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ABSTRACT
 

In formulating objective functions for farm models in a risk
 

_ context, historical income data have been weighted equally to
 

represent both weather and cross-sectional sources of risk. To
 

represent weather risk adequately, a long time series (rarely
 

available in developing countries) would be needed. A method to
 

measure yield risk associated with some new technologies introduced in
 

Cameroon in 1986-89, based on the concept of stochastic production and
 

the method of moments, is demonstrated. Data used for the study are a
 

long time series for weather and a short cross-sectional/time series
 

for yield-weather-technology relationships.
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Measurement of The Risk Effects of New Technologies
 

For On-Farm Trials in Dryland Agriculture
 

Introduction
 

New technologies are aimed at reducing the risk in dryland
 

agriculture. However, new varieties and production methods are
 

developed and tested at experiment stations under controlled
 

conditions. It is well-known that the effects of such technologies
 

under farm conditions can be quite different than when crops are grown
 

under controlled conditions. New varieties developed by plant
 

breeders may increase mean yields and reduce variability of yields due
 

to weather but may also increase yield variability at the farm level
 

compared to traditional technologies if new varieties do not respond
 

well to farm level conditions. Thus, it is important to be able to
 

assess new technologies at the farm level.
 

Typically, experiment station yields have been adjusted to
 

predict farm conditions by multiplying station yields by a factor less
 

than one (Perrin et al., 1976; Adesina, 1988). While this method may
 

adjust adequately for mean effects, it cannot be used to predict
 

variance effects since farm yield variation may be due to factors not
 

present in experiment station trials.
 

The advantage of on-farm trials, compared to experiment station
 

trials, is that new technologies can be tested under a variety of
 

conditions including soil, weather, farmer management skills, and
 

labor and land availability. To analyze observations from farm
 

trials, standard statistical tests such as analysis of variance used
 

for controlled station experiments may not be appropriate for less
 

controlled farm trials.
 



The purpose of this paper is to demonstrate analytic methods
 

which can be applied to analyze the risk effects of new technologies
 

from on-farm trials for such variable conditions. In particular, we
 

are concerned with the effects of new technologies on incoLe risk.
 

Some mathematical programming models used for farm planning under
 

risky conditions (Hazell and Norton, 19B6) defined income risk in
 

terms of mean and variance and used historical income data to define
 

objective functions, capturing the joint distribution of yield and
 

price (Niang, 1980; Elamin, 1987). ,'armer income was assumed to be
 

normally distributed in early work on measuring income risk ';azell,
 

1971), implying equal probability weights for sampled incomes.
 

Recent applications of iisk programming in dryland :griculture
 

have focussed on weather risk (Ensink, 1989; Adesina, 1988) for which
 

weather is generally not normally distributed since years of
 

alternative weather types (dry, normal, wet, etc.) may not be equally
 

likely. Because there are long weather cycles (Thompson, 1988), a
 

time series of about twenty to thirty years would be needed to capture
 

the effects of weather risk adequately. Such a long time series for
 

income data would rarely be available even for traditional
 

technologies. Therefore, a different approach from direct use of
 

historical yield or income data iq needed to capture risk in dryland
 

agriculture. This paper proposes such an approach.
 

The method presented here uses regression techniques and
 

statistical modelling to provide the basis for measuring yield and
 

ificome risk for alternative technologies. Two sources of yield and
 

income variance are identified and measured separately: weather
 

variance and cross-sectional variance. The latter includes sources of
 

variation other than weather resulting from differences among farmers
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and farms. This type of decomposition of variance was also suggested
 

by Carter (1989) who studied cross-sectional and intertemporal
 

variance for millet, sorghum, and maize for traditional technologies
 

and found cross-sectional variance to be large relative to
 

- intertemporal variance. 

The production modelling approach provides an alternative to the 

use of historical income data. A long time series for weather (used 

to describe weather risk) is combined with a short time series for 

farm yields observations (used to model yield-technology-weather 

relationships). The combination produces a model of yield risk for 

newly available technologies from farm-level observations. 

A brief description is given below of the SAFGRAD project which
 

collected data used for this study. Measurement of mean, variance,
 

and covariance effects of new technologies is demonstrated here based
 

on data from this project.
 

