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Labor.,managed firms often depend on volunlary cooperation to generate efficient 
levels of labor input. This paper shows how cooperation in Prisoner's Dilemma-like 
situations can be an equilibrium outcome, when rational individuals act so as to 
preserve reputations for cooperating. The theory developed here implies that (a) 
voluntary cooperation will be negatively related to population turnover, and (b) the 

relationship of community size to voluntary cooperation will have an inverted-U 
shape. J. Comp. Eco.qom., December 1992, 16(4), pp. 619-632. Bar-Ilan University. 
52900 Ramat-Gan, Israel. , 1992 Academic Press. Inc. 

Journalof Economic LiteratureClassification Numbers: P32, C73, H4 1. 

1. INTRODUCTION 

In many labor-managed firms (LMFs), the remuneration of the worker is 

not simply a function of his work input. For example, in the Israeli Kibbutz, 

the net output is divided equally among members, regardless ofthe contribu­

tion of the member to collective output. In such situations, there is poten­

a serious free-rider problem: Why should the worker contribute totially 
collective output when his own income is independent of his work contribu­

tion? Various theories have been proposed to deal with this dilemma, but 

none have been entirely satisfactory.2 

'This research began when I was an Olin Faculty Research Fellow at the Yale Law School, 

and has since been supported by a grant from the Agency for International Development to the 

Institutional Reform and the Informal Sector (IRIS) program of the University of Maryland. I 

thank Nava Kahana, Avi Weiss, and Michael Yalkut for helpful comments. while retaining 
responsibility for all remaining errors.
 

2 See Guttman ( 199 Ib) for a critical survey.
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The problem of explaining voluntary cooperation in LMFs like the Kib­
butz can be divided into two subproblems. The first subproblem is explain­
ing how individuals voluntarily provide each other with incentives to cooper­
ate, particularly when there are many interacting individuals. This is the 
free-rider problem as the term is usually understood. The second problem. 
which arises even in two-person, binary choice situations, e.g., the Prisoners' 
Dilemma. may be called the credibility or self-enforcement problem. Briefly, 
the problem is explaining how individuals convince their fellow members 
that they will uphold their commitments, when, for any reason, the legal 
system will not intervene to enforce these commitments. For example, in the 
Israeli Kibbutz it would be very costly, and perhaps impossible for socio-in­
stitutional reasons, for the courts to force a member to honor his work com­
mitments, even if some form of formal or informal agreement could be 
reached so as to solve the free-rider problem. 

In order to make the distinction between these two subproblems clearer, it 
is worthwhile to review the study of Guttman and Schnytzer (1989), which 
addressed the following paradox. The conventional Cournot-Nash theory of 
the provision of public goods, when applied to LMFs (see, e.g., Sen, 1966), 
predicts that a purely egalitarian LMF such as the Israeli Kibbutz will suffer 
from an undersupply of labor, since each individual's labor supply is a con­
tribution to the provision of a pure public good.3 In contrast, the theory 
predicts that an LMF that divides the collective output according to relative 
work contributions, such as the classic Kolkhoz, will suffer from an oversup­
ply of labor. Yet we observe that the Kibbutz, though presently going 
through a crisis, has historically succeeded in the sense of generating high 
labor inputs and producing efficiently, at least relative to the predictions of 
the conventional theory. The Kolkhoz, on the other hand, has been a failure 
by all standards. 

It was found that by applying the theory of strategic matching (see Gutt­
man, 1978, 1987), this paradox can be solved. In the theory of strategic 
matching, N players play a two-stage game. In the first stage, players choose 
matching rates, which, in the LMF context, link their labor contributions to 
the contributions of their fellow workers. These matching rates provide in­
centives to one's fellow workers to take account of the full marginal product 
of their labor inputs, and not only their own share oftheir marginal product, 
which, in the Kibbutz, is I/N times the full marginal product. In the second 
stage, workers choose flat contributions, which are like the simple work 
contributions in the conventional Cournot-Nash model. These flat contri­
butions are then matched at the matching rates determined in the first stage; 

' The collective output is a public good in the sense that workers cannot be excluded from 
enjoying the benefits of their fellow workers' effort, regardless of whether they contribute to 
collective production. It is, however, a public good subject to congestion, since an increase in the 
number of members will decrease per-member benefits. 
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In both stages, the equilibrium is a Nash noncooperative equilibrium: each 
worker's matching rate is a best-response to his fellow workers' matching 

rates, and similarly for the flat contributions. In addition, each worker is 
assumed to predict the equilibrium ir the second stage or subgame when 
determining his matching rate in the fi :'st stage, and to use this prediction in 

order to determine his optimal matchi ig rate. Thus, the equilibrium in the 
overall game is subgame perfect. 

