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Merging Aggregate Catch Data with Uncertain Prior
Knowledge to Approximate /.ge and Size
Distributions and Selectivity Functions

ROBERT I.. BURR. MEMBER, IEEE

Abstract —The problem cf determining fish age and size distributions
and gear selectivity functions from aggregate data can be approached as an
ill-posed inverse problem. Minimum cross-entropy inversion techniques
allow the selection of a reasonabl> unique solution, directly incorporating
backgrourd irformation of uncertain qualiiy.

I. INTRODUCTION

In fisheries research and management it is often desitable to
know the probability density function (PDF) of the age or length
of a particular stock of fish. A detailed sampling program to
determine the relative abundance of fish at different ages or
lengths is usually prohibitively expensive. A method is proposed
to merge limited and possibly indirect information from commer-
cial and research fisheries catch reports with a reasonable hy-
pothesized prior assessment to approximate the true PDF of fish
length or age. This method is also employed to infer effective
selectivity curves.

Fisheries managers are charged with the responsibility of opti-
mizing the productivity of an aquatic natural resource while
minimizing the risks for the participant fishermen and for the
coniextual ecosystem. Although fisheries nanagement actions
usually reflect political inputs more than the biological and
bioeconomic status of the svstem, a class of rational models has
been available for several decades to assist fisheries decisionmak-
ers. These models quantify the resource at a very high level of
generality, typically as a total biomass, and have been effective at
describing the * tragedy of the commons™ [1], the various kinds of
overfishing that occur :n common property fisheries. The in-
evitability of economic overfishing (increasing fishing effort until
all of the participants are just breaking even) in open-access
fisheries, and of biological overfishing (fishing the stock below
biologically safe levels) when the ratio of price to cost of opera-
tion is high are prophetically indicated by these simple models
[2].

A second generation of more elaborate models has emerged
with the recognition of the limitations of the original simple
assumptions. Several classes of overfishing that are dependent on
the interaction between length or age distributions and gear
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selectivity phznomena have been noted. Recruitinent overfishing
reflects the fact that little fish come from big fish and ihat
overharvesting the spawning stock depletes the next generation,
regaedless of the total stock biomass. Growrh oveifishing is an
outcome of the fact that little fish become big fish, and that
overharvesting young fish precludes their reaching full biomass
potential (and spawning capacity). Thus the principal embellish-
ment in recent fisheries models has been tke introduction of age
and size components.

A number of issues besides sexual maturity pertaining to age
distributions are of interest to fisheries managers and biologists.
Fish species have unique life histories, including age-dependent
migrations, alterations in morphology, and change< in dietary
components. From a population dynamics viewpoint, the age of a
fish is the length of time it has been probabilistically available to
be eaten or subject to other forces of mortality.

A comprehensive age distribution of a species may be expen-
sive to acquire. In addition to the sampling program collection
costs, the aging of each fish usnally requires a microscopic
examinaticn by a highly trained specialist. Various parts of the
fish, like the scales and beny structures, may reflect seasonal
variations analogous to tree rings. In most species the best aging
techniques use slices of the otoliths (ear bones) of the fish,
prepared in a time-consuming procedure. Even these costly ap-
proaches to aging are not perfect, as the apparent rings are highly
modified by variations in species life history, migrations, number
of spawning cycles per year, and environmental disturbances like
El Nino. Some fish species in tropical waters may experience few
annual ervironmental variations affecting bone deposition, and
m:ost crustaceans shed all of their hard parts each time they molt,
making direct deternination of age essentially impossible. Small
wonder that fisheries management entities put a considerable
amount of effort into the construction and validation of
age-length keys.

