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Inferring the Distribution of the Parameters of the von Bertalanffy
 
Growth Model from Length Moments 

Robert L. Burr 
Center ior Quantitative Science in Fisheries, Forestry, and Wildlite and School oi Fisheries, University oi Washington, Seattle, WA 98195, USA 

Burr, R. L. 1988. Inferring the distribution of the parameters of the von Bertalanffy growth model from length 
moments. Can. J.Fish. Aquat. Sci. 45: 1779-1788. 

A theoretical approach is described for determ~ning the joint distribution of the parameters of the von Bertalanffy 
growth model from statistical moments of length. The approach extends it, work of K. J.Sainsbury, who had 
demonstrated that different mean parameter estimates are obtained by assuming that the von Bertalanffy equation 
applies to individual fish rather than to groups of fish. Sainsbury articulated the goal of studying the joint prob­
ability distributions of K and L. in animal populations and developed a maximum likelihood procedure for esti­
mating the parameters of particular distributional forms describing K and L., which were assumed for mathe­
matical convenience to be statistically independent. The primary goal of the present paper is to provide a 
framework for future research in generalizing Sainsburv's approach by !:,-,nsidering (K, L,) to be a random vector 
described by a joint probabilitv density function and by allowing broader classes of distributions to be considered. 
Minimum cross-entropy (MCE) inversion, an information-theoretic methodology for approximating probability 
disuibutions, is shown to be effective in selecting a reasonable and unique joint distribution corresponding to 
observable length moments. Appealing features of the MvICE methodology include the ability to include prior
knowledge of uncertain applicability and the capacity of the resulting approximate distribution to represent poten­
tial stochastic dependencies bet-ween the von Bertalanffv parameters. Several numerical examples, using simu­
lated and historical data, are presented to illustrate how information about the variation and covariation of L. 
and K can be irferred from a minimal set of length moments. The directions developed in this paper are far from 
a practical and useful methodology. The NICE inversion procedure is a "method of moments," with no statistical 
assessment of reliability. Further research is needed to make this promising pdf approximation scheme better 
suited for real fisheries problems. 

Une approche theorique est decrite at'n d'tablir la distribution a plusieurs variables des parametres du module 
de croissance de von Bertaianffv a partir de moments statistiques relatifs a la longueur. L'approche pousse plus 
loin les travaux de K. J. Sainsburv. qui a demontre que I'on peut obtenir differentes estimations movennes de 
parametres en supposant que i'equaio.i de von Bertalanffv s'applique a chacun des poissons plut6t qu', des 
groupes de poisson,. Sainsburv a formule le but de l'etu le des distributions de probabilite a plusieurs variables 
des parametres Ket L. chez des porulations animales, et a elabore une methode du maximum de vraisemblance 
en vue d'valuer les parametres de formes particulieres de distribution decrivant K et L., qu'on a suppose statis­
tiquement independants pour des raisons de commodite mathematique. Le but principal du present article est 
de fournir un cadre de travail pour les futures recherches en generalisant 'approche de Sainsbury en considrant 
(K, L) comme un vecteur alatoire decrit par une fonction de densite de probabilite , plusieurs dimensions, et 
en permettant de tenir compte de classes de distributions plus larges. L'inversion d'entropie croisee minimale 
IECM), methode theorique pour evaluer approximativement des distributions de probabilites, s'est reve16e efficace 
pour choisir une distribution aplusieurs variables raisannable et particuliere correspondant a des moments obser­
vables relatifs a la longueur. Les caracterist'ques interessantes de cette methode comprennent la possibilit, d'in­
clure des donnees anterieures d'applicabilit, incertaine et la capacite de la distribution approximative resultante 
de representer des dependances stochastiques potentielles entre les parametres de 'equation de von Bertalanffv. 
Plusieurs exemples numeriques, faisant appel ,i des donnees simuldes et anterieures, sont presentes afin de mon­
trer comment il est possible d'inferer des donnees sur Ia variation et la covariation de L. et de K , partir d'un 
ensemble minimal de moments relatifs i la longueur. Les orientations elaborees dans cet article sont loin de 
constituer une methode utile et pratique. L'inversion ECM est une , m6thode des moments , sans evaluation 
statistique de la fiabilite. II faut effectuer d'autres recherches pour que cette methode d'approximation de la 
fonction de distribution des probabilites convienne mieux aux vrais problemes des piches. 
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pervasive problem in quantitative natural resource man- summarized evidence. Although background information is fre­

agement is how to infer some property of a complex quently abundant, most available statistical methods either rig­
atural system from indirect, fragmentary, and highly idly build it into the analysis or pretend that it is not there. It 
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is important to develop methods that can merge partial or aggre-
gated information with contextual knowledge of indeterminable 
relevance in.o a reasonable picture about some aspect of the 
state of the fishery. The present paper begins the development 
of an approach to study the joint probability distribution of the 
parameters of the von Bertalanffy growth model. While the 
direction taken, based on asymptotic results from information 
theory, i far from a complete applied methodology, it explicitly 
models the available partial evidence while allowing the meas-
ured inclusion of prior or background information of unquan-
tifiable validity. Although the focus here will be on inferring 
information about growth from a limited set of moments of 
length at several ages, it is hoped that this presentation will 
stimulate interest in the application of information-theoretic 
inversion procedures to other difficult inference problems in 
fisheries. 

von Bertalanffy Growth 

The von Bertalanffy model is a widely applied mathematical 
representation of growth in biological entities (von Bertalanffy 
1938). While originally developed in the context of theoretical 
physiology, the model is now understood as a remarkably effec-
tive empirical approximation to the growth of individuals of 
many species and of their component organ systems. 

The voi Bertalanffy equation 

)1(t) =L. (I -e-'1)) 

describes the tendency of the rate of an animal's growth in 
length to decrease with age. It is a solution of the simple linear 
first-order differential equation 

d(t)= 

dt 


under the initial condition that 
(3) ht,) = 0. 

