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ABSTRACT
 

A method is 
described by which objects and attributes may be
divided simultaneously to form a hierarchical classification.

TACO involves ordination by correspondence analysis and
divisions based on minimizing variance. Significance testing or
validation of both the axis and the 
division points is
facilitated through iterative production of eigenvalues and
reduced variance indices 
from the shuffled data matrix.
Acceptance values for reduced variance can be used to produce atree with several divisions at each level. Objects andattributes characteristic of a given class can be determined byuse of an index and randomization procedure. TACO can be used
with quantitative data without reduction 
to semi-quantitative

form. Comparative tests with coral 
reef fish community data
indicate that the method compares favorably ,-ith TWINSPAN 

the unweighted pair groups agglomerative method. 

and
 



INTRODUCTION
 

In classification studies, it 
is often desirable to classify
objects and attributes simultaneously, so that the relationships
between the 
two ets are made clear. For example, the
traditional method of 
phytosociological table construction

results in 
a sorted data table wherein "blocks" of relatively
homogeneous relevds and their ch:aracteristic species are grouped
together to facilitate furthet 
analysis (Braun-Blanquet 1932,
Mueller-Dombois and 
Ellenberg 1974). Unfortunately, this
approach is very tedious and a reasonable level of objectivity
in the procedure can 
usually be achieved only after years of
 
experience.
 

The most popular method for simultaneous classifications of
species and 
sample units in ecology is probably the TWINSPAN
 program of Hill (1979) (Gauch 1982, 
Pielou 1984b). This program
produces hierarchical divisive classifications of objects,
then conducts a similar analysis of 
and
 

the attributes (usually
species). Finally, a table is produced based on row and column
exchanges, which optimally displays the two sets of analyses in
block form. Divisions are based 
on reciprocal averaging
ordinations and designed to 
optimally divide species based
discriminate scores. 
on
 

In the process, indicator species 
are
identified which are characteristic of each group of sample
units. 
The complete algorithm is quite complex, and details may

be found in Hill (1979).
 

The algorithm has 
a number of subjective decisions built in 
as
default options, which may be altered. It is objective in the
sense that two workers using the same options on the same data
set will achieve the same results (prior to interpretation).

This fact, and the impressive degree of speed, space efficiency
and portability built into the program, make it 
a substantial
improvement 
over previous methods. The program also has the
property that it 
usually yields clissifications which 
are
intuitively understandable, probably because of the 
emphasis
built iito the algorithm on making choices 
the way an
experienced ecologist would. 
 However, the algorithm is not,
strictly speiking, a simultaneous division of 
objects and
attributes. The separation of 
object and attribute analyses
into distinct analytical phases occasionally results in tables
with poor block structure. 
The number of classes of objects may
differ from the number of classes of species for a given minimal
class size. The attribute groups are sometimes 
difficult or
impossible to pair up with groups of species 
on a one-to-one
basis. Other limitations include 
the difficulty with which
objective validation methods and significance tests 
can be
applied. Also, 
the method is 
based on conversions of
semi-quantitative data 
to binary form, and does not lend itself
to use with quantitative data without prior reduction. 
 Hill
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(1979) recognized a 
number of limitations in 
his program,
particularly for use 
in a variety of specialized applications,
and encouraged further work on method d&velopment. I present
here a method intended to complement the TWINSPAN method, which
has some advantages for specific applications.
 

The TACO Algorithm
 

Methods based on 
classifications of 
ordinations have been
previously presented by Noy-Meir (1973), 
Lefkovitch (1976) and
others. 
 Noy-Meir (1973) proposed using a principal components
analysis (PCA) as 
a basis for the ordination of objects. The
optimal point for division along this ordination was that which
resulted in the greatest reduction of variance of sample points
projected along the ordination axis. 
 The method had the
advantage that successive hierarchical divisions need not be
binary 
-- it is possible to develop a criteria for accepting two
or more optimal divisions at each level. The fact that the
method was based on a quantitative index (reduction of variance)
meant that 
it could be validated 
or subjected to significance
testing (depending on statistical approach and philosophy) by
computer intensive methods such 
as those later outlined by
Noreen (1989) and demonstrated below. 
 A potential disadvantage

which has become of recent 
concern involves the problem of
nonlinearity in ecological data 
(Gauch 1932, Greig-Smith 1983,
Pielou 1984b). 
 A primary gradient reflected in sample units
often appears as an 
arch with respect to the principal axis in
PCA analysis (Fig. 1). The points near the ends of the arch are
often inverted and compressed when projected onto the axis. 
 If
the optimal division was 
to Le found among these points, a
misleading result could be achieved.
 

