Pn Do 219

MAXIMUS | T)] 7

CHEMONICS-ARABSOFT

Prepared for:
U S Agency for International Development
Health Insurance Organization, Egypt

Contract Number:
263-0170-C-00-3042-00

PROGRAMMING STANDARDS
(REVISED)

USAID Project Number. 263-0170
[Develop a Detailed and Updated Management Information System for the
Egyptian Health Insurance Orgamzation, Cost Recovery Program]

Prepared by:
The MAXIMUS, Chemonics, Arabsoft Project Team

Draft Date:
December 8, 1994 .
For Review and Discussion Only

20 Al Ahram Street Heliopolis, Cairo Egypt — P O Box 1051 Heliopohs Bahary — Tel 258 8521 / 258 7446 — Fax 258 9337

YOAAYTY Sb— YoAVSET [YoAAeYY useb — 6 dppda) o)V o o g — ol suad e p Vg LY CW\QW;\;,..»\&L,@%,

- P ak = R W A B af A ul ulk TR EF B A B aa

=
-
3

PR

N CRHP

MAXIMUS.cHemonics-aragsorT allell Llddi sy puw| ggputa

December 8, 1994
Mr Carl Abdou Rahmaan
Acting Project Officer
USAID/Egypt
106 Kasr El Am Street, 7th Floor
Cairo Center Building
Carro, Egypt

Ref Project Number 263-0170
Dear Mr Abdou Rahmaan

MAXIMUS s pleased to submit this draft document for the Programming Standards
This documents presents Oracle Programming conventions and naming guidelines that are to
be followed by developers and programmers These conventions should be maintained 1n all
HIO MIS software programs that are developed or enhanced

The purpose of these guidelines 1s to suggest conventions to help maximize the
productivity of the software developers These guidelines will help ensure that 1) all software
produced has a common "look and feel", that consistency i1s maintained, and that "user
friendly"” software 1s developed, 2) programmers will be able to maintain, and enhance
programs written by others without having to become accustomed to a different programming
style, different variable naming scheme, and so forth, and 3) the purpose, usage and logic of
source modules can easily be determined

This document represents the second submission of the Programming Standards
(Deliverable 18, Program Documentation) Actual programming and installation present new
challenges, and new conventions are generated as development continues This document
greatly expands upon the conventions included in its previous version It 1s expected that this
document will continue to be updated as development brings new areas to the forefront

We welcome your review and comments of this document We would appreciate all
comments within four weeks of submission If there are none, we shall consider this
document acceptable as the final submission If you have any questions, please do not
hesitate to contact me

Sincerely,

Leshe Grahama\

Chief of Party

53 Berout Street (Apt 401) » Heliopohs Cairo Egypt ® P O Box 1051 Heliopolis Bahary » Tel 678 552 / 418 3970 * Fax (202) 418 3909

CVAYTR 9q U_SJ_ VAYAY — VAGOY Uk s dugde Voo - —f ¢ C_a.pu_,.u,\.l-\fy(z \ dlw) g CJL’ or t‘hll uhu:‘af_-\t}f»

Y

CRHP

MAXIMUS.cremonics-arassorT allell Liladi sl | g g puira

=
-
3

December 8, 1994

Dr Mohamed Arafa
Chairman

Health Insurance Organization
Heliopolis

Carro, Egypt

Dear Dr Arafa

MAXIMUS 1s pleased to submit this draft document for the Programming Standards
This documents presents Oracle Programming conventions and naming guidelines that are to
be followed by developers and programmers These conventions should be maintained 1n all
HIO MIS software programs that are developed or enhanced

The purpose of these guidelines 1s to suggest conventions to help maximize the
productivity of the software developers These guidelines will help ensure that 1) all software
produced has a common "look and feel that consistency i1s maintained, and that "user
friendly" software 1s developed, 2) programmers will be able to mamntam, and enhance
programs written by others without having to become accustomed to a different programming
style, different variable naming scheme, and so forth, and 3) the purpose, usage and logic of
source modules can easily be determined

Actual programming and installation present new challenges, and new conventions are
generated as development continues This document greatly expands upon the conventions
included 1n its previous version It 1s expected that this document will continue to be updated
as development brings new areas to the forefront

We are looking forward for your comments and review of this document We would
appreciate all comments within four weeks of submission If there are none, we shall
consider this document acceptable as the final submission If you have any questions, please
do not hesitate to contact me

Sincerely,

ﬁ%imam

Chief of Party

cc General Faisal Taie, HIO
Mr Carl Abdou Rahmaan

53 Berout Street (Apt 401) ® Hehopolis Cairo Egypt ® P O Box 1051 Hehopolis Bahary ® Tel 678 552 / 418 3970 » Fax (202) 418 3909

IATY] ST EVATAY = VACOY Uk o dppde V0N oo p g C_a,.u_a,u.u-\,w(z Vo) g g e O C"‘" Slaar 3> il § g s

Revised Programming Standards

Version Date

1 Draft December 8, 1994

Notes

This version wholly replaces Detailed
Programming Standards, dated
October 14, 1993

TABLE OF CONTENTS

Section
1 INTRODUCTION
2 NORMALIZATION

21 First Normal Form
22 Second Normal Form
23 Third Normal Form

SYSTEM DIRECTORY STRUCTURE
31 EasyCase Directory Structure
32 UNIX Directory Structure

DATABASE OBJECT NAMES

41 Level-Name Integrity

42 Object Name Thesaurus

4 3 Rules and Conventions

44 Users

45 Database Names

4 6 Tablespace Names

47 Table Names

4 8 Column Names

49 Index Names

4 10 Table Constraints
4 101 Primary Key Constraints
4 102 Foreign Key Constraints
4 103 Check Conditions
4 104 Not NULL Constraints
4105 Umgque Constraints

4 11 View Names

2 Synonyms

4 13 Cluster Names

4 14 Sequence Names

4 15 Database Link Names

4 16 Facility Names

DATA ELEMENT DICTIONARY
51 Data Dictionary
52 Data Type Standard

PROGRAM/FILE NAMES
61 File Name

6 2 General Exceptions
63 File Extension

Page

Section

TABLE OF CONTENTS
(Continued)

7 PROGRAMMING STANDARDS
71 SQL*Menus

711
712

Naming Convention
Screen Layouts

72 SQL*Forms

721
7272
723
724
725
726

Message File
AutoHelp File
Screen Variables
Triggers
Trigger Names
Control Blocks

73 'C' Standards

731
732
733
734
735
736
737
738

8 SECURITY

Use of Global Variable
Indentation

GOTO Statement
White Space
Parentheses

Comments

Make Files

Header Files

8 1 System Security
8 2 UNIX Security
83 Menu Security

831
8§32

Application Security for Main Module

Username Grants

84 Username and Password

APPENDIX A PROGRAMMERS GUIDE TO THE PRECOMPILES

PRO*C PRECOMPILER
APPENDIX B USER EXITS

1

Page

DRAFT

LIST OF EXHIBITS

Exhibit Title Page
2-1 Unnormalized Table 2-1
2-2 First Normal Form 2-2
2-3 Second Normal Form 2-2
2-4 Third Normal Form 2-3
3-1 EasyCase Directory 3-2
3-2 Storage/Staging Directory - Low Level System Testing 3-3
3-3 Storage/Staging Directory - System Wide Testing 34
4-1 Database Hierarchy 4-1
4-2 Unix/Oracle Environment 4-4
4-3 Database Names 4-5
4-4 Tablespace Names 4-7
4-5 Table Names 4-8
4-6 Table Comment 4-8
4-7 Column Names 4-9
4-8§ Column Comment 4-10
4-9 Index Names 4-11
4-10 Primary Key Constraint 4-12
4-11 Foreign Key Constraint 4-13
4-12 Check Constraint 4-13
4-13 Not Null Constraint 4-14
4-14 Unique Constraint 4-15
4-15 View Names 4-16
4-16 Synonym Names 4-17
4-17 Cluster Names 4-18
4-18 Sequence Names 4-18
4-19 Database Links 4-19
5-1 Data Element Report 5-1
5-2 HIO Oracle Data Type Standard 5-2
5-3 SQL Data Types to be Converted to HIO Oracle Data Type Standard 5-3
6-1 Program/File Names 6-6
7-1 The Standard for Development of SQL* Forms 7-3
7-2 Key Mapping VT 220 7-7
7-3 Key Mapping 7901 7-8
7-4 Header Comments 7-12
7-5 Shared Object Libraries 7-14
11 DRAFT

1 INTRODUCTION

This document presents Oracle programming conventions and naming guidelines that
are to be followed by developers and programmers working on the Cost Recovery in Health
Project, Health Insurance Organization Management Information System (HIO MIS) These
conventions should be maintained in all HIO MIS software programs that are developed or

enhanced

Guidelines are presented 1n

a)
b)
c)
d)
e)
f)

normalization,

system names,

database object names,
data types,

program/file names, and

programming standards

The purpose of these guidelines 1s to establish conventions and rules that should be
followed under a given circumstance or condition The suggested principles are to help
maximize the productivity and efforts of all software developers These guidelines will help

ensure that

1 All software produced has a common "look and feel,” that consistency 1s
maintained, and that "user friendly" software 1s developed

2 Programmers will be able to maintain, debug, and enhance programs written
by others without having to become accustomed to a different programming
style, different variable naming scheme, and so forth

3 The purpose, usage and logic of source modules can easily be determined

The overriding intent 1s to create a framework that will encourage individual creativity
and nitiative [t 1s hoped these guidelines will channel creativity in such a way that the
project and everyone associated with 1t benefits

Actual programming and installation will present new challenges, and new
conventions will be generated as development continues This document will continue to be
revised and expanded as needed

1-1 DRAFT

T

2 NORMALIZATION

In a relational database the term "normalization" has specific mathematical meaning
having to do with separating elements of data (such as names, addresses, or specialties) into
affimty groups, and defining the normal, or "right", relationships between them
Normalization 1s discussed 1n the term of forms First, Second, and Third Normal Form are
the most common, with the Third Form representing the most normalized state HIO MIS
software developers are to try to obtain the Third normal form Exhibit 2-1 1s an example
of an unnormalized table that 1s to be normalized 1n the following sections

Exhibit 2-1
UNNORMALIZED TABLE

PHYSICIAN

Age

Address
Telephone
Specialty
Description
Hospitall
Hospitall Address
Hospital2
Hospital2 Address
Hospaital3

21 First Normal Form

The First Normal Form 1s produced by moving data into separate tables where the
data 1n each table 1s of similar type, and giving each table a primary key — a unique label
or identifier This eliminates repeating groups Next, define the primary key to each table
What will uniquely 1dentify and allow extraction of one row of information For simplicity,
assume the physicians’ names are unique, so "name" 1s the primary key to the Physician
Table Since each physician may have several rows in the Assignment Table, "name" plus
"hospital” 1s the whole primary key to the Assignment table (two parts are combined to make
a whole) Exhibit 2-2 shows tables in First Normal Form

2-1 DRAFT

Exhibit 2-2

FIRST NORMAL FORM
PHYSICIAN ASSIGNMENT
Name Name
Age Hospital
Address Hospital Address
Telephone
Specialty
Description

22 Second Normal Form

Second Normal Form entails removing data that is dependent only on part of the key
To put things 1n Second Normal Form, take Hospital and Address off to a third table The
primary key to the third table 1s Hospital, and i1ts address appears only once If left in the
First Normal Form assignment table, the address would be repeated for every physician that
was assigned to that hospital Furthermore, if a physician assigned to a certain hospital left
for a position elsewhere, when elimimnating him from the database, the hospital along with
its address would vanish also With Second Normal Form, the hospital and its address can
remain in the database even though no physician 1s currently assigned Hospitals can even

be added before locating a physician for assignment there Exhibit 2-3 illustrates tables 1n
Second Normal Form

Exhibit 2-3
SECOND NORMAL FORM
PHYSICIAN ASSIGNMENT HOSPITAL
Name Name Hospital
Age Hosp1tal Address
Address
Telephone
Specialty
Description
2-2 DRAFT

23 Third Normal Form

Third Normal Form entails removing anything 1n the table that does not depend solely
on the primary key The specialty information for a physician 1s dependent on a special skill
(1f he changes specialty, update his row with the name of the new specialty), but a physician
specialty and 1ts descriptton are independent of whether or not the specialty actually belongs
to the physician Specialty information 1s therefore moved out to a separate table The
primary key to the fourth table 1s Specialty, and its long description appears only once

Anytime the data is 1n Third Normal Form, 1t 1s automatically in Second and First
Normal Form The whole process can therefore be accomplished much more quickly by
proceeding directly to the Third Normal Form Simply arrange the data so that the columns
in each table, other than the primary key, are dependent only on the "whole primary key "
Third Normal Form 1s sometimes described as "the key, the whole key, and nothing but the
key" Exhibit 2-4 shows tables that have been normalized to the Third Normal Form

Exhibit 2-4
THIRD NORMAL FORM
PHYSICIAN ASSIGNMENT HOSPITAL SPECIALTY
Name Name Hospital Specialty
Age Hospital Address Description
Address
Telephone
Specialty
23 DRAFT

