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Abstract 

A length-structured population model, which incorporates von Bertalanffy growth, is used 
to describe changes in population abundance over time. The model is incorporated into a 
catch-at-length algorithm that uses a nonlinear least squares approach to estimate relative 
abundance, fishing mortality, selectivity, and the von Bertalanffy growth parameters L. and k. 
The algorithm is applied to a simulated data set for Pacific cod (Gadus macrocephlus) and to 
catch data on Pseudotolithus typus and Decapterus russellii. The parameter estimates of Pacific 
cod obtained from this algorithm were comparable to the values that were originally used to 
simulate the data. Although the catch data of P. typus did not exhibit the full range of sizes 
present in the population due to differential vulnerability of the population to the fishery, the 
estimates of L. and k reflect the growth over the entire size range of the population. Other 
population estimates for P. typus were in agreement with observed biological information. The 
estimated growth parameters L. and k of D. russelii showed some discrepancy with the 
information available on mature individuals present in this fishery, but appeared to adequately 
represent year one growth. The estimated population and exploitation parameters fit the 
observed catch-at-length. Estimates made with this catch-at-length approach can be improved 
by using auxiliary information that may be available on abundance, fishing effort, recruitment, 

and growth. 



Introduction 

The estimation of stock abundance, recruitment, fishing mortality, and gear selectivity is 

the principal objective of stock assessment. Many of the principal contemporary estimation 

procedures are based on the application of the Baranov catch equation (Ricker 1975) to catch 

data classified by age group. This has led to the development of several powerful stock 

assessment algorithms including virtual population analysis or VPA (Fry 1949, Gulland 1965, 

Murphy 1965), age cohort analysis (Pope 1972), and catch-at-age analysis (Doubleaay 1976, 

Fournier and Archibald 1982, Schnute 1985, Deriso et al. 1985). The classification of catch data 

into strata or groups that are homogeneous by age suggests that higher quality inferences (Quinn 

1986) will result, but there are associated high costs. The determination of age may be 

hampered by inaccuracy, imprecision, or a lack of valid ageing methods (Lai 1985). These 

difficulties are partially resolved by the use of an estimation proceduie based on the length 

composition of the catch. 

Many length-based stock assessment methodologies depend on a von Bertalanffy giowth 

model to translate length into age so that the exponential decay cohort model can be applied. 

Length-cohort analysis (Jones 1979, 1984; Lai and Gallucci 1987, 1988) and estimators of Zik 

(e.g., Beverton and Holt 1956, Ssentongo and Larkin 1973) are among the most popular. 

However, a number of assumptions fundamental to these length-based methuds limit their 

applicability. These are: 

I. that length distributions are in a steady state over time. 

2. that recruitment to the fishery is knife-edged and constant. 

3. that growth is a deterministic process with length-at-age being well-defined. 

The stock assessment estimation methodology developed in this paper makes no assumptions 

about the steady state of length distributions and the knife-edged constant recruitment; it 

computes gear selectivity as a function of fish length from the data; and it describes growth 

with a stochastic model based on the probability of individuals moving from one length category 

to another. 

The input is catch data in the form of a time series of length distributions and a set of 

starting values to initiate the optimization algorithm. The output is a set of estimates of 
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abundance and recruitment over length at specific times, fishing mortality over time, gear 

selectivity by fL-h length, as well as estimates of the growth parameters L. and k from the von 

Bertalanffy model. 

Model Development 

The model that underlies this estimation procedure characterizes the dynamics of the 

population in terms of numbers at length over time. This length-structured mathematical model 

describes the exploitation and growth of individuals in the population explicitly in terms of 

length, and is formulated in terms of two basic relationships. The first relates catch-at-length 

to abundance. The second characterizes changes in numbers at length from one time step to the 

next. 

Catch (C(.,) for a given length cl'is 1 (1=1 .... n) and time t (t=O ... , tmax) is related to 

the number of individuals in the population (N,.,) in that length class at that time through a 

length-based exploitation rate (-,). The general form of the Baranov catch equation (Ricker 

1975) indexed in terms uf length class rather than age, holds at time t for fish of length class 1: 

C t,t "- 1-t ,tN ,t ' (1I) 

Where the exploitation rate p., represents the proportion of individuals that die due to 

fishing mortality, given they were in length class I at time t. The exploitation rate is therefore 

dependent on the fishing mortality rate F,., and total mortality rate Z,., of fish of length class 1 

during time t in the following way: 

.- 1 1 ­
(2) 

where F., and Zj., are in units of 1 At . Combined, equations (1) and (2) reflect the standard 

form of the Baranov catch equation with individuals classified by length iather than age. The 
units of the time interval At may be expressed in years, as they are in most age-structured 
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models, but they may also be expressed in terms of the time increment over which the 

observations were collected (e.g., months, weeks, etc.), which may also change from time step to 

time step. 

Fishing mortality is a function of fishing effort and gear selectivity. We assume that 

fishing mortality is separable into a product of a length-specific selectivity coefficient s, and a 

full-recruitment fishing mortality rate f, at time t following Doubleday's (1976) approach for 

age-based groups, and express it as: 

F1 t = sIf t ' (3) 

The length-specific selectivity coefficient s, is interpreted as the fraction of fish in length 

class I subjected to the full effect of fishing mortality. It is represented by a gamma-type 

function: 

s, (4a)rmaxk(ka e - k) (4 

or a logistic function 

S = 1 ps (4b) 

where st is rescaled such that the largest s, is set to I to ensure that fishing mortality rates are 

well-defined. The first function is modified from an age-structured formulation suggested by 

Deriso et al. (1985) and is flexible enough to allow many realistic shapes for the selectivity 

curve, while the second function is more conventional and probably easier to use. In fact, these 

two relationships are very easy to apply and constrain. For example, in gamma-type functions, 

if the length class k where s, - 1 is known, then k = ,/ R, or a, -,,k. The estimated 

parameters can further be reduced. Logistic curves also can be constrained if the length class 1 

when s- 0.5 is known. 
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The total instantaneous mortality of individuals in length class 1 at time t is separable as 
the sum of the instantaneous fishing and natural mortality rates: 

ZI~t = F ,+ Mi(5) 

= s1f1+M 1, 

The relationship between the number of individuals (N(. 1) at time t and the number 

(NI.,.) present at a later time I' is described in terms of the numbers of fish at length surviving 

and growing into the next time period. If growth is negligible for fish initially in length class 1, 
at time t, then the total number of fish in length class I surviving to the start of time period t' 

is reduced only by mortality, 

N= N,.e (6) 

for each length class I (1=1 ... , n). 