One solution to the problem of end-point inversion would be 
to
use a correspondence analysis (CA) (essentially equivalent
reciprocal averaging) axis 
to
 

for the ordination (Pielou 1984b).
CA ordinations often result in 
an arch effect, but the end
points generally do not invert. 
 This is not an 
ideal solution,
because the en points in CA 
are often compressed upon
projection. However, this is much less 
of a problem than the
end-point compression and inversion associated with projections

along a PCA axis.
 

The ordination in CA analysis is 
usually strongly correlated
with the strongest gradient affecting the species distributions,
and both species and sites may be ordinated along the same axis.
In this case, the species tend to be located based on their mean
distribution among sites, and vice 
versa. It stands to 
reason
that any substantial break in 
continuity of sites would be
associated with 
a similar break in the distribution of species
along the axis. Figure 2 shows 
a set of artificial data with a
strong 3-block structure. 
Figure 3 shows a CA ordination of the
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data based on the first two 
axes. 

in 	

There are two strong breaks
the distributions 
of both objects (sample units) and
attributes 
(species) 	with respect to projections on the first
axis. 
 Figure 4 shows the data in the table rearranged into a
roughly diagonal 
(block) form according to the CA coordinates.
The two division points along the first axis 
can be used to
divide both the sites and species into blocks.
 

In the current algorithm, the division points 
are located with
respect to objects (sample units) first. 
 The total 	variance for
the points along the axis is calculated first, and then each
possible division is tested. 
The variance of points to the left
of each division is added 
to the variance of points to the
right, and the total is subtracted from the overall point
variance. 
 The result is standardized by the squared range of
values, as recommended by Noy-Meir (1973). 
 The formula is:
 

V - ( VL+ VR ) 
SRV = 

( High- Low ) 2 

where 	 SRV = Standardized reduction of variance 
V = nrjngi sAneal 8eaaxis
VL = Rrl 	 Rs ea
division
 

VR = variance cf points on the right of a
 
division
 

High = Highest coordinate value
 
Low = Lowest coordinate value
 

The division point 
(or points) which yield(s) the greatest
reduction in variance 
is (are) 	selected. The division among
attributes is based on. 
similar trials among attributes (if any)
located within the bounds of 
the coordinates of objects
enclosing 	the best object break. 
 If no attributes fall within
the bounds, the division point for species 
is defined by the
 
division site for sites.
 

When the 	method 
is applied to a smooth gradient, the best
division 	tends to in center
be the (Fig. 5). This is a
desirable property, because the ordination already represents an
ordering of extremes which would usually be best separated even
in an arbitrary division. 
 Trials using 
a simple 	reduclion in
information diversity in 
the unprojected data 
set proauced a
technique 	which was 
biased toward end-point divisions rather
than the center of a smooth gradient, and this was deemed less
desirable for most classification purposes.
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Validation
 

Breaks in Gradients
 

To say that a classification of a smooth gradient is 
useless
would be no more reasonable than saying that contour lines on a
map are useless (Pielou 1984b). However, it is useful know
to
whether a smooth gradient or a substantial break has been
encountered. TP ..s requires that some 
criteria separating the
two conditions be applied. 
 The fact that the reduction of
variance can be summarized 
into a simple criteria index makes
this a simple matter. 
Based on a number of experimental trials,
Noy-Meir suggested a decision criteria in the range of 
0.02 ­0.06 for his index of standardized data reduction. 
He suggested
usinq the chosen value as 
a criteria for accepting multiple
divisions at a given level in a hierarchical analysis (Noy-Meir,

1973).
 

The availability of high-speed microcomputers makes it feasible
to use a randomization approach in determining whether a break
is significantly non-random or not. 
 More specifically, we can
test whether the break is a consequence of the specific way the
objects and attributes are ordered, or whether it is likely that
a break of a given reduction level could have arisen merely as 
a
consequence of the nature of the matrix in terms of
dimensionality, patchiness, sparsity, and 
so forth. The TACO
algorithm includes 
an option whereby the quantities in the
matrix are shuffled with respect to both objects and attributes
for a large number of times. The probability that the decision
criteria could have been achieved randomly is 
(Hope 1968, Noreen
 
1989):
 

NGE + 1
 

N+ 1
 

where 
 NGE = the number of shuffled rearrangements which
 
yielded a reduction value greater than or
 

equal 
 to the test value
 

N = the number of shuffled rearrangements
 

The number of rearrangements should generally be more 
than 20,
and high levels of confidence can be achieved when N > 100. 
 An
arbitrary level of 
5% can be used to distinguish between
continuous and discontinuous gradients. 
 It can be also used for
determining whether 
or 
not to accept multiple divisions at a
given level for circumstances wherein this is desirable. 
Future
versions of the program are expected to incorporate a routine to
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calculate the expost probability, i.e. the probability which
would have been approached (assuming uniform priors) 
if N

approached infinity (Noreen 1989).
 

