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Summnary
 

Crop simulation models can be applied to manage-
ment problems in numerous ways. At the field level, they 
can be used to investigate variety selection, fertilizer and 
irrigation use, the timing of planting and establishment in 
relation to prevailing weather and soil conditions, and 
long-term soil and nutrient effects on yield stability and 
sustainability. At the farm level, additional applications
include the design and pretesting of new and improved
cropping systems and their effects on household viabil-
ity, together with feasible pathways fo, bringing about 
radical changes to farmers' producion systems over 
time, and investigation into yield disparities obterved 
between plots on the experiment station and the farm-
ers' own fields. At the r xjional level, linkage to a Geo-
graphic Information System allows the aggregation of 

production response information for use by researchers 
and policymakers. In all these applications, simulation 
models are an adjunct to, and not a replacement for,
traditional field experimentation. The objective extrapo
lation of field trial results across time and space en
hances the efficiency of the research process. Modeling 
can help to ensure that scarce research resources are 
expended only on the most promising alternatives that fit 
in with smallholders' objectives and attitudes, their re
source base, and their management ability. For imple
menting model application projects, a case study
approach is recommended. Considerable research is 
needed incertain areas before the benefits of model use 
can be fully realized. 
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Substantial effort has been expended over the 
last 20 years or so to design and construct simulation 
models capable of predicting biological processes. 
Such simulation models involve some degree of ex
planatory power (statistical models and mathematical 
programming models are not part of this discussion). 
These simulation models have tended to fall into two 
groups: highly detailed deterministic models of impor
tant biochemical or component processes in organ
isms (research models) and much less detailed 
enterprise-oriented models, ostensibly for investigat
ing questions related to agricultural management. To 
reflect biophysical uncertainty, the latter have nor
mally included a certain number of stochastic pro
cesses, to account either for seemingly random 
phenomena (such as the se)- of a calf at birth) or 
phenomena that are currently too complex to yield to 
amechanistik approach to modeling (such as weather). 

Modeling, as a bona fide output of research effort, 
seems to be recovering from a severe credibility crisis 
that affected itin the past (reasons forthis are complex 
and various, but seem to stem from overenthusiasm, 
unrealistic expectations, and chronic user-interface 
problerns). Evidence of simulation modeling entering 
the mainstream of agricultural research is afforded by 
the fact that major donors are now willing to risk 
research funds on projects whose modus operandi is 
almost exclusively model-related. 

There is still substantial scepticism in many quar-
ters for the claims, sometimes extravagant, that are 
made on models' behalf. It must be admitted that this 
is justified uptoapoint. Thepotentialbenefitsof model 
use in the research and development process have 
yet to be fully (or even partially) realized, and it is a 
matter of concern that little work has been done on the 
integration of modeling activity into traditional re-
search and development. Most modeling projects 
dwell on model construction and validation, very few 
ontheiractualuse.Agravedanger, insuch a situation, 
is what may be termed donor burnout: claims are 
made for modeling, projects are funded, little real 
progress in enhancing the efficiency of research and 
development results, and over time, donors become 
wary of funding further related activities (for example, 
a case can be made that donor burnout occurred with 
Farming Systems Research [FSR] in the late 1980s.) 
Reestablishing credibility then becomes exceedingly 
difficult. 

If donor burnout is to be avoided for modeling, 
then benefits to the use of modeling in development 
have to be demonstrated, and quickly. Crop model 
development is now at the stage where models are 
useful enough to supplement field trial work in all sorts 
of situations. The activities of the International Bench-
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mark Sites Network for Agrotechnology Tra. sfer 
(IBSNAT) project, funded by the Agency for Interna
tional Development (AID) and based at the University 
of Hawaii, and those of the International Fertilizer 
Development Center (IFDC) and other institutions 
have provided a solid base on which model application 
projects can be built. Model develooment is by no 
means complete or ever at a desirable stage: the 
biology of cropping systems can be represented only 
partially. For the tropics and subtropics, there are 
model limitations with respect to pests and diseases, 
multiple cropping, and the inclusion of animal interac
tions at the present time (although this situation is 
changing). 

Models, however, are still useful, even in their 
present state. The ideal model will never be built, and 
there seems little point in waiting for the next model 
improvements because modification is a continuous 
and probably never-ending process. Model applica
tions can concentrate on the development of concep
tual and practical frameworks in which models are 
embedded to enhance the efficiency of research and 
development (R&D); "better" models can always re
place "worse" models in such frameworks if they are 
constructed in an appropriate fashion. 

The purpose of this document is to consider 
various approaches to crop model applications, to 
indicate how these might be implemented, and to list 
priority areas of further research for successful model
related projects. 



A Conceptual Framework 

for Using MVodels 

The translation of research findings into technol-
ogy packages that can be widely adopted by farmers 
constitutes a major problem in the development of 
agriculture in many countries. The reasons for the 
nology include the following (Dent and Thornton, 
1988): 


• Some applied agricultural research is inappropriate 
to farmers' needs. 

" The risks involved in adopting new technology are 
not appreciated by researchers. 

" Farmers' objectives often do not coincide with those 
assumed by researchers and extension personnel;sometimes,farmers'objectives are not even known.oFarmers experience management problems asso
Farer eiehne machnalogen phicharoemst ass 

foreseen by researchers, 
" Farmers operate within aset of constraints (resource-related, political, and social) that may not be fully
appreciated by the researcher. 

Farming Systems R was anigS se
F r sResearch w sdeveloped in 

attempt to reduce this delay and to encourage farmers 
to introduce new technology more quickly. It is difficul, 
to give a precise definition of FSR because many 

methodologies, and thus much terminology, exist. It is 
perhaps more useful to list the featuies of what is 
commonly understood by the term. Some of these are 
as follows (Biggs, 1985): 

" The activitiesof the farmer are analyzed holistically 
implying that the approach is inter- and 
multidisciplinary, 

" The clients of FSR tend to be small farmers, clus-
tered inreasonably homogeneous groups.
" Itisessentially applied, problem-solving research 
(where the problems shou be specified by the 
farmer); feedback from such research can be used 
to modify basic research activities 

Itinvolves surveys and on-farm trials, i.e., farmer 

participation.
 
Itis adynamic process, capable of self-correction.
 

Four general but sequential phases can be iden
tified: the diagnostic phase, where existing production 
systems are examined with respect to constraints of 
all kinds; the design phase, where potential improve
ments are identified; the testing ph3se, where prom
ising production possibilities are evaluated under local 
farmers' conditions; and the extension and monitoring
phase, where the package is passed on to more 
farmers and evaluated further. 

In general terms, assessment of experimental 
findings leads to the testing of a preliminary technol
ogy package on a small number of farms in a region. 
The package might involve a particular cultivar/fertil
izer application/disease control program. The resultsfrom small-scale plots are monitored, usually over a 
number of seasons, and the appropriateness of the
package may be confirmed in some sense. If so, the 

package may then be applied on a larger scale on a 
limited number of farms, with the anticipation of not 
only again confirming the value of the package but 
also now collating farmers' initial reactions and their 
viewson management problems. Eventually, the pack
age may be established at full farm scale on a number
of reference farms in the region. The crop and thefarmers' reactions are monitored. Inevitably, several 
more seasons must be involved. A similar procedure 

is necessary for other crop and livestock enterprises 
before the farming systems researcher can be expected finally to put together a suitable crop rotationand assess yields, their variation, and thus the ex

pected profitability of a whole farming system package.
The advantage of the approach outlined above isath ehooyi ssse n a w oefr 

that the technology isassessed in a whole farm
 
context; interactions between the various farm activi
ties during the whole course of the year are included 
inthe assessment proczss.A full appreciation of the
 
resource demands of the farm is possible, and the 
managerial and social implications for farmers and 
their families may be judged. Some adaptation or 
refinement of the technology is almost certain to take 
place during the testing phase. However, it is clearthat 
time and substantial resources are involved and that, 
inaddition, no assessment can readily be made of how 
the package should be modified in different districts in 
response to different soils and changing local climates.Simulation modeling has considerable potential
for overcoming such problems and also for speeding
the transition from the design stage to the testing 
stage and beyond. The majorbenefits of using models 

are as follows: 
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" Technology packages can be de- 	 Model Applications 
signed and assessed efficiently 
and quickly using the computer; 
this can help to ensure that only 
the most promising actually en
ter field testing (with the con
comitant expenditure of scarce 
resources that this entails). 

" The.same management pack-
age can be pretested in other 
locations simply by changing 
model inputs (soil and weather); 
the models can be used for any 
location whore input data exist 
with which to run them. 

