$$
\begin{gathered}
P N \cdot A B-469 \\
6-173
\end{gathered}
$$

Postharvest (Irain Systems R \& D)

Research Report No. 32
December 1989)

DESIGN OF GRAIN HANDLING AND STORAGE

FACILITIES FOR TROPICAL COUNTRIES

FOOD \& FEED GRAIN INSTITUTE MANHATTAN, KANSAS 66506

DESIGN OF GRAIN HANDLING AND STORAGE FACILITIES

FOR IROPICAL COUNTRIES

Prepared by

Carlos Benavides
and
Do Sup Chung

for the
AGENCY FOR INTERNATIONAL DEVELOPMENT UNITED STATES DEPARTMENT OF STATE
AJ.D/DAN-4144-A-00-5095-00
Postharvest Grain Systems R\&D
at
Kansas State University
Food and Feed Grains Institute
Manhattan, Kansas 66506

PREFACE

This report is a reproduction of a Master's Thesis written by Carlos Benavides in fulfillment of the requirements for a Master of Science degree in the Department of Agricultural Engineering at Kansas State University, under the direction of his major professor, Do Sup Chung.

The research contained in this thesis report focuses on the questions of grain quality maintenance and postharvest grain losses. The report is being reproduced in its entirety in order co allow the research methodology and results to be distributed in a timely manner to developing-country researchers who work in the area of postharvest grain systems. In this way, these researchers can become aware of the methods, results, and conclusions in this work, and this information can become a valuable tool for guiding future research in this area.

The increase in the domestic crop production and/or the increase in imported grains require establishing new grain handling and storage facilities or expanding the existing ones in order to maincain grain quality ard efficient grain marketing and distribution, and to reduce grain losses in a given country.

In many tropical countries, such as Central American countries, grain storage and handling systems have been adopted from developed countries, of ten without serious consideration on local conintions and parameters involvec in designing a proper grain storage facility.

When designing a commercial grain handling and storage facility, the designer always faces the decisions of using concrete or steel bins and of selecting proper grain hanaling and conditioning systems. Unfortunately, a survey of current literature shows that few documencs discuss how these decisions are made.

Therefore, this study is needed to develop methods for planning and designing optimal grain storage and handling facilities to be used in tropical countries.

1. To examine the advantages and disadvantryes of using concrete or steel hins for storing grains under tropical conditions.
2. To study the parameters involved in the design of commercial grain storage facilities.

Chapter II outlines the parameters involved in the design of commercial grain handling and storage facilities. Literature from different investigators has been gathered in order to compile in one document the data required when designing this type of facilities.

Chapter III presents a cost analysis of the different equipment used in grain handling and processing. Different figures showing the variation of costs with equipment capacity are also presented. A study of the cost of storage structures considering steel and concrete bins is included.

Chapter IV presents an application of the Technique for Order Preference by Similarity to Ideal Solution (TOFSIS), a multiple attribute decision making method, to select the correct type of storage structure. The Sequential Unconstraint Minimization Technique is applied to optimize the bins' size and the drying system.

Appendix I is an explanation of the st:uctural design of concrete bins that was done to obtain data of the reinforcement steel and concrete required for different concrete silo batteries. This analysis established the basic data for the cost study of concrete bins.

CONTENTS

Page
PREFACE iii
Section
I USE OF CONCRETE OR STEEL BINS UNDER TROPICAL CONDITIONS 1
Introduction 1
Grain Conservation During Storage 1
Condensation and Moisture Migration 2
Weather Effects on the Structure 3
Utilization of Space 4
Structural Considerations 4
Construction Aspects 5
Type of Storage Facility 6
Cost 6
Associated Benefits 6
Conclusions and Remarks 7
References 9
II DESIGN PARAMETERS 11
Introduction 11
Description of the System 11
Flow Diagı am and Design Considerations 11
Receiving System 11
Facilities Planning 16
Grain Parameters for Grain Conditioning and Storage 21
Grain Drying Recommendations 22
Conclusions and Remarks 22
References 38
III COST ANALYSIS ON EQUIPMENT FOR GRAIN 41
Introduction 41
Review of Literature 41
Procedure 42
Model Receiving System 43
Model Processing System 44
Model Storing System 48
Modeling for Energy Requirements 54
Conclusions
55
55
References 80

CONTENTS (Cont.)

Section Page
IV SYSTEM ANALYSIS FOR THE DESIGN OF GRAIN HANDLIN! F_{G} AND STORAGE FACILITIES 83
Introduction 83
Review of Literature 83
Choosing Between Concrete or CorrugatedSteel Bins83
Use of Multiple Attribute Decision-Making Methods 86
Application of Minimization Techniques to
the Design of Grain Storage Facilities 92
Optimization of the Drying System 97
Conclusions 103
References 122
APPENDIX I - DESIGN OF CONCRETE SILO BATIERIES FOR THE COST STUDY 125
APPENDIX II- COST AND CLASSIFICATION OF GRAIN CLEANERS 151

LIST OF FIGURES

Figure Page
12 General Flow Diagram for a Commercial GrainHandling and Storage Facility23Typical Layout of Grain Storage Facility2.4
Gravity Pit and Auger Pit 25
Grain Receiving and Shipment Pattern 26
Cumulative Receipts and Shipments 26
Economical Ranges for Different Drying Methods 27
Dryeration Process. 28
Auger and Gravity Flow Pits 57
Bucket Elevator: Cost/m Height ($\$ / \mathrm{m}$) vs. Capacity (T/H) 58
Grain Cleaners Cost: Cost (\$xl03) U.S. Capacity (T/H) 59
U-Trough Screw Conveyors (constant length of 183m): (Cost (\$) vs. Capacity (T/H) 60
Drag Conveyors (Constant Length - 3.05m): Cost for Capacities Lower than $60 \mathrm{~T} / \mathrm{H}$. 61
Drag Conveyer (lsngth of 16.5 m):
Cost (\$) vs. Capacity (T/H) 62
Influence of Size in Steel Bins Cost 63
Storage Volume vs. Steel Bins Cost:
Influence of H / D ratio in Cost 64
Horizontal Pressure vs. Friction Coefficient 65
Vertical Pressure vs. Angle of Repose 65Optimum Concrete Silo Size: ConcreteIndex (Concrete vol/storage vol) vs.Silo Height (m)66

LIST OF FIGURES (Cont.)

Figure Page
20 Concrete Index (Concrete vol./storage vol.) vs. Storage Capacity 67
21
Cost of Concrete Bins vs. Storage Volume 68
22
Storage Volume vs. Cost: Flat Storage Structures (Steel Bins) vs. ConcreteUpright69
23 Storage Volume vs. Cost: Upright Concrete Bins and Upright Steel Bins 70
24
Concrete and Steel Bins: Unit Cost vs. H/D ratio 71
25
Eudideam Distance to the Ideal and Negative Ideal Solutions in Two Dimensional Space 104
26
Assignment of Values for an Interval Scale 10527
Choice of Concrete or Steel Bins for Commercial Type of Storage 106
Influence of the Weight Factor in the Choice of Concrete or Steel Bins for Commercial Type of Storage, with a Fixed Cost Variation 107
Influence of the Weight Factor in the Choice of Concrete or Steel Bins for Commercial Type of Storage With a Fixed Cost Variation 108
30 Choice of Concrete or Steel Bins for Long-Term Type of Storage 109
31 Choice of Concrete or Steel Bins for Long-Term Type of Storage 110Influence of the Stcrage Capacity inChoosing the Proper Type of Bin forCommercial Storage Facility111
Influence of the Storage Capacity in Choosing the Proper Type of Bin for a Long-Term Storage Facility 112
34
Commercial Drying Systems 113Commercial Drying Cost114
Table Page
1 Moisture Content During Harvest and For Storage, Percent 29Safe Storage Period for Corn (Dry MatterLoss Less Than 1.0 Percent)29Airflow Rates30
Values of Constants used in Airflow Resistance Equation 1 30
Grain Drying Recommendations 31
Equilibrium Moisture Content Equations and Constants Approved by the American Society of Agricultural Engineers 32
Angle of Repose and Coefficient of Friction at 12 to 16 Percent Moisture Content, w.b. 33
Bulk Density of Corn 33
Bulk Density of Rice and Rough Rice 34
Porosity Values of Rice and Rough Rice 35
Physical Dimensions of Rough Rice and Corn 36
Specific Heat and Thermal Conductivity Values for Rice and Corn Approved by the American Society of Agricultural Engineers 37
Companies Contacted for Price Quotation 72
Spout Length at Which Grain Velocity Exceeds $8.9 \mathrm{~m} / \mathrm{sec}$. 74
Drag Conveyors Size and Capacities 75
Bin Sizes Considered for the Study 75
Mechanical Efficiency 75
Economic Information of Grain Handling, Drying, and Storage Systems 76
Table Page
19 Summary Table of Mathematical Mode1s for Equipment and Grain Storage Systems 78
20
Energy Function 80
21
Decision Matrix After the Quantification of Nonumerical Attributes 115
22
Intensity Scale for Pairwise Comparison 116
23
Pairwise Comparison Matrix 117
24 Decision Matrix For Example II 117
25 The Ergenvector Pairwise Comparisons 117
26
Long-Term Storage Facility. Weights Through Pairwise Comparison and Direct Weights 118
27
Influence of Cost Variation 119
28
Breakeven Values Between Concrete and Steel Bins for Commercial Type of Storage Assigning Different Weights to the Cost Factor 12029
30
Influence of Storage Capacity 120
Fixed Cost Per Year for Different Storage Capacities 121

USE OF CONCRETE OR STEEL BINS UNDER TROPICAL CONDITIONS

Introduction

When designing a commercial grain processing and storage facility, it is important to decide on the correct type of storage. The most common commercial storage structures are corrugated steel and concrete bins.

Corrugated steel bins are always cylindrical in shape, and available sizes vary from 6 m to 27 m diameter and 12 m to 23 m height. The bins are usually set on a foundation ring. The commercial sizes are usually flat with the ratio of height to diameter (H/D) lower than 2.5. The bins are arranged in batteries but are not usually interlocked. The discharge is usually through a sweep auger and unloading auger.

Concrete bins are built in different shapes, the most common being circular, rectangular, and hexagonal. Diameters vary from 5 m to 12 m and heights from 15 m to 55 m . The wall thickness varies from 15 cm to 20 cm . These bins are built connected to each other or independently. Because of the upright shape, the discharge is usually by gravity through a hopper.

The advantages and disadvantages of using concrete or steel bins depends on several factros related to the grain; the climate, the structure, the construction, and the use that will be given to the facility.

The decision on the type of storage under tropical conditions must include parameters such as cost, availability of materials, structural aspects, and grain quality preservation.

In order to describe the different aspects, a literature search was conducted through the Postharvest Documentation Service (PHDS) and the After Dark Search Service at Farrell Library, Kansas State University. The principal sources investigated were the Common Wealth Agricultural Bureau, England; the Engineering Index, Agrindex International; and Agricola files from the National Agricultural Library, Washington, D.C. The most relevant aspects of this search are presented below

Grain Conservation During Storage

Before describing the behavior of the different types of storage bins under different circumstances, it is important to establish what is a good environment for grain conservation and the main factors that affect the stored grain. Brooker et al. (1973) described the most important sources of cereal grain deterioration during storage as fungi, insects, rodents, and mites. All of them affect the grain quality and quantity.

The optimum temperature for growth of most grain molds is between $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$ and $30^{\circ} \mathrm{C}\left(86^{\circ} \mathrm{F}\right)$, and some molds develop best at around $37^{\circ} \mathrm{C}\left(98^{\circ} \mathrm{F}\right)$. The minimum air relative humidity (RH) for mold germination is 65 percent. Thus, to prevent mold
growth on cereal grains at any temperature, the RH of the air in the grain mass must be less than 65 percent.

Insect development is enhanced by high moisture content (mc) conditions (above 14 percent), and insect activity hardly occurs in cereal grains at moisture contents below 10 percent. Most insects are dormant below $10^{\circ} \mathrm{C}\left(50^{\circ} \mathrm{F}\right)$ and are killed at temperatures above $100^{\circ} \mathrm{F}$.

Condensation and Moisture Migration

Steel bins. The thin outside walls of steel bins offer little thermal insulation and the temperature of the outside air can be transferred to both the grain and the air inside the bin. In this way, the outside temperature variations make the initial grain storage conditions change.

Brooker et al. (1981) described the moisture migration as follows:
When the temperature outside the bin decreases, a temperature differential is created across the walls. The air in the silo develops a continuous convection movement. The air near the walls is cooled, raising its RH, and resulting in an increase of the mc in the bottom of the silo. This increase in moisture can create a deterioration spot. Then, the dry air rises through the central part of the bulk mass and picks up moisture from the grain. When this warm, moist air contacts the cool upper grain surface, the moisture is deposited and another deterioration zone can occur.

The inverse air movement pattern may occur if the air outside the bin warms up, causing the me to increase near the floor of the bin. Figure 1 explains this behavior.

In the tropics, where seasonal temperature changes are not very large, the main problem occurs with daily temperature changes or day to night temperature variations and high humidity of air. The high daytime temperature heats the inside of the win causing a moisture transport from the grain to the surrounding air. At night, the outside temperature drops very rapidly and the water vapor in the air spaces condense on the internal surface of the bin, mainly on the roof. The grain can act as a condensing surface if its temperature is reduced to below the dew point temperature of the air. This condensation problem may ause deterioration areas on the top of the grain and sometimes on the walls.

Several problems with grain stored in metal silos are cited in the literature relating to condensation and grain deterioration. Shamsudin et al. (1984) described problems such as the occurrence of hot spots and caking of grain in metal silos in Malaysia.

Abdalla et al. (1982) investigated the temperature and moisture changes of grain stored in sheet metal bins under the climate conditions prevailing in the north central part of Sudan. They reported grain danaged by mold growih as a result of moisture migration within steel bins in that part of the country. The authurs made management recomendations to overcome this problem and concluded that metal bins are suitable for storage of grain under the climatic conditions of North

Central Sudan. In the study, they recommended the use of perforated floors as an effective method of ventilation.

Webley (1981) cites the success in use of metal silos in Austria, based on the initial low mc of the stored grain. He also explains that it has not been possible to keep paddy in metal bins without aeration because 10 cm of grain around the surface is completely spoiled. For successful use of metal bins, he recommends the observation of good management standards and appropriate instrumentation for the detection of deterioration spots.

Concrete bins. Due to concrete thermal conductivity and thickness of concrete bin walls, concrete bins offer better thermal insulation than steel bins.

Beaulois (1979) wrote a paper regarding the decision to use concrete or steel bins. He compared the thermal insulation of a 5 mm steel bin wall with a 140 mm concrete bin wall (average wall thickness) considering only energy transport by the mechanisin of conduction, and found that reinforced concrete walls offer a thermal insulation 1,000 times greater than steel bin walls.

In a study by Converse et al. (1973) regarding the heat transfer within wheat stored in a concrete bin, wheat tomperatures showed practically no change even at 15 cm from the wall, when the average daily external temperature was $2^{\circ} \mathrm{C}$ $\left(36^{\circ} \mathrm{F}\right)$ with differences of $13.4^{\circ} \mathrm{C}\left(24^{\circ} \mathrm{F}\right)$ between day and night. The quality of grain used in this test was maintained reasonably well without ventilation, aeration, or turning during a storage period of 2.5 years. The authors stated that the key factor in the successful storage was providing the grain a uniform low me (13 percent) and an initial uniform grain temperature.

In another study by Converse et al. (1977) six wheat lots out of seven, stored without aeration in concrete bins for 1 year, with a mc of 12.6 percent, resulted in only slight changes in fatty acid and germination. The lot that showed more deterioration had an initial mc of 14.2 percent. The literature reviewed for this project reveals no specific problems with grain conservation in concrete bins.

Weather Effects on the Structure

Steel bins. Tropical climates with high humidity, high temperatures, and long periods of sun radiation generate an accelerated corrosive action on the steel surface structures. This problem can be worsened by condensation on the bin walls, especially underneath the roof where dewdrops concentrate.

Isolated corrosion spots can oceur when caking takes place on the wall surfaces. The moisture-laden cakes generate heat and acids that corrode the steel surfaces. The acids penetrate the galvanized coat, loosening fart of it that is later removed during cleaning of the bins. The resulting unprotected steel surface will corrode faster.

Steel bins are not recommended under marine atmospheres in the tropics, especially on the shoreline since the most favorable enviroment for corrosion combines high humidity and salt (Sauter, 1984).

According to the Steel Structures Painting Council (SSPC) 1954, less severe marine atmospheres are found away from the coast where the structures are subject to salt-laden wind, rain, and mists only a small portion of the time. Even so, thicker than normal galvanizaticn coats are suggested.

The SSPC recommends the following galvanization thicknesses for various types of exposure:

EXPOSURE

THICKNESS
Rural Atmospheres

$$
0.076 \mathrm{~mm}, 0.45 \mathrm{~kg} \text { of } \mathrm{zinc} / \mathrm{m}^{2}
$$

Marine Atmospheres

Mild (light, no salt spray)	$0.076 \mathrm{~mm}, 0.45 \mathrm{~kg}$ of $\mathrm{zinc} / \mathrm{m}^{2}$	
Severe (heavy with spray)	0.203 mm,	2.25 kg of $\mathrm{zinc} / \mathrm{m}^{2}$
High Humidity Atmosphare	0.127 mm,	1.20 kg of $\mathrm{zinc} / \mathrm{m}^{2}$

The standard galvanized silo is usually built for specifications concerning rural atmospheres.

Concrete bins. Weather effects on concrete bins are not as critical as on steel bins. Problems of water leakage may arise in concrete bins due to crack formation as a result of deficiencies in the design or bad construction techniques (Safarian, 1985). Otherwise, concrete structures are more resistant under tropical weather and require less maintenance.

Utilization of Space

Space is frequently a limiting paraneter in choosing the type of silo. Steel bins are mainly designed to resist tensile stress and the only efficient shape is a circular bin. Otherwise, rectangular forms will introduce bending stresses that will make the steel sections not feasible to use because of the cost increase. Beaubois (1979) compared the utilization of space using concrete or steel bins obtaining the following values:

Steel bins with empty interstice $=75$ percent of covered area
Steel bins using interstice $=88$ percent of covered area
Rectangular concrete bins $=90.5$ percent of covered area
It is not economical to use intcrstice spaces in steel bins because of the introduction of bending moments or contraction loads to the walls.

Height is also a factor. Corrugated steel bins are designed up to a height of approximately 25 m because of structural and cost limitations (Behelen Catalog, 1986). Concrete bins are usually designed to 55 in in height at a reasonable cost. The extra height of concrete bins also gives more storage capacity per square meter of covered area.
to the rigidity of the wall sections, this stress is handled without increasing the existing thickness a great deal.

Steel bins should preferably be discharged through a central outlet. Eccentric discharge generates higher pressures on the opposite wall which may result in ovalization of the bin.

When the size cf steel bins increases over diameters of $15 \mathrm{~m}(49.2 \mathrm{ft})$ and heights of $20 \mathrm{n}(65.6 \mathrm{ft})$, the compression stress caused by the friction of the grain against the wall becomes very high, requiring the use of thicker plates and stiffeners to avoid buck:ling of the plates (Mata, 1983).

High gusts of wind may also affect the stability of steel bins, especially when they are empty.

Soil capacity. Bowmans (1985) considers the soil conditions one of the most important structural parameters when the bin construction material is selected. If the scil stratum has little supporting capacity or high settlements of the structure are expected, light constructions with bigger cross areas are preferred.

Construction Aspects

Steel tins. The most common and economical metal bin is constructed with corrugated metal sheets. Thase bins are industrially constructed mostly by assembling prefabricated panels. This technique makes the initial cost, especially at the place of fabrication, very attractive (Bowmans, 1985). The relatively easy assembly process makes this type of silo ideal for countries whose construction technology is not very advanced. The required equipment is not too complex and workers can be easily trained to erect this type of structure.

Problems related to water leakage through the wall sheets and bolts are described by Ismail et al. (1984). A skilled foreman is advisable to direct the assembly to avoid this problem.

Concrete bins. The construction of concrete bins is more sophisticated and time consuming than the steel bin construction. Bowmans (1985), Reimbert (1976), and Sofarian (1985) describe the construction of concrete tins in detail. The inain points are mentioned below.

This type of construction requires high technology, qualified personnel with experience in handling large quantities of concrete per hour, and extensive nonqualified personnel. The slip formed technigue requires a specialized company. Additional heavy equipment such as cranes, concrete hoisters, concrete plants, concrete trucks, concrete pumps, and electrical plants are also required.

Another important factor is the availability of materials such as sand, stones, steel bars, and cement. They should be stored at the place of construction or very near it before starting to raise the structure. The organization, planning of the staff, and the site requice a specialist to be in full control of the process.

Type of Storage Facility

Storage structures are usually classified according to the function they perform in the grain trading process (Bouland, 1966; Webley, 1981).

When the objective is to hold the conmodity at a given quality level for a given period of time, they are classified as storage facilities. When these facilities hold only one or two types of grain during $11 / 2$ years, the practice is to build flat storage. Fiat storages are defined as bins with diameters or widths larger than their height. For this design, corrugated steel bins are usually cheaper than concrete bins.

When the objective is to provide a link in the postharvest chain, either to accumulate grain fron farms and transfer it to rail, or to accumulate from rail and transfer to ships, they are classified as working facilities. For these needs, usually upright structures are selected. They are more suitable and economical for loading and unloading the grain and are usually more economical for storing many grain varieties. One facility can have numerous bins which provides flexibility for segregating and blending grain. Under these circumstances, concrete bins are usually more economical to build and to operate than steel bins.

Cost

Cost is always a very important factor when choosing among different alternatives.

Bouland (1966) showed a breakeven point of about 2500 tons (100,000 bushels) of storage capacity for construction costs in the United States. The criterion was that below this capacity, steel tanks usually have a lower initial construction cost, and above this capacity, concrete tanks usually cost less.

Construction costs will vary depending on overseas freight requirements, taxes, availability of construction maたerials, and labor costs.

No updated literature was found relating to the variation of cost of storage structures with the capacity.

Associated Benefits

Chung et al. (1983), during the study of the grain handing facilities in Costa Rica, considered not only the factors mentioned above, but also the associated benefits that could be brought to the country through the projects.

Social benefits like the creation of new employment sources may be of special interest for different crountries. The type of structure to be built will highly influence this aspect. The requirements of foreign exchange is also considered as an associated benefit.