3 SYSTEM DIRECTORY STRUCTURE

The purpose of this section 1s to emphasize the need to understand the system, 1ts data
and usage It also emphasizes the users need to design and build an effective application
Data can be mapped trivially into a database, but a design that properly supports the way a
system works must go beyond a view of the data, it requires significant thought and
development

31 EasyCase Directory Structure

An EasyCase master terminal has been established to contain a "named" directory for
each system currently under development The directory will contain all EasyCase project
charts 1n the various stages of analysis and design for that system The directory will include
data flow diagrams (DFD), entity-relationship diagrams (ERD), logical data structure (LDS),
and other applicable charts

The current system directories established are

BR The beneficiary registration system,

CA The cost accounting system,

DC The drug control system, and

MR The medical records system

For document control of EasyCase project charts, subdirectories of the system
directory have been set up to contain charts in various stages of development In the case of
the beneficiary registration system, a directory has been set up and named "BR "
Information on beneficiary registration will be entered there The directory 1s then divided
into two lower levels to contain projects during the system analysis and design phases

(Exhibit 3-1) The subdirectory for the analysis phase i1s named "ANALYSIS" for projects
during this period The subdirectory for design 1s named "DESIGN" for that project phase

3-1 DRAFT

Exhibit 3-1
EASYCASE DIRECTORY
Easycase
|
I
BR
I
|
i
i !
Analysis Design

In order to maintain control of the different projects and charts 1t is asked that
programmers establish a similar setup within their system development directory for easier
transfer of documents to the master terminal

32 Unix Directory Structure

Storage/staging areas of the system are set aside to hold objects as development
progresses Programmers are to develop initial applications (programs, SQL*Forms, etc)
in their own user environment Once low level or primary testing 1s completed, objects are
to be moved by senior system analysts to staging areas for more comprehensive testing The
directory /home/hio, illustrated in Exhibit 3-2, will be mamntained as a storage/staging area
for objects that are in the process of more thorough module and low level system testing The
directory 1s to provide a secure area for program and document control

32 DRAFT

<

Exhibit 3-2
STORAGE/STAGING DIRECTORY - LOW LEVEL SYSTEM TESTING

/home/hio -- HIO Development

-/bmn (For all Shells, Menus, SQL*Forms or
a 3GL Programs such as 'C’, etc)

-/rpt (Output for Reports written in SQL*ReportWriter,
SQL*Report, SQL*Plus or 3GL)

-/log (All logging information "General’ and
"Detail’)

-/lib (For all application specific libraries)

|

1

|

1

|

|

I

|

|

I

|

|

|-/entrl (Files for establishing control and connecting
I to the Oracle Database)

l-/comm (Flat file communication)

} /mdata (Receiving flat files)

| /outdata (Sending flat files)

|-/sre (Source Code and Modules)
|-/mstall (Installation/Environment creation
{ software, system specific software)
} /table (Table creation)

! /mdex (Cluster/table indexes)

} /keys (Foreign key references)

Once module or low level system testing has been completed, objects are moved to
a system production environment for more comprehensive system wide testing Directory
structures are to be maintained for headquarters, clinic, hospital, branch and drug store as
a storage/staging area for objects at these various level of production testing (Exhibit 3-3)
Objects contained in these areas are to match the table spaces set aside at the database level
for complete testing With these structures testing can be done independently for
headquarters, clinic, hospital, branch and drug store The structures will contain the same
subdirectories as the /home/hio directory above with the exception of the /src directory

3-3 DRAFT

Exhibit 3-3
STORAGE/STAGING DIRECTORY - SYSTEM WIDE TESTING

/headgtr -- HIO Headquarter applications
(/bin, /rpt /log, /lib, /cntrl, /comm and /install subdirectories)

/chmic -- HIO Climc applications
(/bin, /rpt, /log, /b, /cntrl /comm and /install subdirectories)

/hospital -- HIO Hospatal applications
(/bin /rpt, /log, /b, /cntrl, /comm and /install subdirectories)

/branch -- HIO Branch applications
(/bin, /rpt, /log, /lib, /cntrl /comm and /install subdirectories)

/store -- HIO Drug Store applications
(/bin, /tpt, /log, /hb /cntrl, /comm and /install subdirectories)

3-4 DRAFT

4 DATABASE OBJECT NAMES

The basic approach to naming database objects 1s to choose meaningful, memorable,
and descriptive fitles, avoiding abbreviations and codes, and using underscores either
consistently or not at all The goal of thoughtful naming methods 1s ease of use, the names
must be easily remembered, and must follow rules that are easily explained and applied In
the sections ahead, a somewhat more rigorous approach to naming will be spelled out, with
the ultimate goal of developing a formal process of object name normalization

41 Level-Name Integrity

In a relational database system, the hierarchy of objects (Exhibit 4-1) ranges from the
database, to the table owners, to the tables, to the columns, to the data values Each level
in this hierarchy 1s defined within the level above 1t Furthermore, each level should be
glven a name appropriate to 1ts own level, and not incorporate names from outside its own
level

The full name of a column 1s CLINIC PHYSICIAN Name Each level of the
hierarchy 1s separated from those above or below it by a single dot or period Names must
be unique within their own parents PHYSICIAN cannot have two columns called Name The
owner CLINIC cannot have two tables named PHYSICIAN If Name 1s a primary key, it
cannot have two data values that are the same No level above shall be incorporated mto
a level below (e g CLINICPHYSICIAN or PhysicianName) This confuses and complicates
the table name by placing part of its parent’s name in 1ts own This would be a violation of
level-name integrity

Exhibit 4-1
DATABASE HIERARCHY

Owner Chme

Physician

Telephone
Specialty

42 Object Name Thesaurus

Relational databases should include an Object Name Thesaurus, just as they include
a Data Dictionary This thesaurus 1s to enforce the company’s naming standards, and to
assure consistency of name choice and abbreviation (where used) The thesaurus would be
used to approve a choice, or declare a violation of standards Its purpose 1s to suggest an

4-1 DRAFT

approved alternative or tell the user that the chosen word or abbreviation 1s not recogmized
The use of an unapproved name 1n the creation of an object requires the approval of the
database standards group

The thesaurus may require the use of underscores 1n object namimg Underscores help
make the parsing of a name into component parts a straight forward task The thesaurus also
helps enforce the consistent use of underscores, and prevents scattered, inconsistent usage
within an application The thesaurus chosen for the Cost Recovery in Health Project (CRHP)
1s WordPerfect’s The version will be dependent upon the version of WordPerfect that the
Project uses as a standard

43 Rules and Conventions

One area of inconsistency and confusion 1s whether objects should have singular or
plural names Should it be NAME column or NAMES column, ADDRESS column or
ADDRESSES column? It 1s self-evident when considering names that they describe the
contents of a single row, a record Even though relational databases are "set oriented," the
fundamental unit of a set 1s a row, and 1t 1s the content of that row that 1s well-described by
singular column names Therefore, all object names are to be singular The sole exception
to this rule 1s any widely accepted term already commonly used in business, such as "sales "

Clarity should never be sacrificed for brevity, but given two equally meaningful,
memorable, and descriptive names, always choose the shorter For example, suppose a name
1s to be assigned to a column that is part of a description of a company’s structure What
name should be assigned” Here are some alternatives

Corporation
Enterprise
Business
Company
Firm

Depending on how the business 1s organized, any one of these names could be appropriate
"firm," however, 1s about one-third the size of "corporation,” and 1t 1s meaningful,
memorable, and descriptive Although 1t 1s not as commonly used as "company," for
instance, it 1s certainly more common than "enterprise,” and 1t i1s learned and remembered
after one use

Another example 1s 1n the name chosen for lodging (where a person lives) It could be any
of these

Accommodation
Domicile
Dwelling
Lodging

Abode

Home

4-2 DRAFT

e
<>

Because "home" 1s less than one-third the size of "accommodation,” and just over half
the size of "lodging," it would be a better choice Brevity saves keying, and makes object
names concise and quickly understood Nonetheless, brevity 1s less important than clarity

Oracle allows up to 30 characters 1n the naming of objects such as tables, data
elements, and sequences An object name must begin with an alphabetic character, and may
be any combination of letters (A thru Z), numbers (0-9), or the underscore character (")
This limut (30 characters) 1s rarely reached, particularly when additional characters are added
for convenience and adds nothing significantly meaningful to an object name

Parsing of long names causes system performance to degrade over time Twelve (12)
characters will be the maximum allowable length for object names in CRHP system
development This rule 1s not ntended to be a hindrance to user friendly names, but a
guideline to be considered by the database group when object names are getting excessively
long An object name longer than the allowable limit has to receive approval of the database
standards group before allowing the object be entered into the database With a little
mitiative and effort a name will be derived that 1s meaningful and representative of the
object

The following rules and conventions are to be used in CRHP object names

0 Name tables, columns, keys, and data jomtly with users Develop an
application thesaurus to assure name consistency

o Use English words that are meaningful, memorable, descriptive, short and
singular Use underscore consistently or not at all

0 Do not mix levels m naming,
0 Avoid codes and abbreviations,
0 Use meaningful keys where possible, and
0 Decompose overloaded keys
44 Users

There are database tablespaces and users set for HIO development application testing,
headquarters, branch, clinic, hospital and drug store module testing The respective database
user names are "hio", "headqtr", "branch”, "clinic", "hospital” and "store” These database
users correspond to the actual Umix user and its file system directory structure (see section
3 2) Programmers are to develop mitial applications (SQL*Menus, programs, SQL*Forms,
etc) in therr own user environment with access to the user "hio" for database entry The
"hio" user is where all developmental database activity 1s to occur and where temporary
tables may be created, appended or dropped as necessary by individual developers Once low
level or primary testing 1s complete, objects are to be moved by senior system analysts to
advance staging areas This i1s where applications are combined into modules according to
their final location, say a clinic or branch for more comprehensive testing At this level

4-3 DRAFT

\

objects are unchanging and secure, provide more variables for testing, and remain 1n their
location tablespace on a permanent basis

A program m any of the /bm staging areas (headqtr, branch, clinic, hospital or store)
can access tables owned by any of the above database users (Exhibit 4-2) providec the
program connects to the proper user A program can be tested for example at the branch or
clinic level, just by connecting to that database user

After module or low level system testing has been completed, objects are moved to
a system production environment for system wide testing Objects then are tested at various
levels for system implementation Directories are maintained for headquarters, clinic,
hospital, branch and drug store as storage areas for objects at these various level of
production testing Objects contained in these areas are to match the tablespaces and database
users set at the database level for complete system testing With this type division of
applications, testing can be done independently for headquarters, clinic, hospital, branch or
drug store

Exhibit 4-2
UNIX/ORACLE ENVIRONMENT

Unix
(Object Migration) i l
[=

/devt * /hio /ehinic /branch /headqtr Istore

Oracle
(Connections)

SEEEE:

45 Database Names

A database name 1s a unique identifier used to name a database It is assigned 1n the
mnitial creation of the database A name can be a maximum of eight characters long and must
not be an SQL*DBA reserved word The name 1s stored in the database and used as a
communication path to the database Exhibit 4-3 shows examples of standard database names
and the create database statement The CREATE DATABASE statement can only be 1ssued
by someone who has create database system privilege authority Names are derived using the
following scheme

4-4 DRAFT

kS

Headquarters Database
HEAD HIO Headquarters database name will be "HEAD"

Branch Database
BRCH An HIO Branch database name will be "BRCH"

Hospital Database
HOSP An HIO Hospital database name will be "HOSP"

Clinic Database
CLIN An HIO Clinic database name will be "CLIN"

Drug Store Database
STOR An HIO Drug Store database name will be "STOR"

Exhibit 4-3
DATABASE NAMES

HOSP A Hospital Database
CLIN A Clinic Database
BRCH A Branch Database

CREATE DATABASE "BRCH"
CONTROLFILE REUSE
LOGFILE GROUP 1 (’) SIZE 250M,
LOGFILE GROUP 2 (’) SIZE 250M,
MAXLOGFILES 5
MAXLOGHISTORY 100,
DATAFILE (°) SIZE 500M

4-5 DRAFT

46 Tablespace Names

A tablespace 1s an area of disk set aside for specific database use only, usually it is
one large disk file One or more of these areas, together, contains the entire allocated space
of a database A tablespace can contain many tables, indexes, or clusters Because a
tablespace has fixed size, it can become full as rows are added to its tables When this
happens, the tablespace can be expanded by someone who has DBA authority The expansion
1s accomplished by creating a new disk file and adding it to the tablespace New rows can
then be added to existing tables, and those tables will therefore have rows in both files

Tablespace names are to be based on the application of data that 1s to be stored For
each unique type of data, there will be two 1dentical tablespaces, one for the data and the
other for the data indexes The name 1S to end with the underscore and the characters
"DATA" or "INDX" (1e _DATA), which represents the type tablespace Exhibit 4-4 shows
examples of standard tablespace names and the create tablespace statement Names are
derived using the following scheme

1 A two character code denoting the data application
BR - Beneficiary Registration
DC - Drug Control
MR - Medical Records
CA - Cost Accounting

