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Merging Aggregate Catch Data with Uncertain Prior
 
Knowledge to Approximate Age and Size
 
Distributions and Selectivity Functions
 

ROBERT L. BURR. MEMBER, IEEE 

Abstract -The problem Gf determining fish age and size distributions 
and gear selectivity functions from aggregate data can be approached as an
ill-posed inverse problem. Minimum cross-entrop inversion techniques
allow the selection of a reasonabl-, unique solution. directil. incorporating 
background irformation of uncertain quality. 

I. INTRODUCTION 

In fisheries research and management it is often desirable to 
know tht. probability density function (PDF) of the age or length
of a particular stock of fish. A detailed sampling program to
determine the relative abundance of fish at different ages or
lengths is usually prohibitively expensive. A method is proposed
to merge limited and possibly indirect information from commer
cial and research fisheries catch reports with a reasonable hN
pothesized prior assessment to approximate the true PDF of fish
length or age. This method is also employed to infer effective 
selectivity cIrves. 

Fisheries managers are charged with the responsibility of opti
mizing the productivity of an aquatic natural resource while 
minimizing the risks for the participant fishermen and for the 
contextual ecosystem. Although fisheries management actions 
usually reflect political inputs more than the biological and
biocconomic status of the system, a class of rational models has 
been available for several decades to assist fisheries decisionmak
ers. These models quantify the resource at a very high level of 
generality, typically as a total biomass, and have been effective at 
describing the "tragedy of the commons" [1], the various kinds of 
overfishing that occur :n common property fisheries. The in
evitability of economic overfishing (increasing fishing effort until 
all of the participants are just breaking even) in open-acess
fisheries, and of biological overfishing (fishing the stock below 
biologically safe levels) when the ratio of price to cost of opera
tion is high are prophetically indicated by these simple models 
[2]. 

A second generation of more elaborate models has emerged
with the recognition of the limitations of the original simple
assumptions. Several classes of overfishing that are dependent on
the interaction between length or age distributions and gear 
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selectivity pbcnomena havi been noted. Recritient overfishing .20reflects the fact that little fish come from big fish and thatoverharvesting the spawning stock depletes the next generation,regnrdless of the total stock biomass. Growth oveifishing is an 
outcome of the fact that little fish become big fish, and that
overharvesting young fish precludes their reaching full biomass 

ment in recent fisheries models has been the introduction of ageand size components. 
A number of issues besides sexual maturity pertaining to agedistributions are of interest to fisheries managers and biologists.

Fish species have unique life histories, including age-dependent
migrations, alterations in morphology, and change, in dietarycomponents. From a population dynamics viewpoint, the age of a
fish is the length of time it has been probabiistically available to
be eaten or subject to other forces of mortality.

A comprehensive age distribution of a species may be expen-
sive to acquire. In addition to the sampling program collectioncosts, the aging of each fish usually requires a microscopic
examinaticn by a highly trained specialist. Various parts of thefish, like the scales and bony structures, may reflect seasonal
variations analogous to tree rings. In most species the best aging
:echniques use slices of the otoliths (ear bones) of the fish,prepared in a time-consuming procedure. Even these costly ap-
proaches to aging are not perfect, as the apparent rings are highly
modified by variations in species life history, migrations, numberof spawning cycles per year, and environmental disturbances likeEl Nihio. Some fish species in tropical waters rmay experience few 
annual environmental variations affecting bone deposition, andannuta eaonssedallaritis hafecting boe dtityon, dn~ost crustaceans shed all of their hard parts each time they molt,making direct determination of age essentially impossible. Sm allwonder that fisheries management entities put a considerable 
amount of effort into the construction and validation of
age-length keys.ae nk ce. lengthIt certainly costs less to measure the length of aa an animal than 
to determine its age. Length distributions also have interestbey nd lic tiheins or gin T eszeof fih i prbaly
im .
beyond their implications for aging. The size of a fish is probab
the crucial determinant of its role in the ecosystem. Marinc
vertebrates can eat anything less than about one-tenth their ownsize, and are vulnerable to creatures roughly ten times larger than 
themselves. It is also the size and not directly the age of a fishthat determines t:.; vulnerability to geometrically selective en-
trapment devices like gillnets. Human fishing activity is the 
dominant source of mortality among mature fish in many exploited species and can cause dramatic alterations in the catch 

