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Abstract 

This paper considers continuous and cyclical farming strategies for the management 

of soil resources in semi-arid Africa. The results of the Lewis and Scmalensee (1977, 1979) 

an. %lysisof the optimal use of a renewable resource in the presence of nonconvexities is 

used to demonstrate that cycles of exploitation (fari.iing) and regeneration (bush fallow) 

can be the optimal strategy for sustainable agriculture. 



CONTINUOUS AND CYCLICAL FARMING STRATEGIES FOR 
SOTL MANAGEMENT ON SEMI-ARID AFRICA 

1. Introduction
 

The conservation of soil resources 
and sustainable agriculture is a concern of increas

ing importance in the semi-arid regions of Africa. Low rainfall is a critical limiting factor 

for agricultural production. Consequently, farm productivity depends critically upon the 

soil depth and soil structure, particularly the ability of the soil to capture and retain the 

limited rainfall. Population growth has led to the clearing of forests to cultivate more 

land and to more intensive cultivation of the land, particularly through shorter fallow pe

riods. As a result, the rate of soil erosion and the rate of deterioration of the soil quality 

have increased. Crop productivity has been impaired as the quality of the soil resource 

has declined from the more intensive cultivation; the viability of sustainable agriculture 

is threatened. The economic nature of this problem can be characterized as a trade-off 

between current production and the future productivity of the soil resource. 

Optimal control theory provides a useful framework of analysis for intertenporal 

economic problems; it has been applied to a wide variety of natural resources, including 

the management of soil resources (Burt, 1981; McConnell, 1983; Bhide, Pope, and Heady, 

1982; Segarra and Taylor, 1987). The continuous time framework of optimal control 

theory is particularly useful for developing general economic insights into how various 

economic, technological, and policy variables affect the management of natural resource 

assets. For example, the impacts of the rate of discount, the time horizon, different price 

scenarios, and uncertainty about land tenure on the conservation of soil resources can 

be analyzed in the optimal control framework. The discrete-time framework of dynamic 
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programming is more amenable to empirical applications but some quantitative analysis 

can be performed with optimal control theory, particularly when simple functional forms 

can be specified. 1 

Previous treatments of soil conservation in the literature have focused nn optimal 

rates of soil depletion when the net benefit function is strictly concave. For example, 

McConnell (1983) examines an optimal control model of soil conservation in which current 

output is a function of the state variable, ,oil depth, and the control variables, soil loss 

and an index of other farm inputs. The impact of current farm decisions on the future 

productivity of the soil is captured in the 'equation of motion', the differential equation 

which defines the rate of change in soil depth as a function of current decisions. The farmer 

chooses the time paths of soil loss and other inputs which maximize the discounted net 

return to the farm over a fixed planning horizon subject to the constraint imposed by the 

equation of motion. 

The first order conditions consi t of a static efficiency condition, a dynamic efficiency 

condition, and a transversality, or boundary, condition which jointly determine the optimal 

path for the depletion or conservation of the soil as a function of the time paths of input 

aad output prices, the rate of discount, and the length of the planning horizon. In 

general, it is difficult to obtain a closed-form solution for an optimal control problem but 

a number of qualitative analyses can be conducted even in the case of nonlinear functional 

relationships. in some simple cases, this qualitative analysis is relatively straightforward 

and it provides important economic insights. '7,)r example, a higher rate of discount or a 

shorter planning horizon decreases the present value of future production relative to the 

present value of current production and results in reduced soil conservation. Since the 
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security of land tenure affects the time horizon and rate of discount it also is an important 

factor in determining the conservation of soil resources. 

Bhide, Pope, and Heady (1982), examine an empirical dynamic optimization modei 

of soil erosion in Iowa and compare the optimal paths of soil use obtained with different 

assumptions about the initial soil depth, the rate of discount, technological growth, the 

farmer's time horizon, and the terminal value of the farm. In the case of a fixed time 

horizon, the soil loss increases over time with a rapid increase at the end of the time 

horizon. In contrast, if the planning horizon is infinite, then the optimal level of soil loss 

declines gradually over time. The optimal rate of soil loss is reduced by a lower r-te of 

discount, a longer planning horizon, or continued technological growth. 

Segarra and Taylor (1987) examine the optimal cropping rotation in south-central 

Virginia over a fifty-year time horizon when the impact of current production on future 

soil productivity is taken into account. Burt (19SI) includes a second state variable, the 

percent of organic matter in the top 15 centimeters of soil in a model which examines soil 

erosion and the optimal crop cotation in the Palouse region of idaho and Washington. 

With the assumption of a concave net benefit function, the optimal path is either 

to asymptotically approach a steady-state equilibrium or to exhaust the soil resource in 

finite time. Whether or not soil exhaustion is optimal depends upon the rate of return to 

the soil resource relative to the rate of discount. The rate of return to the soil resource 

is the sum of the value of the marginal productivity of the soil in the production of crops 

and the value of its marginal productivity in the regeneration of the soil resource. The 

optimal steady-state level for the soil resource occurs where the rate of return to the soil 
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resource is equal to the rate of discount. It is optimal to exhaust the soil resource if its 

rate of return is less than the rate of discount at all levels of the soil resource. 

However, the net benefit function for farming has a nonconvexity if there is a fixed cost 

to farming (which is not incurred if the land is not farmed) or if the marginal productivity 

of farming intensity is increasing at low levels of farming intensity. In the case of a net 

benefit function with nonconvexities, there may be levels of the soil resource for which 

the maximum net benefits from farming are less than zero. Lewis and Scmalensee (1975, 

1977, 1979) use the case of a fishery to demonstrate that if there is a nonconvexity to the 

net benefit from the harvest of a renewable resource, then the optimal management of 

the resource can involve continuing cycles of exploitation and regeneration. That is, the 

fishery is exploited for a period of time, then it is (temporarily) abandoned until the fish 

stock is sufficient to warrant the resumption of fishing effort. 