SAFGRAD Project and Characteristics of the Description of Study Area
 

Data used in this study are from the Semi-Arid Food Grain
 

Research and Development Farming Systems Program (SAFGRAD). This
 

program was carried out by the goverruent of Cameroon and the
 

Scientific and Technical Research Commission of the Organization of
 

African Unity and was funded by the International Fund for
 

Agricultural Development. The objectives of the program included
 

development of agricultural production technologies adapted to the
 

conditions and needs of small farmers in the semi-arid zones of
 

N6rthern Cameroon. A more complete description of this project can be
 

found in Ngambeki, et al, 1989.
 

3
 



Data on yield collected for this project were obtained for the
 

years 1986, 1987, and 1988. Included were farms in two climatic
 

regions: an area with average annual rainfall of 800-1000 mm (Region 1
 

in this paper) during the growing season (April through October) and
 

an area with average annual rainfall of 600-800 mm (Region 2 in this
 

paper). Also included are farms of two predominant soil types: clayey
 

soils and sandy soils.
 

Farms participating in this study included those using
 

traditional technologies, those using extension techniques and
 

varieties, and those using SAFGRAD techniques and varieties. Crops
 

included are maize, cotton, groundnut, red sorghum, white sorghum,
 

transplant sorghum (muskwari), and cowpea. In this paper, results for
 

maize and groundnut are presented to demonstrate the methodology.
 

The technologies tested for maize include improved practices
 

combined with use of either low or high levels of fertilizer (the high
 

level was 90 kg/ha of nitrogen and the low level was 35 kgN/ha
 

combined with either crop residues or manure); simple ridges or ridges
 

tied at 2m; and alternative varieties. Improved practices include
 

lower planting density (62,000 plants/he.), thinning plants to 1-2
 

plant/hill, weeding twice, seed treatment, and fertilization applied
 

in two doses at planting and weeding. Three varieties of maize were
 

tested: Mexican 17E (a traditional long-cycle variety in widespread
 

current use), TZPB-K81 (a long-cycle variety recommended by the
 

Extension Service in North Cameroon), and CMS8501 (a short-cycle
 

variety developed by SAFGPAD). (Appendix A shows the combinations
 

tested in field experiments.)
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For groundnut, the traditional variety and practices were
 

compared to improved practices with two new varieties, the SAFGRAD
 

variety KI-441-77 and the extension variety 28-206.
 

Another management tool is planting date. Because of labor
 

scarcity during normal planting periods, labor constraints can be
 

.ased by staggering planting activities. However, there can be yield
 

penalties associated with early or late planting. When early planting
 

is followed by poor rainfall, yield can be reduced, but with later
 

good weather, plants may "catchup". By delaying planting, there may
 

also be a reduction in yield if early weather is good.
 

Weather Probabilities
 

Alternative weather conditions were classified in terms of
 

rainfall for critical periods of the growing season. Early season
 

rainfall was represented by cumulative rainfall for the period from
 

April to June 10 and mid-season weather was represented by cumulative
 

rainfall through July 20. Rainfall patterns for the two periods were
 

then grouped as shown below, to designate "drier", "intermediate", and
 

"wetter" rainfall conditions.
 

Probabilities of "d::ier", "intermediate", and "wetter"
 

conditions, were based on 24 years of historical rainfall data by
 

agroclimatic region. To obtain probabilities, rainfall observations
 

for three representative sites were used for each region for
 

1965-1988, for a total of 72 rainfall observations per region. (See
 

Appendix B fvr observed frequencies of rainfall events by region.)
 

Note that the probability distribution for rainfall conditions is
 

not normal in either region. The distribution for Region 2 is heavily
 

skewed toward low rainfall, whereas for Region 1, it is skewed toward
 

intermediate to wetter rainfall conditions.
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Growing Period Rainfall (mm)
 

Early (before June 10) Later (before July 20). 

low 150 low < 250
 

medium 151 - 230 medium 251 - 350
 

high > 231 high > 351
 

Classsification of Rainfall Conditions
 

as Related to Early/Later Rainfall
 

Drier: low/low; low/medium; medium/low
 

Intermediate: medium/medium; low/high; high/low
 

Wetter: high/high; medium/high; high/medium
 

Probabilities of Rainfall Conditions by Weather Region.
 

Drier Intermediate Wetter
 

Region 1: .3055 .3472 .3472
 

Region 2: .6528 .3194 .0278
 

Yield Modelling
 

Field experiments could not test each possible combination of
 

planting date, soil, fertilizer level, variety, and ridges.
 

Therefore, regression models were used to infer yield for combinations
 

not directly tested.
 