It certainly costs less to measure the length of an animal than
to determine its age. Length distributiors also have interest
bevond their implications for aging. The size of a fish is probably
the crucial determinant of its role in the ecosystem. Marinc
vertebrates can eat anything less than about one-tenth their own
size, and are vulnerable to creatures roughly ten times larger than
themselves. It is also the size and not directly the age of a fish
that determines t:.< vulnerability to geometrically selective en-
trapment devices like gillnets. Human fishing activity 15 the
dominant source of mortality among mature fish in many ex-
ploited species and can cause dramatic alterations in the catch
length profiles over time.

The preferred method for estimating age or length distribu-
tions of a stock of fish is to conduct a representative series of
standardized research field sampling experiments, determine the
age or length of each collected fish, aud develop an empirical
distribution using histogram, Parzen- Rosenblatt kemel, and more
rarely, parametric probability density function estimating tech-
niques. Only in the most important fisheries are sufficient re-
sources available to support the boat time and personnel needed
10 carry out systematically such a research program. Particularly
in developing countries, most fisheries managers must make the
best inferences they can from current and historic aggregate
commercial catch statistics. This highly summarized bioeconomic
data about commercial boat landings are often collected at the
primary transaction between the fisherman and the fish buvers,
and rarely contain explicit length or age profile information.
However, indirect information about age and length is coded into
the commercial catch landing data because of the variations in
the effective age,/length selectivity of each boat's fishing effort.

It is well-understood that the configuration of the fishing gear
and the behavior of the fishermen affect the size and age profile
of the catch [3). The size of the hook or the mesh of the net. the
speed of the boat relative to the swimming speed of the fish, and
the size and type of bait are all factors that almost mechanisti-
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Examples of selectivity functions for fishing gear. (a) Small trap. (b)
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Fig. 1.

cally condition the cftch length profile. Some representative
gear-fishing behavior selectivity functions are shown in Fig. 1.

Suppose aggregate catch reports are received frc m M fisher-
men, each using different gear or fishing methods with known
selectivity functions sel, (/). Typical information recorded about
fish caught might include the total number of fish. the total
weight of fish, and mean and mean square of length, or possibly
a coarse histogram or count of fish in aggregate length categories.
It will be assumed that each of these quantities can be at least
asymptotically expressed as an expected value or moment of the
true but unknown length PDF 4'*(/) for the population under
study.

For example, if the caick is large enough, we may be comfort-

_ able in describing the relationship between the number of fich

caught and the unknown length PDF ¢'" (/) by means of the
expected value integral constraint

\j=cjfse1,(/)q""~'(/)d/ (1)
where C is a sampling scale factor incorporating fishing effort

and absolute abundance. Similarly, the total landed weight W, for
fisherman 1 can be expressed as

W= (jf.u‘ sel, (1) g™ (1) di (2)

where A is a constant for a particular species of fish.
The mean and mean square of length are asymptotically

M,=C,f/~sel,(/)q"“"(/)a’/ : (3)
and

MS =(’,’//3~.\cl,(/)q“""(l)d/. (4)
The number of fish 8, expected in Iength bin or category 4.
ZOIT?%SM of fish longer thar /, and shorter than or equal to

B, =(',fl‘".scl,(/)q"“"(/)d/‘ (5)
Il

To emphasize further the integral constraint nature of these
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equations, let all the constant factors be included into the selec-
tivity function sel, (/), resulting in the integral expressions

N,= [sel, (1) g™ (1) dl (6)
W, = [APsel, (1) g™ (1) dl ()
M, = [1-sel, 1) g (1) al (8)
M, = [:sel, (1) g™<(1) al (%)
B, -fl"“'scl, (1) g™ (1) dI. (10)

For each report i, these values can be considered a well-
defined summarization or mapping of the unknown continuous
function ¢'™°(/) through an integral kernel into a single scalar
number or moment. The integral kernel, which is strongly influ-
enced by the selectivity function sel, (/), acts as a window through
which the unknown PDF 4"™°({) is indirectlv perceived.

