
New Management Systems

NMS

Developer Standards and Guidelines

(Rules Only, Quick Reference Version)

April 1995

United States Agency for International Development
(M/IRM/SDM)

New Management Systems

NMS

Developer Standards and Guidelines

The "Rules Only," Quick Reference Version

This document is a subset of the New Management Systems' Developer Standards and
Guidelines, "Rules, Recommendations and Discussion" version. Its purpose is to provide a
quick reference to NMS development Rules. These rules are necessary to develop a
consistent Graphical Users Interface. Adherence to rules also promotes consistency while
developing new management system processes and access to databases while using the Visual
Basic, Oracle and SQL tools.

This abbreviated document does not contain general dialogue, recommendations, hints, tips,
examples and discussions associated within the context of specific rules.

The Table of Contents in the "Rules Only" version for Chapters 1, 2 and 3 is the same as that
in the "Rules, Recommendations and Discussion" version, except for page number references.
These are the only chapters containing rules. Section contents from the "Rules,
Recommendations and Discussion" version were deleted from these chapters as were Chapters
4, 5, 6 and Appendices C through G. To expand context and understanding of a given rule
the reader should refer to the same section, chapter, or appendix in the "Rules,
Recommendations and Discussion" document.

"9

Table of Contents

Preface ... 1

Introduction 3

Document Standards ... 4

Term Usage Peculiar to This Document 4

NM S Document Conventions 5

References 7

1 COMMON USER INTERFACE FOR NMS APPLICATIONS 1-1

1.1 Graphical User Interface (GUI) Design Objectives 1-1

1.1.1 Placing Users in Control 1-1

1.1.2 Reducing the Users' Memory Load 1-1

1.1.3 Making Applications Easy to Learn and Use 1-1

1.1.4 Providing a Consistent User Interface 1-1

1.2 The Common User Interface 1-1

1.2.1 The Visual (display screen) Elements of a CUI 1-1

1.2.2 The Functional (user actions) Elements of the CUI 1-1

1.3 Screen Architecture and Components 1-1

1.3.1 M enus 1-1

1.3.1.1 Top M enu Bar 1-1

1.3.2 Colors 1-2

1.3.3 Fonts 1-3

1.3.3.1 M inimum Font Size 1-3

1.3.3.2 Default Fonts 1-3

1.3.4 3-D Effects 1-4

1.3.5 Text Display Selection and Formats 1-4

1.3.5.1 Selection from Text Lists 1-4

1.3.5.2 Dates 1-5

1.3.6 Tabular Data Display 1-5

1.3.7 Objects 1-5

1.3.8 Graphs 1-5

1.3.8.1 Contents of Graph Screens 1-5

1.3.8.2 Graph Screen Functionality 1-5

1.3.8.3 Colors and Styles 1-6

1.3.9 Help 1-6

Contents i May 1995

1.4 User Navigation 1-7

1.4.1 Keyboard Methods as Alternatives to Mouse 1-7

1.4.2 Drill-Down Methods 1-7

1.4.3 Look-up M ethods 1-7

1.5 Window Forms 1-7

1.5.1 General Rules 1-7

1.5.1.1 Resolution/Size 1-7

1.5.1.2 Labels 1-7

1.5.1.3 Exiting Forms 1-7

1.5.1.4 Window Titles 1-7

1.5.1.5 Graphics on Forms 1-8

1.5.1.6 Automatic Resizing 1-8

1.5.1.7 3-D Appearances of Forms 1-8

1.5.1.8 Distraction/Program Entry Forms 1-9

1.5.1.9 Main Menu/System Entry Forms 1-9

1.6 MDI Parent Forms 1-9

1.6.1 Top Menu Bar 1-9

1.6.2 Toolbar 1-10

1.6.3 Standard Toolbar Icons 1-11

1.6.4 MDI Parent Status Bar 1-14

1.7 Controls 1-14

1.7.1 Command Buttons 1-14

1.7.2 Standard Control Placement on Forms 1-16

1.7.2.1 Command Buttons 1-16

1.7.2.2 Grouping of Controls 1-16

1.7.2.3 Labels and Label Controls 1-17

1.8 Data-Entry Controls 1-17

1.8.1 Speeding Data Entry Using Defaults 1-17

1.8.2 Speeding Data Entry Using Pop-up Windows 1-17

1.8.3 Speeding Data Entry Using Masks 1-18

2 CODING STANDARDS (VISUAL BASIC) 2-1

2.1 Standardizing Existing Code 2-1

2.1.1 Syntax Conventions 2-1

2.2 Declarations 2-2

2.2.1 Variable Declarations 2-2

2.2.2 Constant Declarations 2-2

2.2.3 DLL/API Subroutine Declarations 2-2

2.3 VB Environment 2-4

Contents ii May 193

2.3.1 Option Explicit 2-4

2.3.2 Deflnt A-Z 2-4

2.3.3 Save As Text 2-4

2.3.4 Option Base 2-4

2.3.5 Option Compare Binary vs. Option Compare Text 2-4

2.3.6 Save-Before-Run 2-4

2.3.7 Grid-Alignment Size = 60 2-4

2.3.8 Config.Sys: Files 2-5

2.4 Source Code Documentation 2-5

2.4.1 Code Commenting 2-5

2.4.2 Standard Header Templates 2-5

2.4.3 Internal Comment Blocks 2-9

2.5 Indenting Source Code 2-10

2.6 Naming Conventions 2-10

2.6.1
 Name Prefixes 2-11

2.6.2
 Constant Names 2-11

2.6.3
 Variable Names 2-11

2.6.4
 Subroutine Name Prefixes: Indicating Data Types 2-12

2.6.5 Names for Database Objects ' '2-12

2.6.6
 Names for GUI Objects -- Forms and Controls 2-12

2.6.7
 Menu Naming Conventions 2-13

2.7 Subroutine Design, Coupling and Cohesiveness 2-14

2.7.1 G eneral 2-14

2.7.2 Global Variables 2-14

2.7.3 Global Subroutines 2-15

2.7.4 Private/Local Subroutines 2-15

2.7.5 User-Defined Data Types 2-15

2.7.6 Constants and Variables -- Scope 2-15

2.8 Procedural Coding Standards 2-15

2.8.1
 Concatenation Operators 2-15

2.8.2
 Goto Statements 2-15

2.8.3
 Error Trapping 2-15

2.8.4
 If-Then-Else Structures 2-16

2.8.5 Loading Text into Combo Boxes, List Boxes and Grids in

2.8.6
 AutoRedraw Property 2-16

2.8.7
 Sending Messages from One Form to Another in VB 2-16

2.8.8
 Writing Text to Labels in VB 2-16

2.8.9
 Modularization -- File Organization 2-16

VB 2-16

2.8.10 Data Management

Contents iii May 1995

2-16

2.8.10.1 Validating Data Entry 2-16

2.8.10.2 Debugging SQL 2-18

2.8.10.3 Safely Interpreting / Converting Field Values 2-19

2.8.10.4 Prograrmning Rules for Database Reliability. 2-22

2.8.10.5 Increasing Database Performance in Visual Basic 2-23

2.8.10.6 Database Error Trapping 2-24

2.9 Coding to Minimize Memory Use and Executable File Size 2-24

2.10 Coding to Maximize Performance (Execution Speed) 2-26

2.11 Shared, Common, Reusable Source Code 2-26

3 DATABASE ACCESS AND SQL CODING STANDARDS 3-1

3.1 SQL Calls to the Database 3-1

3.2 Creating and Using Indexes 3-1

3.3 ORACLE SQL Statement Processing Techniques 3-2

May 199.Contents iv

APPENDICES

APPENDIX A - Standard VB GUI Object Name Prefixes

APPENDIX B - Standard Name Prefixes for Variables and VB Data-Access
Objects

Contents v May 199

Preface

The U. S. Agency for International Development's NMS Development Standards and
Guidelines is provided for NMS developers and for USAID officials responsible for planning,
designing, developing, testing, and deploying the NMS. The standard describes the technical
methodologies and organizational procedures for ensuing that the NMS is completed in an
organized and businesslike manner. Adherence to the standard will help ensure that all
USAID programs and databases behave consistently, will require less training, technical
support, and documentation to implement the new management systems. Applications will be
easier to use, fewer errors will be made, and developer productivity will be improved. Lastly,
but of perhaps greatest importance, follow-on maintenance costs will be minimized.

The USAID "Common User Interface (CUI) Standard" document (Aug. 6, 1993), is
incorporated in this document. The ISP (Information Systems Plan) "Report to Management"
document (Feb. 1993) makes several references to the CUI Standard. Those standards have
now been updated and included in this document.

Pursuant to its responsibilities defined in the Paperwork Reduction Act of 1980 (44 USC
Chapter 35), USAID's Office of Information Resources Management (M/IRM) requires that
all newly developed or acquired systems accessed by more than one user must adhere to this
standard, effective October 1, 1993. Adherence to this standard is required when expending
USAID funds to acquire programming services to develop computer programs or to modify
existing programs. This standard is also applicable to the purchase of Commercial Off-The-
Shelf (COTS) programs to be used by more than one user.

This standard is applicable to programs that will be used by USAID employees or by
contractors performing work for USAID on the USAID network. Compliance with this
standard is recommended, but not required for programs acquired by USAID for use by host
countries. For instance, if it becomes necessary to procure a word processing program for a
USAID employee or contractor to use in preparing an USAID project paper, these standards
would not be mandatory for the staff of a host country ministry.

Although the use of the enclosed standards offers substantial benefits to USAID, there will be
some instances in which its implementation may not be cost-effective. An example would be
a special-purpose off-the-shelf program with a non-standard interface. It will not be cost
effective in most cases to modify an existing commercial program simply to change the user
interface. MIIRM will grant waivers from the application of the standard in cases where its
implementation would not be cost-effective. Requests for a waiver from the standard should
be sent to M/IRM/OD with a justification for the waiver.

NMS Developer Standards & Guidelines 1 April1995

The following standards and guidelines recommend a development approach for all USAID

NMS applications. The standard emphasizes the values of consistency, simplicity, and user
empowerment to make the user's NMS computing experience more pleasant and productive.
This document will evolve as technology improves, USAID business needs change, and as
experience provides improved methods. Suggestions, questions, and comments are always
welcomed.

For further information please call:

Steve Polkinghorn Ron Burke
IRM/SDM or IRM/SDM
875-1646 875-1909

Send WordPerfect modifications (by E-mail) to:

Deborah Adams
IRM/SDM
875-1843

NMS Developer Standards & Guidelines 2 April 199S

Introduction

Proper planning for NMS development and implementation is critical to USAID management.
The organization has made large investments in developing plans, choosing appropriate

hardware, and training staff. A major challenge facing USAID management today is the
necessity to incorporate the appropriate technology into the enterprise, while avoiding
disruption and keeping productivity at acceptable levels.

This Standards and Guidelines manual addresses the requirement to set rules and guidelines
for developers to follow while they design, document, and code software applications for the
Agency's New Management Systems. These standards are tailored to Microsoft's Windows
applications. Some are generic (not language-specific) and some are specific to Visual Basic
for Windows and the Oracle data base management system.

Many sections contain rules, recommendations, and discussion. Thus, a person wishing to
quickly learn or search only the rules can do so, but discussion giving details, examples, or
justifications for the rules and recommendations is also provided. The rules are mandatory;
the recommendations are not. A "rules only" version of the document will be supplied.

The need for creating, maintaining, and enforcing good standards is of the highest priority.
Developers who balk at having to live by standards -- and it is natural to feel resistance to
using standards that do not appear to make sense -- have to keep in mind that the system
being built will be used by a large and diverse group of users, throughout the USAID
enterprise. Productivity, deployment, usability and acceptance of the system by these users
are critical to the organization's mission.

It is impossible to create standards that satisfy everyone. Individuals who choose to express
their views can influence or add to the standards in meaningful ways. The rules and
recommendations will change as conditions change or new understandings occur. The best
source for new standards and rules to evolve from -- at least for coding standards -- is an
intelligent developer base. Whatever makes code more readable, more maintainable, and of
higher reliability is more desirable.

A goal within the NMS project is to get methodologies, procedures and standards clearly
defined, followed, and enforced. To get these standards in place, compromises on personal
preferences may sometimes become necessary, without compromising quality. Changes also
have to take place one step at a time because the NMS effort requires a substantial
technological change -- and new habits and ways of thinking. This cannot be done overnight.
The process of implementing these changes will require much patience and willingness from
all staff involved.

NMS Developer Standards & Guidelines 3 April 1995

Document Standards

Term Usage Peculiar to This Document

Most terms can be found in the glossary. However, the following terms are defined here

because they are used either in a non-standard way or with a more generic meaning than in a

specific programming language.

The terms "application" and "program" are interchangeable and refer to a standalone,
executable piece of software. "Program" is from the older, text-based programming tradition;

and "application" is more commonly used in the newer Graphical User Interface (GUI)-based
programming convention.

In Visual Basic (VB), the term "subroutine" is used to refer to a "procedure," as opposed to a

"function." The term "subroatine" is used in this document in its more generic meaning to

refer to both functions and procedures. A function returns a value through its name. A

procedure does not return a value through its name. Both functions and procedures can return

values through elements in their parameter lists.

