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Using Moments to Make Risky Choices:
 
Some Alternative Methods
 

With risk, choice among alternatives is usually represented in
 

theoretical literature by expected utility maximization. In optimization
 

problems such as portfolio choice, because expected utility would have to be
 

approximated by numerical integration, and because optimization is more
 

easily done with quadratic programming than with nonlinear programming,
 

mean-variance analysis has usually been used in empirical work.
 

The relationship between expected utility maximization and
 

mean-variance analysis has been the subject of a large number of articles.
 

One well-known sufficient condition for equivalence of the two methods is
 

that the utility function be quadratic. Alternatively, Freund (1956) showed
 

that mean-variance and expected utility would correspond exactly if utility
 

is of the exponential form and the random variable underlying utility is
 

normally distributed. Often, however, random variables are not normally
 

distributed.
 

Even when distributions are not normal, studies such as 
that by Levy
 

and Markowitz (1979) showed that a formula based on mean and variance has a
 

high correlation with expected utility. The correspondence of portfolios
 

which maximize expected utility to the mean-variance frontier has also been
 

considered by Kroll, Levy, and Markowitz (1984); they showed that portfolios
 

along the frontier give expected utility values very close to the actual
 

maximum values.
 

One explanation for why mean-variance may give results similar to
 

expected utility is based on the approximation of expected utility by a
 

Taylor series. With mean-variance, only the first and second degree terms
 

in the Taylor series are used. When this approximation is good enough, then
 

mean-variance will provide an adequate decision rule.
 



2 

Tsiang (1972) showed that in many cases, this approximation is quite
 

adequate. He extended this method to consider the effect of third order
 

terms (skewness) on the Taylor series approximation preference. Considering
 

requirements for the Taylor series to converge to the expected utility
 

value, Tsiang concluded that the third and higher moments may be neglected
 

for the exponential utility function if the standard deviation is less than
 

twice the value of the mean. Convergence for the power function was shown
 

to be slower.
 

Loistl (1976) also considered tbh convergence of the Taylor series for
 

the power function and the exponential function. In his examples, as many
 

as ten moments were used to approximate expected utility. He concluded
 

that, because of convergence problems, the use of moments more than mean and
 

variance can even make the approximation worse! The power and logarithmic
 

utility functions were shown to exhibit more serious convergence problems
 

than the exponential function. (The approximation formula used by Tsiang
 

and Loistl approximates expected utility directly, rather than approximating
 

its normalization by marginal utility at a base point; thus it differs from
 

the mean-variance formula used by Levy and Markowitz.)
 

A different approach to relate mean-variance and expected utility
 

ranking was presented by Meyer (1987). Sufficient conditions given require
 

that random variz)bles being compared differ only with respect to their
 

location and scale. This requirement is actually quite restrictive; i.e. if
 

return risk is due to the product of both output risk and price risk, the
 

required condition would not be satisfied.
 

The topic of this paper is to consider further the question of how
 

information about moments should be used when choices among risky options
 

are to be made consistent with expected utility. Two alternative
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approximation formulas are presented. Oe formula extends the mean-variance
 

formula to higher moments. This formula is shown to be an approximation of
 

the certainty equivalent. The other formula approximates the certainty
 

equivalent directly. We also demonstrate that mean-variance analysis is
 

unsuitable to compare risky choices when risk aversion is large.
 

Extending Mean-Variance to Higher Moments
 

Mean-variance analysis uses the following function of mean and variance
 

to compare risky choizes:
 

(1) U - En - r/2 Var n; 

r is the Pratt-Arrow absolute risk aversion coefficient, Eir denotes the mean 

of profit and Var w denotes its variance. For example, to choose among 

alternative stock portfolios, this function is maximized across alternative 

portfolio combinations. To obtain the mean-variance frontier, the variance 

of profit is minimized subject to achieving a given mean value. A specific 

portfolio choice along the frontier then implies a level of risk aversion. 

