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Introduction 

The logarithmic series distribution was first described by Fisher, Corbet and 

Williams (1943). They considered the relative numbers of individuals of different species 

obtained when sampling at random from an animal population. Thi problem was 

examined in relation to the distribution of butterflies on the Malay peninsula and to data on 

Lhe number of moths of different species caught in light traps. Williams (1964) provided 

many later applications for which this distribution was found to be useful. Recently, Dial 

and Mar-luff (1989) demonstrated that hollbw curve distributions, as exemplified by the 

logarithmic series, are common in nature and are a result of assemblages being dominated 

by one or a few taxa. 

The logarithmic series distribution is a special case of the more general power series 

distribution. Noack (1952) and Khatri (1959) studied the analytic properties of this 

dist,.bution and Patil (1961) investigated estimation procedures for it. 

One of the several available derivations for the logarithmic series distribution is 

provided in Appendix I. It is hoped that this material will provide a general overview of the 

logarithmic series distribution, and that it will provide some rationale for an interest in its 

applications as they relate to tropical multispecies stock assessment methodologies. Of 

special relevance are the suitability and fit of the log-series distribution to tropical 

multispecies fish abundance data-.s well as the potential utility of the index of diversity 

(cx), which is derived from this distribution-as well as Mountford's index of similarity 

(I), also derived from this distribution. 
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The concern here is with changes in multispecies assemblages exemplified by the 

distribution of species (group) abundances. This is thought to be useful because these 

changes permit some investigation of species balance independent of which species (group) 

may be present. In choosing a statistic that characterizes this distribution as a measure of 

diversity, it is important to recognize that any such statistic should be independent of 

sample size and should show relatively small variability in replicated tempoinl samples. 

The latter property would then allow good spatial discrimination among sampling locations. 

General Properties 

The logarithmic series is derived mathematically from expansion of ln (l+x). To 

avoid negative numbers in the series, it may be written as: 

- In (I-x) - x + x2/2 + x3/3 + x4/4 

Since there are no logarithms of negative numbers, it follows that x must be less than unity. 

In using the log-series to express the frequency distribution of species containing 

different numbers of individuals, it is written as: 

ni, nl x/2, ni x/3, nl x/4 ... 

with the successive terms being numbers of species with 1,2, 3 ... individuals. No zero 

term in included. 

The series in this form has two parameters, (ni) which is the number of species 

with on individual and (x) which is a number less than 1. The series has an infinite 

number of terms. It is discontinuous with only integer values of individuals per species 

and is convergent. The sum of all species to infinity is: 

S n1- [-In (1-x)] 

The correspondiing series of individuals (individuals of all species in the same abundance 

class) is: 

ni, nix, nix2, nix3, nix4 ... 



This is a geometric series with a constant multiple x. As x < 1 the series is convergent, and 

the slum to infinity (N) or the total number of individuals is: 

N = nl (1-x), or nl = N/(1-x) 

The ratio of the number of species to the number of individuals is: 

S 1-xS= -- [-ln(l-x)]N x 

Thus, for any average number of individuals per species (the reciprocal of the above), there 
is only one value of x, and from this nl can be obtained. If N and S are known, the series 

;s fixed. 

If sampling by individuals is done from a population graduated by a log-series 

distribution, then the smaller the sample the smaller the average number of individuals per 
species and the smaller the value of x. The larger the sample the larger the average number 
of individuals per species and the larger the value of x. However, in all random samples of 
any size from one population, the ratio of ni to x is a constant and is called the index of 

diversity or a. 

nl/x = xornl = ax. 

With increasing sample 1ize, the value of x increases and approaches unity. With 
increasing sample size, the number of species with one individual increases and gradually 

approaches the value of a, but never (theoretically) exceeds it. 

The log-series can also be written as: 

x2a ac x3 
a x, -, =- etc. 

where a x is the number of species (groups) represented by one individual,- 2-- is the 

number of species represented by two individuals, etc. The sum of this, the total number 

of species is: 

S =-a In (1-x) 
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a is a property of the sampled population, and x is a property of the sample and depends 

on its size. Some definitions of symbols are: 

x = sampli-g parameter of log-series distribution: 0 < x < I 

a = parameter of log-series distribution: a > 0 (diversity index) 

S = the number of species encountered 

N = the number of individuals encountered 

nl = the number of species encountered with one individual. 

Some relations among the above include: 

1) a =n /x 

2) S = a [-In(l-x)] 

3) x =N (N+a) 

4) a = N(1-x)/x 

5) nl = Na/(N+a) 

6) n = N(1-x) 

7) N/S = x/(1-x)[-In(1-x)] 

8) S = a In (1+N/a) 

For times when N/S is large in relation to 1, then: 

(9) S = a In (N/a) 

The large sample variance of a is given by Anscombe (1950) as: 
a 

(10) var (a) = -In(l-x) 

Fit to Samar Sea Fisheries Data 

Various models have been applied to data sets involving diverse taxa in an effort to 

find appropriate descriptions of species-abundance relationships. The comprehensive 

works of Pielou (1975, 1977) and Williams (1964) describe many of these models. This 

brief review only relates to applications of the log-series model to fisheries and other 

aquatic applications of this model. Based on a study of benthic macro-invertebrates, 



Shepard (1984) suggested that the logarithmic series distribution is the most appropriate for 

studying species-abundance patterns in aquatic ecosystems. Kobayashi (1987) developed a 

new index of similarity which is independent of sample size, and it is based on the 

assumption that the communities from which samples are derived are described by the log­

series distribution. Koch (1987) examined large marine data sets and concluded that the 

species-occurrence frequency distribution for such data sets fit the log-series distribution 

well. Wolda (!981) stated that Fisher's a is the best available measure of species 

diversity. In the case of multispecies trawl data, it is not expected that any one simple 

mathematical model will fit all data with complete fidelity, especially in view of sampling 

variability. However, if Fisher's logarithmic series distribution is found to provide 

reasonable fits to available empirical data on the distribution of species (groups) in 

standardized trawl samples from tropical multispecies fisheries, this might provide a 

probability distribution based model for quantifying species-abundance patterns in these 

complex ecosystems. Although use of the logarithmic series must be judged on its utility 

for given applications, there seems to be increasing evidence for use of this distribution to 

describe species abundance relations. 

Taylor, Kempton, and Woiwood (1976) made an exhaustive study of 

macrolepidoperta collected at several sites, and showed that although the log-serie3 model 

was not an ideal description of population structure, diversity as measured by the parameter 

a generally behaved more predictably and consistently than other diversity statistics tested. 

In the above study, a was found to be a normally distributed property of the populations 

studied. 

The data used in this study consisted of the Samar Sea, Philippines trawl survey 

data base. These data include a total of 267 individual trawl hauls which included more 

than two million marine organisms (mostly fish) identified to 179 taxono.mnc groups, 

primarily at a species level. Temporal replications were obtained by sampling at ten 

quarterly intervals using 28 sampling stations. Description of the gear, standardized hauls 
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processing procedures and other details are given in Saeger (1983). The Samar Sea data 
set is believed to be one of tht larger tropical fisheries data sets examined in this detail to 

date. 

Clearly, sampling errors ascribed to a single sample depend on the population it is 
supposed to represent. Following Taylor, Kempton, and Woiwood (1976), in order to 
allow for a certain amount of natural population variability in addition to intrinsic sampling 
variation, we assume that the number of species S, rather than the number of individuals 

N, in replicate samples follows a Poisson distribution. This is in contrast to Fisher et al. 
(1943) who assumed that the number of individuals summed over all species should 

conform to a Poisson model. Empirical evidence for the validity of the assumption is 
presented in Table 1. This table shows the mean and th6 variance-to-mean ratios of 
quarterly cruise totals for both the number of species and the number of individuals caught 

at 28 trawl stations for which at least five successive hauls were available. It is evident 
from Table 1 that the variance of N (the number of individuals captured) increases roughly 
as the square of the mean and is substantially greater than the mean in all instances. This 
provides some evidence that Fisher's assumption is not valid for individuals sampled over 
time. In contrast to the variance of N, the variance of S (species) is quite close to the mean 

(see last column), suggesting that the total number of species behaves as a Poisson variate. 
This justifies the assumption made earlier that the number of species, not individuals, 

conforms to the Poisson model. 

It is desirable to extend the assumption that the total number of species S is a 
Poisson variate to the case where the number of species (groups) with a particular 

abundance r (nr) is also a Poisson variate. As Anscombe (1950) has pointed out, it then 
follows that the total number of species (S = Xnr) is a Poisson variate. Table 2 illustrates 

the distribution of species (group) frequencies for ten cruises covering stations 1-5 in the 

Samar Sea. Note (last column) that each cruise involved between 17 - 75 x 103 



Table 1. Mean and variance-to-mean ratio of individuals and species caught at 28 stations 
in the Samar Sea, Philippines 

Station No. Sample Size 

1 10 


2 9 


3 10 


4 10 


5 10 


6 10 


7 10 


8 10 


9 10 


10 5 


11 10 


11 10 


13 9 


14 10 


15 10 


16 10 


17 10 


18 10 


19 10 


20 10 


21 9 


22 10 


23 10 


24 9 


25 9 


26 10 


27 10 


28 10 


No. of individuals (N 

x 


15213 


6434 


6118 


8130 


5165 


6970 


6276 


7270 


7017 


37222 


34892 


17508 


7817 


5111 


5170 


8654 


6829 


5486 


7372 


586 


8272 


9125 


3872 


12852 


10527 


13573 


13460 


10020 


s2/x 

21821 


5152 


2876 


8152 


1979 


2360 


2646 


5734 


4008 


26601 


33560 


1133 


4955 


4509 


1342 


14415 


4255 


6330 


8477 


19258 


5300 


8843 


1254 


14327 


5573 


13137 


8668 


2298 


No. of species (S) 

x s2/x 

38 2.01 

36 1.12 

33 2.04 

37 1.29 

33 1.23 

31 0.96 

31 0.59 

29 0.43 

30 1.15 

24 1.31 

29 1.54 

30 0.96 

33 1.28 

36 1.17 

38 0.41 

37 1.04 

38 0.34 

40 0.48 

33 1.11 

34 0.70 

34 1.18 

39 1.16 

38 2.20 

34 0.74 

33 1.58 

23 0.46 

33 0.97 

31 2.50 
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Table 2. 	Distribituon of species frequencies for successive cru.... 

Total 
Abundance Class 

No's. 
8+ 	 16+ 32+ 64+ 512+ 1024+ spP.

128+ 	 256+ 
1 2+ 4+Cruise# 

67 17913

4 	 8 0


15 	 11 

15 	 15 13 10 22 

77 22053
8 	 5
97 	 8 3

17 12 13
15
23 	 22 24424
98 	 28 28 5 6 62
7 


99 7 18 18 19 21 18 17 
7 6 5 68 70296
 

12 


9 14 14

20 	 21


12 22 19 	 5 80 34038
100 	 13 5
17 	 12
27 	 17

20 	 24 63 49354
102 8 23 	

12 8 5 10 7 

21 	 19 


6 6 11 19 	 83 31721
104 	 11 11 6 

25 	 20 22 


2 15 30 15 	
25 

13 80 47677106 	 7 922
25 16 

3 	 0 50 22 17 

7 71 30873107 	 7 813 	 i0 

21 	 16 24 31 21 

78 75608*
108 6 	 18 12 13
24 	 22 


9 38 37 27 

110 6 0 


6.7 	 72.9 40396
14.9 	 8.7 7.719.5 16.221.5 	 22.5 

x 8.5 14.5 21.5 

8.4 14.9 58.3 

s2 90.7 138.9 45.6 62.1 24.5 16.4 34.5 17.6 
53.4 

2.2 	 0.82.0 	 1.11.3 1.0 2.32.1 	 2.8 
S2px 	 6.2 6.2 6.5 


value because station #2 had no total available

*inimum 
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individuals. The data have been grouped into abundance classes of approximately equal 

range on a logarithmic scale. The pattern of variation shown by cruises should show 

However, the variation in the first tlree abundance clauses 
independent Poisson variation. 