The von Bertalanffy model is determined by three parameters: 
L., the asymptotic length. K. the Brody growth constant (Brody 
1945) (sometimes incorrectly referred to as the growth rate), 
and t,, the initial time. The asymptotic length L. is the maxi-
mum size the animal can theoretically attain if it is allowed to 
grow indefinitely. The Brody growth constant K is one of the 
factors in determining the change of length with time. the other 
factor being the difference between the current !e'igth and the 
asymptotic length. The initial time t,)is a parameter controlling 
the horizontal placement of the von Bertalanffy curve. It can 
be viewed as an empirical initial condition that needs to be fit, 
the time at which a fish would have had zero length had it grown 
along the von Bertalanffy curve for its whole life. Because the 
von Bertalanffy model often does not fit particularly well near 
the time origin, most researchers hesitate to invest too much 
biological intepretation in this quantity. While there is prob-
ably no single species that is perfectly described by the von 
Bertalanffy model, it has been and will probably continue to 
be an important means by which the growth of biological orga-
nisms is summarized and compared (Pitt 1970; Green 1973; 
Daan 1974; Bowering 1976; Ralph ant Maxwell 1977). Many 
of the alternative growth models in use today can be viewed as 
embellishments, extensions, or reactions to this venerable rep-
resentation (Ridhards 1959; Silliman 1967; Pauly and Gaschutz 
1979; Gaschutz et al. 1980; Schnute 1981). 

Almost universally, the parameters of the von Bertalanffy 
equation are estimated in practice from data representing a group 
made up of many individual animals. Questions have been 
raised Phout the efficacy of estimating the von Bertalanffy 
parameters (Knight 1968; Bayley 1977; Roff 1980) and using 
them to contrast subpopulations (Gallucci and Quinn 1979). 
Sainsbury (1980) has shown that there is a crucial difference 
between assuming that the von Bertalanffy equation applies to 
individual animals and assuming tha, it applies to a group of 
animals. 

Sainsbury's Model 

Sainsbury (1980) has presented a model in which individual 
animals are assumed to grow in accordance with the von Ber­
talanffy growth equation with parameters that are fixed with 
respect to each fish but which are allowed to vary randomly 
between fish. This approach was motivated by concerns that a 
mathematical description of the growth of an individual animal 
might be inappropriate for describing the typical growth for a 
population of animals and vice versa. Sainsbury's model for 
the population essentially becomes the characterization of the 
probability distribution of K and the probability distribution of 
L. for the group. 

With the assumptions that K and L. are probabilistically inde­
pendent, that L. is normally distributed, and that K follows a 
gamma distribution. Sainsbury derived expressions for the 
expected value and variance of the length at age T. as well as 

the first two moments of the growth increment Ir. He also pre­
sented a maximum likelihood method of estimating the param­
eters of the assumed probability density functions from col­
lected data. 

Focusing on the distinction between E[e -A,11 and e-E1K1T, 
Sainsbury demonstrated that different parameter estimates are 
obtained by assuming that the von Bertalanffy equation applies 
to individual fish rather than to groups of fish, an observation 
that should apply to other nonlinear growth models as well. 

A sympathetic criticism of Sainbury's model concerns the 
strong assumptions made about the form of the probability dis­
tributions characterizing K and L.. As that author pointed out. 
the selected distributions were chosen as a compromise between 
reality and analytic tractability. If L were truly Gaussian, then 
there is a finite probability of observing a fish with a negative 
length. While the gamma distribution employed by Sainsbury 
to describe the variability of K admits a broad class of densities, 
it also is a function with just a few degrees of freedom, and 
there are distributional shapes that it fits poorly. 

But it is the assumption of probabilistic independence of K 
and L. that is the most serious limitation of the model. Ther. 
is considerable evidence that estimates of these parameters sig­
nificantly covary in natural populations (Knight 1968; Gallucci 
and Quinn 1979), with empirical assessments of the correla­
tions between K and L. ranging as high as -0.999. Instead of 
being independent, these parameter estimates are so nearly 
dependent on each other that it is even possible to consider 
reparameterizing the growth equation using just one parameter 
rather than two, an approach initiated by Gallucci and Quinn 
(1979). 1, is not clear what inferences about the correlation of 
the parameters themselves can be made from the strong empir­
ical correlation of the parameter estimates, but the possibility 
of nonindependence merits further study. The primary goal of 
the present paper is to provide a framework for generalizing 
Sainsbury's approach by considering (K.L-) to be a random 
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vector described by a joint probability density function and by at all, we would base our predictions on our experience with 
allowing broader classes of distributions to be considered. Of similar systems, or on our experience with the behavior of this 
particular interest will be distributional forms that permit the particular system in the past. If we had a limited amount of 
estimation of the degree of dependence of the two parameters. information about the actual system under study, we would want 

a solution consistent with both the current data and our prior 
An Ill-Posed Inverse Problem understanding. It would seem reasonable to give precedence to 

the new accurate knowledge and then resolve any remaining
In this paper we explore the possibility of inferring a gereral inferential ambiguities by appealing to the prior knowledge

joint probability density function q(L.,K) from measured length base. Kullback's Principle of minimum cross-entropy (Kull­
moments of several age classes. For clarity, we will first assume back 1959) provides a rule for picking a unique solution using 
that the initial time t,is known by other means, and we will both the new system measurements and the background knowl­
lose no generality in setting it to zero. Later in the paper, we edge. It states that from a set of possible solutions, we should 
will relax this assumption and explicitly cutsider t0 as a random choose the one most similar to our prior information. 
quantity. 

