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.

ON THE STATISTICAL DISTRIRUTION OF THE
LARGEST LENGTHS OF FISH

I. ANTHODUC T LU

A contusing  situation  that most often contronts &
biologist 1s the obﬁervatimn‘that a deterministic growbh eguation
like the vor Bertalantdy growbh eqguatioen is generally cheved when
a relatively large ouober of fiash ere studied and vet the same
equation fails miserably when applied Lo an dndl o daal fi%h
arowing over ti@e.

To understand  this contusioen, 1t must be remembered
that tﬁe vorn Bertalantty equation

RS T P
(1 - e

~—r

L= Loo

(where L. is the length at age t: Lgg 1% the mean length the +tish

@

would have reached it they were to grow toe a very old age; k is a

growth coeftficient;y and L is the “age" of the ftish at length
o

rero) 1% 4 deterministic equation: and as such, indicates that if

the parameters L., k and t are fived, or are functienally
o

detarmined, then for a particular t value, there is only one

value for . . Thus we can i1magine that 1+ we have two 1dentical

fish {(i.e., of the same species and age and are initiaily ot the
gsame lengbly and we let these Ltwo fieh grow in exactly the same
envirenment ., then after a certain period of btime, the two fish
would bave attained exactly the same Lenglh. Yel, chiservatlions

of grewth o+ individual fish growing under contrelled conditions



do not bear this cut. FRather, the most likely event to happen is
to have the fish grow to different lerngths for the same length of
time.

Clearlyv, +ish  ogrowth iz ot deterministic in nature.
Rather; firah  growth 1s belter represonted aé a process whose

development over time 1s goverrned by probabilistic lawsy that 1s,

as A stochastic

Mostochastio model for growbth may be taken as
Yit) = Lty + & ity

e the actual length ot the +tish at timé t .

.
14

where Y t)
L{t) is the lenath thalt the fish wouwid have attained if it
arew accerding Lo the deterministic equation like the

~ voen Rertalanffy eguation, and
£(t) 15 & random vartable, sometimes referred to as a
random nolee or a perlturbation, which represents all
other influences affecting growth that cannot be

exactly accounte. for nor determined as in L{t).

The uweusl assumptions imposed on the random variable
5(t) are that

EL g (£ 3 = 0

Var [ g (t)y1 = @ {(a constant).

fhus, under this stochastic meodel fqr growth, the
actuzl length of the Ffish, Yty , 15 a randoem variable whose
distributiocn 1= determined by the distribution eof g ()Y and
whose values tor fixed t values will vary according to this

probability distribution.

o
.




fAn 1mportant ceonsideration is the tact that
SEUY by ) o= (L)

that is., the average i the jong run of the lenagth values ot the

fish of the sane speciles and age 1€ provided by the length value
obtained From the deterministic lenaqth equationy say, the von
Rertalant fy growth eguation +tor length. Fhus, 16 a large nunber

ot tizh ot the me specles and age are studied, 1t is  the

average characteristics  of these large group ot fish  that is
predicted by the veon Hertal antdy equation.

(One of the parameters affecting the value of Lit)y, the

lenath predicted by the von Bertalant+y equation, 1% Lo sy Lthe

mean length the fish would heve attained it the fish were Lo grow
to a véry old aqge. Variouws techrnigues ot estimating Lo are
found in  the literatuwe, the majority of which are bas2d on a
linear transtormation ot the von HRertalanfty equation. Flhtempts

Tto  estimaloe los Mhdependently of the ven Bertalanftty eqgualion

were provided by such rules of thunh as: lake Lg te bhe &/73 the

Riggest length measwement ever recorded ftor tne given species;

or taEe lLaos to be the average length of a number of wvery old
fish;

This paper is a further attempt &t +inding an estimator
for L. ot that 1= indepéndent' ot the assumed underiying
deterministic equatisn governing ghe arowth  of  tish. The
technique is based on the oﬁaervation that various swveys have
reported ditferent values for the 1eﬁgth of bhé biagest +1sh of a
given spacies, indicating that the longest length of fi=h of_ a

given species is nol a fixed quantity but & random veriable which

Ltakes  on different values according to sons  probabilistic  law.



Thus, inorder to idenfify a reliabhle estimator tor lLge for fish
of & given specles, it is  dimportant  that thz statistical
distribution of Lhe longest lengths of thét particular tish  be
first established.

The distribuvion of the longest lenagths ot Rastrelliger
brachysomsa (local name: hasa-hasa) caughlt from the Yisayar Sea
from Jarnaary to 'chwmbmr 1964 1= studi=zd via the theory of
extreme values developed by Gunbel (1934) whaich aims Lo explain
observed edxbroames am1sing 1n.5amplﬁﬁ of given sizes, o wvalid for
& yiven perlod, or length, area, or volumes, and toe forecast
pvtremes Lhat may be expected to ocowr withain a certain sanple;
time, aresa, @uc.

The znplication ot the theory of extreme values starts
with the fulfillment of the following conditions:

1) The variables (length; in our case!) are contisuous.

2) All the sanples fi-om where the extreme lengths are

drawn  have a cohstant distribution with fixed
parameters.

%y The extreme lengths are takern from independent

samples.

Mote that length measures are contintous measures, the
distribution of fish lenoths may be safely assuned normal with
fixed parameters tor a particular specles iQ a particular areea,
and the various cwrveys from which the extreme lengths were
obtaimned may be treated as indmpemdent'aampleﬁ.. Thus, the study
of the distribution of the extreme length values is a natural

application of the theory of extreme values.



IT. THEORETIunL, CONSIDERA T LONS

o Exact Dizgtiribution of Entreme Values

Consadar the oriainal set of length measvrements.  F(x)
is the propability that any observed length is  less than &
specified value, 2.