We would like to solve the inverse problem, that is, to deduce a
reasonable approximation of the continuous function q'm™e(l)
given a finite set of any of N, W, M, MS,.or B . This is a
well-known form of ill-posed inverse problem with an infinite
convex set of solution PDF’s r(/), each consistent with the given
finite set of integral constraints [4]. The aggregate data can also
be regarded as constraints on the age distribution. a concept at
least as interesting to population dynamicists as the length distri-
bution. For simplicity, assume that age and length are continuous
variables. The number of fish in length category k. composed of
fish longer than /, and shorter than or equalto/, . is

C =A[I""se:(/)q"“(/)d/. (11)

However, the length PDF can be related to the underlying age
PDF qlruv:(a)'

¢"(1) = [ p(lia) ¢™(a) da (12)

where p(/|a) is the conditional probability of length given age.
Thus C, can be written as

Loy ) rue
C‘=-A'/I" se](l)(fp(lla)q‘ (a)da)dl. (13)
Interchanging integrals, this becomes
q=f("/""sel(1)p(na)d/)q‘""(a)da (14)
Iy
or

G = [4,(a)¢"™(a) da (15)

where

A.(a) -Aj;,"'scl(l)p(lla)dl. (16)

Equation (15) expresses the catch in length bin k as an integral
constraint on the true but unknown age distribution q'"™(a). Itis
assumed that the selectivity function sel(/) is known and also
that the conditional probability p(/|a) can be determined from
theoretical considerations or empirical age-length keys, then (15)
is an integral equality constraint beanng on the inverse problem
of determining the age distribution. Of course, other length-
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related catch summary statistics can be similarly expressed as
constraints on the age density function as well.

Il. Cross-ENTROPY MINIMIZATION

A given set of moments may not uniquely definz a probability
density function, although the density function completely deter-
mines the set of all possible moments. In general, as infinite class
% of density functions is consistent with a finite set of moment
constraints. For example, three densities with the same first two
moments are shown in Fig. 2. In Appendix I. the clasy % defined
by general expected value constraints is shown to be a convex set.

Some fisheries biometricians may not admit the need to pick a
unique PDF from the class of density functions consistent with
the known moments, feeling that it is more honest Just to
describe the class € of possible PDF's as best one can s0 as to
point out the nonuniqueness of the solutior: to the stated inverse
problem. However, a succinct description of the solution class is
rarely possible or useful in practice. While all elements of the
solution class are possible. some are extremely unlikelv looking,
and unrepresentative of the class. Picking a unique PDF is
equivalent to specifving all possible inoments. The various meth-
ods of PDF esumation differ in the criterion used to make an
optimal choice of this specification.

Applied statisticians often express dissatisfaction with formal
estimation procedures in statistics because background informa-
tion either has to be ignored or rigidly adhered to. Neither
position is desirable. nor does it model the processes of human
understanding. Contextual knowledge is unquestionably relevant
to the applied problem but difficult to merge gracefully with new
information in the form of actual measurements of the system. If
we had no new measurements at all, we would base our predic-
tions on our experience with similar systems, or on our experi-
ence with the behavior of this particular system in the past. If we
had a limited amount of information about the actual system
under study we would want a solution consistent with both the
current data and our prior understanding. It would seem reason-
able to give precedence to the new accurate knowledge and then
resolve any remaining inferential ambiguities by appealing to the
prior knowledge base. Kullback’s principle of minimum cross-
entropy (5] provides a rule for picking a unique solution using
both the new system measurements and the background knewl-
edge. It states that from a set of possible solutions we she uld
choose the one most similar to our prior information.

In fisheries management, a wealth of prior information of
uncertain applicability about the length distribution of a particu-
lar fish stock is often available, coming perhaps from historical
records, experience with similar spzcies, or theoretical principles.
For example, in many fish species it is possible to postulate a
reasonable prior length PDF p(/) based on the joint assumplion
of an exponential mortahity with age and the von Bertalanffy
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age-length relation. Regardless of how the description of the
background information is obtained, it would seem rvasonable to
use Kullback’s principle to resolve the ambiguity of the solution
set € by pickiag the element in % most similar to the assumed
prior p(/). No matter what prior density is specified, the selected
element will still satisfy all of the given moments.