Suppose we have evidence about the distribution of lengths Cross-Entropy Minimization 
at a succession of ages, in particular. th. first two (noncentral) 
moments. The moments for age class T can be related to the In fisheries management, there is often a wealth of pi-ior
underlying joint density function by means of the integral information of uncertain applicability about a particular fish 
equations stock, coming perhaps from historical records, experience with 

similar species, or theoretical principles. It would seem rea­
sonable to use Kullback's Principle to resolve the ambiguity of 

ant1 the solution set C by picking the element in C most similar to 
an assumed prior p(LK) that somehow represents our prior

(5) E(T2) = ff L2(l - e-9T) 2 q-e(L,K)dLdK. understandings. If we have absolutely no insight into the prob-

These equations are well-defined from right to left. since if we lem area. we would specify a uniform pdf, and our minimum 
know the underlying pdf q-(L.,K), then we can compute cross-entropy (MCE) procedure would reduce to the well­
expected values unambiguously. Each expected value can be known maximum entropy (ME) formalism. No matter how the 
considered an integral constraint on the true pdf. a well-defined prior density is specified, the selected element must still satisfy 
mapping of the continuous function of two variables q-¢(L,.K) all of the given moments because it i-chosen from a set com­
into a single scalar number or moment. posed only of elements that meet all of the moment constraints. 

We would like to solve the inverse problem. that is. to deduce Our prior knowledge is never allowed to contradict or restrict 
a reasonable approximation of q-"(L.,K) given a finite set of the evidence of the current data but guides us to a well-defined 
first- and second-order moments at several ages. The moments solution when the current data is insufficient. 
contain diffuse information about the underlying pdf. with the To implement this optimization procedure, it is necessary to 
integral kernel acting as a window through which the unknown be precise about how to measure the dissimilarity between two 
pdf q-c(L.,K) is indirectly perceived. pdf's p(L.K) and q(L.,K). In infornation theory this distance 

This is an example of a class of well-known ill-posed inverse is commonly quantified by Kullback's cross-entropy functional 
problems with an infinite convex set C of solution pdf's r(L.,K). (6) Hq(L.K),p(L,I)] = ff q(L.K)
each consistent with the given set of integral constraints in the 
form of the measured moments. q(L.,K)

Sainsbury turned this ill-posed problem into a well-posed one x log p(L.X) dLdK. 
by assuming a particular form for the solution pdf that has a 
relatively small number of parameters. Anyone who does this \lso known as the directed divergence, the minimum discrim­
runs the risk of being criticized for choosing a form that does ination information, or the Kullback-Leibler number, this dis­
not capture all the qualities of reality that someone else might tortion measure on the space of probability density functions 
think important. For example, Sainsbury's model is inadequate can he interpreted as the expected value of a log-likelihood 
for the study of the covariation of L. and K because he assumed rano Cross-entropy has been used previously a distanceas 
that they are independent. In a sense, he has incorporated pos- m.a.ure in fisheries application by several authors (MacDonald 
sibly spurious prior information into the problem in a manner and Pitcher 1979; Schnute and Fournier 1980)
that his estimation technique cannot overcome. Kullback's Principle would have us find the posterior pdf 

qiL..K) that minimizes H[q(L.,K),p(L.,K)J while exactly sat-
Prior Knowledge sl. set of constraint equationsinLg the 

m ff f,(L.,K)q(L.K~dLsJK, j1 .. M., 

Applied statisticians often express dissatisfaction with formal 

estimaion procedures in statistics because background inor- That is. we are treating m,as the average value of the scalar 
mation has to be either ignored or rigidly adhered to (Hodges kernel function f/L,K) when the true probability density func­
and Lehman 1952; Blum and Rosenblatt 1967: Javnes 1908: non is ql(L-A, For example, the kernel corresponding to the 
Kashyap 1971. Neither position is desirable, nor does it model mean length at age 5 is f,(L.,K) = . - e -AK). It should be 
the processes or tiuman understanding. Contextual knowledge noted that the expected value constraints (equations 4 and 5) 
is unquestionably relevant to the applied problem, but r'ifficult corresponding to our data are in the form of Eq. 7. 
to rr,.rge gracefully with new information in the form o,actual The general problem of pdf approximation using the MCE 
measureaients of th-. system. If we had no new measurements criterion has been studied, and a solution for the posterior pdf 

Can. 1.Fish. Aqua. Sci., I W. 45. 1988 

I­

1781 



12812 

to o- to­1,0.* 

I0-' 

x2 2 

92 10. 92 \/-" 

0.05 0.25 0.05 0.25 
Kt (Brady Growth Coefficient) K (Brady Growth Coeffcient) 

FIG. I. MCE posterior pdf for Example I. FIG. 2. MCE posterior pdf for Example 2. 

q(L,.,K) for nonpathological integral kernels f/L=.,K) is well- (1 fqeL,~Ld
known (Shore and Johnson 1981): (12) m1 = ff L=(I -e-Pf' qW=e(L=,,K)dL sdK 

(82 q"'(L=.K) = p(L,K)exp{ -, . 3f(L=,K)} (13) ins, = ff L2-(I -e-hO)-q c(L,,,K)dLdK 

where the [13,} are Lagrange multipliers whose values are made (14) m2 = ff LU(-e-X)q (LsI~dL~dK
 
consistent with the measured moments m by solving the set of (15) tfs: = ff L="(I -e-K".)'q"(L,.KdLidK
 
nonlinear equations
 

v (16) m3 = ff L=(I -e-Xf3)qe(L ,K~dL,,dK

(9) m,...." fff,(L5.K)p(L5.K~exp{-, 13, (17) mns = ff L=3(I- e-K'3) 2

3 q'(L.K)dL,,dK. 
×f,(L 5 .K)}dLdK j=1 ..... M 

From equation 8 we can directly write the form of the MCEalong with the normalizing constraint posterior solution: 

(10) 1 = ff p(L.K~exp{-, , 3,f(L 5,K0}dLdK. (18) q"'(L=.K) = p(L,Kexp{13, 

+ 3t'Ldl-e-Xft)The latter constraint comes about because the posterior q(L.,K) + 3'L=(1 - e -K,,)2
is a probability density function and hence must integrate to + f3,'L(1-e-X"-)
unity. In practice we generally have to solve this system of ron- + ,'L2'(I -e-K"-)Z
linear equations using numerical methods such as the Newton- + f3,.L,(1 -e-r")
Raphson procedures. + 13'L2:(I -e-X)2}. 

