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Inferring the Distribution of the Parameters of the von Bertalanffy
Growth Model from Length Moments

Robert L. Burr

Center for Quantitative Science in Fishertes, Forestrv, and Wildlife and School of Fisheries, University of Washington, Seattle, WA 98195, USA

Burr, R. L. 1988. Inferring the distribution of the parameters of the von Bertalarfiy growth model from length
moments. Can. }. Fish. Aquat. Sci. 45: 1779~1783.

A theoretical approach is described for determining the joint distribution of the parameters of the von Bertalanify
growth model from statistical moments of length. The approach extends 1.2 work of K. J. Sainsbury, who had
demonstrated that different mean parameter estimates are obtained by assuming that the von Bertalanify equation
applies to individual fish rather than to groups of fish. Sainsbury articulated the goal of studving the joint prob-
abilitv distributions of K and L= in animal populations and developed a maximum likelihood procedure for esti-
mating the parameters of particular distributional forms describing K and L=, which were assumed for mathe-
matical convenience to be statistically independent. The primaryv goal of the present paper is to provide a
framework for future research in generalizing Sainsburv’s approach by crnsidering (K, L) to be a random vector
described by a joint probability density function and by allowing broader ciasses of distributions to be considered.
Minimum cross-entropy (MCE) inversion, an information~theoretic methodology for approximating probability
distributions, is shown to be efiective in selecting a reasonable and unique joint distribution corresponding to
observable length moments. Appealing features of the MCE methodology include the ability to include prior
knowledge of uncertain applicability and the capacitv of the resulting approximate distribution to represent poten-
tial stochastic dependencies berween the von Bertalaniiv parameters. Several numerical examples, using simu-
lated and historical data, are presented to illustrate how information about the variation and covariation of L«
and K can be irferred from a minimal set of length moments. The directions developed in this paper are far from
a practical and usetul methodology. The MCE inversion procedure is a “method of moments,” with no statistical
assessment of reliability. Further research is needed to make this promising pdf approximation scheme better
suited tor real fisheries problems.

Une approche théornigue est décrite at'n d'établir 1a distribution a plusieurs variables des parameétres du modéele
de croissance de von Bertalanfty a partir de moments staustiques relatifs a la longueur. U'approche pousse plus
lon les travaux de K. J. Sainsbury, qui a démoniré que I'on peut obtenir difiérentes estimations movennes de
parametres en supposant que i'équaioa de von Bertalanitv s’applique a chacun des poissons plutot qu'a des
groupes de poissons. Sainsburv a formuié le but de I'étu je des distributions de probabilité a plusieurs variables
des parametres K et L« chez des populations animales, et a élaboré une méthode du maximum de vraisemblance
en vue d'évaluer les parametres de formes particulieres de distribution décrivant K et L., qu'on a supposé statis-
tiguement indépendants pour des raisons de commadité mathématique. Le but principal du présent article est
de fournir un cadre de travail pour les futures recherches en généralisant "approche de Sainsbury en considérant
(K, L) comme un vecteur aléatoire décrit par une fonction de densité de probabilité a plusieurs dimensions, et
en permettant de tenir compte de classes de distributions plus larges. L'inversion d'entropie croisée minimale
(ECM), méthode théorique pour évaluer approximativement des distributions de probabilités, s’est révélée efficace
pour choisir une distribution a plusieurs vanables raisaonnable et particuliére correspondant a des moments obser-
vables relaufs a la longueur. Les caractéristiques intéressantes de cette méthode comprennent la possibilité d'in-
clure des données antérieures d’applicabilité incertaine et la capacité de {a distribution approximative résultante
de représenter des dépendances stochastiques potentielles entre les parametres de I'équation de von Bertalantiy.
Plusieurs exemples numeérigues, faisant appel a des données simulées et antérieures, sont présentés afin de mon-
trer comment il est possible d’inférer des données sur fa variation et la covariation de L. et de K a partir d’'un
ensemble minimal de moments relatifs a la longueur. Les orientations élaborées dans cet article sont loin de
constituer une méthode utile et pratigue. Linversion ECM est une « méthode des moments » sans évaluation
statistique de la fiabilité. Il faut effectuer d’autres recherches pour que cette méthode d'approximation de la
fonction de distribution des probabilités convienne mieux aux vrais problémes des péches.
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pervasive problem in quantitative natural resource man-  summarized evidence. Although background information is fre-

agement is how to infer some property of a complex  quently abundant, most available statistical methods either rig-
atural system from indirect, fragmentary, and highly  idly build it into the analysis or pretend that it is not there. It
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is important to develop methods that can merge partial or aggre-
gated information with contextual knowledge of indeterminable
relevance in(o a reasonable picture about some aspect of the
state of the fishery. The present paper begins the development
of an approach to study the joint probability distribution of the
parameters of the von Bertalanffy growth model. While the
direction taken, based on asymptotic results from information
theory, is far from a complete applied methodology, it explicitly
models the available partial evidence while allowing the meas-
ured inclusion of prior or background information of unquan-
tifiable validity. Although the focus here will be on inferring
information about growth from a limited set of moments of
length at several ages, it is hoped that this presentation will
stimulate interest in the application of information-theoretic
inversion procedures to other difficult inference problems in
fisheries.

von Bertalanffy Growth

The von Bertalanffy model is a widely applied mathematical
representation of growth in biological entities (von Bertalanffy
1938). While originaiiy developed in the context of theoretical
physiology, the model is now understood as a remarkably effec-
tive empirical approximation to the growth of individuals of
many species and of their component organ systems.