To account for growth, a model is incirporated that combines the inherent variability seen 
in individual growth with the general nonlinear trend frequently observed for the population as 
a whole. Growth is represented by the proportion P1.1- of surviving individuals in length class I 
during a fixed time interval. The proportion P1.1 - of individuals that grow from a length class 1 
to all length classes I' (I * ... n) is assumed to be represented by a probability distribution 

function that can be parameterized by its mean and its variance. The mean represents the 
average growth increment which then can be described by any standard deterministic growth 
model. The variance represents the individual variability in growth, which in many 
circumstances is proportional to the mean (Schnute and Fournier 1980, Fournier and Breen 

1983); together, under such a formulation, the mean and variance uniquely determine the 
proportion of individuals going from one length class to another. 

For example, to represent the mean of the distributioa, consider growth following the von 

Bertalanffy modek 
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L t = L I - (tt)) (7) 

where L, is the length of r. individual at age t, t0 is the time correction factor for the size at 

birth or recruitment, L_ is the theoretical asymptotic length of an individual, and k is the Brody 

growth constant. Based on this model, the growth increment A, over a unit time interval 

(t.1t-- 1) for a fish starting at length class I at time i with length of L, can be described as 

(Chapman 1960): 

A, = Lt.I- Lt (8) 

that may vary from individual to individual. By fixing L, at the mid-length (I.) of the length 

class 1, L\ represents the change in length of an individual initially in length class 1. The mean 

growth increment Afor the individuals in length class 1 is then the average change in length of 

individuals initially in length class 1: 

(Lw- 1.=)(1-e k) (9) 

an expression that is independent of t0 . 

By differencing, as in (8), the need for interpretation of time as age in (9) is eliminated. 

Other growth models could be used but the von Bertalanffy growth mold offers the most in 

terms of comparative opportunities in the literature. 

For this work, a gamma distribution was used to represent the variation in growth 

described as above. The gamma distribution was chosen for its versatility and flexibility in 

approximating several functional forms. It is also definable entirely in terms of its first and 

second moments, thus reducing the number of parameters to be estimated. Flexibility is 

.required to describe the different patterns of growth for small and large fish. Smaller fish grow 

faster and the distribution of the change in length Atmay be slightly skewed positively. Larger 

fish grow more slowly, which tends to restrict the growth to adjoining length categories, and the 

distribution of Al is more concentrated about the mean. 
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The gamma distribution expressed in terms of the parameters a( and 3 (Hogg and Craig 

1970) is: 

a -1 ­
g(x Ict1 e_axl,3) (10) 

where the x represents A1 (the growth increment given a fish was originally of length 1). The 

mean change in length is given by E1 =a, 3 and the variance is given by a' =a3 2 =[3E1 which is 

proportional to the mean, as required. In this expression, (3is also the coefficient of variation 

which is used to incorporate the growth variability of individuals in the population. Given 1. 

and p3the parameters a, , and consequenly E,and a, are functions of the two von Bertalanffy 

parameters L.and k. 

The catch observations are classified into length classes and the growth of individuals in a 

length class, say class 1, where the length of these individuals may range in length from It to 12 

is approximated by the growth of a mid-length individual (1.- (I + 12)/2) of the class. The 

expected proportion of individuals growing from length class I to length class V can then be 

found by integrating over the length range (l, 1' 2 ) of the receiving length class l'at the 

beginning of the next time period C : 

pi, " )cx
fIg(xIa,, (11) 

Any fish that enters into a length class with the mid-length greater than L_ is assumed to 

remain in the class subject to survivorship (i.e., P,.. . - I for V 2t L. ). 

A similar model for growth wvas developed by Gutreuter and Anderson (1985) in 

.describing the effect of body size on recruitment in largemouth bass populations. They note 

that a gamma distribution function usefully incorporates a variance in the change in length that 

increases as a function of the change in length. DeAngelis and Coutant (1979) used a partial 

differential equation growth model and showed that the variance about mean length increases, 

7
 



perhaps quadratically, as a function of time. The von Bertalanffy model, used as above, 

constrains the number of parameters needed to describe growth to three parameters, L., k, and 

f3, while allowing a stochastic description of growth. 

Equations (6) through (11) are now used to calculate the total number of fish Nt..,. of 

length 1' at the start of the next time step tU as: 

NV, ="(12) 

In this formulation, growth is time (age) invariant. The model can be modified to allow for 

functional dependence to represent more complex growth patterns. 

To complete the description of the dynamics, a renewal function which includes 

recruitment to the fishery is added to (12): 

Nt..t.= + R.C.. (13) 

where recruitment to the fishery may occur over a range of length classes. Recruitment 

specified in this way more generally represents the type of recruitment observed in nature 

where variation in growth, behavior or food supply can result in individuals entering the main 

body of the population at various sizes. Length-specific selectivity (S,) is then combined with 

recruitment to the population to reflect the effective entry of individuals to the catch (Gulland 

1976). There are several ways of representing recruitment to length class categories beyond the 

first length class. For example, recruitment to each length class might be represented by a 

series of constant values {R 1. j: I- 1..... n } for each time step t. In the estimation procedure 

outlined below, however, recruitment is separated into a time-dependent variable R, and a 

length-dependent variable Pt, representing the proportion of recruits going to each length class 

Rl~t - Rtp t (14) 
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One advantage of separating variaibles is that R, can be compared with recruitment 

estimates from standard procedures, such as recruitment to the first age class, while the 

proportion of recruits going into length classes (1: 1- I. n }, may be represented by another 

two-parameter gamma distribution, such as the one shown in (10), with recruitment parameters 

a. and 3, . 

The model (13) describes a linear transition of the number of individuals in length class I 

at time t to the numbers in length class U'at time t' . This model may aiso be written in matrix 

notation, 

. P*t 0-S 	 . 

. PI. 1 0 0 S1.1 00 
P1.2 PZ. 2 0 S 2 .' 

