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A Solution to the Problem of Externalities
When Agents Are Well-Informed

By HaL R. VARIAN®

I describe a class of simple two-stage mechanisms that implement efficient
allocations as subgame-perfect equilibria for economic environments involving
externalities. These mechanisms, known as compensation mechanisms, solve a
wide variety of externalities problems including implementation of Lindahl
allocations, regulation of monopoly, and efficient solutions to the prisoner’s

dilemma. (JEL D62, D71)

Consider an economic environment in
which agents take actions that impose bene-
fits or costs on other agents. The agents
involved know the relevant technology and
the tastes of all other agents. However the
“regulator,” who has the responsibility for
determining the final allocation, does not
have this information. How can the regula-
tor design a mechanism that will implement
an efficient allocation?

In this paper I describe a class of simple
two-stage games whose subgame-perfect
equilibria implement efficient allocations in
this sort of environment. In addition to im-
plementing efficient outcomes, the mecha-
nisms also achieve desirable distributional
goals. In the case of public goods, the mech-
anisms implement Lindahl allocations; in
the case of a negative externality, the in-
jured parties are compensated. Because
payment of ‘“‘compensation” is an important
feature of the mechanisms I describe, 1 re-
fer to the general class of mechanisms as
compensation mechanisms. These mecha-
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nisms appear to work in a broad variety of
economic environments and do not involve
substantial restrictions on tastes or technol-
ogy. They are also quite simple to describe
and analyze.

The fact that multistage games and sub-
game-perfect equilibria may be useful in
implementation problems was suggested by
Vincent Crawford (1979) and Hervé Moulin
(1979, 1981) and was extensively analyzed
by John Moore and Rafael Repullo (1988).
Moore and Repullo show that in economic
environments, almost any choice rule can be
implemented by subgame-perfect equilibria.
However, as Moore and Repullo (1988
p. 1198) point out, “...the mechanisms we
construct are far from simple; agents
move simultaneously at each stage and their
strategy sets are unconvincingly rich. We
present such mechanisms to show what is
possible, not what is realistic.” Moore and
Repullo also show that in certain “eco-
nomic environments” it is possible to use
somewhat simpler mechanisms. However,
the compensation mechanism appears to be
much simpler than the examples Moore and
Repullo (1988) examined. For a thorough
review of the recent literature on imple-
mentation in complete information environ-
ments, see John Moore (1992).

It should be emphasized that the solution
concept of subgame perfection requires the
agents to be informed about the technology
and tastes of the other agents. This is, of
course, more restrictive than one would like.
However, there is a broad set of cases for
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which this assumption may be plausible. For
example, consider a group of agents who
must design a constitution that describes a
mechanism to make group decisions for
problems that will arise in the future. At the
time the mechanism is chosen, the agents
may not know the relevant tastes and tech-
nologies, but they will know these things
when the mechanism is actually used. In
this circumstance, the compensation mecha-
nism may be a useful mechanism. See Moore
and Repullo (1988) and Eric Maskin (1985)
for further discussion of these issues.

I first describe a very simple example of
the compensation mechanism in a two-agent
externalities problem and discuss in an intu-
itive way why the method works. The fol-
lowing sections show how the method can
be extended to work in more general envi-
ronments.

I. A Simple Example of the Compensation
Mechanism

Consider the following externality prob-
lem involving two agents. For simplicity,
think of each agent as a profit-maximizing
firm. Firm 1 produces output x so as to
maximize profit:

mi=rm —c(x)

where r is the competitive price of output
and c(x) is a differentiable, positive, in-
creasing, and convex cost function.

Firm 1’s choice of output imposes an ex-
ternality on firm 2; in particular, firm 2’s
profits are

my,=—e(x)

where e(x) is a differentiable, positive, in-
creasing, and convex function of x. All of
this information is known to both agents but
is not known by the regulator. In general,
the level of output chosen by firm 1 will not
be efficient, since firm 1 ignores the social
cost its choice imposes on firm 2. There are
three classic solutions to this problem of
externalities.

One class of solutions, associated with
Ronald Coase (1960) involves negotiation
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between the agents. Coase claims that if
transactions costs are zero and property
rights are well defined, agents should be
able to negotiate their way to an efficient
outcome. But this is an incomplete solution
to the problem of externalities since Coase
does not describe a specific mechanism for
negotiation. The compensation mechanism
described below provides a structure for
such negotiations and therefore can be
viewed as being complementary to the Coase
approach.

A second class of solutions, associated
with Kenneth Arrow (1970), involves setting
up a market for the externality. If a firm
produces pollution that harms another firm,
then a competitive market for the right to
pollute may allow for an efficient outcome.
From the Coasian point of view, a competi-
tive market is a particular institution that
allows agents to “negotiate” their way to an
efficient outcome. However, as Arrow points
out, the market for allocating a particular
externality may be very thin—in many cases
of interest such markets involve. only two
participants.

However, a thin market does not neces-
sarily mean a noncompetitive market. There
are both theoretical and empirical reasons
to believe that certain kinds of market inter-
action can be competitive even though only
a small number of agents are involved. For
example, a Bertrand model of oligopoly
yields a more or less competitive outcome
with only two firms. The real-life implemen-
tation of Bertrand competition—competi-
tive bidding—seems to work reasonably
well, even with only a small number of
bidders. This suggests that markets for ex-
ternalities with price-setting agents may be
a useful model for negotiations among
agents. This is a key insight behind the
compensation mechanism.