The voa Bertalanffy equation

(l) [(I) = Lg(l—e'yfl—l”;)

describes the tendency of the rate of an animal's growth in
length to decrease with age. [t is a solution of the simple linear
first-order differential equation

dl(n
(2) —— = K(L-~ Ut}
dt

under the initial condition that
3) Ui) = 0.

The von Bertalanffy model is determined by three parameters:
L, the asymptotic length. K. the Brody growth constant (Brody
1945) (sometimes incorrectly referred to as the growth rate),
and 1,, the imtial time. The asymptotic length L. is the maxi-
mum size the animal can theoretically attain if it is allowed to
grow indefinitely. The Brody growth constant K is one of the
factors in determining the change of length with time. the other
factor being the difference between the current 'ength and the
asymptotic length. The initial time 1, is a parameier controlling
the horizontal piacement of the von Bertalanffy curve. It can
be viewed as an empirical initial condition that needs to be fit,
the time at which a tish would nave had zero length had it grown
along the von Bertalanffy curve for its whcle life. Because the
von Bertalanffy model often does not fit particularly well near
the time origin, most researchers hesitate to invest too much
biological interpretation in this quantity. While there is prob-
ably no single species that is perfectly described by the von
Bertalanffy model. it has been and will probably continue to
be an important means by which the growth of biological orga-
nisms is summarized and compared (Pitt 1970; Green 1973;
Daan 1974; Bowering 1976; Ralph and Maxwell 1977). Many
of the alternative growth models in use today can be viewed as
embellishments, extensions, or reactions to this venerable rep-
resentation (Richards 1959; Silliman 1967 Pauly and Gaschutz
1979; Gaschutz et al. 1980; Schnute 1981).
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Almost universally, the parameters of the von Bertalanffy
equation are estimated in practice from data representing a group
made up of many individual animals. Questions have been
raised 2hout tne efficacy of estimating the von Bertalanffy
parameters (Knight 19€8; Bayley 1977; Roff 1980) and using
them to contrast subpopulations (Gallucci and Quinn 1979).
Sainsbury (1980) has shown that there is a crucial difference
between assuming that the von Bertalanffy equation applies to
individual animals and assuming tha: it applies to a group of
animals.

Sainsbury’s Model

Sainsbury (1980) lias presented a model in which individual
animals are assumed to grow in accordance with the von Ber-
talanffy growth equation with parameters that are fixed with
respect to each fish but which are allowed to vary randomly
between fish. This approach was motivated by concemns that a
mathematical description of the growth of an individual animal
might be inappropriate for describing the typical growth for a
population of animals and vice versa. Sainsbury's model for
the population essentially becomes the characterization of the
probability distribution of K and the probability distribution of
L= for the group.

With the assumptions that X and L. are probabilistically inde-
pendent, that L. is normally distributed, and that X follows a
gamma distribution, Sainsbury derived expressions for the
expected value and vanance of the length at age T. as well as
the first two moments of the growth increment /. He also pre-
sented a maximum likelihood method of estimating the param-
eters of the assumed probability density functions from col-
lected data.

Focusing on the distinction between E[e~%7] and ¢ ~£A1T,
Sainsbury demonstrated that different parameter estimates are
obtained by assuming that the von Bertalanffy equation applies
to individual fish rather than to groups of fish, an observation
that should apply to other nonlinear growth models as well.

A sympathetic criticism of Sainbury's model concerns the
strong assumptions made about the form of the probability dis-
tributions characterizing K and L. As that author pointed out,
the selected distributions were chosen as a compromise between
reality and analytic tractability. If L. were truly Gaussian, then
there is a finite probability of observing a fish with a negative
length. While the gamma distribution employed by Sainsbury
to describe the vanability of K admits a broad class of densities,
it also is a function with just a few degrees of freedom, and
there are distributional shapes that it fits poorly.

But it is the assumption of probabilistic independence of K
and L. that is the most serious limitation of the inodel. Ther,
is cousiderable evidence that estimates of these parameters sig-
nificantly covary in natural populations (Knight 1968; Gallucci
and Quinn 1979), with empirical assessments of the correla-
tions between K and L. ranging as high as —0.999. Instead of
being independent, these parameter estimates are so nearly
dependent on each other that it is even possible to consider
reparameterizing the growth equation using just one parameter
rather than two, an approach initiated by Gallucci and Quinn
(1979). I' is not clear what inferences about the correlation of
the parameters themselves can be made from the strong empir-
ical correlation of the parameter estimates, but the possibility
of nonindependence merits further study. The primary goal of
the present paper is to provide a framework for generalizing
Sainsbury’s approach by considering (K.L=) to be a random
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vector described by a joint probability density function and by
allowing broader classes of distributions to be considered. Of
particular interest will be distributional forms that permit the
estimation of the degree of dependence of the two parameters.

