AN EPIDEMIOLOGICAL REVIEW OF HIV/AIDS IN SUB-SAHARAN AFRICA

by

Peter O. Way
Karen A. Stanecki

Center for International Research
U.S. Bureau of the Census
Washington, D.C. 20233-3700

CIR Staff Paper
No. 72

March 1994
AN EPIDEMIOLOGICAL REVIEW OF
HIV/AIDS IN SUB-SAHARAN AFRICA

by
Peter O. Way
Karen A. Stanecki

Center for International Research
U.S. Bureau of the Census
Washington, D.C. 20233-3700

March 1994
SUMMARY

This report examines the distribution of HIV infection among various population groups in Sub-Saharan Africa and looks at trends over time in selected countries in the region. The report also looks at the likely current and future impact of AIDS on population growth and other demographic measures. Data presented in this report are taken from the HIV/AIDS Surveillance Data Base, developed and maintained at the U.S. Bureau of the Census.

As of mid-1993, the World Health Organization estimated that over 8 million adult infections had occurred in Africa. Of this total, about half to two-thirds were in east and central Africa, an area which accounts for only about one-sixth of the total population of Sub-Saharan Africa. Given the predominant role that heterosexual transmission plays in the HIV epidemic in Africa, it should be no surprise that commercial sex workers (CSWs) and their clients play a central role in this epidemic. In several countries, more than half of the CSWs tested were infected.

Patients attending sexually transmitted disease (STD) clinics can be considered a sample of the population with frequent casual sexual contacts. Patterns of increase in HIV infection among large samples of STD patients for several Sub-Saharan African countries have been seen. Quite rapid increases were noted recently in Tanzania, Kenya, Côte d'Ivoire and Ethiopia. Infection levels in the capital cities of these countries has reached over 20 percent for STD patients.

Samples of pregnant women are often used as surrogates for the general population. Since 1985, HIV seroprevalence studies of pregnant women have been conducted in a number of African countries. A variety of studies over the past 7 or more years in Uganda, Zambia, and Malawi show a consistent and rapid increase in HIV infection levels among pregnant women in the capital cities of these countries. Very recently, alarming increases in rates of HIV seroprevalence have been recorded in Botswana among this population group.

There is increasing evidence that women are more at risk of HIV infection per exposure. Available data from several African countries from the first round of sexual behavior surveys suggest that a differential in sexual behavior exists such that males are more likely to engage in casual sexual contacts than females. The result is that the overall sex ratio of HIV-infected population in Africa is not far from 1:1, although this ratio varies from country to country. Another factor of importance in the epidemic is age-mixing--the tendency for males to chose a younger female as a partner. This behavior results in HIV infection levels in younger women tending to be higher than males in the same age cohort, while older males tend to have higher infection levels than females of the same age.
Available data from Sub-Saharan Africa have tended to show a large
differential in HIV infection levels between urban and rural areas of a country.
Results from several studies indicate significant differences in infection levels
between urban and rural areas. It is equally important to emphasize the geographic
variation in current levels of HIV infection between countries.

Results from a mathematical model applied to Sub-Saharan Africa show a
decrease in the population growth rate and an increase in the crude death rate.
But since birth rates may be little affected by an epidemic, African countries should
continue to have positive growth rates.

The area in which the population impacts of AIDS in Africa will occur most
rapidly is in the survival of infants and children. Modelling results for urban areas
in Sub-Saharan Africa suggest increases from about one-quarter to 50 percent in
the infant mortality rate and a doubling in the total mortality under age 5 in the
presence of a strong epidemic.

The best summary measure of a population’s mortality experience is the life
expectancy at birth. Because of the increases in both childhood and young adult
ages, AIDS has a substantial impact on the life expectancy at birth.

AIDS is rapidly becoming a fact of life in Africa. Over the next decade,
AIDS and its impact will become a fact of life for demographic and behavioral
researchers working in Africa. Despite the medical and biological emphasis in
much of AIDS research, AIDS is at its roots intrinsically bound to social and sexual
patterns of behavior. Therefore, social and behavioral scientists have much to
contribute to addressing the roots of this epidemic.
Preface

The Center for International Research conducts specialized studies of population, economics, labor force, health and aging issues. However, the use of data not generated by the U.S. Bureau of the Census precludes performing the same statistical reviews normally conducted on its own data.

This report was supported by funding from the U.S. Agency for International Development.

This report was prepared with the assistance of the staff of the Health Studies Branch including Jinkie Corbin, Anne Ryan, and Lisa Gist. Comments and questions regarding this study should be addressed to Karen A. Stanecki or Peter O. Way, Health Studies Branch, Center for International Research, U.S. Bureau of the Census, Washington, D.C. 20233-3700; telephone (301) 763-4086, FAX (301) 763-7610.
CONTENTS

<table>
<thead>
<tr>
<th>Summary</th>
<th>iii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>v</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Data Sources and Issues</td>
<td>1</td>
</tr>
<tr>
<td>Modes of Transmission in Sub-Saharan Africa</td>
<td>2</td>
</tr>
<tr>
<td>Trends in Selected Population Groups</td>
<td>3</td>
</tr>
<tr>
<td>Commercial Sex Workers</td>
<td>3</td>
</tr>
<tr>
<td>STD Clinic Patients</td>
<td>4</td>
</tr>
<tr>
<td>Pregnant Women</td>
<td>5</td>
</tr>
<tr>
<td>Blood Donors</td>
<td>6</td>
</tr>
<tr>
<td>Issues</td>
<td>7</td>
</tr>
<tr>
<td>Age and Sex Patterns of Infection</td>
<td>7</td>
</tr>
<tr>
<td>Urban/Rural Differentials</td>
<td>8</td>
</tr>
<tr>
<td>Geographic Variation</td>
<td>8</td>
</tr>
<tr>
<td>Demographic Impacts</td>
<td>10</td>
</tr>
<tr>
<td>Population Growth Rates/CRude Death Rates</td>
<td>10</td>
</tr>
<tr>
<td>Mortality Rates</td>
<td>11</td>
</tr>
<tr>
<td>Infant and Child Mortality</td>
<td>11</td>
</tr>
<tr>
<td>Life Expectancy at Birth</td>
<td>12</td>
</tr>
<tr>
<td>Age and Sex Structures</td>
<td>12</td>
</tr>
</tbody>
</table>