To implement this aptimization procedure, it is necessary to be
precise about how to measure the dissimilarity between two
PDF’s p(l) and q(/). In information theory this distance is
commonly quantified by Kullback's cross-entropy functional,

q(/)
HLa(D),p(] = [a(1)log -

Also known as the directed divergence or the Kullback-Leibler
number, this distortion measure on the space of probability
density functions can he interpreted as the expected value of a
log-likelihood ratio.

Kullback’s principle would have us find the posterior PDF ¢(/)
that minimizes H[q(/), p(/)] while exactly satisfying the set of
constraint equations

(17)

m=[1(Dq(l)dl,  j=1,--. M. (18)
Note that the expected value constraints corresponding to our
data are in this form.

The general problem of PDF approximation using the minj-
mum cross-entropy (MCE) criterion has been studied, and a
solution for the posterior PDF ¢(/) for nonpathological integral
kernels £ (/) is well-known.

M
q(!) -p(l)exp{— > B,f,(l)} (19)

=0

where the {8} are Lagrange multipiiers whose values are made
consistent with the measured moments m , by solving the set of

nonlinear equations.

M
m;"cﬂ-‘“"d afjl(l)p(l)exp{— > B/.ft([)} dl,
k=0
j=l'. .

M, (20)
along with the normalizing constraint
_") y
1=‘[P(I)CXP{" Z Bl.f/.(l)} dl. (21)
k=0

The latter constraint comes about because the posterior ¢(/) is a
probability density function and Fence must iatcgrate to unity. In
practice, we generally have to solve this system of norlinear
equations using numerical methods such as the Newton- Raph-
son procedures. .

A nonrigorous derivation of the form of the MCE posterior
density is presented in Appendix II. For a more detailed consid-
eration of the conditions under which this result exists and is
unique, the careful reader is referred to {6]) and [7). A review of
successful applications of MCE inversion techniques can be
found in [8].

II. ExAMPLES

Several examples will now be developed to demonstrate how
diverse aggregate data and detailed prior assumptions can be
used to approximate the probability density functions of age and
length.

A. Example |

Suppose that the unkuown true length PDF of a species of -fish
in a particular fishery is an exponential distribution,

q"“‘(l)=(l/A)exp{—l/A} (22

with A =25 cm, as in Fig. 3. Further, suppose that we have
information about the number of fish caught by five sets of boats
each using gillnets with different size mesh. The normalized
selectivity functions of these hvpothetical gear types are shown in
Fig. 4 and model the rule of thumb that the selectivity of a gillnet
is approxirnately Gaussian, with a standard deviation or spread
paremeter that is about 20 percent of the expected mean length.

By choosing several different prior distributions we can illus-
trate the sensitivity of the MCE posterior to the assumed back-
ground information. If we assume the prior is also exponential
with parameters A, =10 cm, A, = 25 cmm, and Ay =90 cm, respec-
tively, as portrayed in Fig. S(a). (c) and (e). then the resulting
MCE posteriors are depicted in Fig. 5(b). (d). and (D). Clearly,
with just five aggregate statistics we can produce a good approxi-
mation of the true density even when the prior is dramatically
different on a biological scate. When the prior density corre-
sponds to the true density (Fig. 5(c)). the MCE posterior per-
fectly matches the true density (Fig. 5(d)). In general, the discrep-
ancies between the MCE posteriors and the true density are
mainly tocated at short lengths, where onlyv limited information is
available from the extremelv selective small mesh gillnets,

When the background information forces the * aposition of a
very inappropriate prior density. artificial features can be in-
duced in the mixturc of background and current information that
is the MCE posterior density. For example if we assume the
hump-shaped prior density in Fig. 5(g). the MCE posterior (Fig.
5(h)) is a good approximation for the larger animals. but evi-