A third class of solutions, associated with
A. C. Pigou (1920), involves intervention by
a regulator who imposes a Pigovian tax. The
difficulty with this solution is that it requires
the regulator to be able to compute the
correct level of the Pigovian tax; in many
cases the regulator may not have access to
this information, so the Pigovian solution is
also incomplete. The compensation mecha-
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nism solves this problem, since it gives the
regulator a method to induce the partici-
pants to reveal the information necessary to
construct the optimal Pigovian tax.

Returning to the example, note that if the
regulator had full information, internalizing
the externality would be easy. One solution
would be for the regulator to impose the
costs of the externality on firm 1 by charging
it a “tax” of e(x) if it produces x units of
output. Firm 1 would then solve the prob-
lem

maxrx —c(x)—e(x).

Let x* be solution to this problem; then x*
satisfies the first-order condition

r—c'(x*)—e'(x*)=0.

Because of the curvature assumptions on
e(x), the regulator could just as well set a
“Pigovian tax,” p*=e'(x*) and let firm 1
solve the problem

max rx —c(x)— p*x.
X

However, I have assumed that the regula-
tor does not know the externality cost func-
tion and therefore cannot determine the
appropriate value of p*. The regulator’s
problem is to design a mechanism that will
induce the agents to reveal their informa-
tion about the magnitude of the externality
and achieve an efficient level of produc-
tion. Here is a version of the compensa-
tion mechanism that solves the regulator’s
problem.

Announcement stage.—Firm 1 and 2 simul-
taneously announce the magnitude of the
appropriate Pigovian tax; denote the an-
nouncement of firm 1 by p, and the an-
nouncement of firm 2 by p,.

Choice stage.—The regulator makes side-
payments to the firms so that the two
firms face profit-maximization problems:

HOy=rc—c(x)—pyx _al(Pl_Pz)z

I, =px —e(x).
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The parameter a, > 0 is of arbitrary mag-
nitude.

In this mechanism, firm 1 is forced to pay
a tax based on the marginal social cost of
the externality as reported by firm 2, and
firm 2 receives compensation based on the
marginal social cost of the externality as
reported by firm 1. Firm 1 must also pay a
penalty if it reports a different marginal
social cost than firm 2 reports. Any penalty
that is minimized when the reports are the
same will work, but I have chosen a
quadratic penalty for simplicity. Note in
particular that the penalty can be arbitrarily
small.

II. Analysis of the Compensation
Mechanism

There are many Nash equilibria of this
game; essentially any triple (p,, p,, x) such
that p, = p, and x maximizes firm 1’s ob-
jective function is a Nash equilibrium. How-
ever, if the stronger concept of subgame-
perfect equilibrium is used, there is a much
smaller set of equilibria. In fact, the unique
subgame-perfect equilibrium of this game
has each agent reporting p, = p, = p* and
firm 1 producing the efficient amount of
output.

In order to verify this, one must work
backwards through the game. Begin with
the choice stage. Firm 1 maximizes its prof-
its, given the Pigovian tax announced in
stage 1, which implies that firm 1 will choose
x to satisfy the first-order condition

(1) r=c'(x)+p,.

This determines the optimal choice, x, as a
function of p,, which I denote by x(p,).
Note that x'(p,) < 0; the higher the tax that
firm 2 announces, the less firm 1 will want
to produce.

I next examine the price-setting stage of
the game. I first examine firm 1’s choice
problem. If firm 1 believes that firm 2 will
announce p,, then firm 1 will want to an-
nounce

(2) D= D,.
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This is clear since p, only influences firm
1’s payoff through the penalty term, and the
penalty is minimized when p; = p,.

Consider now firm 2’s pricing decision.
Although firm 2’s announcement has no di-
rect effect on firm 2’s profits, it does have an
indirect effect through the influence of p,
on firm 1’s output choice in stage 2. Differ-
entiating the profit function of firm 2 with
respect to p,, and setting it equal to zero
yields

(3) My(py) =[p—€(x)]x'(p;) =0.

Since x'(p,) <0, then it must be that p, =
e'(x).
Combining (1), (2), and (3) yields

r=c'(x)+e'(x)

which is the condition for social optimality.
Hence, the unique subgame-perfect equilib-
rium to this game involves firm 1 producing
the socially optimal amount of output.’

III. Why the Compensation Mechanism Works

The intuition behind the mechanism is
not particularly difficult. Firm 2 effectively
chooses x by setting the price firm 1 faces.
If there is to be an equilibrium, it must be
that p, = ¢'(x); otherwise firm 2 would want
to change its announcement of p, in order
to induce firm 1 to change x. Furthermore,
firm 1 will always want to set p, = p, so as
to minimize its penalty. The only configura-
tion compatible with these conditions is the
efficient outcome.

For example, suppose that firm 1 thinks
that firm 2 will report a large price for the
externality. Then, since firm 1 is penalized if
it announces something different from firm
2,-firm 1 will also want to announce a large
price. If firm 1 announces a large price, firm

1 have not considered the possibility of mixed
strategies. However, since the stage-1 game is super-
modular and has a unique pure-strategy equilibrium,
the results of Paul Milgrom and John Roberts (1990)
can be applied to show that there are no mixed-strategy
equilibria.
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2 will be “overcompensated” for the exter-
nality—so it will want firm 1 to produce a
large amount of output. But the only way
firm 2 can give firm 1 an incentive to pro-
duce a large amount of output is by report-
ing a small price for the externality. This
contradicts the original assumption that firm
1 thinks that firm 2 will report a large price
for the externality. The only equilibrium for
the mechanisms occurs if firm 2 is just com-
pensated (on the margin) for the cost that
firm 1 imposes on it; at this point firm 2
does not want firm 1 to increase or decrease
its level of production.

