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Introduction 

Traditional yield models have gained recognition as generally reliable 'or describing 

population demographic processes over a spectrum of temperate sea fish life history 

classes. The models have embedded within them assumptions regarding constant 

parameterization and low to nonexistent population interaction. However, population 

pressures may be more important determinants of fish stock abundance in tropical 

multispe~ies environments. Several investigators have demonstrated that intra-specific 

density-dependence may be a prevalent feature of natural populations (Hassel, 1974; 

Murdoch et al., 1975; Fox, 1975; Guckenheimer et al., 1977; Botsford & Wickham, 1979; 

Pope, 1979a,b; Daan, 1975, 1980). There is insufficient quantitative knowledge about 

functional relationships such as the manner in which demographic characteristics of a given 

species change with population density (Beverton and Holt, 1957; Paulik, 1972; Pielou, 

1977; Keyfitz, 1977). The dynamical behavior of most natural populations is likely to be 

influenced by their interactions with various age strata of the same species or with 

interactions with other species. Typically we are uncertain whether we are dealing with a 

genuinely "single species" situations (May, 1981). Very simple single-species models with 

minimal data requirements have been touted for providing policy support to fishery 

institution management in topical regions (Munro, 1982; Pauly, 1982; 1983), despite the 

fact that virtually no exploited fish population is ever in a steady state. Traditional 

management models may not be suitable for tropical environments and most likely fail 

because the species under consideration are embedded in complex communities. 

Simultaneous harvesting of large numbers of species in multispecies systems may often 

manifest complex "catastrophic" system behavior whereby the system is discontinuously 

transformed to multiple equilibrium states as the harvest rates increase or environmental 

circumstances alter (Schaffer, 1985). The suspected high levels of species interactions and 

dependencies among multicohort populations suggests that these populations may not have 

asymptotic, stable-point equilibria, and as such may vitiate the simple traditional concepts. 
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Despite the significant numerical modifications of traditional theory gone through in 

Ault (1988) and Ault & Fox (1988b) to develop a simulation model that seemingly 

embodied the overt characteristics of tropical fish stocks, the examinations of Ault (op. cit.) 

and Ault & Fox (1988c) subsequently pointed out that both dynamic pool and logistic 

assessment classes of autonomous density-independent models may be inadequate or even 

inappropriate for expressing the dynamics of tropical fishery stocks and thus for 

formulating management policy. Inadequacy derives from the neglect or condensation of 

age-structured effects notwithstanding evidence to the contrary which suggested the 

apparent intrinsic interactions and feedbacks that structured populations actually exhibit. 

The expected yield from a given single-species fishery cannot be entirely dissociated from 

the impact of the same stock ork the abundance of its predators or food resources (Caddy & 

Sharp, 1986). Inappropriateness derives from the existence of multiple age groups and 

multiple spawnings that are life history adaptations reflecting the difficulty of ensuring 

species survival in unstablephysical or hostile biologicalenvironments. For example the 

Beverton and Holt (1957) model was developed consistent with their days' general dogma 

regarding autonomous exploited populations. In the model couL petition was not 

mathematically treated and was assumed to occur between a species feeding exclusively on 

a common supply having no dampening effect between cohorts. Concepts like yield per 

recruit may also be of dubious validity when recnaitment is continuous, periodic and may 

not be time invariant. Traditional fishery yield models treat two of the three main 

population facets, viz., the production components, separate from a function specific to the 

stock recruitment relationship (SRR). The appropriate form of a recruitment function, if 

any, is still subject to considerable debate, particularly in the tropical environment (see 

Murphy, 1982). With the exception of computer simulation models (e.g. Walters, 1969; 

Fox, 1973; Huang & Walters, 1983; Hightower & Grossman, 1987; Ault & Fox, in 

press), rarely are the production and recruitment models merged analytically. The lack of 

merger preeminates from the point of view that it may be inappropriate to combine a 
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relatively reliable model with one subject to doubt (Sissenwine & Sh'epherd, 1987). In the 

development of a model for a continuously-breeding population differences in the time 

scales of events acting on the population should be reconciled. Gross misinterpretations of 

the abundance and productivity of the stock in question may occur when cohort production 

is on a time scale that is a miniscule portion of the year. Populations may show little or no 

tendency to converge to the expected equilibrium state(s). 

Population dynamics are thought to be a highly redundaiz, self-sustaining set of 

processes (Rothschild, 1986). Although the system iscomplex, with certain structure and 

parameterization, perturbations appear to result in a return of the system back to the former 

stable state or region. Populations may be governed by stability inducing and stability 

governing elements. Governing effects can be viewed in terms of certain solutions for the 

motion of determ.inistic systems, called attractors (Thompson & Stewart, 1986). An 

attractor is something which draws in initial conditions from a region surrounding it, called 

the attractor's basin of attraction. Stability denotes the degree to which a system remains in 

this bp",in. Stability induction may be associated with the various cohort age strata. 

Stability governing mechanisms may be functions of the surrounding physical and 

biological environments, propagating certain potential interactions among the various j life 

stages of a cohort's passage through time. There is a tendency among many population 

dynamicists and even the 'muddy boots' ecologists to interpret apparently erratic data as 

either stochastic "noise" or random experimental error. Another alternative is that some 

simple deterministic models can give rise to apparently chaotic dynamics (May & Oster, 

1976; Thompson & Stewart, 1986; May, 1987) (see Figure 1). 