An [ll-Posed Inverse Problem

In this paper we explore the possibility of inferring a gereral
joint probability density function g(L=,K) from measured length
moments of several age classes. For clarity, we will first assume
that the initial time 1, 1s known by other means, and we will
lose no generality in setting it to zero. Later in the paper, we
will relax this assumption and explicitly cuasider 1, as a random
quantity.

Suppose we have evidence about the distribuiion of lengths
at a succession of ages, in particular. the first two (noncentral)
moments. The moments for age class T can be related to the
underlying joint density function by means of the integral
equations

(4 E) = [[ LAl —e- Mg (Lo, K)dL-dK
and
(5) E(3) = [fLX1 —e~¥Tyg=e(L. K)dLodK.

These equations are well-defined from right to left. since if we
know the underlying pdf ¢*<(L..K), then we can compute
expected values unambiguously. Each expected value can be
considered an integral constraint on the true pdf, a well-defined
mapping of the continuous function of two variables ¢™¢(L..K)
into a single scalar number or moment.

We would like to solve the inverse problem. that is. to deduce
a reasonable approximation of g*»(L-,K) given a finite set of
first- and second-order moments at several ages. The moments
contain diffuse information about the underlying pdf, with the
integral kernel acting as a window through which the unknown
pdf g™(L-.K) is indirectly perceived.

This is an example of a class of well-known ill-posed inverse
problems with an infinite convex set C of solution pdf''s r(L..K).
each consistent with the given set of integral constraints in the
form of the measured moments.

Sainsbury turned this ill-posed problen. into a well-posed one
by assuming a particular form for the solution pdf that has a
relatively small number of parameters. Anyone who does this
runs the risk of being criticized for choosing a form that does
not capture all the qualities of reality that someone else might
think important. For example, Sainsbury’s model is inadequate
for the study of the covariation of L. and K because he assumed
that they are independent. In a sense, he has incorporated pos-
sibly spurious prior information into the problem in a manner
that his estimation technique cannot overcome.

Prior Knowledge

Applied statisticians often express dissatisfaction with formal
estimacion procedures in statistics because background infor-
mation has to be cither ignored or rigidly adhered to (Hodges
and Lehman 1952; Blum and Rosenblatt 1967; Jaynes 196%;
Kashyap 1971,. *either position is desirable, nor does it model
the processes or human understanding. Contextual knowledge
is unquestionably relevant to the applied problem, but «'ifficult
to m.rge gracefully with new information in the form o uctual
measure.nents of the system. If we had no new measurements
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at all, we would base our predictions on our experience with
similar systems, or on our experience with the behavior of this
particular system in the past. If we had a limited amount of
information about the actual system under study, we would want
a solution consistent with both the current data and our prior
understanding. It would seem reasonable to give precedence to
the new accurate knowledge and then resolve any remaining
inferential ambiguities by appealing to the prior knowledge
base. Kullback's Principle of minimum cross-entropy (Kull-
back 1959) provides a rule for picking a unique solution using
both the new system measurements and the background knowl-
edge. It states that from a set of possible solutions, we should
choose the one most similar to our prior information.

Cross-Entropy Minimization

In fisheries management, there is often a wealth of piior
information of uncertain applicability about a particular fish
stock, coming perhaps from historical records, experience with
similar species, or theoretical principles. It would seem rea-
sonable to use Kullback's Principle to resolve the ambiguity of
the solution set C by picking the element in C most similar to
an assumed prior p(L=,K) that somehow represents our prior
understandings. If we have absolutely no insight into the prob-
lem area. we would specify a uniform pdf, and our minimum
cross-entropy (MCE) procedure would reduce to the well-
known maximum entropy (ME) formalism. No matter how the
prior density is specified, the selected element must still satisfy
all of the given moments because it i5 chosen from a set com-
posed only of elements that meet all of the moment constraints.
Our prior knowledge is never allowed to contradict or restrict
the evidence of the current data but guides us to a well-defined
solution when the current data is insufficient.

To implement this optimization procedure, it is necessary to
be precise about how to measure the dissimilarity between two
pdf’s ptL=.K) and g(L=.K). In information theory this distance
is commonly quantified by Kullback’s cross-entropy functional

(6)  Hlg(L.K).p(Le.K)] = [f q(Le.K)

q(L:.K)
X log ————— dL.dK.
plL.K)

Also known as the directed divergence, the minimum discrim-
ination information, or the Kullback-Leibler number, this dis-
tortion measure on the space of probability density functions
can be nterpreted as the expected value of a log-likelihood
ratio - Cross-entropy has been used previously as a distance
measure n fisheries application by several authors (MacDonald
and Pitcher 1979; Schnute and Fournier 1980).

