
I
I
I
I
I
I
I
1
I
I
I
I
I
I
I
I
I
I
I

MAXIMUS [f]
CHEMONICS·ARABSOFT

.: : := r:-:-. .. _-- -

Prepared for:
U S Agency for InternatIOnal Development

Health Insurance OrgamzatIOn, Egypt

Contract Number:
263-0 170-C-00-3042-00

PROGRAMMING STANDARDS
(REVISED)

USAID PrOject Number. 263-0170

.(7)N Act> ?>'11

qpt o~ (,

[Develop a DetaIled and Updated Management InformatIon System for the
EgyptIan Health Insurance OrgaruzatIon, Cost Recovery Program]

Prepared by:
The MAXIMUS, Chemomcs, Arabsoft Project Team

Draft Date:
December 8, 1994

For ReVIew and DIscussIOn Only

20 AI Ahram Street Hehopohs, Cairo Egypt - POBox 1051 Hehopohs Bahary - Tel 258 8521 I 258 7446 - Fax 258 9337

I ~ oA~""V ..,s1J - ~oAV' t"\ / ~oAAoy\ <.Jyo-L- <.Sr ..,....ly.,..u. \ 0 \ '-' v" - t r c. - o.r"L.JI - o..u..IJ.I ~ - rl.r"':I1 t)L. ~

I'

:810 [D~ ______ C_R_H __ P
MAXI MUS.CHEMONICSoARABSOFT ~U-aJI 1.ii; :::.1:::. 1 ss

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Mr Carl Abdou Rahmaan
Actmg Project OffIcer
USAID/Egypt
106 Kasr El AmI Street, 7th Floor
CaIro Center BUIldmg
CaIro, Egypt

Ref Project Number 263-0170

Dear Mr Abdou Rahmaan

December 8, 1994

MAXIMUS IS pleased to submIt thIS draft document for the Programmmg Standards
ThIS documents presents Oracle Programmmg conventIOns and nammg gUIdelmes that are to
be followed by developers and programmers These conventions should be mamtamed 10 all
HIO MIS software programs that are developed or enhanced

The purpose of these gUIdelmes IS to suggest conventIons to help maxImIze the
prodUCtiVIty of the software developers These gUIdelmes will help ensure that 1) all software
produced has a common "look and feel", that conSIstency IS mamtamed, and that "user
fnendly" software IS developed, 2) programmers WIll be able to mamtam, and enhance
programs wntten by others WIthout havmg to become accustomed to a dIfferent programmmg
style, dIfferent variable nammg scheme, and so forth, and 3) the purpose, usage and lOgIC of
source modules can eaSIly be determmed

ThIS document represents the second submIssIon of the Programmmg Standards
(Dehverable 18, Program Documentation) Actual programmmg and mstallatIOn present new
challenges, and new conventions are generated as development contmues ThIS document
greatly expands upon the conventlOns mcluded 10 ItS preVIOUS verSlOn It IS expected that thIS
document WIll contmue to be updated as development bnngs new areas to the forefront

We welcome your reVIew and comments of thIS document We would apprecIate all
comments wlthm four weeks of submIssIon If there are none, we shall consIder thIS
document acceptable as the fmal submISSIon If you have any questIons, please do not
heSItate to contact me

Smcerely,

k~
ChIef of Party

53 Berout Street (Apt 401). HeiIopoiIs Calf 0 Egypt • POBox 1051 HeiIopohs Bahary. Tel 678552 14183970 • Fax (202) 4183909

I RIO LfJ CRHP
I MAXlMUS.CHEMONICS.AR::::::~=-BS-O-F-T---------~-.U-e-I-I-l.J-,-,-;-; ~-I-~-........ -I-c-9-'-';'-.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Dr Mohamed Arafa
ChaIrman
Health Insurance Orgaruzatlon
HelIOpolIs
CaIro, Egypt

Dear Dr Arafa

December 8, 1994

MAXIMUS IS pleased to submIt thIS draft document for the ProgrammIng Standards
ThIS documents presents Oracle ProgrammIng conventIons and namIng gUIdelInes that are to
be followed by developers and programmers These conventIons should be maIntaIned In all
HIO MIS software programs that are developed or enhanced

The purpose of these gUIdelInes IS to suggest conventIOns to help maxnnIze the
productIVIty of the software developers These gUIdelInes will help ensure that 1) all software
produced has a common "look and feel'~ that conSIstency IS maIntaIned, and that "user
fnendly" software IS developed, 2) programmers will be able to maIntaIn, and enhance
programs wntten by others WIthout haVIng to become accustomed to a dIfferent programmIng
style, dIfferent variable namIng scheme, and so forth, and 3) the purpose, usage and lOgIC of
source modules can eaSIly be determIned

Actual programmIng and InstallatIOn present new challenges, and new conventIons are
generated as development contInues ThIS document greatly expands upon the conventions
Included In Its prevIOUS verSIon It IS expected that thIS document WIll contInue to be updated
as development bnngs new areas to the forefront

We are lookIng forward for your comments and reVIew of thIS document We would
appreCIate all comments WIthIn four weeks of submISSIon If there are none, we shall
conSIder thIS document acceptable as the fInal submISSIon If you have any questions, please
do not heSItate to contact me

cc General Falsal Tale, HIO
Mr Carl Abdou Rahmaan

SIncerely,

LeslIe Graham
ChIef of Party

53 Berout Street (Apt 401). Hehopohs Cairo Egypt • POBox 1051 Hehopohs Bahary. Tel 678 552 I 418 3970 • Fax (202) 418 3909

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

RevIsed ProgrammIng Standards

VerSIOn Date

1 Draft December 8, 1994 ThIS verSiOn wholly replaces DetaIled
Programmmg Standards, dated
October 14, 1993

I
I TABLE OF CONTENTS

I Section Page

1 INTRODUCTION 1-1

I 2 NORMALIZATION 2-1
2 1 FIrst Normal Form 2-1

I 22 Second Normal Form 2-2
23 ThIrd Normal Form 2-3

I 3 SYSTEM DIRECTORY STRUCTURE 3-1
3 1 EasyCase DIrectory Structure 3-1

I
32 UNIX DIrectory Structure 3-2

4 DATABASE OBJECT NAMES 4-1

I
4 1 Level-Name IntegrIty 4-1
42 Object Name Thesaurus 4-1
43 Rules and ConventIons 4-2

I
44 Users 4-3
45 Database Names 4-4
46 Tablespace Names 4-6

I 47 Table Names 4-7
48 Column Names 4-8
49 Index Names 4-10

I 410 Table Constramts 4-11
4 10 1 PrImary Key Constramts 4-11
4102 ForeIgn Key Constramts 4-12

I 4103 Check CondItions 4-13
4 104 Not NULL Constramts 4-13
4105 U ruque Constramts 4-14

I 411 VIew Names 4-15
4 12 Synonyms 4-16
4 13 Cluster Names 4-17

I 4 14 Sequence Names 4-18
4 15 Database Lmk Names 4-19
4 16 Faclhty Names 4-20

I 5 DATA ELEMENT DICTIONARY 5-1

I
5 1 Data DlctlOnary 5-1
52 Data Type Standard 5-2

I
6 PROGRAM/FILE NAMES 6-1

6 1 FIle Name 6-1
62 General Exceptions 6-2

I
63 Flle ExtenslOn 6-4

I
DRAFT

I

I
TABLE OF CONTENTS I (Contmued)

SectIOn Page I
7 PROGRAMMING STANDARDS 7-1 I 7 1 SQL*Menus 7-1

7 1 1 Nammg ConventIon 7-2
712 Screen Layouts 7-3 I 72 SQL*Forms 7-4
721 Message FIle 7-4
722 AutoHelp FIle 7-4 I 723 Screen Vanables 7-5
724 Tnggers 7-6

I 725 Tngger Names 7-9
726 Control Blocks 7-9

73 'C' Standards 7-10

I 73 1 Use of Global VarIable 7-10
732 IndentatIon 7-11
733 GOTO Statement 7-11

I 734 WhIte Space 7-11
735 Parentheses 7-11
736 Comments 7-12 I 737 Make FIles 7-12
738 Header FIles 7-13

8 SECURITY 8-1 I
8 1 System Secunty 8-1
82 UNIX Secunty 8-1 I 8 3 Menu Secunty 8-2

8 3 1 ApphcatIOn Secunty for Mam Module 8-2
832 U sername Grants 8-3 I 84 Username and Password 8-3

I
APPENDIX A PROGRAMMERS GUIDE TO THE PRECOMPILES I PRO*C PRECOMPILER A-I
APPENDIX B USER EXITS B-1

I
I
I

11 DRAFT

I
I

I
I LIST OF EXHIBITS

I ExhIbIt TItle Page

2-1 Unnormahzed Table 2-1

I 2-2 FIrst Normal Form 2-2
2-3 Second Normal Form 2-2
2-4 ThIrd Normal Form 2-3

I 3-1 EasyCase DIrectory 3-2
3-2 Storage/Stagmg DIrectory - Low Level System Testmg 3-3
3-3 Storage/Stagmg DIrectory - System WIde Testmg 3-4

I 4-1 Database HIerarchy 4-1
4-2 U mx/Oracle EnvIronment 4-4

I
4-3 Database Names 4-5
4-4 Tablespace Names 4-7
4-5 Table Names 4-8

I
4-6 Table Comment 4-8
4-7 Column Names 4-9
4-8 Column Comment 4-10

I
4-9 Index Names 4-11
4-10 Pnmary Key Constramt 4-12
4-11 ForeIgn Key Constramt 4-13

I 4-12 Check Constramt 4-13
4-13 Not Null Constramt 4-14
4-14 U mque Constramt 4-15

I 4-15 VIew Names 4-16
4-16 Synonym Names 4-17
4-17 Cluster Names 4-18

I 4-18 Sequence Names 4-18
4-19 Database Lmks 4-19
5-1 Data Element Report 5-1

I 5-2 HIO Oracle Data Type Standard 5-2
5-3 SQL Data Types to be Converted to HIO Oracle Data Type Standard 5-3
6-1 Program/FIle Names 6-6

I 7-1 The Standard for Development of SQL * Forms 7-3
7-2 Key Mappmg VT 220 7-7
7-3 Key Mappmg 7901 7-8

I 7-4 Header Comments 7-12
7-5 Shared Object LIbrarIes 7-14

I
I
I
I 111 DRAFT

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1 INTRODUCTION

ThIS document presents Oracle programmmg conventIons and nammg gUIdelInes that
are to be followed by developers and programmers workmg on the Cost Recovery In Health
Project, Health Insurance OrgamzatIon Management Information System (HIO MIS) These
conventIOns should be mamtamed m all HIO MIS software programs that are developed or
enhanced

GUIdelmes are presented In

a) normalIzatIOn,

b) system names,

c) database object names,

d) data types,

e) program/fIle names, and

t) programmIng standards

The purpose of these gUIdelInes IS to establIsh conventIOns and rules that should be
followed under a gIven CIrcumstance or condItIOn The suggested pnncipies are to help
maxImIze the produCtiVIty and efforts of all software developers These gUIdelmes wIll help
ensure that

1 All software produced has a common "look and feel," that consIstency IS
mamtamed, and that "user fnendly" software IS developed

2

3

Programmers WIll be able to maIntaIn, debug, and enhance programs wntten
by others wIthout havmg to become accustomed to a d1fferent programmIng
style, dIfferent variable namIng scheme, and so forth

The purpose, usage and lOgIC of source modules can eaSIly be determIned

The overndmg mtent IS to create a framework that WIll encourage IndIVIdual creat1vIty
and mltlative It IS hoped these gUIdelmes WIll channel creat1v1ty m such a way that the
project and everyone assocIated wIth 1t benefIts

Actual programmmg and mstallatIOn Will present new challenges, and new
conventIons WIll be generated as development contmues ThIS document WIll contmue to be
revIsed and expanded as needed

1-1 DRAFT

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2 NORMALIZATION

In a relatIOnal database the term "normalIzatIOn" has specIfIc mathematlCal meanmg
havmg to do WIth separatmg elements of data (such as names, addresses, or specialties) mto
affimty groups, and defmmg the normal, or "nght", relatIOnshIps between them
NormalIzauon IS dIscussed m the term of forms FIrst, Second, and ThIrd Normal Form are
the most common, WIth the ThIrd Form representmg the most normalIzed state HIO MIS
software developers are to try to obtam the ThIrd normal form ExhIbIt 2-1 IS an example
of an unnormalIzed table that IS to be normalIzed m the followmg sectIons

2 1 First Normal Form

Exhibit 2-1
UN NORMALIZED TABLE

PHYSICIAN

Name
Age
Address
Telephone
SpeCialty
DescnptIOn
HOSPItal 1
HOSpItal1 Address
HOSpItal2
HOSPItal2 Address
HOSPItal3

The FIrst Normal Form IS produced by movmg data mto separate tables where the
data m each table IS of SImIlar type, and gIvmg each table a pnmary key - a umque label
or Idenufier ThIS elImmates repeatmg groups Next, define the pnmary key to each table
What WIll umquely IdentIfy and allow extractIOn of one row of mformation For sImplIcIty,
assume the phYSICIans' names are umque, so "name" IS the pnmary key to the PhYSICIan
Table Smce each phYSICIan may have several rows m the ASSIgnment Table, "name" plus
"hospItal" IS the whole pnmary key to the ASSIgnment table (two parts are combmed to make
a whole) ExhIbIt 2-2 shows tables m FIrst Normal Form

2-1 DRAFT

Exhibit 2-2
FIRST NORMAL FORM

PHYSICIAN

Name
Age
Address
Telephone
SpeCIalty
DescnptIOn

22 Second Normal Form

ASSIGNMENT

Name
HOSPItal
HOSpItal Address

Second Normal Form entaIls removmg data that IS dependent only on part of the key
To put thmgs m Second Normal Form, take HOSpItal and Address off to a thIrd table The
pnmary key to the thIrd table IS HOSPItal, and ItS address appears only once If left m the
FIrst Normal Form aSSIgnment table, the address would be repeated for every phYSICIan that
was assIgned to that hOSPItal Furthermore, If a phYSICIan assIgned to a certam hospItal left
for a POSItIon elsewhere, when ehmmatmg hIm from the database, the hOSPItal along WIth
ItS address would val11sh also WIth Second Normal Form, the hOSPItal and ItS address can
remam m the database even though no phYSICian IS currently assIgned HOSpItalS can even
be added before locatmg a phYSICIan for aSSIgnment there ExhIbIt 2-3 Illustrates tables m
Second Normal Form

Exhibit 2-3
SECOND NORMAL FORM

PHYSICIAN ASSIGNMENT

Name
Age
Address
Telephone
SpeCIalty
Descnption

Name
HOSPItal

2-2

HOSPITAL

HOSPItal
Address

DRAFT

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

23 ThIrd Normal Form

ThIrd Normal Form entaIls removIng anythIng In the table that does not depend solely
on the pnmary key The specialty InfOrmatIon for a physIcIan IS dependent on a special SkIll
(If he changes specialty, update hIS row WIth the name of the new specIalty), but a physIcIan
speCialty and ItS descnptlon are Independent of whether or not the specialty actually belongs
to the physICian Specialty Information IS therefore moved out to a separate table The
pnmary key to the fourth table IS SpecIalty, and ItS long descnption appears only once