IV. Extensions of the Basic Example
A. Balance

The compensation mechanism, in the
form presented above, is balanced in equi-
librium but not out of equilibrium. How-
ever, if there are at least three agents it is
easy to choose transfers to balance the
mechanism. As Moore and Repullo (1988)
point out, one can simply distribute the
surplus or deficit generated by each agent’s
choice among the other agents. Since this
lump-sum distribution is independent of
agent i’s choice, there are no resulting in-
centive effects.?

To see how this works in the simple ex-
ample considered above, I now suppose that
agent 1 imposes an externality on agents 2
and 3. Use the notation p,.’j. to represent the
price announced by agent k that measures
(in equilibrium) the marginal cost that agent
j’s choice imposes on agent i.

The basic compensation mechanism for
this problem has payments of the form

I, = e —c(x) — [ P} + P3| x
— 3, — PA4lI— 1P} — 3l
IT, =p§1x —e(x)

H3=p§1x—e3(x).

2This idea seems to have been first used by Theodore
Groves and John Ledyard (1977). Since then it has
been used by a number of other authors.
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If payments are distributed so as to balance
the budget out of equilibrium, the payofis
become

(4) Ty=rx—c(x)=[p3+ph]x
=% — p3ll=llp3, — Pl
I, = py1x — ex(x)
+ [Pgl - Pél] x +11py, — p3ll
I, =pjx —e5(x)
+ [Pgl - P%l]x +1p3 — 3l

Straightforward addition shows that this
game is balanced. Using the same sort of
arguments as before, it is possible to verify
that the unique equilibrium of this mecha-
nism is the efficient outcome. In fact, it is
not necessary to have penalty terms when
there are more than two agents. To see this,
set the penalty terms in (4) equal to zero
and differentiate the relevant objective
functions with respect to the choice vari-
ables x, p2, and p3:

r _C’(x)—[Pgl"'Pgl] =0
[1’%1 —ey(x)+ Pgl _pil’;l]x'(pgl +P%1) =0
[P} —es(x)+ p% — ph ] x'(P% + P3) = 0.

Since the derivatives of x must be nonzero
due to strict convexity of the cost function,
the terms in brackets must be zero. Adding
~ the bracketed expressions in the last two
equations together and substituting into the
first equation shows that the equilibrium is
efficient.

Yet a third way to balance the mecha-
nism is to allow agent 2 to name the cost
that agent 1 imposes on agent 3 and vice
versa. This is a bit less natural in terms of
the information requirements, but it yields a

DECEMBER 1994
very simple mechanism:

I =rx—c(x) _(Pgl + P%l)x

I, = p3;x — e,(x)

;= p5x — e5(x).

Differentiating with respect to each of the
choice variables as above shows that the
equilibrium of this mechanism is efficient,
and it is obviously balanced. Each of these
ways of balancing the compensation mecha-
nism works in general as I will demonstrate
below.

B. Adjusting to Equilibrium

There is a natural adjustment process for
the compensation mechanism that will lead
naive agents to the subgame-perfect equilib-
rium. Suppose that two agents play the game
repeatedly. In period ¢ +1, agent 1 sets p;
to be whatever price agent 2 announced last
period, and agent 2 moves p, in a direction
that increases its profits if agent 1 sets the
same price as it did last period. In the
choice stage, agent 1 chooses output to max-
imize profits, given the current prices. This
leads to a simple discrete dynamical system:

(5) pi(t+1)=p,(2)
po(t+1) = py(t) = y[ pi(2) — €(x(ps(1))].

Here y > 0 is a speed-of-adjustment param-
eter. The differential-equation analogue of
this system is

(6) P1=DP,— D,
b2=—v[pi—€(x(p,))].

It is easy to show that that (6) is locally
stable; the difference-equation version de-
scribed in (5), will be locally stable if y is
small enough to avoid “overshooting.” Note
that if the agents use this adjustment proce-
dure neither one needs to know anything
about the other agent’s technology. All that
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information is subsumed in the price mes-
sages that the agents send back and forth.?

C. Nonlinear Taxes and Compensation
Functions

The basic compensation mechanism de-
scribed above uses linear pricing. Linear
prices are fine in a convex environment, but
if the environment is not convex, linear
prices will not in general be able to support
efficient allocations. However, this difficulty
is no problem for a suitable generalization
of the compensation mechanism.

Announcement stage.—Firm 1 and 2 each
announce the externality cost function for
firm 2. Call these announcements e,(-)
and e,(*).

Choice stage.—Firm 1 chooses x, and each
firm receives payoffs given by

I, (x) =rx —c(x) —ex(x) ~lle, el

I,(x) = e,(x) — ().

Here |le; — e, | signifies any norm in the
appropriate function space. All that is
required is that it is minimized when both
agents report the same function.

To see that this works, simply note that in
equilibrium firm 1 will always want to report
the same function as firm 2, so e,(x) = e,(x).
Maximization of profit by firm 1 in the choice
stage implies

(7) = c(x*) —ey(x*)

>rx—c(x)—ey(x) for all x.