Populations are dependent upon the demographic processes at age-specific levels 

coupled with density-dependent effects such as the availability of resources, competition 

and predation effects. The probability that interspecific and intraspecific competition may 

influence the productivity of fish stocks has been widely recognized, the difficulty has been 

in determining how to assess it. There are a paucity of theoretical or research models on 
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which to base expectations of population productivity, measured in whatever units, where 

intraspecific and/or interspecific competition are involved. Mathematical models of 
competition have been based in large part on the Lotka-Volterra equations describing a 

system of interacting species. These equations have historical application to fishery 

biology. The equations utilize mass-action interaction whose magnitude is proportional to 

the products of the densities of the two interacting species and an associated competition 

coefficient given a measure of its intensity (Levine, 1976). The Lotka-Volterra principle -­

stating that two closely similar species will not both indefinitely to able to occupy 

essentially the same ecological niche, but that the slightly more "successful" of the two will 

completely supplant the o.ther eventually .-has had a prominent place in ecological and 

evolutionary theory (c.f. Kerner, 1961). Yet the mathematical formulation of the principle 

has been practically limited to the original rudimentary discussion of Volterra (1928, 1938), 

Lotka (1925, 1932); in the fisheries literature by Larkin (1963) and May et al. (1979); and 

developed for control theory by Haimovici (1979a). In these, but two species -- of 

population sizes N1, N2 --are considered to compete according to an extended Verhulst-

Pearl scheme: 
1 

" Ni = pi -gi (a N1 + bN2) (1) 

ordinarily leading to the extinction of one species and dominance of the other at some static 

population level. Kerner (1961) and Haimovici (1979b) extended the concepts to include 

three species systems. The most serious deficiency of the equation (1) and it's analogs is 

the fact that no recognition of age-class, nor any other vital statistic which may be pertinent 

including time-lagged behavior, are made (Larkin, 1963). 

The paper's objectives were based on the observation that the demographic 

processes of tropical marine fish stocks are inter-related and evolve continuously with 

respect to time. These processes are believed to be influenced strongly by density-. 

dependent population factors. Interactions with other age-strata or species means that 
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natural populations are usually governed by higher-order systems of equations (May, 

1987). To understand the evolution of tropical multicohort fishery systems interest was 
directed towards developing a dynamic systems model that incorporated salient population 

features through attention to continuous, deterministic, nonlinear age-structured models. 
Thus, the paper models multiple-cohort interactions and examines the processes which may 
result in the predominance of certain species within a multispecies complex. Elucidation of 
the properties of mathematical models for single, multicohort populations is a first basic 

step towards understanding what is going on. The principal value of nonlinear models is 
that they allow consideration for the effects of crowding, resource limitation, and 
interaction. Inclusion of nonlinearities in die equations of age-dependent population 

models increases their mathematical difficulty, but also increases their reliability for 
physical description and behavior prediction (Webb, 1985). The mathematical 

underpinnings of the subject discussed are still rather esoteric by current standards in 
population dynamics, the ccntral notions are elementary. The approach taken is based on 
the belief that more useful results are obtained from models that include essential, 
biologically realistic nonlinearities, than are obtained from linear models with arbitrary, 

auxiliary constraints. 

The mathematical details of such a model are developed below. 

The Multiple Cohort Model 

Consider a continuous model of a long-lived organism and it's population dynamics 
given the underlying desire to understand the individual ensemble mean characteristics of 

weight as well as the total population density of each age .:trata as a function of time. In 
continuously-breeding populations the intrinsic population dynamics processes consists of 

j cohort life stages which show dependence upon the periodicity of their entrance into the 

population. Each cohort life stage is affected by certain mechanisms: (I) resource 

assimilation rate, (2) size or age specific metabolic requirements, (3) environmental 
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carrying capacities for each age group, (4) competition between cohorts, and (5)population 

density within and among cohorts, which will cause the composite population to either 

increase or decrease. 

Assume that mean individual weight, Wi, of the ith individual in the jth "age" 

(=size) class is governed by the balance between the competition for available 
environmental resources and the age-specific basal metabolic rate. Kitchell et al. (1977) in 
a bioenergetics study on perciform fishes suggested that food is consumed at a rate that is a 
function of the weight of an individual and the ambient temperature. The general governing 

equation from the classic energy balance can be written: 

Wi = (ri - ai)Wi (2) 

where a dot denotes differentiation with respect to time, and 

ri a resource assimilation or growth rate. 

xi - intrinsic basal metabolic costs rate. 
The term ri represents the intrinsic rate of increase which would be approached if no 

limitations were placed on the increase in weight of the respective cohorts if they were 
living alone. If we now consider that the age-specific weight of the ith individual can be 
influenced by it's local cohort density of others of it's own life stage, and the individual 

abundances of the other j cohort life stages then the balance equation (2) can be transformed 

to the more appropriate form: 

Vi = Wiri - aiWiNi - Ybij WiNj - aiWi (3) 
i~j 

If we set Ki = rai, we find that after a little rearranging: 

Wi = riWi(Ki - Ni- (1 bij/ai ) Nj)/K i - iWi (4) 
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Now define: 
ai - environmental carrying capacities (i.e., intraspecific checks on 

the rate of increase) for the ensemble individual mean 
characteristics. 

bij -- competition coefficient between ensemble individual i and the 
specific j cohort densities (i.e., provides for the effects of each 
cohort on its competitor). By definition bij :? 0 Vij. 

Ni - population abundance for tie ith individual in cohort j. 
Nj population abundance for the jth cohort. 