It is believed that this situation is 
(namely, 1, 2+ , 4+) is considerably higher than expected. 

the result of sampling variability for rare species. The analysis of Table 2 suggests that 

those species which occur as individuals or as a very few individuals in this type of sample 

are subject to a great deal of sampling variability, as they probably have a highly contagious 

spatial distribution and/or are not vulnerable to the gear used. Koch (1987) has shown that
 

for those species which occur infrequently, sample size effect may be very large relative to
 

the faunal patterns reported. At this point it is suggested that the rare species be eliminated
 

Whether sampling strategies could be refined
 
before formal testing of specific hypotheses. 


Koch
 
to permit more consistent representation of rare species is not known at present. 


(1987) developed methods to test for sample size effects on distributional patterns of
 

species. However, the paleontological studies he addressed dealt exclusively with non-


In our case the number of species (groups) with r individuals in a sample
 
motile species. 


(nr) tend to show independent Poisson variation with expectations (Er) described by a
 

logarithmic series distribution, except in the case of the first three abundance classes, which 

show considerable variability.
 

Computer programs for calculating the parameters of the log-series distribution are
 

found in the Appendix. The method used for calculating the parameters of the log-series
 

That is, for a sample with N
 
distribution and their variances are based on Shepard (1984). 


individuals and s species, the value of ct is calculated from:
 

ox [exp -s/a -1] - N = 0
 

To obtain the expected number of species with n
 
by means of an iterative procedure. 

individuals each (sn), the following relation is used: 

xn.
 sn = (a /n) 

However, it is first recessary to calculate 
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x = N(N+a). 

The variance associated with s and ac are: 

var (s) = in [(2N +a)/(N + a)] - [a 2 N/(N + a) 2 ] 

var (a) = [a3 ((N + a)2 In [(2N + a)/(N + a)] - a N)] 

For testing the fit of observed to expected number of species, a test described by Fisher is 

used. A value of k is estimated as follows: A value of the difference: 

[an (1 + 1/2 + 1/3 + ... + ]- 2a 

is evaluated. In the expression an is the number of observed species with n individuals 

each and s is the number of species. Solution of the above in the first term represents the 

score of observed values and the second term represents the expected total score. 

Significance is tested by estimating the standard deviation by 

s.d. = [0.908 (log N/s)1. 673s] 2 

Non-significance is accepted if the difference is less than its standard deviation. If this test 

indicates a significant difference between observed and expected scores, the difference is 

divided by its variance to obtain a value of k which provides an exact fit. 

Table 3 illustrates estimates of the log-series distribution parameters to data from 

three cruises chosen at random from the Samar Sea file. These three cruises are 97, 98, 

and 108. The values of c range from less than 2 to more than 8. The goodness-of-fit of 

the distribution to the data is demonstrated by high values of x and by the values of k. 

Values of k less than unity are considered to provide reasonably good fits to the data. It is 

clear from examination of the last column that most of the calculated k values are greater 

than unity. However, if the data are truncated by removing the most variable abundance 

class (namely, those with seven or less individuals) then the recalculated k values are 

significantly reduced and most of them are less than unity. The parameter k varies 

inversely with the unevenness in species abundance represented by each term in the series 



Table 3. Log-series distribution parameters for three cruises selected at random and for 28 

stations sampled during each cruise, Samar Sea, Philippines. Note that some 
station data were incomplete and were listed as "missing data." 

a SEa x kCruise/Sation N S 

26 3.874 .286 .999 0.21097-01 	 3180 
35 5.014 .311 .999 0.18197-02 	 5384 
20 3.331 .303 .998 2.99697-03 	 1346 
28 4.504 .328 .998 3.02597.04 	 2251 

5772 29 3.984 .264 .000 2.93497.05 
3904 26 3.740 .198 .999 4.83597-06 
3388 28 4.10- .198 .998 0.16697-07 
2002 28 4.608 .351 .997 N.S.97-08 
2920 19 2.723 319 .999 1.81897-09 

237 .999 1.37197-10 .10936 31 3.905 
109 .999 1.84297-11 105220 19 !.7-24 
140 .999 2.41797-12 51855 23 2.294 
388 .999 7.26997-13 1628 29 5.012 

.601 .991 9.96297-14 878 36 7.557 

.398 .997 0.23397-15 	 2396 35 5.810 

5.624 .453 .995 1.07897-16 	 1160 30 

97-17 (missing dam) 

6.760 .421 .997 1.97197-18 	 1767 33 
3.372 .262 .999 2.98797-19 	 3087 23 

29 4.114 .290 .999 3.33697-20 	 4102 
22 3.855 .346 .997 N.S.97-21 1156 

97-22 3587 37 5.747 .366 .998 0.893 

8114 31 4.081 .255 .999 1.77497-23 

97-24 8283 33 4.373 .266 .999 2.834 

97-25 18018 29 3.379 .202 .999 3.208 

97-26 7663 26 3.263 .222 .999 5.478 

.999 4.27697-27 36397 26 2.738 .162 

23 	 .171 .999 N.S.97-28 18292 	 2.596 
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Table 3. (continued) 

Cruise/Station N S a SEa x k 

98-01 11196 40 5.213 .285 .999 N.S. 

98-02 2029 39 6.848 .462 .997 1.882 

98-03 1748 42 7.744 .521 .996 0.212 

98-04 3754 36 5.518 .353 .998 N.S. 

98-05 3326 38 5.015 .383 .998 1.008 

98-06 4234 32 4.703 .311 .998 2.245 

98-07 2511 38 6.352 .420 .997 3.371 

98-08 5153 26 3.574 .251 .999 4.891 

98-09 3436 30 4.522 .314 .998 N.S. 

98-10 36101 25 2.613 .158 .999 0.462 

98-11 6545 33 4.536 .282 .999 1.543 

98-12 760 23 4.474 .422 .994 7.153 

98-13 4231 30 4.361 .295 .999 3.282 

98-14 1799 36 6.396 .450 .992 5.472 

98-15 2591 40 6.713 .434 .997 5.619 

98-16 2250 36 6.086 .416 .997 7.902 

98-17 1156 42 8.456 .616 .993 10.881 

98-18 3244 37 5.855 .378 .978 8.407 

98-19 5331 32 4.524 .291 .999 8.926 

98-20 11851 34 4.251 .249 .999 N.S. 
98-21 3029 28 4.264 .301 .998 1.409 

98-22 3345 32 4.903 .333 .998 2.301 

98-23 3444 33 5.057 .338 .998 N.S. 

98-24 6016 31 4.275 .275 .999 1.092 

98-25 4123 33 5.963 .366 .998 2.183 

98-26 6428 36 5.032 .303 .999 3.084 

98-27 9988 39 4.421 .224 .999 3.192 

98-28 6781 33 4.511 .280 .999 5.646 



13 

Table 3. (continued) 

Cruise/Station N S a SEa x k 

108-01 2429 42 7.214 .462 .997 0.138 
108-02 2588 40 6.715 .434 .997 1.525 
108-03 3277 35 5.471 .360 .998 0.250 
108-04 12678 40 5.118 .276 .999 .983 
108-05 9901 39 5.159 .288 .999 2.200 
108-06 11211 36 4.618 .263 .999 3.453 
108-07 9347 35 4.594. .269 .999 4.857 
108-08 14075 36 4.467 .249 .999 5.149 
108-09 4751 33 4.781 .308 .999 9.196 
108-10 (missing data) 
108-11 23172 36 4.176 .223 .999 6.169 
108-12 14958 39 4.713 .256 .999 0.130 
108-13 7935 36 4.867 .287 .999 1.480 
108-14 6076 40 5.743 .334 .999 2.694 
108-15 373614 37 5.739 .365 .998 1.527 
108-16 8205 35 4.686 .278 .999 4.715 
108-17 10200 38 4.660 .251 .999 0.110 
108-18 3199 42 6.827 .421 .998 1.613 
108-19 5561 40 5.830 .342 .999 2.474 
108-20 7244 38 5.201 .301 .999 3.537 
108-21 9678 37 4.822 .278 .999 4.424 
108-22 9840 43 5.779 .310 .999 4.856 
108-23 2595 47 8.151 .497 .997 0.163 
108-24 4463 42 6.415 .379 .998 1.166 
108-25 27249 27 2.958 .176 .999 1.920 
108-26 19768 36 4.164 .231 .999 2.434 
108-27 8599 34 4.500 .269 .999 4.524 
108-28 8780 38 5.100 .291 .999 5.181 
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for which the distribution is a continuous function. When the abundances of each species 

are roughly similar, k is expected to have a high value. When the abundances vary greatly, 

k is expected to have a small value. This approach to describing the fit of the log-series 

It is 
model is identical to that done by Shepard (1984) for stream macro invertebrates. 

thought that this method is more appropriate than the usual chi-square goodness-of-fit test. 

The reason is that that power of the chi-square test is low, and samples may be accepted in 

fitting the logarithmic series using this test when in fact the fit is not good. Krebs (1989) 

has recommended that so-called Whittaker plots be made to demonstrate conformity to P 

log-series model. These plots involve plotting relative abundance (pc"cent) on a 

logarithmic scale on the y-axis and species in rank order on the x-axis. The result is a
 

relatively straight line for the logarithmic series, if the data conform to the distribution.
 

The log-series fitting program described in the appendix provides an option to 

logarithmic series. This methodology is 
calculate the theoretical Whittaker plot for, 


described by Krebs (1989) and involves solving the following equation:
 

R = 	 a EI(nln(I+Nf)) 

species in rank order (x-axis of plot)
where R = 

a = 	 Fisher's index of diversity 

number of individuals expe;cted for a specified value of R (y-axis of plot) 
n = 

total number of individuals in sampleN = 

standard exponential integral (Abramowitz and Stegun 1964, Ch. 5) 
El = 

Solving the above equation for n using integer values of R provides values for the 

expected Whittaker plot. These can be compared with the original data. 

Figure 1 illustrates the distribution of alpha for 267 stations from the Samar Sea. 

The fit of the normal distribution to the observed frequency distribution looks reasonably 

'good. The null hypothesis is not rejected at the 0.05 probability level. The evidence at 
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hand suggests that use of the a diversity statistic with symmetric intervals for comparative 

studies of tropical multispecies fish assemblages seems justified to some extent. 

Taylor, Kempton, and Woiwood (1976) also suggested that the logarithmic series 
parameters ox and x may be given biological interpretations. They indicated from their 

work that the parameter a remains reasonably constant over time for the same station, but 

that x changes somewhat more. From the Samar Sea data, a two-way randomized block 

analysis of variance design was used to compare temp.oral versus spatial variability of a. 

The analysis consisted of 15 stations x 10 samples at each station taken at quarterly 

intervals. These stations and samples were chosen to permit c-thogonal comparisons. 

Table 4 illustrates the results of this analysis. From this table it is evident that both 

temporal and spatial variability were statistically significant. This would be expected, since 

the area was in the early stages of recovery from a trawling restriction on larger vessels. 

However, the variation within stations over the ten quarterly samples seemed to be 

somewhat smaller than that observed over the 15 stations. This tends to support the 
premise that a seems somewhat less variable within assemblages at a given location 

(environment) than among locations. 

Table 4. Analysis of variance table for a 15 x 10 randomized block experiment testing for 
the temporal and spatial changes in the parameter a. Samar Sea data for stations 
1--5 over 10 cruises. 

Source of 
Variation d.f. 