3This is, of course, a very special adjustment pro-
cess. However, Milgrom and Roberts (1991) show that
for dominance-solvable games every adjustment pro-
cess consistent with adaptive or sophisticated learning
converges to the dominance-solvable equilibrium.
Hence it may be reasonably be expected that a wide
class of adjustment mechanisms will work when the
second-stage game is dominance-solvable (as it is in
this case).
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However, in the announcement stage, firm
2 can induce any level of x that it wants by
appropriate choice of the function e,.
Hence, the equilibrium choice of x must
also maximize firm 2’s profits:

(8) ei(x*) —e(x*) Zey(x) —e(x)

for all x.

Adding (7) and (8) together, and using the
fact that e(x)=e,(x) in equilibrium, one
obtains

(9) m*—c(x*)—e(x*)=rx—c(x)—e(x)
for all x

which shows that x* is the socially optimal
amount.

This argument shows that all equilibria of
the mechanism are efficient. However, in
general there will be many equilibria of this
game. To see this, observe that if e; and e,
are equilibrium announcements, so are e; +
F and e, + F for arbitrary values of F. In
order to get uniqueness of equilibrium, it is
necessary to restrict the class of allowable
messages.*

One way to do this is to parameterize the
cost function.’ Suppose that the set of pos-
sible externality costs is e(x,t) where ¢ is a
real-valued index of type. Suppose that the
true type of firm 2 is ¢,. In the announce-
ment stage of the game, each firm simply
announces the type of firm 2, and firm 1
pays a penalty if its announcement is dif-
ferent from that of firm 2. If ¢, is firm 1’s
announcement and ¢, is firm 2’s announce-
ment, the payoffs will be

Iy(x) =rx —c(x)—e(x,t,) = (t;— 1,)°

I (x) =e(x,t;) —e(x,1)

“One could also refine the solution concept. In this
example it may be reasonable for agent 1 to assume
that agent 2 will announce the largest possible value of
F consistent with agent 1’s participation.

In the convex case one can think of the efficiency
prices as being a particularly convenient parameteriza-
tion for the type space.
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Differentiating with respect to x, ¢, and ¢,,
one has

’ de(x,t,)
r—c(x)—T—O
tl_t2=0
de(x,t de(x,t

(0) _e(xt)] 0o

ax ox

Assuming that x'(z,)# 0, it is easy to see
that these equations imply

de(x,t,)

=c’' —+
r=c'(x) I

which is the condition for social efficiency.

Of course, this argument requires suffi-
cient regularity so that the various deriva-
tives exist. If the environment is not suitably
convex, an argument can be constructed
along the lines given above in inequalities
(7)-(9). Note that in a nonconvex environ-
ment one needs to assume that firm 2 can
induce firm 1 to choose any desired level of
x by choosing an appropriate value of t,;
this is simply a “global” version of the as-
sumption that x'(z,) # 0.

V. A General Externalities Problem

The externalities problem examined up
until now is rather special. Only one agent
makes a choice, and both agents have
quasi-linear objective functions so there are
no income effects. In this section I consider
a more general externality problem. For
simplicity, I continue to examine a two-agent
~ problem, but the argument is easily general-
ized to n agents.

In the general model there are two
choices, x, and x,, and one transferable
good, y. Agent i makes choice x;, and has a
quasi-concave utility function u,(x,, x,,y,).
Initially, agent i has w; units of the transfer-
able good, which can be thought of as
money.

DECEMBER 1994

A. Efficient Choices

In the absence of any transfers between
the agents, agent i will choose x; to maxi-
mize his own utility. The first-order condi-
tion characterizing these choices can be
written as

du, /9x,
ou, /3y,
du, /dx,
duy /9y, -

By contrast, an efficient allocation of choices
must satisfy the first-order conditions

u, /dx u, /dx
(10) 1/9%4 2/ 9%, _
du, /9y, du,/dy,
ou, /dx, du,/ox,
du, /9y, du,/dy,

These conditions simply require that the
sum of the marginal willingnesses to pay for
activity i should be zero.

Define

ou; /dx;

=— fori+j.
ou; /9y,

D;;

Then one can write the efficiency conditions
(10) as

du, /ox,
et pa =0
du, /3y,
du, /dx,
—F— +p;,=0.
du, /dy,

This form suggests that the efficient alloca-
tion can be achieved if each agent faces the
correct “price” for his choice. The problem
is how to determine the correct price. Here
is a description of the general compensation
mechanism that solves this problem.

Announcement stage.—Agent 1 announces
pi, and p},, and agent 2 announces p?,
and p3,.
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Choice stage.—Each agent chooses x; and
y; so as to maximize utility subject to a
budget constraint:

max u,( Xy, X5, ¥1)
X1 Y1

such that
phix,+y,=w +phx, —lp} — pil
and

maqu(xl’xz’ Yz)
X2,¥2

such that

Pizxz ty,=w,+ PyiX,— ||pfz - P}2”~

I show below that the subgame-perfect
equilibria of this game are precisely the
efficient allocations that satisfy the budget
constraints. However, before providing that
proof, I will make a few observations. '

First, each agent i is facing a price, p},
for his own choice x;. He is also receiving
compensation p/;x; for the choice that the
other agent makes. Both prices p;; and p/;
are set by the other agent. Each agent i also
pays a penalty based on how different
his announced price, pj;, is from the price
that the other agent j announced for i’s
choice, pj,.

As one might suspect, in equilibrium it
must be that pj; = pj;. This means that no
penalties will be paid and that the payment
made by agent i for his action will just be
equal to the compensation paid to agent j.
Hence, in equilibrium, the aggregate budget
constraint will balance.