Kullback's Principle would have us find the posterior pdf
JtL..K) that minimizes H[q(L=.K),p(L=,K)| while exactly sat-
niving the set of constraint equations

-

Oy omo= [ (LKL KdLdK, j=1....M.

That 1s. we are treating m, as the average value of the scalar
kernel tunction f(L=.X) when the true probability density func-
tion 15 g(L<.K+ For example, the kernel corresponding to the
mean length at age 5 is fi(L«.K) = L1 —¢~*%). It should be
noted that the expected value constraints (equations 4 and 5)
corresponding to our data are in the form of Eq. 7.

The general problem of pdf approximation using the MCE
criterion has been studied. and a solution for the posterior pdf
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L, (Asymprotic Length)

0.05

K (Brody Growth Coefficient)
Fig. 1. MCE posterior pdf for Example 1.

q(L«.K) for nonpathological integral kemels f(L=.K) is well-
known (Shcre and Johnson 1981):

M
(8 g™<(L..K) = p(Lx.K)t:xp{—l._'i‘.0 B.f(L=.K)}

where the [B,} are Lagrange multipliers whose values are made
consistent with the measured moments /n, by solving the set of

nonlinear equations
M

(9)  mmevsired = fff,(Lx.K)p(Lx.K)exp{—‘._‘_'” B,
X fLeOWLAdK j=1....M

along with the normalizing constraint
M
(10) 1 =[f p(Lx.K)exp{—,._?.” B.f(L<.K}dL.dK.

‘The latter constraint comes about because the posterior g(L«.K)
is a probability density function and hence must integrate to
unity. In practice we generally have to solve this system of ~on-
linear equations using numerical methods such as the Newton-
Raphson procedures.

A nonrigorous derivation of the formi of the MCE posterior
density is presented in Appendix B. A detailed consideration
of the conditions under which this result exists and is unique.
which is beyond the scope of the present paper, can be found
in Csiszdr (1975) and Johnson (1979). While there are kernel
functions £ for which no unique MCE solution exists. this pos-
sibility is rarely relevant in practice. Existence and uniqueness
are guaranteed if the kernel functions can be written as a multi-
variate power series, or if the kernel functions. ~< matter how
discontinuous, are bounded. A review of successful applica-
tions of MCE inversion techniques can be found in Shore
(1984).

We will now apply this procedure for selecting a unique pdf
to the problem of inferring the joint pdf of L and K from length
moments of several age classes, information that is commonly
collected, for example, in the determination of age-length keys.
Suppose we knew the mean and the mean square of length at
three specific ages. We could then write seven equations con-
straining the true pdf ¢"*(L«,K):

1782

128

L, (Asywmptotic Length)

92 [

K (Brody Growth Coefficient)
FiG. 2. MCE posterior pdf for Example 2.

an 1= [ g(LeKdLdK

(12) my = [[ L1 —e~%n) gme(Lo, K)dLdK
(13) ms, = [ L3 —e~*n)ge(L. K)dL.dK
(14 my = [[ Ll —e-*n)ge(L K)dL.dK
(15) msy = [f L3 —e~*n2)qoe(L., K)dL-dK
(16) my = [f La(l ~ e~ Kiygne( Lo K)dL-dK
(7)) msy = [[ L1 = e-*s)igne(Lo K)dLdK.

From equation 8 we can directly write the form of the MCE
postenor solution:

(18) g™(L..K) = p(L=.K)-exp{B,
+ ByLa(l —e-*n)
+ By L1 —e-kny
+ By La(l —¢-kn)
4 B.‘.L‘Z(l .__e—m:)z
+ By-L(l —e-%n)
+ Bo'Lx:“ __e—m,)z}_

The MCE postenor density is completzly determined when we
fit the Lagrange multipliers B, to reproduce the measured
moments. usually with an iterative numerical procedure. A
number ot nonlinear minimization techniques seem to work
equally well, including Newton-Raphson methods (Gokhale
and Kullback 1978), the MINPACK minimization routines
(More et al 1980). and the Nelder-Mead simplex procedure
(Nelder and Mead 1565). The following examples with illus-
trate how ettective the MCE procedure is at recovering the latent
pdt ol the von Bertalanffy parameters.

Exampie 1

The first two numerical examples, using simulated data, are
designed to show how information about the covariation of L
and K can be inferred from a minimal set of length moments.
The data, while fictitious, were created to emulate some of the
growth characteristics of a slow-growing marine organism like

Can. J. Fish. Aquat. Sci., Vol. 45, 1988



10

08

06

K (Brody Growth Coeflicient)

60 70 80 90 100 110
L. (Asymptotic Length)
FiG. 3. Simulated true density for Example 3.

