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Abstract 

This pap.;r discusses in details several important aspects of contemporary 
production theory and its relationship to neoclassical theory. In particular, it provides a 
detailed presentation of fundamentals of duality, multiproduct cost functions, elasticity of 
substitution between input pairs in its various forms, production factors functional 
separability, functional forms, and the concept of factor price frontier. The approaches 
outlined in this paper have applications to studies conducted for entire regions or 
countries, but is also applicable to studies conducted on data from farm records for 
individual firms. 



CONTEMPORARY PRODUCTION THEORY:
 
ITS IMPORTANCE IN AGRICULTURAL RESEARCH
 

I. Fundamentals of Duality 

Agricultural economists are perhaps most familiar with the concept of duality as it 

relates to linear programming models. In these models, duality refers to the fact that any 

linear programming model can be expressed either as a maximization (minimization) 

problem, the primal, or a corresponding minimization (maximization) problem, the dua, 

subject to appropriate linear constraints. The key characteristic of this dual relationship is 

that all the information about the solution to the primal may be obtained from the corre­

sponding dual. Thus, by solving the dual problem all the information regarding its solution 

may be obtained without resolving the primal problem itself. Contemporary production 

theory focuses on the conditions under which a dual relationship may exist between produc­

tion functitos and cost fumctions. 

Before returning to dual tleory, let us digress for a moment to consider the function 

concept. This concept is one of the most important ideas of mathematics. Intuitively, we 

can characterize a function (0 as a rule which, given certain objects (arguments), will 

determine an object corresponding to them (value). Esseaitial to a function is the unique­

ness of the relationship it expresses between the argument (x) and value (y). Every 

argument of a function must be given one and only one value by 'the function. Different 

types of functions may be defined, for instance, "squaring" and "doubling" are functions 

taking positive integers into positive integers; the result of squaring a positie integer (n) 

is (n2), and the result of doubling it is (2n). Another example is the relationship between 
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factor inputs used by a farmer and the amount produced of its output is also functional, 

since to produce one unit of output the farmer needs to use some combination of the factor 

inputs. A farmer's production normally requires more than one argument (say land, seeds, 

fertilizer, etc.). This is an example of n-arguments functions. 

Traditionally, people were content to think of functions as a pictorial, geometrical 

concept. This concept of functionality appeared to be too narrow. For instance, it does not 

allow one to handle discontinuities. Thus, mathematicians have tendcA to move away from 

the pictorial, geometrical concept of functions to a more set-theoretical characterization. 

Under this new approach a function may be derived by simply identifying it with its corre­

sponding graph.' Generalizing these ideas, and making them explicit, we may define a 

function as follows: 

Let X and Z be sets. A function from X to Z (or a function with domain X and 
range Z) is a subset of the Cartesian Product XZ, such that for all x E X, there is 
a urique member z E Z such that the ordered pair <xz> E f. 

You may have noticed it is inessential that the range Z of a function f from X to Z 

be exhausted.2 In the case where the range is exhausted, mathematicians often speak of 

f as being a function from x onto z. On the other hand, when the range is not exhausted 

A graph of a function is a set of points in the Cartesian plane, which, in turn, is 

defined as thz set R2 of ordered pairs of real numbers. 

The range of a function is exhausted when there may be members of z E Z such 

that for all x E X, f(x) = z. In other words, every value of a function F is the 
image Z of only one argument X. 
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they speak of f as being a function from X into Z. 

Notice that every value of a function need not be the image of only one argument. 

For instance take the function of squaring on the positive and non-positive integers. Every 

integer has a unique square, but not every square is the result of squaring only one integer. 

The number 4, for example, i: the result of squaring either 2 or -2. This function does not 

have the property of being reversible. Many interesting functions, however, do have this 

property of "reversibility"; such functions are said to be one-to-one (or to be bijections). 

The one-to-one function concept is relevant in duality theory. Duality, used in this 

context, means that all the information needed to derive a production function is contained 

in its corresponding optimal cost function, or viceversa. The necessary condition for a dual 

relationship between production and cost functions is that both be one-to-one functions. If 

both functions are monotonically increasing in their arguments then the necessary condition 

for these functions is immediately held. Notice, that the familiar neoclassi,'al three-stage 

production function i.c, not one-to-one, becau-e two values of factors' vector correspond to 

at least sorn. value of output. Only the firsi-stage of the neoclassical production function 

is relevant in duality theory because at this stage it is monotonically increasing in its 

arguments. 

In a single factor setting, the duality of the production and the corresponding cost 

function is relatively simple. In such a case, we can characterize a production function (f) 

as a ruie which relates inputs of factors (x) t. the maximal output levels (y). That is 

y=Ax) (1) 

If () is a one-to-one type (that is to say, every value of the function f(x) is the image 
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of only one argument), and its inverse exists, then the corresponding cost function expressed 

in physical terms is the inverse of the production function (1): 

X=f(y),(2) 

where fV is the inverse of t" 

A simple example is the production function y=x. The corresponding dual cost 

function expressed in physical terms is x=y"1. All the information with respect to the 

parameter (b) of the production function is obtained from the corresponding dual cost 

function. Cost functions are usually expressed in dollar, rather than in physical terms. 

Under constant input price (p,) assumption the cost function, expressed in dollar terms, is: 

(3)p;X Nf(y) 

An important condition derived from duality theory is that, if any point on a single 

production function represents a technical maximum output (y) for a specific level of input 

use (x) associated with that point, then each point on the inverse cst function is optimal. 

That is, this point represents the lowest cost method of producing specific amount of output 

associated with the chosen point. 

Notice, that if the underlying production function is not always monotonically 

increasing, the dual cost is not a one-to-one function. Thus, a point on the dual cost 

function is not necessarily a least cost point for the chosen level of output. 

In a multifactor setting, the duality of the production function and its corresponding 

cost function becomes more complicated. McFadden (1978) specifies the production 
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function's set conditions under which the corresponding dual cost function can exist. These 

conditions are: 

1. 	 non-negative marginal products of the inputs. The non-negativity implies free 

disposal of inputs. This assumption implies that if there is some input vector, 

denoted as x', which can produce some output vector called y', then a second bundle 

called x", which is at least as large as x', the x" can also produce y'. One implication 

of this assumption is that the isoquant maps consisting of concentric rings are ruled 

out, and that positively sloped isoquants are not allowed. 