" By using historical or synthetic 
weather sequences for many dif-
ferent season types, the variabil-
ity associated with particular 
practices at a particular site can 
be isolated in away that would be 
impossible with standard field tri-
als (in other words, field trial re-
sults can be extrapolated through 
space and time). 

Insofar as FSR depends on 
field experimentation, among other 
things, modeling has the potential 
to be used within the same frame-
work to achieve the same ends. Of 
course, biological feasibility of an 
agrotechnology package is no guar-
artee of adoption. Expanding the 
scope of crop models to treat im-
portantnonbiologictdeterminants 
of farming systems is discussed 
below. 

To 	summarize, the value of a 
validated crop model derives from 
its ability to screen agricultural tech-
nology options so that only the most 
promising enter field testing; expen-
diture of scarce research resources 
ontime-consumingfieldexperimen-
tation can thus be lessened, and 
field research can be made more 
effective and efficient (Thornton et 
al. 1991 b). With suitable input data, 
the running of computer-based ex-
periments allows extrapolation of 
results across sites and across 
seasons. 

Clearly, the limit to what can be 
achieved depends on the sensitivity 
of the model to biotic factors; this 
sensitivity is built in by the modeler 
and has two components: 

1. 	The ability of the model to react 
in a meaningful fashion to small 
changes in input conditions 
(such as aslightly different soil, 
for instance). 

2. 	The relationships in ihe model 
designed to simulate particular 
biological processes (such as 
nitrogen uptaKe). 

The implication ofthe first isthat 
there is a well-defined accuracy to 
simulated output (clearly, if the re
sults of simulations suggest that 
variety A outyields variety B by 5%, 
thenthisdifferencemaynotbemean-
ingful if the model is accurate to 
10%). The second component im-
plies that there are limits to what the 
modeliscapableofsimulating;there 
is little point inattempting to model a 
field trial devastated by disease ifthe 
model has no in-built capability for 
simulating the effects of disease on 
the growth and development of the 
plant. 

Any increase in model sensitiv
ity, in either of the senses above, 
generally results in increased com
plexityof the model and in increased 
data demands for running it.On the 
other hand, insufficient model sensi
tivity will allow little to be said as 
regards biological response to par
ticular input conditions. Thebalance 
that the model builder achieves be
tween these two considerations is 
related to a number of factors, in
cluding the usetowhich the model is 
tobeput and the research resources 
available. The crop models are con
tinuallybeing modified and improved. 
At present, the IBSNATcrop models 
can be used to investigate the fol
lowing (IBSNAT, 1988): 

- Timing of planting and its relJtion 
to climatic conditions (such as the 
onset of the rainy season). 

• 	Response to nitrogen and phos
phorus fertilizer type and place
ment (the cereal models only). 

• 	Variety selection. 
• Planting density. 
- Yield potential. 
* Irrigation scheduling and yield 

response. 
• 	All interactions involving the above, 

in any specified location. 

The way in which modeling can 
interactwith moretraditional research 
activity is illustrated in Figure 1. Ex
perimentation at the computer can 
be used to screen large numbers of 
production possibilities and to iden
tify those that appear to be particu
larly promising for given soil-climate 
combinations. Thesepromising after
natives can then be assessed fur
ther through normal field tial work. 
The results of such fieldwork can 
then provide feedback to the model, 
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whence fine-tuning of the appropri
ate management options can take 
place (Figure 1). 

Conceptually, model applica
tions for management problems can 
be considered at four levels: 

1. The field level, where crop per
formance is assessed primarily ".,........ 

in relation to its biophysical fea- .
 
sibility; limited economic analy
sis may be carried out at this
 
enterprise level.


2. The farm level, where the inter-
actions between different enter
prises (which will usually be
 
competing forscarce resources) 

are taken into account, in an 

effort to gain insight into the 
operation of the farm as a whole. 
Substantial socioeconomic 
analysis isnecessary at this level 
because farmers' actions are 
determined by their attitudes and 
objectives, for example, as well 
as by their resource base. 

3. The regional level, where indi-
vidual farm response is aggre
gated insome wayto giveinsight
into regional production patterns. 

4. The national level, where re
gional response is aggregated 
to provide information at the
highest policy level. 

Nosteithaa thottm-u 

Note that this is a bottom-up

approach: some detail is omitted as 
higher levels are reached, in distinc
tion to a top-down approach, where 
detail is added inas one moves from 
the higher level oforganization to thelower. Given the availability of the 
crop models, the bottom-up ap-
proach is the obvious one to follow. 
Whether all the biological detail in 
the crop models is necessarily re-
quired at higher levels of organiza-
tion is a question that needs careful 
answering. 

Most model applications to date 
have dealt with the first of these 
levels, although regional applications 
are currently underway. The higher 
levels of organization do not neces-

.....................
[Feasible bs,
 

Field Trials. 
Test the Most Modei Experiments

Promising To Fine-Tune Options 

Research Results ......................
 

Recommenda lions Further Analysis Information 
......................................
..............................
 

Figure 1. Modeling ani the Research Process. 

sarily require a more complex over-
all model; nor, assuming applica-
tions are built around detailed 
biological crop simulation models, is 
thesametypeofmodelideallysuited 
toeachlevei.lnfact, therearestrong 
reasons to suppose that the farm
level model is likely to be the most 
complex, in view of the necessity of 
incorporating the biology, sociology, 
and economics of thefarming house-
hold. Therearecertainlysevereprob, 
lems in aggregating farm response 

to regional and higher levels of orga
nization, but these are likely to be 
comparatively tractable compared 
with the problems of assembling a 
farm model in the first place. These 
issues are discussed further below. 

The Field Level 
Variety Selection-Computer

based experiments to assess the 
suitability of particular varieties for 
particular locations can be carried 
out in three ways: 

Unkages .........
0- External Unkages 

Agronomic . 

Knowledge 

Fleldwok
 
.....
 

I Calibration _ 
& Validation 

Model Experiments 
to Screen Options-,1
 

a
 

Improve
 
the Model 
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Table 1. 	Cultivar-Specific Coefficients for CERES-WHEAT: Sample Values for Wheat 
Genotypes Adapted to Different Environments (from Godwin et al., 1989). 

Cultivar-Specilfic Coefficients 
Adaptation PlV PID P5 G1 G2 G3 

Spring Wheats 

Northern Europe 0.5 3.5 2.5 4.0 3.0 2.0 
North American Prairies 0.5 3.0 2.5 3.5 3.5 2.0 
Australia 0.5 2.0 2.5 2.5 2.0 4.0 
India 0.5 1.5 3.5 4.0 2.0 2.0 

Winter Wheats 
America, Pacific 	 6.0 3.0 2.0 3.0 2.0 2.0 
America, N.Plains 	 6.0 2.5 2.0 4.0 2.0 1.5 
America, S.Plains 	 4.0 3.0 2.5 3.0 3.0 2.0 
America, East 	 6.0 3.0 2.0 4.0 2.0 2.0 
West Europe 	 6.0 3.5 4.0 4.0 3.0 2.0 
East Europe 	 6.0 3.0 5.0 4.5 3.0 2.0 

These "scale values are guides only: they are converted to biological values inthe model, 

The vernalization values do not represent the full range of values presentwithin the species (see 
Godwin et al. [19891 for more details), 

PIV VERNALIZATION COEFFICIENT: relative amount that development isslowed for each 
day of unfulfilled vernalization, assuming 50 days is sufficient for all varieties (range 0-9) 

PID PHOTOPERIOD COEFFICIENT: relative amount that development is slowed when 
plants are grown in a photoperiod 1hour shorter than the optimum, assumed to be 20 hours 
(range 1-5) 

P5 DURATION OF GRAIN FILL STAGE COEFFICIENT: degree days above a 1degree C 
base from 20 degrees Cdays after anthesis to maturity (range 1-5) 

G KERNEL NUMBER COEFFICENT: kernel numberperunitweightofstem(lessleafblades 
and sheaths) plus spike at anthesis (range 1-5) 

G2 KERNEL WEIGHT COEFFICIENT: kernel filling rate under optimum conditions, mg per day
(range 1-5) 

G3 SPIKE NUMBER COEFFICIENT: dry weight of a single stem (excluding leaf blades and 
sheaths) and spike, under no stress, when elongation ceases, g (range 1-5) 

1.0 

i.-for 

0.5/ 


I ,:HeoWales, ..,I:/,; ..... H~ron
 

Triumph Figure 2. 
S....... Rongotea Variety Screen-
- . Tan..... ing: Rainfed 

Wheat 	in 
0.0. ' 	 Australia Over 

0 	 1 2 3 4 5 6 7 21 Simulated 
Yield (t/ha) Seasons. 

1 	 Varieties can be characterized 
using detailed field experimen
tation to derive the necessary 
cultivar-specific coefficients as 
accurately as possible (examples 
for the CERES wheat model are 
presented in Table 1). 