A "control" is a GUI object that resides on a window-form (see below) and encapsulates

certain functionality. Some examples of Visual Basic standard controls are scrollbars,
listboxes, command buttons, check boxes, option ("radio") buttons, picture boxes, labels, or

text boxes. A "custom control" is one that is built either by the local programming team or

by a third-party vendor. A control, if it can be visible, is a lower-level type of window than

forms. Some controls do not provide visual objects (except in design mode), but rather

provide just functionality, such as the "common dialog" controls that can pop up a dialog box

to handle common user operations such as "Open File" or "Select Font."

A "bound control" is one that is bound to a "data control," which is a special type of VB

control that provides database access with little or no programming.

A "form" in Windows programming refers to a high-level window that can contain "controls"

and float free from other windows -- either on the desktop or, for MDI (Multiple Document

Interface) child forms, within the boundaries of an MDI parent form. A form (sometimes

called a "window-form" for clarity) can generally be moved. Most forms can also be resized,

minimized or maximized, if they are not modal. A modal form is one that will not let the

user do anything else until that window has been closed. An example of this is an error

message box that must be acknowledged by the user by clicking "OK" before it will close.

A global variable is one whose "scope" extends throughout the application; a "semi-global" or

"form-global" variable is one whose scope lies within a module -- either a pure source code

module (.BAS) file or a form-module (.FRM file).

NMS Developer Standards & Guidelines 4 April 1993

NMS Document Conventions

The following conventions shall apply to all documents that are a part of USAID NMS
library.

Rule 1: When a computer text string that must be strictly literal is being quoted, commas,
periods, and other punctuation that are not actually part of the literal string shall be placed
outside the quotation marks.

This rule applies to any literal text string for a computer command, SQL query, program
source code sample, or other computer text string that must be strictly literal. The reader
shall assume that any commas or periods inside such quotation marks for such literal strings
are intended to be part of the command. This rule eliminates confusion concerning whether
the punctuation mark is intended to be part of a text string intended to be strictly literal. This
is to get around the limitations of the traditional, literature-oriented rule in English that
commas and periods at the end of a quoted expression (that is, when quoting a person) are to
be placed inside the quotation marks. The traditional rule is not practicable when
documenting computer-oriented commands, which must be strictly literal. For example, if a
document using the traditional syntax told a user to type the DOS "dir" command in the
following manner, the user would be confused whether or not to type a period as part of the
command:

Type "dir."

Rule 2: Programming source code samples or programming language keywords shall be
printed in bold, 12-point, fixed-size font. "Courier" is the common standard for this, but if
"Courier" font is used, "Courier New" (a TrueType font) should be used so that font size can
be set. The normal font size for source code shall be 12-point, but 10 point can be used
where it is needed to prevent long lines from being wrapped. Comments quoted as part of
source code samples should be in non-bold, in the same fixed-size font and font-size as the
source code.

Rule 3: Computer command strings and quoted blocks of source code should be separated
from the surrounding text referring to them. That is, they should begin on a separate line and
there should be a blank line preceding them and following them.

Rule 4: Computer command strings and quoted blocks of source code should be indented one
indent space, if space permits and line-wrapping can be avoided.

Rule 5: Avoid automatic line-wrapping when quoting Visual Basic source code or user
command strings that are supposed to be on one line. Where line-wrapping is necessary, the
writer shall manually break the line using a graphic right-arrow symbol. Visual Basic does
not support line-wrapping, since it is a single line-oriented language.

NMS Developer Standards & Guidelines 5 April 1995

Rule 6: DOS commands or other user-keyboard input will be in bold Italic font and will be

indented in from the left margin.

Rule 7: Text that will be displayed on a user-screen will be in bold, 14-point font. A fixed

size font shall be used if it is necessary to make columns of text or data line up or if multiple

lines of text must be shown lined up exactly as it would be on a screen using a fixed-size
font. If more than one or two words (such as quoting a menu-choice) is shown, then the
whole block of text should be started on a separate line, separated from the surrounding text
by empty lines, and, if space permits, indented from the left margin.

Rule 8: Backus-Naur syntax notation should be used for computer literal strings where there

is some user-selectable variation in the content of the command, such as for parameters in the

command string. In Backus-Naur format, the following symbols are common:

"< variable parameter >" 	 A type of bracket-pair used to denote a variable or user-defined
input parameter.

"[statement elements]" Square brackets used to denote an optional set of statement
elements.

""' 	 A vertical "pipe" symbol, used to separate "either-or" elements of.

a statement.

An ellipsis, used to denote the optional addition of multiple
elements of the same type as the one preceding it.

For example, the use of Backus-Naur syntax notation would convert the following sample
SQL string (used to execute a stored procedure from Visual Basic) from:

"Begin Name-of Procedure; End;"
to:

"Begin <stored procedure name>; End;"

The literal parts of the command shall be in bold, and the variable elements and Backus-Naur
syntax symbols in non-bold.

Rule 9: If quote marks are part of the command or other literal string, for example, if
quoting a Visual Basic STRING where the intended quote marks are to be put into the source
code of a module, then the quotation marks should also be in bold.

NMS Developer Standards & Guidelines 6 	 April 199

References

The following books should be used as a foundationi rference on which these standards are
built:

a The Handbook of Structured Design by Page-Meillor

0 The Windows Interface -- An Application Design Guide, Microsoft Press

0 Programmers Guide, Visual Basic 3.0 for Windows, Microsoft Press. Specifically
re er to the section "Object Naming Conventions" on pages' 34-35 fbr naming
conventions, and chapter 6 "Programming Fundamentals."

0 Database Developers Guide with Visual Basic 3, by Roger Jennings, Sams Publishing
1994

(The rules in this document override any of those in the previous two references for
which there is any conflict.)

The Windows Interface -- Software distributed by Microsoft, Inc., including:

Visual Design Guide, (also distributed with Visual Basic)
Interactive Design Guide
Interface Design Guide

NMS Developer Standards& Guidelines 7 April 199

"Rules Only" Quick Reference Version

1 	 COMMON USER INTERFACE FOR NMS

APPLICATIONS

1.1 	 Graphical User Interface (GUI) Design Objectives

1.1.1 	 Placing Users in Control

1.1.2 	 Reducing the Users' Memory Load

1.1.3 	 Making Applications Easy to Learn and Use

1.1.4 	 Providing a Consistent User Interface

1.2 	 The Common User Interface

1.2.1 	 The Visual (display screen) Elements of a CUI

1.2.2 	 The Functional (user actions) Elements of the CUI

1.3 	 Screen Architecture and Components

1.3.1 	 Menus

1.3.1.1 	 Top Menu Bar

Note: The same rules and discussion for the top menu bar under the "MDI Parent Forms"
"Top Menu Bar" Section applies to forms in non-MDI applications as well.

The top menu bar with drop-down submenus is based on the Lotus 123 model. Some general
rules concerning top-menu bars are:

" 	 If more than three or four items, use a separator bar to group selections
logically.

* 	 Gray out non-available choices.
" 	 Hide choices unaccessible to the user. They need not know about such choices

if the user's access/security level totally prohibits them access. Leaving such
choices visible but grayed out can confuse users if they think the menu items
are grayed out due to some temporary state and can be activated based on some
selectioi, or action they make later.

" 	 Indicate depth of choice with a black right-arrow triangle (>) for a cascade
submenu or ellipses ("...") for entry to a dialog box.

NMS Developer Standards & Guidelines 1-1 	 April 093

"Rules Only" Quick Reference Version

" Define a mnemonic hot-key for each menu choice. Such hot keys should not
conflict with standard Windows hot-keys. Indicate Alt-key or letter-key
mnemonic hot-keys for menu items by underlining a letter or number in the
Menu choice text. Preferably, use the first letter in the menu choice text or use
the first character of the second word. If these are not possible, then consider
using the next consonant of the first word, and so on ...

• Do not capitalize the hot-key unless this is normally done (like the first letter
of the first word).

" List any control-key hot-keys to the right of the menu choice.

1.3.2 Colors

Rule 1-1: Use colors in forms and controls, where feasible, to make the applications more
attractive and easier to use. Remember, using Windows, users can select foreground and/or
background colors. When designating colors, always designate both foreground and
background colors to maintain contrast and avoiding users being able to select a foreground or
background that ends up with, for example, gray on gray.

Rule 1-2: Do not rely on colors alone for control identification. Remember that 8% to 10%
of the user population may be color blind to a significant extent. Applications should be
tested using color-blind users in addition to normal-vision users.

Rule 1-3: Avoid colors or color combinations which are irritating, garish, or which make
objects hard to see. Avoid placing highly-saturated colors together.

Ru!e 1-4: Specifical; 1 , avoid color comb',;ations which make it hard to see text. The
standard colors for text boxes is black or dark blue text on white background. Avoid colors
for text such as red, magenta, cyan, except where a suitable background color can make the
text easy to see and non-irritating. There should be good reasons for using non-standard
colors for text (such as to help identify different areas of a form where controls are grouped
fu.nctionally or logically). Such uses should be approved by the standards review board.

Rule 1-5: Text boxes should never have a grey background, unless for some specific
exception approved by the standards review board.

Rule 1-6: Highlight selected text using inverted colors (such as white text on black
background -- or yellow or white on dark blue background). (Such inversion of selected text
is usually automatically done in most textual controls.)

Rule 1-7: Avoid light or saturated blue for text, thin lines, and small shapes.

Rule 1-8: Avoid adjacent colors that differ only in the amount of blue.

NMS Developer Standards & Guidelines 1-2 April 1995

"Rules Only" Quick Reference Version

Rule 1-9: Avoid edges created only by color difference; it is hard to focus on them.

Particularly bad are adjacent red and green.

Rule 1-10: Background colors for forms and frames should be light, such as the pastel

colors. Title bars and borders can be any pleasant color. Borders can sometimes be any
color.

Rule 1-11: Use the standard Windows method for "graying out"; text in a text box, combo
box, or other textual control which is "disabled" for editing.

Exception: It might be permissible in certain special situations to set non-standard colors for

the background color and foreground (text) color of such a non-editable text box. For

example, the message windows in a status bar might be given a pastel or gray background

with black or a dark-color foreground color for the text. Another example would be to use a

grey or -- say, green -- background for a text box which is always uneditable, such as a box
showing current time and date.

Rule 1-12: Avoid inversion of colors in textual controls except to indicate selected text.

Rule 1-13: Let the user customize certain common colors in the application.

1.3.3 Fonts

1.3.3.1 Minimum Font Size

Rule 1-4: Minimum font size for all controls shall be 9.8 points in order to accommodate

small, low-resolution monitors. (Color VGA is the minimum resolution supported.) A few

exceptions can be made where good reason exists, with approval of the local standards review

board. The user might be allowed to select a different font size for certain classes of controls

as part of their user-customizable configuration, but the range of font sizes should be limited
to what is practical.

1.3.3.2 Default Fonts

Rule 1-15: Use the default system fonts available. Avoid exotic fonts. Avoid fonts from

third-party font packages; these might not be installed on user workstations. (It is best if

developer workstations not have such font packages installed. An exception would be

TrueType fonts which come with the organization's standard Windows-based word processor.)

Rule 1-16: The default font for controis shall be MS Sans Serif (the default font in Visual

Basic). (The user might be allowed to change the default font for all controls as part of their

user configuration; however, it will involve extra programming.)

NMS Developer Standards & Guidelines 1-3 April 1993

"Rules Only" Quick Reference Version

Rule 1-17: The default font for documents (word-processing controls or OLE objects) shall

be Times New Roman. (The user might be allowed to change the default font as part of their

user customization configuration.)

Rule 1-18: The default font for message boxes is controlled by the settings in the WIN.INI

file, settable by the user through Control Panel.

1.3.4 3-D Effects

Rule 1-19: Use 3-D effects for all controls where feasible -- except on labels -- , to make the

applications more appealing to the eye and less boring.

Rule 1-20: Lighting should appear consistently, in 3-D effects, to come from over the user's

left shoulder.

Rule 1-21: Do not use the 3-D effect DLL provided with Visual Basic to give 3-D effect to

dialogue boxes. (It has bugs; there are several versions of it from different vendors with

different bug-fixes and/or bugs; Microsoft has stated that it will not support it nor correct any

bugs in it; and it slows the application.)

Rule 1-22: Labels should appear to be printed on the background of a form or frame panel.

To this end, for label controls, avoid the use of 3-D effect and make the label background

color the same as its parent form or frame. Use the Elastic frame to provide this

functionality.

Rule 1-23: Label controls which are actually used as labels for visible GUI objects should

appear to be written directly on the background of their parent form or panel. Otherwise, a

label can be distracting -- calling the user's attention to them as if it were a data entry field.

Thus, they should not have 3-D boxes around them, and their background colors should be

the same as the background of their parent form or panel.

1.3.5 Text Display Selection and Formats

1.3.5.1 Selection from Text Lists

Rule 1-24: Enable look-ahead typing where feasible. When the user is typing in a string to

look up a name or value in a list, except where this requires that each keystroke start a new

query against the database. In the latter case, optimization techniques can be used to

implement this, if deemed useful enough.

Caution: This may require intercepting a ControlKeyPress() event-handler and/or the use

of extra state variables to control the search functions and to keep the search-ahead routine

NMS Developer Standards& Guidelines 1-4, April 1995

"Rules Only" Quick Reference Version

from being called again before it has completed the current search. This may require
optimization techniques.

1.3.5.2 Dates

Rule 1-25: Dates should be displayed in the"'mm/dd/yyyy" format, like "12/21/1994"

-- especially in data entry/edit boxes.