As noted above, collective output in the Kibbutz is divided equally, so that 

combined work effort is a pure public good. In such a setting, the theory of 

strategic matching predicts, for identical members, that each member will set 

a matching rate equal to unity, and these matching rates induce all members 
to work up to the point at which their full marginal product is equal to the 

opportunity cost of their time. This efficient equilibrium is the unique equi­
librium of the game. regardless of the number of members, although, as N 
increases, information about other members' matching and flat work contri­

butions becomes less perfect, making the model less realistic. In the Kolk­

hoz, on the other hand, the theory of strategic matching predicts that the 
matching rates will rise above unity, as members try to increase their relative 
work inputs and thus increase their personal incomes. But matching rates 

above unity depress the flat work contributions below their Pareto-optimal 
levels, since, by working harder, a member only decreases his relative work 
contribution when his fellows match his work increase at a rate above unity. 
Thus the theory predicts suboptimal work effort in the Kolkhoz but not in 
the Kibbutz, which is consistent with observed behavior but in direct contra­
diction to the received theory. 

While the theory of strategic matching thus appears to solve the first sub­
problem indicated earlier, explaining how members voluntarily provide 
each other with group-optimal incentives to contribute to the public good, 
and also solves the Kibbutz-Kolkhoz paradox, it is open to the following 
objection. The matching commitments made in the first stage of the game 
are assumed to be honored after the flat contributions are chosen in the 
second stage. But each player has an incentive to renege on his matching 
commitment and make only his flat contribution. What prevents him from 
doing so? Apart from the possibility of enforceable contracts, which is not 
very relevant to the Kibbutz and Kolkhoz, Guttman and Schnytzer (1989) 

suggested that the matching game is only part of a larger "credibility game" 
that embraces other aspects ofthe individual's ongoing interactions with his 
community. This credibility game can be modeled as a repeated Prisoners' 
Dilemma. Using the Folk Theorem, one equilibrium of this game would be 
the cooperative outcome, honoring one's matching commitments if the indi­
vidual's last round in the community is unknown to his feilow members. 

The question raised in the preceding paragraph is clearly the second sub­
problem posed earlier, the credibility problem. A more satisfactory answer to 

.3
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this question would not rest content with an appeal to the Folk Theorem. 
which allows for a multiplicity of inefficient equilibria as well as the efficient. 
cooperative outcome. The present paper discusses two ways of ruling out 
many or all of these inefficient equilibria, thus providing a more convincing 
explanation of voluntary cooperation. The first approach. discussed in Sec­
tion 2. follows Kreps et al. (1982) by arguing that the rational members of a 
community, e.g., a Kibbutz or Kolkhoz. that includes a small number of 
mechanical tit-for-tat (TFT) types will behave as if they themselves are TFT 
types. In other words, members will rationally try to maintain reputations 
for being TFT types, and these reputations are believable because some true 
TFT types actually exist in the community. Section 2 poses the question as to 
whether the mechanical TFT types could survive a social evolutionary pro­
cess in which only the strategies receiving the highest average payoffs are 
reproduced. This question is answered in the affirmative if there is a small 
cost of rational optimizing, or if the community invests in promoting the 
TFT type through education. An empirical implication arising from this 
model is that communities having lower population turnover will tend to 
cooperate more extensively. This implication is supported by the empirical 
work of Guttman and Haruvi (1986) on the Israeli Moshav (cooperative 
village). 

Section 3 develops a second approach, which does not assume that opti­
mizing is costly and does not introduce irrational types. In the second model, 
players do not actively punish noncooperative play in the manner of TFT. 
Rather, they simply refuse to play with actors whose past behavior is blem­
ished by noncooperation. In the second model, in common with the first, 
there is a need to introduce some form of uncertainty in order to rationalize 
cooperative reputations. While the first model relies on uncertainty regard­
ing one's counterpart's type, rational or TFT, the second model assumes that 
players are uncertain as to when their opponent will leave the community, 
i.e., when his last round occurs. This uncertainty is sufficient to induce coop­
erative reputation-building in a manner somewhat similar to the behavior 
predicted by the first model. In addition to predicting the negative effect of 
turnover on cooperation implied by the first model, the second model also 
implies an inverted-U-shaped relationship between community size and the 
level of cooperation in the community. 

