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Abstract 

The spatial distributions of marine biota are frequently patchy. Samples taken from these
 
populations are characterized 
 by values which arr, mostly small, relative to the population mean, 
and a few that are very large, It is therefore difficult to estimate stock ,ize using conventional 
methods. We performed Monte Carlo simulations based on trawl data for Dungeness crab and 
compared the beh,,ior of three estimators of central tendency:, sample mean, geometric mean, 
and a lognormal estimate. 2esults indicate that though the sample mean is inbiased, single 
estimates of the population mean (and thus population estimates obtained using area-swept) may 
be overly sensitive to extreme values; confidence intervals ca.nture the true value Pat a level well 
below that prescribed. Estimates of the geometric mean exhibit more stabl! behavior about its 
parameter, Aith the Iognormal estimate falling in between. We conclude that abundance of 
aggregated siocks shoul.:1 be indexed with an estimator that has more desirable statistical 
properties, such as the geometric mean. Until robustness is better understood, we suggest a 
conservative approach based on comparison of trends found in the "comparative triad" of the 
thre%, estimators. This may reduce error associated with conventional fisheries stock assessment 
practices and thus provide for more effective management of overdispersed stocks. 
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Introduction 

Effective scientific management of fishery resources requires reliable measures of abundance 
Research trawl surveys are routinely used'in conzert with fishery catch statistics to provide
 
estimates of commercially important poputation parameters. 
 Random survey data are commonly 
stratified according to depth, and catches are standardized according to the area of bottom 
sampled (Alverson and Pereyra 1969; Smith and Somerton 1981; Azarovitz 1981; Otto 1986). 
Average catch-per-unit-effort (CPUE) is generally considered proportional to the size of the 
population. Analytical procedures often rely on an assumption that statistical methods based on 
normal probability theory are appropriate and, as such, that the individuals in the population
 
are not aggregated in space (see Elliott 1977).
 

Marine biota, however, are commonly overdispersed, and generally the logarithms of abundance 
follow the normal (see comment by Gaddum, 1945) or Gaussian distribution. The pattern is
 
well-represented 
across a broad spectrum of life in the sea, ranging from primary producers
 
(Hermann et al. 1989) and zooplankton (Winsor and Clarke 
 1940; Reilly 1983) to a diverse
 
assemblage of marine fish and invertebrate taxa (Smith and Walters 1982). Most, if not all,
 
commercially important groundfish (Rivard 1981) 
 and many shellfish stocis are
 
characteristically overdispersed (bivalve: 
 Jamieson 1986, Robert and Jamieson 1986; shrimp: 
Garcia and LeReste 1981, Parsons and Sandeman 1981; lobster Barnes a'nd Bagenai 1951, 
Bahamonde et al. 1986; crab: Miller 1975, Gotshall 1978, Sinoda and Kobayashi 1982, Hayes 
1983, Armserong et al. 1985, Bertuche et al. 1985, Brown 1986, McCabe et al. 1986, Armetta 
and Stevens 1987, this study). As such, it is unlikely that overdisperslon is an artifact of 

sampling. 

Samples taken from these populations are characterized by mostly small values relative to the 
pogpulation mean, and a few very large ones. Densities within aggregations can be orders of 
magnitude greater than the average value (Omori and Hamner 1982; this study). Single 
estimates of the population mean from the arithmetic mean (sample average) may be too low 
because the very large values are often underrepresented at the levels of sampling effort 
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common to research trawl surveys. When large catches are present in a sample, they are 
problematic, since variance estimates become excessively high. Indeed, a high degree of 
uncertainty is often associated with estimates of stock abundance obtained from research trawl 
surveys (Doubleday and Rivard 1981; Smith and Hewitt 1985; Elner and Bailey 1986; Jamieson 
198, Otto 1986). A variety of alternatives have been considered (Sissenwine 1978; Smith 1988a; 
Zweifcl and Smith 1981; Penningtorn 1983; Conan 1985; Kimura and Balsiger 1985; Gavaris and 
Smith 1987); none has found broad application. Moreover, management often ignores this 
uncertainty when formulating management strategies (Rivard 1981). 

We investigated two alternative measures of central tendency and compared their statistical 
behavior to that of the simple mean. A new approach based on a "comparative triad" of the 
three estimators is propojed. This approach should reduce error associated with the 
conventional index of abundance while reducing the likelihood of false conclusions concerning 

trends in stock abundance. 

The Lognormal Distribution and Paramete- Estimation 

The spatial dispersion of a population determines the relationship between its mean abundance 
and variance (Elliott 1977). Preliminary comparisons between the sample means and variances 
of CPUE data, as well as graphical analyses of log-transformed data, suggested use of the 
lognormal distribution. Further analyses (see Methods) indicated that our CPUE data did not 
deviate substantially from a lognormal distribution. Therefore, a brief review of the underlying 
theory for the lognormal distribution is presented here. 