Let: Bi = Zbi/ai (5) 
i~j 

The term, Bi, represents a ratio of how much damping is generated by a competitor 

relative to the damping a cohort has on itself. The values of the interaction parameters, j, 

represent fixed coefficients between cohorts, although changes in this parameter may be 
represented as a quasi-simulation of habitat modification, or population genetic changes 

(Larkin, 1963). Equation (4) has a competition form reminiscent of the Lotka-Volterra 

family of equations. The actual form, or perhaps better put, the effect of competition is 
now through the mean weight equation. Note, here no provision for interspecific 

competition has been allowed, a condition which may have importance in the analysis of 

tropical reef fish ecology and tropical multispecies fisheries. This feature can be 
accomplished by adding an averaged term, -ZlCijk(t), with the brackeis to account for the 

j-cohort, k-species interactions. Further, note that a basal metabolic costs term has been 

added which increases the equation's ability to model known physiological mechanisms, 

and promotes the growing acceptance and importance of physiological processes 

influencing growth, survivorship, and recruitment (Hoar et al., 1979, 1983; Caddy & 

Sharp, 1986; P. Walsh, pers. comm.). 
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We now need to develop a fairly simple population balance equation; such that 
population growth can be represeated as the outcome of the gains from births or 

recruitment processes, offset by losses from all sources of mortality: 

Ni = Rij - ZiNi (6) 
Equation (6) varies from a standard fishery representation of the change in cohort 

abundance with respect to time because of the addition of the recruitment term. The 
recruitment term allows communication between adjacent cohort population regions as well 

as additions that may flow between region to region in terms of either births and/or 
immigration or emigration. The mortality term is also sti uctured into an alternative form 

with endogenous and exogenous population forcing components, i.e: 

where Zi = Mi(Wio'- Wi) + Fi (7) 

Mi - instantaneous natural mortality for ensemble individual of the jth 
cohort (here assumed time constant, i.e. M =Mi). 

Wi*O = optimal weight (biomass) for the ith aged (size) individual of the 
jth cohort. 

Fi fishing and/or predatory pressure for the ith aged (size) 
individual of the jth cohort. A tradeoff here may be seen 
whereas bigger fish at age may be less susceptible to natural 
mortality or predation, they are on the other hand more 

and susceptible to fishing predation. 

Rij - instantaneous rate of recruitment from the jth to the ith 
population cell, which in the case for recruitment to the initial 
age becomes, 

Rij = Y" fij(Wj -Wj0)) (8) 

j=1 i=1 
with fj a fecundity of the jth age (size) class. 

Fecundity per unit of parental biomass may be highly variable and dependent upon 

the nutritional state and size structure of the stock (Parrish et al., 1986). This implies that 
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the weight of a specific jth cohort may be suboptimal which would allow for dependency 

on age-specific reproductive input on the density-dependent factors influencing growth. If 
weight is suboptimal then the average cohort reproductive value will decrease, while on the 
other hand if weight is supraoptimal, then the reproductive value of a cohort will increase 

accordingly. The question of recruitment to the adult population should properly be dealt 
with by writing down balance equations analogous to (6) for the populations of all the 

various stages in the life history of the species concerned. 

Ai = Rij - [Mi(Wioo- Wi) + Fi Ni (9) 

The natural mortality then reflects the degree of metabolic stress the population 

undergoes reflecting endogenous constraints and provides the couple back to the mean 
weight equation. The biological mechanism for the density-dependent inter-age mortality 
could be viewed as competition for food and space in which young cannot compete 

favorably with older members of the population (Botsford & Wickham, 1979). The 
recruitment term provides an interrelation between age (size) groups. Equation (9) as 

written then allows for partial selection, partial recruitment, with density-dependent 

features, and time dependency. 

Rearranging the population derivative (9) in terms of age-specific ensemble weight: 

Wl=Wi**+ - [Fi + - (i - Rij)] (10) 

Then taking the derivative with respect to time of the population equation now 
expressed in terms of average weight (10) and calling Mi (i.e. Mi = M) a constant in time 

and expressing everything else a function of time leads to: 

Wi= [ i + '' {(*Ni - lAij) - (Fij- Rij) }](1 
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substituting (10) into equation (4): 

( N-i]) [Ki -Ni -BiNj]}/KiVi (Wi* + I[F i + -L (i -Rij ) (2 

-q i(Wi**+ [F- '-(Ni-Rij)]) (12) 

and substituting for the derivative of weight (11) into (12) the full equation is: 
o 

( Ni[i+Fi+ - lij) -Ni - R)] 
ri( i-+I"F + I (4i1 - Rij) 

[Fi+ 1 [Ki- N -I) BiNj] }/Ki 

- a(Wi' +lI[Fi +-- Rij)] (13)
M N
 

and with some reorganization now let the forcing term, F, be represented as:
 
1
F = [Fi((l-(BiNj/Ki)) - i) + (riRij/Ki) - Fi + Wi-[q(1-(BiNj/Ki))- (xi] (14)
M 

Terms will be by definition independent of Ni , but contain forcing by the deterministic 

parameters and the specific densities of the competing Nj cohorts. Then the j-dimensional 

differential equation is written as: 

Ni + 

MN 

+ lIj [('/MNi){(Rij/Ni) - (Ni/Ni) + ri((BiNj/Ki) -1) + ai ) + ri/MKi ] 

+ Ni[ (ri/K) (WiO' + Fi/M) ] 

+ (1/MNi)[Rij ( ri (1 - (BiNj/Ki)) - Aai Ri] = F (15) 

If we substitute for the constant terms within age strata and replace Bi by (5) and Ki by ri/a i 

then: 

A2 = 
M 

A3 = ri (1 - (BiNj/Ki)) - ai = ri - YbijNj - ai 



aiA4 	 - ri 


MKi M
 

A5 =i i [Wi°o+F] = ai[Wioo+F] 
Ki M M 

A6 = (A3)- Rij 

A7 = Rij 

Now with substitution of the intra-strata constants and some rearrangement of (15) results 

in: 

i) + Ni((A2/Ni)[ Ai)- + A4 ) + NiA 5 + (A2/Ni)(A 6 ) (16)i (A7- A3 ] 	 = F 

Recognizing that (16) is in the general form of the 2nd order nonlinear differential equation: 