Censider also the set of maximum lengths drawn trom the

original observatiens. Let & (#) be the probability that the
1

largest value is less than a given length 2. Theretore

whose derivative

n-1
(x ) = nF (¢ YF ()
non noooon

O

is the diﬁtribution. of the largest value amony n indapendent
chservations.,
Similarliy, the distribution of the smaliest values
ameng n indepentent measurements 15
n

1 - [1 - FGe )]
Iin | 1

&
—~
.~
~
H]

n-1
and a (x ) = nlfl - F(x >3 £l ).
» ’ 1 1

Here # is the smallest value and % is tne largest value.
1 n

"~y

2. Asymplotic Distribution of Extreme Values

Even 1f the initial distribution of the sample is

unknown, the - krnowledge of the type of distribution i1s enough to

’4
= : [



determine the distribution of the extreme values by deriving its
asymptobic distribution. An asymptotic distribution of e random
variable tmecormum lenath, 1roouwr case) 1% any disbribution that
is approximately egual te Lhe actual distribution of the extreme
lengths for a large sample size.

¥ the wverzable ig infinite to the right, then its
cumulative distribution function Fiw approeoaches | as quickly as
the exponentral tunclbion. Varitables with this characteristic

have ezsymphbotic distributions which belong to the enponential

Variables whiich are initially distraibuted as exponential,

normal . oht SUAr @, logietic and the log-transtormed normal
" .

beloeng to the exponential aqroup. Under this type ot asymptotic
distribution, all moments sxist but not all distributions with
wisting moments bhelong to this class. The distribution of
extreme values belonginge to this type 1s

— 8 -y e f
diy) = e Bly) = @ y T 00 <y o0 (Equation 1)

with the reduced variate y = & (x - W (Equation 2)

and where

~r

is tie variable belanging to the exponential type

{and is cortinuous to the right).

1/ is a meastre of dispersion which gives the scale of
MERSUF e appli&able te the observed vaiue of v to
that of the reduced variate vy.

U iz  an average (specitfically., the mode for the
exponential type) ot the Htreme value

distribution.
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R The Extremal Frebability Faper

A simple tool for the study of extrems values is the
probability paper which gives « zimple qraphical method  of
testing the fit between theory and observations.

Let s be & continuepus variagte, unlimited 1 both

directions, for which a linear reduction ‘equation 212

Xow oo byl
exists, where u is & Jertaln average and l/ix a cerfain measure
ot dispersion.

A probability  paper 1o a rectanguler grid where the
ohserved wvariate @ i1g plotted om eone axis, and the reduced
variate v 1s plotted on the other axis.

Frecther, note thet 1+ F 00 is  the probability

distribution of the varliate x and &(y) is the probability

~

distribution of Lthe reduced variate y, then

&ty = Fist).

Thus, the probability paper also includes the probability
diy) = F (%) pleotted on & scale parallel to the scale of vy.

1+ the theory holds (i1.e., that the observaltions 3 are
distributed according to Fix)), then the ohservations pletted on
the probability paper should fit the straight line given by

Moo ot v/ X .

Ar extromal probability paper may be constructed using
an ordinary qgraphing paper by uwsing the fact thalt its horizontal
and vertical axes have linear scales. The length units are
arranged along the vertical arxis; while the reduced variafe y and
the probabilities are plotted indepeﬁdently along the horizontal

anics.



Since the scale of the probabilities is nonlinear, this
axis is constructed based on the linear scale ot y. Values for
& {y) are  purposely selected for qgquick interpretation and are
computed and positicned using the formula tor &iy) in Qquati@ﬁ 1.
(Here recall that &{y) = Fix)). v owvalues in the graph range from
-2 to 7 since &iy) of points outside  this intefval converge
toward O arnd 1, respectivelv.

I+  the rnormal probability paper 18 used instead, the

most  obvious difference 1s the &= ot expected s L emes., 2ty

extremal probability paper ciearly shows a straight line of such
values. However, the scatter of the observations  around  the
ftheoretical curvesline in bolth cases seems to be the same.

2l extremes 1 the 21 bremal .

The Jine of expect
pfobability péaper is a slbraight line becauwse of the linear scale
of the reduced variate y {(along the horizonlal axis) from where
the location of the probability values are based and the
assumption of the &xi%t@ncé of

o= ou ot oy e ' (Equation 2A)

b

.
which is anolther way of writing equation &.

ITI. METHODROL.OGY

1. Flotting the Observations

After the maximum lengths are removed from their
respective sels of obgefvationﬁ, these values are arranged
according to size. If one is studying extreme largest values,
the extremes are arrvanged in  increasing order. Otherwise,

arrange the values from highest to lowest.



The observed lengths are then plotted on an egtr@mal
probability paper uwsing plotting pesitions which are values
compulted from the order of the observations. & plotting position
may be interpreted as the ;umulatxve probability asgigned ty the
mth observation.

Giumbe! prefers to uae the plotting pesition, m/n+l),
for the mth observation and n is the total number of extreme
values. This cheoice of plotting pesition enables the plotting of

both the smallest and the largest of extreme values in  the

probability paper. Glternative posilions leose either of the two
mentioned extromes
A observation 1s plotted using its  length as  the

ordinate and its plotting position as thz abscissa.

TR Ectimation of Farameters

After arranging the lengths from smallest to highest,

the sample mean %, and the sample standard deviation S , of the

8
”

measuwrements are computed using these formulas:

- n n ....? n ol
o= 2 ou and & =X x -2 )

1 .

™ m P mm e
g
r V n .
_ n
These values are used to gelt the parameters u and 1/ needed

for the fitting of the theoretical line (equation ).

Two sets of estimates of u and 1/ are obtained with
the applicatién of the classical least squares methoo te  the
vertical (using length values) and horizontal (using vaiueg of

the reduced variate) differences between the points along the

9
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fitted line
involve
getting
vertical and
separate
do notl

the

1 J'b( == S

n
where ¥ and 8§ are
this section.