Sum of 
Squares 

Mean 
Square Fo Prob (F > Fo) 

among stations 14 84.260 6.019 4.935 0.05E-04 

within stations 9 46.270 5.141 4.215 0.15E-03 

error 116 153.671 1.220 

Total 149 284.200 



10 

U 
Z 6
LLIu9-i 

( 4
 
u-i
 

U-2 

01 
0 20 40 6G 80 100 

CLASS INTERVAL 

A 

Figure 1. Distribution of ax for 267 stations in the Samar Sea, Philippines with fitted normal curve. 

Chi-square (d.F. = 5) = 11.0197 
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The Diversity Index (a) Based on the Log-Series Distribution 

Fisher et al. (1943) have demonstrated that for all samples (or summation of 

samples) taken from the same population by the same methods, a = nl/x is constant. 

These symbols have been previously defined as: 

x = sarapling parameter of the log-series distribution 0 < x < 1 

a = parameter of the log-series distribution: also Fisher's diversity index 

nl = the number of species encountered with one individual. 

Fisher's demonstration of the above is of significance to studies of multispecies 

fisheries and to ecology in general. Because a is high in populations which have many 

groups (species) relative to the numaber of individuils and low in populations which have a 

small number of groups (species) relative to the number of individuals, Williams (1947) 

has termed a an index of diversity. It measures the extent to which individuals are 

apportioned into groups (species). 

Some characteristics of this index of diversity listed by Willians (1944) are briefly 

mentioned below. 

a) If many samples are taken from the same population, not only will each have 

the same index of diversity but also the combined sample from two or more 

original samples will have the same index of diversity. 

b) For samples of differing sizes from the same population (x), the sampling 

parameter of the log-series distribution approaches unity as the sample size 

increases. Also, since ni = (x x-, it is evident that a, the index of diversity, is 

the theoretical limiting value of ni. That is, a is the maximum number of 

species (groups) with one individual obtained from one sample regardless of its 

size. 

c) If two samples of considerable size are taken from the same populations and the 

larger population is p times the smaller in size, then the number of species in the 
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larger sample will be ac In p more than in the smaller sample. This follows from 

relationship 8) of the General Properties section where: 

S = a In(1 + N/a) 

If N is very large relative to ac, we have that: 

S = a In (N/a). 

Therefore, if two samples from the same population contain N ajd PN species 

(groups): 

SPN -SN = a (In PN/ -InN/a) = cc InP. 

By way of illustration, if one sample is twice as big as the other, it will contain a In 2 = .69 

a more species. Similarly, if the size of the sample is multiplied by e = 2.718, the 

number of species added = a. This relation may be useful in multispecies trawl surveys 

using two trawl hauls whose time durations (hence areas swept) are in the ratio of 1 to 1.65 

(which is 4e). From this, the average increase in species betwe 'n samples of the two 

sizes should be a direct measure of the index of diversity (c). To the best of our 

knowledge, this approach has not be tested in the field with fisheries data and may be 

worthy of future consideration. 

The index of diversity (a) may also be used in a comparison of different 

populations under certain restrictive assumptions and conditions. Williams (1947) presents 

results which follow, but these been modified by substitution of an example from a tropical 

multispecies fishery. Specifically, the method relates to the question of the number of 

species (groups) that would be common to two areas if they were from the same 

population. A necessary assumption is that the density of the population be the same for 

the two areas. That is, the number of ind; viduals (but not species) must be proportional to 

the area under consideration. Also, the two areas must be of different size. Let the two 

areas be of size a and size b, and the number of species in each be Sa and Sb. If the areas 

are from the same population, then they will have the same index of diversity. If the 

samples are large, the Iin the following equation can be neglected: 
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S = a In (1 + Nla). 

Let Sab be the total number of species in the two samples. The increase in species by 

adding b to a is: 
= a ln (L- )Sab -Sa = aIn (!a+b )'-aIn (a)a a+b (1) 

Similarly, the increase in species by adding a to b is: 

Sab-Sb = amIn ( b (2) 

The unknowns Sab and a may then be calculated by solving the two equations (Equation 1 

and Equation 2) for the two unknowns. It is evident from the two equations above 

(Equation I and Equation 2) that it is required that the area sizes a and b must be different in 

order for the model to work. The number of species' (groups) expected to be common to 

both samples is: 

Species (groups) = Sa + Sb - Sab 
in common 

The following example is taken from trawl survey data acquired from the Samar 

Sea, Philippines, to demonstrate the application of the above-mentioned method. Stations 

1-4 are located in the shallow north area oi the Samar Sea. These stations had 56 species 

or species groups in an assumed area of 50 square kilometers. Stations 24-25, located in 

the shallow south portion of the Samar Sea had 39 species in an assumed area of 25 square 

kilometers. In this case, the proportions of the two areas are correct, but the absolute sizes 

have been assumed. However, this does not affect the results. On the assumption of 

identity of origin, we have that: 

Sab - 56 = a In 75if 

750
 
Sab - 39 = aln(75 

,Hence, Sab = 66, a = 24.52, and the expected number common to the two areas is 29. 

The actual number of species (groups) observed to be in common was 25. This result does 
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not suggest any significant deviation from the expected number. However, no formal 

statistical test of significance is available. In addition, it should be recalled that this exercise 

is based on the assunption that the number of individuals be proportional to the two areas 

under consideration. This assumption is clearly difficult to test in practice. 

Siromoney (1962) introduced the concept of entropy for the logarithmic series 

distribution. He considered two types of logarithmic series distributions (Type I and 

Type II). Type I involves randomization by groups and Type II involves randomization by 

units. 

Type I or randomization by groups may be illustrated by a sample of parasitized 

fish, classified according to the number of parasites on each fish. An increase in the 

sample of fish will not add any parasites to the fish already counted. That is, the new units 

(individual parasites) will fall into the new groups exclusively. In the case of Type II or 

randomization by units, consider the number of fish caught in a trawl haul which are 

classified according to species (groups). In this case, an increase in the sample may add 

new individuals to species already represented. That is, new units may fall into old groups 

in this case. 

Our further interest is restricted to the Type I situation. Consider the following 

problem. Let fr represent the frequency of species (groups) of exactly r fish each in a 

population of fish classified according to species (groups). The Type H distrioution 
aBr 

equates Fr to r r r = 1,2,3,.. .where B is a constant. This is a distribution on the set 

of all species. Thus, if a fish caught belongs to a species with exactly r fish, its probability 

is: 

r r r(1-B) 
total number of fish = rfr ­ a B 

'and there are a species with exactly r fish. Let Ha denote the entropy of this 

distribution. Ha measures the average uncertainty per fish with reference to the species. 
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Siromoney showed that Haincreases with B, when cc is fixed and also that Ha is greater 

for larger samples from the same biological population. 

Assuming a logarithmic series distribution for species abundance, Kempton and 

Taylor (1979) have shown that the expected number of species in a sample of size m is: 

m 
Sm (a) = Y.
 

i=l a + i-1
 

The above authors conclude that using Sm(X) from the log-series model enables all 

information in the sample to be used, with the consequent reduction in temporal variability 

and an increase in site (location) discrimination. 

Summary of the Log-Series Model and Diversity Statistics 

Assuming that the number of species (not the number of individuals) in replicate 

samples follows a Poisson distribution, and using Fisher's log-series distribution as a 

description for the expected number of species (Er) with r individuals: 

Er = a Xr/r, r = 1,2,3, ... 

where a > 0 and 0 < x < 1. These are parameters of the log-series distribution. This is a 

simple model that gives a description of species frequency distributions. 

The expected number of species in the sample is given by:
 

E(S) = - a In (1 - X).
 

The expected number of individuals in the sample is:
 

E(N) = a X/(1 - X)
 
A 

The maximum likelihood estimate a of a is given by the solution of: 

A 

S = aln(1 +N/a). 

A 

The variance )f a for large samples is: 

A 

var (a) = a/- In (1 - X) 



22 

Note: This variance can be used for comparing diversities at different sites or times. 

The basic model is: the number of species with r individuals in a sample nr, show 

independent Poisson variation with expectations Er, which are described by a logarithmic­

series distribution. 

The information statistic H, proposed by Shannon and Weaver, is a measure of the 

information content per symbol in a coded message. 

Expressed in terms of species abundance, it is defined as: 

00 

H = InN- 1/N (r/nr)nr
i=l1 

Asymptotically, for large sample size: 

H - V + In (a + 1/2) 

where V = 0.577721, which is Euler's constant, with a relative error less than 10-4 when 

a > 5. Thus, for data fitting the log-series model, the statistic 

I = 0.561 eH - 0.5 

may be equated with a with small bias when the sample size is large. The expression eH is 

equivalent to the minimum number of species the sample must contain for the information 

statistic to have value H. 

Definition of Symbols 

S = total number of species encountered in replicate samples: S X nr.= 

N = total number of individuals in replicate samples. 

nr = number of species with a particular abundance r. 

Er = expected number of species with r individuals. 

a = parameter of log-series distribution: a > 0 (diversity index). 

X = parameter of log-series distribution: 0< X < 1 (sampling parameter). 

E(S) = expected number of species in the sample. 
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A 

a = estimate of a 

H = The Shannon/Weaver information statistic. 

Series Index of Similarity and Its Application to ClassificationLogarithmic 

of Stations 

Mountford (1962) derived an index of similarity termed I, which is based on the 

logarithmic series distribution. The material which follows is largely taken from the above 

reference. 

Let: 	 a = the number of species in a sample from one site
 

b = the number of species in a sample from a second site
 

j = the number of species common to both sites.
 

An index of similarity based on the above three quantities must be a combination of 

these quantities and should be: 

a) independent of sample size, and 

b) should increase with increasing j and decrease with increasing a and b. 

In order to meet these requirements, it is necessary to postulate a theoretical 

The logarithmic series distribution (Fisher, Corbet
distribution of the species frequencies. 


and Williams, 1943) is postulated as:
 

2 x 3
ax	 a 
x,- ... 

where a xn is the number of species with n individuals, and a is a constant for all samples 

The constant a is construed as an index of diversity. The
from the same population. 


relation between the expected number of individuals (N) and the expected number of
 

species (S) in a sample from a log-series population with the constant a is:
 

S= aln(I+) 

If two samples having A and B individuals and a and b species respectively, are taken from 

the same population, then: 
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a = aln(I+--) (3)a 

b = aln(+ B (4)a 

Ifj is the number of species common to both samples, then if the two samples are 
considered as one large joint sample, the total number of individuals is now A +B and the 

total number of species is a + b - j. Then: 

a+b-j=aln[l+ B)(5)
 
a
 

Taking antilogarithms and eliminating A and B from the above three equations
 

gives:
 

ea/a + eb a = + A +1+ B 
a a 

+ (+{1+(A+B) 
a 

= 1 + e(a+b-j)/a (6) 

The similarity index I = I/a and it is the positive root of the equation: 

eal + ebl = 1 + e(a+b-j)I, (7)
 
which is the defining relationship for I. Equation (7) can be solved iteratively for I. A
 

good approximation to I is obtained from: 

2L 
2ab-(a+b)j 

Since a is a constant for the population, then I, which is the inverse of a is 
independent of sample size for samples drawn from the same population. 

Mountford's method for classifying sampling stations into groups of similar 
stations uses both an index of similarity between a pair of stations and an index of 
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imilarity between two groups of stations. The index of similarity between station B and a 

soup composed of stations Al and A2 is defined as: 

= I(AjB) + I(A2B)I(AIA2, B) =2 

vhere I(AIB) is the index of similarity between the pair of stations Al and B. In general 

-rms, the index of similarity between a station B and a group composed of m stations: 

Ai, A2, ... Am; B is: 

I(A 1 B) + I(A 2 B) + ... + I(AmB)
I(A, A2, ... AmB m 

[he index between a group composed of stations A1 and A2 and a second group composed 

)fstations B 1 and B2 is: 

I(Aj A2; B1 B2) + I(A 1 B1) + I(AIB2) + I(A2B 1)+ I(A2B2) 

4 

n general terms, the index between groups A 1, A2, ... Am and B2, B2, ... Bm is: 

nm1 

" X I(AiBj)rn i=l i=l 

The following rule is used for classification. From a derived table of indices of similarity 

select the biggest value. The pair corresponding to this value is combined to form a single 

group. The indices of similarity between this new group and each of the other stations are 

evaluated according to the definition of the index between groups of sites. 