2 The next two character will denote the data subapplication

CL - Clinic data
MB - Branch Data
HO - Hospital data

3 The next character will always be the underscore '_'

4 The next four characters will be "DATA" or "INDX" according to the
following

DATA - 1sa Data Tablespace
INDX - 15 an Index Tablespace

4-6 DRAFT

Exhibit 4-4
TABLESPACE NAMES

BRCL_DATA
BRCL_INDX - Beneficiary Index
MRCL_DATA - Medical Records Data

Beneficiary Data

CREATE TABLESPACE BRCL_DATA

DATAFILE ’/home/data/BRCL8001 dbf* SIZE 19968K
DEFAULT STORAGE

2

47 Table Names

A name should be derived that 1s meaningful and representative of the data the table
will contain Names should be chosen for their ease of memorization and their system wide
usage The name must begin with an alphabetic character and may be any combination of
alphabetic and numeric characters or the underscore Names are to be developed by the
system analyst that identify the table along with the database group concurrence In all cases,
names should be approved by the database group and made known to all system developers
The use of the underscore character is to be minimized as much as possible and should only
be considered when forming table names from more than one word If the result yields a two
or more syllable word that gives a different meaning from that intended, the underscore 1s
recommended for clarification Exhibit 4-5 shows examples of standard table names and the

create table statement

The following conventions are to be used in CRHP Oracle table names

o

0

The name should be singular

The name should identify the table

[t should be descriptive and representative of the table contents

[t should convey a clear meaning for the data the table will contain
[t should be as short and concise as possible

It should be a maximum of 12 characters

The use of underscore character i1s to be minimized as much as possible

4-7 DRAFT

Exhibit 4-5
TABLE NAMES

BENEFICIARY
PHYSICIAN
DISEASE

CREATE TABLE PHYSICIAN (
PHYSICIAN NUMBER(07)
CONSTRAINT PHYSICIAN_PK1 PRIMARY KEY,
),

One of the advantages of a dictionary-based database manager 1s 1tS inherent
documentation All of Oracle’s database information 1s stored in table format in the system
dictionary Oracle provides the standard SQL command COMMENT (Exhibit 4 6) for
adding text to describe tables All permanent tables stored in the database must have an
accompanying description stored 1in the data dictionary The description should identify and
be representative of the table contents

Exhibit 4-6
TABLE COMMENT

COMMENT ON TABLE PHYSICIAN IS
"HIO Medical Physician Table’,

48 Column Names

A name should be derived that 1s meaningful and representative of the underlying data
content Names should be user friendly and chosen for theirr common and system wide
usage The name must begin with an alphabetic character and may be any combination of
alphabetic and numeric characters or the underscore Names must be unique within the table
and cannot be an Oracle reserved word Case sensitivity 1s not an issue, an object name 1s
automatically converted to upper case when stored Names are to be developed by the
system designer to identify the object along with the system user’s review The database
group 1s to provide concurrence In all cases, names should be approved by the database
group and made known to all system developers

The name should be as generic as possible A generic column name or "mask” can
be used 1n more than one table with a distinct meaning 1n each The table where the item

4-8 DRAFT

ST
Loy

appears becomes the qualifier (1e ADDRESS, not PHY _ADDR or EMP_ADDR) In the
PHYSICIAN table 1t 1s the physician address, and in the EMPLOYER table 1t would be the
employer address The meaning 1s clear and distinct because of the table emphasis This
reduces the number of individual items needed for the system, with no loss of functionality
Exhibit 4-7 show examples of standard column names and the create table statement

The following rules and conventions are to be used in CRHP Oracle column names

0 The name should be singular

0 The name should identify the column

0 It should be descriptive and representative of the data contents

0 It should convey a clear meaning for the data

o [t should be as short and concise as possible

0 It should be a maximum of 12 characters

0 The use of underscore character 1s to be minimized as much as possible

One of the advantages of a dictionary-based database manager 1s its inherent
documentation All of Oracle’s database information 1s stored in table format in the system
dictionary Oracle provides the standard SQL command COMMENT (Exhibit 4-8) for
adding text to describe tables All permanent tables stored in the database must have an
accompanying description stored 1n the data dictionary The description should 1dentify and
be representative of the table contents

Exhibit 4-7
COLUMN NAMES

BLOODTYPE (Beneficiary Blood Type)
ADDRESS (Building Number and Street Address)
EMPLOYER (Employer Identification Number)

CREATE TABLE PHYSICIAN (
PHYSICIAN NUMBER(07)
CONSTRAINT PHYSICIAN_PK1 PRIMARY KEY,
ADDRESS VARCHAR2(35)
CONSTRAINT PHYSICIAN_NN1 NOT NULL,
)s

4-9 DRAFT

Exhibit 4-8
COLUMN COMMENT

COMMENT ON TABLE PHYSICIAN ADDRESS IS
"HIO Medical Physician Address (Building Number and Street Address)’,

49 Index Names

An index 1s a sumple concept It 1s typically a listing of keywords accompanied by the
location of information on the subject Indexes are most useful on larger tables, and on data
elements that are likely to appear with clauses either (as a simple equality or 1n table joins)
They produce quicker retrievals for the indexed data elements However, if there 1s no where
clause, no index is used Index groups are to include Primary keys (unique entry for a table)
and Access keys (entry to a table other than the primary key) Index names are to be based
on the table name on which the index 1s to be established The name being based on a table,
causes rules and conventions for naming objects to instinctively be followed in the naming
of mdexes The name 1s to end with the underscore and the characters "PK" or "AK" (1 ¢
_PK1), which represents the type index Exhibit 4-9 shows examples of standard index names
and the create table statement Names are derived using the following scheme

1 The name of the table on which the index 1s based

BENEFICIARY - Beneficiary table

PHYSICIAN - Physician table
2 The next character will always be the underscore ’_’
3 The next two characters will be "PK" or "AK" according to the following

PK - 1s a Primary Key Index (Unique)
AK - s an Access Key Index

4 The last character represents a "unique sequence number" This 1s the
number of the Index (beginning with 1)

4-10 DRAFT

E

Exhibit 4-9
INDEX NAMES
BENEFICIARY_PK1 - Primary Key Index
BENEFICIARY_AK1 - First Access Key Index

BENEFICIARY_AK2

Second Access Key Index

CREATE TABLE BENEFICIARY (
BENEFICIARY NUMBER(09)
CONSTRAINT BENEFICIARY PK1 PRIMARY KEY,

),

4 10 Table Constraints

Oracle CREATE TABLE statements allow the user to enforce several different kinds
ot constraints on a table candidate keys, primary keys, foreign keys and check conditions
A CONSTRAINT clause can constrain a single column or a group of columns 1 a table
The point of these constraints 1s to get Oracle to do most of the work 1n maintaining the
integrity of the database The more constraints added to a table definition, the less work
needed in maintaining the data On the other hand, the more constraints there are 1n a table,
the longer 1t takes to update data

There are two ways to specify constraints as part of the column definition (a column
constraint) or at the end of the CREATE TABLE statement (a table constraint) Clauses that
constrain several columns must be table constraints The constraints of concern to CRHP
developers are primary keys, foreign keys and check conditions All permanent constraints
stored 1n the database must have an accompanying name stored in the data dictionary

4101 Primary Key Constramnts

The primary key of a table 1s one of the candidate keys that gives some special
characteristics A table can have only one primary key, and a primary key column cannot
contain nulls For a single-column primary key, define the key on a column with a column
constramt, for a group-column primary key, define the key instead with a table constraint
(Exhibit 4-10 also see section 4 9 in the naming of indexes)

4-11 DRAFT

Exhibit 4-10
PRIMARY KEY CONSTRAINT

CREATE TABLE SHEYAKHA (
SHEYAKHA NUMBER(04)
CONSTRAINT SHEYAKHA_PK1 PRIMARY KEY,

)’

CREATE TABLE EMPLOYER (

EMPLOYER NUMBER(08),
BUILDING NUMBER(04),
CONSTRAINT EMPLOYER PK1 PRIMARY KEY (EMPLOYER,
BUILDING)),
4102 Foreign Key Constraints

A foreign key 1s a column or combination of columns with values based on the
primary key values from another table A foreign key constrant, also known as a
referential mtegrity constramnt, specifies that the values of the foreign key correspond to
actual values of the primary key in the other table In the SHEYAKHA table, for example,
the Markaz column refers to values for the Markaz column in the MARKAZ table A foreign
key column refers to a primary or unique key in another table using the REFERENCES
clause (Exhibit 4-11) This action automatically maintains referential integrity The name 1s
to end with the underscore and the characters "FK" (1 e _FK1), to distinguish the foreign
key from a primary key Names are to be derived using the following scheme

1 The table name
2 The next three character will always be "_FK"
3 The last character represents a "unique sequence number" This 1s the

number of the foreign key (beginning with 1)

4-12 DRAFT

Exhibit 4-11
FOREIGN KEY CONSTRAINT
CREATE TABLE SHEYAKHA (
MARKAZ NUMBER(03)

CONSTRAINT SHEYAKHA FK1 REFERENCES MARKAZ
(MARKAZ),

),

4103 Check Conditions

Many columns must have values that are within a certain range or that satisfy certain
conditions A check constraint can give an expression that must always be true for every
row 1n the table For example, HIO student beneficiaries age must be in the range of 12 to
19 A check condition 1s established using the CHECK clause (Exhibit 4-12) This action
validates every row automatically against the check condition The name 1s to end with the
underscore and the characters "CC" (1e _CCl1), to distinguish the check condition from
other constraints Names are derived using the following scheme

1 The table name
2 The next three character will always be "_CC"
3 The last character represents a "unique sequence number” This 1s the

number of the check condition (beginning with 1)

Exhibit 4-12
CHECK CONSTRAINT
CREATE TABLE STUDENT (
AGE NUMBER(02)

CONSTRAINT STUDENT_CC! CHECK (AGE BETWEEN 12
AND 19),

)

4104 Not NULL Constramts

Many columns must have valid values that are within a certain range and satisfy
certain conditions A not null constraint can guarantee that values must always appear for
certain columns for every row in the table For example, address and telephone numbers
must be known for every physician A not null condition 1s established using the NOT

4-13 DRAFT

NULL clause (Exhibit 4-13) This action validates every row automatically against the not
null condition The name 1s to end with the underscore and the characters "NN" (1e _NN1),
to distinguish the not null condition from other constraints Names are derived using the
following scheme

1 The table name
2 The next three characters will always be " NN"
3 The last character represents a "unique sequence number" This 1s the

number of the not null check condition (beginning with 1)

Exhibit 4-13
NOT NULL CONSTRAINT

CREATE TABLE PHYSICIAN (

ADDRESS VARCHAR2(35)
CONSTRAINT PHYSICIAN_NN1 NOT NULL,

TELEPHONE NUMBER(07)
CONSTRAINT PHYSICIAN_NN2 NOT NULL,

),

4105 Umque Constramts

The primary key of a table 1s one of the candidate keys that gives some special
characteristics A table can have only one primary key, and a primary key column cannot
contain nulls Unique constraints on the other hand can be applied to any column, whether
a primary key, foreign key, etc Unique columns can contain nulls, actual values do not have
to be stored A unique condition 1s established using the UNIQUE clause (Exhibit 4-14) This
action validates every row against values presently stored, so that no value 1s stored twice
The name 1s to end with the underscore and the characters "UN" (1e _UNI1), to distinguish

unique condition from other constraints Names are to be derived using the following
scheme

1 The table name
2 The next three character will always be "_UN"
3 The last character represents a "unique sequence number” This 1s the

number of the unique condition (beginning with 1)

4-14 DRAFT

Exhibit 4-14
UNIQUE CONSTRAINT

CREATE TABLE SHEYAKHA (

MARKAZ NUMBER(03)
CONSTRAINT SHEYAKHA_UN1 UNIQUE,
),

411 View Names

A view 1s a database object that 1s a logical representation of data derived from one
or more tables It has no storage of its own and often may be used in the same manner as a
table Only essential views are to be created and maintained by the system Views will only
be considered 1n the event of multiple table joms, and will not be established for single table
access Since a view will be derived from multiple tables, a view name will not necessarily
be dependent on a single table name The name should state as clearly as possible the purpose
of the view A name should be short, meaningful and representative of the view A name
1s to end with the underscore and the character "V" (1e " V"), to readily distinguish a view
from a table of possibly the same name

As an example, suppose a view 18 to be established as a logical representation for
beneficiary widows The underlying tables to support this view are the Beneficiary Table,
which contains basic data on all beneficiaries and the Widow Table that contains additional
beneficiary data pertaining only to surviving widows The view could possibly be named
"WIDOWS V", because it would reveal complete information on widows and the name
would clearly describe the purpose for why the view exists Exhibit 4-15 shows examples of
standard view names and the create view statement

The following conventions are to be used in CRHP Oracle view names

0 Joms will only be considered 1n multiple tables
o The name should be singular
0 The name should identify the view
0 It should be descriptive and representative of the view contents
o It should convey a clear meaning for the logical data the view will contain
o It should be as short and concise as possible
4-15 DRAFT