-I will now show that the equilibrium
of this game must be efficient. I provide
two proofs. The first proof simply involves
writing down the first-order conditions for
the utility-maximization problems. There
are three choice variables for each of the
two agents, x;, p;;, and pj, so there
are six first-order conditions. Choosing
the quadratic norm for computational
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simplicity, the first-order conditions are:

du, du,

11 — ——p=0
(11) ox, 6y1p21
du, du, dx,
(12) (———-—p2 oL
ax, dy, *)aopl,
duy duy; | 9x,
oax,  ay, L) gpt T
du; du, dx,
o (Bt
ax, dy, 2 apl,
duy duy; | 9x,
+ —_—
ax, aylp” apy,
du,
—2“3—))‘(1751—17%1):0
du, du,
14 — - —pl =
(14) ax, ayzp”
u du ox
w (Bt
dx, dy, D3
du, du, 1)8x1
P D
ax, dy, *'|ap3
du du ax
(16) (—3——31){2)—22
dx, dy, D1,
du, du, . dax,
+|—+—p)|—
ax, dy, *'|ap?
du,
’23—})“(032_1’12):0
2

Here I have assumed that the equilibrium
choices in the second stage are differen-
tiable functions of the price announcements
made in the first stage. As I show in the
next section, this is not necessary for the
argument, but it does help to see why the
method works. Note that when agent 1
chooses p},, for example, he recognizes that
both his own choice, x;, and the other
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agent s choice, x,, may respond to changes
in pi,.

One must assume that dx,/dp}, and
dx, /ap21 are not zero. Now simply observe
that this assumptlon and (11)-(13) together
imply that p21 p21 Similarly, (14)—(16) im-
ply that p}, = p?,. Finally, combine (11) and

(15) to get
ou, /dx, du,/dx,
du, /9y, du, /9y,

and combine (12) and (14) to get

du, /9x,
ou, /9x,

du, /ox,
du, /9y,

These are precisely the first-order condi-
tions given in (10). Therefore, the
subgame-perfect equilibrium is efficient.

Note that the equilibrium is a particular
efficient allocation, namely, one that satis-
fies the “natural” budget constraint involv-
ing the efficiency prices. In general, such
allocations will be a small subset of all
efficient allocations. By analogy with the
public-goods literature, I call these alloca-
tions generalized Lindahl allocations. 1 show
below that when the externalities problem
is a public-goods problem, the prices in the
compensation mechanism are Lindahl
prices.

B. A More General Proof

The above proof shows clearly why an
equilibrium of the compensation mecha-
nism must be an efficient allocation. How-
ever, being a calculus proof, it does not deal
very well with corner solutions, additional
constraints, nondifferentiabilities, and the
like. Here is another argument that handles
these difficulties easily.

I need one assumption for the proof, an
invertibility assumption that says that each
agent can set a price for the other agent
that will induce the other agent to make any
desired choice. That is, if agent 1 would like
agent 2 to make some choice, there is some
price that agent 1 can set that will induce
agent 2 to make this choice. This is analo-
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gous to the assumption that dx, /dpj, # 0
in the previous proof. As in the differen-
tiable case, the demand functions only need
to be locally invertible if the environment is
suitably convex.

ASSUMPTION 1 (Local Invertibility): Let
x =(x,,x,) be the outcome of some set of
price announcements. Let X; be a choice close
to x; that agent j prefers to x;. Then there
is some sz that agent j can announce that will
make X; an optimal choice for agent i.

Local invertibility says that agent i can
manipulate agent j’s choices through agent
i’s price announcements. This is a very weak
assumption. If the agents’ demands are dif-
ferentiable functions of price with nonzero
derivatives than the inverse-function theo-
rem implies local invertibility.

THEOREM 1: Let preferences be convex
and continuous. Then every subgame-perfect
equilibrium of the compensation mechanism
is Pareto efficient.

PROOF:

Let (x,y,p) be a subgame-perfect equi-
librium of the compensation mechanism.
First I show that in equilibrium pl, = p2,.
To see this, consider the agents’ budget
constraints:

Pax,+ Yy, =w,+ phx, —lpy, — pill

PiXy+ vy =wy+ pyx, —Iph — pill.
Note that agent 1 can influence agent 2’s
ch01ce of x, through both the “mcome
term,” pl x,, and the “price term,” pl,.
However, by Assumption 1, any choice of
x, that can be achieved through the income
term can also be achieved by an appropriate
choice of the price term, p1,.

Suppose that there were an equlllbnum
in which p}, aé p3,. Let agent 1 set pl = p2,
and adjust p}, so as to induce the original
equilibrium value of x,. This must reduce
agent 1’s penalty and thereby increase agent
1’s utility. This contradicts the assumption
that there is an equilibrium. It follows that
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an equilibrium must exhibit zero penalty
terms for all agents.

Suppose now that (x',y’) is a feasible
allocation that Pareto-dominates the equi-
librium allocation. I will show that the exis-
tence of such an allocation leads to a con-
tradiction. By convexity and continuity of
preferences, one can assume that (x',y’) is
arbitrarily close to the equilibrium alloca-
tion. According to Assumption 1, agent 1
can induce agent 2 to choose x’, simply by
choosing an appropriate level of p},; fur-
thermore, agent 1 can directly choose
(x, y}). If agent 1 decides not to choose
this preferred allocation, it must be because
it lies outside his budget set. The same
argument applies to agent 2, and this gives
the inequalities

PHX Y > W+ phxh
X+ ¥y > wy+ Py Xy

Summing these inequalities and using the
fact that pj; = p};, one obtains

Vi+y,>wi+w,

which shows that the Pareto-dominating al-
location must be infeasible.