length profiles over time.
The preferred method for estimating age or length distribu-tions of a stock of fish is to conduct a representative series of 

standardized reserch field sampling experiments, determine the 

age or length of each collected fish, aid develop an empirical
distribution using histogram, Parzen-Rosenblatt kernel, and more 
rarely, parametric probability density function estimating techniques. Only in the most important fisheries are sufficient re-sources available to support the boat time and personnel needed 
to carry out systematically such a research program. Particularlyin developing countries, most fisheries managers must make the 
best inferences they can from current and historic aggregate
commercial catch statistics. This highly summarized bioeconomic
data about commercial boat landings are often collected at theprimary transaction between the fisherman and the fish buyers.
and rarely contain explicit length or age profile information. 
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Fig. 1. Examples of selectivity functions for fishing gear. (a)Small trap. Nh)
Small mesh gillnet. tc)Large mesh gillnet. 1d) T,'awl. 

cally condition the catch length profile. Some representative 
gear-fishing behavior selectivity functions are shown in Fig. 1.
Suppose aggregate catch reports are received 
 frc -n U fishermen, each using different gear or fishing methods with knownelec h uin i n geTarori hingom th o d ao ut 
selectivity functions se!, (t). Typical information recorded aboutfish caught might include the total number of fish, the total 
weight of fish, and mean and mean square of length, or possiblycoarse histogram or count of fish in aggregate length categories.It will be assumed that each of these quantities can be at least
 
aypoial xrse
asymptotically expressed oetoassaan expectedxetdvleovalue or moment of thehtrue but unknown length PDF qtruc(i) for the population under 
study.
 
study.


in eapbif the ratsip beteenhe mbe offit
able indescribing the relationship between the number of fish
 
caught and the unknown length PDF qru( () by means of the
expected value integral constraint
 

, = fsel (I)q'(I)dl (1) 

where C, is a sampling scale factor incorporating fishing effortand absolute abundance. Similarly, the total landed weight W,for 
fisherman t can be expressed as 

U Cij"=./sel, (/)dqtr"(I) ,l (2) 

where A is a constant for a particular species ot fish.
The mean and mean square of length are asymptotically 

M,= cflsel,()q(/) dl 3) 

and 

AfS= CI 1),/(. 

,(
However, indirect information about age and length is coded intothe commercial The number of fish B , expected in length bin or category A.catch landing data because of the variations in composed of fish lnger that. 1Aand shorter than or equal t)the effective age/length selectivity of each boat's fishing effort. s
It is well-understood that the configuration of the fishing gearand the behavior of the fishermen affect the size and age profile t sel, (l)q"( /) dl.of the catch f3]. The size of the hook or the mesh of the net. the 
(5) 

B , f, l, (speed of the boat relative to the swimming speed of the fish. and 
/ 

the size and type of bait are all factors that almost mechanisti- To emphasize further the integral constraint nature of these 

-Vz
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equations, let all the constant factors be included into the selec
tivity function sel, (i), resulting in the integral expressions 

N, f-sel,(i)q'r(I)dl. 
0.6 

(6) 

W,-fA3. sel, (!)q' "(i) dl (7) 

A0.4

, "fl.sel, (I )qtnue(l) dl (8)J0. 

MS, fl2.el, (I)qtmc( I) dl (9) 

/-IBA f/sel, ()q'(1)di (10) 

For each ieport i,these values can be considered a well-
defined summarization or mapping of the unknown continuousfunction qtruc(i) through an integral kernel into a single sca!ar 
number or moment. The integral kernel, which is strongly influ-
enced by the selectivity function sel, (I), acts as a window through
which the unknown PDF qh"'I() is indirectly perceived.