0 It should be a maximum of 12 characters

0 The underscore character and the character "V" should be used as the last
characters of the name

Exhibit 4-15
VIEW NAMES

STUDENTS_V
PENSIONERS_V
WIDOWS_V

CREATE VIEW WIDOWS_V AS

SELECT FROM BENEFICIARY, WIDOW
WHERE BENEFICIARY = WIDOW,

412 Synonyms

An alternative method to creating a view 1s to create a Ssynonym A synonym 1s a
name assigned to a table or view that may thereafter be used to refer to it If you have access
to another user’s table, you may create a synonym and refer to it by the synonym alone,
without entering the user’s name as a qualifier There can be private and public synonyms
PUBLIC makes the synonym available to all users, but can only be created by a DBA

When writing code, 1t can be difficult to identify a synonym’s relationship to 1its table
name reference, so use synonyms sparingly Synonyms are to be used as a table reference
when a table at two locations, lets say a clinic or branch, are different, but attributes in one
table are entirely contained 1n the other table, a synonym i1s to be used to differentiate the
underlying table On the other hand, database link synonyms are to be used 1n a many to
one relationship For instance, several clinics need to connect to a branch database or
several branches need connection to headquarters But, when a branch or headquarters needs
to connect to several clinics, the actual database link name is used (See section 4 15 Database
Links for more information)

Synonyms are to be based on the table or view to be accessed The name 1s to end
with the underscore and the characters "SY" (1e "_SY1"), to distinguish the synonym from
a table Exhibit 4-16 shows examples of standard synonyms, the create synonym statement
and 1ts usage Synonyms are derived using the following scheme

1 The name of the table on which the synonym is based
2 The next three characters will always be "_SY"
3 The last character represents a "unique sequence number” This 1s the

number of the synonym (beginning with 1)

4-16 DRAFT

Exhibit 4-16
SYNONYM NAMES

BENEFICIARY SY1 - Beneficiary Table Synonym
PHYSICIAN SY1 - Physician Table Synonym

CREATE PUBLIC SYNONYM PHYSICIAN_SY1
FOR BRANCH PHYSICIAN,

SELECT NAME, SPECIALTY, ADDRESS, TELEPHONE
FROM PHYSICIAN SY1,
** @B0002 1s a database link to a remote branch database

CREATE PUBLIC SYNONYM BENEFICIARY SY!
FOR BRANCH BENEFICIARY@B0002,

SELECT NAME, BIRTHDATE, ADDRESS, EMPLOYER
FROM BENEFICIARY_SY1,

4 13 Cluster Names

Clustering 1s a method of storing tables that are intimately related and often joined
together into the same area on disk For example, instead of the Beneficiary Table being
in one section of the disk and Pensioner Table being somewhere else, their rows could
instead be interleaved together in a single area, called a "Cluster” The cluster key 1s the
column or columns by which the tables are usually joined 1n a query A cluster 1s space set
aside, as 1t would be for a table, with nothing in 1t Tables are created to be included in this
cluster When these tables are clustered, each unique column, say "Name" 1s actually stored
only once i the cluster key To each unique Column, columns are attached from other
tables that make up the cluster

Cluster names are to be based on the data element name on which the cluster is
defined The name should always be the same as the data element for which the cluster 1s
established Because the name 1s the derived from a data element, rules and conventions
for naming objects will mstinctively be followed in the naming of clusters Exhibit 4-17
shows examples of standard cluster names and the create cluster statement Names are
derived using the name of the data element on which the cluster 1s defined

4-17 DRAFT

Exhibit 4-17
CLUSTER NAMES

BENEFICIARY - Cluster for beneficiary number
PHYSICIAN - Cluster for physician number

CREATE CLUSTER BENEFICIARY (BENEFICIARY NUMBER((09))

b4

4 14 Sequence Names

Oracle has solved the long-standing problem of assigning unique numbers, such as
identification or IDs This 1s done by using the CREATE SEQUENCE command The
NextVal attached to a sequence tells Oracle the next available sequence number from the
sequence This 1s guaranteed to be unique, Oracle will not give 1t to anyone else Using the
NextVal assures that the sequence table gets incremented, and you get a unique number

Sequence names are to be based on the data element on which the sequence i1s
established A sequence name should always be the same as the data element for which the
sequence 1s generated Because the name 1S derived from an established data element, rules
and conventions for naming objects will automatically be followed in the naming of
sequences The sequence name 1s to end with the underscore and the character "SQ" (1 e
" SQ1"), to distinguish the sequence name from a table name Exhibit 4-18 shows
examples of standard sequence names and the create sequence statement Names are derived
using the following scheme

1 The name of the data element on which the sequence is defined
For example

BENEFICIARY - Beneficiary number
PHYSICIAN - Physician number

2 The next three characters will always be "_SQ"

3 The last character represents a "unique sequence number” This 1s the
number of the Sequence (beginning with 1)

Exhibit 4-18
SEQUENCE NAMES

BENEFICIARY_SQ! - Beneficiary sequence for beneficiary number
PHYSICIAN SQl - Physician sequence for physician number

CREATE SEQUENCE PHYSICIAN_SQ1 INCREMENT BY 1 START WITH 1,

4-18 DRAFT

4 15 Database Link Names

A database link 1s an object stored in a local database that contains network
information that allows a user access to tables and objects on a remote database SQL*Net
must be installed on both the local and remote databases A link contains the "Node"
definition of the remote database, and, optionally, a username and password that has given
authority for the remote database entry Once access 1s given, remote tables and objects can
be accessed just like local tables and objects, except that table names must be prefixed by
@database link 1n the from clause of the select statement Database Iinks are to be used
for distributed queries only, and not for updates

Database link names are based on the type of remote database accessed The type will
be one of the types listed in item #1 below The name 1s to end with a unmique sequence
number (1 e 0001) Exhibit 4-19 shows examples of standard database Iink names, the create
database link statement and its usage Names are derived using the following scheme

1 A one character code representing the remote type database
Q - Headquarters database *
B - A branch database
H - A hospital database
C - A clinic database
S - A drug store database

2 The last four character represents a "unique sequence number” This 1s
the number of the link (beginning with 0001)

Exhibit 4-19
DATABASE LINKS

HO0001 - First Remote Hospital Database
C0005 - Fifth Remote Clinic Database
B0002 - Second Remote Branch Database
Q0001 - Headquarters Database

CREATE DATABASE LINK B0002
CONNECT TO BRANCH IDENTIFIED BY 77777
USING T B0002 A’,

SELECT NAME, BIRTHDATE, ADDRESS, EMPLOYER
FROM BENEFICIARY@B0002,

* Note Headquarters consists of one database only The database link will be
nQOOOln

4-19 DRAFT

4 16 Facility Names

1

A facility name 1s a unique 1dentifier used to name a facility Each facility that 1s a
part of the CRHP system, be it a medical branch, a hospital, a polyclinic or drug store will
be assigned a unique identification number This identifier is stored in the control area for
that facility and becomes a part of file names Data transmission files that originate from the
facility or are sent to that location will contain this identifier as part of theirr name The name
1s assigned at the mmtial creation of a database for the facility Names are derived using the
following scheme

Headquarters Facility
Q0001

Branch Facility
BXXXX

Hospital Facility
HXXXX

Polyclinic Facility
CXXXX

Drug Store Facility
SXXXX

Medical Zone Facility
MXXXX

HIO Headquarters facility name will be "Q0001"

Branch facility names are to begin with the character "B"

followed by a sequentially generated number beginning with
sequence "0001"

Hospital facility names are to begin with the character "H"
followed by a sequentially generated number beginning with
sequence "0001"

Polyclinic facility names are to begin with the character "C"
followed by a sequentially generated number beginning with
sequence "0001"

Drug Store facility names are to begin with the character "S"
followed by a sequentially generated number beginning with
sequence "0001"

Medical Zone facility names are to begin with the character
"M" followed by a sequentially generated number beginning
with sequence "0001"

Note Medical Zones are not bemng automated under the
current contract

4-20 DRAFT

S DATA ELEMENT DICTIONARY

The data dictionary 1s Oracle’s central documentation system It stores mnformation
related to every facet of the database system User names, user access rights, table names,
column names, table storage information, and auditing data for disaster recovery are all
stored 1n the data dictionary

51 Data Dictionary

The data dictionary 1s a comprehensive set of tables and views owned by the Oracle
system, which activates when the RDBMS 1s 1nitially installed It 1s a central source of
information for the RDBMS and all users of the system The tables are automatically
maintained by Oracle, and hold a set of views and tables containing information about
objects, users, privileges, events and use After tables and data elements have been defined
and entered 1nto the data dictionary, the database group will prepare data dictionary reports
(Exhibit 5-1) from the information stored These reports are to be used by "all" CRHP
developers for table, data element look-up, description, and references to make sure that a
data element has "one and only one" name and meaning throughout the system

Exhibit 5-1
DATA ELEMENT REPORT
Data Element Data | Size | Decimal HIO Oracle Description Table
Name Type Scale Data Type Reference

COST D 6 2 NUMBER (6,2) | Procedure Cost | Tl
BLOODTYPE 3 CHAR(3) Beneficiary T1, T2

Blood Type
EMPLOYER N 8 NUMBER (8) Employer ID T3

assigned by

SIO/HIO

Data Element Name
A short descriptive mnemonic name developed by the analyst (with approval of the
database group) which exists in the data dictionary

Data Type
A symbol to represent one of the following types of data

X = Alphanumeric (Character) data
N = Numeric data
D = Decimal data

5-1 DRAFT

Saze

The total length of the data item

Decmmal Scale

The number of decimal positions to the right of the decimal point

HIO Oracle Data Type

The standard Oracle SQL data types that "all" analyst will be using See the following
HIO Oracle data type standard

Description

A brief explanation of the data element

Table Reference

This item will be used to cross reference the tables where the data element 1s used

5.2 Data Type Standard

Of the numerous external data types that Oracle accepts (Exhibit 5-2 & Exhibit 5-3),
an internal conversion takes place to convert the data to Oracle native storage type (Exhibit
5-2) Do not confuse the external data types with internal data types To eliminate the
confusion that arises 1n discussions of internal verses external data types and their association,
the standards commuittee has chosen the nattve internal data type for all database use CRHP
software developers are restricted to only the data types listed in Exhibit 5-2 m their
development Data must be converted and stored in the database as one of the following data

types
Exhibit 5-2
HIO ORACLE DATA TYPE STANDARD
Data Type Data Length
CHAR (n) Fixed length character data of length 'n' bytes Maximum for

'n' 1s 255 bytes Default for 'n' 15 1 byte

VARCHAR? (n)

Variable length character string having maximum length of 'n’
bytes Maximmum for 'n' is 2000 bytes

DATE

Valid date (system will use the Oracle scheme for dates)

NUMBER (m)

Number having precision 'm' and scale zero The precision 'm’
can range from 1 to 38 digits

NUMBER (m,n)

Number having precision 'm' and scale 'n' The precision 'm’
can range from 1 to 38 digits The scale 'n' range from -84 to
127 This data type will be used to denote decimals

5-2 DRAFT

NN
o

Exhibit 5-3 shows SQL data types that are widely used that must be converted to HIO

Oracle data type standard

Exhibit 5-3

SQL DATA TYPES TO BE CONVERTED TO HIO ORACLE DATA TYPE

STANDARD

SQL Data Types

HIO Oracle Data Type Standard

SMALLINT

NUMBER (m)

INTEGER

NUMBER (m)

NUMBER (m,n)

NUMBER (m,n)

DECIMAL (m,n)

NUMBER (m,n)

CHAR(n) CHAR(n)

VARCHAR(n) VARCHAR2(n)

DATE DATE

FLOAT Will not be used At this point there 1s

no need for floating point precision

5-3 DRAFT

6 PROGRAM/FILE NAMES

The application development process 1s to establish naming conventions for objects
outside of Oracle (such as programs and files) as well as objects within Oracle The specific
naming conventions decided upon 1s meaningful, but the fact that a set of conventions was
committed to before development starts, 1s of utmost importance Thorough guidelines
provide for a high degree of consistency and allow software developers and analysts to
quickly 1dentify and define objects

61 File Name

Name of programs, files, forms and documents are to be eight characters (8) 1n length
and derived using the following scheme

1 Characters (1-2) represents the major system (application) to which the item
belongs
BR = Beneficiary Registration System
CA = Cost Accounting System
DC = Drug Control System
MR = Medical Records System
LB = Library
DB = Database Administration
SY = System Administration
2 Characters (3-4) represents a subsystem (subapplication) of the major system

These characters will range from "AA" to "ZZ" The subapplication
characters and designation is the responsibility of the system’s lead analyst or
individual The following characters subsystem designation are to remain the
same across all systems *

MN = Maintenance

HD = Header Files

MK = Makefiles (UNIX Scripts)

IN = [nstallation SQL Scripts

a The Beneficiary Registration System subapplication designation
follows
RS = Registration
EL = Ehgibility Check
SI = SIO / PIO Interface
VI = Visits
LT = Lookup Tables

* As system development continues, standard names for other subsystems will be
designated

