
New Management Systems

NMS

Developer Standards and Guidelines

Rules, Recommendations and Discussion

APRIL, 1995

United States Agency for International Development
(M/IRMISDM)

Table of Contents

IPreface ...

......... 3
Introduction ...

4Document Standards ...

Term Usage Peculiar to This Document 4

NMS Document Conventions 5

7R eferences ...

COMMON USER INTERFACE FOR NMS APPLICATIONS 	 1-1

1.1 Graphical User Interface (GUI) Design Objectives 1-2

1.1.1 Placing Users in Control 	 1-2

1.1.2 Reducing the Users' Memory Load 	 1-2

1.1.3 Making Applications Easy to Learn and Use 1-3

1.1.4 Providing a Consistent User Interface 	 1-3

1.2 	 The Common User Interface 1-4

1.2.1 The Visual (display screen) Elements of a CUI 	
 1-4

1.2.2 The Functional (user actions) Elements of the CUI 1-4

1.3 Screen Architecture and Components 	 1-5

1-51.3.1 M enus

1.3.1.1 	 Top M enu Bar 1-5

1-5
1.3.2 Colors

1.3.3 Fonts 1-9

1.3.3.1 Minimum Font Size 	 1-9

1.3.3.2 Default Fonts 	 1-9

1.3.4 3-D Effects 	 1-10

1.3.5 Text Display Selection and Formats 	 1-11

1.3.5.1 Selection from Text Lists 	 1-11

1.3.5.2 Dates 	 1-11

1.3.6 Tabular Data Display 	 1-12

1.3.7 Objects 	 1-12

1.3.8 Graphs 	 1-13

1.3.8.1 Contents of Graph Screens 1-13

1.3.8.2 Graph Screen Functionality 1-13

1.3.8.3 Colors and Styles 	 1-14

1.3.9 Help 	 1-15

ontients 	 i May 1995

1.4 	 User Navigation 1-15

1.4.1 	 Keyboard Methods as Alternatives to Mouse 1-15

1.4.2 	 Drill-Down Methods 1-16

1.4.3 	 Look-up Methods 1-16

1.5 	 Window Forms 1-16

1.5.1' General Rules 1-16

1.5.1.1 Resolution/Size 	 1-16

1.5.1.2 Labels 	 1-16

1.5.1.3 Exiting Forms 	 1-16

1.5.1.4 W indow Titles 	 1-17

1.5.1.5 Graphics on Form s 	 1-17

1.5.1.6 Automatic Resizing 	 1-17

1.5.1.7 3-D Appearances of Forms 	 1-17

1.5.1.8 Distraction/Program Entry Forms 	 1-18

1.5.1.9 	 Main Menu/System Entry Forms 1-19

1-19
1.6 	 MDI Parent Forms

1.6.1 	 Top Menu Bar 1-20

1-20
1.6.2 	 Toolbar

1.6.3 	 Standard Toolbar Icons 1-21

1.6.4 	 MDI Parent Status Bar 1-24

1-25
1.7 	 Controls
1-251.7.1 	 Command Buttons

1.7.2 	 Standard Control Placement on Forms 1-27

1.7.2.1 Command Buttons 	 1-27

1.7.2.2 Grouping of Controls 	 1-28

1.7.2.3 	 Labels and Label Controls 1-29

1-29
1.8 	 Data-Entry Controls

1.8.1 	 Speeding Data Entry Using Defaults 1-30

1.8.2 	 Speeding Data Entry Using Pop-up Windows 1-30

1.8.3 	 Speeding Data Entry Using Masks 1-31

2 	 CODING STANDARDS (VISUAL BASIC) 2-1

2.1 	 Standardizing Existing Code 2-1

2-1
2.1.1 	 Syntax Conventions
2-22.2 	 Declarations

2.2.1 	 Variable Declarations 2-2

2.2.2 	 Constant Declarations 2-4

2.2.3 	 DLL/API Subroutine Declarations 2-4

2-7
2.3 	 VB Environment

May 1995Contents 	 ii

.2-7
 2.3.1 Option Explicit

2-82.3.2 DefInt A-Z

2-8
2-9

2.3.3 Save As Text

2.3.4 	 Option Base

.......
2.3.5 Option Compare Binary vs. Option Compare Text 	 2-9
2-102.3.6 Save-Before-Run

2.3.7 Grid-Alignment Size = 60 	 2-10

2.3.8 Config.Sys: Files 	 2-10

2.4 	 Source Code Documentation 2-10

2-10
2.4.1 Code Commenting

2.4.2 Standard Header Templates 	 2-12

2.4.3 Internal Comment Blocks 	 2-16

2.5 	 Indenting Source Code 2-17

2-21
2.6 Naming Conventions

2.6.1 	 Name Prefixes 2-22

2-23
2.6.2 	 Constant Names
2-232.6.3 Variable Names

2.6.4 Subroutine Name Prefixes: Indicating Data Types 	 2-26

2.6.5 Names for Database Objects 	 2-26

2.6.6 Names for GUI Objects -- Forms and Controls 	 2-27.

2.6.7 Menu Naming Conventions 	 2-29

2.7 	 Subroutine Design, Coupling and Cohesiveness 2-29

2-30
2.7.1 	 G eneral
2-312.7.2 	 Global Variables
2-322.7.3 Global Subroutines

2.7.4 Private/Local Subroutines 	 2-33

2.7.5 User-Defined Data Types 	 2-33

2.7.6 Constants and Variables -- Scope 	 2-34

2.8 Procedural Coding Standards 	 2-34

2.8.1 	 Concatenation Operators 2-34

2-34

2-35

2.8.2 	 Goto Statements

2.8.3 Error Trapping

2.8.4 If-Then-Else Structures 	 2-36

2.8.5 	 Loading Text into Combo Boxes, List Boxes and Grids in

VB
 2-37

2.8.6 AutoRedraw Property 	 2-37

2.8.7 Sending Messages from One Form to Another in VB 	 2-37

2.8.8 Writing Text to Labels in VB 	 2-38

2.8.9 Modularization -- File Organization 	 2-38

May 1995iiiContents

2-382.8.10 Data Management

2.8.10.1 Validating Data Entry 	 2-38

2.8.10.2 Debugging SQL 	 2-41

2.8.10.3 Safely Interpreting / Converting Field Values ... 2-41

2.8.10.4 Programming Rules for Database Reliability 	 2-44

2.8.10.5 Increasing Database Performance in Visual Basic . 2-46

2.8.10.6 Database Error Trapping 	 2-47

2.9 Coding to Minimize Memory Use and Executable File Size 2-48

2.10 Coding to Maximize Performance (Execution Speed) 2-51

2.11 Shared, Common, Reusable Source Code 	 2-52

3 DATABASE ACCESS AND SQL CODING STANDARDS 3-1

3.1 SQL Calls to the Database 	 3-1

3.2 Creating and Using Indexes 	 3-3

3.3 ORACLE SQL Statement Processing Techniques 3-4

4 ORACLE DATABASE ADMINISTRATION STANDARDS 4-1

4.1 UNIX/Oracle Configuration 	 4-1

4.1.1 	 Physical Setup of UNIX Disk Drives for Oracle 4-1

4.1.2 Logical setup of UNIX Disk Drives for Oracle 	
 4-1

4.2 Database Design Standards 	 4-2

4.2.1 Instance Naming 	 4-2

4.2.2 Tablespace Configuration 	 4-2

4.2.3 Database Table Design 	 4-3

4.2.3.1 Table Data Paths 	 4-3

4.2.3.2 	Columns within Tables 4-4

4-6
4.2.4 Naming Standards

4.3 Application Considerations 4-7

4.3.1 ORACLE Application, Testing, and Production
4-7Environments

4.3.2 Application Calls to the Database 	 4-8

4.4 Database Management 	 4-10

4.4.1 Corporate DBA Tablespace, Database Object Management . 4-10

4.4.2 Database Backup and Recovery 	 4-10

May 1995ivContents

5-1........................
5 CONFIGURATION MANAGEMENT

5-1
5.1 CM Activities

5-15.1.1 Planning

o 5-1
5.1.2 Control and Accountability

5.1.2.1 	 Configuration Identification 5-2

............ 5-2
5.1.2.2 	 Developmental Configuration
5.1.2.3 	 Documentation and Software Development

5-2
Library

5.1.2.4 	 Configuration Baselines and Their

Configuration Documentation 5-2

5.1.3 Configuration Control 	 5-2

5.1.3.1 Supporting Data 	 5-3

5.1.3.2 Change Justification 	 5-3

5.1.3.3 Requirements Change Forms 	 5-3

5.1.3.4 Change Notification 	 5-4

5.1.4 Configuration Status Accounting 	 5-4

5.1.4.1 Configuration Auditing 	 5-4

TESTING AND QUALITY ASSURANCE 	 6-1
6

6-1
6.1 Developer Testing

6-1
6.1.1 Unit Testing

6.1.2 String 	Testing 6-1

6.2 Beta Test (Formal Test Team) 	 6-2

6.2.1 	 Integration Testing 6-3

6-5
6.2.2 Install-Routine Testing

6.2.3 Database Standards and Configuration Testing 	 6-5

6.2.4 Unit Testing 	 6-5

6.2.5 String 	Testing 6-5

6.2.6 	 Interoperability/Integration Testing 6-6

6-6
6.2.7 Stress 	Testing

6.2.8 Site (Alpha) Testing 	 6-7

6.2.9 Certification and Acceptance Testing 	(User Pilot) 6-7

May 1995v
Contents

APPENDICES

APPENDIX A - Standard VB GUI Object Name Prefixes

APPENDIX B - Standard Name Prefixes for Variables and VB Data-Access
Objects

APPENDIX C - USAID Software Tools/Controls Standardization Table

APPENDIX D - USAID Database Administration

APPENDIX E - Imbedded SQL Coding in Visual Basic

APPENDIX F - Visual Basic Capacities

APPENDIX G - Glossary

May 1995viContents

Preface

The U. S. Agency for International Development's NMS Development Standards and
Guidelines is provided for NMS developers and for USAID officials responsible for planning,
designing, developing, testing, and deploying the NMS. The standard describes the technical
methodologies and organizational procedures for ensuring that the NMS is completed in an

organized and businesslike manner. Adherence to the standard will help ensure that all

USAID programs and databases behave consistently, will require less training, technical
support, and documentation to implement the new management systems. Applications will be
easier to use, fewer errors will be made, and developer productivity will be improved. Lastly,
but of perhaps greatest importance, follow-on maintenance costs will be minimized.

The USAID "Common User Interface (CUI) Standard" document (Aug. 6, 1993), is
incorporated in this document. The ISP (Information Systems Plan) "Report to Management"
document (Feb. 1993) makes several references to the CUI Standard. Those standards have

now been updated and included in this document.

Pursuant to its responsibilities defined in the Paperwork Reduction Act of 1980 (44 USC

Chapter 35), USAID's Office of Information Resources Management (M/IRM) requires that

all newly developed or acquired systems accessed by more than one user must adhere to this
standard, effective October 1, 1993. Adherence to this standard is required when expending

USAID funds to acquire programming services to develop computer programs or to modify

existing programs. This standard is also applicable to the purchase of Commercial Off-The-
Shelf (COTS) programs to be used by more than one user.

This standard is applicable to programs that will be usd by USAID employees or by

contractors performing work for USAID on the USAID network. Compliance with this
standard is recommended, but not required for programs acquired by USAID for use by host

countries. For instance, if it becomes necessary to procure a word processing program for a

USAID employee or contractor to use in preparing an USAID project paper, these standards
would not be mandatory for the staff of a host country ministry.

Although the use of the enclosed standards offers substantial benefits to USAID, there will be
some instances in which its implementation may not be cost-effective. An example would be
a special-purpose off-the-shelf program with a non-standard interface. It will not be cost­

effective in most cases to modify an existing commercial program simply to change the user

interface. M/IRM will grant waivers from the application of the standard in cses where its
implementation would not be cost-effective. Requests for a waiver from the standard should

be sent to M/IRMIOD with a justification for the waiver.

NMS Developer Standards & Guidelines 1 April 1995

The following standards and guidelines recommend a development approach for all USAID

NMS applications. The standard emphasizes the values of consistency, simplicity, and user

empowerment to make the user's NMS computing experience more pleasant and productive.

This document will evolve as technology improves, USAID business needs change, and as

experience provides improved methods. Suggestions, questions, and comments are always

welcomed.

For further information please call:

Steve Polkinghom Ron Burke
IRM/SDM or IRM/SDM
875-1646 875-1909

Send WordPerfect modifications (by E-mail) to:

Deborah Adams
IRM/SDM
875-1843

NMS Developer Standards & Guidelines 2 April 1995

Introduction

Proper planning for NMS development and implementation is critical to USAID management.
The organization has made large investments in developing plans, choosing appropriate

hardware, and training_ staff. A major challenge facing USAID management today is the
necessity to incorporate the appropriate technology into the enterprise, while avoiding
disruption and keeping productivity at acceptable levels.

This Standards and Guidelines manual addresses the requirement to set rules and guidelines
for developers to follow while they design, document, and code software applications for the
Agency's New Management Systems. These standards are tailored to Microsoft's Windows
applications. Some are generic (not language-specific) and some are specific to Visual Basic
for Windows and the Oracle data base management system.

Many sections contain rules, recommendations, and discussion. Thus, a person wishing to
quickly learn or search only the rules can do so, but discussion giving details, examples, or
justifications for the rules and recommendations is also provided. The rules are mandatory;
the recommendations are not. A "rules only" version of the document will be supplied.

The need for creating, maintaining, and enforcing good standards is of the highest priority.
Developers who balk at having to live by standards -- and it is natural to feel resistance to
using standards that do not appear to make sense -- have to keep in mind that the system
being built will beused by a large and diverse group of users, throughout the USAID
enterprise. Productivity, deployment, usability and acceptance of the system by these users
are critical to the organization's mission.

It is impossible to create standards that satisfy everyone. Individuals who choose to express
their views can influence or add to the standards in meaningful ways. The rules and
recommendations will change as conditions change or new understandings occur. The best
source for new standards and rules to evolve from -- at least for coding standards -- is an
intelligent developer base. Whatever makes code more readable, more maintainable, and of
higher reliability is more desirable.

A goal within the NMS project is to get methodologies, procedures and standards clearly
defied, followed, and enforced. To get these standards in place, compromises on personal
preferences may sometimes become necessary, without compromising quality. Changes also
have to take place one step at a time because the NMS effort requires a substantial
technological change -- and new habits and ways of thinking. This cannot be done overnight.
The process of implementing these changes will require much patience and willingness from
all staff involved.

NMS Developer Standards& Guidelines 3 April 199

Document Standards

Term Usage Peculiar to This Document

Most terms can be found in the glossary. However, the following terms are defined here
because they are used either in a non-standard way or with a more generic meaning than in a
specific programming language.

The terms "application" and "program" are interchangeable and refer to a standalone,
executable piece of software. "Program" is from the older, text-based programming tradition;
and "application" is more commonly used in the newer Graphical User Interface (GUI)-based
programming convention.

In Visual Basic (VB), the term "subroutine" is used to refer to a "procedure," as opposed to a
"function." The term "subroutine" is used in this document in its more generic meaning to
refer to both functions and p ocedures. A function returns a value through its name. A
procedure does not return a value through its name. Both functions and procedures can return
values through elements iti their parameter lists.

A "control" is a GUI object that resides on a window-form (see below) and encapsulates
certain functionality. Some examples of Visual Basic standard controls are scrollbars,
listboxes, command buttons, check boxes, option ("radio") buttons, picture boxes, labels, or
text boxes. A "custom control" is one that is built either by the local programming team or
by a third-party vendor. A control, if it can be visible, is a lower-level type of window than
forms. Some controls do not provide visual objects (except in design mode), but rather
provide just functionality, such as the "common dialog" controls that can pop up a dialog box
to handle common user operations such as "Open File" or "Select Font."

A "bound control" is one that is bound to a "data control," which is a special type of VB
control that provides database access with little or no programming.

A "form" in Windows programming refers to a high-level window that can contain "controls"
and float free from other windows -- either on the desktop or, for MDI (Multiple Document
Interface) child fonns, within the boundaries of an MDI parent form. A form (sometimes
called a "window-form" for clarity) can generally be moved. Most forms can also be resized,
minimized or maximized, if they are not modal. A modal form is one that will not let the
user do anything else until that window has been closed. An example of this is an error
message box that must be acknowledged by the user by clicking "OK" before it will close.

A global variable is one whose "scope" extends throughout the application; a "semi-global" or
"form-global" variable is one whose scope lies within a module -- either a pure source code
module (.BAS) file or a form-module (.FRM file).

NMS Developer Standards & Guidelines 4 April 1995

NMS Document Conventions

The following conventions shall apply to all documents that are a part of USAID NMS
library.

Rule 1: When a computer text string that must be strictly literal is being quoted, commas,
periods, and other punctuation that are not actually part of the literal string shall be placed
outside the quotation marks.

This rule applies to any literal text string for a computer command, SQL query, program
source code sample, or other computer text string that must be strictly literal. The reader
shall assume that any commas or periods inside such quotation marks for such literal strings
are intended to be part of the command. This rule eliminates confusion concerning whether
the punctuation mark is intended to be part of a text string intended to be strictly literal. This
is to get around the limitations of the traditional, literature-oriented rule in English that
commas and periods at the end of a quoted expression (that is, when quoting a person) are to
be placed inside the quotation marks. The traditional rule is not practicable when
documenting computer-oriented commands, which must be strictly literal. For example, if a
document using the traditional syntax told a user to type the DOS "dir" command in the
following manner, the user would be confused whether or not to type a period as part of the
command:

Type "dir."

Rule 2: Programming source code samples or programming language keywords shall be
printed in bold, 12-point, fixed-size font. "Courier" is the common standard for this, but if
"Courier" font is used, "Courier New" (a TrueType font) should be used so that font size can
be set. The normal font size for source code shall be 12-point, but 10 point can be used
where it is needed to prevent long lines from being wrapped. Comments quoted as part of
source code samples should be in non-bold, inthe same fixed-size font and font-size as the
source code.

Rule 3: Computer command strings and quoted blocks of source code should be separated
from the surrounding text referring to them. That is, they should begin on a separate line and
there should be a blank line preceding them and following them.

Rule 4: Computer command strings and quoted blocks of source code should be indented one
indent space, if space permits and line-wrapping can be avoided.

Rule 5: Avoid automatic line-wrapping when quoting Visual Basic source code or user
command strings that are supposed to be on one line. Where line-wrapping is necessary, the
writer shall manually break the line using a graphic right-arrow symbol. Visual Basic does
not support line-wrapping, since it is a single line-oriented language.

NMS Developer Standards & Guidelines 5 April 1993

Rule 6: DOS commands or other user-keyboard input will be in bold Ita/ic font and will be

indented in from the left margin.

Rule 7: Text that will be displayed on a user-screen will be in bold, 14-point font. A fixed­

size font shall be used if it is necessary to make columns of text or data line up or if multiple

lines of text must be shown lined up exactly as it would be on a screen using a fixed-size

font. If more than one or two words (such as quoting a menu-choice) is shown, then the

whole block of text should be started on a separate line, separated from the surrounding text

by empty lines, and, if space permits, indented from the left margin.

Rule 8: Backus-Naur syntax notation should be used for computer literal strings where there

is some user-selectable variation in the content of the command, such as for parameters in the

command string. In Backus-Naur format, the following symbols are common:

"< variable parameter >" 	 A type of bracket-pair used to denote a variable or user-defined
input parameter.

"[statement elements J" 	 Square brackets used to denote an optional set of statement
elements.

A vertical "pipe" symbol, used to separate "either-or" elements of"I'
a statement.

"."An ellipsis, used to denote the optional addition of multiple
elements of the same type as the one preceding it.

For example, the use of Backus-Naur syntax notation would convert the following sample

SQL string (used to execute a stored procedure from Visual Basic) from:

"Begin Name-of Procedure; End;"
to:

"Begin <stored procedure name>; End;"

The literal parts of the command shall be in bold, and the variable elements and Backus-Naur

syntax symbols in non-bold.

If quote marks are part of the command or other literal string, for example, ifRule 9:
quoting a Visual Basic STRING where the intended quote marks are to be put into the source

code of a module, then the quotation marks should also be in bold.

NMS Developer Standards& Guidelines 6 	 April 1995

References

The following books should be used as a foundation reference on which these standards are
built:

* The Handbook of Structured Design by Page-Meillor

* The Windows Interface -- An Application Design Guide. Microsoft Press

Programmers Guide, Visual Basic 3.0 for Windows, Microsoft Press. Specifically
refer to the section "Object Naming Conventions" on pages' 34-35 for naming
conventions, and chapter 6 "Programming Fundamentals."

Database Developers Guide with Visual Basic 3, by Roger Jennings, Sams Publishing
1994

(The rules in this document override any of those in the previous two references for
which there is any conflict.)

* The Windows Interface -- Software distributed by Microsoft, Inc., including:

Visual Design Guide, (also distributed with Visual Basic)
Interactive Design Guide
Interface Design Guide

NMS Developer Standards & Guidelines 7 April 1993

1 COMMON USER INTERFACE FOR NMS
APPLICATIONS

As Information Management practices mature in large corporations and government agencies

such as USAID, inventories of computer applications grow. The technology foundation

resulting from USAID's Information Systems Plan (ISP) will decide, to a large degree, the

ability for USAID to meet its "Reinvention of Go,, rnment" objectives. Of particular

importance in this agencywide effort, is the need to have the new applications developed and

deployed with a minimum of user disruption. Unless care and foresight are applied, each

application may require the user to learn a new set of commands and procedures. Care must

be taken to ensure that user interface screens developed in each of the USAID Business Areas

have the same look, feel, and operability characteristics.

Clearly USAID can greatly decrease the time and cost for its staff to learn and use the NMS

procedures by having an "equivalent" set of views, commands, and action processes (the user

interface) on all USAID programs. Additionally, new applications can be developed faster

and more economically by not "reinventing the user interface" for each new program.

Implementation difficulties and follow-on maintenance costs will be significantly reduced by

adhering to a common set of rules and guidelines as set forth in this document.

The overwhelming market success of Microsoft Windows and Visual Basic applications in

providing the basis for a Common User Interface (CUI) clearly suggests that the move by

USAID to a Graphical User Interface (GUI) will be highly beneficial. GUI saves the user

from memorizing cryptic computer commands or searching for function keys. What is more

important, GUIs also allow developers to provide clear instructions and help screens to the

users.

as defined in theThe foundation for the USAID CUI is the Microsoft Windows GUI standard

book, The Windows Interface -- An Application Design Guide. Additional Microsoft GUI
Additional rules and recommendations.standards for Windows 4.0 shall apply as well.

specific to USAID's Windows applications are also included in this document.

Microsoft makes an industry interface standard available to microcomputer end-users. This
This standard is "open," which meansstandard is called the Common User Access (CUA).

that its rules are published and are available for use by any vendor. Most Independent

Software Vendors (ISVs) have chosen to set up user interfaces that follow the Microsoft CUA

Standards. For example, Microsoft's Windows, IBM's Presentation Manager and Open

System Foundation's (OSF) MOTIF for X Windows have all chosen to be CUA compliant.
and the setup of the mouse andThis compliancy applies to both the user views on the screen

keyboard.

April 199,NMS Developer Standards& Guidelines 1-1

As with any standard, developers are free to add extensions and embellish their presentations,

as long as they remain within the general intent and structure of the CUA guidelines. The

USAID Common User Interface (CUI) is based on the CUA standard, and contains extensions

and rules appropriate to USAID and its environment.

The main 	objectives of a good GUI design are:

• 	 Place users in control of the interface and the application
• 	 Reduce users' memory load, and the resulting fatigue and-errors
* 	 Make applications easy to learn and use.
• Provide a consistent interface -- consistent within 	an application, within a set of

applications, and consistent with standard Windows applications.

1.1 	 Graphical User Interface (GUI) Design Objectives

1.1.1 	 Placing Users in Control

To place users in control of an application requires the following:

• 	 Reduce the use of "modes," where the user cannot switch to another window or
-- or where a user is forced totask to get information to fill the current window

move in a fixed sequence on a data entry window forn. A valid use of modes

is the pop-up window to select from a lookup list or table; here the user can

baclo out (close that model window) without selecting anything.
• 	 Provide irmiediate and reversible actions and feedback.
* 	 Allow users to use the keyb,-ird and/or the mouse.
• Allow users to customize t' ., interface.

" Provide editing functions such as; Cut, Copy and Paste.

• 	 Forgive user mistakes; provide edit functions Undo and Redo for all editable

data.
* 	 Provide feedback, context-sensitive help and dialog to keep the user informed.
• 	 Encotaage exploration.

1.1.2 	 Reducing the Users' Memory Load

Reducing 	the user's memory load reduces user fatigue and increases accuracy. It involves the

following:

* 	 Assist short-term memory by-- for instance,

Carrying information from window to window.

" 	 Assist long-term memory, by: for instance,
Froviding lists (allowing users to "see and point," relying on
recognition, not recall)

April 1995
NMS Developer Standads & Guidelin$ 1-2

Inserting default values where appropriate.

" Organize information in the window

* 	 Allow a reset bdck to defauit or original values.
" 	 Avoid codes; use text names for data entry/edit fields and in lists. The user

should never have to memorize "codes." Even if the database or the software

uses numeric or alphanumeric codes, always present a list of English-language
descriptive item names to the user.

1.1.3 Making Applications Easy to Learn and Use

A good interface provides users with a conceptual model to develop the expectations they

should have for the interface and applies these expectations consistently. A metaphor is a

figure of speech used to suggest a resemblance. When users are confronted with rietaphors

that are familiar and real-world based, they can transfer previous knowledge of their

(Be 	careful when choosing a metaphor to make sureenvironment to the application interface.

it meets the expectations users have because of their real-world experiences.) Often, an

application design is based on a single metaphor that corresponds to the processing of paper

in the non-computer world. One of the more common metaphors provided for the user is a

desktop. The desktop contains icons that represent items used in an office, such as file

*folders, paper, trash cans, file and cabinets. Other common metaphors are calculators,

*telephone directories and card files.

1.1.4 Providing a Consistent User Interface

Making user interfaces consistent is one way to develop and reinforce the users conceptual

model of applications. Consistency throughout an application is supported by:

* 	 Common presentation: what is seen by the user
* Common interaction: how a user interacts with the application screens
" Common process sequence: how a user communicates with the computer
* 	 Common actions: how similar actions are implemented in the same way.

Common Presentation: Users become familiar with interface components when the visual

appearance of the components is consistent and, whenever possible, when the location of the

-components is consistent. For example, the window title is a user interface element that is

consistent in both appearance and in location. Entry fields, however, are consistent in

appearance but not in location; they may appear anywhere in the work area.

Common Interaction: After users can recognize interface components, they can interact with

them. When the application consistently supports interaction techniques associated with each

component, users become familiar and comfortable with these techniques.

1-3 	 April 1993NMS Developer Standards& Guidelines

lb

Common Process Sequence: There are typically two process sequences that are used in

application programs: object oriented and action oriented. When the application consistently

supports one process sequence, users become familiar with the way to interact with the
For example, if the applicationapplication. They also learn how the application responds.

users know that they must first select anconsistently supports the object oriented sequence,
object (e.g., file). They also know that a selected object is indicated, but that no action is

taken until they request an action. After users learn this way of expecting the computer to

respond, their conceptual model would not be supported if they selected an object and the

application immediately performed an action.

Common actions provide a language between users and the computer soCommon Actions:
users can understand the meaning and result of action taken. The CUI defines common

actions and terminology to assist in providing consistency. For example, when users press a

specific key or icon, they are telling the computer that they want to get a specified action

from the computer or the application they are working on.

One method to provide a consistent user interface among different applications is toTip:

create a shared database of common information messages.

1.2 The Common User Interface

1.2.1 The Visual (display screen) Elements of a CUI

* Windows

" Colors

" Fonts

* Icons
* Other graphics -- such as bitmaps and drawings.

" Menus

* Message and Dialog Boxes

" Controls

1.2.2 The Functional (user actions) Elements of the CUI

A mouse and a keyboard are provided for the user to interact with the system. The keyboard

must be set up as a CUA keyboard. The mouse must comply with Microsoft Windows

requirements and will require use of the left and/or right buttons.

1-4 April 1995*NMS DeveloperStandards& Guidelines

1.3 Screen Architecture and Components

1.3.1 Menus

1.3.1.1 Top Menu Bar

Note: The same rules and discussion for the top -menu bar under the "MIDI Parent Forms"

"Top Menu Bar" Section applies to forms in non-MDI applications as well.

Some generalThe top menu bar with drop-down submenus is based on the Lotus 123 model.

rules concerning top-menu bars are:

* 	 If more than three or four items, use a separator bar to group selections

logically.

" Gray out non-available choices.

* 	 Hide choices unaccessible to the user. They need not know about such choices

Leaving suchif the user's access/security level totally prohibits them access.
itemschoices visible but grayed out can confuse users if they think the menu

are grayed out due to some temporary state and can be activated based on some

selection or action they make later.
* 	 Indicate depth of choice with a black right-arrow triangle (>) for a cascade

submenu or ellipses ("...") for entry to a dialog box.
• 	Define a mnemonic hot-key for each menu choice. Such hot keys should not

conflict with standard Windows hot-keys. Indicate Alt-key or letter-key

mnemonic hot-keys for menu items by underlining a letter or number in the

Menu 	choice text. Preferably, use the first letter in the menu choice text or use
If these are not possible, then considerthe 	first character of the second word.

...
using the next conSonant of the first word, and so on
* 	 Do not capitalize the hot-key unless this is normally done (like the first letter

of the first word).
• 	List any control-key hot-keys to the right of the menu choice.

1.3.2 Colors

Although an early trend in Visual Basic application was to mimic the UNIX GUI models and
-

.provide only a gray background, with data boxes in white; experience has since shown that

such applications look boring and that, when multiple windows and/or multiple applications

are open, it becomes hard to distinguish overlapping windows -- or 	to distinguish which

Initial color selections for all Windows 	applicationswindow belongs to which application.

will be set to "The Blues" in the Windows Control Panel.

Use colors in forms and controls, where feasible, to make the applications moreRule 1-1:
Remember, using Windows, users can select foreground and/orattractive and easier to use.

1-5 	 April 1995NMS Developer Standards& Guidelines

background colors. When designating colors, always designate both foreground and

background colors to maintain contrast and avoiding users being .able to select a foreground or

background that ends up with, for example, gray on gray.

Rule 1-2: Do not rely on colors alone for control identification. Remember that 8% to 10%

of the user population may be color blind to a significant extent. Applications should be

tested using color-blind users in addition to normal-vision users.

Recommendation: Stick to the basic 16-coloA Windows palette for form and control colors,

to avoid conflicts on user installations where 256 colors (or more) are not supported. If

colors from a 256-color palette are used in design mode, then the application should be tested

in 16-color mode to verify that controls are easily identifiable and that color combinations or

dithering does not interfere with readability.

Use no more than three to seven colors in any one form.Recommendation:

Rule 1-3: Avoid colors or color combinations which are irritating, garish, or which make

objects hard to see. Avoid placing highly-saturated colors together.

Rule 1-4: Specifically, avoid color combinations which make it hard to see text. The

standard colors for text boxes is black or dark blue text on white background. Avoid colors

for text such as red, magenta, cyan, except where a suitable background color can make the
-

There should be good reasons for using non-standardtext easy to see and non-irritating.
colors for text (suah as to help identify different areas of a form where controls are grouped

functionally or logically). Such uses should be approved by the standards review board.

Tip: Dark blue text on light yellow background can be pleasing. Yellow text on dark blue

can likewise be easy to see, but this is inverted coloration of text, implying that the text is
Cyan or light yellow on darkselected --be very careful where yellow on dark blue is used.

grey can be usefil.

Rule 1-5: Text boxes should never have a grey background, unless for some specific

exception approved by the standards review board.

Rule 1-6: Highlight selected text using inverted colors (such as white text on black

background -- or yellow or white on dark blue background). (Such inversion of selected text

is usually automatically done in most textual controls.)

Rule 1-7: Avoid light or saturated blue for text, thin lines, and small shapes.

Rule 1-8: Avoid adjacent colors that differ only in the amount of blue.

April 199,NM Developer Standards& Guidelines 1-6

Tip/Warning: Using colors can give the illusion of depth. This can be interesting to some
Red appears closer than blue; therefore, put redusers and distracting or irritating to others.

icons or buttons on a blue background, never blue on red.

Rule 1-9: Avoid edges created only by color difference; it is hard to focus on them.

Particularly bad are adjace":t red and green.

Recommendation: Avoid red and green in the periphery of large displays.

Tip: For colored command buttons (implemented using image controls or picture boxes), it

may make sense to use stoplight colors: red means stop, yellow means caution, and green

means go.

Tip: Colors can change in appearance as ambient light levels change.

Tip: Opponent colors go well together, such as yellow and blue.

Rule 1-10: Background colors for forms and frames should be light, such as the pastel

colors. Title bars and borderz can be any pleasant color. Borders can sometimes be any

color.

aRecommendation: Try to avoid custom controls which give 3-D effects but provide only

gray background. (This is only a recommendation; certain custom controls provide such

important functionality, that they should be used, regardless of color limitations.)

three basic colors which can be manipulated -- the top titleDiscussion: For forms, there are
bar color, the border color (if using embedded frame controls), and the form's (or VideoSoft's

Elastic) background color. In addition, when using multiple "elastic" frame controls

embedded within each other to provide a splitter-bar (see the section on the use of elastic
can have itsframe control, specifically the Elastic control from VideoSoft), the outer elastic

This Elastic control takes up only a few bytes incolor set to make the splitter bar stand out.
The title bar color can be set using Windows API calls.each application's executable file.

(A method for doing this is documented in Visual Basic.)

There are two common ways to use form, title-bar, and (embedded Elastic-provided) border

colors. One is to make it easy for the user to distinguish which window forms belong to

which application. (This is only necessary for non-MDI applications with multiple window

forms.)

Use the same title-bar color for all window-forms within a singleRecommendation:

application, but give different applications within a subsystem different title-bar colors.

1-7 April 1995NMS DeveloperStandards & Guidelines

14

Discussion: This can make it easy for a user to tell which application currently has the focus
by providing all window forms within an application with the same title-bar color.

Recommendation: Use different background colors for forms within an application to
provide a visual clue to users as to which form they have open.

Discussion: This is an excellent use of color on a form. Use different pastel colors as
background colors. For MDI applications which allow opening more than one instance of a
particular window-form, all forms of the same type within an application should have the
same background color.

There are only a few non-irritating or non-garish colors in Windows -- especially given the
constraint to stick to 16 colors -- so that some duplication becomes necessary.

Rule 1-11: Use the standard Windows method for "graying out"; text in a text box, combo
box, or other textual control which is "disabled" for editing.

Discussion: This is provided automatically by Visual Basic for Windows by setting the
Enabled property of a control. Unfortunately, it makes such text a bit hard to see on some
dim monitors. The intent here is to keep to a standard already set by Microsoft for Windows;
because it is to be expected that a user of the Windows applications being developed within
this organization will also use other Windows applications, including the ones which come
with Windows.

Exception: It might be permissible in certain special situations to set non-standard colors for

the background color and foreground (text) color of such a non-editable text box. For

example, the message windows in a status bar might be given a pastel or gray background
with black or a dark-color foreground color for the text. Another example would be to use a

grey or -- say, green -- background for a text box which is always uneditable, such as a box
showing current time and date.

Rule 1-12: Avoid inversion of colors in textual controls except to indicate selected text.

Comment: One method observed of setting the background color for disabled controls to

blue or dark blue with light foreground color serves to call attention to those edit controls, as

though the user was specifically meant to do something to them. Although the user approved

this and users could get used to this; it ignores the standard of using inverted colors only for

selected text and that users must also use other, more standard Windows applications; and it is

contrary to the MS Windows standard.

Rule 1-13: Let the user customize certain common colors in the application.

,NMS Developer Standards& Guidelines 1-8 April 1995

-Discussion: Since this involves inserting significant code into the applications to read,
select, and set user preferences, then obviously this is one of the rules which must be

foregone for existing applications until there is time to implement it in a later version.

However, new applications should provide this functionality.

Crescent Software's Quick Pack Pro/Win set of tools provides a special dialog box for

selecting colors.

can be stored in a local .IMfile or in the server database. If the latterUser preferences
method is used, then using automated database replication, the user's preferences would

follow them anywhere in the world they went.

Do not store user preferences in a .INI file on a local server (Banyan), since this might

require the user being logged in to that server to run the application. This would prevent the
serveruser from using an application running against Oracle on a separate UNIX -- to which

logon is unnecessary -- over TCP/IP or SQL*Net if the local non-UNIX server were down.

1.3.3 Fonts

1.3.3.1 Minimum Font Size

Minimum font size for all controls shall be 9.8 points in order to accommodateRule 1-14:
small, low-resolution monitors. (Color VGA is the minimum resolution supported.) A few

can be made where good reason exists, with approval of the local standards reviewexceptions
board. The user might be allowed to select a different font size for certain classes of controls

as part of their user-customizable configuration, but the range of font sizes should be limited

to what is practical.

1.3.3.2 Default Fonts

Rule 1-15: Use the default system fonts available. Avoid exotic fonts. Avoid fonts from

third-party font packages; these might not be installed on user workstations. (It is best if

developer workstations not have such font packages installed. An exception would be

TrueType fonts which come with the organization's standard Windows-based word processor.)

Rule 1-16: The default font for controls shall be MS Sans Serif (the default font in Visual

Basic). (The user might be allowed to change the default font for all controls as part of their

user configuration; however, it will involve extra programming.)

Rule 1-17: The default font for documents (word-processing controls or OLE objects) shall

be Times New Roman. (The user might be allowed to change the default font as part of their

user customization configuration.)

NMS DeveloperStandards & Guidelines 1-9 April 1995

Rule 1-18: The default font for message boxes is controlled by the settings in the W1N.INI

file, settable by the user through Control Panel.

Tip/Warning: Not all 12-point fonts are the same size, due to kerning of proportional fonts.

1.3.4 3-1D Effects

See the comment about early attempts to mimic the UNIX 3-D, gray background look of
UNIX GUI applications, found at the beginning of the"Colors" Section.

Rule 1-19: Use 3-D effects for all controls where feasible -- except on labels --, to make the

applications more appealing to the eye and less boring.

Rule 1-20: Lighting should appear consistently, in 3-D effects, to come from over the user's
left shoulder.

Recommendation: Icons should have shadows in an application using 3-D appearance.

Rule 1-21: Do not use the 3-D effect DLL provided with Visual Basic to give 3-D effect to
dialogue boxes. (It has bugs; there are several versions of it from different vendors with
different bug-fixes and/or bugs; Microsoft has stated that it will not support it nor correct any
bugs in it; and it slows the application.)

Rule 1-22: Labels should appear to be printed on the background of a form or frame panel.
To this end, for label controls, avoid the use of 3-D effect and make the label background
color the same as its parent form or frame. Use the Elastic frame to provide this
functionality.

Discussion: The 3-D effect provides a more professional and pleasing-to-the-eye look.

Rule 1-23: Label controls which are actually used as labels for visible GUI objects should

appear to be written directly on the background of their parent form or panel. Otherwise, a

label can be distracting -- calling the user's attention to them as if it were a data entry field.

Thus, they should not have 3-D boxes around them, and their background colors should be

the same as the background of their parent form or panel.

There are, however, specific instances where it is valid and desirable to make a label control

appear to be a non-editable text box -- such as for displaying non-editable data values or

fields.