1.3.6 Tabular Data Display

1.3.7 Objects

Rule 1-26: Document which graphic files go into a form. A copy of each icon or bitmap

file used to build a toolbar or otherwise used in a Windows application are stored in the

source code directory of each application in which it is used. Each form's descriptive header

(described in the "Coding Standards (Visual Basic)" Section) should list which graphic files

are used for which icons in which controls.

1.3.8 Graphs

1.3.8.1 Contents of Graph Screens

Rule 1-27: Graph: A graph shall be presented in a separate, typically rectangular, box on
the screen with a medium blue border. The screen background should be black or white (See
"Printing" Section below). Vertical and horizontal metrics or gradients shall also be inside the
graph box using medium blue uppercase letters. The graph "box" should be as large as
practical, and positioned in the upper, left portion of the screen.

Rule 1-28: Graph Title: A graph title shall be fully explanatory to My reader. The title
will typically be segmented by major-to-minor subject nouns, uppercase, left adjusted, and
positioned above the graph "box." An "Information Date:" with date, will be on the same
line, right adjusted.

Rule 1-29: Legend: The legend, relating colors to graph sub-elements, will be outside the
graph "box," to the right side of the screen and in a columnar list form, with color samples
aligned and to the left of the legend description or indicator word(s).

1.3.8.2 Graph Screen Functionality

Rule 1-30: Each graph screen shall provide a user the capability to generate and print a
report, with appropriate headings and formatting, of the values used to generate the graph.

NMS Developer Standards & Guidelines 1-5 April 199S

"Rules Only" Quick Reference Version

Rule 1-31: Where applicable, the user shall have the capability to generate additional views
for different time periods, such as fiscal year, month, etc.

Rule 1-32: The user shall have the capability to "toggle" between the graph and the report
used to generate the graph.

Rule 1-33: Graphs shall be printable on a black and white printer or optionally to a color
printer.

1.3.8.3 Colors and Styles

Rule 1-34: Colors depicting values or graphs shall be used in the following order:

1. Medium Blue 5. Purple (Magenta) 8. Cream
2. Yellow 6. Light Blue (Cyan) 9. Dark Green
3. Light Red 7. Orange 10. Gold
4. Light Green

Though the above color selection list allows up to ten colors, the recommended maximum
number of colors (values) used is six.

Rule 1-35: Any graph using a value which represents a plan, goal, standard, average, trend,
etc., shall represent that value in light green.

Rule 1-36: Deviations from plan, goals, standards, average, trends, etc., (variance) shall be
represented by incremental amounts; using yellow (caution) for a small variance, and light red
(warning) for larger variances.

Rule 1-37: When printing a graph (black and white) which depicts plan, goal, standards,
average, trends, etc., shall use the following "fill (or substitute) characters to represent the
indicated colors.

Color Fill Character

Light Green

Yellow *

Red +

1.3.9 Help

Rule 1-38: "Help" assistance shall be provided using the Microsoft Windows methodology.
Text will be generated using Microsoft's "Word" word processor and implemented with key
word hypertext using the RoboHelp tool. Context-sensitive help will be used where

NMS Developer Standards& Guidelines 1-6 April 1995

"Rules Only" Quick Reference Version

applicable and to the greatest practical extent.

1.4 User Navigation

1.4.1 Keyboard Methods as Alternatives to Mouse

Rule 1-39: The user should use the keyboard for as many operations as possible -- especially
in data entry applications.

1.4.2 Drill-Down Methods

Rule 1-40: A user should be able to "drill-down" to a more detailed view of a data set by
double-clicking on a cell or through the View menu item. This will usually pop up another
form displaying detail data -- often consisting of child records (from a one-to-many table
relationship) or shown in a grid or spreadsheet control.

1.4.3 Look-up Methods

1.5 Window Forms

1.5.1 General Rules

1.5.1.1 Resolution/Size

Rule 1-41: Window forms should be designed so that they will fit in the lowest-resolution
monitor supported (standard VGA Color @ 640x480 Pixels). Limit maximum window size at
design time to 625x370 pixels. Limit MDI child window sizes accordingly to fit inside such
an MDI parent form.

1.5.1.2 Labels

1.5.1.3 Exiting Forms

Rule 1-42: Each form should be provided a Close/Cancel button on the form. The button
should say Cancel if data has been modified and may need saving. The Cancel button should
not exit the form. Exiting a form with modified, unsaved data on it should pop up a dialog
box asking the user whether they want to save changes first. Setting up this usually requires a
Boolean state-control variable for each form called blnDataModified.

1.5.1.4 Window Titles

Note: Backus-Naur notation is used in the following title-bar specifications.

NMS Developer Standards & Guidelines 1-7 April 1995

"Rules Only" Quick Reference Version

Rule 1-43: The title in the title bar of an MDI parent window or non-modal window in a
non-MDI application, should use the following format recommended for the new MS GUI
model in Windows 4.0 (code-named "Chicago"):

[<Document> : <Item Name>] and/or [<Current Window>] : <Application>

Obviously, the application name in the title bar should be short or abbreviated.

1.5.1.5 Graphics on Forms

Rule 1-44: Limit the use of bitmaps on the window forms, except the opening "distraction"
and/or "main menu" window forms. Bitmaps use memory and slows screen repainting. Load
such bitmaps at runtime to conserve memory and executable file size and unload the form as
soon as possible. If possible, use .WMF files instead of Bitmap files for least memory use
and maximum screen repainting speed.

1.5.1.6 Automatic Resizing

Rule 1-45: Unload window forms when possible, unless they are called up repeatedly and it
is desired to make them appear faster when called -- in which case, make the decision to
unload or to hide (or reduce) the form based on memory availability. This can be done at
design time for expected minimum configurations or, more efficiently, at run-time by using
Win API calls to check memory and resources.

1.5.1.7 3-D Appearances of Forms

Rule 1-46: Forms designed for applications should have a 3-D appearance, preferably with
background colors used to help identify the forms and make the application more useful.

Rule 1-47: Avoid using special 3-D controls just for the sake of 3-D effects. Simpler
controls will work with the Elastic frame or Tab control to give desired 3-D effects.

Rule 1-48: Avoid using the MicroHelp 3-D controls due to slowness in screen repainting.

Rule 1-49: Avoid using the Sheridan 3-D controls. Specifically, do not use the Sheridan 3-D
frame panel.

Rule 1-50: Avoid using the set of controls in file THREED.VBX.

NMS DeeloperStandards & Guidelines 1-8 April 199S

"Rules Only" Quick Reference Version

1.5.1.8 Distraction/Program Entry Forms

Rule 1-51: Each application -- or application subsystem consisting of several applications
with a common main menu window form -- should show the user a "distraction screen"
window form while program initialization is being done. This form should be full-screen and
contain an attractive, graphical, full-screen image. The database logon form, if needed,
should pop-up over this distraction form. The image should be loaded from an image file at
runtime to reduce memory overhead and size of the executable file. After logon and
initialization, this form should be unloaded. Use Windows Metafiles (.WMF) for graphic
images, where possible, for minimum size and fastest resizing speed.

1.5.1.9 Main Menu/System Entry Forms

Rule 1-52: Each Business Area's software system shall provide a system-entry application
containing a "main menu" window-form, shown after or as part of the initial distraction form
(after the database logon form) to select a task (a Windows application) or task-group (a
subsystem of applications) from large icons with titles. This acts to reduce confusion and
provides a more user friendly alternative to normal Program Manager "groups" (of application
icons). This also allows the developers to split the software into multiple, separate
applications to reduce memory and .EXE files size. It can reduce user confusion from being
offered too many choices at once. Since the icons can be picture boxes much larger than
normal icons, detailed art images, scanned images or logos to reduce confusion and speed user
access.

The main menu system entry application should be unloaded after a user selects a task
application, but each spawned application should provide a means of getting back to that main
menu application through the "Window" menu item.

The main menu form can contain a large image in its background, but this image and the
menu-icons should be automatically resized proportionally to fit different resolution monitors
in full screen mode. A recommended technique is to use the Windows API bitmap resizing
subroutines (BitBLockTransfer functions). Font sizes for menu item labels on su'-h a form
should also be automatically adjusted.

1.6 MDI Parent Forms

1.6.1 Top Menu Bar

Rule 1-53: The MDI parent form's top menu bar shall have a minimum of the following
standard top-level menu items:

File -- This shall provide at least the minimum functions

NMS DeveloperStandards& Guidelines 1-9 April 1995

"Rules Only" Quick Reference Version

Database
Edit
Window This shall show a list of currently open window forms

within the application.
Help

In addition, where they are appropriate, the following extra top-level menu items may be
used.

View 	 This shall offer the user a means of changing the view,
such as Zooming a view of the currently-selected control
on the currently active form, or bringing up another form
to provide further detail of the current document, work
item or data.

Rule 1-54: The Help menu item shall be placed at the far right. This can be done at run
time by HelpMenu.Caption = Chr$(8). At design time, this can be done by pasting a
backspace character created in Write by pressing Alt and numeric keypad 8.

1.6.2 Toolbar

Rule 1-55: The MDI parent form shall have a toolbar at the top, underneath the top menu
bar, to enable the user to quickly select often-used actions. This toolbar shall use a set of
icons in an order; these shall be standardized in common among the various Windows
applications developed for this organization. Most of these icons will act as shortcuts to menu
items, saving the user from navigating through multiple levels of the top menu bar. The icons
on the toolbar should appear as 3-D raised push buttons. The toolbar might look
something like this one from an A&A application:

Rule 1-56: Document which graphic files go into a form. A copy of each icon or bitmap
used tofiHld a toolbar or otherwise used in a Windows application should be stored in

the source code directory of each appropriate application. Each form's descriptive header
(described in the Coding Standards section) should list which graphic files are used for which
icons in which controls. (This rule is repeated here for emphasis.)

7MS Developer Standards& Guidelines 1-10 	 April 1995

"Rules Only" Quick Reference Version

Rule 1-57: For each icon on the toolbar, a help-bubble should appear after a brief time
delay when the user moves the mouse cursor over the icon, describing the function of that
icon.

1.6.3 Standard Toolbar Icons

Rule 1-58: The standard set of icons in a toolbar for common operations shall be as follows:
(Some sample icons are shown, but not all examples are in the required 3-D appearance.)

Rule 1-59: Icons of 3-D objects should appear to face obliquely to the left, as in the printer
icon at the right.

Toolbar Icons Corresponding to File Menu Items

Open a folder or a file: 	 -- An open folder

Print --	 Print the data in the current window.

Save to disk --	 An arrow pointing to a diskette.

"Edit" Toolbar Icons

The edit functions of the toolbar (cut, copy, paste) should be accessible from the main, top
menu bar as well as under Edit.

Edit-Cut -- A pair of scissors

Edit-Copy --	 An arrow to a clipboard,
or a camera.

NMS Developer Standards & Guidelines i-lI 	 April 199

"Rules Only" Quick Reference Version

Edit-Paste 	 A paste-pot or an arrow from 11=

a clipboard to a page.

Undo last edit --	 A U-turn arrow or eraser M MJ

Search 	 A pair of eyeglasses or field
glasses is common for this
operation (including Search and Replace).

Note: The magnifying glass 	symbol without a question mark is commonly used for
"Zoom" function -- zooming a view -- however, with a question mark in it, it is commonly

used for search. To eliminate possible user confusion, it is better to reserve the magnifying
glass (without the question mark) for "Zoom" -- especially for the smaller, toolbar icons, in
which it is harder to make the distinction.

Database Action Toolbar Icons

Use the appropriate action for a particular window form's task. The data record functions
Logon, •Password, Next, Previous, First, Last, Insert New, Update, Delete, and Cancel
should also be accessible from the top menu bar. In addition, the forms which require the
database functions Insert New, Update, Delete, and Cancel, should also be provided by
clearly marked command buttons on each individual MDI child form.

Insert New Record -- An arrow showing insertion of one '.

item between two others.

Delete Current Record 	 -- An arrow showing removal of one
item from between two others.

Update, commit changes -- a check mark, optionally with the

letters "OK"

Cancel --	 all changes to current record or
work item K

NMS Developer Standards& Guidelines 1-12 	 April 1995

"Rules Only" Quick Reference Version

Previous Go to previous record or work item j5J

Next Go to next record or work item [j

Go to beginning of current -- A rewind Button
recordset

Go to end of current A fast-forward button , hi
recordset

Connect to Database

Password Change the user's database
password

Other Common Toolbar Icons

Attach a "Post-it" Note (to the current record or work item).

In-basket Open a task-specific workflow
in-basket form.

Show List -- Lookup from table

Query Execute an ad-hoc query
against the database

Exit the application -- An open door with an arrow or
a person walking out of it.

NMS Developer Standards& Guidelines 1-13 April 199

"Rules Only" Quick Reference Version

Help

1.6.4 MDI Parent Status Bar

Rule 1-60: Each MDI parent form shall have a status bar at the bottom. This status bar shall
contain as a minimum, the following:

Message window: At the left side of the status bar, a single-line text window shall display
messages sent from the application to inform the user of the current
state of things, to explain the use of the currently-selected edit window.
or other controls, to recommend the next action and provide guidance.

Although Visual Basic provides custom controls to show keyboard statuses, such as Caps-
Lock or Num-Lock, it is recommended that they not be used. If they are used, the standard
place for them is on the status bar at the right.