Anytime the data IS In ThIrd Normal Form, It IS automatIcally In Second and FIrst
Normal Form The whole process can therefore be accomphshed much more qUIckly by
proceedIng dIrectly to the ThIrd Normal Form SImply arrange the data so that the columns
In each table, other than the pnmary key, are dependent only on the "whole pnmary key"
ThIrd Normal Form IS sometlmes descnbed as "the key, the whole key, and nothIng but the
key" ExhIbIt 2-4 shows tables that have been normahzed to the ThIrd Normal Form

Exhibit 2-4
THIRD NORMAL FORM

PHYSICIAN ASSIGNMENT HOSPITAL SPECIALTY

Name
Age
Address
Telephone
Specialty

Name
HOSPItal

2-3

HospItal
Address

Specialty
DescnptIon

DRAFT

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

3 SYSTEM DIRECTORY STRUCTURE

The purpose of thIS sectIOn IS to emphaSIze the need to understand the system, ItS data
and usage It also emphaSIzes the users need to desIgn and buIld an effective applIcatIOn
Data can be mapped tnvlally mto a database, but a deSIgn that properly supports the way a
system works must go beyond a VIew of the data, It reqUlres sIgmficant thought and
development

3 1 EasyCase DIrectory Structure

An EasyCase master term mal has been establIshed to contam a "named" dIrectory for
each system currently under development The dIrectory WIll contam all EasyCase project
charts m the varIOUS stages of analysIs and deSIgn for that system The dIrectory WIll mclude
data flow diagrams (DFD), entity-relationshIp dIagrams (ERD), logIcal data structure (LDS),
and other applIcable charts

The current system directones establIshed are

BR The benefIcIary regIstration system,

CA The cost accountmg system,

DC The drug control system, and

MR The medIcal records system

For document control of EasyCase project charts, subdirectones of the system
dIrectory have been set up to contam charts m varIOUS stages of development In the case of
the benefICIary regIstration system, a dIrectory has been set Up and named "BR"
InformatIon on benefICIary regIstration WIll be entered there The dIrectory IS then dIVIded
mto two lower levels to contam projects dunng the system analYSIS and deSIgn phases
(ExhIbIt 3-1) The subdIrectory for the analYSIS phase IS named "ANALYSIS" for projects
durmg thIS penod The subdIrectory for deSIgn IS named "DESIGN" for that project phase

3-1 DRAFT

,

Exhibit 3-1
EASYCASE DIRECTORY

Easycase
I
I
I
I

BR
I
I
I
I

1---1
AnalysIs DesIgn

In order to mamtam control of the dIfferent projects and charts It IS asked that
programmers estabhsh a simtiar setup wlthm theIr system development dIrectory for eaSIer
transfer of documents to the master termmal

32 Urux DIrectory Structure

I
I
I
I
I
I
I
I
I

Storage/stagmg areas of the system are set aSIde to hold objects as development I
progresses Programmers are to develop mItIal appitcatlons (programs, SQL *Forms, etc)
m theIr own user enVIronment Once low level or prunary testmg IS completed, objects are
to be moved by semor system analysts to stagmg areas for more comprehenSIve testmg The I
dIrectory Ihome/hIo, Illustrated m ExhIbIt 3-2, WIll be mamtamed as a storage/stagmg area
for objects that are m the process of more thorough module and low level system testmg The I
dIrectory IS to provIde a secure area for program and document control

3-2 DRAFT

I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Exhibit 3-2
STORAGE/STAGING DIRECTORY - LOW LEVEL SYSTEM TESTING

/home/hIo -- HIO Development

-Ibm (For all Shells, Menus, SQL *Forms or
a 3GL Programs such as 'C', etc)

-/rpt (Output for Reports wntten In SQL *ReportWnter,
SQL *Report, SQL *Plus or 3GL)

-/log (All loggIng Information "General' and
'DetaIl')

-/hb (For all applIcation specIfic lIbranes)

-/cntrl (FIles for establIshing control and connecting
to the Oracle Database)

-/comm (Flat file commumcatIon)
Imdata (ReceIving flat flies)
loutdata (Sending flat flles)

-/src (Source Code and Modules)
-/mstall (InstallatIOn/EnvIronment creatIOn

software, system speCIfIC software)
Itable (Table creatIOn)
Imdex (Clusterltable Indexes)
Ikeys (ForeIgn key references)

Once module or low level system testIng has been completed, objects are moved to
a system production enVIronment for more comprehenSIve system WIde testIng DIrectory
structures are to be maIntaIned for headquarters, cllmc, hospItal, branch and drug store as
a storage/stagIng area for objects at these varIOUS level of productlOn testIng (ExhIbIt 3-3)
Objects contaIned In these areas are to match the table spaces set aSIde at the database level
for complete testIng WIth these structures testIng can be done Independently for
headquarters, clImc, hospItal, branch and drug store The structures wlll contain the same
subdIrectones as the /home/hIo dIrectory above WIth the exceptIOn of the /src dIrectory

3-3 DRAFT

Exhibit 3-3
STORAGE/STAGING DIRECTORY - SYSTEM WIDE TESTING

Iheadqtr -- HIO Headquarter apphcatiOns
(lbIll, frpt flog, Ihb, fcntrl, fcorum and Itnstall subduectones)

IclImc -- HIO Chmc apphcatlons
(lbIll, frpt, flog, fhb, fcntd fcorum and I1nstall subduectones)

Ihospltal -- HIO Hospital apphcatlOns
(!bIll frpt, flog, fhb, Icntd, Icorum and finstall subdlrectones)

Ibranch -- HIO Branch apphcanons
(lbIll, frpt, Ilog, Ihb, Icntrl Icorum and finstall subduectones)

Istore -- HIO Drug Store applIcations
(lbIll, Irpt, flog, Ihb fcntrl, fcorum and Itnstall subduectones)

3-4 DRAFT

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

4 DATABASE OBJECT NAMES

The baSIC approach to nammg database objects IS to choose meanmgful, memorable,
and descnptlve titles, aVOIdmg abbreviatIons and codes, and usmg underscores eIther
conSIstently or not at all The goal of thoughtful nammg methods IS ease of use, the names
must be eaSIly remembered, and must follow rules that are eaSIly explamed and applIed In
the sectIons ahead, a somewhat more ngorous approach to nammg WIll be spelled out, WIth
the ultimate goal of developmg a formal process of object name normalIzatlon

4 1 Level-Name IntegrIty

In a relatlOnal database system, the hIerarchy of objects (ExhIbIt 4-1) ranges from the
database, to the table owners, to the tables, to the columns, to the data values Each level
m thIS hIerarchy IS defmed withm the level above It Furthermore, each level should be
gIven a name appropnate to ItS own level, and not mcorporate names from outsIde ItS own
level

The full name of a column IS CLINIC PHYSICIAN Name Each level of the
hIerarchy IS separated from those above or below It by a smgle dot or penod Names must
be umque withm theIr own parents PHYSICIAN cannot have two columns called Name The
owner CLINIC cannot have two tables named PHYSICIAN If Name IS a pnmary key, It
cannot have two data values that are the same No level above shall be Incorporated mto
a level below (e g CLINICPHYSICIAN or PhysiCIanName) ThIS confuses and complIcates
the table name by placmg part of ItS parent's name III ItS own ThIS would be a VIolatIon of
level-name mtegnty

42

Exhibit 4-1
DATABASE HIERARCHY

Object Name Thesaurus

Owner Cbmc

PhYSICian

Name
Age
Address
Telephone
Specialty

RelatIOnal databases should mclude an Object Name Thesaurus, Just as they mclude
a Data DIctionary ThIS thesaurus IS to enforce the company's nammg standards, and to
assure conSIstency of name chOIce and abbreVIatIOn (where used) The thesaurus would be
used to approve a chOice, or declare a VIolatIon of standards Its purpose IS to suggest an

4-1 DRAFT

approved alternatIve or tell the user that the chosen word or abbrevIatlon IS not recogmzed
The use of an unapproved name III the creatIon of an object reqUIres the approval of the
database standards group

The thesaurus may reqUIre the use of underscores m object nammg Underscores help
make the parsmg of a name mto component parts a straIght forward task The thesaurus also
helps enforce the consIstent use of underscores, and prevents scattered, mconsistent usage
withm an appltcatIOn The thesaurus chosen for the Cost Recovery m Health Project (CRHP)
IS WordPerfect's The verSIon WIll be dependent upon the verSIon of WordPerfect that the
Project uses as a standard

4 3 Rules and ConventIOns

One area of mconsistency and confUSIOn IS whether objects should have smgular or
plural names Should It be NAME column or NAMES column, ADDRESS column or
ADDRESSES column? It IS self-eVIdent when considermg names that they descnbe the
contents of a smgle row, a record Even though relatIOnal databases are "set onented," the
fundamental umt of a set IS a row, and It IS the content of that row that IS well-descnbed by
smgular column names Therefore, all object names are to be smgular The sole exceptIon
to thIS rule IS any WIdely accepted term already commonly used m busmess, such as "sales"

ClarIty should never be SaCrIfICed for brevIty, but gIven two equally meamngful,
memorable, and descnpttve names, always choose the shorter For example, suppose a name
IS to be assIgned to a column that IS part of a descnption of a company's structure What
name should be assIgned? Here are some alternatIves

CorporatIon
Enterpnse
Busmess
Company
FIrm

Dependmg on how the bus mess IS orgamzed, anyone of these names could be appropnate
"fIrm," however, IS about one-thIrd the SIze of "corporatIon," and It IS meanmgful,
memorable, and descnptive Although It IS not as commonly used as "company," for
mstance, It IS certamly more common than "enterpnse," and It IS learned and remembered
after one use

Another example IS m the name chosen for lodgmg (where a person lIves) It could be any
of these

AccommodatIOn
DomICIle
Dwellmg
Lodgmg
Abode
Home

4-2 DRAFT

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I' I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Because "home" IS less than one-thIrd the SIze of "accommodation," andJust over half
the SIze of "lodgmg," It would be a better chOice BrevIty saves keymg, and makes object
names conCIse and qUickly understood Nonetheless, breVIty IS less Important than clarIty

Oracle allows up to 30 characters m the nammg of objects such as tables, data
elements, and sequences An object name must begm WIth an alphabetic character, and may
be any combmatIon of letters (A thru Z), numbers (0-9), or the underscore character (' _')
ThIS limIt (30 characters) IS rarely reached, particularly when addItional characters are added
for convemence and adds nothmg sIgmficantly meanmgful to an object name

Parsmg of long names causes system performance to degrade over time Twelve (12)
characters wIll be the maXImum allowable length for object names m CRHP system
development ThIS rule IS not mtended to be a hmdrance to user fnendly names, but a
gUideline to be consIdered by the database group when object names are gettmg excessIvely
long An object name longer than the allowable limIt has to receIve approval of the database
standards group before allowmg the object be entered mto the database WIth a little
mitIative and effort a name wIll be denved that IS meanmgful and representatIve of the
object

The followmg rules and conventIons are to be used m CRHP object names

o Name tables, columns, keys, and data Jomtly WIth users Develop an
applicatIOn thesaurus to assure name conSIstency

o Use English words that are meanmgful, memorable, descnptIve, short and
smgular Use underscore conSIstently or not at all

o Do not mIX levels m nammg,

o A VOId codes and abbreVIatIOns,

o Use meanmgful keys where possIble, and

o Decompose overloaded keys

44 Users

There are database tablespaces and users set for RIO development applicatIOn testmg,
headquarters, branch, clImc, hospItal and drug store module testmg The respectIve database
user names are "hlO", "headqtr", "branch", "clImc", "hospItal" and "store" These database
users correspond to the actual Umx user and ItS fIle system dIrectory structure (see sectIon
3 2) Programmers are to develop mitIal applIcatIons (SQL *Menus, programs, SQL *Forms,
etc) m theIr own user enVIronment WIth access to the user "hIO" for database entry The
"hIO" user IS where all developmental database actIVIty IS to occur and where temporary
tables may be created, appended or dropped as necessary by mdlvldual developers Once low
level or pnmary testmg IS complete, objects are to be moved by semor system analysts to
advance stagmg areas ThIS IS where applIcatIOns are combmed mto modules accordmg to
theIr fmal locatIon, say a clIme or branch for more comprehenSIve testmg At thIS level

4-3 DRAFT

I
objects are unchangIng and secure, provIde more variables for testIng, and remaIn In theIr I
location tablespace on a permanent baSIS

A program In any of the Ibm stagIng areas (headqtr, branch, clImc, hOSPItal or store) I
can access tables owned by any of the above database users (ExhIbIt 4-2) providea the
program connects to the proper user A program can be tested for example at the branch or
clImc level, Just by connectmg to that database user I

After module or low level system testmg has been completed, objects are moved to
a system productIon enVIronment for system WIde testmg Objects then are tested at varIOUS I
levels for system ImplementatIon Directones are mamtamed for headquarters, clImc,
hOSpItal, branch and drug store as storage areas for objects at these varIOUS level of
productIon testmg Objects contamed m these areas are to match the tablespaces and database I
users set at the database level for complete system testmg With thIS type dIvISIon of
applIcatIOns, testmg can be done mdependently for headquarters, clImc, hospItal, branch or I
drug store

Exhibit 4-2
UNIX/ORACLE ENVIRONMENT I

UniX
bJect Migration)

~ I ... ,,. ,,. (0

Idevt Ihlo Ic Ii nlC Ibranch Iheadqtr Istore

I I
1 ~ ", ", " "

r "'" r "'" r "'" r

I'- ./ '- --" I'- --" I'---- .-/ "-

~ hlo cliniC branch headqtr store

"- ,- ~~

Oracle
(Connections)

45 Database Names

A database name IS a umque IdentifIer used to name a database It IS aSSIgned m the
mitIaI creatIOn of the database A name can be a maxImum of eIght characters long and must
not be an SQL *DBA reserved word The name IS stored m the database and used as a
commumcatIOn path to the database ExhIbIt 4-3 shows examples of standard database names
and the create database statement The CREATE DATABASE statement can only be Issued
by someone who has create database system pnvIlege authonty Names are denved usmg the
followmg scheme

4-4 DRAFT

"'" .-/

l~

I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1

2

3

4

5

Headquarters Database
HEAD HIO Headquarters database name wIll be "HEAD"

Branch Database
BRCH

HOSPItal Database
HOSP

ClImc Database
CLIN

An HIO Branch database name WIll be "BRCH"

An HIO HOSPItal database name WIll be "HOSP"

An HIO ClImc database name WIll be ''CLIN''

Drug Store Database
STOR An HIO Drug Store database name WIll be "STOR"

HOSP
CLIN
BRCH

Exhibit 4-3
DATABASE NAMES

A HOSPItal Database
A Chmc Database
A Branch Database

CREATE DATABASE "BRCH"
CONTROLFILE REUSE
LOGFILE GROUP 1 ('
LOGFILE GROUP 2 ('
MAXLOGFILES 5
MAXLOGHISTORY 100,

') SIZE 250M,
') SIZE 250M,

DATAFILE (' ') SIZE 500M

4-5 DRAFT

4 6 Tablespace Names

A tablespace IS an area of dISk set asIde for specIfIc database use only, usually It IS
one large dISk fIle One or more of these areas, together, contaInS the entire allocated space
of a database A tablespace can contaIn many tables, Indexes, or clusters Because a
tablespace has fIxed sIze, It can become full as rows are added to ItS tables When thIS
happens, the tablespace can be expanded by someone who has DBA authorIty The expansIon
IS accomplIshed by creatIng a new dISk fIle and addIng It to the tablespace New rows can
then be added to eXIstIng tables, and those tables WIll therefore have rows In both fIles