'While ks example s artficually simple. 1t a fiest-order approvumation of
the length distnbutions of Corvina rena (Cinoveron albus) and Coliamanlla
(Cynuscron stoltzmanni), two commercially important species the author s
studying in a small-scale artisanal fishery in the Guif of Nicova on the Pacific
coast of Costa Rica. These fish grow to approximatelv a incter in length in
four vears.
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sumed in Example 1.

dences features in the shorter lengths that are artifacts of the
combination of the inappropriate prior and the specialization of
the information from the current data about smaller fish. Superfi-
cial evaluation could easily result in a misleading biological
interpretation and possibly undesirable management actions. Of
course, acquiring more comprehensive data for the smaller fish
would allow the MCE method to overcome the mis-specified
prior density.

This simulated example underscores the critical role of prior
knowledge in the specification of MCE limited information prob-
lems. The resulting posterior will be dominated by the prior
density when the current information is scanty. The MCE poste-
rior is the optimal unique solution of a given prior density, but
will in general be different for distinct prior descriptions. It is
somewhat disquicting to employ a method that can be manipu-
lated by subjective factors. However, it should be noted that all
rompetitive methods require making assumptions (often quite
stringent and generally hidden) to force a unique solution, and
that the MCE methodology merely requires the practitioner to be
explicit. As scientific ard editorial standards for reporting MCE
applications develop, it is clear that precise statement of the prior
density will be necessary, since the adequacy of the MCE poste-
rior can not be interpreted in its absence.

B. Example 2
Let p(/ia) be defined as Gaussian, with
m(a)=Lo(1-e'*) (23)
and
of(a) =p(a) =L (1-e*") (24)

where the von Bertalanffy parameters are arbitrarily chosen to be
L, =100 cm and k =0.15. Suppose further that the selectivity
function for a particular gillnet has a Gaussian shape centered at
# =50 cm with a scale parameter ¢ = 20 cm as in Fig, 6.
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If the hypothetical true age density ¢"““(a) is as shown in Fig.
7, then the resulting catch length histogram, summarized into
5-cm bins by the equation

C=[af" " M sel(1) p(fja) dig™(a) da  (25)
-Scm

is shown in Fig. 8. It is apparent that the probabilistic diffusion
of length with age and the summarization of the data into bins
has significantly blurred the latent age density function.

With the MCE methodology we can attempt to recover the age
density function from the hypothetical catch-at-length data sum-
marized in Fig. 8. From our knowledge of the natural history and
population dynamics of the particular fish species we might be
led 10 postulate the prior density p(a) given in Fig. 9. The form
of the MCE posterior density is

K
qME(a) -p(a)-exp{Ao + ) ﬂ,A,(a)} (26)

1=1

where

A,(a)=f.(;::.scmA~sel(l)p(Ila)da. (27)

The numerically computed posterior density ¢™CE(a) having the
form given in (26) is shown in Fig. 10 and is a close approxima-
tion to the hypothetical true density ¢'™°(a).

IV. INFERRING SELECTIVITY: A DUAL PROBLEM

In the development so far it has been assumed that the
selectivity functions sel, (/) are explicitly known and that the
underlying length or age PDF needs to be determined. The same
methodology can be used to consider the dual problem of ap-
proximating the normalized nonnegative length selectivity func-
tion sel(/) for a particular fishing method from moments gath-
cred with respect to various known length or age PDF's,

Suppose we had one or several sites where we independently
knew the length or age PDF's. Then the jth information sum-
mary collected on 1th site can be expressed as either

M, = [M-f,(1)g(1)sel™ (1) al (28)
if ¢,(!) is known, or
K, =fK-G,,(I)se1““°(I)dI (29)
if g,(a) is known, where
G, (1) = [1,(1)p(lla)g,a) da. (30)

In both cases it is assumed sel'™ (/) is a normalized strictly
positive continuous function.