Yy and
n

respectively, of

yuantities are used to

seen above. kY,
. Il
tor such values i

computer program

provided at  the
statistics {aince
plotting

they are

and the

the geometric
horizontal
computations of
largely dit+f

frevr amer ters

which

positions)

influenced by the sample size

observed measuwrements., These estimates
rather troublesome computations which may be reduced by
mearts ot the paramelers obtained +from  bthe

differences stated above. RANYyWay ,

all the estimates show that the values

er from each other.
ey and u are computed as follows:
and w o= R -y /ot

the same as that explained at the beginning of
o are the mean and standard deviation,
1 ’
the plotting positions, m/{n+l). These two
solve the parameters uw and 1/0¢ as can be

and O are fixed for a speciftfic n and a table
m .
given in  Gumbel 's monograph. l.ikewise, &

and O is
r r

includes the computation of ¥y

end of this article. These values are not
they don't depznd on the observations but  on
nolrr are they purely population values {since

nk.

10
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A, Fitting_the Straight lLine

Having coeomputed the parameters u and 1/ s the
theoretical straight linpe x = u + v/ {equation 2) can now be
= 4 ! »
fitted to the observations. By selecting a few length values
¥ . 1
their corresponding v value is computed using equation 2. Again,

with length as the ordinate and the reduced variabe as  the

ahscizssa., plot these points over the observaltions 1n the extremal

probability paper then conndct all theoretical poimtg to make the
line of expected extremes.

£ ogooed fit between the observatlons and the theoretical
line implies that the statistical theory of extreme values holds
true. In this way, t e line of ex pected extremes enables one to

predict  the occuwrence of a maximum length and its probability

under constant environmental condiltiors.

4, Control Curves

The control curves provide .a graphical way of testing
the goodness of +it of the theoretical straight line to the
actual observations. To construct contrel curves, first compute
the stendard error of the mth reduced rariate using this

equation:

JT Oty b o= \/f;b(y YL ~ By I/ iy ) {(Equation 3)
{n m mn . n

4]

"where &(y ) is the frequency of the mth extreme length computed

m
from equation 1, and

oy ) is the first derivative of &(y ); 2{y ) is computed
m . m m

from equation 1.

11

|
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With the value obtained in eguation 3 as the numerator, solve for

the sztandard error of the mth observation, = , with the equation
m

below:

0o ) = F‘: 0y )/(JT‘: R ) {Equation 4)
m it

where 1/ is the same parameter previougly defined, and
n 19 the number of extreme lengths under study,

The standard error of x compubed from eguation 4 is
in

added to and subtracted from the length x tound along the
m

theoretical line to gebt the upper point and lower peoint  of  the
control curves, Flot these two points parallel to the length
axis since these are length values also. ‘lf only one 0 wunit is
used to get the control curves, then there is the probability of
0,45827 Capproximately 24 that each point 1s contained in  the
area enclosed by the two,cﬁrve%. [+ two O units are wsed, the
interval made by the control cuwrves expands and Lhe prébability
increases accordingly to 009545, |
The control curves are uwsed as a check on the amount of
gcatter of the extreme 1@ngtﬁ values about the fitted line. In
other  words, they may be censidered as contidence bands of the
dispersion of observations about their theoretical values.
Arnalysise of -~ the data related teo control curves  are
gsafely made for &{y) values between .15 and .85, or else, errors

may be encountered in interpretation.

-~y
£



9. Expected Extremes

An expected largest value, u , 15 defined as an extremns
n
length that is expected bto occwr in a sample of size n with  a

probability given by:

Fiw o» = 1 - 1/n (Equation 57
i
Of couwrse, the  expected largest value is not the mean largest

value.Likewise, the probability of the expected smallest value i1s:

Friw )y = 1/n
1 . -
The expected extreme x = w is obtained by first
: n
‘getting the corresponding reduced variate y for the probability

Fiu ) using equation 1. (Recall that &{yr = F{x)). Therr solve
i
for u ftrom equation 2 using the parameters w and 1/¢g computed
n

from the observations.
Te determine the relationship of the expected largest
value u and the sample size n, the quantity o is introduced

T I
and is defined as

where +{u ) = F’'{u ) or may be computed using equation 1.
M rn

Taking the derivative of equation % with respect to n,
the following is obtained:

d = i ‘ (Equation &)

Therefore, 1/ o measures the increase of u with the logarithm
n n '

of N«

[y
Lo
i



Egquation & is called the trend_of logarithmic 1ncrease

of the entremes and is further stated as tollows: ST 0.4 i
n

independent of n, v Iincreases with log n. I+ X increases
n I

with n, w increases more slowly than log n. I+ XA decreases
' r r

with n, u increases more quickly than log n.
n
Theretore, the trend of logarithmic increase of the

extremes determines whether expected extremes vary greatly with
varying sample sires.

IV. RESULTS

Length data from fishing vessels using purse seine and
trawl net are dealt separately. (The data wsed have been -
provided by the Department of Agricultuwre and are part of their

ort—-going fish stock assesesment project).

M. FPURSE SEITIMNE (Refer to Figuwre 1).

he data set used'in the application of the theory of
extreme values consista of several fishing vessels_uéing' purse
s@ine. The smallest and largest length are 18.3 am and 28  om,
respectivel y.

There seems to be a good fit between the chserved
lengths and the theeoretical line except for some peints
(18.5 cm  and 24 cm) which deviate a little bit from the fitted
straight line having the equation

y = LolZ4x ~ 22.3810)

14



and ‘go outside the area covered by the control

ected extremes +or

u
i
PEL7EFLLEL

The computed exp

a sample size equal is 27. G

of the quantily and for other

increases with o incr fheretore, ba

the the ex

of

logarithmic i1ncrease extromes,

increases more slowly than log n. This means

sample size will also chenge the expected

increase i1s rather slow to have biqg changes in

With ot atrove  and

1

Ehe val ue g isen

varliate vy, .