A random variable X is considered to be lognormally distributed when the natural logarithm of 
X, Y - In(X), has a normal distribution. Specifically, if Y is normally distributed with mean 
11LN and standard deviation IN,, then X ­ exp(Y) is lognormally distributed with density 
function (Lindb,'en 1968): 
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1 ) ep -(In X -IPLN)2 

-)( . LNX 2aLN 

The kth moment about zero, E(Xk) is expressed as: 

(2) E(X k ) _ E(e' y ) - exp k LN+ 2
 

In particular, 

(3) Population Mean = = exp(IPLN+ .LN 

(4) Variance (X) = 02 = (exp(o'N)- }(exp(2PLN+o N)} 

(S) Geometric Mean = Median (X) = exp(.LN) 

The relevant notation to distinguish between untransformed and transformed scales, and 
population parameters and their estimates, may be found in Table 1.Note that both i and a2 
for the lognormal distribution are functions of two parameters, '9.. and aN , making them 
difficult to estimate. In particular, any ostimate of p. involves location and dispersion 

parameters. 

The Arithmetic Mean 

The ordinary sample mean 

(6)i
 
(6) X - - , n-number of data points in the sample

n 
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is an unbiased estimator of g regardless of the underlying frequency distribution. When the 
underlying frequency distribution is normal, the sample mean is also the minimum variance
 
unbiased estimator (MVU, the one 
with the smallest variance of all unbiased estimators) of L. 
Unfortunately, the sample mean does not have this MVU property when the underlying
 
distribution is lognormal (Gilbert 1987). 
 Also, it is sensitive to the presence of one or more
 
large data values. 
 (Note that these extreme data values are not outliers; they simply reflect the 
right-skewed nature of the lognormal distribution.) Finney (1941) points out the inefficiency of 
the sample mean when the standard error of the population is greater than 100%; Koch and 
Link (1980) suggest using the sample mean when the coefficient of variation is believed to be
 
less than 1.2. For highly skewed distributions, larger sample sizes are required in order to
 
invoke the Central Limit Theorem, which justifies use of the sample mean for inferences about
 
means 
of populations which are not normally distributed (Jahn 1987). Sample sizes in excess of
 
n - 100- 200 
 may be required under certain circumstances (Sissenwine 1978). 

The Finney-Sichel Estimator 

Among alternative estimators of i' that have been investigated is a MVU estimator of p. 
(Finney 1941, Sichel 1952), which also has been described as equivalent to a maximum 
likelihood estimator by Aitchison and Brown (1969). The Finney-Sichel method adjusts the 
geometric mcan upwards and is commonly used in gold and trace mineral assay work, where ore 
concentrations are typically lognormally distributed (Sichel 1952). If we let 5 and s2 
represent the ordinary sample mean and variance of the log-transformed values (Y - In(X)), 
the Finney-Sichel estimate for u. is: 

(7) FM = {exp(57)}i,(..2 

where V.(f) is the infinite series 
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(8) 	 +(n- I)t + (n-l)3 t 2 + (n- 1)30 (n- l) 7t 4 

n 2!n 2(n+l) 3!n 2(n +1)(n+3) 4!n 4(n+I1)(n+3)(n+ ) 

Tables of the above function are available (Sichel 1952; Aitchison and Brown 1969, Table A2; 
Bradu and Mundlak 1970; Koch and Link 1980, Table A7) and may also be programmed on a
 
computer (see Link et al. 1971). Although both Finney (1941) 
 and Sichel (1952) derived the
 
MVU estimator of the variance of the lognormal distribution, neither made specific comments
 
on derivation of confidence intervals.
 

Confidence limits for the lognormal mean are not symmetric because of the skewed nature of
 
the underlying distribution. Hence, it becomes necessary to compute separate upper and lower
 
confidence limits. 
 Land (1971, 1975) obtained upper one-sided 100(1 -a)% and lower
 
one-sided 100a% confidence limits for the lognormal 
mean. 

(9) 	 UL,1 _ exp(7+s+ sYH+ _ 

(10) 	 LLa = exp Y+ SY 

The quantities H and H. (functions of a , (n - 1) and s, ) are obtained from tables in 

Land (1975) for 	sample sizes of n >3. 

Lognormal theory cannot be applied directly to any sample which contains a zero value, since 
the logarithm of zero is undefined. However, one can pursue a variety of alternatives. One 
alternati,,e is to add a constant c to the data before using the log transformation (the 
transformation In(x+ 1) is commonly used). Another is to use the A-distribution, which may 
be characterized as a lognormal distribution plus a proportion A of zeroes; see 	Pennington 
(1983, 1985, 1986) and 	Smith (1988a,b). Relying solely on the A-distribution for catch 
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estimates may depend too heavily upon the assumption of underlying lognormality of the
 

nonzero catches (Rivard 1981). 
 Also, our data exhibit only the occasional zero catch. Other
 

authors have had 
to contend with 40%-50% zeros for fish catch data; examples are given in
 

Doubleday and Rivard (1981).
 

The Geometric Mean 

The geometric mean, exp(f) , will clearly be a biased estimate of L (Equation 3), but because 

it only involves a single parameter, may do better in terms of precision. When exponentiated, 

the population mean of the transformed data, (LLN), is the geometric mean (GM) catch and, 

equivalently, the median catch. It remains unaffected by skewness, a function of 
(exp(oaN)- 1 ). It is less affected by large values of X (owing to the nature of a logarithmic
 

transformation); hence, its sampling distribution is less skewed than that for 
 . Aitchison and 

Brown (1969, p. 11) note that "since the arithmetic mean involves both the location and 

dispersion parameters, it is not a pure measure of the [catches] under the lognormal hypothesis: 

for this the geometric mean is to be preferred." 