130

)

06

K (Brody Growth Coeffcient
04

02

00

110

100
Lo (Asymptotic Length)
FiG. 4. Assumed prior density for Example 3.

60 70 a0 S0

the turbot, which may continue to grow into the second decade
of its life. One hundred (L..K) pairs were generated from a
bivariate Gaussian distribution such that p,, = 108 cm. o, =
10cm, p, = 0.15. 0, = 0.05, and p,_p = —0.99. One
sample pair thus generated had a K-element less than zero and
was discarded. von Bertalantfy curves were computed for each
of the remaining pairs and the ensemble mean and mean square
“collected”” for lengths at ages 1, 10, and 20 yr. While
moments at these three ages nicely bracket the initial, inter-
mediate, and asymptotic portions of the growth curves, this
example is somewhat artificial in that if we actually collected
information at these ages, we would probably also have data
about th= lengths at all the intermediate ages as well. Never-
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1.0
1]

o8

0.6

K (Brody Growth Coefficient)
04

02

1 1
60 70 80 90 100 110
L, (Asymptotic Length)
FiG. 5. MCE posterior density for Example 3.

0.0

120 130

TasLE . Porgy data (values inferred by Tanaka (1962) from a length~-
frequency distribution).

Age Mean SD
[ 10.99 0.8
| 15.26 1.2
| 19.84 1.4
v 23.50 1.2
\Y 26.82 1.4

theless, this hypothetical example is designed to show that we
can deduce a great deal from a very limited set of information.
To emphasize the recovery of covariance phenomena. the prior
pdf p(L=.K) was assumed to have the same mean and standard
deviation in each component as the generating distribution. but
to be independent in dimensions. that is p,_,, = 0.0.

The Lagrange multipliers B,.i=0....,6, were fit with the
Nelder-Mead simplex algorithm to the six estimated moments
and the normalizing constraint

(19 | = [fqL.KABNdL-dK.

Figure I illustrates the logarithmically spaced equiprobability
contours of the MCE posterior pdf for this problem. The intor-
mation about the interaction of the von Bertalanity parameters.
diffusely encoded in the measured moments. is recovered by
the MCE posterior density. It is obvious from inspection ot
equation 18 that the posterior pdf is not Gaussian. even though
the assumed prior density and the true density being approv-
mated are both Gaussian.

Example 2

Another data set was generated, under the same conditions
as given in Example 1, except that the correlation between L.
and K was set to p = +0.99. The same independent pror
density was assumed as well.

Once again the MCE posterior density for this example. as
depicted in Fig. 2, shows the intluence of measured length
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030

020
1

K (Brody Growth Coefficicnt)
015

005
1

' { | | i

00

20 30 40 50 60 70
L (Asymptotic Length)

FiG. 6. MCE posterior density for Example 4 (Tanaka's (1962) porgy
data). ’

TaBLE 2. Sprat data (Sund’s (1911) sprat (Clupea sprattus) data, as
reported by Ricker (1969), composed of back-calculated lengths of the
1903 vear-class)

Age Mean SD

{ 5.86 1.124
11 10.29 1.387
11l 12.79 1.056
v 13.92 0.950
v 14.65 0.868

moments. The interaction of L. and K is strongly apparent in
this posterior density.

Example 3

In the preceding examples we have specified a prior pdf with
the correct mean and variance in each dimension in order 0
emphasize the recovery of the covariance information. Example
3 is presented to demonstrate that the MCE procedure can over-
come the effects of an unrepresentative prior distribution. One
thousand (L.,K) pairs were generated from a bivariate Gaussian
density, trimmed at zero in both dimensions to preclude nega-
tive asymptotic length and negative growth, with parameters
e, =108cm,o,, = 10cm, p, =0.15,andp,, _4» = —0.70.
A contour plot of this density is depicted in Fig. 3. The prior
pdf p(L=.K) was assumed to have parameters p, . = 80 cm,
0,,=20cm, p, =04, 0, =0.1,and p,_n = 0.0 and is
displayed in Fig. 4. Forty moments were *‘collected’” from the
simulated data, repre<enting the mean and mean square of
length at ages 1-20. A contour plot of the MCE posterior pdf
corresponding to this 41-variable nonlinear minimization prob-
lem is shown in Fig. 5. Obviously the MCE procedure has
recovered the important characteristics of the true density from
the length moments, in spite of the choice of prior.
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K (Brody Growth Coefficient)
0.50

045

060

0.55

040

20

Lo, (Asymptotic Length)
Fic. 7. MCE posterior density for Example 5 (Sund’s (1911) sprat
data, as reported in Ricker (1969)).

Example 4

Few attempts have been made to apply this MCE method to
real fisheries data. in part because generalizable software has
not vet been written. Hence, every application currently requires
the development of a custom program. Two preliminary anal-
yses will now be presented.

Tanaka (1962} inferred the moments of length-at-age for
porgy (Taius tumifrons) from a length-frequency distribution
collected in 1950. His estimates of the mean and standard
deviation for each age are presented in Table 1.

The MCE posterior density, computed using a uniform {non-
informative) prior, is presented in Fig. 6, and evidences neg-
ative diagonal structure.

Example 5

Ricker (1969) summarized back-calculated length data for a
sample of sprats (Clupea spraitus) collected in 1908, and ana-
lyzed by Sund in 1911. The mean and standard deviation of
back-calculated length at various ages for the 1903 year-class
are summanzed in Table 2.