N+Bl(aN+N)+B 2N = F (17) 

Equation (17) can be recast as a second-order differential equation for a specific 

ensemble individual i as: 

Ni = 	 (N i2/Ni) + N~i(A3 - (A4/A2)Ni) - (Ni/Ni)A7 - Ni2 (As/A2 ) + Ni(F/A2) - (18)A6 

Solution Schemes 

As written above, the coefficients ri, Ki,..., etc., all functions of the age of anare 

organism, and therefore if we choose the index i to follow the year class of the organism, 

the problem becomes a fairly complicated time integration for each year class. This can be 

viewed as a close parallel to the Lagrangianproblem of following the evolution of a 

particle's momentum in fluid dynamics given the forcing as a function of space-time. 

Although the analog is not exact, like the momentum equation for fluid flows, it is a 

simpler task to consider the evolution at a fixed point in "age" space. In the latter case the 

coefficients are fixed and the problem can be solved as single levels in age given the history 

of the other age classes. This can be done in three models: 
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(1) A locally approximate solution given the Nj's from a "reasonable" selection of the 

overall solution space and then solve for a given Ni; or... 

(2) 	 Specify the coefficients for all age classes and then integrate the entire set using an 

interative approach; or... 

(3) 	 Linearize and abstract the system (Schaffer, 1981). 

Equilibrium Analysis 

The first stage in the analysis of any population model is to ask whether there is any 

particular size at which the population will stabilize, i.e., does the model possess any stable 

steady states (Nisbet & Gamey, 1982). The steady state is deterministically stable if after 

experiencing a perturbation the population ultimately returns to its steady state value. The 
ultimate behavior of many biological populations may reveal a convergence to a stable time­
independent state as time evolves. The prediction and description of convergence to 

equilibrium states is one of the most valuable applications of mathematical population 

models (Webb, 1985). The multicohort population system of equations will have 

stationary states when all the time derivatives are set equal to zero. Under these conditions 

equation (13) can be rearranged to provide specific solutions of the Nj as examined in the 

Eulerian frame of reference, i.e. particles evolving by a fixed reference point. 
Recall that the generalized parameters, Ki and Bi, can be specifically defined as Ki 

= ri/ai, and Bi =Xbij/ai. Utilizing this information and with some reorganization equation 

(13) 	 can be rewritten as: 

Ni( 

N "-ri + bijNj + ai} + M (19)
Fi N i
 

+Ni[ai( M-- + Wi' ° )
 
M
 

+ (74 ) [ Rij (ri- ai- ZbijNj)- Rij = F 
Mi1 
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Where the forcing term is:
 

F = [ Fi (r. - ijNj) +aiRij~i]+Wi*[riq-bijN] (20)
I l-i
M 

The forcing term F contains only terms which are independent of the specific ensemble 
Ni's and thus it's value is independent of the specific population cohort j. We are 

interested in viewing (19) from the Eulerian frame of reference by fixing apoint space for 
the ensemble mean Niand evaluating the specific solutions of the Nj population particles 
evolving past the fixed reference point. Setting Ni = 14i = 0, equation (19) can be written 

as:
 

1 [ Fi (ri - ai- ZbijNj) + aiRij -
Fi] + Wi' (ri - o- bijNj)
M
 
= Ni[ai( +Wi )] + (ii)[ Rij (ri- ci -YbijNj) -Rij (21)
 

With some reorganization of (21), we find that an explicit solution for a particular 

Nj can be achieved, viz.: 

Nj = (NiFi + MWi"Ni­(Rij Ri)(Niai- - - i+ ai) + (Ni li)" Ni MNiWi..)r i - [1...] 22)" L Ibij (2 

Now let: E1 = NiFi+ MWio -Rij 

Then a specific Nj reduces to: 

Nj= -[ (Niai ri + F iRi (23)i) + N i -ENi 

So that conveniently Nj can be expressed as a linear relation at equilibrium, i.e.: 

Nj = A + BNi (24) 
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where: 

ai
 
A = ri- i+Ri and B - Fi-


bibij
 

Returning to the conditions of the Eulerian frame, we note that if we define j = i+1, 

then: 

Nj+I = pNj~-t (25) 

and the competition term for the oth cohort becomes 

N aco= + bij+l (pNje-t) + ... (26)bij(Nj) + bi,o0(pNje'(0'I)Et)] 

Solving explicitly for the specific Nj's of the vectom Nj, where the j terms range 

from jto co, andj = i+1, we note that the vector arrangement of (24) can be represented as: 

N1 = [(ri-ai) -aiN i] 1 ] 

• •(27) 

(1/(Z1
N(O = [(re - o) - aaNi , bij+rert)]
r--0
 

Equation (27) now represents the vector of coupled second-order nonlinear 

algebraic equations which represents population behavior in the multicohort den.ty and 

competition dependent equations in the stationary state. We could then derive a formal 

result by neighborhood stability analysis in which that the population iswe assume 

displaced slightly from its steady state value and follow its subsequent behavior, utilizing a 

set of relations like (27). Stationary points are found by replacing the derivatives on the 

left-hand side by zero and solving the K simultaneous equations. Truncating after the first 

derivatives gives K linerr equations for the K cohorts. 

[N'(t)] = A[N(t)] (28) 
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A is a K x K matrix, and [N(t)] is K x 1,with densities Nj(t) measured from a stationary 

point rather than from zero. Ecker and Gross (1986) discuss a method for solving an 
unlimited number of coupled nonlinear equations for physical systems. Schaffer (1981) 

demonstrated a method for abstracting systems of growth equations. 