vii
CONTENTS--Continued

9. Illustrative Impact of HIV on Age-Specific Mortality Rates at Approximately 20% Adult Prevalence ... 11

10. Survivors per 100,000 Births at Approximately 20% Adult Prevalence .. 12

11. Illustrative Impact of HIV on Population at Approximately 20% Adult Prevalence 13

TABLE

1. Estimates of HIV-1 Seroprevalence, by Residence and Risk Factor, for Developing Countries: Circa 1993 .. 19

MAPS

1. Seroprevalence of HIV-1 for Low-Risk Populations in East Africa .. 33

2. Seroprevalence of HIV-1 for Low-Risk Populations in Central Africa .. 35

3. Seroprevalence of HIV-1 for Low-Risk Populations in West Africa .. 37

4. Seroprevalence of HIV-2 for Low-Risk Populations in West Africa .. 39

5. Seroprevalence of HIV-1 for Low-Risk Populations in Southern Africa .. 41
INTRODUCTION

As infection by the Human Immunodeficiency Virus (HIV) and the impact of the Acquired Immune Deficiency Syndrome (AIDS) spreads within population groups throughout Africa, it threatens to become the overriding demographic and social issue for Africa in the 1990's. In this review, we examine the distribution of HIV infection among various population groups in Sub-Saharan Africa and look at trends over time in selected countries in the region. We identify several areas of particular concern in terms of the regional spread of HIV infection and present available data to highlight the current understanding of those issues.

In addition, concern has been expressed regarding the potential impact of AIDS on population growth rates in the region and the accompanying motivation for the provision of family planning services. We discuss the likely current and future impact of AIDS on population growth and other demographic measures. As we will show, the impact of AIDS threatens the important gains in mortality in Africa won over the past several decades.

Finally, we discuss the demographic impact of an African AIDS epidemic based both on mathematical modelling of such an epidemic as well as on the patterns and trends already presented.

DATA SOURCES AND ISSUES

Our knowledge of the infection and spread of HIV and AIDS in Sub-Saharan Africa is based on a variety of reports and studies which are known to be incomplete and nonrepresentative. AIDS case reporting, for example, from African countries to the World Health Organization has been estimated to be about 10 percent complete due to a variety of factors, including inadequate reporting systems in country and particularly in the early years of the AIDS epidemic, a reluctance on the part of countries to report AIDS cases to an international organization. A knowledge of AIDS cases alone, moreover, is not sufficient for an understanding of the dynamics of the epidemic due to the extended incubation period between initial infection and later development of HIV-related illness. Thus, even the most accurate AIDS case data would only provide a picture of the epidemic of infection as it existed as many as 10 years ago.

As a result, there has been considerable attention paid to the collection of data on HIV infection among various population groups. In the early years of the epidemic, many of these studies were conducted in a nonscientific manner and may have provided results that were not representative even of the population group that was targeted by the study. More recently, increasing attention has been paid to such issues as increased sample sizes, representativeness of the sample selection, geographic coverage, and confirmatory testing of HIV positive results. Consequently, both the quantity and the quality of seroprevalence data
have improved markedly in recent years. Nevertheless, many biases still remain, and caution must be used in the interpretation of results.

Only a handful of nationally-representative seroprevalence surveys have been conducted in Sub-Saharan Africa, largely due to concerns regarding cost, diversion of skilled manpower, and an understanding that a nationally-representative sample may not provide much useful information about the groups at greatest risk for HIV infection. Thus, in recent years, sentinel surveillance programs have been developed to monitor defined populations for changes in HIV infection levels. For example, countries may develop programs that monitor infection among antenatal women attending government clinics, patients receiving treatment for sexually-transmitted diseases, and women engaged in commercial sex activities. Results from these studies can provide rapid feedback on infection levels and trends in populations at various levels of risk without the time and effort required to mount a national survey.

Data presented in the following discussion are taken from the HIV/AIDS Surveillance Data Base, developed and maintained at the U.S. Bureau of the Census, with funding support from the U.S. Agency for International Development. Data are regularly compiled from the scientific and technical literature as well as presentations at major international conferences. The HIV/AIDS Surveillance Data Base currently contains over 18,000 data records drawn from over 2,300 publications and presentations.

MODES OF TRANSMISSION IN SUB-SAHARAN AFRICA

The World Health Organization (WHO) Global Programme on AIDS (Mann and Chin, 1988) has developed a typology to describe the various patterns of infection and spread of AIDS around the world. Within this typology, Africa is characterized as a Pattern II region, with a predominance of heterosexual transmission and substantial vertical (mother to child) transmission. As of mid-1993, WHO estimated that over 8 million adult infections had occurred in Africa. Of this total, about half to two-thirds were in east and central Africa, an area which accounts for only about one-sixth of the total population of Sub-Saharan Africa (WHO, 1993). Infected blood is thought to account for only about 10 percent of all HIV infections. Homosexual transmission and transmission through intravenous drug use are generally considered to have minimal impact on the epidemic in Sub-Saharan Africa.
TRENDS IN SELECTED POPULATION GROUPS

The following discussion focuses on four groups at varying levels of risk for HIV infection, namely, commercial sex workers, patients at sexually-transmitted disease (STD) clinics, pregnant women, and blood donors. The purpose is to describe the HIV/AIDS epidemic in Africa as it has been documented in these groups. This categorization is based on a desire to track infection patterns in populations at elevated risk of infection (prostitutes and STD patients), as well as to describe infection in samples which may be more representative of the general population (pregnant women and blood donors). Due to the lack of large numbers of surveys of the general population, this description is also determined by data availability issues.

Commercial Sex Workers

Given the predominant role that heterosexual transmission plays in the HIV epidemic in Africa, it should be no surprise that prostitutes and their clients play a central role in this epidemic (Padian, 1988). As Larson (1989) has described, the organization of the commercial sex industry and the availability of casual sex partners can play a key role in the spread of HIV infection in a country. Modelers in the field of sexually-transmitted diseases have documented the importance of "core groups" in the spread of infection (Hethcote and Yorke, 1984). Prostitutes, because of the number of sexual partners, are in many countries the group most at risk for HIV infection. Unfortunately, in many African cities, this risk has resulted in infection levels approaching 50 percent. In some, and especially among low SES prostitutes (who tend to have more clients), infection has become nearly universal.

Data are available on HIV infection among samples of urban prostitutes in the HIV/AIDS Surveillance Data Base for 21 countries in Sub-Saharan Africa (Figure 1). In 11 of these 21 countries, the most recent data show infection levels over 30 percent. In several countries more than half of the women are infected. As we will see with data from other population groups, infection levels in many countries are increasing. For example, in Abidjan, Côte d'Ivoire, seroprevalence among commercial sex workers rose from 69 percent in 1990...
to 86 percent in 1992-93. Although data on commercial sex workers are not available for all countries, based on these 21 it could be safely said that infection levels in this population group are much higher than in the general population.