Bias Correction Methods for Deriving the Mean of a Lognormal Distribution 

Despite the one-to-one correspondence between data points on the transformed and 

untransformed scales, adjustment is required for deriving the mean and variancq of one 

frequency distribution from the other (see Johnson 1949). Since the derived mean obtained by 

exponentiating the mean of the log-transformed values underestimates . , the population mean 

in the untransformed scale, many authors have proposed upward adjustments to the derived 

mean to obtain more reliable estimates of i.±. Note that many of these efforts followed the 

description of unbiased estimators for the lognormal (Finney 1941; Sichel 1952) and 

A-distribution (Aitchison and Brown 1969), yet are of questionable use. For this reason and 

because of the frequency with which some of these publications are cited today (particularly 

Ricker 1975 and Elliot 1977), we include a brief summary here. 



Davies (1925) presented an algebraic method for estimating i' using a formula for a parabola. 

Bagenal (1955) noted that for hypothesis testing, it was better to perform all comparisons on the 
transformed values rather than risk confusion between the geometric and arithmetic means. 
Clark (1981) used formulas for backtransforming means on the logarithmic scale to means in the 
original scale by substituting estimates 7and s' for VU, and o2N in Equation (3). Sichel (1952)
 
had noted that this estimate was positively biased for smaller sample sizes whereas the
 
Finney-Sichel maximum likelihood estimator is 
more accurate for any finite number of samples. 

Constant correction factor. Some authors have recommended using a constant correction factor 
in estimating the population mean p.. Often there is little accompanying evidence as to how
 
this constant correction factor was obtained. Barnes (1952) 
 and Elliott (1977) recommended that 
1.15 times the variance should be added to the transformed mean (base 10 logarithms) before 
exponentiating back. Jones (1956) made a similar recommendation with respect to survival rate
 
estimation for natural logarithms. Ricker (1975) 
 also used 1.15 times the variance, along with a 
correction for sample sizes. 

Finney solution. Aitchison and Brown (1969) noted that the Finney method is equivalent to 
maximum likelihood "and therefore cannot be bettered"; the 1P. function would of course be 
laborious to compute if tables or computing access were not available. In their book, Aitchison 
and Brown included tables for the "correction function" for the Finney estimate. More 
extensive tables are provided in Link et al. (1971); these authors claim that linear interpolation 
between tabled values gives close approximation for estimates of ji. They also included a 
FORTRAN program for the v,, function, which we used in computing FM, the Finney-Sichel 

estimate of the population mean. 



10 

Methods 

Probability Distributions 

Dungeness crab trawl data collected for three consecutive years from two locations in coastal 
Washington State were used to obtain representative values of CPUE (number/hectare) for
 
subsequent simulations comparing the accuracy and precision of three measures 
of central
 
tendency. A strong relationship between the means 
and standard deviations of these data
 
(Figures ]a and lb) suggested a logarithmic transformation (Barnes and Bagenal 1951; Thoni
 
1967; Elliott 1977). The Kolmogorov test for normality (Zar 1984) applied to the CPUE
was 

data for each cruise before and after a logarithmic transformation. If catches of zero were
 
present in the data set, the constant I was added to all CPUEs from a particular cruise prior to 
logarithmic transformation (Gaddum 1945; Barnes 1952; Zar 1984). These preliminary analyses 
suggested that the data were lognormally distributed (Table 2). 

A single mean and standard deviation were calculated for each location using CPUE by cruise 
(Figures 2a, 2b and 2c) and two representative lognormal distributions were identified. These 
are defined as lognormal (4,2) for the coastal area and lognormal (6,1) for the adjacent estuarine 
area. These distributions have means of 4.0 and 6.0 and standard deviations of 2.0 and 1.0 
respectively for the log-transformed variable and will, hereafteri be referred to as LOGN (4,2) 
and LOGN (6,1) (see Figure 3). 

Monte Carlo Simulations 

Monte Carlo simulations consist of calculations made on data sets whose elements are randomly 
selected from specified distributions. This approach permits an evaluation of various point 
estimation procedures on the basis of expected outcomes. For this investigation, we created 
1,000 sets of simulated CPUE data for each of 13 sample sizes 
(2,4,6,8,10,15,20,25,30,35,40,45,50) for each of the two lognormal distributions using a 



pseudo-random number generator (Minitab, Inc., University Park, PA). Sample sizes were 
selected to encompass the range of values associated with ongoing research trawl surveys. 
Tables 3 and 4 presents descriptive statistics for each of these data sets. 

A "Comparative Triad" of Estimators 

We investigated three methods -- referred to as a "comparative triad" -- of estimating central 
tendency. The "conventional" (CONV) method consists of computing ordinary sample means 
according to Equation (6) and traditional confidence intervals (e.g., at 90% confidence) based on 
the Student's t-distribution: 

S­
(11) 

where s -sample standard deviation of the untransformed data 

t .,- tabled value from a t-distribution with n-I degrees of freedom 

n - number of data points in the sample. 