We would like to solve the inverse problem, that is, to deduce areasonable approximation of the continuous function qr"'(1)
given a finite set of any of N,, W,, m,, MS. or B, . This is a 
well-known form of ill-posed inverse problem with an infinite 
convex set of solution PDF's r(I), each consistent with the given
finite set of integral constraints [4]. The aggregate data can also 
be regarded as constraints on the age distribution, a concept at 
least as interesting to population dvnamicists as the length distri-
bution. For simplicity, assume that'age and length are continuous 
variables. The number of fish in length category k. composed of 
fish longer than 1, and shorter than or equal to/,. I is 

C, = A f 'se1I)qr'c(I) dl. (11) 
', 


However. the length PDF can be related to the underlying age
PDF qiruc(a), 

qirUc(/) =fp(Ila)q,"c( a) da (12) 

whLre p(lla) is the conditional probability of length given age.
Thus C can be written as 

fp( q )
C, =A Isel(l) ( la)q",(a)da dl. (13) 

Interchanging integrals, this becomes 

/ 
C A "sel(I)p(ila) dl q t "d(a)da (14)/ fence 

or 

Ck -f (a)qe(a) da (15) 

where 

A,(a) -Af' tsel(I)p(lla)dl. (16)
S(6I* 

Equation (15) expresses the catch in length bin k as an integral
constraint on the true but unknown age distribution qtme(a). It is 
assumed that the selectivity function sel(l) is known and also 
that the conditional probability p(Ila) can be determined from
theoretical considerations or empirical age-length keys, then (15)
is an integral equality constraint beanng on the inverse problem
of determining the age distribution. Of course, other length-

e"0.2

0 

-6 -4 -2 0 2 4 6XValue 
Fig. 2. Meribers of convex setcomposed of densities with same mean and 

variance. 

related catch summary statistics can be similarly expressed as 
constraints on the age density function as well. 

I. CROSS-ENTROPY MINIMIZATION
 

A given set of moments may not uniquely define- a probability
density function, although the density function completely deter
mines the set of all possible moments. In zeneral, as infinite class 
V of density functions is consistent with a finite set of moment 
constraints. For example, three densities with the same first two 
moments are shown in Fig. 2. In Appendix I, the class ',defined 
by general expected value constraints is shown to be a convex -set. 

Some fisheries biometricians may not admit the need to pick a
unique PDF from the class of density functions consistent %%ith 
the known moments, feeling that it is more honest just to 
describe the class '9of possible PDF's as best one can so as to 
point out the nonuniqueness of the solution to the stated inverse 
problem. However.rarely possible a succinct description of the solution class isor useful in practice. While all elements of thesolution class are possible, some are extremely unlikely looking,
and unrepresentative of the class. Picking a unique PDF is 
equivalent to specifying all possible moments. The various meth
ods of PDF estimation differ in the criterion used to make an 
optimal choice of this specification. 

Applied statisticians often express dissatisfaction with formal 
estimation procedures in statistics because background informa
tion either has to be ignored or rigidly adhered to. Neitherposition isdesirable, nor does it model the processes of humanunderstanding. Contextual knowledge is unquestionably relevantto the applied problem but difficult to merge gracefully'with new
 
information in the form of actual measurements of the system. If 
we had no new measurements at all, we would base our predic
tions on our experience with similar systems, or on our experiwith the behavior of this particular system in the past. If we 
had a limited amount of information about the actual systemunder study we would want a solution consistent with both the 
current data and our prior understanding. It would seem reason
able to give precedence to the new accurate knowledge and then 
resolve any remaining inferential ambiguities by appealing to theprior knowledge base. KuUback's principle of minimum cross
entropy [51 provides a rule for picking a unique solution using
both the new system measurements and the background knowl
edge. It states that frcm a set of possible solutions we shc auldchoose the one most similar to our prior information.In fisheries management, a wealth of prior information of 
uncertain applicability about the length distribution of a particu
lar fish stock is often available, coming perhaps from historical 
records, experience with similar sp:cies, or theoretical principles.
For example, in many fish species it is possible to postulate a 
reasonable prior length PDF p(l) based on the joint assumption
of an exponential mortality with andage the von Bertalanffy 
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Fig. 3. Hypothetical true length PDF for Example 1. 

age-length relation. Regardless of how the description of the 
background information is obtained, it would seem reasonable touse Kullback's principle to resolve the ambiguity of the solution 
set ' by pickiag the element in ' most similar to the assumed 
pror p(l). No matter what prior density is specified, the selected 
element will still satisfy all of the given moments.To implement this optimiztion procedure, it is necessary to be
precise about how to measure the dissimilarity between two
PDF's p(l) and q(l). In information theory this distance is
commonly quantified by Kullback's cross-entropy functional, 

q(l) 
H[q(l),p(1)] -fq(/)log - dl. (17) 