Shepard (1984) illustrated the application of Mountford's index I to testing the 

statistical significance of clusters. This problem will be considered in total in a forthcoming 

report. 
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Appendix I 

Derivation of the Logarithmic Series Distribution 

Fisher et al (1943) are responsible for the first mathematical derivation of the 

Alternative derivations of this distribution are due to many
logarithmic series distribution. 

In this material the derivation by Kendall and Stuart (1958), in which the 
authors. 


logarithmic series distribution is considered as a limiting form of the negative binomial
 

distribution, will be briefly described. This derivation is considered intuitively appealing, 

especially for the application used herein. 

Let q represent the probability for the presence of an attribute and p represent the 

probability for its absence. Then consider the Pascal form of the negative binomial: 

(x+r 1) prqX 
x 

where x is the number of attributes present and r is the number of attributes absent..
 

Now consider the above form as a model for the number x of different species
 

found in standardized trawl hauls, for example. If the trawl gear is at all effective, the tow 

is of reasonable duration and the gear is not torn or broken, there will be at least one 

species present. Under this assumption, the complete absence of the attribute (x = 0) can 

be excluded. 

We are then concerned with a negative binomial truncated at zero, with frequencies 

proportional to:
 

21 31 qq3 ,..
 
pr [rq, rl) q2, r(r+r+2) 

Since the total frequency is I-pr, the distribution may be written as: 

[ q,r q2, (r + 1)(r! + 2 ) q3 ...] (Al) 
1-pr2! 
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The case where r = o will occur if the size of the samples is large enough so that it is 

virtually certain that every species in the area is present in at least one of the trawl hauls. 

Then, it is possible to consider the limiting form, with r = o of Equation (Al): 

lim r lir r 
r -> o p-r 1 r->o e-rn ' 1 

Applying L'Hospital's rule vie have that: 

lim lim 
 1
 
r -> o r -> o (-lnP)e-rlnP - -lnP
 

Therefore, the limiting form of Equation (A1) is as follows if we set r = o in the expression 

in the brackets: 

-I [qq q 
in(l-q) 2' 3 " 

For x = 1, 2, 3, ..., the frequency is the coefficient of tx in the frequency 

generating function: 

P(t) = In (1 -qt) (A2) 
In (l-q) 

Equation (A2) is an expression for the logarithmic series distribution. 
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Appendix H 

Log-Series Fitting Program-Manual of Operations 

The Basic Programs 

The LOGSERS.BAS and LOGSRFIT.BAS programs are designed to fit species 

abundance data from one or more sampling sites to the log-series model. LOGSERS.BAS 

makes use of only those features that are available as part of the standard 

BASICA/GWBASIC programming language and must be run within that environment. 

LOGSRFIT.BAS is the QUICK BASIC (Microsoft v.4.0) version. The structured nature 

of this version allows one to understand the algorithm more easily than by studying the 

code of the BASICA version. It is a faster version, which rray also be compiled by the 

QUICK BASIC compiler. This is a distinct advantage when dealing with many sample 

locations or requesting Whittaker plots. 

Program Operations 

Data Requirements-These programs are designed to satisfy two end user 

needs for examining the fit of species abundance data to the log-series model. The first is 

the quick generation of the parameters of the log-series model fitted to the data from a 

single sampling site. The second is the generation of these parameters for each of a large 

number of sampling sites. 

Data for multiple sampling sites must be contained in an ASCII file using the 

following format: 

LINE 1 a title (in quotation marks) 

LINE 2 the number of sites and the total number of species from all sites 
(separated by a comma) 

LINE 3 label for each column of data (separated by commas; quotation marks 
are not necessary) (e.g., STATION,SPP1,SPP2,SPP3,SPP4, etc.) 

LINE 4 (and all following lines) site id, abundance of species 1,abundance of 
species 2, etc. (separated by a comma) 
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If a species were absent from a particular location, a zero should be used to 

represent its abundance. 

Data for a single sampling site may be contained in a data file formatted as described 

above or entered through the keyboard at run time. There are two options for processing 

the data from a single site, if those data are entered through the keyboard. Species 

abui.c:nce data can be entered as the user is prompted. This will produce the same output 

as that when data is read from a file. The other option is to enter only the number of 

species and total number of individuals. This will provide estimates of the a and x 

parameters, but will not estimate k (goodness of fit descriptor). 

Program Flow-The initial screen gives the program name and a brief 

description of its use. A menu will appear next, asking the user if his/her data are from 

multiple sites or a single site only. The user responds with 1or 2, accordingly. 

Choosing single site data leads to a second menu, which provides the user with the 

choice of entering species abundance data or simply the total number of species and 

individuals. If species abundance data are used (option 1), the program will ask for the 

number of species at that site. It will then proceed to prompt the user for the abundance of 

each species, one at a time. If only number of species and individuals are used (option 2), 

then the program will request only those two values. Choosing multiple sites data will be 

followed by a description of the necessary file format and a prompt for the name of the data 

file. 

The first output is to the screen. A hard coy can be acquired by using SHIFT-PrtSc 

to dump the screen to a printer. This initial output includes estimates of the a and x 

parameters-as well as the variance and standard error of (X(Figure 1). 

The initial output is followed by a statement giving the user the option of generating 

the data for a Whittaker plot (linearized form of the theoretical distribution that best fits the 

data) for that site. This is a time consuming routine and should only be chosen when it is 

truly necessary (the code for this routine was taken from Krebs, 1989). If this option is 
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chosen, the user is prompted for the name of the file in which to record this data. A 

different name should be used each time this option is chosen, or else the file will be 

overwritten. The output consists of a list of the species rank, the abundance and proportion 

at that rank (predicted by the log-series model), and the observed abundance at that site 

(Figure 2). 

If the input data were simply the total number of individuals and species, then the 

program will end here. For other data, the program proceeds with a second output scnreen. 

This output includes the estimate of k (Figure 3). A hard copy can be acquired by using 

SHIFT-PrtSc. 

If the data set included more than one site, the calculations will be repeated for the 

next site (after a pause). For each site the two output screens and the prompt for Whittaker 

plots will be generated. 

After all of the sites have been processed, the program provides three options for 

the display or storage of the output from each site. The results for each site may be listed to 

the screen (choosing S), sent to the printer (choosing P), or stored in a file (choosing F). 

If storage in a file is chosen, the user will be prompted for a file name. These data are 

stored in simple ASCII form and may be edited or printed at a later time with a word 

processor (Figure 4). This output includes a summary of N, S, a, k, and a breakdown for 

each site, of the number of species that fall into each abundance class. 
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10 ' LOGSE&S.BAS
 

20
 
30 PRINT " 
 * LOGSERS.BAS *******" 
40 PRINT
 
50 PRINT " 
 by Jim McKenna 18 November 1988"
 
60 PRINT : PRINT
 
70 PRINT " 
 This program will read data on the abundance of each of a set"
80 PRINT " of species from a number of stations and will print the station #,"90 PRINT " total # of individuals, total # of species, Fisher's , X, the " 100 PRINT 
" frequency of species in abundance classes, and the associated K
 
110 PRINT " 
(from a negative binomial distribution)."
 
120 '
 
130 PRINT : PRINT
 
140 PRINT "Strike any key to continue ... ": WHILE INKEY$ . "" WEND
 
150 DIM J(500), M(500): Internal to LOGSER
 
160 DIM WH(1000): ' 
 Part of Krebs' code for Whittaker plot data
 
170 '
 
180 PRINT TAB(10); ************** 
 ** ** 
 *** 
 *
 
190 PRINT TAB(10.) ; *"; TAB(50); 
"*" 
200 PRINT TAB(10); "*"; TAB(21); 
"1) SINGLE STATION"; TAB(50); "*"
 
210 PRINT TAB(10); "*"; TAB(50); "*"
 
220 PRINT TAB(10); "*"; 
 TAB(21); "2) MULTIPLE STATIONS"; TAS(50); 
"*"
 
230 PRINT TAB(10); "*"; 
TAB(23); "(requires an 
input file)"; TAB(50); u*"
 
240 PRINT TAB(10); "*"; TAB(50); "*"
 

250 PRINT TAB(10); **************************
 
260 PRINT
 
270 INPUT "Please enter your choice"; ANS4%
 
280 ON ANS4% GOTO 290, 320
 
290 GOSUB 3900: 'SINGLE-station input routine
 
300 GOTO 340
 
310 '
 
320 PRINT " 
Go to INPUT subroutine"
 
330 GOSUB 500: ' INPUT
 
340 PRINT PRINT
 
350 PRINT " Compute 
 and K for each station"
 
360 FOR ICOUNT = 1 TO ST
 
370 GOSUB 1450: 
 SUB. to compute

380 
 Prompt with request for Whittaker Plot data (Krebs 1987, ch. 10)

390 
 INPUT "Do you want the predicted abundances for a Whittaker plot";
 
ANS5$
 
400 IF ANS5$ = "Y7' OR ANS5$ = "y" THEN GOSUB 2710
 
410 
 GOSUB 1820: ' SUB. to compute K 
420 NEXT ICOUNT 
430 PRINT 
440 PRINT " Go to OUTPUT subroutine"
 
450 GOSUB 2350
 
460 PRINT
 
470 PRINT 
" * END ***********, 

480 END 
490 • 
500 PRINT : PRINT " Subroutine to read data and produce counts and 
frequencies."
 

510 PRINT
 
520 PRINT 
" The data must be in the following form:
 



530 PRINT " LINE 1: 
a title in quotes"
 
540 PRINT " LINE 2: # of stations, # of species"

550 PRINT " LINE 3: STATION and a label for each other column"
 
560 PRINT " STATION 1, abund SPP 1, abund SPP 2, 
... , abund SPP S"
 
570 PRINT " STATION 2, abund SPP 
1, abund SPP 	2, ... abund SPP S", 

580 PRINT "."
 
590 PRINT "
 

600 PRINT "
 

610 PRINT " STATION N,
 
620 PRINT
 
630 INPUT "Enter the name of the data file "; FIL1$
 
640 OPEN "I", 1, FILlS
 
650 INPUT #1, TITL$
 
660 INPUT #1, ST, S
 
670 ' READ COLUMN LABELS
 
680 FOR 1% = 1 TO S + 1
 
690 INPUT #1, X$
 
700 NEXT I%
 
710 '
 
720 ' Dimension arrays
 

730
 
740 DIM STX(ST), CLASS(ST, 2, S), 
 TOTN(ST),. TOTS(ST), ALPHA(ST), VAR(ST)

750 DIM KSTAT(ST), MXCL(ST), KSIG$(ST)
 
760 ' 
770 PRINT " Initializing arrays to 
zeros ... "
 

780 GOSUB 1070
 
790 ' 
800 PRINT " Filling arrays with data .. 

