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FOREWORD

In their efforts to meet the challenges of growth, poverty alleviation, and natural
resource conservation goals, and in reaction to the rapidly shrinking agricultural
frontier in most areas of the tropics, countries throughout the developing world are
taking a fresh look at the potential contribution that less-favored agricultural lands
can make. These lands are not now or ever likely to be the "bread baskets" of the
developing world. Rather, they suffer from inadequate or highly erratic rainfall,
poor soils, or both, and are often located long distances from markets for agricul
tural inputs and products. Because they offer poor returns to investments in agricul
tural research and infrastructure, they have generally been ignored by policymakers
and researchers alike.

Although these less-favored lands do not offer textbook conditions for large
returns to agricultural investments, like those realized in more-favored lands over
the past three decades, they represent an untapped source of growth-one that
policymakers cannot afford to overlook at a time when returns from more-favored
lands are declining. Investments in these areas may also be cost-effective means to
alleviate poverty and assure sustainable management of natural resources.

But will development patterns in the less-favored lands be similar to those in the
more-favored lands? Should we expect to witness the rapid and geographically
comprehensive changes in production patterns and technology use that accompa
nied Green Revolution investments in more-favored lands? Will these farmers also
come to rely on just a few crops that benefit from seed, fertilizer, and irrigation
technology packages? Probably not, although little is known about the nature of
changes in product mix and technology use associated with development in less
favored lands and the policies needed to promote them.

This research report by Marc Nerlove, Stephen Vosti, and Wesley Basel takes
up these issues in the context of one agriculturally less-favored area in Brazil, the
Zona da Mata in the state of Minas Gerais. The analysis describes farm-level
changes associated with an integrated rural development project, with particular
emphasis on how farming systems (based on product mixes) changed during the
course of that project, and how these changes in product mix affected the use of
modern agricultural technologies. The authors develop useful methodologies for the
analyses of these issues.

The results suggest that improvements in agricultural productivity and dramatic
changes in product mix are both possible, despite the ecological and economic
conditions that tend to slow down agricultural development in these areas. This should
come as welcome news to researchers and policymakers throughout the developing
world, especially those now searching for more geographically comprehensive devel
opment strategies to meet food security objectives sustainably in the next century.

Per Pinstrup-Andersen
Director General
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1

SUMMARY

Until agricultural technology is developed for exploiting the surface of the sea
and areas presently too arid or too cold for cultivation, most developing countries
seeking to increase agricultural production have no alternative but to increase the
productivity of agriculture on land already under cultivation. In relatively high
potential areas, here defined as those with soil and climatic conditions conducive to
the production of basic foodgrains, how to apply Green Revolution technologies and
the policies used to promote them and sustain their efficient use are generally known.
While environmental externalities associated with the intensification of agriculture
using such technologies are not well understood and the implications for policy of
these externalities are not always clear, methods for securing essential production
increases in high-potential areas currently not using modern agricultural technologies
are known.

How to raise productivity on low-potential or marginal lands is less certain.
Where Green Revolution technologies have been applied to marginal lands with
diversified output, expected goals in yield increases, technology adoption rates, the
degree of on-farm or regional specialization, and environmental sustainability have
often not been reached. To improve success rates, rural development strategists and
policymakers must have a better understanding ofthe process ofadopting technology
in these areas and the constraints to adoption. This study contributes to improved
understanding by focusing on the links between technology adoption in agriculture
and the (at least partially) exogenously determined farm-level product mix and
output diversification decisions.

The setting for this study is the Zona da Mata area of the Brazilian state ofMinas
Gerais-a marginal area for agricultural production, principally because of erratic
rainfall, limited irrigation potential, generally poor soils, and a rugged terrain that
does not lend itself to mechanization or economies of scale in most aspects of
agricultural production. Longitudinal data based on a stratified random sample of
farm households linked to the government's Programa de Desenvolvimento Inte
grado da Zona da Mata (PRODEMATA) regional development program are the
empirical underpinnings of this study.

First, the product mix is quantified using a product weighting scheme to deter
mine the degree of farm-level output diversification. Second, farms are put into
categories according to their degree of output diversification using cluster analysis, a
statistical method for forming groups of observations. Off-farm labor is included in
the list of ways farm households diversify their incomes. The five relatively stable
categories that emerged from this analysis are farms that produce coffee, corn, dairy,
and rice products; off-farm labor is the fifth category. These categories then serve as
a basis for examining the factors that influence adoption of technological change,
both within and across farm categories.
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Third, regression analyses with single and multiple variables are used to explore
the links among variables related to the scale of operation, the farm area, the degree
of output diversification, and, as a measure of technology adoption, expenditures on
modern inputs.

Finally, the characteristics of farms with a stable output mix (that is, those farms
that did not alter their product mix during the sample period) are compared with those
that made substantial changes over time in the composition of products produced.
Among the characteristics compared is the use of modern agricultural technologies.

The following findings emerged from the analysis:
• The average degree of output diversity is high and varies substantially across

farms, even within farm categories.
• Empirical results fail to show significant statistical links within and across

farm categories between output diversification and expenditures on modem
inputs, with the notable exception of the coffee category.

• Expenditures on modern inputs were proportional to the scale of operation for
all farm categories. That is, expenditures on modern inputs were not linked to
the measure of farm-level output diversification: less diversified farms spent
approximately as much on modern technologies as their more diversified
counterparts.

• Some farm categories have a much more stable product mix than others.
Although the more stable and less stable farms differed substantially in their
average use ofmodem inputs, the close and proportional link between the scale
ofoperation and modern input purchases persists across all farms, regardless of
the stability of their respective product mixes in the long run.

Several important policy implications are associated with these research results.
If technology adoption is not linked to product mix or output diversification, then the
returns to adoption of policies aimed at increasing output (such as extension pro
grams) may not be large. The absence of links between product mix and technology
adoption suggests that supply constraints that face all producers (more or less
equally) in an area have a powerful impact on technological change. These supply
constraints may include access to credit and climatic- or soil-based constraints to
technological change. Finally, and perhaps most important in light of the low poten
tial of the study area, many farms did quite radically alter their product mix during
the sample period, 1979-84, suggesting that the potential for farmers to respond to
appropriate changes in policy or technology or both is great.

2



2

INTRODUCTION

Over the past 30 years, the use of modern technology on high-potential agricul
tural lands has generated large increases in the yields of staple crops (Plucknett
1993). These yield increases have generally been accompanied by increased farm
level and regional specialization, particularly in the relatively few products for which
new technologies were available (Hazell and Ramasamy 1991; Lipton and Longhurst
1989). The degree of success on high-potential land (measured in terms of efficiency
and equity) has been so great (David and Otsuka 1994) that researchers and policy
makers alike have been quick to attempt to replicate Green Revolution experiments
in marginal areas, promoting their efforts as schemes for the alleviation ofpoverty as
well as strategies for increasing food production (de Haen 1991).

Unfortunately, the results of applying Green Revolution technologies to marginal
areas have often been disappointing. Even where technologies are appropriate, the
rates at which adoption has occurred have been slow, yields have been significantly
lower and less uniform (both across farms and over time) than in the high-potential
areas, farm-level product specialization has been incomplete, and the environmental
costs (especially in soil degradation and loss of forest cover) have been high (World
Resources Institute 1994; World Bank 1992). Clearly, new strategies (and possibly
new technologies) are required if marginal areas are to participate in technology-led,
yield-based agricultural growth that does not degrade the environment. I Since the
absence of farm-level product specialization and slow growth in productivity seem to
go hand in hand, a logical first step in generating new development strategies is to
explore the links between crop choice and technology adoption decisions in marginal
areas composed of small farms with a range of output mixes.

Much of the literature on the adoption of modern agricultural technology and the
use of modern inputs takes for granted that supply constraints, credit constraints,
farmers' perceptions of the benefits of new technology, and their limited knowledge
of modern inputs and their effects jointly or separately determine the adoption and
spread of modern agricultural techniques (Reardon and Vosti 1992; Lipton and
Longhurst 1989; Feder, Just, and Zilberman 1985). Further, the literature usually
assumes (implicitly or explicitly) that the causation runs in one direction from the
adoption of new technology to subsequent changes in product mix.

Agroclimatic constraints, the quality of the soil, topography, climate, availability
of water, and the like are clearly fundamental in the determination of what crops and
livestock products can be, and therefore may be, produced in a given region and on a
given farm. But product- and input-specific price policies and infrastructure,

lThis study follows Vosti and Witcover's (1996) conjecture that only private costs matter in farm-level resource
allocation decisions, including those involving technical choice; therefore externalities are excluded from this
analysis. On-farm resource degradation is included in the form of reduced yields on degraded or degrading lands.
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especially as infrastructure relates to the marketing of specific modem inputs and
farm products, greatly affect the extent to which favorable agroclimatic conditions
may be translated into specific production decisions (Ayres et al. 1991).

By its very nature, biologically oriented agricultural research generates product
specific technologies. These technologies may interact with product mix and agro
climatic constraints in the adoption of modem technologies. Changes in product mix
may clearly result from the decision to adopt new technologies, especially new
varieties of crops or livestock as illustrated by the spread of soybean cultivation and
of Zebu cattle into areas of Brazil considered too hot and dry to support them.2

Moreover, a highly diverse agriculture may become increasingly concentrated in a
few crop or livestock products especially favored by the existence of more efficient
modem technologies, depending on whether infrastructure and agroclimatic condi
tions permit and price policies provide appropriate incentives.

But the causation may clearly work in reverse. Products already important in a
region or on a specific farm (perhaps as the result of agroclimatic constraints) may
weigh heavily in farmers' decisions to adopt or not adopt modem technologies and
the extent to which these decisions are translated into purchases of inputs produced
off-farm.

Thus, on the one hand, adoption decisions may lead to changes in product mix,
particularly to concentration on a few products, while, on the other, particular mixes
of products may facilitate or slow the adoption of new technologies. Ecological
constraints to changes in product mix and the often product-specific nature of
technical change will greatly influence these links between cause and effect.

As suggested above, the use of inputs purchased off-farm, such as insecticides,
chemical fertilizers, or feed supplements, is one and often the best indicator of the
extent to which modern technologies and practices have been adopted. But clearly,
because infrastructure affects the availability of inputs and whether various crops and
livestock products that make use of purchased inputs are produced, it determines the
degree to which decisions to adopt modern practices are translated into the use of
purchased modern inputs.

The purpose of this report is to explore the role of farm-level output diversifica
tion in the adoption and use of modern agricultural technologies in an agroecologi
cally and economically marginal area. In doing so, questions such as the following
are addressed: Does the production of certain types (or combinations) of agricultural
products promote or inhibit the use of modern technologies? Does concentration of
farm-level output in particular products reduce or increase technology use? Finally,
are farmers who radically alter their product mix over time more or less likely to use
modern technology intensively? These and a series of related hypotheses are tested
empirically using data drawn from the agriculturally diversified but poor Zona da
Mata region of Minas Gerais, Brazil.

The method of analysis used is part way between a true structural analysis and
simple data analysis. Confluent relationships among the use of modern inputs,
various measures of the size of producing units, and the degree of product diversifi-

2Personal correspondence with Dr. Eliseu Alves, fonner president of Empresa Brasileira de Pesquisa
Agropecuaria (EMBRAPA).
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cation are examined. The relationships are called "confluent" in the older economet
ric literature because they relate several endogenous variables (Haavelmo 1944).3
Farms are grouped into product-mix types in order to focus attention on the relation
between farm-level output mix and the adoption and use of modern agricultural
technology (in the sense of use of purchased inputs). This emphasis on product mix
is motivated primarily by the high degree of farm-level output diversification (both
within and across farm types) in the area covered by the sample, and the presumption
among agricultural economists working in the Zona da Mata that the series of
large-scale policy intervention schemes (for example, PRODEMATA)4 designed for
this marginal region have not altered the patterns of general stagnation and lack of
responsiveness in agriculture.

It is important to note that off-farm labor provided by farm household members
is explicitly included in the list of agricultural outputs. As physical infrastructure
improves and demand for labor increases in both the agriculture and nonagriculture
sectors, wage labor is likely to be an increasingly important component of household
income, both as an alternative income source and as a potential source of cash needed
for market purchases of production inputs as well as consumption goods (Reardon,
Matlon, and Delgado 1988).

Chapter 3 contains a brief description of the study area and the data used.
Chapter 4 highlights the diversified nature of agricultural production in the Zona da
Mata and presents indexes of crop and livestock output and total output (including
off-farm labor), which is subsequently used as a basis for the initial clustering
exercise adopted. Chapter 5 provides an overview of the clustering procedure
adopted and the resulting farm types suggested by the data. Chapter 6 contains a
series of univariate and bivariate analyses with special attention paid to the interrela
tionship between the scale and concentration of output and the use of modern inputs
in agriculture. Chapter 7 presents some preliminary intertemporal analyses focusing
on the characteristics of farms that do not significantly vary their output mix over
time and contrasts them with farms where substantial changes in output mix have
been made over the six years covered by the sample (1979-84), with special refer
ence to the expenditures on modern farm inputs. Chapter 8 concludes with directions
for further research and a discussion of the policy implications of the results with
respect to possible policies that might quicken the pace of agricultural modernization
in output-diversified, marginal areas like the Zona da Mata. Finally, a technical
appendix explains the technique of cluster analysis.

3In a system of simultaneous operations explaining several endogenous variables, a statistical association among
two or more endogenous variables is called "confluent." The term "confluent relationship" is often contrasted with
autonomous or structural relationships.
4Programa de Desenvolvimento Integrado da Zona da Mata (PRODEMATA) was a government-sponsored
integrated rural development project for the Zona da Mata (semi-arid zone) of the state of Minas Gerais. It was
cofinanced by the World Bank and took place during the period 1978-85.
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3

DATA

Data for this study were drawn from surveys collected over the period 1979
through 1984 to monitor the progress ofPRODEMATA in the impoverished Zona da
Mata (see Figure 1). This hilly region contains soils ofvarying quality with declining
fertility; erosion is more of a problem at higher elevations. The climate is tropical,
with a rainy season spanning October to April and an annual average temperature of
22°C (peaking at an average of 32° in December). Close to 90 percent of the sample
farms contain fewer than 100 hectares, with a substantial proportion of these with
fewer than 10 hectares. Sharecropping arrangements are common. In addition to an
initial baseline study undertaken in 1975, detailed agricultural production and socio
economic information was collected using annual retrospective survey question
naires in July of each year.

Production data on a large set of agricultural products were solicited. Data
included inputs and outputs, details on the types and degrees of market linkages, as
well as detailed information about the process of transferring knowledge through
contact with agricultural extension agents, farmers' organizations, and the like.
Special care was taken to note the extent and type of intercropping, although plot
level information was not available. Detailed data were also collected on livestock
production and on income from off-farm sources. Land use and land reclamation
practices also received special attention, especially farm-level investments in flood
plains and reforestation. Finally, the annual retrospectives yielded information to
construct yearly socioeconomic profiles of the families and the municipios (similar
to a county or district) included in the study.