(26,329 cm, 29.593 cm). Maximum length val

other sources and such values arrived at usin

may be wvalidated using this interval.,

probability of  around &8% that the true mas

7. brachysoma lies in the interval (&£&6.329 om,

B. TRAEWL. NET (Refer to Figure ).

This data set contains maximum

ot fishing vessels using trawl net. s

Figuwe =2, the survey lengths don't

theoretical line

¥y 6376 2197000 .

If analysis is to -be based on ¢{y) values

control curves could vy that

sa

good +it the survey data. However, for

or
observed

the fitted line.

extreme

Her e,

lengt
one

qreatly

trom

the above fitted line

Curves.,

this data set with

Taking the value

cample sicesn, X
n
trend of

sed on bhe

extreme W
n
increasing the

pected
Elhrat

but the rate of

interpretation.

taking 1ts reduced

the length interval covered by the control cuwrves 15

wes  obtained  from

1 other procedures

there 15  a

imem  length of &

29.59% wmi.

hs from 131 surveys

may observe from

depart from the

L1 to .85, the

provides -
the

larger lengths,

peints go beyond the interval of the control curves and

a
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The expected extreme u is computed as 29.492I38247 cm
: 3
and from this value, validation of maximum length values is based

on tre interval (27.948% cm, 31,0386 cm).

C. A COMPARISON OF RESULTS
Other aulthors listed the following. values for

R. brachysoma:

Gult of Thailand 1970 (Oamjaiwoﬁg and Chullaﬁorn) 18.20 cm
Gult of Thailand 1970 (Sucondharman, al aly 19..60
Gulf o+ Thailand 1970 (Sucondharman, et al) 20.00
Gult of Thailand 1972 (Hongshkul) 20,90

Gulf of Thailand 1970 (Somjaiwong and Chullasorn) . 20,90

Thailand West 1983 (Anonymous) ‘ 22.40
Java Sea 1979 (Dwiponago, et al) | 22.90
Gulf of Tharlan' 1970 (Eurogane) 23.00
Malaysia 1985'(Hn0nymoua) 23,50
Thailand West 196 (Hﬁonymoug) 24, 5C
Ragay Bul f 1981 (Corpus, et &l) 24,50
Samar Sea 127980 (Ingles and Fauly) 25,00
Samar Sea 1981 Corpuz, et al) , 25.00
Qamar YSea 1979 (Corpuz? et al) L 25,50
Thailand West 1935 (Anonymous) ' : 26,30
Sumatira 1984 (Anonymoué) ‘ 26. 50
Manila Bay 1978-79 (Ingles and Fauly) 34,00 .

Comparing these values and the intervals obtained
above —— (Z26.32¢ cm, 29.99% cm) far purse seine data and

(27.948 cm, J1.037 cm) for trawl net data -~— maximum lengths qg

16



found in other
underestimated.

smnaller than the

sSQuIrCes

Most

1 ower

ot

limits of

(and using other methods)

these

17

measurements

ar e

the intervals

seem .to be
[ ]

relatively

aiven here.



SUMMARY .

The statistical theory of sitreme  wvalues &ims  to
explain the occcurrence of far-removed observations and to predict

streme pointe that may occur. There is a wide tield of interest

over wiich this theosry may be applied. In this article, the

slatistical theory of oitreme values is applied to the maximum
lengths  of fish (obtained from cabtches of commercial fishing
vessels) and with the hope of validating L values obtained by
max
other authors.
I¥ the initial sample distribution is krmown, the exact

distribution of extremes may be eazily obtained. If it isn’'t but

the type of distribution is known, the asymptotic distributvion of

extremes may then be obtained. There are three types of
asymptotic distributions available. They are the exponential
type, the Cauchy type and the limited distribution. The

gxponential type is particularly discussed in this article since
the two other asymptolic distributions may be transformed into

this type.

pe

& theoretical straight line, x = u + y/& 4 is fitted
to the ordered observations plotted on an  extremal probability
paper with the cb=erved lengths on the vertical éxis and the
corresponding reduced variate y on the horizontal axis. The
ertremal pr&babiiity paper graphically checks the goodness of fit
between theoretical {or expected) length measwements and the

actual observations. W is  an  average of the vtreme  value

distribution and 1/¢ is a measure of dispersion.

18
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The parameters mentioned above are computed as follows:

1/ = 9 . o= ow - y ok
R r
noo
¥ and 8§ are sample mean and sample standard deviation. vy and
N , ' n
o are the expected (or reduced) mean and standard deviation

n
obtained from the plotting pesition, m/(n+1).

Control curves are computed to check the amount of
scatter and to determine the fit of the actual measurements about
the fitted curve.

The erpected extreme value for & sample size and 1ts
corresponding  length interval covered by the control curves may.
‘be used to validate extreme length values obtained using other
methods. Usually, the control curves are Eoﬁﬁtfucted with aone

unit.to ectablish their distances +rom the theoretical line.
This provides a 684 probability that the true maximum length lies
in the length interval enclesed by the control curves {or. the
computed expected edtreme velue.

In this article, the theory of extreme values was
applied to twe data sets of length values obtained using
diffterent gears. Computations revealed that there iz a 68%
prohability that the true maximum leﬁgth of a R. brachysona lies
in  the interval (26,329 cm, 29.%9°5 cm) for the purse seine data
and 27.248% cmy, I1.0%66 cm) for the trawl net data. Max i mum
lengths of fhia Epgcies found in the literature and using other

methods seem to be underestimated in comparisor.

19
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THE COMPUTER PROGRAM

The procedures discussed in  this article may be
conveniently performed using the computer program provided here.
This program written in BASIC and made for use with an HF 8b
computer provides instructions tor the feilowing: computation of
the parameters o, 1/ . Y and O which are needed for

n rn
computing the line of expected extremes J{(eguation 2 or 2A)

without using the table of these values in Gumbel ‘s moncgraph;
the construction of the line of expected exiremes and control
CLrVEes; the computation of expected extreme. values; and a
graphics section featwing the plotting of observed values, the
theoretical line and the control curves.