2. 	 Varieties can be clustered on 
the basis of broad types to pro
ducecultivar"homologues"that 

behave similarly in a particular 
environment. 

3. 	 A cultivar coefficient blueprint 
can be identitied for a particular 
location; on the basis of experi
mentation at the computer, the 
coefficients can be adjusted, and 
simulated results over many 

seasons can be compared to 
define suitable cultivar charac
teristics for the situation under
investigation and for other
locations. 

Detailed characterization has the 
advantage of accuracy but involves 

substantial expenditure of research 
resources. For situations where such 
experimentation is not feasible, per
haps becauseof the numberof lines 
of interest, one option is to attempt to 

match cultivars with those that have 
already undergone detailed charac
terization. IBSNAT's Decision Sup
port System for Agrotechnology
Transfer (DSSAT) contains a data 
base of all varieties of each crop that 
have been extensively character
ized; some 100 varieties of wheat, 

example, have undergone this 
process (Jones, 1986; IBSNAT,
1989). The illustration in Figure 2
shows various wheat varieties grown 
in rainfed conditions in New South 

Australia; these yield curves 
were obtained from simulations over 
21 years, using synthetic weather 
sequences. The enormous variabil
ity in yield, primarily a function of 
rainfall variability under Australian 
low-input conditions, is particularly 
noteworthy. 

A slightly different approach in
volves the clustering of varieties. 
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The first step in such characteriza- example, where improved varieties
tion might reasonably involve dura- have not previously been grown or
tion of the entire growing season by where a need is identified for a new
identifying planting windows for par- improved variety to be introduced to
ticular varieties. This would allow a an area. Through inspection of thenumber of groups to be established, variety data base and comparison
Further subdivision could then be with the coefficients generated us-
carried out by attempting to maxi- ing the model, the cultivar and themizethedurationofparticulargrowth situation may be successfully
stages for each group; in maize, for matched; then standard field testing
example, this might involve silking to procedures can follow. Full and
maturity. Once a suitable group has detailed characterization need be
been identified for a location, then done only for those varieties that
again the data base of varieties can have some potential.
be inspected in an attempt to match Of course, varieties are by no
the group type with avariety that has means fully characterized in termsalready been characterized fully. of the cultivar-specific coefficients 

The blueprint approach can be required by the model; nothing is
used in a number of situations: for said about the ability to withstand 

1.7 

1.6 ... 

13 . "ments 
S1.51 	 • "involving

%E 
t1.4 

3 ) 	 •
18 • 

1. -	 •quences.16, 

' 	 .2 

9 
1.1 

1.0 
0 0.2 0.4 0.6 0.8 

Yield Variance 

Treatment 


2 May I planting, 30 Kg N applied at planting
5 May I planting, 30 kg N applied at planting + 30 days
9 May 1 planting, 60 kg N applied, sp!it application 
13 May 15 planting, 60 kg N applied at planting 
18 May 15 planting. 30 kg N applied, split application 
34 June 15 planting. 90 kg N applied at planting 

Figure 3. Mean-Variance Diagram for a Nitrogen Experiment on
Wheat. 

diseaseandpestatack, forexample; 
such characteristics are likely to be 
added at a future date for many of 
the models. Nevertheless, agronomic 
performance of varieties can be as
sessed initially by using the models. 

Fertilizerand Irrigation Use-_ 
The crop models can be used to 
assess and compare traditional and 
new varieties in their response to 
different fertilizer regimes and irriga
tion schedules. Factors suitable for 
computer experimentation with re
gard to fertilizer use include the 
following: 

• 	Source of nitrogen and phospho
rus (rock phosphate, super phos
phate, urea, etc). 

" Timing and optimum levels of ap
plication (single or split applica
tionis, etc). 

" Placement (broadcast or side
banded applications, etc). 

For particular locations, experi
can be run on the computer, 

numerous combinations of
variety, source, timing, application
level, and placement, and these can 
each be replicated manytimes using
different simulated weather se-Inthe first instance, analysis of each treatment run under 

different climate scenarios will in
volve the comparison of yield distri
butions. A simple economics model 
can then be added to estimate ap
propriate gross margins for each 
treatment, since there may be sub
stantial differences in cost between 
treatments involving one or moreapplications of fertilizer. Well
documented procedures that can be
used for comparing distributions in
cude mean-variance analysis, sto
chastic dominance analysis
(A s t a nce analysis 

(Anderson et al., 1977), and mean-
Gini stochastic dominance (see Ap
pendix). Similar analyses can be
carried out for particular irrigation 
strategies. 

An example of mean-variance 
analysis is shown in Figure 3. Yield 
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mean is plotted against yield vari-
ance for a 40-treatment nitrogen 
experiment, involving four levels of 
Nandthreedates of application (this 
experiment was run on the 
Supercomputer at the University of 
Edinburgh, United Kingdom, and in-. 
volved 2000 separate season-long 
simulations; the entire experiment 
was simulated in less than 770 sec-
onds). The efficient treatments are 
numbered and described in the 
figure. 

Yield variability isonly one esti-
mate that will be of interest to a 

smallholder farmer, and it may not 
even be the major source of varia-

tion in determining the economic 
return to the household. Price and 
market risk may be of greater con-
cern when a farmer contemplates 
changing his management or intro-
ducing new technology. o 

The importance of including 
even a simple economic analysis is 
illustrated in Figure 4. A traditional 
variety might be outyielded over the 
entire probability interval by an im-
proved variety; agronomically, the 
improved variety is far superior (see 
Figure 4A). However, assume that 
the improved variety requires better 
seed-bed preparation and matures 
somewhat later than the traditional 
variety. The first assumption means 
that the variable costs of Droduction 
will be increased with respect to the 
traditional variety; for the second, 
assume further that maan crop price 
decreases as time to harvest 
increases and that price variability 
increases concomitantly (see Fig-
ure 4B). 

The yield and price distributions 
can be combined to produce avalue 
of output (money per hectare). Sub-
tracting the respectivevariablecosts 
of production produces agross mar-
gin forthe crop. The cumulativeprob-
ability curves for gross margin per 
hectare present a very different pic-
ture compared with the yield curves 
(Figure 4C): 

A. Probability as an absolute necessityand with
1.0 out fail, then clearly the improved 

variety is not suitable because of 
Tr"ditional the strong probability that income 

will be less than 100 units (about 1 

improved 
y1 
year in 10). 

Agronomic performance is thus 
0.0 2 3 4 not always a good indicator of eco-

Yield 0/ha) nomic performance. Even a simple 
analysis such as this cannot be car-

B. Price (money/t) ried out without the generation of the 
frequency distributions by way of a 

100' cropmodelbecausetield-generated 
edatatorepresenttheoutcomesfora 

... 
8o 


60 Improved 

Mean Maturity Date 


Cpractice, 
Probability 

1 Traditional .. 

/ .
 

0.5 	 proved 

1 


o.o 1 2 

0 	 o0 2Mg oo 
Grow Margin Cmonoy/ha) 

Figure 4. 	Improved and Tradi-
tional Technology: A 
Simple Analysis. 

• The traditional variety produces 
more stable gross margins. 

* Inapproximately 3years out of 10, 
the traditional variety does better 
(as a long-term strategy, not nec-
essarily inany particular3 years in 
10) than the improved variety, 

* If this cash crop is required to 
produce 100 units of money from 
thel hathatthehouseholdgrows, 

crop management strategy over a 
sampleofseasontypeswouldclearly 

take too long to produce. 
As noted above, given limita

tions to model accuracy, the objec
tive is notto identifya singleoptimum 

but rather to prescreen the 
available possibilities; it might be 
that some 80% of treatments as
sessed using the cormiputer could be 
discarded as being clearly inferior 
agronomically and economically, 
leaving a more manageable number 
of treatments that could then be 
exai nined more closely. Ultimately, 
it might be decided that two or three 
werewcrthyof actualtesting through 
field experimentation in each loca
tion of interest. 