The MCE posterior density corresponding to these con-
straints, computed using the uniform prior pdf, is presented in
Fig. 7. Negative covariation is less apparent in this example,
although there is an interesting slight bulge of probability
toward higher L~ values for lower K values in this contour plot.

In the preceding discussion we have explicitly assumed that
the initial conditions parameter ¢, in the von Bertalantfy model
is identically zero, or constant, for all the animals in the group.
In many applications, this is not a credible assumption. and we
must fit ¢, as well. The general method we have outlined above
for two latent vanables can be trivially extended to infer a tn-
variate posterior pdf ¢(L-.K.t,) from length moments. In the
next section we will consider a special trivariate application that
can be reduced to the bivariate formalism just considered.

Can. J. Fish. Aquat. Sci., Vol. 45, 1988

\o



TaBLE 3. Eel data (mark-recapture data for eels (Anguilla australis)
in the Doyleston Drain, New Zealand, summarized from Fig. 2 in
Bumet (1969)).

Mean length at first capture 46.41
sp of length at first capture 12.29
Mean length | yr later 50.40
sb of length | yr later 11.10
Correlation of length over I-yr interval 0.9845
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Fic. 8. MCE posterior density for Example 6 (Bume''s (1969) eel
data).

Mark-Recapture Experiments

Until this point, the symbol  has really referred to the age
of individual animals and not tn chronological time. In a pop-
ulation of animals of mixed ages, it is possible to refer to r as
actual time by allowing -1, for each organism to refer to that
animal’s age at time slice 0. However, to avoid confusion with
the entrenched interpretation of 1,, we will introduce a new sym-
vol T to denote age at time slice 0, 1 = —y,.

In some mark-recapture studies, the age of an animal cannot
be determined without sacrificing it, although its length can be
determined with an acceptable handling risk. It is of interest to
infer the distribution of the von Bertalanffy parameters from
the moments of length at two or more specific time points. For
example, an investigator might dig up a number of clams of
various but unknown ages, measure their lengths, mark cach
one with a unique identification code, release the animals in
their original habitat, and then recapture and remeasure A years
later.

The mean and mean square of length at each measurement
time slice can be expressed as a constraint on the trivariate pdf
q™(Ls,K,7):

(20) El) = [[[L(] —e-*")g™e(Lo,K ,7)dLodKd7
(21) Ey) = [[fL:(1 — e~*")2q"=(La,K ,7)dLdKdr
(22) E(ly) = [[fLe(1 = e-*a=mgne(L, K 7)dLdKdT
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(23) E(yY) = [[[LX(1 = e-Kasnygue(,, K 1)dL.dKdr.

Because we have assigned a unique code to each animal, we
can also estimate from our pair of length measurements the
powerful joint moment

(24 Ellyly) = [[fL3(] —e-K7)
X (1 —e-Ks=mque(l, K 1)dLdKdz.

Using the MCE methodology to infer a unique posterior pdf
q™*(L=,K,7), we can immediately write the form of the MCE
posterior density:

(25) q™(L=.K.7) = p(L.K,7)-exp{B,
+ ByLs(l —e-k7)
+ B:'Lv:“ —e Ky
+ B).Lx(l _e-Kl.\wrl)
+ B,'L:z(l — g~ K3 eny2
+ Bs.sz(l —e~K7)(] _e—x(.\«n)}_

The MCE posterior probability density function of the von Ber-
talanffy parameters is explicitly determined when the Lagrange
multipliers are adjusted so as to exactly reproduce the measured
moments corresponding to the constraints.

General MCE inversion methods can become computation-
ally expensive in dimensions higher than two. It is of practical
interest to consider when this trivariate problem can be reduced
to two dimensions. In many mark-recapture experiments, the
distribution of ages at time zero can be considered to be inde-
pendent of the other two von Bertalanffy parameters and per-
haps even known or manipulated.

If it can be justified that the distribution of ages at time zero
is independent of the other parameters and can be known a
priori, the five constraints corresponding to the measured
moments can be rewritten

(26) Ely) = [f L(1 = v(K))g~=(L<,K)dL.dK
(Q7) Elly) = [f L1 - e *v(K)g=e(L:.K)dL-dK
(28) E(ly) = [[ LI =2v(K) + va(K))g™e(L-.K)dL.dK
(29) E() = [[L(1 =2e-%3v (K) + e~ *3u,(K))
q™(L= . K)dLdK

(30)  Elyly) = [J L =v(K)—e %30, (K) + e~ *uy(K))

X g~<(L:.K)dL<dK
where
(31 v(K) = E (e *)
and
(32) v(K) = Efe-*7)

which by our assumptions are known quantities.
For example, if the age distribution at time slice 0 is uni-
formly distributed between ages a- and a-, then

(e—A'n* _e~Ku—)

(33 =
) wl® Kar—a")
and
(e—ZKa' _.e—.Ka-)
(34) vy(K) =

2K(a* ~a")
In any case the MCE posterior pdf takes the form

1785



(35) g™(L=.K.7y) = p(L=.K) g, *"(1)-exp{B,
+ Bl'Lx(l -1(K))
+ BrL(1 = 2v(K) + vi(K))
+ By LK(l —e~-*3v (K))
+ Bl = 2e K3y (K) + e~ %¥3p,(K))
+ Bs-La(l = v (K)—e %30, (K) + e %3,(K))}

and as before, we must adjust the Lagrange multipliers until
the MCE posterior density reproduces the given moments.