In comparison to (1), approximation of expected utility in terms of a
 

Taylor series about moments of profit gives the formula
 

(2) Eu = u(Ew) + u''(Ew)/2 Var r + u'''(En)/6 M3 (7r)+ u(4)(Eff)/24 M4 (w)...
 

where Mi(r) denote higher order moments. Applying this formula to the
 

exponential function case, in which
 

u(n) - - e r7r(3) 


leads to the Taylor series approximation with higher moments
 

(4) Eu = - erEi[1+ r2/2 Var w - r3/6 M3 (fr)+ r
4 /24 M4(i)...].
 

For the power function case,
 

(5) u(7r) - (k + it) 1-s/(l-s), 
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the expected utility approximation with higher moments is
 
(6) 	Eu = (k + Er) 1S/(l-s) (1 - (l-s)(- s Vat i - s(s+l) 

2(k+Er)2 6(k+Er)3 M3(i) 

+ 	 s(s+l)(s+ M .2) 

24(k+Er)4 M4(r)''.)]" 

These formulas, corresponding to those presented by Tsiang and Loistl, are
 

In terms of moments. Clearly, even considering only the first two moments,
 

these formulas are different from the mean-variance form (1)!
 

A formula more similar to the mean-variance form can be derived from
 

(2). First, use the Mean Value Theorem to obtain u(Eir) in terms of Er:
 

(7) u(Ew) - Er u'(Q), where 0 < < Ew.
 

Also, expanding u'( ) about En,
 

(8) u'(C) - u'(Er) + u''(Er) ( - Er) + u'''(Efr)/2 (- Ew) 2 +.... 

Substituting (7) and (8) in the expression (2) for Eu and dividing both 

sides by u'(Ew), 

Eu 1 u''(Ew) 1 u'o'(Er) 1 u(4 (Eir) 
(2(Er) 2 u'(Er) 6 u'(Ex) 3(r) + 24 u'(Efr) 4 

+ R( - Eff) 

where R(C-En) denotes a remainder term in terms of powers of the difference 

( -Ew). This remainder term will be positive for risk averse preferences 

assuming that the Taylor series converges. Denote the right hand side of 

(9), omitting the remainder term, by U:
 

1 u''(Eff) I E u(4)EE))
(10) 	U - Er + 2 u'(E) Var f+ 6 u'(E) M3(f)+ 24 u'(E) M4()''" 

U will be an underestimate of Eu/u'(Eff) because of the remainder term in
 

(9). U is clearly an extension of the mean-variance formula to higher order
 

moments. The coefficient of M3 (w) is the skewness preference coefficient
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defined by Tsiang (1972). It shows whether the Pratt-Arrow coefficient is
 

constant, decreasing, or increasing as Er increases.
 

The U expressions for exponential and power functions differ in terms
 

of the coefficients of the moments. If the utility is of the exponential
 

form, then the coefficients of the moments for the exponential function are
 

constants which depend on the risk aversion coefficient r:
 

(11) - Er - r n + I1arr2 13- - aM 3(r) - 2r 4(r) 

For the power function form, the corresponding form is 
E I. s Is(s+l) 

(12) - 2 (k+E) Var r + (+)2 M3()

2 (k+E~r) 6 (k+Er)23(r 

1 s(s+l)(s+2) M 
24 (k+E )3 

For the power function, the coefficients of the moments are not constant;
 

they vary inversely to the mean profit of a risky choice. In particular,
 

the power function exhibits a decreasing Pratt-Arrow risk aversion
 

coefficient with respect to Er.
 

Because U approximates expected utility divided by u'(Ef) and omits the
 

remainder term, assuming its convergence as a series, U could be regarded as
 

ranking alternatives equivalently to expected utility only under certain
 

conditions :
 

(i) all alternatives have nearly the same mea&,; or u'(r) is nearly
 

constant (because u is nearly linear);
 

(ii) the remainder term is small relative to U (because Er is small or
 

because risk preference coefficients are small).
 

However, as in the Levy and Markowitz results, U could represent preferences
 

adequately in other cases. Conditions for this to occur are explored below,
 

both theoretically and empirically.
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Approximating the Certainty Equivalent
 

Below, we show that U in (ii) and (12) is actually an approximation of
 

the certainty equivalent, respectively for the exponential power functions.
 