810 ' 
820 FOR I = 1 TO ST
 
830 MAXCLASS = 1: ' 
 MAX. # of abund. classes 
found for this station so
 
far
 
840 INPUT #1, STX(I): 'Read the station #
 
850 FOR J = 1 TO S
 
860 
 INPUT #1, NUM: ' Read abundance value for species J
 
870 TOTN(I) = TOTN(I) + NUM
 
880 
 IF NUM <= 0 THEN GOTO 1000
 
890 TOTS(I) = TOTS(I) + 1
 
900 
 FOR K = 1 TO MAXCLASS
 
905 'Count # of spp in this abund. class
 
910 
 IF NUM = CLASS(I, 1, K) THEN CLASS(I, 2, K) = CLASS(I, 2, K) +
 
1: GOTO 1000
 
950 NEXT K
 
960 CLASS(I, 1, MAXCLASS) 
= NUM: ' Make new abundance class. 
970 	 CLASS(I, 2, MAXCLASS) = 1
 

MAXCLASS = MAXCLASS + 1:
980 
' Increment max. number of abund. 

classes 
1000 NEXT J 
1010 MXCL(I) = MAXCLASS - 1: ' # of abund. classes for this station. 
1020 GOSUB 1290: ' Sort abundance classes 
1030 NEXT I 
1040 ' 
1050 RETURN 
1060 



arraysinitialize' Sub. to1070 
- i TO ST
1080 FOR I 


1090 STX(I) = 0 
1100 TOTN(I) = 0 

= 0TOTSM() 

= 0
 

1110 


1120 ALPHA(I) 


1130 KSTAT(I) = 0
 

1140 MXCL(I) 0
 

1150 FOR J 1TO 2
 

1 TO S1160 FORK 


1170 CLASS(I, J, K) 0
 

NEXT K
1180 

1190 NEXT J
 

1200 NEXT I
 

1210 '
 
1 TO 5001220 FOR I 	= 

1230 J(I) 0
 

1240 M(I) = 0
 

1250 NEXT I
 

1260
 
1270 RETURN
 

1280 '
 
1290 PRINT ">";
 

1300 FOR II 1 TO MXCL(I)+ - 1
 
MXCL(I)
1310 FOR JJ = II + 1 TO 

1, II) GOTO 14001, JJ) > CLASS(I,1320 	 IF CLASS(I, 
II)

1330 	 CLASS(I, 1,TEMPC = 
2, II)TEMPF = CLASS(I,

1340 	 1, JJ)1, II) = CLASS(I,CLASS(I,1350 	 2, JJ)2, II) = CLASS(I,CLASS(I,1360 
1, JJ) = TEMPCCLASS(I,1370 	
2, JJ) = TEMPFCLASS(I,1380 

1400 NEXT JJ
 

1410 NEXT II
 

1420 ' 
1430 RETURN
 

1440
 
1450 PRINT " ***** ****,: ******* LOGSER 
****** 

= 501460 J(1) 


1470 M(1) = 1
 

1480 '
 
1 TO 260
1490 FOR I = 

L = (M(I) + J(I)) / 2 
/ 01500 	 L) - 1) - TOTN(ICOUNT)

(EXP(TOTS(ICOUNT) 	 * K <K = L * 	 TOTN(ICOUNT))1510 	 / M(M)) - 1) ­
(M(I) * (EXP(TOTS(ICOUNT)IF
1520 


GOTO 1560
 
LM(I + 1) = 

1530 

= J(I)

1540 	 J(I + 1) 

GOTO 1580
1550 


1) = M(I)M(I +15'60 

L


1570 	 J(I + ) 
1) < .000001 GOTO 1600 - J(I + 1)) 

1580 	 IF ABS(M(I + 

1590 NEXT I
 
= L
ALPHA(ICOUNT)
1600 




1610 '
 
1620 PRINT "STATION # ""; STX(ICOUNT)
 

1630 PRINT "Number of Individuals (N) -"; TOTN(ICOUNT)
 
1640 PRINT "Number of species (S) :"; TOTS(ICOUNT): PRINT
 

1650 PRINT " :"; ALPHA(ICOUNT)
 

1660 X = TOTN(ICOUNT) / (TOTN(ICOUNT) + L)
 
1670 ' Calc. of variance from equation in Krebs (1987 - ch.10, eq'n 10.12)
 
1680 VAR(ICOUNT) = -ALPHA(ICOUNT) / (LOG(l! - X))
 
1690 PRINT "Variance of ""; VAR(ICOUNT)
 

1700 PRINT " X -"; X
 
1710 C = SQR(TOTN(ICOUNT))
 
1720 PRINT "Standard Error of N ""; C
 
1730 D = LOG((2 * TOTN(ICOUNT) + L) / (TOTN(ICOUNT) + L))
 

^ 1740 E = SQR((L * D) - ((L 2) * TOTN(ICOUNT)) / (TOTN(ICOUNT) + L) A 2) 

1750 PRINT "Standard Error of S :"; E 

A1760 F = SQR(((L A 3) * (((TOTN(ICOUNT) + L) 2) * D - L * TOTN(ICOUNT))) / 
((TOTS(ICOUNT) * TOTN(ICOUNT) + TOTS(ICOUNT) * L - TOTN(ICOUNT) * L) A 2)) 

1770 PRINT "Standard Error of :"; F 

1780 PRINT : PRINT
 
1790 PRINT "Strike any key to continue ... "' WHILE INKEY$ """ WEND 

1800 RETURN
 

1810 1
 
1820 PRINT " * K ***** " ' * KTEST * 

1830 Z = 0 

1840 L = 0 

1850 B = 0
 

1860 Q = MXCL(ICOUNT): ' MAX. # of classes for this station 
1870 ' 
1880 'Calculations:
 
1890 ' Determine if the first abund. class is oni or not 
1900 IF CLASS(ICOUNT, 1, 1) > 1 THEN START = 1 ELSE START = 2 
1950 '
 
1960 FOR P = START TO Q 
1970 X = 0 
1980 FOR I 1 TO CLASS(ICOUNT, 1, P) - 1 
1990 T = (1 / I) + X 
2000 X= T
 
2010 NEXT I
 
2020 Z = CLASS(ICOUNT, 2, P) * T + B
 

2030 B = Z
 
2040 NEXT P
 
2050 '
 
2060 C = (TOTS(ICOUNT) ^ 2) / (2 * ALPHA(ICOUNT))
 

2070 D = B - C 

2080 Il = ((.43429 * LOG(TOTN(ICOUNT) / TOTS(ICOUNT))) A 1.673) * .908 * 

TOTS (ICOUNT)
 
2090 12 = SQR(I1) 

2100 ' 
2110 PRINT " Total # of individuals ""; TOTN(ICOUNT)
 

2120 PRINT " Total # of species -"; TOTS(ICOUNT)
 

2130 PRINT "."; ALPHA(ICOUNT) 

2140 PRINT
 
2150 PRINT " Observed K score -"; B 
2160 PRINT " Expected K score :"; C 



2170 PRINT " Difference m std. Err. ""; ABS(D); "a"; 12 
2180 IF ABS(D) < 12 GOTO 2270
 
2190 K = ABS(D / Ii)
 
2200 
 PRINT " K value ... :"; K
 
2210 IF K > .5 THEN KSIG$(ICOUNT) ,#, - ,
ELSE KSIG$(ICOUNT) 

2220 GOTO 2300
 
2270 PRINT " K is sufficiently close to zero!"
 
2280 KSIG$(ICOUNT) - "*1,
 
2300 KSTAT(ICOUNT) = ABS(D / If)

2310 PRINT "Strike any key to continue ... ": WHILE INKEY$ = ",, WEND
 
2320 '
 
2330 RETURN
 
2340 '
 
2350 PRINT " Output

2360 INPUT "Would you like the output sent to the screen 
(1), the printer (2), 
or a file (3)"; DESTIN% 
2370 ON DESTIN% GOTO 2390, 2400, 2410
 
2380 '
 
2390 
 OPEN "0", 2, "SCRN:": GOTO 2430
 
2400 OPEN "0", 2, "LPTI:": GOTO 2430
 
2410 INPUT "Enter output file name :", FIL2$
 
2420 OPEN "0", 2, FIL2$
 
2430 INPUT "ENTER a title 
 ", TITL$
 
2440 PRINT #2, DATE$, TIME$
 
2450 PRINT #2, TITL$
 
2460 PRINT #2, "...
 
2470 PRINT #2, TAB(5); "STATION"; TAB(15); "N"; TAB(20); "S"; 
TAB(27); 

TAB(38) ; "K" 

" 

2480 FOR I = 1 TO ST
 
2490 
 PRINT #2, TAB(7); STX(I); TAB(13); TOTN(I); TAB(20); TOTS(I);
 
TAB (24);
 
2500 PRINT #2, USING "##.#### ,; ALPHA(I); 
2510 PRINT #2, TAB(35);
 
2520 PRINT #2, USING "#.#### ,, KSTAT(I);
 
2530 PRINT #2, KSIG$(I)
 
2540 
2550 PRINT #2, "ABUND. CLASS ""; TAB(17);

2560 FOR J 
= 1 TO MXCL(I)
 
2570 PRINT #2, USING " #### "; CLASS(I, 1, J);
 
2580 NEXT J
 
2590 PRINT #2,
 
2600 PRINT #2, 
" # OF TAXA :"; TAB(17); 
2610 FOR J = 1 TO MXCL(I)
2620 PRINT #2, USING " #### "; CLASS(I, 2, J);
 
2630 NEXT J
 
2640 PRINT #2,
 
2650 PRINT #2,
 
2660 NEXT I
 
2670 
2680
 
2690 RETURN
 
2700 '
 
2710 
 PROGRAM LOGSERIE.FOR Version 1.1

2720 
 THIS PROGRAM CALCULATES THE PARAMETERS OF THE LOGARITHMIC SERIES
 



2730 ' OF FISHER, CORBET AND WILLIAMS (1943) USING TABLE 146 AND THE 

2740 ' RECURSIVE EQUATION ON PAGE 309 IN WILLIAMS (1964). 

2750 ' PROGRAMMMED BY C. KREBS IN JANUARY 1987. 

2760 'This is simply the subprogram of the above program that calculates the 

values 
2770 ' for Whittaker Plots 
2780 ' THEORETICAL WHITTAKER PLOT VALUES 

2790 ' Initialize WHO array 
= 
2800 FOR 1% 1 TO 1000
 

2810 WH(I%) = 0
 
2820 NEXT I%
 
2830 PRINT
 
2840 ' PRINT "* Toggle PRINTER on if you have more than 20 species !!"
 