2. 	 non-increasing marginal rates of substitution between input pairs. That is, in the 

two factor case, d(dx/dxa is 
dx' 

non-positive. This implies that each isoquant is weakly convex to the origin. 

If conditions (1) and (2) are met, then the minimum cost function corresponding to 

the production function will have the following properties.3 It: 

i. 	 exists; 

ii. 	 is continuous; 

iii. 	 is non-decreasing for each price in the input price vector; 

iv. 	 is homogeneous of degree one in all variable input prices; implying that if all input 

prices double, so will all total variable costs; and 

v. 	 is concave in each input price for a given level of output (y). 

3 Detailed proof of these properties can be found in McFadden (1978, pp. 10-13). 
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A key characteristic of a particular class of production functions, known as homo­

thetic production function, is that a line of constant slope (isocline) drawn from the origin 

of the corresponding isoquant map will connect points of the same slope. Here, the ratio 

of the factors remain fixed or constant, independent of the level of the output. The isocline 

represents the least cost combination of inputs, at given factor prices, at which the produc­

tion level may be expanded, i.e., the expansion path factor beam The production surface 

arising above this expansion path represents the minimum cost of producing a given level 

of output. The production function represented by the expansion path conditions (y ) along 

the isocline in an n-input setting can be written as: 

(4)y'0=AX ), 

where x=[x, ... , x j the least cost quantities of Xb ...x. The cost function that is dual to 

equation 4 (hereafter called the indirect cost function) can be obtained by making use of 

the expansion path conditions, and can be written as: 

C*=g(py (5) 

where C *is the least cost method of producing the output level y as defined by the expan­

sion path conditions, given inputs price vector p. 4 The Marginal cost associated with the 

least cost marginal cost is: 

MC±-dC " (6)
dy* 

while the average cost associated with the least cost factor beam is 

4 For an example of this method see Appendix A. 
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.AC*=- (7)
y" 

The ratio of marginal to average cost along -the least cost factor beam, or the dual 

cost elasticity *"that applies to the expansion path condition is: 

S-, (8) 

where E is the returns to scale parameter, or function coefficient for the underlying produc­

tion function for the output arising from the least cost condition of inputs along the 

expansion path factor beam. If the total product along the expansion path is increasing at 

a decreasing, increasing, or constant rate, then costs are increasing at a decreasing, increas­

ing, or constant rate, respectively. 

Under competitive markets, the output price is a constant marginal revenue (MR). 

It will be equal to the least marginal cost (MC'), only if MC* is increasing with fixed input 

prices and primal production function is homogeneous. 

The profit function representing the least cost method of generating a specific 

amount of profit (the indirect profit function), which corresponds to the dual cost function 

can be written as: 

71*=TR*-C', (9) 

where TR represents total revenue of selling y', and C represents the indirect cost function 

of producing y'. 
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Duality Theorems 

The most famous theorems related to duality are Hotellings lemma and Shephard's 

lemma. Both are specific applications of a mathematical theorem known as the envelope 

theorem. The envelope theorem, and the proofs of Hotelling's lemma, and Shephard's 

lemma are provided in Appendix B. 

Shephard's lemma. Shephard's lemma states that a change in cost for the least 

(optimal) cost function with respect to the change in the price of the ith factor, evaluated 

at any particular level is equal to the ith factor that is used. More formally 

=C. (10) 

Hotelling's lemma. It states that a change in the indirect profit function arising from 

the output expansion path with respect to the kth product price (qk) is equal to the optimal 

quantity of the kth output that is produced. That is 

--- =yk. (11)
aqk Y 

Hotelling's lemma may also be applied to the factor side of production. It states that 

the change in the indirect profit function with respect to a change in the jth factor price is 

equal to the negative of the optimal quantity of the jth input as indicated by the factor 

expansion path condition. Thus we may write 
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a2t*= -X; (12)
8Iq1 

Shephard's and Hotelling's lemmas are of considerable importance for empirical 

research. If the firm is operating according to the assumptions embodied in the expansion 

path conditions on both the factor and product sides, then product supply and factor demand 

equations can be obtained without any need of estimating the production function from 

physical input data. 



II. The Cost Function, Scale and Scope Economies in Multiproduct Firms 

The cost function is the single most useful tool in studying the economic behavior of 

a firm. Recent advances in duality theory and in empirical analysis techniques have guided 

economists away from the difficult task of directly estimating technological relationships 

(production functions and multi-output transformation functions) and toward the estimation 

of cost function. 

First generation of cost function estimation studies virtually all dealt with single­

output production, because the investigator either were attempting to provide useful 

simplification, or they did not recognize, or care to focus on the policies that arise only in 

the presence of multi-output production. Later, some investigators attempted to consider 

the presence of multi-output production by aggregating, in a fixed proportion, the different 

outputs of the firms into a single scalar measure over which costs of production may be 

"averaged". By doing so, in essence, these studies revert to the single-product case. 

A simple example will provide more light on these arguments. Let us assume that 

the true cost relationship for an industry producing n different products, yi(i = 1,...,n), is given 

by 

C(Yj," ",Yn)" (13) 

Let us define an aggregate "scalar output" as 
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(i4) 
L-1 

where ai is the fixed output proportion of the aggregate scalar output. The estimation of 

the parameters of the associated scalar-output cost function implicitly requires the imposi­

tion of the following functional form: 

= ' (15) 

The imposition of these functional form implicitly assumes strong separability' on 

its arguments. However, if this assumption does not hold then serious statistical biases will 

be introduced, rendering suspect any inference derived from equation (15). 

Recent advances in industrial organization theory suggest that econometric examina­

tion of multi-product cost functions may yield insights into market structure and perfor­

mance. 6 The replacement of a single measure of firm output by a set of disaggregated mea­

sures may substantially eliminate specification error. This should lead to more accurate 

estimates of the parameters of the aggregate scalar-output cost function. In addition, multi­

product cost function estimates may be useful for answering additional questions concerning 

economies of scale, cost complementarities, economies of scope, natural monopoly, and 

optimal product mix. 

The aim of this section is two fold. First, it attempts to discuss some properties of 

cost functions related with the single-product (or aggregate scalar product) industry. 

For details of separability concept see section below.
 