The initial sample for the PRODEMATA study included approximately 800
farmers. The sample was stratified by farm size, skewed toward the smaller, poorer
farms targeted by the PRODEMATA project; it included a representative number of
sharecroppers. Primarily due to the high percentage of older farmers in the initial
sample population of landowners and the decision by the research group monitoring
the project to drop observations in the event of land distribution following the death
of an owner or sale of the property, the sample size fell to 384 by 1984. Therefore,
the final panel used in this analysis contains the 384 farmers who were continuously
present throughout the monitoring process. 5

It should be noted that the sample selected in this region tends to be older than
the norm, with the age of household heads averaging 57 years. While this may limit
the ability to generalize the research results beyond the Latin American context,
trends in rural to urban migration worldwide (and particularly in Latin America) are
likely to make the Zona da Mata sample more rather than less typical.

5An analysis by Bradley (1990) suggests that no significant selectivity biases resulted from this decrease in sample
size.
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Figure I-Zoua da Mata, Minas Gerais, Brazil
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4

FARM-LEVEL DIVERSIFICATION
AND PRODUCT MIX

In order to examine the impact of output mix on technological adoption, it is first
necessary to define a system of farming types based on product mix for the region.
To do so, an index of total output is formed by combining crop and livestock output
and off-farm labor, aggregating different products (including off-farm labor) accord
ing to a system ofconstant relative price weights. Within this framework, 13 different
crop and livestock products are distinguished in addition to off-farm labor; then the
percentage of each product in total output is calculated. The farms are then grouped
by farm types based on these percentages, using statistical cluster analysis. (For
technical details about cluster analysis, see the Technical Appendix.) On the basis of
clustering results from several specifications, farms are divided into five different
farm types, a classification that is found to be most stable over time. Classification
into a greater number of clusters results in groupings of farms that change over time
(the more clusters distinguished, the greater the instability), and fewer clusters did
not adequately characterize production patterns.

Table 1 illustrates the highly diversified nature of agricultural production in the
Zona da Mata. Most of the farmers produce three or more crops and two or more
livestock products simultaneously. Certain site-specific exceptions to diversification
do exist. For example, farms near refineries predominantly produce sugarcane, but
they are clearly exceptions. The diversified nature of farming persisted throughout
the 1979-84 period covered by the sample.

The PRODEMATA survey data on outputs used in the analysis are summarized in
Table 2. Information on 17 categories of livestock production and 16 categories ofcrop
production (including prices) are included. For livestock, the quantity produced is
defined as the sum ofquantities sold and consumed. For crops, total output is measured
in annual gross production. Given the high degree of intertemporal price variation and

Table 1-Product diversification matrix, 1982

Number of Number of Crops
Animal
Products 0 2 3 4 5 6 or more

0 2 2 2 4 3 I I
I 0 0 1 2 3 0 0
2 2 4 12 16 12 4 I
3 I 9 15 38 51 12 2
4 1 2 13 25 26 16 3
5 1 9 4 12 22 11 7
6 or more 1 I 8 14 39 18 6

Source: Derived from the PRODEMATA data set, University ofVic;osa, 1986.
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Table 2-Categories of agricultural production in the PRODEMATA survey

Category

Livestock
Leite
Laticinios
Reprodutores
Vacas paridas
Vacas falhadas
Novilhas enxertadas
Garrotas nao enxertadas
Machos desmamodas
Bois-de-carro
Equinos e muares
Suinos
Caprinos
Ovinos
Couro
Esterco
Aves
avos

Crops
Arroz em casca
Milho
Feijao consorciado
Feijao solteiro
Furno em corda
Tomate
Batata inglesa
Cebola
Outras culturas annuais
Horticultural (outras)
Cafe em coco
Cana-de-ayucar
Mandioca
Citrus
Banana
Fruticultura (outras)"

Translation

Livestock
Milk
Dairy products
Bulls
Cows with calves
Cows without calves
Bred heifers
Unbred heifers
Steerslbull calves
Oxen
Horses and mules
Hogs
Goats
Sheep
Hides
Manure
Chickens/fowl
Eggs

Crops
Rice
Com
Intercrop beans
Single-crop beans
Tobacco
Tomato
Potato
Onion
Other annuals
Other horticultural crops
Coffee
Sugarcane
Manioc
Citrus
Banana
Other fruits"

Unit

Liters/day
Kilograms/month
Head per year
Head per year
Head per year
Head per year
Head per year
Head per year
Head per year
Head per year
Head per year
Head per year
Head per year
Hides per year
Tons per year
Head per year
Dozens per year

50 kilograms per year
60 kilograms per year
60 kilograms per year
60 kilograms per year
15 kilograms per year
20 kilograms per year
60 kilograms per year
60 kilograms per year
Varies
Varies
30 kilograms per year
Tons per year
Tons per year
Hundreds per year
Hundreds per year
Varies

Source: Derived from the PRODEMATA data set, University of Viyosa, 1986.
"The other horticultural group contained five separate categories each year. The other fruit group contained one
category in 1979, and two categories in each subsequent year. In 1979, the other annual category was not
reported but was replaced with a peanut category.

insufficient information on inventories, changes in stocks are not considered. For
off-farm labor, 6 categories are reported, dividing labor into males, females, and
children in agricultural and nonagricultural jobs. All categories are in annual production
units, except for the dairy categories, which are multiplied to obtain annual units.

Once the product categories to be included in the analysis are determined, the
next step is to choose an appropriate weight for each category (to determine the
proportion of gross annual production value contributed by each group). Since the
primary purpose of this output index is to differentiate farms by their product mix, it
is desirable to eliminate as much variation caused by seasonal swings and inflation
ary trends as possible from these product weights. For this reason, the prices reported
in each category are averaged over farmers and over each agricultural year. To adjust
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for changes in relative prices over time, however, annual prices for each output
category are normalized (or deflated) by that year's average price of corn. The corn
price is chosen as the deflator because it is the most common product each year, and
the market for corn is well integrated across the survey area.

Table 3 reports the mean price of corn over the sample period for farms reporting
corn prices, whether or not the output was sold. Note that inflation was marked
during the 1979-84 period, but that reported corn prices across farms did not deviate
widely from the mean. Before computing the mean prices across farms, individual
prices are examined for obvious outliers. Outliers are defined informally as a price
observation isolated from the next closest observation. A more formal definition has
not been adopted since the considerable variation in prices makes any definition
based on standardized values impractical.

Table 4 presents the mean price and variation in prices over the period 1979-84,
as well as the number of farms reporting prices in each category. Note that in every
crop year most of the farmers in the sample produced corn, thereby lending credibil
ity to its use as a deflator. In addition, the large number of farmers reporting nonzero
production highlights the diverse nature of agriculture in the Zona da Mata.

The average relative prices for 35 output categories with corn as the deflator and
the intertemporal average relative prices used as the value weights in calculating the
shares of the value of total output attributable to each product are shown in Table 5.
The formula for an individual product weight (w) is:

(I)

where i indexes farms,) indexes years (l979-84),pij is the price of product i in year
), and pj is the mean corn price for year j. These weights are multiplied by the
quantity produced annually in each product category to obtain annual gross produc
tion value in each category. Summing across all categories gives total output value,
and dividing each category's value by this total gives the percent oftotal annual gross
output value within each category:

k -100 k k / R k k
Ci ij - w qij 2: w qij'

k=l (2)

where k indexes products and R is their total number, so crt is the percentage of total
production and qb is the physical quantity produced of the k1h product by the i1h

farmer in the jlh year.
The number of variables is reduced by aggregating several similar categories into

larger product groups to simplify the analysis. Since the farm-level output is a key
variable in defining diversity characteristics in the analysis that follows, it is impor
tant that this aggregation have a minimal effect on diversity. Initial aggregations
combine different products and by-products of what are perceived to be single
production activities. Milk, dairy products, bulls, cows, and manure are combined
into a "dairy" variable; steers, heifer types, and hides into a "beef' variable; fowl and
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Table 3-Corn price reports of sales versus on-farm consumption, 1979-84

Price Report from Farms Price Report from Farms
with Sales without Sales

Year Region Number Mean Number Mean

(Cr) (Cr)

1979 27 229.6 79 241.8
(49.7) (52.0)

2 49 226.7 191 233.0
(28.5) (38.8)

3 61 203.8 115 209.7
(25.7) (21.7)

All 137 217.1 385 227.8
(34.6) (39.8)

1980 27 375.2 66 387.9
(73.6) (56.3)

2 48 409.0 190 411.6
(69.0) (53.9)

3 41 402.0 123 403.3
(50.3) (51.5)

All 116 398.6 379 404.8
(65.0) (54.1)

1981 41 731.4 35 724.9
(12Q.6) (129.7)

2 53 757.2 141 823.4
(135.8) (537.2)

3 46 706.4 86 728.1
(120.9) (420.5)

All 140 733.0 262 779.0
(127.5) (465.7)

1982 32 1,062.5 43 1,065.1
(156.1) (174.4)

2 46 1,128.3 145 1,107.6
(200.7) (148.2)

3 80 1,034.2 49 994.9
(149.0) (70.9)

All 158 1,067.3 237 1,076.6
(170.8) (147.8)

1983 28 2,796.4 47 2,929.8
(656.9) (605.0)

2 20 3,175.0 146 3,379.5
(437.5) (679.6)

3 37 4,076.2 108 3,875.9
(669.5) (471.8)

All 85 3,442.6 301 3,487.4
(840.9) (683.7)

1984 22 10,759.1 48 11,500.0
(1,609.7) (1725.9)

2 26 10,192.3 121 10,322.3
(1,414.8) 0,501.1)

3 43 10,581.4 91 10,549.5
(981.6) (1,171.5)

All 92 10,507.6 250 10,619.2
(1,281.2) (1,499.4)

Source: Derived from the PRODEMATA data set, University ofVi~osa, 1986.
Note: Numbers in parentheses are standard deviations.
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Table 4-Mean and standard deviation of prices across all farms reporting a price, 1979-84N

Standard Standard Standard
Product Category N 1979 Mean Deviation N 1980 Mean Deviatiou N 1981 Mean Deviation

Livestock
Milk 278 5.0 2.7 277 10.4 4.8 244 25.8 6.3
Dairy products 40 40.4 11.4 49 80.1 15.6 53 152.5 39.5
Bulls 26 9,084.6 5,657.4 11 22,181.8 14,3514 15 31,333.3 11,616.9
Cows with calves in the
previous year 58 7,294.8 2,334.6 46 17,108.7 10,617.0 20 29,016.7 16,858.7

Cows without calves 83 6,877.1 5,982.2 62 14,933.9 7,367.8 54 19,257.4 8,987.6
Bred heifers 15 5,900.0 1,429.3 20 18,500.0 15,243.6 10 18,333.3 7,433.6
Unbred heifers 41 41,091.2 1,716.2 42 9,414.3 5,265.6 25 11,444.0 5,739.4
Steers 105 3,626.4 1,875.9 77 9,329.9 8,190.0 61 12,565.6 7,881.7
Oxen 23 9,163.0 6,850.5 10 20,600.0 8,896.9 12 28,979.2 8,788.2
Horses and mules 12 3,100.0 1,916.9 16 4,939.6 2,280.0 12 17,333.3 6,692.4
Hogs 352 531.6 417.1 397 916.2 188.4 342 1,337.0 225.9
Goats 4 550.0 369.7 7 1,280.0 1,213.3 6 1,435.0 604.1
Hides ... .. . ... 1 50.0 . .. 2 500.0 424.3
Manure 15 274.0 168.6 57 398.7 150.1 171 850.0 524.2
Fowl 393 52.2 53.3 475 814 24.0 394 165.6 50.6
Eggs " . " . . ., 424 35.1 6.7 394 63.1 16.4

Crops
Rice 366 369.4 99.2 357 619.9 165.8 312 936.9 237.4
Com 522 225.0 38.8 495 403.3 56.8 402 762.9 383.8
Intercrop beans 327 6814 120.3 316 2,045.3 523.5 307 4,203.0 868.0
Single-crop beans 182 677.1 123.2 174 2,310.7 425.6 156 4,482.4 716.2
Tobacco 20 603.8 116.8 12 1,608.3 242.9 9 3,861.1 1,256.9
Tomatoes 8 127.5 34.9 6 273.3 129.9 3 466.7 208.2
Potatoes 4 227.5 93.2 3 900.0 346.4 3 1,400.0 529.2
Onions 0 0 0 0 0 0 0 0 0
Coffee 257 624.3 65.5 232 1,034.5 10l.2 220 1,327.0 300.5
Sugarcane 74 246.8 819 83 540.8 2914 80 934.5 544.0
Manioc 3 333.3 1,527.5 10 5,920.0 2,114.4 3 11,663.3 2,889.6
Citrus 12 50.0 48.4 8 81.3 37.2 14 91.4 26.3
Bananas 6 22.8 21.8 9 125.6 15.1 15 143.2 157.0

Wage labor
Agriculture

Male 135 62.7 29.6 126 123.8 110.4 108 193.5 63.6
Female 19 39.2 12.6 18 58.6 23.25 14 199.3 161.1
Child 9 35.8 15.7 6 79.2 54.8 8 73.8 32.5

Nonagriculture
Male 51 1914 184.1 82 444.8 710.0 47 8110 981.1
Female 24 99.2 180.7 34 218.5 209.4 36 331.7 299.9
Child 0 0 0 0 0 0 0 0 0



Table 4-Continued

Standard Standard Standard
Product Category N 1982 Mean Deviation N 1983 Mean Deviation N 1984 Mean Deviation

Livestock
Milk 229 39.7 7.1 226 106.5 16.8 209 286.8 57.1
Dairy products 47 274.5 59.4 50 678.2 143.5 50 1,906.0 390.9
Bulls 16 3 I ,875.0 10,249.4 22 82,772.7 34,206.6 18 412,777.8 169,099.9
Cows with calves in the

previous year 17 34,411.8 13,805.8 38 82,184.2 33,602.5 31 276,000.0 123,470.6
Cows without calves 55 29,645.3 16,249.7 68 71,1716 44,016.7 52 239,173.1 103,674.6
Bred heifers II 25,272.7 7,617.0 5 68,000.0 19,235.4 10 324,400.0 164,689.1
Unbred heifers 34 19,441.2 15,639.8 35 41,675.5 19,2354 34 15,600.0 92,258.2
Steers 66 18,019.7 13,237.9 75 35,506.7 21,787.3 61 144,245.9 104,238.3
Oxen 12 40,666.7 16,897.2 19 103,842.1 56,067.7 15 374,900.0 152,369.9
Horses and mules 12 24,833.3 14,989.9 19 71,789.5 44,187.2 II 149,909.1 85,616.0
Hogs 337 3,430.9 550.3 313 6,719.5 706.6 309 28,918.1 3,172.8
Goats 4 2,500.0 7071 9 8,055.6 5,198.8 12 31,458.3 16,461.3
Hides 0 0 0 5 1,040.0 1,152.4 0 0 0
Manure 131 1,981.7 1,065.5 158 5,416.9 4,1543 2 13,275.3 8,144.8
Fowl 402 343.9 87.9 383 786.1 203.9 348 2,459.9 718.8
Eggs 398 145.3 281 384 302.4 45.3 346 1,248.1 239.6