This paper examines an optimal control model of soil management which allows for 

nonconvexities in the net benefit function. This car, be particularly relevant to the problem 

of soil management in marginal semi-arid farmlands. The next section of the paper 

presents a standard one-state variable model in which farm productivity is a function of 

soil depth and farming intensity and discusses how the rate of discount, the rate of soil 

regeneration, and the time horizon affect the optimal path for soil erosion. Section 3 of 

the paper follows Lewis and Schmalensee (1975, 1977, 1979) to demonstrate that in the 

case of nonconvexities in the net benefit function, a continuousit may be that neither 

farming strategy nor exhaustion is the optimal soil management strategy. Instead, the 

land should be used in cycles of e.:ploitation and regeneration. A crop-fallow rotation 

for the conservation of soil moisture and longer term bush-fallow patterns of cultivation 
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provide examples of this cyclical farming strategy. A model with two state variables, 

soil depth and soil quality, and two control variables, soil depletion and soil enhancement 

practices, is examined in the appendix. 

2. Continuous Farming Strategies
 

Consider a one state-variable model of soil management in which 
 the net benefit 

from farming the land at time t, denoted by B(X, s), is a function of the state of the soil 

resource at time t, denoted by X(t), and 	the control variable, the depletion of the soil 

resource at time t, denoted by s(t). This general specification of the soil resource can be 

used to examine the optimal conservation of different soil characteristics. The state of 

the soil resource could be the moisture content of the soil, the depth of the soil (as in 

McConnell, 1983), or some index of relevant soil characteristics. Limiting the model to 

one state variable greatly simplifies the theoretical analysis without changing the basic 

qualitative nature of the results.2 An optimal control model of soil management with two 

state variables-soil depth and soil quality-is presented in the appendix. 

The 	net benefit from farming also depends upon the rate of depletion of the soil 

resource. The crop yield depends upon the 'farming intensity' which can represent a 

schedule of various 'activities'-crop selection, tillage, etc.-which affect the yield from the 

current state of the soil resource and also the depletion of the soil. That is, an alternative 

formulation of the model could specify farming irAensity, say u(t) as the control variable 

and 	the depletion of the soil resource would be a function of the level of farming intensity, 

i.e. 	s(t) = f(u(t)). 

In the present formulation, the relationship between farming intensity and soil de

pletion is embedded within the net benefit function. This formulation simplifies the 
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exposition of the cyclical farm strategies in the next section. The fcrmulations are the 

same when there is a monotonic relationship between farming intensity and soil loss. 3 The 

net benefit function is assumed to be ccncave with BX > 0, B, > 0, Byx < 0, B. 8 < 0, 

BXs > 0. If Bxs > 0, then the marginal return to a given level of soil depletion (farming 

intensity) increases with the state of the soil resource (e.g. soil depth or soil moisture). 

Since farming depletes the soil resource, it affects the state of the soil resource in 

future periods. The natural regeneration of the soil is denoted by the function g(X). 

In most of the literature on soil erosion, it has been assumed that the soil regenerates 

at the constant rate k (for example, McConnel, 1983). However, it is possible that the 

regeneration of the soi'l could depend upon its current state. For example the regeneration 

of the soil can depend upon the deposition of residue organic matter in previous years 

which, in turn, depends upon the state of the soil resource. In addition, there can be an 

upper limit to the state of the soil resource. Consequently, the natural rate of regeneration 

of the soil can be low when the state of the resource is low and then increase, reach a 

peak, and then decline as the state of the soil increases. Similarly, in the case of soil 

moisture, the carry-over of seasonal rainfall from a year of fallow can depend upon the 

soil moisture content of the soil and there can be an upper limit to soil moisture. 

For this general specification of soil regeneration, then, it is assumed that there exists 

a maximum state of the soil resource X such that g(A') = 0. It also is possible that there 

is a state of the soil resource below which the soil does not regenerate. This state is 

denoted by A so g(X) = 0. It also is assumed that g(X) is concave for X > 0 (there can 

be a discontinuity at X = 0). Then the equation of motion is given by: 'k = g(X) - s. 

Both the more general specification and the special case g(X) k are examined here and= 
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they are depicted in Figures la and lb. It also is assumed that X(0) > X and that there 

exists an s(0) such that B(X(O),s(O)) > 0 (this implies that farming is desirable at some 

time). Finally, it is assumed that BS(X, 0) > 0. 

The net benefit function and the equation of motion capture the notion that farming 

the soil entails a trade-off between current returns and the future productivity of the soil. 

That is, more intensive farming increases current profit but depletes the soil and this 

depletion reduces the future returns to farming.4 

The farmer selects the time path for soil depletion which maximizes the present value 

of net returns from the land over a given time horizon. Formally, the problem is to choose 

the time path for soil depletion, s(t), which maximizes: 

1o e- 6tB(X(t), s(t)) d t + e- 6TV(X(T)) (1) 

subject to:
 

X(t) = g(X) 
- s (2) 

s(t),X(t) > 0 Vt, (3) 

where T denotes the length of the planning horizon (which could be endogenous or ex

ogenous, finite or infinite), V(X(T)) denotes the value of the state of the soil resource at 

the terminal time, and 6 denotes the rate of discount. 

The current-value Hamiltonian is given by: 

H(X, s, A)= B(X(t), s(t)) + A(g(X) - s(t)) + al s + a2 X (4) 

where A is the costate variable for the equation of motion governing soil depth and can 

be interpreted as the current value shadow price, or marginal value of the soil resource, 
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and the at's are the Lagrange multipliers associated with the non-negativity constraints. 