See Baumol, Panzar & Willig (1982) for an extensive discussion of these advances.
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Secondly, it embarks upon the quest for multi-product cost concepts that yield insight into 

multi-product properties both analogous and with no counterpart to those cost concepts of 

single-product case. 

1. Single (or Aggregate Scalar) Product Cost Function Characteristics 

Before starting the formal analysis of different cost concepts, it is importante to 

define one of the most basic cost concept: 

Subadditivity 

Let y' be the amount of the single-output produced by ith firm. A cost function is 
subadditive at total output y(= B if it is more expensive for two or more firms to 
produce y than it is for a single firm to do so. 

In other words, the cost of producing the whole is less than the sum of the costs of produc­

ing the parts. More formally, 

k 

Subadditivity may be considered a local concept in the sense that costs may be 

subadditive to one output level, but riot necessarily at another. However, when we want to 

determine whether costs are subadditive at a particular output level (y ), we require a global 

concept of subadditivity. in this case, it is necessary to know the behavior of costs at other 

levels of operation below than those currently observed. That is, to know whether single­

firm production of y" is (or is not) cheaper to produce than any combination of smaller 

firms, one must know the magnitudes of the costs that would be incurred by any of the 
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smaller firms. Mere formally, it is necessary ascertain 

k 

C(y *)<E C(y , for every y *<y. 	 (17) 
i-1 

An important derivation from subadditivity concept, in the single-output case, is the 

natural monopoly concept. 

Natural Monopoly 

An industry is said to be a natural monopoly, in the single-output case, if over the 
entire relevant range of output the firm's cost s subadditive. 

Average Cost (AC)
 

In the single-output case, average cost is defined by
 

AC(y)= 	 Q Y) .  (18)
Y 

Marginal Cost (MC) 

In this case marginal cost is formally defined as 

M(y) - ac(y) 	 (19)0y 

Baumol, Panzar & Willig (1982) have demonstrated the following propositions: 

1. 	 declining marginal costs through y imply declining average costs, however, the 

converse is not true. Note in Figure (1) that marginal cost is rising between v and 
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w, despite a declining average cost, 

2. declining average cost implies subadditivity, but the converse is not true.7 

ALC 

I I 
I I 
I II I 
I I 

0 v wy 

Figure 1 Average and Marginal Cost Curves in Single-Output Case. 

(a) Traditional Returns to Scale Concept. Traditionally, returns to scale has been 

easily defined for homogeneous production function (Henderson & Quandt, 1971). Returns 

to scale are present, in this context, when an a-fold proportional increase in every input 

quantity (x) yields an acincrease in output. For instance, in the single-output two-input case 

where k is a constant, and alpha is any positive real number. Returns to scale are increasing 

7 For a proof of this argument see BPW (1982); pp. 19-20. 
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I4cx 1,aX2)= akl X1,X2), (20) 

if k> 1,constant if k= 1,and decreasing if k < 1. This definition of increasing returns to scale 

or economies of scale (i.e., k > 1) is impling that average cost will decline through output y. 

The reason is straightforward. If one wishes to increase any output y"by the factor ak 

(k> 1), the cheapest way to do so need not to be a proportionate increase in all inputs. 

Thus, even if average cost does not fall when output is increased by expanding all inputs 

pro.portionately, it may nevertheless fall when output is expanded in the most efficient 

manner, changing input proportions if appropriate. Under this definition economies of scale 

through output y imply that average cost will decline through output y, but not viceversa. 

If one wishes to increase a given level of output (y ) by the factor c the cheapest way to do 

so need not to be a proportionate increase in all inputs, it may fall when output is expanded 

by changing input proportions if appropriate, as well. 

The ambiguities established above has been avoided by using a most recent definition 

of scale economies provided by BPW: 

(b) Non-Traditional Returns to Scale Concept The degree of returns to scale at 

y is given by the following relationship: 

S= Cy) _AC y) (21)
yMC(y) MC(y) 

Returns to scale are increasing, constant, or decreasing as S is greater than, equal to, or less 

than unity. S corresponds to the output elasticity of output at y with respect to the cost 
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incurred to produce it; S = dlny/dlnC(y). S is also the elasticity of output with respect to 

the cost of a proportionate expansion in all inputs, from any combination of input levels that 

is efficient for the production of y. 

2. Multi-Product Cost Function Characteristics. 

Some multi-output cost functions characteristics, such as ray average costs (RAG) and 

returns to scale, proceed in the same way for a single-output cost function. Moreover, other 

multi-output cost characteristics such as average incremental costs, product specific returns 

to scale, and economics of scope are multiproduct cost characteristics with no counterpart 

in the single-output cost case. 

Ray average cost and returns to scaes definition are based in the existence of a 

composite commodity. A composite good may be constructed by considering in an arbitrary 

way, the proportion in which the different products will be combined. Next, one must 

decide on the quantity of the bundle that will represent the value unity of the products, and 

thus one may measure the absolute quantity of the composite good. 

Ray average cost (RAC) 

Ray average cost of producing t units of the composite good y is defined to be 

RAC (Iyo) =C .tO (22) 
t 

Geometrically, the ray average cost is measured by the slope of the line from the origin to 
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tin 

Figure 2 Ray Average Cost Curve. 

any point on the cost surface (OC) along the ray (OR) (see Figure 2). In Figure 2 we see 

that the RAC and the total cost curves along ray OR have the usual relationships. They 

intersect at the unit level y° and RAC reaches its minimum at the output y =y, at which the 

ray OT is tangent to the total cost surface in the hyperplane erected on OR. 

The RAC and multi-product returns to scale concepts relate to the proportional 

changes in the quantities in the entire product set. However, the magnitude of a firm 

operation may also change through variations ir. the output of one product holding the 

quantities of the other products constant. The cost of such variation may be considered as 

the incremental cost of ith product. 
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Incremental Cost 

The incremental cost of the product i at y is 

IC,=C(y)-C(yN_), (23) 

where YN-1 is a vector with zero component in place yj and components equal to those 
of y for the remaining products. 

Having defined incremental cost we can then define average incremental costs. 

Average incremental cost (AIC).
 