Tip: An excellent method for providing a background color plus automatic 3-D effects for all

controls on a form or panel is to use VideoSoft's Elastic frame control. The Elastic control

repaints these 3-D borders on child controls very fast. The Elastic control can be told

NMS Developer Standards& Guidelines 1-10 April 1995

specifically to avoid 3-D effect for labels, other graphic controls, and/or child elastics. One

advantage of this is that labels can appear to be written directly on the background. Setting

the color of the elastic control provides a background color around the 3-D effect children.

1.3.5 Text Display Selection and Formats

1.3.5.1 Selection from Text Lists

Rule 1-24: Enable look-ahead typing where feasible. When the user is typing in a string to

look up a name or value in a list, except where this requires that each keystroke start a new
query against the database. In the latter case, optimization techniques can be used to

implement this, if deemed useful enough.

Caution: This may require intercepting a Control_KeyPress() event-handler and/or the use

of extra state variables to control the search functions and to keep the search-ahead routine

from being called again before it has completed the current search. This may require

optimization techniques.

Discussion: Look-ahead-typing allows the user to use the keyboard to quickly get to a

specific item or set of items in a list. For long lists, the algorithm may set a filter based on

the first letters typed so that only the items whose first letters match the input strings show in

a list. For short lists, this can enable a user familiar with a system to select a list item with

only two or three keystrokes, including the Enter key to accept a selected item.

Recommendation: Provide "Soundex" searching of names in lists, if possible.

Caution: Soundex searching is used primarily for names of humans and organizations.

Implementing this will require extra programming and careful design. Look for and use code

samples from working models. There is an example of how to set up the popular Russell

algorithm in the December 1993 issue of Windows/DOS Developers Journal. Soundex

searching of database tables requires that a special soundex-encoded field -- and an index for

that field, if possible -- be added to the table for the field(s) requiring soundex searching and

that field be filled at data entry/edit time for each record in the table.

1.3.5.2 Dates

Rule 1-25: Dates should be displayed in the"'mm/dd/yyyy" format, like "12/21/1994"

-- especially in data entry/edit boxes.

Years should always be displayed in four-digit format to accommodate the change of the

century.

An acceptable, alternate format for non-editable display is "MMM dd, yyyy," displayed as

NMS Developer Standards& Guidelines 1-11 April 1995

"Dec 21, 1994."

This format should not be used on a form where the first format is used. Also, see the "Data

Entry Controls" Section concerning aids in user data entry.

1.3.6 Tabular Data Display

When the user is editing tabular data involvingMulti-Record View (Browse Mode):
multiple records, the user should be able to switch to a multi-record view ("browse mode") of

the table to make visual searching easier. This will involve using a separate form or a Tabs

control with a grid or spreadsheet control on it. It is recommended that the user be required

to switch back into single-record mode (a form showing just one record selected from the

browse-mode view) for editing the record; because the data edit-checks then need be

performed in only one place.

Some forms with grids tied to tables requiring only simple edit checks might allow editing

directly within the grid. Although this would present an inconsistency in the interface among

forms with grids, if it saved creating another form for single-record editing, for some tables

this might be desirable.

Use the Visual Basic grid, where minimal grid functionality is needed (and no data-bound

properties). Use the spreadsheet control (Spread/VBX) from FarPoint Technologies for all

other grids. It has been tested and found superior to TrueGrid Pro, the Data Grid in Sheridan

Data Widgets, and Far Point's Grid/VBX control.

-- or a modal window with a listbox or grid -- forRecommendation: Use one floating panel
lookups on grids, as opposed to using the built-in drop downs on different cells provided by

some bound grid-type controls, such as FarPoint's Spread/VBX. This can reduce resources

and speed performance. However, performance comparisons should be done on a case-by­

case basis in making this decision.

Also, thisNote: One possible future alternative spreadsheet control is Formula One.

recommendation may change when OLE custom controls become common, since new tools

and methods may appear.

1.3.7 Objects

A copy of each icon or bitmapRule 1-26: Document which graphic files go into a form.
file used to build a toolbar or otherwise used in a Windows application are stored in the

source code directory of each application in which it is used. Each form's descriptive header

(described in the "Coding Standards (Visual Basic)" Section) should list which graphic files

are used for which icons in which controls.

April 1995NMS Developer Standards & Guidelines -12

1.3.8 Graphs

Graphs can convey information in ways that are more effective than narrative or numerical
Typically used to present summarized or aggregatedreports consisting of rows and columns.

data at senior management levels, much thought should be given to the proper preparation of

graphs.

1.3.8.1 Contents of Graph Screens

Graph: A graph shall be presented in a separate, typically rectangular, box onRule 1-27:
the screen with a medium blue border. The screen background should be black or white (See

"Printing" Section below). Vertical and horizontal metrics or gradients shall also be inside the

graph box using medium blue uppercase letters. The graph "box" should be as large as

practical, and positioned in the upper, left portion of the screen.

Rule 1-28: Graph Title: A graph title shall be fully explanatory to My reader. The title

will typically be segmented by major-to-minor subject nouns, uppercase, left adjusted, and

positioned above the graph "box." An "Information Date:" with date, will be on the same

line, right adjusted.

Rule 1-29: Legend: The legend, relating colors to graph sub-elements, will be outside the

graph "box," to the right side of the screen and in a columnar list form, with color samples

aligned and to the left of the legend description or indicator word(s).

1.3.8.2 Graph Screen Functionality

Drill-down:

Recommendation: Where possible and practical, using a mouse, the user shall be capable of
This may be"drilling down" to lower levels of detailed data from the graph screen.

accomplished by clicking on specific graph sub-elements or selecting an action from a pop-up

or pull-down list box.

Report Generation:

Graphs are usually generated from an array of numeric values, generally tow-dimensional sets

of rows and columns. Many users are currently using computer generated reports to conduct

their business, without the use of graphs.

Rule 1-30: Each graph screen shall provide a user the capability to generate and print a

report, with appropriate headings and formatting, of the values used to generate the graph.

April 1993NMS Developer Standards& Guidelines 1-13

Selection Options:

Rule 1-31: Where applicable, the user shall have the capability to generate additional views

for different time periods, such as fiscal year, month, etc.

Rule 1-32: The user shall have the capability to "toggle" between the graph and the report

used to generate the graph.

Recommendation: There are many business situations where the user needs to review and/or

print multiple related graphs. The user should be provided navigation assistance to view a set

of related graphs.

Recommendation: Graphs can become complex and because of space limitations, unique

abbreviations are required. The user should be provided the capability to go to a

"Definitions" screen.

Printing:

Rule 1-33: Graphs shall be printable on a black and white printer or optionally to a color

printer.

1.3.8.3 Colors and Styles

Colors and styles 6f graphs will generally be selectable by BA developers. Using the current

VB toolset for generating graphs, reports, and printing of these screens, and by generally

using default properties and settings, some consistency across Business Areas should be

achievable. To establish enterprise rules concerning graph colors and styles would require

extensive programming difficulties for BA development teams. Reporting and graphing tools

may be added at a later date to facilitate enterprise graphing standards.

Some consistency can be attained using the current VB tools.

Rule 1-34: Colors depicting values or graphs shall be used in the following order:

1. Medium Blue 5. Purple (Magenta) 8. Cream
2. Yellow 6. Light Blue (Cyan) 9. Dark Green
3. Light Red 7. Orange 10. Gold

4. Light Green

Though the above color selection 't allows up to ten colors, the recommended maximum

number of colors (values) used is six.

NMS DeveloperStandards & Guidelines 1-14 April J99.

Rule 1-35: Any graph using a value which represents a plan, goal, standard, average, trend,

etc., shall represent that value in light green.

Rule 1-36: Deviations from plan, goals, standards, average, trends, etc., (variance) shall be

represented by incremental amounts; using yellow (caution) for a small variance, and light red

(warning) for larger variances.

Rule 1-37: When printing a graph (black and white) which depicts plan, goal, standards,
average, trends, etc., shall use the following "fill (or substitute) characters to represent the

indicated colors.

Color 	 Fill Character
Light Green

Yellow 	 *

+
Red

1.3.9 Help

"Help" assistance shall be provided using the Microsoft Windows methodology.Rule 1-38:
Text will be generated using Microsoft's "Word" word processor and implemented with key

word hypertext using the RoboHelp tool. Context-sensitive help will be used where

applicable and to the greatest practical extent.

1.4 User Navigation

The main intent in designing the navigation portion of Windows applications is to enable the

applications to be user-friendly, 	easy to learn, safe to use and efficient. Navigation between

windows, to and from windows 	using menus, icons, hypertext, and providing a means to

return to a previous window are all essential navigational areas to users. (See the "Main

Menu/System Entry Forms" and the "Top Menu Bar" Sections for rules and discussion on

Menus.)

1.4.1 Keyboard Methods 	as Alternatives to Mouse

Rule 1.39: The user should use the keyboard for as many operations as possible -- especially

in data entry applications.

Each form should be designed and coded with standard or easy-to-learn keyboardDiscussion:
alternatives to mouse operations. The user could probably operate 90% to 100% of an

Hot-keys shall not conflict withapplication without removing their hands from the keyboard.

the standard Windows hot-keys 	and shall follow the guidelines laid down in The Windows

Interface. Also, see the discussion on top menu bar above.

April 1993NMS Developer Standards & Guidelines 1-15

1.4.2 Drill-Down Methods

Rule 1-40: A user should be able to "drill-down" to a more detailed view of a data set by
menu item. This will usually pop up anotherdouble-clicking on a cell or through the View

-- often consisting of child records (from a one-to-many tableform displaying detail data

relationship) or shown in a grid or spreadsheet control.

1.4.3 Look-up Methods

A user should be able to double-click on a data-entry field or cell in a spreadsheet, or use the

View menu item to select from a non-variable list of possible values, such as where a field is

to be filled from a look-up table in the database. Double-clicking on such a cell should open

a separate form, a drop-down list box, or a list-box to select a more detailed view of a data

set, such as in a grid or spreadsheet control.

Refer to the section listing Do's and Don'ts in order to speed database accessNote:
There may be separate sections on performanceperformance, elsewhere in this document.

under Database Standards and under Procedural Coding Standards sections.

1.5 Window Forms

1.5.1 General Rules

1.5.1.1 Resolution/Size

Window forms should be designed so that they will fit in the lowest-resolutionRule 1-41:

monitor supported (standard VGA Color @ 640x480 Pixels). Limit maximum window size at

design time to 625x370 pixels. Limit MDI child window sizes accordingly tO fit inside such

an MDI parent form.

1.5.1.2 Labels

Set the color of each label on a form, elasticMake labels appear as part of the background.

frame, or panel frame to Transparent, or set their background color to be the same as their

parent's background. Do not use 3-D effects for labels.

1.5.1.3 Exiting Forms

Rule 1-42: Each form should be provided a Close/Cancel button on te form. The button

should say Cancel if data has been modified and may need saving. The Cancel button should

not exit the form. Exiting a form with modified, unsaved data on it should pop up a dialog

box asking the user whether they want to save changes first. Setting up this usually requires a

Boolean state-controi variable for each form called binDataModified.

April 1995NMS Developer Standards& Guidelines 1-16

1.5.1.4 Window Titles

Note: Backus-Naur notation is used in the following title-bar specifications.

Rule 1-43: The title in the title bar of an MDI parent window or non-modal window in a

non-MDI application, should use the following format recommended for the new MS GUI
model in Windows 4.0 (code-nam',d "Chicago"):

[<Document> : <Item Name>] and/or [<Current Window>] : <Application>

Obviously, the application name in the title bar should be short or abbreviated.

1.5.1.5 Graphics on Forms

Rule 144: Limit the use of bitmaps on the window fornis, except the opening "distraction"

and/or "main menu" window forms. Bitmaps use memory and slows screen rppainting. Load

such bitmaps at runtime to conserve memory and executable file size and unload the form as

soon as possible. If possible, use .WMF files instead of Bitmap files for least memory use
and maximum screen repainting speed.

1.5.1.6 Automatic Resizing

Rule 	1-45: Unload window forms when possible, unless they are called up repeatedly and it
-- in which case, make the decision tois desired to make them appear faster when called

unload or to hide (or reduce) the form based on memory availability. This can be done at

design time for expected minimum configurations or, more efficiently, at run-time by using

Win API calls to check memory and resources.

Recommendation: When a user is presented a r- N form, generally either the first data entry

field should receive the focus, or the OK, Close or Cancel button.

Recommendation: An Elastic frame (a custom control from VideoSoft) should fill most or

all window-forms to provide automatic resizing and 3-D effects for child controls.

1.5.1.7 3-D Appearances of Forms

Rule 1-46: Forms designed for applications should have a 3-D appearance, preferably with

background colors used to help identify the forms and make the application more useful.

Recommendation: Place all controls on either an Elastic frame control or Tab control from

VideoSoft. These provide 3-D effects of all child controls with fast screen repainting and

minimal resource use.

NMS Developer Standards& Guidelines 1-17 	 April i99S

Avoid using special 3-D controls just for the sake of 3-D effects. SimplerRule 147:

controls will work with the Elastic frame or Tab control to give desired 3-D effects.

Avoid using the MicroHelp 3-D controls due to slowness in screen repainting.Rule 1-48:

"Rule 1-49: Avoid using the Sheridan 3-D controls. -Specifically, do not use the Sheridan 3-D

frame panel.

Rule 1-50: Avoid using the set of controls in file THREED.VBX.

Discussion: 3-D appearance can be set up by using special 3-D custom controls, but these
A serious defect exists ingenerally make screen repainting slower and use extra resources.

crash Windows. Controls in
the Sheridan frame panel, in placing combo boxes on one can
Some have serious defects that canTHREED.VBX slow applications and use extra resources.

cause fatal errors and crash Windows.

Avoid using the files CTL3D.DLL or CTL3D2.DLL to give 3-D effectsRecommendation:

to applications.

Using CTL3D.DLL to give 3-D effects to dialog boxes slows applications. The*Discussion:
file has defects, which Microsoft has said it will not fix in future versions. Other vendors

periodically make versions of this file, but they have different characteristics and defects and

introduce complex version-control issues.

1.5.1.8 Distraction/Program Entry Forms

Rule 1-51: Each application -- or application subsystem consisting of several applications

-- should show the user a "distraction screen"
with a common main menu window form

window form while program initialization is being done. This form should be full-screen and

contain an attractive, graphical, full-screen image. The database logon form, if needed,

should pop-up over this distraction form. The image should be loaded from an image file at

runtime to reduce memory overhead and size of the executable file. After logon and
Use Windows Metafiles (.WMF) for graphicinitialization, this form should be unloaded.

images, where possibie, for rinimum size and fastest resizing speed.

To make the image fit the full-screen form for different monitor-resolutions, a tool such'Tip:

Elastic
as VideoSoft's "Elastic" frame may be used with a Visual Basic Image control.

should have the Align property set to Fill Container and it's AutosizeChildren property set

to All or AllGraphical.

1-18 April 199NMS Developer Standards & Guidelines

1.6

1.5.1.9 Main Menu/System Entry Forms

Each Business Area's software system shall provide a system-entry applicationRule 1-52:
containing a "main menu" window-form, shown after or as part of the initial distraction form

(after the database logon form) to select a task (a Windows application) or task-group (a
This acts to reduce confusion andsubsystem of applications) from large icons with titles.

provides a more user friendly alternative to normal Program Manager "groups" (of application

icons). This also allows the developers to split the software into multiple, separate
It can reduce user confusion from beingapplications to reduce memory and .EXE files size.

offered too many choices at once. Since the icons can be picture boxes much larger than

normal icons, detailed art images, scanned images or logos to reduce confusion and speed user

access.

The main menu system entry application should be unloaded after a user selects a task­

application, but each spawned application should provide a means of getting back to that main

menu application through the "Window" menu item.

The main menu form can contain a large image in its background, but this image and the

menu-icons should be automatically resized proportionally to fit different resolution monitors

in full screen mode. A recommended technique is to use the Windows API bitmap resizing

Font sizes for menu item labels on such a formsubroutines (BitBLockTransfer functions).

should also be automatically adjusted.

Use Windows metafile (.WMF) files for graphical images on formsRecommendation:

where possible, rather than the larger and slower graphics files such as bitmap (.BMP).

Discussion: One attractive example is the opening window for the Budget prototype demo

which uses a map of the world over a dark blue background with image controls in raised 3-D

effect as menu push buttons, with their pictures set to show the portion of the bitmap behind

them.

Another possible model uses the office metaphor, showing an office with a clock, calendar

and charts or pictures on the wall, and a desk with labelled drawers and items on the desk

Each of these items can be clicked to open ansuch as dictionary, in-basket, telephone, etc.

application.

MDI Parent Forms

The Multiple Document Interface (MDI) method of managing multiple windows in an

The MS
application involves a single parent MDI form and one or more child MDI forms.

Windows File Manager is an example of an MDI application. There are several important

characteristics of MDI child forms:

April 1995NMS Developer Standards& Guidelines 1-19

* 	 They cannot move outside the boundaries of the MDI parent form.
* 	 They cannot be hidden, only unloaded or minimized to an icon on the parent

MDI form.
* 	 Multiple instances of the same type form MDI child can be opened at once.

In 	addition, an application can have one or more child forms which are not MDI.

1.6.1 Top Menu Bar

Rule 1-53: The MDI parent form's top menu bar shall have a minimum of the following
standard top-level menu items:

File -- This shall provide at least the minimum functions
Database
Edit
Window -- This shall show a list of currently open window forms

within the application.

Help

In addition, where they are appropriate, the following extra top-level menu items may be
used.

View 	 This shall offer the user a means of changing the view,
such as Zooming a view of the currently-selected control
on the currently active form, or bringing up another form
to provide further detail of the current document, work
item or data.

Rule 1-54: The Help menu item shall be placed at the far right. This can be done at run­
time by HelpMenu.Caption = Chr$(8). At design time, this can be done by pasting a
backspace character created in Write by pressing Alt and numeric keypad 8.

1.6.2 Toolbar

Rule 1-55: The MDI parent form shall have a toolbar at the top, underneath the top menu
bar, to enable the user to quickly select often-used actions. This toolbar shall use a set of
icons in an order; these shall be standardized in common among the various Windows
applications developed for this organization. Most of these icons will act as shortcuts to menu
items, saving the user from navigating through multiple levels of the top menu bar. The icons
on the toolbar should appear as 3-D raised push buttons. The toolbar might look

NMS DeveloperStandards & Guidelines 1-20 	 April)99S

something like this one from an A&A application:

A copy of each icon or bitmapRule 1-56: Document which graphic files go into a form.

used totoi~ld a toolbar or otherwise used in a Windows application should be stored in

the source code directory of each appropriate application. Each form's descriptive header

(described in the Coding Standards section) should list which graphic files are used for which

icons in which controls.. (This rule is repeated here for emphasis.)

Rule 1-57: For each icon on the toolbar, a help-bubble should appear after a brief time

delay when the user moves the mouse cursor over the icon, describing the function of that

icon.

Discussion: Help messages placed in the title bar or in a message window on the status bar

are often missed. Help bubbles should not cover any of the toolbar icons.

one in the Sheridan Designer WidgetsThe recommended tool for the toolbar icon is the

toolset. The recommended tool (custom control) for the help bubble is Bubble Help.

1.6.3 	 Standard Toolbar Icons

The standard set of icons in a toolbar for common operations shall be as follows:Rule 1-58:
(Some sample icons are shown, but not all examples are in the required 3-D appearance.)

Rule 1-59: 	 Icons of 3-D objects should appear to face obliquely to the left, as in the printer

icon at the right.

Toolbar Icons Corresponding to File Menu Items

Open a folder or a file: -- An open folder

Print the data in the current window.Print 	 --

April 1993
NMS DeveloperSiandards & Guidelines 1-21

Save to disk -	 An arrow pointing to a diskette.

"Edit" Toolbar Icons

The edit functions of the toolbar (cut, copy, paste) should be accessible from the main, top

menu bar as well as under Edit.

Edit-Cut --	 A pair of scissors l .

Edit-Copy "" 	 An arrow to a clipboard,
or a camera.

Edit-Paste 	 A paste-pot or an arrow from
a clipboard to a page.

Undo last edit --	 A U-turn arrow or eraser

Search 	 A pair of eyeglasses or field
F% Iglasses is common for this

operation (including Search and Replace).

Note: The magnifying glass 	symbol without a question mark is commonly used for

"Zoom" function -- zooming a view -- however, with a question mark in it, it is commonly

used for search. To eliminate possible user confusion, it is better to reserve the magnifying

glass (without the question mark) for "Zoom" -- especially for the smaller, toolbar icons, in

which it is harder to make the distinction.

Note: The HighEdit control toolset (from MicroHelp), professional version, has its own icon­

toolbar (to set font attributes like underline and bold, and to perform other editing tasks) and

status bar, which can each be used separately from the HighEdit control. These controls are
be used separately as child windows tointegrated to work with the HighEdit control but can

the MDI parent form. Experience has shown that it is best to use the High Edit toolbar
This may mean attaching thisseparately from the standard toolbar used in MDI parent forms.

toolbar to each MDI child form using the HighEdit control. The HighEdit status bar presents

a similar problem. The HighEdit status bar can present a status message sent to it

programmatically, but it also 	performs functions specific to the HighEdit control, such as

showing page number and line number. No specific recommendations are made as to how to

April 1995NMS Developer Standards& Guidelines 1-22

use this status bar, but it may be best to place it separately from the MDI parent's normal

status bar. One technique which might prove useful to reduce the number of open windows is

to show the HighEdit toolbar on the MDI parent form when it is needed, but placed under the

MDI parent's standard toolbar. Likewise, the HighEdit status bar can be shown on the MDI

parent form when it is needed, but placed over the MDI parent's standard status bar. Some

experimentation and common sense design are called for here.

Database Action Toolbar Icons

Use the appropriate action for a particular window form's task. The data record functions

Logon, Password, Next, Previous, First, Last, Insert New, Update, Delete, and Cancel

should also be accessible from the top menu bar. In addition, the forms which require the

database functions Insert New, Update, Delete, and Cancel, should also be provided by

clearly marked command buttons on each individual MDI child form.

Insert New Record -- An arrow showing insertion of one
item between two others.

Delete Current Record -- An arrow showing removal of one j -.
item from between two others.

Update, commit chfanges -- a check mark, optionally with the

letters "OK" I--

Cancel -- all changes to current record or
work item

Previous Go to previous record or work item

Next Go to next record or work item 1J

Go to beginning of current -- A rewind Button

reeordset GA

April 1995NMS Developer Standairds& uidelines 1-23

Go to end of current A fast-forward button

recordset

Connect to Database 	 N]

Iv.Password 	 Change the user's database

password

Other Common Toolbar Icons

Attach a "Post-it" Note (to the current record or work item).

In-basket - Open a task-specific workflow
in-basket form.

Show List --	 Lookup from table

Query 	 Execute an ad-hoc query
against the database f t

Exit the application 	 -- An open door with an arrow or
a person walking out of it.

Help 	 -­

1.6.4 MDI Parent Status Bar

Rule 1-60: Each MDI parent form shall have a status bar at the bottom. This status bar shall
contain as a minimum, the following:

Message window: At the left side of the status bar, a single-line text window shall display
messages sent from the application to inform the user of the current
state of things, to explain the use of the currently-selected edit window
or other controls, to recommend the next action and provide guidance.

.NMS DeveloperStandards& Guidelines 1-24 	 April 1995

Although Visual Basic provides custom controls to show keyboard statuses, such as Caps-

Lock or Num-Lock, it is recommended that they not be used. If they are used, the standard
place for them is on the status bar at the right.

Below is an example of status bar from an A&A MDI parent form:

The second text window in this status bar shows the current user's database user-id.

Another useful item to show in this status bar is sstem (current) time and date.

status lMds a prime candidate for using the VideoSoft Elastic frame control to provide
proportional horizontal spacing, so that, when the user resizes the MDI parent, the status bar
shrinks proportionally horizontally. All the data might not be shown in such a case, but the
user is reminded that the data items are there if one wishes to re-open the MDI parent form.

For cases where all the desired objects be shown on a status bar go off screen on a low­

resolution monitor (standard VGA color should be the lowest resolution supported), and it is

not desired to rely on the proportional resizing of the Elastic control (which should be used

anyway) it may be necessary to programmatically sense the monitor resolution and make

certain controls orrthe status bar invisible. Such controls should be placed to the far right of

the status bar to avoid leaving gaps.

Other items to go on the status bar have yet to be defined.

1.7 Controls

The following rules and guidelines define or recommend standard usage and appearance of

controls on USAID's Windows applications, where this is not defined in the Microsoft book,

The Windows Interface -- A Design Guide.

Development teams in all Business Areas shall use a common set of custom controls. If

reasons exist for using non-standard custom controls in certain applications, then future

versions of these applications may be required to be brought into the standard.

1.7.1 Command Buttons

Rule 1-61: Captions for command buttons should be short, direct and clear. They should be

verbs. A Hot-key using the Alt-key with a mnemonic letter key should be defined as a

keyboard alternative for each command button. The use of these hot-keys should be

NMS Developer Standards& Guidelines 1-25 April 1993

consistent from form to form to avoid the user getting used to performing an action by hitting

one key and being surprised when that key performs a different action in another form.

Common hot-key usages in Windows applications are:

AIt-O OK
Alt-C Cancel
AIt-X Exit the application

Certain other, common hot-keys are defimed in the Windows Interface Design Guide -- most

commonly for top menu bar items, such as Alt-F for File, At-E for Edit, AIL-W for
Care must be taken to avoid conflict with key combinations.Window, and Alt-H for Help.

In addition, the following keys have common meanings:

Esc Close the current lookup-window or menu window with nothing selected.

See the "Standard Control Placement on Forms" Section for rules on command button

placement.

Common Command Buttons

Caption Hot Key Function Alternate Icon

Close Alt-L Close the current window.
or

Alt-C
(1)

Ok Alt-O Shall be used only for
acknowledgement, not for "do-it" or
"execute".

Cancel Alt-C Cancel the changes to the current K
record.

Update Alt-U Write the current record to the
database.

NMO DeveloperSandads & Guideli-nes 1-26 -April 1995

Caption Hot Key Function Alternate Icon

Add New Alt-A Create a new document or record. I&,;..

Delete AIt-D Delete the current record.

Do It or Alt-G Perform the selected operation, such I

Execute as a user-defined ad-hoc query.

(1) Alt-C is the standard hot-key for Cancel, but the Cancel button on a data-entry/edit form

can change caption to "Close" when data on the form is in an unmodified state, and vice­

versa.)

Note: The simple command "Do It"' is a more direct and understandable caption than the
-

"Execute" command.

1.7.2 Standard Control Placement on Forms

The standard captions, meanings, and placement of command buttons is well defined in

Microsoft's The Windows Interface -- A Design Guide. However, more specific guidance is

given here for command buttons in USAID's Windows applications.

1.7.2.1 Command Buttons

Rule 1-62: Command buttons shall be placed at the right or bottom of the form or panel in
which they are used. If at the bottom, they should be centered or, preferably, at the right. It

is important that the user get to expect that a Close button to close a window-form is always

in the same place -- at the far right bottom.

Rule 1-63: Command buttons in a group should all be the same size, if possible.

Rule 1-64: Avoid one set of command buttons on one form looking the same but working

differently or vice versa, as a similar or identical set of buttons on another form. For

instance, Add, Update, Delete and Cancel buttons should always be in the same order from

one form to another.

NMS Developer Standards& Guidelines 1-27 April 1995

1.7.2.2 Grouping of Controls

Rule 1-65: Group controls on a form according to their logical or functional zuse or category.

Use Elastic frames (preferable to normal Visual Basic frame panels), frame panels, or Tabs

controls to section off different groups of controls oh a form. Try to avoid drawing lines on

a form or frame; because its AutoRedraw may have to be set on, slowing screen updates.

Discussion: Such grouping of data entry/edit/viewing fields or other screen objects is on,, of

the first rules of good screen design from the days even before Windows. Visual Basic for
Windows provides some good tools for doing this. The VideoSoft Elastic control and Tabs

control has the added advantages of being able to provide different background colors, 3-D
effects, splitter-bar resizing, and frame-specific automatic resizing.

Make the focus of user action flow from left to right, top to bottom, both withinRule 1-66:

and among groups of controls.

Rule 1-67: Arrange data-entry/edit controls within a group -- and arrange groups of controls

on a form -- according any required sequencing necessary for data lookup or validation.

Discussion: If the data in one field is required to be complete and valid before certain other

fields should be filled in, then make sure that the required fields come before those needing

the required fields in the flow-of-focus among controls and among groups of controls. (This

is repeated in a set of rules concerning validation dependencies in the "Validating Data Entry"

under "Coding Standards (Visual Basic) section.)

Rule 1-68: Avoid overcrowding of a form.

TheDiscussion: This is also an ancient and primary rule of good screen design.

combination of grouping screen objects and not overcrowding makes it easier for the user to

use an application, reduces user fatigue and stress, and makes it easier for an application to

pass user usability and certification/acceptance tests. However, there are instances when it

seems necessary to place more controls on a window-form than it can show or can show

without undue crowding. There are three methods for handling this:

* 	 Tabs controls -- This is the generally preferred method.

* 	 Split windows or windows with individually resizable frame-panels. This is

easily implemented with embedded Elastic controls with splitter bars. This

NMS Developer Standards & Guidelines 1-28 	 -AprTil9

method is especially useful for keeping multi-line text boxes or grids
minimized to one or two lines until the user wants to see more text-lines or
grid-rows.

Scrollable forms - This method can be provided using a hidden custom control

(called a "CSForm" control) from Crescent Software.

1.7.2.3 Labels and Label Controls

Static Label controls on a form should generally be implemented as a control array and can

have just the default name "Label_1". Label controls which serve some special purpose

should be separate and have meaningful names to indicate their purpose. Some such special

purposes are:

* 	 Bound Label controls
* Invisible Label controls for message passing between forms
" Label controls to which data is written

Rule 1-69: Labels associated with certain controls should generally be positioned according

to the following guidelines:

* 	 Group Box (such as a frame) -- on top of or in the upper left comer replacing

the frame line.
* 	 Single-field controls -- to the left of, or above, the control.
• 	 Command button captions -- inside the command button.
* Check boxes or option boxes - to the right of the button or box.
" All others -- above or left of control.

Recommendation: Align vertical groups of labels to a common left edge X-position, unless

it is better for neatness and clarity of function to align them all to a common right edge X­

position. There should be no mix-and-match on one form.

Discussion: Commonly vertical groups of labels are left-aligned, if possible. This can, on

some forms or groups of controls with disparate label caption lengths, make it hard to visually

match a label with its corresponding control, or make some labels seem so far away that it

does not seem associated with any control. There is naturally some controversy on which is

better. The primary intent is to make forms look neat and consistent -- especially consistent

within an application and subsystem consisting of several applications.

Data-Entry Controls

NMS Developer Standards & Guidelines 1-29 	 April 1993

1.8

There is a class of controls used for data entry as text, dates or numbers. One of the simplest
of these is the Visual Basic Text control. A better one is the Visual Basic Masked text
control, since this can be used to mask the display and the user-input, such as for US
telephone numbers or zip codes. An even better solution for dates and numnbers is to use the
custom controls which come with Crescent Software's Quick Pack Pro for Windows. There
is one for each of the data types: Date, Time, Long Integer, Double Float, and Currency.

1.8.1 Speeding Data Entry Using Defaults

Certain general guidelines should be followed when filling in data entry/edit fields for the
user with default values. For instance, if a user is entering multiple records from a stack of
data forms, it may be useful to carry forward certain data from one record to the next or to
auto-increment certain field values.

Rule 1-70: For certain date fields, it may make sense to automatically fill in the current
day's date as a default, or to at least put in the current year. For date fields, the user should
be able to type in just two digits of the year as a shortcut, and the application would
automatically convert this to the correct four-digit number on the user leaving that field. This
is a simple algorithm. A type-ahead correction can even be implemented for certain date
fields. If the user starts the year with a 9' then expect a two-digit year like "199N" and
change the "9" to "199"; otherwise, if the digit begins with a zero, one or two, expect the year
to be like "20nn" and change the "1" or "2" to "201" or "202" before the user keys in the next
number.

1.8.2 Speeding Data Entry Using Pop-up Windows

Rule 1-71: A user should be able to select certain data values from a pop-up dialog box
form. On such a form, the user should be able to make a selection with a double click or by
highlighting an item and clicking an "OK" button or pressing the AIt-O key. Alternatively,
the user should be able to avoid selecting anything by clicking the "Cancel" button or using
the Alt-C or Escape key.

Rule 1-72: A user should be able to pop up a calendar by double-clicking or clicking the
right mouse button on a date field. Selecting a date from the calendar should close the
calendar and write the selected date into the date field box.

Rule 1-73: A data entry/edit box which can have only a fixed set of values should be
implemented using a list box. Alternatively, if more detiled infoirmation must be displayed
for each item in a list, or the list must be made up dynamically or "on-the-fly" by reading
from the database based on othc.r user-entered data values or selections, a modal dialog box
can be popped up with a scrollable grid from which the user can select. Avoid codes in lists,

NMS Devloper Standards & Guidelines 1-30 April 199

The user should never have to memorize "codes". Even if the database oruse text names.
the software uses numeric or alphanumeric codes, always present a list of English-language

descriptive item name to the user.

1.8.3 Speeding Data Entry Using Masks

For masked values such as telephone numbers, social security numbers, or zip-codes, the user

should not have to type in the slashes ("') or hyphens ("-").

Rule 1-74: Zip codes, telephone numbers, and social security numbers should be
-- both for data entryimplemented as text fields (using masked text boxes), not numbers

boxes and in the database -- in order to maintain correct sort-orders. Such fields should have
-- best done in the control's KeyPress()non-numeric characters filtered from the user input

event handler subroutine.

April 1995
NMS DeeloperStandards& Guidelines 1-31

2 	 CODING STANDARDS (VISUAL BASIC)

2.1 	 Standardizing Existing Code

These standards shall be applied to any new code developed. Existing code will be changed

as time permits, to conform to this standard, then regression-tested to verify that it still
functions correctly. Certain rules in these standards are so critical that they shall be applied to
every module. These important coding standards are:

* 	 The inclusion of the Option Explicit statement at the beginning of every module file
a 	 The setting of each VB (Visual Basic) programmer's Environment Options to include

"Require Variable Declaration = Yes"
* 	 The setting of each VB (Visual Basic) programmer's Environment Options to include

"Default Save As Format = Text", and the conversion of existing source code stored
as binary to text format

* 	 The setting of each VB (Visual Basic) programmer's Environment Options to include
"Save Before Run = Yes"

a The inclusion of descriptive headers at the beginning of all source code files and
complex subroutines

0 Explicit declaration of every variable, each on a separate line with the type explicitly
declared

a 	 Adherence to source code naming conventions -- particularly name prefixes. (See
Appendices A & B)

All variables, GUI objects, data objects, and functions should be made to conform with
the defined naming conventions. Search and replace, either globally or within a
module or subroutine, is the best way to do this, but extreme care must be taken not to

corrupt working code. A problem with global search and replace in VB is that, since

VB search and replace operations are not case-sensitive, the programmer make
unintended modifications to many defined constants at once, when only lower-case
variable names were intended to be changed. Global search-and-replace is generally
safe for words or substrings that are long and whose uniqueness is obvious -­
especially for ones that include one or more underscores.

2.1.1 	 Syntax Conventions

This document specifies placing commas and periods outside quotation marks where

confusion might arise about whether the punctuation mark is part of: a literal computer
command, SQL query, a literal string in a programming language, or other string or text
intended to be strictly literal.

9NMS Developer Stanards & Gutelines 2-1 	 April 199

Programming source code samples or programming language keywords shall be in bold.

Where fixed-size font is necessary to maintain the original appearance and indentation, use
Source code samples are 	indented from the left margin."Courier New" 12-point font.

DOS commands or other user-keyboard input shall be in bold itaic and indented from the left

Examples of screen display text should be in bold "Courier New" 14-pointmargin.

font and indented from the left margin.

Where it is necessary to indicate optional parameters in examples of DOS commands or

source code examples, Backus-Naur syntax notation should be used to indicate these options.

(See the section on Backus-Naur notation in the "Document Conventions" Section under

"Document Standards.")

2.2 Declarations

This section defines the standards for declarations of variables, constants, GUI objects,
code.database access objects, 	subroutines, and any other VB objects referred to in source

2.2.1 	 Variable Declarations

see "Variable Names" under the "Naming Conventions" Section.For naming conventions,

Rule 2-1: Variables shall always be declared before use.

This rule will be enforced by the Option Explicit statement at the beginning ofDiscussion:
(See "Option Explicit" under the "VB Environment" Section.)the source code file.

Rule 2-2: Variable declarations shall contain "As <datatype>" to explicitly declare the data

type.

Rule 2-3: Each variable shall be declared on a separate line with its own explicit data type

declaration.

Discussion: A programmer might be fooled into thinking that the following code declared

three strings, while it really declares two integers and one string (or if Deflnt A-Z is not used,

-- which would not show up the error so quickly):two variants and one string

Dim strName, strAddress, strCity As String

2-2 	 April 1995NMS Developer Standards& Guidelines

The proper way to declare these variables would be:

Dim strName As String
Dim strAddress As String
Dim strCity As String

Notice that the names here make their use so clear that comments are not needed.

Note that just naming a variable with a prefix does not provide the same data type
enforcement as the use of the old-style VB special data type characters (e.g., "%" for
integers). Those actually caused the VB compiler/interpreter to report an error as if the
programmer used the wrong data type suffix code. Therefore, the rule to always explicitly
declare the data type is crucial for development of quality software.

Rule 2-4: Variable declarations shall be followed by a comment defining its meaning when
the name is not sufficient. The comment should also describe any peculiarities of the variable
or the way it is used.

Discussion: Commonly, in projects without coding standards, multiple variables are declared
on one line -- a practice that can cause problems. The following is an example of bad coding
style from a VB module in a VB 3.0 project containing multi-variable declarations on one line
and with no comments explaining what they mean:

WRONG WAY:
Dim i%, j%, kS, storS, s, slistS, mspkeyS, mpdskey$, dset As Snapshot, \

mSECTKEYS

Dim titS, fS

was inserted at the end of the first line to indicate line continuation.)(A non-VB "'

Notice the old-fashioned, special Basic data-type suffix characters to make explicit the data

types. The newer, recommended technique is to explicitly declare the type using "As

<datatype>" after each variable named. Such special characters are to be avoided, as VB

Version 4.0 will not support their use.

The first line was too long for the page and in the Visual Basic editor would not have been

visible. There were no comments in the code that followed and, as a result, the code was
virtually indecipherable.

The recommended format is to place eact variabie declacation on a separate line along with

an explanatory comment where the name is not a conu)on convention and does not make its

meaning obvious as in this rearrangement of the ablOve (with naming convention compliance

added):

NMS Developer Standards& Guidelines 2-3 April 199S

RIGHT WAY:
Dim i, j As Integer 'Loop counters

'TEMP STRINGS:
Dim Tit As String 'general temp string
Dim S As String 'general temp string

Dim strCheck As String 'explanation
Dim strStore As String 'explanation ...
Dim strSubProjList As String 'explanation ...
Dim strSubProjKey 'explanation ...
Dim strPDS Key As String 'PDS means Project Data Sheet.
Dim snl As Snapshot 'db snapshot
Dim strSectKey As String 'explanation ...

Notice the grouping of variables and the inclusion of a title for the temp. strings. Notice also,
the relaxing of the requirement for using "As <datatype>" to declare the data type for certain

local variables with short names. The code is still quite readable. Note the conversion of
some names to comply with naming requirements. Also notice where the corrected error
"dset" was renamed to sn_1, since it was a snapshot not a dynaset. This error was harder to
notice when all the names were jammed together. Also, the name snI is not descriptive, but

given no other clues to its use, sni is the best that could be done for now. (See "Variable
Names" under the "Naming Conventions" Section.)

