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ABSTRACT
 

A fully stochastic food-signal model, a function of a patchy­

prey encounter sequence, and a prey-processing function is
 

described. 
The model shows how prey density and its second-order
 

statistical properties sequester
can prey from predators
 

questioning the use of only numerical abundance of predator and
 

prey organisms as 
a measure of prey-predator interactions. The
 

nodel highlights the notion that patch structure can be generated
 

by relative velocity of predator 
and prey as we,1l as by their
 

spatial distribution. 
 The model extends ideas that include the
 

Obiological pump" and the downwelling of carbon from the upper
 

ocean, the functional response, optimal-foraging theory, and the
 

connections 
between population dynamics and variability in the
 

physical environment.
 

INTRODUCTION
 

A mathematical model of the population-dynamics regulatory
 

process accounting for density dependence, the interactions among
 

populations, population age-structure, and the way that these
 

phenomena are driven by the physical environment is difficult to
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construct (for an early discussion see Paulik 1973; for the general
 

level of the "state of the art" sea Nisbet and Gurney 1982; and
 

Getz and Haight 1989).
 

Conceptual models, however, are more easily articulated. A
 

conceptual model that considers each life-history stage as a non­

linear density-dependent module (Figure 1) evincing the population­

stabilizing "struggle" between density-enhancing and density­

depressing mechanisms can be found in Rothschild (1986: Charter 8). 

The population stabilizing mechanisms are essentially
 

trophodynamic. The mechanisms operate because in general high
 

predation levels reduce prey abundance while high prey levels
 

enhance predator abundance. (The terms "predator" and "prey" are
 

intended to be taken generally. i.e., predators can inclue
 

grazers, etc.)
 

That a component of predator-population stability owes to the
 

effect of the predator population on prey density, means that prey­

population abundance contains 
information on predator-population
 

abundance. This information contributes to the predator­

population regulatkion.
 

Because prey-predator interactions involve the 
transfer of
 

both energy and information and because the information transfer
 

can be quantified by the time points when individual prey are
 

ingested, the temporal distribution oi ingestions can be thought of 

as a food sigial (Rothschild 1986, 1988; Rothschild et al. 1989). 

The idea of a food signal is closely analogous to the application 

of queuing theory to predator-prey relationships pioneered by Beyer 
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(e.g. 3.980). 

How food-signal accuracy (i.e. bias and precision) is affected
 

by sources of variability external to the simple relative numerical
 

abundance of predator and prey is a key consideration. For
 

example, the functional response and physical forcing 
are well­

known modifications of food-signal accuracy. 
 The functional
 

response (see general review by Taylor, 1954) where ingestion of
 

prey declines as the density of prey increases has been studied
 

primarily in grazers. Frost (1985) 
and Costello et al. (1990)
 

demonstrate some of the problems in evaluating grazer functional
 

response while Marasi et al 
(1990) show how physical forcing can
 

affect food 3ignals.
 

This paper develops the theory of food signals which in terms
 

of population regulation, are defined by the arrows entering and
 

leaving the rectangular box in Figure 1. 
The theory is developed
 

by considering a food-signal model and the spezcification of an
 

encounter signl and a processing function.
 

A FOOD SIGNAL MODEL
 

A food-signal model has three components: 1) the input or
 

encounter signal, 2) the processing function, and 3) the output or
 

food signal itself.
 

The model is based on the idea that prey are encountered by
 

the predator as it "swims" along 
a search filament (see e.g.
 

Blaxter and Staines, 1971). The three-dimensional existence of the
 

predator and prey, can be considered in a single dimension (Figure
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2; see Rothschild, 1988). Because both predator and prey are often
 

motile, the points in time when the predator encounters prey can be
 

recorded in terms of the relative velocity of predator and prey, as
 

distincL from the absolute velocity of either (Gerritsen and
 

Strickler 1977). However, the predator does not in general ingest
 

every encountered prey because of functional-response phenomena
 

such as predator "satiation" causing food-signal accuracy to 

deteriorate. The rules for whether or not 
a prey is ingested, 

transform the encounter signal into a food signal which conveys 

predator-abundance information to the predator. 

The first component, the encounter signal, is based on a 

record of encounter times. The initial encounter time E., occurs
 

at the origin. The time of the initial encounter, and the times of
 

subsequent encounters up until the N-th encounter are,
 

= , • . •• (.) 