In order to accomplish the above shufflings and still preserve
dimensionality, it 
is necessary to build 
in a corrective
routine. The routine tests each row and column to ensure
at least one non-zero value is present. 
that
 

When there is none, the
routine searches randomly within the matrix to 
find a non-zero
value in a row and column each with at least 
one other non-zero
value present. 
 This value is then moved to a random place in
the aberrant row or column. 
The search continues until all rows
and columns 
contain non-zero values. The procedure does not
introduce any nonrandom bias, because ultimately, any non-zero
value has 
an equal chance of being shuffled to any position in
the matrix. Note, however, that 'randomness' as 
used above is
limited to the pseudo-randomness provided in 
the computer

algorithm using Quick Basic functions.
 

Trends Along Axes
 

The randomization approach 
can similarly applied
be to
determining the uniqueness of the 
gradient indicated by the
ordination axis. 
 Each CA axis is associated with a unique
eigenvector, which is 
in turn 
related to a single eigenvalue
describing the variability of attributes with respect to objects
along the axis 
(ter Braak 1988). The hypothesis to test is
whether the relationship thus indicated is uniquely related to
the distribution of values among the objects and attributes
ordered. The null hypothesis would be 
as
 

that any matrix of
similar dimensionality, patchiness, sparsitv, etc., 
would have
resulted in an eigenvalue of equal or greater value. 
 The
procedure follows that above,- and is accomplished simultaneously
in the current algorithm. 
Testing is done after converting the
original and generated eigenvalues to percent of the total
of eigenvalues, so that 
set
 

the focus is on the proportion of
variability explained. 
 I suggest here that a similar validation

procedure could be applied to virtually any ordination procedure

based on eigenanalysis, including the oft-used PCA.
 

Indicator Objects and Attributes
 

It is often useful in interpreting the results of a
classification to have a preset criteria 
for determining if an
object is characteristic of 
a group of attributes, or if an
attribute is characteristic of a group of objects. 
One possible
index for whether or not a species can 
act as an indicator of
conditions in a group of sites produced by a division is:
 

NR / OR 
IR = 

(NR/OR) + (NL/OL) 
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where IR = Index value for a variable (species) being an
 
indicator of the objects on the right side of a

division (a high value a
would be right

indicator, a low value, a left indicator, and a
 
moderate value an ubiquitous attribute).
 

NR = 	Tabular value (number of individuals) totalled 
among objects on the right side of a divisionfor the attribute (species) under
 
consideration.
 

NL = 	Same as NR, but for objects on the left side of 
a division. 

OR = 	 Number of objects on the right side of a
 
division.
 

OL = 	Number of objects on the left side of a 
division. 

Obviously, if the tabular value is very small, 
or if the
distribution of values among objects 
is very patchy, then
will be difficult to confidently determine if the attribute is 
it
a
right or left indicator. The confidence can be determined by
shuffling the values randomly among objects (within a row) and
recalculating the index many times. 
This 	results in a two-sided
analysis, where a very low IR and high NG 
(number of randomized
results greater than the test value) would be a left indicator,
a high IR and low NG would be a right indicator, and everything
else would be ubiquitous or indeterminate. This would be true
assuming that the number of "equals" is very low and therefore
 

that:
 

LG = 	N - NG 

where 
 LG = 	 number of results after shuffling less than the 
test value. 

Acceptance can be placed arbitrarily at 5% and 95% of trials,
although this does not translate precisely into probabilities as
in the prior cases. A similar procedure may be applied to
objects by shuffling and calculating within columns. Table 
1
shows the results for each attribute and object in the 3-block
 
data set.
 

Field Trials
 

For comparisons in the performance of this method against other
popular routines, it was desirable to use a data set known to
have a considerable degree of continuity. If the test data
represented a highly discrete 
set 	of objects, nearly any
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classification mathod would tend to yield identical results. 
A
suitably non-discrete data set 
is that of a fish community on
the fore-reef slope of Santiago Island, Bolinao, Pangasinan. We
have previously shown that the fish community is variable enough
that no two 
sites classified together consistently across
two-level TWINSPAN analyses of time-slice tables from nine
samplings at alternate months (Nahola et al. 1990).
 