Scaling of Equations 

Any quantity which appears in a population equation will normally have units 

which are products or ratios of the fundamental quantities time, distance, and population of 

a particular species. The fundamental quantities from which others are derived are 

frequently called "dimensions". A pure number or a ratio of quantities with the same 

dimensions is described as "dimensionless" or "normalized". Assuming the shortest time 
scale is the assimilation rate, -, the scaled form is: 

(N)rroiRj- B~ - -Fr'-oKiKo KiKori 	 1 +Norj2( i) + riNoi(K.f [Bi i + NiNo] ) - (R: )riNoN i +
ri Oio
 N riri o 0 

+NiNo[Mi(aiWi + riWi - rWiBiNO 1)- FiFo(ai + ri iNo ) + 
* 	 riR*R 

iFori- KiK o +,NNi Ki

ri 
o (FiFo- MiWi°'))] +NN Ro = F(t) (29)
 

Dividing through by Nori2: 

N0 1 B N N K K0 KiK ri 

o• + (--

1i 0i + O-(Ni----- - + +~iNrNij) -(--Bi 
1+
 

o [NiN i rii 

riW riWiMBi N ). I (-FF + r iBiNoN

• +1 i Ri+R i 1NoKiKo r R1 

KiKo
 
i KiKFo+ N (i (FiFo
r -	 - MiWi°"))] + RiiR = F(t) (30)NiNori2 

Any equations representing a ical biological system should be valid irespective of 

the units in which we measure the quantities involved in the system. The mathematical 

simplification achieved by using dimensionless variables frequently leads to some 

biological insight even without solving the equations. This is because dimensional analysis 
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can reveal groups of parameters which can be thought of as "controlling" the behavior of 

the system (Nisbet & Gurney, 1982). 

Numerical Analysis Technique 

For most continuous models analytic solutions are not possible, this is particularly 

true for highly complex sets of nonlinear equations. However, numerical analysis 

techniques are used to integrate the differential equations numeically, given specific values 

for the state variables at time zero (Carnahan and Wilkes, 1973). The evolutions must 

normally be modeled by nonlinear equations for which closed-form solutions are 

unobtainable. They may be readily integrated by computer algorithms, so that the response 

from given starting boundary conditions can be easily established. For any time step, t -* 

(t + At), we desire to calculate the population trajectory for any cell i in region j: 

Ni'(t+At) = N(t) + N (31) 

Once we calculate the Ni's, we use the specific values to compute the vector of the 

ensemble weights, Wi, such that we can calculate s.pecific ensemble abundances, which can 

then be computed directly in terms of density. The approach chosen to integrate the 

continuous second order nonlinear system of coupled equations was by rewriting specific 

dynamic difference equations for the numerical simulations. A numerical running scheme 

was designed to conduct the analysis and it's development is outlined below: 

Numerical Running Scheme 

Two types of processes motivate the numerical simulation approach. One process, 

moving the coupled system forvard in time using a single time-step approach averages the 

particles position ahead as a point between the present and the next time step. This system 

of equations can be unstable, particularly when complex second-order and higher equations 

are used. As a result, the forward simulations are used to generate a vector of initial state 
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values, given boundary conditions for the system. The vector of initial state values are then 

passed to the second process, a centered system of equations which averages the particles 

position over three time steps; arecentered systems intrinsically more stable in the 

evolution of time. 

The Forward in Time System 

Given boundary conditions for a series of state values, the initial population state 
vector utilizing the state equations are generated in numerical simulation by the following 

system of forward difference equations: 

Let the second-orderforwarddifference be generally represented by: 

;I (t + Aot)- kot 
N(t) = At (32) 

and thefirst-orderforward difference:
 

N~(t)= N(t + At) - N(t) 
 (33) 

At 

Then substituting the properly time-stepped equations (33) into (32) leads to the dynamic 

forward second difference equation: 

N(t) = N(t + 2At) - 2N(t + At) + N(t)At2 
(34) 

N(t + 2At) = N(t)At 2 + 2N(t + At) - N(t) (35) 

The form of the general second-order nonlinear differential equation can be 

rearranged to the second-order forward difference: 

N(t) = F- B1N (t)(a + N(t))- B2 N(t) (36) 

Substituting equation (36) into equation (35) gives: 

N(t + 2At) = At 2 F - At2 Bl N(t)(a + N(t)) - At2 B2 N(t) + 2N(t + At) - N(t) (37) 



18 

Now substituting for the first-order forward difference term on the right-hand side of 
equation (37), results in the dynamic forward difference solution for simulation of the 

general form of the second-order nonlinear differential equations: 

N(t + 2At) = At 2 F - AtBI[N(t- At) - N(t)](a + ,(t)) 

- At 2 B2 N(t) + 2N(t + At) - N(t) (38) 

Equation (38) and its variants can generate the initial population state vector utilizing 

the state equations, but due to the inherently unstable properties of (38) in time evolution 

we now need to develop the centered relationships. 

The Centered in Time System 

Given the initial population state vector utilizing the state equations cast as a 
forward difference we now desire to compute the population state vector centered with 
respect to evolution in time, which are generally calculated as follows. Let the second­

ordercentereddifference be generally represented as: 

N(t+At) - N(t - At)
 
N(t) = 2At 
 (39) 

and the first-order centered difference: 

N(t)= N(t + At)- N(t -At) (40)
2At 

Substituting the appropriate representation of equation (40) into (39) leads to the general 

form of the dynamic centered second-order difference equation: 

(t)= N(t- 2At) - 2N(t) + N(t + 2At)4At 2 
(41) 
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and
 

N(t + 2At) = N(t)4At2 + 2N(t) - N(t - 2At) (42)
 

If we now proceed similarly to the fashion we did in the previous section by substituting 

equation (36) into equation (42) we get: 

N(t + 2At) = 4At2 F - 4At2 B lN(t)(a + N(t)) - 4At 2 B2 N(t) + 2N(t) - N(t - 2At) (43) 

With substitution of (40) into the right-hand side of (43) we obtain the dynamic 

centered difference solution for simulation of the general form of second-order nonlinear 

differential equations: 

N(t + 2At) = 4At2 F - 2AtBI [N(t + At) - N(t - At)](a + N(t)) 

- 4At2 B2 N(t) - 2N(t) - N(t - 2At) (44) 

Equation (44) allows centered time evolution of the second-order state equations. 