A sequence of inter-encounter time intervals is derived from Eq(1), 

z = ( 1 -_ 0 =z 1 , t 2 - 1 =Z2,1 - 1 . .I _ZN) , (2)-1 2Z, NN...-

where the ZI's are random variables, and N represents the number of 

prey encountered during a particular realization, Z. 

The transformation of the encounter signal Z into a food 

signal, is developed from the concept of the functional response.
 

The idea is that once a predator ingests a prey, then the predator
 

enters a refractory period; during the refractory period the
 

predator cannot ingest another prey until the refractory period is
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terminated.
 

The ingestion or food signal is,
 

(to. (3)
 

where n is the number of prey ingested. The ingestion times, the
 
''s in Eq(3), are a subset of encounter times, the e's in Eq(1).
 

The prime denotes only instants o- time when prey are inqested
 

given that these times are times when prey are encountered. Note,
 

that for each t'j; 
there must be an identical t, but for each t! 

there is not necessarily an t. Comparison of Eq(3) with Eq(1) 

shows that while N prey are encountered, only n prey are ingested.
 

If there were no functional response, then the predator would
 

ingest all N encountered prey (N=n). 
 The functional response
 

implies N>n.
 

having identified the time points when each prey is ingested
 

enables identification of the position and length of each
 

refractory period following each ingestion. 
 At each instant that 

the j-th prey is ingested, t, the predator becomes refractory
 

for a random period of time, Y,. Thus, there is a sequence of time
 

intervals when the predator cannot ingest a prey because the 

predator is in a refractory state. For the j-th ingestion, this 

period occupies the interval, t + Yj. 

A sequence of actual inter-ingestion times can be constructed
 
analogous to the sequence of inter-encounter times represented by
 

Eq(2),
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x = 1C- - x2 , . - 1 =Xj,1 ... - x,]. (4) 

Hence, the food-signal model transforms an encounter signal
 

into a food signal. The transformation involves three random
 

sequences,
 

Si = (zi) 
S2 {j) (5) 

=, (x;), 

where S, is the encounter or patchy input food signal sequence, S2
 

is the processing sequence, and S3 is the food signal sequence. 
In
 

a way, the discrepancy between S, and S3 must be thought of 
as
 

statistical "error".
 

The linkage between S3 and S, (in terms of time intervals) or
 

N and n (in terms of a counting measure) is developed through
 

renewal theory which requires that the time intervals in S, are
 

independent and identically distributed (iid. Explicit
 

expressions for the S3 requires specifying the statistical form of
 

S, and S2.
 

The renewal-theory formulation is identical to that of
 

electronic counter problems studied in the 
theory of point
 

processes (e.g. Feller 1957). The examples 
in this paper are
 

derivations, or based upon derivations, which can be found in Cox
 

(1962) and in Cox and Isham (1980).
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SPECIFYING THE ENCOUNTER SIGNAL: THE PATCHY INPUT SEQUENCE
 

The first problem is to specify the probability distribution
 

of the encounter signal, S1. There are several classes of
 

probability distributions. One simple classification is that the
 

encounter signal can be thought of as either "random" or "patchy".
 

Empirical studies reflect that a random distribution of prey is
 

unlikely, although in many instances the scales which have been
 

studied are larger than the feeding scale.
 

While models of patchy distributions are more realistic, they
 

are generally more difficult to specify and analyze than
 

distributions associated with a Poisson or random process. Patchy
 

probability density functions include generalized and compound
 

distribuo:ions (see e.g. Pielou 1977:113-123). Particular
 

applications have been reviewed by Fasham (1978). The basic point
 

is that statistically indistinguishable patchy sequences S,, can be
 

generated by very different mechanisms (e.g. with-after-effect or
 

without-after-effect; see Feller 1957). While the subject of the
 

mechanisms that actually drive patchiness is critically important,
 

it is beyond the scope of this paper, as we are essentially
 

considering the behavior of the predator relative to a patchy
 

distribution of prey, regardless of the mechanism that generates
 

the patchiness.
 

Keeping this in mind, we use the simplest patchy extension of
 

the Poisson process, the mixed exponential distribution, with
 

probability density function,
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4(t) = Ope-Pt+Pp 2 ePt, (6) 

The mixed exponential distribution has a coefficient of variation
 

which ranges from 1-+oo and hence can represent extensive
 

patchiness. Note that Eq(6) also contains the Poisson process as
 

a special case (i.e. p1=p 2 or 0=1), and also that Eq (6) cani be 

generalized to contain more than two exponential components.
 