Crops
Rice 301 2,601.0 523.1 305 5,492.8 794.1 285 15,612.3 3,400.9
Com 395 1,072.9 157.2 386 3,477.5 720.4 352 10,590.1 1,444.6
Intercrop beans 255 4,872.5 820.1 272 15,152.6 3,108.1 283 44,941.7 7,954.5
Single-crop beans 130 4,902.3 953.0 141 16,152.5 3,224.3 108 43,583.3 6,190.3
Tobacco 19 9,968.4 5,348.1 15 9,666.7 6,463.3 9 40,500.0 9,307.3
Tomatoes 4 1,200.0 355.9 4 1,750.0 500.0 9 5,500.0 2,397.9
Potatoes 6 2,483.3 895.4 3 7,666.7 2,309.4 3 23,000.0 2,645.8
Onions 0 0 0 1 18,000.0 ... 1 200.0
Coffee 214 3,119.7 252.4 224 6,242.6 573.4 216 26,663.0 3,400.9
Sugarcane 74 1,890.1 604.5 84 3,661.6 1,169.1 89 9,540.5 4,246.8
Manioc 11 15,236.4 8,814.5 9 53,333.3 28,722.8 13 17,615.4 61,228.5
Citrus 6 358.3 241.7 5 460.0 240.8 7 2,071.4 1,367.1
Bananas 18 251.4 3277 20 279.4 236.8 22 1,300.7 1,083.3

Wage labor
Agriculture

Male III 446.4 398.5 104 966.1 659.2 93 2,393.5 1,398.1
Female 17 259.4 111.3 14 525.0 196.9 13 1,707.7 1,133.2
Child 3 116.7 289 4 342.5 160.9 4 1,675.0 689.8

Nonagriculture
Male 64 1,165.7 1072.9 53 2,383.5 1,969.5 45 8,069.0 9,007.4
Female 43 962.6 1038.5 40 1,327.0 1,360.5 48 3,560.9 4,336.6- Child 1 40.0 ... I 400.0 . .. 2 1,300.0 424.3

w
Source: Derived from the PRODEMATA data set, University of Vi<;:osa, 1986.
Note: A total of 384 farms were included in the sample.



Table 5-Average product prices relative to the corn price, major products,
1979-84

Product Category 1979 1980 1981 1982 1983 1984 Meau

Livestock
Milk 0.022 0.026 0.034 0.037 0.031 0.027 0.029
Dairy products 0.179 0.199 0.200 0.256 0.195 0.180 0.201
Bulls 40.370 54.990 41.070 29.710 23.800 38.980 38.160
Cows with calves 32.420 42.420 38.030 32.070 23.630 26.060 32.440
Cows without calves 30.560 37.030 25.240 27.630 20.470 22.580 27.250
Bred heifers 26.220 45.870 24.030 23.560 19.550 30.630 28.310
Unbred heifers 18.230 23.340 15.000 18.120 11.980 14.730 16.900
Steers 16.120 23.130 16.470 16.800 10.210 13.620 16.060
Oxen 40.720 51.070 37.980 37.900 29.860 35.400 38.820
Horses/mules 13.780 12.250 22.720 23.150 20.640 14.160 17.780
Pigs 2.363 2.272 1.752 3.198 1.932 2.731 2.375
Goats 2.444 3.173 1.881 2.330 2.316 2.971 2.519
Hides 0.372 0.655 0.299 0.442
Manure 1.218 0.988 1.114 1.847 1.558 1.254 1.330
Fowl 0.232 0.202 0.217 0.321 0.226 0.232 0.238
Eggs 0.087 0.083 0.135 0.087 0.118 0.102

Crops
Rice 1.642 1.537 1.228 2.424 1.580 1.474 1.647
Corn 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Intercrop beans 3.028 5.071 5.509 4.542 4.357 4.244 4.458
Single crop beans 3.009 5.729 5.875 4.569 4.645 4.116 4.657
Tobacco 2.683 3.987 5.061 9.291 2.780 3.824 4.604
Tomatoes 0.567 0.678 0.612 1.118 0.503 0.519 0.666
Potatoes 1.011 2.231 1.835 2.315 2.205 2.172 1.961
Onions 5.176 0.019 2.597
Coffee 2.775 2.565 1.739 2.908 1.795 2.518 2.383
Sugarcane 1.097 1.341 1.225 1.762 1.053 0.901 1.230
Manioc 14.810 14.680 15.290 14.200 15.340 16.770 15.180
Citrus 0.222 0.201 0.120 0.334 0.132 0.196 0.201
Bananas 0.102 0.311 0.188 0.234 0.080 0.123 0.173

Wage labor
Agriculture

Male 0.279 0.307 0.254 0.416 0.278 0.226 0.293
Female 0.174 0.145 0.261 0.241 0.151 0.161 0.189
Child 0.159 0.196 0.097 0.109 0.098 0.158 0.136

Nonagriculture
Male 0.851 1.103 1.063 1.087 0.685 0.762 0.925
Female 0.441 0.542 0.435 0.897 0.382 0.336 0.505
Child 0.037 0.115 0.123 0.092

Source: Derived from the PRODEMATA data set, University ofYi<;cosa, 1986.

eggs into a "fowl" variable; and single-crop and intercropped beans into a "beans"
variable. Also, for off-farm labor, all six categories are aggregated. A second type of
aggregation is made up of products that are similar or generally do not represent
significant percentages of total production. Horses and mules, oxen, and goats are
combined into an "other animal" variable; tomatoes, potatoes, onions, other annuals,
other horticultural crops, citrus, bananas, and other fruits are combined into a "per-
ishables" variable. Prior examination of these combinations indicates that relatively
few farms produced more than one type within the same group, and therefore these
aggregations do not greatly affect the measures of diversity adopted. The resulting
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output data for each farm include the total output index for each year and the
percentage of the total index in the five livestock and eight crop production groups:
dairy, beef, pork, fowl, and other animals; rice, corn, beans, tobacco~ coffee, sugar,
manioc, and perishables; and off-farm labor.

A similar value-weighted index of modern inputs used is also constructed in
exactly the same manner as the output index. Price outliers are deleted before the
average prices in each year are calculated. These prices are then deflated by the mean
corn price in that year. Finally, the resulting averages are again averaged over the
six-year period to obtain the weight for each category of modern input. The weights
and quantities of inputs used are available for chemical fertilizer, mechanical tillage,
modern feed supplements, and most veterinary expenses. For pesticides, hybrid
seeds, and some veterinary expenses only expenditure figures are available; separate
prices and quantities are not provided. These expenditures are deflated directly by the
average corn price in each year and aggregated into the total to obtain the overall
index. The results for 1984, presented in Table 6, as an example, indicate that
expenditures on all types of modern inputs varied greatly at the farm level.

Table 6-Index of modern input use, by category, 1984

Input Mean
Standard
Deviation Minimum· Maximum

Hybrid seeds 3.76 6.49 0
Chemical fertilizer 47.44 99.14 0
Mechanical tillage 8.93 27.81 0
Pesticides 2.36 7.38 0

Total crop 62.48 125.17 0

Modem feeds 20.22 212.14 0
Veterinary services 2.58 3.06

Totallivestocka 25.97 214.84 0

Total crop and livestock 88.45 247.58 0

Source: Derived from the PRODEMATA data set, University ofVi<;:osa, 1986.
aThe total livestock index includes a small amount of modem inputs for forage crops.

51.94
818.99
251.96

21.97
1,070.07

4,082.57
22.95

4,II9.II

4,154.49
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5

CLUSTER ANALYSIS

In the statistical cluster analysis, farms are assigned to groups within which
similar shares of farm output are devoted to various products. Since the idea is to
identify farms by their product mixture, other variables such as gross product value
or farm area are not included in the cluster analysis. However, statistics that describe
farmer and farm characteristics are provided for the 1984 clusters. Similarity is based
solely on the percentage contribution to total output of each of the 14 product
categories: beef, dairy, pork, fowl, other livestock, corn, beans, rice, coffee, sugar,
tobacco, manioc, perishables, and off-farm labor. Only farms that took part in the
survey in all six years, 1979-84, are used in the cluster analysis. The analysis is
repeated for each year, rather than only once based on a six-year average, to allow for
annual variations in the farmers' choices of product mix. As a consistency check, the
results ofcluster analysis on the panel subset are compared with a clustering using all
farms surveyed in each year. Only a few farms are grouped differently when using
the entire data set.

A survey of clustering methods and general difficulties associated with their use
is included as the Technical Appendix. To summarize, there are essentially three
decisions to be made when choosing a clustering method. The first is to determine
how similarities between observations are to be measured. The second is to choose a
specific clustering algorithm, and the third is to determine the precise number of
clusters in the data set. As previously stated, differences in the percentage of total
production of 14 categories of production is the measure of interfarm similarity. The
similarity between observations is defined mathematically as the standard Euclidean
distance between the observations viewed as vectors in the R14 product-percentage
space.

In clustering algorithms, both hierarchical (including single, average, and Ward
linkages) and nonhierarchical techniques are available. A nonhierarchical method is
used here because it generally results in clusters with lower pooled within-cluster
sums of squared deviations than any hierarchical method, and because it does not
impose a strict and artificial a priori hierarchy on the data. The algorithm used is
similar to the K-means, or nearest centroid method of sorting algorithms described in
the Appendix. Specifically, it is an iterative technique that requires as initial input the
number of clusters and an initial centroid, or mean vector, for each cluster. In the first
iteration, the observations are considered one at a time and assigned to the cluster
with the nearest centroid. The centroids remain unchanged until all observations are
assigned. Before the second iteration, new centroids are determined from the mean
vector of all observations allocated to specific clusters during the first iteration. The
observations are then reassigned using these new centroids. Iterations continue in this
manner until the cluster centroids converge, that is, until the centroids change less
than a prespecified tolerance limit between iterations. It has been shown that conver
gence will always occur and will result in an approximate local minimum of the
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pooled within-cluster sum of squared deviation called trace (W) or trW,6 known as a
one-move local optimum.7 By the standard decomposition of variance, the total
deviations matrix is the sum of Wand the between-cluster deviations matrix,

k
B=L ni3s xcrs'

s=l (3)

where as is the 14 x 1 vector of average product percentages for clusters. So,
minimizing the pooled within-cluster sum of squared deviations, tr(W), is the same
as maximizing the between-cluster sum of squared deviations, tr(B). This objective
function results in the maximum-likelihood allocation under the assumption that the
observations within clusters are distributed spherical multivariate normal, that is,j, =
(11.1', a2l) is the distribution of clusters (Hawkins, Muller, and ten Krooden 1982, 326).
This assumption states that there is no correlation between variables within a cluster,
that variances are equal for each variable, and that the covariance matrix is identical
for all clusters. This is obviously not realistic, but satisfactory procedures using more
general assumptions have yet to be developed.

Given the tr(W) objective, the centroid sorting method will result in an approxi
mate local optimum, regardless of initial centroids. However, as with many other
iterative optimizing techniques, a local minimum frequently may not coincide with
the global minimum. So, for any prespecified number of clusters, some method of
determining a global optimum is necessary. Since practical dynamic programming
algorithms converging to the global optimum are unavailable, a search procedure
over alternative initial centroids is used. For the production data used in this study,
preliminary results indicate that the groupings obtained from alternative initial cen
troids generally differ only in the reallocation of a few borderline observations, with
little change in the overall cluster character.8 Therefore, it was deemed unnecessary
to conduct a large formal grid search over possible initial centroids. Rather, the
centroid sorting algorithm is repeated several times, using two different types of
initial centroids. Given K clusters, the first type of initial centroid is obtained by first
performing a Ward hierarchical clustering of the data set and then using the mean
vectors of the J(lh-Ievel clusters as the K initial centroids. The second type of initial
centroid is a random drawing ofK farms from the data set. To check for local minima,
the clustering is repeated nine times for the specified number of clusters, once with
the first type of initial centroids and eight times with random drawings as initial
centroids. The final clustering is then chosen as the one giving the minimum tr( W)
out of these nine.

In determining the number of clusters in the data set, none of the standard
statistics are satisfactory (see the Appendix). This is particularly true for cases in

6 See the Technical Appendix for the definition of trace (W) or trW.
7 It is possible that the centroid sorting method will not result in an exact minimum tr( W). However, the difference
between the exact minimum tr(W) and the one resulting from centroid sorting will be relatively small. See the
Technical Appendix for a more precise discussion ofthis result.
8 Throughout this discussion, cluster character refers to the number of observations, the mean vector, and the
covariance matrix of the cluster.
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which a relatively small number of clusters capture the majority of variation in the
underlying data. This study falls into this category since relatively few clusters of
production activities effectively characterize most of the sample farms. The usual
"number ofclusters" criteria are especially inadequate for detecting a relatively small
number, say, less than eight. For this reason, it is necessary to rely more on intuitive
and informal procedures. The primary informal criterion is comparison of clusters
over time. To be useful in a panel study, the clusters obtained each year should be
identifiable in other years.

The results for experiments with the number of clusters equaling four, five, six,
seven, and eight, using 1979 production data, are given in Table 7. When five clusters
are specified, the major farm types are com, coffee, dairy, rice, and off-farm labor.
The number of farms in each cluster are in parentheses and the percentages below
each cluster heading indicate the mean percent of total output attributed to each
product category. For example, the corn produced on the 109 farms that made up the
fifth-level corn cluster in 1979 averaged 31 percent of the value of total output,
whereas pork contributed an average of 15 percent and beans 13 percent. It must be
emphasized that the names given these clusters are for mnemonic purposes only. The
"meaning" of a cluster is expressed in terms of the centroid percentages, which
represent average percentage contributions to total output of particular products (or
groups of products) to total farm output.

As the number of clusters is increased, larger and more heterogeneous clusters
begin to subdivide. For example, as analysis proceeds from five to six clusters, the
dairy cluster splits into diversified and specialized dairy subclusters. As the number
of clusters increases further to seven the corn cluster splits as well. Finally, with eight
clusters, a small group of farmers specializing in commercial crops (sugar or to
bacco) splits from the diversified corn subcluster.