- p(l) 
Also known as the directed divergence or the Kullback-Leibler 
number, this distortion measure on the space of probability
density functions can he interpreted as the expected value of a 

llk s priniplwo ulh 
Kulback's principle would have us find the posterior PDF q(l)that minimizes H[q(l),p(l)] while exactly satisfying the set of

constraint equations 

m, - f, (1)q(l) dl, j -1, ., M. (18) 

Note that the expected value constraints corresponding to our
data are in this form. 

The general problem of PDF approximation using the mini-
mum cross-entropy (MCE) criterion has been studied, and asolution for the posterior PDF q(l) for nonpathological integral
kernels f,(l) is well-known. 

(Af
q(I) - p(I) exp - 1) (19)-o 

where the (A,) are Lagrange multipiiers whose values are madeconsistent with the measured moments m, by solving the set of 

nonlinear equations. 

I In-=f (l)p(/)exp kEA4 A A) l,mca~su 
-

j=I,.,M, (20) 

along with the normalizing constraint 

Al' 
l=Ip lexp{ ) 

-

A (I) dl. (21) 

The latter constraint comes about because the posterior q(l) is a 
probability density function and I'ence must integrate to unity. In
practice, we generally have to solve this system of nonlinear 
equations using numerical methods such as the Newton-Raph
son procedures.

A nonrigorous derivation of the form of te MCE posterior
density is presented in Appendix II. For a more detailed consideration of the conditions under which this result exists and is 
unique, the careful reader is referred to [6] and [7]. A review ofsuccessful applications of MCE inversion techniques can be 
found in [8]. 11I.ExA M PLES 

Several examples will now be developed to demonstrate how 
diverse aggregate data and detailed prior assumptions can be 
used to approximate the probability density functions of age and 
length. 
A. Example I 

Suppose that the unkniown true length PDF of a species of-fish
in a particular fishery is an exponential distribution, 

= (l/A)exp { -I/A) (22)
with A= 25 cm, as in Fig. 3. Further, suppose that we have
information about the number of fish caught by five sets of oats 
each using gillnets with different size mesh. The normalizedselectivity functions of these hypothetical gear types are shown in
Fig. 4 and model the rule of thumb that the selectivity of a gOlnet
is approximately Gaussian, with a standard deviation or spread
parameter that is about 20 percent of the expected mean length.
 

By choosing several different prior distributions we can illus
trate the sensitivity of the MCE posterior to the assumed background information. If we 
 assume the prior is also exponential
with parameters X, = 10 cm. A,tively, as portrayed = 25 cm, and A = 90 cm, respecin Fig. 5(a), (c) and (e). then the resulting
MCE posteriors are depicted in Fig. 5(b). (d), and (r). Clearly,
with just five aggregate statistics we can produce a good approxi
mation of the true density even when the prior is dramaticallydifferent on a biological scale. When the prior density corresponds to the true density (Fig. 5(c)). the MCE posterior per
fecly matches the true density (Fig. 5(d)). In general, the discrep
an,-ies between the MCE posteriors and the true density are
mainly located at short lengths, where only limited information is
 
available from the extremely selective small mesh gillnets.
When the background information forces the n
nposition of a 
,ery inappropriate prior density. artificial features can be in
duced in the mixture of backgrcund and current information that
is the MCE posterior density. For example if we assume thehump-shaped prior density in Fig. 5(g). the M(-CE posterior (Fig.5(h)) is a good approximation for the larger animals. but evi

tWhile tl.s example is artificially simp'. it is a first-.,rdcr approximation ofthe length distributions of Cor,.na reina (Ci nm(mro alhu,) and Coliamarilla 
(Cin cwtoimstoltzmanni). two commercially important spectes the author isstudying in a small-scale artianal fishery in the (G-iof Nicova oncoast the Pacificof Costa Rica. These fish grow to approximately a meter in length infour years. " 

/ 
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A If the hypothetical true age density qm'1c(a) is as shown in Fig.7, then the resulting catch length histogram, summarized into 

5-cm bins by the equation 

C,-f Af"I+Ic ell ~~)dl~' )d (25) 
1-5cm 

is shown in Fig. 8. It is apparent that the probabilistic diffusion 
of length with age and the summarization of the data into bins 
has significantly blurred the latent age density function.