A nonrigorous derivation of the form of the MCE posterior
density is presented in Appendix B. A detailed consideration The NICE p ,tenor density is completely determined when we 
of the conditions under which this result exists and is unique, fit the Ldgrange mul:ipliers 3, to reproduce the measured 
which is beyond the scope of the present paper, can be found moment., usually with an iterative numerical procedure. A 
in Csisz i (1975) and Johnson (1979). While there are kernel number ,r nnlmnear minimization techniques seem to work 
functionsf, for which no unique MCE solution exists, this ps- equally, ,e1. including Newton-Raphson methods (Gokhale
sibility is rarely relevant in practice. Existence and uniqueness and Kullhack 1978). the MINPACK minimization routines 
are guaranteed if the kernel functions can be written as a multi- ¢Mo r et acl 1 9811. and the Nelder-Mead simplex procedure
variate power series, or if the kernel functions. '-,- matter how (Nelder .and Mead 19o3). The following examples with illus­
discontinuous, are bounded. A review of successful applica- trace ho)v el fectuve the MCE procedure is at recovering the latent 
tions of MCE inversion techniques can be found in Shore pall ol the von Bertalanffy parameters. 
(1984). 

We will now apply this procedure for selecting a unique pdf Example I 
to the problem of inferring the joint pdf of L and K from length 
moments of several age classes, information that is commonly The first two numerical examples, using simulated data, are 
collected, forexample, in the determination of age-length keys. designed to show how information about the covariation of/.L
Suppose we knew the mean and the mean square of length at and K can be inferred from a minimal set of length moments. 
three specific ages. We could then write seven equations con- The data, while fictitious, were created to emulate some of the 
straining the true pdf q"'I/-,Kh: growth characteristics of a slow-growing marine organism like 
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the turbot, which may continue to grow into the second decade 
of its life. One hundred (L,,K) pairs were generated from a 

=bivariate Gaussian distribution such that kL, 108 CM.o'L= 10 cm. l, = 0.15, o',= 0.05. and p,"., = One-10.99. 


sample pair thus generated had a K-element less than zero and 
was discarded. von Berta!anffy curves were computed for each 
of the remaining pairs and the ensemble mean and mean square"collected" for lengths at ages 1, 10, and 20 yr. While 

moments at these three ages nicely bracket the initial, inter-

mediate, and asymptotic portions of the growth curves, this 

example issomewhat artificial inthat ifwe actually collected 

information at these ages, we would probably also have data 

about th lengths at all the intermediate ages as well. Never-
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this hypothetical example isdesigned to show that we 
deduce aGreat deal from a vers limit d set of information 

p(L.lK was assumed to have the same mean and standarddeviation ineach component as the generating distribution but
 
=
to be independent indimensions. that isPS-D 0.0. 

The Lagrange multipliers 3,.i=0_....6. were fit with theNelder-Mead simplex algorithm to the six estimated moments 
and the normalizing constraint 

(19) 1 = ff q(L.,K:{(,})dL~aK.
Figure I illustrates the logarithmically spaced equprobab09ty 

contours of the IMCE posterior pdf for this problem. The inlor­
marion about the interaction of the von Bertalaniffy paramneters,. 
diffusely encoded in the measured moments. is recovered b,the MC'E posterior density. It is obvious from Inspection ot 
equation 18 that the posteior pdf is not Gaussian. even thouch 
the assumed prior density and the true density being approxi.mated are both Gaussian . 

Example 2 
Another data set was generated, under the same conditions
 

as given inExample 1,except that the correlation between L.
 
and K was set to p = +0.99. The same independent pior 
density was assumed as well.
 
Once again the MCE posterior density for this example, as
 

depicted inFig. 2mshows the influence of measured length
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TABLE 2. Sprat data (Sund's (1911) sprat (Clupea spratus)data, as 
reported by Ricker (1969), composed of back-calculated lengths of the 
1903 year-class, 

Age Mean So 
1 5.86 1.124 
11 10.29 1.387 
I11 12.79 1.056 
IV 13.92 0.950 
V 14.65 0.868 

moments. The interaction of L. and K is strongly apparent in
this posterior density. 

Example 3 

In the preceding examples we have specified aprior pdf with 
the correct mean and variance in each dimension in order to 
emphasize the recovery of the covariance information. Example 
3 is presented to demonstrate that the MCE procedure can over-
come the effects of an unrepresentative prior distribution. One 
thousand (L.,K) pairs were generated from a bivariate Gaussian 
density, trimmed at zero in both dimensions to preclude nega-
tive asymptotic length and negative growth, with parameters 

=
P-LL 108cm, ,.= 10cm, P-,= 0.15,and p,L_, = -0.70. 
A contour plot of this density is depicted in Fig. 3. The prior 

=
pdf p(L,,K) was assumed to have parameters [LL 80 cm, 
'L,= 20 cm. P',= 0.4, cr,= 0. 1, and p,_, = 0.0 and is 

displayed in Fig. 4. Forty moments were "collected" from the 
simulated data, representing the mean and mean square of 
length at ages 1-20. A contour plot of the MCE posterior pdf 
corresponding to this 4 1-variable nonlinear minimization prob-
lem is shown in Fig. 5. Obviously the MCE procedure has 
recovered the important characteristics of the true density from 
the length moments, in spite of the choice of prior. 

x 

lo- \ 

. t­

0 

0 15 16 17 18 19 20 

L. (Asymptotic Length) 

FIG. 7. MCE posterior density for Example 5 (Sund's (1911) sprat 
data, as reported in Ricker (1969)). 