Timing of Planting and Es
tablishment-A similar procedure 
can be anticipated for investigating 
the effect of timing of planting and 
density of plants on establishment 
and subsequent yield. The interest 
in this case derives from the interac
tion between plant growth and es
tablishment and simulated weather 
sequences. Alarge numberofplant
ing decision rules can be investi
gated (such as, plant when the ratio 
of actual to potential evapotranspi
ration first reaches 0.75 for 3 con
secutive days orwhen local practices 
can be followed), and probabilities of 
crop failure can be established for 
different planting rules. Analysis of 
yield distributions can follow that 
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outlined above. An alternative pre- be imposed by the model user, and examples are shown in Figure 6sentation is shown inFigure 5, where replication can be carried out to as- (these are purely hypothetical). Inyield isplotted against planting date, sess output distributions both within the top graph, yield is plotted over 21in terms of the mean and the 25th and between replicates. The identi- consecutive seasons, together withand 75th percentile of theyieldprob- fication and screening of stable pro- the 10th and 90th percentile of theability distribution (from the nitrogen duction systems that make minimal yield distributions. Note that variabilsimulation experiment described use of external inputs is likely to be ity increases as the sequence goesabove). one of the major areas wherethe mod- on and that yields are decreasing$uch investigations can be car- els could contribute substantially. overtime. A trend line for mean yieldried out on aregional basis because An important output of such is plotted over the time series, and itchanges in variety, soil conditions, simulations is the performance of is clear that this system is in theand weather are likely to have pro- biologicaldescriptors overtime. Two process of crashing, unless action is
found effects on the identification of 
optimal or near-optimal fertilizerprac
tices, planting windows, and plant
ing densities. Such computer
 
experimentation can then lay the

groundwork for the derivation of re-
 0 kg N 90 kg N at planting
gional fertilizer and planting recom
mendations. This isdiscussedfurther 
below. 2 ....... 2 .
 

Long-Term Soil and Nutrient 

Effects on Yield Stability-The 

' .
 
,IBSNAT crop models are currently

being modified to allow the investi- - ,. - 1gation of soil water and nutrient ef
fects on production variability over
 
multiple seasons. Thus, instead of O 0
 
looking at single growing seasons
 
and the between-season effects of May 1 15 June 1 15 May 1 15 June 1 15 
climate, as outlined above, it be
comes possible to investigate se
quences of two or more years run 
together, with carryover effects in 90 kg N 30 days posiplanting 90 kg N, split application 
terms of soil status being incorpo
rated directly in the analysis. By
modeling the soil processes that 2 . 2." 
occur during the dry season with a ,
fallow component or with another 
crop, and taking account of cropping
history in a field, researchers can a 1 - , . . " 1 
investigate the performance and "
 
variability of varieties and manage
ment practices over a longer period. 0 
 0 

In such investigations, the unit 0 1
 
of replication is not the season but 
 May 1 15 June 1 15 May 1 15 June 1 15 
the season sequence. Care has to 
be exercised that errors, particularly ..... 75th Percentile
with regard to soil nutrient status, do - Mean 
not build up over time, but this prob- - - - 25th Percentile
 
lem could be minimized by consider
ing relatively shor season sequences Figure 5. Interaction of Planting Date and N Fertilizer on Simu
or by some form of mid-sequence lated Yield.
 
updating. Again, management can
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taken. Inthe bottom of Figure 6, a tured, it is clear that the types of particular soil and climate condi
different picture is obtained; for a responsethatmaybeobtainedcan tions, such as irrigation scheduling. 
variable such as Total Soil Nitro- give valuable insight into cropping At sowing, there is a particular 
gen (TSN), initial conditions mean system sustainability. probabilitydistribution foryield asso
that the variance at year l isnearly Real-Time Simulation-In ciated with any particular variety, 
zero. This increases to year 5,after general, crop management can be soil, and climate. This distribution is 
which variability remains approxi- thought of as a sequence of deci- essentially unchanging from yearto 
matelythesame. No fall-off inmean sion points that build up into a year. As time progresses and the 
TSN is indicated, suggesting ad- decision tree. The crop models can crop starts to develop in the field, 
equate replenishment of soil nitro- be used in real time to help the more and more weather becomes 
gen reserves. Although the researcher identify appropriate known or fixed. The distribution of 
examples in Figure 6 are manufac- management regimes, based on crop yield, ifsimulated using histori

cal weather data up to a particular 
point and generated weather there
after, may be very different from the 
preseason yield distribution: the 
earlier part of the season may have 
been unusually dry so that the prob-

A ability of a poor yield is much 
S- 9 increased. 

. , .- 90% This process isillustrated in Fig

. * -.. Mean ure 7. The mean yield of the crop is 
..,.. . ... Trend initially 1.3 t/ha, for all possible sea

t - .. --. 10% son types, depending on thecharac
teristics of the particular historical 

(1. ,season used; for a good season, 
, - /mean yield increases to 2.7 t/ha, 

- / whereas for a poor season, yield 
/ idecreases to 0.6 t/ha (Figure 7A 

. ... -.- and C, respectively). Inallcases, the 
1 	 3 5 7 9 11 13 15 17 19 21 variance of the simulated yield distri

bution gradually falls away to zero asYear 
all the simulated weather is replaced 
by historical weather. 

Real-time simulations are use
ful not only for making tactical deci-

B .sions through the life of the crop but 
also for other purposes, such as the 

. . . .	 following. 
. . .90% 

-Mean 1. They act as a validation check 
- " .... Trend onthe performanceofthe model; 

although yield variability cannot 
be checked directly from one 

trial grown in one season, the 
I behavijr of ihe yield distribution 

as more and more becomes 
1 3 5 7 9 11131517192known about the season inques

-,- -"10%, 

'Year 3tion 	 should afford some insight 

Y'ear 	 as to the performance of the 
model. From aconsideration of 

Figure6. Analysis of Long-Term Simulations Using Crop the biological relationships inthe 
Fr e6. nmodel, it can be expected thatnsi. 
Sequencing. ] variance should decrease in a 
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Time Psomewhat predictab!e fashion 
Planting Maturity (for example, as one by one 

the yield components become 
set as the season progresses). 

A. Good Season 

33 .........be,the 

In general, the shape of the
variance curve over time may

a valuable tool for analyzingreasonableness of the 

model; work is starting to be 

2 ,2. 

done on this type of analysis. 
It is not only the movement of 

> 1+ Maximum
Mean 

the variance that is important, 
but also the mean, the maxi
mum, and the minimum values 

0 
150 

.......... 

100 

.......Minimum 
+ 1 STD DEV 

- STD DEV 
50 0 

of the yield distribution over
time. The ability of the modelto 
act in an early-warning capac
ity (e.g., a sudden preponder-

B. Average Season ance of very low yields
presaging adisastrous season) 

3 -
, 

2 -%ing 

. " 

" 

', 

---- Maximum 
Mean 

a + 1 S..DEV 
%%%2A I STD DEV 

*' 

would add considerably to its 
use as a research tool; obvi
ously, the earlier in the season 
it can be accurately indicated 
that the current season is go

to be bad, the more time 
there is to take compensatory 
action.

3. In a more research-oriented 
role, real-time simulations can 

................ be expected to be of use in 
.... 

150 

C. Poor Season 

100 
... 
50 0 

monitoring the progress of the 
triai, especially with respect to 
the possibility of disease at
tack and its effects on the crop. 

3 
, ,....... 

---- Maximum 
Mean 
Minimum 

Useful information could be 
gleaned from a comparison of
actual (infected) and simulated
(noninfected) leaf areas, for in

2-
2 ' 

", 

, 
,-. 

+ 1 SYD DEV stance, in an attempt to take 
account of the effects of dis
ease on final yield and its com

32 

*. 

'ponents. 

. . 

............. 

Similarly, it may be 
possible to forestall and ame
liorate, to a degree, the effects 
of unforeseen water or nutrient 

0 
150 

Number 

100 

of Days 

50 0 

of Unknown Weather 

stress on the crop in the field 
before too much damage is 
done. 

The issue of tactical as op-
Figure 7. Real-Time Simulation:Movement 

Variance. 
of Yield Mean and 

posed to strategic decisionmaking
is discussed in more detail in a later 
section. 
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Modeling in Extreme Envi-
ronments-One further role of the 
crop models is their use at a rather 
more basic level of research. Most 
of the IBSNAT crops are grown in 
such a diversity of locations and 
conditions that there are limitations 
to the way the associated models 
will perform in extreme environ-
ments. Crop scientists' knowledge 
of plant growth and development is 
not perfect, and there are gaps 
where little is known about particu-
lar processes that may only come 
into play in certain conditions. 

An important role of the crop 
models is to generate information on 
such gaps so that ultimately this 
knowledge can be built back into the 
model, thereby increasing its sensi-
tivity to peculiar ir marginal condi-
tions in which tne crop is grown. 
Once amodel has been validated for 
aparticular location, then any inabil-
ity of the model to simulate reason-
ably successfully a particular field 
trial in that location can be ascribed 
to the occurrence either of some-
thing outside the model's predictive 
capacity (potassium deficiency or 
disease attack, for example) or of 
something outside the range of the 
relationships built into the model, 
such as might occur under condi-
tionsofextremestress.TheCERES 
Sorghum model, for example, has 
been adapted to take account of 
seed scorching in the Northern Ter-
ritory of Australia (Carberry and 
Abrecht, 1990); soil surface tem-
peratures can reach 60"C, causing 
total loss of seed. Anew function has 
been built into the model, involving a 
linear decrease in seed survival 
above soil surface temperatures of 
40"C; simulated sorghum plant es-
tablishmentdensities andyields now 
more accurately reflect experimen-
tal results in this particularly harsh 
environment. Inthis way, data sets 
can be collected from the field and 
used to extend the applicability of 
particular relationships in the crop 
models. 