To compute each specific N(t + 1) you require N(t), N(t 1), N(t - 2), and N(t -3), vis a -

vis, four previous population cohort time-step values. 

The Multicohort Numerical Simulation System of Equations 

As evidenced by the development of the forward and centered systems of equations 

in the two previous sections we are now in a position to specifically write down the non­

general coupled system of second-order nonlinear population density/abundance equations 

for multicohort-multispecies systems with age structure. 

Recasting (17) as a second-order dynamical differential equation we have: 

= F~tF Ntt) o Aj A5 
(t )N -'' 2 (-) (45)-- (t) AN(t)7 N(t) (t)(A- 3 2 N(t)) 

-

- N(t)2 AA66 

Building upon the arguments presented above, (45) can be written as a forward difference 
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equation: 

° N(t + 2At) At2N(t)(AL)- At2T t)( 1(j) + AtN( + A2 I[(t)
 
-Aj (t2N
t)2(.AA5 ) 

I- -t2N(t)2(XAt2 A6 + 2N(t + At) - N(t) (46) 

Thus, with the appropriate substitutions o. equation (33) into the right-hand side of 

equation (46), the forward in time evolution simulations for each specific cohort can be 

calculated by: 

t(~FtN A7 2 1N(t + 2At) = At2N(t) -At (N(t + At) - N(t))(N-) + (N(t + At) - N(t))2 

+ At (N(t + At) - N(t))(A 3 - ( 22N(t)) - N(t) 2 

- At 2A6 + 2N(t + It) - N(t) Vj (47) 

Clearly, the potential instabilities associated with an equation as complex as (47) 
which contains several squared first-order terms, in addition to its intrinsic second-order 

form, required development of the centered form of the set of coupled second-order 

nonlinear equations. Again, recalling the arguments presented above, equation (45) can 

now be transformed into a second-ordernonlinearcentereddynamicaldifference equation: 

N(t + 2At) 4At2N(t) F 2((74At + At(t)( 4
2 t)(A 3 ()N(t)) 

4At2N(t)2(-) - 4At2 A6 + 2N(t) - N(t - 2At) (48) 

With the appropriate substitutions of equation (40) into the right-hand side of 

equation (48) the centered equations with respect to time for the simulated time evolutions 
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for each specific cohort can be calculated as: 

N(t + 2At) = 4At2N(t) -2At(N(t- At)-N(t-At))(N t) + (N(t+ At)- N(t- At))2(N-) 

+ 2At(N(t + At) - N(t - At))(A 3 - (A4 )N(t)) - AAt2N(t)2(A5 

- 4At 2 A6 + 2N(t) - N(t - 2At) Vj (49) 

The reader should note that there is one centered difference equation like (49) for 

every jth cohort in the multicohort population (j = 1,...,n). Thus the coupled system of 

multicohort equations consists of a centered vector of state equations, one equation for each 

cohort. 

Simulation of Nonlinear Second Order Differential Equations 

Simulations were conducted to examine the behavior and stability using the 

dynamical numerical system of equations specified above. To understand the dynamic 

system behavior of the coupled equations specified by (15) and numerically approximated 

by equations for the forward (47) and the centered (49) systems of equations for the n­
interacting cohorts, the system was parameterized for depiction of an engrauloid-type life 

history (Tables 1 and 2). Up to seven cohorts were followed in time evolution although the 

number could have arbitrarily been n-dimensional. Initial results demonstrated the classic 

limit cycles of the Lotka-Volterra equations referenced extensively in the nonlinear 

dynamical literature (Webb, 1985; Thompson & Stewart, 1986), particularly when an 

approximate form of (3) is simulated utilizing an insignificant metabolic costs term. For a 
given level of parameterization, the cohorts increase in relation to their intrinsic growth term. 

Dampening is introduced through density-dependence caused by the interactions of local 

cohorts and the overall population ceiling established by the carrying capacity of the cohort 

(Figure 2). In every case the population approaches some long term equilibrium state 

determined by the system of equations; but then experiences accelerating oscillations, finally 

settling into a stable limit cycle where the population(s) oscillate regularly between capacity 
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and zero states (Figure 2a). This was as characteristic of two cohorts as it was of five or 

more cohorts (Figure 2b). 