Note that the logic of this proof is quite
general. In particular, the taxation and com-
pensation functions do not need to be linear
functions. All that is necessary is that each
agent can manipulate the other agent’s
choice without incurring any cost himself. If
the economic environment is convex, one
only needs local invertibility; if the eco-
nomic environment is nonconvex, global in-
vertibility may be necessary.

It can also be shown that, if the environ-
ment is convex, any Pareto-efficient alloca-
tion is an equilibrium of this game for a
suitable choice of initial endowments. The
proof is a simple variation on the second
welfare theorem and is omitted for the sake
of brevity.

VI. Balancing the Mechanism

In the simple example discussed above,
the compensation mechanism can be bal-
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anced by distributing the budget surplus
generated by each agent among the other
agents. The same procedure works in gen-
eral; here I examine the simple case of
quasi-linear utility.

The appropriate payoff to agent i is

u(x)+ Z B;—T,

j=1
where

B, =p};x;— pix;— I pj; = pil

1
iT T Z szj
M=l prijei
1 n n n n
=n—2[ Z ZBkj_ ZBij_ ZBji .
k=1j=1 j=1 j=1

It is obvious that B;; =0, and it is not hard
to show that

(17) r

Note that B;; depends on the vector of
prices and the vector of choices. It is impor-
tant to observe that the only price term that
agent i determines is the price in the penaity
term, pj; all other prices are independent
of i’s choices. To emphasize the fact that
the payment depends on x, I write B, (x) in
the following paragraphs.

By local invertibility, each agent can in-
duce any desired allocation in the choice
stage by choosing the appropriate prices
in the announcement stage. Therefore, a
subgame-perfect equilibrium allocation
must satisfy

u(x*)+ _;lBi,-(X*)—Ti(X*)

s u(x)+ Y By(x)—T(x)

j=1
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for all x. Summing over the agents and
using equation (17) yields

n n

You(x*)= Y u(x)

i=1 i=1

for all x, which shows that the subgame-
perfect equilibrium is Pareto efficient.

Note that this argument does not use the
linear structure of the B;(x) terms; indeed,
the only feature used is that agent j can
report a Bij(x) term that will induce agent i
to make the choice x; that agent j wants
him to make. In a convex environment lin-
ear prices will generally have this property,
but in other environments other sorts of
pricing functions may be necessary.

Note further that this argument for effi-
ciency does not use the penalty terms; if all
the penalty terms are set equal to zero, the
proof of efficiency still goes through. How-
ever, the penalty terms will in general be
necessary if the equilibrium allocation is to
be a Lindahl allocation. Why? In order to
be a generalized Lindahl allocation each
agent must satisfy his budget constraint
when each choice is priced at its supporting
efficiency price. For this to be the case, the
T,(x) term must be zero in equilibrium. If
the penalty terms are present, each agent
will have an incentive to set pj; = pj;, which
will ensure that this will occur.

VII. A Different Information Structure

The compensation mechanism described
above is appropriate for a “bilateral” infor-
mation structure: if agent i imposes costs on
agent j, both i and j know the magnitude
of these costs. Another structure that one
might imagine is that there is some third
party, k, who knows the magnitude of these
costs. In this case, one can use a slightly
different type of compensation mechanism
to achieve efficient outcomes.

Consider the following example with three
agents. Agent i chooses x;, holds “money”
y;, and has a quasi-linear utility function
uxy, x,,x3)+y; The prices that support
an efficient allocation will have the form
pij=0u x)/dx;. Let pf denote the report
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of person k about the appropriate magni-
tude of the price p;;, and let x =(x, x,, x;)
be the vector of choices.

In this variant of the compensation mech-
anism, the payoffs to the agents will be:

(18)

ui(x) = (P31 + p3) X1+ i X, + Phax;
i1 3 3 1

Uy(x)—(P3 + P12) %2+ P Xy + Pr3xs
o1 2 2 1

u3(x)— (P + piz) X3+ P31 X1 + P3pX,.

Note that the payoffs are balanced, even out
of equilibrium. No sidepayments or penal-
ties are necessary in this case.

One way to prove that the subgame-per-
fect equilibrium is efficient is to differenti-
ate the payoffs with respect to each of the
choice variables. However, one can also ap-
ply the logic of the previous section. Simply
replace the definitions used there with

Bil;(x) = pilj'xj - Pj’fxi
T(x)=0

where k takes on all possible values 1,...,n,
but k # i, j. Note that when n = 3 these are
the payoffs given in (18). These definitions
imply that

M=
M=

Bl(x)=0
i=1j=1
and this is all that is required for the
proof given in the previous section to work.
The resulting allocation is automatically
Lindahl.

VIII. Examples of the Compensation
Mechanism

I have described the general form of the
compensation mechanism; here I illustrate
how it works in some specific cases.

A. Pure Public Goods

The special case of a pure public good is
of some interest, since it is a well-known
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and much studied example of a particular
type of externality. Let x, and x, be two
agents’ monetary contributions to a public
good. Let y; be agent i’s private consump-
tion. In the absence of any transfer mecha-
nism, agent 1’s maximization problem in a
public-goods contribution game takes the
form®

max u,(x,;+ x,,¥,)
X1, Y1

such that

Xty =w; x,=0.