The average of incremental cost of product i is
 

AIC(y) =IC,(Y) (24) 

Geometrically, this cost datum is found from the cross section of cost surface along portion 

of output surface (such as ST in Figure 3) that parallels to the axis for product y2. In Figure 

3 T = (y *"y')is a given output vector, S is the corresponding output vector on the y Iaxis at 

which yj has been held the same as at the point T, but Y2 has been reduced to zero. If 

product 2 has no output-specific fixed costs, then the total cost surface rises continuously 

above ST (curve AE). The height CE in Figure 3 measures the total incremental cost of 

product 2 at output vector T. The average incremental cost of product z, AICly'yfry, is 

clearly given by the slope of the line from S to any point on the cost surface AE along the 

output surface ST. 

It is clear that the average incremental cost of product 2 in Figure 3 are declining 

through y2, at least between 0 and y 2. This suggests, by analogy to the single-output case, 
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the concept of product-specific scale economies. 

0 

Figure 3 Average Incremental Cost. 

Product-specific returns to scale The degree of scale economies specific to product 

i at output vector y is given by 

SAy) IC/y)_ AC 1 (25) 
Y~c 1 .3/8y, 

Returns to the scale of the product i at y are said to be increasing, decreasing, or constant 

if S(y) is greater than, less than, or equal to unity, respectively. 

In order to complete our definition of RAC, we still must select the unit of output 
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(y) for the composite good. Baumol, Panzar, and Willig find it useful to define the unit of 

output along each ray in terms of the distance from the origin to the unit simplex along that 

ray. Here the unit of simplex is given by 

y 0 i Yi=. (26) 

It is represented in Figure 2 by the 450 line with endpoints (1,0) and (0,1) on the axis. Then, 

the RAC(y) of producing the output vector y 0 may be defined as 

RAC(y)=y) , (27)(27) 
i-I
 

Ray average cost is said to be increasing (decreasing) at y if RAC(ty) is an increasing 

(decreasing) function of the scalar t, at t = 1. RAC is said to be minimized at y if 

RAC(y)<RAC(ty), for all positive tol. (28) 

Multi-product overall returns to scale 

The degree of scale economies defined over the entire product set, N= {1,...,n}, at 
y, is given by 

s-Co,) - Co,)
SN=Y(y) QV) (29) 

where C(y) -=C(y)/y. Returns to scale are said to be increasing, constant, or 

decreasing as SN is greater than, equal to, or less than unity, respectively. 

The degree of economies of scale and the elasticity of RAC(ty) with respect to t, (e), at the 

output point y are related by the following relationship 
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1 	 30)
1+e 

Thus, 	returns to scale at the point y are increasing, decreasing, or locally constant 

(SN> 1,SN< 1 ,SN= 1, respectively) as (e) is negative, positive, or zero, respectively. 

Increasing multi-product returns to scale concept is strongest than declining RAC at 

y, because, it implies that RAC is decreasing at y. However, the converse is not tiue. for the 

same reason as in the scalar case. For example, decreasing RAC at y does not imply that 

there must be increasing returns at y: RAC(ty) may be strictly declining at t = 1 without 

having a negative derivative there. We can easily produce a natural multiproduct extension 

of our measure of product-specific returns to scale for the scalar case. The degree of scale 

economies specific to the product set T, subset of N, at y is given by 

c,(y)
 
MY)-	 E YA ) (31) 

jeT 

where ICT=C(y)-C(YN.T), with YN-T being a vector with zero components associated with the 

products in T and components equal in value to those of y for products in N-T (note that 

Y=YT+yN-T). We can also state 

1 
S ' (32)

1+e T 

where 	eT is the elasticity of average incremental cost of y for products in t. 

Next, we shall describe the behavior of the cost surface along portions of output 

space that cut diagonally from one axis to another. In this case, we are considering the 
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possibility that cost savings may result from simultaneous production of several different 

outputs in a single enterprise, as contrasted with their production in isolation, each by its 

own specialized firm. That is, there may exist economies resulting from the scope of the 

firm's operation. 

Economies of scope 

Let P= {Tb...,T} denote a non-trivial partition of S subset of N. That is, UTj=S,
TinTj=0 for i 9j, Ti, 0, and k> 1. There are economies of scope at y. with respect 
to the partition P if 

E. 
k 

C(y j)>CN-) (33) 

If the inequality is reverted we may talk about diseconomies of scope 

Geometrically, the concept involves a comparison of C(y,0) +C(0,y 2) in Figure 4, 

the sum of the heights of the cost surface over the corresponding points on the axis, with 

C(y1,y2), the height of the cost surface at the point (Yl,Y 2'), which is the vector sum of 

(0,yl) and (,y2). In Figure 4 the height of D above (Yl,Y2') must equal C(yl,0)+C(0,y 2).8 

The degree of economies of scope at y relative to the product set TI may be defined more 

formally as 

Since the hyperplane may be described bi, 

C=ay +by2 

where a and b are parameters. Therefore, 

C(y1,0)=ay, and C(y2 ,0)=by2. 

Then, C(y1,y2) must be less than ay1"+by2"for economies of scope to hold. 
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10r 

Figure 4 Economies of Scope. 

SCr(Y) = [C(Yr) +C(YN-r) -C(Y)] (34)
C(y) 



III. The Elasticity of Substitution 

The elasticity of substitution is a pure number that indicates the extent to which one 

input substitutes for another and hence indicates the shape of an isoquant according to the 

"usual"definition (Henderson and Quandt). The elasticity of substitution can be represented 

by the ratio of two percentages. Many expressions for the elasticity of substitution between 

two pair of factors has been widely discussed in the economic literature. In what follows 

we shall study the elasticity of substitution between pair of factors in two different setting. 

The two-factor setting and the n-factor setting. 

Elasticity of Substitution in the Two-Factor Case 

Suppose that there are two inputs, x1 and x2. The elasticity of substitution between 

x1 and x2 is usually defines as 

percent change in (X) (35) 
(7= 

percent change in MRSxZt 

where MRSxjx2 represents the marginal rate of substitution between x, and x2. 

By equation (35), right angled isoquants (the classical example is tractor and the 

tractor's driver) have zero elasticity of substitution, while diagonal isoquants have an 

elasticity of substitution approaching infinity. 

From equation (35) two approximately equivalent expressions for the elasticity of 

substitution between two input pairs of factors may be derived. These are the Arc Elasticity 

24
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of Substitution and the Point Elasticity of Substitution. 