The "lognormal" (LN) method uses the Finney-Sichel estimate for the mean of a lognormal 
distribution as presented in Equations (7) and (8). For confidence limits, the method by Land 

(1975) as presented in Equations (9) and (10) is used. 

The "geometric" (GEOM) method uses exp(Y) as an estimate of exp(iLN) , the geometric 

mean (or median) in the untransformed scale. A 90% confidence interval is derived as follows: 

(12)exp -t.- LY, exp 57+tn~ n- 'Y)
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This method estimates a different parameter (the median rather than the population mean) than 
the first two methods. However, because the nwedian is only a function of a single parameter, 
PI, , the GEOM method tends to give more stabie estimates for its parameter, and it is 
interesting to compare its performance (as yet another index of central tendency) to that of the 

first two methods. 

Comparison Measures to Evaluate Performance of Estimators 

We used the following measures of comparison to evaluate the performance of the estimators: 
root mean squared error (RMSE), deviation of estimate from true parameter (DEV), average 
length of 90% confidence interval (AVL), standard deviation of 90% confidence interval length 
(SDCI), and percent containment of parameter by the confidence interval estimate (PERCON). 
These were estimated as follows: 

RMSE - 10(estimated parameter from ith data set - true value) 2 

i.1 1000 

Root mean squared error is a measure of the average variation in the estimated mean relative to 
the true mean CPUE and, as such, is a measure of accuracy. Fo, any unbiased estimate (where 
the expected value of the estimator is the parameter itself), the RMSE i the same as the 
variance of the estimator, in terms of expected value. Estimators with low RMSE can be 
expected to provide estimates of mean CPUE that combine low bias with low variance and, as 
such, would be more accurate and more precise. 

1000 

Z (estimated parameter from ith data set - true value) 
DEV 1 

i000 
= (average value of estimated parameter - true parameter). 
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The deviation of the estimate from the parameter essentially measures bias (the average amount 

by which the estimate tends to "miss' its respective parameter). 

1000 1000
 

Z (UL-LL), . length,AVL ,.= = .
1000 

1000 

where (UL-LL), - length of a single 90% confidence interval for the ith data set. The average 

length is a measure of precision. 

1000 

Z (length1 -AVL)SDCI = "'(lOOI 
2 

SDCI i-I (1000-1) 

is a measure of the spread of the confidence interval lengths around the average length. An 
estimate that exhibited confidence intervals with relatively low variability in length might be 
said to be the most reproducible estimate of the precision of the estimated inean. 

The frequency with which a confidence interval includes the true value of the parameter 
defines the containment rate. "..the assumptions of sampling and the appropriateness of 
statistical model are met, 90% confidence intervals should contain the CPUE parameter being 

estimated around 90% of the time. 

The three estimators of central tendency and their confidence intervals outlined previously (AM, 
FM, GM) were calculated for CPUE data obtained during regular trawl surveys of C.magister 
populations in coastal areas of Washington state. Survey methodology is discussed in Armstrong 
and Gunderson (1985) and Gunderson et al. (1990). Two large systems are considered and are 

hereafter referred to as Coast [LOGN (4,2)] and Estuary [LOGN (6,1)]. 
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Results 

Monte Carlo Simulations 

Root mean square error 

The RMSE was consistently lower for estimates of the GM than for the other measures of
 
central tendency (Figures 4a, 4b). 
 The LN method provid d point estimates of i that were
 
consistently more accurate (except at very small sample sizes) than the CONV method,
 
particularly as skewness increased (c.f. Figure 1). 
 The RMSE of estimates of the GM, and of 11 
obtained with the LN method, declined steadily as sample size increased whereas the CONV
 
response, although generally declining, was somewhat less regular and much 
more erratic (see
 
Figure 4a, n=40). Closer inspection of the LOGN (4,2) data set revealed 
a single extreme value 
out of 40,000 data points (Figure 4c) that caused a considerable increase in the RMSE associated 
with the AM estimate. It is noteworthy that the magnitude of this simulated CPUE-value is in 
keeping with extreme values observed in the field. Accuracy of GM estimation improved 

dramatically as skewness increased, in contrast to the FM and AM responses wherein accuracy
 

increased as skewness decreased.
 

Deviation of the estimator f;-om ihe parameter 

Overall, the most extreme deviations were associated with the smallest sample sizes and this 
disparity decreased as sample sizes increased (Figures 5a, 5b). Estimates of the GM deviated 
less, stabilized at smaller sample sizes and, despite a persistent positive bias, converged much 
more predictably to the parametric value than was the for the two estimators ofcase i. In 
general, estimates of i oscillate about the parametric value and converge as sample size 
increases. The absolute values of the deviations from . are smaller for the LN method than 
for the CONV method in 19 of the 26 cases examined, without an obvious trend related to the 

skewness of the data. 



Average length of estimate 

The average length of the 1,000 90% :onfidence intervals (CIs) calculated for each sample size 

was consistently shorter for the GM (which cnly estimates one parameter) than for the two 

intervals ca!culated for p (Figures 6a, 6b). The degree of difference between them decreased 

overall as sample size increased and as skewness decreased. Average lengths were inordinately 

large at the smallest sample sizes (and somewhat larger sample sizes for the LN method) and 

decreased rapidly thereafter. The average CI length for the GM decreased as skewness 

increased, in contrast with CI lengths for p., which increased because of increased skewness of 

the data. 