Countries with low availability of foreign exchange will prefer the construction alternative that demands fewer imported materials.

Conclusions and Remarks

1. Both types of bins have beer successfully used in tropical weather. When steel bins are used, they require good management standards and good supervision during construction to avoid water leakage problems. An efficient aeration system is also required.
2. Through the literature review, it can be concluded that the main factors that provide the basis for selecting the correct type of bin are: cost, grain conservation, longevity of the structure (including endurance and weather effects), function of the structure, construction aspects, associated benofits, and operation flexibility.
3. The influence of each one of: the above aspects in both types of structure is well documented in the literature. The final decision will be a compromised solution among these factors. Due to the nature of the decision parameters, the selection will differ for each specific situation.
4. No articles were found in the literature explaining a methodology to consider the different factors that influence the selection. A scientific method to form a compromise solution is missing.

FIGURE 1. Convection Air Currents (Brooker at al. 1981)

REFERENCES

1. Abdalla, A. 1982. Investigation on Grain Storage in Sheet Metal Bins Under the Climatic Conditions of North Ventral Sudan. National Grain Storage Seminar.
2. Beaubois, G. 1979. Grain Storage: Steel or Concrete Silo? Revue Agricola Et Sucriere De L'Ile Maurice 58:207-212.
3. Behelen Manufacturing Company. 1979. Guidelines in Planning Grain Conditioning and Storage Systems, Columbus, Nebraska.
4. Boumans, G. 1985. Grain Handling and Storage, Developments in Agricultural Engineering, Ed Elsevier.
5. Brooker, D., F. Bakker Arkema, and C. Hall. 1981. Drying Cereal Grains, AVI Publishing Company, Inc., 3rd Printing.
6. Chung, D., R. Phillips, and C. Reed. 1983. Evaluation of Training Needs and Grain Handling Facilities of CNP and CIGKAS. Report No. 88, Kansas State University, Food and Feed Grains Institute, Manhattan, Kansas.
7. Converse, H., A. Graves, and D. Chung. 1973. Transient Heat Transfer Within Wheat Stored in a Cylindrical Bin.
8. Converse, H., B. Miller, and A. Graves. 1977. Quality Change of Hard Red Winter Wheat Stored in Concrete Silos. Agricultural Research Service, USDA, ARS-NC-58.
9. Ismail S., F. Loo, and I. Teoh. 1984. Evaluation of Steel Silo System Under Malaysian Climatic Conditions. Paper presented at the 1984 ASEAN Technical Seminar, Malaysia.
10. Mata, A. 1983. Metodologia de Calculo para Determinar la geometria mas Economica de Silos de Acero y Concreto. Escuela de Ingenienia Civil, Universidad de Costa Rica.
11. Reimbert, M. 1976. Silos: Theory and Practice. Trans Tech Publications, lst Ed.
12. Safarian, S. 1985. Design and Construction of Silos and Bunkers. Van Nostrand Reinhold Company, 2nd Ed.
13. Sauter, F. 1984. Diseno Estructural de Silos de Trasiego de Granos en Puerto Caldera. Consejo Nacional de Produccion, Costa Rica.
14. Steel Structures Painting Council. 1934. Good Painting Practice, Vol 1 , Chapter 17 .
15. Bouland, H. 1966. (Locating, Designing, and Building Country Grain Elevators). Agricultural Information Bulletin No 310, USDA.
16. Webley, D. 1981. Storage Structures and the Preservation of Quality. Proc. Aust. Dev. Asst. Courses on Preservation of Stored Cereals, Stored Grain Research Laboratory, Division of Entomology, Caraberra.

SECTION II

DESIGN PARAMETERS

Introduction

Even though much has been written about the factors to be considered when designing grain handling and storage facilities, currently, the information must be found in many different books and scientific papers. The lack of collected information complicates the design task.

This section condenses the required information for planning and designing commercial facilities. Considering that the main cereal grain crops in tropical countries are rice and corn, special interest is given to the design parameters for these two products.

Also included in this section is a general description of a commercial grain handling system, planning methods and guides for sizing the system, recommended layouts, grain processing and storage practices, and physical characteristics of the grain.

This information has been gathered through scientific literature, the detailed study of manufacturing catalogs, and personal recommendations from experts in the field.

Description of the System

A general commercial grain handling and storage facility usually consists of a receiving area, a processing and grain conditioning system, and a storage area. In order for the grain flow within the facility to be safe, reliable, and flexible, the whole process has to be considered as an integrated system.

In the receiving area, using a truck scale platform and a truck control room, the grain is weighed, sampled, and loaded in. To load the grain, a grain hopper and a bucket elevator are required. Usually, a pre-cleaning device is placed in the top of the bucket elevator. For high-flow receiving rates, a truck dump platform may be used to speed up unloading of the grain.

In the processing area, the grain is cleaned, dried, and transported to storage. The grain flow will depend on the grain receiving conditions, the type of grain, and the drying system. The basic equipment are grain elevators, grain conveyor, cleaners, and dryers.

The storage system is made up of a grain loading subsystem, a set of storage units, usually corrugated steel or concrete bins, and an unloading subsystem.

Flow Diagram and Design Considerations

A general flow process can be visualized by Figure 2. The functional sequence in grain handling and drying are to receive, elevate, dry, store, and load out. A number of alternative equipment and system designs can carry out each of the functions. One of the important problems is deciding on the type of system to be used and in selecting component parts that fit and operate. Dividing the
material flow process into its functions helps to identify flow and equipment alternatives.

Receiving System

Weighing and sampling. The first step in the process is to weigh the grain using a truck platform. The scale should have enough capacity to weigh medium to large size trucks. The reading and printing equipment is usually in an administrative office, a small building next to the scales, which also has a small grain laboratory and the manager's office. It is recommended that this area be located at the left side of the scale to allow the operator to see the truck driver at all times (Elzey, 1980). Figure 3 shows a typical layout of a grain storage facility.

The main duties at the administrative office are recording the weight of the grain entering and leaving the facility, testing and grading grain samples, computing and analyzing sales and costs, and compiling other figures such as filing and storing data.

Unloading. Different methods can be used to unload the grain. The best method will depend on the desired rate of handling and labor cost.

1. Hydraulic Truck Hoist. This operates the trucks ability to unload by gravity. It is the fastest and least labor consuming method, and can be completely automated. Lift capacities are up to 20 t (Seedburo Equipment Company).
2. Mechanical Shovels. This is an intermediate mechanical and labor consuming method. Capacities for shelled corn and rough rice are $90 \mathrm{t} / \mathrm{h}$ and $45 \mathrm{t} / \mathrm{h}$ respectively (Seedburo Equipment Company).
3. Manual Shovels. This is the most labor and time consuming, but also has the lowest initial cost.

Receiving. The alternatives for receiving the grain can be divided into a driveover dump with gravity discharge, a combination of auger and pit, and a portable hopper. The first two are considered permanent systems and are mainly used in commercial facilities. Figure 4 shows these two types.

To elevate the grain, the basic alternatives are inclined auger or bucket elevator.

Advantages and disadvantages of inclined augers according to the Behelen Mfg. Catalog are:

- Handling capacity decreases up to 60 percent with wet grain.
- The mechanical efficiency is about 30 percent, thus requiring about three times more power than bucket elevators.
- In general, augers are used for short-lift situations and low capacity.
- Initial cost is lower than bucket elevators.
- They are portable and can be used for different functions in farm facilities.

Advantages and disadvantages of bucket elevators are:

- They carry almost as much wet grain as dry grain.
- Mechanical efficiency is about 90 percent.
- Low power and maintenance cost are required.
- They are suitable to elevate the grain from 3 m to 60 m height.
- Grain is handled more gently with less damage.
- Grain can be distributed to different points in the facility through downspouts.
- Initial cost is higher than inclined augers.
- It is a permanent system.

For handing rates above $46 \mathrm{t} / \mathrm{h}$, an elevator leg with a downspout is more economical. The larger the volume of grain to be handled, the more the need for a permanent conveying system to exist (Behelen Mfg. Catalog).

When designing the receiving system, factors that must be considered are: number of grain varieties that can be received at the same time, type of grain hauling systems (train, trucks, animals, or combinations), and rate of receiving. For commercial situations, ai least two receiving hoppers are recommended.

Processing.

Flow alternatives

The flow of the processing system will depend on the grain rate, conditions, and varieties. The different flow will define the flexibility of the system.
When the grain is wet and dirty, it goes through cleaning, drying, and storing. When it is dry and dirty, the grain passes the cleaner and then to the storage. If the grain is dry and clean, it goes directly to storage (Figure 2).
Drying subsystem
Most commercial facilities use continuous flow dryers or automated batch dryers. When either of these types of dryers are used, it may be combined with holding bins to regulate the peak receiving rates and tempering bins to increase dryer efficiency, capacity, and grain quality. For different receiving rates and varieties, the grain may go directly to the dryer or the plant operator may decide to bypass the tempering bins passing from the dryer directly to the storing bins, or it may be necessary to hold the wet grain before entering the dryer (Figure 2).

The wet holding bins and tempering bins are recommended to be discharged by gravity, given that they will be loaded and unloaded several times a day during harvesting. Commercial size of these bins varies from 20 t to 843 t (Butler Mfg. Company).

More than two holding bins are recommended to allow the plant operator to segregate the receiving grain according to the variety and mc. This will provide more efficiency in the operation of the drying system.

A sound practice is to equip holding bins with aeration systems. Grain may remain in such bins for about 2 days, allowing time for or unforeseen snags in the system (Behelen Mfg. Catalog).

The capacity of continuous flow dryers varies from $9 \mathrm{t} / \mathrm{h}$ to $190 \mathrm{t} / \mathrm{h}$ (Shanzer, 1985). The capacity will be affected by the initial mc, the grain variety, and amount of foreign material. A detailed explanation of drying techniques and equipment is presented in the section entitled Drying Systems and Rates.

Handling equipment. To pass the grain from each piece of equipment to the next, the most common horizontal conveying equipment in medium size commercial facilities is the U-trough screw conveyor and the drag conveyor.

Advantages and disadvantages of U-trough screw conveyors (Midwest Plan Service, Behelen Mfg. Company Catalog) are:

- They are cheaper than drag conveyors.
- Capacities vary from $2.5 \mathrm{t} / \mathrm{h}$ to $50 \mathrm{t} / \mathrm{h}$.
- Single section length vary from 3 m to 45 m .
- With wet grain, the conveying capacity decreases up to 50 percent and doubles the horsepower required.
- Merhanical efficiency is about 30 percent.
- They are designed for medium to heavy wear.
- They are not recommended for rice handling.

Advantages and disadvantages of drag conveyors (Tramco Metal Products, Midwest Plan Service, Behelen Mfg. Catalog) are:

- Higher initial cost is required compared with screw conveyors.
- Capacities vary from 50 to $300 \mathrm{t} / \mathrm{h}$.
- Length varies from 3 in to 125 m .
- The capacity doesn't change for wet or dry grain.
- Mechanical efficiency 90 percent.
- They handle the grain gently with less damage.
- They are considered noisy equipment.

For vertical conveying, bucket elevators and screw conveyors were presented in the section entitled Elevating.

Storage. This subsystem is formed by a loading bucket elevator, a group of storage bins, and an unloading conveying system. The flow pattern should allow grain from any bin to be emptied and placed in any other bin. The same bucket elevator used to load the battery is used to load out the grain. In this way, a closed loop is obtained.

When planning the loading out system and loading bulk grain to rail, trucks and bag loading systems should be considered. Depending on the situation, type of bin, and storing time, this unit is equipped with aeration systems and temperature monitoring systems.

Guides in designing the flow diagram (Behelen Mfg. Catalog).

- Handling capacity of horizontal conveyors should be about $0.25 \mathrm{t} / \mathrm{h}$ less than that of vertical elevators.

Horizontal conveyors at top of tanks should handle about $0.25 \mathrm{t} / \mathrm{h}$ more than the vertical leg.

- Grain spreading equipment should handle $0.25 \mathrm{t} / \mathrm{h}$ more than the vertical leg.
- The central discharge conveyor should carry $0.25 \mathrm{t} / \mathrm{h}$ more than the bin unloading augers and $0.25 \mathrm{t} / \mathrm{h}$ less than the vertical leg.
- Use closed-loop handling through each storage and process area. Within the storage area, the grain may be conveyed from any bin to any other bin to allow blending and overturning.
- Piar the system to handle grain at a rate faster than it arrives.
- Select legs and other conveyors with sufficient capacity to allow for easier future expansion.

In the unloading system, include overload grain holding space so that trucks can be loaded faster.

- The tquipment handling rate is recommended to be at least $30 \mathrm{t} / \mathrm{h}$
- Matching up conveying equipmert is essential to have a smooth flow of grain throughout the system. A listing of the practical capacity of each component in the whole system can stop potential bottlenecks.
- For smooth gravity flow of all grains, use minimum downspout angles of 45° for dry grain and 60° for wet grain.
- Downspout capacity: 115 cm diameter downspout will handle up to $45 \mathrm{t} / \mathrm{h}$. Above this rate use 200 cm diameter tube.
- Move the grain as little as possible. This will provide a less expensive and better grain quality system.
- Study the increase in cost to install higher capacity conveying equipment at initial installation. Usually it costs very little more and will allow easier future expansion.
- As part of the design, set up a plant operation manual for people who will manage the facility.

Facilities Planning

The factors to consider in planning a grain storage facility consist of selecting the site for the structure determining the storage capacity, type of storage, and processing rate. The set of equipment and structures should be studied as an integrated system. The layout should be set up in a way that it allows developing over the years. As a rule, the design should retain flexibility, expansion potential, and low owner and operation costs.

Guides for selecting the best location (USDA, 1966).

1. Acsessibility to producers. The storage facility must be located near grain producers in order to reduce the traveling time from the fields to the facility. Travel time should be considered as the time to arrive at the facility, unload the grain, and return to the field. Good road and bridge conditions are essential. An estimate of the average travel time is one way to measure the convenience of the site and canpare it with other sites. Another way is to compare the number of tons produced within a 10 mile ratio from the potential site.
2. The system should be located outside urban areas so further expansion is possible and so that the majority of trucks can avoid going through traffic congested areas.
3. Accessibility to markets. Good rail and truck roads are essential given that most grain is delivered to marketing areas by rail and trucks. The best methad of evaluating is to compare the shipping cost per ton to principal markets.
4. Physical and topographical properties of the site. These factors will highly affect the building costs. A measure to evaluate the site preparation is that it should be less than 10 percent of the construction costs. When comparing different sites, the cost of the land and the cost of the site preparation should be considered. Additional factors to be considered are size and shape of the lot and soil bearing capacity.
5. Construction costs. The variation of labor, material, and freight costs among possible building sites is another factor to consider. Initial costs will have the greatest influence in the annual facility cost.
6. Availability of utilities. The place must have access to high viltage lines, one and three phase electricity, and/or natural gas.
7. Evaluation of the factors. Usually there is not a nondominated alternative and conflicts exist among the choices when considering the different factors. In this case, finding the best location may be the use of multiple attribute decision-making problem (MADM). A state-of-the-art application of these methods is presented by Hwang and Yoon (1980). From this survey, the application of the TOPSIS method is presented in Section IV for deciding between concrete or steel bins. The same method is applicable for deciding the best location by changing the factors considered for the evaluation. Hwang and Yoon (1985) applied five newlydeveloped MADM methods for different versions of manufacturing plant site selection problems. This reference is recommended for a detailed example of the use of these methods.

Organizing the systems.

Facility requirements

The facility has to be set up to allow truck and rail traffic without interferences. Recommendations on this point are given below (Behelen Mfg. Catalog, Bouland, 1966):

1. Use complete truck road loops surrounding the facility and room within the loop for expansion. Common expansion necessities are storage space, drying capacity, and handling rate.
2. Before setting up the facility, study the ground water level, define the underground construction level, or plan in advance proper drainage. Keeping the conveying equipment above ground is important in poorly drained soi.ls and rainy areas.
3. The weighing scale platform should be located near the entry. Usually, the trucks have to be weighed empty and full. Having only one opening gate is the most recommended. Figure 3 presents a general layout.

Laboratory requirements
At the laboratory section of the office, the basic tests performed are grain moisture content, relative humidity, foreign material, and test weight.
For these tests, the following equipment is recommended (Seedburo Catalog, No. 85) :

[^0]- Black light

Magnifier lamp
Grain thermometer

Standard thermometer

Wet bulb thermometer

Hydrometer

Determination of the storage capacity. The storage capacity for a storage facility is determined by the difference between harvesting rate and grain shipment rate. The period when the maximum amount of grain is received each year is the period to be most carefully studied.

1. Receiving pattern. At commercial facilities, little control over grain receiving patterns exists. They are the result of production time, harvesting practices, number of customers, and grain varieties. To estimate the receiving pattern, the geographic area that the grain elevator will serve is considered.

First estimate the amount of grain that will be produced in the area, the percentage that will be moved to the elevator under consideration, and the amount of grain from outside the area that may be moved to the elevator.

The pattern of grain receipts should be developed for an average crop year considering the different grain varieties separately. For the peak month, the study should consider the daily receiving pattern and for the peak day, the breakdown of the hourly receiving will define the receiving rate (Bouland, 1966).
2. Shipping patterns. Some control can be established over the shipping of grain. It will be affected by the demand of grain. Major shipments usually occur during harvesting time when storage space must be available and also duiring the time when prices are high. Figure 5 shows typical patterns of receipts and shipments of grain during harvest time. From this data, we obtain curves of cumulative receipts and shipments (Figure 6). The maximum difference between the cumulative receiving and shipments represent the storage space required.

Determination of the truck receiving capacity. The truck receiving area consists of two main components, a truck scale and a pit. These two elements can be together or the pit can be located about 30 m from the scale. In this way, one scale can serve up to three pit driveways.

To determine the truck receiving capacity it is necessary to determine the pattern of truck arrivals. An estimation must be made of the total number of trucks that can be expected during the harvest, maximum number of trucks per day, and the maximum number of trucks per hour.

To keep the truck waiting costs at a reasonable rate, Bouland (1966) considers that the receiving capacity should be sucn that the maximum waiting time will be 1 hour.

An example cf the receiving pattern from the Hard Winter Wheat area and Corn Belt area given by Bouland (1966) illustrates the different patterns.
in the case of Hard Red Winter wheat, large quantities of grain must be received during the harvesting time that lasts only 10 to 15 days, and there is a peak day when about 22 percent of the trucks arrive. On the peak day more than 10 percent of the trucks arrive in 1 hour.

To estallish a balance between ownership, operating costs, :nd the trucks waiting costs, the design of the receiving capacity for the Hard Red Winter wheat area is recommended to be 60 to 70 percent of the peak hourly arrival rate.

On the other hand, in the Corn Belt area, harvest usually lasts 4 to 6 weeks. About 10 percent of the total number of trucks arrive on the peak day, and during this day, about 15 percent of the total trucks arrive during 1 hour. The recommendation is to design the receiving capacity to absorb the peak hourly arrival rate.

Determination of the type of storage. Bulk storage facilities are of two main types, flat or upright storages.

Flat storages are buildings with diameters or widths larger than height. They are often built if only one or two grain types are stored. The practice in the grain trade is to build flat storages when only one type of grain is received and is kept in storage at least $11 / 2$ years.

Flat storages are comparatively inexpensive to build but grain is difficult to load out.

Upright storages are bins with diameter or width smaller than their height. Grain is easier to handle in these storage bins. They are usually economical for storing many varieties of grain and for unloading grain repeatedly throughout the year.

Numier and size of bins. In addition to determining the type of storage, the number of bins needed must be decided. The facility should be flexible enough to segregate grain on the basis of variety, moisture contenc, and protein content, requiring several containers.

Bouland (1966) recommends having at least two bins for each type of storage grain. Experienced people in the design of handling facilities recommend three bins per variety of grain to provide good flexibility. In this way, grain can be more readily segregated and blended. There are also economic and structural considerations in determining the number and size of bins.

As the size of the storage bin is increased and the number of bins is decreased, the area of walls decrease and so do the materials required. The cost does not decrease proportionally because of the need to increase wall strength due to the increased load against the walls. Section IV of the study presents a technique
to optimize the combination of number of bins, diameter, and height that result in the minimum annual cost.

Drving system and rates. The most common drying systems are natural air drying, batch-in-bin drying, layer drying, portable batch drying, continuous flow drying, and dryeration system. Chang (1978) studied several drying systems for shelled corn and obtained ranges where each system is economically suitable. He found natural air drying economical at annual volumes below 69.6 t ; batch-in-bin drying from 500 t to 1800 t ; portable batch drying from 1500 t to 3600 t ; and continuous flow drying above 1800 t. Figure 7 shows his results.

Chang (1981) studied six drying systems for rough rice and found layer drying to be the most economical system for volume ranging from 130 t to 380 t per year, and batch-in-bin drying with stirrers the best system for harvesting volumes from 380 t per year to 3800 t per year.

Similar results have been reported for other investigators (Carpenter and Brooker, 1972, Bridges et al., 1979, and Holmes et al., 1985). Loewer et al. (1976) studied layer drying, batch-in-bin, and batch drying. They found the first type to be economical for small capacities below $250 t$ and the other two systems to be competitive for farm capacities above $250 \mathrm{t} / \mathrm{ycar}$.

The above studies agree that for commercial facilities with high rates, continuous flow d:yjng systems are the most suitable.

The grain dryer is one of the most important and expensive pieces of the conditioning equipment. Good management is necessary for the successful use of a dryer. This part of the system is where bottlenecks are more frequently formed.

The drying capacity may be complemented with wet storage capacity. There should be many satisfactory dryer-wet holding combinations, thus the designer should search for the lowest cost one.

As a starting point, some plant designers (Bouland, 1966) recommend that the drying capacity should be able to dry in 24 hours of continuous operation the grain handled by the elevator in a 10 hour operating day. Some manufacturers recomnend selecting a unit that will dry in 15 hours of continuous operation the grain received in 8 to 10 hours. This will provide extra drying capacity if the system is operated up to 24 hours per day (Behelen Mfg. Catalog).

Bouland (1966) presents a method to evaluate the dryer size and wet storage capacity. The same method can be used to evaluate the capacity of other conditioning equipment. The method analyzes the operations on a peak harvest day based on an assumed truck arrival pattern on this day, and an estimated percentage of grain arriving that will need drying and a trial dryer capacity. The accumulation of the hourly wet storage will give the wet holding required for the peak day. Another criterion is that holding capacity should be enough to feed the dryer for at least 10 hours of operation.