STD Clinic Patients

Knowledge of levels of HIV infection among the population with frequent casual sexual contacts is high priority. But the selection of such a sample is understandably problematic. However, patients attending STD clinics can be considered a sample of that population since they or their partners are likely to have had sexual contact with others. They are at elevated risk both due to the presence of multiple partners, as well as due to the potentially enhanced risk of HIV infection among those with various other STDs (see Wasserheit, 1990). For example, various studies have estimated those with a recent STD to be at several times higher risk for HIV infection than those with no such exposure.

Several factors, on the other hand, may result in the data on HIV infection among STD patients not being representative of the total population with casual sex behavior. Among these are biases in the propensity to seek treatment at public facilities and variation (e.g., by sex) in the presence of symptomatic infections, etc. Nevertheless, such studies provide valuable information on a potentially large population at high risk of HIV infection at a time when surveys of AIDS Knowledge, Attitudes, Behaviors and Practices (KABP) are beginning to shed some light on sexual contacts outside of marital partnerships (see Cariel, Carballo, et al., 1991).

Patterns of increase in HIV infection among large samples of STD patients for several Sub-Saharan African countries are shown in Figure 2. Quite rapid increases are noted recently in Tanzania, Kenya, Côte d'Ivoire, and Ethiopia. Infection levels in the capital cities of these countries has reached over 20 percent for STD patients. Although both Gabon and South Africa (results for black females) show relatively low levels of infection, the increases noted in the most recent data are ominous. In contrast with these

1 Source references for the figures are contained in a separate listing following the bibliography.
other countries, Nigeria has documented only a slow increase in infection among this population group.

Studies of STD patients in several other countries have documented HIV infection levels over 50 percent (Figure 3). Patterns of sex differentials in HIV infection are consistent. In all of these cases, females have higher HIV infection levels than males. The stage of the epidemic or patterns of treatment in public facilities may contribute to these observations.

Pregnant Women

Samples of pregnant women are often used as surrogates for the general population. This is convenient, since in many countries women attend government clinics to receive antenatal care. To some extent, pregnant women can be considered to be at somewhat higher risk that the general population since they are sexually active. On the other hand, they also are drawn from a limited age range, may be biased toward those in marital (formal or informal) unions, and tend to be younger than adult women in general, given typical age-specific fertility rate patterns. Nevertheless, for many countries, data on pregnant women provides the most representative picture of HIV infection in the general population.

Since 1985, HIV seroprevalence studies of pregnant women have been conducted in a number of African countries. Seroprevalence data from those studies provide an initially confusing picture of regional trends (Figure 4). A variety of studies over the past 7 or more years in Uganda, Zambia, and Malawi show a consistent and rapid increase in HIV infection levels among pregnant women in the capital cities of these countries. By 1990, more than 20 percent of the samples of pregnant women in those areas were infected, while in 1986 infection levels in both Lusaka and

Figure 3

HIV Seroprevalence for STD Patients by Sex in Selected African Countries

Figure 4

HIV Seroprevalence for Pregnant Women in Selected Urban Areas of Africa: 1985-1993
Lilongwe were well below 10 percent. Kigali, Rwanda (not shown in Figure 4), with a reported infection rate of over 30 percent in 1989, is another major urban area with high levels of infection.

In contrast, pregnant women in Nairobi and Bangui have shown quite moderate increases in comparison, and infection levels in Kinshasa have been relatively stable at around 5-6 percent. Infection levels for pregnant women in Abidjan increased rapidly to around 10 percent by 1987, appeared to have plateaued by 1990, but have started increasing again. Alarming increases in rates of HIV seroprevalence have been recorded in Botswana. In Francistown, HIV seroprevalence increased from less than 10 percent in 1991 to over 30 percent in 1993. (Issues of possible upper level to the epidemic and rates of increase are discussed further below.)

Blood Donors

HIV seroprevalence data from blood banks, for many countries, represents a readily-accessible sample for use in monitoring changes in HIV infection in the population. However, comparisons with general-population samples in several areas raise questions regarding the representativeness of the blood donor samples (Torrey, Mulligan, and Way, 1990). Donors tend to be predominantly male and in their young adult ages. In addition, female donors appear to be a higher-risk group than the general population or male donors. Screening and self-selection processes may act to further bias the sample. An example of such processes can be seen in data from blood donors in Uganda (Figure 5). Female volunteer donors are about twice as likely to be HIV positive as their male volunteer counterparts, while family donors, perhaps more representative of the population, are more evenly balanced. Studies in Zaire and other countries have confirmed this tendency for family donors to be more infected than volunteers.

Obviously, issues related to the quality of the blood supply influence decisions regarding the monitoring of blood donors. But, from the available data to date, it does not appear that this group represents a valid proxy for the general population.
ISSUES

Age and Sex Patterns of Infection

Although the precise values are not yet known, there is increasing evidence that women are more at risk of HIV infection when considered either on a *per contact* or *per partnership* basis. In this respect, HIV is no different from other STDs where a similar relation exists. On the population level, however, the risk of HIV infection for women will be a result of the sexual behavior of those women and (secondarily) the behavior of their sexual partners. Available data from several African countries in the latest round of sexual behavior surveys suggests that a differential in sexual behavior exists such that males are more likely to engage in casual sexual contacts than females. This will tend to counterbalance the female’s biologically higher susceptibility to infection. The result is that, as the WHO has suggested, the overall sex ratio of HIV-infected population in Africa is not far from 1:1.

This does not mean that in every African country one can expect equal levels of infection, as the timing of the epidemic and sexual behavior patterns will differ. Several serosurveys in Uganda, for example, yield sex ratios for infected respondents of 1:1.4 (Berkley, et al., 1990). In Côte d’Ivoire, on the other hand, nationally-representative rural seroprevalence levels applied to the population, by age and sex, imply nearly 2 infected males per infected female in the rural area.

Another factor of importance is age-mixing—the tendency for males to choose a younger female as a spouse (as well as a casual sexual partner). This behavior results in HIV infection levels in younger women tending to be higher than males in the same age cohort, while older males tend to have higher infection levels than females of the same age. This pattern is shown in Figure 6 for Côte d’Ivoire and in Figure 7 for Uganda.
Urban/Rural Differentials

Available data from Sub-Saharan Africa have tended to show a large differential in HIV infection levels between urban and rural areas of a country. A representative population survey in Rwanda in 1987, for example, found 17 percent of the adult population in Kigali to be infected, while only 2.1 percent of the rural population sampled were HIV positive. Data from the Rakai District in Uganda demonstrate both the typical age pattern of infection and urban/rural differentiation in infection levels (Figure 7).