When this approximation is close, since the certainty equivalent ranks
 

outcomes equivalently to expected utility, then U would provide a ranking of
 

risky alternatives similar to 
the expected utility ranking, thus explaining
 

why the mean-variance formula (1) may often result in rankings similar to
 

expected utility. 
To show the relation between the certainty equivalent and
 

U, an expression approximating the certainty equivalent directly in terms of
 

moments is first described and then its relation to U is developed.
 

In the exponential function case, substituting the Taylor series
 

approximation (4) for Eu in the definition of the certainty equivalent (CE),
 

r
(13) -e- CE - Eu 
2
-rEr r 3 

e- re [l+ r Var r - 3 M32 6 M3(wr)
 
4 " + i_4 M4)'" 

Denote the term in brackets by [1+K]. Note that K is defined by
 

K - r (Er - U).
 

Solving for the certainty equivalent above, the certainty equivalent is
 

approximated by:
 

(14) CE =E - rn(l+K). 
r
 

To examine further the relationship between U and (14), expand the
 

Taylor series of ln(i+K) about K - 0: 

(15) 2n(l+K) - K -K 2 +K 3
 

Ignoring K2 and higher order terms,
 

2
1r
(16) CE = En r 2M3 3 
% r24 4()''']
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2 3En Va n+r M r
- Eir - r + M3(2)- M( ) + .... 

That is, if K is sufficiently small, then U approximates the certainty
 

equivalent.
 

Similarly for the power function, substituting (6) for Eu in the
 

definition of the certainty equivalent:
 

(k+CE)l1 s
 

(17) 	 l-s - Eu 
l -s [1+F() (I 2 Var ir-63


(k+E~r 1s (I- (1 
 s 	 1a s(s+l) M(0
1-s 2 (k+E) 	2 3 36 l(s+Er)

I s(s+l)(s+2)

24 (k+Er)4 4(7)''..
 

Denote the term in brackets by [1-G]. Note that
 

G - (Er - U) (1-s)/ (k + En).
 

Then solving for the certainty equivalent, the approximate CE is:
 

[1-G] I/ (l s )
(18) 	 CE = ' (k+En) - k.
 

To relate the approximate CE and U, expand (18) about C - 0:
 

(19) [l-G] 1(-s) 11 - - + 2 
1-s (-s)
 

Substituting (19) in (18), 

1 + s 2(20) CE = (k+Er)[1 	 I s 21-s (1-) 2 .] - k. 

Then, for G sufficiently small, ignoring terms of higher order than G,
 

1 s is s ^
 (21) GE =Eit 2 (k+E.) Var ff+ 6 (k+E1)2 M3(')
 

1 s(s+l)(s+2)
 
24 (k+Eir) 3 M4(r) +""
 

-k+E.
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Thus, in both exponential and power function cases, U of the
 

appropriate form ((11) or (12)) is actually shown to be an approximation of
 

the certainty equivalent. For this approximation to be a good one, the
 

appropriate series of moments for U must converge and K or C must be
 

sufficiently small. Since the certainty equivalent ranks equiva'.ently to
 

expected utility, these conditions (less restrictive than those presented in
 

the previous section) then describe when U will rank risky choices similarly
 

to expected utility.
 

Alternatively, the certainty equivalent can be approximated directly
 

from (14) or (18). In this case, the only requirement for a good
 

approximation of the certainty equivalent is that K or G must simply be
 

well-defined (not necessarily small).
 

Comparison of Approximation Methods
 

Above, two different methods of approximating the certainty equivalent
 

were presented for both the exponential and power utility functions.
 

Satisfaction of the requirement for one method, that K (or G) be
 

"sufficiently small", is relative to the particular application. Here, we
 

use examples to compare both methods for both exponential and power
 

functions.
 

To compare methods of alternative types, approximated certainty
 

equivalent values are tested against actual certainty equivalent values.
 

Approximation with three and four moments is compared with mean-variance.
 

In addition to the degree of approximation, we also consider whether correct
 

choices (in terms of picking the best choice from a set) would be made using
 

the alternative methods.
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Rather than evaluating portfolios, a simpler problem is studied. Seven
 

choices concerning corn yield risk are to be ranked. The seven choices are
 

six insecticide treatments and "no treatment"; each choice produces a
 

different distribution of yield and profit risk. The treatment with the
 

greatest certainty equivalent for profit per acre (revenues minus cost of
 

treatment and other variable costs) is to be selected. Although yield
 

distributions are negativegly skewed (represented by Beta distributions),
 

profit distributions are differently skewed because of the presence of price
 

risk (more details are given in Loehman, Boyd, Turpin, and Tongo, 1989).
 