Then the true selectivity function could be approximated by an
MCE posterior fun:tion,

! J \\
L X MB,L (g

(=11 /

sel(l)=psel(l)exp{[3”+ (31)

for the case where g,(/) is known, or

! J
sel(/) =psel({)exp{ B+ ¥ ¥ Kp,,a,,(l)} (32)

(=1 =1

for the case where g (a) is known, G,,(!) as above. If the prior

-
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assessment psel(/) is reasonable, the approximating posterior
function sel(/) will converge rapidly to sel™ (/) as the number
of distinct moments represented in the problem increases.

As an example of inferring the selectivity function given
knowledge of the age density function, the conditional probabil-
ity p(/]a), and catch information. consider a slight variation of
Example 2. If we assume that the age distribution is known and
that we have a prior assessment of the normalized selectivity
function. psel(/), then the posterior approximation sel(/) can be
deconvolved from the caich-at-length histogram with the aid of
(11). In particular, let psel(/) have a Gaussian shape with p =
40 ¢cm and o =10 c¢m as represented in Fig. 11. The numerically
determined MCE posterior function corresponding to the catch-
at-length profile given in Fig. R is displayed in Fig. 12. The
dashed line in the same figure depicts the hypothetical true
selectivity function.
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V. REMARKS

The MCE method. as applied for example to length PDF
approximation. capitalizes on the variations in the information
about ¢""“(/) implied by projection through the different integral
kernel selectivity functions sel, (/). The strengths and weaknesses
of the MCE approach lic in the ability to insert background
knowledge of unknown applicability into the problem by way of
the prior PDF. Examination cf (19) shows that the posterior PDF
is in the form of the prior PDF multiplied by an exponential
distortion factor. If the prior PDF is a good guess, then the
magnitude of the Lagrange parameters will be small and the
analytic degrees of freedom of the model will be spent *fine-tun-
ing” the posterior PDF, explaining what is not already known
about the system under study. If the prior PDf is not a goud
guess, the magnitude of the Lagrange parameters will be large as
the degrees of freedom of the distortion function are spent
overcoming the unrepresentativeness of the prior PDF. It should
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be generally noted that if the hypothesized prior p(/) happens to
be identical to the true PDf ¢"™*(/), then 8 =0, V ;i and
q(l) = p(1) = "™ (1).

As the number of reported moments m, increase, the MCE
procedure can overcome any misspecified prior PDF so long as
p(/) >0,V {>0. In the information theory literature this arpeal-
ing behavior of the MCE inverse is termed “ washing out” old
uncertain information with new facts. Whenever an inconsistency
arises between the prior p(/) and the actual data, the new data
takes precedence.

The MCE inverse methodology can be viewed as a formal way
to deal with missing information problems by adapting the form
of the model to the available momerts. The kernels correspond-
ing to missing moments are simply deleted from the argument of
the exponential function in (19).

It is a “method of moments™ inverse technique. That is, the
Lagrange paramzters { 8, } are defined, not statistically estimated.
sampling variability in the measured moments will be propa-

1003
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True and Posterior Selectivitiea
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True selectivity function (dashed hne) MCE posterior selectnvin
function (solid hine)

Fig. 12.

gated through to the posterior density ¢(/) and manifests tiself ay
unlikely detail.

In the extreme, if two sclectivity functions are equal. sel (/) =
sel, (/) but the corresponding measured moments are not eyl
because of sampling variations. the set ¢ of consistent solutions
is empty and no MCE solution is defined. This situation can he
avoided by allowing only one moment for cach unigue kernel
function, averaging inconsistent evidence hefore the MCE inver-
sion. This may not be possible with overlapping indircet evi-
dence. More will be said about sampling variabilits 1 the nest
section.