The production function approach models yield (y) as related to
 

technology inputs (x), soil (s), and weather (w). Because of weather
 

and other sources of randomness, yield is a random variable. Here we
 

represent the random nature of yield by the relationship
 

(I) y - f(x,s,w) + E
 

where f(.) is the mean production function for given weather, soil,
 

and technology and e is a random variable representing deviation from
 

this mean by individual farmers. e can be identified with
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cross-sectional sources of variation; therefore a normal distribution
 

with zero mean is an appropriate specification. The relationship
 

between e and w may be a conditional one; that is, the probability of
 

observing any given deviation from the mean yield may depend on
 

- weather and inputs. For example the use of fertilizer and tied ridges 

may reduce yield variation among farmers with different types of soil. 

Separate yield regressions were estimated for each type of 

weather condition because the effect of a given technology may depend 

on the weather in a nonlinear way. For example, tied ridges may 

increase yield for intermediate rainfall conditions but could decrease 

yield for wetter conditions, especially with clayey soils. Or, a new 

drought tolerant variety may increase yield more for lower rainfall 

conditions than for higher rainfall conditions. 

Farm yield observations for each type of weather condition are 

regressed in terms of technology choices, planting dates, and soil. 

The regression is of the form: 

ik io I = i is S ik'
 

where yi is the yield for crop i, farmer k, weather w. yio, the
 

constant term, is the mean yield for the traditional technology in
 

weather state w. Dil denotes a dummy variable indicating a
 

nontraditional technology choice; a value of one means that the 

technology is applied whereas a value of zero means it is not applied: 

DS indicates a dummy variable for soil type, a value of zero or one 

differentiates between soil types, The coefficient (ail) of a factor
 

(1) tells how the application of a new technology will affec.t yield
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for the average farmer for weather state w. By assumption the error
 

term for the regression (eik) has a normal distribution with mean
 

zero.
 

Regression (1) should be corrected for heteroscedastlcity by the
 

method of moments (Antle, 1983). Cross-sectional variance is
 

estimated as related to alternative technologies by regressing the
 

squared residual in (1) on the same explanatory variables. The
 

cross-sectional variance regression is of the form
 

(3) SEW -vio + Zoo, Dij + Ois Ds + 

for the sum of squared error SEe-(i 2 W represents the
 

cross-sectional variance for the traditional technology and q" is the
 

ik
 

regression error term having mean zero. shows how a technology
 

(2) affects cross-sectional variance for weather state w. Weights for
 

generalized least squares (GLS) are obtained from (3) and used to
 

obtain consistent parameter estimates for (2) having minimum variance.
 

Tabl3 1 shows GLS regressions for maize yield by weather
 

condition. The constant term in the mean yield regression represents
 

the yield for the average farmer with traditional technology for
 

weather conditions at the indicated level. Note that this traditional
 

yield increases as the weather improves, increasing from 1310 kg/ha to
 

2161 kg/ha to 2673 kg/ha.
 

The effects of new technologies, planting date, and soil on mean
 

yield are indicated by the coefficients of the corresponding dummy
 

variables. Use of improved agronomic practices and low fertilizer for
 

maize increases yield for the driest rainfall pattern. In comparison,
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the combination of high fertilizer and the CMS variety produces a
 

smaller yield increase of 3588 for the driest weather.
 

For intermediate weather, using high fertilizer significantly
 

increases yield. The combination of TZPB, high fertilizer, and tied
 

_ ridges produces an average yield of about 5372 kg/ha. With wetter
 

weather, the maximum yield of 4086 kg/ha is obtained from the
 

combination of high fertilizer and the CMS variety.
 

Considering the significance of the coefficients for RIDGE, use
 

of tied ridges can complement improved agronomic practices when
 

rainfall conditions are in the intermediate range. Use of simple
 

ridges (RID) does not significantly increase average yields in any
 

period. Planting late (after June 20) reduces yields significantly
 

for the intermediate rainfall condition.
 

Technologies can also affect cross-sectional variance.
 

Fertilizer, simple ridges, and late planting have significant effects
 

on cross-sectional variance for drier weather. Simple ridges and late
 

planting reduce variance. Except for soil, cross-sectional variance
 

is not otherwise significantly affected for intermediate and wetter
 

conditions by maize technologies.
 

Similar results for groundnut are shown in Table 2. Planting
 

early or late has a significantly negative effect for yield in wetter
 

rainfall conditions. Both new varieties have a significant positive
 

effect on yields for both intermediate and wetter rainfall conditions.
 

Cross-sectional variance results show that both planting early and
 

planting late reduce variance. Use of the new variety 28-206 also
 

reduces cross-sectional variance.
 