Standard deviation of the confidence interval length 

The standard deviation of the 1,000 CIs calculated for each sample size was consistently lower 

for the GM than for the two intervals calculated for P (Figures 7a, 7b). At smaller sample 

sizes, the standard deviations for the CONV method were lower than those for the LN method. 

However, this pattern was reversed at larger sample sizes such that the LN method provided the 

more precise interval estimate (note the crossovers at n=35 and n=25 in Figures 7a and 7b, 

respectively). Overall, the- precision of the interval estimates declined as sample size decreased 

and as skewness increased; the effect was most pronounced for the LN method. Once again, 

however, the GM response was unique; precision incre-sed as skewness increased. Of particular 

note is the dramatic loss of precision of the CONV interval estimate apparent in Figure 7a 

(n-40) which may be attributed to a single extreme value (Figure 4c), as before. 

Parameter containment within interval estimate 

The GM parameter occurred within its interval estimates, as did p. within the intervals 

obtained by the LN method, at the prescribed confidence level (90%; Figures 8a, 8b). The rate 

of GM containment oscillated within 1%-2% of this level under all circumstances. Cis 

generated with the LN method contained p. at the rates of 89.1%-93.6% [LOGN (6,1) data] and 
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89.1%-92.3% [LOGN (4,2) data]; the highest percentages were associated with the smallest 
sample size, perhaps due to their relatively greater lengths (Figures 6a, 6b). In contrast, interval 
estimates using the CONV (i.e., t-based) method contai~ied g at rates of only 47.7%-65.8% 
[LOGN (4,2) data; Figure 8a] and 76.9%-85.3% [LOGN (6,1) data; Figure 8b], well below the 

prescribed level of confidence. 

Evaluation of Trends in Catch Data 

This section concerns the ap ,!ication of the comaparative triad of estimators to CPUE data for (. 
magister to assess the gain in information over usiag any single estimator alone. Trends in
 
abundance, as 
measured by the three estimators of central tendency, routinely paralleled one 
another, differing only by their relative magnitude (Estuary; Figure 9a). Characteristically, 
estimates of g obtained with the LN method exceeded those calculated in conventional fashion 
from survey data which, in turn, exceeded estimates of the GM parameter. From Table 2, we 
see that this parallel behavior of the estimates corresponds to the changing values of 5 (mean
 
of transformed data) along with little change in 
 s' (variance of transformed data). 

In some cases, trends in the estimates were diametrically opposed (Coast; Figure 9b). Note that 
the conventional estimates of iL suggest a precipitous drop in abundance during the interval 
between cruises 3 (with two extreme values) and 4 whereas both the LN and GEOM procedures 
indicate an increasing trend during the same period. From the nature of the three estimators, 
we conclude that between cruises 2 and 4, PLN may be increasing slightly, but a' (and thus 
the skewness of the distribution) probat 'y increases and then decreases, affecting the LN and 
CONV estimates (the latter more strongly) but not the GM estimate. This is verified by 
checking the Y-and s' values in Table 2. Changes in skewness relate to the size of the larger 
catches when they are encountered (the greater the skewness, the larger the big catches); such 
information is of value to the fishery manager. Plotting the results of the comparative triad has 
allowed us to extract more information, easily and graphically, about the fishery than using only 

one estimator from the triad. 
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Discussion 

Research trawl surveys must consider carefully the biology of the species when sampling. 
Furthermore, it is imperative that subsequent analyses address the influence of the biology on 
the data propertics if reliable abundance estimates are to be obtained. Failure to do so may
 
introduce further error 
into the estimation process and contribute to false conclusions 
concerning trends in abundance. This could jeopardize the renewable nature of fishery 

resources. 

Conventional population estimates are generated using untransformed catch data and arithmetic 
mean calcuiat~ons (BIOMASS: Gunderson et al. 1978; STRAP, Smith and Somerton 1981; Forest 
and Minet 1981). Standard formuls are used to calculate stratified means and variances (see
 
Cochran 1977); confidence intervals are 
calculated w:,h the t-distribution (Equation 11). These 
procedures are entirely appropriate for normally distributed means, but the sampling
 
distributions for the sample means 
may be more right skewed than expected under the usual
 

"invocation" of the Central Limit Theorem.
 