N 11.1 P1.1 
0 

St., 
0 

PI.. P2.. P A., P"'_ 0 	 0 S.., 

N	 N
2 
. "R.It 1. 

N 2.1 RZ., I w2., 

+ 	 + (IS) 

with St., now representing the exponential survivorship, e z ' 
*', term in equation (6). Note that 

Sainsbury (1982) uses a length-based transition matrix similar in form to equation (15) to study 

the pattern of recruitment in a yield-per-recruit analysis and addresses the implications 

minimum size limits have on yield and yield-per-recruit. 
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Equation (1) can also be expressed in matrix form, 

0 0L. :N I.,| u1.,lI o 

S+ (16) 

$ 0 
Lc0, o o N,.,j 

Time-dependent error vectors w, and v, are included in (15) and (16), to make therespectively, 

derivation complete and to reflezt the stochastic nature of the real population. 

Note that the standard age-structured model is a special case of the above, with the 

sub-diagonal probabilitie s of the length transition matrix P in (15) equal to I and all o.ther 

elements, 0. 

Estimation 

The model depicted in equations (15) and (16) is a linear dynamic system, and falls into a 
family of state space models frequently used by engineers, economists, and statisticians (Akaike 

1974a,b; Harvey 1981; Priestley 1981; Aoki 1987). If the error vectors w, and v, can be 
assumed to be multivariate Gaussian, then the analysis follows directly from the state space 

Kalman filter methodology (Kalman 1960; Kalman and Bucy 1961). 

Under the assumption of no system error (w, - 0) in equation (15), which means: (a) an 

exact proportion of individuals go from one length category to the successive ones; and (b) that 
survivorship and recruitment operate deterministically; and with the additional assumption that 
error (v,) in the catch equation (16) is independently and identically distriluted, the model 
parameters may be estimated using a nonlinear least squares approach to the residualminimize 

sum of squares: 
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RSScatch C (17)-C 


where C,.is the predicted catch-at-length and C1 ., is the observed catch-at-length at time t. 

The observed data are catch in number over a set of specified length classes, taken over 

equally spaced time intervals. The observations of catch C1., in number in length classes 1=1 ..., 

n at times t=O..., tmax are used to estimate the population parameters defined above. The 

parameters to be estimated are the parameters a, and 3, for selectivity functions, full 

recruitment fishing mortality f,, initial population numbers at length (1=1 .... n)N1.0 

t
recruitment to the fishery R, over time t= .... m and the recruitment distribution parameters 

a, and 3, , and the growth parameters L., k, and 13. 

In practice, if any parameters happen to be known, these known parameters can be fixed 

in estimation. However, if some parameters can be obtained from additional observation (e.g., 

when the fishing efforts are known), then they can be used as auxiliary data. In this example, a 

functional relationship: 

it = qEt
 

is used, where q is catchability to be estimated and assumed constant over time and E, is 

observed fishing effort at time t. Then the residual sum of squares to be minimized becomes 

RSS =C -Cj) + X f, )2 

I,t 

where X is the weight that describes the degree of confidence in the effort estimates. Other 

auxiliary data, such as hydroacoustic estimation of population size at any time, mean 

length-at-age from age determination, and survey data on recruitment, can also be included in 

the same manner without difficulty. 
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When it is valid to assume that the elements of the observation error vector v, are 

independent identically distributed Gaussian random variables, that is, when: 

vt - N(O,o(I) 

where 0 is a vector of zeros, a2 is a constant variance, and I is the identity matrix (a diagonal 

matrix of ones), then the solution to the least squares fit is also the maximum likelihood solution 

(Seber 1977). Other assumptions about the system equation and the catch equation error 

structure may be made that can result in more complicated and sometimes more reasonable 

forms of the least squares formulation (for example, a weighted least squares formulation). 

A Marquardt-Levenberg optimization algorithm is used to find the least squares estimates 

o. the model parameters. The optimization routines require that initial estimates of the 

unknown parameters be supplied. There is some sensitivity to those initial parameter estimates 

due to local minima in the sum of squares function. Initial value sensitivity can be investigated 

by using an array of initial estimates (Sullivan 1988, Lai and Gallucci 1989). In the analyses to 

follow, the initial estimates are arrived "itfrom the available literature. In some instances, 

certain parameters are assumed to be fixed and known in order for the parameter space to be 

well-defined. 

Inthe estimation procedure, only the values of N1. 0 need be estimated. The values of NJ., 

for t=l....tmax can be computed recursively from NI,.,_-, the abundance at the preceding time 

steps using (15). To simplify the parameter space even further, NI.o is calculated from the total 

initial population abundance No (where No= N the frequency distributionN. a) using of the 

initial catch-at-length (C,.o) and length-specific fishing mortalities estimated by the algorithm. 

This procedure is presented further in Appendix I. 
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Model Applicaton and Analysis 

The model was applied to one simulated data set, and two commercial fishery data sets. 

The simulated data set was generated to describe the dynamics of Pac.fic cod (Gadus 

macrocephalus) in the Eastern Bering Sea; one set of data was collected from commercial catch 

of Pseudotolithus typus from the Cameroon coast (Djama 1988); while the other is based on 

market survey data from the commercial catch of Decapterus russellii from the Java Sea, 

Indonesia (Widodo i988). The simulated data set is presented to highlight certain features of 

the estimation procedure as it applies to a set of observations for which the underlying system 

structure and the underlying process parameters are known a priori. The second two analyses 

demonstrate the applicability of this approach in the context of actual fishery data. 

Gadus macrocephalus Simulation 

For initial validation of the estimation procedure, a hypothetical data set was created 

using a computer-simulated model based on (1) and (13). Parameter values representing the 

initial population size, growth, recruitment, natural and fishing mortality, and selectivity were 

chosen to reflect the dynamics exhibited by Pacific cod in the Eastern Bering Sea. The 

parameter values were set equal to actual estimates arrived at by Bakkala and Low (1985), so 

that the model dynamics would be representative of observations from the natural system. The 

initial population was based on the survey estimates of population number at ages (Bakkala and 

Low 1985) and transformed into 45 two-centimeter-wide length classes using an age-length key 

(Lai 1985). The simulation depicts population numbers and catch in numbers in terms of 45 

two-centimeter-wide length classes and ten time intervals, each a year in duration. Fishing 

mortality was allowed to differ from one year to the next, while selectivity was assumed to be a 

logistic function (4b). The growth increment A was calculated for each length class I by using 

-the values of L.and k given in Lai (1985), while f3 was set equal to one, indicating a variance in 

growth that is equal to the mean. The recruitment distribution was set equal to the observed 

length distribution of age one individuals given for the first year (1978) of the time series in 

Bakkala and Low (1985). Independently distributed Gaussian error, with variance equal to l0 
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tiues the average number of individuals observed in a catch-length class, was added to the 

observations, to simulate the observation error v, , In this example, the constant of 

proportionality reflects a coefficient of variation of approximately 0.2. A summary of the 

parameters used in the simulation is given in Table 1. 