With the MCE methodology we can attempt to recover the age
density function from the hypothetical catch-at-length data sum
marized in Fig. 8. From our knowledge of the natural history and 
population dynamics of the particular fish species we might be 
led to postulate the prior density p(a) given in Fig. 9. The form 
of the MCE posterior density is 

- , wer qMCE(a)=p(a).exp AX+ ,A,(a) (26) 

/ A,(a) =- Asel()p(lla) da. (27) 
Scm 

"e. ".. The numerically computed posterior density qMCE(a) having the 
o "form given in (26) is shown in Fig. 10 and is a close approxima

0 20 40 60 80 100 tion to the hypothetical true density qlruc(a). 
Length of Fish IV. INFERRING SELECTIVITM. A DUAL PROBLEM
 

Fig. 4. Normalized selectivity functions for five hypothetical gcar types as
sumed in Example 1. In the development so far it has been assumed that the 

selectivity functions sel, (I) are explicitly known and that the 
dences features in the shorter lengths that underlying length or age PDF needs to be determined. The sameare artifacts of 'he methodology can be used to consider the dual problem of apcombination of the inappropriate prior and the specialization of proximating the normalized nonnegative length selectivity functhe information from the current data about smaller fish. Superfi- tion sel(l) for a particular fishing method from moments gathcial evaluatiou could easily result in a misleading biological ered with respect to various known length or age PDF's.
interpretation and possibly undesirable management actions. 
 Of Suppose we had one or several sites where we independentlycourse, acquiring more comprehensive data for the smaller fish knew the length or age PDF's. Ten the jth information sumwould allow the MCE method to overcome the mis-specified mary collected on tth site can be expressed as either 
prior density.

This simulated example underscores the criticaL role of priorknowledge in the specification of MCE limited information prob- M, = fVM',, 1)sel U;(I) dl (28)
lems. The resulting posterior vll be dominated by the prior
density when the current information is scanty. The MCE poste- if q,(1) is known, or
rior is the optimal unique solution of a given prior density, but
will in general be different for distinct prior descriptions. It is
somewhat disquieting to employ a method that can be manipu- K,, = JK.G,,(I) seliruc (1)adl (29)
lated by subjective factors. However, it should be noted that all
competitive methods require making assumptions (often quite if q,(a) is known, where 
stringent and generally hidden) to force a unique solution, andthat the MCE methodology merely requires the practitioner to be G,,(I) =ff,,(lI)p,(IIa)q,(a) da. (30)
explicit. As scientific ard editorial standards for reporting MCE 
applications develop, it is clear that precise statement of the prior
density will be necessary, sinf-e the adequacy of the MCE poste- In both cases it is assumed selruc(/) is a normalized strictlyrior can not be interpreted in its absence, positive continuous function. 

Then the true selectivity function could be approximated by anB. Example 2 MCE posterior funn.tion,
 
Let p(la) be defined as Gaussian, with f /
 

-A(a) = L.(1 -e ) (23) sel(I) = psel( /)exp\ /A, + - fl, ,(I)q,(1) (31) 

and 

~a)= L=/ 1- for the case where q,(I) is known, orat~a e'")(24) 

where the von Bertalanffy parameters are arbitrarily chosen to be sel (/ ) = pselK(/) exp X,+ EKPG,,(I) (32)L,: - 100 cm and k- 0.15. Suppose further that the selectivity
function for a particular gillnet has a Gaussian shape centered at

ji - 50 cm with a scale parameter a - 20 cm is in Fig. 6. for the case where q,(a) is known, G,,(l) as above. If the prior (
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assessment psel(/) is reasonable, the approximating posterior
function sel(I) will converge rapidly to sel"i"(I) as the number
of distinct moments represented in the problem increases,

As an example of inferring the selectivity function given
knowledge of the age density function, the conditional probabil-
ity p(l/a). and catch information, consider a slight variation of
Example 2. If we assume that the age distribution is known and
that we have a prior assessment of the normalized selectivity
function, psel(/), then the posterior approximation sel(/) can bedeconvolved from the catch-at-length histogram with the aid of
(11). In particular. let psel(/) have a Gaussian shape with A= 
40 cm and a= 10 cm as represented in Fig. 11. The numerically
determined MCE posterior function corresponding to the catch-
at-length profile given in Fig. 8 is displayed in Fig. 12. The
dashed line in the same figure depicts the hypothetical true 
selectivity function. 

of Fish in Years
I'g 	 4 Prior PDF for Example 2. 