Table 1 shows the moments of profit corresponding to the alternative
 

treatments; profit distributions with both positive and negative skewness
 

are included. Tables 2-4 and 5-? compare the actual certainty equivalent
 

values with approximations for the exponential function and the power
 

function. Treatments do not satisfy Tsiang's convergence requirement that
 

the standard deviation be less than twice the mean. Regardless,
 

approximations are close to actual certainty equivalent values for lower
 

levels of risk aversion.
 

Three different approximations are compared in Tables 2-7:
 

(i) mean-variance formula (1); 

(ii) approximate certainty equivalent ((15) or (18) as appropriate) 

with four moments; 

(iii) U (formula (11) or (12) as appropriate) with four moments.
 

Appendix Tables Al-A6 similarly compare actual certainty equivalents with
 

approximate CE and U using three moments in each case.
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Table 1. Moments of Profit per acre ($) for Pesticide Choices
 

treatment
 
a pesticide mean variance skewnesss kurtosis
 

0 Untreated 143.7 6842.6 0.126 2.62
 
1 Counter 152.1 7588.2 0.214 2.64
 
2 Dyfonate 149.4 7638.8 -0.014 2.57
 
3 Furadan 149.2 6905.6 0.121 2.65
 
4 Lorsban 158.2 8233.7 -0.063 2.58
 
5 Mocap 140.5 6619.4 0.069 2.67
 
6 Thimet 150.6 7770.4 0.092 2.59
 



Table 2. Exponential utility function, r - .00565
 

Treatment Actual Mean- Approx 

CE variance CE 

0 124.93 124.37 124.86 123.82 
1 131.58 130.66 131.51 130.27 
2 
3 

127.97 
130.21 

127.82 
129 . 6 9b 

127.99 
130 . 17b 

126.64 
129.11 

4 134.89 134.93 134.96b 133.37 
5 122.09w 121.80w 122.10 121. 
6 129.18 128.64 129.16 127.80 

Table 3. Exponential utility function, r - .01130
 

Treatment Actual Mean- Approx
 

CE variance CE U
 

10 7
 0 	 .44b 105.03 107.62 99.16
 
1 113.04 109.22 113.10 103.09
 
2 107.41 106.23 108.24 9700
 

110 112
3 112.47 .1 7b .72b 104.05
 
4 112.31 111.67b 113.56b 100.13
 

w
5 104 .66w 103.09 05.02 96.85
 
6 109.31 106.69 109.71 98.63
 

Table 4. Exponential utility function, r - 0.02260
 

Treatment Actual Mean- Approx*
 

CE variance CE U
 

0 77 .64b 66.36 82.96 13.31
 
1 	 82.16 66.34 87.38 5.30
 

w
2 71.67 63.06 81.85 -10.02
 
3 82.02 71 .15b 87.81b 16.24
 
4 72.87 65.14 86.13 -23.15
 
5 74.01 65.68 80.38w 12.55
 
6 75.91 62.78w 83.44 -7.07
 

*four moments used
 

best choice
 
Wworst choice
 

http:71.6763.06
http:103.0905.02
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Table 5. Power function, s - 1.5 

Treatment Actual Mean- Approx 

CE variance CE U 

0 122.03 124.37 122.74 121.41 
1 129.42 130.66 129.90 128.45 
2 123.56 127.82 125.74 124.07 
3 
4 