Such patterns are likely to result from differences in the timing of the introduction of HIV into the population and perhaps differences in patterns of sexual behavior between urban and rural populations. However, many exceptions to this generalization can be identified. For example, the Rakai district in rural Uganda has recorded HIV infection levels that equal those in Kampala, while, on balance, rural infection levels are about one-half of the urban infection levels. Across the border in Tanzania, the Bukoba district has a higher HIV seroprevalence than Dar Es Salaam. However, within the Bukoba district, urban areas exhibited higher rates of infection than did rural areas (24 percent vs. 5 percent, respectively). The availability of adequate transportation routes to and through rural areas and the level of rural/urban migration both contribute to the speed of the spread of HIV infection to these areas. Thus, countries with well-developed transportation infrastructures and high levels of rural/urban migration may experience rapid spread of HIV infection to rural areas.

Geographic Variation

Results from seroprevalence surveys presented above have tended to highlight the trends in particular population groups and focus on the differentials among populations at different levels of risk. It is equally important to emphasize the geographic variation in current levels of HIV infection between countries, based on
a comparison of "low-risk" urban population groups. Figure 8 shows the most recent available data by county for Africa. Factors that can be shown or hypothesized to contribute to the observed variation include the timing of the introduction of the HIV virus to the population, marriage practices and sexual behavior before and outside of marriage, prevalence of STDs in the population, and male circumcision practices. This geographic pattern will be changing over time, as HIV infection levels continue to increase in some countries, while others experience some plateauing of infection. (See Appendix B for regional maps of HIV-1 and HIV-2 for low-risk populations.)

2 Data, in tabular form, for high and low risk population groups in urban areas and outside of urban areas are provided in Appendix A.
DEMOGRAPHIC IMPACTS

Results in this section are based primarily on the Center for International Research's work with the iwgAIDS model, a collaborative research and development project sponsored by the U.S. Department of State (Stanley, Seitz, Way, et al., 1991). This model, although still undergoing change, has been applied to the population of Uganda (by the Future's Group under the AIDSTECH project) and Sub-Saharan Africa (Way and Stanecki, 1991), and has more recently been used in policy dialogue with the government of Thailand.

Population Growth Rates/Crude Death Rates

Africa's current high rate of population growth (about 3 percent per year) will help to protect African countries from experiencing negative population growth as a result of the AIDS epidemic. Results from the iwgAIDS model applied to Sub-Saharan Africa showed a decrease in the growth rate by about 0.5 percentage points resulting from an epidemic infecting about 8 percent of the total population. This decrease in growth rate was the result of an increase in the future crude death rate from an expected 10 per 1000 population to 15 per 1000 population. Urban infection levels, which had reached 16 percent of the total population (with peak rates of around 30 percent in some age groups) resulted in a doubling of the crude death rate and a reduction of the population growth rate by about 1 percentage point.

Thus, even with a relatively severe AIDS epidemic (e.g., 25 percent of sexually active adults infected) reaching into both urban and rural areas of the country, total population growth rates may decrease by only about 1 percentage point, corresponding to an increase of about 10 per 1000 in the crude death rate. Since modeling results show that birth rates may be little affected by an epidemic, African countries should continue to have strong positive growth rates, despite the presence of an AIDS epidemic. In other regions of the world, on the other hand, such infection levels would have a real potential to result in declining populations, due to the lower initial rates of population growth.

Other models have demonstrated the potential for negative population growth in African countries (e.g., Anderson, May, and McLean, 1988; Potts, Anderson, Boily, 1991). Such an effect was demonstrated, however, only when general adult population seroprevalence levels reached levels exceeding even those of STD patients in urban Africa today (e.g., 50-60 percent). As yet, we have no indication that the sexual behavior and transmission parameters within Africa would lead to such prevalence levels in urban populations, much less throughout both urban and rural areas.
Mortality Rates

Studies based both on models and on empirical information have identified the most important aspects of the impact of HIV infection and an AIDS epidemic on a population. New HIV infections among adults are concentrated in the ages of peak sexual activity—from the late teens to about age 30 or 35. Because of the 7 to 10 year average incubation period between infection and the onset of AIDS, and about a 1-year survival period after acquiring AIDS, deaths from AIDS are shifted into older ages and tend to occur most often in the 30 to 45 year age range. These ages are characterized by non-AIDS mortality rates for most causes of deaths that are among the lowest of all age groups. Thus, AIDS can increase the mortality rates in these age groups many times over (Figure 9).

Infant and Child Mortality

The area in which the population impacts of AIDS in Africa will occur most rapidly is in the survival of infants and children, given the predominant transmission modes and since studies have shown the progression to AIDS and death more rapid for those under 5 years of age. Although perhaps only one-third of those born to HIV-infected mothers are themselves infected, the more rapid progression means that HIV-related infant and child deaths will often occur before the deaths of their parents.

Although the attribution of HIV-related deaths to the infant (under 1 year) or child (1-4 years) period is somewhat problematic due to the lack of a sufficient number of cohort studies, it appears clear that virtually none of the infected infants will survive past their 5th birthday. Due to the survival of HIV-infected infants past their 1st birthday, however, child mortality levels may be more affected than infant mortality.

Modeling results for urban areas in Sub-Saharan Africa suggest increases from about one-quarter to 50 percent in the infant mortality rate, and a doubling in the total mortality under age 5 in the presence of a strong epidemic (U.S. Bureau of the Census, forthcoming). Other analysis, using recent seroprevalence data for pregnant women, found that in African urban areas with high HIV seroprevalence levels, between one-tenth and one-third of all deaths under age 5 already may be attributable to HIV infection (Valleroy, Harris, and Way, 1990, p. 670).
Life Expectancy at Birth

The best summary measure of a population’s mortality experience is the life expectancy at birth, because it represents an accumulation of mortality across all ages and captures the differential impact of a death at various ages. Because of the increases in both childhood and young adult ages, AIDS has a substantial impact on the life expectancy at birth. As a result of AIDS, substantial increases in mortality rates occur in the adult ages, where relatively few deaths are typically expected. The cumulative effect of this increased mortality is substantial.

Once again using modeling results, the effect of AIDS on cumulative survival after birth can be shown (Figure 10). In this severe urban epidemic, the survival to age 50 is less than 50 percent the survival expected without AIDS. The net effect of this AIDS epidemic is to reduce urban life expectancy at birth 17 years, or approximately 1 year decrease in life expectancy for each percentage-point increase in HIV prevalence levels in the population.