The simulated data set is characterized by an influx of the strong 1977 year class in the 

first year (1978) that grows and declines, giving way in influence in subsequent years to the 

stronger influence of recruitment (see Figure 1). For the first estimation with the simulated 

data, the initial values of all parameters were set to true values (Table 2). In the second 

estimation, the initial values of all parameters were randomly set to ± 30% of the true values 

(Table 2). All parameters except natural mortality (M) were subject to estimation in these two 

cases. 

Figure 1 compares the estimated catch values with the catch values from a simulation 

where the input values were varied -30% from the (known) true-values. In both estimations, 

the parameters esimated (Table 2) show good correspondence within known values, although 

some difference in the recruitment estimates can be seen over later time periods. Here, as in 

catch-at-age analysis (Deriso et al. 1985, Kimura 1989), auxiliary information may prove useful 

in obtaining better estimates. Note, however, that even with deviations of *30%, the estimation 

algorithm appeared to be robust. 

Pseudotolithustypus 

In order to ascertain the applicability of this app.,nach under more realistic circumstances, 

two fisheries data sets were selected from existing literature. The first set of data is the 1984 

monthly length-frequency distributions (February to November) of longneck croaker 

(Pseudotolithus typus: Sciaenidae) collected from commercial fisheries in Cameroon (Djama 

1988). This species is one of two major finfish species caught by industrial trawl fisheries at 

depths between 10 and 50 meters off the Cameroon coast. Five companies conducted industrial 
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fishing during that period, and data were collected from two of these companies. The data are 

considered to be representative of the length-frequency distribution of all landings. The 

procedures used to estimate the catch-at-length for each month are described by Djama (1988). 

The observed catch-at-length data are grouped into one-centimeter length classes w:th 

mid-lengths ranging from 10.5 cm to 57.5 cm. No information was available for April, so a 

single time step of twice At was used between March and May. Although information on 

natural mortality (M) was not available, Djama (1988) was able to obtain estimates of L. = 83 

cm, k = 0.025 yr-1 , and Z/k = 8.53 by using Wetherall's method (Wetherall 1986), and L_ = 60 

cm and k = 0.1 yr-1 by using ELEFAN (Pauly and David 1981). According to the estimates by 

Wetherall's method, the resulting estimate of total mortality is Z = 2.14 yr-I, suggesting a 

natural mortality of around 1.0 yr- 1. However, initial runs of the algorithm indicated that the 

value for ,M'might be too high (i.e., the resulting total instantaneous fishing mortalities were too 

low, less than 0.0001 yr-1). As a result, the value of MJ was set equal to 0.6 yr- I (or 0.05 mo-i), 

and selectivity was assumed to be logistic function. The proportionali:y constant [- in the 

growth equation was evaluated for its influence on predicted growth. The larger the value of 

3, the wider the distributicn of the growth increment A(. To demonstrate the effect of 

alternative choices of [ on the re-;ulting estimates, results are presented for three applications of 

the algorithm: (1) [3 fixed at 0.5, (2) 3 fixed at 1.0, and (3) [3 variable and its value determined 

by application of the algorithm. 

Table 3 lists the results from the three applications of the algorithm. The results show 

that a, , 3, , a, , and 3, did not change substantially from one application to the next. All three 

runs indicated that all sizes of fish were fully vulnerable to the gear. Djama (1988) reported 

that the industrial fishery used trawl net gear with stretch mesh sizes ranging from 30 to 40 mm 

in the cod end, which is capable of retaining all fish larger than 10 cm. The third application 

of the algorithm estimated [3 to be 2.14, which is considered too large and results in too wide a 

spread of the growth increment A as shown in Figure 2. Figure 2 indicates that more than 40% 

of the fish in the 10-cm length class can grow more than 4 cm in a one-month period when [3 = 

2.14, while f3 = 0.5 and 1.0 give more reasonable results. This conclusion is also supported by 

examination of the other estimated parameters (see Table 3). Values of L= were 100.17, 102.46 
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and 50.18 cm, corresponding to ('s of 0.5, 1.0 and 2.14, respectively, were obtained by the three 

applications of the estimation procedure. These estimates can be compared with the maximum 

length of 118 cm observed in the 1984 catch as reported by Djama (1988). Since there were 242 

fish with lengths greater than 60 cm in the 1984 catch, which were omitted from the reported 

catch-at-length data (Djama 1988), the third estimate of L. - 50.18 cm seems unrealistic. Also, 

Bayagbona (1969) using age determination data, obtained an estimate of L_ = 103 cm and k = 

0.29 	yr-1 for the same species in Nigeria. Figure 3 shows the fit of the growth curve, with L. = 
1100.17 cm and k = 0.029 mo- , resIiting from an estimation with 3 in 0.5, to the observations. 