Example 4 

Few attempts have been made to apply this MCE method to 
real fisheries data. in part because generalizable software has 
not yet been written. Hence. every application currently requires 
the development of a custom program. Two preliminary anal­
yses will now be presented. 

Tanaka (1962) inferred the moments of length-at-age for 
porgy (Taius ruminfrons) from a length-frequency distribution 
collected in 1950. His estimates of the mean and standard 
deviation for each age are presented in Table 1. 

The MCE posterior density, computed using a uniform (non­
informative) prior. is presented in Fig. 6, and evidences neg­
ative diagonal structure. 

Example 5 

Ricker (1969) summarized back-calculated length data for a 
sample of sprats (Ctupea sprattus) collected in 1908, and ana­
lyzed by Sund in 1911. The mean and standard deviation of 
back-calculated length at various ages for the 1903 year-class 
are summarized in Table 2. 

The MCE posterior density corresponding to these con­
straints, computed using the uniform prior pdf, is presented in 
Fig. 7. Negative covariation is less apparent in this example. 
although there is an interesting slight bulge of probability
toward higher L.values for lower K values in this contour plot. 

In the preceding discussion we have explicitly assumed that 
the initial conditions parameter t,in the von Bertalaniffy model 
is identically zero, or constant, for all the animals in the group 
In many applications, this is not a credible assumption. and we 
must fit t, as well. The general method we have outlined above 
for two latent variables can be trivially extended to infer a tn­
variate posterior pdf q(L_.K,t) from length moments. In the 
next section we will consider a special trivariate application that 
can be reduced to the bivariate formalism just considered. 
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TABLE 3. Eel data (mark-recapture data for eels (Anguilla australis) (23) E(.12) = fffL.2 (l - e-rK,)2q,(L,,K,T)dLdKd.

in the Doyleston Drain, New Zealand, summarized from Fig. 2 in

Burnet (1969)). Because we have assigned a unique code to each animal, we 

can also estimate from our pair of length measurements theMean length at first capture 46.41 powerful joint moment
 
SD of length at first capture 12.29

Mean length Iyr later 50.40 (24) E(to'l.) = fffL02(l - e-K)

So of length I yr later 11.10

Correlation of length over I-yr interval 0.9845 × (1 -


Using the MCE methodology to infer a unique posterior pdf 
- q'-(L,,K,T), we can immediately write the form of the MCE 

posterior density: 

, .(25) q-"(L..KT) =p(L.,K,T)exp{P 

10-

I:,, + 3,L.21 -e -
K
,)
2 

122 t-0, + P33L.(l -eKP ) 

•­
\ 
 \0-1 

+ L2 
The MCE posterior probability density function of the von Ber­
talanffy parameters is explicitly determined when the Lagrange 

7.,o-1 multipliers are adjusted so as to exactly reproduce the measured 
moments corresponding to the constraints. 

General MCE inversion methods can become computation­
_ -ally expensive in dimensions higher than two. It is of practical 
o i interest to Lonsider when this trivariate problem can be reduced 

to two dimensions. In many mark-recapture experiments, the 
distribution of ages at time zero can be considered to be inde­

, 
 I pendent of the other two von Bertalanffv parameters and per­
haps even known or manipulated. 

60 'If it can be justified that the distribution of ages at time zero
60 70 90s0 100 110 120 is independent of the other parameters and can be known a 

L, (Asymptotic Length) priori, the five constraints corresponding to the measured 
FIG. 8. MCE posterior density for Example 6 (Burne"s (1969) eel moments can be rewritten 
data). (26) E(l0 ) = ff L(l - v,(K))q-(L.,K)dLiJK 

Mark-Recapture Experiments (27) E(lA) = ff L.(1 -e- Av,K))q-(L..K)dLdK 

(28) E(1,:) = ff L.2(1 - 2v,(K) + ,(qO)q-e(L..K)dL.dKUntil this point, the symbol thas really referred to the age

of individual animals and not to chronological time. In a pop- (29) E(l,) = ffL.-(l - 2e-Xav,(K) + e-'-7v,(O)

ulation of animals of mixed ages. it is possible to refer to tas q-(L.,K)dLsJK
actual time by allowing -tofor each organism to refer to that (30) E()*I1) = ff L2 ( K ­
animal's age at time slice 0. However, to avoid confusion with 
the entrenched interpretation of t,we will introduce a new svm- X q-(L..K)dL~dK 
bol T to denote age at time slice 0, T = -ta. where 

In some mark-recapture studies, the age of an animal cannot 
be determined without sacrificing it, although its length can be (31) v,(K) = Eje-K7)
determined with an acceptable handling risk. It is of interest to and 
infer the distribution of the von Bertalanffy parameters from
 
the moments of length at two or more specific time points. For (32) v,(K) = Ee -2')
 
example, an investigator might dig up a number of clams of which by our assumptions are known quantities.

various but unknown ages, measure their lengths, mark each For example, if the age distribution at time slice 0 is uni­
one with a unique identification code, release the animals in formly distributed between ages a- and a', then
 
their original habitat, and then recapture and remeasure A years

later. 
 (e-Ka- -e-x"-)

The mean and mean square of length at each measurement (33) v(K) = 
time slice can be expressed as a constraint on the trivariate pdf K(a' -a-) 
quo(L_,K,T): and 

(20) E(1o) = fffL (l -e-K )qu(L.,K,T)dLdKdT (e -ZXa- _e-,.a-) 

(21) E(1o) = fffL-2(l - e-K1)q-(L,,K,T)dLdKdT (34) v = 2K(a' - a-) 
(22) E(IA) = fffL(l -e -V+)q1(L.,K)dLMdKdT In any case the MCE posterior pdf takes the form 
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(35) q-(L.,K,Tro) = p(L.,lOq,1""(T)'exp3 0 o 
+ 13,'L.(-v,(K) 


+ 3'L.(l- 2v,(K) +v.(K)) 

+ 33"L=.K(I -e-Xavt(K)) 

+ P,-L. 20l - 2e -1v_(K) + e-v 2 (K) 
+ 3,L.(l - v(K)-e -Kv,(K)+eKV,(K))} 

and as before, we must adjust the Lagrange multipliers until 
the MCE posterior density reproduces the given moments. 