The first order conditions for an interior solution are: 

OH/O = Bs(X,s) - A = 0 (5) 

- A= A -OH/OX =6A - Bx(X,s) - Ag'(X) (6) 

Equation (5) is the static efficiency condition that the marginal net benefit from soil 

depletion is equal to the marginal cost of soil depletion (where the latter is the value of soil 

resource times the marginal soil loss). Equation (6) is the dynamic efficiency condition 

which insures that the rate of return to the soil asset is equal to the rate of discount 

and, therefore, to the rate of return to other assets in the economy. The rate of return 

to the soil asset is the capital gain on its value, A/A, plus the marginal productivity of 

the soil in terms of the numeraire, Bx/A, and the marginal productivity of the soil in the 

regeneration of soil, g'(X).5 If natural rate of soil regeneration is constant, then g(X) k,= 

and the last term of the return to the soil asset is zero. 

The transversality, or boundary, conditions are: 

X(T) 0, A(T) _ dV/dX, and X(T)[A(T) - dV/dX] = 0 (7) 

if X(T) is free but must be non-negative, and: 

B(X(T),.s(T)) + A[g(X(T)) - s(T)] + V(X(T)) = 0 (8) 

if the time horizon is endogenous. Equation (7) requifes that if the terminal state of the 

soil resource is positive, then the terminal shadow price of the soil resource is equal to the 

marginal value of the terminal state of the soil. If the terminal value of the soil is zero, 
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then this implies that either the resource is exhausted at the end of the time horizon or 

the shadow price of the soil resource is zero. 6 

Equation (5) implicitly defines the optimal soil depletion s(t), as a function of the 

state of the soil resource, X(t), and its shadow price, A(t). Consequently, at any point in 

time, the entire system is described by the state of the soil and its shadow price at that 

time. Indeed, the optimal trajectories can be characterized by the differential equations: 

X = M(X, A) = .(X) - s(X, A) (9) 

A = N(X, A) = A[ - g'(X)] - Bx(X, s(X, A)) (10) 

Then the optimal path s*(t) satisfies equations (9) and (10), the initial condition X(0) = 

X 0, the non-negativity conditions, and the transversality condition(s). Thus, the optimal 

solution s*(t) is a function of the initial soil depth, the time horizon, the rate of discount, 

and the parameters and functional forms of the net benefit and soil loss equations. 

If g(X) = k, then the dynamic efficiency condition, equation (6), can be integrated 

with respect to time to yield: 

A(t)= A(T)- 6(T-t) + e- 6 (r-1)BX(X(),s(T)) dr. (11) 

The current value shadow price for soil depth can be separated into two parts. The first 

term on the left hand side is the current value, at time t, of the scarcity rent associated 

with soil depth. This term is marginal terminal value of the soil resource and is equal to 

zero if there is no terminal value to the soil and the soil is not exhausted over the time 

horizon (equation (7)). 

The second term can be viewed as a 'degradation charge' which represents the dis

counted value of the cost imposed on the future because the current soil loss increases 
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the marginal cost (in terms of reduced productivity) of any future soil losses. Both the 

scarcity rent and the degradation charge must be covered by the marginal net benefit 

from farming intensity. 

The value of the degradation charge depends upon the entire future path of the 

system. For example, if soil depletion is positive (g(X) < s) for all r from t to T, and 

if Bxs = 0, then the degradation charge must be greater than the present value of the 

current marginal productivity loss over the remaining time horizon. In this case, the 

soil loss today increases the marginal cost of future soil losses because of the concave 

relationship between the soil resource and productivity. 

With the more general specification of the soil regeneration function, the additional 

term j/tA(s)g'(X)e 6 (-t) is added to the right hand side of equation (11) and the evolu

tion of A(t) cannot be determined independently of the rest of the system. This additional 

term captures the value of the soil's marginal productivity in soil regeneration. 

Differentiating the static efficiency condition, equation (5), with respect to time, and 

using the dynamic efficiency condition, equation (6), yields the time derivative of the 

control path for soil depletion: 

(t) (8- g'(X))A - Bx - Bx(g (X) - (12) 

B,, 

The denominator of equation (12) is negative. The numerator is positive when A is 

increasing and the soil resource is decreasing. In this case, then, soil depletion is decreasing 

over time.7 

The qualitative nature of the optimal time path for soil depletion, and therefore soil 

loss, depends critically upon the time horizon. If the time horizon is finite, then the time 

path for the exploitation of the soil depends upon the length of the time horizon and the 



terminal value of the soil resource. This is apparent from equation (11) where the first 

term in the expression for the current value of the soil is the present value of the terminal 

shadow price of the soil. 

With a finite time horizon, the terminal value is exogenous but implicitly assumes 

some optimal use of the soil resource in the periods after the terminal date (or it assumes 

that the soil resource is not valuable after that date). That is, there must be, at least 

implicitly, a valuation for the terminal level of soil depth, V(X(T)). Since this terminal 

valuation gives the present value of the net benefit of the soil resource at the end of the 

planning horizon, it essentially represents a summary statement of all the economic and 

technological conditions which are expected to prevail after the terminal time. Thus, any 

statement of the problem which imposes a fixed time horizon does not avoid the difficult 

task of projecting the costs and benefits of different actions out to an indefinite future. 8 

If the soil resource has little or no value at the end of the time horizon, then complete 

exhaustion by the end of the time horizon can be optimal. Early in the planning period, 

the farmer conserves the soil for its future productivity but depletes the soil rapidly as the 

terminal time approaches. Thus, the assumption of a finite time horizon and low terminal 

value can force the optimal level for farming intensity to increase over time whereas an 

infinite planning horizon would yield a monotonically decreasing time path for farming 

intensity and soil loss (McConnell, 1983; Bhide, Pope, and Heady, 1982). 