Since there is now a positive externality
between the agents, it is natural to think of
the agents as subsidizing each other rather
than taxing each other. Applying the sub-
sidy payments appropriate for the compen-
sation mechanism, the budget constraint
facing agent 1 becomes

(1_ P%l)x1 ty,=w;— P%zxz - ||P§1 - P%l“-

Here agent 1’s contributions are subsidized
at a rate p2, which is chosen by agent 2;
this subsidy is recovered by a tax on agent 2.
Agent 1 also sets the rate at which agent 2’s
contributions should be subsidized, and in
equilibrium he ends up paying p%x,=
plyx, to cover this subsidy. In the compen-
sation mechanism the taxes and subsidies
that each agent faces are chosen by the
other agent(s). See Varian (1994) and Leif
Danziger and Arne Schnytzer (1991) for
similar mechanism in which the agents set
some of the subsidy rates for themselves.
Joel Guttman (1978) describes a related
mechanism in which agents choose the rate
at which they will match other agents’ con-
tributions to a public good. Guttman’s
mechanism is of some interest since match-
ing contributions are a commonly used

5The nonnegativity constraint is natural in a model
of voluntary contributions: one may choose to con-
tribute a positive amount to a public good, but one is
typically not able to make a negative contribution. The
equilibrium of this contribution game has been studied
extensively by Theodore Bergstrom et al. (1986).
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method to encourage contributions to a
public good.

Since public goods are just a special kind
of externality, the proof of efficiency given
earlier still applies. Note that the noncalcu-
lus proof is the appropriate version here,
due to the presence of the nonnegativity
condition. However, given the special form
of the public-goods externality, one can say
a bit more about the equilibrium prices.
Suppose that there is an interior solution to
the public-goods game so that x; and x,
are both positive. Since x; and x, are per-
fect substitutes in consumption, they must
have the same price in equilibrium.

By inspection of the budget constraint, it
follows that 1— p3,= p?,. Therefore, the
budget constraint facing agent 1 can, in
equilibrium, be written as

phlx +x]+y =wy.

It follows that an equilibrium value of p?, is
simply the Lindahl price of the public good
for agent 1, and the equilibrium allocation
is simply a Lindahl allocation. Hence, the
compensation mechanism gives a way to
decentralize Lindahl allocations by giving
each agent the incentive to reveal the ap-
propriate Lindahl prices.

B. Pure Private Goods

Agent 1 is a consumer who consumes an
x-good and a y-good and has a quasi-linear
utility function u(x)+y,. Agent 2 is a
monopolist that can produce the x good at
cost c(x); its objective function is y, — c¢(x).
How can the monopolist be induced to pro-
duce the socially optimal output?

If one is only interested in efficiency, this
is not terribly difficult: simply have one of
the agents dictate a production level and a
transfer. In this full-information environ-
ment there will be an efficient amount of x
regardless of which agent chooses it; only
the transfer will be different. However, if
one wants to get a particular efficient allo-
cation—say, the competitive outcome—it is
not so obvious how to proceed. However,
the compensation mechanism solves the
problem quite readily.
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Announcement stage.—The consumer an-
nounces how much he values the good,
D1, and the producer announces how much
the consumer values the good, p,.

Choice stage.—The producer chooses x, and
the payoffs are

I, =u(x)—p,x

I,=px—c(x)—lip,— pil.

Note that this problem is very similar to
the simple externalities problem used to
motivate the compensation mechanism, il-
lustrating the Coasian point that externali-
ties are just a special case of private goods.’
Applying the standard argument shows that
in equilibrium

pi=p,=u'(x)=c'(x)

which are the conditions that characterize
the competitive allocation.

C. Regulation of Duopoly

There are now three agents: the con-
sumer (indexed by 0) and two firms. Firm 1
produces x, at cost ¢,(x,), firm 2 produces
x, at cost c,(x,), and the consumer has
utility function u(x,, x,)+ y,. The standard
compensation mechanism involves payoffs
of the form

2

My =u(xy,x)— ptl)lxl — DX,

I, = pglxl —cy(xy)— ”P<1J1 - P81”
_ .0 2 0

I, = pgyxy — ¢3(x3) — PGz — Poall-

Here the consumer is setting the prices that
the firms face, and the firms are setting the
prices that the consumer faces.

However, in the case of duopoly it is
natural to think that the firms may know
more about each other’s technology than
the consumer knows. Hence it makes sense

"Or is it the other way around?
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for each firm to report the price that the
other firm should face. This yields payoffs of
the form

My =u(xy,x,) — p%lxl - I’(l)zxz
I1, = P%lxl —c(xy)
I, = P(l)zxz — (%)

Note that the consumer chooses both x,
and x, and that each firm sets the price for
the other firms’ product.

The arguments given earlier show that
the competitive allocation is the unique
equilibrium of this game. But it is useful to
think about how it works here. Consider the
classic Bertrand cases in which the two
goods are perfect substitutes. Suppose that
each firm has announced the competitive
price. Why would firm 1 not want to raise
the price of firm 2’s product, creating more
demand for its own output? If firm 1 raised
the price facing firm 2, then the consumer
would demand more output from firm 1,
which it would be forced to supply. But
since the price that firm 1 faces equals its
marginal cost, this would reduce firm 1’s
profit.

D. Prisoner’s Dilemma

Consider the following asymmetric pris-
oner’s dilemma:

Column
Row Cooperate. Defect
Cooperate 55 2,6
Defect 7,1 33

How can one induce the Pareto-efficient
outcome? Let x; =1 if agent i cooperates
and x;=0 if agent i defects, and let
ulx,,x,) be the payoff to agent i taken
from the above game matrix.