These results indicate a rough hierarchy in the sense that the dairy group at the
fifth level is represented by two groups at the eighth level, and the corn group at the
fifth level is represented by three groups at the eighth. Since the procedure is
nonhierarchical, there are numerous farms reallocated between the fourth and eighth
levels. For instance, 2 farms from the fifth-level coffee cluster, 10 farms from the
corn cluster, 3 farms from the rice cluster, and 3 from the off-farm labor cluster are
reallocated to the diversified dairy cluster at the eighth level. Also reallocated
between the fifth and eighth levels are 3 farms from the off-farm labor cluster to corn
subclusters and 2 farms from the dairy cluster to the diversified corn cluster. In total
23 farms are reallocated nonhierarchically, that is, to clusters with average vectors
having a different major product.

Tables 8 to 12 give the results of the cluster analysis using the PRODEMATA
panel data for each year over the 1980-84 period. The results for 1979 are similar,
but there are significant differences among years. For example, in all years except
1979, only one dairy cluster is present at the eighth level. At the fourth and fifth
levels, however, the general character of the clusters is relatively stable. In every
year, at the fifth level, there is a cluster with dairy as the main product, one with
coffee, one with rice, one with corn, and one with off-farm labor. At all levels above
the fifth, this stability over time does not occur. For this reason, fifth-level clustering
is chosen for the panel studies of the links between farm-level output, diversity, and
agricultural modernization.
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Table 7-Cluster results, including off-farm labor, 1979 Table 8-Cluster results, including off-farm labor, 1980
4 Clusters 5 Clusters 6 Clusters 7 Clusters 8 Clusters 4 Clusters 5 Clusters 6 Clusters 7 Clusters 8 Clusters

Com (131) Corn (109) Com (99) Com, spc (45) Corn, spc (54) Corn (137) Com (113) Corn (105) Corn (l0!) Corn, spc (47)
28% corn 31% corn 33% corn 49% corn 46% corn 26% corn 28% corn 29% corn 31% corn 45% corn
15% rice 15% pork 15% pork 19% beans 18% beans 17% rice 16% pork 17% pork 17% pork 13% beans
13% pork 13% beans 13% beans 14% pork 12% fowl 12% fowl 12% beans 10% pork
12% beans 10% fowl 11% beans 10% beans

Corn, div (58) Corn, div (34) ... . .. '" ... Corn, div (55)
22% pork 32% pork 23% pork
19% corn 16% corn 18% corn

14% fowl 10% fowl

Rice (27) Rice (24) Rice (24) Rice (24) ... Rice (29) Rice (29) Rice (29) Rice (28)
58% rice 60% rice 60% rice 60% rice 54% rice 54% rice 54% rice 55% rice
12% dairy 10%com 10% corn 10% corn 13% corn 13% corn 13% corn 13% corn
10% com Ofl (63) Ofl (61) Ofl (62) Ofl(61) Ofl (58)

Ofl (55) Ofl (56) Ofl (53) Ofl (50) Ofl (50) 52% ofl 52% ofl 52% ofl 52% ofl 53% ofl
52% ofl 51%ofl 52% ofl 54% ofl 54%ofl 14% corn 14% corn 14% corn 14% corn 13% corn
15% corn 15% com 15% corn 15% corn 15% corn

Coffee (89) Coffee (87) Coffee, spc (50) Coffee, spc (50) Coffee, spc (50)
Coffee (87) Coffee (89) Coffee (87) Coffee (88) Coffee (87) 56% coffee 57% coffee 69% coffee 69% coffee 69% coffee

63% coffee 62% coffee 63% coffee 62% coffee 63% coffee 10% daily 10% dairy

Dairy (109) Dairy (101) Dairy, spc (42) Dairy, spc (42) Dairy, spc (42) 10% corn

54% dairy 56% dairy 73% dairy 73% dairy 73% dairy ... ... Coffee, div (59) Coffee, div (56) Coffee, div (60)
10% com 34% coffee 34% coffee 33% coffee

Dairy, div (77) Dairy, div (75) Dairy, div (75) 21% dairy 22% dairy 21% dairy

40% dairy 40% dairy 40% dairy 12% corn 12% corn 12% corn

12% corn 13% corn 13% corn Dairy (94) Dairy (93) Dairy (78) Dairy (79) Dairy (78)
10% rice 10% rice 10% rice 52% dairy 53% dairy 56% dairy 56% dairy 56% dairy
10% coffee 10% coffee 10% corn 10% corn 10% rice 10% corn 10% corn

Sugar! 10% rice 10% corn 10% rice 10% rice

tobacco (16) ... ... ... Fowl (7) Fowl (7)
29% tobacco 67% fowl 67% fowl
23% sugar

Notes: Spc is specialized; div is diversified; and ofl is off-farm labor.19% corn
Format: Cluster label (number of farms)

Notes: Spc is specialized; div is diversified; and ofl is off-farm labor. main components of mean vector
Format: Cluster label (number offarms)

main components of mean vector
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\0



tv
Table 9-Cluster results, including off-farm labor, 1981 Table 10-Cluster results, including off-farm labor, 19820

4 Clusters 5 Clusters 6 Clusters 7 Clusters 8 Clusters 4 Clusters 5 Clusters 6 Clusters 7 Clusters 8 Clusters

Corn (131) Corn (101) Corn (102) Corn (87) Corn, spc (58) Corn (150) Corn (131) Corn (107) Corn (86) Corn (65)
25% corn 29% corn 28% corn 31% corn 36% corn 25% corn 26% corn 28% corn 29% corn 33% corn
15% rice 15% beans 15% beans 16% beans 21% beans 15% rice 12% pork 12% pork 14% pork 14% pork
13% beans 12% pork 11% pork 12% pork 13% pork 12% pork 11% beans 11% fowl 12% fowl 13% beans
10% pork 11% fowl 11% fowl 10% fowl II%fowl 11% beans 11% beans
10% fowl

Corn, div (57) .. , '" ." corn/on (56) Corn/On (52)

20% dairy 32% ofl 33% ofl

16% corn 18% corn 18% corn
10% pork 11% pork

Rice (40) Rice (26) Rice (33) Rice (25) ." Rice (25) Rice (22) Rice (21) Rice (31)
40% rice 51 % rice 46% rice 52% rice 51% rice 53% rice 54% rice 45% rice
II%corn 13% corn 12% corn 13% corn 12% corn 11% corn 11% corn 13% corn
10% dairy 11% dairy 10% dairy 11% dairy

Oft (52) Oft (53) on (50) on (51) Oft (44) on (57) on (54) Oft (52) on, spc (28) on, spc (31)
54% oft 54% oft 55% oft 54% oft 58% oft 56% oft 57% oft 58% oil 73% oil 73% oft
12% corn 12% corn 12% corn 13% corn 12% corn 10% corn 10% corn 10% corn

Coffee (115) Coffee (114) Coffee, spc (79) Coffee, spc (62) Coffee, spc (76) Coffee (96) Coffee (96) Coffee, spc (63) Coffee, spc (61) Coffee, spc (63)
65% coffee 66% coffee 74% coffee 78% coffee 75% coffee 61% coffee 61% coffee 71% coffee 71% coffee 71% coffee

Coffee, div (52) Coffee, div (65) Coffee, div (53) ... " . Coffee, div (69) Coffee, div (62) Coffee, div (63)
41% coffee 47% coffee 43% coffee 34% coffee 36% coffee 35% coffee
14% corn 13% corn 14% corn 16% corn 15% corn 16% corn
13% dairy 11% dairy 12% dairy 11% dairy 13% dairy 12% dairy

Dairy (86) Dairy (76) Dairy (75) Dairy (79) Dairy (65) 11% pork 10% pork 11% pork

54% dairy 57% dairy 57% dairy 56% dairy 60% dairy Dairy (81) Dairy (78) Dairy (71) Dairy (70) Dairy (70)

Fowl (7) Fowl (6)
53% dairy 53% dairy 56% dairy 56% dairy 56% dairy

67% fowl 71% fowl ... '" '" ... Fowl (12)

Notes: Spc is specialized; div is diversified; and of! is off-farm labor.
47% fowl
18% com

Fonnat: Cluster label (number offarms) 12% pork
main components of mean vector

Notes: Spc is specialized; div is diversified; and of! is off-farm labor.
Fonnat: Cluster label (number of fanns)

main components of mean vector



tv....

Table ll-Cluster results, including off-farm labor, 1983 Table 12-Cluster results, including off-farm labor, 1984

4 Clusters 5 Clusters 6 Clusters 7 Clusters 8 Clusters 4 Clusters 5 Clusters 6 Clusters 7 Clusters 8 Clusters

Com (\31) Com (99) Corn (101) Corn (83) Com (66) Corn (131) Com (115) Corn (112) Corn (92) Corn (58)
22% corn 26% corn 26% corn 28% com 30% corn 25% corn 27% corn 27% corn 30% corn 34% corn
15% rice 13% pork 13% pork 13% fowl 14% fowl 13% rice 12% beans 12% beans 13% beans 14% beans
II%pork 12% fowl 12% fowl 13% pork 13% pork 11% beans 11% ppork 12% pork 12% pork 12% fowl
10% fowl 10% beans 10% beans 10% beans 11% beans 11% pork 10% dairy 10% fowl 12% pork

Corn/Of] (40) ... '" .,. ... Com/dairy (48)
37% of] 31% dairy
15% corn 17% corn
10% pork 10% pork

Rice (32) Rice (22) Rice (22) Rice (22) ... Rice (23) Rice (23) Rice (23) Rice (25)
39% rice 52% rice 52% rice 52% rice 50% rice 50% rice 50% rice 49% rice
17% perishables 12% of] 12% of] 12% corn 11% dairy 11% dairy 11% dairy 14% dairy

Of] (51) on (52) Of] (51) Of] (50) Of], spc (27) Of] (51) Of] (48) Of] (48) Of] (47) Of] (45)
60% of] 59% of] 59% of] 60% of] 73% of] 59% of] 61 % of] 61% of] 61 % of] 62% of]

10% corn 10% com 10% corn
Coffee (124) Coffee (124) Coffee (121) Coffee, spc (86) Coffee, spc (95)

Coffee (\23) Coffee (\22) Coffee (122) Coffee, spc (84) Coffee, spc (84) 67% coffee 67% coffee 68% coffee 76% coffee 74% coffee
67% coffee 68% coffee 68% coffee 76% coffee 76% coffee

Coffee, div (57) Coffee, div (54)... '" ...
Coffee, div (62) Coffee, div (62) 42% coffee 37% coffee

42% coffee 42% coffee 12% corn 16% corn
12% corn 12% corn II%dairy 10% dairy
11% dairy 11% dairy

Dairy (77) Dairy (73) Dairy (70) Dairy (71) Dairy, spc (51)
Dairy (79) Dairy (79) Dairy (79) Dairy (74) Dairy (74) 56% dairy 57% dairy 58% dairy 57% dairy 64% dairy

54% dairy 54% dairy 54% dairy 55% dairy 55% dairy 10% rice

Perishables (9) Perishables (9) Perishables (9) ... '" Perishables (9) Perishables (7) Perishables (7)
63% perishables 63% perishables 63% perishables 59% perishables 68% perishables 68% perishables

Notes: Spc is specialized; div is diversified; and Oft is off-farm labor. Notes: Spc is specialized; div is diversified; and oft is off-farm labor.
Format: Cluster label (number of farms) Format: Cluster label (number of farms)

main components of mean vector main components of mean vector



Table 13-Descriptive statistics within clusters, 1984

Coffee Corn Dairy Off-farm Labor Rice
Farm Characteristic N= 122 N= 114 N=71 N=48 N=22

Mean age of household head (years)a 56.0 57.8 56.8 56.4 60.8
(11.2) (11.6) (11.8) (10.2) (9.2)

Education of household head (years) 2.1 1.9 2.7 1.4 1.5
(1.8) (2.2) (2.0) (1.7) (1.5)

Family size (number of persons) 6.1 5.2 4.9 6.0 4.8
(2.9) (2.5) (2.3) (2.5) (2.7)

Dependency ratio (0-15+755/16-54) 0.21 0.19 0.17 0.17 0.15
(0.21) (0.22) (0.19) (0.20) (0.18)

Percent electrified 48 28 59 25 23
(50) (45) (49) (43) (42)

Farm size (hectares) 35.9 25.6 59.8 16.5 22.4

Value of total output (Cr)b
(36.5) (33.9) (46.2) (24.3) (22.6)

1,209 478 980 449 487

Value of on-farm production (Cd
(1,160) (625) (739) (296) (462)
1,191 459 951 176 454

Value of off-farm labor (Crl
(1,159) (623) (726) (157) (449)

18.2 19.1 29.7 273.0 33.3

Yield (output/hectare)b
(54.8) (33.5) (55.1) (215.1) (52.2)
51.9 27.7 20.2 29.4 32.9

(45.3) (27.1) (14.5) (28.4) (29.2)
Percent sharecroppers 12 II 0 29 23

(33) (32) (0) (45) (42)
Distance to market (kilometers) 26.8 19.5 21.8 22.5 18.4

(12.9) (13.4) (13.1) (15.2) (10.3)
Pero:nt~oowned transport vehicles 75 61 85 38 64

(43) (49) (36) (48) (48)
Percent co-op members 15 12 55 2 23

(35) (33) (50) (14) (42)
Percent of output in top two products 81.6 59.9 75.6 81.3 76.4

Total modem inputs used (Cr)b
(10.1 ) (13.4) (12.3) (11.8) (13.5)
147.7 38.6 64.6 26.8 27.7

(190.5) (62.5) (101.0) (58.9) (40.5)
Total modem input use/ 0.117 0.090 0.069 0.154 0.077

total output (crops and Iivestock)b (0.103) (0.072) (0.070) (0.305) (0.121)

Note: The numbers in parentheses are standard deviations.
"The likelihood ratio test for equality of variance among the five clusters rejected equality at the 5 percent
significance level for all variables except age, education, family size, dependency ratio, percent electrified,
distance to market, and percent owning transport. The F-test for equality of means, adjusted for heteroskedas-
ticity where appropriate, rejected equality of means at the 5 percent level for all variables except age and
dependency ratio.
bAll value figures for outputs and inputs are expressed in terms of the com-based indexes derived in Chapter 4.

The descriptive statistics provided in Table 13 for a series of farmer- and farm
specific characteristics for five clusters in 1984 highlight the similarities and differ
ences both across and within clusters.9 The demographic composition of households
is quite similar. Household heads are generally in their mid- to late 50s and have
approximately two years offormal education. Family size averages slightly over five
persons, and dependency ratios are low and similar, which is not surprising given the

9 In this and all succeeding analyses and tables, seven farms have been deleted from the sample of384 farms. Two
farms were deleted because they reported zero output in at least one year. Five farms reported extremely high
livestock input and output in several years. Inclusion of these farms in one of the five clusters values the results;
therefore, they were deleted.
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age structure of household heads. The geographic distribution of households (meas
ured in terms of distances to markets) is also uniform across clusters.