2.2.2 Constant Declarations

Constant (and variable) declarations should be grouped logically or functionally. Global
constants must, of course, go into a global (.BAS) file. Groups of constants will have a
header comment block to define their commonalty and purpose. Each constant will have a

comment describing its meaning or use if this is not totally obvious from its name and
grouping. Constants that are not used (for instance, the VB constants found in the

CONSTANT.BAS file) should be commented out.

2.2.3 DLL/API Subroutine Declarations

Warning: Be very careful in using subroutine prototype declarations for external DLLs. The
ones which come with Visual Basic 3.0 in the files WIN30API.TXT and WIN31EXT.TXT
have several incorrect data type declarations -- specifically several where the As String or By
Val As String is used where a pointer or reference to a user-defined type (data structure)
should be used. This comes about from Microsoft's conversion of C-language function

prototypes to Visual Basic function prototypes, where in old C, a pointer to a string (char *)

was also used as a generic pointer to anything -- the same way that "void *" is now used in C

and C++ as a generic pointer.

NMS Developer Standards& Guidelines 2-4 April 199S

42

The rules for declaring parameters in Visual Basic are not clearly laid out in any one book.

In Visual Basic, pointers are not used, but passing parameters "by reference" is the same
thing.

Rule 2-5: Always explicitly declare the data type of all subroutine parameters, using the

same rules as for variable declarations. (See "Variable Names" under the "Naming

Conventions" Section .)

Rule 2-6: The correct way to declare a user-defined-type parameter passed by reference to an

external API subroutine is to declare the parameter as data type "As Any" or "As <Type

name>", as in the following example from file WIN30API.TXT:

I Parameter Block description structure for use with subr. LoadModuleO:
Type PARAMETERBLOCK

wEnvSeg As Integer

IpCmdLine As Long

lpCmdShow As Long

dwReserved As Long

End Type

Declare Function LoadModule Lib "Kernel" (ByVal IpModuleName As String, \

IpParameterBock As PARAMETERBLOCK) As Integer

This could also have been done as:

Declare Function LoadModule Lib "Kernel" (ByVal IpModuleName As String, \

IpParameterBlock As Any) As Integer

Rule 2-7: The correct way to declare a string buffer type parameter in an external API

subroutine is to declare it as "By Val" and data type "As String", as in the following example

from file WIN30API.TXT:

Declare 	Function WinEzec Lib "Kernel" 0BvVal IpCmdLine As String,

ByVal nCmdShow As Integer) As Integer

Discussion: This causes Visual Basic to convert the reference to the VB type string to a C­

pointer to just the string part of the VB String object. It does not necessarily conclude the

string with a null character; the programmer is advised to do that first. VB's Strings have

several extra, hidden bytes besides the string itself, which is stored in a dynamically allocated

memory block elsewhere in memory. The VB String object contains a hidden pointer to that

memory block, and the API function generally needs only that pointer.

Rule 2-8: Never pass a VB String object to an external DLL subroutine without first
(There are certain exceptions where certain DLLsallocating a memory block for the string.

April 1995NMS Developer Standards & Guidelines 2-5

have subroutines specifically designed to take VB string parameters by reference and which

can dynamically allocate memory for these strings the same way that VB does.) Note that

some DLL subroutines have an extra parameter for passing the size of the buffer.

Rule 2-9: Always terminate a VB String object passed to an external DLL subroutine with

at least one C-type null character or Chr$(0). For fixed-size buffers fill out the end of the

buffer with C-type null characters. (A C-type null character is a byte of numeric value zero,
not the numeric character "0".)

Rule 2-10: Use constants to define the size of fixed size string buffers passed to an external
DLL subroutine and in all references in the code to the buffer size.

one of the three basic methodsDiscussion: Allocation of fixed buffer size can be done by
shown in the following sample subroutine.

Declare Function iPassSQL Lib "mydll" (ByVal IpzSQL As String, \

ByVal IpzUserName As String, ByVal lpzResultSet As String) As Integer

Sub The_ThreeTechniques ()

Const BUFFERSIZE = 2048

Dim iResult As Integer

'DECLARE STRING USED FOR TECHNIQUE 1:

Dim strSQL As String *BUFFERSIZE

'This string is always a fixed size of 128 bytes.

'DECLARE STRINGS USED FOR TECHNIQUES 2 AND 3:

'These strings can be any length, so must be set to proper length.

Dim strErrorMsgBuffer As String 'Technique 2

Dim strResultSetBuffer As String 'Technique 3

'SET UP BUFFERS TO RECEIVE DATA:

'(Set to 2048 bytes each and either fill with C-type Null characters

'or terminate with one - preferably fill.)

'TECHNIQUE 2: - 2047 spaces + one C-type Null character

strErrorBuffer = Space$(BUFFERSIZE-1) + ChrS(0)

'TECHNIQUE 3: -2048 C-type Null characters
=
strResultSetBuffer String$(BUFFERSIZE, Chr$(0))

'FORMAT SQL

strSQL = "SELECT * FROM TABLE_1 WHERE USERNAME - 'Sam'"

=
vtrSQL strSQL + Chr$(0) 'Append C-NULL character.

'-This buffer is still 2048 bytes long; always fixed size.

'SEND SQL STRING, GET BACK ERROR MSG AND QUERY RESULT:

NMS DeveloperStandards & Guidelines 2-6 April 1995

IResult - iPassSQL (strSQL, strErrorBuffer, strResultSetBuffer)

End Sub 'TheThreeTehniques

The latter of the three techniques above is recommended as being safest.

If a string with text is being passed to the external subroutine, then it is a good

practice to append at least one Chr$S() -- or, if passing a fixed-size buffer, enough of

them to fill out the required buffersize.

2.3 VB Environment

This section defines the Agency mandated or recommended settings for Visual Basic

Option:Environment settings and for certain statements to be inserted at the head of each

source code file. The mandated settings are to help ensure the highest quality of software.

2.3.1 Option Explicit

Rule 2-11: Set the "Require Variable Declaration" environment option in Visual Basic. This

causes the Option Explicit statement to be inserted at the beginning of any new VB source

code modules (.BAS or .FRM) created.

Rule 2-12: The Option Explicit statement must be at the head of each source code module

(including form files). For ease in QA verification, this should be before the Option Explicit

statement and the module's descriptive header.

Discussion: One of the most critical requirements for software robustness and reliability in
This eliminates oneVisual Basic programming is the use of Option Explicit in each module.

of the last holdovers from old, hacker Basic that can still prevent Basic from being a truly

robust, structured language. Without Option Explicit, if a programmer misspells a variable

or constant in a code statement, VB assumes the programmer intended to create a new
create very hard to findvariable on the fly and will do so with no warning. This can

software bugs. Also, a new variable's data type will be the default data type if no type-
The Option Explicit statement willspecification character was appended to its name.

automatically be inserted into each new module (or form file) if the VB

menu item: "Require Variable Declaration" is set to "yes.""Options/Environment"

Existing VB source code files (.TXT, .BAS or .FRM files) which do not have Option

Explicit in them must have this statement inserted at the beginning and the code modified to

declare all variables. Often in this process, Visual Basic will call attention to latent bugs that

were previously hidden and can then be cleared up.

When this process was performed on the sample code that came with MicroHelp's HighEdit

NMS Developer Standards& Guidelines 2-7 April 199S

pro (none of the modules used Option Explicit), over 50 software defects came to light,
including:

* variables or parameters that were never initialized
* variables and parameters that were never referenced
* variables and parameters that were referenced by misspelled names

2.3.2 Deflnt A-Z

Rule 2-13: The statement Defint A-Z shall be inserted at the beginning of each module file

(including form files) -- preferably, for ease in verification, before the module descriptive

header and after the Option Implicit statement.

Discussion: If programmers explicitly define the data type of each variable as requhied by

this document, this would not be necessary. This rule acts as a "safety net" for those
(Those will get caught in a code review.) It eliminates anydeclarations that do not comply.

un-explicated variable declarations from inadvertently becoming of data type Variant, if a

programmer forgets to declare a variable data type. Variant data types process more slowly,

take more memory, and cause the executable size to be larger. They also allow programmers

to be less accurate in programming. The Variant data type has some legitimate uses, such as

in intercepting NULL values from database fields.

One other extremely important reason to use Deflnt A-Z is that, without it, a programmer can
-- say,define a subroutine with, for example, two variables intended to be of different types

Int and String, but if a programmer forgets to declare the type specifically (and Option

Explicit does not enforce this for subroutine parameters), they will both be made type Variant.

The source code can then accidentally call that subroutine with the parameters reversed and

the Visual Basic compiler-interpreter will not warn the programmer. Defects of this kind can

be very hard to find.

2.3.3 Save As Text

Rule 2-14: Set the Default Save As Format = Text environment option in Visual Basic.

Rule 2-15: Convert any existing source code modules saved in binary format to text format.

Discussion: It is important to save all VB source code (form and module files) as ASCII
text. This is partly due to a long and continuing history of problems (reported from various
industry sources) with storage as binary files, but it will also allow the use of text-based

utilities such as grep, diff, wc (a word-and line-counting utility), code compressors such as

VBCompress, cross-referencers such as VBXRef, code browsers, and code-formatters (such

as Dent Thing in Pinnacle's ToolThings). Also, the Visual Basic Setup Wizard may not

NMS DeveloperStandards & Guidelines 2-8 Apr7*79

work properly with code saved as binary.

The ability to use a text editor on a corrupted form file can save hours of potentially lost

work. The ability to use an editor with the powerful combination keystroke recording macros

and regular expression searching, such as Brief, Visual Slick Edit, or WinEdit can

significantly speed up reformatting and standardization of code copied from elsewhere or

certain tasks for configuration management, such as inserting -- or modifying the format of -­

standard headers into a large list of files. For instance, using keystroke macros, it becomes
easy to copy and paste a long list of constants into a subroutine and reformat it into a select­

case statement.

2.3.4 Option Base

Recommendation: Use the default Option Base-0 (zero) everywhere.

Discussion: This requires no action by the programmer, since zero is the default. The

statement Option Base N sets the default beginning index of arrays (declared within the

module) to N. However, if a programmer has an explicit reason for using a different

beginning index for an array, since this might affect references to that array in other modules

(if global) and will affect other programmers being able to assume the base of an array.

Option Base 0 is equivalent to using 0 To N in the size parameter when declaring an array,

as in:

Dim MyArray (0 To 20) as Integer

Although experience has shown that using Option Base 1 at the beginning of a module

simplifies programming some arrays, other list objects, such as list boxes and Dynasets, use a

It is best that code be consistent and predictable -- that programmersbeginning index of zero.

know what to expect as the beginning index for most arrays.

2.3.5 Option Compare Binary vs. Option Conipare Text

-- or case insensitive search.Recommendation: Use the non-default Option Compare Text

One of these two statements at the beginning of a module determines the search method for

strings for that module. Case-insensitive search is recommended over the other, but the

programmer is free to choose whichever best suits the needs of the module.

-- one case-sensitiveDiscussion: VB 3.0 provides two very fast text/string search methods
and the other case-insensitive. The case-sensitivity setting for all text searches within a form

or code module is controlled by the Option Compare statement at the beginning of the

Binary is the default search method and provides case-sensitiveGeneral section of the code.

"NMS DeveloperStandards& Guidelines 2-9 April 1995

searching; text provides case-insensitive searching. Both are very fast and are as fast as calls

to the Windows API string search routines. The Windows API Istrempo and Istrcmpio

(refer to the Windows API help files (WIN31API.HLP, WIN3IWH.HLP) in the VB\WINAPI

be called to perform the type search that is the opposite to thedirectory) functions can
Option Compare setting.

2.3.6 Save-Before-Run

Setting this option to "Yes" helps prevent loss of work in case of application crashes, which

are all too common while developing.

2.3.7 Grid-Alignment Size = 60

This VB environment option setting provides a smaller-than-default, but more useful, grid size
The smaller size gives the programmerand standardizes the positioning of contcols on forms.

firer control over control placement.

2.3.8 Config.Sys: Files

Rule 2-16: Set Files=<N>, where N = 75 to 125, in file "CONFIG.SYS" on developer

workstations.

Discussion: A high number of possible open file handles is required when working in

Windows as a Windows developer due to the probability of multi-tasking multiple

applications, each of which may require many files.

2.4 Source Code Documentation

2.4.1 Code Commenting

This section defines guidelines and rules for commenting source code. All source code shall

contain comments to make the code more readable and understandable both for the current

programming team and for future programmers. A primary goal of commenting source code,

along with proper choice of names for variables, constants, and subroutines, is to make the

source code largely self-documenting. The requirements to properly comment source codes

on experiences from many projects in the history of software development. Someare based
reasons for commenting are as follows. It shall be assumed that at least 30% of the analyst

The cost of maintainingand prograrming staff on a project will leave before it is completed.

a system far exceeds the cost of building it. Without notes built into the code, a programmer

can forget within a couple of weeks what one was thinking or intending when writing a

section of code.

April 1995NMS Developer Standards& Guidelines 2-10

Most programmers have had to work with code developed by others with little or no
commenting or other documentation. Most programmers have had the problem of trying to

understand and modify their own code after some weeks or months have gone by. Comments

and documentation are crucial for showing what the programmer was trying to do in a section

of code and why. Most programmers do not describe what they were thinking at the time

they created a section or selected a method. It is sometimes valuable to describe other

solutions or methods considered and why they were rejected -- especially if other solutions

may appear to be better but are not. This may keep future programmers from attempting to

"improve" a subroutine and have to go through the same "hard lessons learned" as the original

programmer. Write comments as though one of the next readers will be a novice
programmer or new to the language or type of system.

Rule 2-17: Language in comments should be short but clear. It can be informal. Correct

spelling and grammar should be used because such errors interrupt the flow of reading.

Recommendation: Comments should be used to describe certain past mistakes or blind

alleys that have been solved and for which it is anticipated future programmers might be

tempted to repeat the same mistakes in attempts to "improve" the code or process. This may

occur where a programmer has gone down a blind alley by pursuing a seemingly logical or

obvious algorithm or method in code -- or has run into a problem that was not obvious.

be used to document part of the thought processes orRecommendation: Comments can
reasons for choosing a certain method or algorithm, where it is anticipated that future

programmers might wonder about the reasoning behind a certain approach.

Rule 2-18: Comments will be used to provide detail about what a subroutine call or section

of code does and why, when this is not obvious from the subroutine name or from variable or

object names in the code section. This is especially important where variable, object, or

variable names need to be kept short and do not convey enough information about a process.

Discussion: Comments in source code generally take the following forms:

* 	 Comment header blocks at the beginning of source code modules (files). In Visual

Basic, this includes .BAS, .TXT, and .FRM (window form) files that are included in

the project makefile.
a 	 Comment header blocks at the beginning of subroutines (procedures and functions).
* 	 Comment blocks or section headers within the General Declaration section of a module

(outside any subroutines) to declare the purpose of the module.
a 	 Comments to delineate and title logical groupings of declarations of constants,

variables, or subroutine.

'NMS Developer Standards& Guidelines 2-11 	 April 1993

Comment blocks or section headers within a subroutine to declare what a section of
code is doing. This generally corresponds to a single statement in a pseudocode
summarization of the subroutine.

* Comment lines to declare what a subsection or line of code is doing.
- A comment following a line of code to explain just that line.
* A comment following a variable declaration to explain its use.
* A comment at the end of a subroutine or function showing its name again. This is

extremely valuable when reading code for long subroutines or for subroutines that
cross page boundaries in printed source code.

2.4.2 Standard Header Templates

Rule 2-19: Descriptive header sections -- using large comment blocks -- should be used at
the beginning of each module file and at the beginning of all subroutines of any size to help
make the code self-documenting. (A module file here means a source code file with a .BAS
or .TXT suffix or a form file with a .FRM suffix.) Extremely short, simple subroutines, such
as VB event-handlers, may not require a descriptive header. Subroutines with no parameters
or with parameters whose meaning is obvious, may require only one or two lines of comment
to describe what it does.

These headers shall list and describe global variables used or affected; database tables read or
modified, and any file I/O.

Subroutine headers shall list and describe input parameters, output parameters, and return
values. Parameters passed to a subroutine should be described in detail when their meanings
are not obvious or when they need to be in a specific range. They shall include flexible­
format, narrative sections that provide enough detail tc enable a new programmer to
understand the intended functionality. This description shall not describe the implementation
details (how it does it) because these often change over time, resulting in unnecessary
comment maintenance work, or worse yet -- erroneous comments; the, crde itself through
local comments will describe the implementation.

There are four different standard header templates -- one each for:

Procedure 	 Procedure-type subroutines. These do not return a value; although they
can pass back values through their parameters. In VB they are called a
Sub.

Function 	 Function-type subroutines. These return a value.

VB Module 	 A Visual Basic source code module, conventionally stored as a text file
with a ".BAS" suffix.

NMS Developer Standards & Guidelines 2-12 	 April 799

Form Module 	A Visual Basic "Form" module de-fining a VB windows-form and

containing source code conventionally stored as a text file with a
".FRM" suffix.

Copies of these VB standard templates are found in files FUNCTION.TEM,
SUBROUTN.TEM, MODULE.TEM, and FORM.TEM in the common, re-usable code

repository on S:\COMMON\VBSOURCE\TEMPLATE. Examples of their use are given
below.

Rule 2-20: Each descriptive header block shall identify who created the module or

subroutine. It shall also list briefly and clearly describe the gist of the modifications in

diffeient revision levels of the module or subroutine, who modified it, when and why. Use

the av.tomatic change-description prompting (on module check-in) and keyword-expansion

features of the VCS (version control system) to automate this process for modules.

Discussion: Most version control systems, such as PVCS and CCC Harvest, can store change

descriptions as text and automatically insert this text into the file header through the

embedding. This feature shall be used to keep a history of who, when and why for module

revisions visible to programmers in the module's comment header block.

Rule 2-21: The comment header block at the beginning of a module shall be of a standard

header template format. It should give the file and module name, explain the purpose of the

module; the common functionality of the classes, constants, global variables, and subroutines

grouped within it.

Rule 2-22: The comment block at the begirmning of the application's main module (the

module containing the Main() subroutine for the application) wil! give it an overview

description of the application, enumerating primary data objects, routines, algorithms,
dialogues, database and file system dependencies, etc., and shall be included at the start of

the .BAS module file that contains the project's Visual Basic generic constant declarations.

An example follows, with sample source code in bold and comments for purposes of this

document in non-bold:

The following standard header template for a form (.FRM) file contains sample variable,
constant, subroutine, and table specifications.

NMS Developer Standards& Guidelines 2-13 	 April 1995

--

FILE NAME: <Module name>.BAS (for modules or <Formname>.FRMforforms)

FORM NAME: frm_AcectSpecitl (forform modules only)

APP: <Application name> : Shared

PURPOSE: The purpose of this module is ...

It contains subroutines with the common purpose of

GLOBAL SUBROUTINES EXPORTED: (onlyfor .BAS modules, not for .FRAl modules)

function errUpdateAcctSpecial (sample subroutine names)

function IngGetNumSpecialAcctRecs

sub DisplayAcctErrMsg

GLOBALS IMPORTED:
g_arrAccountRecs - an array of account records

g_dsCreditors - a dynaset of creditors associated with this

gang.

GLOBALS EXPORTED: (only for .BAS files)

g_arrAccountRecs - an array of account records

FILE 1/0: (optional)

TABLES READ: (optional if none read)
(The following optionalmapping to controls or grid columns is to be used onlyfor VB form files:)

Map to

Table Attribute Control/Grid Column Description

<Tablel Name> Field I <Grid Column 1> (sample specification text)

Field_2 <Grid Column 2>

<Table2 Name> FieldI <Grid Column 3>

TABLES MODIFIED: (optional if none written to)
I---­

'HISTORY:
Created by: Henry Hull, Nov. 04, 1994
Modified by: Henry Hull, Dec. 25, 1994 Revision 1.1

Added safety check for null value in global dynaset fields:

gdsCreditors("AcctNo").

Rule 2-23: The comment block at the beginning of a subroutine should give its name and
describe its functionality. It shall identify input parameters, output parameters, and return
values. In addition, it will identify any global variables, database tables, files accessed or
modified, and any other unusual I/O. An example is given below.

NMS Developer Standards& Guidelines 2-14 April 1993

5­

--

The comment block at the beginning of a subroutine preferably should be
Recommendation: or outside the subroutine,
inside the subroutine just after its declaration line, indented I level,

just before the subroutine declaration, not indented but flush with the left margin.

Sub UpdateAccountSpecial (curPayment As Single)

a payment for special case individuals..This subroutine processes

It has this special functionality .- and -

It uses the input - and - to update a matching record in the

global array grrAAcountRecs.

ASSUMES:

This subr. assumes that tht global dynaset and global array

listed below have Loen initialized.

INPUTS: curPayment - the payment being made for the

(List each non-obvious parameter on a separate line with in-line comments.)

OUTPUTS: A printed exception report is printed

a separate

(List each non-obvious output parameter or other output not listed below on

line with in-line comments. Do not list function return values here.)

- descriptionRETURNS: data type

(Use this only for functions, no' procedures (called Sub in VB)).

SIDE EFFECTS: (optional)

This is usually obvious through

List each non-obvious external effect.

the list of globals affected, file output, and tables/fields affected.

GLOBALS USED:
- an array of account recordsg.arrAccountRcs

a dynaset of creditors associated with this-g.dsCreditors
gang.

GLOBALS MODIFIED:

- an array of account records
LarrAccountRecs

FILE 1/0: (optional)

TABLES READ: (optional if none read)

TABLES MODIFIED: (optional if none written to)

(If any tables are affected, list specific fields affected.)

HISTORY:

Created by: Henry Hull, Nov. 04, 1994

Modified by: Henry Hull, Det. 25, 1994

Added safety check for null value in global dynaset.field:

g.ds Creditors("Aect No").

April 1995
Standards & Guidelin-es _2415NI;, pneie

2.4.3 Internal Comment Blocks

Rule 2-24: The code within long subroutines shall include normal comments explaining lines
or data objects and section headers composed of comment blocks highlighted using lines
formed of "-", "=" or "*" characters. Use comment blocks to make long subroutines more
readable by breaking it up into sections, such that a programmer can quickly scan through the
code, understanding the main logic flow without having to read detail, and to quickly get to a
particular section where modifications may be required. A good technique is tu insert a
pseudocode description of the subroutine's algorithm into the subroutine body, split it up into
comment blocks, adding explanatory text where appropriate, and then fill in the section of
code underneath each comment block. Comment blocks should stand out visually. Examples
of comment blocks follow.

For small modules, or comments embedded in large modules use:

ACTION SUMMARY STATEMENT

Comment detail ...

For large modules, where the need exists to use a higher level of comment blocks or to call
attention to one or more particular sections, use the following style comment-block:

ACTION SUMMARY STATEMENT

Comment detail ...

or

ACTION SUMMARY STATEMENT

Comment detail ...

Rule 2-25: The right end of a comment block should not be closed to form a box, since this
takes too much time to manually reformat lines when making changes inside the comment
blocks. (It also creates larger source code files because of the large number of trailing spaces
required.)

Note: Comments in versions of VB before 3.0 caused the generated .EXE file to be larger.
This is no longer an issue, so comments can and should be used generously.

NMS Developer Standards & Guidelines 2-16 April 199S

Rule 2-26: Place the name of the subroutine in an in-line comment at the end of each
subroutine that is longer than about five lines or which might cross page boundaries in
printouts.

Discussion: The subroutine name repeated at its end is for subroutines that cross printed page
boundaries. Ideally, a code printing tool will be available that can automatically start each
subroutine on a new page, but long subroutines will still need this. An abbreviated example
follows:

Sub MySubroutine (Parameterl as Integer)

End Sub 'MySubroutine

2.5 Indenting Source Code

Rule 2-27: Indent all code within a subroutine at least one level.

Discussion: If a VB programmer has developed the habit of not indenting the first level of
code within subroutines, then, when the VB code is edited by another programming editor (as
it is for certain tasks), it is difficult to determine visually where a subroutine begins and ends.

Rule 2-28: Indent all code inside a control structure, such as a loop or If-Then-Else, one
level. VB Select-Case statements will be indented as in the following example:

Select Case Varl:
Case 1:

Statement 1...
St A't' C,t 2...

Case 1:
Statement 3...
Statement 4...

End Select

Rule 2-29: Four-space indenting shall be used for Visual Basic source code. Three is the
ideal, but requires all programmers to set their VB environments the same. The same
indenting should be used throughout a project.

Discussion: Three space indenting has been shown to be the best compromise between
space and readability. Four spaces per indent is VB's default, and should probably be used as
the standard, since three space indenting seems to cause too much argument among
piogrammers. A tool such as the "Dent Thing" in Pinnacle Software's "Tool Things" can be
used later to convert all existing code 0 to three space indenting, if necessary -- or just to
enforce standard indenting. Eventually, all code should be converted to the preferred thre

NMS Developer Standards & Guidelines 2-17 April 1995

spaces because few of the original programmers will be around for the life of the system, and

the organizations need for code maintainability is paramount to individual preferences.

Indenting with three spaces per indent is still clearly discernible and saves space in deeply

It can make perhaps 5% to 30% of the code more readable-by keeping it innested code.
bounds in an edit window or on a printed page. In almost any programming editor, the

In Visual Basic, this indenting can be setnumber of indenting spaces can be set as an option.
in the Options: Environment menu.

It is important that everyone use the same number of spaces for indenting; otherwise, when

one programmer edits code in a module with a different indent-setting, their code does not
or deleting spaces for eachline up automatically, and they are forced to spend time inserting

line.

One problem with using three-space indenting is that sample code borrowed from other

projects or from VB examples uses four-space indenting. Here again, Pinnacle Publishing's

"Tool Things" can be used to automatically reformat an entire project to conform with the

selected standard for indenting.

Examine subroutines with deeply nested code or long subroutines to seeRecommendation:

whether they can be made more readable and maintainable by splitting parts of it into

subroutines--specially any parts that are repeated.

Discussion: A concern about three space indenting is that it encourages deeply nested code,

which is said to be bad. Deeply nested code is not synonymous with bad code; although it

may indicate a need to break a subroutine into smaller sections.

Rule 2-30: When nesting control structures, put a comment at the end of each control
-- to identify its beginning and end.structure -- and at the beginning if it helps

This makes clear which control structure a control-structure-ending keywordDiscussion:
(such as Endif, Loop, or End Select) refers to. While indenting is meant to make the code

more readable, this is often not enough for deeply nested code or for code that crosses printed

page boundaries. Placing comments at the end of control structures -- and sometimes also at

the beginning of them -- helps identify them. An example follows:

April 1993
NMS Developer Standards & Guidelines 2-18

Sub SampleSubroutine ()
'This subroutine ...

standard subroutine descriptive header block ...
etc-

Dim strFirstName As String

'LOOP COUNTERS:
Dim I As Integer

Dim j As Integer

Dim k As Integer

'TEMP STRINGS:

Dim s$

'OTHER QUICKIE TEMP VARS:

Dim Pos% 'char. position found within a string.

Dim res% 'function result code

'LOOP 1:

'Explain here what Loop one does.

For i = I To UBound(garrAccountRecs)

'PROCESS FIRST NAME:

'Make a temp copy of first name to keep

'from accessing the array element repeatedly.

strFirstName = garrAccountRees.Contact.FirstName

If InStr(strFirstName, "George") Then

strLastName = garrAccountRecs.Contact.LtstName

Select Case strLastName
Case "Fallows":

'Look for blank char.

Pos% = InStr(strAccountName," ")

If Pos% Then 'blank found

strTemp = Parse(strAccountName, "", strShift)

If Len(strShift) Then
Call ProcessAcctName(strTemp, strShift, garrAccountRecs)

End If
End If 'blank found

End Select 'strLastName

res% = Update_-Account(strFirstName, strLastName, curPayment)

If res% = SUCCESS Then

2-19 April 1995NMS Developer Standards& Guidelines

'LOOP 2: RECONCILE WITH CREDITORS:
Do While (Not dsCreditors.EOF)

vntAcctNo = gdsCreditors("AccltNo")

If IsNull(vntAcctNo) Then

'Do Nothing

Elseif vntAcctNo = garrAccountRecs.AcctNo

Call Subrl(Paraml, Param2, Param3)
'-Using a Call here allows use of parentheses to make

'the parameters stand out more, and increases readability.

Call PrintFinalBill(garrAccountRecs.AcctBal)

End If'Checking Creditors

Loop 'End Loop 2

Else

res% = MsgBox("Error: "+ ErrorS(Err), MBJCONEXCLAMATION, \

MBOKCANCEL)

If res% = IDCANCEL Then

gblnUserCancelled = True

'-Set global var - may cause calling subr. to prompt

'user to quit app or continue.

Exit Sub

End If

End If 'res% 'End processing "George"

Elself InStr(strFirstName, "Anne") Then

Elself InStr(strFirstName, "Peter") Then

ElseIf InStr(strFirstName, "Linda") Then

Elself InStr(strFirstName, "errick") Then

Else

End If 'InStr(strFirstName,.)

Next i !END LOOP I
End Sub 'SampleSubroutine ()

Rule 2-31: If using a programming editor, such as Brief, WinEdit, or Visual SlickEdit, the

tab option shall be set to use all spaces and not to fill with tab-characters. Otherwise, printed

source code will not look as it appeared on screen. There is virtually no discernable

difference in compile times between using tabs and using spaces.

NMS Developer Standards& Guidelines 2-20 April 1995

2.6 Naming Conventions

A consistent, project-wide technique of name construction and assignment supports traceability

from information requirement specification through design, implementation, operation, and
Creating names by the same set of rules makes it easier to identify previouslymaintenance.

existing and potentially redundant names. The overall objective is to reduce: synonyms,

duplicate names, information inconsistency, inaccurate information disseimination; and, to

facilitate: consistent, understandable and technically appropriate naming of NMS information
objects.

Establishing naming standards is an on-going activity that must adjust and evolve along with

the NMS Program. Implementation and compliance with NMS naming standards will occur

on an incremental basis, and within the context of availability of tools with which to

administer the standards.

Rule 2-32: Names shall be shortened, within reason -- using standard abbreviations where

necessary -- and should clearly indicate the meaning and use of the object named.

Names shall be short to save space in the source code editing windows and inDiscussion:

printed source code, specially in Visual Basic that does not allow breaking lines in the source

However, the prime requirement is code readability and clarity. Thus, names (after thecode.

prefix) should be like readable English.

Rule 2-33: Except for constants, individual words within a name shall begin with a capital

letter, and the rest will be lower-case letters or numbers.

Rule 2-34: Avoid acronyms in object names, where possible, except for a very small list,

such as "FY" for fiscal year, "BY" for budget year, and "OY" for operating year. However,

the statements declaring and using acronyms should always have explanatory comments.

Always program for newcomers. (A list of these standard acronyms will be posted in an

appendix later.)

Rule 2-35: Generally avoid underscores in names, except:

* after the prefix of a control name or a GUI object,
* following an acronym (such as "TEC"for total estimated cost) where the acronym

must be clearly set off from the beginning capital letter of the next word or symbol in

the name,

where grouping words or symbols within a name makes the meaning clearer.

Exception: The use of underscores to separate words inside object names can be allowed

where it helps readability, but the recommended standard is to avoid them within variable

April 1995NMS DIeveop.r Standards& Guidelines 2-21

The use of underscores has the disadvantage of making names longer.names.

A variation of Hungarian notation (lowercase prefixes followed by an underscore) is

recommended for GUI objects and database objects, since this provides quick recognition of

those type objects versus variables. These are discussed in separate subsections below.

Discussion: The programmer is allowed leeway to use creative intuition in naming objects.

In order for names to be short but clear, a combination of guidelines, creativity and common
Two of the criteria for naming Visual Basic code items conflict. On thesense must be used.

one hand, there is the important requirement that names be meaningful and clearly indicate

the use of the object they name -- even at the expense of brevity. On the other hand, since

Visual Basic does not allow line wrapping in code, long names occasionally make many lines

of code run off the page (in either printouts or editor windows).

2.6.1 Name Prefixes

In addition to the rules given at the beginning of the "Naming Conventions" Section, the

following rules and recommendations for name prefixes shall apply for variables, database

objects, functions, and GUI objects. Subroutine names do not need prefixes, since they do

not return data. However, functions do. (See the subsection on naming conventions for

functions.)

Rule 2-36: Use the standard name prefixes to indicate the type of any data object, database

object, or GUI object.

Discussion: Naming conventions for Visual Basic data, database and GUI objects shall use a

variation of the Hungarian notation used in C- or C++-based Windows programming, where a

prefix (of usually two to five) lower case letters are added to the name. An optional

exception is some local variables within a subroutine, such as loop counters i, j, or k, or

can be allowed to be just one to three characters long. Atemp. strings, for extreme brevity,
Basic-language special character indicating the data type shall be used as a name suffix. For

more detailed rules and exceptions, see "Variable Names", "Subroutine Name Prefixes:
-- FormsIndicating Data Types", "Names for Database Objects", and "Names for GUI Objects

and Controls" Sections. Also see the name prefix lists in Appendices A and B.

Rule 2-37: Global variables and data objects shall be further prefixed with a "g"or "g..", as

in example global database object gdbAIDMain.

April 1993
NMS Developer Standards& Guidelines 2-22

2.6.2 Constant Names

In addition to the rules given at the beginning of the "Naming Conventions" Section, the

following rules and recommendations shall apply for constants:

Numbers and underscoresRule 2-38: Constants shall be named using all uppercase letters.

can be embedded in them.

Rule 2-39: Do not prefix global constant names with a "G" or "G",since there are too

many global constants already defined in VB and the Windows API that do not use this

convention.

Rule 2-40: For a group of new constants that refer to a common class of objects or to a

common API or custom control(s), prefix the constant names with an abbreviated, mnemonic

code to indicate their common usage. A good example of this is the "DBR"prefix on all

VB database constants, the "MAPI_" prefix to VB MAPI constants, or the "SS_' prefix to all

FarPoint spreadsheet constants in the file "FPSPREAD.BAS."

Discussion: In constant definition files which come with certain tools, such as

SSCONST.BAS for the FarPoint Spread/VBX spreadsheet custom control. Since most

constants will be type Integer, this is more valuable for non-Integer constants. String

constants, especially, shall be suffixed with a "S".

2.6.3 Variable Names

In addition to the rules given at the beginning of the "Naming Conventions" Section, the

following rules and recommendations shall apply for variables:

Rule 2-41: Use the standard Hungarian notation prefixes listed in Appendix B for variable

names to indicate the data type or use. (These prefixes are based on Microsoft's

recommended prefixes.)

Rule 2-42: Global variables shall be further prefixed with a lowercase "g". It is

recommended to not use the underscore character to separate the "g" from the rest of the

- prefix.

Rule 2-43: Do not separate a variable name prefix from the rest of the variable name with an

underscore.

Rule 2-44: Use the same rules for naming all subroutine parameters as for variable names

(except that the "g" for global is not appropriate).

NMS Developer Standards & Guidelines 2-23 April 1995

Note: Module-scope and Form-scope variables are generally not noted as such but could
have an additional prefix code inserted after the prefix. This convention is generally used to
indicate that the object belongs to a special group of functionally related objects. An
example is the use of "SS" or "Spread" to denote spreadsheet-specific variables or
subroutines, as in variable intSSNumRows or subroutine SSLoadGraphFromSpreadsheet(

Note: In those instances where a string buffer must be created and passed as a pointer to a
Windows API or other DLL subroutine expecting a C-language char* pointer, it may be
useful to revert to a name prefix such as "lp" or "lpsz" that indicates its special usage.

It was more common in the past to append a special character code suffix to the name to
indicate (and enforce) the data type, such as "%" for integers or "S"for strings. This may
not be supported in future versions of Visual Basic.

Note that just naming a variable with a prefix does not provide the same data type
enforcement as the practice of using the old-style VB special data type characters (e.g., "%"'
for integers) for every reference to a variable or constant. Those actually caused the VB
compiler/interpreter to report it as an error if the programmer used the wrong data type suffix
code. Therefore, always explicitly declaring the data type is crucial for quality sofrvare as in
this example.

Dim hngNumRecords As Long

In no case shall a variable ever be declared with no data type, for then it would be of the
default data type, which depends on the existence of the Deflnt statement. (Inserting the
Defint A-Z statement at the head of a module makes the default data type Integer; otherwise,
the default data type is Variant, which takes more memory, more size for the executable, and
more time to process.)

An exception is that occasionally a subroutine declaration from a DLL API or the Windows
API is pasted into a subroutine where one or more of the parameters do not have the data

type explicitly declared. In these cases, the subroutine parameter is assuming type Integer
(as the C-language does) and the Deflnt A-Z declaration at the top of the module file assures
this translation and compatibility. A better solution in such cases might be to modify the
API function declaration by appending the VB data-type symbol, such as "%" (for integer),
to parameter names. Modify only those parameters with no type specified. These data-type
suffix codes may not be supported in future versions of Visual Basic, but they are especially
valuable in keeping subroutine declarations short.

In some cases one can rely on meaningful variable names to indicate the data type to the
programmer. In certain other cases, the name may imply a common use and thus imply the

NMS Developer Siandards& Guidelines 2-24 April 1995

data type -- such as i or j for loop counters, which are always assumed to be integers, or Tit,

SQL or Msg for a string variable.

Clearly, cryptic variable names such as X, X1, Y, A, B, C, etc., should be avoided. It makes

the meaning of the code inside a loop clearer if the loop counter is named for what it is

actually counting, such as:

Const SUNDAY - 0

Const MONDAY = 1

Const SATURDAY = 6

For iDay = SUNDAY To SATURDAY
(Code inside loop refers to DayNo, where values like SUNDAY and SATURDAY are

predefined constants).
Next iDay

Rule 2-45: When referencing cells, rows and columns within a grid via a loop, always use

loop-counter names like iRow and iCol instead of i and j. This makes the source code far

more readable.

names such as Status, Amount, Record, etc., exceptRecommendation: Avoid generalized
possibly within the local scope of a small subroutine where the meaning of the named item is

very clear. In general, it is better for the name to indicate what it is the status of or to use a

name such as AccountStatus or MonthlySalesTotal. (See comments below concerning

underscore separators.)

aIn general, descriptive names shall be used for local variables; but in Visual Basic where

line of source code cannot be split up and continued, short names are sometimes desirable to

keep lines short. Extremely terse names are not generally recommended. However, the use

of terse names can be offset by explanatory comments. Certain names, such as i, j, and k

are commonly used as loop counters and do not need comments or prefixes. Other common

conventions are Tit or S for temporary string variables, Msg for message strings, SQL for

SQL query strings, and iRes or iRet for returned function result codes.

For example, in the following code it is difficult to guess what the programmer intended the
suffix of "%" defines its datatype asunexplained variables to represent. (A variable name

Integer, and "$"defines it as a character-string.) This sample code does not follow Agency

naming conventions.

2-25 April 1995NMS Developer Standards& Guidelines

Dim i%, j%
Dim ckS
Dim res%
Dim storS
Dim sS
Dim slistS
Dim mspkeyS
Dim mpdskeyS
Dim dbset As Snapshot 'static database recordset

.Dim mSECTKEYS
Dim txtS
Dim f$

In this example, the programmer has used a terse naming convention, which makes the code
harder to read. Even worse, there were no comments. (Note the old-style data-type special
characters to be abandoned in future versions of Visual Basic.)

2.6.4 Subroutine Name Prefixes: Indicating Data Types

Rule 2-46: Procedure-type subroutine names do not need prefixes, since they do not return
data.

Recommendation: Function names may use the same naming prefixes as variables to
indicate the data type returned.