6-1 DRAFT

b The Cost Accounting System subapplication designation follows
CC = Clinics Cost Accounting
HC = Hospital Cost Accounting
c The Drug Control System subapplication designation follows
PE = Prescription Entry
IC = Inventory Control
PC = Purchasing and Contracting
cp = Contracted Pharmacy
GN = General
MN = Maintenance
d System Administration subapplication designation follows
HQ = HIO Headquarters
MB = Medical Branch
CL = PolyClinic
HO = Hospital
ST = Drug Store
e Library subapplication designation follows
SO = Shared Objects (executable, user exits)
UE = User Exits
SP = Stored Procedures (SQL scripts that load into database)
RF = C(alled by Reference (SQL*forms)

3 Characters (5-8) represents a unique subapplication series grouping sequence
number This sequential number 1s to give the application items a logical
ordering
1000 - 1999 = SQL*Forms
2000 - 2999 = ’C’ programs (See General Exceptions below)
3000 - 3999 = UNIX Shell Scripts (Make files)

4000 - 4999 = SQL Scripts

5000 - 5999 = SQL*Menu

6000 - 6999 = SQL*Reportwriter
7000 - 7999 = Stored Procedure
8000 - 8099 = Database Files

8100 - 8199 = Database Files Index
9000 - 9999 = Special Documents

6 2 General Exceptions

Deviation from the above naming conventions will only be for shared object libraries
along with their makefiles, because of the way the UNIX operating system handle them and
data transmission files Files that are responsible for data delivery over network
telecommunication lines from one site to another

6-2 DRAFT

<

A Shared Object Libraries

0O

hbHIO so

Shared object libraries created from Pro*C programs will be named
1IbHIO so Program names for liboHI so will be 1n the range LBS02000 pc-
LBS02499 pc

IIbFRM so

Shared object libraries created from SQL*Forms user exits will be named
libFRM so Program names for iIbFRM so will be in the range LBSO2500 pc
-LBS02999 pc

Make files

hio mk
Make file created from libHIO so shared objects will be named hio mk

exe mk
Make file created from * exe executable will be named exe mk

frm mk
Make file created from 11bFRM so shared objects will be named frm mk

B Data Transmission Files

Names of files used in delivering data over telecommunication lines are to be either
six (6) or eleven characters (11) in length The file content and its destination determine
which version of the name to be used The guidelines that follows decide the name

When the contents of a file remain the same and 1s to be sent to different locations, the
shorter version of the name 1s used

The six (6) character name 1s derived using the following scheme

1

Characters (1-2) represents the major system (application) to which the item

belongs

BR = Beneficiary Registration System
CA = Cost Accounting System

DC = Drug Control System

MR = Medical Records System

Characters (3-6) represents a four character description of the file contents

6-3 DRAFT

.

When contents of a file are different and are to be sent to many locations, the longer
version of the name 1s used

The eleven (11) character name 1s derived using the following scheme

1 Characters (1-6) are the same as with the shorter version of the name above
2 Character (7) represents the type facility

Q = Headquarters

B = Branch

H = Hosp1tal

C = Clinic

M = Medical Zone

S = Store
3 Characters (8-11) represents the facility sequence number

Note characters 7-11 together represents the facility identification number

63 File Extension
Certain files and objects that are to be executed or generated by the system must have

an extension that Oracle or the operating system recognizes File extension case should
always be lower The following are guidelines for the development of these applications

1 ’C’ Program
<file Name> ¢ (a stand alone ’C’ Program extension must be c)
<file Name> pc (a ’C’ Program with embedded SQL extension must be pc)
<file Name> exe (an executable ’C’ Program extension must be exe)

<file Name> o (a ’C’ Program object code extension must be 0)

2 SQL Script

<file Name> sql (the extension must be sql)

3 Shell Script

< file Name> sh (the extension must be sh)

S o WE ON BE Sm g NS UV S5 DN M SN AU NS BN G a0 Gn @8

10

11

12

SQL*Forms
<file Name> mp

< file Name > frm

(source file extension must be 1np)

(an executable SQL*Form extension must be frm)

SQL*ReportWriter Program

< file Name > rex

<file Name> rep

SQL*Menu

(source file extension must be rex)

(an executable SQL*Reportwriter extension must be rep)

< file Name > dmm (the extension must be dmm)

PL/SQL Program

< file Name > sql

Stored Procedure
<file Name > mp
’C’ Header File

< file Name> h

PRO*C Make File

< file Name > mk

Spool Output File

< file Name > rpt

Log File

< file Name > log

(the extension must be sql)

(the extension must be 1np)

(the extension must be h)

(the extension must be mk)

(a spool output report listing extension must be rpt)

(the extension must be log)

6-5 DRAFT

13

14

15

16

17

Database Transmssion File

< file Name > dat (the extension must be dat)

Database Object File

<file Name > dbf (database objects export extension must be dbf)

Library File

hb < file Name> so (shared 'C’ object library extension must be so)

SQL*Loader Script

<file Name> ctl (the extension must be ctl)

Database Tablespace File

<file Name > dbf (the extension must be dbf)

Exhibit 6-1
PROGRAM/FILE NAMES

DC IC 1100

— {extension}

|
|
|
|
|
i
| Sequence
|
1
|
1

|
1
|
I
|
1
!
{ Number
|
|
| SubSystem
|
|
Major
System

BREL1050 frm - Beneficiary eligibility check SQL*Forms 1050
CAMNG6200 rpt - Cost accounting maintenance Report 6200
DCIC5100 dmm - Drug control mventory control Menu 5100

6-6

DRAFT

o~
N

7 PROGRAMMING STANDARDS

Because the Oracle RDBMS system provides such a flexible and intuitive environment,
developing simple applications is now possible However, despite the simplified development
process, building large applications can still be very difficult Many concepts come easily
and can be put into practice while others need a more formal process Standards helps to
codify and control concepts that are beneficial to the development of the system as a whole
Standards enforced across all applications causes inconsistencies to be held to a minimum by
choosing an approach that have served well and proved itself n the past

71 SQL*Menus

SQL*Menu 1s a software developer's tool used for linking and structuring applications,
providing security, ensuring flexibility and a uniform look, and giving a feel to an application
for all users

Authority to use menu items are granted to categories called roles A role 1s a set of
privileges or an access level that each user needs depending on their status and
responsibilities By granting specific privileges to roles and assigning roles to the appropriate
users, a user will be able to access a certain set of menu items in an application For
example, one user may only see seven usable items on a menu, another user may see ten
When an application 1s run, role membership determines the item available Multiple role
membership will give access to all items available to the combined roles (See section 8 for
mOre on security)

A menu interface presents an application with numerous additional benefits and
features Database functions can be performed easily with a minimum of key strokes The
following are some of the advantages and characteristics that menus provide

1 Operators will only be allowed to select items that are authorized to use

2 Typing errors are reduced

3 Choice of menu display styles (Full-screen, Pull-down or Bar)

4 Hierarchical and networked linking of menus (User navigate up and down the
menu tree)

5 Application security and Dynamic menus

6 Background menu and Accelerator keys

7 Operating system commands (User may enter operating system from within

menu structure

7-1 DRAFT

8 Substitution of parameter values

9 Integration with SQL*Forms

711 Nammg Conventions

To promote consistency within an application, naming conventions allow software
developers to easily identify the usage and function of an individual menu Menu names are
to be the standard eight characters in length They are derived using the program/file name
scheme Please refer to Section 6 mn the development of names The first two characters
represent the major menu application (1e BR MR), the next two characters are the
subapplication designation for the menu, the last remaining four characters represent a unique
sequence number Because menus are stored at the operating system file level, names are to
be unique for the application and across all systems

7-2 DRAFT

712 Screen Layouts
The following screen shows an example of the block structure that will be standard

for development in HIO CRHP applications

Exhibit 7-1
THE STANDARD FOR DEVELOPMENT OF SQL*FORMS

(e TP 10 EnnS
N g

I o o

dd as H¢ kéd Hd ad AR +» L 3
&
4+
x
— e —

€ da
LT

.
L
E
L ¥

“Ifirnty

| Replace ; +w TCowwt]

All screens will 1dentify the data in the top left box, the name of the source in the top
right box, and the title of the screen in the center Each block on the screen should be
separated by a horizontal line, unless the contents of the screen are logically thought of as one
record The screen 1s to have a border on all sides The bottom left corner should display
the terminal from which the screen has been evoked

7-3 DRAFT

72 SQL*Forms

SQL*Forms 1s a flexible application building tool that enables software developers to
develop form-based applications for manipulating data 1n a database Data manipulation and
query actions are achieved by means of function key operations and/or menu selections A
form 1s a fill in the blanks template displayed on a computer screen that allows a user to
enter, query, update and delete data from a database

The following are guidelines for the development of SQL*Forms mn HIO CRHP
applications These guidelines describe cosmetics, naming conventions, operational guidelines,
and coding standards for all SQL*Forms applications

7 2.1 Message File

A message file 1s a way to give the system the following capabilities through Oracle
tables

1 Replace Oracle error messages by defined messages (Arabic messages for
example)
2 Map many Oracle error messages 1nto fewer defined messages to simplify

matters to the end users

3 Define messages for the user and have them defined in one place to make
changing the messages easier

7 22 AutoHelp File

AutoHelp provides automatic on-line help for Forms (screens) built in SQL*Forms at
the field level throughout the system As soon as the cursor prompt enters a field associated
with Autohelp, informational help text appears at the bottom of the screen This text describe
or provides a more 1ntelligible meaning to the user concerning the editing or meaning of the
field It provides more information than the field prompt gives and furnishes special formats,
if any, that are required for the field

AutoHelp informational text 1s provided for enterable fields only, fields that are user
changeable No Informational help 1s provided for fields that can not be entered by a user

The AutoHelp replaces the automatic help which 1s associated with fields 1n their description
i SQL*Forms

The internal function of AutoHelp 1s that as soon as the cursor prompt enters a field
the ON-NEW-FIELD-INSTANCE trigger 1s activated calling the user exit HELP_ME without
any parameters The user exit reads the current form and field name and generates the system
code that searches for the most specific help for the field in question

7-4 DRAFT

The user help 1s implemented on the form level and exists in the library to be
referenced by any software developer

1 Most Fields will provide AUTOHELP 1n the following format
Enter Field Function, Values/Format/Other Help
Example
Enter Transaction Type Code, Press LIST FIELD VALUES for Valid
Transaction Types
7 23 Screen Variables
If a field 1s a base table field (that it corresponds to a column in a table), 1ts name

must be the same as that of its corresponding table column If a field 1s non-base table (used
for screen functions only), it 1s assigned a prefix according to the following

SCR_ < name> where "SCR_" 1s the screen variable prefix

The screen variable description displayed upon user input will follow the convention
for field names n screen forms as

< Field name> Code 999 XXXXXXXXXXXXXXXXXXXXXXXXXX

where 999 1s the field code and xxxxxxxxXXXXXXXXXXXXXxxxxX 1s the field description
displayed after accepting the field code from the user

7-5 DRAFT

JV

72 4 Triggers

A tnigger defines an action taken when some database-related event occurs A trigger
1s defined with the CREATE TRIGGER statement A Block or piece of PL/SQL code (the
trigger) 1s executed when a particular database event 1s trapped Triggers can be of two
types, an SQL*Forms Runform trigger or a Database trigger The events on which Oracle
triggers action include msert, update and delete events for a single table There can be a
triggering event before and after each insert, update or delete statement For statements that
affect multiple rows, the trigger fires once for each row instead of before or after the
statement 1tself Triggers are mapped to specific keys on a keyboard For a mapping of
triggers for both the VT220 and 7901 keyboard emulations, see Exhibits 7-2 and 7-3

The actions are expressed as a PL/SQL block, which allows you to do just about
anything to the database that 1s appropriate for the event The programmer can access both
the old values and the new values for updates and call procedures and issue SQL statements
that cause other triggers to activate

With triggers, the database can perform many functions that previously would have
had to be coded into the application For example

1 Perform validations that cannot be enforced through field definitions
2 Populate screen fields with data

3 Check referential tegrity on database tables

4 Redefine key functions

5 Update audit trails

6 Control the logical flow of an application

The escape sequence for the trigger mappings are in the following files

/home/hio/cntrl/oraterm => 7901
/home/lno/cntrl/vt220 => vt220

An example of how to access these mappings from a shell script follows

TERM1 =/home/hio/cntrl/vt220
TERM2=vt220

runform30x -c $STERM1 $TERM2 SYSC1001 user/password

7-6 DRAFT

. .
g

Exhibit 7-2
KEY MAPPING VT220

Accept/Commuit PF4
Clear Block "B

Clear Field Fil

Clear Record "L

Copy Esc F17
Count Query Hits | F10
Delete Backwards | Backspace
Delete Character Remove
Delete Record "D
Display Error Esc PF3
Down Down
Enter Query PF2
Execute Query PF3

Exit F12

First Line Esc Esc Up
Help PF1
Insert Record "N
Insert/Replace "A

Last Line Esc Esc Down
Left Left

List of Values F6

Next Block F7

7-7

Next Field Tab
Previous Block F8
Previous Field EscTab
Print “P
Refresh Screen "R
Return Return
Right Right
Scroll Down Esc Down
Scroll Left Esc Left
Scroll Right Esc Right
Scroll Up Esc Up
Select Return
Show Keys F9