Measurement of Mean and Variance for Optimization Models
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The purpose of optimization is to choose the number of units of
 

land to be planted in each crop, given price and variable cost per
 

yield unit for each crop. Using variance as a measure of riskiness,
 

technologies are preferred which reduce variance, or which have mean
 

_ 	effects offsetting variance effects. Crop combinations which exhibit
 

negative correlations (or have a negative covariance) may be combined
 

to produce preferred crop portfolios in terms of risk.
 

As will be shown below, income variance can be expressed in terms
 

of weather variance for each crop, cross-sectional variance for each
 

crop, and covariances for each pair of crops grown. Yield regressions
 

as those given above, can be used to measure yield risk in such
 

optimization models.
 

Each farmer (k) in a cross-sectional study provides sample yield
 

observations for each crop (i) grown. We now show, with the
 

assumption that c in (1) is conditional on weather, that yield
 

variance can be decomposed into two terms: weather variance for the
 

average farmer and cross-sectional variance. Let Yk denote yield
 

observed for crop i for farmer k and weather state w. Let nw denote
 

the probability of weather state w and N'O denote the number of farms
 

with observations in weather state w. (In the derivation below, we
 

assume each farm sampled grows each crop, but the number of farms
 

sampled each year may differ.)
 

The sample mean (Y,) over farmers for a given weather state, with
 

soil and technology held constant, is obtained by weighing each
 

observation equally because of assumed normality of the E
 

distribution:
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(4) 0 - k 

y, represents the yield for the average farmer in weather state W.
 
. 

The expected value of yield is obtained from the joint distribution of
 

yield over both farmers and weather states. Because of the assumed
 

conditional relationship of E on w, the joint probability of a farm
 

yield observation and a given weather state is the product of the
 

probabilities: (i/NW) f. First taking the mean over farmers and
 

then over weather probabilities, the overall mean (yi) is the yield
 

for the average farmer in each weather state w weighted by the
 

probability of each weather state:
 
E E W ( I /N ') ff - ' f w 

(5) Yi " k Yik " Yi 
wkw 

The sample variance of yield is obtained by squaring the
 

difference between each farm observation and the overall mean yield,
 

weighting by the joint probability, and then stnming over farmers and
 

weather states. Sample variance for a given crop and technology can
 

be decomposed into two terms, as follows:
 

II
 



- (yw - - ) 2 1Iw(6) Sample Var &0i 

ik k ik y
 

Yi )
-	 Yi " ir
Yt" Yi + __W- - ~ 2 L w'
k 	 NC 

- Yd) w w 2 i.. r" (Yi" 	 -wyk2 + Z Z(Yik". ) Nf 

Yi )+ 	2 Z ('" (Z (Yik" Y ) nrO 

W k N 

The 	first term in this decomposition is variance due to weather for
 

the average farmer, and the second term is cross-sectional variance.
 

The third term is zero by (4).
 

Taking expectations in (2) over both farmers and weather, the
 

expected yield as related to technology and soil can be determined:
 

(7) Y -ZY -X (y +Eat' D +a' D)irYi o i il is s
 
W (0 

Weather variance as related to use of technology by the aver'age
 

farmer (the first variance term in (6)) can also be measured by
 

applying results of regression (2). As in the first term of (6),
 

weather variance is obtained by subtracting the mean taken over all
 

weather states (yi) from the mean for each weather state (yi),
 

squaring each of these terms, and then weighting each by the weather
 

probability. (This measure of variance is analogous to what would be
 

obtained in an experiment station study of technologies in which only
 

weather conditions would vary.)
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The cross-sectional variance (CSVi) over all weather conditions
 

is obtained as related to technology, planting date, and soil by
 

taking the expected value of over both farmers (to get SEw) and
 

weather in (3):
 

(8) CSV i - ( 	 ) i'w - z (Vo+ Z ij Dij + fiws Ds) W. 