Rule 2-47: Subroutine names shall sound like commands or verbs and shall have an object to
reflect the data object acted on. This applies to both procedure-type (Sub) and function-type
(Function) subroutines. For example, a function name can be like
"intGetCiirrentTotalEstimCosto", which fulfills both requirements.

2.6,5 Names for Database Objects

This section defines rules for naming database access objects in source code.

Rule 2-48: Use the "Hungarian"-style notation naming prefixes from the table in Appendix B
for database-access type objects.

Rule 2-49: The prefix for a database object shall be separated from the rest of the name with
an underscore " " character.

Rule 2-50: Names of database objects should clearly reflect the name of the object in the
database (table-name, view-name, field-name, etc.) such as ("Account," "Country," etc.) which
it accesses or displays. Names of database objects should generally sound like nouns.

NMS Developer Standards& Guidelines 2-26 April 1995

Discussion: Although this is against the tradition used by Windows C programmers, the

underscore allows the database object names (along with GUI objects) to be visually
distinguished from variable names.

2.6.6 Names for GUI Objects - Forms and Controls

Rule 2-51: Names of GUI objects (forms and controls) shall be prefixed using standard
prefixes listed in Appendix A.

Discussion: In Visual Basic for Windows, the standards and recommended naming
conventions are slightly different from those in C or C++ Windows programming. Forms

and controls (GUI objects) shall have a short, mnemonic prefix followed by a meaningful
The default names given by Visual Basic for new forms and controls shall not bename.

used. The preferred name prefixes for standard Visual Basic GUI objects (controls and

forms) are given in Programmers Guide, Visual Basic 3.0 for Windows, Microsoft Press in

the section "Object Naming Conventions" on pages 34-35.

IMPORTANT NOTE: A form name shall always be prefixed with "frm_". Appendix A

defines variations to use for MDI parent and child forms. When first saving a newly named

form, since the "frm" prefix will be in the name, VB will try to name the form's file

starting with "FRM_", thus using some of the eight characters available for a filename

prefix. The programmer must manually override this in the VB File/Save As operation, the

first time the form file is saved.

Recommendation: Generally, avoid naming a form with the name of an object on the form,

or names with too general meaaiing. For instance, do not use the words "Spreadsheet,"

"Grid" or even "SS Section3" (for spreadsheet section 3) in the form name. Name a form

for its function and/or the main data it accesses. The form might contain a spreadsheet

control or grid, but it shall be named for its primary data or fLnction, not how its data is

displayed.

Rule 2-52: The prefix for a control or form shall be separated from the rest of the namne with

an underscore " " character to distinguish it from prefixed-names of variables.

Discussion: This rule does not follow the tradition used by C Windows programmers, and it

is likely that some programmers will complain. The reason for this rule becomes clear when

third party custom controls are brought into a project, where it is advisable and common to

include in the prefix a short acronym for the company name. Some examples are fpGrid_

for the data-bound grid from Far Point Technologies and csChk_ for Crescent Software's

combination check-box and frame control that comes with their Quick Pack Pro for Windows.

Tne uppercase letter is to delineate where the vendor initials end and the control type begins

in the name prefix. If the vendor's default names are used, they may try to make their name

NMS Developer Standards & Guidelines 2-27 -Apri795

stand out by capitalizing their initials; thus, Crescent Software's default name prefix for the

This does not provide maximum readability and is notcheckbox control is CSChk.
fits the standard recommended here.acceptable to this standard; csChk_

The recommended list of standard Visual Basic GUI Object Name Prefixes is in Appendix A.

Third party controls shall be identified by including an additional two-letter pre-
Rule 2-53:
prefix in their name identifying their vendor. Standard prefixes for tllird party controls are

This list is subject to revision as third-party controls are
listed in a table in Appendix A.
added to USAID's standard set of tools.

An example 	is the Crescent Software frame and check box combination controlDiscussion:
(in Quick Pack Pro for Windows) where a prefix name of "csChk_" is used to distinguish it

from the Visual Basic native check box control. Another example is the Far Point Grid

where a prefix name of "fpGrid_" is used to distinguish it from the Visual Basic native grid

control.

general type 	as some Visual Basic controls,Because some third party controls are of the same

it is necessary to somehow distinguish them from one another. Some additional

recommended name prefixes for third-party custom controls which may be used in this

software system may be longer to provide readability at the expense of terseness.

The main part of the control name should indicate clearly in near-English the use
Rule 2-54:
of the control. An underscore shall separate the prefix from the rest of the name, but

For instance, a text boxunderscores shall not be used within the prefix nor within the suffix.

might be txt_CalculatedDepth, or a label connected to a data control field might be

ibl StartDate. A Crescent Software CSDate custo.m control text box would be

Completed, and a CSLabel might be called csLblTimeLapsed. A SheridancsDate

Software spreadsheet control might be ssTimeltems; although if there is only one tabular

on a form and its use is clear, sometimes it might be acceptable
control (grid or spreadsheet)

to simply call the grid or spreadsheet Grid_1, fpGrid_l, or ss_1.

Rule 2-55: 	 A VB data control's name shall indicate the table or view to which it is

If multiple databases are accessed in one application, the data control's nameconnected.
as well. (A data control is a GUI object, and is different fromshould indicate the database

the Database Access Objects.)

Rule 2-56: Use dat_ or data- as a prefix for data controls as defined in the second table in

Appendix B.

-- aDiscussion: VB gives a default name Data<N> (where N= 1, 2, 3, ...) for this control

"DC" cannot be used for a data control, since "DC" already means
too-general name.

April 1995
NMS DeveloperStandards & Guidelines 2-28

"Device Context" in standard Windows programming. "DB" cannot be used for a data

control, since it applies to a VB Database object.

Exception: One allowable exception to the custom control naming convention is the

collection of simple labels on a form which are not referred to in the code so their names do

not need to indicate any specific functionality. In this case, the default names Labell,

Label2, etc., are quite adequate, although lbl1, lbl2, may be slightly preferable. (The

programmer will want to make this collection of general labels a control array to reduce

memory overhead.)

2.6.7 Menu Naming Conventions

a different set ofApplications frequently use an abundance of menu controls, thus requiring

naming conventions for these controls.

Rule 2-57: All menu item names shall be prefixed with "mnu," as in the examples below.

Rule 2-58: Menu control prefixes shall be extended beyond the initial mnu label by adding

an additional prefix for each level of nesting, with the final menu caption at the end of the

name string.

Below is an example of a set of submenu captions and their event-handlerDiscussion:
subroutine names:

Meni~u Caption Sequence Menu Handler Name

Help mnuHelp
Help Contents mnuHelpContents
File mnuFile
File Open mnuFileOpen
Format Character mnuFormatCharacter
File Send Fax mnuFileSendFax
File Send Email mnuFileSendEmail

When this convention is used, all members of a particular menu group are listed next to each

other in the object drop-down list boxes (in the code window and property window). In

addition, the menu control names clearly document the menu items to which they are

attached, making both development and maintenance much easier.

2.7 Subroutine Design, Coupling and Cohesiveness

Two important, interrelated guidelines for designing subroutines are "coupling" and

April 1995NMS Deeloper Standrd & Guidelines 2-29

"cohesiveness." These apply even in evert-driven programming, since subroutine

decomposition still occurs. Often, when writing a subroutine, a programmer will perceive

that the subroutine shall be split up into two or more subroutines. For example, if the

subroutine is too long -- say, it takes more than one page (or 50 lines), this may-indicate the

need to split it up. If a section of code within it is repeated in other subroutines, this section

shall be pulled out into a subroutine called in common by the others. This improves
maintainability. The craft of splitting up or decomposing subroutines must follow established
guidelines.

Coupling refers to the data "interface" a subroutine shares, with the application, the calling
(parent) subroutine, the called (children) subroutines, or other subroutines or modules within
the application. This applies to both the objects passed in and out through a subroutine's
parameter list and through global or semi-global variables. ("semi-global" means a variable
that is global within fi scope of a module -- this may also be referred to as "form-global,"
"form-local," "module-global," "module-scope" or "local within the module.") If a subroutine
has many variables in its parameter list then it is said to have "high coupling" with the calling
routine. Likewise, if it shares many variables (through global or semi-global variables) with
other subroutines, it is said to have bad, high coupling. High coupling is generally
undesirable, if it can be avoided -- especially where this involves the use of global or shared
(also called "common") variables. High coupling may also indicate a subroutine that is not
properly decomposed.

Cohesion or cohesiveness is another important subroutine design principle. The concept of a
"smart," context-sensitive subroutine may go. against the design principle of avoiding what is
called "logical cohesion." Of the several types of cohesiveness of subroutine, "functional
cohesiveness" and "logical cohesiveness" create the most maintainable code, with functional
being much preferred over logical. Logical cohesion occurs when one or more flag-type
input parameters or state variables are used to tell a subroutine which section of code in it to
use. That is, the subroutine performs different functions according to the state of these
variables. The better design flale of "functional cohesion," according to The Handbook of
Structured Design by Page-Meillor, is to split such a subroutine into multiple functions, with
common sub-parts put into shared subroutine calls. This also reduces coupling, since the
flags and any unused parameters are eliminated.

2.7.1 General

Reasonable efforts shall be made to ensure the software's usefulness and compatibility for
future modifications and additions in the software system.

]MS Developer Standa-ds & Guidelines 2-30 April 1995

2.7.2 Global Variables

Most of the following rules apply to form-scope variables as well as to truly global variables.
Form-scope variables are those variables which have "global" scope only within a form
module. Some of the following rules cross boundaries with the sections on "Naming
Conventions" and "Variable Declarations"; refer to those sections.

Rule 2-59: The scope of variables and constants shall be limited as much as possible to only
those modules using them. Variables and constants declared within a VB form-module but
outside any subroutines automatically have form-scope. In .BAS modules, the keyword
Global shall be left off any module-scope variables not intended to be used.outside the
module.

Rule 2-60: Since global variables increase the possibilities for error to software development
and maintenance phases, the use of them shall be limited as much as possible and values and
variables passed as subroutine parameters where possible.

Discussion: Global variables must be used in Event-driven, GUI programming (such as for
Windows); because event-handling subroutines are called asynchronously (that is, at
unpredictable times) from the Windows operating system and not, ordinarily, from other
subroutines. Thus, a predictable procedural stream of process flow does not always occur,
and extra variables cannot be passed as parameters to event-handler subroutines. Thus,
event-handler subroutines must use global variables (or form-scope variables -- those "global"
only within a specific form module) to pass values.

Rule 2-61: List all global variables -- used in, modified in, or exported from a module -- in
the module's descriptive header block. (See "Code Commenting" under the "Source Code
Documentation" Section.)

Note: The method of identifying global variables recommended in this document is to prefix
them with "g". (See the "Naming Conventions" Section.) Also, it is important that global,
module-scope or form-scope variables used or modified in a subroutine be listed in the
descriptive header for that subroutine, and those global variables which are used or exported
in a module should be listed in that module's descriptive header. (A form file is also
considered a module for this purpose.)

Rule 2-62: Never use short, cryptic names or single-letter names for global variables. An
exception is that just "gdb"can be used as a global database object if there is only one
database accessed in an application and only one database object is needed.

Rule 2-63: Never use global variables for loop counters or variables intended to be local in
scope. Never define a local variable with the same name as any higher-scope variable.

NMS Developer Standards & Guidelines 2-31 April 1995

Variables such as loop counters and temp strings commonly used in subroutinesDiscusion:
as local-only variables should never exist as global variables or as form-scope variables. For

example, never declare global or form-scope variables for the commonly used loop counters i,

j, and k or common local temp variables such as iRes (function return code), Tit, Msg or
SQL.

If global variables always have the "g"prefix, then this problem is easily avoided for them.
However, if a module (.BAS or .FRM) has form-scope variables named i, j, and/or k, and a

subroutine in that module with loop counters i, j, and/or k calling another local subroutine

using an i, j, or k would have its values of i, j, and k corrupted by the subroutine called.

The same error can be caused by event-handler subroutines being activated by the user, if it

accesses such global loop counters meant to be local.

Even when a programmer intends to declare local variables in a subroutine, where the same

variable names already exist as form-scope, and if the programmer forgets to declare them

locally, the compiler will not give a warning, the form-scope variables will be modified, and

erroneous side effects may occur.

If a global SQL string is needed, naming it properly (gstrSQL) will eliminate all conflicts

with local SQL string variables. (A global SQL string could properly be used to pass the

same query from a detail form to a browse form. This is useful so that the user can select

several query filter options or sort-ordering from a shared menu bar or from identical

command buttons, and where each such activated control modifies a common SQL statement's

"WHERE" clause or "ORDER BY" clause -- or, more properly, sets some state variables

which a common routine uses to build the SQL "WHERE" clause.

Rule 2-64: Where form-scope variables are used, there shall be comments in each subroutine

which references them to denote their scope. If it is possible to show their scope in the

name prefix, then do so. (Refer to the "Variable Names" Section of this chapter.)

Rule 2-65: Generally, avoid declaring subroutine parameters or other local variables with the

same name as any global, form-scope or module-scope variables. (Using the "g_." prefix in

the names of all global variables' rames should take care of this for global variables.).

2.7.3 Global Subroutines

Since subroutines in a form file (.FRM) cannot be called from outside that file, the MDI

architecture of the FDS design requires us to put shared code into module files (which by

convention end in ".BAS"), where they become totally global.

type include file mechanismRecommendation: If future versions of VB provide the C/C-++

with pre-compiler directives to manage them, then such a mechanism should be used to limit

NMS Developer Standards& Guidelines 2-32 April 1995

the scope of shared variables, constants, and subroutines to only those modules requiring
access to them. (This is a good, basic software engineering practice, often overlooked in
those other languages.)

Recommendation: Organize common, shared (global) subroutines with a common
functionality, such as a set of database routines or error routines, into a single .BAS module.
When coding, be on the lookout for code which might be extracted into shared subroutines for
re-use in other applications and projects. Reusable error message routines might be placed in
ERRORBAS. Really common subroutines, such as varMino and varMaxo might be
placed into a file called GLOBAL.BAS or COMMON.BAS.

Recommendation: If a set of subroutines in a module addresses a common object or
problem, then it may be valuable to prefix their names with a short mnemonic code. Use
initial upper case letters and offset with an underline to keep this prefix from being confused
with a data-type prefix. For example, use "SS_" for a set of spreadsheet-specific routines,
"DB" for a set of database access routines; and it might be good to use "Snapsh_" for a set
of Snapshot - access routines, or "ErrMsg_" for a set of error message routines.

Discussion: Note that the use of at least an initial upper case letter sometimes provides only
minimal differentiation from other prefixes defined in Appendixes A and B, such as "snap_"
for a VB snapshot database-access object. A function which returned an integer in such a
set of spreadsheet functions would be named with a prefix of "SS int -" (instead of
"int SS") so that these common purpose subroutines are to show up grouped together in any
subroutine list.

2.7.4 Private/Local Subroutines

Rule 2-66: Limit the scope of subroutines to only the modules required to access them. (In
VB 3.0, a subroutine is either global or module-scope.) Use the keyword Private in the
declaration of any subroutine meant to be called only from within its own ".BAS" module.
In a form module, this does not apply, since subroutines, variables, and constants in a form
cannot be global.

2.7.5 User-Defined Data Types

If a set of variables can be logically and functionally grouped into a structure to make the
code more clear and maintenance easier, then do so. VB requires that user-defined data
types be defined globally -- which means in a .BAS file. However, an instance of such a
type (as a variable) shall be declared at the lowest scope-level spanning its uses.

NMS Developer Standards& Guidelines 2-33 April 1995

2.7.6 Constants and Variables - Scope

Constants and variables shall be declared and defined at the lowest level scope. spanning all its

uses, and shall be in all uppercase letters. Unused constants imported from other files (such

as Windows API constants or VB constants) shall be commented out until used. The reason

for not removing them may be to have them available to quickly search for and uncomment

them when they do need to be added.

2.8 Procedural Coding Standards

2.8.1 Concatenation Operators

Use "+" when concatenating two strings and "&" when concatenating strings with numerical
-- it is best to use thevalues. When concatenating variant values to a string -- or vice-versa

Using "+" to concatenate two variantsFormat$() function to format the value into a string.

as part of a larger string-concatenation operation may cause problems, as in the following

example:

vntVarl = "10.01"

vntVar2 = 11

votResult = vntVarl + vntVar2 'vntResult = 21.01

=
vntResult vntVarl & vntVar2 'vntResult = 10.0111

Note: Be aware that using the Str$(<Number>) function in concatenating numbers in

strings instead of the "&" operator will introduce an extra space before the number.

Format$() does not have this problem.

2.8.2 Goto Statements

Rule 2-67: GoTo statements shall be avoided, except for forward GoTo used for error

trapping (as in On Error Go To <label>). (See the "Database Error Trapping" Section.)

Rule 2-68: Never use a backward GoTo.

Rule 2-69: Never use a GoTo statement to exit a loop or a process control structure (such as
-- except for forward On ErrorGoTo statements used foran if-then-else or Select-Case)

error trapping as referred to above.

Rule 2-70: Never attempt to use a GoTo statement to jump between subroutines.

2-34 April 1995NMS Developer Standards & Guidelines

7z~

2.8.3 ErrorTrapping

This section defines rules and recommendations for error trapping in general. See the
"Database Error Trapping" Section for more specific rules and recommendations about
database access error trapping.

Rule 2-71: The programmer shall trap each and every database access and file access
statement or group of statements using a forward GoTo statement pointing to an error­
handling routine at the end of the subroutine performing the access (as in On Error Go To
<label>).

Rule 2-72: Any code sections requiring error trapping via an On Error Go To <label>
statement preceding it, shall have an On Error Go To 0 (zero) following it to reset the error­
trapping.

Rule 2-73: Each local error handling routine (at the end of a subroutine) should call a
common, global error messaging and/or error logging routine for consistency in error
reporting, to reduce code size, and to increase maintainability.

Rule 2-74: All error codes without error messages shall be translated through a translation
table.

Recommendation: There should be one set of error reporting routines for file i/o and one
for database access; although they might share lower level subroutines. (See the "Database
Error Trapping" Section for more specific rules and recommendations about database access
error trapping.)

Recommendation: One global error reporting routine should be able to provide one or more
simultaneous methods of error reporting:

Standard error message format and immediate presentation to the user logging
to an error report file (with an automatic mechanism to keep old messages
cleared out).

* Printing error messages to the printer.
* Playing sounds to indicate errors.
* Printing to the debug window.

Recommendation: The programmer should be able to easily select and set the reporting
modes on a global basis via global variables, constants or command line parameters -- and in
each local error trapping routine via parameters passed it from the local error trapping routine.

NMS Developer Standards& Guidelines 2-35 April 1995

Rule 2-75: End each local error-handling routine with either of the following:

On Error Resume Next
or

On Error GoTo 0
Exit Sub

Recommendation: Avoid "On Error Resume Next" statements except where they specifically
make sense, such as within an error-handling routine to avoid recursive error traps or where
the programmer can afford to ignore a database error but would like to report it.

Rule 2-76: Each source code label (target of GoTo, no! a label control) in an application
should have a name that identifies what object it is reporting an error for, or what kind of

error it is, and its purpose or context.

Recommendation: In addition to the previous rule, each source code label (target of GoTo,
not a label control) in an application should have a prefix to identify its owner subroutine
and/or a numeric suffix to make it unique.

Discussion: An example would be:

ZeroNumRecs_5:

Where there are already at least four other local routines elsewhere in the application for

reporting "No records found." In this example, no attempt was made to identify the
subroutine, but the number suffix is sufficient for good code readability and maintainability.

Each source code label (target of GoTo, not a label control) in a project must have a name
that is unique. Visual Basic complains if two subroutines in the same application have labels

with the same name. (This is a holdover from Basic's early days, where a GoTo could jump
anywhere.) Therefore, the programmer ma want to embed a number or indicator of the
subroutine name to make the label unique.

Note: There should be only one such "ZeroNumRecs_<N>:"' label in each subroutine.

Note: Each such "ZeroNumRecs <N>:" local error-handler routine should call a common
subroutine to handle error reporting.

2.8.4 If-Then-Else Structures

If-Then and If-Then-Else process structures shall not be on one line and should be indented

properly.

NMS Developer Standards & Guidelines 2-36 April 1995

Bad example code from an actual project:

If IsNull(myDseLFields("SPTEXTBLB")) Then WPData.Text - "" Else WPDats.Text =

wyDseLFilds("SP_TEXT_BLB")

(Notice the necessity of the line continuation to see the entire code. This is for this
document only; Visual Basic does not allow line continuation.)

Preferred:

If IsNull(myDset.Fields("ST TEXTBLB")) Then
WPData.Text =

Else
WPData.Text = myDsetFields("ST_TEXT_BLB")

End If

2.8.5 Loading Text into Combo Boxes, List Boxes and Grids in VB

Combo boxes load faster if the default text is first loaded into the Text setting. If loading a
listbox, grid, or spreadsheet, first turn off redrawing (if the control allows). For grids or
spreadsheets that allow it, loading a row of text with a single string formatted with columns

concatenated by and separated by tab characters is much faster than loading cell-by-cell using
a loop.

When loading a combo box, listbox, grid, or spreadsheet, do not put a "DoEvents" call within

the loop, as this takes much longer and encourages screen blinking.

2.8.6 AutoRedraw Property

Warning: Do not turn on the AutoRedraw property of a form or picture box unless
necessary. Turning on this property causes more memory (sometimes much more) to be used
and screen updates to be slower (especially when lIoving another window over the form or
picture box). It is necessary only when the user has written text or drawn lines, circles, etc.,

on a form or picture box, in which case, when moving another window over the form or

picture box or removing a window or msg box from over the form or picture box, the original
graphics may not repaint--either never or not for a while. One way of getting around this
may be to put the code that draws lines, text, circles, etc., into the Repaint event handler.

Some experimentation may be required to find the optimal solution.

2.8.7 Sending Messages from One Form to Another in VB

Rather than attempting to stuff messages into the msg queue of another window, in VB, it is

simpler to write a command string to a hidden label on the target window and let code in that

NMS Developer Siandards-& Guidelines 2-37 April 1995

Be sure to 	follow the setting of thelabel's "Changeo" event-handler interpret and act on it.

label's caption by a DoEvents call.

2.8.8 Writing Text to Labels inVB

In VB, after writing text to a label caption, a DoEvents must be called or the text change

may not appear for a while. This becomes critical when a write to a label is followed by

more code -- or when updating a label in a loop. This is also critical when sending a
"message" from one form to another via writing text to a label on the other form and there

intercepting the label's Change event. If writing to several labels at once, it is better to use

just one Do Events at the end of the code section.

2.8.9 Modularization - File Organization

Global constants from the standard VB constants file ("CONSTANT.BAS") shall be stored in

a file named "VB CONST.BAS", with all non-used constants "remarked-out." Global

constants and variables specific to the application shall be stored in a .BAS module file named

after the application, which shall also contain the main() subroutine for that application and

any initialization subroutines specific to the application.

2.8.10 	 Data Management

This section is concerned only with input and output records management. For other, more

general database rules and guidelines, see the "Oracle Database Administration Standards"

Section. 	 For database access, see the "Database Access and SQL Coding Standards (SQL)"

Section.

2.8.10.1 	 Validating Data Entry

Rule 2-77: Data to be sent to the database shall be validated in the application before being

sent to the database, according to known business rules and referential integrity constraints,

even though the same rules and constraints are programmed into the database. There are

several places in the application where it may be necessary to perform data validation checks:

* 	 On entering a form or record.
* 	 On leaving a form or record.
* 	 On entering a data field entry/edit box.
* 	 On leaving a data field entry/edit box.

During each keystroke in a data field entry/edit box.*

Some of these validations or "edit-checks" are performed on the immediate field, some are

cross-checks between fields, and some are cross-checks between records or with other tables.

May 199SNMS Developer Standardsand Guidelines 2-38

Additional data validations might need to be performed before updating/committing the
edited record, in a data control's Update() event-handler subroutine.

Rule 2-78: Data shall be validated for each record before the user attempts to commit that
record to the database. Data validation should be performed in the data-entry/edit window
forms on a field-by-field basis and just before the update. Dates and numbers especially
should be checked for correct ranges of values. Some dates must be before or after other
dates in the database. For example, edit checks should prevent the user from entering an
end-date which comes before a start-date for the same activity. The pop-up calendar
mentioned elsewhere should be sent begin-dates and end-dates to define a range from which
the user can select.

Discussion: If data is not validated in the forim before sending a record to the database, then
the database may kick back a record update -- or set of updates -- with no information as to
which values were wrong and why; although displaying the SQL code to the user in an error­
trap can be helpful. (See the "Database Error Trapping" Section.) There have been poorly
built applications where the user could not go forward or backward, and could not exit or
cancel the transaction, with no clue as to what fields to correct -- leaving the user the choices of
deleting the record or rebooting. Such bad programming leaves users frustrated, especially if
they had spent some time in entering and selecting data to go into that record or set of records.

Rule 2-79: Document data validation rules in the source code. The edit-checks performed
and the business rules or references to the sections of the requirements specifications
containing the pertinent business rules should be listed anO described in the descriptive header
for each form or validating subroutine. Any ranges of valid values, where static and known,
should be defined. Careful analysis of the business rules and good, common sense are
necessary to decide which edit-checks to perform where and when.

Rule 2-80: Message boxes should notify the user as soon as possible of invalid data and why
it is invalid. If a specific field is invalid or missing, the focus should be set to that field
after the error message.

Rule 2-81: Users should be prevented from entering invalid characters or values -- before the
edit checks. This can be done by using special controls from Crescent Software for entering
numeric, currency, time, and date data, or by calling special keystroke-filter functions in the
control's Keypress() event-handler.

Rule 2-82: Provide lookup lists, where applicable, to assist user memory and to limit their
choices. Especially where a name or code must be from a fixed, finite list of valid values,
such as from a lookup table in the database, the user should not be allowed to enter the value,
but should be forced to select from a pop-up list box, a drop-down list box, or a pop-up,

NMS Developer Standardsand Guidelines 2-39 May 199

modal selection form containing a grid or list box.

Rule 2-83: Lookup lists should not be hard-coded into the applications. They should be
list is used over and over again. (Seeloaded from the database, and just once if the same

recommendations for performance improvement for such lookup lists under "Increasing

Database Performance" and in the "Database Access and SQL Coding Standards (SQL)"

Sections.)

Rule 2-84: Lookup lists should show descriptive names, not codes; although certain lists can

show both if there is a valid reason.

Rule 2..85: If the data in one field is required to be complete and valid before certain other

fields should be filled in, then make sure that the required fields come before thrse needing

the required fields in the flow-of-focus among controls and among groups of controls.

Rule 2-86: If the data in one field is required to be complete and valid before certain other

fields should be filled in, then make sure that the required fields are correctly filled in before

the dependent fields.

Rule 2-87: Control the user's navigation through a data entry/edit form, where some fields

are prerequisite to others, While, according to GUI event-driven methods, the user should be

at random among fields or to use the Tab key and Shift-Tabable to use the mouse to move
key to move past certain fields or to go back, tbe reality for data entry/edit forms is that

certain fields must be filled in and validated before others (dependent fields) can be accessed.

Based on the above two rules, these corollaries follow.

Corollary 1: If a prerequisite field's data has changed, then the data in the dependent data­

field controls should be revalidated and, if not valid, cleared and disabled until re-edited.

The user should be notified as to the new editing requirements.

Corollary 2: If a prerequisite field has not been entered and validated, then the dependent

data-field controls should be disabled from editing until the prerequisite field has been

completed and validated. This can be done by disabling the edit control or by intercepting

the mouse clicks and keystrokes for it. The disabling mechanism shoild also accommodate

Corollary 3.

If the user tries to edit a dependent field before any prerequisite fields haveCorollary 3:
been completed and validated, then the user should be provided with message boxes

explaining why one cannot edit the field and what missing fields are required.

My=NMS Developer Standards and Guidelines 2-40

2.8.10.2 Debugging SQL

Note: Different rules may be required for databases other than Oracle.

Rule 2-88: Always trap errors for all database accesses and provide an error message that
shows the error message, any SQL code associated with the access, and the name of the
subroutine where the error occurred. Set the "Database Error Trapping" Section for more
details.

Rule 49: When faced with hard-to-debug database access errors involving SQL, temporarily
implement a -trace mechanism. Either one of the two following mechanisms is
recommended:

1. 	Load an ODBC spy utility before testing the VB application.

2. 	 Capture the translations of SQL code which ODBC sends to a server DBMS, in a local
log file called "SQLOUT.TXT." In the <App. Name>.lNI file (create one if it does not
exist), create an "[ODBCI" section, and under that insert the line, SQLTraceMode=l, as
in:

iODBC!

SQLTraceMode=l

Remove this entry late or set

SQLTraceMode=O

because it adversely affects performance, and the log file will eventually get too large.

2.8.10.3 Safely Interpreting / Converting Field Values

Rule 2-90: When reading the value of a field of a database table (also called an attribute of a

database entity) from any of the database objects in Visual B sic, the access should be
performed through a common method (encapsulated in a function sx :routine) in order to test
for NULL or invalid values and to convert them, where applicable, to default values and
datatypes. Also, other specific data validations or conversions specific to a particular data
type can be performed there.

Rule 2-91: Field Error-Trapping: Each database field-access subroutine shall have
customized error-trapping to trap database access errors and provide a standard format
database error message. Error messages shall include the field name, the ODBC or RDBMS
error message -- as provided by the VB ErrorS(Err) function -- and the SQL statement

NYMS De per Standards and Guidelines 2-41 	 May 195

generating the record set. The SQL statement shall be passed to the subroutine as a
parameter along with the field name. The calling subroutine shall decide whether to
terminate itself, terminate/unload its window-form, or terminate the application. Also, it is
up to the calling subroutine to handle or ignore invalid data.

These field-access functions should return a error code and should pass back the field value as
a parameter. The error code shall be a globally-defined constant DBSUCCESS=O (zero) if
successful, or one of a number of standard error codes if unsuccessful. These constants and
functions shall be defined globally, in a common .BAS module.

Rule 2-92: A different set of subroutines must be built (although on the same model) for
each of the VB database object types Dynaset, Snapshot, and Table; because the database
object must be passed to the subroutine as a parameter; however, part of the error-message
handling can be put into a common, lower-level subroutine. These common database field
access routines shall exist in a common module maintained and shared among the several
Business Area teams.

The conversion rules within these subroutines shall be as follows:

Nuimeric String Fields: Some numeric fields are implemented as strings for formatting
reasons, such as telephone numbers, social security numbers, and zip code numbers. These
shall be treated as text strings, but special subroutines can be written to retrieve and validate
each of them. See the rules for text fields.

Some other straight numbers might be implemented in database as numeric strings for some
reason. Such fields shall be converted to numbers and othervise treated as ordinary numeric
fields. That is, if the field is NULL, a zero value shall be passed back.

Rule 2-93: Numeric Fields: Numeric and Boolean fields should be checked for NULL
values. If the field is NULL, a zero value shall be passed back.

Rule 2-94: All Field Types - Errors: If a field-access subroutine is called expecting a
certain data type and the data type of the field is another, incompatible data type, then a
message shall be displayed notifying of the difference in data types.

Recommendation: If a field-access subroutine is called expecting a certain data type and the
data type of the field is another -- but compatible -- data type, then.a debug-mode-only
message should be displayed -- during development phase only -- to the programmer notifying
of the difference in data types. This can be done in a certain debug mode, set by a global
variable gblnDebugDB_FiedTypes.

NMS Developer Standards and Guidelines 2-42 May 1995

gco

Rule 2-95: For all errors when accessing a field, an error code of
ERRFIELDDATATYPE should be returned and a standard-format error message

displayed from within the field-accessing function.

Note: If Visual Basic ever allows conditional compilation using compiler directives, then

debug code could be stripped out when creating a deliverable, executable application.

Rule 2-96: The user should be given the ability to kill all field-related error messages

following the first one for a record. Otherwise, the user is inundated with a barrage of error

message windows.

Boolean Fields: If a Boolean field value is NULL, the value shall be passed back as False

(zero). If the field is numeric and the value is zero, the value should be passed back as

False; else, if the value is any other numeric value, the value should be passed back as Visual

Basic True.

If the field type happens to be of type character and the value is a lower- or upper-case "y",
"t", "yes", or "true", then value should be passed back as True; else the value should be

passed back as False.

For any other strings or data types which cannot be interpreted as Boolean, the value should

be passed back as False and an INVALIDDATA error code returned. This probably

means the program source code is in error and needs to be updated because a field data type

changed.

Byte Fields: A Byte data type shall be considered as an unsigned integer of eight bits. If a

byte field value is NULL, the value shall be passed back as 0 (zero). If the field value is

numeric but outside the normal range for an eight-bit unsigned integer (as can happen when

the data type of the field is actually an integer, for instance), an error message should be

shown, a serious error code returned, and the value should be passed back as either +255 if it
This probablycan be translated as a positive integer or Zero value if a negative integer.

reflects a program logic error, due to its being out of sync with the database.

Integer Fields: If an integer field value is NULL, the value shall be passed back as 0 (zero).

If the field value is numeric but outside the normal range for a integer (as can happen when

the data type of the field is actually a long integer, floating point or currency type), an error

message should be displayed in a modal message box,a serious error code returned, and the

value should be passed back as either Maximum Integer value if positive or Minimum Integer

value if negative.

Long Integer Fields: If a long integer field value is NULL, the value shall be passed back

as 0 (zero). If the field value is numeric but outside the normal range for a long integer (as

May 1995NMS Developer Standards and Guidelines 2-43

can happen when the data type of the field is actually a floating point or currency type), an

error message should be displayed in a modal message box,a serious error code returned, and

the value should be passed back as either Maximum Long Integer value if positive or

Minimum Long Integer value if negative.

Single Floating Point Number Fields: If a single-float field value is NULL, the value

shall be passed back as 0.0 (zero). If the field value is numeric but outside the normal range

for a single floating point number (as can happen when the data type of the field is actually a

double floating point), an error message should be displayed in a modal message box,a serious

error code returned, and the value should be passed back as either Maximum Floating Point

value if positive or Minimum Floating Point value if negative.

Double Floating Point Number Fields: If a double-float field value is NULL, the value

shall be passed back as 0.0 (zero).

field value is NULL, the value shall be passed back asCurrency Fields: If a double-float
0.0 (zero).

String (text) fields: If a string field value is NULL, the value shall be passed back as

(empty string).

If a memo field value is NULL, the value shall beMemo (Unlimited Size Text) Fields:
passed back as "" (empty string).

If a date field value is NULL, the value shall be passed back as Visral BasicDate Fields:
It shall be up to the calling subroutineNull, and no further interpretation shall be attempted.

to handle this.

If a date field is a string, then if it can be converted to a valid date, then this date should be

passed back, otherwise a Visual Basic Null should be passed back along with an

INVALIDDATA error code.

The BLOB (binary large object) a data type for which no translation rules areExceptions:
set in this standard. Local subroutines can be built to handle specific instances of such

fields. Other, specific exceptions to the above data types needed on a local basis can be

encapsulated in local subroutines built on the same model.

2.8.10.4 Programming Rules for Database Reliability

orRecommendation: When creating a new database record, initialize the record with actual

default values and as few NULL values as possible, (.xcept where NULLs make sense, as in

the case of dates or where applications test specifically for a NULL as an indicator that the

May 1995NMS Developer Standards and Guidelines 2-44

data is to be considered invalid (for example, "WHERE <field name> 0 NULL" in a SQL
where-clause).

Discussion: The purpose of this is to minimize possibilities for bound data controls in Visual
Basic to behave erratically due to being passed NULL values. Another benefit is minimizing
problems reading database field values programmatically. The general rule has several
aspects:

* First, initialize any fields with default or known values.

Second, initialize numeric fields with zeros and text and memo fields with empty
strings, where such empty, non-NULL values fit in with later, anticipated tests for the
state or validity of the data. For example, if an application tests for a NULL value to
determine whether the field value is valid or not -- or, for example, has been entered
by a user or skipped over, then a zero numeric value or an empty strings should not be
considered equivalent to a NULL.

In the case of Dates, Years, Months or Time field data types, if there is no valid,
default value, then there is no replacement for NULL values which makes sense.

This method might not be needed if all bound controls were designed properly. All bound
data controls should be able to handle NULL values. Any which do not should be fixed by
their vendors to correct the problem. There is a rule elsewhere in this document that reading
values from database fields programmatically should be done through a set of "safe"
subroutines to convert NULLs where appropriate and to provide error trapping and standard
error messaging.

Rule 2-97: When setting the RecordSource property of a data control programmatically (by
assigning a table name, view name, or SQL query) care should be taken to assure that a non­
empty recordset is returned, in order to avoid error conditions in bound controls. One
method for the programmer to safely handle empty record sets i,to first test for the number
of records returned using a query like one of the following:

"SELECT COUNT(*) FROM ..."
or

"SELECT COUNT(DISTINCT) FROM ..."

Since this technique increases the size of the executable file and slows down the total time for
database retrievals, this technique is recommended only where there is a need for it.

NMS Developer Standards and Guidelines 2-45 May 1995

Rule 2-98: When performing or refreshing a query returning a record-set -- either for a
database access object of type Table, Dynaset, or Snapshot, or for a data control -- the
record set returned should be tested for zero count.

Rule 2-99: If zero records are returned for a query used for editing data, then one of the

following actions should occur, either:

* The user is prompted to create a new record for data entry, or
* A new record is automatically created for the user to edit.

The first is strongly recommended. The edit controls should be disabled until a new record

is added or another, non-empty dataset is returned. If the user chooses not to create a new

record, then one should be able either to try a new query or to exit gracefully.

Rule 2-100: Likewise, when a user enters a data-edit form with no crrrent record (and where

they did not get there as part of their selecting an "Add New Record" function), prompt the

user to create a new record or to gracefully exit the form. All error conditions should be

trapped and the user offered clear messages and graceful exits. (See the "Database Error

Trapping" Section.)

Rule 2-101: A user should always be able to cancel and leave a data edit/entry form without

saving the new or changed record. The edit controls should be disabled until a new record is
added or another, non-empty dataset is returned.

2.8.10.5 Increasing Database Performance in Visual Basic

Note: This section will require review and update to incorporate new methods and

information about problems and solutions with current versions of ODBC drivers and other

database access programming tools.

Rule 2-102: In each application, open only one, globai database object per database accessed.

This saves memory and resources.

Rule 2-103: In each application, use a single set of global string variables,
g.strDatabaseName and gstrConnect, to be shared by the global Database object and any

data controls used. This saves programming and minimizes memory used for strings.

Rule 2-104: For data controls, set the DatabaseName and Connect properties at run-time in

their form's FormLoad() event-handler subroutine.

Rule 2-105: To make forms with data controls load faster, set the RecordSource property of

a Visual Basic data control in the FormLoad() event-handler to an SQL query which

NMS Developer Standards and Guidelines 2-46 May 199S

returns either the exact recordset needed -- if that is known at form-load time -- or a minimal

number of records. (Care should be taken not to return an empty recordset, if possible.)

Discussion: Normally, in design mode, a data control's RecordSource property is set to a
database table, view or QueryDef name so that the other controls bound to it can easily be set
or mapped to one field (or several fields, in the case of grid-type bound controls) at design

time.

If a form with one or more data controls is allowed to load and activate with a table or view

name as a default, then, if the table or view has a lot of records, the data control may delay

form activation and eat up extra memory. One feature in Visual Basic which helps with this

problem is that Dynasets (which data controls use) only load 100 records into memory at a

time; the ODBC mechanism provides database cursor control and record buffering.

However, this may still cause noticeable, extra delays in loading forms.

2.8.10.6 Database Error Trapping

See the section on "Accessing the Oracle Database" for more general rules about error

trapping. (Certain rules and recommendations are the same for other kinds of errors, such as

file i/o errors.)