Up Up
Enter Field Help | F13
User Key 1 F14
User Key 2 F15
User Key 3 Fl16
User Key 4 F17
Report Print F18
User Key 6 F19
User Key 7 F20

DRAFT

Exhibit 7-3
KEY MAPPING 7901

Accept/Commit F4 Next Field Tab
Clear Block "B Previous Block F8
Clear Field F11 Previous Field EscTab
Clear Record "L Print P
Copy Esc F17 Refresh Screen "R
Count Query Hits | F10 Return Return
Delete Backwards | Backspace Right Right
Delete Character | Delete Scroll Down Esc Down
Delete Record "D Scroll Left Esc Left
Display Error Esc F3 Scroll Right Esc Right
Down Down Scroll Up Esc Up
Enter Query F2 Select Return
Execute Query F3 Show Keys F9

Exit F12 Up Up
First Line Esc Esc Up Enter Field Help F13
Help F1 User Key 1 F14
Insert Record "N User Key 2 F15
Insert/Replace "A User Key 3 F16
Last Line Esc Esc Down User Key 4 F17
Left Left Report Print F18

List of Values F6 User Key 6 F19
Next Block F7 User Key 7 F20

DRAFT

725 Trngger Names

Every trigger must have a name of a certain type In most cases, the type describes
the event that causes the trigger to fire (e g , ON-DELETE, KEY-NXTFLD, PRE-FORM)
If unsure of the type, use the list of values Notice that these pre-defined trigger types all
contain a hyphen (-), a character not normally allowed for naming SQL*Forms objects

A trigger can be owned by a field, block or form If the field and block 1dentifiers
are left blank, the trigger 1s owned by the form If only the field identifier 1s blank, the
trigger 18 set at the block level The ownership of trigger determines the scope in which 1t
operates

A name should be derived that 1s meaningful and representative of the action the
trigger will take Names should be chosen for their ease of memorization and usage The
name must begin with an alphabetic character and may be any combination of alphabetic and
numeric characters or the underscore The use of the underscore character is to be minimized
as much as possible and should only be considered when forming trigger names from more
than one word

The following conventions are to be used in CRHP Oracle trigger names

0 The name should wdentify the trigger

0 It should be descriptive and convey a clear meaning of the action the trigger
will take

0 It should be a short and concise as possible

0 It should be a maximum of 12 characters

o The use of underscore character 1s to be minimized as much as possible

7 2 6 Control Blocks

A control block 1s not associated with any table in the database Therefore, 1t
contains only non-base table fields Control blocks are used whenever the programmer wants
to display a group of information that does not come directly from the database Control
blocks are used to display information to operators such as the current date and time or
stattstical information They can also be used for menus, help screens, header information
and scratch areas The field on a control block can be populated by means of triggers,
default values and, if enterable, user input The HIO control block 1s 1n the library reference
form LBRF1001 frm

7-9 DRAFT

A Library Form (LBRF1001 INP) 1s a form where all the standard triggers and
procedures are located for reference or copying by the programmers Whenever a change
1n this standard 1s made 1n the library form, programmers only have to regenerate forms to
include the changes in the standard (if they are using reference not copy)

73 'C' Standards

This section defines the 'C' Language programming conventions used by the Cost
Recovery 1n Health Project (CRHP) software developers As stated mn the Introduction, use
of a common programming style facilitates software developers to move between systems and
modify code (written or enhanced), without having to become accustomed to a new
programming style

The following guidelines are to help the software developer produce "Quality”
software having

1 Correctness

When executed, the software should produce the correct results in all cases, with no
system-produced error messages

2 Readability
Another 'C' software developer should be able to understand what 1t does and how
it does it The original developer has the responsibility of making the software easy
for maintenance personnel to read and understand

3 Usabihty
The software developer must keep the user 1n mind when designing software Upon
completion, the software 1s to be turned over to the user The user may have limited
knowledge about what 1t does, but is expected to execute 1t and make use of its output

7 31 Use of Global Variables

Global variables are an effective means of transmitting information between different
functions or modules of a program without over-burdening the main function with many local
variables However, do not use global variables in place of good structured programming
practices

Global variables should always be given descriptive names There should never be
a global variable, for example, named "X"

7-10 DRAFT

gt

All global objects within a program must have unique names If a variable must be
global within one source module, but 1s not needed outside of that module, consider declaring
it static [n that way the name must not be unique since its existence 1s unknown outside of
the module (The disadvantage of declaring global variables static, 1s that they are
frequently invisible to debuggers)

7 3 2 Indentation

In general, each inner or separate block of code should be indented one full tab stop
or several spaces from the outer block, a kind of stair stepping structure

Split long lines 1f necessary at a logical place, and place the remainder indented by
several spaces (depending on the situation and personal preference) from the line above

733 GOTO Statement

Use of the goto statement 1s poor structured programming practice The goto
statement should only be used as an escape from a program unit when an unusual event, such
as a fatal error, has occurred, or possibly as an escape from an on-unit It 1s to be
mimimized at "all" cost

734 White Space

White space improves readability of the code and should be used liberally This
includes blank lines to separate logically-connected blocks of code as well as spaces within
lines In general, there should be a space between each operator on a line, and a space
separating arguments of a function Eliminate spaces where necessary to help set off portions
of an expression that are logically related

There should be no more than one statement per line of code However, two or more
statements can be combined on a single line if they are very short and intimately connected

7 3 5 Parentheses
Parenthesitize complex expressions wherever necessary to improve their readability,
even 1If parentheses are not strictly needed Redundant parentheses are perfectly acceptable

if they enhance the clarity of the expression Over-Parenthesitization rarely hurts an
expression and is often easier for readability

7-11 DRAFT

7 3 6 Comments

All C programs, functions and library routines should contain a header statement
providing a description at the source, a sample of how to evoke the program, as well as any
nput criteria or output generated The author of the source and any modifications should also

be identified Exhibit 7-4 1s an example

Exhibit 7-4
HEADER COMMENTS
/***\
* Description This 1s a sample program to demonstrate the use of header
documentation

* Sample Usage myprog < file_name >
* Input N/A
* Qutput myprog rpt
E3
* Date Programmer Rel # Description
B e e ——
* 11/01/93 ABC 10 Initial Coding
*20/08/94 XYZ 11 Enhance to write report in
* standard reporting directory

Throughout the code, comments should be provided to clarify and explain usual

assignments or complicated processing The comments need to be written at the time the
code 1s written and not delayed Purpose and understanding can be forgotten 1f the comments

are not written immediately

7 37 Make Files

It 1s strongly recommended that development teams build and use libraries Library
make files (mKk) contain Shell scripts which facilitates compilation of 'C' library routines
The number of make files and their contents will be left to the discretion of the Programming
Manager Currently, there are three make files, mo mk, exe mk, and frm mk Exhibit 7 6

shows make files and their relationship to shared object libraries

7-12

DRAFT

i

Information contained in each follows

hio mk
This make file creates the l1IbHIO so shared objects

exe mk
This make file creates the {*} exe executable

frm mk
This make file creates the IbFRM so shared objects

7 3 8 Header Files
Header files (h) contain common materials to be used in 'C' source language
programs The number of header files and their contents will be left to the discretion of the
Programming Manager However, 1t 1s strongly recommended that one, and only one header
tile containing external function declarations be created for each shared object (so) within
an application This header file would be a reference to 1dentify all library functions contained
within a shared object Currently, there are two header files, LBHD2001 h and
LBHD2002 h Exhibit 7 6 shows header files and their relationship to shared object libraries
Information contained 1n each follows
0 LBHD2001 h
Standard 'C" include files
Global type definitions
Call to LBHD2002 h
0 LBHD2002 h

Prototype definitions for functions encoded in shared object library

External function declarations

7-13 DRAFT

Exhibit 7-5
SHARED OBJECT LIBRARIES

Application
Library Mekefile Makefile
Header file
#nduce
Application Application
Source | Source
conpile
Chyect
v
Library Object Library Otyect Application Application
Obyect Object
link Ink
Shared Object
nn
fime
links
Executable h 4
Executable Bxecutable
7-14 DRAFT

N\

\¥4

p————

8 SECURITY

System data are vital to success but when damaged or 1n the wrong hands, they can
threaten success Oracle provides extensive security features in order to safeguard
information, both from unauthorized viewing and intentional or inadvertent damage These
features are in addition to security features provided by the UNIX operating system and the
security tables designed by the HIO

81 System Security

Definmition of Terms

0 UNIX LOGIN Is used at the beginning of each terminal session and
allows a user to identify himself to the system

0 USER A unique identifier that identifies the UNIX user and the
Oracle schema to which the user 1s connected

0 USER ID Identify the individual user signing onto an application

o PASSWORD Is the Oracle password which authenticates the

specified User ID The password is changeable
if requested by the user

0 ROLES A method by which users can be grouped together for
access and security reasons Authorization to use menu
items 1s granted to various privilege categories called
roles

0 GRANTS A grant 1s a method to allow users access to certain
tables Users may obtain up to four levels of grants
SELECT, INSERT, UPDATE and DELETE
82 UNIX Security
Check

A user will enter the name of the application (branch, clinic, etc) to which they
want to access

Note The UNIX password for each apphcation 1s the same as the applhcation

8-1 DRAFT

83

Response

a A successful match between the UNIX login and the application passes control
to the menu security

b An unsuccessful match returns to the UNIX login prompt

Menu Security

HIO CRHP Application security involves the concept of USERS, ROLES and MENU

OPTIONS Security tables have been established to support and drive the security system

8§31

Levels of security are established according to the following

USER
An authorized user of the HIO CRHP system

USER SECURITY BY ROLE
Identifies the security level for a given user’s role

MENU SECURITY
Identifies the menu options associated to a particular role The options that a role
does not have access to, 1s either dehighlighted or not displayed on the menu

Application Security for Main Module (Verification Check 1)

Check

a The Login USER ID matches the USER ID stored 1n the table

b The password matches the corresponding password stored in the table
Response
a A successful match of the USER IDs logs the user into the Main module and

gives them access to those menu options assigned to their role

b An unsuccessful match of USER IDs returns an error message denying user
access to the system

Global variables are assigned user name, role, and trigger security mask

8-2 DRAFT

8 32 Username Grants (Verification Check 2)

84

Check

If the ROLE to which the USERNAME belongs has been granted access to
a module, further access constraints may be placed on the USERNAME
through the use of GRANTS A USERNAME can be granted up to four level
of permissions SELECT, INSERT, UPDATE and DELETE

Response

a

If a USERNAME has not been GRANTED the appropriate permissions for a
particular function, the USERNAME 1s not allowed access to those tables or
VIews

The ROLE a user will play 1n a particular application will be defined 1n the
Requirements Definition Documents Some users may not exactly fit into a
role and therefore could have additional restrictions placed on them through
the use of GRANTS

Username and Password

Usernames and Passwords will not be hardcoded in any program

8-3 DRAFT

p=3

APPENDIX A

PROGRAMMER’S GUIDE TO THE PRECOMPILERS
PRO*C PRECOMPILER

Programmer’s Gude to the Precompilers
PRO*C Precompiler

1

Key concepts of Embedded SQL Programming

0

The term embedded SQL refers to SQL statements placed within an
application program The application program is called host program because
1t houses the SQL statements, and the language 1s called host language

Embedded SQL includes all the interactive SQL statements plus others that
allow the programmer to transfer data between ORACLE and a host program
There are two types of embedded SQL statements

Executable SQL Statements

Executable statements result 1n calls to the runtime library SQLLIB
They can be used to connect to ORACLE, to define, query and
manipulate ORACLE data They are also used to control access to
ORACLE data and to process transactions They are placed whenever
host-language executable statements can be placed

Declarative SQL Statements

Declarative statements do not result in calls to SQLLIB and do not
operate on ORACLE data They are used to declare ORACLE
objects, communications areas, and SQL variables They can be
placed wherever host-language declarations can be placed

SQL statements can be freely intermixed with host-language statements The
only requirement 1s that any SQL statement begins with EXEC SQL and ends
with the host-language SQL statement terminator

Most application programs are designed to process static SQL statements and
fixed transactions In this case the makeup of each SQL statement and
transaction 1s known before run time, 1 ¢ it 1s known which SQL commands
will be 1ssued, which database tables might be changed, which columns will
be updated and so on Dynamic SQL statements have introduced an advanced
programming technique that lets a program accept or build SQL statements at
run time and take explicit control over datatype conversion

The ORACLE precompilers treat a PL/SQL block like a single embedded
SQL statement Simply declare the variables to be shared with PL/SQL and
bracket the PL/SQL block with the keywords EXEC SQL EXECUTE and
END-EXEC

A-1 DRAFT

Host variables are the key to communication between ORACLE and the
program A host variable 1s a scalar or array variable declared in the host
language and shared with ORACLE, 1 e both the program and ORACLE can
reference its value The program uses input host variables to pass data to
ORACLE ORACLE uses output host variables to pass data and status
information to the program Host variables must be prefixed with a colon in
SQL statements to set them apart from ORACLE objects Any host variable
can be associated with an optional indicator variable An indicator variable
1s an integer variable that indicates the value or condition of its host variable