2. RATIONAL OPTIMIZERS AND TIT-FOR-TAT TYPES 

Consider the game depicted in Table 1.If the two players play C, e.g., work 
hard, they both receive 1 unit of utility. If they both play D, e.g., slack off, 
they both receive 0 units. If, say, player I plays D and player 2 plays C, then 
player I receives a > 1 units while player 2 receives b < 0. Table 1 thus 
depicts the classical Prisoners' Dilemma (PD). In order to make the coopera­
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TABLE I 

PAYOFF MATRIX IN PRISONERS' DILEMMA 

C D 

C (I, 1) (b, a) 

D (a.b) (0.0) 

tive outcome (C, C) the only Pareto-optimal strategy-pair, we stipulate fur­
ther that a + b < 2. 

Let the game be played T times, with T known to both players. Further­
more, we assume that there is no discounting: players maximize the expected 
sum of their payoffs over the whole game. If both players are rational, and if 
this rationality is common knowledge to both players. the only resulting 
equilibrium will be for both players to play D. defect, throughout the game. 
This can be shown by the familiar backward induction argument. In round 
T, they will both play D, since this will not affect rewards in future rounds as 
there are no future rounds, and D is the dominant strategy in the stage game. 
Knowing this, in round T - 1,both players will play D, since again there will 
be no punishment in the following round: Regardless of what strategy they 
play in round T - 1, they will defe . in round T. The argument thus precedes 
backward to the first round of the game. 

Nc'w let each player attach a small probability (I - p) to the proposition 
that he is not playing with a rational opponent, but rather with a player who 
mechanically plays the TFT strategy. The TFT strategy starts out with the 
cooperative (C) move, and then always plays what the opponent played in 
the previous round. One may well ask, where does this uncertainty come 
from, particularly ifboth players in fact are rational? One answer (Guttman, 
1991 a) is that while these two players are rational, they are members of a 
larger population which includes a proportion (1 - p) of TFT types. Players 
are randomly matched and do not know, at least initially, the type of player 
with whom they are playing. This would explain the uncertainty of each 
player, but raises the question, is it reasonable to assume that part of the 
larger population consists of irrational TFT types? This question can be 
answered affirmatively if either of the following conditions are met: (a) there 
is a cost to rational optimizing, which cancels out the evolutionary advan­
tage that the rational players would otherwise have over the TFT types, or (b) 
there is social investment in promoting TFT types through education.4 

"See Guttman et al. (1992) for an analysis of education to inculcate socially optimal tastes. 
Here, however, the suggestion is that tastes for TFT behavior, rather than simply altruistic tastes, 
are inculcated. 
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Given this uncertainty, the backward induction argument no longer 
holds, at least in the simple form given above. Since each player cannot be 
certain that his counterpart will defect in the last round, it is no longer 
necessarily optimal to defect in round T - 1. As Kreps et al. (1982) showed 
for the case of one-sided uncertainty (i.e., only one player is uncertain of his 
opponent's type, while the opponent is certain he is playing with a rational 
player) the number of rounds in which there may be defections is bounded 
by an expression that depends only on a, b, and p, and is independent of T. 
These defections will occur toward the end of the game. Thus, as Tincreases, 
the proportionof rounds in which there must be joint cooperation in any 
sequential equilibrium approaches unity. 

This striking result can be demonstrated either for one-sided or two-sided 
uncertainty by first analyzing the optimal response of a rational player to a 
preemption, i.e., an unprovoked defection, in, say, round t by his opponent. 
Such a preemption reveals the opponent to be a rational player, since a TFT 
player, by definition, never preempts. Now, if the preempted rational player 
does not respond in the following round by defecting, he reveals himself to be 
rational, resulting in joint defection until the end of the game, because the 
rationality of the two players would now be known to both. In round t + I 
taken by itself, it is clearly the dominant strategy to defect. Thus, by defecting 
in round t + 1, the preempted player leaves open the possibility of coopera­
tion in the future and plays the dominant strategy in the stage game. By 
similar reasoning, the preempted player would not "forgive" his opponent 
and return to cooperating before his opponent does so. In short, the defected 
rational player will mimic the TFT type, precisely in order to avoid the 
emergence of joint knowledge of rationality. 