Rule 2-106: Common subroutines shall be built to encapsulate the parsing and presentation

of database access error messages. Such error message routines shall parse the VB error

messages for DBMS-specific (such as Oracle or SQL Server) error messages or error codes,
which the ODBC driver does not translate, and shall translate them further if necessary. All

error codes without error messages shall be translated through a translation table.

Rule 2-107: If the database error message is DBMS-specific, the message box title shall

indicate this by naming the DBMS. If an Oracle-specific error code is returned, this can be

detected by looking for the "ORA-" keyword at the beginning of the VB error string given by

Error$(Err). Then the Oracle error number can be parsed out and translated. The message

box title should then change from "Database Access Error" to "Oracle Database Access Error"

Rule 2-108: Database access error message routines should name the database object (table,
view, field) being addressed. (See the detailed rule for field-access error messages in the

section on database field-access routines.) This is necessary for programmers during

development, for testers, and for the help-desk in handling problem reports.

Rule 2-109: Database access error message routines and error log files should report the SQL

statement which caused the error.

NMS Developer Standards rnd Guidelines 2-47 May 1995

Rule 2-110: Database access error message routines should report the name of the subroutine
where the error occurred (not a low-level routine like a common field-access routine, but the
subroutine calling that, so that the context of the error is apparent). The user may be given
the option to turn this feature on or off, but it should be in any enor-log file. It is a
necessary aid in software defect reporting and tracking, especially during test.

2.9 	 Coding to Minimize Memory Use and Executable File Size

Some common, interrelated problems in creating Visual Basic applications for Windows are:

* 	 Using too much memory -either in run mode or in design mode,
* 	 Using too many resources -- including using too many forms or controls,
• 	 Creating too large an application executable file size,
* 	 Running out of stack space,

-- or otherwise running into memory, resource, or file size constraints.

There are some rules to minimize or help manage these problems. Some are related to

design of the GUI portion of the application and some are coding methods. Some are a
combination of both.

The following rules and recommendations are specific to the coding of applications or are a
combination of GUI and coding methods. The rules should be followed most of the time,
and the recommendations may be tried if a resource problem shows up.

Rule 2-111: Load forms only when needed and unload them as soon as possible when no
longer needed.

Exception-Rule 2-111a: Where an application's use of memory is not a problem and where
a particular form is shown often, keeps the form loaded but hidden (or minimized if an MDI

child form) so that it activates faster; otherwise reactivating these forms can become quite
annoying to users.

Recommendation: Use dynamic control arrays to minimize memory usage and to avoid
running into Visual Basic's or Windows' constraints on how many forms and controls (both
of which are ,ypes of windows from Window's resource management viewpoint) can be
loaded 	at once.

Discussion: This will involve creating a "seed" control for the array, then when the form is
loaded, the rest of the controls can be generated and positioned programmatically in the
FormLoad() event handler. Some situations may call for the number of controls to vary
according to a condition, event, or value a state variable.

NMS Developer Standards & Guidelines 2-48 	 April

'616

Control arrays share common event-handler routines which will receive a control index as one

of the parameters. This can save memory in some cases, since common code can reside in

Where each control or subgroup of controls requires separate processing,just one subroutine.

this will require a Select-Case (Index) statement in the event-handler routines. For large.

control arrays, this might be slightly slower (but probably not noticeably so) but will take less

program space than separate subroutines.

The use of dynamic control arrays should be done mainly where there are a group of controls

of the same type which can successfully be created dynamically and especially where their

placement is in some orderly pattern. The disadvantage to using dynamic control arrays is

that the developer loses some of the design power obtained from being able to place controls

at design time in WYSIWIG mode. One way to get around this is to design in WYSIWIG

Then save the file for the form as a design templatemode using non-dynamic control arrays.

in a separate subdirectory, and modify the main copy of the form to convert the controls to

control arrays -- programmatically positioning the controls to the settings obtained in

WYSIWYG mode. If the controls need to be repositioned later, the saved form template can

be used in WYSIWYG mode again, and the new positions transferred to the code in the main

copy of the form.

Recommendation: Use non-dynamic control arrays where it makes sense, to minimize

This keeps the forms in WYSIWIG mode and allows the controls to easilymemory usage.
share common code in their event-handlers. (See the above discussion for dynamic control

arrays.)

Rule 2-112: Use non-dynamic control arrays for common labels on a form that are not data­

bound and which do not need to be addressed programmatically. (This is a particular case of

the previous rule.)

Rule 2-113: Avoid using the animated control button, as it uses large resources and slows

down execution.

Exception Rule 2-113a: Use it, if at all, only in small applications that will not grow larger

and in which the animated button's slowing down of the application is not a problem.

Use the image control rather than the picture control, where possible, to saveRule 2-114:
system resources and screen redrawing. (The picture control's AutoRedraw property must

be turned on, and this redrawing significantly slows down processing.)

Note: This rule is repeated in the coding section under the subsection about saving memory

and resources.

Use the picture box control only when its extra functionality isException Rule 2-114a:

April 1995NMS Developer Standards & Guidelines 2-49

required and that need is greater than the impact of other memory and resource problems in

the same application.

-- preferably after a
Rule 2-115: Load medium-to-large bitmap images from files at run-time

form is loaded but before it is shown.

as those in the VB file THREED.VBX) where a
Rule 2-116: Avoid using 3-D controls (such

simpler control can be given 3-D-appearance in a simpler, less resource-intense and less

,e manner (such as are recommended in the following paragraph). Other
processing-intensi
disadvantages of most 3-D controls include not being able to use any other background color

other than grey.

Also use the VideoSoft
Recommendation: Use VideoSoft Elastic frame on every form.

Tabs control instead of other tabs controls where a tabs control is needed.

Discussion: An excellent alternative to using 3-D controls is to use the Elastic frame control

or the Tabs control from VideoSoft (in the VISVBX.VBX custom control file) to
Background colors for

automatically give 3-D appearance to child controls placed on them.

the Elastic and Tab controls can be set; they can be nested for extra functionality; painting of

3-D effects is very fast; and they use little memory. An additional benefit of these two

be left off child label controls. This allows the labels to
controls is that the 3-D effects can

appear as just text planted directly on the form, if the label's outline box is turned off and its

An additional benefit of

background color is set to that of its parent Elastic or Tab control.

the Elastic frame control is that it can be used to create resizable panels within a form,

including splitter bars between them.

Rule 2-117: Load data only as needed. Use dynamic arrays rather than fixed size arrays

where possible, resizing them to zero immediately when no longer needed.

Caution: In actuality, it may be impossible to resize an array to zero elements, once it has

been initialized. The VB statement Redim Array(O) actually just resizes the array to one

-- if Option Base zero -- the default -- is used, or causes a
element -- the zeroeth element

program error if Option Base is higher than zero.

Caution: Keep dynamic arrays of data- or record-structures (in Visual Basic, these are called

"user-defined types") which use variable length strings out of forms; place them in .BAS
can cause

There is a bug in Visual Basic 3.0 where redimensioning such arrays
modules.
GPFs (General Protection Faults) due to faulty object-destructor mechanisms.

Rule 2-118: For fixed-size arrays or large data objects used in only one form, keep those

Avoid making them global, unless necessary.
data objects in the form where they are used.

This way, they disappear when their form is unloaded.

April 1995
IJMS Developer Standards& Guidelines 2-50

Rule 2-119: Call Windows API functions and subroutines where this achieves one of the
following and imposes little or no penalty on code readability or maintainability:

* significantly saves memory,
* significantly minimizes executable file. size,
* avoids using a custom control,
* significantly speeds processing,
* significantly speeds processing.

Rule 2-120: Combine multiple instances of medium-to-long strings or long sub-strings.

Discussion: Two common methods for doing this are:

* Use string constants for commonly used strings or substrings.
* Place commonly used message strings into a common message subroutine.

A common place for the same strings to be used over and over is in database error trapping
portions of subroutines. Combining these error routines -- or at least the user-messaging
portion of them -- into one, common subroutine, eliminates multiple instances of strings.

Recommendation (Tools): During development or debugging, keep a separate, system­
resource monitor application running to monitor memory, system resources, USER space, and
GDI space. Use Windows API calls to periodically get the information and to keep the

monitor application "always on top." This should be a separate executable application to
minimize the constraints on the application being developed.

Rule 2-121: Avoid Recursion. See the discussion of this rule which is repeated in the next
section on "Coding to Maximize Performance (Execution Speed").

2.10 Coding to Maximize Performance (Execution Speed)

Given that the user's workstation should have all the features installed and enabled to speed
the execution of Windows applications -- such as Windows-accelerator video controllers, disk
caches, lots of disk space, SRAM cache, lots of memory, a large permanent Windows swap
file, a fast processor (486DX2/66, Pentium 60 or better), and so forth -- there remain

significant performance problems in Visual Basic. Three of the biggest hits on application
performance are redrawing the screen, file i/o, and database access. Other performance

problems can occur from program design, algorithms, and coding. The following coding
rules and recommendations are specifically for increasing application performance (speed) in

Visual Basic applications for Windows.

NMS Developer Standards& Guidelines 2-51 April 1995

Rule 2-122: Set the AutoRedraw property of forms and picture boxes to Off, unless

dynamically drawing lines on the form. Avoid drawing lines on forms if performance is a

problem. (Using frame panels or Elastic panels might be a better way of grouping related

controls.)

Rule 2-123: Use Image controls rather than PictureBox controls where possible. (This rule

is repeated in the section on saving memory.)

Rule 2-124: Avoid using animation button controls.

Recommendation: Try to avoid using the Format() or FormatS() function call in ioops,

as it slows down processing. Sometimes it is just plain necessary, as in converting and
function is more reliable and flexible validating data from database fields. The FormatS()

than the Str$() function.

Rule 2-125: Avoid or minimize calls to DoEvents() within a loop. Otherwise, place calls

to DoEvents within a subroutine only where it is necessary.

Discussion: Although Microsoft recommends putting a call to DoEvents() in loops that

might otherwise lock up the use of the workstation for long periods, to give other processes a

turn, using DoEvents in a loop slows processing up dramatically. Therefore, it is not

recommended. In very long loops, it may be good to call DoEvents every twenty records or

so. If writing to multiple labels (as in a label-control array) in a loop, it is necessary to call

DoEvents() only once, at the end of the loop. However, if writing to the same label

control, as if showing a counter incrementing or "percentage complete," it will be necessary to

call DoEventsO after each iteration, or the label's display will not be updated.

Rule 2-126: Avoid recursion. Recursion risks running out of stack space--especially in

Visual Basic. Whatever can be implemented using recursive function calls can usually be

implemented using loops, which will generally run faster.

Recommendation: If sorting lists or arrays, use the optimized assembly-language subroutines

in Crescent Software's Quick Pack Pro for Windows. These are also good for loading or

storing data between arrays, listboxes, and files.

2.11 Shared, Common, Reusable Source Code

A repository of reusable code shall be created and maintained on a globally accessible server

with full configuration management and change control methods used to manage it.

NMS Developer Standards & Guidelines 2-52 April 1995

10

The standard VB global constants file CONSTANT. BAS shall be split intoRule 2-127:
multiple files, one each for constants pertaining to OLE, MAPI, MCI (and MIDI), DDE, VB

3D controls, the MSCOMM VBX, and one file called CONST_VB.BAS for all the VB

constants left over.

Rule 2-128: All files containing global constants shall be named beginning with "CONS" or

"CONST". Thus, the VB database constants file DATACONS.BAS shall be renamed

CONSDATA.BAS.

Rule 2-129: All global constants and API function declarations in these files, not commonly

used, shall be commented out.

Rule 2-130: Constants and subroutines which are related to database objects, incluling the

Visual Basic database constants, shall be kept in a file named DATA.BAS.

Rule 2-131: Windows API f1inction declarations shall be kept in a file called WINAPI.BAS,

combined from WIN30API.TXT and WIN31EXT.TXT, but with all unused API function

declarations remarked out.

Rule 2-132: Global variables, constants, and subroutines that are functionally related (such as

a VB API to load and manipulate a spreadsheet) shall be grouped together in a separate .BAS

file -- especially if these source code objects are expected to be sharea with (reused in)

another application. One example of this would be where a set of constants and data

were defined for budget objects in a budget application, where it would be valuablestructures
to re-use them in a financial application which referenced the same tables in the database and

thus would be expected to reference the same objects and handle the same set of values.

Rule 2-133: Borrow code from the Software Re-Use Repository and from other sources, such

as CompuServe, Internet, E-mail, Microsoft Developers Library CD, other knowledgebases on

CD-ROM, friends, consultants, and other government agencies.

Rule 2-134: Share code thought to be reusable by sending ii to the manager of the Software

Re-Use Repository. Before sending it, debug it completely and make it stable, of good

quality, and reliable; and make sure it conforms to the Agency software development

standards.

NMS DeveloperStandards & Guidelines 2-53 Apil 99

3 	 DATABASE ACCESS AND SQL CODING
STANDARDS

This secdon is concerned only with database access programming methods that result in
increased database reliability, performance, and SQL code maintainability. For database
standards and guidelines, see the "ORACLE DATABASE ADMINISTRATION
STANDARDS" Section of this document.

3.1 	 SQL Calls to the Database

Rule 3-1: Use database Views where appropriate, to improve performance or decrease
programming. Views should not be created dynamically from within a program.

Recommendation: If Oracle Glue is available as a standard part of the developer tool set
(unknown at the time of this writing), then use it to fill list boxes, grids or arrays directly
from database procedures.

Rule 3-2: 	 Use database stored procedures to retrieve multiple record sets by creating a
procedure with a cursor inside of a loop that passes records one at a time through ODBC to
an array in VB. After the procedure has fiished populating the array, the records in the
array can be used for list boxes or other functionality.

Rule 3-3: 	 Convert ALL SQL commands to stored procedures including SQL that:

1. Selects 	multiple records from a table.
2. 	 Performs database write-operations.
3. 	 Returns SQL aggregate function values such as count(*).
4. 	 Contains write or batch routines that alter the database without user interaction

or input.
5. 	 Populate list boxes.
6. 	 Contain database write-operations intended to be completed together within a

single COMMIT / ROLLBACK group, rather than the Visual Basic
BeginTrans, CommitTrans, and Rollback commands.

Recommendation: The programmer can keep the SQL code inside the application code long
enough to get the SQL statements debugged and working, but eventually the SQL commands
must be converted to stored procedures.

NMS Developer Standards & Guidelines 3-1 	 ApriT1M

The 	main goals of using stored procedures are to:

I.*	Maximize the responsiveness of the application by compiling the SQL code
one time instead of re-sending it across phone lines, and recompiling it every
time that it is used.

2. 	 Increase local database Lfficiency by storing SQL code in database procedures
that are stored in a database on the server, and only need to be parsed and
compiled one time, at the time of creation.

3.* 	Increase the responsiveness of the system in a distributed environment because

the only data being sent over phone lines to local mission servers will be a
call to the procedure. A typical SQL statement will be between 40 characters
(for a very small SQL statement) and 1,500 characters, as opposed to 20 to 30
zharacters needed to call a procedure.

4. 	 Reduce the need to modify the visual basic program every time a change is
made to a table in the database. It may only be necessary to modify the table
and a procedure which both reside on a server as apposed to modifying all the
visual basic programs in USAID that can access that local database server.

5. 	 Establish a set of standard database procedures that are in use on all servers
worldwide (currently only 84 missions will have local databases). This makes
maintenance much easier because when modifications are necessary the source
code can be saved on a CD-ROM and shipped to all 84 missions for installation
on their local server, as opposed to replacing several hundred or even several
thousand visual basic programs worldwide.

Note: In some cases, some database records that the procedure will need will also
be sentfrom the visual basic program to the procedure. However the amount of
records will be the same regardlessof the use of databaseproceduresor imbedded
SQL.

NMS DeveloperStandards& Guidelines 3-2 	 April 1995

3.2 Creating and Using Indexes

Recommendation: Avoid creating too many indexes. Excessive indexes can slow down
write operations. Be especially reluctant to create multiple indexes on tables which have more
write operations on them than queries.

Rule 3-4: Concatenate any character to an indexed column to disable the index and force the

execution of a full table scan. For example:

WHERE SALARY: ' > 12000;

Rule 3-5: If more than 25% of the rows in a table are going to be returned, use a full table
scan rather than an index.

Recommendation: Be careful about the field order when using AND in a where clause.
Because a SQL WHERE clause with an AND only uses an index on the last field referenced
in the AND part of the clause.

Recommendation: Indexes do not store records that are NULL -- that is, that have NULL
values for the indexed column(s). Use this information to speed up access.

For example:

An index on a table with 100,000 records in it, will consume a great deal of disk
space and the index will also have 100,000 records in it.

Only 500 records are added each day to this table. Don't search this index with
100,000 records to retrieve only 500 records.

The solution is to add a column to the table that will contain a value when the
record is created. Name this column the NULL INDEX column. The SQL
statement that only needs the new records at the end of each day will reset the
NULL-INDEX column in the table to null after it has finished using the table.

This will remove all records from the index at the end of each day, effectively
reducing the size of your index from 100,000 records to 500 records and increasing
the efficiency of the index proportionately.

Records sets can be created by searching a key column in a table and populating
the NULLINDEX column. Searches can then be performed using the index with
a small set of records in it. The NULL INDEX column could have several
values, each value representing a different record set.

NMS DeveloperStandards& Guidelines 3-3 April 1995

3.3

Rule 3-6: Never do a calculation on an indexed column if the intention is to use the index to

assist with response time. For example:

Inefficient way to code:
WHERE (SALARY * 12) > 12000;

Efficient way to code:
WHERE SALARY > (12000 / 12);

Rule 3-7: Never specify IS NULL or IS NOT NULL on index columns if the intention is to

use the index to assist with response time.

Rule 3-8: Never specify the SUBSTR function on a column that has an index because it

disables the index. For example:

Inefficient way to code:
WHERE SUBSTR(USERID,1,4) = 'OPSS'

Efficient way to code:
WHERE USERID LIKE 'OPS$%'

Rule 3-9: In almost all cases the use of ORDER BY will disable the use of an index and

result in a full table scan. For this reason use a WHERE clause condition that uses-an index

instead of an ORDER BY. The records will be ordered the same way the index is ordered.
For example:

Inefficient way to code:
ORDER BY EMPNO

Efficient way to code:
WHERE EMPNO > 0

ORACLE SQL Statement Processing Techniques

The sql techniques in this section are designed to increase the efficiency of SQL statements in

an ORACLE database. It is important to tune SQL, statements very carefully so that they

will execute efficiently. Here are some tips for tuning SQL statements:

Rule 3-10: Use ROWID as a key for a record when ever possible. The ROWI) for a

record is the single fastest method of record retrieval. ROWED is actually an encoded key

representing the physical record number within an actual ORACLE database block on the

database.

NMS DeveloperStandards & Guidelines 3-4 April 199

Improvements in performance can be made by selecting a record before updating or deleting
it, and including ROWID in the initial select li.-t. This allows ORACLE to perform a much
more efficient second record access. Remember to select the record FOR UPDATE when
querying a record pior to updating or deleting. This keeps another process from being able
to update the selected record and change its ROWID out from under you. For example:

SELECT ROWID,
INTO :EMP ROWID
FROM EMP
WHERE EMEP.EMPNO = '123'
FOR UPDATE OF EMP.EMPNO;

UPDATE EMP
SET EMP.EMPNO = '456'
WHERE ROWID = :EMPROWID;

Rule 3-11: Use a where clause that utilizes indexes. For example:

SELECT ...

FROM DEPT
WHERE EMPNO > 123;

If EMP_NO has an index, the index will be used and will return records in EMP_NO order.

Rule 3-12: Avoid using NOT in any where condition such as "!=" or NOT EQUAL. For
example:

Inefficient way to code:
WHERE AMOUNT != 123

Efficient way to code:

WHERE AMOUNT < 122

AND AMOUNT > 124

Rule 3-13: Avoid the use of HAVING in general; use 'HERE predicates instead.

Rule 3-14: Use table aliases to preftx all column names.

Rule 3-15: Use joins in preference to sub-queries.

Rule 3-16: The ordering of the from clause can in many situations significantly reduces the
number of physical reads needed to execute SQL statements. ORACLE 7 uses a cost based
optimizer which in some cases makes its own determination of which table will be the driving

NMS DeveloperStandards & Guidelines 3-5 April 1995

table regardless of the order in the FROM clause.

The last table name specified in the from clause determines the driving table.

ORACLE creates a set of pointers to records that satisfy the WHERE conditions

that relate to the last table in the from clause.

Then it eliminates the pointers that don't point to records, that satisfy the WHERE

conditions, that relate to the second to the last table in the FROM clause.

Therefore make sure that the table specified last in the FROM clause will return

the fewest rows based on its where conditions. This is not always the table that

has the fewest rows in it. For example:

SELECT ...
FROM TASKS A

WHERE A.EMPNO in (1,2,3) Pointer set 3

AND A.EMPNO in (1,2) Pointer set 2

=AND A.EMPNO '1'; pointer set 1

Set 1 will return the fewest records, set 2 will return more records that set 1, and

set 3 will return the most records.

Rule 3-17: When using the OR operator be sure to put the column that will return the

smallest number of rows first. For example:

Where 1 = 1 Should return the least rows.

rows.
or emp_no < 100 Should return to most

a sort-order in a SQL query, either by using an Order By or specifying Rule 3-18: Specify
the sort-field in the Where clause if an index exists on the field or if the required index exists

on the set of fields.

The advantage of the Order By is that it makes the ordering requirement in the code more

obvious and specific for future programmers. Here is an example of using a field that has an

index on it to sort the records.

Select NAME, POSITION, DEPTNO

from PERSON

Where EMPNO > 0

Never specify IS NULL or IS NOT NULL on index columns. It is unnecessaryRule 3-19:

and will disable the use of indexes.

NMS DeveloperStandards& Guidelines 3-6 April 199S

4 	 ORACLE DATABASE ADMINISTRATION

STANDARDS

4.1 	 UNIX/Oracle Configuration

The UNIX/Oracle configuration shall apply to each Oracle instance created within USAID

regardless of the UNIX platform.

4.1.1 	 Physical Setup of UNIX Disk Drives for Oracle

All UNIX systems will have at least two, and preferably four, disk drives dedicated to Oracle
operation. The greater number of disk drives will improve performance and reduce the risk
of lost data due to a crashed hard disk. The disks dedicated to Oracle operation will not be
partitioned; instead they will be mounted in their entirety. Each dedicated Oracle disk will
be mounted and given file system names as follows:

Disk I /usrl

Disk 2 /usr2

Disk 3 /usr3

Disk 4 /usr4

......
etc.

In addition to the disks dedicated to Oracle, each UNIX system will have a boot disk with the
following partitions:

Boot Disk /
/usr
/usr/local

4.1.2 	 Logical setup of UNIX Disk Drives for Oracle

All Oracle files will reside in subdirectories under a directory named /ap/oracle, where mp is
a mount point directory name. UNIX systems with two or more disk drives will have oracle
subdirectories at the same level on each disk directly under the mount point. For easier
maintenance, it is important that all oracle subdirectories are created at the same level. For
specific naming conventions, please refer to the sample configuration of two-, three- and four­
disk systems contained in the Oracle Configuration document provided by the DBA group
and included as Appendix D in this document..

4.2 Database Design Standards

The standards in this section are intended to provide guidelines for database design in order to

NMS Developer Standards& Guidelines 4-1 	 April 1995

achieve data base standardization across BA's.

4.2.1 Instance Naming

Instance names will be the same as the database name and will consist of a maximum of four

characters.

The fourth character will be the sequence number of the instance when there are multiple

instances on the same machine. For example, the three instances of production on the same

machine will be called prdl, prd2, and prd3.

The parameter file name will also reflect the instance name, as illustrated below.

Instance Type Instance Name Database Name Parameter File

Development 	 dev dev initdev.ora

tst tst inittst.oraTest

Production prd prd initprd.ora

4.2.2 Tablespace Configuration

This tablespace configuration provides the maximum flexibility for placement of data files on

separate hard disks. The configuration allows the DBA to control tablespace objects for each

separate lablespace separately with limited impact to other tablespaces. In the event of a data

file corruption the impact can be limited the taYlespace that the data file belongs to, possibly

allowing the other tablespaces to remain in use while the damaged one is repaired.

Each ORACLE instance will have a separate tablespace for each of these functional areas:

System
. Temporary (Used for sorting and joining records sets to satisfy a where clause.)

* Rollback segments
* Indexes
* Application objects such as tables

All database objects that are needed by more than one BA will be stored in one of the
corporate tablespaces.

Aliases will be made for each of the corporate tablespace tables so that they can be accessed

without hard coding the "owner."tablename syntax.

NMS DelperStadards& Guidelines 4-2 	 April 1995

cxc'

4.2.3 Database Table Design

All table structures will be normalized. In some cases, de-normalization will be necessary for
the sake of efficiency. This can be done case-by-case according to the guidelines in the
"Corporate DBA Tablespace, Database Object Management" Section of this document.

Within tables, 	column sequence order standards shall be:

a. Primary key columns are always first.
b. Foreign key columns will be next.
c. Data columns will be next, such as "EMPLOYEERMNUM".
d. Audit/security tracking columns such as "Update_UserID" and "Update date"

will be last in the table structure.

For example:
EMPLOYEEDATATABLE

EMP_IDPK CHAR(10),

GROUP_IIFK CHAR(10),

EMP NAME CHAR(30),

EMP-ADDRESS CHAT(50),
UPDATE USER ID CHAR(10),
UPDATEDATE DATE

4.2.3.1 Table 	Data Paths

To maintain the integrity of the data base the number of paths to a table is to be kept to an
absolute minimum, preferably only one data path should exist to any given table.

Hear is an example of a table that has two data paths:

path 1 	 One could retrieve a record from table "C" by keying on a record in tables "A"
and "B".

path 2 	 One could also key on a record in tables "A" and "D" to gain access to records
in table "C".

In this example there are two data paths to the same record in table C. It is entirely possible
to receive a different record set depending on which path is used, when logically your select
clause has been designed to retrieve the same identical record set.

The limitation of one data path for each table will reduce the amount of interdependency on
foreign keys, increase the degree of data integrity in the database, and simplify the
management of the tables, and extents for tables.

NMS DeveloperStandards & Guidelines 4-3 	 April 1995

If there are multiple data paths to a single table then probably there is a departure from third

normal form in the database structure.

It is frequently possible to eliminate multiple data paths by rearranging the relationship of the

target table with other tables through the modification of the key structure logic, or by

moving some or all columns from-or-to some other tables. In most cases these techniques can

be used while maintaining third normal form.

4.2.3.2 	Columns within Tables

Column sizes and data types must be consistent within the application and across BAs.a.
Below are some examples of column consistency:

• 	 Columns with dates must all be in date format as apposed to 9 characters.
* 	 First and last names of people in all tables must be the same length.
* 	 Phone numbers must be composed of three fields as apposed to one field.
* 	 Zip codes must be in two fields as apposed to one field.

b. 	 Table names cannot be more than 18 characters long including "PK" and suffixes.

c. 	 It is recommend that primary keys be composed of only one or two columns. This is

for efficiency when joining tables.

A single column key can increase the efficiency of the database by reducing the

amount of data that ORACLE needs to sort, match, and re-sort when performing an

SQL query or update. It can also save an enormous amount of disk space by

eliminating redundant columns in child tables for the purpose of maintaining a

referential path to a parent table.

In a cascading table structure it is sometimes possible to reduce the number of

columns in a key by rearranging the relationship of child and parent tables through the

modification of the key structure logic, by moving some or all columns from or to

some other tables, or by creating a new unique key that only consumes one column,
such as a sequence generated number.

These 	techniques can be used while maintaining third normal form in most cases.

If more than two columns are needed in a primary key then consider creating an
additional column with a unique value such as a sequence generated number that can

be referenced by other tables.

NMS Developer Standards & Guidelines 4-4 	 April 1995

The use of sequence generated numbers as the a primary key does not reduce or
replace the user friendliness of being able to use concatenated columns to retrieve a
record from a table. It only aids in the efficiency of retrieving records from other
child tables using the key from the parent table. In fact, the use of a generated
number as a key from a parent table can serve to increase the user friendliness of a
query.

For example:

The concatenated key for the neighborhood table is:
country
state
county
city
city sectio" (i.e., NW) for NW DC
neighborhoodname

This table has 6 corcatenated columns as its key. One may need to use these six columns to
insure the uniqueness of each key and to provide a logical means of retrieving records from
that table. However for child tables of this table there are choices:

Option I Migrate all six columns to every child table for the purpose of
maintaining a referential path to a parent table.

Option 2 Create an additional column in the neighborhood table called
neighborhood code that contains a unique sequence generated number.
Migrate that column to the children tables for the purpose of
maintaining a referential path to a parent table.

In Option one, 7 columns have to be concatenated to create a unique key for the child tables,
and 6 columns to match the records in the child table with the records in the neighborhood
table.

In Option two, only 1 column is necessary tc identify the child table and that column can be a
logical column as apposed to a sequence generated code column. And there is one column to
link the child table to the neighborhood table.

Here is an example of the select clause necessary to retrieve a record from a child table:

Option I

NMS Developer Standards & Guidelines 4-5 April 1995

SELECT...

FROM NEIGHBORHOOD, HOUSE

WHERE NEIGHBORHOOD.COUNTRY = HOUSE.COUNTRY
AND NEIGHBORHOOD.STATE = HOUSE.STATE
AND NEIGHBORHOOD.COUNTY = HOUSE.COUNTY
AND NEIGHBORHOOD.CITY = HOUSE.CITY
AND NEIGHBORHOOD.CITYSECTION = HOUSE.CITYSECTION
AND NEIGHBORHOOD.NEIGHBORHOODNAME = HOUSE.NEIGHBORHOODNAME;
AND HOUSE.HOUSEDESCRIPTION = 'WHITE 3 STORIES 5 BEDMS';

Option 	2

SELECT ...

FROM NEIGHBORHOOD, HOUSE

WHERE NEIGHBORHOOD.NEIGHBORHOODCD = HOUSE.NEIGHBORHOODCD
AND HOUSE.HOUSE DESCRIPTION = 'WHITE 3 STORIES 5 BEDRMS';

With logic used in option one, every time a child table is created, that table must have all of
the key columns that it's parent had plus at least one additional column. So a child of a child
of a child would have a minimum of three key columns in it.

In Option two, the ability to select records using a concatenated key from any table still
exists, but only a sequence numbered code to the children tables need be migrated. This

means that the child of the child of the child would still only contain one column that can be
used for maintaining a referential path to the parent tables.

4.2.4 	 Naming Standards

a. 	 Indexes will be prefixed with the literal "NDX_", and will be followed with the table
name, 	followed by the first three characters of each column that is in the index.

e.g., NDXEMPLOYEES_EMP_SSN. In this example, the table that is being
indexed is "EMPLOYEES", and the EMPLOYEENO, and SSN columns are
being used in the index.

b. 	 Views will be prefixed with the literal "VW_"and will be followed with a name that
describes 	the function of the view.

e.g., VWEMPLOYEEPERSONALDATA.

c. 	 Sequence generators will be prefixed with "SEQ_"and will be followed with a name
that describes the function of the sequence:

e.g. SEQ_EMPLOYEEID.

NMS Developer Standards& Guidelines 4-6 	 April 1995

d.* 	 The table name should describe the type of data that the table will hold.

e.* 	 All columns that are primary key columns will end with "PK".

f.* 	 All columns that are foreign key columns will end with "FK".

g.* 	 Table names cannot be more than 18 characters long including "PK" and "FK"

suffixes. This is a limitation of ADW. It also adds flexibility to database objects with
respect to future enhancements, and allows the concatenation of prefixes or suffixes
such as VW for views, sequence numbers, etc.

h. 	 The directory name that contains the data files will be called "oradata". If multiple
Oracle instances reside on the UNIX system, the name of the instance will follow the
subdirectory oradata., e.g., /mp/oracle/oradata/tstl.

We suggest that file names of the data files describe the application and tablespace that
they belong to. For example:

The first four characters could come from the application name, the second four
characters could match the tablespace name the data file belongs to, e.g.,
AWACROLLO 1. Looking at this file name shows that it is an AWACS data file used
by the ROLLBACK tablespace.

* Note: Refer to the Encyclopedia Management Plan catalogdata standards. This

document is maintainedby IRM/IPA.

* Note: IRM/IPA will be coordinatingthe creationand implementation of standardnames

for databaseobjects within and acrossBA 's.

4.3 	 Application Considerations

In order to maximize efficiency in accessing the database and be consistent across BA's, the
following standards shall be followed.

4.3.1 	 ORACLE Application, Testing, and Production Environments

These are generic descriptions of these types of environments. The BA's will have all three
environments, but their production environment may or may not have ORACLE in it at all. It
may only consist of a directory to store programs that have been developed and tested and are
now ready to turn over to CM. The corporate DBA group will only have two environments,
testing and production.

Development will be done using three environments: development, testing, and

NMS Developer Standards & Guidelines 4-7 	 April 1995

I4

production.

The development environment will have very few restrictions and will be used
exclusively for the purpose of developing new programs or changing existing

programs.

The testing environment will be maintained as a mirror of the production
environment. It is intended to simulated the production environment that the

application will eventually be used in by the end users. -

It will contain exactly the same set of tables, indexes, sequences and all other

ORACLE database objects as the ones in the production environment. The

testing tables will often contain a set of "test records" that are not in the

production tables. This will be the only difference between the two
environments.

The production environment is a fully operational environment that can be used

to demonstrate the programs that have been developed to users and other
officials that may want to see how the application functions.

These programs are the ones that will be eventually turned over to the
corporate configuration management team.

It also provides a way for the project or testing team manager to maintain their own

base line of the application, and sustain tightly controlled management of the

modification of "COMPLETED" programs by the programming staff.

4.3.2 Application Calls to the Database

All calls to the database from visual basic or other programs will be done by executing
database Procedures or Functions. In some extremely rare cases it may be necessary to imbed

SQL code in visual basic programs. This can be done on a case by case basis in accordance

with the guidelines laid out in the "Corporate DBA Tablespace, Database Object
Management" Section of this document.

NMS Developer Standards& Guidelines 4-8 April 1993

Io~

ALL SQL statements needed by visual basic will reside in these database procedures and
This is for applicationfunctions. Even simple statements, such as select from dual.

performance, maintainability, distributed environment performance, security, and local

database performance.

1.* 	 This will make the application respond quicker since these SQL statements will

not be re-sent across phone lines and re-compiled every time that they are used.

2. 	 It will increase local database efficiency because the SQL code will be stored

in a database procedure the SQL commands only need to be parsed and

compiling one time.

3.* 	 It will increase the responsiveness of the system in a distributed envihonment

because the only data being sent over phone lines to the local mission server

will be a call to the procedure. A typical SQL statement will be between 40

characters (for a very small SQL statement) and 1,500 characters, as opposed to

20 to 30 characters needed to call a procedure.

It will 	also reduce the need to modify the visual basic program every time a4.
change is made to a table in the database. It may only be necessary to modify

the table and a procedure which both reside on a server as apposed to

modifying all of the visual basic programs in the world that can access that

local database server.

5. 	 It establishes a set of standard database procedures that are in use on all servers

worldwide (currently only 84 missions will have local databases). This makes

maintenance much easier because when modifications are necessary the source

code can be saved on a CD-ROM and shipped to all 84 missions for installation

on their local server, as opposed to replacing several hundred or even several

thousand visual basic programs worldwide.

*Note: In some cases, some databaserecords that the procedure will need will also be sent

from the visual basicprogram to the procedure. However the amount of records will be the

same regardlessof the use of databaseprocedures or imbedded SQL.

April 1993
NMS Developer Standards& Guidelines 4-9

All USAID database management will be under the guidance of the Corporate Database

Group.

4.4.1 Corporate DBA Tablespace, Database Object Management

Policy to manage changes to the database objects contained in the corporate tablespace, and
SQL code stored in database procedures and visual basic programs are currently being created
For information on these policies contact the corporate CM team.

The DBA team will not have the responsibility for deciding how these database objects will
be changed, they will only carry out instructions that come from an official USAID
committee or board.

The corporate Data Administration (DA) group's responsibilities as they relate to managemen
of corporate data objects, which in turn will impact the physical database objects in the
cor.crate tablespace, are also in the process of being defined. For more infofmation, contact
the corporate DA team.

The corporate DBA group will keep track of which BA is the originator of data that is being

stored in database objects and which BA's re.ad, write or change that data.

4.4.2 Database Backup and Recovery

A set of backup procedures are included as Appendix D. Recovery procedures are being
developed and will be provided by the DBA group.

NMS Developer Standards& Guidelines 4-10 April 1995

5 CONFIGURATION MANAGEMENT

5.1 CM Activiies

5.1.1 Planning

Project teams shall plan a Configuration Management Program in accordance with the
requirements of this standard, tailored appropriately for their project. Planning should be
consistent with the objectives of a continuous improvement program which includes the
analysis of identified problem areas and correction of procedures as necessary. The project
team's 	configuration management planning should include:

* 	 The objectives of the Configuration Management Program and of each
applicable configuration element.

* 	 The project's Configuration Management Organization and organizational
relationships.

0 	 Responsibilities and authority of project configuration management

representatives.

0 	 Configuration management resources (tools, techniques, and methodologies).

* 	 Coordination between project and Agency Configuration Control Board
(CCB).

0 	 Configuration management policies, processes, procedures, methods,
records, reports, and forms.

5.1.2 Control and Accountability

The Configuration Management Organization shall implement a system for control of, and
accountability for, all configuration documentation, physical media (where applicable) and
actual files comprising a USAID software system. This control and accountability will be
accomplished utilizing the four primary functions of configuration management:

a. 	 Configuration Identification
b. 	 Configuration Control (including interface control)
C. 	 Configuration Status Accounting
d. 	 Configuration Auditing

NMS Developer Standards & Guidelines 5-1 	 April 1995

5.1.2.1 Configuration Identification

The Configuration Management Organization shall implement a system to identify the

functional characteristics of specifications as well as the functional and physical characteristics

of configuration documentation, physical media (where applicable) and actual files comprising

a software system.

Configuration Identification is accomplished by establishing baselines at specific points in

each system's life cycle to provide approved configurations which can only be changed by

means of formal processes.

Baselines are established by formally reviewing the system configuration at a designated point

in time and by obtaining approval from authorized BA representatives.

5.1.2.2 Developmental Configuration

The development team 	shall establish and implement a Developmental Configuration

This process will be used to control the documentation and repositoriesManagement Process.

containing the elements of the developmental configuration. The development team shall

prepare a problem/change report to describe each problem detected in software and

The problem/change reportdocumentation that has been plkced under configuration control.

Thesewill describe the corrective action needed and actions taken to resolve the problem.

as input to a corrective action process implemented for the purpose ofreports should serve
handling all problems detected in the products under configuration control. The corrective

ensure that all detected problems are promptly reported, action is initiatedaction process will
on them, resolution is achieved, status is tracked and reported, and records of the problems

are maintained for the life of the system.

5.1.2.3 Documentation and Software Development Library

The CM team shall establish a Documentation and Software Development Library and

implement procedures for controlling the documents and software residing within it.

5.1.2.4 Configuration Baselines and Their Configuration Documentation

The development team shall establish configuration baselines (where applicable) for all CIs.

The documentation defining the configuration baselines shall be consistent and compatible.

5.1.3 Configuration Control

The Configuration Management Organization shall ensure that system configurations

as formal baselines can only be modified through a formal configuration control
established

process. This process vll generally conform to the standards set forth in this standard, but

April 1993NMS Developer Standards & Guidelines 5-2

can be tailored within specified limits by individual project personnel.