Dryeration

The dryeration system is usually combined with batch or continuous flow dryers. Some advantages of the system are (McKenzie and Fost, 1967):

- Capacity increases of 60 percent for 10 points moisture removal and up to 100 percent with less moisture removal are attainable.
- Better quality corn is obtained. The breakage is lowered in some cases to 6 percent less than corn dried with conventional methods.

In this prosess, the corn is dried to 16 or 18 percent moisture, then the hot grain is transferred immediately into an aeration bin where it is allowed to rest without movement for 4 to 10 hours. In this pericd, additional moisture moves out to the surface of the kernel where it is evaporated using heat remaining in the grain and an air flow of 0.5 to 1 cfm per bushel. Letting the grain rest and then cooling it slowly will remove two to three additional points of moisture and decrease stress damage to the kernel.

The dryer capacity increases because of eliminating the cooling cycle in the dryer and avoids the need to remove the last percentage points of moisture from the renter of the kernel. Figure 8 illustrates this method.

Grain Parameters for Grain Conditioning and Storage

Grain preservation. Table 1 shows grain moisture contents recommended for safe storage of grain.

Table 2 presents the effects of moisture content and temperature on the growth of storage fungi in stored corn. The growth rates of storage fungi decrease and safe storage periods increase as grain temperatures and moisture contents are lowered.

Air flow rates. Table 3 presents airflow rates commonly used for aeration and drying systems.

Static pressure drop

Equarion 1 (Hukill and Ives 1955) can be used to compute the resistance of grains and seeds to airflow. It can be used over an airflow range of .01 to $0.20 \mathrm{~m}^{3} / \mathrm{s}$ m^{2}.
$P / L=a Q^{2} / \ln (1+b Q)$
Eq. (1)
where:
$P=$ pressure drop, Pa
$L=$ bed depth, m
a - constant for a particular grain
$Q=$ airflow rate $\mathrm{m}^{3} / \mathrm{s} . \mathrm{m}^{2}$ of grain
b - constant for particular grain
Haque et al. (1978) expressed the nressure drop as a function of the airflow rate, and the percentage of fines present. Equation 2 can be used to correct for fines.
P / L corrected $=P / L$ clean $(1+(14.5566-26.418 Q)(f m))$
Eq. (2)
where:

```
\(\mathrm{P}=\) pressure, Pa
L - bed depth, m
\(Q=\) airflow rate \(\mathrm{m}^{3} / \mathrm{se}\).
\(\mathrm{fm}=\) fraction of fines by weight, decimal
```

Knowing the resistance to the airflow, the fan $K W$ required for aerating the grain can be computed from Equation 3.
$K W=Q \times P / 1000 \times \operatorname{Mef}$
Eq. (3)
(Mech. Eng. Handbook)
where:
KW = fan kilowatt
$Q=$ airflow, $\mathrm{m}^{3} / \mathrm{min}$
$P=$ pressure drop, Pa

Grain Drying Recommendations

Table 5 (Hell, 1980) summarizes a number of recommendations for grain drying. Table 6 represents equations to compute the equilibrium mc.

Physical and thermal properties of grain. Tables 7 through 12 represent ince and corn characteristics such as equilibrium moisture content, angle of repose and coefficient of friction, bulk density, porosity values, physical dimensions, specific heat and thermal conductivity. These grain properties are usually required in analysis and desigr: of grain handling and storage systems.

Conclusions and Remarks

Through this section, the different parameters and factors that affect the design of grain handling and storage facilities were presented. The first part provided a detailed explanation of the flow sequence and tips useful in its design. The second part presented most of the factors that have to be considered for planning the system and existing methods to compute flow rate, drying, and storage capacity. The third part summarized most of the physical and thermal properties of grains required when designing elevator facilities.

The gathering of all this information provides a useful aid for designers.

FIGURE 3. Typical Layout of Grain Storage Facility

FIGURE 5. Grain Receiving and Shipment Pattern (Bouland, 1966)

FIGURE 6. Cumulative Receipts and Shipments (Bouland, 1966)

FIGURE 7. Economical Ranges for Different Drying Methods

FIGURE 8. Dryeration Process (McKenzie and Foster, 1967)

TABLE 1
Moisture Content During Harvest and For Safe Storage, Percent (Brooker et al. 1981)

Cereal	Maximum during Harvest	Optimum at Harvest for Minimum Loss	Required for Safe Storage	
Corn	35	28-32	13	10-11
Rice	30	25-27	12-14	10-12
Sorghum	35	30-35	12-13	10-11
Wheat	38	18-20	13-14	11-12

TABLE 2

Safe Storage Period for Corn
(Dry Matter Loss Less than 1.0 percent) (USDA 1968)

Storage Air		Moisture Content (percent w.b.)		
	15	20	25	30
Temperature ${ }^{\circ} \mathrm{F}$				
75	116	12	4	2
70	115	16	5	3
65	207	21	7	4
60	259	27	9	5
55	337	35	12	7
50	466	48	17	10
45	726	75	27	16
40	906	94	34	20
35	1140	118	42	25

TABLE 3
Airflow Rates (Brooker et al. 1981).

Drying System	$\mathrm{m}^{3} / \mathrm{sec} / \mathrm{m}^{3} \times 10^{3}$
Aeration	$0.27-13.4$
Dryeration	$6.7-13.4$
Natural Air	$26.8-67.0$
Layer Drying	$26.8-134.0$
Heated Air $\left(130^{\circ} \mathrm{F}\right.$ to $\left.500^{\circ} \mathrm{F}\right)$	$402-1340.0$

TABLE 4
Values of Constants Used in Airflow Resistance, Equation 1

Grain	Value of a (SI Units)	Value of b (SI Units)
Oats	2.53×10^{4}	14.6
Corn	2.06×10^{4}	30.7
Soybeans	1.14×10^{4}	18.1
Wheat	2.91×10^{4}	9.84

TABLE 5
Grain Drying Recormendations

Saura: CDMC (1966)

Equilibrium Moisture Content Equations and Constants Approved by the Anerican Society of Agricultural Engineers (Chung and Lee, 1985)

TABLE 7

Angle of Repose and Coefficient of Friction at 12 to 16 Percent Moisture Content, w.b.(Brooker et al., 1981).

	Angle of Repose	Static Coefficient of Friction Steel Concrete		Plywood
Barley	30	$0.22-0.44$	$0.47-0.58$	$0.30-0.36$
Rice	36	$0.40-0.50$	$0.45-0.60$	$0.40-0.45$
Shelled Corn	27	$0.25-9.50$	$0.30-0.50$	$0.28-0.42$
Soybeans	30	$0.35-0.40$	$0.27-0.30$	
Wheat	31	$0.22-0.44$	$0.45-0.55$	$0.30-0.45$

TABLE 8
Bulk Density of Corn (Chung and Lee, 1985)

Varicty	Moisture Content (percent, wet basis)	Bulk Density (kg / m)	Models
Pfister	6.7	744.5 (8.6)	
Shelled	7-25	752.9-656.8	
Shelled	-..-	717.6	
Flint	6-28	789.1-644.8	828.5-6.56M
Dent	6-28	779.0-635.5	818.1-6.52M
Yellow Dent	10-35	742.2-638.5	$\begin{aligned} & 682.9+14.22 \mathrm{M}- \\ & 9.9843 \mathrm{M}^{2}+.0158 \mathrm{M}^{3} \end{aligned}$
Yellow Dent	12.23	784.3-698.4	
Seed	16-44	734.1-710.3	1086.3-2.97M+4.81M ${ }^{2}$
Ear Husked	--	448.5	
Green Sweet	----	448.5	

$M=$ moisture content (percent, wet basis)
Number in parentheses represents standard deviation

TABLE 9

Bulk Density of Rice and Rough Rice (Chung and Lee, 1985)

Variety	Moisture Content (percent,wet basis)	Bulk Density (kg / m)	Models
Rice			
Caloro	8.6	571.1 (1.7)	
Valrose	9.2	570.7 (6.2)	
Hy Mix Early	8.8	591.2 (9.3)	
Rough Rice			
Short	14-22		$537.6+1.22 \mathrm{M}$
Short	11-20	$632.0-664.0$	$583.6+4.27 M$
Medium	12-18	598.3-648.3	$499.7+8.33 \mathrm{M}$
Medium	6-28		$567.2+4.13 M$
Medium	13.2	590.0	
Long	12-18	586.6-615.1	$519.4+5.29 \mathrm{M}$
Long	9-11	561.0-598.0	
Long	13.5	710.0-780.0	
Long	14-22		592.2-1.105M+0.00995M ${ }^{2}$
--	--	576.7	

$M=$ moisture content (percent, wet basis)
Number in parentheses represents standard deviation

Porosity Values of Rice and Rough Rice (Chung and Lee, 1985)

Grain	Moisture Content (percent, wet basis)	Porosity (percent)	Models
Rice			
Honduras	11.9	50.4	
Wateribune	12.3	46.5	
Rough Rice			
Durar	11.4	51.0	
Taichung	9.3	52.0	
Kalinpong	9.7	54.5	
Short	14-22	46.4-47.6	49.7-0.227M
Medium	12-18	58.5-53.1	65.6-0.457M
Medium	13.2	52.5	
Long	12-18	59.6-56.9	69.5-0.885M
Long	14-22	48.4-50.8	$49.4+0.064 \mathrm{M}-0.0099 \mathrm{M}^{2}$
Corn			
No. 1	9.0	40.0	
Yellow	25.0	44.0	
Yellow	9-14	38.5-47.6	
Yellow	9-27		$101.0-0.078 \mathrm{D}_{\mathrm{b}}$
Shelled	9-31	38.5-47.6	
Yellow Shelled	d 9-27		81.4-0.056W
Yellow Dent	12-23.43	37-42	
Yellow Dent (Shelled)	15.0	40.0	

$M=$ Moisture content (percent, wet basis)
$\mathrm{Db}=\mathrm{bulk}$ density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
Wi a test weight $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$

TABLE 11
Physical Dimensions of Rough Rice and Corn (Chung and Lee, 1985)

$M=$ moisture content (percent, basis)
Numbers in parentheses indicate the standard deviation

TABLE 12
Specific Heat and Thermal Conductivity Values for Rice and Corn Approved by the American Society of Agricultural Engineers (Chung and Lee, 1985)

Grain	Moisture content (\%, wet basis)	Mean temperature (${ }^{\circ} \mathrm{K}$)	Spscific Heat (KJ/ Kg.K)	$\begin{aligned} & \text { Thermal conductivity } \\ & (W / m . K) \end{aligned}$
Rice, rough Rice, shelled Rice, finished Rice, rough, medium Corn, yellow, dent	10.2-17.0		$1.1095+0.0448 \mathrm{H}$	
	9.8-17.6		$1.2016+0.0381 \mathrm{M}$	
	10.8-17.4		$1.1807+0.0377 \mathrm{H}$	
	10.2-20.0		$1.1807+0.0377 \mathrm{M}$ $0.9214+0.545 \mathrm{M}$	$0.866+0.0013274$
	0.0	293.7	1.5324	0.14055
	5.1	293.7	1.6915	0.14661
	9.8		1.8338	0.15198
	13.2			0.17656
	14.7	293.7	2.0264	0.15908
	20.1	293.7	2.2232	0.16358
	24.7		2.3739	0.16998
	30.2	293.7	2.4618	0.17240
	0.68-20.3	308.4	$1.4654+0.0356 \mathrm{M}$	
	0.68-20.3	308.4		0.1409+0.00118M

$a_{M}=$ moisiure content ($\$$, wet basis)

1. Behelen Manufacturing Company. 1977. Guidelines in Planning Grain Conditioning anc Storage Systems, Columbus, Nebraska, 68601.
2. Bouland, f. 1966. Locating, Designing, and Building County Grain Elevators. Agricultural Information Bulletin, No 310.
3. Bouland, H., and L. Smith. 1960. A Small Country Elevator for Merchandis ing Grain. Design Recommendations. Report N 387, Aglicultural Marketing Service, USDA.
4. Bridges, T., O. Lowever, and D. Ouerhults. 1979. The Influence of Harvest Rate and Drying Time on Grain Drying and Storage Facility Selection. Transactions of the ASAE 22(1):174-179.
5. Brooker, D., F. Bakker-Arkema, and C. Hall. 1981. Drying Cereal Grains, AVI Publishing Company, Inc., 3rd Printing, Westport, Connecticut.
6. Buhler-Miag, Inc., P.O. Box 9497,1100 Xenium Lane, Minneapolis, Minnesota,
7.
8. Carpenter, M., and D. Brooker. 1972. Minimum Cost Machinery Systems for Harvesting, Drying, and Storing Shelled Corn. Transactions of the ASAE 15(2):515-519.
9. Chang, D. 1981. Optimum Systems of Rough Rice Handling, Drying, and Storage, A Doctor's Dissertation, Kansas State University, Manhattan, Kansas 66506.
10. Chang, D. 1978. Modeling for Dryer Selection and Simulation of Natural Air Drying of Rough Rice. A Master's Thesis. Kansas State University, Manhattan, Kansas 66506.
11. Chung D., and L. Chong-Ho. 1985. Physical and Thermal Properties of Grains. Proceedings of an international seminar held at Kuala Lumpur, Malaysia.
12. Elzey, J. 1980. Conceptual Design of High-Speed Elevators. A practical guide to elevators design conducted by the National Grain and Feed Association.
13. Farmland Industries, Inc. Kansas City, Missouri 64116.
14. Hall, C. 1980. Drying and Storage of Agricultural Crops. Avi Publishing Co., Westport, Connecticut.
15. Haque, E., G. Fotter, D. Chung, and F. Lai. 1978. Static Pressure Across a Corn Bed Mixed with Fines. Transactions of the ASAE 21(5):997-1000.
16. Holman, L. 1985. Aeration of Grain in Commercial Storages. (Revised) Agricultural Marketing Research. Report N 178, USDA.
17. Hukil, W., and N. Ives. 1955. Radial Air Flow Resistance of Grain. Agricultural Engineering 36(5):332-335.
18. Hwang, C., and K. Yoon. 1985. Manufacturing Plant Location Analysis by Multiple Attribute Decision Making: Part 1-Singie Plant Strategy. Int. J. Prod. Res. 23(2):345-359.
19. Hwang, C., and K. Yoon. 1980. Multiple Attribute Decision Making Methods and Applications, A State-of-the-Art. Springer-Verlag, Berlin, Heidelberg, New York.
20. Loewer, O., T. Bridges, and D. Overhults. 1976. Computer Layout and Design of Grain Storage Facilities. Transactions of the ASAE 19(6):11301137.
21. Loewer 0., T. Bridges, and D. Overhults. 1976. Facility Costs of Centralized Grain Storage Systems Utilizing Computer Design. Transactions of the ASAE 19(6):1163-1168.
22. McKenzie, B. et al. 1967. Dryeration - Better Corn Quality with High Speed Drying. Purdue University Coop. Ext. Serv., AE-72.
23. Midwest Planning Service. 1977. Planning Grain-Feed Handling for Livestock and Cash-Grain Farms, MWPS-13.
24. Seedburo Equipment Company. 1985. Catalog No 85. Chicago, Illinois 60607.
25. Shanzer Drying. 1985. Sioux Falls, South Dakota 57101.
26. Tranco Metal Products, Inc., 1020 East 19th Street, Wichita, Kansas 67214.
27. USDA. 1968. Guidelines for Mold Control in High-Moisture Corn. Farmer's Bulletin 2238, 16 p.

SECTION III

COST ANALYSIS ON EQUIPMENT FOR GRAIN PROCESSING SYSTEMS AND STORAGE ST'RUCTURES

Introduction

Since there are many alternative systems for handling, drying, and storage of rough rice and shelled corn, it is not easy to select an economical system which is best suited for all sets of conditions.

To be able to spacify the type of equipment, the capacity, or the size of the storage structures, it is necessary to know how costs change when varying different design parameters. With a quantitative method of comparison, better designs can be obtained. Mathematical models and cost estimates of the different parts of the system make it possible to apply optinization techniques to minimize the cost of the complete system and co detect the parameters that most influence the final cost.

Through this section, cost analysis is applied to the main equipment required for receiving, drying, and handling in comercial size facilities. Storage structures including steel and concrete bins are also ronsidered. Mathematical equations have been developed for each piece of equipment so that optimization techniques can be applied when designing. A description of the equipment with available capacities and sizes and recommendations for its use are also included.

Review of Literature

In order to establish a methodology for the cost study and applications of system analysis to design problems, a literature survey was done of scientific articles and catalogs of grain conditioning and storage equipment. Facility planning manuals were also collected from manufacturers and carefully studied. Some of the most recent studies are cited here.

Park (1982) developed mathematical models and applied optimization techniques to feed mill design. He demonstrated the applicability of optimum systems to select a feed mill by single objective nonlinear programing and multiple decision making methods.

Chang (1981) developed mathematical models and model systems for rough rice handling, drying, and storage. He also developed an approach for designing optimum systems by multiple objective decision-making methods applied to furm facilities.

Chang (1978) applied mathematical modeling for dryer selection appli: ble to onfarm grain drying. To formulate the model, he studied dryer specifications from numerous manufacturers and dealers in the United States. He concluded that the final choice depends upon the annual volume, the markering pattern, the type of farm, cos:, kind, and capacity of existing facilities.

Bridges (1979) developed a computer program for designing, harvesting, handling, drying, and storage systems. The program ranks the cost of the feasible systems considered and presents the equipment and labor required by each feasible system. The study was done for on-farm size facilities using corrugated steel bins for storage. The equipment comparisons in the program were based on lowest annual cost. Labor costs were not considered with each individual selection of equifment, but were assigned to the total system for the ranking.

Brook and Bakker-Arkema (1980) applied dynamic programming to find the optimum operational parameters and dinensions of a multistage concurrent flow dryer. They set up an objective functicn based on energy and capital costs. The energy cost was calculated using cost equations developed by Farmer (1972) and capital. cost was obtained from a aryer manufacturing company for different dryer types.

Loewer et al. (1976a) developed a computer program for designing new on-farm facilities using a centralized layout. With this program, the designer can obtain detailed cost analysis of several alternatives, allowing comparison of each design and economic factors related to the system. Loewer et al. (1976b) used the same program to make cost analysis of different farm facilities varying the handling rate, drying, system, and storage capacity. They used purchase costs through equations and cost arrays from the manufacturers' suggested list price. For annual cost, they used straight-line depreciation based on an estimated life of the equipment, a constani rate for interests, taves, insurance, and expenditures for electricity and LP gas.

Carpenter and Brooker (1972) developed simulation models for determining minimum cost machinery zystems for harvesting, drying, and storing shelled corn. They obtained optimum harvest starting moisture and minimum cost drying systems for different annual volumes. Other factors such as date of maturity, level of field losses, and relative risks were also evaluated with their models.

Most of the cost studies for grain handing facilities have been done for onfarm facilities, considering harvesting handling rates, and small size equidment such as portable augers. In the storing system, steel bins have been considered exclusively. Compared to on-farm facilities, comercial facilities require higher handing and processing, rates, greater grain flow flexibility, and several storage containers to allow grain segregation and blending. Reinforced concrete steel silos have to be considered as a feasible storage alternative in these larger facilities. Through this study, costs of equipment for mediun handling rates and costs of concrete bins are considered.

Procedure

For the cost analysis, the first step was to collect information on the initial cost of equipment and construction materials. To accomplish this task, price quotations were requested from a number of manufacturers. Table 13 pres: nts a list of the companies contacted. Even though one of the objectives of this study is to develop desien methodologies and criteria applicable to tropical countries, the cost information was obtained from United States' manufacturers, mainly because of the difficulty in gathering and classifying prices from different countries. The methodology of the study and behavior of costs for different equipment are applicable to all countries. Countries that import
machinery from the United States can add freight costs to purchasing costs to obtain the local values. The information from United States' companies was classified by type of equipment, and specifications were carefully studied to define the range of applicability for each piece of equipment.

The SAS computer program was used to perform multiple regression analysis for obtaining mathematical models of the cost of the different equipment. It was also used with the continuous flow dryers to obtain energy consumption models as a function of the drying rate and to obtain mathematical equations to compute the quantities of concrete and reinforced steel required for building concrete bins.

In this analysis, only initial purchasing costs and models for energy consumption were considered. Economic information for maintenance, interest, taxes, and expected life was obtained from Loewer et al. (1976b).

Model Receiving System

1. Gravity hopper

The typical gravity hopper is shown in Figure 9. The required pit is computed by Equation 4 (Loewer et al., 1976a).

PTSIZE $=T U(T C / T U-P C A P / 60)$
Eq. (4)
where:
PTSize $=$ pit size (m^{3})
$\mathrm{TU}=$ truck unloading time (minutes)
$\mathrm{TC}=$ truck loading capacity $\left(\mathrm{m}^{3}\right)$
$\operatorname{PCAP}=$ pit unloading capacity (t / h)
The cost of the gravity pit is computed by Equation 5 .
PGRAPIT $=761.35+47.89 \times$ PSIZE
Eq. (5)
where:
PTSIZE $=m^{3}$
PGRAPIT $=$ price of gravity pit (\$)
The R^{2} of Equation 5 is 0.93 . The price includes the concrete structure and the grate system. Ii is applicable for pit sizes between $3 \mathrm{~m}^{3}$ and $12 \mathrm{~m}^{3}$.
2. Auger pit

This type of pit is shown in Figure 9. Its cost depends on the auger pit capacity and the auger length. The auger pit capacity depends on the truck receiving rate and the auger length depends on the facility layout.

The cost can be computed by Equation 6 .
where:
PAPIT = price of auger pit (\$)
ACAP = auger unloading capacity (t / h)
ALN = auger length (m)
The R^{2} value of this equation is 0.97 and the cost includes U-trough, cover, motor mount, drive kit, dump pit hopper, oil enclosed speed reducer, motor pulley, and belt shield. The equation is suitable for auger capacities from 20 t / h to $250 \mathrm{t} / \mathrm{h}$.

3. Bucket elevators

Bucket elevators are commercially available for heights varying from 3 m to 60 m and capacities from $2 t / h$ to $400 \mathrm{t} / \mathrm{h}$. The elevator capacity is given at 75 percent cap fill. The cost of this equipment is a function of the height, conveying capacity, and motor size. For certain ranges of capacities, the price per meter height is constant because using the same bucket size, belt speed, and/or bucket spacing can be changed to vary the capacity. Sometimes, a small increase in initial cost can allow for easy expansion of the handling capacity. This aspect is shown in Figure 10.