Below is an example of status bar from an A&A MDI parent form:

The second text window in this status bar shows the current user's database user-id.

DisconnectedfromORACLE database- Userid-Role Re*

Another useful item to show in this status bar is system (current) time and date.

4riatrols

1.7.1 Command Buttons

Rule 1-61: Captions for command buttons should be short, direct and clear. They should be
verbs. A Hot-key using the Alt-key with a mnemonic letter key should be defined as a
keyboard alternative for each command button. The use of these hot-keys should be
consistent from form to form to avoid the user getting used to performing an action by hitting
one key and being surprised when)':t key performs a different action in another form.
Common hot-key usageF in Windo.,s applications are:

At-O OK

Alt-C Cancel

Ait-X Exit the application

NMS Developer Standards& Guidelines 1-14 April 1995

"Rules Only" Quick Reference Version

Certain other, common hot-keys are defined in the Windows Interface Design Guide -- most
commonly for top menu bar items, such as Alt-F for File, At-E for Edit, Alt.-W for
Window, and Alt-H for Help. Care must be taken to avoid conflict with key combinations.

In addition, the following keys have common meanings:

Esc Close the current lookup-window or menu window with nothing selected.

See the "Standard Control Placement on Forms" Secdon for rules on command button
placement.

Common Command Buttons

Caption Hot Key J Function 	 Alternate Icon

Close AIt-L Close the current window.

or

Alt-C
(1)

Ok A1t-O 	 Shall be used only for I___

acknowledgement, not for "do-it" or
 HI"execute".

Cancel Alt-C 	 Cancel the changes to the current

record.
 K

Update Alt-U 	 Write the current record to the

database.

Add New Alt-A 	 Create a new document or record.

Delete Alt-D 	 Delete the current record.

NMS DeveloperStandards& Guidelines 1-15 	 April 1995

"Rules Only" Quick Reference Version

Caption Hot Key Function Alternate Icon

Do It or
Execute

Alt-G Perform the .,elected operation, such
as a user-defined ad-hoc query.O

V,

(1) Alt-C is the standard hot-key for Cancel, but the Cancel button on a data-entry/edit form
can change caption to "Close" when data on the form is in an unmodified state, and vice
versa.)

1.7.2 Standard Control Placement on Forms

1.7.2.1 Command Buttons

Rule 1-62: Command buttons shall be placed at the right or bottom of the form or panel in
which they are used. If at the bottom, they should be centered or, preferably, at the right. It
is important that the user get to expect that a Close button to close a window-form is always
in the same place -- at the far right bottom.

Rule 1-63: Command buttons in a group should all be the same size, if possible.

Rule 1-64: Avoid one set of command buttons on one form looking the same but working
differently or vice versa, as a similar or identical set of buttons on another form. For
instance, Add, Update, Delete and Cancel buttons should always be in the same order from
one form to another.

1.7.2.2 Grouping of Controls

Rule 1-65: Group controls on a form according to their logical or functional use or category.

Use Elastic frames (preferable to normal Visual Basic frame panels), frame panels, or Tabs
controls to section off different groups of controls on a form. Try to avoid drawing lines on

a form or frame; because its AutoRedraw may have to be set on, slowing screen updates.

Rule 1-66: Make the focus of user action flow from left to right, top to bottom, both within

and among groups of controls.

NMS Developer Standards& Guidelines 1-16 April 1995

"Rules Only" Quick Reference Version

Rule 1-67: Arrange data-entry/edit controls within a group - and arrange groups of controls
on 	a form -- according any required sequencing necessary for data lookup or vlidation.

Rule 1-68: Avoid overcrowding of a form.

1.7.2.3 Labels and Label Controls

Rule 1-69: Labels associated with certain controls should generally be positioned according
to the following guidelines:

* 	 Group Box (such as a frame) -- on top of or in the upper left corner replacing
the frame line.

* Single-field controls -- to the leA, of, or above, the control.
" Command button captions -- inside the command button.
* 	 Check boxes or option boxes -- to the right of the button or box.
* 	 All others -- above or left of control.

1.8 Data-Entry Controls

1.8.1 Speeding Data Entry Using Defaults

Rule 1-70: For certain date fields, it may make sense to automatically fill in the current

day's date as a default, or to at least put in the current year. For date fields, the user should

be able to type in just two digits of the year as a shortcut, and the application would
automatically convert this to the correct four-digit number on the user leaving that field. This

is a simple algorithm. A type-ahead correction can evrn be implemented for certain date

fields. If the user starts the year with a "9" then expect a two-digit year like "199N" and

change the "9" to "199"; otherwise, if the digit begins with a zero, one or two, expect the year

to be like "20nn" and change the "1" or "2" to "201' or "202" before the user keys in the next

number.

1.8.2 Speeding Data Entry Using Pop-up Windows

Rule 1-71: A user should be able to select certain data values from a pop-up dialog box

form. On such a form, the user should be able to make a selection with a double click or by

highlighting an item and clicking an "OK" button or pressing the Alt-O key. Alternatively,

the user should be able to avoid selecting anything by clicking the "Cancel" button or using

the Alt-C or Escape key.

Rule 1-72: A user should be able to pop up a calendar by double-clicking or clicking the

NMS DeveloperStandards & Guidelines 1-17 	 April 1995

cLI

"Rules Only" Quick Reference Version

right mouse button on a date field. Selecting a date from the calendar should close the
calendar and write the selected date into the date field box.

Rule 1-73: A data entry/edit box which can have only a fixed set of values should be
implemented using a list box. Alternatively, if more detailed information must be displayed
for each item in a list, or the list must be made up dynamically or "on-the-fly" by reading
from the database based on other user-entered data values or selections, a modal dialog box
can be popped up with a scrollable grid from which the user can select. Avoid codes in lists,
use text names. The user should never have to memorize "codes". Even if the database or
the software uses numeric or alphanumeric codes, always present a list of English-language
descriptive item name to the user.

1.8.3 Speeding Data Entry Using Masks

Rule 1-74: Zip codes, telephone numbers, and social security numbers should be
implemented as text fields (using masked text boxes), not numbers -- both for data entry
boxes and in the database -- in order to maintain correct sort-orders. Such fields should have
non-numeric characters filtered from the user input -- best done in the control's KeyPress()
event handler subroutine.

NMS Developer Standards & Guidelines 1-18 April 1995

"Rules Only" Quick Reference Version

2 	 CODING STANDARDS (VISUAL BASIC)

2.1 	 Standardizing Existing Code

These standards shall be applied to any new code developed. Existing code will be changed
as time permits, to conform to this standard, then regression-tested to verify that it still
functions correctly. Certain rules in these standards arc so critical that they shall be applied to
every module. These important coding standards are:

0 The inclusion of the Option Explicit statement at the beginning of every module file

& The setting of each VB (Visual Basic) programmer's Environment Options to include

"Require Variable Declaration = Yes"

* 	 The setting of each VB (Visual Basic) programmer's Environment Options to include

"Default Save As Format = Text", and the conversion of existing source code stored
as binary to text format

0 	 The setting of each VB (Visual Basic) programmer's Environment Options to include
"Save Before Run = Yes"

0 The inclusion of descriptive headers at the beginning of all source code files and
complex subroutines

* 	 Explicit declaration of every variable, each on a separate line with the type explicitly
declared

* 	 Adherence to source code naming conventions -- particularly name prefixes. (See
Appendices A & B)

All variables, GUI objects, data objects, and functions should be made to conform with
the defined naming conventions. Search and replace, either globally or within a
module or subroutine, is the best way to do this, but extreme care must be taken not to
corrupt working code. A problem with global search and replace in VB is that, since
VB search and replace operations are not case-sensitive, the programmer make
unintended modifications to many defined constants at once, when only lower-case
variable names were intended to be changed. Global search-and-replace is generally
safe for words or substrings that are long and whose uniqueness is obvious -

especially for ones that include one or more underscores.

2.1.1 	 Syntax Conventions

This document specifies placing commas and periods outside quotation marks where
confusion might arise about whether the punctuation mark is part of: a literal computer
command, SQL query, a literal string in a programming language, or other string or text
intended to be strictly literal.

NMS Developer Standards & Guidelines 2-1 	 April 1995

"Rules Only" Quick Reference Version

Programming source code samples or programming language keywords shall be in bold.

Where fixed-size font is necessary to maintain the original appearance and indentation, use

"Courier New" 2-12-point font. Source code samples are indented from the left margin.

DOS commands or other user-keyboard input shall be in bold italic and indented from the left

margin. Examples of screen display text should be in bold "Courier New" 2-1'4-point
font and indented from the left margin.

Where it is necessary to indicate optional parameters in examples of DOS commands or
source code examples, Backus-Naur syntax notation should be used to indicate these options.

(See the section on Backus-Naur notation in the "Document Conventions" Section under

"Document Standards.")

2.2 Declarations

2.2.1 Variable Declarations

Rule 2-1: Variables shall always be declared before use.

Rule 2-2: Variable declarations shall contain "As <datatype>" to explicitly declare the data
type.

Rule 2-3: Each variable shall be declared on a separate line with its own explicit data type
declaration.

Rule 2-4: Variable declarations shall be followed by a comment defining its meaning when
the name is not sufficient. The comment should also describe any peculiarities of the variable
or the way it is used.

2.2.2 Constant Declarations

Constant (and variable) declarations should be grouped logically or functionally. Global
constants must, of course, go into a global (.BAS) file. Groups of constants will have a

header comment block to define their commonalty and purpose. Each constant will have a

comment describing its meaning or use if this is not totally obvious from its name and
grouping. Constants that are not used (for instance, the VB constants found in the
CONSTANT.BAS file) should be commented out.

2.2.3 DLL/API Subroutine Declarations

Warning: Be very careful in using subroutine prototype declarations for external DLLs. The
ones which come with Visual Basic 3.0 in the files WIN30API.TXT and WIN3IEXT.TXT
have several incorrect data type declarations -- specifically several where the As String or By

NMS Developer Standards & Guidelines 2-2 April 1995

"Rules Only" Quick Reference Version

Val As String is used where a pointer or reference to a user-defined type (data structure)
should be used. This comes about from Microsoft's conversion of C-language function

prototypes to Visual Basic function prototypes, where in old C, a pointer to a string (char *)
was also used as a generic pointer to anything -- the same way that "void *" is now used in C
and C++ as a generic pointer.

The rules for declaring parameters in Visual Basic are not clearly laid out in any one book.
In Visual Basic, pointers are not used, but passing parameters "by reference" is the same
thing.

Rule 2-5: Always explicitly declare the data type of all subroutine parameters, using the
same rules as for variable declarations. (See "Variable Names" under the "Naming

Conventions" Section .)

Rule 2-6: The correct way to declare a user-defined-type parameter passed by reference to an
external API subroutine is to declare the parameter as data type "As Any" or "As <Type
name>", as in the following example from file WIN30API.TXT:

I Parameter Block description structure for use with subr. LoadModulcO:
Type PARAMETERBLOCY

wEnvSeg As Integer

IpCmdLine As Long

IpCmdShow As Long

dwReserved As Long

End Type

Declare Function LoadModule Lib "Kernel" (ByVal IpModuleName As String, \

IpParameterBIock As PARAMETERBLOCK) As Integer

This could also have been done as:

Declare Function LoadModule Lib "Kernel" (ByVal IpModuleName As String, \

IpParameterBiock As Any) As Integer

Rule 2-7: The correct way to declare a string buffer type parameter in an external API
subroutine is to declare it as "By Val" and data type "As String", as in the following example
from file WIN30API.TXT:

Declare 	Function WinExec Lib "Kernel" (ByVal IpCmdLine As String,

ByVal nCmdShow As Integer) As Integer

Rule 2-8: Never pass a VB String object to an external DLL subroutine without first
allocating a memory block for the string. (There are certain exceptions where certain DLLs
have subroutines specifically designed to take VB string parameters by reference and which

NMS Developer Standards& Guidelines 2-3 	 April 1995

"Rules Only" Quick Reference Version

can dynamically allocate memory for these strings the same way that VB does.) Note that

some DLL subroutines have an extra parameter for passing the size of the buffer.

Rule 2-9: Always terminate a VB String object passed to an external DLL subroutine with

at least one C-type null character or Chr$(0). For fixed-size buffers fill out the end of the

buffer with C-type null characters. (A C-type null character is a byte of numeric value zero,

not the numeric character "0".)

Rule 2-10: Use constants to define the size of fixed size string buffers passed to an external
DLL subroutine and in all references in the code to the buffer size.

2.3 VB Environment

2.3.1 Option Explicit

Rule 2-11: Set the "Require Variable Declaration" environment option in Visual Basic. This
causes the Option Explicit statement to be inserted at the beginning of any new VB source
code modules (.BAS or .FRM) created.

Rule 2-12: The Option Explicit statement must be at the head of each source code module
(including form files). For ease in QA verification, this should be before the Option Explicit
statement and the module's descriptive header.

2.3.2 DefInt A-Z

Rule 2-13: The statement Deflnt A-Z shall be inserted at the beginning of each module file
(including form files) -- preferably, for ease in verification, before the module descriptive
header and after the Option Implicit statement.

2.3.3 Save As Text

Rule 2-14: Set the Default Save As Format = Text environment option in Visual Basic.

Rule 2-15: Convert any existing source code modules saved in binary format to text format.