127.84 
130.22b 

129.69 
134.93b 

128.47 
133.21 

127.20 
131.40b 

5 I18.64w 121.80w 119.68 118.36w 
6 125.88 128.64 127.13 125.50 

Table 6. Power function, s - 3 

Treatment Actual Mean- Approx 

CE variance CE 

0 
1 

95.25 
101.43 

105.03 
109.22 

102.61 
108.79 

90.63 
95.82 

2 
3 
4 

83.60 
100.66 
82.22w 

106.23 
110 . 1 7b 
11.67b 

103.23 
108 44 
109 4L 

88.04 
96.97 
92.92 

5 88.90 103.09 99.56 87.50 
6 93.54 106.69 104.90 90.16 

Table 7. Power function, s - 6 

Treatment Actual Mean.. Approx 

CE variance CE 

0 
1 

38.29 
38 .61b 

66.36 
66.34 

78.87 
84.10 

-18.53 
-21.36 

2 -25.61 63.36 78.78 -4.51 
3 
4 

38.03 
-49.72 

7 1 .1 5b 
65.14 

84.31 
84.15 

-9.10 
-46.01 

5 7.71 65.68 75.99w -22.28 
6 12.46 62.78w 80.29 -37.38 

four moments used 

best choice 
worst choice 
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A simulation program (SLAM) was used to compute certainty equivalents
 

and moments given specified probability distributions. With the
 

availability of simulation packages and other computer methods, there is
 

little difference in computational difficulty for approximations using two,
 

three, cr four moments, or using different utility functions, or using
 

different types of approximations.
 

The well-known advantage of the power function model is that
 

preferences are independent of scale; 
that is, if treatment is to be
 

considered for farms of different sizes, then multiplying profit in (5) by a
 

constant A (acres planted) would not change the ranking of preferences
 

whereas (3) would be affected by such scale changes. Similarly, changes in
 

monetary units (eg. due to inflation) would not affect ranking.
 

To make results comparable for the two different utility functions,
 

risk preference parameters were defined so that the Pratt-Arrow risk
 

aversion coefficients for exponential and power functions are 
the same for
 

the base (untreated) case with mean value Er0
 . The following association
 

between the coefficients in the exponential and power function models is
 

made for this purpose:
 

S 

0)
(k+E7r
 
Risk aversion levels for s values of 1.5, 3, and 6 were used in the
 

analysis. 
 s values of about 1.5 are considered to represent intermediate
 

levels of risk aversion whereas levels of three or higher represent severe
 

risk aversion (Binswanger, 1980).
 

For an intermediate level of risk aversion and exponential utility,
 

(r - .00565), the approximate CE was closer to the actual certainty
 

equivalent than U. For corresponding risk aversion (s 
- 1.5) for the power
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function, U generally gave a better approximation of the actual CE value
 

than the approximate CE. All methods correctly selected the best and worst
 

outcomes. We may infer that these conclusions would also hold for lower
 

levels of risk aversion.
 

For more severe risk aversion levels (r - .0113 and r - .0226) and
 

exponential utility, the approximate CE again gave a better fit than U to
 

the actual certainty equivalent. For the most risk averse case
 

(r- .0226), neither approximation was very good. For corresponding risk
 

aversion (s - 3) for the power function, a better fit to the actual CE
 

values was obtained with U than with the approximate CE. For the most risk
 

averse case for the power function (s - 6), both the CE approximation and U
 

were very different from the actual CE.
 

Generally for both the exponential and power functions and all levels
 

of risk aversion, neither method of approximation selected the best outcomes
 

correctly except in the lowest risk aversion cases, but the selected choices
 

were close in value to the actual best choices.
 

As expected, use of three moments gave a worse approximation of the
 

certainty equivalent than four moments (too large because of the alternating
 

signs in (11) and (12)). However, surprisingly, the selection of the best
 

outcome in each risk aversion case was made correctly with three moments and
 

U for both the exponential and power functions. Thi worst outcome was not
 

always correctly identified.
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Conclusions
 

Two different methods of approximating the certainty equivalent were
 

compared for exponential and power utility functions. U is a direct
 

extension of mean-variance to higher moments. The approximate CE is a
 

different type of formula than mean-variance which is also expressed in
 

terms of moments.
 

Comparing the degree of approximation for alternative methods with a
 

case study, the approximate CE with four moments gave the best estimate of
 

the actual certainty equivalent for intermediate and higher levels of risk
 

aversion for the exponential utility function. For intermediate risk
 

aversion and the power function, U with four moments (of the appropriate
 

form) gave the best approximation. Approximation of the certainty
 

equivalent for severe levels of risk aversion was generally not very good
 

with any method. Similar to findings in other studies, approximation was
 

generally better for the exponential utility function than for the power
 

function because of convergence problems.
 