V. 	 REMARLXS 
The MCE method, as applied for example to length PDF

approximation, capitalizes on the variations in the 	 information
about qi""(1) implied by projection through the different integral
kernel selectivity functions sel, (1). The strengths and weaknesses
of 	 the MCE approach Niein the 	 ability to insert background
knowledge of unknown applicability into the problem by way of
the prior PDF. Examination of (19) shows that the posterior PDF
is in the form of the prior PDF multiplied by an exponential
distortion factor. If the prior PDF is a good guess, then themagnitude of the Lagrange parameters will be small and the
analytic degrees of freedom of the model will be spent "fine-tun
ing" the posterior PDF. explaining what is not already known
about the system under study. If the prior PDf is not a good
guess, the magnitude of the Lagrange parameters will be large as
the degrees of freedom of the distortion function are spent 
overcoming the unrepresentativeness of the prior PDF. It should 

/N 
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uneti new facts. W0hene 
be identical to the true PDf q"(), then P, 

be generallyinoratonoted thatwitif the hypothesized prior p(I)inconssthappens to 
0, V i and

q(s) p(f) -qt() 
As the number of reported moments m, increase, the MCE 

procedure can overcome any misspecified prior PDF so long as a a maximum likelihoodp() > 0, V > 0. In the information theory literature this appeal-d eeing behavior of the MCE Isverse is termed "washial out" oldes th paaocu sed ontionsdwhere ro daggar atevdatunseset n o rio with ane th actual dan inconsistc 
taiesbio I A d thc adectuata 

The MCE inverse methodology ca.'Obe viewed as a formal way
to deal with missing information problems by adapting the form 
f the model to the available momets. The kernels correspond-
ingto missing moments are simply deleted from the argument of 

exponential function in (19).oment nvre mth dlg
Th bCiwesafoml wcy
It is a "method of moments" inverse technique. That is, the C 
Lagrange paraon"ers (ol, are defined, not statistically estimated. 
tanepling variability in the measured moments will be propa-
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gated through to the posterior density (//) and mani fests itself is 
unlikely detail. 

th extreme. if two selectivj-,v functions ire equal. ClIj
sel, (~~/)bu h orsodn measured moments are not equial
hecause of sampling variations, thie Net e, of consi'tent 101lutionfsis empty and no NICE solution is defined. This iation can be 
avoidedf bv allowing (ink one m~omeiit for each unIque kernel
function, averaging inconsistent esidence hefore the NICE in~er
sion. This tnay not he possible \kith overlapping indirect exidence. More will he said about sampling in tile n0t 

section. 

VI. ESrtMA loIN ISL 
It has been stressed that the NICE imersion procedure is a

method of moments.inhere ummaries of sampled data are 
assumed rather arbitrarily to be equi'alent to asnmptotic expecteda values, from hich the gre parameters are defined 
rather than statistical estimated. Anvone who has participated 
in fisheries research data collection or has had the responsibilitsummarizi ng such data would be justifiably concerned about 
this suppression of uncertainty The attempt to make this elegant 
PDF approximation scheme better suited for practical problems
is an active research topic. 

One approach to apprehend the uncertainty is toGaussian approximate sampling distribution assume thefor the estimatedn thishaeres tualetionors
moments, fsedo d he lagreponsibilitthen determine the multivariate PDF of the Lagrange 
parameters that is implied by the deterministic multivariate non
linear function mapping the-moments to the model parameters.

Another procedure would be to treat the form of the posterior
PDF as parametric model, then form 

are available from which to work. In any event the optimality of 
the MCE posterior is only with respect to a particular limited setof available moments. 