2850 PRINT
 
2860 ZZUM# = 0!
 

2870 INPUT "Would you like the data for the Whittaker plot to go to a file
 
(F), the printer (P), or the screen only (S)"; ANS7$
 
2880 IF ANS7$ = "p" OR ANS7$ = "P" THEN FILX$ = "LPT1:"
 

2910 IF ANS7$ = "S" OR ANS7$ = "s" THEN FILX$ = "SCRN:"
 
2940 IF ANS7$ = "F" OR ANS7$ = "f", THEN INPUT "Enter a file name:",
 

FILX$
 
3010 OPEN "0", 3, FILX$
 
3020 PRINT " DATA FOR THEORETICAL WHITTAKER PLOT OF SPECIES
 
ABUNDANCES"
 
3030 PRINT #3, " DATA FOR THEORETICAL WHITTAKER PLOT OF SPECIES
 

ABUNDANCES"
 
3040 PRINT : PRINT
 
3050 KK% = MXCL(ICOUNT)
 
3060 XN# = TOTN(ICOUNT)
 
3070 IF (XN# < 500!) THEN XUMP# = 1!
 

3080 IF (XN# >= 500 AND XN# < 1000!) THEN XUMP# = 2!
 
3090 IF (XN# >= 1000! AND XN# < 2000) THEN XUMP# = 5!
 

3100 IF (XN# > 2000!) THEN XUMP# = 10!
 
3110 Y9# = LOG(l! + (ALPHA(ICOUNT) / XN#))
 
3120 FOR I%= 1 TO KK%
 
3130 XX% = I%
 

3140 X3# = XN# / (XX% + 1!)
 
3150 X3# = INT(X3#)
 
3160 N8% = 0
 
.3170 145% = 1
 
3180 147% 0
 
3190 Y# = X3# * Y9#
 

3200 IF (147% = 145%) GOTO 3440
 
3210 IF (X3# < 300!) THEN XUMP# = .1
 
3220 IF (X3# < 500 AND X3# >= 300!) THEN XUMP# = 1!
 
3230 IF (X3# >= 500 AND X3# < 1000!) THEN XUMP# = 2!
 
3240 IF (X3# >= 1000! AND X3# < 2000) THEN XUMP# = 5!
 
3250 IF (X3# > 2000!) THEN XUMP# = 10!
 
3260 '*statement to carry proper argument to subroutine
 

3270 XSUB# = Y#
 
3280 GOSUB 3730: 'SUBroutine SEI#
 
3290 Z2# = ALPHA(ICOUNT) * SEI#
 

3300 N8% = N8% + 1
 

3310 DD = Z2# - XX%
 



3320 IF (N8% > 3000) GOTO 3440
 
3330 IF (DD > .001) GOTO 3360
 
3340 IF (DD < -.001) GOTO 3390
 
3350 GOTO 3440
 
3360 
 X3# = X3# + XUMP#
 
3370 145% - 99
 
3380 GOTO 3190
 
3390 IF (X3# - XUMP# > 0!) GOTO 3410
 
3400 GOTO 3440
 
34.0 147% = 99
 
3420 X3# = X3# 
- XUMP#
 
3430 GOTO 3190
 
3440 PRINT I%;
 
3450 
 X3# = X3# - XUMP#
 
3460 WH(I%) = X3#
 
3470 NEXT I%
 
3480 PRINT
 
3490 PRINT " SPECIES RANK 
 NUMBER OF INDIVIDUALS PROPORTIONS
 
DATA"
 
3500 
 PRINT #3, " SPECIES RANK NUMBER OF INDIVIDUALS
 
PROPORTIONS DATA"
 
3510 SUM# = 0!
 
3520 FOR I% =1 TO KK%
 
3530 SUM# = 
SUM# + WH(I%)
 
3540 NEXT I%
 
3550 CORR# = XN# / SUM#
 
3560 ICONT% = 0
 
3570 FOR I% = 
1 TO KK%
 
3580 ICONT% = ICONT% + 1 
3590 WH(I%) = WH(I%) * CORR# 
3600 Z6# = WH(I%) / XN# 
3610 PRINT TAB(9); I%; TAB(24); 
3612 PRINT USING "#####.#"; WH(I%); 
3614 PRINT TAB(48); 
3616 PRINT USING "#.###A.....; Z6#; 
3618 
 PRINT TAB(63); CLASS(ICOUNT, 1, KK% (I% - 1))-
3620 PRINT #3, TAB(9); I%; TAB(24);
 
3622 
 PRINT #3, USING "#####.#"; WH(I%); 
3624 PRINT #3, TAB(48); 
3626 PRINT #3, USING "4.###".....; Z6#; 
3628 
 PRINT #3, TAB(63); CLASS(ICOUNT, 1, KK% (1% - 1))-

3630 IF 
(ICONT% >= 24) THEN PRINT "....Hit < ENTER > to continue
 

.WHILE INKEY$ = 
"": WEND
 
3670 IF (ICONT% >= 24) THEN ICONT% = 0
 
3680 NEXT I%
 
3690 PRINT
 
3700 CLOSE 3
 
3710 RETURN
 
3720
 
37'30 ' DOUBLE PRECISION FUNCTION SEI(XSUB) 
3740 ' STANDARD EXPONENTIAL INTEGRAL FUNCTION 
3750 ' APPROXIMATION FORMULAE FROM ABRAMOWITZ AND STEGUN (1964) CHAP. 5
3760 A# = -.57721566#: Al# = .99999193#: A2# = -.24991055#: A3#
 
.05519968#
 



3770 A4# = -9.760039999999999D-03: A5# = .00107857# 

3780 AA# = 2.334733: AB# - .250621: BI# = 3.330657: B2# = 1.681534 

3790 ZSUB# = XSUB# 
3800 SEI# 0! 

3810 IF (ZSUB# > 0! AND ZSUB# <= 1!) GOTO 3840 

3820 IF (ZSUB# > 1!) GOTO 3860 
3830 GOTO 3880 

3840 SEI# - -LOG(ZSUB#) + A# + (Al# * ZSUB#) + (A2# * ZSUB# - 2) + (A3# * 
^ ^ ZSUB# 3) + (A4# * ZSUB# 4) + (A5# * ZSUB# 5) 

3850 RETURN 
^ 3860 SEI# = (! / (ZSUB# * EXP(ZSUB#))) * ((ZSUB# 2) + (AA# * ZSUB#) + 

^ AB#) / ((ZSUB# 2) + (BI# * ZSUB#) + B2#) 
3870 RETURN 

3880 RETURN 
3890 
3900 ' subroutine to allow keyboard entry of data for a single station 

3910 PRINT 
3920 ' Initialize variables 

3930 ST = 1 
3940 DIM STX(ST), TOTN(ST), TOTS(ST), ALPHA(ST), VAR(ST) 

3950 DIM KSTAT(ST), M)CL(ST), KSIG$(ST) 
3960 ' 
3970 PRINT TAB(10); * 
3980 PRINT TAB(10); " " - TAB(50); * " 

3990 PRINT TAB(10); "*"; TAB(21); "1) Species Abundance"; TAB(50); "*" 

4000 PRINT TAB(10) ; ""; TAB(21) ; " Data"; TAB(50); "*" 

4010 PRINT TAB (10) ; "*"; TAB(50) ; "*" 

4020 PRINT TAB(10); "*"; TAB(21); "2) # of Species & "; TAB(50); "*" 

4030 PRINT TAB(10); "*"; TAB(21); " # of Individuals only "; TAB(50); "*" 
4040 PRINT TAB(10) ; "" TAB(50) ; "" 

4050 PRINT TAB(10); "****************************************** 
4060 PRINT 

4070 INPUT "Please enter your choice"; ANS4%
 
4080 ON ANS4% GOTO 4100, 4350
 

4090 ' 
4100 INPUT "Enter the number of species"; S
 
4110 DIM CLASS(ST, 2, S) 
4120 MAXCLASS = 1: ' MAX. # of abund. classes found for this station so 

far
 
4130 STX(1) = 1: 'SET the station # 
4140 FOR J = 1 TO S 

4150 PRINT "Enter the number of individuals of species"; J; 11:"1,
 
4160 INPUT NUM: ' Read abundance value for species J 

4170 TOTN(1) = TOTN(1) + NUM 
4180 IF NUM <= 0 GOTO 4300
 
4190 TOTS(1) = TOTS(1) + 1 
4200 FOR K = I TO MAXCLASS
 
4215 'Count # of spp ir.this abund. class
 

4210 IF NUM = CLASS(l, 1, K) THEN CLASS(!, 2, K) = CLASS(l, 2, K) 
+'l: GOTO 4300
 

4250 NEXT K
 

4260 C.-ASS(1, 1, MAXCLASS) = NUM: ' Make new abundance class. 
4270 CLASS(l, 2, MAXCLASS) = 1
 



MAXCLASS = MAXCLASS + 1: ' Increment max. number of abund. 

ses
 
NEXT J
 

# of abund. classes for this station.
MXCL(l) = MAXCLASS - 1: ' 


GOSUB 1290: ' Sort abundance classes
 

RETURN
 
I 

INPUT "Enter the number of species:", S
 

TOTS(i) = S 

) MXCL(1) = S: ' SET max number of classes to the number of 

-ies
 
this might not be correct.
S' -


INPUT "Enter the total number of individuals:", TOTN(1)
D 

0 ICOUNT = 1
 
0 


0 GOSUB 1450: ' Calc. and X 

Prompt with request for Whittaker Plot data (Krebs 1987, ch. 10)
0 ' 

0 INPUT "Do you want the predicted abundances for a Whittaker plot";
 

5$
 
= "Y" OR ANS5$ = "y" THEN ,GOSUE 27100 IF ANS5$ 


0 STOP
 

0 RETURN
 



LOGSRFIT.BAS 
 ** 

PRINT " 
 ***** LOGSRFIT.BAS 
******"
 
PRINT
 
PRINT " 
 by Jim McKenna 18 November 1988"
 
PRINT PRINT
 
PRINT " 
 This program will read data on the abundance of each of a 
set"
PRINT " of species from a number of stations and will print the station #,,PRINT " total # of individuals, total # of species, Fisher's 
 , X, the
PRINT " frequency of species in abundance classes, and the associated K
PRINT " (from a negative binomial distribution)."
 

PRINT : PRINT
 
PRINT "Strike any key to continue 
... ": WHILE INKEY$ 
= ",, WEND 
DIM J(500), M(500) : 
' Internal to LOGSER
 
DIM WH(1000) : ' 
 Part of Krebs' code for Whittaker plot data
 
r 

PRINT TAB(10); *
 

PRINT TAB(10); "*"; TAB(50); "*"
 
PRINT TAB(10); 
"*"; TAB(21); "1) SINGLE STATION"; TAB(50); "*"
 
PRINT TAB(10); "*"; TAB(50); "*"
 
PRINT TAB(10); "*"; TAB(21); "2) MULTIPLE STATIONS"; TAB(50); 
"*" PRINT TAB(10); "*"; TAB(23); "(requires an 
input file)"; TAB(50); "*"
 
PRINT TAB(10); "*"" TAB(50); "*"
 
PRINT TAB(10); *****************************************,* 

PRINT
 
INPUT "Please enter your choice"; ANS4%
 
ON ANS4% GOTO 10, 20
 
10 GOSUB 8000: 'SINGLE-station input 
routine
 
GOTO 25
 

20 PRINT " Go 
to INPUT subroutine"
 
GOSUB 1000: ' INPUT
 
25 PRINT : PRINT
 
PRINT " Compute 
 and K for each station"
 
FOR ICOUNT = 1 TO ST
 

GOSUB 2000: 
 ' SUB. to compute

Prompt with request for Whittaker Plot data 
(Krebs 1987, ch. 10)
INPUT "Do you want 
the predicted abundances for a Whittaker plot"; ANS5$

IF ANS5$ = 
"Y" OR ANS5$ = 
"y" THEN GOSUB 5000
 
GOSUB 3000: 
' SUB. to compute K
 

NEXT ICOUNT
 

PRINT
 
PRINT " Go 
to OUTPUT subroutine"
 

GOSUB 4000
 
PRINT
 
PRINT 
" ******** END ***********,, 

END
 

10.00 PRINT : PRINT " Subroutine to read data and produce counts and
 
frequencies."
 

PRINT 
PRINT " The data must be in the following form: 
PRINT " LINE 1: a title in quotes"
 



PRINT " LINE 2: # of stations, # of species"
 

PRINT " LINE 3: STATION and a label for each other column"
 

PRINT " STATION 1, abund SPP 1, abund SPP 2, ... , abund SPP S"'
 

PRINT " STATION 2, abund SPP 1, abund SPP 2, ... , abund SPP S1'
 

PRINT "
 

PRINT " " 

PRINT " 

PRINT " STATION N, ... " 

PRINT 
INPUT "Enter the name of the data file "; FILlS 

OPEN "I", 1, FILlS 
INPUT #1, TITL$ 

INPUT #1, ST, S 

' READ COLUMN LABELS 

FOR I% = 1 TO S + 1 

INPUT #1, X$
 

NEXT 1%
 

Dimension arrays
 

DIM STX(ST), CLASS(ST, 2, S), TOTN(ST), TOTS(ST), ALPHA(ST), VAR(ST)
 

DIM KSTAT(ST), MXCL(ST), KSIG$(ST)
 

PRINT " Initializing arrays to zeros ...
 