2.3.4 Option Base

2.3.5 Option Compare Binary vs. Option Compare Text

2.3.6 Save-Before-Run

2.3.7 Grid-Alignment Size = 60

NMS Developer Standards & Guidelines 2-4 April 199

"Rules Only" Quick Reference Version

2.3.8 Config.Sys: Files

Rule 2-16: Set Files=<N>, where N = 75 to 2-125, in file "CONFIG.SYS" on developer

workstations.

2.4 Source Code Documentation

2.4.1 Code Commenting

Rule 2-17: Language in comments should be short but clear. It can be informal. Correct
spelling and grammar should be used because such errors interrupt the flow of reading.

Rule 2-18: Comments will be used to provide detail about what a subroutine call or section
of code does and why, when this is not obvious from the subroutine name or from variable or
object names in the code section. This is especially important where variable, object, or
variable names need to be kept short and do not convey enough information about a process.

2.4.2 Standard Header Templates

Rule 2-19: Descriptive header sections -- using large comment blocks -- should be used at
the beginning of each module file and at the beginning of all subroutines of any size to help
make the code self-documenting. (A module file here means a source code file with a .BAS
or .TXT suffix or a form file with a .FRM suffix.) Extremely short, simple subroutines, such
as VB event-handlers, may not require a descriptive header. Subroutines with no parameters
or with parameters whose meaning is obvious, may require only one or two lines of comment
to describe what it does.

These headers shall list and describe global variables used or affected; database tables read or
modified, and any file I/0.

Subroutine headers shall list and describe input parameters, output parameters, and return
values. Parameters passed to a subroutine should be described in detail when their meanings
are not obvious or when they need to be in a specific range. They shall include flexible
format, narrative sections that provide enough detail to enable a new programmer to
understand the intended functionality. This description shall not describe the implementation
details (how it does it) because these often change over time, resulting in unnecessary
comment maintenance work, or worse yet -- erroneous comments; the code itself through
local comments will describe the implementation.

There are four different standard header templates -- one each for:

Procedure Procedure-type subroutines. These do not return a value; although they

NMS Developer Standards& Guidelines 2-S April 1993

"Rules Only" Quick Reference Version

can pass back values through their parameters. In VB they are called a

Sub.

Function 	 Function-type subroutines. These return a value.

VB Module 	 A Visual Basic source code module, conventionally stored as a text file
with a ".BAS" suffix.

Form Module 	A Visual Basic "Form" module defining a VB windows-form and
containing source code conventionally stored as a text file with a
".FRM" suffix.

Copies of these VB standard templates are found in files FUNCTION.TEM,
SUBROUTN.TEM, MODULE.TEM, and FORM.TEM in the common, re-usable code

repository on S:\COMMON\VBSOURCE\TEMPLATE. Examples of their use are given

below.

Rule 2-20: Each descriptive header block shall identify who created the module or

subroutine. It shall also list briefly and clearly describe the gist of the modifications in
different revision levels of the module or subroutine, who modified it, when and why. Use

the automatic change-description prompting (on module check-in) and keyword-expansion
features of the VCS (version control system) to automate this process for modules.

Rule 2-21: The comment header block at the beginning of a module shall be of a standard

header template format. It should give the file and module name, explain the purpose of the

module; the common functionality of the classes, constants, global variables, and subroutines

grouped within it.

Rule 2-22: The comment block at the beginning of the application's main module (the

module containing the Main() subroutine for the application) will give it an overview

description of the application, enumerating primary data objects, routines, algorithms,
dialogues, database and file system dependencies, etc., and shall be included at the start of

the .BAS module file that contains the project's Visual Basic generic constant declarations.
An example follows, with sample source code in bold and comments for purposes of this

document in non-bold:

The following standard header template for a form (.FRM) file contains sample variable,
constant, subroutine, and table specifications.

NMS DeveloperStandards & Guidelines 2-6 	 April 199S

"Rules Only" Quick Reference Version

FILE NAME: <Module name>.BAS (for modules or <Formname>.FRMforforms)

FORM NAME: frmAcctSpecial (forform modules only)

APP: <application name>': Shared

PURPOSE: The purpose of this module is ...

It contains subroutines with the common purpose of

GLOBAL SUBROUTINES EXPORTED: (only for .BAS modules, not for .FRM modules)

function errUpdateAcctSpecial (sample subroutinenames)

function lngGetNumSpecialAcctRecs

sub DisplayActErrMsg

GLOBALS IMPORTED:

g_arrAccountRecs - an array of account records

g_ds Creditors - a dynaset of creditors associated with this

gang.

GLOBALS EXPORTED: (only for .BAS files)

garrAccountRecs - an array of account records

FILE 1/0: (optional)

TABLES READ: (optional ifnone read)
(The following optional mapping to controls or grid columns is to be used onlyfor VB form files.)

Map to

Table Attribute Control/Grid Column Description

<Tablel Name> FieldI <Grid Column 2-1> (samplespecification text)

Field 2 <Grid Column 2>

<Table2 Name> FieldI <Grid Column 3>

TABLES MODIFIED: (optional if none written to)

'HISTORY:
Created by: Henry Hull, Nov. 04, 1994
Modified by: Henry Hull, Dec. 25, 1994 Revision 1.1

Added safety check for null value in global dynaset fields:

g_dsCreditors("AcctNo").

Rule 2-23: The comment block at the beginning of a subroutine should give its name and
describe its functionality. It shall identify input parameters, output parameters, and return
values. In addition, it will identify any global variables, database tables, files accessed or
modified, and any other unusual I/O. An example is given below.

NMS Developer Standards & Guidelines 2-7 April 1995

-------------------------------------- --------------------

"Rules Only" Quick Reference Version

Recommendation: The comment block at the beginning of a subroutine preferably should be
inside the subroutine just after its declaration line, indented 1 level, or. outside the subroutine,
just before the subroutine declaration, not indented but flush with the left margin.

Sub UpdateAccountSpecial (curPayment As Single)

This subroutine processes a payment for special case individuals.

It has this special functionality and

It uses the input and ... to update a matching record in the

global array garrAccountRecs.

ASSUMES:
This subr. assumes that the global dynaset and global array
listed below have been initialized.

INPUTS: curPayment - the payment being made for the
(List each non-obvious parameter on a separate line with in-line comments.)

OUTPUTS: A printed exception report is printed
(List each non-obvious output parameter or other output not listed below on a separate
line with in-line comments. Do not list function return values here.)

RETURNS: data type - description
(Use this only for functions, not procedures (called Sub in VB)).

SIDE EFFECTS: (optional)
List each non-obvious external effect. This is usually obvious through
the list of globals affected, file output, and tables/fields affected.

GLOBALS USED:
g_arrAccountRecs - an array of account records
g_dsCreditors - a dynaset of creditors associated with this

gang.

GLOBALS MODIFIED:
g_arrAccountRecs - an array of account records

FILE I/O: (optional)

TABLES READ: (optional if none read)

TABLES MODIFIED: (optional if none written to)
(If any tables are affected, list specific fields affected.)

---------
HISTORY:

Created by: Henry Hull, Nov. 04, 1994
Modified by: Henry Hull, Dec. 25, 1994
Added safety check for null value in global dynaset.field:

g_dsCreditors("Acct_No").
N els---

NMS Developer Standards & Guidelines 2-8 April 1995

"Rules Only" Quick Reference Version

2.4.3 Internal Comment Blocks

Rule 2-24: The code within long subroutines shall include normal comments explaining lines
or data objects and section headers composed of comment blocks highlighted using lines
formed of " or "*"characters. Use comment blocks to make long subroutines more
readable by breaking it up into sections, such that a programmer can quickly scan through the
code, understanding the main logic flow without having to read detail, and to quickly get to a
particular section where modifications may be required. A good technique is to insert a
pseudocode description of the subroutine's algorithm into the subroutine body, split it up into
comment blocks, adding explanatory text where appropriate, and then fill in the section of
code underneath each comment block. Comment blocks should stand out visually. Examples
of comment blocks follow.

For small modules, or comments embedded in large modules use:

'ACTION SUMMARY STATEMENT

Comment detail ...

For large modules, where the need exists to use a higher level of comment blocks or to call
attention to one or more particular sections, use the following style comment-block:

ACTION SUMMARY STATEMENT

Comment detail ...

or

ACTION SUMMARY STATEMENT

Comment detail ...

Rule 2-25: The right end of a comment block should not be closed to form a box, since this
takes too much time to manually reformat lines when making changes inside the comment
blocks. (It also creates larger source code files because of the large number of trailing spaces
required.)

Rule 2-26: Place the name of the subroutine in an in-line comment at the end of each
subroutine that is longer than about five lines or which might cross page boundaries in
printouts.

NMS Developer Standards& Guidelines 2-9 April 1995

"Rules Only" Quick Reference Version

2.5 Indenting Source Code

Rule 2-27: Indent all code within a subroutine at least one level.

Rule 2-28: Indent all -code inside a control structure, such as a loop or If-Then-Else, one
level. VB Select-Case statements will be indented as in the following example:

Select Case Varl:
Case 1:

Statement !...
Statement 2...

Case 1:
Statement 3...
Statement 4...

End Select

Rule 2-29: Four-space indenting shall be used for Visual Basic source code. Three is the
ideal, but requires all programmers to set their VB environments the same. The same
indenting should be used throughout a project.

Rule 2-30: When nesting control structures, put a comment at the end of each control
structure -- and at the beginning if it helps -- to identify its beginning and end.

Rule 2-31: If using a programming editor, such as Brief, WinEdit, or Visual SlickEdit, the
tab option shall be set to use all spaces and not to fill with tab-characters. Otherwise, printed
source code will not look as it appeared on screen. There is virtually no discernable
difference in compile times between using tabs and using spaces.

2.6 Naming Conventions

Rule 2-32: Names shall be shortened, within reason -- using standard abbreviations where
necessary -- and should clearly indicate the meaning and use of the object named.

Rule 2-33: Except for constants, individual words within a name shall begin with a capital

letter, and the rest will be lower-case letters or numbers.

Rule 2-34: Avoid acronyms in object names, where possible, except for a very small list,
such as "FY" for fiscal year, "BY" for budget year, and "OY" for operating year. However,
the statenents declaring and using acronyms should always have explanatory comments.
Always program for newcomers. (A list of these standard acronyms will be posted in an
appendix later.)

Rule 2-35: Generally avoid underscores in names, except:

NMS Developer Standards & Guidelines 2-J0 April I995

"Rules Only" Quick Reference Version

* 	 after the prefix of a control name or a GUI object,
* 	 following an acronym (such as "TEC" for total estimated cost) where the acronym

must be clearly set off from the beginning capital letter of the next word or symbol in
the name,
where grouping words or symbols within a name makes the meaning clearer.

Exception: The use of underscores to separate words inside object names can be allowed
where 	it helps readability, but the recommended standard is to avoid them within variable
names. The use of underscores has the disadvantage of making names longer.

A variation of Hungarian notation (lowercase prefixes followed by an underscore) is
recommended for GUI objects and database objects, since this provides quick recognition of
those type objects versus variables. These are discussed in separate subs'ctions below.

2.6.1 	 Name Prefixes

Rule 2-36: Use the standard name prefixes to indicate the type of any data object, database
object, 	or GUI object.

Rule 2-37: Global variables and data objects shall be further prefixed with a "g" or "g-" as
in example global database object g dbAIDMain.

2.6.2 	 Constant Names

Rule 2-.38: Constants shall be named using all uppercase letters. Numbers and underscores
can be 	embedded in them.

Rule 2-39: Do not prefix global constant names with a "G" or "G ", since there are too
many global constants already defined in VB and the Windows API that do not use this
convention.

Rule 2-40: For a group of new constants that refer to a common class of objects or to a
common API or custom control(s), prefix the constant names with an abbreviated, mnemonic
code to indicate their common usage. A good example of this is the "DB_" prefix on all
VB database constants, the "MAPI_" prefix to VB MAPI constants, or the "SS_" prefix to all
FarPoint spreadsheet constants in the file "FPSPREAD.BAS."

2.6.3 	 Variable Names

Rule 2-41: Use the standard Hungarian notation prefixes listed in Appendix B for variable
names to indicate the data type or use. (These prefixes are based on Microsoft's
recommended prefixes.)

NMS Developer Standards & Guidelines 2-11 	 April 1995

"Rides Only" Quick Reference Version

Rule 2-42: Global variables shall be further prefixed with a lowercase "g". It is
recommended to not use the underscore character to separate the "g" from the rest of the
prefix.

Rule 2-43: Do not separate a variable name prefix from the rest of the variable name with an
underscore.

Rule 2-44: Use the same rules for naming all subroutine parameters as for variable names
(except that the "g" for global is not appropriate).

Rule 2-45: When referencing cells, rows and columns within a grid via a loop, always use
loop-counter names like iRow and iCol instead of i and j. This makes the source code far
more readable.

2.6.4 Subroutine Name Prefixes: Indicating Data Types

Rule 2-46: Procedure-type subroutine names do not need prefixes, since they do not return
data.

Rule 2-47: Subroutine names shall sound like commands or verbs and shall have an object to
reflect the data object acted on. This applies to both procedure-type (Sub) and function-type
(Function) subroutines. For example, a function name can be like
"intGetCurrentTotalEstimCosto", which fulfills both requirements.

2.6.5 Names for Database Objects

Rule 2-48: Use the "Hungarian"-style notation naming prefixes from the table in Appendix B
for database-access type objects.