Use indicator variables to assign nulls to input host variables and to detect
nulls or truncated values 1n output host variables

ORACLE recognizes two kinds of datatypes internal and external Internal
datatypes specify how ORACLE stores data in database columns These data
are used to represent database pseudocolumns which return specific data
items, not actual columns 1n a table External datatypes specify how data are
stored n host variables ORACLE converts between these two data types
whether they are mput host variables or output host variables

ORACLE precompiler allows the programmer to define array host variables
called host arrays and operate with a single SQL statement Using the array
SELECT, FETCH, DELETE, INSERT and UPDATE statements, large
volumes of data can be queried and manipulated with ease

When an embedded SQL statement 1s executed, 1t either succeeds or fails, and
might result 1 an error warning ORACLE precompilers provide two error
handling mechanisms

SQL Commumication Area (SQLCA)

The SQLCA 1s a data structure copied or hardcoded to the host
program It defines program variables used by ORACLE to pass
runtime status information to the program

WHENEVER Statement
With the WHENEVER statement, the programmer can specify actions

to be taken automatically when ORACLE detects an error or warning
condition

A2 DRAFT

2

Meeting Program Requirements

o

The Declare Section
The programmer must declare all program variables to be used in SQL
statements 1n the Declare Section The declare section begin with

EXEC SQL BEGIN DECLARE SECTION,
and ends with
EXEC SQL END DECLARE SECTION,
Between these two statements only the following are allowed
host and indicator variable declarations
EXEC SQL INCLUDE statements
host-language comments

Multiple declare sections are allowed per precompiled unit The programmer
must define at least one Declare Section even if 1t holds no declarations

Usmg INCLUDE

INCLUDE statement allows the programmer copy files into the host program
1e similar to #include m C If no file extension 1s specified, the
precompiler assumes the default extension for source files Directory path
for INCLUDEGJ files can be set by specifying inline or on the command line

INCLUDE = path

There 1s no need to specify a directory path for standard files as SQLCA and
ORACA

ORACLE Datatypes

At precompile time, an external datatype is assigned to each host variable mn
the Declare Section At run time, the datatype code of every host variable
used 1n a SQL statement is passed to ORACLE ORACLE uses the codes to
convert between internal and external datatypes Before assigning a
SELECTed column value to an output host variable, ORACLE converts the
internal datatype of the source column to the datatype of the host variable
Conversions between internal and external datatypes follow the usual data
conversion rules

A3 DRAFT

Pomnter Variables

C, Pascal and PL/I support a special class of variables called pointers which
point to other host language variables Pointers can be defined as host
variables in the Declare Section If used as SQL statements, prefix pointers
with a colon () instead of the special character Except for string values, the
size of the referenced value is that of its declared base type = ORACLE

determines the size of string values at run time by calling a string-length
function

VARCHAR Variables

The programmer can use the VARCHAR pseudotype to declare
variable-length character strings 'When manipulating LONG or VARCHAR?2
column values, the programmer might find 1t more convenient to use
VARCHAR host variables instead of standard C character arrays
VARCHAR can be defined in Declare Section as an extended C type or
predeclared struct

EXEC SQL BEGIN DECLARE SECTION,
VARCHAR username[20],
EXEC SQL END DECLARE SECTION,

mnto the following struct with array and length members

struct {
unsigned short len,
unsigned char arr[20],

}

ORACLE puts the actual length of the character string 1n the length member
The programmer specifies the maximum length of a VARCHAR variable in
its declaration The length must lie 1n the range 1 65533 The length
member holds the current length of the value stored in the array member In
SQL statements, reference VARCHAR variables using the struct name
prefixed with a colon In C statements, reference VARCHAR variables using
the member names If the programmer SELECTs or FETCHes a null mto the
array member of a VARCHAR, ORACLE sets the length member to zero and
leaves the array member unchanged

Indicator Variables

Indicator variables are used to assign nulls to input host variables and detect
null or truncated values in output host variables To 1mprove readability,
precede any indicator variable with the optional keyword INDICATOR The
programmer must still prefix the indicator variable with a colon

host_variable INDICATOR indicator_vanable

A-4 DRAFT

An indicator variable must be explicitly declared in the Declare Section as a
2-byte integer, prefixed with a colon i SQL statements and appended to its
associated host variable in SQL statements and PL/SQL blocks An indicator
variable must not be used in the WHERE clause of a SQL statement, and not
prefixed with a colon 1n host language statements It must not be appended
to 1ts associated host variable 1n host language statements and must not be an
ORACLE reserved word

Handling Character Data
There are four types of character host variables

1 char <name> [n] character array

2 char * name character pointer

3 VARCHAR <name> [n] variable-length string
4 VARCHAR * <name> VARCHAR pointer

The MODE option, specified on the command line, determines how the Pro*C
precompiler treats data in character arrays and strings The MODE option
allows the program to use ANSI fixed-length strings or to maintain
compatibility with previous versions of ORACLE and Pro*C With respect
to character handling, MODE={ANSI14 | ANSI13} 1s equivalent to
MODE=0ORACLE The MODE option affects character data on input (from
host variables to ORACLE) and on output (from ORACLE to host variables)
But, 1t does not affect the way Pro*C handles VARCHAR host variables

On Input

For character arrays, on input, the MODE option determines
the format that a host variable character array must have When
MODE=0ORACLE, host variable character arrays must be
blank-padded but not null-terminated When MODE=ANSI, character
arrays must be null-terminated When MODE=0RACLE, trailing
blanks are stripped before the value 1is stored 1n the database = When
MODE=ANSI, mput data 1n a character array must be
null-terminated

For character pointers, the pomnter must address a null-
terminated buffer that 1s large enough to hold the imnput data The
program must allocate this buffer and store the data before executing
the put statement

A-5 DRAFT

For VARCHAR variables, when a VARCHAR variable 1s used
as an wnput host variable, the program place the desired string mn the
array member of the expanded VARCHAR declaration (< name > arr)
and sets the length member (<name> len) There 1s no need to
blank-pad the array Exactly <name> len characters are sent to
ORACLE, counting any blanks and nulls

For VARCHAR pointers, when a pomter to a VARCHAR 1s
used as an mput host variable, enough memory must be allocated for
the expanded VARCHAR declaration Then, the programmer must

place the desired string in the array member and set the length
member

On Output

For character arrays, on output, when MODE=0ORACLE, host
variable character arrays are blank-padded to the length of the array,
but they are never null-terminated When MODE=ANSI, character
arrays are blank-padded, then null- terminated

For character pointers, the MODE option does not affect the
way character data are output to the pointer host variable When the
programmer outputs data of a character pointer host variable, the
pointer must point to a buffer large enough to hold the output from the
table, plus one extra byte to hold a null terminator

For VARCHAR varwables, when a VARCHAR variable 1s used
as an output variable, the program interface sets the length member but
does not null-terminate the array member As with character arrays,
the program must null-terminate the array member of a VARCHAR
variable before passing it to a function such as printf() or strlen() An
advantage of VARCHAR variables over character arrays 1s that the
length of the value returned by ORACLE 1s available With character
arrays, there might be a need to strip the trailing blanks to get the
actual length of the character string

For VARCHAR pointers, when a pointer 15 used to a
VARCHAR as an output hot variable, the program 1nterface
determines the variable’s maximum length by checking the length
member (< name >->len) The program must set this member before
every fetch The fetch then sets the length member to the actual
number of characters returned

A-6 DRAFT

&

Data Equivalencing

Datatype equivalencing allows the programmer to control the way ORACLE
interprets input data and the way ORACLE formats output data On a
variable-by-variable basis, the programmer can equivalence supported C
datatypes to ORACLE external datatypes The programmer can also
equivalence user-defined datatypes to Oracle external datatypes By default
the Pro*C precompiler assigns a specific external datatype to every host
variable

Host Datatype External Datatype
char, char[n], char* VARCHAR2
char, char[n], char* CHAR
nt, mt* INTEGER
short, short* INTEGER
long, long* INTEGER
float, float* FLOAT
double, double* FLOAT
VARCHAR(n] VARCHAR

With the VAR statement, the programmer can override the default
assignments by equivalencing host variables to ORACLE internal datatypes in
the Declare Section with the following syntax

EXEC SQL VAR host_variable IS type name [{length)],
where

host_variable 1s an input or output host variable declared earlier in the

Declare Section

type_name 1s the name of a valid external datatype

length 1s an integer literal specifying a valid length 1n bytes
User-defined datatypes can also be equivalenced to ORACLE external
datatypes Furst, define a new datatype structured like the external datatype

Then, equivalence the new datatype to the external datatype in the Declare
Section using the TYPE statement

A-7 DRAFT

EXEC SQL TYPE user_type IS type_name [(length)]
[REFERENCE]

where REFERENCE 1s used to declare a user-defined type to be a pointer
explicitly or implicitly

Embedded PL/SQL

Inside a PL/SQL block, host variables are treated as global to the entire block
and can be used anywhere a PL/SQL variable 1s allowed Host variables in
PL/SQL block must be prefixed by a colon When entering a PL/SQL block,
ORACLE automatically checks the length fields of VARCHAR host variables
So, the programmer must set the length fields before the block 1s entered
For input host variables, set the length to the actual length of the value stored
n t he array For output host variables, set the length to the maximum length
all owed by the VARCHAR In a PL/SQL block, the programmer can not
refer to an indicator variable by itself, 1t must be appended to 1ts associated
host variable When entering a block, if an indicator variable has a value of
-1, PL/SQL automatically assigns a null to the host variable = When exiting
the block, 1f a host variable 1s null, P L/SQL automatically assigns a value of
-1 to the indicator variable

Connecting to ORACLE
The Pro*C program must log on to ORACLE before querying or manipulating
data To log on, use the CONNECT statement

EXEC SQL CONNECT username IDENTIFIED BY
password,

where username and password are char or VARCHAR host variables
Alternatively, the programmer can use the statement

EXEC SQL CONNECT usr_pwd,

where the host variable usr pwd contains the username and password
separated by a slash (/) The CONNECT statement must be the first SQL
statement executed by the program The programmer can automatically log
on to ORACLE with the username

OPSs$username
where username 1s the current operating system user or task name and

OPS$username 1s a valid ORACLE username Simply pass to the Pro*C
precompiler a slash character

A-8 DRAFT

3

EXEC SQL BEGIN DECLARE SECTION,

char oracle_id = '/,
EXEC SQL END DECLARE SECTION,

EXEC SQL CONNECT oracle id,

Handhing Runtime Errors

0

Key Components of Error Reporting

Every executable SQL statement returns a status code 1n the SQLCA variable
sglcode, which can be checked implicitly with WHENEVER SQLERROR or
explicitly with C code

Warning flags are returned 1n the SQLCA variables sqlwarn[0] through
sqlwarn[7] which the programmer can check with WHENEVER
SQLWARNING or with the C code These warning flags are useful
for detecting runtime conditions not considered errors by ORACLE

The number of rows processed by the most recently executed SQL
statement 1s returned 1n the SQLCA variable sqlerrd[2] For repeated
FETCHes on an OPEN cursor, sqlerrd[2] keeps a running total of the
number of rows fetched

Before executing a SQL statement, ORACLE must parse 1t, that 1s
examine 1t to make sure it follows syntax rules and refers to valid
database objects If ORACLE finds an error, an offset 1s stored in the
SQLCA variable sqlerrd[4], which can be checked explicitly The
offset specifies the character position 1n the SQL statement at which
the parse error begins If the SQL statement does not cause a parse
error, ORACLE sets sglerrd[4] to zero ORACLE sets sqlerrd[4] also
to zero 1f a parse error begins at the first character So, check
sqlerrd[4] only if sqglcode 1s negative which means that an error has
occurred

The error code and message for ORACLE errors are available in the
SQLCA variable sqglerrm sql errmc At most the first 70 characters of
text are stored For messages longer than 70 characters, the
programmer must call the sqlglm() function

sqlglm (message buffer, &buffer size, message length),

A-9 DRAFT

where

- message_buffer 1s the text buffer in which the programmers
want ORACLE to store the error message ORACLE
blank-pads to the end of this buffer

- buffer_size 1s an integer variable that specifies the maximum
size of the buffer in bytes

- message_length 1s an integer variable in which ORACLE stores
the actual length of the error message Sqlgim function 1s
usually called only when a SQL error has occurred If the
programmer calls when sqlcode 15 zero, the result 1s the
message text assoctated with a prior SQL statement