Djama (1988) reported f!at this stock exhibits continuous recruitment; however, with r3 = 

1.0, recruitment was estimated to occur only in June, August, October and November, while 

with 3 = 0.5, recruitment was estimated to occur in May and July as well. Figure 4 compares 

the observed and estimated catch-at-length data. The first modes of all distributions were 

consistently matched up between the observed and the estimated catches. Recruitment in March 

and September was expected to be minimal due to the high levels of recruitment taking place in 

the previous months. The mean length of recruitment is at 19.5 cm which corresponds to length 

class 10. Figure 4 shows that the peaks of the first component in March and September are at 

length class 12 (with I. = 21.5 cm), and with a small number of individuals in length classes 

0-11. This indicates that the Iwo peaks of the first component in these two months are mainly 

the results of growth rather than the influx of recruitment. The recruitment in November was 

particularly strong, as was also reported by Djama (1988). This estimation of recruitment 

pattern is also similar to the fluctuation of proportion of the first components in each montn 

reported in Djama (1988). Fishing mortality estimates ranged from a high of 0.636 mo- 1 (0.795 

yr-i) in May to a low of 0.003 mo- 1 (0.036 yr-1) in November. This corresponds to total 

mortality rate estimates that range from 1.395 yr-1 in May to 0.636 yr-1 in November during a 

one-month period. The low fishing mortality rate estimated for November is likely due to a 

reduced number of large fish in the catch coupled with the strong recruitment. 
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Decapterus russellii 

The second of the two fisheries data sets to be examined is based on lengLh composition 

data .;ollected in 1986 from commercial market landing of the species Decapterus russellii from 

the Karimun, one of the five fishing grounds in the Java Sea, over monthly intervals from May 

to December, a subset of the data analyzed by Widodo (1988). The catch-at-length observations 

are classified into 28 half-centimeter wide length categories with mid-lengths ranging from 7.0 

centimeters to 20.5 centimeters. 

This species has been the major target of purse seine fisheries operating in the Java Sea, 

Indonesia (Widodo 1988). The annual catch of this species represents roughly 30-40% of the 

total combined landings in biomass for all commercial fish species caught in the Java Sea. The 

total monthly commercial catch was known and assumed to have the same length distribution 

observed in the length frequency samples. A length-weight relationship was used to determine 

the average weight of fish in each of the monthly samples. This average weight was divided 

into the total biomass of the catch for each month to obtain the total number of fish caught per 

month. The fish catch in number was then distributed among length classes according to the 

length-frequency distribution observed for each month in the market sample. Fishing mortality 

was allowed to vary with time while selectivity was constrained to be equal to one for length 

classes 14 through 20 (corresponding to fish lengths ranging from 13.5 to 16.5 cm). Natural 

mortality was set equal to 0.08 mo-1 (0.92 yr-1), the middle of the range of estimates of natural 

mortality (0.65 to 1.19) obtained by Widodo (1988). 

In the May observations, two distinct length frequency distributions were evident. We 

chose to include only the first distribution, over the 10 length classes ranging from 7.0 to 11.5 

cm, as those individuals greater than 11.5 cm, which made up the second distribution, appeared 

to contribute little to the subsequent catch. The data are therefore interpreted to represent the 

dynamics of the incoming recruits to this fishery. 
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For this example, a range of discrete values for 13 was used in the estimation and the best 

set of estimates were chosen based on a sum of squares criterion. The results of three of these 

estimations (with f3 = 0.25, 0.35, and 0.45) are shown in Table 4. Over the range of values 

chosen, 13 = 0.35 resulted in the minimum sum of squares. Figure 5 shows the catch 

observations in comparison with the catch estimates obtained from the catch-at-length 

estimation procedure under this set of parameter estimates. The initial length-frequency 

distribution of individuals shown in the first time period (May) depicts a population of smaller 

individuals entering the fishery. The drop-off in the number of individuals occurring over 

smaller length classes in July is interpreted by the algorithm to reflect an influx of new recruits 

into the population in July, followed by growth into the main body of the population in the 

ensuing months and its magnitude is reflected in the recruitment estimate. The recruitment 

distribution parameters, estimated by the algorithm and shown in Table 4 for 13 = 0.35, reflect a 

mean length of recruitment (4.4 cm), occurring around the eighth length class with a variance of 

2.2 cm 2 corresponding to a standard deviation across about 1.5 length classes. The recruitment 

to the fishery in other months is negligible. The parameters estimated by the algorithm create a 

model fit that reflects the recruitment and growth of recruits as well as the survival and growth 

of the body of larger individuals. Again, the fishing mortality parameters appear to be fairly 

consistent in magnitude over time with the exception of the first time period, suggesting again 

that a trade-off may exist between the estimates of population numbers and fishing mortality. 

The model does not fit as well for August and October, presumably because of a shift in gear 

selectivity or a change in the sampling mechanism. As with the other data sets, selectivity is 

assumed to be constant throughout the time period of the sample, with estimates 6, = 4.51 and 

0. essentially zero. The growth parameters L_ and k are estimated to be 17.53 cm and 0.47 

mo- 1. A length of 17.5 cm is contained in the 20th length class, indicated in Figure 5. Figure 

6 shows two growth curve trajectories through the relative length frequencies exhibited by the 

catch. 
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Discusszon 

A. length-structured stochastic model is presented as a tool for stock assessment, which 

differs from existing length-based stock assessment methods (e.g., Jones 1984, Lai and Gallucci 

1988) in many ways. One difference is that growth is included in the model dynamics through 

a length-based transition matrix whose elements represent growth as the proportion of 

individuals moving from one length class to another. In this manner, we do not require the 

assumption of deterministic growth of fish (i.e., growth is identical for all individuals in the 

population such that all fish of the same age have the same length). The elements of the 

transition matrix are parameterized in terms of the von Bertalanffy growth parameters, although 

other parameterizations with alternative growth models are possible. Another major difference 

is that we do not require the assumption of steady state. In this manner, we are able to estimate 

recruitment, abundance, and fishing mortality across time, and reflect the dynamics of 

exploitation over time. 

A nonlinear least squares algorithm is used to estimate initial population abundance, 

recruitment, fishing mortality, selectivity, and the growth parameters simultaneously. As with 

traditional age-structured analyses (Fournier and Archibald 1983, Deriso et al. 1985), the 

uniqueness of the parameters is dependent on the structure of the information in the catch and 

the presence or absence of auxiliary information (e.g., independent sample surveys for the 

determination of absolute abundance). 

The error structure of the observation process was assumed to be additive and 

independent and identically distributed. In the case of a length-based analysis, and specifically 

for the examples presented here, additive id error was preferable to multiplicative id error 

since the log-transformations that are used for analysis of the latter error tend to obscure the 

salient features in the dynamics, particularly those representing growth. A more accurate 

approach perhaps would be to use a length-class specific weighting factor with the weights 

proportional to the variance associated with each class. Estimating these weights simultaneously 
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with the other parameters is possib!e, but the estimates computed in this way are often unstable. 

More sophisticated approaches toward modeling both process and observation error are currently 

being explored (Mendelssohn 1988, Sullivan 1988). 