Tablespace names are to be based on the applIcatIOn of data that IS to be stored For
each umque type of data, there WIll be two IdentIcal tablespaces, one for the data and the
other for the data mdexes The name is to end With the underscore and the characters
"DATA" or "INDX" (1 e _DATA), WhICh represents the type tablespace ExhIbIt 4-4 shows
examples of standard tablespace names and the create tablespace statement Names are
derIved usmg the followmg scheme

1

2

3

4

A two character code denotmg the data applIcatIon

BR - BenefiCIary RegIstratIon
DC - Drug Control
MR - MedIcal Records
CA - Cost Accountmg

The next two character WIll denote the data subapphcatlon

CL - ClImc data
MB - Branch Data
HO - HospItal data

The next character WIll always be the underscore '_'

The next four characters WIll be "DATA" or "INDX" accordmg to the
followmg

DATA - IS a Data Tablespace
INDX - IS an Index Tablespace

4-6 DRAFT

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

J'"

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Exhibit 4-4
TABLESPACE NAMES

BRCL DATA - BenefICIary Data
BRCL INDX - BenefICIary Index
MRCL DATA - MedIcal Records Data

CREATE TABLESPACE BRCL DATA
DATAFILE '/home/data/BRCL8001 dbf' SIZE 19968K
DEFAULT STORAGE

4 7 Table Names

A name should be derIved that IS meanmgful and representative of the data the table
WIll contam Names should be chosen for theIr ease of memOrIzation and theIr system wIde
usage The name must begm WIth an alphabetIC character and may be any combmation of
alphabetic and numerIC characters or the underscore Names are to be developed by the
system analyst that IdentIfy the table along WIth the database group concurrence In all cases,
names should be approved by the database group and made known to all system developers
The use of the underscore character IS to be mmimized as much as pOSSIble and should only
be conSIdered when formmg table names from more than one word If the result YIelds a two
or more syllable word that gIves a dIfferent meanmg from that mtended, the underscore IS
recommended for clarIfIcatIon ExhIbIt 4-5 shows examples of standard table names and the
create table statement

The followmg conventIons are to be used m CRHP Oracle table names

o The name should be smgular

o The name should IdentIfy the table

o It should be deSCrIptIve and representatIve of the table contents

o It should convey a clear meanmg for the data the table WIll contam

o It should be as short and conCIse as pOSSIble

o It should be a maxImum of 12 characters

o The use of underscore character IS to be mmmuzed as much as pOSSIble

4-7 DRAFT

BENEFICIARY
PHYSICIAN
DISEASE

Exhibit 4-5
TABLE NAMES

CREATE TABLE PHYSICIAN (
PHYSICIAN NUMBER(07)

CONSTRAINT PHYSICIAN_PKI PRIMARY KEY,
),

One of the advantages of a dIctIOnary-based database manager IS ItS mherent
documentation All of Oracle's database mformation IS stored m table format m the system
dIctIonary Oracle provIdes the standard SQL command COMMENT (ExhIbIt 4 6) for
addmg text to descnbe tables All permanent tables stored m the database must have an
accompanymg descnption stored m the data dIctIonary The descnptIOn should IdentIfy and
be representative of the table contents

48 Column Names

Exhibit 4-6
TABLE COMMENT

COMMENT ON TABLE PHYSICIAN IS
'RIO MedIcal PhYSICIan Table',

A name should be denved that IS meanmgful and representative of the underlymg data
content Names should be user fnendly and chosen for theIr common and system wIde
usage The name must begm wIth an alphabetic character and may be any combInatIOn of
alphabetic and numenc characters or the underscore Names must be umque withm the table
and cannot be an Oracle reserved word Case sensltlvity IS not an Issue, an object name IS
automatically converted to upper case when stored Names are to be developed by the
system desIgner to IdentIfy the object along wIth the system user's reVIew The database
group IS to proVIde concurrence In all cases, names should be approved by the database
group and made known to all system developers

The name should be as genenc as possIble A genenc column name or "mask" can
be used m more than one table WIth a dIstmct meanmg m each The table where the Item

4-8 DRAFT

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

appears becomes the qualIfIer (1 e ADDRESS, not PHY ADDR or EMP ADDR) In the - -
PHYSICIAN table It IS the physICian address, and m the EMPLOYER table It would be the
employer address The meanmg IS clear and dIstmct because of the table emphasIs ThIS
reduces the number of mdividual Items needed for the system, wIth no loss of functIOnalIty
ExhIbIt 4-7 show examples of standard column names and the create table statement

The followmg rules and conventIons are to be used m CRHP Oracle column names

o The name should be smgular

o The name should IdentIfy the column

o It should be descnptIve and representatIve of the data contents

o It should convey a clear meanmg for the data

o It should be as short and conCIse as pOSSIble

o It should be a maxImum of 12 characters

o The use of underscore character IS to be mmImIzed as much as pOSSIble

One of the advantages of a dIctionary-based database manager IS ItS mherent
documentatIOn All of Oracle's database mformatIOn IS stored m table format m the system
dIctIOnary Oracle proVIdes the standard SQL command COMMENT (ExhIbIt 4-8) for
addmg text to descnbe tables All permanent tables stored m the database must have an
accompanymg descnption stored m the data dIctIOnary The descnption should IdentIfy and
be representatIve of the table contents

BLOODTYPE
ADDRESS
EMPLOYER

Exhibit 4-7
COLUMN NAMES

(BenefIcIary Blood Type)
(BUlldmg Number and Street Address)
(Employer IdentifIcatIOn Number)

CREATE TABLE PHYSICIAN (
PHYSICIAN NUMBER(07)

CONSTRAINT PHYSICIAN_PK1 PRIMARY KEY,
ADDRESS V ARCHAR2(35)

CONSTRAINT PHYSICIAN_NNl NOT NULL,
),

4-9 DRAFT

Exhibit 4-8
COLUMN COMMENT

COMMENT ON TABLE PHYSICIAN ADDRESS IS
'HIO MedIcal PhysIcIan Address (BUlldmg Number and Street Address)',

4 9 Index Names

An mdex IS a SImple concept It IS typIcally a lIstmg of keywords accompanIed by the
locatIon of mformatlon on the subject Indexes are most useful on larger tables, and on data
elements that are lIkely to appear WIth clauses eIther (as a SImple equalIty or m table Joms)
They produce qUIcker retnevals for the mdexed data elements However, If there IS no where
clause, no mdex IS used Index groups are to mclude PrImary keys (umque entry for a table)
and Access keys (entry to a table other than the prImary key) Index names are to be based
on the table name on WhICh the mdex IS to be establIshed The name bemg based on a table,
causes rules and conventIons for nammg objects to mstmct!vely be followed m the nammg
of mdexes The name IS to end WIth the underscore and the characters "PK" or "AK" (1 e
_PK 1), WhICh represents the type mdex ExhIbIt 4-9 shows examples of standard mdex names
and the create table statement Names are derIved usmg the followmg scheme

1 The name of the table on WhICh the mdex IS based

2

3

4

BENEFICIARY - BenefICIary table
PHYSICIAN - PhYSICIan table

The next character WIll always be the underscore '_'

The next two characters WIll be "PK" or "AK" accordmg to the followmg

PK - IS a Prlffiary Key Index (UnIque)
AK - IS an Access Key Index

The last character represents a "unIque sequence number" ThIS IS the
number of the Index (begmnmg WIth 1)

4-10 DRAFT

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

410

BENEFICIARY PKI
BENEFICIARY AKI
BENEFICIARY AK2

Exhibit 4-9
INDEX NAMES

- Pnmary Key Index
- FIrst Access Key Index
- Second Access Key Index

CREATE TABLE BENEFICIARY (
BENEFICIARY NUMBER(09)

CONSTRAINT BENEFICIARY PKI PRIMARY KEY,
),

Table Constramts

Oracle CREATE TABLE statements allow the user to enforce several dIfferent kInds
ot constramts on a table candIdate keys, pnmary keys, foreIgn keys and check condItions
A CONSTRAINT clause can constraIn a sIngle column or a group of columns In a table
The pomt of these constraInts IS to get Oracle to do most of the work In maIntaInIng the
mtegnty of the database The more constraInts added to a table defInItIon, the less work
needed m maIntaInIng the data On the other hand, the more constraInts there are In a table,
the longer It takes to update data

There are two ways to speCIfy constraInts as part of the column defInItion (a column
constraInt) or at the end of the CREATE TABLE statement (a table constraInt) Clauses that
constraIn several columns must be table constraInts The constraInts of concern to CRHP
developers are pnmary keys, foreIgn keys and check condItions All permanent constraInts
stored In the database must have an accompanyIng name stored In the data dIctIOnary

410 1 Prnnary Key Constramts

The pnmary key of a table IS one of the candIdate keys that gIves some speCial
charactenstIcs A table can have only one pnmary key, and a pnmary key column cannot
contam nulls For a smgle-column pnmary key, defIne the key on a column WIth a column
constraInt, for a group-column pnmary key, defIne the key Instead WIth a table constraInt
(ExhIbIt 4-10 also see section 4 9 m the namIng of Indexes)

4-11 DRAFT

ExhIbIt 4-10
PRIMARY KEY CONSTRAINT

CREATE TABLE SHEY AKHA (
SHEY AKHA NUMBER(04)

CONSTRAINT SHEYAKHA_PKl PRIMARY KEY,
),

CREATE TABLE EMPLOYER (
EMPLOYER NUMBER(08),

NUMBER(04),

4102

BUILDING

CONSTRAINT EMPLOYER_PKI PRIMARY KEY (EMPLOYER,
BUILDING»,

Foreign Key Constramts

A foreIgn key IS a column or combmatIon of columns wIth values based on the
pnmary key values from another table A foreIgn key constramt, also known as a
referential mtegnty constramt, specIfIes that the values of the foreIgn key correspond to
actual values of the pnmary key m the other table In the SHEYAKHA table, for example,
the Markaz column refers to values for the Markaz column m the MARKAZ table A foreIgn
key column refers to a pnmary or umque key In another table usmg the REFERENCES
clause (ExhIbIt 4-11) ThIS actIOn automatIcally mamtams referentIal mtegnty The name IS
to end wIth the underscore and the characters "FK" (1 e _FKl) , to dIstmgUIsh the foreIgn
key from a pnmary key Names are to be denved usmg the followmg scheme

1

2

3

The table name

The next three character WIll always be "_FK"

The last character represents a "umque sequence number" ThIS IS the
number of the foreIgn key (begmnmg WIth 1)

4-12 DRAFT

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Exhibit 4-11
FOREIGN KEY CONSTRAINT

CREATE TABLE SHEY AKHA (

4103

MARKAZ NUMBER(03)
CONSTRAINT SHEYAKHA FK1 REFERENCES MARKAZ
(MARKAZ),
),

Check CondItions

Many columns must have values that are withm a certam range or that satIsfy certam
condItIons A check constramt can gIve an expreSSIOn that must always be true for every
row m the table For example, HIO student benefICIarIeS age must be In the range of 12 to
19 A check condItIOn IS establIshed USIng the CHECK clause (ExhIbIt 4-12) ThIS actIon
valIdates every row automatically agamst the check condItIon The name IS to end wIth the
underscore and the characters "CC" (1 e _CCl), to dIStIngUish the check condItIon from
other constraInts Names are derIved USIng the folloWIng scheme

1

2

3

The table name

The next three character wIll always be "_ CC"

The last character represents a "umque sequence number" ThIS IS the
number of the check condItIon (begInnmg wIth 1)

Exhibit 4-12
CHECK CONSTRAINT

CREATE TABLE STUDENT (

4104

AGE NUMBER(02)
CONSTRAINT STUDENT_CC1 CHECK (AGE BETWEEN 12
AND 19),

),

Not NULL Constramts

Many columns must have valId values that are withm a certaIn range and satIsfy
certam condItions A not null constramt can guarantee that values must always appear for
certam columns for every row In the table For example, address and telephone numbers
must be known for every phYSICIan A not null condItIon IS establIshed USIng the NOT

4-l3 DRAFT

I
NULL clause (ExhIbit 4-13) ThIS actIon valIdates every row automatIcally agaInst the not I
null condItIon The name IS to end WIth the underscore and the characters "NN" (1 e _NNl),
to dIStIngUISh the not null condItIon from other constraInts Names are derIved usmg the
followmg scheme I

4105

1 The table name

2

3

The next three characters wIll always be " NN"

The last character represents a "unIque sequence number" ThIS IS the
number of the not null check condItIon (begmnmg WIth 1)

Exhibit 4-13
NOT NULL CONSTRAINT

CREATE TABLE PHYSICIAN (

ADDRESS V ARCHAR2(35)
CONSTRAINT PHYSICIAN_NNI NOT NULL,

TELEPHONE NUMBER(07)
CONSTRAINT PHYSICIAN_NN2 NOT NULL,

),

Umque Constramts

The prImary key of a table IS one of the candIdate keys that gIves some specIal
characterIstIcs A table can have only one prImary key, and a prImary key column cannot
contam nulls UnIque constramts on the other hand can be appbed to any column, whether
a prImary key, foreIgn key, etc UnIque columns can contam nulls, actual values do not have
to be stored A unIque condItIOn IS establIshed usmg the UNIQUE clause (ExhIbIt 4-14) ThIS
actIon valIdates every row agamst values presently stored, so that no value IS stored tWIce
The name IS to end WIth the underscore and the characters "UN" (1 e UN!), to dIstmguish
umque condItion from other constramts Names are to be derIved usmg the followmg
scheme

1

2

3

The table name

The next three character WIll always be "_UN"

The last character represents a "unIque sequence number" ThIS IS the
number of the unIque condItIon (begmnmg WIth 1)

4-14 DRAFT

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Exhibit 4-14
UNIQUE CONSTRAINT

CREATE TABLE SHEY AKHA (

MARKAZ NUMBER(03)
CONSTRAINT SHEY AKHA _ UNI UNIQUE,

),

4 11 VIew Names

A VIew IS a database object that IS a logIcal representatIon of data denved from one
or more tables It has no storage of ItS own and often may be used In the same manner as a
table Only essentIal VIews are to be created and maIntaIned by the system VIews will only
be conSIdered In the event of multIple table JOms, and WIll not be establIshed for SIngle table
access SInce a VIew WIll be denved from multIple tables, a VIew name WIll not necessarIly
be dependent on a SIngle table name The name should state as clearly as pOSSIble the purpose
of the VIew A name should be short, meanmgful and representatIve of the VIew A name
IS to end WIth the underscore and the character "V" (1 e "_V"), to readIly dIStIngUISh a VIew
from a table of pOSSIbly the same name