When the agricultural characteristics of farms are analyzed, the similarities
disappear. Average farm size varies from 16.5 hectares for farms specializing in
off-farm labor to 59.8 hectares for dairy farmers. The value of total output (expressed
in terms of a corn-based index) for coffee producers is 1,209, nearly three times that
of farmers in the corn and off-farm labor clusters. Predictably, farms specializing in
off-farm labor derive nearly 10 times more income from the sale of household labor
than do other farms.

While distance to markets is similar for most farms in the sample, access to
markets does vary substantially.lO The percentage of farmers who own transport
vehicles, which are necessary to participate effectively in input and output markets,
ranges from a low of 38 percent in the off-farm labor cluster to a high of 85 percent
in the dairy cluster. The same pattern emerges for co-op membership, with 55 percent
of dairy farmers reporting membership versus 2 percent for farms specializing in
off-farm labor.

Spending on modern agricultural inputs, measured in terms of absolute expendi
tures and relative to the value oftotal output, varies across (and in some cases within)
clusters (Table 14). Coffee producers led the way in absolute levels with an index
value of 148 corn units ll in 1984, while at the other end of the spectrum farmers in
the off-farm labor cluster reported using only 27 units.

Table 14-Components of the index of modern inputs, mean values, by
cluster, 1984

Coffee Corn Dairy Off-farm Labor Rice
Component N = 122 N= 114 N= 71 N=48 N=22

Hybrid seeds 5.27 4.34 2.72 0.99 1.41
(7.83) (7.60) (2.92) (1.62) (3.48)

Chemical fertilizer 113.16 20.89 16.40 8.97 5.75
(147.43) (43.31) (25.42) (16.36) (11.46)

Mechanical tillage 16.46 4.78 3.07 6.98 9.36
(37.88) (13.85) (5.62) (36.10) (26.95)

Pesticides 5.46 1.06 1.07 0.51 0.36
(11.79) (3.84) (1.90) (1.80) (0.74)

Total crop 140.34 31.07 23.26 17.46 16.87
(186.89) (56.72) (27.56) (50.50) (37.09)

Modem feeds 4.11 3.75 28.19 6.57 7.07
(15.51) (9.22) (87.04) (31.56) (14.68)

Veterinary services 2.13 2.58 4.28 1.09 2.04
(2.47) (3.63) (2.20) (1.84) (3.66)

Total livestock" 7.38 7.55 41.37 9.36 10.86
(17.58) (12.46) (94.18) (32.10) (14.94)

Total (crops and livestock) 147.72 38.62 64.62 26.83 27.74
(190.51) (62.46) (100.99) (58.88) (40.47)

Source: Derived from the PRODEMATA data set, University ofVi<;osa, 1986.
Note: The numbers in parentheses are standard deviations.
"The total livestock index includes a small amount of modem inputs for forage crops.

10 For a more detailed discussion of definitions of market access, see Wanmali 1992.
11 Com units will be defined and discussed in the next chapter.
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Regarding expenditures on modern inputs relative to the index of the value of
total crop and livestock production, farms in the off-farm labor cluster are the most
intensive users. This result confirms the important link between the cash flow
generated by wage labor and decisions on use of technology at the farm level
(Reardon and Vosti 1992). Factors influencing farm-level use of modern inputs are
the focus of the analysis in subsequent chapters.

As expected, the composition of expenditures on modern inputs varies substan
tially across clusters. Table 14 presents a breakdown of expenditures by type for the
entire sample, as well as for the five major clusters. While farms in the coffee cluster
use consistently more of all types of modern inputs for crop production, their use of
chemical fertilizer is disproportionately high vis-a-vis farnIS from other clusters. In
the use of modern inputs in livestock production, dairy farms predictably use more
modern feeds and veterinary services than the other farms.

As a result of differences in land quality, access to infrastructure and markets,
and the past and current region-specific emphases on particular agricultural products,
the geographic distribution of clusters across the 12 municipios represented in the
PRODEMATA study is not uniform. Table 15 presents the locations of farms by
cluster for 1984. Farms specializing in coffee production are concentrated in Caran
gola, Manhuaca, and Raul Soares. The distribution of corn producers is somewhat
more uniform, but Alto Rio Dace contains the greatest number. Milk production is
concentrated in Carangola, Muriae, and Raul Soares, and off-farm labor comes
predominantly from farms located in Santos Dumont and Dba. The few rice produc
ing farms in the sample are concentrated in the municipio of Muriae. 12

Table 15-Geographic distribution of clusters, 1984

Municipio Coffee Corn Dairy Off-farm Labor Rice Total

Alto Rio Doce 0 32 1 4 1 38
Juiz De Fora 0 4 7 4 0 15
SlIo Jollo Nepomuceno 0 0 3 2 2 7
Santos Drunont 0 1 4 8 0 13
Carangola 23 5 10 3 0 41
Leopoldina 0 5 7 2 6 20
Manhuaca 57 6 0 I 0 64
Muriae 10 15 15 6 9 55
Ervalia 10 11 1 1 0 23
Ponte Nova 3 5 3 5 0 16
Raul Soares 18 15 16 0 0 49
Uba 1 15 4 12 4 36

Total 122 114 71 48 22 377

Source: Derived from the PRODEMATA data set, University ofVi.;:osa, 1986.

12 Initial within-municipio sampling schemes and subsequent nonuniform attrition rates led to large differences
across municipios in absolute sample size, which may have biased the geographic distribution offarm clusters in
1984.
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6

UNIVARIATE ANALYSES

This chapter examines some simple relationships between scale of operation (as
measured by area of farm or an index of total output), farm-level diversity ofproduct
mix, and measures of agricultural modernization (based on modern input use).

The relationships are estimated separately for each cluster. It is apparent from the
previous discussion that such relationships are "confluent," that is, they represent
joint relationships between two endogenous variables. The variable used to stratify
the sample-the cluster to which the observations belong-is not strictly exogenous
either. But the cluster to which an observation belongs captures many of the un
observed exogenous effects of land, soil type, climate, and particular attributes of
management or infrastructure that can explain both scale and diversification within
cluster groups and modernization. Within such a context, the question ofthe joint, net
relation between scale and diversity and use of modern inputs can be addressed.

Results are presented here only for 1984. Analyses have been carried out sepa
rately for five groups:

Coffee
Corn
Dairy
Rice
Off-farm labor

Output Mix

67 percent coffee, 8 percent corn
27 percent corn, 12 percent beans, 11 percent pork
57 percent dairy, 9 percent rice
50 percent rice, 11 percent dairy
61 percent off-farm labor, 9 percent corn

Number

122
114
71
22
48

The number of farms included in the plots and in the regression analyses is
sometimes less than the number in the original groups because of missing data.

The term "corn units" used throughout this analysis means that all variables
expressed in cruzeiros have been divided by the mean corn price in the year in
question (here, 1984) for the entire sample of corn-producing farmers. (Corn is a
good choice for a deflator because most farmers produce it in every subregion of the
Zona da Mata. Clearly, for a single cross-section there is no need to deflate generally,
but recall that analyses have been carried out for each of the six years, 1979-84.) In
1984, the average price per 50-kilogram sack was CrlO,590. Natural logarithms of all
the indexes, except for the index of diversity, which is in percentage terms, are taken;
for reference, 4 == log 55,5 == log 150,6 == log 400, all in corn units.

The construction ofthe indexes was discussed in Chapter 4. The index of modern
input use is a value-weighted quantity index of inputs defined as modern. For crops,
modern inputs are hybrid seeds, chemical fertilizers, insecticides, herbicides, and
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mechanical traction. Traditional inputs are labor and standard seeds, organic fertil
izer, and animal traction. For livestock, modern inputs are protein concentrates,
mineral supplements, balanced rations, vaccines, and other veterinarian expenses.
Traditional inputs to livestock production are labor and standard feeds such as ground
com. The indexes used in this chapter are as follows:

• Total area under cultivation in hectares
• Total output
• Total crop output
• Total livestock output
• Off-farm labor income
• Modern inputs use
• Modern inputs used in crop production
• Modern inputs used in livestock production
• Diversity: percentage of total output accounted for by the top two products
• Diversity of crop production: percentage of total crop output accounted for by

the top crop produced
• Diversity of livestock production: percentage of total livestock output accounted

for by the top livestock product

Simple regressions between pairs of these variables or their logarithms make it
possible to examine the relation of scale and product diversity to the use of modern
inputs in crop and livestock production in the five product clusters chosen for
analysis. Plots of four of these relationships are presented: (I) log of total output
versus log area, (2) log of spending on modern input use index versus log of total
output, (3) log of spending on modern input index versus percent of total output
accounted for by the two top products, and (4) percent of total output accounted for
by the two top products versus the log of total output.

Since logarithms are taken ofall but the percentage variables, this report deals for
the most part with double log relationships:

log y = a + b log x, (4)

which in absolute form corresponds to y = Axb, where log A = a. Thus, a negative
intercept corresponds to A < 1. The slope b is the elasticity or percentage increase in
y given a 1 percent increase in x. So b > 1 implies that y is increasing more than
proportionately with x, while b < 1 implies that y increases less than proportionately
with x.

With these facts in mind, the regression results and plots for each of the five
groups at the fifth cluster level in 1984 are examined. The results are summarized
in Table 16, the last two columns of which give regression results for the pooled
cluster data. The second to the last column constrains all coefficients to be the
same between clusters, and the last column constrains all coefficients except the
intercept to be the same. The F-test in the second to the last column then tests the
equality of both the intercepts and the slope coefficients between clusters. The
F-test in the last column tests the equality of only the slope coefficients between
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Table 16-Univariate relations

Group Coefficient

Off-farm All Slope
Independent Coffee Corn Dairy Labor Rice Restricted Restricted
Variable (1) (2) (3) (4) (5) (6) (7)

Dependent variable: log total output (crop and livestock)
I. Intercept 4.92 3.98 3.83 4.43 4.33 4.16

(Standard error) (0.19) (0.20) (0.37) (0.22) (0.49) (0.12)
Log area 0.58 0.62 0.72 0.25 0.52 0.65 0.55

(Standard error) (0.06) (0.07) (0.09) (0.10) (0.18) (0.04) (0.04)
R2 0.45 0.40 0.45 0.12 0.29 0.44 0.57

N=122 N=114 N=71 N=47 N=22 F=26.51** F=3.51**

Dependent variable: log modem input use (total)
2. Intercept -3.10 -2.47 -2.18 -2.67 -3.66 -3.15

(Standard error) (0.69) (0.53) (0.72) (1.94) (1.75) (0.34)
Log total output (total) 1.09 0.95 0.87 0.88 1.06 1.05 0.98

(Standard error) (0.10) (0.09) (0. I I) (0.33) (0.30) (0.05) (0.06)
R2 0.50 0.50 0.49 0.16 0.41 0.52 0.56

N=118 N=109 N=70 N=40 N=20 F=8.62** F=0.55

Dependent variable: log modem input use (crop)
3. Intercept -2.81 -1.91 -0.87 -1.37 -4.19 -2.36

(Standard error) (0.69) (0.45) (0.71) (0.79) (2.47) (0.27)
Log total output (crop) 1.06 0.88 0.68 0.79 1.14 0.97 0.98

(Standard error) (0.10) (0.09) (0.13) (0. I7) (0.47) (0.05) (0.06)
R2 0.47 0.50 0.31 0.38 0.31 0.56 0.54

N=II8 N=108 N=63 N=38 N=15 F=4.75** F=1.I6

Dependent variable: log modem input use (livestock)
4. Intercept -2.23 -2.02 -2.98 1.06 0.57 -1.27

(Standard error) (0.52) (0.77) (0.82) (1.00) (0.91) (0.30)
Log total output

(livestock) 0.80 0.77 0.92 0.21 0.36 0.64 0.70
(Standard error) (0. II) (0.16) (0.13) (0.25) (0.19) (0.06) (0.07)

R2 0.42 0.22 0.42 0.03 0.20 0.31 0.35
N=82 N=81 N=70 N=21 N=16 F=3.94** F=2.92**

Dependent variable: log modem input use (total)
5. Intercept 1.95 3.93 4.31 4.07 5.47 2.58

(Standard error) (1.00) (0.60) (0.81) (1.43) (2.13) (0.39)
Percent max 2 0.029 -0.017 -0.010 -0.019 -0.040 0.012 -0.007

(Standard error) (0.012) (0.01) (0.01 I) (0.018) (0.028) (0.005) (0.006)
R2 0.05 0.03 0.01 0.03 0.10 0.01 0.20

N=II8 N=109 N=70 N=40 N=20 F=2I.83** F=3.09**

Dependent variable: log modem input use (crop)
6. Intercept 2.63 3.10 3.08 1.32 5.59 2.09

(Standard error) (0.83) (0.43) (0.44) (0.73) (2.03) (0.29)
Percent max (crop) 0.020 -0.008 -0.006 0.013 -0.054 0.015 -0.002

(Standard error) (0.010) (0.008) (0.007) (0.010) (0.027) (0.004) (0.004)
R2 0.03 0.01 0.01 0.05 0.23 0.04 0.27

N=118 N=108 N=63 N=38 N=15 F=27.51 ** F=3.53**

(Continued)
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Table 16-Continued

Group Coefficient

Off-farm All Slope
Independent Coffee Corn Dairy Labor Rice Restricted Restricted
Variable (1) (2) (3) (4) (5) (6) (7)

Dependent variable: log total output (crop and livestock)
7. Intercept 1.91 2.62 1.27 lAO 3.03 1.36

(Standard error) (0.50) (0.73) (1.11) (1.46) (0.93) (0.34)
Percent max 2

(livestock) -0.004 -0.017 0.018 0.006 -0.012 0.009 -0.004
(Standard error) (0.008) (0.012) (0.014) (0.019) (0.013) (0.005) (0.005)

R2 0.004 0.03 0.03 0.01 0.06 0.12 0.12
N=82 N=81 N=70 N=21 N=16 F=7A5** F=1.11

Dependent variable: percent max 2 (total)
8. Intercept 64.84 70.85 66.55 65.20 73.37 51.92

(Standard error) (6.60) (6.78) (10.97) (16.57) (18.33) (4.58)
Log total output (total) 2.50 -1.95 1.38 2.72 -0.53 3049 0045

(Standard error) (0.98) (1.18) (1.65) (2.79) (3.15) (0.73) (0.67)
R2 0.05 0.02 0.01 0.02 0.001 0.06 0.38

N=122 N=114 N=71 N=48 N=22 F=47.21 ** F=2.28

Dependent variable: percent max (crop)
9. Intercept 56.96 66.92 63.32 78.77 66.20 48.08