Because no age information on the population is necessary, this approach can be applied 

to populations for which ageing is impractical (e.g., no validated ageing methods, substantial 

ageing errors, etc.). Another possible application is to a fishery targeted on individuals younger 

than one-year-old as exemplified by the application to D. russellii. However, caution must be 

exercised in that some estimates of population parameters may not be representative of all life 

history stages of the species. 

The number of parameters to be estimated may seem large but the number is comparable 

to that estimated by many catch-at-age procedures and is comparable to applications of 

optimization techniques in the physical sciences. The correlation between various parameter 

estimates can be made explicit and a sensitivity analysis of the estimates to different 

assumptions can be made. An examination of the residuals, that is, the difference between 

observed and expected catch values, along with the associated sum of squares statistic, is one 

way of determining the appropriateness of the estimates. Other assumptions, such as the 

approximation of growth by a gamma distribution growth model, can be tested by comparing 

the estimation results to those obtained under alternative growth models or by comparison to 

laboratory or field experiments. The sensitivity of the estimates to fixed parameters, which are 

assumed known, can also be explored. 

In all three of the examples discussed above, some parameters were fixed prior to the 

application of the estimation procedure. In principle, any parameter may be fixed if its value is 

known. In some instances, it may be necessary to fix a parameter that is not precisely known. 

The natural mortality parameter M is one such parameter. The estimates of fishing mortality j1 

are confounded with M, so M must be fixed to obtain a unique set of estimates. Thus, the best 
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estimates of the f,'s result when M is the best possible; it is important to have a good estimate 

of M to obtain a good estimate of the f,'s. This issue exists in may stock assessment models, 

no matter if age- or length-based (Sims 1984, Lai and Gallucci 1988). 

Another set of parameters that may have to be fixed prior to application of the algorithm 

is that governing the recruitment distribution (i.e., a,. and 13, ). It is sometimes necessary to 

constrain the parameters to a series of likely length categories to prevent confounding of the 

recruitment distribution with the overall population distribution. Since in some situations 

recruitment occurs at every time step, it can happen that the recruit population and the adult 

population become virtually indistinguishable. One way that this may occur is in the steady 

state case, where recruitment comes in to replace in each length class the losses due to growth 

and death. In this case, the hng:h frequency distribution of the population is the same year 

after year. Based on length fEequency data alone, it is impossible to distinguish this case from 

the one where a population exists with no growth, uniform mortality, and no recruitment, or the 

case where the adult population dies off at the end of the year only to be fully replaced by the 

new recruits at the beginning of the next year. Constraints are needed to define the estimation 

surface (see, for example, Hay et al. 1988). In the two examples presented in this paper, it is 

not necessary to fix these parameters. This is because the samples were obtained at a reasonable 

temporal resolution and there were periods over which recruitment clearly tool: place and others 

wher.e it clearly did not. The recruits entered the fishery as a subpopulation that gradually grew 

into the main population. Because it was clear when recruitment took place, the recruitment 

distribution was clearly defined over the appropriate time periods, allowing the estimation 

surface to be fitted. In other situations, auxiliary information may be available such as 

independent estimates of recruitment, levels of maturity, or growth, which then can ba used to 

better define the estimation surface. 

Another parameter that sometimes requires greater attention is the growth distribution 

parameter 13. The estimation of this parameter did not always prove feasible under the 

nonlinear optimization algorithm that we used. In these situations, a reasonable choice for 13 can 

be made by systematically fixing 13 at different values, running the estimation procedure, and 

choosing a value for 13 which minimizes the sum of squares obtained over the set of 13's. While 
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this approach may not be the best method for estimating 3 , it worked reasonably well for the 

case of D. russelii. Furthermore, changes in 3 resulted in relatively minor changes in the other 

parameter estimates (see Table 4) indicating that the other parameter estimates were fairly 

robust to the chosen value of (3. In the case of P. typus, the sum of squares was fairly constant 

throughout the range of (3. In this case, the presence or absence of pattern in the catch 

residuals was used to indicate which fit was better. Other information, which was not 

incorporated directly into the model, such as the relative magnitude of recruitment in different 

months and independent estimates of the growth parameters, was also used to judge the quality 

of the estimate. 

As discussed above in the Model Application and Analysis section, estimates of certain 

parameters, specifically the growth parameters L. and k for the two commercial fisheries 

examples, can differ from those obtained by other procedures. In the example of P. typus, the 

growth parameter ranges as low as cm to as as 105 cm theL- from 61.1 high while 

corresponding estimates of k range from 0.346 yr-1 to 0.217 yr- 1 (Djama 1988). The 

catch-at-length analysis presented here estimates L- 100.17 1= cm and k = 0.344 yr- . These 

estimates are on the extreme end of their ranges, but they do appear to accurately reflect the 

nature of the stock dynamics as discussed earlier. 

In the example of D. russellii, Widodo (1988) estimated L- in the range of 24.7 to 28.3 cm 

1and k in the range of 0.39 yr- to 0.50 yr-1 for D. russellii, whereas the catch-at-length analysis 

determined L- to be 17.5 cm and k to be 0.47 mo-1 or 5.6 yr-1. These differences reflect the 

seasonal growth pattern of incoming 0-year-old recruits and is consistent with that observed in 

the year I growth of this and related species (Sreenivasan 1982; Widodo 1988). However, it 

cannot be used to extrapolate the growth of older age fish. 

In both examples discussed above, the estimated L- and k adequately describe the growth 

of individuals represented in the catch. The values of L- and k may differ from those obtained 

by other means, but together they do provide a good description of the observed growth, and as 

a consequence, the other simultaneously obtained estimates of abundance, recruitment and 
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survivorship are reliable relative to this description of growth. One method for examining the 

range of growth parameter values that provide a similar fit to the set of observations is to 

examine the two-dimensional projection of the log-likelihood contour surface (Sullivan 1988). 

For the examples discussed here, this is equivalent to examining the residual sum of squares 

surface under the optimal parameter estimates while varying the values of two parameters of 

interest. This can be done for any pairwise comparisons between parameters, and in particular, 

for the set of growth parameters L..and k. 