As an example, suppose a VIew IS to be establIshed as a logIcal representatIon for
benefICIary WIdows The underlYIng tables to support thIS VIew are the BenefICIary Table,
WhICh contaInS baSIC data on all benefICIarIes and the WIdow Table that contaInS addItIOnal
benefICIary data pertaImng only to SUrVIVIng WIdows The VIew could pOSSIbly be named
"WIDOWS_V", because It would reveal complete InfOrmatIon on WIdows and the name
would clearly descnbe the purpose for why the VIew eXIsts ExhIbIt 4-15 shows examples of
standard VIew names and the create VIew statement

The follOWIng conventIOns are to be used In CRHP Oracle VIew names

o Joms WIll only be conSIdered In multIple tables

o The name should be SIngular

o The name should Identify the VIew

o It should be descnptIve and representatIve of the VIew contents

o It should convey a clear meanmg for the logIcal data the VIew WIll contam

o It should be as short and conCIse as pOSSIble

4-15 DRAFT

o It should be a maxImum of 12 characters

o The underscore character and the character "V" should be used as the last
characters of the name

STUDENTS V
PENSIONERS V
WIDOWS V

Exhibit 4-15
VIEW NAMES

CREATE VIEW WIDOWS V AS
SELECT FROM BENEFICIARY, WIDOW

WHERE BENEFICIARY = WIDOW,

4 12 Synonyms

An alternatIve method to creatmg a VIew IS to create a synonym A synonym IS a
name aSSIgned to a table or VIew that may thereafter be used to refer to It If you have access
to another user's table, you may create a synonym and refer to It by the synonym alone,
wIthout entermg the user's name as a quahfier There can be pnvate and publIc synonyms
PUBLIC makes the synonym avaIlable to all users, but can only be created by a DBA

When wntmg code, It can be dIfficult to IdentIfy a synonym's relatIOnshIp to ItS table
name reference, so use synonyms spanngly Synonyms are to be used as a table reference
when a table at two locatIOns, lets say a clImc or branch, are dIfferent, but attrIbutes m one
table are entIrely contamed m the other table, a synonym IS to be used to dIfferentiate the
underlymg table On the other hand, database lmk synonyms are to be used m a many to
one relatIonshIp For mstance, several clImcs need to connect to a branch database or
several branches need connectIOn to headquarters But, when a branch or headquarters needs
to connect to several clImcs, the actual database lInk name IS used (See sectIon 4 15 Database
Lmks for more mformatIOn)

Synonyms are to be based on the table or VIew to be accessed The name IS to end
WIth the underscore and the characters "SY" (1 e "_SYI If), to dIstmgUIsh the synonym from
a table ExhIbIt 4-16 shows examples of standard synonyms, the create synonym statement
and ItS usage Synonyms are denved usmg the followmg scheme

1 The name of the table on WhICh the synonym IS based

2 The next three characters WIll always be " SY"

3 The last character represents a "umque sequence number" ThIS IS the
number of the synonym (begmnmg WIth 1)

4-16 DRAFT

~l{

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

BENEFICIARY SYI
PHYSICIAN SYI

Exhibit 4-16
SYNONYM NAMES

- BenefICiary Table Synonym
- PhysIcIan Table Synonym

CREATE PUBLIC SYNONYM PHYSICIAN SYI
FOR BRANCH PHYSICIAN,

SELECT NAME, SPECIALTY, ADDRESS, TELEPHONE
FROM PHYSICIAN_SYl,

** @B0002 IS a database hnk to a remote branch database

CREATE PUBLIC SYNONYM BENEFICIARY SYI
FOR BRANCH BENEFICIARY@B0002,

SELECT NAME, BIRTHDATE, ADDRESS, EMPLOYER
FROM BENEFICIARY_SY1,

4 13 Cluster Names

Clustenng IS a method of stonng tables that are mttmately related and often Jomed
together mto the same area on dISk For example, mstead of the BenefIcIary Table bemg
m one sectIon of the dISk and PensIoner Table bemg somewhere else, theIr rows could
mstead be mterleaved together m a smgle area, called a "Cluster" The cluster key IS the
column or columns by whIch the tables are usually Jomed m a query A cluster IS space set
aSIde, as It would be for a table, wIth nothmg m It Tables are created to be mcluded In thIS
cluster When these tables are clustered, each umque column, say "Name" IS actually stored
only once m the cluster key To each umque Column, columns are attached from other
tables that make up the cluster

Cluster names are to be based on the data element name on WhICh the cluster IS
defIned The name should always be the same as the data element for whIch the cluster IS
established Because the name IS the denved from a data element, rules and conventIons
for namIng objects WIll InstInctIvely be followed m the namIng of clusters ExhIbIt 4-17
shows examples of standard cluster names and the create cluster statement Names are
derIved USIng the name of the data element on WhICh the cluster IS defIned

4-17 DRAFT

Exhibit 4-17
CLUSTER NAMES

BENEFICIARY - Cluster for benefIcIary number
PHYSICIAN - Cluster for physIcIan number

CREATE CLUSTER BENEFICIARY (BENEFICIARY NUMBER(09»

4 14 Sequence Names

Oracle has solved the long-standIng problem of assIgnIng umque numbers, such as
IdentIfIcatIOn or IDs ThIS IS done by usmg the CREATE SEQUENCE command The
NextVal attached to a sequence tells Oracle the next avaIlable sequence number from the
sequence ThIS IS guaranteed to be umque, Oracle WIll not gIve It to anyone else USIng the
NextVal assures that the sequence table gets Incremented, and you get a umque number

Sequence names are to be based on the data element on whIch the sequence IS
established A sequence name should always be the same as the data element for WhICh the
sequence IS generated Because the name IS derIved from an establIshed data element, rules
and conventIons for namIng objects wIll automatIcally be followed III the namIng of
sequences The sequence name IS to end WIth the underscore and the character "SQ" (1 e
" SQ1"), to dIstIngUish the sequence name from a table name ExhIbIt 4-18 shows
examples of standard sequence names and the create sequence statement Names are denved
USIng the follOWIng scheme

1 The name of the data element on WhICh the sequence IS defIned
For example

2

3

BENEFICIARY - BenefIcIary number
PHYSICIAN - PhYSICIan number

The next three characters wIll always be "_SQ"

The last character represents a "umque sequence number" ThIS IS the
number of the Sequence (begInnIng WIth 1)

Exhibit 4-18
SEQUENCE NAMES

BENEFICIARY_SQ1 - BenefIcIary sequence for benefiCIary number
PHYSICIAN_SQl - PhYSICIan sequence tor phYSICIan number

CREATE SEQUENCE PHYSICIAN_SQ1 INCREMENT BY 1 START WITH 1,

4-18 DRAFT

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

4 15 Database Lmk Names

A database lmk IS an object stored m a local database that contaInS network
mformation that allows a user access to tables and objects on a remote database SQL *Net
must be mstalled on both the local and remote databases A lmk contaInS the "Node II
defimtion of the remote database, and, optionally, a username and password that has gIven
authorIty for the remote database entry Once access IS gIven, remote tables and objects can
be accessed Just lIke local tables and objects, except that table names must be prefIxed by
@database lInk m the from clause of the select statement Database lmks are to be used
for dIStributed queries only, and not for updates

Database lmk names are based on the type of remote database accessed The type WIll
be one of the types hsted In Item #1 below The name IS to end WIth a umque sequence
number (1 e 0001) ExhIbIt 4-19 shows examples of standard database lmk names, the create
database lmk statement and ItS usage Names are derIved usmg the followmg scheme

*

1 A one character code representmg the remote type database

2

HOOOI
C0005
B0002
QOOOI

Q
B
H
C
S

Headquarters database *
A branch database
A hOSPItal database
A clIme database
A drug store database

The last four character represents a "umque sequence number" ThIS IS
the number of the lmk (begmmng WIth 000 I)

Exhibit 4-19
DATABASE LINKS

FIrst Remote HOSPItal Database
FIfth Remote ClIme Database
Second Remote Branch Database
Headquarters Database

CREATE DATABASE LINK B0002
CONNECT TO BRANCH IDENTIFIED BY?????
USING 'T B0002 A' ,

SELECT NAME, BIRTHDATE, ADDRESS, EMPLOYER
FROM BENEFICIARY@B0002,

Note Headquarters conSIsts of one database only The database lInk wIll be
"QOOOI II

4-19 DRAFT

4 16 Facility Names

A facillty name IS a umque IdentIfIer used to name a facIhty Each facillty that IS a
part of the CRHP system, be It a medIcal branch, a hospItal, a polychmc or drug store WIll
be aSSIgned a umque IdentIfIcatIon number ThIS IdentifIer IS stored m the control area for
that faCIlIty and becomes a part of fIle names Data transmISSIon files that ongmate from the
faCIlIty or are sent to that location WIll contam thIS IdentifIer as part of theIr name The name
IS aSSIgned at the mitIaI creatIOn of a database for the faclhty Names are denved usmg the
followmg scheme

1 Headquarters Facillty
QOOOI HIO Headquarters facIhty name WIll be "QOOOl"

2

3

4

5

6

Branch FaCIlIty
BXXXX

HOSPItal FaCIlIty
HXXXX

PolyclImc FacIlIty
CXXXX

Drug Store FaCIlIty
SXXXX

MedIcal Zone FaCIlIty
MXXXX

Branch faCIlIty names are to begm WIth the character "B"
followed by a sequentially generated number begmmng WIth
sequence "0001"

HOSPItal faCIlIty names are to begm WIth the character "H"
followed by a sequentially generated number begmmng WIth
sequence "0001"

PolyclImc faCIlIty names are to begm WIth the character "c"
followed by a sequentially generated number begmnmg WIth
sequence "0001"

Drug Store facIlIty names are to begm WIth the character "s"
followed by a sequentially generated number begmnmg WIth
sequence "0001"

MedIcal Zone facIlIty names are to begm WIth the character
"M" followed by a sequentIally generated number begmnmg
WIth sequence "0001"

Note MedIcal Zones are not bemg automated under the
current contract

4-20 DRAFT

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

5 DATA ELEMENT DICTIONARY

The data dIctIOnary IS Oracle's central documentatIon system It stores mformatIOn
related to every facet of the database system User names, user access nghts, table names,
column names, table storage mformatIOn, and audItmg data for dIsaster recovery are all
stored m the data dIctIOnary

5 1 Data DIctIonary

The data dIctIOnary IS a comprehenSIve set of tables and VIews owned by the Oracle
system, WhICh actIvates when the RDBMS IS InItIally Installed It IS a central source of
mformation for the RDBMS and all users of the system The tables are automatIcally
mamtamed by Oracle, and hold a set of VIews and tables contammg mformatlon about
objects, users, pnvileges, events and use After tables and data elements have been defmed
and entered mto the data dIctIOnary, the database group WIll prepare data diCtlonary reports
(ExhIbIt 5-1) from the Informatlon stored These reports are to be used by "all" CRHP
developers for table, data element look-up, descnptIOn, and references to make sure that a
data element has "one and only one" name and meanmg throughout the system

Exhibit 5-1
DATA ELEMENT REPORT

Data Element Data Size Decimal IDO Oracle DesCrIption Table
Name Type Scale Data Type Reference

COST D 6 2 NUMBER (6,2) Procedure Cost Tl

BLOODTYPE X 3 CHAR(3) Beneficiary Tl, T2
Blood Type

EMPLOYER N 8 NUMBER (8) Employer ID T3
assigned by
SIO/HIO

Data Element Name
A short descnptIve mnemOnIC name developed by the analyst (WIth approval of the
database group) WhICh eXIsts m the data dIctIOnary

Data Type
A symbol to represent one of the followmg types of data

x = Alphanumenc (Character) data
N = Numenc data
D = DeCImal data

5-1 DRAFT

SIZe
The total length of the data Item

Decnnal Scale
The number of decImal POSItIOns to the nght of the decImal pomt

fiO Oracle Data Type
The standard Oracle SQL data types that "all" analyst wIll be USIng See the follOWIng
HIO Oracle data type standard

DeSCriptIOn
A bnef explanatIon of the data element

Table Reference
ThIs Item WIll be used to cross reference the tables where the data element IS used

5.2 Data Type Standard

Of the numerous external data types that Oracle accepts (ExhIbIt 5-2 & ExhIbIt 5-3),
an mternal converSIon takes place to convert the data to Oracle natIve storage type (ExhIbIt
5-2) Do not confuse the external data types WIth mternal data types To ehmmate the
confusIOn that anses m dIscussIOns of mternal verses external data types and theIr aSSOCIatIon,
the standards commIttee has chosen the natIve mternal data type for all database use CRHP
software developers are restrIcted to only the data types hsted m ExhIbIt 5-2 m theIr
development Data must be converted and stored m the database as one of the followmg data
types

Exhibit 5-2
HIO ORACLE DATA TYPE STANDARD

Data Type Data Length

CHAR (n) FIxed length character data of length 'n' bytes MaxImum for
'n' IS 255 bytes Default for 'n' IS 1 byte

V ARCHAR2 (n) Varlable length character strmg havmg maxImum length of 'n'
bytes MaxImum for 'n' IS 2000 bytes

DATE ValId date (system WIll use the Oracle scheme for dates)

NUMBER (m) Number haVIng preCIsIOn 'm' and scale zero The preCIsIon 'm'
can range from 1 to 38 dIgItS

NUMBER (m,n) Number havmg preCIsIon 'm' and scale 'n' The preCIsIon 'm'
can range from 1 to 38 dIgItS The scale 'n' range from -84 to
127 ThIS data type WIll be used to denote deCImals

5-2 DRAFT

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

ExhIbIt 5-3 shows SQL data types that are wIdely used that must be converted to HIO
Oracle data type standard

Exhibit 5-3
Sal DATA TYPES TO BE CONVERTED TO HIO ORACLE DATA TYPE

STANDARD

SQL Data Types IDO Oracle Data Type Standard

SMALLINT NUMBER (m)

INTEGER NUMBER (m)

NUMBER (m,n) NUMBER (m,n)

DECIMAL (m,n) NUMBER (m,n)

CHAR(n) CHAR(n)

VARCHAR(n) V ARCHAR2(n)

DATE DATE

FLOAT WIll not be used At thIS pomt there IS
no need for floatmg pomt precIsIon

5-3 DRAFT

31

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

6 PROGRAM/FILE NAMES

The apphcatIOn development process IS to estabhsh nammg conventIons for objects
outsIde of Oracle (such as programs and flIes) as well as objects wlthm Oracle The specIfIc
nammg conventIOns decIded upon IS meanmgful, but the fact that a set of conventIons was
commItted to before development starts, IS of utmost Importance Thorough gUIdelmes
provIde for a hIgh degree of consIstency and allow software developers and analysts to
qUickly Identify and defme objects

6 1 FIle Name

Name of programs, files, forms and documents are to be eIght characters (8) m length
and denved usmg the followmg scheme

*

1 Characters (1-2) represents the major system (apphcatlon) to WhICh the Item
belongs
BR = BenefICIary RegIstration System
CA = Cost Accountmg System
DC = Drug Control System
MR = MedIcal Records System
LB = LIbrary
DB = Database AdmmistratIon
SY = System Admmlstratlon

2 Characters (3-4) represents a subsystem (subapphcatlon) of the major system
These characters WIll range from "AA" to "ZZ" The subapplIcatIon
characters and desIgnatIOn IS the responSIbIlIty of the system's lead analyst or
mdlvldual The followmg characters subsystem deSIgnatIOn are to remam the
same across all systems *
MN = Mamtenance
lID = Header Files
MK = Makefiles (UNIX Scnpts)
IN = Installation SQL Scnpts

a The BenefICIary RegIstratIon System subapplicatlon deSIgnatIOn
follows
RS - RegIstratIon
EL = Ehglblhty Check
SI - SIO / PIO Interface
VI = VISItS
LT = Lookup Tables