The Farm Level 
Inconsidering model applica-

tions at the farm level, two aspects 
have to be borne inmind: the neces-
sityofconsideringalltheenterprises 
in which the farmer is engaged, be-
causethese are competing forscarce 
resources, and the desirability of 
quantifying the economic and social 
framework within which the farmer 
operates. 

Any economic analysis of a 
single season's returns remains in-
complete: nothing is said about 
what happens to the household's 
livelihood inthe event of asequence 
of poor years, for example. Cash or 
resource carryover effects from one 
season to another may be of para-
mount importance (in broad terms, 
the farming system's economic 
sustainability); low but dependable 
cash income may allow the house-
hold to subsist from one year to the 
next, whereas high but variable cash 
income may spell disaster if poor 
years are experienced in succes-
sion. Smallholders rarely if ever op-
erate only one farm enterprise. One 
of the central tenets of systems phi-
losophy is that improvements to one 
component of the system cannot be 
presumed in an isolated analysis to 
lead to enhancement of the overall 
system; perhaps the new technol-
ogy has increased labor demands 
which, when seen in a whole farm 
setting, put a labor squeeze on other 
enterprises. To take such factors 
into account, the modeling concept 
may be taken a stage further 
(Thornton and Dent, 1987). 

This next stage involves inte-
grating a number of crop simulation 
models with elements representing 
the most important socioeconomic 
factors that constrain, or otherwise 
impinge upon, agricultural produc-
tion and decisionmaking inaparticu

representative farm household in a 
district, technology can be designed 
with a much clearer notion of the 
ojverall impact it may achieve on 
production. 

Socioeconomic modelingcan be 
based on a variety of optimizing and 
nonoptimizing techniques, but it is 
essential, within the whole farm 
framework, totake into accountcon
sumption behavior, attitudes to risk 
and to borrowing and investment, 
and seasonal labor availability. In 
any farm model, revenue will be a 
function of farm production, which 
canbederivedfromsimulationswith 
the crop models and aknowledge of 
the costs and prices involved and 
theirseasonalvariation,forexample. 
This revenue is used for family con
sumption, for farm operating ex
penses, and for servicing any debt; 
the balance, whether negative or 
positive, results in reserves being 
built up or depleted and investment 
or disinvestment on the farm, which 
affects subsequent production. The 
prices and costs of production may 
begeneratedstochasticallyandthen 
combined wiih the yield distributions 
to produce distributions of net rev
enue or gross margin, for example. 

A furtherlayertothis framework 
consistsoffactorsottwobroadtypes: 
socioeconomic constraints and the 
most important of the host of 
nontechnicalfactorsthatimpingeon 
farmers' decisionmaking. For ex
ample, labor use might depend on 
such things as the division of labor 
between the sexes and household 
attitudes and objectives, as well as 
the availability of labor for hire inthe 
district and the household's ability to 
hire it. 

Afarm model constructed around 
these notions could be used in two 
major ways: 

lar place. With such a structure, it 1. To assess the agronomic and 
becomes possible to examine alter- socioeconomic feasibility of 
native technologies within the total changes to farmers' production
production framework of the farmer. practices, such as the introduc-
If the farm model is set up for a tion of a particular agricultural 
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technology orof anew cropping 
rotation. 

2. 	 To investigate the effects of pos-
sible government policy initia
tives on the adoption of new 
technology through an assess-
mentof household responses to 
different scenarios. 

Such assessments would involve 
investigation of the sustainability and 
variability of proposed changes and 
the effects that these would have on 
the long-term performance of 
smallholders. 

Modeling Socioeconomic 
Factors--It is difficult to include in a 
modeling framework the important
,:ocioeconomic factors that affect 
decisionmaking; some will act as 
constraints to production, which are 
comparatively easy to treat, while 
others may be much harderto quan-
tify. One approach to such factors is 
to use sets of rules that, it is hypoth
esized, govern farmers' behavior. 
Some examples follow. 

1. 	Considerthe household's treat
ment of a cash surplus or defi-
cit; this will inevitably reflect 
cultural and societal norns, in 
addition to household objec-
tives and biophysical con-
straints. The illusLration in 
Figure 8 is taken from a New 
Zealand context (Beck and 
Dent, 1987) and shows a typi-
cal set of prio,ities for dispos-
ing of acash surplus cr meeting 
a cash deficit. A cash deficit 
can be allayed by drawing from 
cash reserves; if these are ex
hausted, then routine farm 
maintenance expenditure can 
be put off until a better year; if 
no more expenditure can be 
put off, then borrowing har to 
be increased. Similarly, acash 
surplus might first be used to 
payoff someof thefarm'sdebt; 
if debt is reduced to a reason-
able level, then any deferred 
farm maintenance can be car-

investment 

-

R
Cash 
eserves 

,, . 

Cash Surplus -

tExpenditure 
M - orm 

Bse 

" 
, " 

Surplus 
...... Deficit 

Figure 8. 	 Prioraies for Dealing With a Cash Surplus or Deficit in 
a New Zealand Hill Farming System. 

Cash 
abor Inputs 

InformationEnd-Use 	 Demands 

A New 
iety ? 

Varietal 
Preference 

Place of Crop 
in 	 Farming System 

Household 
Innovativeness 

Variability & 
Cash Flow Effects 

Figure 9. Factors Affecting the Decision to Plant a New Variety. 

ried out: after this, liquid re- 2. Consider the set of factors that 
serves will be built up to reach determine whether a new bean 
some specified level, and then varietywill be adopted in Guate
on- or off-farm investment can mala (Figure q, from Thornton 
take place. The priorities them- and Dent, 1990)). Such factors 
selves maybe rather different in will include labor, cash inputs, 
a smallholder context, but the access to information (if un
concept remains the same. familiar husbandry techniques 
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Level 

I 

2 Low 

Landowner 

High Cash Reserves 

Tenant 

Low High 

3 

4 

Risk Aversion 

Social Aspirations 

Income Level 

Age 

Risk Aversion 

Household Size 

Social Aspirations 

Income Level 

5 
Household Size Education

AcstoDiscretionaryAgAccess to Consumption 
Information 

Income Level Risk Aversion 

6 
Age Social Aspirations 

Cash Growth 

Off-Farm Acitivity 

2 3 
Farm Type 

Figure 10. A Hypothetical Farm Classification. 

have to be used), varietal pref-
erences, household innova-
tiveness, yield stability and 
effects on household cash flow, 
and the end-use of the beans 
(aretheytobeconsumedbythe 
household or sold off-farm?). 
Yield stability, for example, can 
be investigated directly using 
the bean growth simulation 
model.Someoftheseotherfac-
tors can betreated as constraints 
to production: hired labor may 
not be available; beans must be 
black and must have a short 
cookingtimetobeacceptableto 
most consumers inGuatemala. 
Other factors are more difficult 
to quantify: household 
innovativeness, in particular, 
may itself depend on factors 

such as type of land tenure, 
attitudes to risk, and social aspi-
rations. For these, sets of rules 
can be assembled to allow such 
constructs to be described, 

3. 	 How might household inno-
vativeness be represented ina 
modeling framework? A hypo-
thetical classification of farm 
households ispresented inFig-
ure 10. This suggests a pri-
mary classification of farm 
households into those owning 
land and those farming land 
belonging toothers. Atthesec-
ond level of classification, the 
figure distinguishes between 
households on the basis of high 
or low cash reserves. For the 
four resulting farm household 
types, a ranking of other at-

Age 

Risk Aversion 

Household Size 

4 

tributes is provided for their 
relative importance ininfluenc
ing household innovativeness. 
Thus, for example, for tenant 
farming households with high 
cash reserves (farm type 4, 
Figure 10), it might be hypoth
esized that social aspirations 
will be the major motivating 
force for innovation followed 
by income levels in recent 
years. Risk attitudes will play a 
part in determining innova
tiveness in such households, 
but these are ranked below 
age considerations and equiva
lent to household size inimpor
tance. This kind of classification 
can be handled ina rule-based 
framework to determine the 
potential for innovation of a 
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Potential for 
Level 3 4 5 6 Innovation 

High 

High Social 
Aspirations ? I Medium 

High Income 

Level ? 

- Low 

Household 
Head Young ? 