GOSUB 1500
 
r 

PRINT " Filling arrays with data ... 

FOR I = 1 TO ST 

MAX. # of abund. classes found for this station so farMAXCLASS = 1: 

INPUT #1, STX(I) : 'Read the station #
 

FOR J = 1 TO S
 

INPUT #1, NUM: ' Read abundance value for species J
 

TOTN(I) = TOTN(I) + NUM
 

IF NUM > 0 THEN
 
TOTS(I) = TOTS(I) + 1 

FOR K = 1 TO MAXCLASS 

IF NUM = CLASS(I, 1, K) THEN 

CLASS(I, 2, K) = CLASS(I, 2, K) + 1: 'Count # of spp in this 

abund. class 

GOTO 1111 

END IF 

NEXT K 

CLASS(I, J, MAXCLASS) = NUM: ' Make new abundance class. 

CLASS(I, 2, MAY,-:LASS) = 1 
MAXCLASS = MAXCLASS + 1: ' Increment max. number of abund. classes 

END IF
 
1111 NEXT J
 

MXCL(I) = MAXCLASS - 1: ' # of abund. classes for this station.
 

GOSUB 1800: ' Sort abundance classes
 
NEXT I
 

RETURN
 



.500 ' Sub. to initialize arrays 
'OR I 1.TO ST
 

STX(I) - 0
 
TOTN(I) = 0
 
TOTS(I) = 0
 
ALPHA(I) - 0
 

KSTAT(I) = 0
 
MXCL(I) = 0
 

FOR J = 1 TO 2
 

FOR K = 1 TO S 
CLASS(I, J, K) = 0 

NEXT K 
NEXT J 

NEXT I 

FOR I = 2 TO 500 
J(I) = 0 
M(I) = 0 

NEXT I
 

RETURN
 

1800 PRINT ">"; 
FOR II = 1 TO MXCL(I) - 1 

FOR JJ = II + 1 TO MXCL(I) 
IF 	CLASS(I, 1, JJ) < CLASS(I, 1, II) THEN
 

TEMPC = CLASS(I, 1, II)
 
TEMPF = CLASS(I, 2, II)
 
CLASS(I, 1, II) = CLASS(I, 1, JJ)
 
CLASS(I, 2, II) = CLASS(I, 2, JJ)
 
CLASS(I, 1, JJ) = TEMPC
 
CLASS(1, 2, JJ) = TEMPF
 

END IF
 
NEXT JJ
 

NEXT II
 

RETURN
 

2000 PRINT " * * ' LOGSER * 

J(1) = 50 

M(1) = 1 

FOR I = 1 TO 260 

L = (M(I) + J(I)) / 2 
K = L * (EXP(TOTS(ICOUNT) / L) - 1) - TOTN(ICOUNT) 
IF (M(I) * (EXP(TOTS(ICOUNT) / M(I)) - 1) - TOTN(ICOUNT)) * K < 0 GOTO 

2440
 
M(I + 1) - L 
J(I + 1) = J(I)
 

GOTO 2460
 
2440 M(I + 1) = M(I) 

J(I + 1) = L 
2460 IF ABS(M(I + 1) - J(I + 1)) < .000001 GOTO 2480 

NEXT I 



2480 ALPHA(ICOUNT) = L
 
r 

PRINT "STATION # :"; STX(ICOUNT)
 
PRINT "Number of Individuals (N) :"; TOTN(ICOUNT)
 
PRINT "Number of species (S) :"; TOTS(ICOUNT): PRINT
 
PRINT " :"; ALPHA(ICOUNT)
 
X = TOTN(ICOUNT) / (TOTN(ICOUNT) + L)
 
' Calc. of variance from equation in Krebs (1987 - ch.10, eq'n 10.12)
 
VAR(ICOUNT) = -ALPHA(ICOUNT) / (LOG(l! - X))
 
PRINT "Variance of •"; VAR(ICOUNT)
 
PRINT " X ""; X
 
C = SQR(TOTN(ICOUNT))
 

PRINT "Standard Error of N ""; C
 
D = LOG((2 * TOTN(ICOUNT) + L) / (TOTN(ICOUNT) + L))
 

^
E = SQR((L * D) - ((L 2) * TOTN(ICOUNT)) / (TOTN(ICOUNT) + L) ^ 2)
 
PRINT "Standard Error of S :"; E
 

^ 
 ^
F = SQR(((L 3) * (((TOTN(ICOUNT) + L) 2) * D - L * TOTN(ICOUNT))) / 
((TOTS(ICOUNT) * TOTN(ICOUNT) + TOTS(ICOUNT) * L - TOTN(ICOUNT) * L) 2)) 
PRINT "Standard Error of :"; F 

PRINT : PRINT 
PRINT "Strike any key to continue ... ": WHILE INKEY$ """ WEND 
RETURN 
I 

3000 PRINT " * K ***** "" ********* KTEST * 
z =0 

L= 0 
B= 0 
Q = MXCL(ICOUNT) : ' MAX. # of classes for this station 
f 

'Calculations:
 
' Determine if the first abund. class is one or not
 
IF CLASS(ICOUNT, 1, 1) > 1 THEN
 

START = 1
 

ELSE
 
START = 2
 

END IF
 
I 

FOR P = START TO Q 

X= 0 
FOR I = 1 TO CLASS(ICOUNT, 1, P) - 1 

T = (1 / I) + X 
X= T
 

NEXT I
 
Z = CLASS(ICOUNT, 2, P) * T + B
 
B= Z
 

NEXT P
 
I
 

C = (TOTS(ICOUNT) A 2) / (2 * ALPHA(ICOUNT))
 
D =B - C
 
If, = ((.43429 * LOG(TOTN(ICOUNT) / TOTS(ICOUNT))) 1.673) * .908 *
 
TOTS (ICOUNT)
 
12 - SQR(II)
 
I
 

PRINT " Total # of individuals :"; TOTN(ICOUNT) 



PRINT " Total # of species :"; TOTS(ICOUNT) 
PRINT " :"; ALPHA(ICOUNT) 
PRINT 
PRINT " Observed K score ""; B 
PRINT " Expected K score ""; C 
PRINT " Difference a std. Err. ""; ABS(D); "a"; 12 
IF ABS(D) >- 12 THEN 

K - ABS(D / Ii) 
PRINT " K value ... K 
IF K > .5 THEN 

KSIG$ (ICOUNT) = 

ELSE 

KSIG$(ICOUNT) =" 

END IF 

ELSE 
PRINT " K is sufficiently close to zero!" 
KSIG$(ICOUNT) - "*" 

END IF 
KSTAT (ICOUNT) = ABS (D / I) 
PRINT "Strike any key to continue ... ": WHILE INKEY$ = ""- WEND 

I 

RETURN
 

4000 PRINT " Output :.......
 
INPUT "Would you like the output sent to the screen (1), the printer (2), or a
 
file (3)"; DESTIN%
 
ON DESTIN% GOTO 4100, 4110, 4120
 
I 

4100 OPEN "0", 2, "SCRN:": GOTO 4150 
4110 OPEN "0", 2, "LPT1:": GOTO 4150 
4120 INPUT "Enter ouput file name :", FIL2$ 

OPEN "0", 2, FIL2$ 
4150 INPUT "ENTER a title ", TITL$ 
PRINT #2, DATE$, TIMES 
PRINT #2, TITL$
 
PRINT #2, " ".
 

PRINT #2, TAB(5); "STATION"; TAB(15); "N"; TAB(20); "S"; 
TAB(27); "- '. 
TAB(38) ; "K" 
FOR I = 1 TO ST 

PRINT #2, TAB(7); STX(I); TAB(13); TOTN(I); TAB(20); TOTS(I); TAB(24); 
PRINT #2, USING "##.#### ", ALPHA(I); 
PRINT #2, TAB(35); 
PRINT #2, USING "#.#### "; KSTAT(I); 
PRINT #2, KSIG$(I) 

PRINT #2, "ABUND. CLASS ""; TAB(17); 
FOR J = 1 TO MXCL(I) 

PRINT #2, USING " #### "; CLASS(I, 1, J);
NEXT J 
PRINT #2, " 
PRINT #2, " # of TAXA :"; TAB(17);
 
FOR J = 1 TO MXCL(I)
 

PRINT #2, USING " #### '; CLASS(I, 2, J); 
NEXT J 



PRINT #2, " " 

PRINT #2, " " 

NEXT I 
i 

i 

RETURN
 
I 

5000 ' PROGRAM LOGSERIE.FOR Version 1.1 
THIS PROGRAM CALCULATES THE PARAMETERS OF THE LOGARITHMIC SERIES 
OF FISHER, CORBET AND WILLIAMS (1943) USING TABLE 146 AND THE 

RECURSIVE EQUATION ON PAGE 309 IN WILLIAMS (1964). 

PROGRAMMMED BY C. KREBS IN JANUARY 1987. 
'This is simply the subprogram of the above program that calculates the values 

for Whittaker Plots 
THEORETICAL WHITTAKER PLOT VALUES 

Initialize WHO array 
FOR I% = 1 TO 1000 

WH(I%) = 0 

NEXT 1% 
PRINT 
I PRINT "* Toggle PRINTER on if you have more than 20 species !!" 
PRINT 
ZZUM# = 0! 

5005 INPUT "Would you like the data for the Whittaker plot to go to a file 
(F), the printer (P), or the screen only (S)"; ANS7$ 

IF ANS7$ = "p" OR ANS7$ = "P" THEN 

FILX$ = "LPT1:" 
ELSE 
IF ANS7$ = "S" OR ANS7$ = "s" THEN 

FILX$ = "SCRN:" 
ELSE 
IF ANS7$ = "F" OR ANS7$ = "f" THEN 

INPUT "Enter a file name:", FILX$ 
ELSE 

GOTO 5005 
END IF 

END IF 
END IF 

OPEN "0", 3, FILX$ 
PRINT " DATA FOR THEORETICAL WHITTAKER PLOT OF SPECIES ABUNDANCES" 
PRINT #3, " DATA FOR THEORETICAL WHITTAKER PLOT OF SPECIES 

ABUNDANCES" 
PRINT : PRINT 

KK% = MXCL(ICOUNT) 
XN# = TOTN(ICOUNT) 
IF (XN# < 500!) THEN XUMP# - 1! 
IF (XN# >= 500 AND XN# < 1000!) THEN XUMP# = 2! 
IF (XN# >= 1000! AND XN# < 2000) THEN XUMP# = 5! 
IF (XN# > 2000!) THEN XUMP# = 10! 

Y9# = LOG(l! + (ALPHA(ICOUNT) / XN#)) 
FOR 1% = 1 TO KK% 

XX% = I% 

X3# = XN# / (XX% + 1!) 
X3# = INT(X3#) 



N8% - 0
 
145% - 1
 
147% - 0
 

5043 	 Y# X3# Y9#
- * 

IF (147% I45%)1 GOTO 5049
 
IF (X3# < 300!) THEN XUMP# - .1
 
IF (X3# < 500 AND X3# 
>- 300!) THEN XUMP# = 1!
 
IF (X3# >- 500 AND X3# < 1000!) THEN XUMP# 2!
 
IF (X3# >- 1000! AND X3# 
< 2000) THEN XUMP# = 5!
 