The Phenomenon of Overdispersion 

As has been previously discussed, the spatial distributions of marine biota are frequently patchy. 
It is unlikely that overdispersion is an artifact of sampling; aggregated distributions may be 
attributed to the proportional, rather than linear, nature of biological responses (Bartlett 1947; 
Crisp 1974). Overdispersion of adults may reflect processes acting throughout the life history 
that tend to maintain aggregations ;n response to selective forces. Aggregations that originate 
during the release of eggs (Silliman 1946; Picquelle and Stauffer 1985; Smith and Hewitt 1985) 
or larvae (Scarratt 1964; Zweifel and Smith 1981; Reilly 1983; Fogarty and Idoine 1986; Harding 
et al. 1987) are often maintained, or regenerated, during the subsequent postlarval and juvenile 
stages (Miller 1975; Armstrong et al. 190'5; Booth et al. 1985; Staples and Vance 1985; Incze et 
al. 1986; MacDonald 1986). This may be attributed to feziures of the circulation (Harding et al. 
1982; Cobb et al. 1983; Hatfield 1983; Reilly 1983; Hamner and Schneider 1986; Epifanio 1987; 
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Jamieson et al. 1989) or common behavioral responses to exogenous stimuli (Powell and 
Nickerson 1965; Crisp 1974; Strathmann 1974; Rice and Kristensen 1982; Zeldis and Jillett 1982; 
Epifanio et al. 1984; Sulkin 1984). Significant adaptive value may be associated with this spatial 
pattern, particularly among sessile organisms, which rely on external fertilization, and those 

species which school to minimize predation. 

Properties of Skewed Catch Data 

If individuals comprising the population are overdispersed, the frequency distribution of catches 
(and mean catches) from random (trawl) samples will be markedly skewed. Data sets will be
 
characterized by catches which are 
mostly small, relative to the population mean, and a few that 
are very large; densities within aggregations can be orders of magnitude greater than the average 
value (Omori and Hamner 1982; this study). Following a logarithmic transformation, catch data 
from research trawl surveys will often conform with normal probability theory (Silliman 1946; 
Forest and Minet 1981; Pitt et al. 1981; Smith and Walters 1982; Booth et al. 1985; Peterman and 
Bradford 1987; Table 2, this study; and others). 

Recall that the population mean of lognormal data incorporates both the location and dispersion 
parameters (Equation 3). Under these circumstances, sample averages may not provide good 
estimates of true mean values for the population in question and variances about point estimates 
may be excessively large (results from Figures 4a, 5a, 6a, 7a, 8a, 8b). However, when 
calculations are performed on the transformed data, full use may be made of the properties of 
the underlying normal distribution, and the manner that 4LN and oLN for the transformed data 
relate to I.±for the original data (Equation 3). 

Conventional Analysis of Catch Data 

Conventional analysis of catch data may be inappropriate if the underlying probability 
distribution is highly skewed. Furthermore, sample sizes are often too small to justify 
procedures based on the Central Limit Theorem (see Sissenwine 1978). Conclusions reached 
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using these methods may be invalid. A variety of procedures have been considered as
 

alternatives (Sissenwine 1978; Smith 1988b; Zweifel and Smith 
 1981; Pennington 1983; Conan 
1985; Kimura and Balsiger 1985), although none has emerged as a widely accepted standard for 

the fisheries discipline. 

Several ad hoc methods exist for reducing the variance associated with estimates of mean 

abundance despite recognizable limitations. Catch data are commonly stratified after sampling 
is completed (Picquelle and Stauffer 1985; Otto 1986). But post-stratification that is based upon 

seeing the data first to determine strata is not a valid way to proceed and is not recommended. 

Other methods are expedient yet may be based on the specious assumption that extreme values 
are "outliers" and are therefore not integral to the data set. Included is the practice of
 

eliminating extreme values 
or the use of trimmed (or Winsorized) means (Halliday and Koeller 
1981; Bates 1987; Harding et al. 1987; Smith 1988b). Ignoring instances where human error is 
involved, these procedures may introduce substantial negative bias to estimates of the true 

population mean (e.g., Table 3) thereby contributing to misleading conclusions about trends in 

the data. 

Uncertainty about population parameters is commonly ignored (Rivard 1981; Jamieson 1986), 
despite potentially serious repercussions (Ludwig and Walters 1981). Although rarely used on a 
stand-alone basis, these estimates are a key component of production models and may thus 
confound management efforts. For example, it has been demonstrated that catch projections are 

particularly sensitive to systematic biases/error for stock size (Rivard 1981). 

Redefining the Sampling Frame 

Gavaris and Smith (1987) bve demonstrated that modifying the sampling frame for the eastern 
Scotian Shelf groundfish survey enables substantial reductions in variance. They report that the 
precision of abundance estimates obtained with stratified random sampling is inferior to that 
from a simple random design, owing to suboptimal allocation of stations to strata. They go on 

to suggest a decrease in the number of strata as a solution, so as to provide for more flexible 
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alloc;ation of total sampling effort. However, many of the problems attendant with specifying 
stratum boundaries will persist (i.e., interannual variability in distribution and abundance of
 
stocks related to environmental factors and the typical multi-species scope of research trawl
 

surveys).
 