VI EstiMarion Isstis

It has been stressed that the MCE inversion procedure 1 a
method of moments. where summaries of sampled data are
assumed rather arbitrarily to be equisalent to asvmiptotic ¢x-
pected values, from which the Lagrange parameters are defined
rather than statistically estimated. Anyone who has participated
in fisheries research data collection or has had the responsibility
of summarizing such data would be Justifiably concerned about
this suppression of uncertainty The attempt to make this elegant
PDF approximation scheme better suited for practical problems
is an active research topic.

One approach to apprehend the uncertainty is to assume the
Gaussian approximate sampling distribution for the estimated
moments, then determine the multivariate PDF of the Lagrange
parameters that is implied by the deterministic multivariate non.
linear function mapping the moments to the model parameters.

Another procedure would be 1o treat the form of the posterior
PDF as a parametric model, then form a maximum likelihood
estimate of the parameters (8} based on the raw data. However,
this paper has focused on situations where only aggregate data
are available from which to work. [n anv event the optimality of
the MCE posterior is only with respect to a particular limited set
of available moments.

The MCE posterior density is the optimal solution to a calcu-
lus of variations problem where the moments are represented as
integral equality constraints on the unknown true density. It s
also possible to formulate this problem using integral inequality
constraints. For example, instead of using the equality constraint

. =f/,(/)t/"""(/)d/. (RRY

A
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two inequality constraints might be written as

m,+2% >[/,(1)q""°(1) di (34)
m,—2%<[f,(l)q"‘“(l)dl. (35)

That is, confidence intervals based on som# reasonable assess-
ment of the varability of the moments due to sampling are
employed to constrain the class of consistent densities. Kullback's
principle can still be applied to the now larger convex set of
PDF's satisfying the given inequality constraints. It is also possi-
ble in some MCE problems to incorporate equality constraints on
the sampling distribution itself into the fundamental calculus of
variations problem.

VII. CoNcLusiOoN

Fisheries managers must increasingly make inferences about
the age and length distributions of the aquatic natural resource
stocks they oversece. Comprehensive field sampling surveys for
each commercial species are very expensive and are generally sut
of the question for developing countries and small-scale artisanal
fisheries. The present correspondence has attempted to develop
an approach for inferring length and age information from highly
summarized data about the operating commercial fishery.

The problem of determining fish age and size distributions and
gear selectivity functions from aggregate data can be approached
as an ill-posed inverse problem. Minimum cross-entropy inver-
sion techniques allow the selection of a reasonable unique solu-
tion, directly incorporating background information.

This ability to include contextual, background, or subjective
information allows the MCE approach to define good approxi-
mations from very indirect and limited evidence. The subjectivity
of the prior can be a source of concern, since very different
approximations can be obtained with different assumed prior
densities. However, the MCE approach prioritizes current evi-
dence with respect to the background knowledge, and a suffi-
ciency of new information will overcome an unrepresentative
assumed prior density.

It is difficult to assess the practicality of the MCE approach
described in this paper and to compare it with potential competi-
tive methods. It is not a statistical estimation procedure but an
exact fit of a just-identified model crafted for asymptotic infor-
mation-theoretic optimality, hence the usual questions of bias
and efficiency are not applicable. It is a computationally expen-
sive approach, with each problem statement essentially requiring
a unique program to solve a specific large set of nonlinear
equations.

The appropriateness of its use will have to be reconsidered for
each application. It would seemr to be indicated for problem
environments where current evidence is limited but of good
quality, where reasonable prior knowledge can be assumed and
where the nontrivial cost of computation is less than the cost of
collection of additional data. Many fisheries inference problems
have these information-limited characteristics, and the MCE ap-
proach developed here may provide a useful solution framework
for these difficult situations.