This program provides the option of whether & hardcopy

[
of the computed results and the graphics display is desired or

neot. It also allows the creation and retirieval of data and
araphics files. However, all necessary data file= must be

arranged according to size before running the program.
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COMPUTER PROGRAM AND PRINTOUTS



10 REM : THEORET3 — CRSF

20 REM : DATE OF LAST REVISION ». JAJUARY 28, 1788
=0 OFTION EBASE 1

49 DIM OBS{(S00) (FiS00) ,¥ (S00) ,YY (Z000)

50 DIM R (Z000) ,B(2000) , T{Z000) ,MARKX (Z) ,MAREY (3)
H0 1

70 U Axxsgswsn DATA ENMTRY #¥##iesxtiies

80 CLEAR '

90 DISF "ENTER DATA FROM

190 DISF [Klevboard"
110 DISF [Dliskette"
129 DISF ™ CEJxit"

130 DISF & DISF "SELECT OFTIOM ";&@ INFUT OFT#
140 IF OFTE="l" THEN 260 '
150 IF OFTHF="D" THEN Z70Q
1460 IF OFTE="E" THEN 3990
170 GOSUR ERROR
18@aGOTO 20
1!
200 ERROR:
CLEAR .
DIsF "ERROR VM
BEEF 10000, 10000
FETUREM
1
' REYBOARD DATA ENTRY
y DLLEAR @ RECALL=D
DISF "MD. OF OBSERVATIONS "id& INMNFUT NORS
I+ NOR OF MNORSHINT (NOBS) THEN GOSUER ERROR  ELSE 310
BOTO 270 .
FiaR I=1 TO NOBS
DISF YENTER OBSERVATION# "3;I3@ INFUT OBRS{I)
IT0 ONEXT I
Z40 GOTO 490
Do
370 Y READ DATA FROM DISKETTE FILE
80 CLEAR @ RECALL=1
90 DISF "NAME OF FILE TO RECALL "3;@ INFUT FILENAMESF
400 ASSIGNHE 1 TO  FILENAME®
410 FOR I=1 TO 500
4200 READ® 1,1 ; OBRS(I)
470 IF OBS(I)#0O THEN 450
440 NOBS=I~1 @ I=500
450 MEXT I
4560 GASUER 470
470 GOTO 710
480 ! :
490 CLEAR . )
=00 DISF "DO YOU WANT TO PRINT DATA (Y/N) ";@ INMNPUT Y#*
S10 IF ¥YFE="Y" THEN 330
S20 IF Y#="N" THEN 710
S30 GoOsUB ERROR
S40 GOTO 490
550 GUSUBR =70
Se( GOTO 710
570 CLEAR

vt



S80 DISF “FRESS <COMT:» WHENM PRINTER IS READY." @ PAUSE
=00 PRINTER IS 708 :

GO0 IF NOT RECALL THEN &30

&10 PRINT “FILE : ";FILENANES

470 FRINT “ (IMDEX) OERSERVATION

S70 FOR I=1 TO NOBS

S40 IF I=NOEE THEN &0

S50 FRINT " {"3VALE (D)3 ";0BS{D3", ";@ GOTO 670

S&0 FEIMT "{(":;VaLs (1);")";0B5(D)
-

70 MEAT I
550 FOR I=1 TD 7 ® FRINT @ NEXT I
HQU RETURM

3

710 EDIV=0

720 CLEAR

7EiL DISHF "ARE @Li. ENTRIES CORRECT (Y/M) ";@®@ INPUT Y¥.
740 IF Y¥E="Y" THEN 890

7 e IF YE="p" THEM 790

7 —_COSUR ERROR

770 BOTD 720

780

790 EDIT=1 @& CLEAR

QoD DISF "IMDEX OF OBSERVATION TO CORRECT ";@& IMFUT INDEX
IF INDEX<1 OR INMDEX>NORE OR INDEXH#INMNT (INDEX) THEN 790
DISF

DISFE "IMDEL"; IMNDEX:" »» Frevious entry :";0BS{INDEX)
DISF "ERNTER Nz OBIERVATION "j -

INFUT ORS (IMDEXS

B IF NOT RECAIZL THEM 8850

STO OFRINTH 1, INDEX ; OBS(INDEX)

280 GOTO 72O

850 IF NOT EDIT THEN 970

Q00 CLEAR

g1 DISF “DO YOU WANMT TO PRINT EDITED FILE (Y/N) "3;@ INFUT Y#
Sd ) IF YE="Y" THEM 960

oW IF Y&="N" THEM 270

4 GOUR ERROR

QS0 GOTO SO0

@60 GOSUER 570

270 IF RECALL THEN 1140

?30G CLEAR v

290 DISF “DO YOU WANT TO S5AVE ENTRT=S "N} “;@ INPUT Y¥
1000 IF YE="Y" THENM 1040 : )

1010 IF YF="N" THEM 1140

1020 GOSUR ERROR

1070 GOTOD 9849

1040 CLEAR

1050 DISF "MAME OF FILE TO CREATE ":@ INFUT FILENAMES
1060 DBES (NOBS+1) =0

1070 CREATE FILENAMESF,NOBS+1,8

1080 ASSIGN# 1 TO FILENAMES®

1090 FOR I=1 TO NOES+1

1100 PRINT# 1,1 ;3 ORS5(D)

-

i
.l
()



MEXT I

ASSIGHE 1 TO #1130 !