The MCE posterior density is the optimal solution to a calcu
lus of variations problem where the moments are represented as 
integral equality constraints on the unknown true denLan. It is
also possible to formulate this problem using integral inequalion
lhe o the e l pa rae t
h C psei rde st sh pim lslti nt ual
ontr Forempl ie o using the equalith costrint 

,s. dl,fme q.. (33) 
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two inequality constraints might be written as 

m, +27 f,(l)q :(l)dld (34) 

m,- 2-,a,~ <ff,(I)qtrUe(I) dl. (35) 

That is, confidence intervals based on some reasonable assess-
ment of the variability of the moments due to sampling are
employed to constrain the class of consistent densities. Kullback's 
principle can still be applied to the now larger convex set ofPDF's satisfying the given inequality constraints. It is also possi-
ble in some MCE problems to incorporate equality constraints on
the sampling distribution itself into the fundamental calculus of 
variations problem. 

VII. CONCLUSION 

Fisheries managers must increasingly make inferences about 
the age and length distributions of the aquatic natural resource
stocks they oversee. Comprehensive field sampling surveys for 
each commercial species are very expensive and are generally out
of the question for developing countries and small-scale artisanal 
fisheries. The present correspondence has attempted to develop 
an approach for inferring length and age information from highly
summarized data about the operating commercial fishery.

The problem of determining fish age and size distributions and 
gear selectivity functions from aggregate data can be approached 
as an ill-posed inverse problem. Minimum cross-entropy inver-
sion techniques allow the selection of a reasonable unique solu-
tion, directly incorporating background information, 

This ability to include contextual, background, or subjective
information allows the MCE approach to define good approxi-
mations from very indirect and limited evidence. The subjectivity
of the prior can be a source of concern, since very different
approximations can be obtained with different assumed prior
densities. However, the MCE approach prioritizes current evi-
dence with respect to the background knowledge, and a suffi-
ciency of new information will overcome an unrepresentative
assumed prior density. 

It is difficult to assess the practicality of the MCE approachdescribed in this paper and to compare it with potential competi-
tive methods. It is not a statistical estimation procedure but anexact fit of a just-identified model crafted for asymptotic infor-
mation-theoretic optimality, the usualhence questions of bias 
and efficiency are not applicable. It is a computationally expen-
sive approach, with each problem statement essentially requiring 
a unique program to solve a specific large set of nonlinearequations. 

The appropriateness of its use will have to be reconsidered foreach application. It would seeir to be indicated for problem
environments where current evidence is limited but of good
quality, where reasonable prior knowledge can be assumed andwhere the nontrivial cost of computation is less than the cost of 
collection of additional data. Many fisheries inference problemshave these information-limited characteristics, and the MCE ap-
proach developed here may provide a useful solution framework 
for these difficult situations. 

APPENDIX I 

CONVEXITY 
it is easily shown that the class W' of probability density

functions consistent with a given set of moment constraints is a 
convex set. Suppose that there exists two densities, p,(i)Gr= T
and p.(f) r ', such that 

Al. P.2£) (36) 

By the definition of membership in W, 

m,,,-f()p,(x)dY (37) 
and 

( ) (.F)mA f x) df. (38) 

To show convexity, it is sufficient to demonstrate that
p(Z) -apl(i)+(1-a)-p2(.) Va O<a<l (39) 

but 

Jf, (.W)p( i) d. = afA (i) p, (i) dY + (1- a)ff. () P2 (GO diF 

= a mk + (1- a).mA 

=mA, 0 k.<m. (40) 
Therefore, 

p(iW) -a'p(W)+(1-a)'p 2(00r= Va90<a<l. 

(41) 
APPENDIX II 

DERIVATION OF THE FoRM OF THE MCE POSTERIOR DENSITY 
Cross-entropy minimization is a general procedure for approxi

mating a true but unknown probability density function q'(x)
mtn a set untnd proa esfnt (x)

given a set of moments and a prior asessment p(x). The
approximating posterior q(x) is chosen such that of all distribu
tions consistent w'-h the known moments, we select the one most 
similar to the prior model. If the assumptions are specific and the 
set of measured moments is not internally contradictory, the 
posterior q(x) thus obtained is unique. 