Household Small ? * Low 

Tenant With Hig CsReserves-ZlZnwHouseholdJ NotToo Risk-Averse ? " Low 

L--w-b Very Low 
Figure 11. Household Innovativeness Potential. 

particular household type. Thus moderately risk averse might be be investigated, and their suitability
in the scheme of Figure 11, a expected to have a very low for representative farming house
tenant farmer with high cash potential for innovation, holds can be explored. Three applireserves and with high social Such socioeconomic analysis, cations in particular at the farm level
aspirations might be expected including the classification of farm are discussed briefly: the design ofto have ahigh potential for inno- types and the ranking of attributes, cropping systems, identification of
vation. If, however, the farmer occurs as a result of socioeconomic on-farm constraints, and analysis of
does not have particularly high data collection through formal and agropastoral production systems.
social aspirations, but house- informal surveys. Such activity is of
hold income levels in recent no less importancetothewholefarm 1. Cropping System Design:
years have been relatively high, model builderthan biological experi- Once the individual crop models
then the household's potential mentation isto a crop modeler. Con- have been strung togethier to
for innovation might be expected siderable work remains to be done allow cropping sequences to beto be medium. Such a structure on this type of modeling, however. simulatedovermutipleseasons,
involves trade-offs between The Use of Farm Models- with concomitant carryover efranked attributes (intheexample Model applications at the farm level fects of soil water and nutrient
just given, high income levels in can involve the same set of experi- status, it becomes possible torecent years partly offset l3ck of mental factors as were considered investig3te the feasibility of
social aspirations). At the other forthefield level, onlynowpackages changes to cropping systems.
endofthescale, a tenant farmer are assessed in relation to the In general terms, such experiwho has low cash reserves and household's resource base and the mentation follows that outlined
low social aspirations, who has objectives and attitudes of house- above with reference to variety
achieved low income levels in hold members. In this way, both selection: crop types can berecent years, and who is no biological and economicfeasibility of defined explicitly by the user, orlonger young and is at least particular production practices can gaps in the cropping sequence 
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can be filled by varying the 
crop-specific cultivar coeffi-
cients. In either case, the ef-
fectson household viabilitycan 
be observed over a numberof 
seasons using historical or 
simulated weather sequences 
for given economic scenarios, 

2. 	On-Farm Constraints: A 
problem that is often cited as a 
hindrance to the rapid adop-
tion of new technology is the 
disparity that sometimes arises 
between yields obtained inplots 
on the experiment station and 
those commonly achieved in 
the fields of resource-poor 
farmers. In some cases, it is 
not only the yield levels that will 
differsubstantially, but alsothe 
relative rankings of different 
technology packages. In a 
broad sense, such disparities 
can be attributed to differences 
in the resource base between 
the two situations: on the ex-
periment station, soil nutrients 
will not usually be limitingfo 
labor is freely available for 
weeding and for planting at the 
optimum time, forexample. The 
situation in the farmer's field 
may be very different. A farm 
model can be used to help iden-
tify the root causes of this yield 
differential problem in a par-
ticular situation by focussing 
directly on farmers' crop hus-
bandry techniques and by at-
tempting to simulate farmers' 
yield levels rather than those 
obtained in field plots, 

3. 	 Agropastoral Farming Sys-
tems: The ubiquity of mixed 
farming in many parts of the 
tropics and subtropics repre-
sents a potential resource of 
enormous implications for the 
design and operation of low-
input, sustainable production 
systems. Unfortunately, the in-
teractions between animal and 
crop enterprises are not always 
well-understood and conse-

quently are difficult to model 
satisfactorily. Soil incorporation 
of crop residues, feeding of 
residues to animals, and the 
return of nutrients to the soil by 
the animal, are all areas that 
require considerable research, 
some of it basic, if much 
progress is to be made in mod-
eling agropastoral systems. 

With multiple cropping sys-
tems, crop-livestock systems share 
the following characteristic: there 
are so manycombinations and per-
mutations of experimental variables 
that traditional experimentation in-
volving such systems is unlikely 
ever to unravel the complexities to 
the point where useful manage-
ment recommendations can be 
made. Modeling is probably the 
onlyrealisticwayofexaminingsuch 
systems. 

The Regional Level 
A further step in the scope of 
mofurtherepin toke acontr 

crop modeling is to make a contri-
bution at the regional level. 
Policymakers work with a broad 
brush;they needto articulate agri-
cultural policies concerning not only 
farmers' incomes and regional de-
velopment but also macrosocial and 
macroeconomic factors involving 
income distribution, public welfare, 
balance of payments, and trade. 

The data bases for soils, 
weather, and crops, the simulation 
models, and simplified farm-level 
models, can be integrated with a 
Geographic Information System 
(GIS). This is shown in Figure 12 
(adapted from King, 1989). Thetop 
three overlays constitute a tradi-
tional GIS, with a graphics base on 
the left-hand side of the figure and 
a data base of spatially organized 
information on the right-hand side. 
Two further overlays are added, 
involving types of agricultural sys-
temsandrepresentativefarmtypes 

within the agricultural zones, char
acterized in terms of important de
terminants. In Figure 12, two such 
determinants are included for illus
trative purposes: household size 
and income level. There will be 
other, such as type of land tenure. 

The crop models can then be 
run, alone or in sequence to simu
late crop rotations, using the spa
tially organized data in the GIS. For 
a particular location, the following 
information is extracted: 

• 	The appropriate soil profile 
description. 

* The appropriate set of coeffi
cients to allow statistical genera
tion of weather sequences. 

* The appropriate farm type, in 
terms of cropping patterns and 
land use. 

• 	The appropriate representative 
farm and household description. 

For each location, the crop 
models can then be run to produce 
information on production levels 
and stability and on resource use. 
Model results from many such lo
cations can then be aggregated to 
produce estimates of regional re
sponse to particular input combi
nations. Such simulations can be 
carried out over many simulated 
season types, with or without sto
chasticcost-pricevariables, topro
duce distributions of the outputs of 
interest. 

A regional agrogeographic in
formation system could be used in 
a number of ways: 

1. 	As a store of information on 
farming systems that can be 
updated continually, mainly by 
survey, to produce timely sta
tistics of current land use pat
terns and production levels and 
how these are changing over 
time. 

2. 	 As a short-term policy tool, in 
relation to forecasting for the 
coming year or the current 
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season. Here, regional simula
tions of yield and resource use 

i rwould give an estimate of re-Poils r I ' quirements for imports of agri-
Profiles il cultural inputs and exports of 
Zoes So Analys. commodities, any aid require

ments in response to a bad 
Weather season, and likely international,ehr loan requirements, forexample. 

Weather Stations Ruinfall 3. As a long-term policy tool, to 
Interpolation Temp investigate the effects ofchange

Radiation on regional production and 
Regions resource requirements. SuchRegions changes might be economic, 

Zones etechnological,-I'they 	 or climatic, ormight be substantial policy 

Lan 	 or trade changes to the eco
nomic environment within which 
farmers operate.

Agriculture An Example of Spatial Varia

tion of Biological Response-
Zones One of the key issues which can be 
n Agricultural addressed with a GIS that has crop 

System simulation models linked to its data 
base is the effect of spatial soil 
variability on agricultural produc-Farm Type tion. The physicalcharacterizations 

Representative d available from the InternationalFarms , HueodiI SCS soil data base for Guatemala 
,Household Size 	 (Table 2), for example, have been
SncLevel1 	 used to study potential bean pro

duction of these soils (Hoogenboom 
et al., 1990). The bean model uses 
14 years of historical weather dataBean for a site in southeastern Guate-

Maize mala, and the simulated response 
Sorghum I of two varieties of phaseolus bean, 

planted on June 1, shows a strong
Crop variation as a function of the vari-

Models ous soil characteristics (Figure 13). 
Soil 3, which has the least depth 
(0.5 m) and the smallest amount of 

Regional: /extractable soil water, produces 
Production the lowest yield, with a standard 

deviation as large as the average 
" yield for the 14 years of this study.Uptake


Resource Use 	 ASoil 12, which has the greatest Adapted from Kng (1989) depth (1.50 m) and the largest 

amount of extractable 	soil water,
produces the highest yield and the 

Figure 12. Integration of an Agricultural GIS and Crop Sinrula- smallest standard deviation of all
tion Models. the soils used in this study. 
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Table 2. 	 Guatemalan Soils in the International Soil Conservation Service Soils Data 
Base. 