CLEAR ‘

DISF “Computing n % ¥, please wait...." ® BEEF 10,100
COTD COMPFUTE Yn AND n '

B==i) @ =il

FOr 1=1 T3 NORS

FRe L/ (MOBES+1

JR=-L06 (-LOG (RR))

A e

I N R RS R

MEXT 1

He=k A NORE

DA=356R O E-RD/NORE) /A MOBS)
DISF "MEAN Y ValLUE IS5 ",H

|
DISF " SIGMA n VALUE IS ",DA
1

DISE "PRINT ALL RESULTS (Y/NM) ";@& INFUT Y%

IF ygE="y" THEN FRINTER I8 708 & GOTO 1340

IF Y#E="N" THEMN FRINTER IS5 1 @ (OTO 1350

GOSUR ERROR @ GOTO 1300

DISF "FRESS <COMT: WHEN PRINTER IS READY." @ PAUSE

CLEAR @ DISFE "COMPUTING, Flease wait...." @ BEEF 10,1000
REM COMFUTE FLOTTING FOSITIOM {F) AND REDUCED VARIATE (Y)
FRINT

PEINT TAR (93 "LEMGTH"; TAB (193 "FHI (X " TAR (323 y"

FOR T=1 TO NOES

F{Iy=1/(MORS+L)

YLy ==L05 (-LOG (F(I)))
ety FRINT USIMG 1440 3 I,0BS(I),F{I),Y(I)
WNEXT I Co
IMAGE =¥ ,3D,2X,.3D.D,5X,2.4D,4%,DZ.4D
1
i’ FREM : COMPUTE MEAN AND STEANDARD DEVIATION OF OBSERVED VALUES
SUMM , SOUARE=D '

1480 FOR I=1 TO NOES

1490 SUMM=0E3 () +SUMM

1500 SEUARE=0RS (1) 2+S0UARE

1510 NEXT I

1520 !

1530 AVE=SUMM/NOERS

1540 STANDEY=SER ( {(SQUARE-SUMM™2/MNOES) /NOES)
1550 :

1560 REM : COMFUTE 1/ALPHA AMD MU

1570 W=STANDEV/DA

1580 U=aVE-H#W

1590 FPRINT

1600 PRINT

1610 FRINT "Yn = "iH

1620 FRINT "SIGMA n = "3;DA

1670 FRINT "MEAN OF ORSERVED LENGTHS = "j;AVE
1640 FRINT "STANDARD DEVIATION OF ORSERVED LENGTHS = ";STANDEY
1650 PRINT "1/Alpha "W ;

1660 PRINT "Mu "“aU

1670 !

1480 REM : FIND THEORETICAL LINE AMD COMTROL CURVES

i


http:3D.D,5X,Z.4D,4XDZ.4D

15690
1700
171G
1720
177350
1740
1750

L7460

1850
1850
18370
1 Commem
1870
1200
1910
1920
1920
1940
1950
1960
1970
1780
1920
2000
2010
2012
2020
2l
N
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2130
2190
2200
2210

2220

Ko bl e

FRINT

FRINT TAR (83 "LEMGTH";TAR (17)3"FHI{Y) ";TAR (30 ;" "LOW"; AR (40) s "HIGH"

IMAGE 3X,3D,2%X,30.0,3X,DZ.4D,3%X,2ZD,.4D,3X,ZD. 4D

X=0BS (1) @ I=1 ‘
YY (D) =13 (XL ! REDUCED YaRIATE
RII)=EXF (-EXF (~-¥Y(I))) ! THEQRETICAL CUMULATIVE FREG
J=EXF (=YY {(l)y—~EXF (=YY {I))» ! FIRST DOCRIVATIVE OF R
M=80R (RiOIy= (3 -ROL)OY /A0 ! STANDARD ERROR#IL
L=l s S (NOBRDY ! STAMDARD ERROR FOiR CONTROL CURVES
B(I)=3X-—-L ! LOWER FOINT (CONTROL CURVE)
TIY=d+L UFFER FOINT (COMTROL CURWVE)
FRINT USIMG 1710 3 I,X,¥YYiI)y BOLD),T{L:
IF Y¥{l)>7 THEN 1830
X=X+ 5 @ =11
GOTD 1734

i

LAST=I1

VosswReddady EXPECTED EXTREMES #4f&skigar

BIGF=1-1/NOBS :

YEXT=—-L0OG (—-L0OG (BIGF))

KEAT=U+YELT b

SMALLF=EXF {(~YEXT-EXP (~YEXT)

SIGMAL=50R (RIGF*{1-RIGF)) /SHMALLF

SIGHMACC=5TIGMAL =W/ D0R  (NOBS)

LOWER=XEXT-5IGMACC @ UFFER=XEXT-+SIGMALCC

DISF "EXFPECTED EXTREME VALUE IS ", XEXT

DISF "LOWER FOINT OF CONTROL CURVE FOR EXFECTED EXTREME 15 " ,LOWER

DISF "UFPER FLINT OF CONTROL CURVE FOR EXPECTED EXTREME IS " ,UFFER

LigF

DISF "DOD YOU WaNT TO PRINT THESE RESULTS (Y/N) "i@ INFUT Y&

IF YE="Y" THEN FPRIMTER IZ 708 @ 0OTJO 2020

IF Y&="N" THEM 2030 :

GOSUB ERROR

FRINT @ PRIMT

FRINT. "EXFECTED EXTREME VALUE = "3iXEXT

FRINT "LOWER FOINT OF CONTROL CURVE FOR EXFECTED EXTREME " LOWER

PRINT "UFFER FOINT OF CONTROL CURVE FOR EXFECTED EXTREME = "j;UFFER

DISF @ DISF "Fress “CCNT» to proceed." @ FAUSE

| dad %% 5%%% PLOT CURVES ##% %% % %% %% &%

[}

GRAFHALL

LIMIT ©,171,0,75.2

I

LOCATE 2Z0,222,15,97

RAISE=1

IF FP (DOBS(1))=0 THEN 2130

YMIN=0RS (1)—~FF (OES(1})) @ G0OTO 21460

YMIN=0ES5 (1)

IF FF -(ORS(NORS) )Y =0 THEN 2180

YMAX=0RS {NDES) -FF (OBS (NOEBS)Y ) +5 @ GOTO 2120

YMAX=0R3 (NOES) +5 o

CUT=0 @ INC=1

IF YMAX< 100 THEM 2300

CuT=1 :

FOR I=10 T 100000 STERF 10 ! REDUCE EBIG NUMBERS:


http:YEXT=-L.OG

2450
2460
2441
24862
2483
2464
HAT0
=480
2490
2495
2500
2510
A
el
2840
=850
2860
2870
2380
2820
2910
2920
2930
2940
2950
2960
2APT7C
2980
2990
000

RINRES

EXFCUT=YMAX/I ,
IF EXFCUT>100 THEN 2260 , .