The Comparative Triad 

Unbiased and efficient estimators of the population average are needed to adequately assess the 
abundance of overdispersed fishery resources and manage them effectively. Improved estimates 
of mean abundance are obtained when a logarithmic transformation normalizes catch data
 
(Finney 1941; Sichel 
1952; this study; Thoni [1967] reviews analogous bias corrections for other
 
probability distributions). However, data transformation is a "double-edged sword" and should
 
not be applied indiscriminately (Koch and Link 1970; Link et al. 1971). For these reasons,
 
coupled with the rather ubiquitous nature of overdispersion in the marine environment, 
we
 
propose an approach based on 
a triad of comparative estimators, namely the (conventional)
 
arithmetic mean, 
 the geometric mean, and the Finney-Sichel estimator of j.±. By taking this
 
comparative approach, 
one may be reasonably certain of apparent trends in the data when the 
pattern is consistent for the three estimators (e.g., Figure 9a). However, should there be
 
significant disagreement among the three estimators (e.g., Figure 9b), the data set should be
 
carefully evaluated as 
to its underlying probability distribution and the most appropriate index
 
selected. 
 Such comparisons are not unprecedented in the fisheries literature: Pitt et al. (1981)
 
made direct comparisons between the conventional method and the GEOM approach, 
 which
 
revealed an opposing trend in abundance during one 
of the years investigated (c.f. our Figure 
9b). They also concluded that mortalities at age for redfish stocks, which had been calculated 
from sample means, may be excessively high. 

It is commonly recognized that stock size estimates are rarely better than indices of abundance 
since catchability coefficients are not routinely considered (Anonymous 1981; Caddy 1986). 
Harvest levels for the fishery are set by applying a target exploitation rate (often a fixed 
percentage; Otto 1986) to this stock size index. In instances where the lognormal distribution is 
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reasonable, it is interesting to speculate whether an analogous rate could be determined for a 
population estimate derived from the geometric mean, given its greater accuracy (Figures 4a, 
4b, 5a, 5b) and higher precision (Figures 6a, 6b, 7a, 7b) relative to estimates of g . The 
geometric mean is relatively insensitive to extreme values (Figures 4a and 4c) and, at times, may 
well be the preferred estimator (Aitchison and Brown 1969, p. 111). Given the assumptions that 
samples are randomly taken from the population (Sissenwine 1978) and that sample size 
adequately reflects the dispersion of the population (Leaman 1981), calculating other dynamic 
population parameters, such as mortality rates, using a GM-based CPUE index of abundance 

may also be reasonable. 

Summary 

Estimates of stock abundance based on research trawl surveys must be reliable if management of 
a fishery resource is to be effective. However, these estimates are frequently inadequate, 
reflecting, at least in part, the overdispersed nature of the population. Analytical methods 
currently in use may be inconsistent with certain aspects of the biology of the species
 
(particularly spatial characteristics) and, thus, fundamental attributes of the data. 
 In view of the 
pervasive pattern of overdispersion among marine biota and the statistical ramifications 
demonstrated herein, we suggest that the sole use of the conventional estimator of relative
 
abundance (the AM) may not be prudent. 
 We recommend that the abundance of overdispersed 
stocks be apprised using the geometric mean and the "comparative triad" approach described 
herein. This approach may provide a sounder basis for discerning potentially false indicators of 
abundance while contributing important information for the management of commercially 
important stocks. The data sets used for the Monte Carlo simulations are archived on magnetic 
tapes and copies may be obtained from the authors. We encourage communication concerning 
this issue and further analysis of statistical properties of the lognormal estimators, such as 

robustness. 
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Table 1. Notation 

Untransformed Log Transformed 

ith Observation X1 yi 

Average Value 

Sample 
Population 

- AM Y 
ILLN 

Variance 

Sample S S2 
Population a2 LN 
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Table 2.
 

Results of Kolmogorov Test for Normality
 

Goodness-of-Fit Probability 

Coast 
Estuary 

Cruise n CPUE* LOG** 
Mean 

(LOG) 
Variance 

(LOG) n CPUE LOG 
Mean 
(LOG) 

Variance 
(LOG) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

35 
41 
42 
38 
42 
44 
40 
43 
44 
43 
44 
44 
44 
44 
44 

.006 
.000 
.000 
.000 
.000 
.025 
.113 
.004 
.000 
.016 
.017 
.002 
.000 
.000 
.000 

1.000 
1.000 
1.000 
1.000 
1.000 
.328 
.242 

1.000 
.164 
.528 
.102 

1.000 
1.000 
.522 
.306 

4.20 
4.65 
4.96 
6.63 
5.31 
3.32 
3.09 
3.59 
2.91 
3.90 
3.16 
3.62 
4.57 
3.87 
5.05 

5.54 
6.25 
8.03 
4.69 
5.09 
3.84 
2.98 
2.45 
4.34 
3.16 
4.39 
3.75 
4.66 
6.15 
4.85 

20 
20 
20 
20 
20 
16 
20 
20 
20 
20 
20 
20 
20 
20 
20 

.156 
.110 

1.000 
.169 
.205 
.373 
.004 
.088 
.013 
.140 
.172 
.129 
.435 
.311 
.336 

1.000 
1.000 
1.000 
.394 
.999 
.411 
.418 

1.000 
.999 

1.000 
1.000 
1.000 
1.000 
1.000 
1.000 

6.33 
6.21 
6.27 
5.96 
5.73 
4.90 
6.04 
5.64 
5.66 
5.44 
4.62 
5.81 
6.61 
5.92 
6.41 

1.43 
1.24 
.43 
.61 
.31 

2.94 
1.47 
1.48 
1.89 
.93 

1.39 
1.03 
1.08 
1.13 
1.22 

* P-value for CPUEs of untransformed data. 

* P-value for CPUEs of log-transformed data. 
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Table 3a. 