Example 6 

Burnet (1969) has studied the growth of freshwater eels in 
New Zealand with a mark-recapture methodology. Data for 
Anguilla australiswas hand-digitized from Fig. 2 in Bumet's 
paper to estimate the mean, standard deviation, and correlation 

an length a year later, andof the length at firstof te lngt capture,catureat irsand theth lenth yer laerand 
are summarized in Table 3. Under the assumptions of a uniform 
prior density and a hypothesized negative exponential age dis-
tibution at first capture (with mean age = 8.5 yr, the esti-

matd dfofth
mated pdf of the von Bertalanffy parameters is presented inyn Brtlaff praetes s reenedin 

Fig. 8, in which some negative diagonal structure can be 
observed, 


Discussion 


The MCE formalism, which we have here applied to the 
problem of determining the distribution of the von Bertalanffy 
parameters, exploits the variations in the information about 
q'r(L.,K.t,) implied by projection through different integral
kernel functions. The concept developed in this paper can be 
extended to any deterministic growth model that can represent 
the growth of an individual animal, 

The strengths and weaknesses of the MCE approach lie in 
the ability to insert background knowledge of unknown appli-
cability into the problem by way of the prior pdf. Examination 
of equation I1 shows that the posterior pdf is in the form of the 
prior pdf multiplied by an exponential distortion factor. If the 
prior pdf is a good guess, then the magnitude of the Lagrange 
parameters will be small and the analytic degrees of freedom 
of the model will be spent "fine-tuning" the posterior pdf, 
explaining what is not already known about the system under 
study. If the prior pdf is not a good guess, the magnitude of the 
Lagrange parameters will be large as the degrees of freedom of 
the distortion function are spent overcoming the unrepresen-
tativeness of the prior pdf. It should be generally noted that if 
the hypothesized prior p(L..K,t) happens to be identical to the 
true pdf q-"(L.,K,., then 1, = 0, V,and q(l.,Kt,) = 
p(L ,K,t,) = q (L.K,tt). 

As the number of measured moments m, increases, the MCE 
procedure can overcome any specification of the prior pdf so 
long as p(L.,Kt,,) > 0 everywhere. In the information theory 
literature, this appealing behavior of the MCE inverse is termed 
the "washing out" of old uncertain information with new facts. 
Whenever there is an inconsistency between the prior p(!) and 
the actual data, the new data take precedence.

The MCE inverse methodology can be viewed as a formal 
way to deal with missing information problems by adapting the 
form of the model to the available moments. The kernels cor-
responding to missing moments are simply not present in the 
argument of the exponential function in equations 8 and 18. 

It is a "method of moments" inverse technique. That is, the 
Lagrange parameters {(3,} are defined, not statistically esti­
mated. Sampling variability in the measured moments will be 
propagated through to the posterior density q(1). 

Practical implementation of the MCE methodology generally
relies on some kind of iterative nonlinear minimization proce­
dure. Convergence can be accelerated if either p L.,K,to is a 
very good guess or if a good starting value foe 3 is chosen. 
One method of quickly estimating a reasonable starting value 
isto assume that 3 is small enough that the multiplicative expo­
nential distortion factor in equation II can be replaced with a 
Taylor series linearization about the origin. We can then write 
an approximate expression for the NICE posterior as

M
 

(36) q"c(.r ;3) = p( )I + f(7 I 
which can be fit to the moments using linear mathematics. 

This form is suggestive because it closely resembles a class 

of pdf estimators based on orthogonal function expansions thatmay be computed very efficiently. If p(.X ) is multivariate Gaus­
abe c u veyeffic en multivaiate Geus­

sian. and f( are appropriately chosen multivariate Hermite 
polynomials. then equation 36 is the well-known Hermite 
orthogonal expansion of the pdf. Similarly, if p(.7) is multi­vait exoetamliait auerre polynomials forma 

ariate exponential, multivariate La p o 
convenient orthogonal expansion. A future research direction 
is to explore the adequacy of these pdf estimates of the von 
Bertalanffy parameters, which are suboptimal approximations
in the cross-entropy sense, but which can be estimated with 
significantly less computation than the general MCE form. 

Estimation Issues 

It has been stressed that the MCE inversion procedure is a 
"method of moments" where summaries of sampled data are 
assumed somewhat arbitrarily to be equivalent to asymptotic 
expected values, from which the Lagrange parameters are 
defined rather than statistically estimated. Anyone who has par­
ticipated in fisheries research data collection or has had the 
responsibility of summarizing such data would be justifiably 
concerned about this suppression of uncertainty. The attempt 
to make this pdf approximation scheme better suited for prac­
tical problems is an active research topic.

The MCE posterior density is the optimal solution to a cal­
culus of variations problem where the moments are represented 
as integral equality constraints on the unknown true density. It 
is also possible to formulate this poblem using integral 
inequality constraints. For example, instead of using the equal­
itv constraint 
i 

(37) m, = ff,(L.Kzt)q-c(LKt,,)dLdKdt,,, 
tw 

o inequality constraints might be written: 
(', 
(38) m + 2 - > ff(L.,Kt)q-(L.,K,t)dLdKdt 

N, 
',
 

(39) m, -2 < ff(L,,K,t)q-(L,K,to)dL.dKdto. 

That is, confidence intervals based on some reasonable assess­
ment of the variability of the moments due to sampling are 
employed to constrain the class of consistent densities. Kull­
back's Principle can still be applied to the now larger convex 
set of pdfs satisfying the given inequality constraints. 
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Until a satisfactory method is found to analytically determine 
the effect of moment estimation error on the posterior pdf, corn-
putationally expensive resampling methods of assessing the 
variability, such asjackknifing and bootstrapping (Efron 1982), 
can be employed. 