Announcement stage.—Agent 1 names pi,,
how much agent 1 should be paid if he
cooperates, and pj;, how much agent 2
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should be paid if he cooperates. Similarly
agent 2 names p3, and p?,.

Choice stage.—Each agent chooses whether
to cooperate or defect. The agents re-
ceive payoffs

I = uy(xy, %) + Py X, — Ph X,
—llp3 — 3

I, = uy(x1,%,) + Pla X, — PuXy
—llp}, — piall.

Note the sign change: since there is now a
positive externality between the two agents,
it is natural to subsidize good behavior
rather than to penalize bad behavior.®? Us-
ing the by now standard argument, it can be
shown that it is a subgame-perfect equilib-
rium for both players to cooperate. The
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ceive payoffs
_ 1 2
I =u(xy, %) — Pax, + PiXy

2
I, =uy(xy,%,) — Pix, + Py %,

In this game, each agent sets the rate at
which he will subsidize the other agent’s
cooperation. As in the other games exam-
ined, the subgame-perfect equilibrium yields
an efficient outcome. It has long been known
that the ability to make binding preplay
commitments allows for a solution to the
prisoner’s dilemma. What is interesting
about this example is how simple the first-
stage commitments can be and still support
efficient outcomes.

IX. Related Literature

There is a vast literature on mechanism
design that is concerned with how to imple-

supnorting prices satisfv the conditions ment various social-choice functions._ Much

4> py=p5=2
32pp=phL=1.

(If the inequalities are strict, the coopera-
tive equilibrium will be unique.) As usual,
the compensation mechanism produces an
efficient outcome in this game—or in any
game, for that matter. However, the pris-
oner’s dilemma has a special structure, and
it turns out that a related, but simpler,
mechanism is available.

Announcement stage.—Agent 1 names pJ,
how much he is willing to pay agent 2 to
cooperate, and agent 2 names pf, how
much agent 2 is willing to pay agent 1 to
-cooperate.

Choice stage.—Each agent chooses whether
to cooperate or defect. The agents re-

80ne could also formulate this problem so as to
have each agent announce how the other agent should
be fined if he defects.

of this literature is concerned with whether
a particular social-choice function can be
implemented by a decentralized game. My
concern is not so much with the existence of
a mechanism, but rather finding a suitably
simple mechanism. Most of the attempts to
find “simple” solutions to externalities
problems have been concerned with the case
of public goods, so I provide a very brief
review of that literature insofar as it relates
to the work described here. Moore (1992)
provides a thorough review of the recent
literature.

The well-known demand-revealing mech-
anism of Edward Clarke (1971) and
Theodore Groves (1976) implements the
efficient amount of a public good via a dom-
inant strategy equilibrium. However, this
mechanism only works with quasi-linear
utility, and it is not balanced, even in equi-
librium. Furthermore, it does not in general
yield a Pareto-efficient outcome.

Groves and John Ledyard (1977) describe
a quadratic mechanism that yields efficient
Nash equilibria for the public-goods prob-
lem, but the equilibrium allocations are not
Lindahl allocations. Leo Hurwicz (1979) and
Mark Walker (1981) also describe mecha-
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nisms that implement Lindahl allocations.
In the Hurwicz mechanism, each agent pro-
poses an amount of the public good and a
Lindahl price; agents pay a quadratic penalty
if they announce different levels of the pub-
lic good. Walker’s mechanism avoids such
penalty terms. Groves (1979) and Groves
and Ledyard (1987) provide a nice survey of
these results.

Turning to the more recent literature on
simple mechanisms, Mark Bagnoli and Bart
Lipman (1994) and Matthew Jackson and
Hervé Moulin (1992) examine the special
case of a discrete public good with quasi-
linear utility. The Bagnoli-Lipman mecha-
nism is very simple: each agent offers a
voluntary contribution. If the sum of the
contributions covers the cost of the public
good, it is produced; otherwise the contri-
butions are returned. This mechanism im-
plements the core of the public-goods game
in undominated perfect equilibria.

The Jackson-Moulin mechanism imple-
ments an efficient allocation using undomi-
nated Nash equilibria. They also describe a
variation using subgame-perfect equilib-
rium. Their mechanism is reasonably simple
and works with a broad family of cost-
sharing rules. However, it appears that both
the Bagnoli-Lipman and Jackson-Moulin
mechanisms work only in the special case of
indivisible public goods and quasi-linear
utility.

Varian (1994) describes some mecha-
nisms for the public-goods problem that are
closely related to the compensation mecha-
nism. In the case of two agents with quasi-
linear utility, there is a very simple mecha-
nism that achieves a Lindahl allocation: in
the first stage each agent offers to subsidize
the contributions of the other agent; in the
second stage, each agent makes a voluntary
contribution and collects the promised sub-
sidies from the other agent.’ That paper
also describes some other variations on the
compensation mechanism for public-goods

°This mechanism is related to the mechanism of
Guttman (1978), which involves offering to match con-
tributions. See also Danziger and Schnytzer (1991) for
a related model.
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problems involving many agents and general
utility functions.

X. Summary

The compensation mechanism provides a
simple mechanism for internalizing exter-
nalities in economic environments. Transfer
payments can be chosen so that the com-
pensation mechanism is balanced, and
penalty payments, when they are used, can
be chosen to be arbitrarily small. The main
problem with the mechanism is that it re-
quires complete information by the agents.
In many cases, a simple dynamic adjustment
model will converge to the subgame-perfect
equilibrium.
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