(Standard error) (7040) (7.36) (13.97) (12.71) (24.04) (4049)
Log total output (crop) 3043 -2.38 -0042 -2.34 1.77 3041 -0.22

(Standard error) (1.12) (1040) (2.64) (2.78) (4043) (0.79) (0.85)
R2 0.07 0.03 0.00 0.02 0.01 0.05 0.28

N=112 N=1l4 N=67 N=46 N=22 F=28.74** F=2.21

Dependent variable: percent max (livestock)
10. Intercept 80.83 96.78 61.20 108.99 92.97 78.12

(Standard error) (6.68) (5.11) (8.82) (7.02) (11.82) (3.19)
Log total output

(livestock) -3.63 -7.91 3.02 -8.81 -4044 -1.90 -5.00
(Standard error) (1.47) (1.15) (1.41) (1.94) (2.77) (0.67) (0.70)

R2 0.05 0.30 0.06 0.34 0.12 0.02 0.26
N=1l7 N=113 N=71 N=42 N=21 F=28.26** F=6.60**

Dependent variable: log modem input use (total)
11. Intercept 3.32 2.31 0.90 0.55 0.78 2.74

(Standard error) (0.67) (0.53) (1.12) (1.66) (0.94) (0.36)
Log off-farm labor 0.16 0.11 0.67 0.38 0.57 0.08 0.27

(Standard error) (0.18) (0.15) (0.26) (0.31) (0.28) (0.08) (0.10)
R2 0.03 0.01 0.24 0.04 0.32 0.01 0.23

N=29 N=44 N=23 N=40 N=l1 F=10.53** F=1.05

12. Intercept
(Standard error)

Log off-farm labor
(Standard error)

R2

Dependent variable: modem input use/output (crop and livestock)
0.200 0.077 -0.026 0.373 0.104 0.070

(0.058) (0.032) (0.100) (0.417) (0.148) (0.052)
-0.0226 -0.0005 0.0238 -0.0359 0.0032 0.0111
(0.0153) (0.0089) (0.0231) (0.0772) (0.0433) (0.0122)
0.074 0.000 0.048 0.006 0.001 0.006
N=29 N=44 N=23 N=40 N=l1 F=1.83

-0.0099
(0.0256)
0.054

F=0.30

**Significant at the 5 percent level.
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Figure 2-Plot 1: Total output versus farm area
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clusters (leaving the intercepts unconstrained). Asterisks following the F-statistic
indicate rejection of the hypothesis that the coefficients are equal across clusters
at the 5 percent significance level.

Plot 1: Log of Total Output versus Log of Farm Area

In Plot I (Figure 2), all slope values are less than one and significantly
different from one another (for example, F == 3.5 I in section I, column 7 of
Table 16); and the intercept terms also differ significantly (for example, F == 26.51
in section 1, column 6 of Table 16).13 The main intercluster difference is the
off-farm labor cluster, whose slope coefficient is markedly lower than the others.
The other four groups, whose major outputs are on-farm products, are similar,
with slope coefficients ranging from 0.52 for rice farms to 0.72 for dairy farms.
Thus there is evidence of sharply diminishing returns in on-farm output to size of
farm (measured by area).

For the purposes of this report, area is not a good measure of the scale of the
operation. Presumably, the returns diminish because farms with a larger area under
cultivation have poorer quality land. This is borne out by the fact that the regression
for farms in the dairy cluster, which have a larger mean size, has the largest slope
coefficient; these results imply more land in pasture but a smaller decline in output
(and presumably, quality) as size increases. It is remarkable, however, that despite
the great differences between clusters with respect to product mix, after allowing for
differences in intercept (which primarily reflect differences in means), the different
types of farms with major on-farm production are characterized by a similar degree
of diminishing returns to land area.

Plot 2: Log of Modern Input Use versus Log of Total Output

The next set of regressions deals with the relation between total use of modern
inputs for crops and livestock and the scale of farming operations measured by the
product index. Plot 2 (Figure 3) depicts the relations between the logs of these
variables for each cluster. The slopes, which are much closer to 1 than those in Plot I,
differ insignificantly across clusters.

To test the consistency of this relationship across crops and livestock products,
an additional equation is estimated for each. Splitting modern input use and output
between crops and livestock reduces the common slope to 0.70 for livestock but
leaves crops unchanged (as reported in sections 3 and 4 of Table 16). With these
disaggregated variables, however, more significant differences show up between
clusters. In the livestock relation, the off-farm labor cluster has a much smaller slope
coefficient (actually insignificantly different from zero), indicating the traditional
nature of livestock production on these smaller farms. In the crop relation, the slope

13When equality of slopes is rejected, the equality of intercepts test in column 6 is not valid; that is, the test
in column 6 is valid only if one assumes slopes are equal. Once equality of slopes is rejected, the equality
of intercepts is generally uninteresting.
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Figure 3-Plot 2: Use of modern inputs versus total output
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N Figure 4--Plot 3: Use of modern inputs versus percent of total output in top two crops
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coefficient for the rice cluster is considerably different from the others, but has a very
high standard error, in part due to the small number of farms in this cluster.

Spending on modern inputs was expected to increase more than proportionately
with scale of operation, but these findings show that they do not in the Zona da Mata.
Moreover, this finding is robust with respect to type of farming.

Plot 3: Log of Modern Input Use versus Percent of Total
Output Accounted For by the Top Two Products

The percent oftotal output accounted for by the top two products is a measure of
the degree of farm-level output specialization (that is, it is inversely related to how
diversified the farm is). Plot 3 (Figure 4) indicates that there is a small, but signifi
cant, relation between farm-level diversity and the use of modern inputs (see sec
tion 5, column 6 of Table 16) for some types of farms. The F-test suggests that there
are significant differences in slope coefficients between clusters, with coffee farms
responding positively (in terms of modern input use) to increased specialization, and
corn farmers displaying just the opposite tendency.

This negative relation, -0.007 (± 0.012 for a 5 percent confidence interval),
characterizing the slope of the regression line relating specialization (this time
measured in terms of the top crop or livestock product) to use of modern inputs,
generally reacts strongly to distinctions between crop and livestock inputs (sections 6
and 7, Table 16). Such a negative relation indicates a tendency for farms that spend
more on modern inputs to be less specialized. The total and crop regression, however,
shows significant differences among clusters. Coffee is the cause here; increases in
product concentration are significantly associated with increased use of modern
inputs.

Plot 4: Percent of Total Output Accounted For by the
Top Two Products versus Log of Total Output

Plot 4 (Figure 5) and sections 8, 9, and 10 of Table 16 show large differences
among farms of different scale (measured in total output) with respect to diversity in
production within clusters and- among farms across different clusters. However,
because of the low overall correlation between these two variables, the differences
across clusters are not statistically significant. For coffee farms, specialization in
creases significantly with scale, with a 1 percent increase in gross output leading to
a 2.5 percentage point increase in the fraction accounted for by the top two products
(section 8, column 1 in Table 16). Corn farms, on the other hand, indicate a negative
relation between product specialization and total output, while the other three groups
(dairy, off-farm labor, and rice) show no significant link between the two. A similar
pattern emerges from the crop regression, when crop and livestock output are disag
gregated. The livestock regression, however, shows a significant negative relation
between specialization in livestock production and total livestock output for all
groups except the dairy cluster (which shows a significant, positive relation between
the two variables).
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+:- Figure 5-Plot 4: Percent of total output in top two products versus total output
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Plot 5: Modern Input Use versus Off-Farm Labor

No plots are presented. The regression slopes are not significantly different from
one another but are significantly positive and significantly less than one (see
Table 16, section 11). However, as discussed below, when one controls for scale of
operation, no significant links can be found between off-farm labor earnings and use
of modern inputs (Table 16, section 12).

To explore these relationships further, three multiple regressions are examined:
• Log of modern input use versus percent of total output in the top two products

and log of total output;
• Percent of total output in the top two products versus log of modern input use

and log of total output; and
• log of modern input use versus log of total output and log of off-farm labor.

Table 17-Bivariate relations
Group Coefficient

Off-farm All Slope
Restricted Restricted

Independent Coffee Corn Dairy Labor Rice " b

Variable (1) (2) (3) (4) (5) (6) (7)

Dependent variable: log modem input use (total)
1. Intercept -2.84 -1.71 -0.99 -1.54 -0.39 -2.65

(Standard error) (0.87) (0.70) (0.83) (2.07) (2.08) (0.38)
Percent max 2 -0.005 -0.012 -0.019 -0.030 -0.048 -0.011 -0.016

(Standard error) (0.009) (0.007) (0.007) (0.016) (0.020) (0.004) (0.004)
Log total output (total) 1.11 0.94 0.91 1.02 1.12 1.11 1.01
~Standard error) (0.11) (0.09) (0.10) (0.32) (0.27) (0.06) (0.06)

R 0.50 0.51 0.54 0.24 0.56 0.53 0.58
N=118 N=109 N=70 N=40 N=20 F=9.68** F=2.63**

Dependent variable: percent max 2
2. Intercept 53.10 59.00 51.72 45.60 49.14 37.12

(Standard error) (7.38) (7.92) (11.50) (18.54) (18.08) (5.23)
Log modem input use -0.46 -2.20 -4.71 -2.83 -5.19 -2.20 -2.27

(Standard error) (0.91) (1.31) (1.82) (1.52) (2.18) (0.73) (0.63)
Log output (total) 4.45 -1.21 6.14 7.03 6.78 6.94 3.81
~Standard error) (1.41) (1.76) (2.27) (3.31) (3.62) (1.07) (0.93)

R 0.12 0.03 0.11 0.13 0.26 0.12 0.41
N=118 N=109 N=70 N=40 N=20 F=43.I9** F=4.43**

Dependent variable: log modem input use (total)
3. Intercept -3.35 -1.05 -2.32 -1.93 -0.42 -1.87

(Standard error) (1.06) (0.95) (1.31) (1.59) (1.79) (0.48)
Log total output

(crop and livestock) 1.26 0.70 0.80 0.88 0.31 0.83 0.85
(Standard error) (0.18) (0.15) (0.23) (0.25) (0.39) (0.07) (.10)

Log off-farm labor -0.20 -0.05 0.18 0.03 0.41 0.05 -0.02
(Standard error) (0.12) (0.13) (0.25) (0.27) (0.35) (0.06) (0.08)
R2 0.65 0.35 0.52 0.28 0.37 0.47 0.51

N=29 N=44 N=23 N=39 N=11 F=2.29 F=2.26

"The F-statistic in column (6) tests the equality of the intercept across groups.
bThe F-statistic in column (7) tests the equality of all slope coefficients across groups.
**Significant at the 5 percent level.
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These results are presented in Table 17 in the same format as in Table 16
(sections 2 and 3). In the second equation in Table 17, both intercepts and slopes
differ among farming clusters. Moreover, the slope coefficients are virtually identical
to the corresponding coefficients in the univariate relations (sections 2 and 5, col
umn 7 of Table 16). This indicates that although the relation between use of modern
inputs and specialization is significantly negative, it is relatively small compared
with the proportionate positive relation to scale of operation. Remember, however,
that a 1 percentage point increase in specialization represents a much larger percent
age increase, since the specialization index is always less than 1.

The regression treating diversity as a dependent variable and log use of modern
inputs and log gross output as independent variables (section 3, Table 17) shows
significant differences among clusters. Bear in mind that the relations among these
variables are not structural but jointly confluent. Again there is a negative correlation
between specialization and use of modern inputs. The effect of scale on specializa
tion is significantly positive for all clusters except corn.

Returning to the relation between use of modem inputs and total output value
(section 2, column 4, Table 16), one notes that the group whose primary output is
off-farm labor has a small coefficient relative to the other clusters (although with a
relatively high standard error). To determine the effect of off-farm labor as a secondary
product, several further regressions are examined (sections 11 and 12, Table 16, and
section 1, Table 17). In section 11, Table 16, which shows the results for the univariate
regression of log use of modern inputs on the log of the index of off-farm labor, there
is a small positive relation. Since, however, a significant positive proportionate relation
has already been found between expenditures on modern inputs and scale of operation
(section 2, Table 16), the composition of total output needs to be controlled.

Such a regression is shown in section 3, Table 17: log use of modern inputs on
log output of crops and livestock and, separately, log of off-farm labor are regressed,
allowing the effects of these separate components oftotal output to be distinguished.
The coefficients on log output of crops and livestock are large, positive, and signifi
cant, while the coefficients on log of off-farm labor for the clusters are not signifi
cantly different from zero. The rice group has no coefficients that are significantly
different from zero, not even the intercept. The high standard errors are caused in part
by the small sample of rice farms.

Section 12, Table 16 uses an alternative measure of modern input use (adjusted
for scale of operation by dividing by the index of output of crops and livestock). The
regression of this variable on the log ofoutput of off-farm labor shows no significant
relation between off-farm labor and the degree of modernization.

To summarize, some differences were found among types of farms in the simple
univariate and bivariate relationships studied in this chapter. There is clear indication
that returns diminish as farms grow larger, which is related to the quality of land on
larger farms. When, however, this factor is eliminated by measuring scale of operation
in terms of gr.oss output at constant prices, use of modern inputs (overall or specific to
crops or livestock) increases roughly proportionately with scale for all types of farms.
Output of off-farm labor as a secondary product has no significant relation to use of
modem inputs. Adjusted for scale of operation, farms with off-farm labor as primary
output use proportionately more modem inputs. The notable exception to uniformity
across clusters is the relation between the use of modem inputs and the degree of
specialization, which is positive for some types of farms and negative for others.
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To disentangle the joint confluent relation between scale of operation and spe
cialization, on the one hand, and use of modern inputs, on the other, requires a
multiple regression analysis. The analysis presented in Table 16, section 2, suggests
that the univariate relation (or lack thereof) holds up quite well when allowance is
made for the relation between scale and modern input use: expenditure on modern
inputs varies proportionately with scale irrespective of type of farming; diversity
varies with scale depending on product mix and type of farming (Table 16, sec
tion 3); and there is a small but significantly negative correlation between specializa
tion and use of modem inputs.
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7

LONGITUDINAL ANALYSIS

To this point, attention has focused on defining farm types by their concentration
on various agricultural products and exploring differences in expenditures on modem
farm technology among the farm types at a particular moment in time. In this chapter,
the analysis is extended to a longitudinal study offarm-level changes in product mix,
to test for the influence of changes in product mix on modem input use.