Conclusion 

The problem of determining of the general joint distribution 
of the parameters of the von Bertalanffy growth model can be 
approached as an ill-posed inverse problem. MCE inversion 
techniques allow the selection of a reasonable unique solution. 
directly incorporating background information when available. 

Acknowledgements 

This manuscript was prepared while the author was a postdoctoral 
fellow affiliated with the USAID-funded Management Assistance tor 
Artisanal Fisheries (M.A.A.F.) Project at the University of Washing-
ton. The support and encouragement provided by the director of 
M.A.A.F., Dr. Vincent F. Gallucci. is gratefully acknowledged. 

References 


BAYLEY, P. 1977. A method for finding the limits of application of the von 
Bertalanffv growth model and statistical estimates of the parameters. 1.
Fish. Res. Board Can. 34: 1079-1084. 

BLU.t. J.R., AND J. ROSENBLATr. 1967. On partial a pnon information in 
statistical inference. Ann. Math. Stat. 38: 1671-1678. 

BOWERING. W. 1976 Disibution. age and growth. and sexual matunty of 
witch flounder Glyptocephalus cvnojlossus in Newfoundland waters. J. 
Fish. Res. Board Can. 33: 1574--1584. 

BRODY. S. 1945. Bioenereetics and growth. Reinhold Publishing Corporation, 

New York. NY 


BURNET. A. M. R, 1969 The growih of New Zealand freshwater eels in three 

Canterbury, stre: ns. N.Z. J. Mar. Freshwater Res. 3:376-384, 


CSiSZAR. I. 1975. l-l,ivergence geometry of probability distnbutions and min­
imization problems. Ann. Prob. 3(11: 146-158.
 

DAAN. N. 1974. Growth of North Sea cod (Gadus morhuai. Neth J.Sea Res.
 
8:27-48. 


EFRoN. B. 1982. The jackknife, the bootstrap, and other resampling plans.
 
CMBS-NSF Reg. Comb. Ser Appl. Math. SIAM No. 38: 92 p. 


GALLUCCI. V. F. A.D T. 1. QUINN I1.1979. Reparametenzation. fitting, and
 
testing a simple growth model. Trans. Am. Fish. Soc. 108: 1-1--25. 


GASCTL-'Z. G.. D. PAULY. AND N. DAVID. 1980. A versatile BASIC program 
for fitting weight and seasonally oscillating growth data. I.C.E.S. C.M. 
1980/D:6. Statistics Committee. 

GOKHALE. D. V. AND S. KLLLBACK. 1978. The information in contingency 
tables. Marcel Dekker. New York. NY. 

GREEN. R. 1973. Growth and Mortality in an Arctic intertidal population of 
Macoma balhica Pelecypoda. Tellinidaei. J.Fish. Res. Board Can. 30: 
1345-1348. 

Hotx;ES. J.L., AND E. L. LEHMAN. 1952. The use of previous expenence in 
reaching statistical decisions. Ann. Math. Stat. 23: 396-402. 

JAYNES. E. T. 1968. Prior probabilities. IEEE Trans. Syst. Sci. Cvbem. Vol. 
SSC-4, No, 3: 227-241. 

JOHNSON, R. W. 1979. Axiomatic charactenzation of the directed divergences 

and their linear combinations. IEEE Tians. Inf. Theor. Vol. IT-25. No. 6:

709-716. 


KAsHYAt. R. L. 1971. Prior probabilities and uncertainty. IEEE Trans. Into. 
Theor. Vol. IT-17. No. 6. 

KNIGT, W. 1968. Asymptotic growth: an example of nonsense disguised as 
mathematics. J. Fish. Res. Board Can. 25: 1303-1307. 

KULLBACK, S. 1959. Information theory and statistics. Wiley (1959). Dover 
(1969). New York. NY. 

MACDONALD, P. D M.,AND T. J. PITCHIER. 1979. Age groups from size-
frequency data: a versatile and efficient method of analyzing distnbution 
mixtures. J.Fish. Res. Board Can. 36: 987-1001. 

MORE, J.J..B. GARBOW. AND K. HtLLStRoM. 1980. User's guide for MIN-
PACK-I. Argonne National Laboratory Technical Report ANL-80-74, 
DOE W-31-109-En6 -38. 

Can. J. Fish. Aquar. Sci.,Vol. 45, 1988 

NEDE. J.A., AND R.MEAD. 1965. A simplex method for function minimi. 
zation. Comput. J. 7:308-313. 

PAULY. D., AND G. GASCHUTZ. 1979. A simple method for fitting oscillating
length growth data, with a program for pocket calculators. I.C.E.S.C.M.1979/G:24. Demersal Fisheries Committee. 

Prrr. T. 1970. Distribution. abundance, and spawning of yellowtail flounder. 
Limandaferruqinea. in the Newfoundland area of the Northwest Atlantic. 
1.Fish. Res. Board Can. 27: 2261-2271. 

RALPH, R.. AND J. MAXWELL. 1977. Growth of two Antarctic lamellibranchs: 
Adamussium colbecki and Laternula elliptica. Mar. Biol. 42: 17 1-175. 

RICHARDS. F. J. 1959. A ilexible growth model forempirical use. J.Exp. Bot. 
10'29): 290-300. 

RICKER. W. E. 1969. Effe'ts of size selective mortality and sampling bias on
estimates of growth. mortality production, and yield. J. Fish. Res. BoardCan. 26: 479-541. 

1975. Computation and interpretation of biological statistics of fish 
populations. Bull. Fish. Res. Board Can. 191: 70-73. 

RoFt. D. A. 1980. A motion for the retirement of the von Bertalanffy function. 
Can. J.Fish. Aquat. Sci. 37: 127-129. 