Based on the sampled yields, sample income for farmer k over all
 

crops grown is:
 

(9) 	 I-Z [Pi - Ci] Ai 

i 

where Ci denotes variable cost per land unit planted for crop i, Pi 

denotes price for crop i, and Ai is land units planted. (Here, price
 

is not random.) Sample income variance compared to the overall mean
 

income I is:
 

(10) 	 Sample Income Variance - Z Z (I -) -L 7
 
wk 
 NW
 

- E 2: ( E 2 A2 ,yW - yi))2 L f 
k i -1 i N 

- Z p2 A2 ZYd (Y[ xl
[Z Z 2 ­
i i i k 	 N
 

p A W Wl(j 	 I W
+ z p A [Z 	 (Yk " N 


ij ii jj J 	 N 

Considering the last equality in the decomposition of income variance,
 

the expression in brackets in the first term is the sample yield
 

variance for each crop. This term can be further decomposed to be the
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sum of weather variance and cross-sectional variance for each crop as
 

shown above. The expression in brackets in the second term is the
 

covariance for pairs of crops i and J. Similar to variance,
 

covariance can be expressed as a sum of two terms, covariance due to
 

_ weather for the average farmer and cross-sectional covariances for
 

pairs of crops. Covariance for two crops can be related to the
 

technology factors which affect yields for maize (DMI) and groundnut
 

(DG) separately from the regressions (2) and (3).
 

Estimated Mean, Variance, and Covariance Effects of New Technologies
 

Means and variances associated with alternative technologies for
 

each of the two weather regions, obtained by applying the regression
 

equations with the corresponding weather probabilities and the above
 

formulas, are shown in Table 3 for maize and Table 4 for groundnut.
 

Table 5 shows covariance for selected technology combinations for
 

maize and groundnut.
 

Table 3 shows the expected values and variances of yield for four
 

technology combinations for maize. These combinations are:
 

traditional variety with traditional farming methods; traditional
 

variety with improved methods and low fertilizer; traditional variety
 

with improved methods, high fertilizer, and tied ridges; and the new
 

variety (CMS8501) with improved methods, high fertilizer and tied
 

ridges. (Results shown in Table 3 and 4 are in terms of a normal
 

planting date and sandy soil.) Total variance in Table 3 is the sum
 

of the two types, weather variance and cross-sectional variance. Note
 

that the cross-sectional variance is a larger share of total variance
 

for maize than the weather variance.
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Weather variance is reduced by low fertilizer, in comparison to
 

the traditional technology, but it is increased by high fertilizer in
 

Region 1. The percent reduction in weather variance obtained by the
 

use of low fertilizer is greater in Region 2 than in Region 1. All
 

_ technologies increase ;ross-sectional variance but the effect due to
 

using low fertilizer is relatively small. Total variance is reduced
 

in both regions by low fertilizer use but is increased by other
 

technologies.
 

Higher total variance for new technologies is offset by higher
 

mean yields. All new technologies shown in Table 3 increase mean
 

yield but a greater percent increase occurs for Region 2 because of
 

the predominance of dry weather conditions for which new technologies
 

are designed.
 

The coefficient of variation in yield (the standard deviation
 

divided by mean) is the measure of riskiness. It is lower for all of
 

the new technologies than for the traditional technology. Since all
 

new technologies produce similar coefficients of variation, lower cost
 

technologies (ie improved practices with low fertilizer) will be
 

preferred. Region 2 becomes more like Region 1 in terms of yield risk
 

when new technologies are introduced.
 

Table 4 shows similar information for groundnut. Use of the new
 

variety increases mean yield in both regions, with a larger percent
 

effect obtained in Region 2 because of its greater chance of hiving
 

dry conditions. In this case, use of the new variety reduces cross­

sdctional variance but increases weather variance in Region 1. The
 

total variance is reduced by the new variety. The coefficient of
 

variation of yield is greatly reduced by use of the new variety, again
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with a larger effect in Region 2. Again, yield risk in Region 2
 

becomes more similar to that in Region 1 with the new technology.
 

In Table 5, covariance effects are shown for combinations of
 

technologies for maize and groundnut. From a portfolio standpoint,
 

- negative covariance is preferred. (Covariance indicates correlation 

in yields; correlation is obtained from covariance by dividing by the 

product of standard deviations for each crop. For example the 

correlation coefficient between maize and groundnut yield for the 

traditional technologies in Region 1 is .86.) Covariance cannot be 

directly compared to variance of maize and groundnut without 

converting to common dollar units. However, since prices of maize and 

groundnut are similar (respectively $.30 and $.33 per kg), the 

magnitudes of income variance and covariance are roughly similar. 

In terms of total convariance, use of low fertilizer for maize
 

and the new variety for groundnut produces the most negative
 

covariance because maize yield is greatly increased by low fertilizer
 

in drier weather whereas groundnut yield increases with ietter weather
 

conditions. Crois-sectional covariance increases with new
 

technologies.
 