Rule 2-49: The prefix for a database object shali be separated from the rest of the name with
an underscore " " character.

Rule 2-50: Names of database objects should clearly reflect the name of the object in the
database (table-name, view-name, field-name, etc.) such as ("Account," "Country," etc.) which
it accesses or displays. Names of database objects should generally sound like nouns.

2.6.6 Names for GUI Objects -- Forms and Controls

Rule 2-51: Names of GUI objects (forms and controls) shall be prefixed using standard
prefixes listed in Appendix A.

NIS Developer Standards& Guidelines 2-12 April 1995

"Rules Only" Quick Reference Version

IMPORTANT NOTE: A form name shall always be prefixed with "frm_". Appendix A
defines variations to use for MDI parent and child forms. When first saving a newly named
form, since the "frm_" prefix will be in the name, VB will try to name the form's file
starting with "FRM_", thus using some of the eight characters available for a filename
prefix. The programmer must manually override this in the VB File/Save As operation, the
first time the form file is saved.

Rule 2-52: The prefix for a control or form shall be separated from the rest of the name with
an underscore "_"character to distinguish it from prefixed-names of variables.

Rule 2-53: Third party controls shall be identified by including an additional two-letter pre
prefix in their name identifying their vendor. Standard prefixes for third party controls are
listed in a table in Appendix A. This list is subject to revision as third-party controls are
added to USAID's standard set of tools.

Rule 2-54: The main part of the control name should indicate clearly in near-English the use
of the control. An underscore shall separate the prefix from the rest of the name, but
underscores shall not be used within the prefix nor within the suffix. For instance, a text box
might be txtCalculatedDepth, or a label connected to a data control field might be
Ibl StartDate. A Crescent Software CSDate custom control text box would be
csDate Completed, and a CSLabel might be called csLblTimeLapsed. A Sheridan
Software spreadsheet control might be ssTimeItems; although if there is only one tabular
control (grid or spreadsheet) on a form and its use is clear, sometimes it might be acceptable
to simply call the grid or spreadsheet Grid_1, fpGrid_l, or ss_1.

Rule 2-55: A VB data control's name shall indicate the table or view to which it is
connected. If multiple databases are accessed in one application, the data control's name
should indicate the database as well. (A data control is a GUI object, and is different from
the Database Access Objects.)

Rule 2-56: Use dat_ or data_ as a prefix for data controls as defined in the second table in
Appendix B.

Exception: One allowable exception to the custom control naming convention is the
collection of simple labels on a form which are not referred to in the code so their names do
not need to indicate any specific functionality. In this case, the default names Labell,
Label2, etc., are quite adequate, although lbl_1, lbl_2, may be slightly preferable. (The
programmer will want to make this collection of general labels a control array to reduce
memory overhead.)

2.6.7 Menu Naming Conventions

NMS Developer Standards& Guidelines 2-13 April 199S

"Rules Only" Quick Reference Version

Rule 2-57: All menu item names shall be prefixed with "mnu," as in the examples below.

Rule 2-58: Menu control prefixes shall be extended beyond the initial mnu label by adding
an additional prefix for each level of nesting, with the final menu caption at the end of the
name string.

2.7 Subroutine Design, Coupling and Cohesiveness

2.7.1 General

2.7.2 Global Variables

Rule 2-59: The scope of variables and constants shall be limited as much as possible to only
those modules using them. Variables and constants declared within a VB form-module but

outside any subroutines automatically have form-scope. In .BAS modules, the keyword
Global shall be left off any module-scope variables not intended to be used outside the
module.

Rule 2-60: Since global variables increase the possibilities for error to software development
and maintenance phases, the use of them shall be limited as much as possible and values and

variables passed as subroutine parameters where possible.

Rule 2-61: List all global variables -- used in, modified in, or exported from a module -- in

the module's descriptive header block. (See "Code Commenting" under the "Source Code
Documentation" Section.)

Rule 2-62: Never use short, cryptic names or single-letter names for global variables. An

exception is that just "gdb" can be used as a global database object if there is only one
database accessed in an application and only one database object is needed.

Rule 2-63: Never use global variables for loop counters or variables intended to be local in
scope. Never define a local variable with the same name as any higher-scope variable.

Rule 2-64: Where form-scope variables are used, there shall be comments in each subroutine

which references them to denote their scope. If it is possible to show their scope in the

name prefix, then do so. (Refer to the "Variable Names" Section of this chapter.)

Rule 2-65: Generally, avoid declaring subroutine parameters or other local variables with the

same name as any global, form-scope or module-scope variables. (Using the "g_"prefix in

the names of all global variables' names should take care of this for global variables.).

NMS Developer Standards & Guidc,'ines 2-14 April 199

"Rules Only" Quick Reference Version

2.7.3 Global Subroutines

2.7.4 Private/Local Subroutines

Rule 2-66: Limit the scope of subroutines to only the modules required to access them. (In
VB 3.0, a subroutine is either global or module-scope.) Use .the keyword Private in the
declaration of any subroutine meant to be called only from within its own ".BAS" module.
In a form module, this does not apply, since subroutines, variables, and constants in a form
cannot be global.

2.7.5 User-Defined Data Types

2.7.6 Constants and Variables -- Scope

2.8 Procedural Coding Standards

2.8.1 Concatenation Operators

2.8.2 Goto Statements

Rule 2-67: GoTo statements shall be avoided, except for forward GoTo used for error

trapping (as in On Error Go To <label>). (See the "Database Error Trapping" Section .)

Rule 2-68: Never use a backward GoTo.

Rule 2-69: Never use a GoTo statement to exit a loop or a process control structure (such as

an if-then-else or Select-Case) -- except for forward On Error GoTo statements used for

error trapping as referred to above.

Rule 2-70: Never attempt to use a GoTo statement to jump between subroutines.

2.8.3 Error Trapping

Rule 2-71: The programmer shall trap each and every database access and file access
statement or group of statements using a forward GoTo statement pointing to an error
handling routine at the end of the subroutine performing the access (as in On Error Go To
<label>).

Rule 2-72: Any code sections requiring error trapping via an On Error Go To <label>
statement preceding it, shall have an On Error Go To 0 (zero) following it to reset the error
trapping.

NMS DeveloperStandards& Guidelines 2-15 April 1995

"Rules Only" Quick Reference Version

Rule 2-73: Each local error handling routine (at the end of a subroutine) should call a
common, global error messaging and/or error logging routine for consistency in error
reporting, to reduce code size, and to increase maintainability.

Rule 2-74: All error codes without error messages shall be translated through a translation
table.

Rule 2-75: End each local error-handling routine with either of the following:

On Error Resume Next
or

On Error GoTo 0
Exit Sub

Rule 2-76: Each source code label (target of GoTo, not a label control) in an application
should have a name that identifies what object it is reporting an error for, or what kind of
error it is, and its purpose or context.

2.8.4 If-Then-Else Structures

2.8.5 Loading Text into Combo Boxes, List Boxes and Grids in VB

2.8.6 AutoRedraw Property

2.8.7 Sending Messages from One Form to Another in VB

2.8.8 Writing Text to Labels in VB

2.8.9 Modularization -- File Organization

2.8.10 Data Management

2.8.10.1 Validating Data Entry

Rule 2-77: Data to be sent to the database shall be validated in the application before being
sent to the database, according to knovvn brisiness rules and referential integrity constraints,
even though the same rules and constraint.: cre programmed into the database. There are
several places in the application where it m-ay bc n.r-essan, to perform data validation checks:

* On entering a form or record.
* On leaving a form or record.
* On entering a data field entry/edit box.

NMS Developer Standardsand Guidelines 2-16 May 1995

"Rules Only" Quick Reference Version

During each keystroke in a data field entry/edit box.

Some of these validations or "edit-checks" are performed on the immediate field, some are
cross-checks between fields, and some are cross-checks between records or with other tables.

Additional data validations might need to be performed before updating/committing the
edited record, in a data control's Update() event-handler subroutine.

Rule 2-78: Data shall be validated for each record before the user attempts to commit that
record to the database. Data validation should be performed in the data-entry/edit window
forms on a field-by-field basis and just before the update. Dates and numbers especially
should be checked for correct ranges of values. Some dates must be before or after other
dates in the database. For example, edit checks should prevent the user from entering an
end-date which comes before a start-date for the same activity. The pop-up calendar
mentioned elsewhere should be sent begin-dates and end-dates to define a range from which
the user can select.

Rule 2-79: Document data validation rules in the source code. The edit-checks performed
and the business rules or references to the sections of the requirements specifications
containing the pertinent business rules should be listed and described in the descriptive header
for each form or validating subroutine. Any ranges of valid values, where static and known,
should be defined. Careful analysis of the business rules and good, common sense are
necessary to decide which edit-checks to perform where and when.

Rule 2-80: Message boxes should notify the user as soon as possible of invalid data and why
it is invalid. If a specific field is invalid or missing, the focus should be set to that field
after the error message.

Rule 2-81: Users should be prevented from entering invalid characters or values -- before the
edit checks. This can be done by using special controls from Crescent Software for entering
numeric, currency, time, and date data, or by calling special keystroke-filter functions in the
control's Keypress() event-handler.

Rule 2-82: Provide lookup lists, where applicable, to assist user memory and to limit their
choices. Especially where a name or code must be from a fixed, finite list of valid values,
such as from a lookup table in the database, the user should not be allowed to enter the value,
but should be forced to select from a pop-up list box, a drop-down list box, or a pop-up,
modal selection form containing a grid or list box.

Rule 2-83: Lookup lists should not be hard-coded into the applications. They should be
loaded from the database, and just once if the same list is used over and over again. (See
recommendations for performance improvement for such lookup lists under "Increasing

NMS Developer Standardsand Guidelines 2-17 May 1995

"Rules Only" Quick Reference Version

Database Performance" and in the "Database Access and SQL Coding Standards (SQL)"
Sections.)

Rule 2-84: Lookup lists should show descriptive names, not codes; although certain lists can
show both if there is a valid reason.

Rule 2-85: If the data in one field is required to be complete and valid before certain other
fields should be filled in, then make sure that the required fields come before those needing
the required fields in the flow-of-focus among controls and among groups of controls.

Rule 2-86: If the data in one field is required to be complete and valid before certain other
fields should be filled in, then make sure that the required fields are correctly filled in before
the dependent fields.

Rule 2-87: Control the user's navigation through a data entry/edit form, where some fields
are prerequisite to others. While, according to GUI event-driven methods, the user should be
able to use the mouse to move at random among fields or to use the Tab key and Shift-Tab
key to move past certain fields or to go back, the reality for data entry/edit forms is that
certain fields must be filled in and validated before others (dependent fields) can be accessed.

Based on the above two rules, these corollaries follow.

Corollary 1: If a prerequisite field's data has changed, then the data in the dependent data
field controls should be revalidated and, if not valid, cleared and disabled until re-edited.
The user should be notified as to the new editing requirements.

Corollary 2: If a prerequisite field has not been entered and validated, then the dependent
data-field controls should be disabled from editing until the prerequisite field has been
completed and validated. This can be done by disabling the edit control or by intercepting
the mouse clicks and keystrokes for it. The disabling mechanism should also accommodate
Corollary 3.

Corollary 3: If the user tries to edit a dependent field before any prerequisite fields have
been completed and validated, then the user should be provided with message boxes
explaining why one cannot edit the field and what missing fields are required.

2.8.10.2 Debugging SQL

Note: Different rules may be required for databases other than Oracle.

Rule 2-88: Always trap errors for all database accesses and provide an error message that
shows the error message, any SQL code associated with the access, and the name of the

NMS DeveloperStandardsand Guidelines 2-18 May 1995

"Rules Only" Quick Reference Version

subroutine where the error occurred. See the "Database Error Trapping" Section for more
details.

Rule -89: When faced with hard-to-debug database access errors involving SQL, temporarily
implement a trace mechanism. Either one of the two following mechanisms is
recommended:

1. 	 Load an ODBC spy utility before testing the VB application.

2. 	 Capture the translations of SQL code which ODBC sends to a server DBMS, in a local
log file called "SQLOUT.TXT." In the <App. Name>.NI file (create one if it does not
exist), create an "[ODBCI" section, and under that insert the line, SQLTraceMode=1, as
in:

IODBC]

SQLTraceMode=l

Remove this entry late or set

SQLTraceMode=0

because it adversely affects performance, and the log file will eventually get too large.

2.8.10.3 Safely Interpreting / Converting Field Values

Rule 2-90: When reading the value of a field of a database table (also called an attribute of a
database entity) from any of the database objects in Visual Basic, the access should be
performed through a common method (encapsulated in a function-subroutine) in order to test
for NULL or invalid values and to convert them, where applicable, to default values and
datatypes. Also, other specific data validations or conversions specific to a particular data
type can be performed there.

Rule 2-91: Field Error-Trapping: Each database field-access subroutine shall have
customized error-trapping to trap database access errors and provide a standard format
database error message. Error messages shall include the field name, the ODBC or RDBMS
error message -- as provided by the VB Error$(Err) function -- and die SQL statement
generating the record set. The SQL statement shall be passed to the subroutine as a
parameter along with the field name. The calling subroutine shall decide whether to
terminate itself, terminate/unload its window-form, or terminate the application. Also, it is
up to the calling subroutine to handle or ignore invalid data.