With an infinite planning horizon, the value of the resource at any point in time 

is determined endogenously. Any infinite time horizon problem can be represented as a 

series of fixed time horizon problems since the optimal path for the infinite time horizon 
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problem implies a value for the soil resource for any chosen point in time. This is depicted 

graphically in Figure 2. 

In Figure 2, the steady-state value for the state of the soil resource is denoted by 

X. In this case, the initial value for the state of the soil resource, denoted Xo, is greater 

than the steady-state soil depth. The state of the soil resource decreases monotonically 

along the optimal path and asymptotically approaches its steady-stat- level. At time T, 

there is a maximum value to the soil resource, V*(X(]7)). The shadow price of the soil 

resource along the optimal path, A*(t), gives the marginal value of the soil resource at 

that time. If T is chosen as a fixed time horizon and V*(X) is chosen as the terminal 

valuation for soil depth, then the optimal solution to this finite time horizon problem 

requires A(T) = dV*/dX(i). Consequently, the optimal path for the soil resource in the 

solution of the fixed time horizon problem is the same as the optimal path for the infinite 

time horizon problem over the interval [0, T]. 

The conditions describing the steady-state of an infinite planning horizon can be 

determined in a straightforward manner. A steady-state equilibrium occurs when A = 

= 0 (or i = X = 0). Thus, the soil resource is is in a steady-state if and only if 

A = g(X), where X and denote the steady state of the soil resource and the steady 

state soil depletion from farming. The shadow price for soil is constant if and only if 

8 = g'(X) + Bx(X, s)/A. Static efficiency requires A = B8(X, s). Therefore, the steady 

state of the soil resource, X, is defined by the condition: 

+B (X,g(X)) g'(X) = 6 (13) 

B, (X, g(X)) 

A sufficient condition for the existence of a steady-state equilibrium is g'(0) > 05* 
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The phase diagram in the A,X space is depicted in Figure 3, both for the general case 

of a concave soil regeneration function and the special case of constant soil regeneration 

(g(X) = k). Let M(X, A) = g(X) - s(X, A) denote the combinations of X and A for 

which the state of the soil resource is constant. Then 

dA I Mx _ g'(X) + (B.,x/Bss) 

dX M=o BssM 

In the general case, g'(X) is positive for low values of X and negative for large values 

of X; g'(X) = 0 in the case of a constant soil regeneration. The second term in the 

numerator is negative and the denominator also is negative. Thus the slope of the curve 

.k = 0 is negative for small values of X and positive for large values of X; this slope is 

stric:iy positive in the case of constant soil regeneration. 

The J( = 0 curve represents combinations of the state of the soil resource and its 

price where the intensity of farming is just equal to the natural regeneration of the soil. 

As such, it can be interpreted as the steady state supply function for the soil resource 

(see Smith, 1977). The general specification for the natural regeneration function makes 

it possible for this 'supply curve' to have a downward sloping segment. The value of 

M(X, A) is positive (negative) for combinations of X and A which lie above the Xc = 0 

curve. If the shadow price for the soil resource is above (below) its equilibrium supply 

price, then the supply of the soil resource increases (de-reases) toward its equilibrium. 

Let N(X, A) = A[8-g'(X)]- Bx(X, s(X, A)) = 0 denote the combinations of X and 

A for which the shadow price of the soil resource is constant. Then 

dA I Nx Ag"(X) + [(BXxVB, - B,.V)/B0]
 
WX A=o = --- 6- g'(X) - (BV/B) <0. (15)
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The curve A = 0 represents combinations of the state of the soil resource and its 

shadow price for which the rate of return to the soil asset is just equal to the rate of 

discount in the absence of capital gains. As such, it can be interpreted as the steady state 

demand function for the soil resource (Smith, 1977). The value of N(X, A) is positive 

(negative) for combinations of X and Awhich lie to the right (left) of the A = 0 curve. If 

the shadow price of the soil resource is above (below) its equilibrium demand price, then 

the demand for the soil resource decreases (increases) toward its equilibrium. 

The introduction of a concave soil regeneration function and the productivity of the 

soil resource make it possible for multiple steady-state equilibria to occur. If a steady

state equilibrium is unique, then it is a saddle point equilibrium and the equilibrium 

is stable in that the optimal path moves the system toward the steady state. If there 

are multiple steady-state equilibria, then they will alternate between stable and unstable 

equilibria. Tle initial state of the soil resource then determines the optimal steady-state. 

It is possible that exhaustion is optimal for some initial values of the state of the soil 

res,.irce while movement toward a steady-state with a positive soil resource is optimal 

from other initial values for the state of the soil resource. 

Total differentiation of equation (11) and using 3 g'(X)dX= from equation (2) 

yields: 
ax -Bs 

=6(6 -g')[B,,g' - Bxs(1 + g')] -g'Bx- -- x <0 (16) 

if X is a stable equilibrium. In the special case g(X) = k, this reduces to: 

0 B 6Bx8 < o 
(17) 
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In the special case, the value of k also affects the steady state of the soil resource: 

a" B ya- 6B s( 
05 ( Bx, - Bxx)> (18) 

As the discount rate increases (decreases), the , = 0 curve shifts downward (upward). 

That is, the steady state demand for the soil resource decreases (increases) as alternative 

investments become more (less) attractive. Consequently, the steady state of the soil 

resource decreases (increases), the equilibrium shadow price decreases (increases). The 

latter results in an increase (decrease) in the rate of soil depletion at each state of the soil 

resource. 

As the soil regeneration parameter k increases (decreases), the k = 0 curve shifts 

downward (upward). That is, the steady state supply curve shifts out (back), the steady 

state shadow price for soil decreases (increases) and the steady state of the soil resource 

increases (decreases). The rate of soil depletion is greater (smaller) at each state of the 

soil resource.
 