The Arc Elasticity of Substitution. The Arc Elasticity of Substitution may be derived 

by substituting the percentage of change at period t respect period t-1 for the expression 

'percent of change' (A) in equation (31). Thus equation (31) may be rewritten as 

A = (x/x') (36)AMRS x1 

MRSx3 C2J 

The arc elasticity of substitution represents the proportional percentage change in the input 

ratio (x2/xI) relative to the percentage change in the marginal rate ot substitution. 

As one move along an isoquant from point P1 to P2 in Figure 5, two things may 

happen. First, the ratio of the inputs (xl/x 2) changes, Secondly, the slope of the isoquant, 

as measured by MRSxIx 2, at point P2 is different from its slope at point P1. The ratio of 

these two changes, in percentages terms, is the arc elasticity of substitution. 



26
 

x 
a 

Ip 
x­

aP 

X -

I Ix 

X IX I 
1 1 1 

Figure 5 Graphical Representation of the Elasticity of Substitution.
 

Point elasticity of substitution. The point elasticity of substitution is defined by
 

d(xxl)] 

x1 
MRS., 

where the expression (In) stands for natural logarithm. 

If competitive markets are assumed, then the marginal rate of substitution between 

the pairs of factors equals the relative factors price (P1/P 2), at the point of least cost 



27
 

combination on the isoquant. Thus, the point elasticity of substitution can be rewritten as: 

Up_- dln(x lIx,) (38) 
dinN(p P2) 

Equation (38) is the elasticity of substitution attributed to Hicks (see also Varian 1984). 

In the two-factor case, the elasticity of substitution will lie between zero and plus 

infinity. However, if more than two inputs are utilized, some input pairs may complement 

each other, leading to a potential negative elasticity for some of the input pairs. 

Elasticity of substitution in the n-factor case. 

The definition of the elasticity of substitution in an n-factor setting is further more 

complicated. In this case, a series of specific assumptions must be made with regard to the 

prices and input levels for those factors of production not directly involved in the elasticity 

of substitution calculation. As a result, the elasticity of substitution between inputs i and 

j will vary depending on these assumptions. In the n-factor case, a number of alternative 

definitions for the elasticity of substitution are also possible. 

The one-input one-price elasticity of substitution. This type of elasticity of substitu­

tion may be defined as fixed proportion (fl) of the cross price input demand elasticity 

evaluated at constant output: 

( dlnxf 
1~dba (39)

np' 

One example of elasticity of substitution of this kind is the Hicks-Allen elasticityof substitu­

tion (HAES). Its form is a one-facto one-price elasticity of substitution since only one factor 
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price (i) and one factor quantity (j) are involved: 

- 1 (40) 

where si is fhe share of total cost attributed to the jth factor, pjx/C*, and Eii is the cross price 

factor demand elasticity evaluated at constant output, dlnx,./dlnpj. Notice also that the 

Hicks-Allen own price elasticity of substitution can be defined as: 

H -1 (41) 

where s,= pjx,/C*,and %= dlnx1/dlnp,. 

The two-input one-price elasticity of substitution. This type of elasticity of substitu­

tion involves two factor quantities but only one factor price: 

=ddxx) * (42) 
~'dlnps 

Each of these alternative definitions may be evaluated assuming constant output, cost, 

or marginal cost. Furthermore, it must be assumed that the prices on the remaining inputs 

other than i and j are held constant, or allowed to vary as pi and p, vary, which generates 

short and long run elasticity of substitution measures. 

An extension of HAES is the Miroshima Elasticity of Substitution (Koizumi, 1976). 

It is an example of two-factor one-price elasticity of substitution. This elasticity of substitu­

tion is defined in terms of HAES as: 
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0 a dlxxj) (43) 
dinpj 

Notice that 	the Miroshima elasticity of substitution is not symmetric, that is 

di' x) d	in(x) (44)( 

dinp1dlnpj 

.and therefore uimtoi 

The two-input two-price elasticity of substitution. An example of this type elasticity 

of substitution is the termed Shadow Elasticity of Substitution (McFadden, 1963). It allows 

all factors involved in the calculadion to vary. Consequently, it can be considered as a long 

run elasticity of substitution. The shadow elasticity of substitution can be expressed in terms 

of HAES measure as 

y i IVa(45) 

Thus, if the HAES and input cost share data ae available, the shadow elasticity of 

substitution can be readily calculated. 



IV. FUNCTIONAL FORMS
 

Specific production functions used by researchers in empirical analysis frequently 

embody assumptions that are related with the functional forms itself. These assumptions 

have been referred in the economic literature as maintained hypothesis. These maintained 

hypotheses are not frequently recognized by the researcher, but do impose constraints on 

the possible outcome that can be generated by the analysis. 

An example of a maintained hypothesis is provided by the Cobb-Douglas production 

function (CD). This production function specifies an aggregate neoclassical production 

function relating output to the aggregate inputs of capital and labor services. 

P1ALKP2 (46)
t =L ;, 

the underlying maintained hypothesis in CD type of specification is the hypothesis that the 

two-factor elasticity of substitution between any input pairs is constant and equal to 1. This 

holds even if the production is not linearly homogeneous, and fl +#l201. A simple proof is 

MRSxX = PX, (47) 

where fi=(fi1/f12) and X =(xl/x 2). 

lnMRSx x =lnX+n3, (48) 

Thus, 

lnX=lnMRS -lnp, (49) 

In an effort to avoid the maintained hypothesis regarding the elasticity of substitution 

30 
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dlnXCF f- (50)dlnMRSx IX 
=1. 

of functional form of CD type Arrow et al (1961) specified the constant elasticity of 

substitution production function (CES) without the linear homogeneity property imposed. 

The CES is 

1 

y=A[[3,x -p+p -P]-p. (51) 

The elasticity of substitution is given by the power to which the factors are raised, 

(1+ p) 1 . A simple proof is the marginal rate of substitution for the CES of the form 

MRS X2 = X( I P), (52) 

where P=(,81/f#2) and X=xl/x 2. Taking logarithms 

lnMRSx,:=ln3 +(1 +p)lnX, (53) 

lnMRS ,-ln[p 
lnX= ,I (54)(l+p) ' 

thus, 

d/nx 1(55)
dInMRSXI (I+p) 

The CES production function represents an appropriate improvement if the interest 

is centered on the elasticity of substitution within a production process using only two inputs, 

such as capital and labor. Nevertheless, extending the function to the n-input case, the 

maintained hypothesis that the same elasticity of substitution apply to every factor pair will 
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still hold. Agricultural economic studies are usually interested in disaggregating input 

categories into more than two inputs. Thus, a more flexible functional form was needed for 

agricultural economic research. 