As system development contmues, standard names for other subsystems wIll be
deSIgnated

6-1 DRAFT

62

3

b The Cost Accountmg System subapphcatlOn desIgnation follows
CC = ClImcs Cost Accountmg
HC = HOSPItal Cost Accountmg

c The Drug Control System subapphcation deSIgnatIon follows
PE = Prescnption Entry
IC = Inventory Control
PC = Purchasmg and Contractmg
CP - Contracted Pharmacy
GN = General
MN = Mamtenance

d System AdmInIstration subappiIcatlOn deSIgnatIOn follows
HQ - HIO Headquarters
MB = MedIcal Branch
CL = PolyClInIC
HO = HOSPItal
ST = Drug Store

e LIbrary subapplIcation deSIgnatIon follows
SO = Shared Objects (executable, user eXIts)
UE - User EXIts
SP - Stored Procedures (SQL scnpts that load mto database)
RF = Called by Reference (SQL *forms)

Characters (5-8) represents a UnIque subapplIcation senes groupmg sequence
number ThIS sequentIal number IS to gIve the applIcatIon Items a logIcal
ordenng
1000 1999 = SQL*Forms
2000 2999 - 'C' programs (See General ExceptIOns below)
3000 3999 = UNIX Shell Scnpts (Make flIes)
4000 4999 - SQL Scnpts
5000 5999 = SQL*Menu
6000 6999 - SQL *Reportwnter
7000 7999 = Stored Procedure
8000 8099 = Database FIles
8100 8199 = Database FlIes Index
9000 9999 = Special Documents

General ExceptIons

DeViatIon from the above nammg conventIOns wIll only be for shared object lIbrarIes
along WIth theIr makeftles, because of the way the UNIX operatmg system handle them and
data transmISSIon flIes FlIes that are responsIble for data delIvery over network
telecommUnICatIon lInes from one SIte to another

6-2 DRAFT

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

A

B

Shared Object LIbrarIes

o

o

o

lIbIDO so

Shared object hbranes created from Pro*C programs wIll be named
hbHIO so Program names for hboHI so wIll be m the range LBS02000 pc­
LBS02499 pc

IIbFRM so

Shared object hbranes created from SQL *Forms user eXIts WIll be named
hbFRM so Program names for hbFRM so WIll be m the range LBS02500 pc
-LBS02999 pc

Make files

lno mk
Make fIle created from hbHIO so shared objects wIll be named hiO mk

exe mk
Make fIle created from * exe executable WIll be named exe mk

frmmk
Make fIle created from hbFRM so shared objects wIll be named frm mk

Data TransmISSIon FIles

Names of flIes used m delIvenng data over telecommumcatlon lInes are to be eIther
SIX (6) or eleven characters (11) m length The fIle content and ItS destmatlOn determme
WhIch verSIon of the name to be used The gUIdelmes that follows decIde the name

When the contents of a file remam the same and IS to be sent to dIfferent locatIons, the
shorter verSIOn of the name IS used

The SIX (6) character name IS denved usmg the followmg scheme

I Characters (1-2) represents the major system (applIcatlOn) to WhICh the Item
belongs
BR - BenefICIary RegIstratIOn System
CA = Cost Accountmg System
DC - Drug Control System
MR - MedIcal Records System

2 Characters (3-6) represents a four character descnptIon of the fIle contents

6-3 DRAFT

I
When contents of a file are dIfferent and are to be sent to many locatIOns, the longer I
verSIOn of the name IS used

The eleven (11) character name IS denved usmg the followmg scheme I
1 Characters (1-6) are the same as wIth the shorter verSIon of the name above

2 Character (7) represents the type faCIlIty
Q = Headquarters
B = Branch
H = HospItal
C = ClImc
M = MedIcal Zone
S = Store

3 Characters (8-11) represents the faCIlIty sequence number

Note characters 7-11 together represents the faCIlIty IdentIfIcatIOn number

63 FIle ExtensIOn

Certam fIles and objects that are to be executed or generated by the system must have
an extenSIOn that Oracle or the operatmg system recogmzes FIle extenSIOn case should
always be lower The followmg are gUldelmes for the development of these applIcatIOns

1 'C' Program

< fIle Name> C (a stand alone 'C' Program extenSIOn must be c)

<fIle Name> pc (a 'C' Program WIth embedded SQL extenSIOn must be pc)

< fIle Name> exe (an executable 'C' Program extenSIOn must be exe)

< fIle Name> 0 (a 'C' Program object code extenSIOn must be 0)

2 SQL SCrIpt

< fIle Name> sqI (the extenSIon must be sql)

3 Shell SCrIpt

< fIle Name> sh (the extenSIon must be sh)

6-4 DRAFT

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I 4 SQL*Forms

< fIle Name> mp (source fIle extensIOn must be mp)

I < fIle Name> frm (an executable SQL *Form extensIOn must be frm)

I 5 SQL*ReportWnter Program

I < ftle Name> rex (source fIle extensIon must be rex)

I
< fIle Name> rep (an executable SQL *Reportwnter extensIOn must be rep)

I
6 SQL*Menu

<fIle Name> dmm (the extensIOn must be dmm)

I
7 PL/SQL Program

I < fIle Name> sql (the extenSIon must be sql)

I 8 Stored Procedure

I < fIle Name> lDp (the extenSIon must be mp)

9 'C' Header FIle

I < fIle Name> h (the extenSIon must be h)

I 10 PRO*C Make FIle

I < fIle Name> mk (the extenSIon must be mk)

I 11 Spool Output FIle

I
< file Name> rpt (a spool output report lIstmg extenSIOn must be rpt)

I
12 Log FIle

< fIle Name> log (the extenSIOn must be log)

I
I 6-5 DRAFT

I

13 Database TransIDlSslon FIle

< file Name> dat (the extensIon must be dat)

14 Database Object FIle

< fIle Name> dbf (database objects export extensIon must be dbt)

15 LIbrary FIle

hb < fIle Name> so (shared 'C' object lIbrary extensIOn must be so)

16 SQL*Loader SCrIpt

< file Name> ctl (the extensIon must be ctl)

17 Database Tablespace FIle

< fIle Name> dbf (the extensIOn must be db!)

Exhibit 6-1
PROGRAM/FILE NAMES

DC IC 1100

I
I
I
I
I
I
I
I
I
I
I

I
I
I
I

I
Sequence

Number

SubSystem

Major
System

{extenSIOn}

BREL1050 frm - BenefIcIary eltgibilIty check SQL *Forms 1050
CAMN6200 rpt - Cost accountmg mamtenance Report 6200
DCIC5100 dmm - Drug control mventory control Menu 5100

6-6

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

DRAFT I
I

~1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

7 PROGRAMMING STANDARDS

Because the Oracle RDBMS system provIdes such a flexIble and mtultlve envIronment,
developmg sImple applIcatIOns IS now possIble However, despIte the SImplIfIed development
process, bUIldIng large applIcatIOns can still be very dIffIcult Many concepts come easdy
and can be put Into practIce whIle others need a more formal process Standards helps to
codIfy and control concepts that are benefICIal to the development of the system as a whole
Standards enforced across all applIcations causes InConsIstenCIes to be held to a mInImUm by
chOOSIng an approach that have served well and proved Itself In the past

7 1 SQL*Menus

SQL *Menu IS a software developer's tool used for lInkIng and structunng applIcatIOns,
proVIdIng secunty, ensurIng fleXIbIlIty and a umform look, and gIVIng a feel to an applIcatIOn
for all users

Authonty to use menu Items are granted to categones called roles A role IS a set of
pnvileges or an access level that each user needs dependIng on theIr status and
responsIbIhtIes By grantIng speCIfIC pnvileges to roles and aSSIgnIng roles to the appropnate
users, a user WIll be able to access a certaIn set of menu Items In an applIcatIon For
example, one user may only see seven usable Items on a menu, another user may see ten
When an applIcatIon IS run, role membershIp determInes the Item avaIlable MultIple role
membershIp WIll gIve access to all Items avaIlable to the combIned roles (See sectIon 8 for
more on secunty)

A menu Interface presents an applIcatIon WIth numerous addItIOnal benefIts and
features Database functions can be performed easIly WIth a mInImUm of key strokes The
follOWIng are some of the advantages and charactenstIcs that menus proVIde

1 Operators WIll only be allowed to select Items that are authonzed to use

2 TYPIng errors are reduced

3 ChOIce of menu dIsplay styles (Full-screen, Pull-down or Bar)

4

5

HIerarchIcal and networked lInkIng of menus (User naVIgate up and down the
menu tree)

ApplIcatIon secunty and DynamIC menus

6 Background menu and Accelerator keys

7 OperatIng system commands (User may enter operatmg system from WIthIn
menu structure

7-1 DRAFT

8 SubstItutIon of parameter values

9 IntegratIon wIth SQL *Forms

711 Nammg ConventIOns

To promote consIstency withm an applIcatIOn, nammg conventIons allow software
developers to easIly IdentIfy the usage and functIon of an mdividual menu Menu names are
to be the standard eIght characters m length They are denved usmg the program/fIle name
scheme Please refer to SectIon 6 m the development of names The fIrst two characters
represent the major menu applIcatIon (1 e BR MR), the next two characters are the
subapplicatlon desIgnation for the menu, the last remaInIng four characters represent a umque
sequence number Because menus are stored at the operatIng system fIle level, names are to
be umque for the applIcation and across all systems

7-2 DRAFT

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

7 1 2 Screen Layouts

The followmg screen shows an example of the block structure that wIll be standard
for development m HID CRHP applIcatIons

Exhibit 7-1
THE STANDARD FOR DEVELOPMENT OF SQL*FORMS

__ IM~(~ il ~p
1,.:I:---)~'o1~t ~I

• ~f3 \nJ!
~ i ;G'~U

J--_--:iIo'~1
illl! ~~,

;.1(

~ ~~ 1000' __ ~Nl'wJj
;'fr;,~:, If

.... ~ ..

All screens wIll Identlfy the data In the top left box, the name of the source In the top
nght box, and the title of the screen In the center Each block on the screen should be
separated by a honzontallIne, unless the contents of the screen are logIcally thought of as one
record The screen IS to have a border on all sIdes The bottom left corner should dIsplay
the termmal from WhICh the screen has been evoked

7-3 DRAFT

7 2 SQL*Forms

SQL *Forms IS a flexIble applIcatIon bUlldmg tool that enables software developers to
develop form-based applIcatIOns for mampulatmg data m a database Data mampuiation and
query actIons are achIeved by means of functIon key operatIons and/or menu selectIons A
form IS a fill m the blanks template dIsplayed on a computer screen that allows a user to
enter, query, update and delete data from a database

The followmg are gUIdelmes for the development of SQL *Forms m HIO CRHP
applIcations These gUIdelmes descnbe cosmetIcs, nammg conventIOns, operatIOnal gUIdelmes,
and codmg standards for all SQL *Forms applIcatIOns

72.1 Message FIle

tables
A message fIle IS a way to gIve the system the followmg capabIlIties through Oracle

1

2

3

Replace Oracle error messages by defmed messages (ArabIc messages for
example)

Map many Oracle error messages mto fewer defmed messages to SImplIfy
matters to the end users

Defme messages for the user and have them defmed III one place to make
changmg the messages eaSIer

7 2 2 AutoHelp FIle

AutoHelp proVIdes automatIc on-Ime help for Forms (screens) bUilt III SQL *Forms at
the field level throughout the system As soon as the cursor prompt enters a fIeld assocIated
WIth Autohelp, InformatIonal help text appears at the bottom of the screen ThIS text descnbe
or provIdes a more IntellIgIble meamng to the user concernmg the edItmg or meamng of the
field It proVIdes more mformation than the field prompt gIves and furmshes speCial formats,
If any, that are reqUired for the fIeld

AutoHelp Informational text IS prOVIded for enterable fIelds only, fIelds that are user
changeable No InformatIOnal help IS prOVIded for fIelds that can not be entered by a user
The AutoHelp replaces the automatIc help WhICh IS associated WIth fIelds III theIr descnptlon
m SQL*Forms

The Internal function of AutoHelp IS that as soon as the cursor prompt enters a fIeld
the ON-NEW-FIELD-INSTANCE trIgger IS actIvated callmg the user eXIt HELP_ME WIthout
any parameters The user eXIt reads the current form and fIeld name and generates the system
code that searches for the most speCIfIc help for the fIeld In questIon

7-4 DRAFT

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The user help IS Implemented on the form level and eXIsts m the lIbrary to be
referenced by any software developer

1 Most FIelds WIll proVIde AUTO HELP m the followmg format

Enter FIeld FunCtion, Values/Format/Other Help

Example

Enter TransactIon Type Code, Press LIST FIELD VALUES for ValId
TransactIOn Types

7 2 3 Screen VarIables

If a fIeld IS a base table fIeld (that It corresponds to a column m a table), ItS name
must be the same as that of ItS correspondmg table column If a fIeld IS non-base table (used
for screen functions only), It IS assIgned a prefIX accordmg to the followmg

SCR < name> where "SCR _" IS the screen varIable prefIX

The screen varIable descnption dIsplayed upon user mput WIll follow the conventIon
for fIeld names m screen forms as

< FIeld name> Code 999

where 999 IS the fIeld code and X:X:f(X}CXXX:X:f(X}CXXX:X:f(X}CXXXX:1{XX IS the fIeld descnption
dIsplayed after acceptmg the fIeld code from the user

7-5 DRAFT

724 Tnggers

A tngger defmes an actIon taken when some database-related event occurs A trIgger
IS defmed WIth the CREATE TRIGGER statement A Block or pIece of PL/SQL code (the
tngger) IS executed when a partIcular database event IS trapped TrIggers can be of two
types, an SQL *Forms Runform trIgger or a Database trIgger The events on WhICh Orade
trIggers actIon mclude msert, update and delete events for a smgle table There can be a
trIggerIng event before and after each msert, update or delete statement For statements that
affect multIple rows, the trIgger fIres once for each row mstead of before or after the
statement Itself TrIggers are mapped to speCIfIc keys on a keyboard For a mappmg of
trIggers for both the VT220 and 7901 keyboard emulatIons, see ExhIbItS 7-2 and 7-3

The actlOns are expressed as a PL/SQL block, WhICh allows you to do Just about
anythmg to the database that IS appropnate for the event The programmer can access both
the old values and the new values for updates and call procedures and Issue SQL statements
that cause other tnggers to actIvate

WIth tnggers, the database can perform many functlOns that prevIously would have
had to be coded mto the applIcatIOn For example