Example 6

Bumet (1969) has studied the growth of freshwater eels in
New Zealand with a mark-recapture methodology. Data for
Anguilla australis was hand-digitized from Fig. 2 in Bumnet's
paper to estimate the mean, standard deviation. and correlation
of the length at first capture, and the length a year later, and
are summarized in Table 3. Under the assumptions of a uniform
prior density and a hypothesized negative exponential age dis-
tibution at first capture (with mean age = 8.5 yr), the esti-
mated pdf of the von Bertalanffy parameters is presented in
Fig. 8, in which some negative diagonal structure can be
observed.

Discussion

The MCE formalism, which we have here applied to the
problem of determining the distribution of the von Bertalanffy
parameters, exploits the variations in the information about
¢"™(Lx.K.t,) implied by projection through different integral
kernel functions. The concept developed in this paper can be
extended to any deterministic growth model that can represent
the growth of an individual animal.

The strengths and weaknesses of the MCE approach lie in
the ability to insert background knowledge of unknown appli-
cability into the problem by way of the prior pdf. Examination
of equation 11 shows that the posterior pdf is in the form of the
prior pdf multiplied by an exponential distortion factor. If the
prior pdf is a good guess, then the magnitude of the Lagrange
parameters will be small and the analytic degrees of freedom
of the model will be spent **fine-tuning'" the posterior pdf.
explaining what is not already known about the system under
study. [f the prior pdf is not a good guess, the magnitude of the
Lagrange parameters will be large as the degrees of freedom of
the distortion function are spent overconiing the unrepresen-
tativeness of the prior pdf. It should be generally noted that if
the hypothesized prior p(L..K 1) happens to be identical to the
true pdf ¢"<(L..K.1,), then B, = 0, ¥, and g™(L..K.1,) =
Pls,K 1)) = g™(L=.K 1)

As the number of measured moments m, increases, the MCE
procedure can overcome any specification of the prior pdf so
long as p(L..K.t)) > 0 everywhere. In the information theory
literature, this appealing behavior of the MCE inverse is termed
the **washing out"" of old uncertain information with new facts.
Whenever there is an inconsistency between the prior p(/) and
the actual data, the new data take precedence.

The MCE inverse methodology can be viewed as a formal
way to deal with missing information problems by adapting the
form of the model to the available moments. The kernels cor-
responding to missing moments are simply not present in the
argument of the exponential function in equations 8 and 18.
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Itis a **method of moments’’ inverse technique. That is, the
Lagrange parameters {8} are defined, not statistically esti-
mated. Sampling variability in the measured moments will be
propagated through to the posterior density q(/).

Practical implementation of the MCE methodology generally
relies on some kind of iterative nonlinear minimization proce-
dure. Convergence can be accelerated if either pL=.K 1) is a
very good guess or if a good starting value for B is chosen.
One method of quickly estimating a reasonable starting value
is to assume that @ is small enough that the multiplicative expo-
nential distortion factor in equation 11 can be replaced with a
Taylor series linearization about the origin. We can then write
an approximate expression for the MCE posterior as

g - bl -
(36) gm™(X:B) = p(X)[l + SB.SUT)]

which can be fit to the moments using linear mathematics.
This form is suggestive because it closely resembles a class
of pdf estimators based on orthogonal function expansions that
may be computed very efficiently. If p( ¥ ) is multivariate Gaus-
sian, and f( X ) are appropriately chosen multivariate Hermite
polynomials, then equation 36 is the well-known Hermite
orthogonal expansion of the pdf. Similarly, if p(¥ ) is multi-
variate exponential, multivariate Laguerre polynomials form a
convenient orthogonal expansion. A future research direction
is to explore the adequacy of these pdf estimates of the von
Bertalanffy parameters, which are suboptimal approximations
in the cross-entropy sense, but which can be estimated with
significantly less computation than the general MCE form.

Estimation Issues

It has been stressed that the MCE inversion procedure is a
“*method of moments’" where summaries of sampled data are
assumed somewhat arbitrarily to be equivalent to asymptotic
expected values, from which the Lagrange parameters are
defined rather than statistically estimated. Anyone who has par-
ticipated in fisheries research data collection or has had the
responsibility of summarizing such data would be justifiably
concerned about this suppression of uncertainty. The attempt
to make this pdf approximation scheme better suited for prac-
tical problems is an active research topic.

The MCE posterior density is the optimal solution to a cal-
culus of vanations problem where the moments are represented
as integral equality constraints on the unknown true density. It
is also possible to formulate this problem using integral
inequality constraints. For example, instead of using the equal-
ity constraint

3N m, = [ f(L=K.1)q™ (LK ty)dL-dK 1,

two inequality constraints might be written;

(38) m, +2 \;/V > [ f(LeK t0)q™(LoK 1o)dLdKdl,
U‘
(39) m-2 v < J flloK 10)q"(La K 1)L wdK 1.