An interesting and useful approach, referring to functional forms specification, has 

been provided by Diewert (1971). Diewert has recognized the close linkages that exists 

between various functional forms. He states that one way of looking at various functional 

forms is in terms of Taylor's series expansion. For example the Cobb-Douglas type of 

production function could be written as a first order Taylor's series expansion of lny in lnxr: 

R 
lny=a 0+E P3nxi. (56) 

i.1 

The CES, in turn, is a first order Taylor's expansion of yP in gP. In an n-factor 

setting, the CES could be written as 

yP + (57)=aA PAP. 
iml 

The transcendental logarithmic production function (translog for short), proposed by 

Christensen et al (1971, 1973), is simply a second order Taylor's expansion of lny in lnx: 

i-i i-i 1-1 

The translog functional form has been widely utilized in agricultural economic 

research, because of the following important characteristics: 
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1. 	 it is closely linked to the CD functional form. In fact, the translog is the CD when 

all flij are equal zero; 

2. 	 it is linear in the parameters, which makes the parameter estimation simple; 

3. 	 it is also normally monotonically increasing with respect to the use of each input 

under the usual parameter function; 

4. 	 it has no maintained hypothesis concerning the elasticity of substitution between any 

factor pairs; 

5. 	 it allows one to apply the fundamental concepts of duality. 
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V. FUNCTIONAL SEPARABILITY 

Conventional production functions, such as multifactor CD and CES, are based in the 

specification of aggregate neoclassical production functions relating output to the aggregate 

inputs of capital and labor service (e.g., equipment and structures) or of different labor 

services (such as man-hours for production and non-production activities) into capital 

aggregates service or labor aggregates service, respectively. The use of such capital and 

labor aggregates, however, assumes that their different components could be separated into 

subfunctions. If such separability is possible, efficiency in production or consumption can 

be realized by sequential optimization. That is to say, production decisions, relative to 

factor intensities, can be optimized within each separable subset. Then the optimal use of 

factors can be obtained by optimizing the between-subset factors. Let us clarify these argu­

ments with an example. Assume that the production function may be written as 

y =F(K,L,, (59) 

where K,L, and N are input aggregates of capital services, labor, and intermediate materials 

(e.g.,energy). Assume that it is permissible to separate the production function (59) in two 

subsets representing a value added index (V) of labor and capital services, and intermediate 

materials, N. Thus, equation (59) may be rewritten as 

Y=FRV(KL,. (60) 

In such a context, the value added index (v) refers to the quantity of output produced 

per unit of time using capital and labor services. The optimal use of factors K, L, and N 
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may be attained in a two-stage independent process. First, optimal labor/capital ratio (L/K) 

is obtained by optimizing the value added index, V(K,L). In the second stage of optimizing 

decisions the optimal N/V ratio is obtained by optimizing the gross production decisions, 

F(V,N). 

The concept of separability has been established in a theoretical framework which 

consider a twice differentiable, strictly quasi-concave homothetic production function, with 

a finite number of inputs, each having a strictly positive marginal product. 

y=F(x,x 2,...,x'). (61) 

Assume that the set on n inputs is denoted N= {1,...,n} and is partitioned into r 

mutually exclusive and exhaustive subsets N, (s = 1,2,...,r). This partition will be called R. 

The first and second partial derivatives of F(X) are denoted by F i and Fij. 

F=LF all input levels other than x, held constant, (62) 

with i-=1,...,n. And 

, =a ,all input levels other than x, and x held constant, (63) 

with ij = 1,...,n 

Weak Functional Separability 

The production is said to be weakly separable with respect to the partition R if 

where MRSxixj represents the marginal rate of substitution between inputs pair i and j. In 

other words, a production function is weakly separable with respect to R if the MRSxx from1 
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WMRS 
(64)

&M J =0, for all ijeN,, and keN,, 

any subset N, is independent of the quantities of inputs outside N. 

Strong Functional Separability 

The production function (59) is said to be strongly separable with respect to a 

partition R, if the MRS between any two inputs from subset N, and Nk not depend on the 

quantities of inputs outside of N, and N, i.e., 

'MRSx-=0, for all ieNjeNkeN, Nh. (65) 

Strong separability implies weak separability. However, weak separability implies 

strong separability only when the partition R is limited to two subsets. 

Alternatively, the condition for factor i and j to be functionally separable from factor 

k is that the first and second derivatives of F satisfy 

FtF -FF,0.(66) 

For weak separability this condition must hold for inputs i and j in one subset and input k 

in another subset. For strong separability this condition must hold in addition for inputs i, 

j, and k all in distinct subsets. 

Berndt and Christensen (1973) established that separability restrictions on production 

and cost functions are equivalent to certain equality restrictions on the HAES. In a three­
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factor linear homogeneous production function, the following are equivalent restrictions on 

equation (59) at any point in input space: 

1. 	 factors L and K are functionally weakly separable from N,9 i.e., 

FNK,LN) =F(V(K,L),N). 	 (67) 

2. 	 equality of the HAES, i.e., ULN=rCI; 

3. 	 it exists a consistent aggregate price index, P" and a consistent aggregate quantity 

index X', with components p, and P2, and x, and x2, respectively; 

4. 	 it exists a path independence of a Divisia Price index P"and a Divisia Quantity index 

X'; 

From 	equation (67) three different types of separability may exist: 

1. 	 the separability of L and K from N. That is, the first and second derivatives must 

satisfy 

FLFj-F.Fw=O 	 (68) 

or 

Ua=0" .	 (69) 

2. 	 the separability of L and N from K. The first and second derivatives must satisfy 

9 	 Notice that, since the partition is limited to two subsets, weak and strong
 
separability are equivalent restrictions.
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FLFNK-FMF K=O (70) 

or 

ouz =0 NK (71) 

3. the separability conditions, in this case, are satisfied if and only if 

FKNL -FmFm=O (72) 

or 

aFl=aM. (73) 

It is clear that only two of these three types of separability conditions are indepen­

dents. For instance, ULN = uK and ULK = UN implies that aGK = UN.. 