The elevator cost is given by Equation 7 and the R^{2} value of this equation is 0.95 .

$$
\begin{align*}
\text { PBUEL } & =1139.13+161.58 \mathrm{HT}+2.52 \mathrm{ECAP}-1.7 \mathrm{ECAP} \times \mathrm{HT} \\
& +656.2 \mathrm{HP} \tag{7}
\end{align*}
$$

where:

PBUEL = price of bucket elevator (\$/unit)
HT = elevator height (m)
ECAP = elevator capacity (t / h)
HP = esevator horsepower
Bucket elevators are usually combined with metal down spouts for gravitational grain unloading. Research on grain damage as a function of velocity indicates that grain velocities over $8.9 \mathrm{~m} / \mathrm{sec}$ should be avoided (Butler Mfg. Catalog). Grain retarders are suggested to reduce these velocities. The spout lengths at which these velocities take place are in function of the spout angle and are shown in Table 14.

Model Processing System

1. Grain cleaners

The primary function of the grain cleaner is to remove the foreign material in order to maintain grain quality during storage for longer periods of time.

Chung (1986) reviewed the state of the art in grain cleaning equipment. Literature was gathered from about 1600 manufacturers worldwide and classified into 37 different types of cleaners according to the separation procedures and capabilities of the equipment.

Separation using the scalping procedure segregates rough materials like straw, broken kernels, stones, seeds, hulls, e:... The scalping procedure is accomplished by rotating perforated cylinders (rotating drums), flat sieves (rotating, gyrating, or vibrating), or cylindrical sieves. Separation by aspiration blows air through the grain to separate fine materials. Equipment combining both systems, usually called "scalpirator", are also available. Most efrain cleaners can be used with various kinds of grains by changing the s"ecens for the specific grain. Some screen cleaners can be adapted to the bucket elevator distributor. This type of unit removes approximately 66 percent to 75 percent of foreign matter at optimum flow rates. It is recommended that these units be used to clean dry grain only (Butler Mrg. Catalog).

Important factors when choosing a grain cleaner are capacity, cost, power, inftrmation related to the scalping unit, number of aspirators, and number of flat sieves.

Choosing the type of cleaner will dapend on the grain storage period and ambient conditions. In general, the cost of air cleaners is higher than the cost of screen cleaners. Figure 11 shows the variation of cost with capacity for different cleaners.

In order to provide a better idea of the different types of grain cleaners, Tables 45 through 48 in Appendix II show basic information on four different types.

Due to the variation of cost with the cleaner type, two equations were developed. Equation 8 represents the cost of gravity or screen cleaners and Equation 9 can be used for scalpirators.
$\mathrm{PGCLE}=228.83+55.46 \mathrm{CAP}$
Eq. (8)
PSCLE $=-528.42+12.43 \mathrm{CAP}-12.36 \mathrm{CCAP}^{2}$
Eq. (9)
where:
PGCLE = price of gravity cleaner (\$)
PSCLE $=$ price of scalpirator ($\$$)
CCAP = cleaning capacity (t / h)
The R^{2} values of these equations are 0.97 and 0.91 respectively.
Drying subsystem.

1. Holding bins

These bins are used to store wet grain temporarily in order to regulate the drying rate capacity. They are also used for tempering purposes. Because of
the bins' hopper bottoms they are suitable in cases when they are loaded and unloaded several times a day. They are usually built with corrugated steel and capacities vary from 17 t to 830 t . The cost is represented by Equation 10 , whose $\mathrm{R}^{\text {: }}$ value is 0.97 .

PHOLBIN $=1444.02 \times 27.53 \mathrm{D}^{2} \times \mathrm{H}$
Eq. (10)
where:
PHOLBIN = price of holding bins (\$/unit)
$D=$ bin diameter (m)
$\mathrm{H}=$ bin height (m)

2. Grain dryers

For commercial facilities, continuous flow dryers are considered in this study. The regular continuous flow dryers have a heating or drying section, a cooling section, and a discharge. The drying capacity varies from $5 \mathrm{t} / \mathrm{h}$ to $100 \mathrm{t} / \mathrm{h}$ for 10 points moisture removal with drying temperature varying from $82^{\circ} \mathrm{C}$ to $104^{\circ} \mathrm{C}$. The heat required varies from 2.1 million kj / h to 11.6 million kj / h, the electric load from 11 kwh to 260 kwh including power for drying, cooling and discharge, and the air flow rate from $62 \mathrm{~m}^{3} / \mathrm{min} \times \mathrm{m}^{3}$ to $125 \mathrm{~m}^{3} / \mathrm{min} \times \mathrm{m}^{3}$.

The cost of continunus flow grain dryers can be represenced by Equation 11 with an R^{2} value of 0.91 .
$\operatorname{PCFDRYR}=4704.66$ DCAP -2602.15
where:
PCFDRYR = price of continuous flow dryer ($\$$)
DCAP = drying capacity (t / h)
This equation is suitable for capacities between $4 \mathrm{t} / \mathrm{h}$ and $60 \mathrm{t} / \mathrm{h}$ for 10 points moisture removal and air plenum at $104^{\circ} \mathrm{C}$. Manufacturers suggest a 3 percent decrease in drying rate fer each $5^{\circ} \mathrm{C}$ temperature drop.

The dryer price includes the drying tower completely assembled, fan tower with centrifugal fans factory mounted and balanced, burners installed in each drying fan, electrical control panel complete with all necessary safety controls, Factory assembled gas manifold, garner bin for spout connection, metering pan and drive, 30.5 cm diameter dry grain discharge auger, exhaust air temperature sensor, automatic grain moisture control, fan platforms, column catwalks, and rear access platform. All drives and fans come complete with TEFC motor for use with three phase 230 V or 460 V .
3. Centrifugal and axial fans

Fans are used to nove air through the grain mass. The axial-flow fan usually delivers more air at less than 3.5 in. of $\mathrm{H}_{2} \mathrm{O}$ of static: pressure. A centrifugal fan performs better at static pressures greater than 4.5 in. of $\mathrm{H}_{2} \mathrm{O}$. For static
pressures between 3.5 and 4.3 in. of $\mathrm{H}_{2} \mathrm{O}$, the engineer can consider both types (Brooker et al. 1981).

The power ranges from 0.6 kw to 76 kw . The cost of axial and centrifugal fans can be predicted with Equations 12 and 13 ; the R^{2} values of these equations are . 93 and . 97 , respectively.

```
PAXJALF \(=270.59+120.75 \mathrm{HP}-3.92 \mathrm{HP}^{2}\)
```

Eq. (12)
PCENTF $=57.46 \mathrm{HP}+1383.26$
Eq. (13)
where:
PAXIALF = price of axial fan (\$)
PCENTF = price of centrifugal fan ($\$$)
HP = Horsepower
Handling equipment.

1. U-trough augers

U-trough augers or screw conveyors are available in capacities from $10 \mathrm{t} / \mathrm{h}$ to $200 \mathrm{t} / \mathrm{h}$, the flight dianeter varies from 15.2 cm to 46 cm , and length of one unit from 3 m to 45 m .

A wide range of capacities can be covered with the same auger dianeter and the cost is also consant for those capacities. Figure 12 shows the variation of cost with capacity. Even though increasing the speed can increase the handling capacity, manufacturers recommend that a higher capacity operating at slower speed provides longer life, less maintenance, and decreased grain damage. Equation 14 can be used to predict the cost of this equipment; the R^{2} value is 0.90 .

PUTROUH $=385.78+40.68 \times \mathrm{LH}-0.51 \times \mathrm{CAP} \times \mathrm{LN}+300.9 \times \mathrm{HP}$
Eq. (14)
where:

```
PUTROUH = auger price ($)
LN == auger length (m)
CAP = auger capacity (t/h)
HP = horsepower
```

The price includes intake section, discharge, cover, bolts, nuts and washers for cover, motor mount, speed reducer, motor pulley, driven pulley and belts. The motor is not included. The equation can be used for length from 3 m to 45 m and capacities from $10 \mathrm{t} / \mathrm{h}$ to $150 \mathrm{t} / \mathrm{h}$.

2. Drag conveyors

This type of equipment is ideal for large conveying capacities. Using the same rectangular trough and pallet size, the capacity can be increased by speeding up the conveyors.

For most companies, the conveyor length ranges from 3.05 m to 140 m for capacities lower than $200 \mathrm{t} / \mathrm{h}$.

Medium capacities from $10 \mathrm{t} / \mathrm{h}$ to $60 \mathrm{t} / \mathrm{h}$ can usually be covered by the smallest available size and the equipment is over designed. The minimum power recommended by some companies is 1.15 kwh . Capacities lower than $60 \mathrm{t} / \mathrm{h}$ require a bigger gear reducer, increasing the drive price for a given length. Figure 13 illustrates this aspect.

The longer the conveyer length, the larger the bearings, shafts, chain, and power required, increasing the cost linearly.

The variation in cost for different capacities for a constant length is presented in Figure 14.

The variation of capacities and the size of the conveyors is presented in Table 15.

The price of drag conveyors can be estimated by Equation 15 with an R^{2} value of 0.98. This equation is suitable for capacities between $50 \mathrm{t} / \mathrm{h}$ and $320 \mathrm{t} / \mathrm{h}$ and iength from 3.05 m to 450 m .

```
PDRAGCO = 2045.7 + 192.52 x LN + 4.77 x CAP + 0.86 x CAP x LN
```

Eq. (15)
where:

```
PDRAGCO = price of drag conveyer ($)
LN = length (m)
CAP = conveying capacity (t/h)
```

The price includes galvanized head and take up, head and tail bearings, galvanized trough and covering, steel chains, flights, and attachments.

Model Storing System

For this system, steel bins and concrete bins are considered as storing alternatives. The cost of both alternatives is also compared.

Steel bins. Corrugated steel bins are industrially prefabricated and built through an assembling process, making their cost very competitive, especially for countries with a highly developed steel industry.

When pricing steel bins, it must be remembered that they are formed from several parts that are usually sold separately. The most important parts to consider are the bin body with the corrugated sheets, stiffeners, bolts, walls and roofs, perforated floor and substructure for aerating the grain, foundations, unloading equipment, and assembling of the components.

A wide range of comercial sizes are available, with diameters varying from 5 m to 32 m and heights from 7 m to 25 m . Due to structural and economic limitations, these sizes are combined between a height to diameter ratio (h/d)
greater than .6 and smaller than 2.7, and storage capacity per bin varies from 200 t to $11,800 \mathrm{t}$.

With this set of existing sizes, the designer always has a problem of deciding the appropriate size and number of bins. In Section II, number and size of bins explains some considerations related to plant flexibility. Figure 15 shows the cost $/ \mathrm{m}^{3}$ varying with the ratio h / d for different diameters. The unit cost decreases when decreasing the h / d relation and increasing the bin diameter. In general, h/d ratios, lower than 1.25 provide lower unit costs. This figure can aid in choosing the bin size and number of bins that will provide an economical storing system. The unit cost in this figure considers only the cost of the bin body.

Figure 16 shows the variation of cost when changing the storage capacity. The cost in this graphic includes all parts components. The upper line is for h / d ratio $2.2<\mathrm{h} / \mathrm{d}<2.5$, the lower line is for $0.4<\mathrm{h} / \mathrm{d}<1.7$. This figure demonstrates the degree of importance that has to be given to the size and number of bins when planning a storage facility. As an example, for $28000 \mathrm{~m}^{3}$ storage capucity, the cost can be 35 percent more expensive with h / d ratio larger than 2.2 .

For modeling the cost of steel bins, the following equations have been developed through multiple regression analysis.

Equations 16 through 21 are suitable for bin diameters between 5.5 ml to 22 m , heights between 7 m to 23 m , and h / d relations from .6 to 2.7 . The variables in the equations represent:

PSBIN $=$ price of corrugated steel bin ($\$ /$ unit)
PFLOR $=$ price of perforated floor ($\$ /$ unit)
PASBIN $=$ cost of assembling steel bins (\$/unit)
PFOUNSB = price of assembling steel bins (\$/unit.)
PUNLEQ = price of unloading equipinent (\$/unit)
$\mathrm{D}=\mathrm{bin}$ diameter (m)
$\mathrm{EH}=$ bin eave height (m)
UCC $=$ unit concrete cost including labor ($\$ / \mathrm{m}^{3}$)
USC = unit reinforcement steel including labor ($\$ / \mathrm{t}$)
AUD $=$ auger unloading diameter (cm)
UCAP $=$ auger unloading capacity (t / h)
Cost of corrugated steel bin body is given in Equation 16 , where the $R^{2}=0.98$.
PSBIN $=12.34 \mathrm{D}^{2} \times \mathrm{EH}+3127.17$
Eq. (16)
This equation includes the cost of the corrugated sheets, stiffeners, bolts, seals, and roof.

Jst of perforated floor and substructure is represented by Equation 17, whose R^{2} value is 0.99 .

PPFLOR $=-1411.42+134 \mathrm{EH}+138.7 \mathrm{E}^{\mathrm{D}} \mathrm{D}^{2}$
Eq. (17)

The equation considers a 12 percent perforated floor with a 20 gauge plank and steel columns.

Cost of assembling steel bins can be determined from Equation 18 , whose $R^{2}=$ 0.98

PASBIN $=1489.37+1.54 \mathrm{D}^{2} \mathrm{xEH}$
Eq. (18)
This equation considers labor and equipment necessary for assemiling the bin. The data were provided by Dr. T. 0. Hodges, Kansas State University.
Cost of foundation can be estimated by Equation 19, whose R^{2} is 0.99 .
PFOUNSB $=\left(15.18+0.013 \mathrm{D}^{2} \times \mathrm{H}\right)$ UCC
$\left(-1070.3+0.54 \mathrm{D}^{2} \times \mathrm{EH}+558.5 \mathrm{EH} / \mathrm{D}\right)$ USC
Eq. (19)
The first part of the equation in parenthesis represents the volume of concrete $\left(\mathrm{m}^{3}\right)$ required for the foundation ring. The second part in parenthesis represents the reinforcement steel requirfd (t). The terms UCC and USC represent the unit cost of concrete ($\$ / \mathrm{m}^{3}$) and steel ($\$ / \mathrm{t}$) respectively including labor cost. The materials are based on a regular soil condition. Data were provided by Dr. T.O. Hodges, Kansas State University.

For countries needing to import the bins, the treight cost is an important component to add. The cost will vary with the transport length and weight of the material. Equation 20 represents the weight of the bin. Multiplying this equation by the freight rate (cost/weight) for the required distance will obtain the freight costs. The R^{2} value of this equation is .95 .

BWEIGHT $=-10448.21 \times 147.79 \mathrm{D} \times \mathrm{EH}$
Eq. (20)
where:
BWEIGHT $=$ weight of steel bins (kg)
Bins have to be unloaded with mechanical equipment. For these purposes, horizontal augers combined with sweep augers are used. The cost of this equipment is represented by Equation 21 with the R^{2} value of 0.98 .

PUNLEQ $=-4709.4+3.44 .49$ AUD -46.6 UCAP +118.59 D
This equation considers the price of the sweep auger, a central bin well with slide gate, intermediate wells, unloading auger, unloading tube, transmission, and speed reducers. Motors are not included. The equation represents unloading auger diameters from 15 cm to 30.5 cm and unloading capacities from $15 \mathrm{t} / \mathrm{h}$ to $65 \mathrm{t} / \mathrm{h}$.

Concrete bins. Concrete bins are built at the plant site, according to the size and layout that have been pre-determined. They can be designed independently and built one at a time using jumping forms or can also be designed interlocked. In such cases, they are built in groups using a slipping form technique. In this study, the second case is considered.

In the literature reviewed for Section I, no recent documents were found regarding the cost of concrete bins for several storage capacities.

Mata (1983) determined the quantities of concrete and horizontal steel required to build a battery of $18000 \mathrm{~m}^{3}$ capacity. He considered different layouts, number and size of bins, and computed the quantities of concrete and horizontal reinforcement steel required to build the bin walls.

Due to the lack of information on concrete bin costs for different storage capacities, a study was done to provide values for quantities of reinforcement steel and concrete required for several bin batteries. It is possible to obtain a fast estimate of the cost to compare with other storage alternatives.

The study considered storage capacities from $3800 \mathrm{~m}^{3}$ to $51500 \mathrm{~m}^{3}$, a ratio of height to diameter of $3<\mathrm{h} / \mathrm{d}<5$, layouts of two and four bins wide by the number of bins required to obtain a given capacity. Bin sizes considered are shown in Table 16.

Through the study, all main parts of the silo battery were considered: silo walls, hopper and support, roof, and foundations. Appendix I offers a detailed explanation of the analysis that was performed, including variables and assumptions.

1. Factors that influence the cost. Even though the data in the design analysis mentioned above were obtained, considering most of the factors that influence the final cost, some variables were fixed and will introduce variations for specific applications. The designer ci person evaluating the alternatives should take into consideration the factors affecting the final cost, the way the study was done, and make adjustments when applying the conclusions of this study.
2. Design theories. Many theories regarding the design of concrete bins have been formulated to predict the stresses in the walls and hoppers (Ravenet J. 1977). The American Concrete Institute, ACI Committee 313-77, adopted the theories developed by the authors M. Reinbert and H. Janssen to design concrete bins. Both theories can be used to compute the static horizontal, vertical, and frictional stresses in the walls and hopper. The ACT-31377 suggests the use of an ever-pressure factor to consider the dynamic pressures generated when unloading the bins. This factor has different values for each theory, making the final pressures using Reinbert or Janssen methodologies very similar. If other design theories are considered, there will be variations in the loads against the silo wall and in the silo cost. The details of these theories are explained in Fintel (1985), Safarian and Harris (1985), and Reimbert and Reimbert (1973).
3. Physical characteristics of the grain. The design parameters used to compute the static pressures are bulk density, angle of repose, and the coefficient of friction between the grain and the bin wall material.

Mata (1983) made the recommendation that the horizontal pressure should be computed for the grain with lower values of friction coefficient because the horizontal pressure decreases as the firiction coefficient increases (see Figure 17. Horizontal Pressure vs. Friction Coefficient). On the other hand, the vertical pressure should be computed for the grain with bigger angles of repose because the vertical pressure increases with the angle of repose of the grain (see Figure 18, Vertical Pressure vs. Angle of Repose).
4. External forces. The wind force should be considered in the design, especially when the bins are empty. This folce usually varies with the geographical location of the project and proper building codes have to be applied for an accurate estimation of the forces.

The seismicity of the zone greatly influences the final cost of the battery. As the bin's height rises and the stored volume increases, overturning of the structure is more critical, increasing the foundation's size changing the optimum size of the bin. For this study, a seismic coefficient of .15 was considered.
5. Soil conditions: The allowed load on the soil may restrict the building dimensions and the ground water level can influence the depth of elevator pits. In some areas, especially near the coast, the allowed load and the possible settlement of the structure are so critical that it requires the use of piles. In this case, the cost of the foundation may increase more than 15 percent (Bouland, 1966).

In general, the solution for the foundation is a continuous mat slab with a minimum area of the cross-section of the battery. Depending on the battery volume, concrete depth of 1.0 m is not uncommon for the mat foundation.

The combination of seismic load and soil conditions is one of the structural considerations that most affects the final costs. Thus it is recommended to perform a soil study in the feasibility stage of the project. This will allow a better estimate of the costs and analysis of alternatives. For the study, a soil capacity of $30 \mathrm{t} / \mathrm{m}^{2}$ was considered.
6. Availability of raw materials, labor, and technology. The main cost components for this sort of silo are concrete, reinforcement steel, forms, and labor. For countries where these elements are available in required quantities, concrete bins are a feasible solution even for small storage capacities.

The construction of concrete bins, especially when building several silos at a time, is high labor consuming, making of special interest labor availability, and wages.

Concrete bins require high construction technology, especially when using slipping or stepping forms. The planning and managing of the construction are crucial.
7. Influence of size and number of bins. Figure 19 js a relation of the concrete index (concrete volume/storage capacity) versus bin height for different bin diameters. From this graph, it can be seen that the optimum
h / d ratio decreases as the bin diameter (d) increases. For $d=5 \mathrm{~m}, \mathrm{~h} / \mathrm{d}$ ratio of 5 requires the minimum concrete volume, for $\mathrm{d}=10 \mathrm{~m}, \mathrm{~h} / \mathrm{d}$ was less than 3. A minimum value is presented for 8 m diameter and $\mathrm{h} / \mathrm{d}=4$.

Figure 20 (Concrete Index vs. Storage Capacity) shows the variation in concrete volume when using a layout of two or four bins wide. From the graph it can be concluded that the more compact the bin battery, the less concrete required.

From the study mentioned above, Figure 21 shows the cost of different storage capacities using concrete bins. The lower line was obtained using the h / d ratios from Figure 17 that gives the minimum concrete volume. The upper line was obtained using other bin sizes. This graph demonstrates the importance of searching for an optimum battery size and configuration when using concrete bins. For a storage capacity of $28000 \mathrm{~m}^{3}$, a cost variation larger than 22 percent can be obtained depending on the battery size. This graph takes into consideration all silo parts such as walls, hoppers, roof and foundations, as well as labor, materials, and overhead costs.

Equations 22 through 25 can be used to model the cost of concrete bins. These equations were developed using the data in Tables 40 through 44 in Appendix I. It is important to clarify that equations 23 and 24 are only recommended for obtaining a rough estimation of the cost of the concrete bins alternative. From this set of equations, the variables represent:

CAP $=$ battery storage capacity (m^{3})
$D=$ silo internal diameter (m)
$H=$ total silo height
$\mathrm{NB}=$ number of bins
NIE = number of inter-bins
$V C=$ volune of concrete (m^{3})
$W S=$ weight of reinforcement steel (t)
$\mathrm{LC}=$ labor $\cos \mathrm{t}$ (\$/battery)
COCSI = cost of concrete silo (\$/battery)
CUC $=$ concrete unit cost ($\$ / \mathrm{m}^{3}$)
SUC $=$ steel unit cost ($\$ / t$)
OVC = overhead cost (percentage of materials + labor cost)
Equation 22 gives the storage capacity $\left(m^{3}\right)$ as a function of the bin diametor, height, number of bins, number of inter-bins, and the R^{2} value is 0.99 .
$C A P=0.652 D^{2} \times H \times N B+0.127 \times D^{2} \times 11 \times N I B-127.69$
Eq. (22)
Equation 23 can be used to compute the volume of concrete (m^{3}) required for building the bin battery: the R^{2} value is 0.97 .
$V C=0.186 \times C \wedge P-35.27 \mathrm{H} / \mathrm{D}-21.13 \mathrm{NB}+423.37$
Equation 24 can be used to compute the quantity of reinforcement steel required for the bin battery with the R^{2} value of 0.98 .
$W S=0.0156 \times$ CAP $-53.91 H / D-2.08 \times N B+227.26$
Eq. (24)

Equation 25 represents the labor cost, where the R^{2} value is 0.99 . Data for this equation were supplied by construction companies specializing in building concrete silos. The value of this component may vary depending on the labor efficiency, wages, and equipment availability.
$L C=\left(28.4+0.49 D+0.18 D^{2}\right) \times H \times N B$
Eq. (25)
The other important cost component is overhead cost. This item is a percentage of the materials plus labor costs, and considers the cost of slipping forms, administration, technical direction, taxes, profits, and unforseen. Some planners consider this item to be around 40 percent for the State of Kansas.