IF (X3# > 2000!) THEN XUMP# 10!
-


statement to carry proper argument to subroutine
 
XSUB# = 	Y#
 
GOSUB 5100: 'SUBroutine SEI#
 
Z2# = ALPHA(ICOUNT) * SEI#
 
N8% - N8% + 1
 
DD = Z2# - XX%
 
IF (N8% > 3000) GOTO 5049
 
IF (DD > .001) GOTO 5045
 
IF (DD < -.001) GOTO 5047
 
GOTO 5049
 

5045 	 X3# = X3# + XUMP#
 
145% = 99
 
GOTO 5043
 

5047 	 IF (X3# - XUMP# > 0!) GOTO 5048
 
GOTO 5049
 

5048 	 147% = 99
 
X3# = X3# - XUMP#
 
GOTO 5043
 

5049 PRINT I%;
 
X3# - X3# - XUMP#
 
WH(I%) = X3#
 

5050 NEXT I%
 
PRINT
 

PRINT " SPECIES RANK 
 NUMBER OF INDIVIDUALS 
 PROPORTIONS 
DATA" 

PRINT #3, " SPECIES RANK NUMBER OF INDIVIDUALS 
 PROPORTIONS
 
DATA"
 

SUM# = 0!
 
FOR I% = I TO 'KK%
 

5060 SUM# 
= SUM# + WH(I%)
 
NEXT I%
 

CORR# = XN# / SUM#
 
ICONT% = 0
 

FOR I% = 1 TO KK%
 
ICONT% = ICONT% + 1
 
WH(I%) = WH(I%) * CORR#
 
Z6# = WH(I%) / XN#
 
PRINT TAB(9); I%; TAB(24);
 
PRINT USING "#####.#"; WH(I%);
 
PRINT TAB(48);
 
PRINT USING "#.### .....
; Z6#;
 
PRINT TAB(63); CLASS(ICOUNT, 1, KK% - (1% - 1))
 
PRINT #3, TAB(9); I%; TAB(24);
 
PRINT #3, USING "#####.#"; WH(I%);
 

Jq.
 



PRINT #3, TAB(48) ;
 
PRINT #3, USING "#.##' .... ; Z6#;
 
PRINT #3, TAB(63); CLASS(ICOUNT, 1, KK% - (I% - 1))
 
IF (ICONT% >= 24) THEN
 
PRINT ".... Hit < ENTER > to continue ......
 
WHILE INKEY$ = "": WEND
 

END IF
 
IF (ICONT% >= 24) THEN ICONT% - 0
 

5065 NEXT I%
 
PRINT
 
CLOSE 3
 

RETURN
 

DOUBLE PRECISION FUNCTIUL' SEI(XSUB)
 
STANDARD EXPONENTIAL INTEGRAL FUNCTION
 
APPROXIMATION FORMULAE FROM ABRAMOWITZ AND STEGUN (1964) CHAP. 5
5100 A# -.57721566#: A1# = .99999193#: A2# 
= -.24991055#: A3# 
= .05519968#


9
A4# - .7600 39999999999D-03: A5# = '.00107857#
 
AA# 2.334733: AB# 
= .250621: Bl# = 3.330657: B2# = 1.681534
 
ZSUB# = XSUB#
 

SEI# = 0!
 
IF (ZSUB# > 0! AND ZSUB# <= 1!) 
GOTO 5110
 
IF (ZSUB# > 1!) GOTO 5120
 
GOTO 5150
 

5110 SEI# = -LOG(ZSUB#) + A# + (Al# * ZSUB#) + (A2# * ZSUB# A 2) + (A3# *
 ^ZSUB# 3) + (A4# * ^ ^ZSUB# 4) + (A5# * ZSUB# 5)
 
RETURN
 

5120 SEI# = (1! / (ZSUB# * EXP(ZSUB#))) * ((ZSUB# ^ 2) (AA# *
+ ZSUB#) + AB#)
/ ((ZSUB# A 2) + (BI# ZSUB#) + B2#)* 

RETURN
 
5150 RETURN
 
f 

8000 ' 3ubroutine to allow keyboard entry of data for a single station 
PRINT
 
I Initialize variables
 
ST = 1
 
DIM STX(ST), TOTN(ST), TOTS(ST), ALPHA(ST), VAR(ST)
 
DIM KSTAT(ST), MXCL(ST), KSIG$(ST)
 
I 

PRINT TAB(10) ; *
 

PRINT TAB(10); "*"; TAB(50); *',
 
PRINT TAB(10); ',*,,; 
 TAB(21); "1) Species Abundance"; TAB(50); 
"*"
 
PRINT TAB(10); "*"; TAB(21); " 
 Data"; TAB(50); "*" 
PRINT TAB(10); "*"; TAB(50); ",*,, 
PRINT TAB(10); "*,,; TAB(21); "2) # of Species & "; TAB(50); "*" 
PRINT TAB(10); "*,,; TAB(21); " # of Individuals only "; TAB(50); "*,' 
PRINT TAB(10); "*"; TAB(50); "*', 
PRINT TAB(10);
 
PRINT
 
INPUT "Please enter your choice"; ANS4%
 
ON ANS4% GOTO 8010, 8020
 
1 

8010 INPUT "Enter the nuxber of species"; S
 
DIM CLASS(ST, 2, S) 



MAXCLASS - 1: ' MAX. # of abund. classes found for this station so far 
STX(1) - 1: 'SET the station # 
FOR J - 1 TO S 

PRINT "Enter the number of individuals of species"; J; .. :., 
INPUT NUM: ' Read abundance value for species J 
TOTN(1) - TOTN(1) + NUM 
IF NUM > 0 THEN 

TOTS(1) - TOTS(1) + 1 
FOR K - 1 TO MAXCLASS 

IF NUM - CLASS(l, 1, K) THEN 
CLASS(l, 2, K) - CLASS(l, 2, K) + 1: 'Count # of spp in this 

abund. class 

GOTO 8111 
END IF 

NEXT K 
CLASS(i, 1, MAXCLASS) NUM: ' Make new abundance class, 
CLASS(l, 2, MAXCLASS) = 1
 
MAXCLASS = MAXCLASS + 1: 
' Increment max. number of abund. classes
 

END IF
 
8111 NEXT J
 

MXCL(1) - MAXCLASS - 1: ' 
# of abund' classes for this station.
 
GOSUB 1800: ' Sort abundance classes
 

RETURN
 

8020 INPUT "Enter the number of species:", S
 
TOTS(I) = S
 
MXCL(1) = S: ' 
 SET max number of classes to the number of species
 

-
this might not be correct.
 
INPUT "Enter the total number of individuals:", TOTN(1)
 
ICOUNT = 1
 

GOSUB 2000: ' Calc. and X 
Prompt with request for Whittaker Plot data (Krebs 1987, ch. 10)
INPUT "Do you want the predicted abundances for a Whittaket p.ot"; ANS5$ 
IF ANS5$ = "Y" OR ANS5$ = "y" THEN GOSUB 5000 
STOP 

RETURN 



Fi. 1
 
Example of multiple site data set.
 

Abundance of demersel species in the Samar Sea, Philippines
 
Cruise 98, stations 1 & 5
 

"Samar Sea cruise 98, species abundance by numbers - stations I &. 5" 
&:77
 
STATICN,9 I._S2.$3,S4,$5,$A,s$7 ,3,$9,,S1 i 31S , 1,3..14,S15,S16,;i7,S18,S19 .S9£0,$21
. .. ."
 

S22•2iE24,--S2,6i27.,SE3,529,S3iS3,I, 2, 
 .,S34,3 35,S3337 .,;.=-3o,49S,,.
$41, $42, 43, E--44.34S . ..
5,$4.6.S'.47, 48 ,.S'-'9,_
350, $5t, $52, $53 • 54, 55,S-5.-.6,S57?_. , .: '";
. SY :.o. 

S61,S6; ,263,S64,3.6,S6£6,367.,;Q',39,"0 
 ,S7S _373 S74,37,., ,7,'7
 
1,2138,1921,1743,1733. 367, 4'0, 30.-, 
 26E, _56, 225, 220, 83. I75 14 W.. 1:3 
67, 47, 4, 34, 31, 26 21, 21, 16, I0, 7, 6 5, f 3i 51 
3, 3 2, 11', , . 1,i, I, I ,i, u, . 

3,1611 , 7 ,US :13 ,
11 9, 91, 55: ,45 ,37 , K , W .1, 1, 1, W:
 
11 .
 / C? .... C? C? C

Ili. 7 r ,5 5 5, 5 ,1 . 39 1 
'
 

.n.= , ..
5 ,16 1 !37 5 I'._=., o..),
 

http:5,$4.6.S'.47


Fig. 2 
First output screen
 

: I
STATION # 

Number of Individuals (N) : 11196
 

Number of species (S) : 40
 

.x: 5.213393
 
: .6794909
Va'riance of , 


.9995346
X 

: 105.3112Standard Error of N 

: K 900002
Standard Error of S 

:.247294
Standard'Eror o? ix 




Fig. 3 DATA FOR THEORETICAL WHITTAKER PLOT OF SPECIES ABUNDANCES
 

SPECIES RANK 

1 

2 

3 

4 


6 

7 

a 

9 

10' 


11 

1p 

13 

14 

15 16 


17 

I 

19
20 


21 

_,_ 


24 

25 


28 


31, 


DATA
PROPORTIONS
NUMBER OF INDIVIDUALS 
 2138
.267911844911129
2999.541 
 1921
.1701321072o486 !1
1904.799 
 3 
 1745
.120664345106511
1350.958 
 1733

40286-2
9 .0267103712.
1010.63 
 867
6.911617059629276D-02
773.9246 
 -02 
 440


E.42464917033200
606.8959 
 314
 
7 9 76492895063D-
4. 2 ,480.08137 262
 .43 348466563114D-02
384.4537 3
 

5D--02 256
2•76233527267
309.2711 
 25
2.3 2-95390094677D-02
250.2,37 

220­.,.7975'
.0181 5
203.1613 
 183
 

1 .478253794210474D-02
165.5053 
 175
10-7 992531 080"-02

135.2E52 
 . 141
9, 2.81 -943q 1,-,..- .
110.683 103."):-'-(:): 11::)
20789 I
,.......
8 1C,. - - .

0.7 108. 6.oq-
74.40621-


67
D-
5.45532271 .,.-
61.07779 

' ,. -,03 47
4.04455?T?,
30.2080i 
 L7.
 

3.069"6 '-
 .. 0..
41•F7927 ........."3...
......
3'4.0'.3E7/5 

.:
1-,7,03
2'.,, 
 ,
9' -'~ - ,;;-'-2 

j.8 i0R9-G 
2010% 


4 1 1 ' - "
 
- 4 .1 2 3.:94-6--A-"- - f." 


1', ".5EE21 


- ):

:~".7 : 
=,I , 
, -J,"..261f0YDQ
1157 


' " 

7.2 " -1.57C740->
G. 150323 


S .. ' ,7 . .5 . .
 q-0 -7 


..
- "[ ,_ ­



Fin. "4 
Second Cutput sc,-ee-

Total # of individuals : 1119e, 
Total # of species : 40 

I)( : 5.213393
 

Observed K score 
 : 161.8404
 
Expected K score 
 : 153.4509
Difference ± std. 
Err. : 8.389435 I.32978 
K is sufficien~tly close to, zero!:, 



Fig. 5
 
Summary output
 

06-26-1989 13:49:29
 
LOGSERIES fit of demersai species abundance from cruise 98 in the Samar Sea
 

STATION N S G K 
1 111% 40 5.2134 0.0517 * 

CLASS : 1 2 3 5 6 7 10 16 21 26 31 34 42 4767 103 110 141 175 183 220 225 256 262 314 440 867 
1733 1745 1921 2138
 
FREQUENCY : 4 1 3 4 1 1 1 1 2 1 1 1 1 111 1 1 1 1 1 1 1 1 1 1 1
 
1 1 1
 

5 332? 38 6.0152 0.1359 
CLASS : 1 2 3 5 L 79 11 13 16 19 37 45 5591 92 118 137293678 1611 

FREQUENCr : 2 3 7 1 1 1 3 2 1 1 1 1 11 1 1 1 1 1 1 

• indicates a significantly good fit to the logseries nodel
 