VI. THE FACTOR PRICE FRONTIER 

This section provides a detailed exposition of the concept of factor price frontier 

(FPF) in a two and three-factor economy. 

The Factor Price Frontier in the Two-Factor Case 

Any description of the economic performance of an individual firm, an industry, a 

sector of the economy, or the economy as a whole must start with a production function 

relating output or the product to the input of factor of production. In the two-factor case, 

the production function relates the conventional pair of inputs, labor (L) and capital (K), 

with the value-added output (V) at a given level of technology (T). We can write the output 

as 

V=G(LX,;7). 	 (74) 

Assume that the production function (74) is linear homogeneous. Thus, the following 

properties hold 

1. 	 MPL=VL=aG/aL, MPK=VK= aG/aK, where MPL and MPK denote the marginal 

productivities of labor and capital, respectively, 

2. 	 increasing the inputs by a certain factor of proportionality (a) output increases by the 

same factor, that is (excluding T), 
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zV=&(c L, aK). (75) 

Under assumption of constant returns to scale only the relative proportions of labor, 

capital, and output matter for the marginal products. Therefore, the dimensionality of 

production is reduced from 3 to 2. We may, for instance, divide output and capital by labor 

(say a = 1/L) and rewrite equation (74) as 

V ,(K (76) 
"L*"(1")=g(.f)" (76) 

Alternatively, if we consider (a= 1/V), we may rewrite equation (70) as 

1 n(-,v)" (77) 

This gives the unit isoquant G in Figure 5. 

The curve G describes all the efficient combinations of labor (L) and capital (K) that 

yield one unit of output. The slope of curve G at any given choice of factor use 

[(L/V)o,(K/V)o], at the production point Po,measures the ratio of marginal products (mar­

ginal rate of substitution between L and K, at the given level of factor use), VL/VK. 

Under Euler's law, linear homogeneous production function satisfy the following 

condition: 

VLL +VXV(KL), (78) 

or 
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VLA+ K (79) 
V V 

k~O 

P 

0-------- -------- 0 

PP 

0 (W) (IL)o 

Figure 6 Production (the Primal). 

Thus, the intercepts of the tangent on the two axes in figure 5 measure the respective 

reciprocals of the marginal products. These intercepts, under cost minimization, also 
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represent the marginal cost of production expressed in the units of each factor.10 Another 

convenient property of the linear homogeneous production function is given by the fact that 

the relative distances of the pairs of points along the axes measure the respective product 

elasticities (or shares) of labor and capital, 

s=!LI=VL, Is-- K V (80) 

1IVL V 1/VK 

We can also see from the diagram that the point P. divides the tangent (and likewise the 

points (L/V)o, and (K/V)o divide the respective intercept) by the ratio of the factor shares 

s/(1-s). This ratio must sum up to one, a well known-property of linearly homogeneous 

production function (Euler's theorem). 

When producers not only minimize production costs for a given level of output, but 

also choose their output competitively so as to maximize profits, marginal costs equal the 

product price level, P. Thus, factor shares may be rewritten as 

s=-WL l-s=-RK	 (81)
PvV" pvV" 

In sum, under constant returns to scale, the curve G in Figure 5 summarizes all there 

is to know about the production technology. It establishes a one-to-one correspondence 

between the pair of marginal products and the pair of unit inputs and, thus, also with the 

10 	 Under cost minimizing behavior, producers will choose the input combination 

which satisfies 

W/VL = Z/VK = MC, 

where W and Z denote the respective marginal factor cost of producing 
one unit of V. 

http:factor.10
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capital/labor ratio. This ratio, in turn, is represented by the slope of the ray OP. to the 

production point, P0. Under diminishing returns (the curve G is convex to the origin), a 

higher capital/labor ratio at point P goes together with higher K/V ratio, lower L/V ratio, 

and likewise with lower MPk and higher MPL. 

This simple correspondence between intensity of input use and marginal factor 

products, termed "duality", allows one to describe the productive process interchangeably in 

the space of marginal factor products. The resulting curve F, in Figure 3, is the factor price 

frontier (FPF). 

V 
L 

DI. 

'V F 
0 

F 

z z (V v 
1 0 0 k 

Figure 7 Factor Price Fontier (the Dual). 
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The factor price frontier. The FPF is the dual of the isoquant G (in Figure 5) and 

represents the pair of maximal combination of marginal factor products. If profits are 

maximized and factors are paid their real marginal products (MPL= W/Pv and MPK= Z/Pv) 

then the FPF represents the maximum rate of return that can be paid to capital for a given 

real vage level, independent of the level of activity. 
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APPENDIX A
 

ESTIMATION OF AN INDIRECT COST FUNCTION
 

Suppose that the production function is given by 

yfxj , (A.1) 

where a, and a 2 are parameters, x, and x2 are inputs, and Pi and P2 are the respective input 

prices. 

The input cost function is: 

C=plx1 +P2X2. (A.2) 

The estimation of the indirect cost function of production function (A.l) is defined as 

follows: 

Sp1.. Find the respective expansion path. This is done by partially differentiating 

the production function (A.1) with respect to x, and x2, to find the respective marginal 

products. Then, the negative ratio of the marginal products (the marginal rate of technical 

substitution, MRSxlx2) is equated to the inverse input price ratio (Pl/P2)- Thus, the 

relationship that defines the least combination along the expansion path may be expressed 

as: 

A X2 :=a2p 1x,. (A.3) 

Stp.2. Determine the quantity of inputs, as defined by the expansion path conditions, 
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that are used in terms of cost (A.2) and parameters of the production function (A.1), and 

input prices. Solve (A.3) for x,: 

Substituting (A.4) into (A.2) and factoring x2 out: 

X2=C~aIV2a' +P2)1I (A.5) 

Similarly, for XI: 

X1 =cja2p~aj .- ). (A.6) 

Step 3. Define the production function in terms of the expansion path conditions. 

Substitute (A.5) and (A.6) into the original production function (A. 1) and rearranging terms: 

y:C"+'2%pII +p)-",Ip1 (A.7)( ' +p 2)-'2 

Step 4. Define the total cost function that is dual to the production function defined 

along the expansion path factor beam (indirect cost function). 

