMUM module provides an extensive array 
of nonlinear optimization routines, allowing the user to choose between 
Steepest Descent; Newton Raphson; Berndt, Hall, Hall, and Hausman 
(BHHH); and other quasi-Newton methods. 
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