If a steady-state equilibrium exists, 
 then the state of the soil resource is monoton

ically decreasing (increasing) and the shadow price of soil is monotonically increasing 

(decreasing) along the optimal path when the initial soil depth is greater (less) than the 

steady-state soil depth. If the net benefit function and equation of motion are linear in 

the rate of soil depletion, then the approach to the steady-state is a 'most rapid approach 

path' (Kamien and Schwartz, 1981). In this case, if the soil resource is below its steady

state level, then it is optimal to not farm the land until the soil depth has reached the 

steady-state level. If the state of the soil resource is better than its steady-state level, 

then it is optimal to farm the land at an exogenously given maximum level of intensity 

until the steady-state of the soil resource is reached.1 0 
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This section of the paper assumed that the net benefit function was concave in the 

control variable, soil depletion. If there are non-convexities in the net benefit function, 

then it can be optimal to farm the land in periodic cycles of exploitation and regeneration 

(Lewis and Schmalensee, 1975, 1977, 1979). This could occur, for example, if there are 

fixed costs which do not vary with the level of exploitation of the resource but are not 

incurred in the absence of exploitation. (The opportunity cost of fuelwood and forage 

which can be provided if the land is in bush fallow can be viewed as a fixed cost of 

farming the land.) Crop-fallow rotations for managing soil moisture in semi-arid lands 

and the longer cycle bush-fallow pattern of cultivation can represent this type of farming 

strategy. 

3. Nonconvexities and Cyclical Farming Strategies
 

If there is a nonconvexity in the net benefit function, then 
a continuous farming 

strategy leading to a steady-state equilibrium may be only a local maximum. That is, 

there can be a non-continuous farming strategy which gives a higher present value to the 

soil resource. 

A nonconvexity is introduced into the net benefit function if there are fixed costs 

to farming which are not incurred if the land is not farmed. In this case, there is a 

discontinuity in the net benefit function at s = 0. If the productivity of the soil declines 

sufficiently as the state of the soil resource declines, then net benefits may be negative at 

all levels of farming intensity (soil depletion)-see Figure 4. Then the farmer is clearly 

better off by avoiding the fixed cost and not planting a crop and letting the productivity 

of the soil regenerate before planting a crop in a later year. Of course, the farmer's land 

tenure must be secure both during and after a fallow cycle. 
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Nonconvexities in the net benefit function can also occur in other ways. For example, 

if there is a return to the land in the absence of farming which is not received when the land 

is farmed, then the opportunity cost of farming includes the forgone return to unfarmed 

land. This, then, is a type of fixed cost to farming. Another source of nonconvexity is 

present if there is a discontinuity in the soil loss function at a farming intensity of zero. 

That is, if s(t) > o- > 0 when the land is farmed at any level of cultivation but s(t) = 0 if 

farming intensity is zero, then the net benefit function can have a nonconvexity. Finally, 

a nonconvexity occurs if there is a nonconvexity in crop yields at low levels of farming 

intensity (and therefore soil depletion). 

In the presence of nonconvexities, the optimal soil management strategy can be to 

farm the land in cycles of exploitation and regeneration. Indeed, there are conditions 

which are sufficient to insure that a cyclical farming strategy is optimal. mostThe 

straightforward case is when there is a fixed cost to farming. The, discussion here fol

lows that of Lewis and Schmalensee (1975, 1977, 1979) which examine optimal cyclical 

fishing strategies in the presence of fixed costs to fishing effort. 

Let F denote the fixed cost to farming. It is clear that there is a fixed cost which 

is large enough for it to be optimal not to plant a crop. For a given fixed cost, let k 

denote the largest X for which B(s(X,O),X) < F. That is, k is the greatest lower 

bound for the state of the soil resource for which it is possible to have non-negative net 

benefits (including the fixed cost). Clearly, if the state of the soil resource falls below Xk, 

then it is better not to plant a crop. If this occurs, then the option is to abandon the 

land permanently or to return to farm the land at a later date when the soil resource 

has regenerated sufficiently to overcome the fixed cost of farming.11 Whether or not 

http:farming.11
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permanent abandonment is optimal depends upon the cost of returning to farm the land, 

denoted by R.
 

If returning to the land to farm is not possible (R = 
oo), then abandonment must be 

permanent. A unique abandonment strategy exists if the net benefit (including the fixed 

cost) from farming at the steady-state of the continuous farming strategy is negative 

(B(g(X*), X*) < F). A unique abandonment strategy also exists if the initial state 

of the soil resource is less than its optimal steady-state under continuous farming and 

net benefits are negative without further depletion of the soil resource (XO < X* and 

B(g(Xo), Xo) F) (Lewis and Scmalensee, 1977, Proposition 6) or if the intial state of 

the soil resource is low (Lewis and Scmalensee, 1975, Proposition 3.4). In both cases, the 

productivity of the soil is insufficient to overcome the fixed cost of farming unless the rate 

of soil depletion is greater than the rate of depletion which allows the maintenance of the 

12soil resource. 

The most interesting case is when the cost of returning to farm the land is positive 

but finite (0 < R < 00).13 In this case, sufficient conditions for it to be optimal to farm the 

land in cycles of exploitation and regeneration are given by: (a) the net benefit (including 

the fixed cost) from farming at the steady-state of the continuous farming strategy is 

negative (B(g(X),A') < F V A); (b) there is a level of the soil resource greater than the 

minimum viable level for which the maximum net benefit from farming (including fixed 

costs) is positive (.k > X); and (c) there is a level for the soil resource where the present 

value of returning to farm the land is greater than the cost of returning to farm the land 

(there exists an X < X such that V(X) > R where V,, denotes the discounted net benefit 

from an optimal abandonment strategy) (Lewis and Scmalensee, 1977, Proposition 11). 