5.1. 1 Supporting Data

Formal change requests should be supported by listings, screen prints, and other data (e.g.,
detailed cost data, test data and analyses) as required to justify and describe the change and to
determine its operational employment characteristics. A summary of any testing done to
validate concepts or new technology to be employed in the change should be presented in the
supporting data, and details of such data should be provided if it is important to the decision
regarding acceptance of the change.

5.1.3.2 Change Justification

Changes should be limited to those which are necessary or offer significant benefit to the
Government. Such changes are required to:

* Correct deficiencies.

0 Add or modify interface or operability requirements.

0 Make significant and measurable effectiveness change in the operational

capabilities of the system or item.

* Effect substantial life cycle costs/savings.

* Prevent slippage in an approved production schedule.

5.1.3.3 Requirements Change Forms

Notes: See the CM procedures and forms from the AWACS Business Area programming
group, which are oriented toward using PVCS (Polytron Version Control System) from
Intersolv, but which should work with little modification with CCC Harvest.

Other Business Areas have not yet established complete methods for configuration
management and change control. One suggested method for handling changes was:

Write a SHORT document specifying the required change, who initiated,
why, and when. Consequences, implications and alternatives should be
discussed. Concurrence should include all members of the team. Before
the change is made binding, the decision to get user approval should be
made, and the appropriate indications written on the form itself. Use a
standard form incorporating the above items if available. The depth of the
discussion should be proportional to the significance of the change.

NMS DeveloperStandards& Guidelines 5-3 April 1995

IlL

The NMS development teams are getting copies of CCC Harvest, a client-server software
system which integrates several of the functions of configuration management -- including

version control, change control, testing feedback, and work-assignment and tracking for

defects, changes, and new features. Some of the CM and other procedures will be defined

after this becomes available.

5.1.3.4 Change Notification

Notes: See forms from the AWACS Business Area programming group.

CM procedures are still being defined. However, the intent is for a programmer to put

modified code modules back into the VCS (version control system) only through the CM

person. As a practical matter, there should be a multi-level VCS so that a programmer can

put a module back into the pre-test, working set area and then notify the CM person by e­
direct the module to the testing area and eventuallymail. From there, the CM person can

either back to the programmer for modification or to the next-release baseline. If a

programmer modifies a module or subroutine which is shared with other modules or

applications and puts it into the VCS, then the programmer should notify the configuration

manager and the other programmers so that testing of the item can be performed in the other

contexts. Likewise, if the modified module is part of an application on which other

programmers are working, it is critical that they be notified to download the new version,

especially if it fixes a bug. Ideally, this would be after a certain level of testing (yet to be

defined) has been completed on it.

5.1.4 Configuration Status Accounting

The Configuration Management Organization shall establish and maintain a configuration

status accounting system to track the status of:

a. Configuration identification documentation.
b. Configuration of delivered software.
c. Status of changes in reviews.
d. Status of approved changes.
e. Statistical change data.

5.1.4.1 Configuration Auditing

The Configuration Management Organization shall conduct functional and physical

configuration audits of all USAID's software systems. The functional configuration audit will

ensure that each system's actual performance agrees with the approved specification for the

system. The physical configuration audit will determine if the design and product

specification and referenced documents represent the coded and tested software.

NMS Developer Standards & Guidelines 5-4 April 1995

6 TESTING AND QUALITY ASSURANCE

6.1 Developer Testing

Developer testing is performed by the programmer who wrote the program or a member of
the programming staff, and uses the program specifications, and source code to perform the
testing. At this point adherence to USAID Information Systems Standards and to the
Developer Standards and Guidelines document should be determined. Testing is only as
thorough as the programmer who does the testing.

It is generally an informal test that does not have test plans to guide the approach to the
testing process or test scripts to document the results of the tests. In many cases the
programmers have had no formal testing experience as test analysts.

It is simply a test to satisfy the development staff that all or most of the major bugs have
been located and fixed before the program is delivered to CM, and as such it can not be relied
upon as a test that will "guarantee" any functionality. However, it is necessary because if a
bug is found at this stage it is much easier to fix than if it is found at a later stage of the
development/acceptance process.

Appropriate testing of an application, module, or subroutine must be performed by its author
or person modifying it. It should be tested alone and in the context of the rest of the
application or applications which use it. If a programmer modifies a module or subroutine
which is shared with other modules or applications, then the programmer should notify the
configuration manager and the other programmers so that testing of the item can be performed
in the other contexts.

6.1.1 Unit Testing

Unit Testing verifies that the program module that the developer has recently worked on
functions properly. The test ensures that all of the code instructions execute correctly in
accordance with the programmer's understanding of the program functionality.

6.1.2 String Testing

String Testing verifies that the program module recently worked on functions properly when a
sequence of actions are performed which build on each other with an intended result. It is
performed by the programmer who wrote the program and uses the program specifications
and source code to perform the testing. The test ensures that all of the code instructions
execute correctly in accordance with the programmer's understanding of the program
functionality. An example of a string test could be to:

NMS Developer Standards& Guidelines 6-1 April 1995

* enter data in several fields,
* execute a query based on the data entered,
* enter some more data,
* change some of the data,
* save the changes,
* change screens, and
• query some data that should reflect the changes recently made.

This scenario could continue for several more steps. After all the steps have been completed,
if there are no screen functionality problems, then the tester checks the database using SQL
Plus (not the application) to insure that the records have been saved correctly.

6.2 Beta Test (Formal Test Team)

Beta testing is extremely thorough. It is performed by a team of professional testers. Each
program module is analyzed thoroughly and test plans and scripts are created using the system

requirements document, the architectural design, and detailed design documents as the sources
for testing. At this point, adherence to USAID Information Systems Standards and to this
Developer Standards and Guidelines document will be determined.

The test plans guide the approach to the testing process and the test scripts provide a step-by­
step procedure for executing a test and documenting the results.

Every field on every screen is tested with invalid data, duplicate data, valid data, and
conflicting data of many different types, and for functionality both within the field itself and
in relation to other fields.

Database integrity is tested across all of the database tables with scenarios such as cascading
deletes or modifications, invalid insertion of foreign key records prior to creation of a primary
key, modification of records on several related tables at the same time etc.

The security of the program is tested in regards to the users ability to insert, select, delete, or
modify individual records and perform other functions that may require special authority by
the user.

After all the testing has been completed the test team provides a report describing the tests
that were performed along with the documentation used; such as test plans and test scripts.

VO DeveloperStandards& Guidelines 6-2 April 1995

6.2.1 	 Integration Testing

Assumptions:

1. 	 Both logical and physical models are already approved by the Data Administrator or

other responsible party.

2. 	 Unit testing (systems testing) is already completed by the developers.

3. 	 Quality Assurance has already been done in the BAAs or in IPA.

4. 	 Beta testing and Acceptance testing will follow the first pass of integration testing and

will be performed by the BAA owner.

Procedures:

1. 	 The Development Project Manager designated by the BAA IRM Coordinator signs the

APPROVAL in the Configuration Management software after the software, test data,
documentation (users manual, system manual, unit test plans) have been transferred to

the Configuration Management Server. (Until the server is established, the

Development Project Manager takes data and system diskettes to the Configuration
Management Manager. The disks contain both source and executable code as well as

the unit test data and installation instructions.)

2. 	 The Configuration Manager accepts the delivery by signing the APPROVAL in the

Configuration Management Software. The BAA IRM Coordinator also signs

APPROVAL for receipt. (1 or 2 days)

3. 	 The Configuration Manager notifies the Integration Test Manager that the software has

been received and is ready for testing.

4. 	 Integration Test staff notifies the DBA Manager that the data is received and ready for

installation. The Integration Test Staff notifies the software installation manager
(Steve Polkinghom) that the software is ready for installation onto the Interoperability
Lab servers. (2 or 3 days for software and data base installation and assignment of
test user authorities on Oracle.)

5. 	 Integration Test staff tests as itemized below. (2 weeks)

6. 	 Integration Test notifies Configuration Management with comments, if there are any

problems discovered in testing. (1 day)

NMS Developer Standards & Guidelines 6-3 	 April 199

H4

7. 	 Configuration Management logs the comments into CM and then notifies the BAA
IRM Coordinator designated Developer Project Manager so the developers check out
the software from CM to fix any problems. Then the cycle starts again.

8. 	 During the second Integration Test, the Functional Test can be done in Parallel. Errors
or comments discovered in testing by the Functional Test staff will be relayed through
the Integration Test Manager.

Develoer 	 CM Integration Pilot

Unit Test I -- Receive - lnt Test I

Deliver to CM

Receive from CM ,-	 Receive 4- Return Comments
Comments to CM

Correct Code
Unit Test 2 -- Receive - Int Test 2 - Pilot Test I
Deliver to CM I

Receive from CM 4-	 Receive <- Return Comments 4- Return Comments
Comments to CM to Int Manager

Correct Code
Unit Test N -- Receive -- Int Test N -- Pilot Test (N-I)
Deliver to CM

Receive from CM 4- Receive ,- Return Comments <- Return Comments
Comments to CM to Int Manager

ETC.

Integration Testing Plans:

1. 	 Review all documentation for compliance with Agency standards.
2. 	 Install programs and data as prescribed in the documentation.
3. 	 Confirm other infrastructure applications will still run/print.

NMS Developer Standards & Guidelines 6-4 	 April 1995

4. 	 Rerun unit tests for verification of corrections.
5. 	 Follow user documentation through all screens to confirm documentation agrees with

actual processes.
6. 	 Enter new data to confirm validity of field values(alpha, numeric, field size etc).
7. 	 One by one run other NMS applications such as PIPE to see the compatibility and

degradation of the system.
8. 	 Stress and Volume testing on LAN and Server.

6.2.2 	 Install-Routine Testing

Verifies that the "program installation application" functions properly. The test ensures that
the application the installation program is supposed to install migrates the application and
ORACLE objects correctly to the new computer.

6.2.3 	 Database Standards and Configuration Testing

Database Standards and configuration testing verifies that the database objects installed on the
new computer conform to database standards and that the configuration of the physical table
structure is designed in a way that results in the database responding to the user in a quick
and efficient manner.

6.2.4 	 Unit Testing

Unit testing verifies that the system performs the business functions while meeting the
specified performance requirements. It is performed by members of the testing team and
users.

6.2.5 	 String Testing

This test verifies that each program module functions properly when a sequence of actions are
performed which build on each other with an intended result. Program modules are tested
with sequential steps that verify the program functionality within each module. Program
modules must also be tested for their functionality and compatibility with other program
modules in a string or network of modules. It is performed by a member of the test team and
uses test plans that describe the tests for every possible sequence of actions that are possible
in the application. The test ensures that all of the code instructions execute correctly in
accordance with the program specifications. An example of a string test could be to:

* 	 enter data in several fields,
* execute a query based on the data entered,

0 enter some more data,

a change some of the data,

* 	 save the changes,

NMS Developer Standards& Guidelines 6-5 	 April 1995

* change screens, and
o query some data that should reflect the changes recently made.

This scenario could continue for several more steps. After all the steps have been completed,
if there are no screen functionality problems then the tester would check the database using
SQL Plus (not the application) to insure that the records have been saved correctly.

6.2.6 Interoperability/Integration Testing

This set of tests verifies that the system will work on the USAID's standard equipment in the
standard environment. It verifies that the system conforms to data and presentation standards
(look alike and same key for same purpose). Installation is completed in the Interoperability
lab. Testing begins with tests on one PC with preliminary tests. Installations of the
application are then added one-by-one to six additional PCs until all six are executing the
application. After performance tests are completed in this mode, additional NMS applications
(PIPE, AWACS, etc.) are executed one-by-one until all of the applications are executing
satisfactorily. Documentation is made for the impact of the additional application, exchange
of data, and any problems encountered.

6.2.7 Stress Testing

Stress testing is the simulation of more users than will ever be using the system at one time.
It can simulate hundreds or thousands of users all using the system concurrently. There are
tools that can initiate instructions from thousands of "users" at the same time from a single
computer terminal. CCC Inc. has one of these tools.

There are two type of stress testing, one to test only the application software and one to test
the application software and the hardware configuration.

When testing the application software, the intent is to see how the application handles this
load in terms of responsiveness to the user and its ability to remain stable without crashing.
Generally the application is installed on one server and a tool is us!d to perform the
simulation of many users against that server.

When testing the application software and the hardware configuration, the intent is to see how
the system handles this load in terms of responsiveness to the user and its ability to remain
stable without crashing. Generally the application is installed on several servers in a
miniature simulation of the real world configuration and a tool is used to perform the
simulation of many users against the system.

NMS DeveloperStandards & Guidelines 6-6 April 1995

6.2.8 Site (Alpha) Testing

After the application has been installed on the computers in the "Production" environment, it

is tested to see how the system handles the load in terms of responsiveness to the user and its

ability to remain stable without crashing. This is not stress testing, it is basic, minimum

requirements functionality testing for the system.

6.2.9 Certification and Acceptance Testing (User Pilot)

The particular test provides the users with assurance that the system is completely ready for
It verifies the functionality and responsivenessproduction use and is performed by the users.

of the system to the satisfaction of the end users and results in the users officially accepting

the application as complete and ready for production use.

April 1995NMS DeveloperStandards& Guidelines 6-7

APPENDIX A - Standard VB GUI Object Name Prefixes

Standard VB GUI Object Name Prefixes

For GUI controls which are part of the standard VB set, use the following prefixes to indicate
a control's type. These are based on Microsoft's recommended GUI object prefixes.

Separate the prefixes for GUI objects from the rest of the control's name with an underline to
make it clear that the object is not a variable. This helps readers in quickly scanning the code
to understand it.

(All source code prefixes and examples are in bold.)

Non-3D VB Controls

Control Type Prefix Example Comment

Animation button ani aniMailBox

Chart cht chtSales

Checkbox chk chkReadOnly

Combo box cbo or cboEnglish Also used for drop-down
combo list box.

Command button cmd cmd Sumdata

Common dialog control dig dlg_FileOpen

Comm. con cornFax

Control ctl ctlCurrent

Data control data dataBiblio

Dir. list box dir dirSource

Drive list box dry drvTarget

File list box fil filSource

Frame a fraLanguage

Gauge gau gau_Status

Graph gra graRevenue

Grid grd grdPrices

NMS DeveloperStandards& Guidelines A-) April 1995

Non-3D VB Controls

Control Type

Horizontal scroll bar.

Image

Key state

Label

Line

List box

MAPI message

MAPI session

Masked Edit

MCI

Menu

OLE control

Outline control

Pen Bedit

Pen Hedit

Pen Ink

Picture

Picture clip

Report control

Shape control

Spin control

Text Box

Timer

Prefix

hsb

img

key

lbl

lin

list

mpm

mps

medt

mci

mnu

ole

out or outl

pbed

phed

ink

pic

clp

rpt

shp

spn

tit

tmr

Example

hsbVolume

imgIcon

keiCaps

IblHepMessage

tin-Vertical

listPolicyCodes

mpmSentMessage

mpsSession

medtZipcode

mciVideo

mnuFileOpen

oleWorksheet

outOrgChart

bedFirstName

hedSignature

ink-Map

picVGA

clpToolbar

rptQtrlEarnings

shpCircle

spn._Pages

txtLastName

tmrAlarm

Comment

NMS Developer Standards & Guidelines A-2 April 1990

I~(

Control Type

Vertical scroll bar

Control Type

3D check box

3D command button

3D frame

3D group push button

3D option button

3D panel

Form Type

Form

MDI Parent Form

MDI child form

Prefix Example Comment

vab vsRate.

VB Three-D Controls

-Prefix Example

ch3 ch3_CheckBox

b3 cb3_Close

fr3 fr3_Shipmethod

pb3 pb3_Fedex

ob3 ob3_CostPlus

pn3 pn3_Background

VB Forms

Std. Alternate Example Comment

Prefix Prefix

frm frmEntry

frmMDI_ MDI frmMDlActivityMain

frmmdi_ mdi frmmdiNote

NMS Developer Standards& Guidelines A-3 April 195

Third Party VB GUI Object Name Prefixes

Use a two- or three-letter prefix to indicate the vendor of a third party custom control.
Common examples for Agency-approved custom controls are:

Prefix I Custom Control

fpsp_ Far Point's spreadsheet control

fptab_ Far Point's tab control

he. High Edit control

A-4 April 199NMS De'eloper Standards & Guidelines

APPENDIX B - Standard Name Prefixes for Variables
and VB Data-Access Objects

Use the following three letter piviixes to indicate a variable's data type. These are based on

Microsoft's recommended variable name prefixes.

Do not use an underline to separate the prefix in a variable 	name.

(All source code is in bold, including Visual Basic keywords, prefixes, and examples.)

Variable Data Name Prefixes]
Data Type Standard Alternate Example Comment

_Prefix Prefix

Boolean bin bool blnFound Actually an Integer used as a
Boolean

Currency cur curRevenue

Date (time) dte dt datStart Microsoft's "dat" conflicted with

their own use of "dat" for a data
control name prefix.

Double dbl d dblTolerance

Error err e errOrderNum

File handle fil fi or file filLogFile Actually an Integer used as a file

handle.

Integer int i intQuantity

Long Ing ingDistance A single, lower-case "L" ('T1)

looks too much like a one.

Object ob; objCurrent Future use

Single slig fno sngAverage Single precision floatg point

String str s strFName

User-defined rec udt recEmployee Prefer use a unique, custom
Type (struct) 	 prefix to indicate specific data

structure type.

Variant vnt var vntCheckSum

NMS Developer Standards& Guidelines B-) 	 April 1995

Database Object Name Prefixes

Object Type USAID Prefix Example (MS Prefix)

Database db db Main db

Dynaset ds_ ds.Temp ds

Field fld fidTemp fd

Index ndx ndx_Temp ix

QueryDef qdef_ qdefSalesByRegion qd

Query _Qry (suffix) ResultQry Qry (suffix)

SnapShot snap_ snapResult ss

Table tbl tblFirst tb

TableDef tdef_ tdef Temp td

The above prefixes differ slightly from the Microsoft internal standard but are more readable.

* Using a suffix for queries allows each query to be sorted with its associated table in Access

dialogs (Add Table, List Tables Snapshot).

NMS Developer Standards& Guidelines B-2 April 1995

APPENDIX C - USAID Software Tools/Controls
Standardization Table

The following matrix defines the current expected physical hardware and software
environment, current tools in use and recommended for use by various BAA teams. The
matrix is divided into pertinent subsections to conceptually group similar items. A few
products appear in two subsections simultaneously to reflect their inter-relationships.

LEGEND: 	X - Currently Used/Agree To Use
P -Plan to Use
U - Undecided to Use
Y- Agree To Add to Development Suite
N - Disagree To Add

Current
Product AWAC A&A Budget IRM Notes

S Approval

Client Configuration (General Environment)

Q&E ODBC Driver Pack X X P X Royalty/user

Oracle ODBC Driver X Royalty/user

DOS 6.00 X X X X

DOS 6.22 P Y Y
Do not Use
Doublespace

Windows 3.1 X X X X

Windows for WkGroups 3.11 P P P

Std PC:
486DX2
w/8MB
Enh PC: Pent
w/16MB

Banyan IP X X X X

Super TCP/IP for Windows V3.0 X X X X

SQL*Net TCP/IP for Windows X X X X

NMS DeveloperStandards& Guidelines C-I 	 April 199S

I.Current

IRM NotesProduct AWAC A&A Budget

S Approval

Server Configuration

X X X X
UNIX

Oracle 7.0 X X X

Oracle 7.1 P P P

SQL*Net TCP/IP for UNIX X X X X

TCP/IP X X X X

Development Tools

Visual Basic 3.0 X X X X

VB Assist X X X X

Access 1.1 X

X X
Access 2.0 P P

VB Compress X P P X

Spyworks P P P

SQL Coder 1.2 Interactive P P P X

Q&E Data Base Editor X P P X

Quality Assurance/Configuration Management

Phase Out to

CCC Harvest
PVCS X X X

CCC Harvest YP YP YP

SQA Teamtest X P P

NMS DeveloperStandards & Guidelines C-2 April 1995

Product AWACS A&A Budget

-Current

CRm
Approval

Notes

Documentation Tools

MS Word X X X

Doc2Help X N Will be Tested vs.
RoboHelp

RoboHelp U X X

Client VB Controls

TrueGrid Pro YU X N X
Replace with Spread
VBX

Cyrstal Reports Pro X P X X

Version Stamper X P P Will be Tested

Sheridan Data Widgets X X N X

Sheridan Designer
Widgets X X Y

Phase Out during next
Build?

Crystal Reports Pro X P X X

VS VBX (Elastic, Tab,
AWK parser)

P P P X

Far Point Spread 2.1 YU X P X

VB Muscle P N X Will be Tested vs.
QuikPak Pro

QuikPak Pro/Win P P P X

Q&E LIB YU P N X

HighEdit X X P X

Microhelp SpellPro
Check

X X P X

NMS Developer Standards & Guidelines C-3 April 1993

APPENDIX D - USAID Database Administration

Table of Contents

D-1
DBA Roles and Responsibilities

1 Oracle Configuration D-2

1.1 Disk Drives D-2

1.2 Subdirectories D-2

1.2.1 Two-Drive System D-5

1.2.2 Three-Drive System D-7

1.2.3 Four-Drive System D-9

2 Oracle Start/Stop Procedures D- 1

2.1 Installation D-11

2.2 Start Oracle D-12

2.3 Stop Oracle D-12

2.4 /etc/oratab File D- 12

2.5 Backup D-13

3 Oracle Backup Procedures D- 13

3.1 Export D-13

3.2 System Clean-Up D-14

3.3 Cron D-14

4 Archived Redo Log Files D-15

4.1 USAID Standard D-15

4.2 Implementation D-16

5 Instance Naming D-18

6 Oracle User IDs D-18

7 Service Request Forms D-18

7.1 General DBA Service Request Form D- 19

7.2 Migrate Application D-19

7.3 Table/Index Worksheet D-19

7.4 Create/Alter/Drop Tablespace D-19

7.5 Create Database Instance D- 19

7.6 Create/Alter Schema D-20

7.7 Export D-20

7.8 Import D-20

NMS DeveloperStandards& Guidelines D-i April 199S

i2Y

DBA Roles and Responsibilities

For the Database Administration (DBA) group to be successful providing services to the
USAID software development efforts and to on-going ORACLE production environments, the
roles and responsibilities need to be well defined. The DBA group will provide'the following
major areas of service:

* 	 ORACLE Systems Administration
* 	 Physical Data Models
* 	 SQL Programming

The DBA group will provide ORACLE Systems Administration and Support to all ORACLE
server clients. These services include:

* 	 Installing and upgrading the ORACLE Server and tools
* 	 Planning and allocating system storage for the database system
* 	 Recovering database information
* 	 Enrolling users and maintaining ORACLE security
* 	 Monitoring and optimizing the performance of the database
• 	 Creating and maintaining tablespaces required of the applications developers
* 	 Planning for backup and recovery of database information
• 	 Creating and maintaining tables, views and indexes required of the applications

developers
* 	 Controlling and monitoring access to the database
* 	 Planning fbr backup of the database
* 	 Providing SQL programming support
* 	 Backing up and restoring the database
* 	 Ensuring compliance with ORACLE license agreements
* 	 Acting as contact point for ORACLE Corporation's technical support

The DBA group will provide the following Physical Data Model support:

Creating primary objects once the application developers have designed an
application

Creating primary storage structures once the application developers have
designed an application

Finally, the DBA group will provide SQL and PL/SQL programming support and expertise.

NMS DeveloperStandards& Guidelines D-1 	 April 1995

1 Oracle Configuration

1.1 Disk Drives

All UNIX systems will have at least two, and preferably four, disk drives dedicated to Oracle
operation. The greater number of disk drives will improve performance and reduce the risk
of lost data due to a crashed hard disk. The disks dedicated to Oracle operation will not be
partitioned; instead, they will be mounted in their entirety. Each dedicated Oracle disk will
be mounted and given file system names as follows:

Disk 1 /usrl

Disk 2 /usr2

Disk 3 /usr3

Disk 4 /usr4

......
etc.

In addition to the disks dedicated to Oracle, each UNIX system will have a boot disk with the
following partitions:

Boot Disk 	 /

/usr

/usr/local

Additionally, an /etc subdirectory must exist either as a separate file system or as part of the
root file system. Other disks may reside on the system; however, their configuration does not
pertain to Oracle configuration and, therefore, is not addressed in this document.

1.2 Subdirectories

All Oracle files will reside in subdirectories under a directory named /mp/oracle, where mp is
a mount point directory name. UNIX systems with two or more disk drives will have oracle
subdirectories at the same level on each disk directly under the mount point. For easier
maintenance, 	 it is important that all oracle subdirectories are created at the same level. The
subdirectories listed below should be created directly under Imp/oracle. For specific naming
conventions, please refer to the sample configuration of two-, three- and four-disk systems at
the end of this document.

Subdirectories under Imp/oracle will be named according to the following classification of
Oracle files:

Product files 	 Oracle Server software and tools supplied by the Oracle
Corporation, including the instance parameter file(s). Files in
this category will reside in subdirectory /mp/oracle/product and

NMS Developer Standards& Guidelines D-2 	 April 1995

will require approximately 500 Mb of space.

These files contain data about the database or instance, includingAdministrative files
archived redo log files, server process diagnostic output, database
creation scripts, online exports, etc. Files in this category will

reside in subdirectory mp/oracle/admin and on a different hard

disk from data files. Space for this subdirectory will depend on

the needs of the application; 75 Mb should be adequate.

Archived redo log files will reside in /p/oracle/admin/
archive/instancename, where instance name is a subdirectory
bearing the name of the instance, also known as the system
identifier or SID.

Database files 	 These consist of control files, redo log files, and data files.
Database files will reside in subdirectory /mploracleloradata
and, wherever possible, on multiple disks. Other than the control

files and redo log files, an Oracle database is subdivided into
logical areas of space known as tablespaces. In addition to the

system tablespace, there are various other aspects of the database

which will have a dedicated tablespace: rollback, temp,

application data, and indexes. A tablespace consists of one or
more data files. These data files must be spread across hard
disks with consideration for their activity and purpose in order to
minimize contention for resources and loss of data.

Redo log files must reside on a different disk from the archived
redo log files, which are in the admin subdirectory. Control
files must be mirrored on different hard disks, as should redo log

files, where possible. Space for Imploraclel
oradata will depend on the needs of the application.

Local files These files contain software used with Oracle that is written on­
site or purchased separately from the Oracle product files. Files
in this category will reside in the directory normally designated

for locally developed software, i.e., /usr/local/bin. Space for
this subdirectory will depend on the needs of the site; 1 Mb
should be adequate. The Oracle installation process will create
several files in /usr/local/bin. It is highly recommended that a
separate partition be mounted as Iusr/local on the boot disk.

If multiple Oracle instances will reside on the UNIX system, the name of the instance (SID)

should follow the subdirectories admin and oradata, e.g., /mp/oracle/admin/tst2. The

April 1995NMS Developer Standards& Guidelines D-3

product subdirectory and the directory containing local files should not require instance­

related subdirectories under them. Please note, regardless of the number of instances residing

on the system, the archived redo log files for a particular instance must reside in a

subdirectory called /mp/oracleladminlarchive/instance name.

The conventions for distributing files in product, admin, and oradata subdirectories re

given below for two-, three-, and four-disk drive systems. The local files should be put

wherever other locally developed software resides. As an alternative, a separate
Imploraclellocal directory may be created on any disk. This guidance assumes there is only

one instance residing on the system.

For further information, read:

The OFA StandardOracle7for UNIX

Oracle7for Sun SPARC SunOS 4.1.3 Installation& ConfigurationGuide.

D-4 April 1995NMS Developer Standards& Guidelines

1.2.1 Two-Drive System

Drive 1

/usrl/oracle/product contains all Oracle product files except those
defined as local

/usrl/oracle/admin contains all admnin files plus archive subdirertory

/usrl/oracle/admin/archive/instance name contains archived redo log files

/usrl/oracle/oradata contains control file, rollback data files, index data
files, and temp data files

Drive 2

/usr2/oracle/oradata contains control file, system data file, redo log
files, and application data files

NMS Developer Standards& Guidelines D-5 April 1995

135

Two-Drive System

/usrl

oracle
/L

product odmin

product files

archive

oradata

control file
roLack data files

index data files
temp data files

,stace name

ardived redo log files

NMS Developer Standards & Gvidelines D-6

/usr2

oracle

oracata

control file
system data file
redo log files
qpai data files

April I99S

,3q

1.2.2 	 Three-Drive System

Drive 1

/usrl/oracle/product contains all Oracle product files except those
defined as local

/usrl/oracle/admin contains all admin files plus archive subdirectory

/usrl/oracle/adnd/archive/instancename contains archived redo log files

/usrl/oracle/oradata contains control file, rollback data files, index data
files, and temp data files

Drive 2

/usr2/oracle/oradata contains control file, system data file, mirrored
redo log files, and application data files

Drive 3

/usr3/oracle/oradata contains control file and redo log files

NMS Developer Standards& Guidelines D-7 	 April 199

135

Three--Drive System

/Osrl /usr2

or de orade

product admin oradata oradata

product fils control file control file

crve roIback data files system data file

idex data files mirored redo log files
temp data files cplication data files

instacce name

archived redo log files

/usr3

orade

oradata

control file
redo log files

NMSE Developer Standards Guidelines D-8 4 -ril190S

1.2.3 	 Four-Drive System

Drive 1

/usrl/oracle/product contains all Oracle product files except those
defined as local

/usrl/oracle/admin contains all admin files plus archive subdirectory

/usrl/oracle/admin/archive/instancename contains archived redo log files

/usrl/oracle/oradata contains control file, index data files, and temp
data files

Drive 2

/usr2/oracle/oradata contains control file, system data file, rollback
data files, and application data files

Drive 	3

/usr3/oracle/oradata contains control file, mirrored redo log files, and
application data files

Drive 4

/usr4/oracle/oradata contains control file and redo log files

NMS Developer Standards& Guidelines D-9 	 April 199S

Four-Drive System

/usr

orade

product admin oradata

product files control file
arcfive index data files

temp data 	files
i~stanxe nam

archived 	redo log files

/usr3

orade

oradata

control file
nrored redo log files
el ad catir 	 data

/usr2

orade

oradata

control file
system data file
rollack data files
apication 	data files

/usr4

orade

oradata

c	ontrol file

redo log files

Ar9s

NMIS Developer Standards & Guidelines D-10 	 April 19

2 Oracle Start/Stop Procedures

An Oracle instance and its background processes can be started and stopped by interacting
with SQLDBA or by invoking a shell script. USAID Oracle instances will be started and
stopped primarily by shell script.

The Oracle DBA will provide the shell scripts and give the information to the UNIX System
Administrator, who actually executes the script during backup and other procedures.

2.1. Installation

The Oracle installation procedure generates two scripts for starting and stopping Oracle
database instance(s):

/mp/oracle/product/bin/dbstart
/mp/oracle/product/bin/dbshut

Imp indicates a UNIX mount point; following the guidelines in the Oracle Configuration
section, Imp should be usrl.

The two scripts generated by Oracle do not refer to SQL*NET, which is required for the
USAID environment. Therefore, after installation is complete, modify these two scripts so
that SQL*NET is automatically started and stopped with Oracle.

Copy the original scripts and save as:

/mp/oracle/product/bin/dbstart.orig
/mp/oracle/product/bin/dbshut.orig

Add the following lines in dbstart to run SQL*NET:

PATH=$PATH:. export PATH
/mp/oracle/product/bin/tcpctl start timeout=40 forkon

Add the following lines in dbshut to stop running SQL*NET:

PATH=$PATH:. exporL PATH
/mp/oracle/product/bin/tcpc* stop

In addition, it may be necessary to modify tL.. script to "shutdown immediate," in order to

force users or third-party software product, accessing Oracle off the system.

NMS Developer Standards & Guidelines D-11 April 1995

Save the modified dbstart and dbshut scripts as:

/mp/oracle/product/bin/dbstart

/mp/oracle/product/bin/dbshut

2.2 Start Oracle

To automatically run Oracle whenever the system is booted up, the following reference to the

dbstart script must be placed in the boot procedure. On a Sun system, place the reference in
the master script /etc/rc.local. On a Sequent system, place the reference in the directory
/etc/rc2.d.

su oracle -c /mp/oracle/product/bin/dbstart &

The ampersand (&) at the end of the command causes the script to run in the background.
This is recommended by Oracle Corporation, but not required, for Oracle to work properly.

2.3 Stop Oracle

All instances of the Oracle server on a UNIX host must be stopped when the UNIX system is
shut down or in preparation for a backup. The backup process is usually done on the entire
host at the same time, every night. This process is scheduled by the UNIX System
Administrator.

The dbshut script must be executed prior to backup or UNIX system shut down in order to
ensure continued proper operation of the database. If the UNIX host has a procedure or script
for halting the system, dbshut should be executed as part of this procedure. The UNIX host
should not be backed up or rebooted while Oracle is up and running.

2.4 /etc/oratab File

The dbstart/dbshut script checks the /etc/oratab file to determine which instance(s) to bring up
or down. The oratab file contains each instance name, its home directory, and an indicator
(Y/N) for whether to start or stop the instance automatically.

The oratab file is created during Oracle installation and must be modified as changes to the
instances occur. For example, when the DBA creates or deletes an instance, the oratab file
should be modified at the same time to include or delete the instance. It is important to do
this at the same time because the oratab file controls the execution of dbstartldbshut.

NMS Developer Standards & Guidelines D-12 April 1995

2.5 Backup

Prior to doing a backup, the UNIX Administrator will invoke the dbshut script either
manually or from a script executed automatically. This ensures that all database files are
closed and unallocated. When backup has completed, the UNIX Administrator Will run
dbstart, again either manually or from a script executed automatically. See the OracleBackup
Proceduresfor more information.

3 Oracle Backup Procedures

A complete backup will be done once a day on all Oracle servers that are not required to be
available 24 hours a day. A complete, or "cold," backup is one in which the database is
brought down and all files are backed up at the same time. An incremental backup of
changed files only is not acceptable.

A "hot" backup will be done on Oracle servers that must be available 24 hours a day. This
backup is one in which the database remains up while one part of the database at a time is
backed up.

Backup is a three-step process performed by System Administration personnel on a schedule
triggered by crontab:

dbshut This shell script ensures that all Oracle instances are shut down.

backup This program copies all database files to tape. Names of files and
mount points vary depending on the machine, but the files to be backed
up include control, parameter, configuration, redo log, and archived redo
log files*. Also included are system files that affect Oracle, such as
/etc/services and the kernel parameter file.

* dbstart This shell script brings all Oracle instances back online.

*Archived redo log files may need to be backed up more frequently and deleted from disk if

space becomes a problem or to reduce risk in the event of a disk failure.

System Administration personnel will examine the backup to ensure it completed successfully.
Daily backup tapes will be retained for 30 days.

3.1 Export

Once a week, prior to the daily backup, an export to disk will be performed on the entire
database. Export files give the capability to restore specific Oracle data or file structures
without having to restore a backup tape.

NMS Developer Standards& Guidelines D-13 April 1995

Systems that have a large volume of data entry and file updates will also recreate the database

and do an import.

Examine the export log as soon as possible to ensure the process completed successfully.

After a successful export and optional recreate/import, normal daily backup procedures will

take place.

Backup will take place daily; export followed by backup will take place weekly.

3.2 	 System Clean-Up

Remove old archived redo log files from the disk after backup has successfully1.

The old files are those that have been backed up successfully.completed.

However, if space is not a problem, the most2. 	 Remove old export files from the disk.
recent export file should remain on disk.

The same script can be used to remove both old archived redo log files and old export files.

The attached sample script will assign filenames to the export files showing the date and the

type of file. For example, the JanlO.exp filename refers to the export file of January 10.

Export 	files should be placed in a directory level under oracle: /mp/oracle/admin/exp or, if

there are multiple instances: /mp/oracle/adminexp/instancename. (Imp indicates a UNIX

mount point; following the guidelines in the Oracle Configurationsection, Imp should be

usrl.)

3.3 	 Cron

Cron is a UNIX facility which executes commands or scripts at specific times. The cron

facility 	"wakes up" periodically (usually once each minute) and executes any jobs that are

scheduled for that minute. A schedule is established by using crontab to make entries in the

following format:

Min Hour Day-of-Month Month-of-Year Day-of-Week Command or f'lename

/acommandFor example, one entry in this file might be: 0 20 * * 5

This would be translated as "execute /acommand at 8:00 PM every Friday night."

Specifically, "0 minutes after hour 20 (8:00 PM), any day-of-month, any month-of-year, fifth

The last entry on each line should be the complete pathday-of-week (Friday, Sunday is 0)."
for the 	command or script file to execute. The UNIX System Administrator should

incorporate the Oracle packup procedures into a script file which is executed from cron. The

script can be added to the system schedule by the root user by entering the command:

April 199
NMS Developer Standards& Guidelines D-14

ILIL

crontab -e

4 Archived Redo Log Files

An Oracle database can operate in two distinct modes: ARCHIVELOG, in which media
recovery is enabled, or NOARCHIVELOG, in which media recovery is disabled.

ARCHIVELOG 	 The filled online redo log files are archived before they are reused in
the cycle.

NOARCI-UVELOG 	 The filled online redo log files are not archived. Once they are filled,
they are reused.

In ARCHIVELOG mode, the database can be completely recovered from both instance and
disk failure. Should data become corrupted, it can be restored from the last good backup and,
by applying the archived redo log files, can be restored to the point of corruption. Also, the
database can be backed up while it is open and available for use by using the Alter
Tablespace command.

In NOARCHIVELOG mode, the database can be completely recovered from instance failure,
but not from a disk failure. Should data become corrupted, the system must be restored from
a previous good backup, which may result in a loss of data depending on the timing of the
last good backup, the status of the redo log files, and the point where the data became
corrupted. Additionally, the database can be backed up only while it is completely closed.

4.1 USAID Standard

All USAID Oracle instances will run in ARCHIVELOG mode. Anticipating a distributed
database environment within the Agency, if all databases operate in ARCHIVELOG mode, a
coordinated distributed database recovery can be performed. However, if any database in a
distributed database uses NOARCHIVELOG mode, recovery (to make all databases
consistent) is limited by the last full backup of any database operating in NOARCHIVELOG
mode.

A database's initial archiving mode is set as part of the database creation process. Normally,
the default NOARCHIVELOG mode is used because there is no need to archive the redo
information generated when the database is created. Once a database is created, the archive
mode can be switched on demand using the Alter Database command.

In ARCHIVELOG mode, Oracle allows either manual or automated archiving of the redo log
files. Manual archiving presents several problems, one of which is, if it is not performed fast
enough, database operation can be temporarily suspended if the log writer process (LGWR) is
forced to wait for an inactive group of redo log files to become available for reuse.

NMS Developer Standards& Guidelines D-15 	 April 1995

'4

Therefore, automatic archiving should be implemented using the Oracle archiver background

process ARCH. ARCH automatically archives groups of on-line redo log files once they
become inactive. The parameters for automatic archiving are set in the init.ora file.

To minimize the risk of losing data in a disk crash, the archived redo logs must be
written to a different physical disk than that on which the Oracle data files reside.
Please refer to the section on Oracle Configurationfor specific naming conventions for two-,
three-, and four-disk systems. The following standard naming convention for the archive
directory should be used:

/mp/oracle/admin/archive/instance name, where

mp 	 is the mount point directory path name on a different physical
disk than the 	database files,

oracle/admin is a standard subdirectory,
archive 	 is a subdirectory created for archive files, and
instance name is a subdirectory bearing the name of the instance.