1 Perform valIdations that cannot be enforced through fIeld defimtIOns

2 Populate screen fIelds WIth data

3 Check referentIal mtegnty on database tables

4 Redefme key functlons

5 Update audIt trails

6 Control the logIcal flow of an applIcatIon

The escape sequence for the trIgger mappmgs are III the followmg frIes

/home/blO/cntrl/oraterm
/bome/luo/ cntrl/vt220

= > 7901
= > vt220

An example of how to access these mappmgs from a shell scnpt follows

TERMI = /bome/luo/cntrl/vt220
TERM2 = vt220

runform30x -c $TERMI $TERM2 SYSCI001 user/password

7-6 DRAFT

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

J} I
\

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Accept/CommIt

Clear Block

Clear FIeld

Clear Record

Copy

Count Query HIts

Delete Backwards

Delete Character

Delete Record

DIsplay Error

Down

Enter Query

Execute Query

ExIt

FIrst Lme

Help

Insert Record

Insert/Replace

Last Lme

Left

LIst of Values

Next Block

Exhibit 7-2
KEY MAPPING VT220

PF4 Next FIeld Tab

AB PrevIous Block F8

F :1 PrevIous FIeld EscTab

AL Prmt Ap

Esc F17 Refresh Screen AR

FlO Return Return

Backspace RIght RIght

Remove Scroll Down Esc Down

AD Scroll Left Esc Left

Esc PF3 Scroll RIght Esc RIght

Down Scroll Up Esc Up

PF2 Select Return

PF3 Show Keys F9

Fl2 Up Up

Esc Esc Up Enter FIeld Help F13

PFI User Key I Fl4

AN User Key 2 Fl5

AA User Key 3 Fl6

Esc Esc Down User Key 4 F17

Left Report Pnnt F18

F6 User Key 6 F19

F7 User Key 7 F20

7-7 DRAFT

Exhibit 7-3
KEY MAPPING 7901

Accept/CommIt F4 Next FIeld

Clear Block AB PreVIOUS Block

Clear FIeld Fll PreVIOUS FIeld

Clear Record AL PrInt

Copy Esc FI7 Refresh Screen

Count Query HIts FlO Return

Delete Backwards Backspace RIght

Delete Character Delete Scroll Down

Delete Record AD Scroll Left

DIsplay Error Esc F3 Scroll RIght

Down Down Scroll Up

Enter Query F2 Select

Execute Query F3 Show Keys

EXIt FI2 Up

FIrst LIne Esc Esc Up Enter FIeld Help

Help FI User Key I

Insert Record AN User Key 2

Insert/Rep lace AA User Key 3

Last LIne Esc Esc Down User Key 4

Left Left Report PrInt

LIst of Values F6 User Key 6

Next Block F7 User Key 7

7-8

Tab

F8

EscTab
Ap

AR

Return

RIght

Esc Down

Esc Left

Esc RIght

Esc Up

Return

F9

Up

F13

FI4

FI5

FI6

FI7

FI8

FI9

F20

DRAFT

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

.if I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

7 2 5 TrIgger Names

Every tngger must have a name of a certam type In most cases, the type descnbes
the event that causes the tngger to fire (e g , ON-DELETE, KEY-NXTFLD, PRE-FORM)
If unsure of the type, use the lIst of values NotIce that these pre-defmed trIgger types all
contam a hyphen (-), a character not normally allowed for nammg SQL*Forms objects

A tngger can be owned by a fIeld, block or form If the fIeld and block IdentIfIers
are left blank, the trIgger IS owned by the form If only the fIeld IdentifIer IS blank, the
trIgger IS set at the block level The ownershIp of tngger determmes the scope m whIch It
operates

A name should be denved that IS meanmgful and representatIve of the actIon the
tngger wIll take Names should be chosen for theIr ease of memonzation and usage The
name must begm WIth an alphabetIC character and may be any combmation of alphabetIc and
numenc characters or the underscore The use of the underscore character IS to be mmimized
as much as pOSSIble and should only be conSIdered when formmg tngger names from more
than one word

The followmg conventIOns are to be used m CRHP Oracle tngger names

o

o

o

The name should IdentIfy the trIgger

It should be descnptive and convey a clear meanmg of the actIOn the tngger
WIll take

It should be a short and conCIse as pOSSIble

o It should be a maxImum of 12 characters

o The use of underscore character IS to be mInImIZed as much as pOSSIble

726 Control Blocks

A control block IS not assocIated WIth any table m the database Therefore, It
contams only non-base table fIelds Control blocks are used whenever the programmer wants
to dIsplay a group of mformation that does not come dIrectly from the database Control
blocks are used to dIsplay mformation to operators such as the current date and tIme or
statIstIcal mformatIon They can also be used for menus, help screens, header mformatIon
and scratch areas The fIeld on a control block can be populated by means of trIggers,
default values and, If enterable, user mput The HIO control block IS m the lIbrary reference
form LBRFIOOl frm

7-9 DRAFT

A LIbrary Form (LBRFIOOI INP) IS a form where all the standard trIggers and
procedures are located for reference or copymg by the programmers Whenever a change
m thIS standard IS made m the lIbrary form, programmers only have to regenerate forms to
mclude the changes m the standard (If they are usmg reference not copy)

7 3 ' C ' Standards

ThIS sectIOn defmes the 'C' Language programmmg conventIons used by the Cost
Recovery m Health Project (CRHP) software developers As stated m the Introduction, use
of a common programmmg style facIlItates software developers to move between systems and
modIfy code (wntten or enhanced), wIthout havmg to become accustomed to a new
programmmg style

The followmg gUldelmes are to help the software developer produce "QUalIty"
software havmg

1

2

3

Correctness
When executed, the software should produce the correct results m all cases, WIth no
system-produced error messages

ReadabIlIty
Another 'C' software developer should be able to understand what It does and how
It does It The ongmal developer has the responsIbIlIty of makmg the software easy
for mamtenance personnel to read and understand

Usability
The software developer must keep the user m mmd when desIgnmg software Upon
completIOn, the software IS to be turned over to the user The user may have lImIted
knowledge about what It does, but IS expected to execute It and make use of ItS output

73 1 Use of Global VarIables

Global varIables are an effective means of transmIttmg mformatIon between dIfferent
functIOns or modules of a program WIthout over-burdemng the mam functIon WIth many local
vanables However, do not use global varIables m place of good structured programmmg
practices

Global variables should always be gIven descnptive names There should never be
a global varIable, for example, named "X"

7-10 DRAFT

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

All global objects wIthIn a program must have umque names If a vanable must be
global wIthIn one source module, but IS not needed outSIde of that module, conSIder declarIng
It static In that way the name must not be umque SInce ItS eXIstence IS unknown outSIde of
the module (The dIsadvantage of declanng global vanables static, IS that they are
frequently InVISIble to debuggers)

7 3 2 IndentatIOn

In general, each Inner or separate block of code should be Indented one full tab stop
or several spaces from the outer block, a kInd of staIr steppIng structure

SplIt long lInes If necessary at a logIcal place, and place the remaInder Indented by
several spaces (dependIng on the SItuatIon and personal preference) from the lIne above

7 3 3 GOTO Statement

Use of the goto statement IS poor structured programmIng practIce The goto
statement should only be used as an escape from a program umt when an unusual event, such
as a fatal error, has occurred, or pOSSIbly as an escape from an on-umt It IS to be
mInImIZed at "all" cost

7 3 4 Wlnte Space

WhIte space Improves readabIlIty of the code and should be used lIberally ThIS
mcludes blank hnes to separate logIcally-connected blocks of code as well as spaces WIthIn
lines In general, there should be a space between each operator on a lIne, and a space
separatIng arguments of a functIOn ElImInate spaces where necessary to help set off portions
of an expreSSIOn that are logIcally related

There should be no more than one statement per lIne of code However, two or more
statements can be combIned on a SIngle lIne If they are very short and IntImately connected

7 3 5 Parentheses

Parentheslt1ze complex expreSSIOns wherever necessary to Improve theIr readabIlity,
even If parentheses are not StrICtly needed Redundant parentheses are perfectly acceptable
If they enhance the clarIty of the expreSSIon Over-Parenthesltlzatlon rarely hurts an
expreSSIOn and IS often eaSIer for readablhty

7-11 DRAFT

7 3 6 Comments

All C programs, functions and lIbrary routmes should contam a header statement
provIdmg a deSCrIptIon at the source, a sample of how to evoke the program, as well as any
mput crItena or output generated The author of the source and any modIfIcations should also
be IdentIfIed ExhIbIt 7-4 IS an example

Exhibit 7-4
HEADER COMMENTS

1***\
* DescnptIOn

* Sample Usage

* Input

* Output

ThIS IS a sample program to demonstrate the use of header
documentatIOn

myprog < fIle_name>

N/A

myprog rpt

*---
* Date Programmer Rei # DeSCrIptIOn
* ---------- ----------------- --------- ------------------
* 11101193 ABC 1 0 ImtIal Codmg
* 20108/94 XYZ 1 1 Enhance to wnte report m
* standard reportmg dIrectory

Throughout the code, comments should be provIded to clarIfy and explam usual
assIgnments or complIcated processmg The comments need to be wntten at the tune the
code IS wntten and not delayed Purpose and understandmg can be forgotten If the comments
are not wntten ImmedIately

7 3 7 Make FIles

It IS strongly recommended that development teams buIld and use lIbrarIes LIbrary
make flIes (mk) contam Shell SCrIpts WhICh faclhtates compIlatIOn of I C I hbrary routmes
The number of make fIles and theIr contents WIll be left to the dIscretion of the Programmmg
Manager Currently, there are three make ftIes, Ino mk, exe mk, and frm mk ExhIbIt 76
shows make flIes and theIr relatIOnshIp to shared object lIbrarIes

7-12 DRAFT

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

InformatIon contaIned m each follows

lnomk
ThIs make fIle creates the lIbHIO so shared objects

exemk
ThIS make fIle creates the {*} exe executable

frmmk
ThIS make fIle creates the hbFRM so shared objects

7 3 8 Header Files

Header fIles (h) contam common matenals to be used m 'C' source language
programs The number of header flIes and theIr contents wIll be left to the dIscretion of the
ProgrammIng Manager However, It IS strongly recommended that one, and only one header
hIe contaInIng external function declarations be created for each shared object (so) wlthm
an applIcatIOn ThIs header fIle would be a reference to IdentIfy all lIbrary functions contaIned
withm a shared object Currently, there are two header flIes, LBHD2001 h and
LBHD2002 h ExhIbIt 7 6 shows header flIes and theIr relationshIp to shared object lIbrarIes

InformatIon contaIned m each follows

o LBHD2001 h

Standard 'C' mclude flles

Global type defInItIOns

Call to LBHD2002 h

o LBHD2002 h

Prototype defmltlons for functIons encoded m shared object hbrary

External functIon declaratIOns

7-13 DRAFT

Sa.Jrce

I..Jcrary Source

Exea.rtalle

Exhibit 7-5
SHARED OBJECT LIBRARIES

I..JI:nlry Source

lim

7-14

ilWlcalJon
Source

~
~

Source

corrple

11m

DRAFT

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

:;-1 I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

8 SECURITY

System data are vItal to success but when damaged or m the wrong hands, they can
threaten success Oracle provIdes extenSIve seCUrIty features m order to safeguard
mformatlOn, both from unauthorIzed vIewmg and mtentlOnal or madvertent damage These
features are m addItion to securIty features proVIded by the UNIX operatmg system and the
securIty tables deSIgned by the HIO

8 1 System SecurIty

82

DefImtIon of Terms

o UNIX LOGIN

o USER

o USER ID

o PASSWORD

o ROLES

o GRANTS

UNIX Security

Check

Is used at the begInnIng of each termInal seSSIon and
allows a user to Identify hImself to the system

A umque IdentifIer that IdentifIes the UNIX user and the
Oracle schema to WhICh the user IS connected

IdentIfy the mdividual user sIgnmg onto an applIcation

Is the Oracle password WhICh authenticates the
speCIfIed User ID The password IS changeable
If requested by the user

A method by whIch users can be grouped together for
access and securIty reasons AuthOrIZatIon to use menu
Items IS granted to varIOUS prIvIlege categones called
roles

A grant IS a method to allow users access to certam
tables Users may obtam up to four levels of grants
SELECT, INSERT, UPDATE and DELETE

A user WIll enter the name of the apphcatIon (branch, chmc, etc) to WhICh they
want to access

Note The UNIX password for each apphcatIon IS the same as the apphcatlOD

8-1 DRAFT

Response

a A successful match between the UNIX logm and the applIcatIon passes control
to the menu securIty

b An unsuccessful match returns to the UNIX logm prompt

8 3 Menu SecurIty

HIO CRHP ApplIcatIon securIty mvolves the concept of USERS, ROLES and MENU
OPTIONS SecurIty tables have been estabhshed to support and drIve the securIty system

Levels of secunty are establIshed accordmg to the followmg

USER
An authorIzed user of the HIO CRHP system

USER SECURITY BY ROLE
IdentIfies the securIty level for a gIven user's role

MENU SECURITY
IdentIfIes the menu optIons assOCIated to a partIcular role The optIOns that a role
does not have access to, IS eIther dehIghhghted or not dIsplayed on the menu

8 3 1 ApphcatlOn SecurIty for Mam Module (VerIficatIon Check 1)

Check

a The Logm USER ID matches the USER ID stored m the table

b The password matches the correspondmg password stored m the table

Response

a A successful match of the USER IDs logs the user mto the Mam module and
gIves them access to those menu optIons assIgned to theIr role

b An unsuccessful match of USER IDs returns an error message denymg user
access to the system

Global varIables are assIgned user name, role, and trigger securIty mask

8-2 DRAFT

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

832 Username Grants (VerIficatIOn Check 2)

Check

a If the ROLE to WhICh the USERNAME belongs has been granted access to
a module, further access constramts may be placed on the USERNAME
through the use of GRANTS A USERNAME can be granted up to four level
of permISSIons SELECT, INSERT, UPDATE and DELETE

Response

a

b

If a USERNAME has not been GRANTED the appropnate permISSIons for a
partlcular functIon, the USERNAME IS not allowed access to those tables or
VIews

The ROLE a user WIll play m a partIcular apphcatlon wIll be defmed m the
ReqUIrements DefmItIon Documents Some users may not exactly fIt mto a
role and therefore could have addItIOnal restrIctIOns placed on them through
the use of GRANTS

84 Username and Password

Usernames and Passwords WIll not be hardcoded m any program

8-3 DRAFT

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

APPENDIX A

PROGRAMMER'S GUIDE TO THE PRECOMPILERS
PRO*C PRECOMPILER

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Programmer's GUIde to the PrecompIlers
PRO*C PrecompIler

1 Key concepts of Embedded SQL Programmmg

o

o

o

o

o

The term embedded SQL refers to SQL statements placed wIthIn an
applIcatlOn program The applIcatlOn program IS called host program because
It houses the SQL statements, and the language IS called host language

Embedded SQL Includes all the mteractlve SQL statements plus others that
allow the programmer to transfer data between ORACLE and a host program
There are two types of embedded SQL statements

Executable SQL Statements
Executable statements result In calls to the runtIme lIbrary SQLLIB
They can be used to connect to ORACLE, to defIne, query and
malllpulate ORACLE data They are also used to control access to
ORACLE data and to process transactIons They are placed whenever
host-language executable statements can be placed

Declarative SQL Statements
Declarative statements do not result In calls to SQLLIB and do not
operate on ORACLE data They are used to declare ORACLE
objects, commulllcatIons areas, and SQL variables They can be
placed wherever host-language declaratIons can be placed

SQL statements can be freely IntermIxed WIth host-language statements The
only reqUlrement IS that any SQL statement begInS wIth EXEC SQL and ends
WIth the host-language SQL statement termInator