These field-access functions should return a error code and should pass back the field value as

NMS Developer Standards and Guidelines 2-19 	 May 1995

http:Name>.NI

"Rules Only" Quick Reference Version

a parameter. The error code shall be a globally-defined constant DBSUCCESS=O (zero) if
successful, or one of a number of standard error codes if unsuccessful. These constants and
functions shall be defined globally, in a common .BAS module.

Rule 2-92: A different set of subroutines must be built (although on the same model) for
each of the VB database object types Dynaset, Snapshot, and Table; because the database
object must be passed to the subroutine as a parameter; however, part of the error-message
handling can be put into a common, lower-level subroutine. These common database field
access routines shall exist in a common module maintained and shared among the several
Business Area teams.

The conversion rules within these subroutines shall be as follows:

Numeric String Fields: Some numeric fields are implemented as strings for formatting
reasons, such as telephone numbers, social security numbers, and zip code numbers. These
shall be treated as text strings, but special subroutines can be written to retrieve and validate
each of them. See the rules for text fields.

Some other straight numbers might be implemented in database as numeric strings for some
reason. Such fields shall be converted to numbers and otherwise treated as ordinary numeric
fields. That is, if the field is NULL, a zero value shall be passed back.

Rule 2-93: Numeric Fields: Numeric and Boolean fields should be checked for NULL
values. If the field is NULL, a zero value-shall be passed back.

Rule 2-94: All Field Types -- Errors: If a field-access subroutine is called expecting a
certain data type and the data type of the field is another, incompatible data type, then a
message shall be displayed notifying of the difference in data types.

Rule 2-95: For all errors when accessing a field, an error code of
ERRFIELDDATATYPE should be returned and a standard-format error message
displayed from within the field-accessing function.

Note: If Visual Basic ever allows conditional compilation using compiler directives, then
debug code could be stripped out when creating a deliverable, executable application.

Rule 2-96: The user should be given the ability to kill all field-related error messages
following the first one for a record. Otherwise, the user is inundated with a barrage of error
message windows.

Boolean Fields: If a Boolean field value is NULL, the value shall be passed back as False

NMS DeveloperStandardsand Guidelines 2-20 May 1995

"Rules Only" Quick Reference Version

(zero). If the field is numeric and the value is zero, the value should be passed back as
False; else, if the value is any other numeric value, the value should be passed back as Visual
Basic True.

If the field type happens to be of type character and the value is a lower- or upper-case "y",
"t", "yes", or "true", then value should be passed back as True; else the value should be
passed back as False.

For any other strings or data types which cannot be interpreted as Boolean, the value should
be passed back as False and an INVALIDDATA error code returned. This probably
means the program source code is in error and needs to be updated because a field data type
changed.

Byte Fields: A Byte data type shall be considered as an unsigned integer of eight bits. If a
byte field value is NULL, the value shall be passed back as 0 (zero). If the field value is
numeric but outside the normal range for an eight-bit unsigned integer (as can happen when
the data type of the field is actually an integer, for instance), an error message should be
shown, a serious error code returned, and the value should be passed back as either +255 if it
can be translated as a positive integer or Zero value if a negative integer. This probably
reflects a program logic error, due to its being out of sync with the database.

Integer Fields: If an integer field value is NULL, the value shall be passed back as 0 (zero).
If the field value is numeric but outside the normal range for a integer (as can happen when

the data type of the field is actually a long integer, floating point or currency type), an error
message should be displayed in a modal message box,a serious error code returned, and the
value should be passed back as either Maximum Integer value if positive or Minimum Integer
value if negative.

Long Integer Fields: If a long integer field value is NULL, the value shall be passed back
as 0 (zero). If the field value is numeric but outside the normal range for a long integer (as
can happen when the data type of the field is actually a floating point or currency type), an
error message should be displayed in a modal message box,a serious error code returned, and
the value should be passed back as either Maximum Long Integer value if positive or
Minimumn Long Integer value if negative.

Single Floating Point Number Fields: If a single-float field value is NULL, the value
shall be passed back as 0.0 (zero). If the field value is numeric but outside the normal range
for a single floating point number (as can happen when the data type of the field is actually a
double floating point), an error message should be displayed in a modal message box,a serious
error code returned, and the value should be passed back as either Maximum Floating Point
value if positive or Minimum Floating Point value if negative.

NMS Developer Standardsand Guidelines 2-21 May 1995

"Rules Only" Quick Reference Version

Double Floating Point Number Fields: If a double-float field value is NULL, the value
shall be passed back as 0.0 (zero).

Currency Fields: If a double-float field value is NULL, the value shall be passed back as

0.0 (zero).

String (text) fields: If a string field value is NULL, the value shall be passed back as

(empty string).

Memo (Unlimited Size Text) Fields: If a memo field value is NULL, the value shall be

passed back as "" (empty string)..

Date Fields: If a date field value is NULL, the value shall be passed back as Visual Basic

Null, and no further interpretation shall be attempted. It shall be up to the calling subroutine

to handle this.

If a date field is a string, then if it can be converted to a valid date, then this date should be
passed back, otherwise a Visual Basic Null should be passed back along with an

INVALIDDATA error code.

Exceptions: The BLOB (binary large object) a data type for which no translation rules are
set in this standard. Local subroutines can be built to handle specific instances of such

fields. Other, specific exceptions to the above data types needed on a local basis can be
encapsulated in local subroutines built on the same model.

2.8.10.4 Programming Rules for Database Reliability

Rule 2-97: When setting the RecordSource property of a data control programmatically (by
assigning a table name, view name, or SQL query) care should be taken to assure that a non

empty recordset is returned, in order to avoid error conditions in bound controls. One

method for the programmer to safely handle empty record sets is to first test for the number

of records returned using a query like one of the following:

"SELECT COUNT(*) FROM ..."

or

"SELECT COUNT(DISTINCT) FROM ..."

Since this technique increases the size of the executable file and slows down the total time for

database retrievals, this technique is recommended only where there is a need for it.

Rule 2-98: When performing or refreshing a query returning a record-set -- either for a

database access object of type Table, Dynaset, or Snapshot, or for a data control -- the

NMS Developer Standardsand Guidelines 2-22 May 1995

"Rules Only" Quick Reference Version

record set returned should be tested for zero count.

Rule 2-99: If zero records are returned for a query used for editing data, then one of the
following actions should occur, either:

* The user is prompted to create a new record for data entry, or
* A riew record is automatically created for the user to edit.

The first is strongly recommended. The edit controls should be disabled until a new record
is added or another, non-empty dataset is returned. If the user chooses not to create a new
record, then one should be able either to try a new query or to exit gracefully.

Rule 2-100: Likewise, when a user enters a data-edit form with no current record (and where
they did not get there as part of their selecting an "Add New Record" function), prompt the
user to create a new record or to gracefully exit the form. All error conditions should be
trapped and the user offered clear messages and graceful exits. (See the "Database Error
Trapping" Section.)

Rule 2-101: A user should always be able to cancel and leave a data edit/entry form without
saving the new or changed record. The edit controls should be disabled until a new record is
added or another, non-empty dataset is returned.

2.8.10.5 Increasing Database Performance in Visual Basic

Note: This section will require review and update to incorporate new methods and
information about problems and solutions with current versions of ODBC drivers and other
database access programming tools.

Rule 2-102: In each application, open only one, global database object per database accessed.
This saves memory and resources.

Rule 2-103: In each application, use a single set of global string variables,
g_strDatabaseName and gstrConnect, to be shared by the global Database object and any
data controls used. This saves programming and minimizes memory used for strings.

Rule 2-104: For data controls, set the DatabaseName and Connect properties at run-time in
their form's FormLoad() event-handler subroutine.

Rule 2-105: To make forms with data controls load faster, set the RecordSource property of
a Visual Basic data control in the FormLoad() event-handler to an SQL query which
returns either the exact recordset needed -- if that is known at form-load time -- or a minimal
number of records. (Care should be taken not to return an empty recordset, if possible.)

NMS Developer Standards and Guidelines 2-23 May 1995

"Rules Only" Quick Reference Version

2.8.10.6 Database Error Trapping

See the section on "Accessing the Oracle Database" for more general rules about error
trapping. (Certain rules and recommendations are the same for other kinds of errors, such as
file ilo errors.)

Rulle 2-106: Common subroutines shall be built to encapsulate the parsing and presentation
of database access error messages. Such error message routines shall parse the VB error
messages for DBMS-specific (such as Oracle or SQL Server) error messages or error codes,
which the ODBC driver does not translate, and shall translate them further if necessary. All
error codes without error messages shall be translated through a translation table.

Rule 2-107: If the database error message is DBMS-specific, the message box title shall
indicate this by naming the DBMS. If an Oracle-specific error code is returned, this can be
detected by looking for the "ORA-" keyword at the beginning of the VB error string given by
Error$(Err). Then the Oracle error number can be parsed out and translated. The message
box title should then change fiom "Database Access Error" to "Oracle Database Access Error"

Rule 2-108: Database access error message routines should name the database object (table,
view, field) being addressed. (See the detailed rule for field-access error messages in the
section on database field-access routines.) This is necessary for programmers during
development, for testers, and for the help-desk in handling problem reports.

Rule 2-109: Database access error message routines and error log files should report the SQL
statement which caused the error.

Rule 2-110: Database access error message routines should report the name of the subroutine
where the error occurred (not a low-level routine like a common field-access routine, but the
subroutine calling that, so that the context of the error is apparent). The user may be given
the option to turn this feature on or off, but it should be in any error-log file. It is a
necessary aid in software defect reporting and tracking, especially during test.

2.9 Coding to Minimize Memory Use and Executable File Size

Rule 2-111: Load forms only when needed and unload them as soon as possible when no
longer needed.

Exception-Rule 2-111a: Where an application's use of memory is not a problem and where
a particular form is shown often, keeps the form loaded but hidden (or minimized if an MDI
child form) so that it activates faster; otherwise reactivating these forms can become quite
annoying to users.

NMS DeveloperStandards& Guidelines 2-24 April 1995

"Rules Only" Quick Reference Version

Rule 2-112: Use non-dynamic control arrays for common labels on a form that are not data
bound and which do not need to be addressed programmatically. (This is a particular case of
the previous rule.)

Rule 2-113: Avoid using the animated control button, as it uses large resources and slows
down execution.

Exception Rule 2-113a: Use it, if at all, only in small applications that will not grow larger
and in which the animated button's slowing down of the application is not a problem.

Rule 2-114: Use the image control rather than the picture control, where possible, to save
system resources and screen redrawing. (The picture control's AutoRedraw property must
be turned on, and this redrawing significantly slows down processing.)

Note: This rule is repeated in the coding section under the subsection about saving memory
and resources.

Exception Rule 2-114a: Use the picture box control only when its extra functionality is
required and that need is greater than the impact of other memory and resource problems in
the same application.

Rule 2-115: Load medium-to-large bitmap images from files at run-time -- preferably after a
form is loaded but before it is shown.

Rule 2-116: Avoid using 3-D controls (such as those in the VB file THREED.VBX) where a
simpler control can be given 3-D-appearance in a simpler, less resource-intense and less
processing-intensive manner (such as are recommended in the following paragraph). Other
disadvantages of most 3-D controls include not being able to use any other background color
other than grey.

Rule 2-117: Load data only as needed. Use dynamic arrays rather than fixed size arrays
where possible, resizing them to zero immediately when no longer needed.

Caution: In actuality, it may be impossible to resize an array to zero elements, once it has
been initialized. The VB statement Redim Array(O) actually just resizes the array to one
element -- the zeroeth element -- if Option Base zero -- the default -- is used, or causes a
program error if Option Base is higher than zero.

Caution: Keep dynamic arrays of data- or record-structes (in Visual Basic, these are called
"user-defined types") which use variable length strin out of forms; place them in .BAS
modules. There is a bug in Visual Basic 3.0 where redimensioning such arrays can cause
GPFs (General Protection Faults) due to faulty object-destructor mechanisms.

NMS Dev:!oper Standards & Guidelines 2-25 Aprt 19-03

"Rules Only" Quick Reference Version

Rule 2-118: For fixed-size arrays or large data objects used in only one form, keep those
data objects in the 'form where they are used. Avoid making them global, unless necessary.
This way, they disappear when their form is unloaded.

Rule 2-119: Call Windows API ftnctions and subroutines where this achieves one of the
following and imposes little or no penalty on code readability or maintainability:

* significantly saves memory,
* significantly minimizes executable file size,
* avoids using a custom control,
* significantly speeds processing,
* significantly speeds processing.

Rule 2-120: Combine multiple instances of medium-to-long strings or long sub-strings.

Rule 2-121: Avoid Recursion. See the discussion of this rule which is repeated in the next
section on "Coding to Maximize Performance (Execution Speed").

2.10 Coding to Maximize Performance (Execution Speed)

Rule 2-122: Set the AutoRedraw property of forms and picture boxes to Off, unless
dynamically drawing lines on the form. Avoid drawing lines on forms if performance is a
problem. (Using frame panels or Elastic panels might be a better way of grouping related
controls.)

Rule 2-123: Use Image controls rather than PctureBox controls where possible. (This rule

is repeated in the section on saving memory.)

Rule 2-124: Avoid using animation button controls.

Rule 2-125: Avoid or minimize calls to DoEvents() within a loop. Otherwise, place calls
to DoEvents within a subroutine only where it is necessary.