Given that his opponent would behave like a TF[ type regardless of 
whether he is really a TFT type or a rational player, any rational would-be 
preemptor would, in general. not plan a preemption and a subsequent return 
to cooperation, but rather would plan to preempt and then to continue to 
defect until the end of the game. The reason for this is simply that by 
preempting and returning to cooperation in, say, the following round, he 
receives a + b units of utility, whereas by simply cooperating over the same 
two rounds he would receive 2 units, and we have assumed that a + b < 2. 
Thus, a loop from C to D and back to C gives a lower payoff, over the course 
of the loop, than simply cooperating over the course of the loop; and the 
difference in payoffs grows as the loop increases in length. While a loop gives 
a lower payoff, over the course of the loop, than cooperating, it may be still 
better to preempt and then continuing to defect until the end of the game. 
The attractiveness of such a "preempt strategy" increases as the end of the 
game approaches. In the last round, it clearly is optimal to defect; but the 
optimal preemption round is, in general, before the last round. 

Given these characteristics of the sequentially optimal behavior of two 

1/0
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rational players, we can conclude that the sequential equilibrium will gener­
ally have one of three forms: (a) joint defection throughout the game; (b) 
joint cooperation, then a preemption, followed by joint defection until the 
end of the game: or (c) a simultaneous switch from cooperation to defection, 
with joint defection continuing until the end of the game.5 

Which of these three structures will occur in equilibrium depends on the 
proportion of rational actors in the community, p, on the length of the game 
T, and on the payoff parameters, a and b. In particular, if p > I/a, the 
equilibrium will be of forms (a) or (b), while ifp < IIa,the equilibrium, ifit is 
a pure strategy equilibrium, will be of form (c) (Guttman, 199 1a, Proposi­
tion 3). 

Let us first consider the case in which p > 1/a. When p is very high, or if the 
game is of sufficiently short duration, the equilibrium will be of the degener­
ate joint defect type from the beginning ofthe game. But when p is lower, one 
can calculate, in the spirit of Kreps et al. (1982), a maximum number of 
rounds before the last rovind in which defection may occur. This maximum 
is calculated by comparing the expected payoff of the preempt strategy to 
that of a "wait strategy" as the game progresses. The wait strategy instructs a 
player to let himself be preempted and then defect in the following round, 
continuing to defect until his opponent returns to cooperation. In the last 
round, the strategy specifies defection under all circumstances. The wait 
strategy has the advantage that, against a TFT opponent who, by definition, 
never preempts, the player cooperates until round T - 1, with the conse­
quent gain in payoff over the game. The risk, of course, is that the opponent 
is rational and preempts at some round t before ihe end of the game. giving 
the actor playing the wait strategy a one-time negative payoff ofb. It is easy to 
verify that the expected payoff of the preempt strategy is t - 2 + a, where the 
preemption is planned in round t - 1. The expected payoff of the wait 
strategy is 

EUwt = (t - I + b)p + (T- I +a)(l -p), 

where the opponent, if rational, is expected to preempt in round t. 
Figure 1 shows the expected payoff of the wait strategy as a function of t, 

and the expected payoff of the preemptor when he preempts in round t - 1. 

' In Guttman (199 Ia), a difficulty with this point is addressed. While a preemptor initiating a 
loop clearly loses over the course of the loop, it remains to be shown that he gains nothing in the 
continuation of the game. If the preemptor did gain in the continuation more than he lost over 
the course of the loop, such a loop would be part of the equilibrium path. In an Appendix to 
Guttman (1991 a), it is shown that this difficulty would not change the equilibrium of the game 
significantly, even if the initiator of a loop did gain in the continuation enough to make such a 
loop worthwhile. In fact, however, an example of the initiator of a loop gaining in the continua­
tion of the game has yet to be found. 
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Payoff A 
preempt 

S.S. 

wait 

I> t 

to to* T 

-[(a -b~pFIG. 1.Expected payoffst T in finitely repeated-I ]/I-p]Prisoners' Dilemma. 