In real applications, correct selection of the best choice from a set
 

of risky choices is the main goal of analysis and approximation is just a
 

means to this end. Therefore here the ranking of risky choices was
 

of concern in addition to the accuracy of alternative methods in
 

approximating the certainty equivalent. For our application, the actual
 

best choices were correctly selected for all risk aversion levels and both
 

preference models using U of the appropriate form with only three moments.
 

Apparently, correct selection of the best choice can be made even when
 

approximations are not very close to the actual certainty equivalent values!
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For the case study presented here, mean-variance analysis both
 

approximated certainty equivalents and ranked choices adequately for low to
 

intermediate levels of risk aversion. However, mean-variance analysis did
 

not rank alternatives appropriately for higher levels of risk aversion.
 

Future work should test the generality of these conclusions with other
 

case studies. If these results generalize to other applications, then the
 

implication for empirical work is that mean-variance analysis should be
 

extended at least to include skewness when distributions are not normal,
 

particularly for higher levels of risk aversion. The appropriate formulas
 

to use for this purpose, depending on the form of the utility function, were
 

presented here.
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Appendix: Three Moment Evaluations
 

Table Al. Exponential utility function, r 	- .00565
 

Treatment Actual Mean- Approx
 

CE variance CE U
 

0 124.93 124.37 125.69 124.75
 
1 131.58 130.66 132.53 131.41
 
2 127.97 127.82 128.99 127.77
 
3 130.21 129 .69b 131 .02b 130.06
 

134 89
4 	 . w 134.93 136.12b 134.68
 
w
5 122.09 121.80 122 .90w 121.99
 

6 129.18 128.64 130.20 128.98
 

Table A2. Exponential utility function, r 	- .01130
 

Treatment Actual Mean- Approx
 

CE variance CE U
 

10 7
0 .4 4b 105.03 112.68 106.55
 
1 113.04 109.22 119.19 112.23
 
2 107.41 106.23 114.11 106.03


110 17  
3 112.47 . 117.90 111.65
 
4 112.31 111.67b 12016b 110.67
 
5 104.66 103.09 .86w 03.88
10 9

6 109.31 106.69 115.84 108.03
 

Table A3. Exponential utility function, r 	- 0.2260
 

Treatment Actual Mean- Approx
 

CE variance CE U
 

0 77.64 66.36 101.24 72.44
 
1 82.16 66.34 108.71b 78.38
 

6 3 0 6b
2 71.67 . 101.25 62.26
 
3 82.02 71.15 106.41 77.06
 
4 	 72.87 65.14 106.82 61.13
 

w
5 74.01 65.68 97.90 68.85
 
w
6 75.91 62.78 104.05 68.14
 

three moments used
 
best choice
 

wworst choice
 

http:62.78104.05
http:97.9068.85
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Table A4. Power function, s - 1.5 

Treatment Actual Mean- Approx 

CE variance CE U 

0 122.03 124.37 125.94 125.00 
1 129.42 130.66 133.50 132.50 
2 123.56 127.82 129.37 128.19 
3 127.84 129.69 131.58b 130.67 
4 130.22 1 34 .9 3b 137.04k 135.76b 
5 I18.64 121.80 122.85 121.91 
6 125.88 128.64 130.87 129.73 

Table AS. Power function, s - 3 

Treatment Actual Mean- Approx 

CE variance CE U 

0 95.25 105.03 113.24 107.06 
1 101.43 109.22 120.68 114.30 
2 83.60 106.23 114.83 106.88 
3 100.66 110.17 118.84 112.86 
4 82.22 1 11 .6 7b 121.57 112.88 
5 88.90 103.09 w 116.95 103.72 
6 93.54 106.69 104.90w 109.50 

Table A6. Power Function, s - 6 

Treatment Actual Mean- Approx 

CE variance CE U 

0 38.29 66.36 102.52 73.45 
1 
2 

38.61 
-25.61 

66.34 
63.06 

10.55b 
102.67 

82.17 
63.99w 

3 38.03 71.15 107.85 79.35 
4 -49.72 65.14 108.60 65.75 
5 7.71 65.68 98.90 w 68.56 
6 12.46 62.78w 105.68 70.94 

three moments used 
best choice 

Wworst choice 
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