The logic of Kullback's principle would have us find the 
function q(.i) that minimizes 

l q( ) d 
H[ q(), p(Zi)] =fq( i) log - di (42) 

P 
while exactly satisfying the set of constraint equations 

m, - ff,( q(.) &F, j = 1. M. (43) 

A. An IsoperimetricCalculus of Vartations Problem 

All of the MCE problems addressed in this correspondence
have a common structure, which may be addressed with calculus
 
of variation techniques. We are given a set of constraints 
 ( m )
that are known to satisfy the following definite integral equation 

m, = fg[ q( _) Idi (44) 

where q( i) is a function to be determined. We are also given a 
measurement functional, again a definite integral, 

F q( F)] = fmca. q( iF)] diF (45) 

and we want to obtain the q(i) that extremizes FmcaJq(i)].
In optimization theory, applications with this form are called 

"isoperimetric" calculus of valiations problems. The name de
rives from the classical problem of finding the function with themaximum enclosed area given a fixed length boundary or perime
ter. 

To solve this problem, we use the Lagrange multiplier method 
[4]. forming the equation 

Q[q(i);] "[m,,[ q(i)I+ E flg,[q(i)J. (46) 

(e-1
We now minimize this equation with respect to q(.f). Taking the 
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derivative and setting it equal to zero, 131W. E. Ricker. "Computation and interpretation or biological statistics or 
fish populations," Bull. Fish. Res.dQ BuArd Can.. vol. 191. pp 70-73.1975.

d 0, (47) [4] R. Weinstock.Engineering. ('Cuhuls of VurturIM, with Apphun,oon. , Ph;oc, undwe derive an expressior. that q(.F) New York: McGraw-Hill. 1952.can only satisfy at an extrema {19S. Kullback. ln/ornituin Theory cid Siaoaitws. New York: Dover. 
of Q[q(.f);,8]. We must then verify that the extrema is in fact a [61 1. Csiszar. "I-divergence geometry of probabilitv disirhuions and miniminima by checking the higher order derivatives. mization problems." Ann. Proh.. 'vol. 3. no. I. pp. 146-1.5. 1975 

[7) J. E. Shore. and R. WB. Application to the MCE Problem Johnson. " Properties of cross-entropy minimization."1981. IEEE Trais. Inform. Theory vol. IT-27. no. 4. pp 472-4x2. Julv
For the minimum cross-entropy problem we can identify 181J. E. Shore. "Inversion as logical inferenc: Theorv and applications of 

maximum entropy and minimum cross-entropy." SIA 41-A MS Proc. vol.
q( j) 14. 1984.

I... q() log (,--- (48) 191 R. W. Johnson, "AxiomaticX( i) characterization of the directed divergencesand their linear combinations." IEEE Train Iform Theom. vol. IT-25. 
and no. 6. pp. 709-716. Nov. 1979.[10l 1. E. Shore and R. W Johnson. "Axiomatic derivation or the principle 

g, = F(x-)'q(-i). (49) 
of maximum entropy and the principle of minimum cross-cntrop .'IEEE Trny. Inform. Theon,,. vol. IT-26. no I. pp. 26-37. Jan. 1980 

Therefore, 

Qq(-f);j~ -fq(i) logLp-_W +/ ,8/j( ') q(.f')+A,q(jF). 

(50) 
The last term reflects that we usually have the constraint 

fq(i) d'=1 (51) 

as well because q(f)must be a valid normalized probability

density function.
 

Taking the first derivative with respect to q(.') we derive
 

dQ-q=lg q(.f) + %f+ +,\,, (52)
dq A-0. 

and for the second derivative we obtain 

d2Q I 
dq2 q(.') • 
 (53) 

Setting the first derivative equal to zero 

logq( F)-=logp(Z)- I- A,- EAf ff'l (54) 
J-I
 

Calling 8o =A 0 +1 and o(.) -1 for all , we can write 

log q(.Y) - logp (-Z) - E'
At 

,8, F). (55) 

J-O 
Therefore, 

q(,?) -p(Y).exp{- 2 iq,(i) (56) 

which is the classical minimum cross-entropy posterior density
[91, [101.

Inserting this solution into the expression for the second
derivative, we see that the positivity of the prior density p(.F)
implies the positivity of q(.'), which guarantees that the second
dlerivative is positive at the sohition point. Hence the solution is a 
minimum as desired. 
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