Combining Equations 23 through 25, and the overhead costs, the final cost for different batteries can be obtained. Equation 26 summarizes the whole analysis.
$\operatorname{COCSI}=(V C \times$ CUG + WS $\times S U C+L C)(1+O V C)$
Eq. (26)
Cost comparison of concrete and steel bins
Having studied the parameters that define the cost of corrugated steel and concrete bins, it is possible to compare their initial building cost for different storage capacities. Figure 22 compares the cost of flat steel with concrete upright structures. The lower line represents the cost of steel bins for different storage capacities using bins with h / d ratio from .6 to 1.25 . Upright structures are represented by the upper line using an h/d ratio of 4. The graph shows no break-even point for the capacities studied and the initial cost of flat structures is lower than upright structures.

Figure 23 compares the cost of upright concrete structures with steel bins using a h/d ratio between 2.2 and 2.5 . In this case, the initial cost of steel bins is larger than concrete bins.

Figure 24 compares the unit cost $\left(\$ / m^{3}\right)$ of steel bins and concrete bins using a different h / d ratio. The following conclusions can be obtained from this figure.

1. The unit cost of steel bins increases as the h / d ratio increases.
2. The unit cost of concrete bins present a minimum value for an h / d ratio equal to 4 . An 8 m bin diameter was considered since it presented a minimum value in Figure 19.
3. For an h/d ratio lower than 1.5 , steel bins present a lower unit cost than concrete bins.
4. For an h/d ratio higher than 1.5 , a lower unit storage cost can be obtained using concrete bins with h / d equal to 4 .

When studying storage alternatives for a given project, costs other than initial construction costs have to be considered. Of special importance is operational cost. This will vary with the number of times the bin is loaded and unloaded. Maintenance costs will vary depending on the climate and use of the structure, and freight costs become very important for countries that have to import steel
bins. Associated benefits such as foreign exchange requirements and the job resources that the project may create can be considered as extra economical benefits for a given alternative. The importance of this aspect will depend on how critical the money exchange is for the country. For countries short of dollars, this criterion may be crucial.

Modeling for Energy Requirements

This section includes the equations necessary for computing power for handing equipment and heat required for drying.

1. Drying. Heat required for drying as a function of drying rate is represented by Equation 27 with the R^{2} value of 0.91 .

Heat $=1794049+277475$ DCAP +2952.85 DCAP 2
Eq. (27)
where:

Heat $=$ heat in $k j / h$
DCAF $=$ drying capacity t / h
The power required for the dryer as a function of drying capacity is computed by Equation 28 , whose R^{2} value is 0.98 .
$D K W=5.26+1.73 \times \mathrm{DCAP}+.04 \mathrm{D} \mathrm{CAP}^{2}$
Eq. (28)
where:

DKW = power required for drying (kw)
Eq. (29)
DCAP $=$ Drying Capacity (t / h)
2. Aeration. Recommended aeration rates were presented in Section II. The following equations are used to computo the fan power required to blow air through the grain mass and the pressure drops were presented in Section II and are summarized in Table 20.
3. Conveying equipment. Equation 31 can be used for computing the power required for horizontal drag conveyors, horizontal screw conveyors, and bucket elevators. The efficiency factor will vary for each case.

CKW $\frac{6.725 \times 106 \times \text { CAP } \times \text { Dist. }}{\operatorname{Mef}}$
Eq. (31)
(Handbook for Mech. Eng.)
where:

CKW = power required for conveying equipment
CAP = handling capacity (k / h)
Dist $=$ conveying distance (m)
Mef mechanical efficiency (varies for each equipment).

Recommended mechanical efficiencies were obtained by Chang (1981) from different manufacturers. Table 17 summarizes the information.
4. Economic information. An important consideration when analyzing annual operational cost is the economic information. Table 18 from Loewer et al. (1976b) summarizes expected life, interest, and repair for differert equipment. The sum of percentage includes depreciation using the straightline method without salvage value.

Conclusions

1. Tables 19 and 20 summarize the mathematical equations deveioped through this chapter to provide models that allow the application of systemsengineering techniques for designing commercial grain handing and storages facilities.
2. Recommendations for the use of different processing equipment and suggestions for choosing the appropriate capacity are given all through the chapter.
3. Figures 10,12 , and 14 supply evidence of the advantage of reconsidering the handling capacity that is obtained directly from the design. The design size may be at the maximum of the equipment handling capacity and in such case, choosing the next size and varying the conveying speed will increase the handling rate without changing the equipment.
4. Figures $15,16,19$, and 21 , demonstrate the economical impact of optimizing the size and number of bins when planning the storage system. When the size of concrete bins is not optimized, the initial construction cost can increase as much as 32 percent. When the size of steel bins is not optimized, the initial construction cost can increase as much as 22 percent.
5. Through Figures 22, 23, and 24, it is concluded that the storage capacity is not the factor that will dictate when each storage system is economically the best. kather, the size of the bins related to the use of the facility will influence the best economical decision.
6. Corrugated steel bins can be built at lower costs than concrete structures when using h / d ratios lower than 1.25 .
7. The most economic size of concrete bins varies with their diameter. As the diameter increases, the h / d relation decreases. Considering only the quantity of concrete required to build the bin, 8 m dianeter with h / d ratio equal to 4 was the optimum size.
8. For facilities not perfectly defined as flat or upright, cost cannot be considered as the only factor in choosing the best storage system. Under these circumstances, the use of multiple attribute decision-making methods, considering the factors listed in Section I, are strongly recommended for making the correct decision.

Auger Pit Type

FIGURE 9. Auger and Gravity Flow Pits

FIGURE 10. Bucket Elevator: Cost/m Height ($\$ / \mathrm{m}$) vs. Capacity (T / H)

FIGURE 11. Grain Cleaners Cost: Cost: ($\$ \times 10^{3}$) vs. Capacity (T / H)

FIGURE 12. U-Trough Screw Conveyor (constant length of 1.3 m); Cost (\$) vs. Capacity (T/H)

FIGURE 13. Drag Conveyors (Constant Length - 3.05 m): Cost for
Capacities Lower than $60 \mathrm{~T} / \mathrm{H}$

FIGURE 14. Drag Conveyor (length of 16.5 m): Cost (\$) vs. Capacity (T/H0)

FIGURE 15. Influence of Size in Steel Bins Cost

FIGURE 16. Storage Volume vs Steel Bins Cost: Influence of H/D Ratio in Cost

FIGURE 17. Horizontal Pressure vs. Friction Coefficient (Mata, 1983)

FIGURE 18. Vertical Pressure vs. Angle of Repose (Mata, 1983)

FIGURE 19. Optimum Concrete Silo Size: Concrete Index (Concrete Vol./Storage Vo1.) vs. Silo Height (m)

FIGURE 20. Concrete Index (Concrete Vol./Storage Vol) vs. Storage Capacity

FIGURE 21. Cost of Concrete Bins vs. Storage Volume

FIGURE 22. Storage Volume vs. Cost: Flat Storage Structures (Steel Bins) vs. Concrete Upright

FIGURE 23. Storage Volume vs. Cost: Upright Concrete Bins and Upright
Steel Bins

FIGURE 24. Concrete and Steel Bins: Unit Cost vs. H/D Ratio

Companies Contacted for Price Quotations

Company and Address	Item
Industry General Corporation Contractors/Engineers 5384 Poplar Avenue Suite 500, Box 17221 Memphis, Tennessee 38187-0221	Slip Form
Borton, Inc. 200 East First. Street Box 2108 Hutchinson, Kansas 67504	Slip Form
McPherson Concrete Storage Systems, Inc. Box 369 McPherson, Kansas 67460	Concrete Silos and Materials
Modern Concrete Farm, Inc. Route 4 Myerstown, Pennsylvania 17067	Jump - Form for Concrete Silos
Seedburo Equipinent Company 1022 West Jackson Blvd. Chicago, Illinois 60607	Bucket Elevators, Grain Conveyors, Truck Scales Lab Equipinent
Universal Industries 1326 Waterloo Road Cedar Falls, Iowa 50613	Bucket Elevators Belt Conveyors
Buhler Manufacturing 1100 Xenium Lane Box 9497 Minneapolis, Minnesota 66550	Drag Conveyors Bucket Elevators
C-E Raymond Combustion Engineering, Inc. 200 West Monroe Street Chicago, Illinois 60606	Continuous Flow Dryers
Berico Industries Box 12285 Overland Park, Kansas 66212	Continuous Flow Dryers Automated Batch Drying
Mathews Company 500-T Industrial Avenue Crystal Lake, Illinois 60014	Grain Dryers

TABLE 13 (Cont.)
Companies Contacted for Price Quotations

Company and Address	I tem
Chicago Eastern Company 200 North Prospect Morengo, Illinois 60152	Continuous Flow Dryers
Combustion Engineering Inc. Dept. TR-3 300 North Cedar Street Abilene, Kansas 67410	Bucket Elevators Drag and Belt Conveyors
Tramco Metal Products, Inc. 1011 East 19th Stree: Wichita, Kansas 67214	Drag Conveyors Bucket Elevators
Stormor Fremont, Nebraska 68025	Corrugated Steel Bins Batch-in-bin Drying Systems
Farm Fans, Inc. 5900-T Elwood Avenue Indianapolis, Indiana 46203	Grain Dryers, Fans and Heaters
```Bchlen Manufacturing Co. Box }56 Columbus, Nebraska 68601```	Continuous Flow Dryers   Automatic Batch Dryers   Batch-in-bin Dryers   Corrugated Steel Bins   U-Trough and Shain Conveyors
Portable Elevator Division 920T Grove Street   Bloomington, Illinois 61701	Bucket Elevators   Screw and Drag Conveyors
Nebraska Eng. Co. $9364 \mathrm{~N} 45 \mathrm{St} .$   Omaha, Nebraska 68112	Grain Unloading Equipment Grain Drying Accessories Sweep Augers, Batch-in-Bin Drying Parts, Stirs, Grain Spreaders, Augers, Dump Pit Hoppers, Grain Cleaners
Cardwe 11 MEg. Company   Kearney Industrial   Tract, Box 338   Kearney, Nebraska 68847	Centrifugal and Axial Fans, Gas Heaters, Bin Accessories
```Hutchinson Division Inc. West Crawford Clay Center, Kansas```	Grain Augers, Pit Augers Unloading Equipment, Grain Cleaners, Bucket Elevators

TABLE 13 (Cont.)
Companies Contacted for Price Quotations

Company and Address	I tem
Gilmore and Tatge Co. Clay Center, Kansas	Transport Augers Bin Unloading Equipment Grain Cleaners
Butler Manufacturing Co. Agricultural Equipment Div. BMA Tower Penn Valley Park Box 917 Kansas City, Missouri 64141	Corrugated Steel Bins and parts, Fans and Heaters Hopper Grain Bins, Scale Systems, Bucket Elevators Grain Cleaners, U-Trough and Drag Conveyors, Continuous Flow Dryers
Shanzer Grain Dryers Dept. Box 834 Ellis, South Dakota	Automated Batch and Continuous Flow Dryers
QED Dryers, Inc. 4993 27th Avenue Rockford, Illinois 61109	Continuous Flow Dryers

TABLE 14
Spout Length at Which Grain Velocity Exceeds $8.9 \mathrm{~m} / \mathrm{sec}$ (Butler Mfg. Catalog)

Spout Length (m)	35°	40°	$\frac{S p}{45^{\circ}}$	$\begin{aligned} & \text { Angle } \\ & 50^{\circ} \end{aligned}$	55°	60°
27.4	8.7					
15.2		8.3				
12. 2			8.9			
9.1				8.7		
7.6					8.8	
6.1						8.5

TABLE 15
Drag Conveyer Size and Capacities (Tramco Mfg. Co.)

Conveyor Size (cm)	22.9	27.9	38.1	48.3	63.5
Capacity T/H	$30-100$	$90-200$	$162-375$	$262-625$	$387-1000$
Maximum length (m)	450	183	128	90	69

TABLE 16
Bin Sizes Considered for the Study

Diameter (m)		Heights	
5	15	20	25
7	25	30	35
8	25	30	35
9	30	35	40
10	30	35	40

TABLE 17
Mechanical Efficiency (Chang, 1981)

Equipment	Mechanical Efficiency (percent)
Bucket Elevator	90
Transport Auger	30
Sweep Auger	20
Auger Pit	45

Economic Information of Grain Handling, Drying and Storage Systems (Loewer et al., 1976b)
$\left.\begin{array}{llllll}\hline \text { Subsystem } & \begin{array}{c}\text { Expected } \\ \text { Life } \\ \text { (year) }\end{array} & \begin{array}{l}\text { Interest } \\ \text { (percent) }\end{array} & \begin{array}{l}\text { Taxes, } \\ \text { Insurance } \\ \text { (percent of }\end{array} & \begin{array}{c}\text { Repair }\end{array} & \begin{array}{c}\text { Sum of } \\ \text { Percentages }\end{array} \\ \text { (percent) }\end{array}\right]$

TABLE 18 (Cont.)
Economic Information of Grain Handling, Drying and Storage Systems (!oewer et al., 1976b)

Subsystem	Expected Life (year)	Interest (percent)	Taxes, Tnsurance (percent of i	$\begin{gathered} \text { Repain } \\ \text { initial } \cos t \text {) } \end{gathered}$	Sum of Percentages (percent)
Sweep auger	7	8.0	1.25	2.00	25.54
Tube and sump	20	8.0	1.25	0.05	14.30
Horizontal unloading auger	7	8.0	1.25	2.00	25.54
$25^{\circ} \mathrm{Bin}$ unloader	7	8.0	1.25	2.00	25.54
Return unloacing auger	7	8.0	1.25	2.00	25.54

Summary Table of Mathematical Models For Equipment and Grain Storage Systems

Sub System	Item	Cost Function $\$ /$ Unit $=$	R^{2}
Receiving	Auger Pit Gravity Pit	$\begin{aligned} 1216.91 & +3.12 \text { APCAP }+1.14 \times \text { APCAP } \times \operatorname{Ln} \\ 761.35 & +47.89 \text { P Size } \end{aligned}$. 97
Processing	Bucket Elevators	$\begin{gathered} 1139.13+161.58 \mathrm{HT}+\angle .52 \mathrm{CAP}- \\ 1.7 \mathrm{CAP} \mathrm{HT}-655.53 \mathrm{HP} \end{gathered}$. 95
	Aspiration Cleaner	- $528.42+1243 \mathrm{CAP}-12.36 \mathrm{CAP}^{2}$. 91
	Gravity Cleaner	$228.83+55.46 \mathrm{CAP}$. 97
	Holding Bins	$1444.02+27.53 \mathrm{D}^{2} \times \mathrm{H}$. 99
	Continuous Flow Dryers	Price $=4704.66 \mathrm{CAP}-2602.15$. 91
	Screw Conveyors	$\begin{aligned} & 385.78+40.68 \mathrm{LN}-0.51 \mathrm{CAP} * \mathrm{LN} \\ & +300.90 \mathrm{HP} \end{aligned}$. 90
	Drag Conveyors	$2045.7+192.52 \mathrm{LN}+4.77 \mathrm{CAP}$. 98
	Axial Fans	$270.59+120.75 \mathrm{HP}-3.92 \mathrm{HP}^{2}$. 93
	Centri- fugal Fans	$57.46 \mathrm{HP}+1388.26$. 97
	Electric Motors	$43.88 \mathrm{HP}+91.45$. 99
Storing Steel Bins	Steel Bins/bin	$12.34 \mathrm{D}^{2} * \mathrm{EH}+3127.17$. 98
	Perforated Floor/Bin	$-1411.42+38.76 \mathrm{BD}^{2}+134 \mathrm{H}$. 99
	Assembling/ Bin	$1489.37+1.54 \mathrm{D}^{2} \div \mathrm{H}$. 98

Summary Table of Mathematical Models For Equipment and Grain Storage Systens

Sub System	Item	Cost Function \$/Unit $=$	R^{2}
	Foundations Bin	$\begin{aligned} & \left(15.18+0.013 \mathrm{D}^{2} * \mathrm{H} ; \times 111.9\right. \\ & +\left(558.5 \mathrm{H}+0.54 \mathrm{D}^{2} * \mathrm{H}\right. \\ & -1070.3 \mathrm{D} \div 0.545 \end{aligned}$. 90
	Concrete Cost	$\begin{aligned} & (0.19 \mathrm{CAP}+35.27 \underset{\mathrm{D}}{\mathrm{H}}-21.13 \mathrm{NB} \\ & +423.37) 66.7 \end{aligned}$. 97
	Rein- forcement Steel Cost	$\begin{aligned} & (0.016 \mathrm{CAP}-53.91 \mathrm{H}-2.08 \mathrm{NB} \\ & +227.26) 418.9 \end{aligned}$. 98
	Labor Cost	$\left(28.4+0.49 \mathrm{D}+0.18 \mathrm{D}^{2}\right) \mathrm{H} * \mathrm{NB}$. 99
	Overhead	```Percent (Concrete Cost + Reinf. Steel Cost + Labor Cost) Percent = 0.40 (Kansas)```	

TABLE 20
Energy Function

Sub System	Item	Energy Function	R^{2}
Drying	Dryers	$\begin{aligned} \text { Heat }= & 1794049+277475 \mathrm{DCAP} \\ & 2952.85 \mathrm{DCAP}^{2} \end{aligned}$. 91
		$\mathrm{DKW}=5.26+1.73 \mathrm{LCAP}+.04 \mathrm{CAP}^{2}$. 98
Aeration and	Fan KW	Q x P/1000 x Mef (Marks' Handbook for Mechanical Engineering)	
Dryeration		$\begin{aligned} & P=a Q^{2} / \mathrm{Ln}(1+b Q) \\ & \quad \text { (Hukill and Ives, 1955) } \end{aligned}$	
Conveying Systems	CKWH	$2.725 \times 10^{6} \times$ CAP \times Dist. $/$ Mef (Marks' Handbook for Mechanical Engineering)	

REFERENCES

1. Bridges, T., O. Loewer, and D. Overhults. 1979. A Computer Model for Evaluating Corn Harvesting, Handling, Drying, and Storage Systems. Transactions of the ASAE 22(3):618-621, 629.
2. Bridges, T., O. Loewer, and D. Overhults. 1979. The Influence of Harvest Rate and Drying Tine on Grain Drying and Storage Facilicy Selection. Transaction of the ASAE 22(1):174-177.
3. Brook, R., and F. Bakker-Arkema. 1980. Design of Multistage Corn Dryers Usiug Computer Optimization. Transactions of the ASAE 23(1):200-203.
4. Brooker, D., F. Bakker-Arkema, and C. Hall. 1981. Drying Cereal Grains. The AVI Publishing Company, Inc., Westport, Connerticut.
5. Butler Manufacturer's Suggested Selling Price. Agri-Products Division, 7400 East 13 th Street, Kansas City, Missouri.
6. Carpenter M., and D. Brooker. 1972. Minimum Cost Machinery Systems for Harvesting, Drying, and Storing, Shelled Corn. Transactions of the ASAE.
7. Chang, D. 1978. Modeling fur Dryer Selection and Simulation of Natural Air Drying of Rough Rice. M.S. Thesis, Kansas State University, Department of Agricultural Engineering, Manhattan, Kansas.
8. Chang, D. 1981. Optimum Systems of Rough Rice Handling, Drying and Storage. PHD Dissertation. Kansas State University, Department of Agricultural Engineering, Manhattan, Kansas.
9. Chung, D. 1986. Review of the State of the Art in Grain Cleaning. Volume III. Literature file for grain cleaning equipment. Kansas State University, Manhattan, Kansas.
10. Fintel, M. 1985. Handbook of Concrete Engineering. Von Nostrand Reinhold Company, 2nd Edition.
11. Hodges, T. Private Communication. Kansas State University, Construction Department, Manhattan, Kansas.
12. Hukill, W., and N. Ive. 1955. Radial fir Flow Resistance of Grain. Agricultural Engineering 36(5):332-335.
13. Jacobs C., and W. Harrel. 1983. Agricultural Power and Machinery. McGraw Hill.
14. Loewer, O., T. Bridges, and D. Overhults. 1976b. Facility Costs of Centralized Grain Storage Systems Utilizing Computer Design. Transactions of the ASAE 19(6):1163-1168.
15. Loewer, O., T. Bridges, and D. Overhults. 1976a. Computer Layout and Design of Grain Storage Facilities. Transactions of the ASAE 19(6):1130. 1137.
16. Lyman, 0. 1984. An Introduction to Statistical Methods and Data Analysis. 2nd Edition, Boston, Duxbury Press.
17. Mata, A. 1983. Methodologia de Calculo para Determinar la geometria mas econo mica de Silos de Acero y Concreto Tesis ds Licenciatura. Escuela de Ingenieria Civil. Universidad de Costa Rica.
18. Marks' Standard Handbook for Mechanical Engineers. 1979. 8th Edition, McGraw Hill.
19. Park, K. 1982. Modeling and Optimization of Feed Mill. Ph.D. Dissertation, Kansas State University, Department of Agricultural Engineering, Manhattan, Kansas.
20. Ravenet, J. 1977. Silos: Teoria, Investigacion y Construccion. Editores Tecnicos Asociados, Barcelona.
21. Reimbert M., and A. Reimbert. 1976. Silos, Theory, and Practice. Vol. 1, 1975/76. Transtech Publications, lst Ed.
22. Safarian S., and E. Harris. 1985. Design and Construction of Silos and Bunkers. Van Nostrand Reinhold Company, 2nd Ed.
23. SAS Application Guide. 1980 Edition. SAS Institute Inc., Box 8000, Cary, North Carolina.