With regard to the moments of Eq(6), its mean can be expressed
 

as,
 

=L_E(Z) = otf(t) dt 

(7)
 
1 +pPi P2 

Considering pl)p 2 implies that the inter-encounter times
 

associated with p, are less than those associated with P2. Hence
 

there would be a greater number of encounters associated with p1.
 

The varinnce of Eq(6) is,
 

2a_=E(Z 2 ) _tL 

= lot~f(t)dt­

= f2f O2 
2()-(2 + 2P-P2 2()p 

22 

Note again that if 0=1, Eq(6), Eq(7), and Eq(8) represent the 

density function, the mean, and the variance, respectively of the
 

inter-arrival times of the exponential, random, or non-patchy
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distribution of the Poisson process.
 

In contrast to the Poisson process or the random distribution
 

case, the inter-encounter times of prey are not uniquely determined 

by a single parameter. In Eq (6) different values of the parameter
 

set f=(p,p 2,,) can result in the same value for jz. In the patchy
 

case, Az, contains a richer set of information than a corresponding 

parameter in the random case. 

Because the numbers of prey rather than time intervals between
 

prey are of interest, the renewal function is used to calculate the 
mean number of prey encountered up until a point in time t, from
 

the inter-encounter times specified in Eq (2). The renewal
 

function is defined as,
 

Hz(t) = E(Nc) (9)
 

where Hz is the number of prey encountered between 0 and t, and E
 

is the expectation operator. 
In other words the encounter signal
 

can be viewed as a series of pulses. The renewal function provides
 

the mean number of pulses that occur during a time interval.
 

For the ordinary renewal process, the counting measure
 

associated with the renewal function, Eq (9), 
 is derived from its
 

Laplace transform which incorporates the Laplace transform of Eq
 

(6). Cox incorporates the Laplace transform (denoted by 
an
 

asterisk) of Eq (6),
 

_Opt. pp2
f'(s) - - P2 +S 
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into the Laplace transform of the counting measure,
 

2 2 0 (p1 -p 2)
2 

H ( 1 i g g-*


2 L2s2 s [pp1+Op2][s+p,0p2] ' () 

to yield upon inversion,
 
2 2 

-p 2) 2 
t +Z 02Az2 _ Op( p(P O2 ) 2 exp{[-Ppj-ept] 6. (12)H.(t) 


Pr 214z (PPI0 ) 2eP( lO ]. 

The mean number of prey encountered by the predator up until, t.
 

For the Poisson process the second term disappears and for large t
 

the last term disappears.
 

SPECIFYING THE ENCOUNTER-SIGNAL PROCESSING FUNCTION:
 

THE REFRACTORY TIME
 

From a biological point of view, the mechanisms that cause the
 

refractory time to be long or short are not well understood, and
 

obviously relate to a complex of mechanisms (Costello et al. 1990)
 

that extend beyond "satiation." The simplest first-approximation
 

approach is to assume that the mean refractory time is
 

exponentially distributed, an assumption analogous 
to those
 

frequently made in queuing theory. Accordingly, consider the
 

refractory-time probability density function to be,
 

-fy(t) = ce . (13) 

It is important to recognize that Eq(13) implies that the
 

refractory time is "stationary" for all ingestions. Thus Eq(13)
 

is taken to mean that the refractory time is related to the
 

"processing" or "handling" of the prey which will not change as a
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function of the number of prey "handlings". If on the other hand,
 

the predator expedites prey handling time as a function of its
 

experience in handling prey, or if the predator becomes satiated,
 

such that the refractory-time depends on the number of ingestions
 

then, Eq(13) will need to be generalized. Because the temporal
 

distribution of arrivals at the point of ingestion varies with the
 

mode of feeding (e.g. contrast grazing copepods and fish larvae)
 

more research on the processing function is required.
 