Several factors are expected to influence farmers' decisions to change product
mix radically over time (Vosti and Witcover 1996).14 First, neither the price policies
nor the agricultural extension available to farmers were uniform for all products. For
example, a long-term initiative to increase coffee production was introduced in the
Zona da Mata over part ofthe sample period, with preferential input and output prices
and credit terms (vis-a.-vis competing crop and livestock products) (University of
Vis:osa 1986, 62). These measures successfully induced 36 farms in the sample used
here to become primarily coffee producers. This represents a 20 percent increase in
the size of the coffee cluster from 1979 to 1984. Second, in spite of the highly
variable agroecological microregions in the Zona da Mata, movements across the
four clusters retained in the longitudinal analysis (coffee, com, dairy, and off-farm
labor) are quite feasible. While this mountainous region does not generaIly lend itself
to agricultural production, farmers can (technologically) shift from one of the four
major product clusters to another without encountering insurmountable agroecologi
cal obstacles. The same is probably not true for rice and perishable crops, which
require flat irrigated lands (varzeas) for production.

Third, the timing and magnitude of investments and returns are expected to vary
dramatically across products, and, in the absence of perfect capital markets, may
serve to limit the flow of farmers from one production cluster to another, in response
to economic and other incentives.

Based on these expected differences and the preliminary descriptive analyses,
farms in the PRODEMATA data panel are divided into four groups based on the
stability of their product mix and the direction of cluster movements over the six
years covered in the data series. Farms that remained within the same cluster for all
ofthe six years are labeled "stable." They represent 38 percent of the farms included
in the panel. Farms located at the border of a cluster or farm type and those that
switched clusters for only one year and then returned to their original cluster are
labeled "marginal." These "marginally stable" farms make up 33 percent of the
sample. Finally, farms that clearly jumped from one cluster to another during the
six-year period are labeled ''jumpers''; they make up 29 percent of the sample.

141t should be emphasized that shifts from one cluster to another over time do not refer to changes in relative
prices in these measures of farm-level production, since stable, inflation-free corn units are used to
aggregate farm output, although changes in output mix could be a response to relative price variations.

38



Each cluster is divided into "central" and "peripheral" areas for each year. Farms
that remained in the central area of their respective cluster over the entire sample
period are labeled "stable." Two-year presence in the central areas of at most two
clusters is required to define the "to coffee" and "to other" transitional groups. For
example, farms that spent two or more years in the central area of a noncoffee cluster
at the beginning of the sample period and later moved to the central area of the coffee
cluster for at least two years are labeled "to coffee." Farms that remained in periph
eral areas but did not display erratic behavior are labeled "marginally stable." Due to
erratic product mix changes, 27 farms are excluded from the longitudinal analysis.

Jumpers are further subdivided into two categories: those that switched to coffee
production, labeled "to coffee," and those that switched to another cluster, labeled "to
other."

The characteristics of the stable, marginally stable, to coffee, and to other groups
are then examined to determine how they differed (if at all), especially with regard to
their respective use of modern farm technology.

Table 18 reports the means and standard deviations for a series offarm-level and
other characteristics in 1984 for all groups. With the exception of age of household
head, family size, the dependency ratio, and the percent of farms electrified, the
equality of all variable means can be rejected at the 5 percent level.

A fairly consistent hierarchy emerges from an examination of the descriptive
statistics in Table 18. The farms classified as stable tend to be best off in access to
land and infrastructure as well as in endowments of human capital. Stable farms are
least likely to be involved in sharecropping arrangements and are well above other
groups in total output. Average modern input use is highest among the stable
farmers-both absolutely and in relation to total on-farm output.

Farms that jumped to coffee are somewhat smaller, are much more likely to be
involved in sharecropping, and tend to be situated farther from major market towns
than stable farms. However, farms that adjusted their output mix in favor of coffee
production enjoyed higher yields than any other group. Total use ofmodern inputs on
farms that jumped to coffee is second only to that of stable farms.

Marginally stable and farms that jumped to other products tend to be the worst
off. Farm size drops substantially in these groups, as does output, access to infrastruc
ture, and cooperative membership. Income derived from off-farm sources rises
sharply. Total modern input use decreases markedly to a low of27.2 input units for
farms that jumped to other products.

A similar pattern emerges for the intensity with which modern inputs are used
(vis-a-vis total farm output). The ratio of modern input use to crop and livestock
output is highest for stable farms and lowest for farms that jumped to other products.

In summary, descriptive statistics indicate that stable and jumped-to-coffee
farms tend to be better off, and their privileged status (especially in terms of total
output) is linked to modern input use. However, this association must be tested.

Table 19 presents univariate regression results for each of the longitudinal
groups. The model tests for differences within and across groups in the influence of
the scale of operation (total output) on modern input use. Results support the mean
differences across groups in modern input use suggested by the descriptive analyses,
but they do not support differences across groups with respect to the effects of output
generation on input use. Indeed, as indicated in Chapter 6, for cross-cluster analysis,
modern input use increases approximately proportionately with increased agricul-
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Table 18-Descriptive statistics within transitional groups, 1984

Marginally
Stable Stable Jump to Coffee Jump to Other

Group N= 133 N= 116 N=36 N=65

Mean age of household head 57.5 55.9 55.9 57.6
(10.6) (11.8) (11.8) (11.6)

Education of household head 2.5 1.8 1.9 1.8
(1.9) (1.9) (1.9) (2.2)

Family size 5.4 5.7 5.6 5.1
(2.7) (2.6) (3.1) (2.4)

Dependency ratio 0.17 0.19 0.23 0.20
(0.20) (0.20) (0.24) (0.22)

Percent electrified 48 34 44 32
(50) (48) (50) (47)

Farm size 45.5 24.4 39.9 29.9
(44.1) (30.6) (38.4) (35.8)

Value of total output" 1,162 675 873 455
(1,129) (768) (663) (405)

Value ofon-farm production" 1,130 611 844 383
(1,132) (779) (659) (396)

Value ofoff-farm labor" 32.4 64.3 28.4 71.9
(76.9) (126.5) (11.8) (142.7)

Yield (output/hectare)" 36.4 37.6 40.7 24.8
(31.6) (43. I) (34.5) (25.5)

Percent sharecroppers 5 13 22 17
(22) (34) (42) (37)

Distance to market 23.2 21.3 28.4 21.7
(13.7) (13.8) (11.8) (13.5)

Percent who owned transport vehicles 80 57 75 62
(40) (50) (43) (49)

Percent co-op members 32 10 28 18
(46) (30) (45) (39)

Percent output in top two products 77.4 73.0 76.0 65.0
(13.3) (15.9) (10.9) (16.0)

Total value of modem inputs useda 129.1 52.3 85.1 27.2
(189.8) (76.8) (104.6) (48.3)

Total modem inputs used/ 0.112 0.102 0.093 0.087
total output (crop and livestock) (0.105) (0.194) (0.063) (0.114)

Source: Derived from the PRODEMATA data set, University ofVic;osa, 1986.
Notes: The numbers in parentheses are standard deviations. The likelihood ratio test for equality of variance

among the four groups rejected equality at the 5 percent significance level for all variables except age,
education, family size, dependency ratio, percent electrified, distance to market, and percent with
transport. The F-test for equality of means, adjusted for heteroskedasticity where appropriate, rejected
equality of means at the 5 percent level for all variables except age, family size, dependency ratio, and
percent electrified.

aAlI values for outputs and inputs are expressed in terms of the com-based index derived in Chapter 4.

tural production for stable and marginally stable farms and both types of jumpers.
That is, a I percent increase in the index of total output will generate (on average) a
1 percent increase in the index of modern input use, regardless of the nature of the
farm-level product mix and the stability of product mix over time.

Finally, in Table 20, which presents changes in total output and input use over
time by transitional groups, there is a high degree of variability of output production
and input use among all farms during the 1979-84 period. Supply constraints associ
ated with problems such as credit availability and poor physical and marketing
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Table 19-Modern input use within and across transitional groups

Independent Variable Stable Marginally Stable To Coffee To Other

Dependent variable: log of modem input use
Intercept -2.55 -2.78 -3.04 -2.57

(standard error) (0.57) (0.68) (1.06) (0.86)

Log total output 0.99 0.98 1.06 0.90
(standard error) (0.08) (0.11) (0.16) (0.15)

R2 0.51 0.44 0.57 0.39
N=133 N=116 N=36 N=65

Notes: Equality of intercept: F=4.27** (asterisks imply significant differences at the 5 percent level).
Equality of slopes (unrestricted intercepts): F=0.14

Table 20-Changes in total output and use of modern inputs by transitional
groups, 1979-84

Number 1979
Change from Previous Year

Group of Farms Mean 1980 1981 1982 1983 1984

(percent)
Stable 133

Value of total output 912.1 -3.4 24.6 -7.9 18.7 -3.1
(920.3)

Value of modem inputs 94.1 29.8 -2.8 8.6 4.1 -3.8
(133.4)

Marginally stable 116
Value of total output 540.0 -1.0 35.2 -14.2 15.8 --6.0

(672.8)
Value ofmodem inputs 59.6 6.5 18.5 -12.2 7.7 -26.5

(123.6)

Jumpers to coffee 36
Value of total output 565.3 14.0 27.9 -11.2 26.7 -5.8

(575.9)
Value of modem inputs 74.4 14.5 11.3 20.1 -8.5 -18.4

(112.5)

Jumpers to others 65
Value of total output 472.5 -5.0 -1.1 -7.2 25.7 -12.2

(591.1)
Value of modem inputs 50.5 17.6 -25.8 -39.0 -18.7 24.2

(132.2)

All groups 350
Value of total output 671.5 -1.5 24.5 -10.0 19.4 -5.2

(779.2)
Value of modem inputs 72.5 20.3 0.8 -0.4 2.0 -10.3

(129.2)

Note: The numbers in parentheses are standard deviations.

infrastructure are probably responsible for some of these variations, which seem to
affect virtually all farms regardless of characteristics. While no clear pattern
emerges, growth rates of total output and input use among stable andjump-to-coffee
farms tend to be higher and more stable than those for marginally stable farms and
those that jumped to other products.
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CONCLUSIONS AND POLICY IMPLICATIONS

Past literature on adoption oftechnology has emphasized the causal link between
changes in agricultural technology and subsequent changes in product mix, empha
sizing the product-specific nature of most technological innovations and the policies
designed to speed their adoption and use. Implicit in this framework is the notion that
farmers producing technologically privileged products and those willing to switch to
these products will use modern inputs more intensively, both absolutely and rela
tively. In this report, a broader framework has been adopted, emphasizing though not
explicitly modeling the complex joint relationships among product mix and diversi
fication, adoption of modern agricultural technologies, and use of purchased (mod
ern) inputs.

In the detailed analyses of the degree of output diversity presented in this report,
product mix and output concentration are found to vary substantially across farms in
this diversified agricultural region, but there is little evidence ofcomplete specializa
tion (as predicted by some theories) in any particular agricultural product.

Off-farm employment is an important "output" of many farms in this region. It
represents farm-level interaction with local agriculture and nonagriculture sectors,
not seasonal or long-term migration by household members.

When product concentration ratios are used to construct by cluster analysis a
series of farm types and to test for differences in the factors influencing modern input
use, univariate analyses fail to show significant links between measures of output
diversification and expenditures on modern inputs within farm types. The notable
exception is the coffee group, where the relation is significant and positive. Bivariate
regression analyses confirm the significant and proportional relation between scale
of operation (as measured by a corn-based index of total output) and modern input
use, but again no relationship is shown between the concentration in product mix and
use of modern agricultural inputs for any product mix, except coffee. In sum,
empirical results suggest no significant cross-sectional impact of product mix on
technology adoption-either as the concentration of product mix changes within
farm types or as absolute product mix changes across farm types.

Distinguishing between farmers with unstable versus stable product mixes over
time, descriptive statistics suggest a statistically robust hierarchy of transitional farm
groups, with stable farmers being best off in aggregate output, followed by farms that
jumped to coffee, marginally stable farms, and farms that jumped to production of
other crops. Substantial mean differences in modern input use were confirmed across
transitional groups, but the link between modern input use and scale of operation
across transitional groups was quite similar and roughly one-to-one (on a double log
scale).

The differences (or lack of differences) revealed by the univariate, multivariate,
and longitudinal analyses are potentially important to policymakers and to the indi
viduals and institutions involved in the generation and dissemination of new agricul-
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tural technologies. First, ifthe univariate analyses are correct and the use of modern
inputs varies more or less proportionately with the scale of output for all farms,
regardless of product mix or output diversification, then focusing technology genera
tion and agricultural extension efforts on particular types of farming systems or farm
sizes because of expected differences in adoption rates is unlikely to yield greater
returns than approaching farms more uniformly. That is to say, the long-term stability
ofthe confluent relationships examined here suggests no significant gains to focusing
on one particular set or scale of farming operation. Symmetrically, the results also
suggest that the calculation ofexpected benefits ofagricultural research projects need
not be weighted by adoption probabilities based on product mix or output diversifi
cation in order to establish research priorities or design policies.

Second, that there are no clear longitudinal trends in input use suggests that
supply constraints (and, particularly in this setting, credit constraints) may be a
primary determinant of technology adoption, and these supply constraints affect all
farms more or less equally.

Finally, and perhaps most important in this agriculturally marginal area, a sub
stantial number of farms radically altered output mix over the sample period, sug
gesting that ecological factors playa limited role in determining product mix, even
in this ecologically highly heterogeneous area. This demonstrated willingness (and
ability) to react to economic and other incentives suggests that consistent agricultural
policies play an important part in bringing about desired change even among Brazil's
poorest and most traditional farmers.
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TECHNICAL APPENDIX

The purpose ofcluster analysis is to group observations of a data set into clusters
such that observations within a cluster are similar-that is, they resemble each other
more than they resemble those in different clusters. The term encompasses a wide
variety of techniques, each requiring different prior assumptions about the structure
of the data set. In comparison with the assumptions imposed by other methods,
however, the assumptions associated with cluster analysis require little previous
knowledge of the data. Thus the technique is useful for preliminary characterization
of a data set that the researcher suspects may consist of several differing groups. The
clusters obtained can be useful in the specification of more explicit modeling tech
niques such as regression analysis.

Since cluster analysis does not require explicit specification of a model, many of
the serious errors caused by model misspecification are avoided. However, since the
common grouping algorithms and testing procedures do not generally have a statisti
cal basis, most clustering procedures are highly subjective. In most types of cluster
analysis, therefore, retaining this subjective character means trading offthe statistical
foundation that accompanies more explicit assumptions.

The preceding paragraph gives an intuitive definition of a cluster. Any specific
clustering method, however, must have a more precise definition. Put another way,
given a data set ofN observations on p variables, what is meant by two observations
being "similar?" If all the variables are continuous and of a quantitative type, the
standard gauge of similarity is a familiar distance measure. When the variables are
all of similar scale and range, a standard metric is usually appropriate, such as the
Euclidean distance in p-dimensional vector space,

(5)

where Xik and Xjk represent the value for the k}h variable associated with the jlh and jlh
observations, or the city block metric,

p

Llx;k -Xikl·
k=1

(6)

If the variables have relatively different scale or range, the measure may be stand
ardized by first dividing by the overall standard deviation, or by using the Mahalano
bis' distance, (Xi - Xj)' S-1 (Xi - Xj), where Xi and Xj are the p-vectors representing
the jth andjlh observations, I denotes transpose ofthe vectors, and S-I is the inverse of
the data set's p x p sample covariance matrix.