19 

The economic intuition behind these sufficient conditions is straightforward. The 

fixed cost is such that the net return to farming is negative in the steady-state. Thus, a 

continuous farming strategy cannot be optimal since eventually the net return to farming 

is negative (condition (a)) and it is better to not farm the land. However, the (temporary) 

abandonment of the land occurs at a viable level of the soil resource (condition (b)). 

Consequently, the soil resource regenerates while it is not farmed. However, the land is 

not permanently abandoned since eventually the soil resource reaches a level at which the 

present value of farming the land (even with the intent of abandonment) is greater than 

the cost of returning to farm the land. But since a continuous farming strategy is not 

optimal, eventually it again becomes better to not farm the land and the cycle repeats 

itself. Security of land tenure is essential for the individual's optimal management of 

the soil to be consistent with socially efficient management of the soil. Without secure 

property rights in the regenerated productivity of the soil, the farmer's incentives to 

manage the land as an investment in soil is greatly diminished. 

A crop-fallow rotation for the conservation of soil moisture provides an example of this 

phenomenon of cycles of exploitation and regeneration. The planting of a crop is profitable 

only if the soil moisture at planting time and the seasonal rainfall are sufficient to produce 

a profitable yield. In many semi-arid regions, the seasonal rainfall can be insufficient for a 

profitable crop and so a crop is planted only after the previous season's rainfall has been 

conserved in the soil by a year of fallow. The optimal number of consecutive seasons to 

plant a crop or the optimal number of consecutive fallow seasons depends upon the effect 

of soil moisture, X, on crop yields (and therefore net benefits), the carry-over of rainfall 
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from a year of fallow, 14 and the cost of fallow, which can be viewed as a re-entry cost (for 

example, see Young, 1986). 

Clearly these conditions are stronger than necessary. Even if the net benefit (includ

ing fixed costs) is positive in the steady-state, this may only be a local maximum. It 

would be better to farm the land in cycles of exploitation and regeneration if the present 

value of the increased productivity from higher states of the soil resource is greater than 

the present value of the net benefits foregone while the soil resource is regenerating. 15 In 

this case, the globally optimal strategy would have to be determined by a comparison of 

the present values for each farming strategy in the particular case. 16 

As long as the soil regeneration and net benefit functions, the fixed cost to farming, 

the cost of returning to farm the land, and the rate of discount are independent of time, 

the optimal strategy is stationary. That is, the optimal soil depletion is the same whenever 

the same state of the soil resource is encountered. A farming cycle, then, is defined by the 

state of the soil resource at which farming is abandoned, denoted by S A , and the state 

of the soil resource at which farming resumes, denoted by SR . The cycle interval is then 

defined to be [SA, SR]. 

Increases in fixed costs reduce the optimal time spent farming the land (Lewis and 

Scmalensee, 1979, Proposition 3). This provides some insight into the effect of changes 

in price or cost on some anthe optimal cycle. To degree, increase (decrease) in price 

is similar to a decrease (increase) in fixed cost and so the land is exploited for longer 

(shorter) periods when the price is higher (lower). However, the shift in the net benefit 

function is parallel for a. change in fixed costs but not necessarily for a price change and 
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so the analogy is not exact. Similarly, a decrease (increase) in operating costs would shift 

the net benefit curve upward (downward) as would a decrease (increase) in fixed costs. 

Furthermore, an increase (decrease) in fixed cost increases (decreases) the state of 

the soil resource at which farming is resumed (Lewis and Scmalensee, 1979, Proposition 

5. Thus an increase in the price of farm output can induce the land to be farmed again 

at a lower state of the soil resource. Determinate conditions on the effect of fixed cost on 

the state of the renewable resource for which it is optimal to temporarily stop farming 

could not be derived (Lewis and Schmalensee, 1979, p. 688). 

An increase (decrease) in the cost of returning to farm the land increases (decreases) 

the state of the soil resource at which return occurs and decreases (incresases) the state 

of the soil resource at which the land is abandoned. This increases (shortens) the cycle 

interval and increases (decreases) the time period between successive returns (Lewis and 

Schmalensee, 1975, Propositions 5.5 and 5.6). 

Whether a continuous or cyclical farming strategy is optimal depends upon the avail

able agricultural technology, the geological and biological conditions governing soil regen

eration, and the economic conditions (prices of crops and inputs) in a specific location. 

The introduction of a new technology, such as tied ridges-which increase yields and 

decrease soil depletion, could result in a shift from a cyclical to a continuous farming 

strategy. 

4. Summary and Conclusions 

The optimal management of a soil resource depends upon a variety of factors includ

ing the marginal productivity of the soil resource, the value of the agriculture production, 

the cost of agricultural inputs, the rate at which the soil resource regenerates, the rate of 
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discount, the planning horizon, and the value of the soil resource at the end of the planning 

horizon. Of particular interest from a broad social perspective is the management of the 

soil resource so that agricultural production can be sustained over a long-term planning 

horizon.17 

In principle, it can possible to sustatin agricultural production through either a 

steady-state continuous farming strategy or through a farming strategy with cycles of 

exploitation and regeneration. Given the prevalent pattern of bush-fallow farming in 

many semi-arid regions in Africa and the decreasing length of the fallow periods (Asante, 

1987), a careful analysis of the optimality of cycles of exploitation and regeneration is 

warranted. 

Of particular interest is whether or not the natural regeneration of the soil is great 

enough so that the there exists a steady state equilibrium where the present value of the 

net return to to continuous farming is positive and greater than the present value of the 

net return to a cyclical farming strategy. The key empirical relationships which must 

be determined include the natural regeneration of the soil at different states of the soil 

resource (including the state of the soil resource at which regeneration effectively becomes 

zero) and the net benefits from farming and soil conservation practices as the state of the 

soil resource declines. 