DERIVATION OF THE FOOD SIGNAL: THP OUTPUT PROCESS
 

The food signal or the output process, S31 is a function of
 

the encounter signal or the input process, $1, and the refractory
 

time, S2. The food signal is derived from the calculus explained
 

by Cox and Isham (1980). Using their approach we can write the
 

mean waiting time between ingestions, given a fixed-refractory time
 

(Y=y) as, 

E(XIY =Y) = 9Z(1+H(y)), (14) 

because HM(y) is the mean number of prey (cf Eq(9)) encountered in
 

a refractory interval of specific length (o,y] that are not
 

ingested (by definition), and we multiply this mean number by the
 

mean inter-encounter time of those individuals not ingested, which
 

then must be added to the mean inter-encounter time to obtain the
 

inter-ingestion time.
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Averaging Eq(14) over the specific refractory times yields,
 

p= E(X) = p(1 +f H,(y) (fy(y)Idy).() 

The integral in Eqfl5) using Eq(9) and Eq(13) is evaluated in
 

three parts to obtain,
 

2 2 )2 
PX =:E(x) = .h+( 1I - + 17z - aOP(PI-)) (16) 

cEPZ 2pL, (PP.+ p2 ) 2 (ppL+ rP2 + a) 

So now the mean time between ingestions, Ax, can be linked
 

with the mean time between encounters, Az, which is one way of
 

defining a functional response. We can see that the longer the
 

refractory time, the longer the waiting time between ingestions,
 

and when the variance is much larger than the nean, then the
 

waiting time becomes even longer, suggesting that
,:the intensity
 

of clustering sequesters the prey from predator.
 

We note that to develop the counting process explicitly we
 

would not take the shortcut implied by our use of Eq(14), rather
 

we would explicitly derive the probability density function
 

fx(t), then use the Laplace transform of the density function in
 

Eq(6) which would be inverted to obtain Hx(t).
 

For the shortcut, we use the asymptotically normal version
 

of the counting process,
 

H,(t) t (17) 

so for any t, and set of parameters pl, P2, 0, and a, we can
 

compare the encounter rates given by tp1 and the ingestion
 

rates tPXi which give the functional response for a fixed
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parameter set fl and a. 

Put another way we could derive the instantaneous mortality
 

rate, M, per unit time (valid for large t), for any fixed set of
 

the above parameter values by writing the mean ingestions per 

contact,
 

Hx(t) . 1=er --x 
z (18)H, ()_ 

Hence for a apecified unit time we have,
 

M= -log(i-_) (19)
 

This component of the mortality rate is then a function of
 

prey patchiness and predator refractory time. Therefore, we can
 

consider the mortality rate 
of prey owing to predatio. as a
 

function of not only the mean 
abundance of prey, but as a
 

function of the mean abundance of prey, prey patchiness, and
 

predator refractory time. 
This provides an opportdnity to link
 

this complex of trophodynamic relationships with the physical
 

environment.
 

The food signal model represented by Eq(16) is more general
 

than those presented previously. It can be seen that Ax is
 

particularly sensitive to the magnitude of a. 
Also patchiness
 

given some p, and a causes a decrease in ingestion rate as az2
 

increases. 
 In fact, special cases of the relationship can be
 

cast 
in a format that is analogous to the classic functional
 

response calculations. 
To do this it is necessary to constrain
 

the parameter set. One constraining convention would be to
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compare the approximate ingestion rate in Eq(17) with the
 

approximate mean encounter rate 
in Eq (12), where some of the
 

parameters are fixed. 
For example we might wish to examine how
 

the ingestion rate varies with encounter rate given a fixed ratio 

between p, and p2 for a fixed 0. An example of these calculations
 

are shown in Figure 3 for two cases:
 

Case I; pi 1 = pl,O=. (

Case II; pl' = 10P21, O=. 1 (20) 

Case I is identical to the random Poisso. process while in Case 
" II p2 is "large" while 0 is "small", a condition generating a
 

relatively large variance or patchiness. We can see that in both
 

cases, we have a typical functional response, but in the patchy
 

case, ingestion is redu-:,cd by a factor of roughly 25 percent per 

unit time. Of course some parameter sets will minimize the
 

patchy effect while others will increase it.
 

Comparison of plots of HX versus Hz with functional responses 

reported in the literature is interesting. For example Frost has 

reported in a series of papers (e.g. 1985) the relation between
 

the ingestion of phytoplanktonic unicells by Pseudocalanus sp. as 

a function of food concentration. His experimental results are
 

partially comparable to our theory in the sense that his Ivlev
 

curve has an asymptote of 1348 cells ingested per hour. This 

corresponds to a=1348. Accordingly we can compute the functional
 

response Hx=f (Hz) for fl and a=1348 for the Poisson process case. 