Several interesting features were exemplified by the stable sets of second order 
coupled nonlinear equations. Examples here are presented in terms of plotting a few 
primary cohorts for the sake of brevity and clarity. First, by the appropriate control of the 
metabolic costs term and making no allowance in the time domain for recruit leakage from 
outside the cohort cell inherently induces an equivalent of the standard fishery reference 
"natural mortality" instantaneous rate terms. The decline of the cohorts is identical to an 
exponential-type loss function. The effect of intraspecific densities and the lack of outside 
recruitment produces the usual negative exponential effect (Figure 3a). This condition is 
intuitively appealing to the traditional fishery demographer because of it's semblance to a 
frame of reference so typically presented. Secondly, when communication between the 
cohorts in terms of recruitment occurs, both in the r(j) term, and pulsed with respect to the 
R(ij) term, we see a shifting of dominance between cohorts in time evolution (Figure 3b). 
These "moving" cohorts are now fully dynamic and continuous and can be affected by their 
ability to capture available environmental resources, cohort carrying capacities, competition 

among other cohorts, population density within and among age strata, their age-specific 
continuous recruitments from the local population, and the potential for recruitments from 
sources extrinsic to the local population as may be typical in many tropical fishery systems. 
The system of equations have been approached here classically as a problem in Lagrangian 
dynamics. Older age groups may damp recruitment because of their predatory effect on the 
younger age strata. Numerically strong population age strata can completely dominate or 
cause catastrophic collapse of other age strata for specific ranges of time evolution (Figure 
3c,d). Very non-equilibrium type of population dynamics become prevalent. Strong 
cohort classes can completely dominate other age strata if the competition between the 
groups is intense enough. Strong competition between cohorts can cause the ensemble 
weight at age to fluctuate significantly through time (Figure 4c). Fishing reduces 
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competition by decreasing specific cohort abundances and it serves to stabilize the 
competition induced effects by increasing the ensemble weight per individual and thus 

increases the fecundity per age-specific unit of biomass. This finding is in contrast to 
Parrish et al.'s (1986) conclusions which stated that the reduction in age composition 

caused by heavy exploitation will greatly reduce the average fecundity per unit of biomass. 
Increased numbers of cohorts causes the total biomass to remain relatively stable 

suggesting one mechanism or purpose for continuous cohort production in tropical regions. 
The parochial fishery attitude that a strong year class or cohort is productive for the fishery 
may be marginally true from the perspective of current yield, but may be inaccurate when 

the effect of this strong cohort is such as to damp out the other local cohorts as it passes 
through the fishery which negatively impacts the reproductive ability of the population to 
support itself. Subsequent cohorts are damped by a big cohort. The system is a 

complicated one with switching between states. 

Utilizing the set of coupled equations and a small enough parameter space it may be 
possible to develop an understanding where bifurcations and catastrophes may exist. The 
requirement for any fishery development or management program is to develop information 

as to what portion of the biomass is available for fishing and to altow the population to 

remain in a steady or increasing position. Although a population with the interaction terms 

addressed here is looked at cohort by cohort it appears a bumpy ride. However, if we look 
at the population biomass as an aggregate it gives the appearance of being a little bit damper 
than the individual cohorts (i.e. what about total biomass when you sum across the 

cohorts). Formally some equilibrium may exist, however if you push up and down on the 
system it begins to oscillate indicating an unstable equilibrium. Apparently stochastic 

dynamics arise from simple and rigidly deterministic density-dependent mechanisms. This 
suggests that apparently chaotic dynamics are ubiquitous dynamics and that they can arise 

more readily (with weaker nonlinearities) in systems of higher dimensionality. In a 
dissipative system where no interactions exist between the cohorts you obtain the stable 
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equilibrium as suggested by traditional models discussed in Ault and Fox (1988a,b,c). No 
matter what the initial distribution, without nonlinearities the population will contract to a 
fixed stationary distribution. No interactions however seemed like an unreasonable 

assumption based on the extensive literature indicating otherwise (see e.g. Fox, 1975; 
Botsford & Wickham, 1979; Daan, 1980; Caddy & Sharp, 1986; May, 1987). The limit 
cycles of this system suggest that the equilibrium of this system is unstable, and that 
possibly bifurcations exist. In other words the traditional assumptions regarding the 
equilibrium point may be unrealistic, and formal equilibrium does not exist. Causes of 
cyclical fluctuations are of considerable theoretical interest (Botsford & Wickham, 1979). 
When the species concerned is of economic importance they are of practical value as well. 
Knowledge of the specific mechanism causing cyclical fluctuations is necessary in 
formulation of effective fishery policy. The limit cycles viewed in the Poincare sections 
suggest that the limit cycles exist because of the interactions (Figure 5). Dynamic 

equilibrium then would be a limit cycle, and this limit cycle is bouncy. Botsford and 
Wickham (1979) suggested that fishery policies that involve removal of most individuals 
above a certain size can increase the propensity for unstable, cyclic behavior. 

Clearly, we need some insight into what can happen in the evolution of a fishery 
system, and in the possible ways the system may be influenced by the initial conditions. 
The complicated behavior of simple deterministic models can have disturbing implications 
for the analysis and interpretation of biological data. Implications for ecological and fishery 
theory of high-order period and aperiodic orbits are most unsettling (May & Oster, 1976). 
Many systems have shown the general tendency to shift from many species to a few with 
exploitation over time (e.g. Gulf of Thailand, (Pope, 1979a); Gulf of Nicoya, Costa Rica 
(Madrigal, 1985)). The methodologies presented herein can be important for providing 
rare insights into ihe study of realistic population dynamics by the utilization of the new 
unique coupled set of nonlinear differential equations to assist determination of the effects 
of competition in harvested tropical multicohort - multispecies systems. The multicohort 
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model made some of the simplest assumptions for !he complex processes that tropical 
multispecies populations undergo. However, in the attempt ta model the system more 

appropriately the assumptions utilized are clearly an extension which attempted to be 
consistent, justifiable and foilow thermodynamk, laws. The model was developed in an 
attempc to ask the rlevant questions of the parameters, and clearly this approach can not be 
any less robust than the state of the present traditional models when applied to the tropical 

domain. 