Conclusions
 

In formulating objective functions for mathematical programming
 

models to be used for farm planning in a risk context, historical
 

income data may not represent weather risk correctly if a short time
 

series is used. A long time series for income is rarely available for
 

urfeerdeveloped countries and, even if available, would not reflect new
 

technologies.
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The regression methodology based on the method of moments
 

presented in this paper provides an alternative way to measure yield
 

risk. Weather probabilities are obtained from historical weather
 

data. Risk can be modelled for different weather regions by applying 

- the appropriate probabilities. 

This paper separately identified weather and cross-sectional
 

variance as components of total variance. IFor the SAFGRAD
 

technologies analyzed here, similar to Carter's (1989) results for
 

traditional technologies, it was shown that cross-sectional variance,
 

can an important source of yield variation in comparison to weather
 

variance. New technologies can affect cross-sectional variance as
 

well as weather variance. Our results indicate that, compared to high
 

input or traditional practices, low input improvements together with
 

improved varieties may have the most beneficial effects on yield input
 

risk. Furthermore, covariance is of a magnitude similar to variance
 

and it may be greatly reduced by use of new technologies.
 

Since experiment station tests of new technologies do not measure
 

cross-sectional variance and covariance, it is important to test new
 

technologies with farm-level trials in order to make appropriate
 

recommendations about new technologies. Specific results about new
 

technologies obtained here from farm-level data indicate that improved
 

practices, low fertilizer use, and new varieties can help to reduce
 

yield risk in drier climatic areas and also to reduce the disparity
 

between wetter and drier climatic regions.
 

Future work will incorporate the regression method for a full
 

spectrum of crops in mathematical programming models to consider the
 

implications of new technologies for crop mix and total income risk.
 

17
 



0 

-0.15 

Table !a. GLS Estimate of Yield Model by Weather Pattern, Maize (kg/ha)
 

Drier Weather Inter. Weather Wetter Weather
 

Table lb. 


Coeff. t-value Coeff. t-value Coeff. t-value 

21O1310.56 5.06* 2161.70 13.093* 2673.48 12.06* 

DFH 1762.21 2.49* 1190.12 2.198* 1166.90 2.27* 
RID -149.38 -0.21 509.32 0.934 -198.82 -0.38 

RIDGE 319.56 0.43 973.77 1.481* -90.80 

DL -30.00 -0.09 -753.62 -3.910" -268.76 -1.31" 

SD 40.48 0.15 287.65 1.720* -362.49 -1.71" 

DTZPB 110.11 0.27 1048.32 2.747* -515.09 1.12 

DCMS 516.47 1.84* 479.66 1.703* 246.18 0.79 

DFL 2399.40 2.88 41.72 0.061 402.03 0.64 

R2 .25 .52 .23 

NU 139 194 153 

Cross-Sectional Variance, Maize (kg/ha)
2 x 104 

Drier Weather Inter, Weather Wetter Weather
 

Coeff. t-value Coeff. t-value Coeff t-value
 

V 49.90 1.07 ?2.23 0.98 98.83 2.81*
 
V
0
 
DFH 260.93 2.66* .58 0.00 55.98 0.72
 

RID -213.65 -2.21" 113.32 1.02 35.40 0.46
 
RIDGE -39.83 -0.40 35.48 0.27 -34.37 -0.39
 

DL -85.83 -1.66 14.38 0.43 -35.37 -1.09
 
SD 28.53 0.69 62.16 2.24* -44.88 -1.31
 

DTZPB 66.89 1.00 -37.04 -0.61 69.93 1.19
 
DCMS 33.35 0.69 17.47 0.43 -21.63 -0.49
 

DFL 186.69 1.35* -110.98 -0.80 -16.86 -0.17
 

R2 
 .15 .11 .09
 

N-OBS 139 194 153
 

Definition of Regression Variables for Maize:
 

Y0 - yield for the average farmer with the traditional technology.
 

VT - variance of yield for the average farmer, traditional technology.
 
0
 

DFH - a dummy variable value of one indicates high fertilizer use.
 
RID - a dummy variable value of one indicates use of ridges.
 
RIDGE - a dummy variable value of one indicates use of tied ridges.
 
DL - a dummy variable value of one indicates maize planting after June 20.
 