Age and Sex Structures

How different will future age and sex structures be because of AIDS? AIDS has relatively little direct effect on fertility rates, due to the delay between HIV infection and AIDS mortality. Similarly, an AIDS epidemic has only a slight effect on the population dependency ratio because AIDS mortality occurs both in the numerator and the denominator of that measure. Thus, although AIDS mortality occurs primarily in the childhood and middle adult years, it is perhaps less concentrated in particular ages than, for example, the effects of military deaths during war.
The absolute size of each age cohort is shown in the population pyramid (Figure 11), reflecting differences in both the number of AIDS deaths and the reduced population growth. The greatest relative differences in population size by cohort are evident in the youngest age groups and in those 30 to 50 years of age.

Figure 11

EPIDEMIC GROWTH--HOW HIGH, HOW FAST?

Given the variation in observed levels of infection and epidemic growth rates described above, a series of questions relating to the epidemic naturally follow. How rapidly will HIV continue to spread in the future? At what point in current high-prevalence countries will HIV infection become endemic, that is, stabilize? Will countries with currently low levels of infection inevitably progress to HIV prevalence levels currently recorded e.g., in Kampala or Kigali, or is a plateauing at a lower level possible?

Although crystal ball technology continues to lag, valuable insights can be obtained from the available seroprevalence data as well as results of mathematical modeling, described more below. These data suggest the following tentative responses to the above questions:

- Variation in the speed of increase in HIV infection and in the endemic level of infection will result from variations in sexual behavior, presence of STDs and other cofactors, and perhaps other unknown factors.

- Although by no means definitive, available studies have not found infection levels in general population or antenatal women samples above around 30 percent. This raises the question of how much above this level can HIV infection in the general population be supported. However, several high prevalence sites appear to be still increasing. Studies conducted over the next several years in high-
infection areas may help to shed light on possible upper limits to infection levels in the general population.

- Results from several settings have shown relatively stable and moderate levels of infection in some general population samples over a period of several years, for example, in Kinshasa. Thus, there appears to be hope that not all countries will follow the path toward high infection levels.

- Infection levels in rural populations will generally lag behind urban prevalence levels and may plateau at lower levels.

WHAT THE FUTURE HOLDS

The patterns and trends presented above allow some extrapolation to the future, however tentative, based on the brief documented history of HIV/AIDS in Africa and borrowing from the experience of those countries most affected in the region. This extrapolation provides the following glimpses of the future:

- HIV infection and the impact of AIDS will continue to increase in most African countries in the near future. Infection will spread into rural areas for which little information currently exists.

- The population will continue to be exposed to varying degrees of risk, depending on their behavior and that of their sexual partner. Differentials in HIV infection levels will persist, reflecting the variation in risk.

- AIDS will have an increasing impact on the African population, primarily through increased mortality in the population under age 5 and between 30 and 50 years of age. In many countries, gains in infant and child survival and in life expectancy, hard-won over the past several decades, will be reversed.

- Unfortunately, due to the weak systems for demographic data collection and reliance on indirect measures of mortality, the documentation of much of this impact will be handicapped by delays in data collection and the inability of current methods to provide precise dating of events. Current measures of adult mortality in Africa are particularly weak and subject to these limitations.

- Efforts to implement interventions to limit the spread of HIV will challenge behavioral scientists working in the region both in terms of measuring relevant behaviors as well as identifying their determinants.
The need to evaluate interventions will further challenge researchers to identify relevant proximate and intermediate outcome measures, estimate these measures with accuracy and efficiency, and provide adequate linkages to program interventions to demonstrate program efficacy to donor agencies.

AIDS is rapidly becoming a fact of life in Africa. Over the next decade AIDS and its impact will become a fact of life for demographic and behavioral researchers working in Africa, if it has not already. Despite the medical and biological emphasis in much of AIDS research, AIDS is, at its roots, intrinsically bound to social and sexual patterns of behavior. Therefore, social and behavioral scientists have much to contribute to addressing the roots of this epidemic.
APPENDIX A
Table 1: Estimates of HIV-1 Seroprevalence, by Residence and Risk Factor, for Developing Countries: Circa 1993