Given the good fit of the estimates to the simulation data, which represented several years 

of growth, a series of observations covering several years, taken at monthly or quarterly 

increments, should provide growth parameter estimates that better reflect the growth of older 

fish for this species. However, one should avoid tacking the time series onto itself repeatedly to 

extend the time series sequence for analysis, as the assumption of a recurrent state that this step 

implicitly makes can severely bias the estimates obtained by any length-based procedure when 

the assumption is incorrect. If a time series over several years is available, and seasonal 

variations in growth are expected, then it is interesting to note that the catch-at-length analysis 

presented here can incorporate the seasonal von Bertalanffy growth model developed by Pauly 

and Gaschutz (1979), with the power factor D=I, in the form 

where 

= k { + C sin 2tl+As) sin 

and where As is the time since the last period (i.e, t-t, ) and n represents the number of time 

increments in a year (e.g., n = 12 for monthly increments of length At = 1). It could also 

incorporate other growth models such as the Gompertz and Richardson models. 
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It should also be noted that in the catch-at-length analysis presented here fishing 

selectivity and growth are estimated simultaneously, thus length frequency maxima that occur in 

the population, but are not fully reflected in the catch due to selectivity, are accounted for. 

In summary, the catch-at-length procedure outlined above provides a general estimation 

structure through which estimates may be obtained on population size, survivorship, recruitment 

and growth. The procedure can be easily modified to account for alternative forms of growth 

and alternative representations of stochastic variation. However, as with all estimation 

procedures, care should be given to the quality of the information that is fed into the 

procedure. The quality of the estimates can only be as good as the quality of the data used by 

the procedure. For catch data in particular, one fundamental point of concern is that the 

sample data be representative of the length-frequency distribution observed in the commercial 

landings. Often, there is not enough information from a single set of samples to provide an 

adequate picture of what is going on in the population, so data are combined across fishing 

trips, gear types, management areas or time periods. Pooling the data must be done only when 

trends or inconsistencies in the data do not exist. A thoroughly thought-out sampling design 

followed by a detailed statistical analysis of the data, prior to the application of the 

catch-at-length algorithm, are necessary to insure high quality data and to insure that the data 

are representative of the population of interest. 

The program CASA (Catch-At-Size Analysis) used in this analysis is written in 

FORTRAN 77. The computations presented here were run on a DEC MicroVax II. A user's 

guide and program on an MS-DOS formatted 5--inch disc may be obtained from V. F. Gallucci, 

Management Assistance for Artisanal Fisheries, Center for Quantitative Science, University of 

Washington, HR-20, Seattle, WA 98195. 
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APPENDIX I.
 

Instead of estimating all Nj.o for 1=1 .... n, these variables can be reparameterized into one 

variable 

N o Z N 1.0 

by the following relationships. Using equation (6) to obtain 

C1.oZ1.o
 

-F F1, 0 ( 1 -- z , 0)
 

let P, be 	the proportion at length class I in the population. From (A.1), 

P = N	N0 _ C1 0 Z1 0  F 1 0( 1 _Z1.) (A.2) 

N o ZC1 .oZ1,o F 1 .0 (1 -ez1.0) 

By dividing the numerator and denominator on the RHS by ZC 1.0 - C0 , P, is rewritten as 

-qo, 0Z1 .0 / FI.0 (1-e z*0)
P Eq.oZL.o / F.o(1-e - z .'( 

where 	 C1.0 C . 0 

is the length composition of the catch at t=O. An estimate of the length composition q1.0 follows 

from the use of the length distribution of the catch data at t=0, which can be used in (A.3) to 

estimate P,. 

The length distribution of abundance N,. 0 can now be estimated from 

- PINo0 

if an initial estimate of No is known. This procedure reduces n estimates of NJ.o to one estimate 

of No. 
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Table 1
 

Parameter Values Used in the Simulation
 

Parameter 

Number of Age Classes 

Abundance at:
 
Age 1 

Age 2 

Age 3 

Age 4 

Age 5 

Age 6 

Age 7 

Age 8 

Age 9 


Age 10 

Age I1 

Age 12 


IV0 

Number of Time Steps 

Number of Length Classes 
a, 

3, 

R1 

R2 


R 31.39 
R4 

R 39.00 
R6 
R 7 

Roa1.28 

R9 


M 
a, 
13, 

10o 

1 


2
z0.46 
3a 

14 

5 


16 

7r 

/8 

9 

L. 
k 
[3 

32
 

Value 

12
 

1.10 	x 109
 

2.14 	x 108
 
1.20 	x I07 
1.10 	 X 10 7
 

6.00 	x 106
 
6.00 	x 106
 
2.10 	x 106
 
1.00 	x 106
 
1.00 	x 106
 
1.00 	 x 106
 
1.00 	x 106
 
1.00 	 x 106
 
1.36 	x 109
 

10
 

45
 
37.00 

0.50 
4.42 	x 108
 
1.32 	x 108
 

x 108
 
8.60 	x 107
 

x 107
 

1.65 	 x 10 8
 

1.05 	x 108
 
x 108
 

9.70 	x 107
 

0.30 
0.10 

30.00 
0.42 
0.44 

0.48 
0.47 
0.48 
0.45 
0.48 
0.40 
0.43 

83.00 
0.24 
1.0 



Table 2
 

Simulated and Estimated Parameter Values for Pacific Cod
 

Estimate 1 Estimate 2 

True Initial Estimated Initial Estimated 
(set equal to (set to ±30% of 
true values) true values) 

N0 1.36 x 109 1.36 x 109 1.39 x 109 1.00 x 109 1.39 x 109 
a,. 37.0 37.0 30.4 25.0 30.4 
3, 0.5 0.5 0.56 0.7 0.56 