SD - a dummy variable value of one indicates sandy soil (as opposed to clayey
 

soil). 
DTZPB - a dummy variable value of one indicates use of new variety TZPB. 
DCMS - a dummy variable value of one indicates use of new variety CMS8501. 
DFL - a dummy variable value of one indicates low fertilizer use. 
*Significant at least at 90% level. 
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Table 2a. GLS Estimates of Yield Model Ty Weather Pattern, Groundnut
 

(kg/ha)
 

Drier Weather Inter, Weather Wetter Weather
 

Coeff, t-value Coeff, t-value Coeff. t-value
 

1026.75 10.36* 2060.19 12.17* 2269.02 9.70*
0 

SD -168.00 -1.46" 332.95 1.37* 1123.22 2.80*
 

DE 70.46 0.60 -242.37 -0.68 -685.68 -2.43*
 

DL -57.85 -0.40 -500.13 -2.02* -637.83 -1.65"
 

DKI • 795.68 3.35* 981.98 2.51*
 

D28 • 844.37 3.83* 789.73 2.28*
 

R-SQUAR 0.04 0.30 0.59
 
N-OBS 66 97 42
 

Table 2b. Cross-Sectional Variance Effects, Groundnut (kg/ha)
2 x 104
 

Drier Weather Inter, Weather Wetter Weather
 

Coeff. t-value Coeff, t-value Coeff. t-value
 
V 29.65 5.78* 56.16 2.34* 70.12 3.95*
 

0 

SD -15.92 -2.50* 55.88 2.19* -36.75 -1.44"
 

DE -9.45 .1.14 -46.90 -1.37" -52.25 -2.47*
 

DL -10.06 -0.95 -60.40 -2.91" -3.84 -0.16
 
DK. • -23.79 -0.81 -32.25 -1.23
 

D28 • -39.30 -1.35" -53.94 -2.07"
 

R-SQUAR 0.13 0.19 0.18
 
N-OBS 66 97 42
 

Definition of Regression Variables for Groundnut:
 

Y0- yield for the average farmer with the traditional technology.
 

V0 - variance of yield for the average farmer, traditional technology. 

DE a dumy variable value of one indicates groundnut planting before May 30.
 
DL - a dummy variable value of one indicates groundnut planting after June 20.
 
DKI - a dummy variable value of one indicates use of new variety GKl.
 
D28 - a dummy variable value of one indicates use of new variety G28.
 
SD - a dummy variable value of one indicates sandy soil (as opposed to clayey
 

soil).
 
*Significant. at least at 90% level
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Table 3. Yield lfean and Variance by Weather Region, Maizea
 

Mean Yield by Technology (kg/ha)
 
Regon I Region 2 

Trad. 2065.54 1728.54 
Trad. + Improved Prac. + low Fert. 2751.12 2903.42 
Trad. + Improved Prac. + high Fert. + Ridge 4021.11 4224.55 
CMS + Improved Prac. + high Fert. + Ridge 4430.91 4721.75 

Weather Variance of Yield by Technology (x 104 

Region 1 Region 2 

Trad. 18.14 26.84 
Trad. + Improved Prac. + low Fert. 6.39 8.41 
Trad. + Improved Prac. + high Fert. + Ridge 26.20 8.33 
CMS + Improved Prac + high Fert. + Ridge 38.04 8.88 

Cross-Sectional Variance by Technology (x 104) 
Region 1 Region 2 

Trad. 75.46 82.85 
Trad. + Improved Prac. + low Fert. 75.80 83.21 
Trad. + Improved Prac. + high Fert. + Ridge 140.36 190.85 
CMS + Improved Prac. + high Fert. + Ridge 149.10 217.61 

Total Variance of Yield by Technology (x 104 ) 

Region I Rgion 2 

Trad. 93.60 109.69 
Trad. + Improved Prac. + low Fert. 82.19 91.62 
Trad. + Improved Prac. + high Fert. + Ridge 166.56 199.18 
CMS + Improved Prac. + high Fert. + Ridge 187.14 226.49 

Coefficient of Variation of Yield by Technology 
Region 1 Region 2 

Trad. .47 .61 
Trad. + Improved Prac. + low Fert. .32 .33 
Trad. + Imp'.ved Prac. + high Fert. + Ridge .32 .33 
CMS + Improved Prac. + high Fert. + Ridge .31 .32 

a Normal planting date, sandy soil.
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Yield Mean and Variance by Weather Region, Groundnuta
Table 4. 