Solving (A.7) for C in terms of y, the production function parameters and the input 

prices yields the optimal cost function of producing the specific output level y as defined by 

the expansion path conditions: 
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NW6+42)pd'+
 
=Y A P2
 

W61Ot+6,2)p l' 

=y ,lc,, +a,) (A.8)z 

Notice that the value of Z is treated as constant, since it is dependent only on the assumed 

constant prices of the inputs and the assumed constant parameters of the production 

function. Thus, any point on the dual cost function (A.8) representing a particular quantity 

of output (y) is optimal in the sense that it represents the least cost combinations of inputs 

needed to produce y. 

Notice also that at most only one point on the dual cost function represents global 

optimality, where the marginal cost (MC) of producing the incremental unit of output using 

the least cost combination of factors is exactly equal to the marginal revenue (MR) 

obtained from producing the incremcnntal unit of 9. 
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APPENDIX B 

The Envelope Theory 

Following Beattie and Taylor (1985), let 

Z=g(wJJ...,w,;a) (B.1) 

be a function to be maximized with respect to each wi for a given parameter vector a. The 

first order conditions 

ag =0 (B.2) 

for i = 1,...,n, 

define the optimal value (wi) for each wi in terms of the parameter vector a. That is 

wi*=wi (a) (B.3) 

Thus, the optimal value for (B.1) is: 

Z=gtw,..; (B.4) 

The envelope theorem states that the rate of change in Z"with respect to a change in a, if 

all wi are allowed to adjust, is equal to the change in g with respect to the change in the 

parameter a when all wi are assumed to be constant. 

More formally, the envelope theorem may be stated as: 

az'_ ag (B.5) 

aa aa 

Proof: 



50 

Partially differentiating (B.4) with respect to a gives 

'W,az=( ag awl(B.) 
i- aJ aa a 

Now, if condition (B.2) holds, then the first term of the right-hand side of (B.6) must be 

equal to zero and equation (B.5) holds. 

The Shephard's Lemma 

Consider the case of a cost minimizing firm using n different inputs (x) in order to 

produce a given level of output (5). The Lagrangian for minimizing costs subject to the 

constraint imposed by the production function is: 

R 

(B.7) 
i.1 

The corresponding first order conditions are: 

a i;f 0(B.8) 
ax, ' x, 

That is, the optimal x, (xi") is obtained from 

A =X-of (B.9) 

for i=1,...,n. 

Thus, the indirect cost function (C'), representing the least cost way of producing y, given 

price of inputs is: 

where x," represent the quantities of inputs defined by the expansion path factor beam. 
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R 

C= P .pI (B.10) 
i-1
 

The Shephard's lemma states that the rate of change in the indirect cost function with 

respect to the change in the price of the ith factor, evaluated at any particular output level, 

is equal to the optimal quantity of the ith indicated by the factor expansion path condition. 

That is 

*=x, (B.11) 

ap, 

for i=1,...,n. 

Proof: 

Partially differentiating (B.10) with respect to the ith factor price yields: 

ac* n ax (B.12) 

=E,P,-*- +x: 
ap1 p,,. 

Substituting (B.9) into (B.12): 

ax(B.13) 

Now assume that the original production function is defined at the cost minimizing level of 

input use: 

y=x,...,x) (B.14) 

Maximizing the production function with respect to a change in the ith input price: 

for i=1,...n. 
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ay af =0 (B.15) 

0P ax: a-P, 

Substituting (B.15) into (B.13) and Shephard's lemma (B.11) holds. 

Tht Hotelling's Lemma 

Consider the case of a firm using n different inputs (x) in order to produce m 

different outputs (y). Define total revenue (R) as 

in' R=Fqjyj(B.15) 

where qj is the price of the jth output. Total cost is defined as 

C=E.,PAr (B.17) 

i-1
 

The indirect revenue function (R) represents the optimal allocation of outputs iomaximize 

revenue, and can be specified as 

R*= qjy; (B.18) 
J-1
 

The corresponding indirect cost function (C) is 

C * =j_p".(B.19) 
1
 

Thus, the indirect profit function may be defined as 

The Hotelling's lemma shows that a change in the profit function arising from the 

http:p".(B.19
http:R=Fqjyj(B.15
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=R*-C*=E qjyj-EpA (B.20) 
J-1 i­

output expansion path (the indirect profit function) with respect to the kth product price or 

input price, is equal to the kth output that is produced, 

aqk (B.21) 

for k=1,...,m, 

or to the negative of the kth input that is used 

a -X (B.22) 

for k= 1,...,n. 

Implicitly, the profit maximizing transformation production function may be written 

as 

F(y ,.y;xl,. =0 (B.23) 

The profit maximizing Lagrangian is: 

M nL=E,qjyj-i-,Pxi +rlYP',Y ,;xl,,,)-O] (B.24) 

-1 i-l 

The corresponding first order conditions, on the product side, are: 

aL q il -- =0 (B.25) 
J LYi 
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that is, 

qj = -. -- (B.26) 

for j=1,...,m. 

The optimal yj is y*. 

The first order conditions on the factor side are 

aL =P aF+Tj-=0 (B.27) 

That is, 

A = aF (B.28) 

for i=1,...,n. 

The optimal xi is x1'. 

Partially differentiating (B.20) with respect to the kth product price: 

"t (ax'
an* y I 

k ja, qk ,.,1 q1 
(B.29) 

Substituting (B.26) and (B.28) into (B.29): 

ag"* ­+11 nc j'x 

artiAly aqk) axt pr 

Partially differentiating (B.23) with respect to the kth product price: 

(.0 
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! j: -1ax*=0-I _ 1E[ (B.31) 

Substituting (B.31) into (B.30) and the Hotelling's lemma as applied to product side (B.21) 

holds. 

Differentiate the indirect profit function with respect to the kth input price: 

an m (xp _ (B.32) 

C'Pk-iIO'J kOk aPk, 

Substituting (B.20) and (B.28) into (B.32): 

= qan*- (I-!I: - j[(F x1 -x; (B.33)
0~ I j a k i fl

IPkL~ aX;)- aPkj 

differentiate (B.23) with respect to the kth input price: 

-aF I yI; j " ji I-I=0 (B.34) 
aPk PI O-i'A 3PkJ "1 (aXi-AaPkJ 

Substituting (B.34) into (B.30) and the Hotelling's lemma as applied to input side (B.22) 

holds. 