SAINSBURY, K. J.1980. Effect of individual variability on the von Bertalanffv
growth equation. Can. J. Fish. Aquat. Sci. 37: 241-247 

SCHNU'TE, J. 1981. A versatile growth model with statistically stable parameters. 
Can. J.Fish. Aquat. Sci. 38: 1128-1140. 

SCHNL-E. J..AND D. FOURNIER. 1980. A new approach to length-frequency 
analysis: growth structure. Can. J.Fish. Aquat. Sci. 37: 1337-1351. 

SHORE, J.E. 1984. Inversion as logical inference: theory and applications of 
maximum entropy and minimum cross-entropy. SIAMI-AMS Proceedings.
Vol. 	 14. 

SHORE. J.E.. AND R. W. JOHNSON. 1980. Axiomatic derivation of the principle
of maximum entropy and the pnnciple of minimum cross-entropy. IEEE 
Trans. Inf. Theor. Vol. IT-26, No. 1:26-37. 

1981. Properties of cross-entropy minimization. IEEE Trans. Inf. 
Theor. Vol. IT-27, No. 4: 472-482. 

SILLIMAN, R. P. 1967. Analog computer models offish populations. Fish. Bull. 
(Wash.. DC) 66: 31-46. 

TANAKA. S. 1962. A method of analyzing a polymodal frequency disibution 
and its application to the length distribution of the Porgy, Taius tuimtfrons. 
J.Fish. Res. Board Can. 19: 1143-1159. 

VON BERTALANFFY. L. 1938. A quantitative theory of organic growth. Human 
Biol. 10(2): 181-213. 

WEINSTOCK. 	 R. 1952. Calculus of variations with applications to physics and 
engineering. McGraw-Hill. New York. NY. 

Appendix A: Convexity 

It is easily shown that the class C of probability density func­

tions consistent with a given set of moment constraints is a 
convex set. Suppose that there exist two densities. pt(p )-_C 
and p,( . ) C. such that 

(40) p,( ) p2 ). 

By 	definition of membership in C: 

(41) in, = ff,(x )p,(x)dx 

and 

(42) ink = ff,(x )p2(X )d. 
To show convexity, it is sufficient to demonstrate that 

(43) p() = ap( 7 )+(I-a)'p() EC Va30<a <I
3 	 " 

But 

f I7()p( )dI = a f f( I )p(.-)dI +
 
-) ff ( )pz(I )dI
 

= am,+(l -a)m, 
= mk Ok<m. 

Therefore 

(45) p() = a'p,()+(I-a)'p,(.-) E C Va 0<a-l. 

tr\
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Appendix B: Derivation of the Form of the MCE 

Posterior Density 


Cross-entropy minimization is a general procedure for 
approximating a true but unknown probability density function 
q'l(x) given a set of moments and a prior assessment p(x). The 
approximating posterior q(x) is chosen such that of all distri­
butions consistent with the known moments, we select the one 
most similar to the prior model. If the assumptions are specific
and the set of measured moments isnot internally contradictory, 
the posterior q(x) thus obtained is unique. 

The logic of Kullback's Principle would have us find the 
function q( 7 ) that minimizes 

q(.7 ) 

= f q7 )log d(4
(46) H[q(.r ).p(.7)] Por7 

while exactly satisfying the set of constraint equations 

(47) m= ff,(.q( 7)d7 j=I ...... V4. 

An Isoperimetric Calculus of Variations Problem 

All of the MCE problems addressed in this paper have acom­
mon structure, which may be addressed with calculus of van-
ations techniques. We are given a set of constraints {m,)} which 
are known to satisfy the following definite integral equation: 

(48) m, = f gfq(. )dx 

where q 7 is a function to be determined. We are also given 
a measurement functional, again a definite integral: 

(49) f,,,[q(.7 ) = f 1jq(. 

and we want to obtain the q(7 that extremizes F... [q( 7 )]. 
In optimization theory, applications with this form are called 

"isoperimetric" calculus of variations problems. The name 
derives from the classical problem of finding the function with 
the maximum enclosed area given a fixed length boundary or 
perimeter. 

To solve this problem, we use the Lagrange multiplier method 
(Weinstock 1952), forming the equation 

(50) Qlq( 7 3JI =I,q.7)) . fg,[q7 ]. 

We now minimize this equation with respect to q(7 ). Taking 
the derivative and setting it equal to zero, 

dQ 
(51) - 0, 

dq 


we derive an exprssion that q(.7) can only satisfy at an extre­
mum of Qq( 7 );3]. We must then verify that the extremum is 
in fact a minimum by checking the higher order derivatives. 

Application to the MCE Problem
 
For the MCE problem, we can identify
 

q( 7 ) 
(52) = 7-)log IP( . 

and 
(53) g, f( 7 )*q() 

Therefore 
Theref Q 

(54) Q[q( I);P-I= q( I )log p( .7 ) 

P( M
A

+ , )q( )+ hoq( I 

The last term reflects the fact that we usually have the constraint 
(55) f q(7 )d7 = 

as well because q( .t ) must be a valid normalized probability
density function.
 

Taking the first derivative with respect to q( X ), we derive
 

dQ q( 7 ) A 
(56) dq = log p(Z) I3,f(7) 
and for the second derivative we obtain 

d2 Q 1 

(57) dq q( 7 ) 

Setting the first derivative equal to zero: 
(58) log q( .7 = Iog p( .7 )- I- - j ,ff(7). 

Calling = X, + I,1 andf(.7 ) = I for all 7 , we can write 
(59) log q( 7 log p( )- 1 f(7).= X X7 

- -I 

Therefore 
() qt .7 =p 7 - ) }.exp Xf(f7 

which is the classical MCE posterior density (Johnson 1979; 

Shore and Johnson 1980).
Inserting this solution into the expression for the second 

derivative, we see that theyositivity of the prior density p(7) 

implies the positivity of q(x ), which guarantees that the second 
derivative is positive at the solution point. Hence. the solution 
is a minimum as desired. 
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