RAISE=I & I=100000 ! RAISE > [Mol % RAISE
NEXT I

YMAX=YMAX/RAISE @ INC=5 ! SET Y-INCREMENT TO 5
YMAX=INT (YMAX/10)*10+10 ! NEW Y-MAXIMUM

YMIN=O ! NEW Y=MINMIMUM

QCALE -2,7,YMIN, YMAX '

XAXIS YMIM,.5,-2,7

IF CUT THEN 2340 _

YAXIS -2,1,YMIN,YMAX @ GOTO 2I50

YAXIS -2, INC,YMIN,YMAX

' X-AXIS TIC LABELS
LOCATE 20,222,0,15
SCALE ~-2,7,0,10
CSIZE T & LORG S
FOR X=-2 TO 7
MOVE X,9 :
LABEL VAL¥ (X)
MEXT X
DAaTA -1.92,.001,-1.53,.01,-.83,.1
DATA -.48,.2,-.19,.3,.09,.4,.37,.5
DATA . &87,.6,1.03,.7,1.5,.8,2.25,.9
DATA 5.2,.95,5.49,.97,3.9,.98,4.6,.99
DATA 5.3,.995,56,.9975.6.9,.999
CSIZE Z.9 _
FOR I=1 TO 18 ,
READ ~,B@ MOVE A,7 @ LABEL "
MOVE A,4 @ LABEL VAL$ (E)
NEXT I '

! X-AXIS TITLE
CSIZE 4 @ LORG 2
MOVE 0,1
LABEL "UFFER SCALE: - vy LOWER SCALE: I (y)y ™
i
!
I Y-AXIS TIC LAEELS
LOCATE 20,222,15,97
SCALE —-2,7,YMIM, YMAX
CSIZE 4
FOR Y=YMIM TO YMAX STEF INC
MOVE -2.2,Y
LABEL VALF (V)
NEXT Y
|

! Y-AXIS TITLE


http:67,.6,1.03,.7,1.5,.8,2.25

MID=(YMIN+YMAX) /2 ! FIND MIDDLE FOINT OF Y-AXIS
DEG @ CSIZE 3 !
LORG S @ LDIR 90 !
ZOS0 MOVE -2.73,MID
T06G LAREL "LENGTH (cm)"
Z070 | REDUCE DATA
080 FOR I=1 TO MOES
Zo90 OBS (1)=0BS{1) /RAISE
100 NEXT I
Tiin !
-
' FLOT LENGTHS
FOR I=1 TG MOES
IF I#1 THEN 317u
MOVE Y(I),0BS(I) @ S0T0 3180
DRAW Y (I),0BS(1)
NEXT I
LDIR O @ CSIZE 4
CFLOT THEORETICAL LINE
¥=0BS (1) *RAISE
FOR JOANMA=1 TO LAST
IF ¥Y (JOANNA) <=2 THEN 3250
START=JOANNA @ JOANNA=LAST & GOTO 32460
X=X+, 5
NEXT JOAMNA
Ok =0
LINE TYFE 5
FOR I=START TO LAST
IF THSTART THEN 3320
MDVE YY(1),{/RAISE @ GOTOD 3IT&0
DRAW YY(I) ,X/RAISE
IF ¥YY{I)54.5 THEN 3360
IIA0 IF Ok THEN 3360
IIH0 MARKX (1)=YY(I) @ MAREY (1)=X/RAISE @ OK=1

'.] 'Z) A=%+.5
0 NEXT I
i

3380

A0 ' PLOT COMTROL CURVES
400 ! ~ lower curve first

3410 X=0BS(1)
2420 FOR JOANMA=1 TO LAST
. 3430 IF ROJOANNAY <. 15 THEN 24350 -
T440 FIRST=JOANNA @ JOAMMA=LAST @ GOTD 3440
FI450 X=X+.3
3460 NEXT JOANNA
3470 0OkE=0
2480 LINE TYFE =
Z4%0 FOR I=FIRST TO LAST
3500 IF I#FIRST THEN IZ8Z0
510 MOVE YY(I),R(I)/RAISE @ GOTOD I360
3520 DRAW YY(D) ,B(I1)/RAIBE
I530 IF R(D)4.9 THEN 3570
3540 IF Ok THEM 33460 A
TH50 MARKX (2)=YY(I) @ MARKY(Z)=B(I)/RAISE @ Ok=1

2

N N i


http:R(JOANNA)<.15

3360
3570
3530

sl = i
iwidn)

S&HO0

SHE10
R&ED
RETD

ZH30

nd
g

J800
810
H820
T8I0
IR40
3850

-
R

Fao
870
2880
890
TR00
TP
Tt
3230
E940
3950
I960
AP70
3980
2990
4000
4010
4020

' — upper curve

FOR I=FIRST TQ LAST

IF IHFIRST THEM Z&ZE0 :
MOVE YY (1), T(1:/RAIBE @ B0TA 3670
DRAW ¥Y (I, T{I)/RAISE

IF ROD)<.9 THEM 2980

IF Ok THEM Z670

PMEFEY (S =¥y (1) @ MARKY (T)=T(1)/RAISE €@ Ok=1

A=k S
MEXT I
!