Most application programs are desIgned to process StatIC SQL statements and
fIxed transactIons In thIS case the makeup of each SQL statement and
transactIon IS known before run time, 1 e It IS known WhICh SQL commands
WIll be Issued, WhICh database tables mIght be changed, WhICh columns wIll
be updated and so on DynamIc SQL statements have mtroduced an advanced
programmIng techlllque that lets a program accept or buIld SQL statements at
run time and take explicIt control over datatype converSIon

The ORACLE precompIlers treat a PLlSQL block like a SIngle embedded
SQL statement SImply declare the vanables to be shared WIth PLlSQL and
bracket the PLlSQL block WIth the keywords EXEC SQL EXECUTE and
END-EXEC

A-l DRAFf

o

o

o

o

Host vanables are the key to commUnICatIOn between ORACLE and the
program A host variable IS a scalar or array vanable declared m the host
language and shared WIth ORACLE, 1 e both the program and ORACLE can
reference ItS value The program uses mput host varIables to pass data to
ORACLE ORACLE uses output host vanables to pass data and status
mformatlon to the program Host variables must be prefIxed WIth a colon m
SQL statements to set them apart from ORACLE objects Any host variable
can be assocIated WIth an optional mdicator variable An mdlcator varIable
IS an mteger vanable that mdlcates the value or condItIOn of ItS host variable
Use mdlcator varIables to aSSIgn nulls to mput host vanables and to detect
nulls or truncated values m output host vanables

ORACLE recogmzes two kmds of datatypes mternal and external Internal
datatypes speCIfy how ORACLE stores data In database columns These data
are used to represent database pseudocolumns WhICh return speCIfIc data
Items, not actual columns m a table External datatypes speCIfy how data are
stored In host vanables ORACLE converts between these two data types
whether they are Input host varIables or output host vanables

ORACLE precompder allows the programmer to defme array host vanables
called host arrays and operate WIth a SIngle SQL statement Usmg the array
SELECT, FETCH, DELETE, INSERT and UPDATE statements, large
volumes of data can be quened and manIpulated WIth ease

When an embedded SQL statement IS executed, It eIther succeeds or falls, and
mIght result m an error warnIng ORACLE precompIlers proVIde two error
handlmg mechanIsms

SQL CommnmcatIOn Area (SQLCA)
The SQLCA IS a data structure copIed or hardcoded mto the host
program It defmes program varIables used by ORACLE to pass
runtIme status mformatIOn to the program

WHENEVER Statement
WIth the WHENEVER statement, the programmer can speCIfy actIons
to be taken automatically when ORACLE detects an error or warnIng
condItIon

A-2 DRAFT

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2 Meetmg Program ReqUIrements

o

o

o

The Declare SectIon
The programmer must declare all program vanables to be used m SQL
statements m the Declare SectIon The declare sectIon begm WIth

EXEC SOL BEGIN DECLARE SECTION,

and ends WIth

EXEC SOL END DECLARE SECTION,

Between these two statements only the followmg are allowed

host and mdicator varIable declaratIOns

EXEC SQL INCLUDE statements

host-language comments

MultIple declare sectIOns are allowed per precompIled umt The programmer
must defme at least one Declare SectIon even If It holds no declaratIOns

Usmg INCLUDE
INCLUDE statement allows the programmer copy fIles mto the host program
1 e sImIlar to #mclude m C If no file extensIOn IS specIfIed, the
precompIler assumes the default extensIon for source flIes DIrectory path
for INCLUDEd fIles can be set by speclfymg mIme or on the command hne

INCLUDE = path

There IS no need to specIfy a dIrectory path for standard flIes as SQLCA and
ORACA

ORACLE Datatypes
At precompIle tIme, an external datatype IS assIgned to each host varIable m
the Declare SectIon At run tIme, the datatype code of every host varIable
used m a SQL statement IS passed to ORACLE ORACLE uses the codes to
convert between mternal and external datatypes Before asslgnmg a
SELECTed column value to an output host varIable, ORACLE converts the
mternal datatype of the source column to the datatype of the host varIable
ConversIOns between mternal and external datatypes follow the usual data
converSIOn rules

A-3 DRAFT

o

o

o

Pomter VarIables
C, Pascal and pur support a specIal class of varIables called pomters whIch
pomt to other host language vanables Pomters can be defmed as host
vanables m the Declare SectIon If used as SQL statements, prefIx pomters
WIth a colon () mstead of the speCIal character Except for stnng values, the
SIze of the referenced value IS that of ItS declared base type ORACLE
determmes the SIze of stnng values at run time by callmg a stnng-Iength
functIon

V ARCHAR Variables
The programmer can use the V ARCHAR pseudotype to declare
vanable-Iength character stnngs When mampulatmg LONG or V ARCHAR2
column values, the programmer mIght fmd It more convellient to use
V ARCHAR host varIables mstead of standard C character arrays
V ARCHAR can be defmed m Declare SectIon as an extended C type or
predeclared struet

EXEC SOL BEGIN DECLARE SECTION,
V ARCHAR username[20],

EXEC SOL END DECLARE SECTION,

mto the followmg struct WIth array and length members

struct {

}

unsigned short len,
unsigned char arr[20]'

ORACLE puts the actual length of the character strIng m the length member
The programmer speCIfIes the maxImum length of a V ARCHAR varIable m
Its declaratIon The length must lie m the range 1 65533 The length
member holds the current length of the value stored m the array member In
SQL statements, reference V ARCHAR varIables usmg the struct name
prefIxed WIth a colon In C statements, reference V ARCHAR varIables usmg
the member names If the programmer SELECTs or FETCHes a null mto the
array member of a V ARCHAR, ORACLE sets the length member to zero and
leaves the array member unchanged

IndIcator Variables
IndIcator vanables are used to aSSIgn nulls to mput host variables and detect
null or truncated values m output host vanables To Improve readabIlIty,
precede any mdicator variable WIth the optIonal keyword INDICATOR The
programmer must stIll prefIX the mdicator varIable WIth a colon

host variable INDICATOR indicator variable

A-4 DRAFT

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

o

An mdicator vanable must be explIcItly declared m the Declare Section as a
2-byte mteger, prefixed wIth a colon m SQL statements and appended to Its
associated host vanable m SQL statements and PLlSQL blocks An mdicator
vanable must not be used m the WHERE clause of a SQL statement, and not
prefIxed wIth a colon m host language statements It must not be appended
to ItS associated host vanable m host language statements and must not be an
ORACLE reserved word

Handhng Character Data
There are four types of character host vanables

1 char < name> [n] character array

2 char * name character pomter

3 V ARCHAR < name> [n] vanable-Iength stnng

4 V ARCHAR * < name> V ARCHAR pomter

The MODE option, speCIfIed on the command hne, determInes how the Pro*C
precompIler treats data m character arrays and strmgs The MODE optIon
allows the program to use ANSI fIxed-length stnngs or to maIntaIn
compatIbIlIty wIth preVIOUS verSIons of ORACLE and Pro*C WIth respect
to character handlmg, MODE={ANSI14 I ANSI13} IS eqUIvalent to
MODE=ORACLE The MODE optIon affects character data on Input (from
host vanables to ORACLE) and on output (from ORACLE to host vanables)
But, It does not affect the way Pro*C handles VARCHAR host vanables

On Input

For character arrays, on Input, the MODE optIon determInes
the format that a host varIable character array must have When
MODE = ORACLE, host varIable character arrays must be
blank-padded but not null-termInated When MOD E = ANSI, character
arrays must be null-termInated When MODE=ORACLE, traIlmg
blanks are strIpped before the value IS stored m the database When
MODE=ANSI, mput data m a character array must be
null-termmated

For character pomters, the pOInter must address a null­
termInated buffer that IS large enough to hold the mput data The
program must allocate thIS buffer and store the data before executIng
the mput statement

A-5 DRAFT

For VARCHAR vanables, when a V ARCHAR vanable IS used
as an mput host vanable, the program place the deSIred stnng m the
array member of the expanded V ARCHAR declaratiOn (< name> arr)
and sets the length member « name> len) There IS no need to
blank-pad the array Exactly < name> len characters are sent to
ORACLE, countmg any blanks and nulls

For VARCHAR pOInters, when a pomter to a VARCHAR IS
used as an mput host variable, enough memory must be allocated for
the expanded V ARCHAR declaratIon Then, the programmer must
place the deSIred stnng m the array member and set the length
member

On Output

For character arrays, on output, when MODE=ORACLE, host
varIable character arrays are blank-padded to the length of the array,
but they are never null-termmated When MODE=ANSI, character
arrays are blank-padded, then null- term mated

For character pomters, the MODE optIon does not affect the
way character data are output to the pomter host variable When the
programmer outputs data of a character pomter host variable, the
pomter must pomt to a buffer large enough to hold the output from the
table, plus one extra byte to hold a null termmator

For VARCHAR vanables, when a VARCHAR variable IS used
as an output vanable, the program mterface sets the length member but
does not null-termmate the array member As WIth character arrays,
the program must null-termmate the array member of a V ARCHAR
varIable before passmg It to a functiOn such as prmtfO or strlenO An
advantage of V ARCHAR varIables over character arrays IS that the
length of the value returned by ORACLE IS avaIlable WIth character
arrays, there mIght be a need to strIP the traIlmg blanks to get the
actual length of the character strmg

For VARCHAR pomters, when a pomter IS used to a
V ARCHAR as an output hot variable, the program mterface
determmes the variable's maxImum length by checkmg the length
member (< name> - > len) The program must set thIS member before
every fetch The fetch then sets the length member to the actual
number of characters returned

A-6 DRAFT

~f

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

o Data EqUlvalencmg
Datatype eqUIvalencmg allows the programmer to control the way ORACLE
mterprets mput data and the way ORACLE formats output data On a
vanable-by-vanable baSIS, the programmer can eqUIvalence supported C
datatypes to ORACLE external datatypes The programmer can also
eqUIvalence user-defmed datatypes to Oracle external datatypes By default
the Pro*C precompiler aSSigns a speCIfiC external datatype to every host
vanable

I Host Datatype I External Datatype I
char, char [n], char* VARCHAR2

char, char[n], char* CHAR

mt, mt* INTEGER

short, short* INTEGER

long, long* INTEGER

float, float* FLOAT

double, double* FLOAT

VARCHAR[n] VARCHAR

With the VAR statement, the programmer can overnde the default
aSSignments by eqUIvalencmg host vanables to ORACLE mternal datatypes m
the Declare SectIon WIth the followmg syntax

where

EXEC Sal VAR host_variable IS type_name [(length)],

host_variable is an mput or output host vanable declared earlier m the
Declare SectIOn

type_name IS the name of a valid external datatype

length IS an mteger literal specIfymg a valId length m bytes

U ser-defmed datatypes can also be eqUIvalenced to ORACLE external
datatypes FIrst, defme a new datatype structured like the external datatype
Then, eqUIvalence the new datatype to the external datatype m the Declare
SectIOn usmg the TYPE statement

A-7 DRAFT

o

o

I
EXEC Sal TYPE user_type IS type_name [(length)) I

[REFERENCE)

where REFERENCE IS used to declare a user-defmed type to be a pomter I
exphcItly or unphcItly

Embedded PL/SQL
InsIde a PLlSQL block, host vanables are treated as global to the entIre block
and can be used anywhere a PLlSQL vanable IS allowed Host varIables m
PLlSQL block must be prefIxed by a colon When entenng a PLlSQL block,
ORACLE automatically checks the length fIelds ofVARCHAR host variables
So, the programmer must set the length fIelds before the block IS entered
For mput host varIables, set the length to the actual length of the value stored
m t he array For output host variables, set the length to the maxImum length
all owed by the V ARCHAR In a PLlSQL block, the programmer can not
refer to an mdicator vanable by Itself, It must be appended to ItS associated
host vanable When entermg a block, if an mdicator vanable has a value of
-1, PLlSQL automatically aSSigns a null to the host variable When eXItmg
the block, If a host vanable is null, P LlSQL automatically aSSIgns a value of
-1 to the mdicator vanable

Connectmg to ORACLE
The Pro*C program must log on to ORACLE before querymg or mampulatmg
data To log on, use the CONNECT statement

EXEC Sal CONNECT username IDENTIFIED BY
password,

where username and password are char or V ARCHAR host variables
AlternatIvely, the programmer can use the statement

EXEC Sal CONNECT usr_pwd,

where the host varIable usr ywd contams the username and password
separated by a slash (I) The CONNECT statement must be the fIrst SQL
statement executed by the program The programmer can automatIcally log
on to ORACLE WIth the username

OPS$username

where username IS the current operatmg system user or task name and
OPS$username IS a vahd ORACLE username SImply pass to the Pro*C
precompIler a slash character

A-8 DRAFT

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

'cl?

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

3

EXEC SOL BEGIN DECLARE SECTION,

char oracle _Id = ' /' ,
EXEC SOL END DECLARE SECTION,

EXEC SOL CONNECT oracle_ld,

Handhng RuntIIDe Errors

o Key Components of Error Reportmg
Every executable SQL statement returns a status code in the SQLCA varIable
sqlcode, WhICh can be checked ImplIcItly WIth WHENEVER SQLERROR or
explIcItly WIth C code

Warnmg flags are returned m the SQLCA vanables sqlwarn[O] through
sqlwarn[7] WhICh the programmer can check wIth WHENEVER
SQLWARNING or wIth the C code These warmng flags are useful
for detecting runtIme condItIons not consIdered errors by ORACLE

The number of rows processed by the most recently executed SQL
statement IS returned m the SQLCA varIable sqlerrd[2] For repeated
FETCHes on an OPEN cursor, sqlerrd[2] keeps a running total of the
number of rows fetched

Before executmg a SQL statement, ORACLE must parse It, that IS
examine It to make sure It follows syntax rules and refers to valid
database objects If ORACLE fmds an error, an offset IS stored in the
SQLCA vanable sqlerrd[4], WhICh can be checked explIcItly The
offset specIfIes the character posItIon in the SQL statement at WhICh
the parse error beginS If the SQL statement does not cause a parse
error, ORACLE sets sqlerrd[4] to zero ORACLE sets sqlerrd[4] also
to zero If a parse error beginS at the fIrst character So, check
sqlerrd[4] only If sqlcode IS negatIve WhIch means that an error has
occurred

The error code and message for ORACLE errors are aVailable m the
SQLCA vanable sqlerrm sql errmc At most the fIrst 70 characters of
text are stored For messages longer than 70 characters, the
programmer must call the sqlglmO function

sqlglm (message_buffer, &buffer_slZe, message_length),

A-9 DRAFT

o

where

message_buffer IS the text buffer m WhICh the programmers
want ORACLE to store the error message ORACLE
blank-pads to the end of thIS buffer

I
I
I

buffer_SIze IS an mteger vanable that specIfIes the maXImum I
SIze of the buffer m bytes

message_length IS an mteger vanable m WhIch ORACLE stores I
the actual length of the error message Sqlglm functIon IS
usually called only when a SQL error has occurred If the
programmer calls when sqlcode IS zero, the result IS the I
message text assocIated WIth a prIor SQL statement

Usmg SQLCA
I

The SQLCA IS a record-lIke data structure Its fIelds contam error, warmng
and status mformation updated by ORACLE whenever a SQL statement IS
executed