<table>
<thead>
<tr>
<th>REGION AND COUNTRY</th>
<th>CAPITAL/MAJOR CITY</th>
<th>OUTSIDE MAJOR CITY</th>
<th>URBAN CITY SOURCES</th>
<th>OUTSIDE CITY SOURCES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LOW RISK</td>
<td>HIGH RISK</td>
<td>LOW RISK</td>
<td>HIGH RISK</td>
</tr>
<tr>
<td>AFRICA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Algeria</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Angola</td>
<td>1.7</td>
<td>14.2a</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Benin</td>
<td>1.6</td>
<td>25.3a,b</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>Botswana</td>
<td>22.5c</td>
<td>31.9c</td>
<td>7.5</td>
<td>-</td>
</tr>
<tr>
<td>Burkina Faso</td>
<td>8.8a</td>
<td>17.2a</td>
<td>4.1a</td>
<td>44.7a,b</td>
</tr>
<tr>
<td>Burundi</td>
<td>19.9</td>
<td>-</td>
<td>1.6</td>
<td>-</td>
</tr>
<tr>
<td>Cameroon</td>
<td>1.6c</td>
<td>45.3</td>
<td>2.9</td>
<td>-</td>
</tr>
<tr>
<td>Cape Verde</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Central African Rep.</td>
<td>7.4</td>
<td>16.5</td>
<td>8.5</td>
<td>22.0</td>
</tr>
<tr>
<td>Chad</td>
<td>4.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Comoros</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Congo</td>
<td>9.0</td>
<td>17.5c</td>
<td>2.6</td>
<td>-</td>
</tr>
<tr>
<td>Cote d’Ivoire</td>
<td>14.8a</td>
<td>86.0a</td>
<td>3.3a</td>
<td>-</td>
</tr>
<tr>
<td>Djibouti</td>
<td>0.3</td>
<td>43.0</td>
<td>0.4b</td>
<td>-</td>
</tr>
<tr>
<td>Egypt</td>
<td>0.0</td>
<td>2.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>*Equatorial Guinea</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ethiopia</td>
<td>2.1</td>
<td>54.2</td>
<td>0.0</td>
<td>65.6</td>
</tr>
<tr>
<td>Gabon</td>
<td>2.5</td>
<td>3.6a</td>
<td>-</td>
<td>3.7</td>
</tr>
<tr>
<td>Gambia, The</td>
<td>1.1</td>
<td>4.6a</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ghana</td>
<td>2.2</td>
<td>37.5b</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Guinea</td>
<td>0.6a</td>
<td>0.6</td>
<td>0.3</td>
<td>-</td>
</tr>
<tr>
<td>Guinea-Bissau</td>
<td>1.6</td>
<td>0.6b</td>
<td>0.5a</td>
<td>-</td>
</tr>
<tr>
<td>Kenya</td>
<td>15.0b</td>
<td>85.5</td>
<td>6.3b</td>
<td>-</td>
</tr>
<tr>
<td>Lesotho</td>
<td>5.5b</td>
<td>5.8b</td>
<td>0.5b</td>
<td>0.6b</td>
</tr>
<tr>
<td>Liberia</td>
<td>0.0</td>
<td>0.0b</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Libya</td>
<td>0.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Madagascar</td>
<td>0.1</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Malawi</td>
<td>31.6</td>
<td>55.9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Haiti</td>
<td>3.7</td>
<td>42.6a</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mauritania</td>
<td>0.6b</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mauritius</td>
<td>0.0</td>
<td>0.8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mayotte</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Morocco</td>
<td>0.0</td>
<td>7.1b</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mozambique</td>
<td>1.1</td>
<td>1.2a</td>
<td>0.8</td>
<td>3.7a</td>
</tr>
<tr>
<td>Namibia</td>
<td>2.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Niger</td>
<td>0.6a</td>
<td>5.9a</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nigeria</td>
<td>1.2a,c</td>
<td>12.3a,c</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Reunion</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Rwanda</td>
<td>33.4</td>
<td>69.0b</td>
<td>9.8</td>
<td>-</td>
</tr>
<tr>
<td>St. Helena</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>*Sao Tome & Principe</td>
<td>0.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Senegal</td>
<td>0.3a</td>
<td>3.9a</td>
<td>0.2b</td>
<td>2.0b</td>
</tr>
<tr>
<td>Seychelles</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sierra Leone</td>
<td>3.5a</td>
<td>27.5b</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Somalia</td>
<td>2.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>South Africa</td>
<td>1.7</td>
<td>8.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sudan</td>
<td>0.1</td>
<td>16.0b</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Swaziland</td>
<td>2.3b</td>
<td>2.2b</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tanzania</td>
<td>11.5</td>
<td>42.9</td>
<td>10.2b</td>
<td>34.3b</td>
</tr>
<tr>
<td>Togo</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tunisia</td>
<td>0.0</td>
<td>1.9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Uganda</td>
<td>29.5</td>
<td>45.0</td>
<td>5.0</td>
<td>86.0b</td>
</tr>
<tr>
<td>Western Sahara</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Zaire</td>
<td>5.0c</td>
<td>38.0</td>
<td>2.9</td>
<td>25.4</td>
</tr>
<tr>
<td>Zambia</td>
<td>24.5b</td>
<td>54.0b</td>
<td>16.0b</td>
<td>36.0b</td>
</tr>
<tr>
<td>Zimbabwe</td>
<td>18.0</td>
<td>28.6b</td>
<td>12.8</td>
<td>34.4</td>
</tr>
</tbody>
</table>
Table 1: Estimates of HIV-1 Seroprevalence, by Residence and Risk Factor, for Developing Countries: Circa 1993

<table>
<thead>
<tr>
<th>REGION AND COUNTRY</th>
<th>LOW RISK</th>
<th>HIGH RISK</th>
<th>LOW RISK</th>
<th>HIGH RISK</th>
<th>LOW RISK</th>
<th>HIGH RISK</th>
<th>LOW RISK</th>
<th>HIGH RISK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CAPITAL/MAJOR CITY</td>
<td>OUTSIDE MAJOR CITY</td>
<td>URBAN CITY SOURCES</td>
<td>OUTSIDE CITY SOURCES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LOW RISK</td>
<td>HIGH RISK</td>
<td>LOW RISK</td>
<td>HIGH RISK</td>
<td>LOW RISK</td>
<td>HIGH RISK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASIA AND OCEANIA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bahrain</td>
<td>-</td>
<td>.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bangladesh</td>
<td>.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bhutan</td>
<td>.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Burma</td>
<td>2.2</td>
<td>11.4</td>
<td>0.1</td>
<td>15.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>China, People's Republic of</td>
<td>-</td>
<td>14.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>French Polynesia</td>
<td>.0</td>
<td>.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>.0</td>
<td>.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>*India</td>
<td>.8a</td>
<td>26.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Indonesia</td>
<td>.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Israel</td>
<td>.0</td>
<td>1.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Japan</td>
<td>.0</td>
<td>.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Korea, Dem. People’s Rep.</td>
<td>.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Korea, Rep.</td>
<td>.0</td>
<td>.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Kuwait</td>
<td>.0</td>
<td>.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Laos</td>
<td>.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Macau</td>
<td>.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Malaysia</td>
<td>.0</td>
<td>29.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Maldives</td>
<td>.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mongolia</td>
<td>.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nepal</td>
<td>0.1</td>
<td>1.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>New Caledonia</td>
<td>.0</td>
<td>.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pakistan</td>
<td>.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Papua New Guinea</td>
<td>.0</td>
<td>.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Philippines</td>
<td>.0</td>
<td>.1</td>
<td>-</td>
<td>.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Saudi Arabia</td>
<td>.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Singapore</td>
<td>.0</td>
<td>0.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sri Lanka</td>
<td>.0</td>
<td>0.1b</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Syria</td>
<td>.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Taiwan</td>
<td>.0</td>
<td>.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Thailand</td>
<td>1.9</td>
<td>35.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Turkey</td>
<td>.0</td>
<td>1.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vietnam</td>
<td>.0</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

LATIN AMERICA/CARIBBEAN

Antigua & Barbuda	-	1.7	-	-	-	-	-	-
Argentina	.3	6.3	.2	2.0	-	-	-	-
Bahamas, The	3.6	18.4	-	-	-	-	-	-
Barbados	1.2c	4.7	-	-	-	-	-	-
Bolivia	.0	-	-	-	-	-	-	-
*Brazil	0.8	24.0a	0.3	.0b	-	-	-	-
British Virgin Islands	2.8b	-	0.3	0.0b	-	-	-	-
Cayman Islands	0.0	-	-	-	-	-	-	-
Chile	0.0	1.0	-	-	-	-	-	-
Colombia	.1	14.6	-	-	-	-	-	-
Costa Rica	1.1c	4.3c	-	-	-	-	-	-
*Cuba	.0	-	-	-	-	-	-	-
Dominican Rep.	1.3	5.0	-	-	-	-	-	-
Ecuador	0.0b	.5	-	-	-	-	-	-
El Salvador	0.3b	2.2	-	-	-	-	-	-
Grenada	0.0	2.4b	-	-	-	-	-	-
Guatemala	.0	.7	-	-	-	-	-	-
Guyana	6.9	25.0b	-	-	-	-	-	-
Table 1: Estimates of HIV-1 Seroprevalence, by Residence and Risk Factor, for Developing Countries: Circa 1993