Future Scope of the Multicohort - Multispecies Model and Extensions 

While the analysis is not complete, the purpose of this paper has been to describe 
the multicohort nonlinear dynamic system modeling as a technique to study tropical marine 

fish stock(s) population dynamics processes. The unique feature of the equations 

presented in this section is that it represents the first time anyone has coupled an n-cohort, 

n-species relation and solved the system of equations. Beyond it's intrinsic mathematical 
interest, it may have considerable significance for advancing the study and understanding 

of structured populations under exploitation. The multicohort model may be considered as 
depicting rt.pectively the mode of action of density-independent and density-dependent 

factors. Accepting these parallels, the model may demonstrate some widely discussed 
properties of mechanisms of population regulation. Models as complex as that presented 

here are generally not used in fishury analysis due to the lack of adequate data to completely 

specify them. Indeed, the amount of data needed to completely specify a complex model of 
a specific population is seldom available for a real fishery. Clearly, the model of this 

section will provide more accurate views and predictions of system behavior as real data 
become available. The model developed in this section has been studied with parameters 

gleaned from the literature, and as such can only be used to specify general system 
conclusions. Data specific to a particular system will be necessary to provide a more 

cogent understanding of the underlying nature and behavior of the system. 
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However, the intent here was to expose aspects of population behavior that may 

otherwise be occluded by the simplifications inherent in many traditional fishery models, 

particularly the effects of competition and predation when added to the competing risks 

model. Recognition that density-dependent mechanisms can produce cyclic arid sometimes 

chaotic behavior in fish populations does have important implications for the way that 
certain kinds of data are analyzed. Not even :n the most exact of the physical sciences are 

the coefficients of any model ever known with absolute precision. As such, the model of 

this section may then suggest a new tact for strategies based on current data, or new kinds 

of data that may be of paramount importance to proper tropical multicohort, multispecies, 

multigear fishery management. Multiple equilibria and strange attractor states appear to 

become prevalent features of biological systems when interactions such as competition and 

density-dependencies are explicitly modeled (May 1981, 1987). A logical extension of the 

multicohort model would be to work out a principal components analysis that would 

estimate the most likely position of the system subjected to perturbation. In this case it 

would be possible to develop exact probabilities of system outcomes by performing a 

sensitivity analysis to parameter scalings and controlled perturbations in the determ-inistic 

model. Ultimately these findings could be extended these to a Markov model for the 

multicohort - muiiispecies system. It is concluded that this present formulation of 

intraspecific competition, together with an expanded version which may also incorporate 

interspecific competition, should be applied to a laboratory and/or a natural situation to test 

it's usefulness for prediction. 
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List of Figures 

Figure 1: 	 Depiction of stability and bifurcations of equilibria and cycles for n­
dimensional system of differential equations. Panel (A) shows three phase 
portraits illustrating the character of Liapunov stability for an equilibrium 
state (following Thompson &Stewart, 1986): (i) stable equilibriumpoint 
where every nearby solution stays nearby for all future time, (ii)
asymptoticallystableequilibrium because all solutions tend to equilibrium as 
t-o,, and (iii) unstable equilibrium because perturbation may lead to 
multiple equilibria or chaos. Panel (B)characterizes the states of equilibria 
portrayed in Panel (A) as a basketball on a mountainside. As the parameter 
space increases the system has an increasing propensity for becoming 
unstable. 

Figure 2: 	 Time evolution of the nonlinear multicohort population equations showing 
limit cycles for: (A) two cohorts, and (B) five cohorts. 

Figure 3: 	 Time evolution of the nonlinear population equations showing: (A) a large 
metabolic term and no recruitment communication between age strata, and 
(B,C,D) temporal communication between cohorts. 

Figure 4: 	 Simulated population cohort abundance modeled by equations (48) and (50) 
for the cases where: (A) the optimal weights at age strata are identical, (B)
optimal weights increase with increasing age, and (C) the time evolution of 
ens a@'-weight under (B). 

Figure 5: Domains of attraction for the phase-space trajectories showing a spectrum of 
limit cycles for various initial conditions and continuous recruitment: (,b.) 
system approaching a dynamic limit cycle, (B) increasing optimal weights at 
age increasing 	age strata, (C) conditions in (B) with low fishing mortality, 
(D-E) conditions in (B) with moderate growth term, and (F) large growth 
term. 
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Table 1: Engrauloid annual rae parameters used in the continuous simulations of the 

second order nonlinear multicohort population model. Data from Tillman & 

Stadelman (1976), Hunter & Goldberg (1980), Hunter& Leong (1981), 

Parrish et al. (1986), Caddy & Sharp (1986). 

Cohort r(i) a(i) M(i) W1(i) f(j) a(i)
 

I 1.023 .0003500 1.1 11.81 1.00 0.077
 

II 1.012 .0007500 1.1 18.41 1.93 0.088
 

III 1.001 .0003913 1.1 24.50 2.93 
 0.099
 

IV 0.990 .0004444 1.1 29.68 3.88 0.110
 

V 0.985 .0004667 1.1 33.86 4.72 0.116
 

VI 0.979 .G005455 1I.1 37.14 
 5.42 0.121
 

VII 0.974 .0006250 1.1 39.46 5.98 0.127
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Table 2: Matrix of interaction b(ij) coefficients. Rows are the cohorts affected while 

the columns are the cohorts who are causing the interaction. 

AFFECTS 

1 2 3 4 5 6 7 

1 XXX .00025 .000005 .000001 .000001 .000000 1.OE-8 

2 .000125 XXX .000125 .000125 .000125 10E-6 1.OE-7 

3 [000225 .00035 XXX .000125 .000025 1.OE-5 1.OE-6 

4 .000 .00001 .001 XXX .0001 .00005 1.OE-7 

5. .000 .001 .001 .001 XXX .00001 1.OE-5 

6 .000 .00000 .00001 .0001 .0005 XXX 1.OE-4 

7 .000 .00000 .00001 .0001 .0002 .00001 XXX 