That is, confidence intervals based on some reasonable assess-
ment of the variability of the moments due to sampling are
employed to constrain the class of consistent densities. Kull-
back’s Principle can still be applied to the now larger convex
set of pdfs satisfying the given inequality constraints.
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Until a satisfactory method is found to analytically determine
the effect of moment estimation error on the posterior pdf, com-
putationally expensive resampling methods of assessing the
variability, such as jackknifing and bootstrapping (Efron 1982),
can be employed.

Conclusion

The problem of determining of the general joint distribution
of the parameters of the von Bertalantfy growth model can be
approached as an ill-posed inverse problem. MCE inversion
techniques allow the selection of a reasonable unique solution.
directly incorporating background information when available.
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Appendix A: Convexity

Itis easily shown that the class C of probability density func-
tions consistent with a given set of moment constraints is
convex set. Suppose that there exist two densities. p,(X ) = C
and py(X ) £ C, such that

(40) p(X) # pAX).
By definition of membership in C:
(41) m, = [f(X)p(X)dX

it

and

(42) m, = [ f(3)ps X )dX.

To show convexity, it is sufficient to demonstrate that

(43) p(X) = ap(¥)+(l—a)pfX)EC VYa3z0sas<].
But

JHE PRI = af f(X)p(R)dX +
(1=a) [ (XX )dX

am.+ (1 —a)m,
m, 0<k=m.

Therefore
45) p(X)

ap () +(1=a)p(¥) £C Va30=asl,
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Appendix B: Derivation of the Form of the MCE
Posterior Density

Cross-entropy minimization is a general procedure for
approximating a true but unknown probability density function
q'(x) given a set of moments and a prior assessment p(x). The
approximating posterior q(x) is chosen such that of all distri-
butions consistent with the known moments, we select the one
most similar to the prior model. If the assumptions are specific
and the set of measured moments is not internally contradictory,
the posterior g(x) thus obtained is unique.

The logic of Kullback's Principle would have us find the
function ¢( X ) that minimizes

- . - )
(46) Hlg(x)ptx)] = [ qtx )log ﬁ dx

while exactly satisfying the set of constraint equations

(47) m, = [f(X)q(X)dX j=1...M.

An Isoperimetric Calculus of Variations Problem

All of the MCE problems addressed in this paper have a com-
mon structure, which may be addressed with calculus of vari-
ations techniques. We are given a set of constraints {m} which
are known to satisty the following definite integral equation:

48) m, = [glqiX)ldx

where g( X ) is a function to be determined. We are also given
a measurement functional. again a definite integral:

(49)  froeulg(T)] = [ 1 ealg(7)dX

and we want to obtain the ¢( ¥ ) that extremizes Fealg( X ).

In optimization theory. applications with this form are called
“isoperimetric’” calculus of varations problems. The name
derives from the classical problem of finding the function with
the maximum =nclosed area given a fixed length boundary or
perimeter.

To solve this problem, we use the Lagrange multiplier method
(Weinstock 1952), forming the equation

— f
(500 QUgtT 1Bl =lnalq(¥ )]+ T Bglg(F)).

We riow minimize this equation with respect to ¢( ¥ ). Taking
the denvative and setting 1t equal to zero,

d
sn 22y

dg
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we derive an ixp@ssion that (¥ ) can only satisfy at an extre-
mum of Q[q( x );3]. We must then verify that the extremum is
in fact a minimum by checking the higher order derivatives.
Application to the MCE Problem

For the MCE problem, we can identify

(52) {ew = g(X )log q(i)
plx)

and

(53) g = f(T)q(X).

Therefore

.z u q(%)
(54) Qg(X %R 1=q(T og —=
plx)

M
+ 2 B f(X)q(X)+hg(F).

Iy
The last term reflects the fact that we usually have the constraint

(55) Jq(X)X =1

as well because (X ) must be a valid normalized probability
densiiy function.
Taking the first derivative with respect to ¢( X ), we derive

dQ ql X) M .
(56) — = log - +1+M+ 2 B f(X)
dq plLx) 1=
and for the second derivative we obtain
d:Q |
(57) — = — .
dg* q(x)

Setting the first derivative equal to zero:

M
(58) log q(¥)=log p(X)~1-A— T B,f(3).

Calling By=A\,+ 1 and £,(X ) = 1 forall X, we can write
M

(59) logq(X)=logp(X)— }._20 Bf(X)

Therefore

- - Y —
(60) q(x)=p(x)exp {—I_ZU B.flx) }

which is the classical MCE posterior density (Johnson 1979;
Shore and Johnson 1980).

Inserting this solution into the expression for the second
derivative, we see that the positivity of the prior density p(¥ )
implies the positivity of g( x ), which guarantees that the second
derivative is positive at the solution point. Hence, the solution
is a minimum as desired.
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