Usmg SQLCA
The SQLCA 1s a record-like data structure Its fields contain error, warning

and status information updated by ORACLE whenever a SQL statement 1s
executed

A-10 DRAFT

Variables m SQLCA

char squlcaid[8],

Character string "SQLCA"

long sqlabc,

Length of SQLCA data
structure in bytes

long sqlcode,

ORACLE error message
code

struct squlerrm

Subrecord for storing error
message

unsigned short sqlerrml,

Length of error message

char sqlerrmc[70],

Text of error message

char sqlerrp[8],

Reserved for future use

long sqlerrd[6],

Array of six integer status
code

sqlerrd{0] Reserved for future use
sqlerrd[1] Reserved for future use
sqlerrd[2] Number of rows processed
sqlerrd[3] Reserved for future use
sqlerrd[4] Parse error offset
sqlerrd[5] Reserved for future use
char sglwarn[§], Array of eight warning flags
sqlwarn[0] Another warning flag set
sqlwarn[1] Character string truncated
sqlwarn[2] No longer in use
sqlwarn[3] SELECT list not equal to
INTO list
sqlwarn[4] DELETE or UPDATE
without WHERE clause
sqlwarn[5] Reserved for future use
sqlwarn[6] No longer 1n use
sqlwarn[7] No longer in use
char sqltext[8], Reserved for future use
A-11 DRAFT

By defining the symbol SQLCA_INT, the programmer can imtialize the
SQLCA variables However, i1f the SQLCA 1s declared as an auto variable,
1t might be 1mpossible to define SQLCA_INT because some operating systems
and C compilers do not allow mitializing auto variables in this way

Using WHENEVER

By default, precompiled programs ignore ORACLE error and warning
conditions and continue processing if possible To do automatic condition
checking and error handling, the programmer needs the WHENEVER
statement With the WHENEVER statement the programmer can specify
actions to be taken when ORACLE detects an error, warning condition or "not
found" condition These actions include continuing with the next statement,
calling a function, exiting a loop, branching to a labeled statement or

stopping
EXEC SQL WHENEVER <condition> <action>,

where
<conditton> can be SQLWARNING, SQLERROR, NOT FOUND

<action> can be CONTINUE, DO function_call() | break, goto
statement_label and STOP

When using WHENEVER DO statement, the usual rules for entering and
exiting a function apply However, passing parameters to the function 1s not
allowed Furthermore, the function can not return a value The programmer
can use the DO break action to exit a loop prematurely or to keep execution
from falling through to the next case in a switch statement Because
WHENEVER 1s a declarative statement, 1ts scope is positional not logical
It tests all executable SQL statements that follow it in the source file, not in
the flow of program logic Code the WHENEVER statement before the first
executable SQL statement 1s tested A WHENEVER statement stays in effect
until superseded by another WHENEVER statement checking for the same
condition Also, make sure that all SQL statements governed by a
WHENEVER goto statement can branch to goto label 1 e goto label 1s
visible to all functions

Using ORACA

The SQLCA handles standard SQL communications The ORACA 1s a
similar data structure copied or hardcoded into the program to handle
ORACLE-specific communications When the programmer needs more
runtime information then the SQLCA provides, use the ORACA The
ORACA allows the programmer monitor the Pro*C program’s use of
ORACLE resources such as the SQL statement executor and cursor cache, and
area of memory reserved for cursor management

A-12 DRAFT

char oracaid[8],

Character string "ORACA"

long oracabc,

Length of ORACA data
structure in bytes

long oracchf,

Cursor cache consistency
flag

long orabdgf,

Master debug flag

long orahchf,

Heap consistency flag

long orastxtf,

Save_SQL-statement flag

struct orastxt

Subrecord for storing SQL
stat

unsigned short orastxtl,

Length of current SQL
statement

char orastxtc[70],

Text of current SQL
statement

struct orasnfm

Subrecord for storing file
name

unsigned short orasfnml,

Length of filename

char orasfnmc[70],

Name of file containing
current SQL statement

long oraslnr,

Line 1n file at or near
current SQL statement

long orahoc,

Highest
MAXOPENCURSORS
requested

long oramoc,

Maximum open cursors
required

long oracoc,

Current number of cursors
used

long oranor,

Number of cursor cache
reassignments

long oranpr,

Number of SQL statement
parses

long oranex,

Number of SQL statement
executions

DRAFT

To declare the ORACA, hardcode or copy 1t into the program with the
INCLUDE statement

EXEC SQL INCLUDE oraca,

To enable the ORACA, the programmer must also set the ORACA
precompiler option to YES on the command line

ORACA=YES

or inline with
EXEC ORACLE OPTION (ORACA =YES),

Then, appropriate runtime options must be chosen by setting flags n the
ORACA Enabling the ORACA 1s optional because 1t adds to runtime
overhead The default setting is ORACA=NO

4 Using Host Arrays

The ORACLE Precompiler allows the use of host arrays in data manipulation

statements

The programmer can use host arrays as input variables in the INSERT,

UPDATE and DELETE statements, and as output variables in the INTO clause of SELECT
and FETCH statements The programmer can not declare host arrays of pointers

(o)

Selecting mto Arrays

The programmer can use host arrays as output variables 1 the SELECT
statements If the programmer knows the maximum number of rows the
SELECT will return, simply dimension the host arrays with that number of
elements If more than the number of elements where selected, 1t just
retrieves the first <n> elements and ORACLE issues an error message The
programmer must either dimension a larger array or declare a cursor for use
with the FETCH statement 1n order to fetch in batches The cumulative
number of rows returned can be found in the second element of sqlerrd in
SQLCA

Using host arrays 1n the WHERE clause of a SELECT 1s not allowed except
in a subquery Also, the programmer can not mix simple host variables with
host arrays in the INTO clause of a SELECT or FETCH statements If any
of the host variables 1s an array, all must be arrays

Inserting with Arrays

The programmer can use host arrays as input variables in an INSERT
statement Make sure the program populates the arrays with data before
executing the INSERT statement If some elements in the arrays are
irrelevant, the programmer can use the FOR clause to control the number of
rows inserted The cumulative number of rows inserted can be found in
sqlerrd[2]

A-14 DRAFT

oo
k=4

=S

The programmer can not use an array of pointers in the VALUES clause of
an INSERT statement Maixing simple host variables with host arrays in the
VALUES clause of an INSERT statement 1s not allowed

Updating with Arrays

The programmer can use host arrays as input variables mm an UPDATE
statement The cumulative number of rows 1nserted can be found in sqlerrd[2]
The number does not include rows processed by an update cascade If some
elements 1n the arrays are wrrelevant, the programmer can use the FOR clause
to control the number of rows inserted Mixing simple host variables with
host arrays 1n the SET or WHERE clause of an UPDATE statement 1s not
allowed Furthermore, if the programmer uses a host array in the SET
clause, the programmer must use one in the WHERE clause However, their
dimensions and datatypes need not match The programmer can not use host
arrays with the CURRENT OF clause in an UPDATE statement

Deleting with Arrays

The programmer can use host arrays as input variables in a DELETE
statement It 1s like executing the DELETE statement repeatedly using
successive elements of the host array in the WHERE clause Each execution
might delete zero, one, more rows from the table The cumulative number
of rows deleted can be found in sqlerrd[2] The number does not mclude
rows processed by a delete cascade Mixing simple host variables with host
arrays 1n the WHERE clause of a DELETE statement is not allowed The
programmer can not use host arrays with the CURRENT OF clause mn a
DELETE statement

Usmg Indicator Arrays
The programmer uses indicator arrays to assign nulls to mput host arrays and
to detect null or truncated values 1n output host arrays

Usimg FOR Clause

The programmer can use the optional FOR clause to set the number of array
elements processed by any of the following SQL statements DELETE,
EXECUTE, FETCH, INSERT, OPEN and UPDATE The FOR clause
allows the programmer limit the elements used to just the number that 1s
needed

EXEC SQL FOR <integer_host_vanable> INSERT
where teger_host_variable 1s to count array elements The programmer can

not use the FOR clause 1n a SELECT statement or with CURRENT OF
clause

A-15 DRAFT

AD

o Using WHERE Clause
ORACLE treats a SQL statement containing host arrays of dimension n like
the same SQL statement executed n times with n different scalar variables

5 Dynamic SQL

Most database applications do a specific job of knowing which tables might change,
the constraints defined for each table and column, which columns might be update and the
datatype of each column However, some applications must accept and process a variety
of SQL statements at run time The statement’s makeup 1s unknown until run time Such
statements can and will change from execution to execution This 1s called Dynamic SQL
statements Unlike static SQL statements, dynamic SQL statements are not embedded in the
source program Instead, they are stored 1n character strings mput to or built by the program
at run time They can be entered interactively or read from a file

To represent a dynamic SQL statement, a character string must contain the text of a
valid SQL statement but not EXEC SQL clause, host-language delimiters, statement
terminator or any of the following embedded SQL commands CLOSE, DECLARE,
DESCRIBE, EXECUTE, FETCH, INCLUDE, OPEN, PREPARE and WHENEVER In
most cases, the character string can contain dummy host variables They hold places in the
SQL statement for actual host variables Because dummy host variables are just
placeholders, the programmer does not declare them and can name them anything

Typically, an application program prompts the user for the text of a SQL statement
and the values of host variables used in the statement ORACLE then parses the SQL
statement That 15 ORACLE examines the SQL statement to make sure 1t follows syntax
rules and refers to valid objects = Next ORACLE binds the host variables to the SQL
statement That 1s ORACLE gets the addresses of the host variables so that 1t can read or
write their values ORACLE then executes the SQL statement

There are tour methods for defining dynamic SQL statements

1 Nonquery without input host variables

2 Nonquery with known number of input host variables

3 Query with known number of select-list items and 1nput host variables
4 Query with unknown number of select-list items or input host variables

Method One allows the program to accept or build a dynamic SQL statement, then
immediately execute 1t using the EXECUTE IMMEDIATE command The SQL statement
must not be a query (SELECT statement) and must not contain any placeholders from input
host variables The SQL statement 1s parsed every time it 1s executed

A-16 DRAFT

For example

‘DELETE FROM EMP WHERE DEPTNO = 20°
‘GRANT SELECT ON EMP TO scott’

Method Two allows the program to accept or build a dynamic SQL statement, then
process 1t using the PREPARE and EXECUTE commands The SQL statement must not be
a query The number of placeholders for mnput host variables and the datatypes of the input
host variables must be known at precompile time The SQL statement 1s parsed just once
but can be executed many times with different values for the host variables SQL data
definition statements such as CREATE and GRANT are executed when they are PREPAREd

For example

‘INSERT INTO EMP (ENAME, JOB) VALUES (emp_name, job_title)’
"DELETE FROM EMP WHERE EMPNO = emp number’

Method Three allows the program to accept or build a dynamic query then process
it using the PREPARE command with the DECLARE, OPEN, FETCH and CLOSE cursor
commands The number of select-list items, the number of placeholders for input host
variables and the datatypes of the input host variables must be known at precompile time

For example

‘SELECT DEPTNO MIN(SAL}, MAX(SAL) FROM EMP GROUP BY DEPTNO’
‘SELECT ENAME, EMPNO FROM EMP WHERE DEPTNO = dept_number’

Method 4 allows the program to accept or build a dynamic SQL statement, then
process 1t using descriptors The number of select-list items, the number of placeholders for
input host variables and the datatypes of the input host variables can be unknown until run
time

For example

‘INSERT INTO EVMP (<unknown>) VALUES (<unknown>})’
"'SELECT <unknown> FROM EMP WHERE DEPTNO = 20’

A-17 DRAFT

APPENDIX B
USER EXITS

User Exats

The following 1s a step by step outline of how to manage user exits as shared
objects within ORACLE RDBMS

Step 1
If an Oracle user has never created a user exit linked to a form, the first step 1s the

creation of an Oracle program (genxtb) which 18 used n all future user exit
processing To create this program enter the following command

generate30 -to genxtb user/passwd

Step 2
Once the driving program has been created, an Oracle table (IAPXTB) needs to be
created for the Oracle user which identifies all of the user exits known to this user

To create this table enter the following command

genxtb user/passwd

Step 3
At this point of the process, the user exit itself should be created as an object and
placed 1n the user exit library object The standard makefile for shared library
objects should be used to accomplish this The command for this 1s as follows

make -f frm mk

Step 4

Once the user exit has been created and placed nto the shared library object, 1t needs
to be 1dentified in the IAPXTB table To accomplish this, enter the following

runform30 genxtb user/passwd

Step 5

This step will create a file (zapxth ¢) which contains external declarations of all the
user exits that are identified in the IAPXTB table To create this file enter

genxtb user/passwd i1apxtb ¢

B-1 DRAFT

Step 6

Step 7

Since the runform30 command and the sqlform30 command are used to access forms
subsequently, user exits are 'C’ programs A variation of these commands
(runform30x and sqlform30x) need to be created 1n order to access any new user
exits that may be defined This step of the process needs to be done only one time
Because shared library objects are being used, the user exit itself can be changed and
recreated as many times as 1s necessary without having to do this step The function
of this step merely links the external declarations derived i Step 5 to the
runform30x and sqlform30x programs

The command for this step uses a modified version of the forms makefile provided
by Oracle The modification simply references the directory as well as the shared
library object that contains the user exit The following should be entered to do this

make -f sqliforms30 mk sqlform30x

The last step of the process 1s to generate the form which accesses the user exit using
the new runform30 (runform30x) command and the new sqlform30 (sglform30x)
command As with the runform30 and the sqlform30 commands, the form which
accesses the user exit needs to be created only one time The user exit itself can be
created as many times as necessary without having to do this step The command for
this step 18

sqlforms30x user/passwd = =====> Load file Option
======> Generate file Option

B-2 DRAFT

N
-