The figure also shows the expected payoff of the simultaneous switch (SS) 
strategy, but this does not concern us at present. As the figure shows, before 
round t* the wait strategy gives a higher expected payoff, while after t* the 
preempt strategy gives the higher expected payoff. By equating the two ex­
pected payoffs, 

We are now in a position to note the following fact regarding this game: 
when p > Ila, there is, in general, no pure strategy equilibrium.I Suppose.9 for 
example. that player I expected player 2, if rational, to preempt at some 
round t > 1*. Player I's best response is to preempt in the previous round. 
Player 2. expecting player 1, if rational, to preempt in round t - 1, would 
then want to preempt in round t - 2. And thus it continues, until the ex­
pected preemption round of the opponent isbefore t*. At this point, the best 
response is to play the wait strategy. But the best response to the wait strategy 
is to preempt in round T - 1. And then the cycle starts again: the best 
response is to preempt in round T - 2, and so forth. Now suppose that player 
1initially expects that his opponent, if rational, will preempt in some round t 
< t*. Then player I's best response is to play the wait strategy. But then 
player 2's best response is to preempt in round T - 1, and then the cycle 
starts. We conclude that the game, in general, has no pure strategy equilib­
rium. 

Nevertheless, the game must have a mixed strategy equilibrium. In Gutt­
man (1991 a, Prop. 4), it is shown that in this mixed strategy equilibrium 
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there is a zero probability of defections at or before round t* - 1.Since T ­
t* is independent of T, we obtain the main result of Kreps et al. (1982) that 

the number of rounds at the end of the game in which there may be defec­
tions is independent of the length of the game. Thus, as noted above, as T 
increases, the proportionofcooperative play approaches unity. But the upper 
bound derived here on the number of rounds in which there may be defec­
tions is considerably lower than that obtained by Kreps et al. (1982). The 
reason for this tightening of the upper bound is the additional information 
incorporated regarding the structure of the equilibrium path. 

We now turn to the case in which p < I/a. In this case, the expected payoff 
of switching simultaneously from C to D with one's opponent is higher than 
the expected payoff of preempting. Figure 1, as noted earlier, also shows the 
expected payoff of a simultaneous switch (SS) at round t. Since the figure is 
drawn on the assumption that p > I/a, the SS curve is below the preempt 
curve; in the opposite case which we are now considering, the relative posi­
tion of these two curves is reversed. Since the expected pL,yoff of a simulta­
neous switch at stage t is t - I + (1 - p)a, the SS curve intersects the wait 
curve at stage 

t**= T + [bp/(l - p)]. 

Before t**, the wait strategy gives a higher expected payoff than the SS strat­
egy, while after t**, the opposite holds. Consequently, before t** there will be 
no defections in equilibrium, since the best response to an expected preemp­
tion by one's opponent, if he is rational, at any stage t < t** is to wait. After 
t**, however, there may be simultaneous switch equilibria, and at the last 
round T there will always be such an equilibrium. Note that the earliest 
possible switch-point from C to D, t**, is separated from stage Tby a num­
ber of rounds that is independent of T, so that the result of Kreps et al. (1982) 
is again obtained. 

In Guttman (1991 a) an additional result was obtained in order to assess 
the evolutionary viability of the TFT type. It was found that (a) the rational 
players, not surprisingly, receive a higher expected payoff than the mechani­
cal TFT types, but (b) the evolutionary advantage of the rational actors over 
the whole PD game stays constant as T increases. Now let us introduce a cost 
ofoptimizing. As T increases, the complexity of the rational player's decision 
problem increases rapidly, so that this cost of optimizing would also in­
crease. We thus obtain the result that, for sufficiently large , the TFT types 
may actually have a net evolutionary advantage. For intermediate values of 
T, the two types may coexist in mixed evolutionary equilibrium, while for 
lower values of T, the rational actors retain their evolutionary advantage and 
drive the TFT types to extinction. Thus we find that a community in which 
PD-type interactions are relatively long lived would tend to behave more 
cooperatively than a community in which these interactions have a relatively 
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short duration. In any case. it was found that the assumption underlying the 
model of Kreps et al.. that one player suspects his opponent of being a 
mechanical TFT type, can be justified only if there is a cost of optimizing and 
if T is sufficiently large. 

3. REPUTATIONS IN A CHANGING POPULATION 

We now study a mode! that shows promise ofexplaining the emergence of 
cooperative reputations without assuming a cost of optimizing. As indicated 
in the Introduction, this model explicitly allows for turnover in the commu­
nity whose behavior is being studied. Consider a community consisting of a 
large number of individuals, each of whom stays in the community for an 
exogenously determined T time periods. In each of these time periods, each 
individual has the opportunity of playing the PD game once. with a ran­
domly chosen counterpart. This PD interaction need not be in the produc­
tive sector of the community. It may equally well be in the consumptive 
sector. e.g., showing up on time to play tennis. The idea of the model is that 
reputations are formed and preserved in all of the individual's interpersonal 
interactions, and these reputations are then used to enforce matching com­
mitments in the productive sector, i.e.. the LMF. 