Mean Yield (kg/ha) 
Region 1 Region 2 

Trad. 2271.03 1419.27 

G28b 3058.00 2084.76 

Weather Variance in Yield ((kg/ha)2 x 104)
 
Region I Region 2
 

Trad. 	 105.09 
 61.62
 

G28b 143.14 3.85
 

Cross-Sectional Variance in Yield ((kg/ha)4 x 104 )
 
Region I Region 2
 

Trad. 	 53.40 45.17
 

G28b 	 8.60 3.85
 

Total Variance in Yield ((kg/ha)
2 x 10 ) 

Region 1 Region 2 

Trad. 158.49 106.79
 

G28b 151.74 86.53
 
Coefficient of Variation in Yield
 

Region 1 Region 2
 

Trad. .55 .73
 

G28b .41 .44
 

a	normal planting date, sandy soil.
 

assumes 
b the yield in w - drier is 0.7 times yield in w - intermediate,
 
because of missing data.
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Table 5. Covariance ((kg/ha) 2 x 104) for Technology Combinations,
 

Maize and Groundnut.a 

Weather Covariance 
Trad. G with: Region I Region 2 

Trad. M 41.21 69.40 
Trad. M + low Fert. -68.78 -115.82 
Trad. M + high Fert. + Ridge 2.33 3.29 
CMS + high Fert. + Ridge -8.75 15.53 

G28 with: 

Trad. M 46.19 76.71 
Trad. + low Fert. -77.06 -127.99 
Trad. + high Fert. + Ridge 6.12 7.16 
CMS + high Fert. + Ridge -5.52 -12.86 

Cross Sectional Covariance 

Trad, G with: Region 1 Region 2 

Trad. M 63.41 61.07 
Trad. M + low Fert. 63.50 61.19 
Trad M + high Fert + Ridge 
CMS + high Fert. + Ridge 

86.48 
89.13 

92.68 
98.96 

G28 with: 

Trad. M 25.45 17.84 
Trad. M + low Fert. 25.51 17.87 
Trad. M + high Fert. + Ridge 34.71 27.07 
CMS + high Fert. + Ridge 40.08 28.91 

Total Covariance 

Trad, G with Region I Region 2 

Trad. M 104.62 130.47 
Trad. M + low Fert. -5.28 -54.63 
Trad. M + high Fert. + Ridge 88.81 95.97 
CMS + high Fert. + Ridge 80.38 83.43 

G 28 with: 

Trad. M 71.64 94.55 
Trad. M + low Fert. -13.56 -66.80 
Trad. M + high Fert. + Ridge 92.60 100.28 
CS + high Fert + Ridge 83.61 86.10 

aNormal planting date, sandy soil. 
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Appendix Table A. Technology Combinations for Maize Experiments
 

Name VarietN LowHj RIG TIED IMP, 

Fert. Fert. 
 RIDGE PAC. 

TRAD mixed 0 0 0 0 0
 

M25 MEX .17 0 1 (manure) 1 0 1
 

MR25 MEX .17 0 1 (crop residue) 1 0 1
 

MI00 MEX .17 0
1 1 0 1
 

M5T* MEX .17 0 0 (very low) 1 0 1
 

MFPR* 
 MEX .17 0 0 1 (very simple) 0 0
 

MFLOT MEX .17 
 1 0 0 0 1
 

MRID mixed 1 0 1 
 0 1
 

M2RM MEX .17 1 0 
 0 1 
 1
 

M3RM MEX .17 1 0 
 0 1 1
 

MAX17 MEX .17 1 0 
 1 0 1
 

CMSS01 CMS8501 1 0 
 1 0 1
 

TZPB TZPB 1 0 
 1 0 
 1
 

Data excluded from regression
 

Note that in regressions, improved practices are applied whenever fertilizer and

for ridges are applied. That is, 
we are not able to separate the effects of
 
improved practices from fertilizer use and/or ridges.
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Appendix Table B. Weather Probabilities by Rainfall Pattern, Region, and
 

Weather 

Weather Region 1 Weather Region 2 

Rainfall sect 1 sect 4 sect 5 Prob. sect 2 sect 3 sect 9 Drab. 

pattern freq. "rep. freq. prob. re . freq. fr q. prob . 

11 1 3 1 .0694 5 6 10 .2917 
im 5 6 4 .2083 6 10 10 .3611 
lh 9 6 4 .2639 5 3 2 .1389 
mm 1 1 3 .0694 2 2 0 .0555 
ml I 1 0 .0278 0 0 0 0 
mh 2 3 5 .1389 4 0 1 .0139 
hh 1 3 5 .1250 0 0 0 0 
hm 4 0 2 .0833 0 3 1 .0139 
hl 0 1 0 .0139 1 0 0 0 

*1 - low 
m - medium 
h - high 
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