SYSTEM ANALYSIS FOR THE DESIGN OF GRAIN HANDLING and storage facilities

Introduction

In the previous sections, a large number of factors and considerations for designing grain handling and storage facilities have been reviewed. Decisions made by experience or trial and error require a lot of time, eifort, and uncertainty of the final solution. Comparing the several different systems in order to make the best choice is impractical without the use of system analysis methods.

This section demonstrates the application of system analysis, including multiple attribute decision-making methods (MADM) for making decisions among a finite number of alternatives, and minimization techniques for designing facilities.

The problem of choosing the proper type of silo is solved using a MADM method called Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). The Sequential Unconstraint. Minimization Technique (SUMT) is applied to obtain the optinum number of bins, diameter, and height that give the minimum cost for a given storage capacity. The same minimization technique is applied to select the optimum size of holding and tempering bins to study the cost of different drying techniques.

Review of Literature

Some literature cited in Section III is also applicable in this section.
Chang (1978) determined the annus: drying costs and optimum drying costs of five different corn drying systems. He modeled the drying annual cost using regression analysis and wrote an objective function in terms of a single independent varjable. Differentiai calculus was used to determine the optimum dryer capacity tor different systems and then to obtain the optimum drying costs.

Chang (1981) developed a mathematical model for rough rice handling, drying, and storage for farm sizes, including price model, energy model, and grain damage model. A general multiple objective problem was formulated to design the optimum system with multiple conflicting objectives and systems constraints. Nonlinear goal programing was introduced to obtain the optimum design froin six drying methods and two handling systems. By sensitivity analysis, the best drying system for different harvest volumes was obtained.

Park (1982) developed a computer program and mathematical model for the feed mill industry. The models included capital investment, energy uses, labor, and profit models. He optimized the feed mill design by applying a single objective nonlinear programming and multiple objective decision-making using the iterative nonlinear !. 1 programming method.

Loewer et al. (1976) developed a computer program for farm facilities design. The program ranks the cost of the feasible systems considered and presents the equipment and labor required for each system. Through the program, the best design is found searching the cost of several alternatives of comparative storage system.

Plato and Gordon (1983) applied Dynamic Programming to determine the quantity of grain that should be carried into the next marketing year to dampen the grain prices fluctuation. This method determines the carry-over from one harvest to the next by maximizing a specific objective function such as the value of grain consumption subject to a random variable such as production. In this way, the optimal grain storage is found.

Brook and Bakker-Arkena (1980) developed a dynamic programming algorithm to obtain the optimal operational parameters and size for a multistage corcurrent flow dryer for drying corn. The objective function was based on energy and capital costs. Moisture content and different grain quality factors were used as constraints to the operational parameters.

Carpenter and Brooker (1972) developed simulation models to determine minimum cost machinery system for harvesting, drying, and storing shelled corn. They obtained optimum harvest starting moisture and minimum cost drying systems for different annual volumes. Using a digital computer, they simulated the operation of alternative machine systems over a 20 year period of weather conditions. In this way, they evaluated field drying, field losses, days suitable for harvesting, optimum cost harvesting and drying system, minimum cost harvesting drying and storage, maturity date costs, and relative risks.

Hoang and Youn (1981) compiled and systematically classified the literature on methods and applications of multiple attribute decision-making (MADM). The study provides a concise look into the existing methods, their characteristics, and applicability to analysis of MADM problems. The study also intzoduces models for MADM, transformation of attributes, fuzzy decision rules, and methods for assessing weight.

Choosing Between Concrete or Corrugated Steel Bins

From the conclusions of Section I regarding the factors to consider when choosing the best storage system, and the results of the cost analysis of storage structures in Section III, it is concluded that the decision has to be independently analyzed in each situation.

The problem can be divided into three general categories. A set of circumstances for which corrugated steel bins is the best solution, the case when the decision factors clearly define the use of concrete bins, and the third category where the different factors have to be weighted in order to define the best choice.

Favorable conditions for hsing corrugated stoel bins. When the following set of conditions is present, the use of corrugated steel bins is usually the best solution.

- Need to store only one or two types of grain for a period of 1.5 years or more (Bouland, 1966). In this case, flat storages can be used with a low storing cost/yr.
- Need for less than three turnovers per year. This way the project will not require gravity flow discharge.
- Possibility of disassembling the bins and moving them to another location.
- Low soil capacities that make shorter bins with bigger diameters behave better structurally.
- Unfavorable enviroment for corrosion. This is when the combination of high temperatures with high relative humidities during long periods of tine or marine atmospheres are not present.
- Existence of bin steel industry in areas near the project.

Climate conditions favorable for grain storage.
Favorable conditions for using concrete bins. Under the following set of conditions, concrete bins usually represent the best solution.

- Grain turnover more than three times a year, making gravity flow necessary. Tall bins with small diameters are then more efficient. In this case, the facility is classified as a working facility and emphasis is given to minimizing the operational costs.
- Need for a number of bins to store different grain varieties and blending.
- Aggressive corros: : environments. Presence of high temperatures and high relative humiditie: : For long periods of time or presence of marine atmospheres.
- Good soil stratum, capable of handing high concentrated forces.
- Small space available for the facility.
- Expected useful life for the facility greater than 20 years.
- For large commercial elevators, the upright type of structure usually fits better. In this case, concrete bins are preferred.

Undefined conditions for the use of concrete or steel bins. In situations where the last two sets of conditions are combined or not clearly defined, the following aspects from Section I should be considered in making the decision.

- Initial cost, total cost of the facility, considering materials, labor, freight, and foreign exchange.
- Grain preservation in relation to the storage time, moisture migration, insect, and mold infestation.
- Longevity of the structure: considering the structure endurance and stability against winds, natural phenomena, and maintenance requirements.
- Construction aspects: degree of construction difficulty, construction time, and technology requirements.
- Associated benefits: generation of employment, foreign exchange requirements, and use of local resources.
- Operation flexibility, measured in relation to the number of bins and discharge methodology.

Some of the aspects cited can be measured in a certain unit like cost in dollars or longevity of the structures in years, but in other cases, such as grain preservation, the attribute has no unit of measure to quantify the alternative. Even more problematic is to compare among alternatives having conflicting attributes with no uniform units of measure.

In such a case, the use of multiple attribute decision-making methods (MADM) is suggested as a scientific way to obtain the best solution.

Use of Multiple Attribute Decision-making Methods

Hwang and Yoon (1981) provide a concise explanation of existing MADM methods, their characteristics and applicability for analyzing certain types of problems. They also introduce methods for transformation of attributes, fuzzy decision rules, and methods for assessing weights. Among the MADM methods, the TOPSIS method is selected to analyze the problem of using concrete or steel bins mainly because of the degrec of information that the method utilizes and the information that the method provides with the solution of the problem.
hwang and Yoon (1981) developed the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) based on the concept that the best alternative should have the shortest distance from the ideal solution and the farthest from the negative-ideal solution. To obtain the rank of the alternative under these criteria, the method considers the relative closeness to the ideal solution simultaneously.

The ideal solution is a hypothetical solution which is composed of all best attribute values attainable from the set of alternatives; and the negativeideal solution is composed of all worst attribute values attainable. Figure 25 illustrates the concept of the Euclidean distance from each alternative (A_{i}) to the ideal and negative-ideal solution.

The TOPSIS method evaluates the following decision matris which contains an alternative associated with n attributes or criteria (Hwang and Yoon, 1981).

where:
$A_{1}=$ the $i^{\text {th }}$ alternative considered
$x_{i j}=$ the numerical outcome of the $i^{\text {th }}$ alternative with respect to the $j^{\text {th }}$ criterinn

TOPSIS assumes that the larger the attribute outcone, the greater the preference for the "benefit" criterion and the less the preference for the "cost" criterion. Any outcome which is expressed in a nonnumerical way should be quantified through an appropriate scaling technique. Since all criteria cannot be assumed to be of equal importance, the attributes receive a set of weights from the decision maker.

Detailed information on the computational procedure of TOPSIS, methods for assessing weights, and scales for fuzzy attributes can be found in Hwang and Yoon (1981).

In the present study, the method was applied using TOPSIS software for microcomputers developed by Dr. C. Hwang, Kansas State University, Department of Industrial Engineering.

To show the applicability of the method, two example problems are presented.
Example I.

- Definition of the problem: Commercial type of storage

Storage capacity: $20,000 \mathrm{~m}^{3}$
Country: Costa Rica
Type of facility: more than three turnovers a year expected
Nu'nber of grain varieties: 4
Climate: Tropical weather (warm temperatures and high relative humidity)

- Construction aspects: Advanced concrete technology available and not steel bin industry
- Possible associated benefits: Using concrete structures can generate employment and decrease the requirements of foreign exchange by about 25 percent

1. Storing Alternatives and Initial Cost

Alternatives

Initial Cost
A. Build 100 percent of the capacity with steel bins
$\$ 455,000$
B. Build 100 percent of the capacity with concrete bins
$\$ 535,000$
C. Build 50 percent of the capacity with steel bins and 50 percent with concrete bins $\$ 504,000$
D. Build 70 percent with concrete bins and 30 percent with steel bins $\$ 523,600$

The cost of alternatives 1 and 2 was obtained from Figures 16 and 21. The cost of alternatives 3 and 4 were obtained combining the cost of the first two alternatives in the percentage of the type of bin used to store the grain.
2. Attributes for Evaluating the Alternative

Cost
Grain preservation
Longevity of the structure
Construction aspects
Associated benefits
Operation flexibility
To evaluate each attribute under each alternative, the interval scale for evaluating fuzzy attribute was used as shown in Figure 26 (MacCrimmon, 1968).

Table 21 presents the decision matrix after the quantification of monmerical attributes. Considering the factors mentioned in Section I, grain preservation in steel bins was considered to be between average and high. From the Interval Scale, a value of 6 is assigned. The concrete bins alternative present more advantages to preserve the grain and a very high value was assigned, which corresponds to a 9 in the Interval Scale. For the alternatives combining steel and concrete bins, a proportional value to the use of each alternative was assigned.

3. Attribute Weights

One method of assessing weights is through the eigenvector method. To apply this method, the decision maker is required to judye the pairwise comparison matrix. Saty (1977) gives an intensity scale of importance for activities and has broken down the importance ranks as shown in Table 22.

The pairwise comparison matrix for the problem is established using Saty's scale. The results are shown in Table 23.

In this matrix, comparing cost with longevity of the structure, equal importance is given to both attributes ard a value of one is assigned. Between weak and essential importance is given to longevity of the structure over grain conservation and a value of 4 is assigned from the intensity scale.

The procedure details for obtaining the weights using the eigenvector method are explained in Hwang and Yoon (1981).

The decision maker weights are:
Cost G. Preser. Longevity Cons. Asp Ass. Ben. Op. Flex.
0.30
0.11
0.25
0.03
. 08
0.23

With this set of weights, 30 percent of the decision is given to the cost factor, 11 percent to grain preservation, and so forth.
4. Solution and Rank

Positive ideal solution (PIS) is obtained combining the best attributes in the decision matrix.

Cost $\times 10^{3}$
455.0 Preser. Longevity Cons. Asp. Ass. Ben. Op. Flex. $\begin{array}{llllll}455.0 & 9.0 & 10 & 1.0 & 9.0 & 9.0\end{array}$

Negative ideal solution (NIS) is obtained combining the worst attributes in the decision matrix.

Cost $\times 10^{3}$
553.0
G. Preser. Longevity C $6.0 \quad 7.0$

Cons. Asp
Ass. Ben. Op. Flex.
$\begin{array}{llll}6.0 & 5.0 & 5.0\end{array}$
The relative closeness to the icleal solution is:
Rank

4	Steel	0.30
1	Concrete	0.70
3	St50-C50	0.50
2	C70-St 30	0.63

One of the most important advantages of this method is to obtain a cardinal rank of the alternatives. In this way, the degree of preference is established. In this example, concrete bins are .70 closer to the ideal solution and steel bins
are . 30 , so the first alternative is preferred more than two times the second one. The combination of storing 70 percent in concrete bins and 30 percent in steel tins is .63 close to the ideal solution. In case the first al.ternative is not attainable, the second one can be chosen without loosing too much.

The rank ordei is:

Rank Relative Closeness to Ideal Solution

1	Concrete	0.70
2	C70-St30	0.63
3	St50-C50	0.50
4	Steel	$C .30$

Example II.

- Definition of the problem: Long-term storage
- Storage capacit; : $20,000 \mathrm{~m}^{3}$
- Country: USA
- Type of £acility: Long-term storage
- Number of grain varieties: 2
- Climate: Four seasons
- Construction aspects: Advanced concrete technology and advanced steel industry
- Possible associated benefits: Nor considered of interest in this example

1. Facility alternative and initial costs
2. Decision matrix

The decision matrix in Table 24 presents the facility alternatives and attributes considered for the study and the quantification of fuzzy attributes.

Tle derision maker subjective weights are:

Cost	G. Preser	Longevity	Cons. Asp	Op. Flex
0.36	0.26	0.26	0.04	0.08

Positive ideal solution

Cost	G. Preser	Longevity	Cons. Asp	Op. Flex
455000.00	9.00	10.00	1.00	9.00

Negative ideal solution

Cost	G. Preser	Longevity	Cons. Asp	Op. Flex
553000.00	7.00	7.00	5.00	5.00

Relative closeness to the ideal solution
Rank

4	Steel	0.42
1	Concrete	0.58
3	St50-C50	0.50
2	C70-St30	0.56

Rank Order: Relative closeness to the ideal solution
Rank

1	Concrete	0.58
2	C70-St30	0.56
3	St50-C50	0.50
4	Steel	0.42

In this example, the numerical values assigned to the attributes, the relative importance of attributes in the pairwise comparison matrix, and the weights vary from Example I according to the new situation. The rank order of the alternatives happened to be the same as in Example I, but the cardinal order of the alternatives changed

In order to show the sensitivity of the method and how the best solution varies with the weight factor, cost attribute, storage capacity, and type of facility, a sensitivity analysis was conducted using the software previously mentioned.

In the long-term storage example for $20000 \mathrm{~m}^{3}$ storage capacity, the cost of the concrete alternative is 20 percent higher than the steel bins alternative. Table 26 presents the relative closeness to the ideal solution increasing the cost of concrete bins with respect to steel bins from 20 percent to 50 percent using two different weights for the attributes. The second set of weights is given directly to the program based on the decision maker's experience.

Table 27 compares the solutions for long-term types of storage and commercial storage for a capacity of $20000 \mathrm{~m}^{3}$. In this table, the cost gap between concrete and steel bins was increased, making concrete bins moie expensive than steel bins by 20 percent to 50 percent.

Figure 27 shows that concrete bins are the preferred soluticn for commercial types of storage, even if this cost is up to 34 percent more expensive than steel bins. After this cost difference, the steel bins are preferred.

Figures 28 and 29 show the variation in the breakeven value for commercial types of storage if 55 percent and 60 percent of the decision is assigned to the cost factor. Table 27 summarizes the sensitivity of the cost factor.

From Table 28 and Figures 27 through 29, if a 60 percent value is assigned to the cost factor, the use of concrete bins is preferred even if their cost is 19 percent more expensive than the steel bins alternative. If less weight is assigned to the cost factor, say 50 percent, the concrete bins solution is preferred even if its cost is 34.5 percent more than the steel alternative.

Figure 30 shows the effect of the cost variation on the ideal solution for a long-term type of storage. In this case, assigning 60 percent to the cost factor, concrete bins are preferred even if they were 21 percent more expensive than steel bins. Usually, in the United States, concrete bins are 20 percent more expensive than flat steel bins. Similar results are show in Figure 31 for assigning 65 percent to the cost factor.

Table 29 shows the variation in relative closeness to the ideal solution with respect to the corage capasity for both comnercial and long-term storage. Figures 32 and 33 represent the graphical results of this table. Figure 32 shows that for commercial types of storage with concrete bins being 20 percent more expensive than steel bins, the concrete bins are the preferred solution for all ranges of capacities studied. For long-term storage situations, Figure 33 shows that there is a trend of steel bins being a preferred solution for capacities lower than $30600 \mathrm{~m}^{3}$, whereas for bigger capacities there is no difference between the two principal alternatives.

Application of Minimization Techniques to the Design of Grain Storage Facilities

To illustrate the use of minimization techniques and mathematical modeling, a design example was set up to choose the bin dianeter, height, and number of bins that will result in a minirum fixed annual cost for botil concrete and steel bins.

The sequential unconstraint minimization technique (SUMT), modified with the pattern search by Hooke and Jeeves (1961), was used for obtairing optimum bin sizes.

The SUMT technique solves the problem:
Minimize $F(X)$
Subject to

$$
\begin{array}{rlrl}
g i(X) & >0 & i & =1,2, \ldots, m \tag{32}\\
\text { and } h j(X) & =0 & J & =1,2, \ldots 1
\end{array}
$$

where:
X is a n-dimensional vector ($X_{1}, X_{2}, \ldots X_{n}$)
$F(X)=$ objective function to be minimized
$g_{i}(X)=$ inequality constraints
$h_{j}(X)=$ equality constraints.
The SURT technique is considered one of the simplest and most efficient methods for solving the problem given by Equation 32 (Lai, 1970). The basic scheme of this technique is that a constraint minimization problem is transformed into a
sequence of unconstrained minimization problems which can be optimized by any available technique for solving unconstrained minimization.

For this study, the technique was applied using the computer program KSU-SUMT, developed by Lai (1970). The unconstrained minimization technique employed in the KSU-SUMT program is the Hooke and Jeeves pattern search technique including some modifications to increase the efficiency of the method. Among these modifications, a heuristic program technique is used to handle the inequality constraints of the problem given by Equation 32 . The method and its computational procedure is illustrated in detail in Lai (1970). The reader interested in this technique is referred to Fiacco and McCormick (1964); Hooke and Jeeves, (1961); Hwang et al. (1969).

Design Examples:
It is desired to choose the bin diameter, height, and number of bins that minimize the facility's fixed annual cost for a $20,000 \mathrm{~m}^{3}$ storage capacity.

Design with concrete bins. From the economic information in Table 19, the concrete bins' fixed cost/year as a percentage of the initial cost is:

Depreciation
Interest
Taxes and Insurance
3.33 percent/year
8.00 percent/year

Total Fixed Cost percent/year(FC percent)
1.25 percent/year
12.59 percent/year

The mathematical model is set up in the following manner.

1. Objective Function:

From the cost study in Section III, Equation 26 represented the cost of concrete bins as a function of the diameter, height, and number of bins. Multiplying the equation by the FC percent, the fiscd cost/year is obtained.

For the study, the following unit costs are used:
CUC $=\$ 66.7 / \mathrm{m}^{3}$
SUC $=\$ 418.9 /$ ton
Overhead Costs $=40$ percent of labor + materials cost
where:

CUC = concrete unit cost ($\$ / \mathrm{m}^{3}$)
SUC = steel unit cost ($\$ / \mathrm{t}$)
Substituting these values into Equation 26 and simplifying, the following objective function is obtained.

```
Cost/year = 3.42 CAP - 3665.8 H/D - 401.99 NB
```


where:
CAP $=$ storage capacity (m^{3})
$H=$ bin height (m)
$D=$ bin diameter (m)
$N B=$ number of bins

2. Constraints:

Equation 26 for the storage capacity has to be satisfied as an equality constraint.
$C A P=.625 D^{2} \times H \times N B+0.1266 D^{2} \times H \times N I B-127.69$
NIB was replaced with the formula: N IB $=N B /^{2}-1$
3. Inequality constraints:

Equation 26 was developed for bin heights between 15 m and 40 m , bin diameters between 5 m and 10 m and h / d ratio between 3 and 5 . The number of bins have to be at least 2 per grain variety. These aspects are mathematically represented by:

Bin height: $\quad 15<H<40$
Bin diameter: $5<\mathrm{D}<10$
Number of bins: NB >4
H/D ratic: $3<H / D<5$

Substitising the variables names in terms of X_{i} to fit the problem into the Equation 32 , and letting $\operatorname{SCAP}=20000 \mathrm{~m}^{3}$, the minimization problem is defined ($X_{1}=D, X_{2}=H, X_{3}=N B$).

Minimize

$$
\begin{aligned}
Y= & -3565.8 X_{2} / X_{1}-401.99 X_{3}+5.01 X_{2} \times X_{3}+.09 X_{1} \times X_{2} \times X_{3} \\
& +0.03 \mathrm{X}_{2}^{1} \times X_{2} \times X_{3}+9.0097 .18
\end{aligned}
$$

Subject to:

$$
\begin{aligned}
& -.625 X_{1}^{2} \times X_{2} \times X_{3}-0.1266 \mathrm{X}_{1}^{2} \times X_{2}\left(.5 X_{3}-1\right)+20127.69=0 \\
& 5<X_{1}<10 \\
& 15<X_{2}<30 \\
& X_{3}>4 \\
& 3<X_{2} / X_{1}<5
\end{aligned}
$$

The KSU-SUMT program has the characteristic that the designer has to search through the equation using different initial values to get a feeling of the
equation behavior. In this case, two possible alternatives with different bin sizes and number of bins but similar annual cost were obtained.

Alternative I.

$D=7.76 \mathrm{~m}$
$\mathrm{H}=32.9 \mathrm{~m}$
$N B=14.2$
Cost/year $=\$ 72,777 /$ year
Alternative II.
$D=5.89 \mathrm{~m}$
$\mathrm{H}=23.2 \mathrm{~m}$
$N B=34.7$
Cost/year $=\$ 67,440 /$ year
The designer can choose between the alternatives. If the cost of the land is significant, it should be noted that the first alternative requires only about 60 percent of the area of the second one. The initial cost difference between the nlternatives in handling equipment can be easily computed from Equations 7 and 15, in Section III.

Extra length in bucket elevator in Alternative $I(60 t / h)=\$ 1,857$. Extra length in loading and unloading equipment of Alternative II, using drag conveyors (60 $t / h)=\$ 22,458$.

The handing equipment in Alternative II is $\$ 20,601$ more expensive than Alternative I. Considering the cost of the land and handling equipment, Alternative I is preferred.