While the individual's counterpart is assumed to be chosen randomly, we 
assume that each individual can refuse to play the game with the individual 
with whom he is matched, and then is costlessly matched with a new individ­
ual. The date ofeach individual's entry into the community is private infor­
mation to that individual. Thus, even though T is the same for all individ­
uals, and this is known by all individuals, the precise date of any counter­
part's departure is unknown to evem',yone else. Individuals are assumed to be 
continuously entering and exiting the community; thus, in effect, we have a 
model of overlapping generations. The rate of entry and exit is assumed to be 
constant over time, so that. at any point in time, all cohorts are the same size 
and comprise 1/Tof the population. If any individual plays D in one ofthese 
PD encounters, this fact becomes immediately known to all individuals in 
the community.6 

6 Note that we are assuming perfect information regarding an individual's history of play, but 
not of the date at which he entered the community. The uncertainty assumed regarding the 
individual's entry date is simply a device for modeling uncertainty regarding the individual's 
departuredate, since the length of the individual's career in the community, T, is assumed, for 
simplicity, to be the same for all players. A formally more descriptive, but more complicated. 
treatment would make T a random variable as viewed by all other players; this would permit 
making the entry date common knowledge. An alternative resolution of this difficulty would be 
to assume that individuals have perfect information ofeach player's move in the previous period 
only. When an individual defects, this results in no one playing the game with him in the 
following period. In subsequent periods, players observe that the defector has no one with whom 
to play the game and infer that in the past the individual must have defected. 

jo
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As shown below, for sufficiently large T and for b sufficiently small in 
absolute value, one equilibrium in the game is for all individuals to play 
cooperatively over their entire terms in the community, defecting only in the 
stage in which they plan to leave. In such an equilibrium, a deviating individ­
ual, who chose to play D even once before his last period in the community, 
would induce all other players to refuse to play with him in future periods. 
Thus he would receive a payoff of zero in all future rounds, just as if all 
players were using a "grim" strategy of playing D forever against any one­
time deviator. The rationale for this "punishment" is simple: by playing D, 
the deviating individual shows that his own strategy is not to play C consis­
tently. Since it costs players nothing to be rematched against a different 
player, there is no reason why they should not do so, leaving the deviator an 
"outcast" without anyone with whom to play the game. 

The claim of the previous paragraph can be demonstrated as follows. Let 
the stage at which each player plans to defect be T, i.e., his last period in the 
community. In each period there is a probability of IIT that the player's 
opponent will preempt him, since there is a probability of l/Tthat his oppo­
nent is in the cohort presently exiting the community. Now let us express the 
expected payoff of deviating, by calculating the expected payoff of preempt­
ing in stage t< Tof the player's career. In each of the t - I stages preceeding 
stage t, he has a probability of (I/T)of being preempted, which would give 
him a payoff of b < 0, and a probability of(T- 1)/Tofnot being preempted, 
giving him a payoff of unity. In stage t,he has a probability of (l/T) of 
meeting an opponent who simultaneously switches to D, giving him a payoff 
of zero, and a probability of (T - 1)/T of meeting an opponent who cooper­
ates, giving him a payoff of a. In all following stages. no one plays with him, 
giving him a payoff of zero. Thus, the expected payoff of preempting at stage 
tis 

EU = [(t - l)/T]b + [(t - 1)(T- l)/T] + [(T- l)/T]a. 

Taking first differences with respect to t, 

AEUt/At = (1/T)(b + T- 1). 

If T - 1 > -b, this expression will be positive. Therefore, the effect on the 
player's expected payoff ofdeviating by defecting before round Tis negative. 
All players thus will preempt at the latest possible stage, i.e., stage T. 