A set of 18 visual transect sites was on
sampled alternate
months for the year July 1987 
- June 1988. Each transect was200 m by 10 m, and paired observers counted fish to a height of
5 m from the bottom. 
 Data from 6 periods were averaged into a
single table of sites by species. This table was analyzed in
two strategies. 
 In one, a set of three CA axes was generated
from the whole table, and each 
was divided 
once. These
divisions were used to produce a hierarchical set of divisions,
as recommended by Noy-Meir (1973). 
 The second strategy involved
extracting 
a primary axis, dividing it into two regions, and
then subdividing the left and 
right sets by extracting new
primary axes. 
 This method of "diminishing area", as used in
TWINSPAN, was expected to yield different results, because there
is intuitively no reason to expect that the residual variance of
the whole set of points should equate to the primary trend in a
reduced subset of points. However, the results were 
the same

for both strategies
 
(Fig. 6).
 

The site classifications 
were compared against those generated
by TWINSPAN and the unweighted pair groups 
method (UWPGM)
agglomerative method cut off at 
two levels of division (four
classes). The results 
indicated that TACO and TWINSPAN each
misclassified more 
sites relative to UWPGM than to 
each other
(Table 2). There was no indication that TACO produced a 
less
reliable or less interpretable result than did TWINSPAN. In
fact, only TACO isolated four sites which were 
located in very
shallow, wave-swept water which had been previously labelled 
as
 a unique set by fieldworkers during site selection (Fig. 7).
 

The significance of the axes 
determined iteratively (30 trials
each) was compared to that determined by two existing methods
for determining trend significance. Skewer analysis (Pielou
1984a) is a 
rank correlation method which seeks correlations
between the presumed ordering and the ordering of the actual
points projected on axes randomly thrust through the data cloud.
Ordered Similarity Matrix Analysis (OSMA) (Pielou 1979, 
1983 -­see also McManus 1985) involves a semi-quantitative analysis of
 a presumed trend a set
in of data points based on expected
orderings in a similarity matrix. 
 The results indicate that if
anything, the eigenvalue iteration method was more 
sensitive
than the other methods (Table 3). 
 The lack of significance
many of the divisions confirms the expectation that the 
in
 

fish
community in question was fairly continuous in its distributions
 
along multiple gradients.
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DISCUSSION
 

The major shortcoming of the TACO method in its current state is
the difficulty with which 
a table may be sorted to present the
results of successive divisions. Results in TACO can currently
be only presented either as 
tree diagrams for objects and
attributes, 
or as sets of tables representing successive

divisions. Combining these into a single table will 
require
trade-offs, although 
an optimal solution is theoretically
possible for a given set of constraints. Currently, if a simple
sorted table is 
the objective, TWINSPAN is 
the preferable

technique. However, in manly 
cases, the trade-offs involved in
the TWINSPAN tabular sorting steps 
can obscure the underlying
structure of 
the data and 
lead to misleading interpretations.

It is recommended that analytical emphasis be 
placed on
divisive steps in the order they 

the
 
were performed in either


method, rather than only on the final tabulations.
 

TACO has the advantage that it can operate 
on quantitative data
to a reasonable level of precision. TWINSPAN requires such data
to be reduced to a scale of 
no more than 10 semi-quantitative
 
categories.
 

The current TACO method is 
oriented specifically to the
identification of major gradients and the division of objects
and attributes with respect 
to them. This a
is desirable
feature in some 
studies, and makes interpretation of results

fairly simple. 
 For other purposes, however, the dependence on
gradients may not be 
as helpful. An optimal division of the
points as projected along the primary CA axis may
necessarily correspond 

not
 
to the optimal division of the same
points in multivariate space. 
 For some purposes, it may be
desirable to 
change the SRV criteria into one which minimizes
variance in multivariate space 
instead of depending on the
univariate projections of the points. Preliminary trials with
such a criterion have been promising. However, for many current
 uses in ecology and other fields where divisions reflecting data
trends are desirable, the current implementation of TACO may be


the method of choice.
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Table 1. Indicator analysis for species. A similar analysis 
can be performed on sites. (NG is the number of values from 
randomly shuffled rows greater than the test value). 

Species Indicator value NG of 1000 
1 0.0 	 0.0 
2 0.0 	 0.0 
3 0.0 	 0.0 
4 47.8 	 30.9 
5 75.0 57.8 
6 100.0 67.1 
7 100.0 66.5 
8 100.0 85.3 

10 	 100.0 65.8 
9 100.0 66.6 

High Indicator Value + High NG a Right Group Indicator 
Low Indicator Value + Low NG a Left Group Indicator 
Other species are unknown or ubiquitous. 