Descriptive Statistics for 1,000 Simulated Trawl Data Sets 

[Loguormal (4 2)1 

Arithmetic Mean 

n CPUE* LOG* 

2 431 4.104 
4 382 4.003 
6 398 3.987 
8 370 3.985 
10 386 4.001 
15 378 4.002 
20 391 4.004 
25 394 3.999 
30 407 4.002 
35 422 4.016 
40 419 3.999 
45 397 3.989 
50 411 4.003 

Trimwed Mean 

CPUE LOG 

192 4.106 
163 4.004 
162 3.988 
157 3.984 
161 4.002 
163 4.007 
162 4.003 
159 4.002 
161 4.004 
162 4.015 
161 3.999 
162 3.989 
163 4.003 

Standard 
Deviation 

CPUE LOG 

1,949 2.026 
1,714 1.999 
1,946 2.007 
1,818 1.982 
1,964 1.996 
1,723 2.002 
1,920 1.997 
2,313 1.991 
2,603 2.000 
3,301 1.992 
7,609 1.997 
2,167 2.010 
2.125 2.008 

Minimum 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Maximum 

48,860
64,248 
62,131
71,789 

110,761 
82,492 

122,967 
160,546 
236,341
380,743 

1,479,353 
226,970 
323,734 

Results are given in integer values for untransformed data. 

True value of j.i is 403.43. 

* CPUE for untransformed data. 

** CPUE for log-transformed data. 
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Table 3b. 

Descriptive Statistics for 1,000 Simulated Trawl Data Sets 

[Lognormal (6 1)1 

Arithmetic Mean 

n CPUE* LOGOO 

2 633 5.968 
4 676 6.007 
6 682 6.026 
8 690 6.010 

10 659 5.993 
15 650 5.986 
20 655 5.992 
25 667 6.000 
30 664 5.995 
35 664 5.999 
40 657 5.996 
45 666 6.004 
50 664 6.001 

Trimmed Mean 

CPUE LOG 

528 5.971 
552 6.007 
557 6.024 
553 6.006 
541 5.995 
537 5.986 
538 5.993 
544 5.999 
543 5.995 
541 5.998 
540 5.995 
547 6.004 
544 6.002 

Standard 
Deviation 

CPUE LOG 

739 .994 
860 1.012 
924 .993 
955 1.016 
835 1.004 
816 .993 
825 .998 
868 1.003 
857 1.004 
901 .995 
844 .993 
869 .997 
856 .998 

Minimum 

10 
10 
II 
12 
6 

12 
8 
4 
5 
7 
9 
6 
7 

Maximum 

5,703 
10,525 
24,259 
20,499 
13,333 
18,877 
13,756 
19,785 
21,060 
30,309 
20,555 
30,655 
18,725 

Results are given in integer values for untransformed data. 

True value of p. is 665.14. 

* CPUE for untransformed data. 

** CPUE for log-transformed data. 
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Figure Legends 

Figure 1. Simple linear regression between mean and standard deviation of 

untransformed catch data from (a) coastal area and (b) the estuarine area. 

Figure 2. Histogram of log transformed catch data from coastal and estuarine areas for 

year I (a), year 2 (b) and year 3 (c) with superimposed best-fit normal 

curve. ( ln(x + 1) transformation used for data sets containing zero.) 

Figure 3. Probability dtnsiiy functions for the representative lognormal distributions. 

Figure 4. Comparison of root mean square error values associated with the three 

estimators of central tendency according to sample size. (a) LOGN (4,2) 
data representative of coastal population used for Monte Carlo simulations. 

See text for outlier explanation. (b) LOGN (6,1) data representative of 

estuarine population used for Monte Carlo simulations. (c) Histogram of 
1,000 sets of LOGN (4,2) data with sample size of 40 used for Monte Carlo 

simulations. 

Figure 5. Comparison of the degree of deviation from the parameter (scaled to 0) for 

the three estimators of central tendency according to sample size. (a) LOGN 

(4,2) data representative of coastal population used for Monte Carlo 

simulations. (b) LOGN (6,1) data representative of estuarine population used 

for Monte Carlo simulations. 

Figure 6. Comparison of the average length of 90% confidence interval for the three 

estimators of central tendency according to sample size. Dashed lines 
indicate off-scale values. (a) LOGN (4,2) data representative of coastal 

population used for Monte Carlo simulations. (b) LOGN (6,1) data 

representative of coastal population used for Monte Carlo simulations. 

Figure 7. Comparison of the standard deviation of the length of 90% confidence 

interval for the three estimators of central tendency according to sample size. 
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Dashed lines indicate off-scale values. (a) LOGN (4,2) data representative 
of coastal population used for Monte Carlo simulations. (b) LOGN (6,1) 
data representative of estuarine population used for Monte Carlo simulations. 

Figure 8. Comparison of the percent occurrence of the parameter in the 90% 
confidence interval for the three estimators of central tendency according to 
sample size. (a) LOGN (4,2) data representative of coastal population used 
for Monte Carlo simulations. (b) LOGN (6,1) data representative of 
estuarine population used for Monte Carlo simulations. 

Figure 9. Comparison of values for the three measures of central tendency calculated 
using actual trawl data for 1 year from (a) the estuarine area and (b) the 

coastal area. 
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