A-lO DRAFT

I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
char squlcald[8],

long sqlabc,

long sqlcode,

struct squlerrm

char sqlerrp[8],

long sqlerrd[6],

char sqlwarn[8],

char sqltext[8],

Variables m SQLCA

unsigned short sqlerrml,

char sqlerrmc[70],

sqlerrd[O]

sqlerrd[l]

sqlerrd[2]

sqlerrd[3]

sqlerrd[4]

sqlerrd[5]

sqlwarn[O]

sqlwarn[l]

sqlwarn[2]

sqlwarn[3]

sqlwarn[4]

sqlwarn[5]

sqlwarn[6]

sqlwarn[7]

A-ll

I
Character stnng "SQLCA"

Length of SQLCA data
structure In bytes

ORACLE error message
code

Subrecord for stonng error
message

Length of error message

Text of error message

Reserved for future use

Array of SIX Integer status
code

Reserved for future use

Reserved for future use

Number of rows processed

Reserved for future use

Parse error offset

Reserved for future use

Array of eight warrung flags

Another warrung flag set

Character strIng truncated

No longer In use

SELECT lIst not equal to
INTO lIst

DELETE or UPDATE
without WHERE clause

Reserved for future use

No longer In use

No longer In use

Reserved for future use

DRAFT

o

o

By defmmg the symbol SQLCA_INT, the programmer can InItIalIze the
SQLCA varIables However, If the SQLCA IS declared as an auto varIable,
It mIght be ImpossIble to defme SQLCA _ INT because some operatmg systems
and C compIlers do not allow ImtIahzmg auto varIables m thIS way

Usmg WHENEVER
By default, precompIled programs Ignore ORACLE error and warmng
condItions and contInue processIng If pOSSIble To do automatic condItIOn
checkIng and error handlIng, the programmer needs the WHENEVER
statement WIth the WHENEVER statement the programmer can speCIfy
actions to be taken when ORACLE detects an error, warmng condItIOn or "not
found" condItIOn These actlons mclude contmumg WIth the next statement,
callmg a functIon, eXItmg a loop, branchmg to a labeled statement or
stoppmg

where

EXEC Sal WHENEVER < condition> < action> ,

<condItion> can be SQLWARNING, SQLERROR, NOT FOUND

<actIOn> can be CONTINUE, DO functIon_callO I break, goto
statement label and STOP

When USIng WHENEVER DO statement, the usual rules for entenng and
exltlng a functIOn apply However, passIng parameters to the functIOn IS not
allowed Furthermore, the functIOn can not return a value The programmer
can use the DO break actIOn to eXIt a loop prematurely or to keep executIon
from fallIng through to the next case In a SWItch statement Because
WHENEVER IS a declaratIve statement, ItS scope IS pOSItIOnal not logIcal
It tests all executable SQL statements that follow It In the source fIle, not In
the flow of program lOgIC Code the WHENEVER statement before the fIrst
executable SQL statement IS tested A WHENEVER statement stays In effect
untIl superseded by another WHENEVER statement checkIng for the same
condItIOn Also, make sure that all SQL statements governed by a
WHENEVER goto statement can branch to goto label 1 e goto label IS
VISIble to all functions

Usmg ORACA
The SQLCA handles standard SQL commumcatIons The ORACA IS a
SImIlar data structure copIed or hardcoded Into the program to handle
ORACLE-specIfIc commumcatIOns When the programmer needs more
runtIme InfOrmatIon then the SQLCA proVIdes, use the ORACA The
ORACA allows the programmer momtor the Pro*C program's use of
ORACLE resources such as the SQL statement executor and cursor cache, and
area of memory reserved for cursor management

A-12 DRAFT

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

char oracaId[8],

long oracabc,

long oracchf,

long orabdgf,

long orahchf,

long orastxtf,

struct orastxt

unsIgned short orastxtl,

char orastxtc[70] ,

struct orasnfm

unsIgned short orasfnml,

char orasfnmc[7O],

long oraslnr,

long orahoc,

long oramoc,

long oracoc,

long oranor,

long oranpr,

long oranex,

A-I3

Character stnng "ORACA"

Length of ORACA data
structure m bytes

Cursor cache conSIstency
flag

Master debug flag

Heap conSIstency flag

Save SQL-statement flag

Subrecord for stormg SQL
stat

Length of current SQL
statement

Text of current SQL
statement

Sub record for stonng flle
name

Length of fIlename

Name of fIle contammg
current SQL statement

Lme m fIle at or near
current SQL statement

HIghest
MAXOPENCURSORS
requested

MaxImum open cursors
reqUired

Current number of cursors
used

Number of cursor cache
reassIgnments

Number of SQL statement
parses

Number of SQL statement
executIOns

DRAFT

To declare the ORACA, hardcode or copy it mto the program With the
INCLUDE statement

EXEC SQl INCLUDE oraca,

To enable the ORACA, the programmer must also set the ORACA
precompller optIon to YES on the command lIne

ORACA=YES

or mIme wIth

EXEC ORACLE OPTION (ORACA = YES)'

Then, appropnate runtime optIons must be chosen by settmg flags m the
ORACA EnablIng the ORACA IS optIOnal because It adds to runtime
overhead The default settmg IS ORACA=NO

4 Usmg Host Arrays

The ORACLE Precompller allows the use of host arrays m data mampulatIon
statements The programmer can use host arrays as mput variables m the INSERT,
UPDATE and DELETE statements, and as output vanables m the INTO clause of SELECT
and FETCH statements The programmer can not declare host arrays of pomters

o

o

Selectmg mto Arrays
The programmer can use host arrays as output vanables m the SELECT
statements If the programmer knows the maxImum number of rows the
SELECT WIll return, sImply dImenSIOn the host arrays WIth that number of
elements If more than the number of elements where selected, It Just
retrIeves the fIrst < n > elements and ORACLE Issues an error message The
programmer must eIther dImenSIOn a larger array or declare a cursor for use
WIth the FETCH statement m order to fetch m batches The cumulative
number of rows returned can be found m the second element of sqlerrd m
SQLCA

Usmg host arrays m the WHERE clause of a SELECT IS not allowed except
m a subquery Also, the programmer can not mIX sImple host variables WIth
host arrays m the INTO clause of a SELECT or FETCH statements If any
of the host varIables IS an array, all must be arrays

Insertmg WIth Arrays
The programmer can use host arrays as mput variables m an INSERT
statement Make sure the program populates the arrays WIth data before
executmg the INSERT statement If some elements m the arrays are
Irrelevant, the programmer can use the FOR clause to control the number of
rows mserted The cumulatIve number of rows mserted can be found In

sqlerrd[2]

A-14 DRAFT

\Dl ~

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

o

o

o

o

The programmer can not use an array of pomters m the VALUES clause of
an INSERT statement MIxmg sImple host vanables WIth host arrays m the
V ALUES clause of an INSERT statement IS not allowed

Updatmg wIth Arrays
The programmer can use host arrays as mput vanables m an UPDATE
statement The cumulative number of rows mserted can be found m sqlerrd[2]
The number does not mclude rows processed by an update cascade If some
elements m the arrays are Irrelevant, the programmer can use the FOR clause
to control the number of rows mserted MIxmg sImple host vanables wIth
host arrays m the SET or WHERE clause of an UPDATE statement IS not
allowed Furthermore, If the programmer uses a host array m the SET
clause, the programmer must use one m the WHERE clause However, theIr
dImenSIOns and datatypes need not match The programmer can not use host
arrays WIth the CURRENT OF clause m an UPDATE statement

Deletmg wIth Arrays
The programmer can use host arrays as mput vanables m a DELETE
statement It IS hke executmg the DELETE statement repeatedly usmg
succeSSIve elements of the host array m the WHERE clause Each executIOn
mIght delete zero, one, more rows from the table The cumulative number
of rows deleted can be found m sqlerrd[2] The number does not mclude
rows processed by a delete cascade MIxmg sImple host variables WIth host
arrays m the WHERE clause of a DELETE statement IS not allowed The
programmer can not use host arrays wIth the CURRENT OF clause m a
DELETE statement

Usmg IndIcator Arrays
The programmer uses mdicator arrays to assIgn nulls to mput host arrays and
to detect null or truncated values m output host arrays

Usmg FOR Clause
The programmer can use the optIonal FOR clause to set the number of array
elements processed by any of the followmg SQL statements DELETE,
EXECUTE, FETCH, INSERT, OPEN and UPDATE The FOR clause
allows the programmer hmit the elements used to Just the number that IS
needed

EXEC SQl FOR < Integer _ host_variable> INSERT

where mteger_host_vanable IS to count array elements The programmer can
not use the FOR clause m a SELECT statement or WIth CURRENT OF
clause

A-15 DRAFT

o Usmg WHERE Clause
ORACLE treats a SQL statement contammg host arrays of dImensIOn n lIke
the same SQL statement executed n tlmes WIth n dIfferent scalar vanables

5 DynamIc SQL

Most database applicatIOns do a specIfic Job of knowmg whIch tables mIght change,
the constramts defmed for each table and column, whIch columns mIght be update and the
datatype of each column However, some applIcatIOns must accept and process a varIety
of SQL statements at run tIme The statement's makeup IS unknown untIl run tIme Such
statements can and wIll change from executIon to executIon ThIS IS called DynamIc SQL
statements UnlIke statIc SQL statements, dynamIc SQL statements are not embedded m the
source program Instead, they are stored III character strmgs Illput to or bUllt by the program
at run time They can be entered mteractlVely or read from a fIle

To represent a dynamIc SQL statement, a character strmg must contam the text of a
valtd SQL statement but not EXEC SQL clause, host-language deltmiters, statement
termmator or any of the folIowmg embedded SQL commands CLOSE, DECLARE,
DESCRIBE, EXECUTE, FETCH, INCLUDE, OPEN, PREPARE and WHENEVER In
most cases, the character stnng can contam dummy host varIables They hold places m the
SQL statement for actual host varIables Because dummy host varIables are Just
placeholders, the programmer does not declare them and can name them anythmg

TypIcally, an appltcation program prompts the user for the text of a SQL statement
and the values of host varIables used m the statement ORACLE then parses the SQL
statement That IS ORACLE exammes the SQL statement to make sure It follows syntax
rules and refers to valtd objects Next ORACLE bmds the host varIables to the SQL
statement That IS ORACLE gets the addresses of the host varIables so that It can read or
WrIte theIr values ORACLE then executes the SQL statement

There are tour methods for defmmg dynamIc SQL statements

1 Nonquery WIthout mput host varIables

2 Nonquery WIth known number of mput host varIables

3 Query WIth known number of select-Itst Items and mput host vanables

4 Query WIth unknown number of select-lIst Items or mput host varIables

Method One allows the program to accept or buIld a dynamIc SQL statement, then
Immediately execute It usmg the EXECUTE IMMEDIATE command The SQL statement
must not be a query (SELECT statement) and must not contam any placeholders from mput
host varIables The SQL statement IS parsed every time It IS executed

A-16 DRAFT

b1 \

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

For example

'DELETE FROM EMP WHERE DEPTNO = 20'
'GRANT SELECT ON EMP TO scott'

Method Two allows the program to accept or buIld a dynamIc SQL statement, then
process It usmg the PREPARE and EXECUTE commands The SQL statement must not be
a query The number of placeholders for mput host varIables and the datatypes of the mput
host varIables must be known at precompIle time The SQL statement IS parsed Just once
but can be executed many times wIth dIfferent values for the host variables SQL data
defmItIon statements such as CREATE and GRANT are executed when they are PREPAREd

For example

'INSERT INTO EMP (ENAME, JOB) VALUES (emp_name, Job_title)'
'DELETE FROM EMP WHERE EMPNO = emp_number'

Method Three allows the program to accept or buIld a dynamIc query then process
It usmg the PREPARE command wIth the DECLARE, OPEN, FETCH and CLOSE cursor
commands The number of select-lIst Items, the number of placeholders for mput host
varIables and the datatypes of the mput host variables must be known at precompIle tIme

For example

'SELECT DEPTNO MIN(SAL), MAX(SAL) FROM EMP GROUP BY DEPTNO'
'SELECT ENAME, EMPNO FROM EMP WHERE DEPTNO = dept_number'

Method 4 allows the program to accept or buIld a dynamIc SQL statement, then
process It usmg deSCrIptors The number of select-lIst Items, the number of placeholders for
mput host varIables and the datatypes of the mput host vanables can be unknown untIl run
time

For example

'INSERT INTO EMP « unknown» VALUES « unknown>)'
'SELECT < unknown> FROM EMP WHERE DEPTNO = 20'

A-1? DRAFT

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

APPENDIX B

USER EXITS

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

User EXits

The followmg IS a step by step outlme of how to manage user eXIts as shared
objects withm ORACLE RDBMS

Step 1

Step 2

Step 3

Step 4

Step 5

If an Oracle user has never created a user eXIt lmked to a form, the fIrst step IS the
creatIOn of an Oracle program (genxtb) whIch IS used m all future user eXIt
processmg To create thIS program enter the followmg command

generate30 -to genxtb user/passwd

Once the dnvmg program has been created, an Oracle table (IAPXTB) needs to be
created for the Oracle user whIch IdentIfIes all of the user eXIts known to thIS user
To create thIS table enter the followmg command

genxtb user/passwd

At thIS pomt of the process, the user exit Itself should be created as an object and
placed m the user eXIt lIbrary object The standard makeflle for shared lIbrary
objects should be used to accomplIsh thIS The command for thIS IS as follows

make -f frm mk

Once the user eXIt has been created and placed mto the shared hbrary object, It needs
to be IdentifIed m the IAPXTB table To accomphsh thIS, enter the followmg

runform30 genxtb user/passwd

ThIS step WIll create a flle (zapxtb c) WhIch contams external declaratIons of all the
user eXIts that are IdentIfIed m the IAPXTB table To create thIS fIle enter

genxtb user/passwd lapxtb c

B-1 DRAFT

Step 6

Smce the runform30 command and the sqiform30 command are used to access forms
subsequently, user eXIts are 'C' programs A VariatIon of these commands
(runform30x and sqiform30x) need to be created m order to access any new user
eXIts that may be defmed ThIS step of the process needs to be done only one tIme
Because shared lIbrary objects are bemg used, the user eXIt Itself can be changed and
recreated as many times as IS necessary wIthout havmg to do thIS step The functIon
of thIS step merely lmks the external declaratIons denved m Step 5 to the
runform30x and sqIform30x programs

The command for thIS step uses a modIfIed verSIon of the forms makeflle proVIded
by Oracle The modIfIcation SImply references the dIrectory as well as the shared
lIbrary object that contams the user eXIt The followmg should be entered to do thIS

make -f sqlforms30 mk sqlform30x

I
I
I
I
I
I
I

Step 7 II
The last step of the process IS to generate the form WhICh accesses the user eXIt usmg I
the new runform30 (runform30x) command and the new sqlform30 (sqiform30x)
command As WIth the runform30 and the sqlform30 commands, the form WhICh
accesses the user eXIt needs to be created only one time The user eXIt Itself can be I
created as many times as necessary WIthout havmg to do thIS step The command for
thIS step IS

sqlforms30x user/passwd = = = = = = > load file Option
= = = = = = > Generate file Option

B-2 DRAFf

I
I
I
I
I
I
I
I
I