In the equilibrium just described, all players rationally expect their oppo­
nents to cooperate. If, on the other hand, all players were expected to defect 
throughout their careers, this would also be an equilibrium, since there 
would be no punishment for defecting. Can an expectation ofcooperation by 
other players be shown to be more reasonable than an expectation of defec­
tion? Let us assume that the expectations of players are adaptive: the past 
behavior of the community as a whole serves as a focal point that generates 

II
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expectations of future equilibrium behavior. Thus, in a communitv that. in 
the past. was in an equilibrium in which people cooperated. players would 
expect their counterparts to cooperate in the present. This expectation of 
cooperation, together with the preference of each player to play the game 
with opponents whose past behavior is cooperative, vould be sufficient to 
generate the cooperative outcome described above. This possibility suggests 
an interesting hysteresis effect: cooperatives that were strong (cooperative) in 
the past will tend to stay strong, while cooperatives that were weak in the past 
will stay weak.7 

It is, in fact, sufficient that a nucleus of cooperators exist in the commu­
nity, in order for an individual to expect to be punished for defecting by not 
finding individuals with whom to play the game and rewarded for cooperat­
ing by being able to find players with whom to play the game.8 This nucleus 
can be small relative to the size of the community, if b is small in absolute 
value, provided that the absolute number of cooperators is large enough to 
create this expectation of reward and punishment. What is the minimum 
proportion of cooperators in the community that would make it worthwhile 
for all players to cooperate? Suppose that each player initially assigns a proba­
bility q to the proposition that his counterpart will cooperate in the current 
period, and (1 - q) to the proposition that he will defect. The expected utility 
of preempting at round t then becomes 

EUt = (t - 1)(1 - q)b - (t - l)q + aq. 

Taking first differences with respect to t, 

AEU,/At = b(l - q) + q = b + q(1 - b), 

which is positive iffq > -b/( I - b). Thus, if q is large enough relative to -b, 
the equilibrium that would emerge would be cooperation by all members 
until their last period in the community. 

It should be noted that no assumption was made that players naively 
expect their individualcounterparts to play as they have played in the past. 
Such an expectation would be naive unless mechanical types like the TFT 
type in the model of Section 2 existed in the community, and we have 
avoided introducing such types in the present model. Rather, the assump­
tion is that the equilibrium behavior of the community as a whole may 

7 See Haruvi and Kislev (1984), who argue that such a polarization effect exists among Israeli 
Moshavim. 

' Here, again, the model of Guttman et al. (1992) provides a starting point for modeling 
collective investment in education so as to create such a nucleus of cooperators. The collective 
educational investment can be modeled as a noncooperative contributions garm,. whose Nash 
equilibrium point would yield a small, but positive level ofeducational investment, sufficient to 
create a small nucleus of cooperators. 
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generate expectations that this behavior will continue as long as outside 
influences stay constant. 

The above analysis purposefully avoided introducing grim or TFT punish­
ment strategies. which would easily explain cooperative play. The reason is 
that in a game with an uncertain endpoint, there are many strategies that can 
coexist in equilibrium. It seems more plausible to assume that players simply 
avoid playing with individuals who have once defected (cf. Telser, 1980; 
Tullock. 1985) than to single out any specific strategy of active punishment 
of defectors. 

Two empirical implications can be derived from this analysis. The first is 
that the larger is T, implying a relatively low turnover in the community, the 
more cooperative play would be expected. Note, however, that members ofa 
community with zero turnover would know each other's last round with a 
high degree of certainty, and this would generate mutual defection over all 
periods. For, if an actor's last round is known, no one would play with him in 
that round. Then, in his next-to-last round, he would again have no incen­
tive to cooperate, and, krtowing this, no one would play with him in this 
round as well. Thus, by backward induction, no one would play the game. 

The second implication results from weakening the assumption that ac­
tors can costlessly be matched up with a new partner if they refuse to play 
with the current partner. This "perfect competition" assumption would be 
less realistic in smal! communities, in which a given PD interaction can be 
performed by only a small number ofcounterparts. If, in addition, we recog­
nize that the assumption of perfect information of past defections becomes 
less realistic in very large communities, we obtain an expectation that the 
level of cooperation will be related to the size of a community in an inverted-
U shape. Very large and very small communities will tend to have relatively 
low levels of cooperation, while mediam-sized communities will be large 
enough to generate nearly perfect "competition" while preserving high levels 
of awareness of past behavior. 

4. CONCLUDING REMARKS 

This paper has developed two models of the credibility game, designed to 
explain the emergence of cooperative reputations in an ongoing community. 
This, in turn, would tend to explain why LMFs sometimes succeed. The 
overall implication, aside from the specific empirical implications noted 
above, is that LMFs can thrive if they are set in an ongoing community 
whose multifaceted interactions serve to provide the basis of reputations for 
credibility, which in turn can support strategic matching of work contribu­
tions in the production activities of the community. 
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