Rule 2-126: Avoid recursion. Recursion risks running out of stack space--especially in
Visual Basic. Whatever can be implemented using recursive function calls can usually be
implemented using loops, which will generally run faster.

2.11 Shared, Common, Reusable Source Code

A repository of reusable code shall be created and maintained on a globally accessible server
with full configuration management and change control methods used to manage it.

NMS DeveloperStandards& Guidelines 2-26 April 1995

Y)

"Rules Only" Quick Reference Version

Rule 2-127: The standard VB global constants file CONSTANT. BAS shall be split into
multiple files, one each for constants pertaining to OLE, MAPI, MCI (and MIDI), DDE, VB
3D controls, the MSCOMM VBX, and one file called CONSTVB.BAS for all the VB
constants left over.

Rule 2-128: All files containing global constants shall be named beginning with "CONS" or
"CONST". Thus, the VB database constants file DATACONS.BAS shall be renamed
CONSDATA.BAS.

Rule 2-129: All global constants and API function declarations in these files, not commonly
used, shall be commented out.

Rule 2-130: Constants and subroutines which are related to database objects, including the
Visual Basic database constants, shall be kept in a file named DATA.BAS.

Rule 2-131: Windows API function declarations shall be kept in a file called WINAPI.BAS,
combined from WIN30API.TXT and WIN3 1EXT.TXT, but with all unused API function
declarations remarked out.

Rule 2-132: Global variables, constants, and subroutines that are functionally related (such as
a VB API to load and manipulate a spreadsheet) shall be grouped together in a separate .BAS
file -- especially if these source code objects are expected to be shared with (reused in)
another application. One example of this would be where a set of constants and data
structures were defined for budget objects in a budget application, where it would be valuable
to re-use them in a financial application which referenced the same tables in the database and
thus would be expected to reference the same obje,_ns and handle the same set of values.

Rule 2-133: Borrow code from the Software Re-Use Repository and from other sources, such
as CompuServe, Internet, E-mail, Microsoft Developers Library CD, other knowledgebases on
CD-ROM, friends, consultants, and other government agencies.

Rule 2-134: Share code thought to be reusable by sending it to the manager of the Software
Re-Use Repository. Before sending it, debug it completely and make it stable, of good
quality, and reliable; and make sure it conforms to the Agency software development
standards.

NMS Developer Standardv & Guidelines 2-27 April 1995

"Rules Only" Quick Reference Version

3 DATABASE ACCESS AND SQL CODING
STANDARDS

This section is concerned only with database access programming methods that result in
increased database reliability, performance, and SQL code maintainability. For database
standards and guidelines, see the "ORACLE DATABASE ADMINISTRATION
STANDARDS" Section of this document.

3.1 SQL Calls to the Database

Rule 3-1: Use databa-. Views where appropriate, to improve performance or decrease
programming. Views should not be created dynamically from within a program.

Rule 3-2: Use database stored procedures to retrieve multiple record sets by creating a
procedure with a cursor inside of a loop that passes records one at a time through ODBC to
an array in VB. After the procedure has finished populating the array, the records in the
array can be used for list boxes or other functionality.

Rule 3-3: Convert ALL SQL commands to stored procedures including SQL that:

1. 	 Selects multiple records from a table.
2. 	 Performs database write-operations.
3. 	 Returns SQL aggregate function values such as count(*).
4. 	 Contains write or batch routines that alter the database without user interaction

or input.
5. 	Populate list boxes.
6. 	 Contain database write-operations intended to be completed together within a

single COMMIT /ROLLBACK group, rather than the Visual Basic
BeginTrans, CommitTrans, and Rollback commands.

3.2 Creating and Using Indexes

Rule 3-4: Concatenate any character to an indexed column to disable the index and force the
execution of a full table scan. For example:

WHERE SALARY::" > 12000;

Rule 3-5: If more than 25% of the rows in a table are going to be returned, use a full table
scan rather than an index.

Rule 3-6: Never do a calculation on an indexed column if the intention is to use the index to

NMS Developer Standards& Guidelines 3-1 	 April 1995

3.3

"Rules Only" Quick Reference Version

assist with response time. For example:

Inefficient way to code:
WHERE (SALARY * 12) > 12000;

Efficient way to code:
WHERE SALARY > (12000 / 12);

Rule 3-7: Never specify IS NULL or IS NOT NULL on index columns if the intention is to
use the index to assist with response time.

Rule 3-8: Never specify the SUBSTR function on a column that has an index because it
disables the index. For example:

Inefficient way to code:

WHERE SUBSTR(USERID,1,4) = 'OPS$'

Efficient way to code:

WHERE USERID LIKE 'OPS$%'

Rule 3-9: In almost all cases the use of ORDER BY will disable the use of an index and
result in a full table scan. For this reason use a WHERE clause condition that uses an index
instead of an ORDER BY. The records will be ordered the same way the index is ordered.
For example:

Inefficient way to code:
ORDER BY EMPNO

Efficient way to code:

WHERE EMPNO > 0

ORACLE SQL Statement Processing Techniques

Rule 3-10: Use ROWID as a key for a record when ever possible. The ROWID for a
record is the single fastest method of record retrieval. ROWID is actually an encoded key
representing the physical record number within an actual ORACLE database block on the
database.

Improvements in performance can be made by selecting a record before updating or deleting
it, and including ROWID in the initial select list. This allows ORACLE to perform a much
more efficient second record access. Remember to select the record FOR UPDATE when
querying a record prior to updating or deleting. This keeps another process from being able

lIMS Developer Standards & Guidelines 3-2 April 1995

"Rules Only" Quick Reference Version

to update the selected record and change its ROWID out from under you. For example:

SELECT ROWID,

INTO :EMP ROWID

FROM EMP

WHERE EMP.EMPNO = '123'

FOR UPDATE OF EMP.EMPNO;

UPDATE EMP

SET EMP.EMPNO = '456'

WHERE ROWID = :EMPROWID;

Rule 3-1l: Use a where clause that utilizes indexes. For example:

SELECT ...

FROM DEPT

WHERE EMPNO > 123;

If EMPNO has an index, the index will be used and will return records in EMPNO order.

Rule 3-12: Avoid using NOT in any where condition such as "!=" or NOT EQUAL. For
example:

Inefficient way to code:
WHERE AMOUNT != 123

Efficient way to code:
WHEKI.--.MOUNT < 122

AND AMOUNT > 124

Rule 3-13: Avoid the use of HAVING in general; use WHERE predicates instead.

Rule 3-14: Use table aliases to prefix all column names.

Rule 3-15: Use joins in preference to sub-queries.

Rule 3-16: The ordering of the from clause can in many situations significantly reduces the
number of physical reads needed to execute SQL statements. ORACLE 7 uses a cost based
optimizer which in some cases makes its own determination of which table will be the driving
table regardless of the order in the FROM clause.

The last table name specified in the from clause determines the driving table.

NMS Developer Standards& Guidelines 3-3 April 1995

"Rules Only" Quick Reference Version

ORACLE creates a set of pointers to records that satisfy the WHERE conditions
that relate to the last table in the from clause.

Then it eliminates the pointers that don't point to records, that satisfy-the WHERE
conditions, that relate to the second to the last table in the FROM clause.

Therefore make sure that the table specified last in the FROM clause will return
the fewest rows based on its where conditions. This is not always the table that
has the fewest rows in it. For example:

SELECT ...
FROM TASKS A

WHERE A.EMPNO in (1,2,3) Pointer set 3

AND A.EMPNO in (1,2) Pointer set 2

AND A.EMP_NO = '1'; pointer set 1

Set 1 will return the fewest records, set 2 will return more records that set 1, and
set 3 will return the most records.

Rule 3-17: When using the OR operator be sure to put the column that will return the
smallest number of rows first. For example:

Where 1 = 1 Should return the least rows.
or emp_no < 100 Should return to most rows.

Rule 3-18: Specify a sort-order in a SQL query, either by using an Order By or specifying
the sort-field in the Where clause if an index exists on the field or if the required index exists
on the set of fields.

The advantage of the Order By is that it makes the ordering requirement in the code more
obvious and specific for future programmers. Here is an example of using a field that has an
index on it to sort the records.

Select NAME, POSITION, DEPTNO

from PERSON

Where EMPNO > 0

Rule 3-19: Never specify IS NULL or IS NOT NULL on index columns. It is unnecessary
and will disable the use of indexes.

NMS Developer Standards & Guidelines 3-4 April 1995

APPENDIX A - Standard VB GUI Object Name Prefixes

Standard VB GUI Object Name Prefixes

For GUI controls which are part of the standard VB set, use the following prefixes to indicate
a control's type. These are based on Microsoft's recommended GUI object prefixes.

Separate the prefixes for GUI objects from the rest of the control's name with an underline to
make it clear that the object is not a variable. This helps readers in quickly scanning the code
to understand it.

(All source code prefixes and examples are in bold .)

Non-3D VB Controls

Control Type Prefix f Example T Comment

Animation button ani ani MailBox

Chart cht chtSales

Checkbox chk chk ReadOnly

Combo box cbo or cboEnglish Also used for drop-down
combo list box.

Command button cmd cmdSumdata

Common dialog control dig dlgFileOpen

Comm. corn cornFax

Control ctl ctlCurrent

Data control data dataBiblio

Dir. list box dir dirSource

Drive list box drv dryTarget

File list box fil filSource

Frame fra fraLanguage

Gauge gau gau_Status

Graph gra graRevenue

Grid grd grdPrices

NMS DeveloperStandards & Guidelines A-i April 1995

Non-3D VB Controls

Control Type

Horizontal scroll bar

Image

Key state

Label

Line

List box

MAPI message

MAPI session

Masked Edit

MCI

Menu

OLE control

Outline control

Pen Bedit

Pen Hedit

Pen Ink

Picture

Picture clip

Report control

Shape control

Spin control

Text Box

Timer

Prefix

hsb

img

key

Ibl

lin

list

mpm

raps

medt

mci

mnu

ole

out or outl

pbed

phed

ink

pic

clp

rpt

shp

spn

txt

tmr

Example

hsbVolume

imgIcon

keyCaps

IblHelpMessage

linVertical

listPolicyCodes

mpmSentMessage

rapsSession

medtZipcode

mciVideo

mnu_FileOpen

oleWorksheet

out OrgChart

bedFirstName

hedSignature

ink-Map

picVGA

clp_Toolbar

rptQtrlEarnings

shpCircle

spn_Pages

txtLastName

tmrAlarm

Comment

NMS Developer Standards & Guidelines A-2 April 1995

Non-3D VB Controls

Control Type Prefix Example Comment

Vertical scroll bar vsb vsbRate

VB Three-D Controls

Control Type Prefix Example

3D check box ch3 ch3_CheckBox

3D command button cb3 cb3_Close

3D frame fr3 fr3_Shipmethod

3D group push button pb3 pb3_Fedex

3D option button ob3 ob3_CostPlus

3D panel pn3 pn3_Background

VB Forms

Form Type Std. Alternate Example Comment
Prefix Prefix

Form frm frm_Entry

MDI Parent Form frmMDI_ MDI_ frmMDIActivityMain

MDI child form frmmdi_ mdi frmmdi Note

NMS Developer Standards& Guidelines A-3 April 1995

Third Party VB GUI Object Name Prefixes

Use a two- or three-letter prefix to indicate the vendor of a third party custom control.
Common examples for Agency-approved custom controls are:

Prefix Custom Control

fpsp_ Far Point's spreadsheet control

fptab_ Far Point's tab control

he High Edit control

NMS Developer Standards & Guidelines A-4 April 1995

APPENDIX B - Standard Name Prefixes for Variables
and VB Data-Access Objects

Use the following three letter prefixes to indicate a variable's data type. These are based on

Microsoft's recommended variable name prefixes.

Do not use an underline to separate the prefix in a variable 	name.

(All source code is in bold, including Visual Basic keywords, prefixes, and examples.)

Variable Data Name Prefixes

Data Type Standard Alternate Example Comment

Prefix Prefix

Boolean bin bool binFound Actually an Integer used as a

Boolean

Currency cur curRevenue

Date (time) dte dt datStart 	 Microsoft's "dat" conflicted with
their own use of "dat" for a data
control name prefix.

Double dbl d dblTolerance

Error err e errOrderNum

File handle fil fi or file filLogFile Actually an Integer used as a file
handle.

Integer int i intQuantity

Long Ing lngDistance A single, lower-case "L" (11")

looks too much like a one.

Object obj objCurrent Future use

Single sng flo sngAverage Single precision floatg point

String str s strFName

User-defined rec udt recEmployee Prefer use a unique, custom

Type (struct) prefix to indicate specific data

structure type.

Variant vnt var vntCheckSum

NMS DeveloperStandards& Guidelines B-I 	 April 1995

Database Object Name Prefixes

Object Type USAID Prefix Example (MS Prefix)

Database db_ dbMain db

Dynaset ds_ dsTemp ds

Field flid_ fld_Temp fd

Index ndx_ ndxTemp ix

QueryDef qdef_ qdefSalesByRegion qd

Query _Qry (suffix) ResultQry Qry (suffix)

SnapShot snap_ snap-Result ss

Table tbl_ tblFirst tb

TableDef tdef tdef Temp td

The above prefixes differ slightly from the Microsoft internal standard but are more readable.

* Using a suffix for queries allows each query to be sorted with its associated table in Access

dialogs (Add Table, List Tables Snapshot).

NMS Developer Standards & Guidelines B-2 April 1995