Design with corrugated steel bins. The same procedure as with concrete bins was followed. From the economic information, Table 19, the steel bins and unloading equipment fixed cost/year as a percentage of the initial cost is:

Steel bins	FC_{1} percent $=14.3$ percent
Unloading equipment	FC_{2} percent $=25.5$ percent

The mathematical model is set up in the following manner:

1. Objective Function:

Adding Equations 16 through 19 and 21 , the objective functions are set up. The unit costs used for the study are:
$C U C=\$ 111.9 / \mathrm{m}^{3}$ including labor
$S U C=\$.545 / \mathrm{kg}$ includjing labor
Steel bin alternative cost:
Steel bins $=12.34 \mathrm{D}^{2} \times \mathrm{H}+312717$
Perforated floor $=38.76 \mathrm{D}^{2}+134 \mathrm{H}-1411.42$

Assembling $=1.54 \mathrm{D}^{2} \times \mathrm{H}+1489.37$
Foundations $=\left(15.18+0.013 \mathrm{D}^{2} \times \mathrm{H}\right) 111.9+$
($558.5 \mathrm{H} / \mathrm{D}+0.54 \mathrm{D}^{2} \times \mathrm{H}-1070.3$). 545
Unloading equipment $=334.49 \mathrm{UD}-46.6 \mathrm{UCAP}+118.59 \mathrm{D}-4709.4$
Adding these equations and multiplying by the nuber of bins (NB) and the FC percent and simplifying, the final objective functions is obtained. To fit the problem in Equation 32, the following variable names were changed:
$\mathrm{X}_{1}=\mathrm{D}$
$X_{2}=H$
$\mathrm{X}_{3}=\mathrm{NB}$
Simplified objective function:

$$
\begin{aligned}
\text { Cost/year } & =2.23 \mathrm{X}_{1}^{2} \mathrm{xX}_{2} \times \mathrm{X}_{3}+5.54 \mathrm{X}_{1}^{2} \times \mathrm{X}^{3}+19.16 \mathrm{X}_{2} \times \mathrm{X}_{3} \\
& +43.53\left(\mathrm{X}_{2} \times \mathrm{X}_{3}\right) / \mathrm{X}_{1}+514.51 \mathrm{X}_{3}+\mathrm{f} 30.24 \mathrm{X}_{1} \times \mathrm{X}_{3}
\end{aligned}
$$

2. Constraints:

The storage capacity is an equality constraint.
$S C A P=.785 \mathrm{X}_{1}^{2} \times \mathrm{X}_{2} \times \mathrm{X}_{3}$
3. Inequality Constraints:

Bin diameter $6<X_{1}<27$
Bin height $12<X_{2}<23$
H/D ratio $.5<X_{2} / X_{1}<2.5$
Number of bins $X_{3}>4$
For a CAP $=20000 \mathrm{~m}^{3}$, the minimization problem is defined:
Minimize:
$Y=2.23 X_{1}^{2} \times X_{2} \times X_{3}+5.54 X_{1}^{2} \mathrm{xX}_{3}+19.16 X_{2} \times X_{3}$
$+43.53\left(\mathrm{X}_{2} \times \mathrm{X}_{3}\right) / \mathrm{X}_{1}+514.51 \mathrm{X}_{3}+30.24 \mathrm{X}_{1} \times \mathrm{X}_{3}$
Subject to:
20000-785 $\mathrm{X}_{1}{ }^{2} \times \mathrm{X}_{2} \times \mathrm{X}_{3}=0$
$6<x_{1}<27$
$12<x_{2}<23$
$.5<X_{2} / X_{1}<2.5$
$X_{3}>4$
Using the KSU-SUMT program and searching with different initial values, the following alternatives were obtained.

Alternative I.

```
D = 11.7
H=22.3
NB=8.3
Cost/year = $74,593.6/year
Alternative II.
D = 18.9
H=14.8
NB=4.8
Cost/year = $73,120/year
```

In this case, the second alternative using five storage bins is preferred.
Using the same objective function and constraints, the design was performed for three different storage capacities. Table 25 summarizes the results.

From Table 25 we see that very small differences were found between the annual cost of storage facilities built in concrete or corrugated steel bins for capacities from $5000 \mathrm{~m}^{3}$ to $20000 \mathrm{~m}^{3}$. Even though steel bins require less initial cost, the alternative with concrete bins averages a lower annual cost. When searching with the KSU-SUMT method for the different storage capacities, a trend was found that diminishing the number of bins obtains the minimum annual costs.

When all factors were considered in the design, the best h / d ratio for concrete bins was $4<\mathrm{h} / \mathrm{d}<5$ and for steel bins $.75<\mathrm{h} / \mathrm{d}<1.4$. The number of bins is a factor that has to be considered when optimizing the battery size.

Optimization of the Drying System

To optimize the minimum cost/year drying system for commercial facilities, the following drying systems were studied in combination with continuous dryers.

1. Using only continuous flow dryers (D)
2. Using continuous flow dryer with tempering bins (DT)
3. Using continuous flow dryers with holding bins (HD)
4. Using holding bins, continuous flow dryer, and tempering bins (HDT)

The study was conducted for annual storage capacities of $20,000 \mathrm{~m}^{3}$ and $5000 \mathrm{~m}^{3}$.
A. Procedure ard assumptions:

The grain receiving period was established in 60 days
The corn is dried from 25 percent MC to 15 percent MC

Average receiving rate $/ \mathrm{hr}=$ annual storage capacity/60 days/ $10 \mathrm{H} /$ day
When the dryer was the only equipment involved, the dryer capacity was obtained considering a drying peak of 50 percent above the average receiving rate.

When tempering bins were combined with continuous flow dryers, to use the dryeration system, a 40 percent increase in the system dryer capacity was considered. Even though Mckenzie et al. (1967) obtained dryer capacity incredses up to 60 percent, for the present study, a more conservat: ve value is preferred. Hence, the dryer capacity was chosen 40 percent lower than the drying peak.

When holding bins were combined with the dryer, the dryer capacity was the average receiving rate and the peak was regulated through the holding bins.

When considering holding bins, dryer and tempering bins, the dryer size was considered 40 percent less than the receiving rate and the difference of the dryer plus tempering with the receiving peak was regulated through the holding bins

The size and number of holding and tempering bins were obtained through the KSU-SUMT program. The objective function is Equation 7 from Section III, to minimize the annual cost of the holding bins.
PHOL8IN $=\left(1695.0+42.78 \mathrm{D}^{2} \mathrm{xH}\right) .143 \mathrm{xNB}$
Constraints: steel bins are available for diameters between 2.7 m and 9.1 m , heights from 3.35 m to 14.5 m and H / D ratios between $0 . b$ and 2.7 . The minimum number of bins is considered to be two. The following equations represent these constraints.

Number of bins: $N B>2$
Bin diameter: $2.7<\mathrm{D}<9.1 \mathrm{~m}$
Bin height: $3.35<H<14.5$
H/D ratio: $0.6<H / D<2.7$
Holding capacity: $\mathrm{HCAP}=\left(.785 \mathrm{D}^{2} \mathrm{xh}+.562 \mathrm{D}^{3}\right) \mathrm{NB}$
where:
$h=$ bin height from hopper ring to top
$H=b i n$ height from ground to top
The rest of the variables were defined in Section III. The cost of the dryer and handling equipment was obtained through the respective equations developed in Section III.

The equipment considered in each case is listed follows, and its location is represented in Figure 34.

CASE Equipment Considered in the Drying System

1. grain dryer only
2. grain dryer, tempering bins, BE4 and 2TA5
3. grain dryer, holding bins, 2TA2 and BE2
4. grain dryer, holding bins, tempering bins, 2TA2, BE2, BE4 and 2TA5

The codes are:
$\mathrm{BE}=$ bucket elevator
RH = receiving hopper
$H B=$ holding bins
$\mathrm{GD}=$ grain dryer
$\mathrm{TA}=$ transport auger
Depending on the plant layout, sometimes it is possible to avoid the use of BE2 using the receiving bucket elevator to feed the dryer. In this study, to solve a general case, BE2 was considered.
B. Annual Cost

The annual cost in each case was computed considering fixed costs and operating costs. The fixed cost for drying and handing equipment was obtained through the respective equations developed in Section III and the economic information in Table 19. Operating costs included electricity for the dryer and handing equipment, fuel for the dryer, electricity to aerate the grain in the holding bins, and for dryeration. The following data were used to compute the operating costs:

Electricity cost $=\$ 0.024 / \mathrm{KWH}$
Propane gas $=\$ 0.106 / 1$
Aeration rate in holding bins $=.007 \mathrm{~m}^{3} / \mathrm{sec} \times \mathrm{m}^{3}$ Dryeration rate $=.007 \mathrm{~m}^{3} / \mathrm{sec} \times \mathrm{m}^{3}$
C. Results of the Analysis:

The results from the study are summarized below:
(1) Ainual Storage Capacity $=20000 \mathrm{~m}^{3}$
a. Using dryer only

```
    Dryer size = 36T/H
    Fixed costs = $33,770
    Operating costs = $38.000
    Total Cost/year = $74,156
    b. Using dryer and tempering
    Dryer size = 26 T/H
    Tempering: 3 bins, D = 5.5 m, H = 3.4 m,
    l bucket elevator
    2 U-trough augers
    Fixed Costs = $28,259.40
    Operating Cost = $28,448.70
    Total Cost/year $56,608.10
    c. Using dryer and holding bins
    Dryer size = 24 T/H
    Holding bins: }3\mathrm{ bins D = 4.6, H}=3.
    1 bucket elevator
    2 U-trough augers
    Fixed costs = $25,558.00
    Operating costs =$26,128.40
    Total Cost/year $51,756.40
    d. Using holding bins, adjusted dryer capacity and tempering
        bins
        Dryer size = 17 T/H
        Holding bins: 2 bins, D = 4.6 m, H=3.4 m
        Tempering bins: 3 bins, D = 4.6 m, H=3.4 m
        2 bucket elevators
        4 ~ U - t r o u g h ~ a u g e r s
        Fixed costs = $21,418.00
Operating costs = $18.963.00
Total cost/year $40,381.00
(2) Annual Storage Capaci.ty \(10,000 \mathrm{~m}^{3}\)
a. Using dryer only
Dryer size \(=18 \mathrm{~T} / \mathrm{H}\)
Fixed Costs \(=\$ 16,621.50\)
Operating costs \(=\$ 19,909.20\)
Total cost/year \(\$ 36,531.70\)
```

b. Using dryer and tempering

Dryer size $=13 \mathrm{~T} / \mathrm{H}$
Tempering bin: 2 bins, $D=4.6, \mathrm{H}=4.47$
1 bucket elevator
2 U-trough augers
Fixed costs $=\$ 14,743.00$
Operating costs $=\$ 15.152 .00$
Total cost/year $\$ 29,895.00$
c. Using average receiving rate for the dryer and holding bins

Dryer size $=12 \mathrm{~T} / \mathrm{H}$
Holding bins: 2 bins, $D=4.6 \mathrm{~m}, \mathrm{H}=3.4 \mathrm{~m}$
1 bucket elevator
2 U-trough augers
Fixed costs $=\$ 13,406.30$
Operating costs $=\$ 14,239.00$
Total cost/year $\$ 27,645.30$
d. Using holding bins, adjusted dryer capacity and tempering bins

Dryer size $=8.6 \mathrm{~T} / \mathrm{H}$
Holding bins: 2 bins, $D=3.7 \mathrm{~m}, \mathrm{H}=4.3 \mathrm{~m}$
Tempering bins: 2 bins, $D=4.6 \mathrm{~m}, \mathrm{H}=3.4 \mathrm{~m}$
2 bucket elevators
4 U-trough augers
Fixed costs $=\$ 12,189.10$
Operating cost $=\$ 11,287.00$
Total cost/year $\$ 23.476 .10$
(3) Annual Storage Capacity $=5000 \mathrm{~m}^{3}$.
a. Using dryer only

Dryer size $=9 \mathrm{~T} / \mathrm{H}$
Fixed costs $=\quad \$ 8,047.00$
Operating costs $=\$ 11,580.00$
Total costs $=\$ 19,627.00$
b. Using dryer and tempering

Dryer size $=6.5 \mathrm{~T} / \mathrm{H}$
Tempering bins: 2 bins, $D=3.7 \mathrm{~m}, \mathrm{H}=3.4 \mathrm{~m}$, 1 bucket elevator
2 U-trough augers

Fixed costs $=$| $\$ 7,239.30$ |
| :--- |
| Operating costs $=\$ 9,510.00$ |
| Total Costs $=$ |$\quad \$ 16,749.60$

c. Using average receiving rates for the dryer and holding bins

Dryer size $=6 \mathrm{~T} / \mathrm{H}$
Holding bins: 2 bins, $D=2.7 \mathrm{~m}, \mathrm{H}=5.59 \mathrm{~m}$,
1 bucket elevator
2 U-trough augers

Fixed costs $=$	$\$ 7,041.60$
Operating costs	$=\frac{\$ 8,869.60}{}$
Total costs	$\$ 15,911.20$

d. Holding bins, adjusted dryer capacity and tempering bins.
Dryer size $=4 \mathrm{~T} / \mathrm{H}$
Holding bins: 2 bins, $D=2.7 \mathrm{~m}, \mathrm{H}=4.47 \mathrm{~m}$,
Tempering bins: 2 bins, $D=4.6 \mathrm{~m}, \mathrm{H}=3.4 \mathrm{~m}$,
2 bucket elevators
4 U-trough augers
Fixed costs $=\quad \$ 7,397.20$

Operating costs $=\$ 7,539.70$
Total costs

The results from the analysis of drying systems can be visualized in Figure 35. For the capacities studied, the drying system combining the use of holding bins, grain dryer, and dryeration, resulted in the lowest cost per year. For annual storage capacity of $5000 \mathrm{~m}^{3}$, the use of holding bins and dryeration process resulted in 31 percent lower cost than the use of the dryer only. For annual storage capacity of $20,000 \mathrm{~m}^{3}$, the use of , 10 lding bins and dryeration process resulted in 84 percent lower cost than the use of the dryer only.

In addition to the lower cost of using the dryeration technique, other advantages exist such as the increase in the drying rate, reduction in the stress rack formation, and kernel breakage. In one dryeration test, the percentage of cracked corn kernel was 7.6 percent compared to 43.6 percent with conventional drying and cooling (McKenzie et al. 1967). The reduction in grain breakage is attributed to the relative low kernel temperature of the grain as it leaves the dryer, the tempering process that relieves stresses in the outer layers of the kernel, and the slow cooling process.

The managing of the dryeration process is more involved in the traditional drying process. Some of the factors to be considered are (Brooker et al. 1981):

1. The temperature and moisture content of the corn coming from the dryer must be continuously monitored.
2. Precautions should be taken to prevent excessive condensation in spouting and other grain-handling equipment.
3. The temperature of the air coming from the grain in the tempering bin should be checked to insure that the grain is cooled before the bin is unloaded.
4. The corn should be thoroughly mixed as it is taken from the tempering bin.

When rice is to be dried, the use of the conventional drying system is not recommended because of the possibility of excessive grain breakage. The dryeration process is highly recommended in such cases.

Conclusions

1. The TOPSIS method is a very straightforward method for analyzing the selecting of concrete or storage bins. This method considers not only the cost of the alternative but also cther important parameters. The decision maker has a way to define the degree of importance that is given to each attribute and obtain an indisputable preference order of solution. Traditionally, this type of decision left the decision maker feeling a high degree of uncertainty.
2. Breakeven values between the use of concrete and steel bins were obtained considering the percentage of cost variation between concrete and steel bins, with the cost of concrete bins higher than the steel bins. For commercial facilitios, concrete bins were the best solution even if they cost up to 19 percent more than steel bins, considering, weight factor of .6 to the cost and .4 to the rest of the attributes. For long.term storage, steel bins were the best solution when their cost is at least 21 percent less than the concrete bins, considering a weight factor of .6 to the cost and 4 to the rest of the attributes.
3. The SUMT minimization technique was also applied to the design of concrete and steel bins to obtain the ratio, diameter, height, and number of bins that minimize the cost per year. For concrete bins, H/D ratios between 4 and 5 were found to be optimum ratios for storage capacities from 5000 m^{3} to $20000 \mathrm{~m}^{3}$. For steel bins, H / D ratios from. 75 to 1.40 gave the minimum storage cost per year. In both cases, a trend was observed using the minimum number of bins possible to obtain better cost values.
4. Special attention has to be given to the annual cost when comparing concrete and steel bins. For capacities from $5000 \mathrm{~m}^{3}$ to $20,000 \mathrm{~m}^{3}$, concrete bins presented a lower annual cost.
5. Different drying systems for commercial facilities were studied by the SUMT Minimization Technique. The use of the dryeration process with holding bins to cover the receiving peak was the lowest cost drying systen for annual capacities ftom $5000 \mathrm{mb}^{3}$ to $20,000 \mathrm{~m}^{3}$. The higher the annual storage capacity, the more economical the use of dryeration beeomes.

FIGURE 25 . Euclidean Distance to the Ideal and Negative Ideal Solutions
in Two Dimensional Space

		0	
Very High	1.0	1.0	Very Low
High	3.0	3.0	Low
Average	5.0	-5.0	Average
Low	7.0	-7.0	High
Very Low	9.0	9.0	Very High
	10.0	10.0	

FIGURE 26. Assignment of Values for an Interval Scale

a). Weights :

$$
\begin{array}{cccccc}
\text { Cost } & \text { G. Pres. } & \text { Long. } & \text { Cons. Asp. Ass. Ben. } & \text { Op. Flex. } \\
., 55 & .09 & .12 & .03 & .07 & .14
\end{array}
$$

b) Fixed cost variation . Concrete bins 20% more expensive than steel bins.

FIGURE 27. Choice of Concrete or Steel Bins for Commercial Type of
Storage

a). Weights :
$\begin{array}{cccccc}\text { Cost } & \text { G. Pres. Long. Cons. Asp. Ass. Ben. } & \text { Op. Flex. } \\ .55 & .09 & .12 & .03 & .07 & .14\end{array}$
b) Fixed cost variation . Concrete bins 20% more expensive than steel bins.

FIGURE 28. Influence of the Weight Factor in the Choice of Concrete or Steel Bins for Commercial Type of Storage with a Fixed Cost Variation

FIGURE 29. Influence of the Weight Factor in the Choice of Concrete or Steel Bins for Commercial Type of Storage with a Fixed Cost Variation

a) Heights
$\begin{array}{ccccc}\text { Cose } & \text { G. Pres. Long. Cons.Asp. Op. Flex. } \\ .60 & .20 & .10 & .05\end{array}$
b) Ffxed storage capacity of $20000 \mathrm{~m}^{3}$

FIGURE 30. Choice of Concrete or Steel Bins for Long-Term Type of

a) Weights
$\begin{array}{cccc}\text { Cost } \\ .65 & \text { G.Pres. } & \text { Long. } & \text { Cons.Asp. } \\ .09 & .04 & \text { Op.Flex. } \\ .05\end{array}$
b) Fixed Scorage Capacity of $20000 \mathrm{~m}^{3}$.

FIGURE 31. Choice of Concrete or Steel Bins for Long-Term Type of Storage

a) Weighes
$\begin{array}{llccc}\text { Cost } & \text { G.Pres. } & \text { Long. } & \text { Cons.Asp. } & \text { Op. Flex. } \\ .60 & .20 & .10 & .05 & .05\end{array}$
b) Fixed Cost Variation: Steel bins 20\% lower than concrace bins.

FIGURE 32. Influence of the Storage Capacity in Choosing the Proper Type of Bin for Commercial Storage Facility

a) Weights
$\begin{array}{lllll}\text { Cost } & \text { G.Pres. Iong. Cons.Asp. Op. Flex. } \\ .60 & .20 & .10 & .05 & .05\end{array}$
b) Fixed cost variation. Steel bins 20% lower than conmete bins

FIGURE 33. Influence of the Storage Capacity in Choosing the Proper Type of Bin for a Long-Term Storage Facility

FIGURE 35. Commercial Drying Cost

TABLE 21
Decision Matrix after the Quantification of Nonnumerical Attributes

Alternative	COST cost $\times 103$	BENEFIT G. Conser. $(\$)$	BENEFIT Longevity Preser.	COST Cons. Asp.
Steel	455.0	6.0	7.0	1.0
Concrete	553.0	9.0	10.0	6.0
St. 50 percent/C 50 percent	504.0	7.5	8.5	3.5
C 70 percent/St 30 percent	523.6	8.1	9.1	4.5

Alternative	BENEFIT Ass. Ben.	BENEFIT Op. Flex
Steel	5.0	5.0
Concrete	9.0	9.0
St 50 percent/C 50 percent	7.0	7.0
670 percent/St 30 percent	7.8	7.8

TABLE 22
Intensity Scale for Pairurise Comparison (Saaty, 1977)

I:atensity of Importance	Definition	Explanation
1	Equal Importance	Two criteria contribute equally to the objective.
3	Weak importance of one over another	Experience and judgment slightly favor one criterion over another.
5	Essential or strong importance	Experience and judgment strongly favor one criterion over another
7	Demonstrated Importance	A criterion is strongly favored and its dominance is demonstrated in practice.
9	Absolute Importance	Evidence favoring one criterion over another is of the highest possible order of affirmation.
$2,4,6,8$	Intermediate values between the two adjacent judgments	When compromise is needed.