Pedona Depth E-Wb Soil Type Soil Classification 
(M) (mm) 

83P0511 1.40 169.1 clay loam Fine montmorillonitic isohyperthermic typic 
Hapludoll

83P0512 1.75 204.7 clay Fine mixed isohyperthemic typic Humitropept 
83P0513 0.50 43.8 clay Fine mixed isohyperthermic shallow typic 

Haplustoll
83P0514 1.50 167.0 day Loamy-skeletal mixed isohyperthermic typic 

Ustifluvent 
83PO515 1.40 165.6 clay Very fine mixed isohyperthermic udic 

Chromustert 
83P0516 1.40 168.4 clay Very fine montmorillonitic isohyperthermic 

udicPellustert 
83P0517 0.50 clay loam57.9 	 Clayey halloysitic isohyperthermic lithic 

Argiustoll
83P0518 1.45 152.6 clay loam Clayey-skeletal mixed isohyperthermic 

Ustifluvent 
83P0519 1.20 139.8 clay Very fine kaolinitic isohyperthermic fluventic 

Haplustox
83P0520 1.20 142.5 clay Very fine halloysitic isohyperthermic typic 

Argiustoll
83P0521 1.28 105.8 clay loam Sandy mixed nonacid isohyperthermic aquic 

Tropofluvent
83P0522 1.50 215.9 sandy loam Fine-loamy mixed nonacid isohyperthermic 

aquic Tropotluvent 

a. Soil conservation Service Pedon Number 
b. Extractable water 

Yield (t/ha) 

2.0 

1.5-

1.0-

0.5. 

0 
.... 

.. . . 
1 2 3 4 5 6 7 8 9 10 11 12 

Soil Type 

ICTA Ostua Rabia de Gato 1 Standard Deviation 
...combination 

Figure13. Mean Yield andStandard Deviation for Two Varieties of 

Bean on 12 Soils InSoutheast Guatemala. 


This example clearly demon
strates that the total amount of 

extractable soil water is crucial for 
bean production, although theplant
ing date coincided with the regulargrowing period during the normal 

rainy season. Other 	soil factors, 
however, can limit bean production 
as well. 	Soil 7, with only 57.9 mm
extractable soil water, produces a 

higheryield than both soil 5 and soil 
10, with 165.6 mm and 142.5 mm 
extractable water, respectively. For 
the highest yielding conditions, 

Rabia de Gate outperforms ICTA 
Ostua, except for soil 12. For lower
yielding conditions, however, ICTA 
Ostua performs better. 

Regional Yield Response PO
tential-n this section, a purely
hypothetical region is used to illus
trate model use. The biophysical 

environment hypothesized for this 
region (Figure 14) includes four soil 
types, which are mapped as shown. 
Daily weather data with which to 
run the crop models are available 
for three sites. Physical relief is 
uniform over the region, so no in
terpolation of weather records is 
attempted; instead, the region is 
divided into three zones using
Dirichlet tessellations (i.e., bound
aries are drawn such that each 
point within a polygon is nearer to 
the associated weather station than 
to any other weather station), and
the weather is assumed to be uni
form within each polygon. A high 
percentage of the region is cur
rently arable. 

Assume that it is planned to 
release a new variety of maize. 
The new variety outyields the vari
ety traditionally grown inmost years,
but it also exhibits a higher yield 
variability; response depends on 
weather and soil type. For each 

of weather and soil 
type, the maize model is run over 
30 sealsons using both the tradi
tional and the new variety. 

Potential yield response to the 
use of the new variety is shown in 
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Figure 14. Simple BiophysicaI DescriptorsofaHypothetical Region. 

Figure 15, where polygons are as- types that correspond approxi-
signed percentage differences as mately to good, average, and bad 
shown, in terms of the mean and years. Such maps can then be
the 10th and 90th percentile of the used to identify regional fertilizer
yield distributions. By combining recommendations that are eco-
this yield information with the ar- nomically and environmentally ap-
able area mapped ineach polygon, propriate, for example.
the modeler can estimate regional Technology Design and As-
yield response in three season sessment-The crop models can 

be used within such a GIS frame
to investigate a whole range

of effects; the limits of the experi
domain are imposed solely 

by the sensitivity of the relevant 
to oiological and manage

ment inputs. For example, the 
can provide regional fertil

izer recommendations, tailored to 
the specific soil and climatic condi
t__tions within a region. Optimization 
techniques for use with the crop
models are still underdevelopment.
Deriving output distributions for all 
polygons of a realistic spatial data 
base requires substantial compu
tation. The use of faster comput
ers, either serial or parallel, isalso 
under investigation (Thornton et 

1991a). 
nutrient budgeting is 

also possible, by running simula
tions of cropping sequences over a 

of seasons. For many such 
uses, economic analyses can be 
carried out, as for single sites, to 
produce estimates of regional im
pact on enterprise gross margins 
or changes to net farm income. 
These responses can then be 
mapped inamanner similar to that 
shown in Figure 15. 

Adoption Dynamics-The in
tegration of the crop models, spa
tial physical data bases, and
representative farm models poses 
considerable problems, but the po
tential payback isthe ability to model 
adoption patterns of particular 
agrotechnology packages overtime 
and to identify feasible pathways
for step-wise farming system de
velopment where substantial 
changes are proposed. 

For example, assume- that, in 
addition tothebiophysicalinforma
tion in Figure 14, the region has 
been characterized by farm type.
Farms might be specified interms 
of factors similar to those shown in 
Figure 10. The various farm types
have different potentials for adop
tion of the new variety, ranging 
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new agrotechnology package. An 
10th Percentile 90th Percentile adoption model capable of react

ing to biological and economic risk 
arid to farmers' likely behavioral 
patterns represents an enormously
powerful tool for ex ante analysis 
by researchers, extensionists, and 
policymakers, if it can be con
structed: the chances of unsuc-

Scessful agrotechnology release 
... would be reduced, and the effects......
 

on the efficiency of research and
Mean Yield Response development would be profound. 

How site-specific such amodel 
would be is an interesting question. 

>. 20% Although there are undoubtedly 
similarities between diverse pro-

ED 10- 20% duction systems in the way that 
farmers can react to change, the

F 0 - 10% differences would appear to be 
larger than the similarities. It is[7 < 0% possible that future research may 
lead to the identification of suitable 
paradigms that could form the ge-

Figure 15. Regional Potential Yield Response. neric core of all such adoption 
models, no matter where the loca
tion, but this is by no means cer
tain.from no potential to high potential. large amount of data collection and
 

For each polygon of the relevant analysis, the nature of which is
 
farm type, probability of adoption in largely unknown. More importantly,
 
any year might be related to an how can nonspatial attributes be The National Level 
appropriately shaped adoption represented spatially? In a soil Ifthe problems of the regional 
curve and to the potential yield classification, for example, soil level prove tractable, then there 
response: thus the probability of zones tend to be contiguous. In a arefewreasons foresuppsing that,
adoption inyear 1forone farm type classification of farm type, there conceptually, aggregation to the 
is zero, whereas that for another may be little clustering for attributes national level presents insuperable 
type in a high-yield response poly- such as risk aversion, and perhaps difficulties. National- and even glo
gon might be 0.2 in year 1and 0.5 not much even for attributes such bal-level studies using crop simu
in year 2, for example. Integrating as farm size. For most regions, a lation models are already 
all this information would allow complete survey of all farming underway, notably to investigate 
simulated adoption patterns to be households is out of the question; the effects of carbon dioxide
tracked overtime, and maps could therefore, how to sample the popu- induced climatic change on crop 
be produced, one for each year for lation and how to represent the production (see, for example, Smith 
a number of years after variety resultsspatiallyasoneofanumber and Tirpak, 1989; Parry, 1990). 
release, showing areas where ofwell-definedfarmtyesareques- The biophysical aspects present 
adoption has occurred and areas tions that need some attention, few problems, although the current 
where it has not. Theimplicationsoitakingmod- status of the general circulation 

Although such an example eling to such a level are obvious: models used to generate new cli
would be simple to construct, sub- not only can biophysical and socio- mate scenarios is far from ideal. 
stantial problems would need to be economic feasibility be assessed, Impact assessment at the national 
overcome before a real problem likely impacts on the resource in- level, however, is subject to the 
could be tackled. Adoption poten- puts and outputs of the region can same problems as outlined above 
tial may be the final outcome of a also be judged in response to a at the regional level. 
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Strategic and 

Tactical 


Decisionmaking 


Almost all of the applications 
considered above involve the provi-
sion of information for helping to 
make strategic or long-term deci-
sions. Some of the decisions that 
farmers routinely face are of this 
nature, such as deciding what crop 
to plant this season and when to 
plant it. Farmers have to live with the 
consequences of such decisions for 
the duration of the growing season; 
in general, such decisions do not 
need to be taken again until the start 
of the season cycle the following 
year. There are many other deci-
sions, however, that aretakenwithin 
a particular season that will have 
ongoing impacts on yield, such as 
when to irrigate or when and how to 
take action against weeds and pests 
that appear in the crop during the 
growing season. Inthe more devel-
oped areas of the world, the use of 
computer models in aiding such tac-
tical decisions is an area of rapid 
expansion (see, for example, 

Conclusions 

The various levels at which crop 
simulation models may be applied 
are summarized in Table 3. 
Whether models can be used suc-
cessfully in the near future insome 
of these applications depends 
heavily on finding solutions to some 
difficult problems. In particular, re-
searchers need to find ways of 
increasing crop model sensitivity 
to factors such as multiple crop-
ping, residue incorporation, pests 

Batchelor et al., 1989; McKinion et
al., 1989). These decisions are usu-
ally the preserve of the individual 
farmer and arc taken with reference 
to his or herown particularconditions.