Table 2. Classification comparislons. TACO 

and TWINSPAN results were relatively close. 
TACO TWINSPAN UWPGM 
A: 5 8 9 10 11 9 10 11 5 8 9 10 11 

12 14 17 18 12 14 18 
8:13 15 16 13 15 16 17 13 14 15 16 17 

C: 1 2 3 4 2 3 4 2 3 4 

D: 6 7 1 5 6 7 8 1 6 7 

Missclassified TACO 4 TACO 5
relative to: TWINSPAN 5 



Table 3. Significance tests. Axes 1-3 are from visual 
fish transect data. % Eig. refers to tests of the 
significance of the eigenvalue converted to percent of total
values for all axes. The continuous nature of the data is
obvious from the lack of significance in species divisions. 

Reduced Variance Axis 
Data set Sites Species % Eig 

Gradient ns ns •
3-Block sc ns ns • 
Axis1 * ns 
Axis 2 * ns 
Axis 3 * ns ns 
Axis 1 Left * ns 
Axis 1 Right ns ns ns 

Station Order: Species Order: 

OSMA All Significant OSMA All Significant
Skewer All Significant Skewer All Significant 



Figure 1. The arch effect causes endpoint compression in
correspondence analysis (CA) and principal components
analysis (PCA), but PCA can also lead to inversion of points
as they are projected onto a straight axis. 

PCA 

= GRADIENT 



Objects (Sites)
 

4 3 0 0 0 0 0 0 0 0 
3 , 0 0 0 0 0 0 0 0 

Attributes 
2 
1 

3 
2 

0 
1 

0 
4 

0 
3 

0 
2 

0 
1 

0 
0 

0 
0 

0 
0 

(Species) 0 1 1 3 4 3 1 0 0 0 
0 0 0 2 3 4 1 0 0 0 
0 0 0 1 2 3 1 0 0 0 
0 0 0 0 1 2 1 4 3 2 
0 0 0 0 0 0 1 3 4 3 
0 0 0 0 0 0 1 2 3 4 

Figure 2. A hypothetical data table with strong 3-block 
structure. Each number refers to the value of an attribute 
for an object, e.g. the number of individuals of a given
species in a site. The data reflects the presence of 3 
object groups characterized by 3 groups of attributes. 



2nd Axis 

10 X CO 

Major Division t 
o- Possible Second 

x Division 

0 xoIPXo-I o I× 

-3 -2 -1 0 1 2 
1st Axis 

o Sample units X Species 

Figure 3. The 3-block data set projected 
on 2 correspondence axes. 



1 2 
1 

Ranked divisions 

Site numbers - 12 34567 890 
(1-10) 

Spp. 1 4-3 - ----
Spp. 2 34 ---- ---
Spp. 3 23 --------

Spp. 4 12 14321 --­
1 0.094 

Spp. 5 - 1 13431 ---
Spp. 6 -- -2341 ---
Spp. 7 -- -1231 ---

Spp. 8 -­ 121 432 
2 0.076 

Spp. 10 -- -­ 1 234 
Spp. 9 -- 1 343 

0.067 0.057 - Variance 
reductions 

Figure 4. The 3-block data set with species and sites
ordered as per the results of CA analysis. Divisions are
indicated along with rank preferences and variknce reduction 
values. 



531246
 

1 
1234567890
 

1 Spp. 1 4321-----­
2 Spp. 2 34321----­
3 Spp. 3 234321-- -- 5 0.059 
4 Spp. 4 1234321--- 3 0.078
5 Spp. 5 -1234321-- __ 1 0.085 
6 Spp. 6 -- 1234321- __ 2 0.078
7 Spp. 7 --- 1.234321 4 0.059 
8 Spp. 8 ---- 123432 -- 6 0.037 
9 Spp. 9 12343 
10 Spp. 10 ------ 1234 

/\**0.059 
/\**0.078 
/\*-085 
/\*'0.078 
/\**0.059 
/\**0.037 

Figure 5. Divisions of a smooth gradient. Priority tends
toward the center of the ordinated data. 



Figure 6. Taco classifications based on succesive reductions
of the object set with reanalysis (reduced area) and ondivisions of multiple axes (successive axes). Data are fromvisual fish censuses on a forereef slope. Sites 1-4 are very
shallow (approx. 5 m) and wave-swept. 
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Figure 7. Classifications based on TACO, TWINSPAN, and theunweighted pair groups method (UWPG) of the 18 visualfish transect sites averaged over a year. The 109 topspecies were included, comprising 90% of the counts. 
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