<table>
<thead>
<tr>
<th>REGION AND COUNTRY</th>
<th>CAPITAL/MAJOR CITY</th>
<th>OUTSIDE MAJOR CITY</th>
<th>URBAN CITY SOURCES</th>
<th>OUTSIDE CITY SOURCES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LOW RISK</td>
<td>HIGH RISK</td>
<td>LOW RISK</td>
<td>HIGH RISK</td>
</tr>
<tr>
<td>LATIN AMERICA/CARIBBEAN CONT'D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haiti</td>
<td>15.7</td>
<td>41.9</td>
<td>4.0</td>
<td>-</td>
</tr>
<tr>
<td>Honduras</td>
<td>.2</td>
<td>19.8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Jamaica</td>
<td>.3</td>
<td>14.6b</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Martinique</td>
<td>.5</td>
<td>38.9b</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mexico</td>
<td>.1b</td>
<td>2.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Montserrat</td>
<td>0.0c</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nicaragua</td>
<td>0.0</td>
<td>1.6b</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Panama</td>
<td>0.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Paraguay</td>
<td>0.0</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Peru</td>
<td>1.1b</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>St. Kitts & Nevis</td>
<td>2.0c</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>St. Lucia</td>
<td>0.0c</td>
<td>1.2c</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>St. Vincent & Grenadines</td>
<td>0.2</td>
<td>1.4c</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Suriname</td>
<td>.8c</td>
<td>2.6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Trinidad & Tobago</td>
<td>.2c</td>
<td>14.7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Uruguay</td>
<td>0.1</td>
<td>5.6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Venezuela</td>
<td>.1</td>
<td>6.1b</td>
<td>.0</td>
<td>-</td>
</tr>
</tbody>
</table>

- No data found
* See table 2 for HIV-2 data
a Rate represents infection with HIV1 only and dual infection (HIV1 & HIV2), therefore addition of rates from table 1 and 2 is not advised.
b Data are best available but are not necessarily reliable due to small sample size (<100).
c Data combined.

NOTES:
- **Definition:**
 - High risk—prostitutes and clients, STD patients, or other persons with known risk factors
 - Low risk—pregnant women, blood donors, or other persons with no known risk factors.

SOURCE: U.S. Bureau of the Census, HIV/AIDS Surveillance Data Base, 12/93 Update
REFERENCES

S0152 Schrijvers, D., E. Delaforge, M. Peeters, et al., 1988, Role of Sexually Transmissible Pathogens in Transmitting HIV-1, Genitourinary Medicine, vol. 64, no. 6, pp. 395-396.

APPENDIX B
Seroprevalence of HIV-1 for Low-Risk Populations in Central Africa

Chad

Cameroon

Central African Republic

Equatorial Guinea

Gabon

Congo

Zaire

Pct. Seropositive

○ 0.0

⊙ 0.1 - 0.9

⊙ 1.0 - 4.9

⊙ 5.0 - 9.9

○ 10.0 - 19.9

● 20.0 +
Seroprevalence of HIV-1 for Low-Risk Populations in West Africa

Pct. Seropositive

- 0.0
- 0.1 - 0.9
- 1.0 - 4.9
- 5.0 - 9.9
- 10.0 - 19.9
- 20.0 +

Seroprevalence of HIV-2 for Low-Risk Populations in West Africa

Seroprevalence of HIV-1 for Low-Risk Populations in Southern Africa

BIBLIOGRAPHY

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9
U.S. Bureau of the Census, Center for International Research.

Figure 10
U.S. Bureau of the Census, Center for International Research.

Figure 11
U.S. Bureau of the Census, Center for International Research.
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Author(s)</th>
<th>Year</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>71</td>
<td>China’s Export Production Profile</td>
<td>Penelope B. Prime</td>
<td>1994</td>
<td>$10.00</td>
</tr>
<tr>
<td>70</td>
<td>Population and Migration Characteristics of Fujian Province, China</td>
<td>Judith Banister, Christina Wu Harbaugh, and Ellen Jamison</td>
<td>1993</td>
<td>$10.00</td>
</tr>
<tr>
<td>69</td>
<td>Reform of China’s Foreign Trade System and Prospects for Freer Trade</td>
<td>Loraine A. West</td>
<td>1993</td>
<td>$10.00</td>
</tr>
<tr>
<td>68</td>
<td>Scientists and Engineers in Industrialized Societies: Data Available as of 1992</td>
<td>Ellen Jamison</td>
<td>1992</td>
<td>$15.00</td>
</tr>
<tr>
<td>67</td>
<td>Problems and Options in China’s Public Finance</td>
<td>Penelope Prime</td>
<td>1992</td>
<td>$10.00</td>
</tr>
<tr>
<td>66</td>
<td>Excess Mortality in Guatemala: A Comparison of Causes of Death in Guatemala and Costa Rica</td>
<td>Arjun Adlakha and Eduardo Arriaga</td>
<td>1992</td>
<td>$5.00</td>
</tr>
<tr>
<td>65</td>
<td>Vietnam--Population and Dynamics</td>
<td>Judith Banister</td>
<td>1992</td>
<td>$10.00</td>
</tr>
<tr>
<td>64</td>
<td>Scientists and Engineers in Canada and Sweden</td>
<td>Ellen Jamison</td>
<td>1991</td>
<td>$10.00</td>
</tr>
<tr>
<td>63</td>
<td>Scientists and Engineers in Industrialized Countries: An Update for France, West Germany, and the United Kingdom</td>
<td>Ellen Jamison</td>
<td>1991</td>
<td>$10.00</td>
</tr>
<tr>
<td>62</td>
<td>Scientists and Engineers in Malaysia, South Korea, and Taiwan</td>
<td>Ellen Jamison</td>
<td>1991</td>
<td>$10.00</td>
</tr>
<tr>
<td>61</td>
<td>A Selected Bibliography on Urbanization in China</td>
<td>Florence Yuan</td>
<td>1991</td>
<td>$15.00</td>
</tr>
<tr>
<td>60</td>
<td>USSR: Gross National Product Accounts, 1985</td>
<td>Misha Belkindas, Douglas Diamond, and Albina Tretyakova</td>
<td>1991</td>
<td>$15.00</td>
</tr>
</tbody>
</table>