The uncertainty about the functional relationship between farming activities and net 

benefits and the stochastic nature of rainfall and therefore output indicate the importance 

of risk analysis as a topic for further research. The risk analysis should include the 

risk associated with the possibility of exploiting the land beyond the point at which 

regeneration is possible. Population growth has increased the length of the period of 

http:horizon.17
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exploitation and shortened the length of the fallow period to where the potential for 

permanent damage to the soil resource is an immediate concern. The soil can be exploited 

to such an extent that it would not regenerate for many years, if ever. 

The models presented here have implicitly assumed that the net benefit function is 

stationary. In general, the net benefit function can be changing over time due to changes in 

input and output prices and technological changes in the agricultural production function. 

The models can be extended to examine how the conservation of the soil resources is 

affected by changing price patterns and technological progress. 
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Appendix-Two State Variable Control Model 

The separate characteristics of the soil resource be modeledcan as different state 

variables. For example, the amount of moisture in the soil can depend upon the depth of 

the soil and the ability of rainfall to penetrate through the soil. The latter can depend 

upon the quality of the soil (which is affected by past farming practices). This is partic

ularly true in the semi-arid regions of Africa where the water infiltration capacity of the 

soil is critical. 

Day and Aillery (1987) report that poor soil quality in Mali exacerbates the problem 

of low rainfall. Crusting and sealing of the soil results in low absorptive capacity in a region 

where rainfall is infrequent but intense and water is the limiting factor of production. 

Farmers' disposable income could increase two to four times with an increase of rainfall 

infiltration from 40 to 60 percent. Improved soil quality and enhanced water infiltration 

also can reduce the level of soil erosion from a given level of farming intensity. 

An alternative formulation of the model which distinguishes between different soil 

charactistics requires two state variables. In addition to the state variable, X(t), which 

will represent soil depth, there is a second state variable, the quality of the soil at time t, 

denoted by Q(t). 

There are farming practices, such as crop residue management, which increase soil 

quality over time and thereby enhance the yield from a given soil depth and farming inten

sity. Let s(t) and z(t) denote the control variables soil loss and soil quality enhancement 

at time t. Then the farmer chooses the time paths s(t) and z(t) which maximize: 

e - 5o t B( X , Q,s, z) d t + C-TV(X(T), Q(T)) (Al) 
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subject to: 

= k - s(t) (A2) 

= z(t) (A3) 

X, Q, s, z nonnegative for all t 

where the variables are as previously defined. For simplicity, the case of constant soil re

genration (g(X) = k) is discussed here. Equation (3) is the equation of motion governing 

soil quality. It should be noted that the complexity of the relationship between farm

ing practices and soil loss and soil quality enhancement is embedded in the net benefit 

function. 18 

The current-value Familtonian is: 

H(X, Q,s, z, A,-1)= B(X, Q, s, z)+A(k-s(t))+Tyz(t)+as+crxX+acz+.alphaQQ(A4) 

where -y denotes the shadow price of soil quality and, as before, A denotes the shadow 

price of soil depth and the a's are Lagrange multipliers associated with non-negativity 

constraints. 

The first-order necessary conditions for an interior solution are: 

H. = Ba - A = 0 (A) 

Hz = B +-t =0 (A6) 

= SA - BX (A7) 

= 6- - BQ (AS) 

The interpretation of these conditions is the same as before in that the marginal 

benefit of soil loss is equal to the marginal cost of soil loss, the marginal value of soil 
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quality enhancement is equal to its marginal cost (where B8 is the cost of enhancing soil 

quality), and the rates of return to soil depth and soil quality are equal to the rate of 

discount and therefore to each other. 

Differentiating equations (A5) and (A6) with respect to time and using equations 

(A5), (A6), (A7), and (A8) yields the time derivatives of the optimal paths for the control 

variables soil loss and soil quality enhancement. 

Bxj( + BQ8Q + B.,, + B.1, , (A9) 

Bxzj( + BqO + B.,,. + Bzzi8 = -4 (A10) 

Writing the two equations in matrix notation yields: 

CBs,B,, A -BxsXC- B,,Q
Bs, Bz j- Bx.X - BzQQ (All) 

Solving for . and i gives: 

s = D-[(A - Bx,.k - BQ8O)B,, + (4+ Bx.jk + BQzQ)Blz] (A12) 

z = D-1[-(4 + BxzX + BQQ)Bss -(A - Bx,,X - BQsQ)B] (A13) 

where D = B88 z8 - B2z > 0 if B is concave. 

Further qualitative analysis depends on the signs and magnitudes of the second-order 

partial derivatives. In general, it is not possible to place unambiguous signs on the time 

derivative of the control variables. Even with restrictive assumptions about the cross 

partial derivatives, there can still be some ambiguity about the movement of the level of 

farming intensity and soil conservation practices depending upon whether soil depth and 

soil quality are increasing or decreasing. In addition, placing signs on the direction of the 
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movement of the system is complicated by the interaction of the variables within the net 

benefit function. 

If soil depth and soil quality are decreasing over time, then the shadow prices of the 

two assets, A and -y, are increasing over time. If Bx, and BQ, are both positive, then 

this implies that soil depletion is decreasing over time. Essentially, the soil exploited 

early in the time horizon which reduces the optimal level of soil depletion in the future. 

On the other hand, if soil depth and soil quality are increasing over time, then the time 

derivative of soil depletion is positive. Essentially, it is optimal to allow the twjo soil assets 

to accumulate in order to allow more intensive cultivation in the future. 

A similar argument can be made for soil conservation practices. If it is optimal for 

soil depth and soil qualiy to decrease (increase) over time, then the current level of soil 

conservation practices is lower (higher) than in the future. 