' LAREL FLOTS

FOR =1 TO =

READ Ak

MOVE MEREX (17 MAREY (1) @ LABEL A#F
MEXT I

DaTA "Theeretical”, "R, "TH

GSTORE "GRAFSAVE® :

FHLFHE

ClLLEAR & REEF

DISF "DO YOU WANT A HARD-COFY OF THE GRAFH
IF yx="Y" THEM Z8ZI0

IF Y&="N" THEN 3840

GOSUE ERROR @ GOTO Z780
DUMFBRAF=1 @ GOTO 3850

DUMFPGRARF=0

CLEASR @ PRIMTER IS 708

DISF "Flease wait...." @ BEEF 10,100
GLOAD "GRAFSAVE"

IF MOT DUMFGRAF THEM 3910

DUMF GRAFHICS 0,0,0,1

GOTO =940 ‘

LOCATE Z20,Z22,0,29

SCALE 1,10,1,10

(Y/7ND)

";@ INFUT Y#

MOVE 3,8 @ LABEL "»:» FRESS «<CONT» TO FROCEED." @ FAUSE

ALFHA @ CLEAR
: A

BEEEF 10000, 10000
RESTORE @ GOTO 70
1

REM : END FROGRAM
GLOAD "VCSJ" -
EEEF 10,1000

END



FILE : R brach
(INDEX) ORSERVA
(1) 18.5 , D
22 4y (10) =
SR2E o, LT

2a o, (@5

LENGTH
1 19.5

2 21.0
30215
4 22,0
5 RR.0
& 22,0

T 10N
21, G

(11) 22

(18 wm

PRI (X
0, OFLE
0. 062
0. 09358
0. 1250
0. 1567
0. 1875
0. 2168

0 500

0. 2813
0. 31ES
0. 54338
=T
0. 4067
O, 4775
0. 4668
0, 5000
0. HELT
0. 5625
0. 5938
0O, HE50
0. 656
0. 6875
0.7188
0, 7500
0.7813
0.B125
0. 8438
0. 8750
0. 9067
0.9T75

0.9688

. )
W CLED

19y 24
27y 24

Y
~1.2429
-1.0198
-0, 8617
~ 0. 7TE2L
~C, 6184
S IR B
-, 4184
V. AR08
=), 78
-0, 1511
=0, 0654
L 0,.0194
0. 1045
0. 1903
0. 2775
0. 5665
0. 4580
0, 5528
O.6314
Q. 7550
O.84646
0.981&
1.1079
1.2459
1.3989
1.5720

1.7726
2.01354
2.3183

2.740%

3.4499

Yn = LHI7127875994

F16MA n =
MEAN OF O
STANDARD
1/Alpha

Mu =

i

1.11891681014

RSERVED LENGTHS = 23.25880645161

DEVIATION OF ORSERVED LENGTHS
1.6529:5872529
22.EBO9ET 607

(b) 2R
25, (1d)

24,

Db

77348



SO B R

v.—t
» 00

EXFECTED EXTREME

LENGTH
18.5
19.0

19.5
20,0
20,5

21.6

2105

FHI (Y)

-8 E787
=2 Q708
~1.7&43%
-1.4581
~1.15%19
~0. 8457

0. \)/‘O
O ”)1

('))L) l =
-q/7

4L he6EY
L9720

0.2782
S58B4 4

n
H
.

8906

~ O o
N

i

'*L

l__.

& :
/ll/|

VALUE

LOWER FOINT OF CONTROL
FOINT OF CONTROL

UPFER

CURVE FOR
CURVE

LD
[ 2. D&EY
17.0515
18.5710
19.41806
20,0587
20,6164
21,1350
21,6202
221093

575D

24,707
25,0870
28, 44358

ey R Byl miel iy
25,7750

2éH, 0785

PSRRI S
26,5789

Bo.7E4E

26,8977
Db DG T
2. 9704
26. B985
T 7099
2h. 4189
25 DG T
2. 4018
24 6EFO
2. 7087

HIGH
24,4571
20,9485
20, 4290
20,9812
200924175
1. ERT4
: .B)ﬂ)
2698
gy07
4248
L7710

2705564

Ty \Ill_

rapr

Q\lw

L 0R94
EG. 1115
A 2901
%7, 5811
AL 00OEE
40, 5787
42,3310
44 2917

27.9617595628

EXFECTED EXTREME
FOR EXPECTED EXTREME

i

H]

26.3287476858
29.594771442






71
oy

s
)

[oR y ]
=
2L

L1970
0. 2045
l") . '._l 9170 1

2197

QL2727

0.4 1 (:
0, 4340

0, 4594
04470
O 4545

0. 4621
0. 44697
L4775
0. 4844
Q. 4924
), 5000

[ R AN

0,507 4

0, qés( 1h
0, 536832

0y, B
-, 48618

0. ARG
0y, 4157

=),
.
-0,

~0. 2618
~~~~~ Q. 2405
----- L2195
Dl 1982

f.:).l)/()'-/
(:),(J‘)[ 4y

0, 153k

0. EHEE
0. 884

O '7()4



74
77
7Te
76
20
a1
8
83
84
85

a6

Q7

36

i

Q0

91

Q2

Qo

Q4
’?5

Db

97

28

59
100
101
102
107
104
105
106
107
108
109
110
111
11%
1173
114
115
116
117
118
119
120
1221
122

oy
L a e

124

125

126
127
128
129
13E0
131

0, 5758

» [0

'

R

5O
E0Y

RS 1

0. 86061

L1356

AP
bH&HLT
&H74%
&818
HE9 4
HQT70
7045
712
7197
7TETE
7348
7424
7500
ey

T HSHL
T7ET
70N
VA VA
7R
SO0
8106

giregs

Gane
FAER
o)

BAU,

8445

8iéd]
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