Note that most distance measures will be biased toward finding clusters of a
spherical shape. If it is known that the clusters have a specific elongated shape, it
might be better to use a measure where some variables carry greater weight than
others. Since in most preliminary studies such information is not available, however,
the equal weight distance measures are most practical. If some of the variables are
discrete or qualitative, many different measures of similarity, usually based on
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matching coefficients, have been suggested, each appropriate to a particular type of
variable and clustering algorithm. Anderberg (1973) presents a good overview of
these measures.

Once a suitable similarity measure has been defined, a specific algorithm for
clustering the observations must be chosen. There are two basic types of methods,
hierarchical and nonhierarchical. In hierarchical clustering, successive groupings or
divisions ofthe data set result in a clustering tree or dendrogram indicating the cluster
in which each observation is placed in each level, from one (all the observations in
the same cluster) to N (each observation in its own cluster). At each level, say K + 1,
the clusters are subsets of those in the preceding level, K. That is, at any given level
K, one cluster will subdivide into exactly two level K + 1 clusters, with each obser
vation appearing in exactly one cluster per level. The actual generation of the
dendrogram can proceed from either end of the "tree."

In nonhierarchical clustering, there is no such link between the different levels.
Each "level" here represents the grouping of the data set into a different number of
clusters. For each level, a grouping results that may have no relation to the grouping
of the preceding level. Many nonhierarchical techniques do not use the distance
measure directly. Rather, an objective function such as the pooled within-cluster sum
of squared deviations is used to compare different clustering alternatives. Included in
this group are several iterative maximum-likelihood reallocation procedures.

Hierarchical techniques are useful when there are strong prior indications of a
hierarchical structure, such as the taxonomic classification in biology; they also
generally require less computing power. Nonhierarchical techniques, on the other
hand, generally impose more distributional assumptions on the data. A third type of
procedure often regarded as cluster analysis is called "mixture analysis." In mixture
procedures, rather than giving each observation a specific cluster allocation, a vector
of probabilities is generated indicating the probability that the observation is in any
given cluster. These procedures are generally ofmore statistical validity, but will not
be discussed as they were not useful for this study (see Hawkins, Muller, and ten'
Krooden 1982).

Since none of the techniques usually sets an internal criterion for the proper
number of clusters in the data set, this decision is left to the researcher, regardless of
the choice of techniques. Numerous criteria of varying statistical basis can be useful
in making this decision. Most criteria require some subjective input.

Once the cluster results are obtained, estimates of the mean and covariance
matrix of the cluster could be obtained, or further analysis such as regressions or
analysis of variance could be performed. Except for mixture analysis, such estimates
will in general be biased.

Hierarchical Techniques

Hierarchical techniques include agglomerative methods, which proceed by
successive fusions of the N observations into progressively fewer clusters, and
divisive methods, which begin with one cluster and successively divide the observa
tions into progressively more clusters. All agglomerative techniques can be under
stood within a framework proposed by Ward (1963). In Ward's paradigm, the two
clusters merged at each stage are chosen to maximize a specific objective or loss
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function. Agglomerative methods differ only in the choice of objective function. The
figure below outlines this procedure from the three-cluster stage to the two-cluster
stage, where Loss (A u B) refers to the value of the loss function associated with
combining the clusters A and B into one cluster.

Cluster A~ _

Cluster B -----, _

ClusterC~

Loss (A u B)

Loss (B u C)
- - - - - Loss (B u C)

The combination resulting in the minimum loss then becomes the clustering for the
next stage. Proceeding to each stage, K clusters, requires computing the objective

K
function L j times.

j=l

Table 21 lists several common agglomerative methods and their associated
objective functions. Average linkage and Ward's method use objective functions
closer to the intuitive concept of a cluster, but in real or simulated data situations,
single and complete linkages often recover known clusters just as well (see for
example, Milligan 1980).

Divisive methods of hierarchical clusters work in the opposite direction, pro
ceeding from one cluster containing all observations by successive divisions until
each observation is separate. The calculations necessary are much greater. For
example, in making the first division of the data set, 2N- 1 - 1 different combinations
are possible. Divisive techniques are accordingly less common and were not consid
ered for this study. See Dillon and Goldstein (1984) for further details.

Table 21-Agglomerative methods of hierarchical cluster analysis

Method

Single linkage

Complete linkage

Average linkage

Ward's method
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Description

Minimum distance between two observations, one from one cluster and one from
another

Maximum distance between two observations, one from one cluster and one from
another

Average distance between all pairs ofobservations, one from one cluster and one from
another

Increase in the pooled within-cluster sum of squared deviations:

~ EkEk, is the sum of squared deviations for cluster k; Ek = f f (Xii - Xjt
i=l i=j pI

where i indexes variables,j indexes observations in cluster k, and Xi is the cluster
mean for variable i



As mentioned above, the result of hierarchical cluster analysis is an entire tree,
with allocations ofthe data set at every level. Nothing in the procedure itself indicates
which level best represents the data set; that is, what the true number of clusters is.
For agglomerative procedures, the value of the loss function at each successive stage
is a monotonically increasing sequence, since if there existed a combination of
clusters resulting in a lower loss than the minimum of the preceding stage, such a
fusion should have occurred at that level. So for hierarchical techniques, inferring the
number of clusters is equivalent to choosing the maximum value of the loss function
that the researcher finds acceptable (Hawkins, Muller, and ten Krooden 1982). Posed
in this fashion, the choice of clusters must, in general, be a subjective decision.
However, as some guidance is frequently desirable, statistics used for nonhierarchi
cal techniques are often consulted. These will be discussed below.

In conclusion, although hierarchical techniques only apply intuitively when a
hierarchical structure is suspected, the agglomerative methods generally perform
well. The primary advantages of hierarchical analysis include less computation and
the absence of any distributional assumptions underlying the techniques. In this
respect, these procedures may actually be more robust than maximum-likelihood
methods.

Nonhierarchical Techniques

In nonhierarchical analysis, each level corresponding to a specific number of
clusters in the data set is analyzed separately (with no relation to either preceding or
successive levels). If the researcher is reasonably certain of the number of clusters
present, only that level and perhaps a few around it need be clustered. Because each
level requires separate analysis, nonhierarchical methods are usually computer
intensive, iterative algorithms, requiring some assumptions about the probability
distribution of the data.

The methods discussed are generally called "partitioning" or "allocation" tech
niques, since for a given number of clusters the result is an allocation of each
observation to a specific cluster. In theory, all these methods operate by optimizing a
specified objective function across all the possible combinations of data points.
Obviously, the number of comparisons necessary is usually prohibitive to an exhaus
tive search; for instance, partitioning 16 observations into 4 clusters results in
171,798,901 possible combinations (Hawkins, Muller, and ten Krooden 1982).
Therefore, most allocation methods use either a simple sorting procedure or an
iterative hill-climbing approach to optimize the objective function. As with all such
algorithms, the solution approaches a local optimum, which may not coincide with
the global optimum across all combinations. Thus, some process for checking global
optimization is often suggested.

The simplest of the allocative methods is called K-means clustering (MacQueen
1967), or the nearest-centroid sorting method (Forgy 1965). Given ap-variate profile
on the data points, the centroid of a cluster is defined as the mean vector of all

n
p variables across the observations allocated to the cluster, Xk = L Xik, where, Xik is

i=l
the p-vector associated with the i th observation in the k,th cluster.
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To initiate the K-means clustering algorithm, K initial centroids must be chosen.
Each observation is then considered in turn and allocated to the cluster whose
centroid is closest to it. As with hierarchical procedures, different distance measures
could be considered but the standard Euclidean distance is most common, To result
in a local optimum, iteration of this simple process is necessary. For the second
iteration, the new cluster centroids are computed by averaging the observations
allocated in the first iteration and then performing a second pass through the data as
before.

Forgy's centroid sorting method differs in that the cluster centroid is recomputed
each time an observation is allocated rather than at the end of one iteration, as in
K-means sorting. For this reason, the order in which the data points are considered
will affect the allocation. It has been shown that these procedures will iterate to
convergence and result in a local optimum of the pooled within-cluster sum of
squared deviations as defined in Table 21 (Anderberg 1973, 165).

Note that the specific local optimum achieved is dependent on the initial cen
troids chosen and, for Forgy's method, the order of the observations in the data set.
Methods of choosing the initial centroids include choosing the first K observations in
the data set, choosing K observations from the data at random, and choosing K
observations spaced relatively far apart, using more complicated algorithms. Another
suggestion is to first perform a hierarchical analysis of the data, such as average
linkage or Ward's method. Then take the clustering at the J(!h level and compute these
centroids to use as initial points. Usually, there are relatively few observations
reallocated from the hierarchical solution; thus, this method can decrease the number
of iterations required for convergence.

Regardless of how the initial centroids are chosen, however, a local optimum is
the result. To check against the global optimum the algorithm should be repeated
several times with different initial points. A common procedure is to define a grid
over the possible initial points and search over this grid for the maximum local
optimum. Such grids, however, become progressively less practical as the number of
variables increases.

The objective function used in these allocative procedures can usually be identi
fied with an assumption about the observations' probability distribution implicit in
the choice of objective. Following the framework of Hawkins, Muller, and ten
Krooden (1982), the data points can be viewed as a random sample from a mixture of
K probability distributions, usually the normal distribution. The approach of alloca
tive procedures is to view each observation as generated by two independent sam
plings. First, the specific distribution is randomly chosen from the K present in the
population; and second, the specific observation, X, is drawn from this distribution.
By this interpretation, each observation can be associated with one specific distribu
tion or cluster. Table 22 shows several common distributional assumptions and the
associated objective function whose optimization results in the maximum-likelihood
allocation under that assumption. In each case, the assumed distribution is normal,
N(), and the optimum objective is the minimum. W is the pooled within-cluster
scatter or sample covariance matrix,
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Table 22-Assumptions and objective functions of allocative methods

Distribution Assumed

N(llk,02I) : homoskedastic and spherical,

N(Jlk,2:) : homoskedastic,

N(llk,2:k) : general heteroskedastic normal

Resulting Objective Function

Trace (W)

Determinant (W) = I WI

k

II I Wilnk Ink
k=!

where Xj is the p-vector representing the jlh data point and Xk is the mean vector for
k

cluster k, and W= ~ Wk. The trace(W) objective is then used in Ward's hierarchi-
k=l

cal method or the K-means sorting algorithm. So, using either of the iterative sorting
methods discussed above involves the implicit assumption that all the clusters in the
data set represent a random sample from a mixture of homoskedastic, spherical
normal distributions. In other words, one assumes no correlation between variables
and the same variance for all clusters. These are obviously questionable assumptions,
but the more complicated objective functions are orders of magnitude more difficult
to optimize. More sophisticated algorithms have been developed by Friedman and
Rubin (1967), Scott and Symons (1971), and Jensen (1968).

Such allocative procedures are intuitively appealing, especially to a statistician,
due to their maximum-likelihood interpretation. But as mentioned before, misspeci
fication ofthe implied assumptions can theoretically decrease the efficiency of these
methods. However, for the preliminary studies in which cluster analysis is most often
used, such theoretical concerns are not critical.

Inference Testing and Estimation for Allocative Methods

One inference usually of interest is testing model fit; that is, testing the underly
ing assumptions used in choosing the objective function, particularly the homo
skedasticity and spherical nature of the covariance matrix. The simplest procedure
for this is to examine the sample covariance matrix for the solution obtained. This is
obviously not statistically rigorous, but for allocative methods few of the classical
procedures are applicable.

The second inference of interest is the determination of the true number of
clusters in the data set. This can be viewed in two different ways. The first would be
testing the null hypothesis of no clusters in the data set versus an alternative of K
clusters, while the second would be a test between the hypothesis ofK clusters versus
K + I clusters. For the first test, the most obvious statistic, particularly given the
homoskedastic assumption, is the classical F statistic for equality of several means,

F = (N - K) tr(B) where tr( ) refers to the trace, or sum of diagonal elements, of the
(K -1) tr(W) ,
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matrix; W is the pooled within-cluster sample covariance matrix defined previously,
and B is the between-cluster covariance matrix,

(8)

Xbeing the mean vector across all data points in the set. Other suggested statistics
include tr(W) and I T IiI W [, where T = W + B is the total covariance matrix across
all data points. However, since the clusters are generated by minimizing an objective
function related directly rather than randomly to these statistics, these tests are not
strictly valid. The appropriate statistics are max(F), min(trW), and max( ITill WI),
where max( ) means the maximum value ofthe statistic across all possible groupings.

The distribution of max(F) will not be the standard F distribution, and thus the
actual distribution also needs to be approximated. Lee (1979) and Arnold (1979) both
propose versions of the max( ITill WI) statistic along with approximations of its
distribution function. Arnold believes that the standard test as usually stated is not
well posed. He prefers a two-step procedure that first tests the null hypothesis that the
data are concentrated about one point, unimodal distribution, versus the alternative
that the data are either uniformly distributed or grouped into clusters. If this null
hypothesis is rejected, the second test is the null hypothesis of uniformly distributed
data versus the remaining alternative, two or more clusters. His version ofthe statistic
is log[max( I T II I WI)]. Both Lee's and Arnold's statistics were successful in
distinguishing between clustered and unclustered data, using both simulated and real
data sets.

These tests can be used to infer the presence of clusters, but they do not help
distinguish between K clusters and K + I clusters. Attempts to extend statistics like
those Lee or Arnold proposed to test K clusters against K + 1 clusters have met with
little success. Most commonly used criteria are extensions of the classical statistics,
such as For tr(W). For instance, a frequent suggestion is to graph the F statistic
versus the number of clusters and pick out the maximum. This procedure is usually
known as the Carlinski-Harbasz criterion. Milligan and Cooper (1985) report the
performance of this criterion and several others in detecting the number ofclusters in
simulated data. The Carlinski-Harbasz criterion was one of the better performers
under all conditions. In general, any ofthese ad hoc criteria perform better or worse
as the data set comes closer to or moves farther from their underlying assumptions.
One difficulty with most of these criteria is that dividing by (K - 1) means that the
criterion is usually strictly increasing in the lower range of cluster numbers and as
such is not likely to distinguish between, say, three and four clusters.

Since the aim of clustering the data is to examine the differences and similari
ties of the obtained clusters, estimation of cluster parameters like the mean and
variance are important. Unfortunately, the main result in this area is that for
allocative and hierarchical methods the usual estimates will have significant bias.
As stated earlier, mixture analysis techniques theoretically do not result in biased
estimates. So if unbiased estimates are important, it might be necessary to do
mixture analysis along with the allocative method to obtain both a specific
allocation and good estimates.
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