The movement of the system along the optimal path depends upon the initia values 

of the two assets, the time horizon, and the terminal ,valuation of the two assets. It is 

possible for it to be optimal to have one asset increasing while the other asset is decreasing. 

This complicates the direction of the movement of the two control variables. It is even 

possible to have cyclical movements in the variables (although this does not necessarily 

imply cycles of farming and not farming). 

If the time horizon is infinite, then an important determinant of the movement of the 

system is whether the initial values of soil depth and soil quality are above or below their 

steady-state equilibrium ,,alues. A steady-state equilibrium is defined by the condition 

X = Q = A = " = 0 which requires: 

k-s =0 (A14) 
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z = 0 (A15) 

A6-Bx = 0 (A16) 

,76 - BQ =0 (A17) 

Total differentiation of these four equations and equations (A5) and (A6) yields the 

following matrix equation which can be solved for the impact of the rate of discount and 

the rate of soil regeneration on the steady state values of X and Q: 

0 0 1 0 0 0 [dX] dk
0 0 0 1 0 0 dQ 0[

Bxx BXQ Bxs Bx, -6 0 ' ds A6 (A18)BxQ BQQ BQs BQ 0 -6 dz -d6(
B BQ, Ba Bz -1 0 dA 0
Bx, BQz Bsz Bzz 0 1 J. d-y L 0] 

The impact of the rate of discount on the steady state is complicated by the interaction 

between the two state variables. That is, the direct effect of a lower rate of discount is 

to induce greater accumulation of both assets. However, greater accumulation of one soil 

asset can indirecty affect the incentive to accumulate the other soil asset. The relative 

magnitude of the direct and indirect effects depends upon the productive relationship 

between the two assets. 19 
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Notes
1The dynamic programming framework requires the specification of a time horizonand terminal value function. This specification can greatly affect the optimal path for soil

conservation. This point is discussed more fully in Section 2 below. 
2 0f course, the construction of such an index is not trivial. 

3McConnell (1983) also uses soil loss as the control variable. In McConnell's model,the relationship between farming intensity and soil loss is subsumed within the productionfunction. Krautkraemer (1987) develops the current model with farming intensity as the 
control variable. 

4This implicitly assumes that the schedule of farming activities is monotonic.
is, if s = f(u), then f(u) > 0 so that OB/ou > 0. 

That 

5The corner solution which occurs if BS(X, 0) < 0 has been ruled out by the assumption that there is an s(0) such that B8 (X(O),s(O)) > 0. If this was not the case, thenit is optimal to never farm the land. This case has obvious differences with the case ofabandonment discussed in Section 3 below. If A/A + Bx(O, s) + g'(X) < 6, then the rateof return to soil asset is less than the rate of return to other assets and it is optimal to
exhaust the soil resource in finite time. 

6It can be shown that this condition also must hold in the limit if the time horizon is 
infinite. 

71f the time horizon is infinite, then the movement of the system depends upon itsstarting point relative to the steady-state equilibrium. The discussion below establishesthat the state of the soil resource is monotonically increasing (decreasing) and the shadowprice is monotonically decreasing (increasing) along the optimal path if the initial state
of the soil resource is below (above) its steady state. 

8Arrow and Iurz (1970, p. 30) note, "If we choose to stop our analysis at any fixed-date, it will be necessary,. .. ,to include ... some scrap value for the stock of capital at the
end of the period. But the only logically consistent way of doing so is to determine the
maximum [benefit] attainable in the future beyond our given date stating with any given

stock of capital." 

9 Since capital gains are zero if the value of the soil depth is constant, this insuresthat the marginal productivity of the soil depth covers the interest charges on holding soil 
depth as an asset. 

10For example, if soil loss is proportional to farming intensity (i.e. s = flu wherz- udenotes farming intensity), then B(X, s) = pF(X)u - cu = pF(X)[sflj - c[/f], and0 < s < , where p is the price of output, eis the constant unit cost of farming intensity,F(X)u denotes output, and 3 is a maximum level of soil depletion determined by themaximum level of farming intensity, then the optimal path is a most rapid approach
path. 
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11lf the land is abandoned, then the terminal state of the soil resource, X(T), should

be k. If X > X,. then net benefits from farming are positive and it is not optimal toabandon; if X < X, then it would have been better to abandon earlier. If k < X, then 
abandonment implies exhaustion. 

12Note that this includes the case in which the c-st of soil conservation is too great
relative to the returns to farming. 

13 1f returning to farm the land is costless (R = 0), then the nonconvexity essentially
disappears. This is because abandonment and return can take place infinitely often in afinite period of time. This is the case of 'pulse fishing' (Lewis and Schamalensee, 1975). 

14The equation of motion for soil moisture can depend upon the level of soil moisture even when rainfall is a constant k if the carry-over to the next planting season depends 
upon the soil moisture level. 

15 0f course, the alternative uses of the land many also provide net benefits.
 

16Lewis and Schmalensee (1975) refers to Lewis (1975)
algorithm. as a source for a computational 

17This may be a difficult task since the subsistence nature of cultivation in the regionresults in farmers having a short planning horizon and/or a high rate of time preference
(Mansius, 1987). This generally implies a rapid rate of depletion of the soil resource. 

18 That is, soil loss, s can be a function of soil depth, X, soil quality, Q, farming intensity,u, soil enhancement activities, denoted by w(t). That is, s(t) = f'(X, Q, u, w). Similarly,
z(t) = f 2 (X,Q,u,w). Then B(X,Q,s,z) = B(X,Q, fl(X,Q,u,w),f2(X,Q,uw)). 

19For an example in a different context, Krautkraemer (1988) demonstrates that alower rate of discount can actually reduce the optimal level of permanently preserved
natural environments. 
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