Comparison of Frost's experiments based upon food concentration
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(cells ml ) with the food signal theory based upon number of
 

"cells" encountered can be enlightening.
 

DISCUSSION
 

The variability and stability conferred upor populations by
 
the population-dynamics process can be placed in the context of
 
food signals which have 
the dual function of transmitting
 

biological energy and information on the abundance of predator
 

populations. 
Food signal theory also ties together and extends
 

ideas on the functional response, optimal foraging 
theory,
 
physical-biological interactions, and the "biological pump".
 

The primary idea that results from food-signal theory is
 
that the statistical nature of the input sequence (as sumnarized
 

by n) and the processing function contribute to regulation in the
 
population-dynamics process. 
The accuracy of this regulation can
 

be measured in terms of food signals which reflect both patch
 

structure And relative 
velocity of predator and prey as induced
 

by motility and turbulent flow.
 

The food-signal 
framework allows consideration of "new"
 
kinds of non-spatial patch generating mechanisms which may
 
exhibit trophodynamic effects indistinguishable from spatial
 

patchiness. For example temporal patchiness can be induced by
 
patchy relative velocities of prey relative to predators, and as
 
a consequence, the mean density of prey perceived by a predator
 

has components which owe not only to prey relative density, but
 
to the relative velocity of the prey and possibly the effect of
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small scale turbulence as well (Gerritaen and Strickler, 1977;
 

Rothschild and Osborn, 1988; Costello et al. 1990; and Marase et
 

al. 1990). The velocity patches which can have effects
 

indistinguishable from the conventional spatial patches, and are
 

easily parameterized in terms of p1 
in Eq(6), for example, are
 

generally not measured 
or taken into account. As a second
 

example, non-spatial patchiness may arise from the "mix" of prey.
 

A predator might be confronted with two species of prey with
 

relative densities or velocities measured in terms of p1/p2 and
 

relative abundances measured by 0 (a situation which could be
 
generalized to a large number of species). 
 Inasmuch as it seems
 

unlikely that "real" prey of aiy life-history stage are likely to
 

be homogeneous with respect to p and 0, patchiness as the result
 

of multiple-species prey almost seems guaranteed.
 

Relative to various 
 theories, food-signal theory is
 
intimately related to functional-response and optimal-foraging
 

theories. With respect to functional-response theory, most of
 

its articulations, implicitly or explicitly assume that prey are
 

distributed at random with 
respect to the predator (e.g.
 

Holling's (1965) classic work). 
 However, most distributions of 

organisms in the ocean are not random but, "patchy"; ("patchy"
 

means that the spatial distribution of organisms cannot be
 

described by either a uniform or a Poisson statistical process).
 

The patchiness of organisms at small scales is well known (e.g.
 
Cassie 1959; Owen 1989). 
 The notions of the functional response
 

are extended from random
a to patchy setting by food-signal
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theory. Holling's result is just a special case of the more
 

general food-signal theory (cf. Mangel and Clark, 1988). With
 

respect to optimal-foraging theory, it tends to concentrate on
 

predatory, rather than prey behaviour, failing to take into
 

account the schizoid predator-prey nature of every organism. The
 

food-signal notion shows how patchiness sequesters prey from
 

predation. Since prey want tc minimize their "n;r1arest neighbor
 

distance" (to avoid predation) and predators want to maximize
 

their "nearest neighbor distance" (to minimize competition for
 

food) and since all organisms are both predator and prey; 
an
 

optimal or equilibiium spacing among organisms must exist. 
This
 

spacing must change as 
a function of the physical environment,
 

showing directly how the physical environment modulates the
 

metabolism of the marine community. The patchy "behavior" of
 

prey is clearly a mechanism that serves to avoid predation but is
 

often not considered (see Taylor 1984,; also papers by Milinski
 

and Heller 1978 and discussion by Mangel and Clark 1988).
 