There are obvious reasons why 
suchon-farmtacticaldecisionmaking 
tools are inappropriate forsmallfarm-
ers in the tropics: these decision 
aids are prohibitively expensive, and 
for resource-poor farmers, there are 
few options available for reacting to 
external factors during the growing 
season (which maywellobviatetheir 
need anyway). The bias towards the 
use of models for strategic 
decisionmaking purposes in devel-
opment is thus understandable, 

At the policy level, however, tac-
tical information may be very impor-
tant. Some idea of this is given in 
Figure 7, where the distribution of 
yield ismodified throughout a grow-
ing season. These changes in the 
shape of the yield distribution may 
be the result of a number of factors: 
weather, weeds, and pest or dis-
ease attack, for instance, or combi-
nations of such factors. This ability 
of acrop simulation model to act as 
an early-warning system is poten-
tially of great utility and importance. 
The early identification of regional 
shortfalls or surpluses inagricultural 
production would allow planners to 

and diseases, and crop-livestock 
interactions. Until this is done, crop
simulation models will be incapable 
of representing the biology of im
portant classes of agricultural sys-
tems in any general fashion. 

Of the applications listed in 
Table 3, those at the farm level can 
be expected to be the most prob-
lematic because of the difficulties 
associated with farmers' 
decisionmaking behavior. A key 
research area here is the feasibility 
of using rule-based methodologies 
to represent important qualitative 
factors that impinge on farmers' 
decisionmaking processes. 

take appropriate action very much 
quicker than would normally be the 
case. The prediction of relatively 
narrow bands within which yield is 
likelyto fall inaparticular season can
also be used to forecast likely com
modity prices at the end of the sea
son. The benefits to planners (and, 
for that matter, entrepreneurs inthe 
agricultural sector) are obvious. 

Despite the patent absurdity of 
the concept of on-farm computer
based tactical decision aids for 
resource-poor farmers in the trop
ics, there are potential benefits from 
the use of such tools that can be 
passed on to the farmer through 
extension services. Inparticular, the 
tailoring of fertilizer recommenda
tions, and of pest and disease man
agement recommendations, to 
specific season types is worthy of 
investigation. Such recommenda
tions, which need not be complex 
even though the tools used to derive 
them may well be, could help to 
increase the efficiency of resource 
use, either by reducing inputs in 
seasons when yield potential is very 
low (and would thus be largely
wasted) or by increasing returns to 
smallholderfarmersinseasonswhen 
yield potential is high and low input 
but timely and effective manage
ment options can be exercised. 

A number of these model ap
plications are being pursued at 
IFDC, including the following: 

• 	Fertilizeruseefficiencyformaize, 
wheat, and sorghum at locations 
in Latin America (Argentina, Uru
guay, and Brazil) and Africa 
(Malawi and Kenya) at the field 
and region levels. 

• 	Use of crop models to investi
gate the effects on production of 
carbon dioxide-induced global 
warming, using a variety of gen
eral circulation models to gener
ate possible future weather 
scenarios. 

20 



" Crop model development of the following: wheat,
maize, rice, sorghum, millet, barley, and the model
ing of nitrogen and phosphorus dynamics.

" The investigation of yield and nitrogen dynamics
(uptake and efficiency) for maize and sorgi.. -n on a 
regional basis in the semiarid tropics. 

* A farm-level project concerned with modeling the 
bean-maize-sorghum systems found in southeast
ern Guatemala; model validation and calibration are 
being carried out. An expected output is a prototype
whole farm model as outlined in the discussion of 
applications at the farm level. 

" Fertilizer use and soil fertility issues for the maize 
crop in Malawi, for the major agroecological zones 
in which maize is grown. 

In all such activity, model applications need to be 
problem-driven; if there are more efficient or better 
ways of solving particular problems, they should be 
used. Modeling is a tool like any other; it is highly
suitable for solving some types of problems and totally
inapt for solving others. Hc,wever, models can contrib
ute substantially to some of the global research areas 
of the age: the environment, sustainability, and low
input agriculture, to name but three. With care, mod
ern information technology can be used to generate
and collate information that can be passed on in
various ways to benefit the resource-poor farmer of 
the tropics and subtropics. 

Table 3. Uses of Biological Models by Level, With Examples of 

Relevant Applications 

Level Research or Development Objectives 

FIELD:
 
- biological biological feasibility and stability
 

FARM: 
- biological biological feasibility and stability 
- economic economic feasibility and stability 
- socioeconomic adoption of newtechnology; reactiontochange 

REGIONAL:
 
- Infrastructural land uso capability; regional adoption patterns
 

and dynamics 
- environmental environmental Impact 

NATIONAL: 
-macropolitical resource use; effects of government policy; 

human nutrition 
- macroecosystemic dlmate change 
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APPENDIX
 
Stochastic Efficiency Criteria
 

The stochastic efficiency rules are an important 
class of decision criteria, which are particularly suited to 
the analysis of simulation model output. They have their 
basis in Bernoullian utility theory, and they differ in the 
assumptions that are made about the decisionmaker's 
attitude to risk. Developed to tackle the problem of 
portfolio selection in investment theory, they are now 
firmly entrenched tools for risk analysis in all sorts of 
applications. All involve a pair-wise comparison of ran-
dom variables, and strictly speaking, these should relate 
to financial gains and losses. The result of the analysis 
isan efficient set. The efficient set contains a subset of 
treatments that are superior (there may be one only, but 
usually there will be more than one efficient treatment). 
Three variations are described briefly (for a full treat-
ment, consult Anderson et al. [1977] for the first two and 
Buccola and Subaei [1984] or Fawcett and Thomton 
[1990] for the third). 

1. Mean-variance (EV) analysis 

For two risky prospects, A and B,with means E(.) and 
variances V(.), respectively, A dominates B if 

E(A) = E(B) and V(A) < V(B) 
or if 

V(A) = V(B) and E(A) < E(B). 

A is then said to be EV-eficient. If prospects are 
plotted in EV space (V the ordinate, Ethe abscissa), 
then utility increases inanorth- westerly direction. EV 
analysis assumes that the decisionmaker has a 
quadratic utility function for gains and losses, and/or 
that the risky prospects are distributed normally (or at 
least distributed symmetrically). These are often 
untenable assumptions, and the EV criterion has 
fairly weak discriminatory power (i.e., the efficient 
sets tend to be large). 

2. Stochastic Dominance (SD) analysis 

For two risky prospects, A and B,A dominates B by
first-order stochastic dominance (FSD) if the Cumu

lative Distribution Function (CDF) of gains fromA lies 
to the right of the CDF of Bover the entire probability 
interval 0to 1. 

If the CDFs of A and B intersect, then no dominance 
by FSD can be established. If, however, the area 
betweenthetwoCDFsbelowthepointof intersection 
isgreaterthantheareabetweenthetwoCDFsabove 
the point of intersection, then A dominates B by
second-order stochastic dominance (SSD); other
wise, no dominance can be established, and both A 
and B are second-order efficient. 

For FSD, no assumptions are made about the atti
tude of the decisionmaker to risk; for SSD, it is 
assumed the decisionmaker isaverse to risk to some 
unknown degree. No assumptions need be made 
about the distributional properties of the random 
variables either. 

3. Mean-Gini Dominance (MGD) analysis 

For two risky prospects, A and B,A dominates B by 
MGD if 

E(A) >= E(B) and E(A) - g(A) = E(B) -g(B) 

with strict inequality for one of these expressions,
where E(.) is the mean, and g(.) is the gini coefficient 
of distributions A and B (which is half the value of 
Gini's mean difference: the absolute expected differ
ence of a pair of randomly selected values of the 
variable). 

MGD, like SSD, assumes that the decisionmaker is 
averse to risk, but unlike SSD, it excludes the mor
bidly risk-averse from the analysis. It is thus a more 
discriminating decision nle than SSD (because the 
MGD efficient set is usually smaller), and,
computationally, MGD is generally much easier to 
establish than SSD. 
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