4.2 Implementation

To switch a database's archiving mode, perform the following steps:

1. Shut down the database instance.

2. Back up the database.

3. Determine where to put the archive log files, using a different disk than where the

redo log files reside. Instructions are provided in the USAID Database Administration
document, Oracle Configuration,for two-, three-, and four-disk systems.

4. Create the necessary subdirectories per the naming convention discussed above.

5. 	 Modify the init.ora file, as follows:

LOGARCHIVESTART=TRUE

For Sun SPARCstations:

LOGARCHIVEDEST=Iocation of archive log files + filename prefix

For example, /usrl/oracle/admin/archive/prd/arch, where arch is a
filename prefix and is concatenated with the logarchiveformat.

NMS Developer 	Standards & Guidelines D-16 April 1993

IL!

LOGARCHIVEFORMAT=%s.arc

This creates the sequence number and appends it to the filename prefix
shown in LOGARCHIVEDEST.

6. 	 Modify any backup scripts to include the directory where the archive log files reside.
Archive log files should be written to tape at intervals no greater than the maximum
amount of time a loss of data can be withstood.

7. 	 Start up the instance and mount the database (do not open):

STARTUP MOUNT

8. 	 Switch the database's archiving mode using the SQL command:

ALTER DATABASE ARCHIVELOG;

9. 	 Shut down the database instance.

10. 	 Start up the instance and open the database.

11. 	 Determine how long the archive log files should be kept on disk after they are backed
up and set up a procedure to delete them.

According to 	Oracle, the archiver process has no effect on overall system performance for
most databases. If degradation is noticed, the system can be tuned by adjusting the values in
LOGARCHIVEBUFFERS and/or LOGARCHIVEBUFFERSIZE. Refer to Oracle 7
System AdministratorsGuide for suggestions.

The v$archive and v$log data dictionary views contain archiving information of a database.
To see the current archiving mode, query the v$database view:

select logmode from v$database

NMS DeveloperStandards & Guidelines D-77 	 April 1995

5

For further information, read:

Oracle7Server Administrator'sGuide
Oracle7 Serverfor Unix Administrator'sReference Guide
Oracle7 Server Concepts Manual
Orac!kI System AdministratorsGuide

Instance Naming

Instance names will be the same as the database name and will consist of a meximum of four
characters.

The fourth character will be the sequence number of the instance when there are multiple
instances on the same machine. For example, the three instances of "production" on the same
machine will be called prdl, prd2, and prd3.

The parameter file name will also reflect the instance name, as illustrated below.

Instance Type Instance Name Database Name Parameter File

Development &i'v dev initdev.ora

Test tst tst inittst.ora

Production prd prd initprd.ora

6 Oracle User IDs

The OPS$ user ID is to be given only to individuals who are performing development for a
Business Area (BA) and who must regularly log in and out of the database for the purposes of
development or maintenance of an application. Users, testers and other individuals with
access to the application are not to be given an OPS$ user ID.

7 Service Request Forms

The attached service request forms are to be used when requesting assistance from the
Database Administration (DBA) team. This will enable the DBA team to provide service in a
structured manner, with the ability to track progress and maintain historical records.

The forms are NOT meant to be a burden on your time. Everyone is not expected to know
all the information requested. Fill in what is known and request help with the rest. Some of
the forms have a cross-reference to other forms that may be needed to complete analysis for

NMS DeveloperStandards & Guidelines D-18 April 1995

the service requested. The forms are listed under "Additional Form Needed."

7.1 General DBA Service Request Form

This form provides the opportunity to specify any service required that is not covered by one
of the other forms.

7.2 Migrate Application

The information requested on this form allows us to migrate an application from one server to
another. The analysis that results from this information should result in:

data files of the appropriate size,

rollback segments with effective configurations, and

identification of any impact on a distributed or replicated database relationship.

This form cross-references other forms to give a complete picture of the component parts of

this task.

Under the section "Application Load on System," the percent of use in three categories of
processing is requested. "Querying large amounts of records" includes using functions like
SUM or MAX for analytical aggregate processing, such as forecasting budgetary growth, or
intuitive analysis, such as comparing the performance of employees or projects.

7.3 Table/Index Worksheet

This form is used in conjunction with other forms to provide information about database
objects owned by a schema.

7.4 Create/Alter/Drop Tablespace

The information requested on this form allows us to create, alter or drop a tablespace. The
analysis that results from this information should result in:

* data files of the appropriate size,
* rollback segments with effective configurations,
* extent parameters that allow efficient database access, and
* tablespaces that are standard in functionality across BAs.

This form cross-references other forms to give a complete picture of the component parts of
this task.

7.5 Create Database Instance

NMS DeveloperStandards& Guidelines D-19 April 1995

'4

on this form allows us to create a database instance. The analysisThe information requested

that results from this 'information should result in:

'• 	 data files of the appropriate size,
* 	 rollback segments with effective configurations,
* 	 identification of any impact on a distributed or replicated database

relationship, and
standardized directory structures and database file naming conventions.

This form cross-references other forms to give a complete picture of the component parts of

this task.

7.6 	 Create/Alter Schema

The information requested on this form allows us to create or alter a schema. The analysis

that results from this information should result in profile parameters set in a logical approach

and roles created in logical groups with similar grant privileges. These sets of roles can be

used in combination with other roles to create a well-defined set of grants for each individual

user that needs access to the schema's database objects.

This form cross-references other forms to give a complete picture of the component parts of

this task.

7.7 	 Export

This form provides the information needed to perform an export of a schema's objects,

individual tables or an entire database.

7.8 	 Import

This form provides the information needed to perform an import of database objects. Also

listed on the form are three items that must accompany the form:

* 	 the export file,
* 	 the log file of the export, and
• 	 the run file used to create the export.

This form cross-references other forms to give a complete picture of the component parts of

this task.

April 1995NMS Developer Standards & Guidelines D-20

Geeral J)BA Service. Request Form
heP t the DT$A Gru

Name IJPhone at

Application j ORACLE Instance

UNIX Server Name & Location

Type of Service Requested

eo ith this form, ciorn at 97-72

For DBA Use Only. LEw This Line

Completed by Dnate lT
Remarks

NM Developer Standards & Guidelines D-21 April 1'995

raleAppj,. tio

.'epwith, this fo=4 contadt the DtACroap at 875472

Name

Application

UNIX Server Name & Location

Application Name

Application Load on System
(enter percent in each
category)

Application Use after this
migration

(check any that apply)

Additional Forms Needed for
this service request
(check any that apply andattach to this form)

Remarks,
comments?

Phone IDate

ORACLE Instance

On-line, real-time transaction processing
Querying large amounts of records
Batch processing

%
%
%

Stand-alone Distributed
R pi a e

Replicated
Table/Index Worksheet
Create/Alter/Drop Tablespace

(required)
(required)

Create Database Instance
Create/Alter Schema

Export

Import

For PHA Use Only Bt~ow *fs Lime......

4Compltted by-LDt

NMS Developer Standards Z Guidelines D-22 April 19

Tab~/a ex 'Wojksheet
BA ­~evke eque~t Eorm

r helplwiththis form, toutatt the DBA Group at 87547102
The DBA Group has a SQL script that will produce the following information. Do not fill
out thisform ifthe script is used

Table/Index Avg. Bytes per Total No. Estimated No. Anticipated
Name Record Records in Records in Percent Growth

Existing Production in Six Months
Database System

Total bytes in application tables

NMS Developer Standards & Guidelines D-23 April 1995

, , ,.
.

Complete one form per tablespace.

Phone Date

Application ORACLE Instance

UNIX Server Name & Location

Tablespace/Data File

Tablespace Name I

Tablespace Purpose Rollback Application Objects

Name

(check the one that applies) 	 Temporary Index
System

Data File directory path and name
Size Data File I1nitial Extent

Next Extent 	 Percent Increase %

Requested Action Create Tablespace Add Data File

(check any that apply) Alter Tablespace Rename Data File

Drop Tablespace Drop Data File

Rollback Segment

Rollback Segment Name
Drop SegmentRequested Action 	 Create Segment

(check any that apply)

Additional Form Needed 	 Table/Index Worksheet (required)

(attachto thisform)
Remarks,

comments?

For DRA Use Only Below This Lift

NMS Developer Standards& Guidelines D-24 	 -prl T9

162­

reteDtobs Intace

r epwth-this form04"tWt the PIRA Gunap 9t75-1"L2
Date PhoneName

Application INumber of Disks Available to ORACLE

UNIX Server Name & Location

New Instance Name

New Instance Purpose

Create Database

Database Name

Control Files directory path
and filename

Mirrored Control Files
directory path and filename

Group 1 Redo Log directory Primary Size

path and filename Mirrored Size

Group 2 Redo Log directory Primary Size

path and filename Mirrored Size

Archive Redo Log directory
path and filename

Create System Tablesapce

Data File di'c ' ,-y path and filename

Data File size

Additional Forms Needed for Table/Index Worksheet (required)

this service request Create/Alter/Drop Tablespace (required)
(check any that apply and

Create/Alter Schemaattach to thisform)

Remarks,
comments?

ForDBAUse Only BrlowThis Line
Dzte-Comnpleted by

R~aks

April 1995NMS Developer Standards & Guidelines D-25

jI

te..~ l e..........

W~pltk& om contatt tbh l)BA G")OuPat75O
If a printout can be providedwith the following information,do not fill out thisform.

Name Phone Date

Application ORACLE Instance

UNIX Server Name & Location

Data Steward

Schema

Schema ID Default Tablespace Name

Tablespace Quota Temporary Tablespace Name

Profile

Profile Name

Requested Action (check one) Add Alter

Level type (check one) Session Call

CPU Time Logical Reads Concurrent Sessions

Idle Time to Disconnect (minutes) Elapsed Connect Time Limit (minutes)

Role

Role Name

Requested Action Create Alter I

Object to add for role

Privileges I

Privileges]

Object to add for role

Privileges

Privileges
 I

Object to add for role

Privileges

Privileges

Object to add for role

Privileges

NMS DeveloperStandards & Guidelines D-26 April 1995

Privileges

Object to add for role

Privileges _

Privileges

Object to add for role

Privileges

Privileges I

Object to add for role

Privileges

Privileges

i

_

Object to add for role

Privileges
Privileges
Object to add for role

Privileges

Privileges

Object to add for role

Privileges
Privileges

Object to add for role

Privileges

Privileges

For DBA Use 0* 8aedow n ii .

Competel by Ar1"

NMS Developer StadrsGieiesD2ipi 0

.....
 .'.4...

Ifa printout canprovide the following information,do notfill out thisform.

Name Phone 'Date

Application ORACLE Instance

UNIX Server Name & Location

Export from Schema IDI
Export Type Database Grant

(check any that apply) Table Constraint

Schema Role

List below the tables to be exported.

Remarks,
comments?

for DBA Use Bi1ow9 Akiri

NMS Developer Standards & CiLdelines D-28 Api19

Name lPhone I at

Application
UNIX Server Name & Location

ORACLE Instance

Import to Schema ID I.
Items that must be attached to Export file

this form Log file of export

Run file used to create export

Additional Forms Needed for
this service request
(check any that apply and

attach to thisform)

Remarks,
comments?

Table/Index Worksheet
Create/Alter/Drop Tablespace

Create/Alter Schema

(required)

(required)

NMS Developer Standards & Guidelines D-29 April 1995

att4lO S!eip.itb this fi v heDMGou dotat

Name Job TitleJ
Direct Hire Contract Employee Other

Agency/Office or Company Name

Bldg & Room No. Telephone

ORACLE User ID (if previously assigned)

UNIX User ID (if previously assigned)

Application Name

Role Name

Role Name

Role Name

Supervisor/Management Official

Data Steward

Security Verification

"No Objection" Clearance

ORACLE Database Administrator

Role Administrator

NMS Developer Standards & Guidelines

Role(s) Required

Role Name

Role Name

Role Name

Authorizations

Org Sym

Org Sym

Org Sym

Full Clearance

Org Sym

Org Sym

D-30

i

Date

Date

Date

Date

Date

April 1993

APPENDIX E - Imbedded SQL Coding in Visual Basic

Table of Contents

Database Access Using Stored Procedures vs. Imbedded SQL Coding E-1

1 Visual Basic Database Access E-1

1.1 	 Data Controls vs. Source Code Database Objects vs. Stored

Procedures E-2

1.2 	 General Rules and Recommendations E-3

1.3 	 Initialization of Database Connection Parameters E-3

1.4 	 Database Naming Conventions E-5

1.5. 	 Creating and Using Views, QueryDefs and Temporary

Tables E-5

2 Visual Basic Database Objects E-6

3 Imbedding SQL Coding in Visual Basic E-10

3.1 Formatting SQL Strings 	 E-10

3.2 Coding SQL JOINS 	 E-12

3.3 Coding Imbedded SQL for Maintainability: E-16

3.4 Debugging SQL E-16

4 Increasing Database Performance in Visual Basic E-17

4.1 	 Problems with SQL Passthrough: E-20

NMS Developer Standards& Guidelines E-i 	 May 1995

1

Database Access Using Stored Procedures vs. Imbedded SQL Coding

Using stored procedures is the preferred methodology for all application calls to the database.
All calls to the database from visual basic or other programs will be done by executing
database Procedures or Functions. In some extremely rare cases it may be necessary to imbed
SQL code in visual basic programs. This can be done on a case by case basis in accordance
with the guidelines laid out in the "Corporate DBA Tablespace, Database Object
Management" Section of this document. All SQL statements needed by visual basic will
reside in these database procedures and functions. Even simple statements, such as select
from dual. This is for application performance, maintainability, distributed environment
performance, security, and local database performance.

The following rules and guidelines apply to writing imbedded SQL code in Visual Basic for
Windows applications and address some of the special issues in that environment. Other SQL
coding rules and recommendations are in the "Database Access and SQL Coding Standards
Section.

Visual Basic Database Access

This section is targeted at the Agency's architecture of Windows applications written in
Visual Basic, and accessing an Oracle database in a client-server architecture. Some of the
following rules and recommendations apply to all SQL relational databases, but a few are
specifically for accessing Oracle.

Visual Basic 3.0 Professional Edition introduced several tools for accessing databases: the
ODBC (Open Database Connectivity) protocol mechanism, data controls, bound controls and
database objects such as Dynaset, Snapshot, Table, Database, and QueryDef. These have
much functionality built into them to save the programmer coding at detailed levels.
However, there have been some problems and significant lessons to be learned in using them.
Specifically, there have been significant performance and other limitations in accessing Oracle
in a client-server environment. Several tools or methods that improve database access
performance include Intersolv's "QE Lib" API, Oracle Glue, use of SQL Passthrough, and
Oracle stored procedures. Only the last two are currently approved for use in this
organization. Other toolsets or APIs considered but rejected are Oracle's "SQL Forms"
application generator and Oracle's OCI API. QE Lib and Oracle Glue are currently rejected
for reasons of cost.

The ODBC specification has improved and Visual Basic itself has improved its robustness.
Investigations have shown that QE (now Intersolv) ODBC drivers have been and remain
significantly faster than Oracle's own ODBC driver for version 7 or Microsoft's ODBC
drivers. Currently, the Intersolv drivers can be used only in the development environment,
due to their prohibitive cost.

NMS DeveloperStandards & Guidelines E-I May 1995

Many of these limitations do not apply to local, non-ODBC databases, such as Microsoft's

Access, but this section is written for accessing Oracle from Visual Basic and is limited to

those tools from the Agency's approved list. Access databases are not part of the planned

architecture but remain a future possibility for temporary, local persistent storage of lists of

static or "scratchpad" tabular data where that is shown to be a legitimate use within the

overall target architecture.

The responsibility for fast database access remains primarily with the programmer. Standard,

proven techniques must be followed for speeding server-database access performance while

keeping software robustness and maintainability high. The main techniques include the use of
SQL Passthrough, SQL optimization, and stored procedures -- and avoiding data controls (in
general, not absolutely).

1.1 Data Controls vs. Source Code Database Objects vs. Stored Procedures

There are four basic methods of data access through Visual Basic:

0 Programmatic access through Visual Basic's native database objects: Database,
Table, Dynaset, Snapshot, and Querydef.

9 Access through a data control connected to "bound" controls.
9 Execute() and ExecuteSQL() functions in Visual Basic.
0 Calling stored procedures. These are pre-compiled, stored in the database, and pass

parameters when called.

The first three methods use SQL statements formatted within the application at run time or at

design time passed over to ODBC, which is the database access layer. These methods can use

SQLPassthrough to improve performance against server-based SQL databases for write­
operations and read-only queries. Stored procedures must be called using SQLPassthrough.

SQLPassthrough is a technique used only against server-based DBMSs. SQL Passthrough
can be used to return a read-only recordset, to execute write-operations, and to execute stored
procedures that do not return a recordset. In SQL Passthrough, Visual Basic and the ODBC
layer presumably pass the SQL code directly to the DBMS without translation, providing
greater speed. In practice, the ODBC drivers parse the SQL code to map the field names for
a query.

The use of data controls and special "bound" controls to display and edit data require less
programming than the use of source code data objects (Databr-4e, Table, Dynaset,
Snapshot). This speeds development and makes the software more maintainable. However,
in Visual Basic 3.0, data controls are known to be slow in accessing server-based SQL
DBMSs -- especially where multiple data controls are used on the same window-form.

Therefore, programmatic techniques using SQL Passthrough are generally preferred for

NMS Developer Standards & Guidelines E-2 May 1995

accessing server-based SQL DBMSs. However, avoiding data controls should not be an
absolute rule. A careful analysis of requirements for different window-forms may provide
opportunities to use data controls with bound controls, where their advantages outweigh
performance issues.

1.2 General Rules and Recommendations

Rule E-1: Use global database recordset objects only where a certain data set is to be used
in different forms in a global manner (such as lookup lists, or where the same filter, sort, and
"current record" cursor can be used globally as the user switches between forms).

Rule E-2: Define user "roles" in the Employee table of the database to control user access
and to limit application functionality and navigation -- such as which tasks, menu items,
window forms, and controls the user will have access to. Certain DBMSs, such as Oracle,
have user-roles-based access control built in. Designers and programmers should carefully
plan the use of roles early during development and continue to refine the "role" based model
during development so that programmers are not blocked when attempting to implement them.

Recommendation: Write global SQL "wrapper" functions or use API subroutine libraries to
perform common tasks such as loading a list box with a SQL result set. Pass forms and
controls as function parameters to make code portable to other applications.

Recommendation: Insulate application code from database changes, where possible and
feasible. This can be done by reading table and field names from a database table set up for
that purpose, or using defined constants for table and field names; although this adds to the
size of the executable file.

Recommendation: Be knowledgeable of the capabilities and problems associated with the

current versions of DLLs, ODBC drivers and custom controls (VBX and OCX).

1.3 Initialization of Database Connection Parameters

Recommendation: Use private initialization (.INI) files and identify application parameters
that should be modified through an .INI file to reduce programming, to improve software
maintainability or perfonnance, or to aid in debugging.

Rule E-3: Specify the DatabaseName and the Connect string and its components as global
variables, to be used when creating the Database object or for data controls. Specifically, the

parameters for connecting to a database -- schema nan.e, data source name, and server logical
address name should be global variables and should be read from private initialization (.INI)

files or (in the case of "LastUser" ID or the server logical name, read from ODBC.INI) to

simplify maintenance when one of these parameters change -- such as when the databases are

NMS Developer Standards & Guidelines E-3 May, 1995

moved to a different server or has its name changed.

The following global variables should be initialized from a local, private initialization file:

gstrSchemaName This string must be prefixed to table names in SQL code
in the "INSERT INTO", "FROM," and "UPDATE"
clauses (but not in the "WIERE"or "ORDER BY"
clauses) for certain server-based DBMSs -- specifically
for Oracle.

gstrODBCDBName 	 This is the ODBC logical name for the DBMS and is the
name of the seztion in the local ODBC.INI file for the
specific database being accessed by the application.

Rule E-4: After reading the database logical name from the local .INI file into a global

variable (gstrODBCDBName), use that as the section name to read the following database

initialization strings from in the "ODBC.INI" file. (INI files have entries organized into

sections beginning with "section names.")

gstrODBCServerName 	 'This is the logical name for the address of the
server. For a UNIX server, this will be its TCP/IP
address.

Rule E-5: Access .INI files only through the Windows API function calls for that purpose.

Rule E-6: Never write to the ODBC.INI or ODBCINST.INI files from the application.

Recommendation: Avoid shared, server-based initialization files (a recommendation from

Microsoft), because it is too easy for them to become locked up; although they greatly

simplify maintenance from a system administrator's point of view. A safe method for

updating local INI files on all client PCs from an updated Zopy on a server must be used.

Rule E-7: Never write to any shared, server-based initialization files if they are used.

Rule E-8: Read the last user logon ID from the local .INI file when the application starts up

and before the logon form shows, and place this into the database logon form as a default. If

it does not exist there, then read it from the ODBC.INI file in the section named by the global

variable gstrODBCDBName, which is read from the local <APPLICATION>.INI file.

This saves the user some typing, and a different user can always type in their own user id.

Recommendation: After a successful logon of a different user id, save the new user-id to

the local <APPLICATION>.INI file, but do not write to the ODBC.INI file.

NMS Developer Standards & Guidelines E-4 	 May 1995

Rule E-9: Never save the user password in a file or other persistent storage medium.

14 Database Naming Conventions

Physical database naming conventions are defined in the "Oracle Database Administration
Standards" Section of this standards document, and affect -- but are not part of -- coding
standards. However, source code accessing or referencing the database should use the same
list of standard abbreviations as the database. The main portion of the database naming
conventions that affect programming standards is the list of standard abbreviations for
common keywords. For instance, "ACCOUNT" would get abbreviated as "ACCT" in
substrings within long table names and within all attribute names. For instance, a table could
be named "ACCOUNT," but related tables would use "ACCT" as an abbreviation -- for
example, "FUNDACCT." The iwo most important principles are:

I. that abbreviations in database names be standardized, and
2. the same abbreviations be used in names of source code objects, such as variables,
constants, etc.

1.5 Creating and Using Views, QueryDefs and Temporary Tables

Examine the feasibility of using a VB QueryDef for accessing an MS Access-format
database, or a View for accessing a server-based SQL DBMS, for commonly used data sets,
such as data subsets or joins with specific sorts and filters. (A QueryDef is a persistent
query, similar to a view, and is especially useful for often-reused queries. VB QueryDefs
cannot be used on server-based DBMSs.) Further data set sorting and filtering can be built
and applied dynamically using SQL. Static Queries can be built on the fly using VB's
QueryDef feature to access an MS Access-format database, but the time to build the
QueryDef may be so long that it outweighs any speed advantages it provides. The
programmer must exercise care to delete dynamically created QueryDefs and Views when
finished with them.

Rule E-10: Create permanent, single-table SQL VIEWs to map physical database table and
field names to a stable set of names which can be used in the SQL code. This technique
minimizes impacts of database name changes on source code in both imbedded SQL and
stored procedures.

Rule E-11: Use database views, where appropriate, to improve performance, simplify
programming, and to enforce security by limiting access according to a user's "role."

Rule E-12: Applications should not create temporary tables within the server database. In a
multi-user environment, this could overload the RDBMS, the server disk system, the server
itself, and the LAN.

NMS DeveloperStandards & Guidelines E-5 May 1993

2 Visual Basic Database Objects

Some of these rules, recommendations and tips are restated inthe "Increasing Database
Performance in Visual Basic" Section.

Rule E-13: Create only one global Database instance per application for each database
accessed, unless there is a specific reason for having more than one -- such as differences in
speed vs. functionality. Use the global Database object to create Visual Basic Dynasets,
Snapshots, QueryDefs, etc.

Recommendation: Specify only the data source name when setting the .Connect property of
a data control. (See the "Initialization of Database Connection Parameters" Section concerning
global variables containing components of database cci-mection strings from .IN files.)

Recommendation: Provide the user immediate notification if a record cannot be locked for
update, rather then let him/her wait until the default timeout.

Teclinique: To lock a record in an ORACLE 7 table for further updates, issue a SQL
"SELECT"statement to select just the single record required, with a "FOR UPDATE"
clause. Add a "NOWAIT" Oracle SQL keyword to prevent the application hanging until
timeout, in case the record is already locked. Although the timeout period for a database
object can be set inthe QueryTimeout parameter inthe ODBC section of the application's
.INI file or the ODBC.INI file, using ihe a "NOWAIT" keyword in the SQL "SELECT"
statement provides immediate notific, ion if the record is already locked. In Visual Basic,
"NOWArr"can only be used over ODBC using SQL Passthrough. Since a Dynaset crated
with SQL Passthrough cannot be modified, once the record is locked, another Dynaset needs
to be created using the same query but without specifying DBSQLPASSTHROUGH. Thus,
two parallel Dynasets will be used for the same recordset, one for locking and another for
data access.

Rule E-34: Try to avoid data controls where they introduce significant delay or other
problems over other access methods. The preferred method for server-based SQL DBMSs is
to use SQL Passthrough, especially for write operations. However, there are places where
data controls provide adequate performance and simplify programming and maintainability
and thus should be used.

NMS Developer Standards & Guidelines E-6 Mw; 1995

--

I

Visual Basic Code Examples to illustrate the above rules:

These examples are in the form of three subroutines, with error-trapping.

• mAtnts for readability in OpenDatabase () calls:

Global CoanitnCLUSIV m True

Global Const IUEIDMY - True

Bub Initialize&Application ()

'This subroutine initializes global variables and the database objects.
'Bet called from MaiN() or MDxfrm MainLoad()

ZEIPUTS: none

OUTPUTS: none

'OWBALS USED:

:WBALS A1LCED:
* 	 Database connect strings

Various character vars.

Call InitializeChars

'--Such as global NawLine and Tab char. gchrLF and gchrTab

Call DB Get INI Defaults

,_- IladgloTbal database strings from APP.I file.

gboolLoggedOn = DB_LogonToDatabaae(utrUserD, strPassword)

if not gboo.LoggedOn then

nd 'Unload and Exit application.

Endif

'Create a Dynamet like this:

On R-ror Goto DSError

Bet g_di_Country m gdb_Or&Plan.CreateDynaset(strghsma & UCUNTRYU

On Error Goto 0

Exit Sub

DS Mrror: 'rror-bandling routine
Displayyrror-_Kg -Opening Dynaset" -g_dnCountrym, 9QL$, g_strConnect)
Exit 	Sub

End Sub "Tnitialize_App

NMS Nwoper Standards & Guidelines E-7 	 May 1993

Sub FormLoad ()

'Configure a datacontrol like this, in its
I form's Form Load () evnt-hb-ndler:

Net dat_Country.Connect = "DS]nu & strDS Nm

3Q14 - 7selact COMfRYID, COUNTRY_NIN from n + strSchma +
WCXOTRYM

On Error Goto DataControl 2 rror

dataCountry.RecordSoures; BQL$

'Refresh this in the Form Activate() event-handler.

Oa ELor Goto 0

DataControl_1Zror: "Eriror-handling routine
Display E orNsg -data control datComtry + odataCoizntryu , SQL$,

gstr onnect)
Exit Bub

!ed Bub "'FormLoad

NMS Developer Standards& Guidelines E-8 May 1995

Function DILogonToDatabase (strUserXD As String, strPauuword Au String) as

Interqw

-- This subr. opens the global database object, in effect logging the
' user onto the database.

•ASSMS: 	That global vars gstrODBC _DIEm and gstrOWC_Serverame
have already been read frm .IIX file.

• OPUTS: User ID and Password.

'USES GWA)BAL MU:
I gotr0WBC BName 'the ODIC logical name for the database

land the name of the section in ODBC.ZNI file
'where the connect string info can be found,
'including last user 2ogon ID.

gstrODBCServe ame 'The Lan logical address of the server.

'UDDIVFIES GLOBAL VkRS:

If successful, it opens global database object:

gDB

a global vats:
end set.

gstrUserID
gutrPasword
gstrDBConnect -- which im re-reaC from the global database object

AFTER opening it, in order to capture any new
user id the user may have input through the
ODBC driver's logen form.

' If the DB Connect string is changed from what was sent,
then new values are parsed from the actual connect-string for
these global vara:

gstrODBC DB Name

gstrODBCServerName

gstrSchemaName

gstrUserD

gstrPassword

'CREATED BY: Henry Stinson April 04, 1995
'MODIFIED:

Dim strConnect As String 'Local tem copy until successful logen,
S'upon which copy to global gstrDB_Connect.

gutrDBConnect$,=

strConnect - 6ODBC;UID-= + mtrUserlD + "gPID=8 + strPlanord + wn"

strConnect a strConnect + "DSN= + gstrODBC DB M + win

strConnect - strConnect + "SRVR== + gatrODaC_ erverlame

Screen.3NousePointer = HOURGLASS
On Error GoTo Logon Error
Set gDB - OpenDatabase(m, Not EZXCLUSIVE, Not READGELY, strConnect)

g_strConnect)

strConnecv; a 90,Clear local string var.

I-- SUCCESSI struonnected and Logged on to database

gboolLoggedOn = True

NMS Developer Standards& Guidelines E-9 	 May 1995

_._LogasToDatabame - gboooLoggeo 'Return value

agfoz OLogon successful -- Weloma

'Save Default strconnect values in global string:

gstrDBConect$ - gDi.Commnct
'Grab the strConnect string directly from the DS object in cae
' the user put in a now userid or paswmrd through the OCC driver's
'built-in logan form.

Xf gDB.Connect <;. strConnect Then

'USER LOOGE OK UNDER A DIFFZRIT USER XD OR

'TO A DIFFZR]T ODBC SOURCE..

Call DB_ParseParatersFruCnoctStriJg.

Call DBSaveInxDefaults

ed If

On Error GoTo 0

Bcreen.noumePointer - DEFAULT

'DEBUG:

If gboolTracemod Then

NsgBoz gstrConnct

Zrit Function

Logon Error:
gboolLoggedOn - False
DBLogonToDatab&se - False
Scre6n.MouxePointer - DEFAULT
Call ErrorKsgDB(NN, LOKONw, s trCbonect, 0)
On Error GoTo 0
Exit Function

Red Function 'DB_LogonToDatabase

3 Imbedding SQL Coding in Visual Basic

The following rules and guidelines apply to writing SQL code in Visual Basic for Windows
applications and address some of the special issues in that environment. Other SQL coding

rules and recommendations are in the "Increasing Database Performance in Visual Basic."
Section.

3.1 Formatting SQL Strings

Rule E-15: For common appearance of SQL statements throughout the projects, SQL
keywords (such as "Select" and "From") shall be put in lower case (with optional first-letter
capitalization), and the tzble and attribute names shall be in upper case, as in the example just
given.

NMS DeveloperStandards & Guidelines E-1O May 1995

Rule E.-16: Formatting SQL Strings: When building SQL statements programmatically, the

SQL string shall be built up line-by-line, rather than all at once. SQL code makes code self­
documenting, but it must be formatted so that the programmers can see the whole command

in a standard, multi-line format, as in the following Visual Basic example.

Rule E-17 When formatting SQL strings, append a new-line characters to each line, to make

the source code wrap lines at the correct places when displayed in error message boxes inside

error-trapping routines, as in the following example.

Example 1:

Inside a subroutine to load data might be the following Visual Basic code to format a SQL

string:

Dim SQL As String

SQL = "Select BUDGFUNCTGROUPG_ID, " & gchrLF

SQL = SQL & "BUDGFUNCTGROUPGTITLE, " & gchrLF

SQL = SQL & "BUDGFUNCTGROUPG TYPE " & gchrLF

SQL = SQL & "from " & gstrSchemaName &

".BUDGETFUNCTIONGROUPING"

& gchrLF

SQL = SQL & "order by " & FLDBFGTITLE

This example, borrowed from actual working code, illustrates several desired techniques:
The use of a global variable, gstrSchemaName, initialized from an .INI file on
startup, to insert the database/schema name, which must be prefixed to table names in
"from" clauses, "Insert into" clauses, "Delete from" clauses, and "Update" clauses
(but not in "where" clauses or "order by" clauses).

* 	 The insertion of line-feed characters to force line-breaks in error messages..
* 	 Building SQL code line-by-line such that it reads easily in the source code as well as

in error message boxes.

Recommendation: Use global string constants or variables to insulate the SQL code from
changes in the database, where this is not accomplished by existing SQL VIEWs. (See the
rule and discussion in the section of this chapter on SQL VIEWs.) Besides minimizing
impacts of database name changes on imbedded SQL, this has the added advantage of
reducing the program executable size.

Example 2:
This example formats the same SQL code as in the previous example, but defines global
constants for table and field names. (Note that his is not the optimal solution. A better
technique is to use SQL VIEWs to map physical database table and field names to a stable set

NMS Developer Standards& Guidelines E---	 May 1993

of names which can be used in the SQL code. This technique minimizes impacts of database
name changes on both imbedded SQL and stored procedures.)

Global Const TBL BUDGFUNDGRP = "BUDGETFUNCTIONGROUPING"

Global Const FLD_BFG_ID = "BUDGFUNCTGROUPGID"

Global Const FLDBFGTITLE = "BUDGFUNCTGROUPG ITLE"

Global Const FLDBFG TYPE = "BUDGFUNCTGROUPGTYPE"

Then, inside a subroutine to load data might be the following Visual Basic code to format a
SQL string:

Dim SQL As String

SQL = "Select " & FLD BFG ID & ","& gchrLF
SQL = SQL & FLD BFG TITLE & " " & gchrLF
SQL = SQL & FLD_BFGTYPE &" "& gchrLF
SQL = SQL & "from " & gstrSchemaName & "." & TBLBUDGFUNDGRP &""

& gchrLF

SQL = SQL & "order by " & FLDBFG_TITLE

This example, borrowed from aztual working code, illustrates several desired techniques:

The use of global constants to define table names and field names to simplify software
maintenance when these change.
The use of a global variable, gstrSchemaName, initialized from an .INI file on
startup) to insert the database/schema name, which must be prefixed to table names in
"from" clauses, "Insert into" clauses, "Delete from" clauses, and "Update" clauses
(but not in "where" clauses or "order by" clauses).

* 	 The insertion of line-feed characters to force line-breaks in error messages..
* 	 Building SQL code line-by-line such that it reads easily in the source code as well as

in error message boxes.

3.2 Coding SQL JOINS

(Refer to additional, related rules in the "Coding in Visual Basic for Database Performance"
Section.)

Rule E-18: When creating SQL OUTER JOINS using SQLPassthrough or ExecuteSQL()
use the '+' or '(+)' SQL extension in the SQL WHERE-clause if the target RDBMS provides
this support. Oracle invented this operator for outer joins, but it has been incorporated into
the ANSI SQL standard. Refer to the manual for the DBMS being used.

Recommendation: When creating SQL JOINS using ODBC without SQL Passthrough, for

NMS Developer Standads & Guidelines E-12 	 May 1995

maximum readability, use the ODBC-specific SQL keyword phrases INNER JOIN ON,.
LEFT JOIN ON, or RIGHT JOIN ON. In Visual Basic, the ODBC driver translates these
SQL phrases into the best DBMS-specific SQL. (This might affect performance either way.

It would be slower than using SQL Passthrough in almost every case.)

Syntax: The syntax for ODBC-implemented JOINs is

INNER JOIN ON <tablename>, <tablename>.

The SQL keyword phrases "LEFT JOIN" or "RIGHT JOIN" implement an outer Join.
Using these phrases makes it more obvious that a join is being created and thus may make
code more readable to new programmers. The standard method of creating. a simple, inner

join is as in this example:

SELECT <Fieldl>[, <Field2>,.... <Tablel.Field3>, <Table2.Field4>

FROM <Tablel>, <Table2>

WHERE <TabIel.PriKeyField> = <Table2.ForeignKeyField>

Notice that the table name had to be prefixed to field names that existed in both tables to
resolve the ambiguity.

In this example and the ones that follow, for Oracle databases, the schema name must be

prefixed to the table names in the "FROM" clause, as in this example:

SELECT <Fie/d>L <I<d2>,...] <Tablel.Field3>, <Table2.ield4>
PROM < Schema Name >. < Tablel >, <Schema Name>. < Table2 >
WHERE <Table1.PriKeyF'eld> = <Table2.ForeignKyFwlld>

Rule E-19: To speed SQL JOIN queries, name the table last in the FROM clause which
(table) will return the fewest records based on its "WHERE"-conditions. (Note that this is
not necessarily the table that has the fewest records.)

The ordering of the SQL "FROM"-clause can in many situations significantly reduce the

number of physical reads needed to execute the SQL statement. Oracle 7 uses a cost-based
optimizer which in some cases makes its own determination of which table will be the driving

table, regardless of the order in the FROM clause.

The last table name specified in the "FROM"-clause determines the driving table. ORACLE
creates a set of pointers to records that satisfy the WHERE conditions that relate to the last
table in the from clause. Then it eliminates the pointers that don't point to records, that satisfy

the "WHERE"-conditions, that relate to the second to the last table in the "FROM"-clause.

NMS Developer Standards & Guidelines E-13 May 1993

2-z

For example:

SELECT ...

FROM TASKS A, DEPARTMENT B, EMPLOYEE C
WHERE B.EMPNO = C.EMPNO Pointer set 2

AND A.EMP_NO = C.EMP_NO Pointer set 3

AND C.EMPNO = '123'; Pointer set 1

Following is a complete example of formatting a SQL JOIN in Visual Basic, from a working

application.

First, global constants are defined for table and names:

'FUND TABLE:

'This Table name not defined as constant,

'assuming it will not change.

Global Const FUNDTBL = "FUND"

Global Const FUNDACRO = "FUNDACRONYM" 'Pri. key

Global Const FUNDNAME = "FUNDNAME"

Global Const FUND TREA SYMBL = "TREASURY SYMBOL CODE"

Global Const FUND APPROPED = "APPROPIND"

Global Const FUND DISCRET = "DISCRET IND"

Global Const FUNDSTATUS = "STATUSCODE"

'FUNDACCOUNT TABLE:

'TABLE NAME:

Global Const FUND ACCTTBL = "FUNDACCOUNT"

'FIELD NAMES:

Global Const FACCT ACRO = "FUND ACCOUNT ACRONYM"

Global Const FACCTSUPPNO = "FUNDACCOUNTSUPP_NBR"

Global Const FACCTFUND ACRO = "FUNDACRONYM"

'-foreign key to FUND table.
Global Const FACCTEXPIRFY = "EXPIRATIONFY"
Global Const FACCT_ID = "FUNDACCOUNT_ID"

NMS Developer Standards & Guidelines E-14 May 1995

(7

'BUiLD SQL QUERY:

'(Use contantfor FUND ACCOUNT table, in case name changes.

'Azume FUND table amne will m change)

"FROMFUND TABLE:

SQL = "Select FUND NAME, FUND." & FUND ACRO & ", "+ gckrLP
SQ = SQL & F1o VDSAU f adaf cd

'FROM FUND ACCOUNT TABLE:

SQL = SQL & " "& FACCTID & ","+ gchrLP
SQL = SQL & " "& FACCT ACRO & "+ gchrLF

SQL = SQL & " "& FACCTSUPPNO & ""+ gchrLF

'DEBUG:

'MsgBox SQL

SQL = SQL & "from "& gstrSchemaNwme & ".FUND,"

SQL = SQL & " "& gstrSchemaName& "." & FUND ACCT_TEL + gchrLF

SQL & "w h er e SQL = FUND." & FUND ACRO & " = "

SQL = SQL & FUNDACCT_TEL & "." & FACCT FUNDACRO & "(+) "
'The "(+)"createsan outerjoin, to inchde those
'FUND records which do not have any associatedFUND ACCOUNTS.