APPENDIX |
CONVEXITY

it is easily shown that the class & of probability density
functions consistent with a given set of moment constraints is a

convex set. Suppose that there exists two densities, p(X)EF¥
and p,(x') € €. such that
Pi(X) # py(3). (36)
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By the definition of membership in €,

m = [f(%) py(F) dF (37)

and

my = [ (%) po(3) d. (38)

To show convexity, it is sufficient to demonstrate that
p(X)=a-p(X)+(l-a)-p(X)€¥ Va30<a<l (39)
but

J1(R) p(2) dE=a [1,(3) p(5) % + (1~ a) [ £ () py( 7) dF
=a-m +(l-a)-m

=m,, OSkS’"- (40)

Therefore,

p(X)=a-p(%)+(1-a) p,(X)€E¥ Va30<acxl.

(a1)

APPENDIX I]
DERIVATION OF THE FORM OF THE MCE POSTERIOR DENSITY

Cross-entropy minimization is a general procedure for approxi-
mating a true but unknown probability density function g'(x)
given a set of moments and a prior ascessment p(x). The
approximating posterior g(x) is chosen such that of all distribu-
tions consistent with the known moments, we select the one most
similar to the prior model. If the assumptions are specific and the
set of measured moments is not internally contradictory, the
posterior g(x) thus obtained is unique.

The logic of Kullback’s principle would have us find the
function ¢(X) that minimizes
q( x)

Hlqg(x), p(xX)] = x)lo —

[4(%). (D] = [4() 8207
while exactly satisfying the set of constraint equations

m,=ff,(f)~q(.i') dx,

dx (42)

j=1l. - M. (43)

A. An Isoperimetric Calculus of Variations Problem

All of the MCE problems addressed in this correspondence
have a common structure, which may be addressed with calculus
of variation techniques. We are given a set of constraints {m,)
that are known to satisfy the following definite integral equation

m, = [g,[q(%)] dz

where ¢(X') is a function to be determined. We are also given a
measurement functional, again a definite integral,

Faeal9(D)] = [ Il 4(%)] d5

and we want to obtain the ¢(X) that extremizes Fleadg(x)).

In optimization theory, applications with this form are called
“isoperimetric™ calculus of variations problems. The name de-
rives {rom the classical problem of finding the function with the
maximum enclosed area given a fixed length boundary or perime-
ter.

To solve this problem, we use the Lagrange multiplier method
(4). forming the squation

(44)

(45)

. M
elq(%):4] =l 9(D)]+ L Bg,[a(D)].  (46)
=1

We now minimize this equation with respect to (). Taking the
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derivative and setting it equal to zero,
(47)

we derive an_expression that ¢(¥) can only satisfy at an extrema
of Q[q(x); Bl. We must then verily that the extrema is in fact a
minima by checking the higher order derivatives.
B. Application to the MCE Problem

For the minimum cross-entropy problem we can identify

q( %)
Ies, = g(X)1 48
and
8 = /(%) q(%). (49)
Therefore,

. 7 o 9(X) M o -
0[a(%): 8] =g(Rlog T + T B1,()q() + Aya( 7).
p(x) y=1

(50)

The last term reflects that we usually have the constraint
/q(f) di =1 (51)
as well because ¢(x) must be a valid normalized probability

density function.
Taking the [irst derivative with respect to ¢( ) we derive

dQ q( ¥) M
— =lo —tI+ A+ B.f{x) 52
dq g p( x) ) /;I /f ( )
and for the second derivative we obtain
d*Q 1
—_— = (53
dg=  q(x) )

Setting the first derivative equal to zero
M
log g(x) =log p(X)-1-Xy~ ¥ Bf,(%). (59)
J=1
Calling B, = A, +1 and fo(¥) =1 for all X, we cap write

M
log (%) =log p(X) - ¥ Bf(X).

(55)
J=0
Therefore,
M
q(f).-p(f)~exp{— ) ﬁ,f,(f)} (56)
=0

which is the classical minimum cross-entropy posterior density
9}, (10].

Inserting this solution into the expression for the second
derivative, we see that the positivity of the prior density p(X)
implies the positivity of ¢(X), which guarantees that the second
derivative is positive at the solution point. Hence the solution is a
minimum as desired.
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