The food signal can also facilitate the detailed study of
 

how the physical environment affects population regulation. This
 

is because the food 
signal definition is cast in fundamental
 

terms 
(e.g. the waiting times between prey) so in principle it
 

should be easier to show how the food signal is affected by
 

temperature, than to show a similar effect with a more highly
 

aggregated variable such as mortality rate. The study by
 

Rothschild and Osborn showed that encounter rate is a function of
 

the relative velocity of predator and prey where components of
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velocity owed to predator/prey mobility and homogeneous-and­

isotropic turbulence. The food signal provides a linkage between
 

the population-dynamics 
process and the Rothschild-Osborn
 

conjecture in that it shows how the variance in the encounter 

signal affects ingestion rate and thereby sets the stage for 

furthe; study of the specific ways that the physical environment
 

affects the parameters of the food signal. 
We can see how the
 

physical environment might affect the signal in terms of 0, p,
 

and a and thereby affect many aspects of the relation between
 

predator and prey. This effect 
may be expressed in two
 

modalities; the first 
(Type I effect) involves factors in the
 

physical environment that primarily affect the physiology of the
 

p.,adator and the prey, the second 
involves factors in the
 

physical environment that do not particularly involve the
 

physiology or behaviour of the predator and prey, 
but rather
 

affect the transmission medium of the food signal. Temperature
 

is an example of a factor that affects the physiology or
 

behaviour of predator and prey. 
 Any change in temperature
 

relative to a reference level may cause aspects of predator and
 

prey physiology to move in the or
same in opposite directions
 

thereby causing variability in the food signal. The second (Type
 

II effect) involves factors that affect the transmission medium.
 

The extent to which tur,3ulent flow affects patchiness depends of
 

course on the scale of turbulent eddies or residual shear
 

relative to parameter such as p and 0.
 

Finally, the notion of food signals is important in viewing
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basin-scale biological variability that might be associated with
 

"global changes." For example the "biological pump" (Longhurst
 

and Harrison, 1989) is thought to account for significant
 

variability in downward carbon flux. The magnitude of the flux
 

is dependent upon the extent of grazing. But the extent of
 

grazing is generally thought of in terms of the relative
 

abundance of grazers and phytoplankton cells. As can be seen
 

from Figure 3, phenomena that control spatial and velocity
 

patchiness can be an important source of variability in the
 

downwelling of carbon even if the number of grazers and algal
 

cells is fixed.
 

What is the significance of this theoretical analysis vis A 

vis views -n ecosystem structure? The analysis of this question 

really does not depend upon the food signals, Per se, rather it 

depends upon the way that the signals influence both predator and 

prey population dynamics and hence the ecosystem as a whole. 

Empirical results may seem counterintuitive because of the 

inherent nonlinearity of the population-dynamics process; small 

trophodynamic effects could have large population-dynamic 

effects, while large trophodynamic effects could have small 

population-dynamic effects (are O=.1 or pl/p,=1O large or small?). 

Empirical results may also be surprising in the sense that 

seemingly minuscule changes in the average food signal could 

generate observable changes in the dynamical or statistical
 

properties of population abundance. In addition it may be that
 

in particular instances, concern is neither with average values,
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nor statistical distributions, particularly of past events, but
 

with the establishment of conditions that generate unusual
 

population fluctuations.
 

The food signal in the context of the population-dynamics
 

process, provides an alternative way to think about marine
 

ecosystems. The traditional approach 
is to consider the
 

relations among highly aggregated taxa or size groups. The
 

traditional approach has the advantage 
of being a rather
 

simplistic metaphor of the structure of the marine ecosystem. On
 

the other hand, these metaphors constrain the enhancement of
 

fundamental understanding because they obliterate 
the very
 

factors 
that are so important in population regulation: the
 

factors that gene-.te variability, and the factors that maintain
 

stability. The notion of the food signal implies that. general
 

knowledge of ecosystem behaviour can be enhanced by the study of
 

a small subset of related populations and their food-signal
 

interconnections. It would of course be difficult to study the
 

"entire" ecosystem in any detail, rather generalities would
 

emerge that reflected upon the nature of system variability in
 

that this alternative approach would lend itself to studying the
 

extent to which perturbations are either propagated or damped
 

among interconnected population-dynamics process models.
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Figure 1. Nonlinear population regulatory module. 
exiting and entering the rectangular box 
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as signals (based on Rothschild, 1986). 
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FJppre 2. 	Ieplction of an encounter signal in one-dimensi nal space.
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Figure 3. 	An example of ti'food-signal renewal function plotted as a function
 

of the encounter-signal renewal functiou The solid line is Case 1
 
and tie dashed line is Case II.
 