R, 4.42 x 108 4.42 x 108 4.13 x 108 5.75 x 108 4.12 x 108 
Rz 1.32 x 108 1.32 x 108 1.16 x 108 9.30 x 107 1.16 x 108 
R, 1.39 x 108 1.39 x 108 1.50 x 108 1.81 x 108 1.50 x 108 
R, 8.60 x 107 8.60 x 107 8.76 x 107 1.06 x 108 8.75 x 107 
R 9.00 x 107 9.00 x 107 9.85 x 107 6.30 x 107 9.81 x 107 
R, 1.65 x 108 1.65 x 108 1.94 x 108 1.15 x 108 1.93 x 108 
R, 1.05 x 108 1.05 X 108 1.40 x 108 1.50 x 108 1.39 x 108 
R, 1.28 x 108 1.28 x 108 1.89 x 108 9.00 X 107 1.87 x 108 
R, 9.70 x 10 7 9.70 x 107 1.42 x 108 1.06 x 108 1.41 x 108 
a, 0.1 0.1 0.1 0.3 0.1 
13, 30.0 30.0 32.5 20.0 32.5 
fo 0.42 0.42 0.51 0.3 0.51 
f, 0.44 0.44 0.52 0.6 0.52 
f2 0.46 0.46 0.52 0.3 0.52 
f 0.48 0.48 0.51 0.65 0.51 
f 4 0.47 0.47 0.50 0.25 0.50 
f3 0.48 0.48 0.51 0.60 0.51 
f 6 0.45 0.45 0.46 0.70 0.46 
f 7 0.48 0.48 0.46 0.30 0.46 
fe 0.40 0.40 0.38 0.60 0.38 
f9 0.43 0.43 0.35 0.30 0.35 
L. 83.0 83.0 86.1 95.0 86.1 
k 0.24 0.2A 0.23 0.30 0.23 
13 1.0 1.0 1.04 1.40 1.04 
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Table 3
 

Parameter Estimates of Pseudotolithus typus (f, M and k are in mo-i)
 

Parameter Estimate 1 Estimate 2 


No 1.98 x 108 3.66 x 108 

a, 48.7 48.7 
[3r 0.40 0.40 
R 0 0 

x 107
R2 4.90 0 

R3 9.81 x 107 0 

R,I 2.50 x 107 0 

R3 2.76 x 107 3.06 x 108 

R6 0 0 

R7 3.45 x 108 2.08 x 108 

Ra 4.80 x 109 4.07 x 108 

a, 1.0 1.0 

[3, 0.001 0.001 
10 0.060 0.032 
I 0.028 0.030 

2 0.066 0.038 
f3 0.042 0.037 
f4 0.034 0.034 
f3 0.026 0.026 
f6 0.012 0.012 
f7 0.020 0.023 
f1 0.003 0.004 
L. 100.17 102.46 
k 0.024 0.020 
(3 0.5* 1.0* 
M 0.05* 0.05* 

RSS 5.1 x 106 7.4 x 106 


* Parameters fixed during the estimation procedure. 

* 2 in two-month intervals. 

Estimate 3
 

1.26 x 108
 

43.8 
0.45
 
0
 
0
 
4.90 x 106
 
0
 
1.19 x 107
 

0
 
1.35 x 107
 

3.27 x 108
 
1.0 
0.001 

0.098 
0.105 
0.161 
0.107 
0.107 
0.074 
0.037 
0.058 
0.005 

50.18 
0.093 
2.144 
0.05* 

5.3 x 106
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Table 4 

Parameter Estimates of Decapterus russelii 

for 3 Different Fixed-Values of the Growth Parameter [3 

Estimate 1 Estimate 2 Estimate 3 
Parameter (13 - 0.25) (13 - 0.35) (3 - 0.45) 

No 3.4 x 109 5.4 x 109 6.3 x 109 
a, 3.49 8.44 12.26 
13, 1.09 0.52 0.38 
R1 0 0 0 
Rz 1.9 x 1010 3.7 x 1010 5.0 x 1010 
R3 0 0 0 
R, 0 0 0 
R5 0 0 0 
R6 0 0 0 
R, 0 0 0 
a, 3.83 4.51 4.81 
3. 0 0 0 
fo 0.0949 0.1575 0.2047 
fl 0.0800 0.0069 0.0063 
fz 0.1114 0.0084 0.0076 
f 0.0019 0.0011 0.0008 
f 4 0.0027 0.0015 0.0011 
f5 0.0016 0.0009 0.0007 
fd 0.0015 0.0008 0.0007 
f7 0.0011 0.0006 0.0005 
L. 17.59 17.53 17.10 
k 0.47 0.47 0.513 
13 0.25* 0.35* 0.45* 
M 0.08* 0.08* 0.08* 

RSS 8.2 x 101s 7.7 x 1013 7.8 x 1013 

* Parameters fixed during the estimation procedure. 
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List of Figures 

Figure 1. Simulated (+) and estimated (solid line) catch length data of Pacific cod over 

ten consecutive time periods. Simulated catches were generated for a Pacific cod 

population in 1978-1987. Catch estimates were obtained from the catch at length 

least squares algorithm, using initial parameter values which varied :30% from 

the true value. 

Figure 2. Distributions of growth increment of 

one-month period for f3 = 0.5, 1.0 and 2.14. 

fish in 10-cm length class during 

Figure 3. Growth curve trajectories through catch 

typus based on estimates of L. = 100.17 

indicates the relative catch at length. 

length frequencies 

cm and k = 0.287 

for Pseudotolithus 

mo- 1 . Each bar 

Figure 4. Observed (+) and estimated (solid and 

Pseudotolithus typus for each length 

(P - 0.5.4 -2.14). 

dashed 

class 

lines) 

over 

catch 

nine 

at length of 

time periods 

Figure 5. Observed (+) and estimated (solid line) catch at length of Decapterus russellii over 

eight consecutive time periods (3 ­ 0.35). 

Figure 6. Growth curve trajectories through 

russellii based on estimates of L. = 

indicates the relative catch at length. 

catch 

17.53 

length 

cm and 

frequencies for 

/c = 0.47 mo-1 . 

Decapterus 

Each bar 
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Gadus macrocephalus simulation
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Growth Curve: Pseudotolithus typus
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Decapterus russellii
 

IWO.. 

0 + 

0 5 10 15 

Lenigth Class 

20 25 30 

N+ 

0 5 10 Is 

Length Class 

20 25 30 

-Itn 

two+ 

tn > 

S0 LoN k0 \2 

0 8 10 15 

Length Class 

20 25 30 0 5 10 15 

Length Class 

20 25 30 

in, 

048 

z -

cj 

+ + 

+ 

++ 

+ 
( z- ± 

-c 

0 5 10 15 20 25 30 0 s 10 15 20 25 30 

Length Class Length Clas + 



00 

Growth Curve: Decapterus russellii
 
Cm 

Cm 
I 0 

Cm 

co 

(D 

11-T 

May June July Aug Sep Oct Nov Dec
 