'FUTURE: RESTRICT TO VALID, OPEN FUNDS AND ACCOUNTS:

'SQL = SQL & "and "& "FUND.STATUSCD < > ''"+ gchrLF
'SQL = SQL & "and "& "FUND.DISCRETE_FL< > ''" + gchrLF

'SQL = SQL & "and "& FUNDACCTTBL & ".EXPIRATIONFY > '&
gstrBudgYear & "'"+ gchrLF

'SQL ORDER BY:

Q = SQL & gchrLF& "orderby FUND. "& FUNDACRO & ' "&

FACCT ACRO & ", " & FACCT SUPPNO

An outer join can be created in Oracle using SQL Passthrough using this syntax:

SELECT <Field1>, <Field2>, <Tablel.Field3>, <Table2.Field4>

FROM <Tablel>, <Table2>

WHERE <Tablel.PriKeyField> = <Table2.ForeignKeyField>(+)

NMS Developer Standards& Guidelines E-1S May 1995

n47L

The recommended, ODBC-supp9rted version of this query would be:

<Fieldl>, <Field2>, <Tablel.Field3>, <Table2.Field4>SELECT

FROM <Table1>, <Table2>,

<Table1> INNER JOIN <Table2>

= <Table2.ForeignKeyFieid>
ON <Tablel.PriKeyField>

ORDER BY <Field1>"

Coding Imbedded SQL for Maintainability:3.3

Recommendation: Use global constants to define field names where the field names are

Group them into one or more .BAS files according to in
referenced in more than one place.

This simplifies accommodating changes to field
which table or group of tables they are used.

"
to denote that it is a field name, and
In naming the constants, add a prefix "FLDnames.

make the names correspond closely to the existing field names, using standard abbreviations.

Imbed these constants into the SQL-building code.

Use stored procedures (called by way of SQL Passthrough) to create
Recommendation:

-- especially where the table contains many fields, but
(INSERT) a new record into a table

not many fields must be filled in with other than default values. This reduces maintenance

problems when fields are added, removed, or renamed.

Normal SQL INSERT commands sent over ODBC using SQL Passthrough
Discussion:

Some DBMSs -- Oracle for example -- provide
may require naming every field in the table.

default values when new records are created. For SQL INSERT statements sent from

as PL SQL for Oracle), the SQL code does not have to name

interactive SQL utilities (such

every field. However, SQL INSERT commands, sent from Visual Basic over SQL
Calling

Passthrough, fail if every field in the table is not named in the INSERT statement.

the INSERT command as a stored procedure bypasses this limitation. The resulting SQL

code can be simpler, and since it does not have to name every field, is easier to maintain

when fields are added, removed, or renamed.

See also the section on "Initializing Database Connection Strings."

3.4 Debugging SQL

Always trap errors for all database accesses and provide an error message that shows
Rule:
the error message, any SQL code associated with the access, and the name of the subroutine

See the section on Database Error Trapping for more details.
where the error occurred.

May 199S
NMS Developer Standards & Guidelines E,16

Rule E-20: When faced with hard-to-debug database access errors involving SQL,
temporarily implement a trace mechanism. Either of the following two mechanisms is
recommended:

1. 	 Load an ODBC spy utility before testing the Visual Basic application.
2. 	 Capture the translations of SQL code which ODBC sends to a server DBMS, in a local

log file called "SQLOUT.TXT." In the <Application.Name>.INI file (create one if it
does not exist), create an "JODBC]" section, and under that insert the line,
SQLTraceMode=l, as in:

IODBCJ

SQLTraceMode=l

REMOVE THIS ENTRY LATE or set

SQLTraceMode-O

because it adversely affects performance, and the log file will eventually get too large.

4 	 Increasing Database Performance in Visual Basic

This section provides rules and recommendations to increase performance of database queries
and commands in Visual Basic. Specifically, it addresses techniques for using the following:

* Visual Basic Data controls
a Visual Basic database objects Dynaset, Snapshot, Table, and QueryDef
* 	 Visual Basic database methods Execute() and ExecuteSQL()
* Stored procedures.
0 imbedded SQL via ODBC
0 ODBC SQL Passthrough

This section will require frequent review and update to accommodate new changes to Visual
Basic, and other database access programming tools, including different versions of ODBC
drivers.

See also the sub-section "Oracle SQL Statement Processing Techniques" Section for more
performance improvement rules and guidelines.

Because performance in database access from Visual Basic applications can be a significant
problem, especially when accessing the database through ODBC, the programmer must be
aware of and use as many techniques as possible to minimize access time. This section
provides several rules and recommendations specific to Visual Basic and, in so'- cases,

VMS DeveloperStandards & Guidelines E-17 	 May 1995

specific to Oracle or Oracle 7. Some solutions may involve DBMS-specific APIs or stored

procedures.

There are four basic methods of data access through Visual Basic:

Programmatic access through Visual Basic's native database objects: Database,

Table, Dynaset, Snapshot, and 	QueryDef. Dynaset, Snapshot and can use SQL

Passthrough against server-based SQL DBMSs, but will not return a recordset which

can be updated.
Execute() and ExecuteSQL() funcions in Visual Basic. (Execute() can use SQL

Passthrough against server-based SQL DBMSs.)
* Access through a data control.
* 	 Calling stored procedures. These are pre-compiled, stored in the database, and passed

Stored procedures must be called using SQL Passthrough.parameters when called.

There are other, third-party methods, such as Oracle Glue, Oracle OCI API, and Intersolv's

QE Lib, but this discussion is limited to those usable from our currently defined standard set

of Visual Basic development tools. (See appendix D.)

The first three methods use SQL statements formatted within the application at run time or at

design time passed over ODBC, whi-th is the database access layer. With some (as noted

above), SQL Passthrough against server-based SQL DBMSs can be used to improve

performance, where ODBC does not interpret the SQL statement.

or .OCX"as custom controls in files with ".Visual BasicX"
Data controls are implemented

".OCX" custom controls use OLE (Object Linking and Imbedding) andfilename extensions.

are the wave of the future in Windows programming.

The initial, conventional wisdom was to save programming by using data controls over the

source code data objects (Databases, Tables, Dynasets, Snapshots) or stored procedures.

This was especially true where the user is to be given a control (or set of controls) to allow

them to move within the data set. (The data control provides a "VCR-like control interface"

to implement the equivalent MoveFirst, MoveLast, MoveNext, MovePrevious functions.

Where multiple tables, views or joins must be used on a single form, multiple data controls

might be used; although this can decrease overall performaie significantly.

The main problem with data controls is that data access is very slow, compared to the cther

methods listed above. Therefore, the following section generally recommends using stored

procedures, and Visual Basic database programming objects -- the latter with SQL

Passthrough against server-based SQL DBMSs, where possible. Use of these objects are

especially appropriate where a certain data set is to be used in different forms in a global

-- that is, where the same record 	filter, sort, and "cursor" setting can be used globally.manner

May 199NMS Developer Standards & Guidelines E-18

In this case, a global Database object with a global Table, QueryDef, Snapshot, or Dynaset

object attached to it should be used.

Rule E-21: Use database Views or Visual Basic QueryDefs, where appropriate, to improve
performance or decrease programming. Views should not be created dynamically from within
a program.

Discussion: The programmer should look strongly at the possibilities of using a Visual
Basic QueryDef (a Visual Basic/ODBC persistent query -- similar to a persistent View
implemented locally) or a View predefined within the database data dictionary for commonly
used data sets, such as views or joins with specific sorts and filters. Further dataset sorting
and filtering can be built and applied dynamically using SQL. Static Queries can be built on
the fly using Visual Basic's QueryDef feature, but the programmer may need to delete it
when finished.

The ExecuteSQL() function acts similarly to Execute() with SQL Passthrough, but it
returns a count of records affected -- except that if used to execute a stored procedure, it
always returns "1"(one) if successful, regardless of how many records the stored procedure
affects.

Recommendation: In queries to return recordsets where database access performance is too
s!ow, avoid using bound controls and data controls. Especially, avoid multiple data controls
or one window-form. However, bound controls used with data controls can significantly
reduce programming and maintenance time; so sometimes the decision to use a data control
will be based on a tradeoff between performance and the need to complete an application on
time. The cost of maintenance is another consideration.

Rule E-22: Use SQL Passthrough against server-based RDBMSs as a way to speed
database operations that do not return an editable recordset and which do not qualify for
implementation as stored procedures. Database SQL operations that qualify for SQL
Passthrough are, specifically, all write operations, execution of stored procedures, certain SQL
aggregate functions such as COUNT, and queries that return a non-editable recordset
(basically a "snapshot" of data). To use SQL Passthrough, add the constant
DBSQLPASSTHROUGH to the Options parameter for Visual Basic methods
CreateDynaseto, CreateSnapShot(), and Execute() -- or add it to the Options property of
a Visual Basic data object. SQL Passthrough tells the ODBC drivers not to translate the
SQL query but to pass it straight through to the RDBMS for processing.

Rule E-23: For fastest performance against ODBC databases, execute all SQL Passthrough
SQL commands from either a Visual Basic CreateDynaset or CreateSnapshot command
instead of the normal Visual Basic Execute() or ExecuteSQL() methods (which later, in
effect, uses SQL Passthrough). The first two methods will work fine when used this way

NMS Developer Standards & Guidelines E-19 May 1995

1-79

even though they do not return a recordset, and performance will be significantly faster than
with the latter two. This is true t least in Visual Basic Pro. 3.x. Future versions of Visual
Basic may fix this discrepancy.

Rule E-24: When using Dynaset and Snapshot with SQL Passthrough to retrieve a large,

non-editable recordset, due to performance differences according to differert recordset sizes

and different methods of using the recordset, the programmer may have to experiment with
each to find out which is faster. The general guidelines are:

0 	 Use a Dynaset, without SQL Passthrough, for fetching an editable recordset -­
especially where multiple random seeks may need to be performed in the recordset.
(Dynasets keep only about 100 records in memory and build an index on the recordset
to make searches faster. The Visual Basic database methods FindFirst, FindLast,
FindPrevious and FindNext do not work with SQLPassthrough.)

* 	 Use a Dynaset, with SQL Passthrough, for fetching read-only recordsets with large
numbers of records (from server-based SQL DBMSs).
Use Snapshots, with SQL Passthrough, for fetching read-only recordsets, especially
for small numbers of records returned.

Both a Dynaset and a Snapshot return a memory-buffered set of approximately 100 records
at a time, but a Dynaset, when scrolling forward, will remove unused records from memory

but build a keyed-index on the recordset, which is faster for multiple random searches of a
large recordset. A Snapshot, on the other hand, will build a recordset in memory as it scrolls
forward, but builds no index. A Snapshot, for large recordsets, might use too much memory;
however, if only scrolling forward through a recordset, a Snapshot may be preferable for
speed.

4.1 Problems with SQL Passthrough:

1. 	 SQL Passthrough does not return an recordset that can be updated.
2. 	 In the current implementations of ODBC drivers and Visual Basic, using

ExecuteSQL() and SQL Passthrough with Execute() are slow, which necessitate
using instead the Visual Basic command CreateDynaset() with SQL Passthrough.

3. 	 Recordsets in Dynasets or Snapshots built with SQL Passthrough cannot use the
Visual Basic Find- methods (FindFirst, FindNext, FindPrevious and FindLast).

In deciding whether to use SQL Passthrough or stored procedures, use logic and common
sense, keeping in mind the two main goals of improving maintainability and performance.
Performance testing might be performed to compare the difference between the two for a
specific SQL query or command. There will be some instances where it is desired to keep

the SQL code in the application source code, such as where performance is adequate using

imbedded SQL and where the SQL command is not called from more than one place. In such

NMS Developer Standards & Guidelines _-20 	 May 1995

cases the overarching guideline is to convert these to stored procedures where it is possible
and makes sense, but if a good reason arises for keeping these as locally executed SQL code,
this should be documented and it should be reviewed as an "exception" issue by the local
standards review board.

Use SQL Passthrough methods rather than stored procedures at least temporarily during
development when creating and testing new SQL code. The SQL commands can be
converted to stored procedures afterward.

Lookup-Lists and Lookup-Tables - Lookup lists are prime candidates for performance
improvement using the static (read-only) Snapshot database access object and SQL
Passthrough. To avoid performance problems, a lookup list should not be loaded from the
server database using a Visual Basic boind data control. A preferred method is to create a
Dynaset or Snapshot query, using SQL Passthrough. Extra performance can be gained by
loading this list into memory only once during an application's execution, if that list is not too
long and might be used again. If the list might be used again, but is so long that it risks
using too much memory, the data might be loaded into a local Access table or Xbase file,
using Visual Basic's Access 2.0 "Jet Engine." If such a local Access database is used for
static storage of lookup tables, the table should be re-loaded each time the application is run,
and bound data controls can be used effectively to connect a grid or list box to the Access
table.

Recommendation: Use ExecuteSQL() in place of Execute() where a count of records
affected is needed. Refer to the Visual Basic Language Reference manual.

Tip/Warning: Be warned that any method with SQL Passthrough and ExecuteSQL()
perform their own autocommit, and their operations will not be affected by surr,unding
Visual Basic statements BeginTrans, CommitTrans, and Rollback.

Note: The Visual Basic ExecuteSQL0 method uses SQL Passthrough without having to be
told to do so. See the discussion of SQL Passthrough below.

Rule E-25: Do not use a DBSQLPASSTHROUGH SQL write-command during a Visual
Basic transaction processing sequence started by a BeginTransO method/command and ended
by either a CommitTranso or a RollBacko method/commanld. The SQL command cannot
be rolled back -- unless there is a specific intention to have one or more SQL commands
inside the SQL transaction boundaries that will not be rolled back.

SQL Passthrough operations cannot be rolled back from within Visual Basic. The
methods/commands BeginTranso, CommitTranso, and RoliBacko are native Visual Basic,
not SQL commands, and their commits and rollbacks are handled by the ODBC driver. SQL
Passthrough bypasses the ODBC driver

NMS Developer Standards& Guidelines E-21 May 1995

Rule E-26: For best performance in transaction processing, either:

1. Encapsulate the batch of SQL commands inside a set of Visual Basic SQL Begin
Transaction, Commit Transaction, and Roliback commands. This an excellent
technique for maximum performance when performing multiple updates inside a loop.
It is similar to the technique 3 below, since without SQL Passthrough and inside
Begin Transaction and Commit Transaction commands, the ODBC driver builds up
a queue of SQL commands into a buffer (4 MB max size -- considerably larger than
the max allowable size of a string) which it sends all at once upon a Commit
Transaction command, with automatic rollback by the DBMS on any error.

2. Put batch transactions with their own COMMIT and ROLLBACK SQL
commands into stored procedures along with the transaction's UPDATE, DELETE or
INSERT commands, or:

3. Concatenate the UPDATE, DELETE, or INSERT commands into one, long string
prefixed to an Oracle PLSQL Begin statement, and pass this by SQL Passthrough
directly to the DBMS. This latter technique is quite fast, tut is limited by the size of
a Visual Basic string. Oracle interprets statement groups beginning with "Begin" as a
PLSQL command, and it does transaction processing with automatic commit or
rollback, based on whether the entire set is completed successfully or not.

Rule E-27: Have all SQL queries and stored procedures reviewed by the DBA team for
optimization, refinement, and approval.

Tip: One technique for increasing performance is to create or use tables in a local Access
database, with local indexes built in it to aid lookup. This can sometimes be used effectively
for static data such as lookup tables that are accessed often. These can be temporary tables
built on the fly or static tables updated once a day from the main, server database.

Tip with Warning: The method of attaching one or more Oracle tables to a lo"al Access
database (which may not necessarily contain any other tables uther than system tables), which
is then accessed through Visual Basic's "Jet Engine," has been recommeaded by some for its
significant speed improvements, e,'pecially if a local index is built on the table. However, it
can present significant problems a,-d should be used with care.

Attached tables may present a security problem, in that the attached table is accessed using
the user-id and password of the person who created the database or attached the table, not the
current application user. Attaching and detaching tables dynamically at run time can solve
this, but takes time.

Another problem with attached tables is that if the structures of the attached tables change, the

MS D loper Standards & Guidelines E-22 May 1993

local image of the tables does not change. This problem can also be solved by attaching and
detaching tables dynamically at run time.

This technique can also present data-currency problems. It should not be used on tables that
are edited by users in a multi-user environment, since it -- and especially its local indexes -­
may not stay current as other people change the data. It may be good for use with tables with
relatively static data, such as lookup tables.

Rule E-28: Minimize database accesses and improve overall performance by loading static
data that is referenced more than once, such as lookup tables, just once per application
instance, into a global memory array. This technique may not be practical for large static
datasets that are not referenced often.

Rule E-29: For faster Oracle access, use Oracle "Hints" in SQL query strings or PLSQL
code blocks that are passed directly to the database using SQL Passthrough over ODBC, or
coded into stored procedures, to tell the Oracle optimizer that indexes to use. This is best
done in consultation with the Oracle DBA team gurus. This method will require SQL
Passthrough, since ODBC cannot translate "Hints" in SQL code.

NMS Developer Standards& Guidelines E-23 May 1995

APPENDIX F - Visual Basic Capacities

The following capacities are for Visual Basic version 3.x and may vary with later versions.

ALL ARRAYS

CAPTION

CAPTION Property (Objects)

CONTROLS on one form

CONTROLS IN OPEN FORMS

FORMS (per application)

GLOBAL + MODULE NAME TABLE

ITEMS in ONE LIST BOX

LIST BOXES and COMBO BOXES

NON-ARRAY, NON-STRING DATA

OBJECT TYPES (per application)

PROCEDURES PER APPLICATION

(memory for procedures

Program STACK SPACE

STRING VARIABLE

SYMBOL TABLE (per global module)

SYMBOL TABLE (per form)

SYMBOL TABLE (per global module)

TAG PROPERTY OF ANY CONTROL

TEXT PROPERTY IN A TEXT BOX (multiline)

64k

lk max

255 bytes

254 max (but array counts only as one)

600 (excluding graphic controls)

80 loaded
230 assigned as variables

64k

1k

64k

64k

256 max

52000 max
256k

20k

64k

32k (name + symbol)

32k (name + symbol)

32k (name + symbol)

32k

32k max

Note: Most values shown include some VB overhead Actual capacity available to developer
is less than the values shown.

NMS Developer Standards & Guidelines F-I Ap7rl 99

APPENDIX G - Glossary

active - describes the window or icon to which the next keystroke or command will apply. If a
window is active, its title bar changes color to differentiate visually from other open windows.
If an icon is active, the Control menu appears.

application - a stand-alone, executable piece of software interchangeable with "program."

application build - a set of database objects and Visual Basic programs that comprise an entire
application.

application icon - a graphic that appears only after an application is started and then
minimized. Application icons are the only icons that appear on the desktop, outside window
borders.

application shortcut key - a key combination that brings an application to the foreground
when running Windows in 386 enhanced mode.

application window - a window that contains a running application. The name of the
application appears at the top of this window. An application window may contain multiple
document windows.

associate - to identify a filename extension as "belonging" to a certain application. When a file
is selected with an extension that has been associated with an application. That application is
opened automatically.

background - the area behind the active window.

bitmap - an image stored as an array of bits.

boot - to start the computer, or to restart it, loading the disk operating system (DOS).

bound control - a control which is bound to a "data control," a special type of Visual Basic
control for providing database access with little or no programming.

branch - a segment of the File Manager Directory Tree representing a directory and any
subdirectories within it.

built-in font - (also known as resident or hardware font) - font that is built into the read-only
memory (ROM) of a printer.

NMS Developer Standards & Guidelines G-I April 1995

cascade - a way of arranging open windows on the desktop so they overlap each other with the

title bar of each window remaining visible.

cascading menu - a menu that opens from a command on another menu.

check box - a small square box that appears in a dialogue box and that can be selected or

cleared. When the check box is selected, an X appears in the box. A check box represents an

option that can be set.

choose - to use a mouse or key combinations to pick an item that begins an action in Windows.

click - to press and release a mouse button quickly.

client - refers to the entity/organization which is paying for the software development and to

which the software, including the source code, belongs.

clipboard - a temporary storage location used to transfer data between documents and between

applications.

close - to remove a document window or application window from the desktop. The option to

save or abandon the document in a document window is available before the application is

closed.

collapse - to "hide" additional directory levels below a selected directory in File Manager.

command - a word or phrase usually found in a menu that is chosenr to carry out an action.

command button - a button in a dialogue box. It performs or cancels the selected action. Two

common command buttons are labeled Cancel and OK.

configuration - the functional and physical characteristics of software as set forth in technical

documentation and ultimately achieved in a product.

configuration baseline - configuration documnentation formally designated at a specific time

during a configuration item's life cycle. Configuration baselines, plus approved changes to

those baselines, constitute the current approved configuration documentation.

configuration control - the systematic proposal, justification, evaluation, coordination, approval

or disapproval of proposed changes, and the implementation of all approved changes in a Cl's

baselined configuration.

NMS De-eloper Standards & Guidelines G-2 April 199

configuration documentation -the technical documentation that identifies and defines the
item's functional and physical characteristics.

configuration identification - configuration identification includes:
- the selection of CIs,
- the determination of the types of configuration documentation required for each CI,
- the release of Cis and their associated configuration documentation, and

- the establishment of configuration baselines for CIs.

configuration item (CI) - an aggregation of software that satisfies an end use function and is

designated for separate configuration management.

cm - Configuration management

configuration management (CM) - a discipline applying technical and administrative
surveillance over the life cycle of configuration items to:

- identify and document the functional and physical characteristics of configuration
items,

- control changes to configuration items and their related documentation,
- record and report information needed to manage configuration items effectively,

including the status of proposed changes and implementation status of approved
changes,

- audit configuration items to verify conformity to specifications and other
requirements,

- uniquely identify the data files, including versions of the files and their status
(e.g., working, released, submitted, approved), and

- record and report information needed to manage the data files effectively,
including the status of updated versions of files.

configuration management plan -the document defining how configuration management will
be implemented (including policies and procedures) for a particular program.

confirmation message - a message displayed by Windows when a destructive action is
performed, asking the user if they want to to proceed. For example, Windows displays a

confirmation message when a file is being deleted.

configuration status accounting - the recording and reporting of information needed to
manage configuration items effectively, including:

- a record of approved configuration documentation and identification numbers,
- the status of proposed changes to the configuration,
- the implementation status of approved changes, and
- the configuration of all units of the configuration item in the operational inventory.

NMS Developer Standards& Guidelines G-3 April 1995

control - a GUI object which resides on a window-form (see below) and encapsulates certain

functionality.

control menu - the menu appearing on every application that runs in a window and on some
Non-window applications. Icons, some dialogue boxes and windows within an application
workspace also have Control menus. For applications running in a window and for icons and
dialogue boxes, Control menu commands move, change the size of and closes windows. For
non-windows applications, the Control-menu commands transfer information and perform
other miscellaneous functions. Also known as System menu.

control-menu box - the icon that opens the Control menu for the window. It is located at
the left of the title bar.

copy - to put a copy of the selected text or item on the Clipboard to be transferred to another
location. Most windows applications have a Copy command that performs this task.

current directory - the directory that is currently highlighted in the Directory Tree or whose
directory window is the active window.

custom control - a control built either by the local programming team or by a third-party
vendor.

cut - to move text from a document into a temporary storage area called the Clipboard.

data file - any file created within an application: a word processing document, a spreadsheet,
a database file, a chart, and so forth.

da - data administration

dba - database administration

default button - the command button in some dialogue boxes selected as the most logical or
safest choice. This button has a bold border when the dialogue box appears and pressing
ENTER chooses the button.

default printer - the printer th.t windows applications automatically use when the Print
command is chosen. Only one default printer is allowed and the default printer must also be
an active printer.

desktop - the screen background for windows on which windows, icons, and dialogue boxes
appear.

NMS Developer Standards & Guidelines G-4 April 1995

desktop pattern - a geometric pattern that appears across the desktop. Use the Control Panel

to design a pattern or choose one from patterns provided by windows.

destination directory - the directory to which a file(s) is intended to be copied or moved.

developmental configuration - the design and associated technical documentation that defines
the evolving configuration of a Cl during development (i.e., prior to the establishment of a
formal product baseline).

dialogue box - a rectangular box that either requests or provides information. Many dialogue
boxes present options to choose among before windows can carry out a command. Some
dialogue boxes present warnings or explain why a command can't be completed.

direction keys - the four arrow keys on the computer keyboard. Each arrow key is named
for the direction the key points: UP ARROW, DOWN ARROW, LEFT ARROW and RIGHT
ARROW.

directory - a collection of files and subdirectories that are stored at the same location on a
disk. The name of the directory identifies its location. Part of the structure for organizing
files on a disk. See also subdirectory.

directory tree - a graphic display in File Manager of the directory structure of a disk. The
directories on the disk are shown as a branching structure that resembles a tree. Directories
are shown as branches off the top-level directory known as the root directory.

directory window - a File Manager window that lists the contents of a directory. Each
directory window shows all the files and other directories contained in the directory.

disk drive - a device used for storing and retrieving data on disks.

disk-drive icon - an icon in File Manager that represents a disk drive. Different icons depict
floppy disk drives, hard disk drives, network disk drives, RAM drives and CD-ROM drives.

document window - a window within an application window. A document window contains
a document created or modified by using an application. There can be more than one
document window in an application window.

double-click - to rapidly press and release a mouse button twice without moving the mouse.
Double clicking carries out an action such as opening an icon.

NMS Developer Standards & Guidelines G-5 April 109S

drag - to move an item on the screen by holding down the mouse button while moving the
mouse. For example, a window can be moved to another location on the screen by dragging
its title bar.

drop-down list box - a single-line dialogue box that opens to display a list of choices.

exclusive application - an application that has sole use of the computers resources while it is
running in the foreground with Windows in 386 enhanced mode. When an exclusive
application is running in a window, it gets most, but not all of the resources.

expand - to show currently hidden levels in the Directory Tree. With File Manager, a single

directory level can be expanded by one branch of the tree or all branches at once.

expanded memory - memory in addition to conventional memory that is available for
applications. It is allocated in 16K blocks. Windows will make use of expanded memory only

if the /R switch is used at start up. Windows running in 386 enhanced mode simulates
expanded memory for the applications that need it. Windows running in standard mode or

386 enhanced mode allows applications to use expanded memory, but it does not use
expanded memory itself in the management of applications.

extend selection - to select more than one object. For example, if a group of files is selected

to be moved or copied with File M,-nager.

extended memory - memory in addition to conventional memory that is not readily
accessible to MS-DOS or MS-DOS applications. Extended memory can not be used on

8086/88 computers. Windows running in standard mode or 386 enhanced mode uses extended

memory to manage and run applications.

extension - the period and three letters at the end of a filename. An extension identifies the

kind of information a file contains. For example, files created with Calendar have the

extension .CAL.

file - a document or application that has been given a name. All documents are stored as files

in Windows.

file attribute - a characteristic of a file--for example, the read-only attribute--that can be
changed using File Maintenance

file format - the structure or arrangement of data stored in a file.

filename - the name of a file Windows uses DOS file naming conventions.

NMS Developer Standards & Guidelines G-6 April 1995

\Z L\

fixed-width - a font in which all characters have uniform widths.

Sow control - the process and procedure used to regulate the rate at which data is transferred

from one device to another.

font - a graphic design applied to all numerals, symbols, and characters in the alphabet. A

font usually comes in different sizes and provides different styles such as bold, italic, and

underlining for emphasizing text.

font cartridge - a piece of hardware that is plugged into a printer to supply one or more

fonts.

font family - a group designation that describes the general look of a font. For example, the

Roman font family contains fonts with serifs and variable character widths, such as Tms Rmn.

font set - a group of fonts designed for use with a specific device resolution. Windows

includes seven sets of fonts.

font size - See point size.

footer - text that appears at the bottom of every page of a document when it is printed.

foreground - the area of the screen occupied by the active window.

form - a high-level window which can contain controls and float free from other windows -­

either on the desktop or for MDI child forms, within the boundaries of an MDI (multiple
ocument interface) parent form.

format - (1) the appearance of text on the pages of a document. (2) To prepare a disk to

hold information. Formatting a disk erases all information that was previously on it.

full-screen application - any non-windows application that occupies the whole screen rather

than running in a window.

Functional Configuration Audit (FCA) - the formal examination of functional

characteristics of a configuration item prior to acceptance, to verify that the item has achieved

the requirements as defined in its specifications.

global variable - a variable with "scope" within the entire application.

graphics resolution - the level of quality at which Windows prints graphic. The higher the

resolution, the better the quality of the printed graphics (and the slower the printing).

NMS Developer Standards & Guidelines (-7 April 1995

group - a collection of programs in Program Manager. Grouping programs makes them

easier to frnd when the user is ready to start them.

group icon - the graphic that represents a Program Manager group that is minimized.
Double-clicking the group icon opens the group window.

group window - a window that displays the items in a group within Program Manager.
These items can be applications or data files associated with applications.

handshake - a flow-control or "go ahead" signal sent by a local computer to a remote

computer when working with a commurications program such as Terminal. XON/OFF is the

standard software handshaking method, although it can't be used with remote systems that use
a hardware handshaking method.

header - text that appears at the top of every page of a document when printed.

hidden file - a system file that cannot be viewed, such as MS-DOS BIOS file.

high memory area - the first 64K of extended memory. This area used by some
applications.

highlighted - indicates that an object or text is selected and will be affected the next action.

Highlighted text appears in reverse video on monochrome displays or in color on some color

displays. Highlighted objects might change color or be surrounded by a.selection cursor.

icon - a graphical representation of various elements in Windows, such as disk drives,
applications, and documents.

inactive window - any open window not currently in use.

insertion point - the place where typed text will be inserted. The insertion point usually

appears as a flashing vertical bar in an applications window or in a dialogue box. The text

typed appears to the left of the insertion point, which is pushed to the right as it is typed.

list box - within a dialogue box, a box listing available choices--for example, the list of all

available files in a directory. If all the choices won't fit, the list box has a vertical scroll bar.

- a series of actions recorded using the Recorder accessory. When macros are run,macro
Recordercarries out all the recorded actions. Macros can be assigned to special keys, called

shortcut keys or to longer descriptive names.

mark - to select text in a non-windows application.

April 1995NMS Developer Standards& Guidelines G-8

maximize button - the small box containing an Up arrow at the right of the title bar. Mouse
users can click the Maximize button to enlarge a window to its maximum size. Other users
can use the Maximize command on the Control menu.

memory-resident software - software that is loaded into memory and is available for use
even when another application is active. Also known as TSR software.

menu - a list of items, most of which are Windows comm.,ulds. Menu names appear in the
menu bar near the top of the window. Use a command on a menu by selecting the menu
name, then choosing the command.

menu bar - the horizontal bar containing the names of all the application menus. It appears
below the title bar.

minimize button - the small box containing a Down arrow at the right of the title bar.
Mouse users can click the Minimize button to shrink a Window to an icon. Other users can
use the Minimize command on the Control menu.

network - a group of computers connected by cables and using special software that allows
thcrri to share equipment (such as printers) and exchange information.

network disk drive - a disk drive that is available for public use on a network. Network disk
drives are often used to store data files for many people in a work group.

non-windows application computer - programs that were not designed to run within the
Windows environment. Non-windows applications do not necessarily follow any of the
Windows user interface conventions. Although most Non-windows applications can run with
Windows, there may be limitations regarding how many of Windows' features they can take
advantage of.

open - to display the contents of a file in a window or to enlarge an icon to a window.

option - a choice in a dialogue box. An option affects the way in which a command is
carried out. Dialogue boxes have several kinds of options, including mutually exclusive
option buttons and non-exclusive check boxes.

option button - a small round button that appears in a dialogue box and is used to select an
option. Within a group of related option buttons, only one button can be selected.

parallel interface - an interface between a computer and a printer in which the computer
sends multiple bits of information to the printer simultaneously.. Parallel and Centronics
interfaces are the same type.

NMS Developer Standards& Guidelines G-9 April 1995

parallel port - a connection on a computer, usually LPTI. Where the cable is plugged in for

a parallel printer. Windows supports parallel ports LPTI through LPT3.

- information added to the command that starts an application. This informationparameter
determines how the application will run. For example, to start Microsoft Word in character

mode, type the letters /cat the DOS prompt. The /cis the parameter. A parameter can be a

filename or any type of information up to 62 characters in length.

paste - to transfer the contents of the Clipboard to an application. Many applications have a

Paste command that performs this task.

pathaame - the directions to a directory or file within the system. For example,
C:\windows3\APPTSUNE.CAL is the pathname of the JUNE.CAL file in the APPTS sub­

directory in the windows3 directory on drive C.

personal windows directory - the directory usually located on the hard disk, that contains
the Windows files that were loaded to the system during the Windows Setup.

Physical Configuration Audit (PCA) - the formal examination of the "am-built" configuration
of a CI against its technical documentation to establish or verify the Cl's product baseline.

PIF (program information file) - a file that provides information that Windows need to run

a Non-windows application. For example, PIF is used to tell Windows to run a Non-windows
file.

pixels - the smallesl graphic units on the screen. Also known as picture elements (pels).

point - to move the pointer on the screen until it rests on the item of choice.

point size - the height of a printed character. A point equals 1/2 of an inch.

pointer - the arrow-shaped cursor on the screen that indicates the position of the mouse.

port - a connection on a computer where the cable is plugged that carries data to another

device.

print queue - a list of files that have been sent to a particular printer. The list indicates the

file currently printing and those waiting to be printed.

Printer Cartridge Metrics (PCM) - a file that contains Printer Fonts Metrics files for each

font on a font cartridge.

NMS Developer Standards & Guidelines G-1O April 1995

printer driver - software that controls how a computer and printer interact. A printer-driver

file supplies Windows with information such as the printing interface, descriptions of fonts,
special features, and so on.

Printer Font Metrics (PFM) - a file that supplies a Windows printer driver with information

about a font, such as family, point size, widths of individual characters and more.

Product Baseline (PBL) - the initially approved documentation describing all the necessary
functional and physical characteristics of the corifigaration item. In addition to this
documentation, the product baseline of a configuration item may consist for the actual
software.

program - a standalone, executable piece of software. Interchangeable with "application."

program item icon - the graphic that represents an application that can be started from the
Program Manager. A program item icon is contained in a group window.

proportional font - a font in which different characters have varying widths.

protected mode - the operating mode of a computer that is capable of addressing extended
memory directly.

protocol - a set of rules that define how computers communicate with each other.

RAM (random access memory) - the memory that is used to run applications and perform

other necessary tasks while the computer is on. When the computer is turned off, all
information in RAM is lost. See also virtual memory.

raster font - a font created as a graphic bitmap image. It is available only in a fixed

size--not scalable. A raster font is used mostly on the screen, but is also used by some dot­
matrix printers and built into some laser printers.

read-only file - a file that can only opened and read. One cannot edit a read-only file and
save it again.

real mode - an operating mode that Windows runs in to provide maximum compatibility with
versions of Windows applications prior to 3.0. Real mode is the only mode available to
computers with less than 1 MB of extended memory.

restore button - the small box containing a Down arrow and an Up arrow at the right of the

title bar. The Restore button appears after a window is enlarged to its full size. Mouse users
can click the Restore button to return the window to its previous size. Other users can use the

NMS Developer Standards& Guidelines G-1l April 1995

Restore command on the Control menu.

root directory - the highest directory of a disk. The root directory is created when a disk is
formatted. From the root directory, other directories can be created.

scaled point size - a point size that approximates a specified point size for use on the screen.

screen font - a raster font designed to duplicate a printer font on the screen. See also raster
font.

scroll - to move text or graphics up, down, left or right, in order to see parts of the file that
cannot fit on the screen.

scroll bars - the bars at the bottom and right edge of a window whose contents are not
entirely visible. Each scroll bar contains a small box, called a scroll box, and two scroll
arrows to allow different types of scrolling.

scroll buffer - in Terminal, the buffer that holds typed or received information that does not
fit on the screen.

select - to highlight an item by clicking it with the mouse or using key combinations.
Selecting does not initiate an action. After selecting an item, choose the action wanted to
affect the item. Also see choose and highlighted.

selection cursor - the marking device that shows position in a window, menu, or dialogue
box. The selection cursor can appear as a highlight or as a dotted rectangle around the text in
a dialogue box option.

serial interface - an interface between a computer and a printer in which the computer sends
single bits of information to the printer, one after the other. Serial, asynchronous, and RS232
interfaces are all the same type.

serial port - a connection on a computer usually COMI, that connected into the cable for a
serial printer or another serial communications device, such as a modem.

share - a partition of a network disk drive.

shortcut key - a key combination that carries out some action in Windows. For example,
pressing ALT+ESC switches among loaded applications.

shrink - to reduce a window to an icon at the bottom of the desktop using the Minimize button.
The document or application remains open and can be the active document or application.

NMS Developer Standards & Guidelines G-12 April 199S

soft font - a font that is downloaded to the printer's memory from a disk provided by the font
manufacturer.

solid color - the color that appears on a display when all pixels are the same color. On a
monochrome display, there are only two solid colors: black and white.­

source directory - the directory that contains the file(s) intended to be copied or moved.

spool - to print a document or file in the background while working on something else.

standard mode - the normal operating mode for running Windows. This mode provides

access to extended memory and also allows switching among Non-windows applications.

standard setting - standard settings are settings shipped with Windows. For example, if a

document is printed from one of the Windows accessories without entering new margin

sttings, the accessory uses standard margin settings to print.

subdirectory - a directory contained within another directory. All directories are

subdirectories of the root directory.

swap file - an area of th. hard disk that is set aside for exclusive use by Windows in 386

enhanced mode. This area is used only when the system runs low on memory.

switch - See parameter.

system menu - See Control menu.

system time - the time set by the computers internal clock.

terminal emulation - a setting specified with Terminal that causes the computer to emulate a

remote computer. Terminal emulation allows the computer to display data it receives and to

use features of the remote computer.

text box - a box within a dialogue box where information is typed to carry out the chosen

command. The text box may be blank when the dialogue box appears or may contain text.

text fide - a file containing only letters, digits and symbols. A text file usually consists of

characters coded fTom the ASCII character set.

tile - a way of arranging open Windows on the Desktop so that no windows overlap but all
windows are visible. Each window takes up a portion of the screen.

NMS DeveloperStandardsc' Guidelines G-13 April 1995

title bar - the horizontal bar located at the top of a window and containing the title of the
window. On many windows, the title bar also contains the Control-menu box and Maximize
and Minimize buttons.

TSR software - See memory-resident software.

vector font - a series of dots connected by lines that can be scaled to different sizes. Plotters
typically use vector fonts. Also known as stroke font.

virtual machine - an environment created by Windows running in 386 enhanced mode in
which an application can run and behave as if it had an entire machine all to itself. Windows
in 386 enhanced mode can have multiple applications running in their own separate virtual
machines at the same time.

virtual memory - a memory management system used by Windows running in 386 enhanced
mode, which allows Windows to behave as if there were more memory than is actually present
in the system. Virtual memory equals the amount of free RAM plus the amount of disk space
allocated to a swap file that Windows uses to simulate additional RAM.

volume label - a name that identifies a disk. The volume label appears in the title bar of the

Directory Tree window.

wallpaper - picture or bitmapped pattern that appears as the Windows Desktop.

wildcard character - a character that represents another character. In filenames, an asterisk
(*) is used as a wildcard character to indicate any character or group of characters that might
match that position in other filenames. For example, *.EXE represents all files that end with

the .EXE filename extension.

window - a rectangular area on the screen to view an application or document. Also see
application window and document window.

windows application - any application that was designed especially for Windows and will not
run without Windows. All Windows applications follow the same conventions for arrangement
of menus, style of dialogue boxes, use of the keyboard and mouse,.and so on.

word wrap - a feature that moves text from the end of a line to the beginning of a new line as

it is typed. With word wrap, do not press ENTER at the end of each line.

workspace - the area of a window that displays the information contained in the application or

document in use.

NMS D per '"ids & Guidelines G-14 April 1995