CENTER FOR INTERNATIONAL RESEARCH

STAFF PAPERS
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 57</td>
<td>Determinants of Unauthorized Migration to the United States, by Linda S. Peterson and Robert Warren (1990)</td>
<td>$5.00</td>
</tr>
<tr>
<td>No. 56</td>
<td>The Modernization of the Soviet Agricultural Machine-Building Industry, by David Zaslow (1990)</td>
<td>$10.00</td>
</tr>
<tr>
<td>No. 54</td>
<td>Estimates and Projections of Educational Attainment in the USSR to the Year 2000, by W. Ward Kingkade (1990)</td>
<td>$10.00</td>
</tr>
<tr>
<td>No. 53</td>
<td>Blood Donors and AIDS in Africa: The Gift Relationship Revisited, by Barbara Boyle Torrey, Maurita Mulligan, and Peter O. Way (1990)</td>
<td>$10.00</td>
</tr>
<tr>
<td>No. 52</td>
<td>Living Arrangements of the Elderly and Social Policy: A Cross-National Perspective, by Kevin G. Kinsella (1990)</td>
<td>$10.00</td>
</tr>
<tr>
<td>No. 51</td>
<td>Updated Statistics on Scientists and Engineers in Industrialized Countries, by Ellen Jamison (1989)</td>
<td>$10.00</td>
</tr>
<tr>
<td>No. 50</td>
<td>Labor Force and Informal Employment in Mexico: Recent Characteristics and Trends, by Linda S. Peterson (1989)</td>
<td>$10.00</td>
</tr>
<tr>
<td>No. 48</td>
<td>USSR: The Belorussian Railroad Experiment, by Meredith M. Sample Heimeneier (1989)</td>
<td>$10.00</td>
</tr>
<tr>
<td>No. 46</td>
<td>Forecasting the Long-Range Planning of Science and Technology in the USSR, by Louvan E. Nolting (1989)</td>
<td>$10.00</td>
</tr>
<tr>
<td>No. 44</td>
<td>Implications of the Aging of China's Population, by Judith Banister (1988)</td>
<td>$10.00</td>
</tr>
</tbody>
</table>

No. 42 Bibliography of Soviet Statistical Handbooks, by Timothy E. Heleniak (1988) [updated version of Staff Paper No. 3] .. $ 15.00

No. 40 Family Planning in China: Recent Trends, by Karen Hardee-Cleaveland and Judith Banister (1988) ... $ 10.00

No. 39 Indonesia: An Overview of Selected Socioeconomic Subjects, by Kathleen Short (1988) .. $ 10.00

No. 38 The Soviet View on the State of Technological Innovation in the USSR, by Louvan E. Nolting (1988) ... $ 10.00

No. 35 Aging in the Third World, by Kevin G. Kinsella (1988) $ 10.00

No. 34 Afghanistan: A Demographic Profile, by Frank B. Hobbs (1988) $ 10.00

No. 31 China: Consumer Demand Statistical Update, by Jeffrey R. Taylor (1987) .. $ 15.00

No. 30 USSR: Energy Consumption in the Housing and Municipal Sector, by Matthew J. Sagers and Albina Tretyakova (1987) .. $ 10.00

<p>| No. 27 | Future Implications of Alternative Family Planning Policies in China, by John S. Aird (1986) | $5.00 |
| No. 26 | Scientists and Engineers in Industrialized Countries: A Comparison of Characteristics for France, West Germany, Japan, the United Kingdom, and the United States, by Peter O. Way and Ellen Jamison (1986) | $15.00 |
| No. 25 | Central American Migration: Past and Present, by Linda S. Peterson (1986) | $10.00 |
| No. 24 | A Bibliography of National Income Accounting in China, by Rebecca A. Hatch (1986) | $5.00 |
| No. 23 | China: Recent Trends in Health and Mortality, by Judith Banister (1986) | $10.00 |
| No. 22 | China's Price Structure in International Perspective, by Jeffrey R. Taylor (1986) | $5.00 |
| No. 21 | Demographic Estimates, Projections, and Selected Social Characteristics of the Population of India, by Frank B. Hobbs (1986) | $10.00 |
| No. 17 | Soviet Foreign Trade in Foodstuffs: A Calorie Measure, by Vladimir G. Treml (1986) | $10.00 |
| No. 16 | Employment Outlook for China to the Year 2000, by Jeffrey R. Taylor (1986) | $5.00 |
| No. 15 | Urban-Rural Population Projections for China, by Judith Banister (1986) | |
| Report only | $10.00 |
| Report with medium projection printout | $12.50 |
| Report with high, medium, and low projection printouts | $16.50 |
| No. 13 | 1977 Consumption by Industrial Sector of the USSR, by Meredith Heinemeier (1986) | $10.00 |</p>
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Author(s)</th>
<th>Year</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>The Freight Rate Structure on Soviet Railroads</td>
<td>Matthew J. Sagers and Milford B. Green</td>
<td>1985</td>
<td>$5.00</td>
</tr>
<tr>
<td>10</td>
<td>Civilian Employment in the USSR: 1950 to 1983</td>
<td>Stephen Rapawy</td>
<td>1985</td>
<td>$5.00</td>
</tr>
<tr>
<td>9</td>
<td>Evaluation of Selected Soviet Population Statistics</td>
<td>W. Ward Kingkade</td>
<td>1985</td>
<td>$5.00</td>
</tr>
<tr>
<td>7</td>
<td>Components of Gross Investment in 1966 and 1972 Soviet Input-Output Tables</td>
<td>James W. Gillula</td>
<td>1984</td>
<td>$5.00</td>
</tr>
<tr>
<td>6</td>
<td>Issues and Implications of the Aging Japanese Population</td>
<td>Peter O. Way</td>
<td>1984</td>
<td>$10.00</td>
</tr>
<tr>
<td>5</td>
<td>A Compendium of Soviet Health Statistics</td>
<td>Murray Feshbach</td>
<td>1985</td>
<td>$10.00</td>
</tr>
<tr>
<td>4</td>
<td>Restructuring the Soviet Petroleum Refining Industry</td>
<td>Matthew J. Sagers and Albina Tretyakova</td>
<td>1985</td>
<td>$10.00</td>
</tr>
<tr>
<td>3</td>
<td>Bibliography of Regional Statistical Handbooks in the USSR</td>
<td>Meredith M. Heinemeier</td>
<td>1984</td>
<td>No. 42</td>
</tr>
<tr>
<td>2</td>
<td>Refinery Throughput in the USSR</td>
<td>Matthew J. Sagers</td>
<td>1984</td>
<td>$10.00</td>
</tr>
<tr>
<td>1</td>
<td>Construction of a 1977 Input-Output Table</td>
<td>Dimitri M. Gallik, et al.</td>
<td>1984</td>
<td>$10.00</td>
</tr>
</tbody>
</table>