TABLE 23

Pairwise Comparison Matrix

	Cost	G. Preser.	Longevity	Cons. Asp.	Ass. Ben.	Op. Flex
Cost	1.00	3.0	1.00	7.00	3.00	3.00
G. preser.	.33	1.0	0.25	5.00	3.00	0.25
Longevity	1.00	4.0	1.00	4.00	4.00	1.00
Cons. Asp.	.14	0.2	0.25	1.00	0.20	0.17
Ass. Ben.	.33	0.33	0.25	5.00	1.00	0.20
Op. flex.	.33	4.00	1.00	6.00	5.00	1.00

TABLE 24
Decision Matrix for Example II

Alternative	COST. cost $\times 10^{3}$	BENEFIT G. Preser	BENEFIT Longevity	COST Cons. Asp.	BENEFIT Op. Flex
Steel	455	7.00	7.00	1.00	5.00
Concrete	553	9.00	10.00	5.00	9.00
St50-C50	504	8.00	8.50	3.00	7.00
C70-St30	523.6	8.40	9.10	3.80	7.80

TABLE 25

The Eigenvector Pairwise Comparisons

	Cost	G. Conser.	Longevity	Cons. Asp.	Op. Flex
Cost	1.00	3.00	1.00	6.00	5.00
G-conser	0.33	1.00	1.00	7.00	6.00
Longevity	1.00	1.00	1.00	5.00	4.00
Cons. Asp.	0.17	0.14	0.20	1.00	0.33
Op. Flex	0.20	0.17	0.25	3.00	1.00

TABLE 26
Long-Term Storage Facility
Weights Through Pairwise Comparison and Direct Weights

$\begin{aligned} & \text { Capacity } \\ & \mathrm{m}^{2} \\ & \hline \end{aligned}$	Cost Variation	$\begin{gathered} \text { Rank } \\ \text { (weights 1) } \end{gathered}$	$\begin{gathered} \text { Rank } \\ \text { (weights 2) } \end{gathered}$	
20000	20 percent	1. Concrete . 58	1. Steel	. 55
		2. C70-St30 . 56	2. St50-C50	. 50
		3. St50-C50. 50	3. C70-St30	. 47
		4. Steel . 42	4. Concrete	. 45
20000	30 percent	1. Concrete . 53	1. Steel	. 61
		2. C70-St30 . 52	2. St50-C50	. 50
		3. St50-C50 . 50	3. C70-St30	. 43
		4. Steel . 47	4. Concrete	. 39
20000	40 percent	1. Steel . 52	1. Steel	. 66
		2. St50-C50. 50	2. St50-C50	. 50
		3. C70-St30. 49	3. C70-St30	. 40
		4. Concrete . 48	4. Concrete	. 34
20000	50 percent	1. Steeel . 56	1. Steel	. 70
		2. St50-C50. 50	2. St50-C50	. 50
		3. C70-St30 . 46	3. C70-St30	. 38
		4. Concrete . 44	4. Concrete	. 30

TABLE 27
Influence of Cost Variation

	Commercial Type of Storage ${ }^{1}$		Long-Term Storage ${ }^{2}$	
Cost Variation	Rank ${ }^{3}$		Rank ${ }^{3}$	
21 percent	1. Concrete	. 59	1. Steal	. 55
	2. C70-St30	. 55	2. St50-C50	. 50
	3. St50-C50	. 47	3. C70-St30	. 47
	4. Steel	. 41	4. Concrete	
30 percent	1. Concrete	. 53	1. Steel	. 61
	2. C70-St30	. 51	2. St50-C50	. 50
	3. St50-C50	. 48	3. C70-St30	. 43
	4. Steel	. 47	4. Concrete	
40 percent	1. Steel	. 53	1. Steel	. 66
	2. St50-C50	. 48	2. St50-c50	. 50
	3. C70-St30	. 47	3. C70-St30	. 40
	4. Concrete	. 47	4. Concrete	. 34
50 percent	1. Steel	. 57	1. Steel	. 70
	2. St50-C50	. 48	2. St50-C50	. 50
	3. C70-St30	. 45	3. C70-St30	. 38
	4. Concrete	. 43	4. Concrete	. 30

TABLE 28
Breakeven Values Between Concrete and Steel Bins for Commercial Type of Storage Assigning Different Weights to the Cost Factor

Weight To Cost Factor	Breakeven Value (percent)
.45	42.5
.50	34.5
.55	26.0
.60	19.0

TABLE 29
Influence of Storage Capacity

	Commercial Type of Storage ${ }^{1}$		Lor.g-Term Storage ${ }^{2}$	
Capacity m ${ }^{3}$	Rank ${ }^{3}$		Rank ${ }^{3}$	
8000	1. Concrete	. 60	1. Steel	. 54
	2. C70-St30	. 56	2. St50-C50	. 50
	3. St50-C50	. 47	3. C70-St30	. 48
	4. Steel	. 40	4. Concrete	
16000	1. Concrete	. 63	1. Steel	. 52
	2. C70-St30	. 57	2. St50-C50	. 50
	3. St50-C50	. 47	3. C70-St30	. 50
	4. Steel	. 37	4. Concrete	
32000	1. Concrete	. 64	1. C70-St30	. 50
	2. C70-St30	. 58	2. Concrete	. 50
	3. St50-C50	. 47	3. St50-C50	. 50
	4. Steel	. 36	4. Steel	. 50
40000	1. Concrete	. 63	1. C70-St30	. 51
	2. C70-St30	. 58	2. Concrete	. 50
	3. St50-C50	. 47	3. St50-C50	. 50
	4. Steel?	. 37	4. Steel	. 50

TABLE 30
Fixed Cost Per Year for Different Storage Capacities

	Storage Capacity m^{3}	Diameter (mm)	Height (mm)	Number of bins	Cost per year $\$$
Steel Bins	20,000	18.9	14.8	5	73,120
Concrete Bins	20,000	7.8	33	14	72,777
Steel Bins	10,000	12.6	16	5	39,070
Concrete Bins	10,000	6.7	33	10	36,638
Steel Bins	5,000	9.8	13.7	5	22,224
Concrete Bins	5,000	5.4			

REFERENCES

1. Brook, R., and F. Bakker-Arkema. 1980. Design of Multi-Stage Corn Dryers Using Computer Optimization. Transactions of the ASAE 23(1):200-203.
2. Brooker, D., F. Bakker-Arkema, and C. Hall. 1981. Drying Cereal Grains. The AVI Publishing Company, Inc.
3. Carpenter, M., and D. Brooker. 1972. Minimum Cost Machinery Systems for Harvesting, Drying, and Scoring Shelled Corn. Transactions of the ASAE 15(2):515-519.
4. Chang, D. 1978. Modeling for Dryer Selection and Simulation of Natural Air Drying of Rough Rice. M.S. Thesis, Kansas State Universiay, Department of Agricultural Engineering, Manhattan, Kansas.
5. Chang, D. 1981. Optimization Systems of Rough Rice Handling, Drying and Storage. Ph.D Dissertation, Kansas State University, Deparment of Agricultural Engineering, Manhattan, Kansas.
6. Fiacco, A., and G. McCormick. 1964. The Sequential Unconstrained Minimization Technique for Nonlinear Programming: A Primal-Dual Method, Management Sci., 10, 601-617.
7. Foster, G. 1964. Dryeration - A Corn Drying Process. Progress Report. U.S. Department of Agriculture. U.S. Agricultural Marketing Service in Cooperation with Purdue University, Agricultural Experiment Station.
8. Hooke, R., and T. Jeeves. 1961. Direct Search Solution of Numerical and Statistical Problems, J. Assoc. Comp. Mach., 8, p. 212.
9. Hwang, C., L. Fan, and S. Kumar. 1969. Hooke and Jeeves Pattern Search Solution to Optimal Pruduction Planning Problems, Report No. 18, Kansas State University, Institute of Systems Design and Optimization.
10. Hwang, C., and K. Yoon. 1980. Multiple Attribute Decision-making Methods and Applications. A State-of-the-Art Survey. Springer-Verlag. Berlin, Heidelberg, New York.
11. Lai, K. 1970. Optimization of Industrial Management Systems by the Sequential Unconstraint Minimization Technique, M.S. Report, Kansas State University, Department of Industrial Engineering.
12. Loewer, O., T. Bridges, and D. Overhults. 1976b. Facility Cost of Centralized Grain Storage Systems Utilizing Computer Design, Transactions of ASAE 19(6):1163-1168.
13. McCrimmon, K. 1968. Decision-Makiag Among Multiple-Attribute Alternatives: A Survey and Consolidated Approach, RAND Memorandum, RM4823-ARPA.
14. McKenzie, B., G. Foster, R. Noyes, and R. Thompson. 1967. Dryeration Better Corn Quality With High Speed Drying. Purdue University, Cooperative Extension Service, Lafayette, Indiana.
15. Park, K. 1982. Modeling and Optimization of a Feed Mill. Ph.D. Dissertation, Kansas State University, Department of Agricultural Engineering, Manhattan, Kansas.
16. Plato, G., and D. Gordon. 1983. Dynamic Programing and the Economics of Optimal Grain Storage. Agricultural Economics Research 35(1):10-22.
17. Saty, T. 1977. A Scaling Hethod for Priorities in Hierarchical Structures. Journai of Mathematical Psychology, Vol. 15, No. 3, pp 234281.

APPENDIX I
DESIGN OF THE CONCRETE SILO BATTERIES FOR THE COST STUDY

为

In order to provide design suggestions for the size and practical elements for the cost of concrete bins, a rough reinforced concrete silo design of a set of batteries was conducted. Through this design, the quantities of concrete and reinforced steel required to build different silo complexes were computed. Special interest was given to complement data from existing studies.

Design Variables

The storage capacities, bin sizes, layouts, and general design variables covered by the study are explained in this section.

Capacity and size.
Battery Capacities: From $3800 \mathrm{~m}^{3}$ to $51500 \mathrm{~m}^{3}$
Bin Diameters: $\quad 5 \mathrm{~m}, 7 \mathrm{~m}, 8 \mathrm{~m}, 9 \mathrm{~m}, 10 \mathrm{~m}$

Bin Heights: $\quad 15 \mathrm{~m}, 20 \mathrm{~m}, 25 \mathrm{~m}, 30 \mathrm{~m}, 35 \mathrm{~m}$ and 40 m
Ratio H/D: The study covered bin sizes within an H / D relation of $3<$ $H / D<5$

Layout: Two basic layouts were studied using 2 and 4 bins wide.
Number of bins: The number of bins varied from 6 to 32 , increasing in even numbers.

Bin sizes considered in the design (Table l).
For further explanation of the dimensions, Figures 1,2 , and 3 present a general]ayout of the batteries studied.

Grain characteristics (Fintel, 1985).
Bulk: Density $=780 \mathrm{~kg} / \mathrm{m}^{3}$ (Wheat Density)
$U=$ Friction coefficient between stored material and wall $=0.444$
$P=$ Angle of internal Friction $=25^{\circ}$
Concrete and steel characteristics (Fintel, 1985).

```
f'c=280 kg/cm2
    Ec=15200 Ec=254345 kg/\mp@subsup{cm}{}{2}
Ey = 2800 kg/cm
    G=E/2(1-r)=1589656 kg/\mp@subsup{\textrm{cm}}{}{2}
Is}=1200\textrm{kg}/\mp@subsup{\textrm{cm}}{}{2
    r Poisson Ratio = 0.2
    c=2400 kg/m
Js}=7746\textrm{Kg}/\mp@subsup{\textrm{m}}{}{3
```

where:


```
f,c = ultimate compressive strength of concrete
2fy = yield stress of steel
Ec = modulus of elasticity of concrete
G = modulus of elasticity of concrete in shear
fs}=\mathrm{ steel stress, tension
c = reinforcement concrete density
Js = steel density
r = poisson ratio
Design Procedure
```

Silo walls (concrete and horizontal reinforcement steel). Mata (1983) worked the design of concrete silo walls and obtained the wall thickness (c) and the volumes of concrete and horizontal steel for different diameters (D) and heights (H). His results are shown in Table 2 and 3 . In this design, the interrelation of adjacent bins was not considered, but is accurate enough for the purpose of this study.

Vertical steel. The main function of the vertical steel is to absorb the tension stress in the silo walls due to seismic forces.

The ACI-313-77 specifies that the vertical steel area should not be lower than 0.0015 times the concrete section for the external reinforcement and 0.0010 for the internal reinforcement. Likewise, the percentage of minimum vertical reinforcement with respect to the concrete area should not be lower than 0.0020 per unit of wall thickness. The distance between bars should not exceed four times the wall thickness or 45 cm . It is not recommended to use reinforced bars less than $\mathrm{N}_{\mathrm{o}}{ }^{4}$.

For this study, a 0.0015 percent of the cross concrete area, minimum bars $N_{0} 4$ and maximum separation of 45 cm was considered. The results for vertical steel requirements are shown in Table 4.

Hopper design. The bin hoppers were designed supported on a ring bin and this one on a number of columns depending on the bin dianeter. The whole liupper system was designed independently from the bin walls (see Figure 4). The hopper angle was 45 degrees based on recommendations from Bomands (1985) to allow a smooth gravity fiow and avoid clogging the hopper.

To design the hopper shell. Equations 1 and 2 from Fintel (1985) were used. Through these formulas, the meridional and tangential forces are calculated.
$F m u=1.7 \frac{\mathrm{E} \operatorname{des} \mathrm{D}}{4 \sin }+\frac{\mathrm{WL}}{\mathrm{D} \sin }+1.4 \frac{\mathrm{Wg}}{\mathrm{D} \sin }$

```
Ftu \(=1.7 \mathrm{~g}\) des D
2 sin
```

(Eq. 2)
where:

Fmu $=$ meridional force
qdes $=$ design static vertical pressure due to stored material
$D=b i n d i a m e t e r$
$=$ angle of inclination of hopper wall
$W_{1}=$ total portion of weight due to material stored in the hopper
$W_{g}=$ total portion of weight due to hopper weight
Thesc forces were obtained for different bin diameters and heights, at different hopper levels. The results showed that the variation of $F m$ and $F t u$ when varying the bin height was not significant. Thereafter, only one hopper and support was designed for each bin diameter. Table 5 shows the results from this analysis.

To design the ring bin and supporting columns, the shearing stress, compressive force, torque, vertical, and horizontal bending moments were computed for every bin diameter. The method to obtain these forces was taken from Safarian Sargis (1985) and Fintel (1985). The method is not detailed here because of the extersive explanation.

Tables 6,7 , and 8 show a sumary of the results from this analysis.
Roof design. The analysis was simplified designing one bin roof per each bin dianeter and intercell. The quantities of concrete and steel for one bin diameter and intercell were multiplied by the number of silos and intercells in each battery. The analysis was done assuming the roof borders attached to the bin walls. Then, the tangential and radial bending moments were computed according to Safarian (1985). A line load of $750 \mathrm{~kg} / \mathrm{m}^{2}$ was considered in the design. Table 9 shows the results from this analysis.

Foundation Design. Extra care has to be taken when designing the silo foundations. Several silo batteries have failed because of a misconception of the foundation's behavior (Ravenet, 1977).

To design the foundations, the following recommendations from Safarian (1985) are suggested.

1. Emphasis is given to the fact that silo-group foundation loads differ from those for an usual building. The main differences are:
a. Full live load is certainty.
b. The ratio of line load to dead load is bigger than in other types of structures.
c. The load changes quickly when bins vary from full to empty or viceversa, in a matter of hours.
d. Extreme variations occur in the load position. The content may be removed from certain silos and shifted to others, causing a large shift in the location of the total load.
2. Soil test should be of considerable depth. Some authorities suggest a minimum of 20 m to prevent unforeseen settlements.
3. When calculating pressures on the soil, the following loading conditions should be considered.
a. All silos full.
b. Half of the silos full and half empty. Consider the condition in two arrangements in order to consider maximum load eccentricities.
4. Soil bearing pressures under the raft should not exceed allo:vable soil bearing capacity
$\max =$
min
$\frac{\mathrm{P}}{\mathrm{A}} \quad \frac{\mathrm{Ml}}{\mathrm{S}_{1}}$
$\frac{\mathrm{M} 2}{\mathrm{~S}_{2}}<$ allowable
(Eq. 3)
$P=\quad$ Total gravity loading on the foundation due to most unfavorable loading combination.
$A=\quad$ Foundation area
$M_{1,2}=$ Bending moments in main directions 1 and 2
$S_{1,2}=$ Section Module in direction 1 and 2 .
5. Safarian (1985) recommends increasing the computed bending moments and shearing stresses, multiplying by a factor Cr (or more) depending on the soil type.

Type of Soil	Factor Cr	
1. Sound bedrock		
2. Natural Soils	1	
	a. Uniform Subsoil	
	b. Non-uniform Soils	$1.05-1.15$
3. Controlled Fill	$1.3-1.75$	

6. Reinforce both the top and the bottom of the raft. The spacing of reinforcing at bars should not exceed 30 cm .
7. In both the top and the bottom of the raft, provide the same basic reinforcement in the direction of the major axis, based on some average value of flexure, then, add extra steel when needed.
8. The raft slab should preferably be thick enough to resist the shear forces without stirrups or berit-up bars.
9. Length of the cantilever extension of the raft slab beyond the outside wall should not exceed $1 / 4$ of the silo diameter.

To compute the foundation materials required for different batteries, the following assumptions and procedures were followed:
a. The weight of the stored materials was computed based on the volume capacity for each battery. A density of $0.779 \mathrm{~T} / \mathrm{m}^{2}$ which corresponds to wheat, the grain with the highest bulk density, was used. This weight corresponds to the live load for the foundation.
b. Having already designed the walls, hopper, supports, and roof, the weight of this material was computed for each battery. This weight corresponds to the dead weight that has to be supported for the foundation.
c. To simplify the computation, a rough analysis and design was made to the arrangement foundations of 2 x 8 bins and 4×4 bins. The analysis was made to each combination of diameter and height in accordance with Table 1 . From this analysis, the quantities of concrete and steel for the foundation of two bins wide and one bin long were found. Figure N E explains this simplification. To compute the concrete arid steel required for other battories, 2×4, 2×6 until 2×14, the number of pairs of bins was multiplied by the materials obtained for the two bins wide analysis. The same procedure was followed for the four bins wide batteries.
d. The ACI $313-77$ specifies a seismic coefficient of 0.2 if a dynarnc analysis is not done for the project under design and a minimum of 0.10 when a dynamic analysis is performed. For this study a seismic factor of 0.15 was used to compute the seismic force. A zone coefficient $Z=1$ was also used.
e. The allowable soil capacity was $30 \mathrm{~T} / \mathrm{m}^{2}$ which is a regular soil.
f. The seismic coefficient, the dead load and 80 percent of the live load (ACI-313-77) was used to compute the overturning moment of the structure through the Equation 4.

$$
\begin{equation*}
M=.15(\mathrm{DL}+.8 \mathrm{LL}) \times \mathrm{Hc} \tag{Eq.4}
\end{equation*}
$$

where:
$\mathrm{M}=$ Overturning moment
DL $=$ Dead load
LL = Live load
Hc = Centroid of the bin mass
Seismic coefficient $=$. 15 .
g. The area of the raft foundation was computed using Equation 3 considering the overturning moment and the gravity load without exceeding the permissible soil capacity.
h. To compute the concrete and steel required in the foundation area under the bins, the formulas from Safarian (1985) for roof slabs were used. The tangential and radial moments were computed for the area under one bin and then multiplied by the number of bins in each battery.

In the cases when a cantilever extension of the raft slab was required beyond the outside wall, the cantilever bending moment and shearing stress were analyzed to compute the concrete and steel required for this area.

Results

The sumarizing results from this analysis are presented in Tables 10 to 13. In these tables, the quantities of concrete and reinforcement steel required for the bin body (walls, hopper, roof) and for the bin foundation are summarized. If very different soil conditions exist in a specific project, the reinforcement concrete for the foundations can be subtracted from the sumarizing tables and then, specific estimations can be added to the bin body to obtain better cost estimations.

Using the data from Tables 10 to 13 and Multiple Regression Analysis through the SAS Computer Program, the following equations were developed:
$C V=0.19 \mathrm{CAP}+35.27 \mathrm{H} / \mathrm{D}-21.13 \mathrm{NB}+423.37$
$\mathrm{RS}=0.016 \mathrm{CAP}-53.91 \mathrm{H} / \mathrm{D}-2.08 \mathrm{NB}+227.26$
where:
$C V=$ Concrete volume required (m^{3})
CAP = Storage capacity (m^{3})
$\mathrm{H}=$ Silo height (m)
$\mathrm{D}=$ Silo diameter (m)
$N B=$ Number of bins
RS = Reinforcement steel weight (T).
The R^{2} value of these equations was 0.97 and 0.98 . If these equations are multiplied by the concrete unit cost $\left(\$ / m^{3}\right)$ and reinforcement steel unit cost $(\$ / T)$, the costs of concrete and reinforcement steel for the battery are obtained. These equations are a very simple way to obtain a good estimate of the cost of a concrete silo battery and can be used for feasibility studies.

Curves showing the influence of H / D ratio in the design and graphics of cost vs. storage capacity are shown in Figures 11,12 , and 13.

TABLE 1

Bin Sizes Considered for the Design

Diameter m^{3}	15	Heights	
5	25	30	25
7	25	30	35
8	30	35	40
10	30	35	40

TABLE 2
Concrete Volume m^{3} Per Bin for Different Diameter and Height (Mata, 1983)

Height, m								
$\begin{gathered} D \\ (\mathrm{n}) \end{gathered}$	(cm)	10	15	20	25	30	35	40
5	15	24.3	36.4	48.5	60.7	72.8	84.9	97.1
7	$\begin{aligned} & 15 \\ & 17.5 \end{aligned}$	33.7	$\begin{gathered} 50.5 \\ - \end{gathered}$	$\begin{gathered} 67.4 \\ - \end{gathered}$	84.2	101.1	117.9 -	$1 \overline{57.8}$
8	$\begin{aligned} & 15 \\ & 20 \end{aligned}$	38.4	57.6	76.8	96.0	${ }_{1}^{115.2}$	134.4 -	$20 \overline{6} .1$
9	$\begin{aligned} & 15 \\ & 20 \end{aligned}$	43.1	64.7 -	80. 2	107.8	129.4	150.9 -	231.2
10	$\begin{aligned} & 15 \\ & 17.5 \\ & 20 \end{aligned}$	47.8	71.7 -	95.7	119.6 -	143.5 - -	195.8	256.4
12.5	15 17.5 22.5	59.6	89.4	119.2	149.0 -	178.8 $=$ $=$	243.9	359.8
15	$\begin{aligned} & 15 \\ & 17.5 \\ & 20 \\ & 25 \end{aligned}$	71.4 $=$	107.1 $=$ -	142.8 $=$ $=$ -	178.5	250.3	334.3	$\begin{gathered} \text { - } \\ \text { - } \\ 479.1 \end{gathered}$
	10 Diam 10 Heig 11 Thic							

TABLE 3
Horizontal Reinforcement Steel (m^{3}) Per Bin for Different Diameter and Height (Mata, 1983)

| | Meight (m) | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| D | | | | | | |
| (m) | 15 | 20 | 25 | 30 | 35 | 40 |
| 5 | 0.06 | 0.12 | 0.18 | 0.23 | 0.28 | 0.35 |
| 7 | 0.10 | 0.21 | 0.35 | 0.52 | 0.67 | 0.83 |
| 8 | 0.13 | 0.27 | 0.45 | 0.67 | 0.93 | 1.16 |
| 9 | 0.16 | 0.34 | 0.56 | 0.88 | 1.18 | 1.50 |
| 10 | 0.18 | 0.41 | 0.71 | 1.03 | 1.49 | 1.89 |
| 12.5 | - | 0.59 | 1.05 | 1.62 | 2.27 | 3.14 |
| 15 | - | - | 1.44 | 2.28 | 3.26 | 4.35 |

TABLE 4

Wall Vertical Steel per Silo

Diameter (m)	Height (m)	Vertical Steel m3/bin
5	$\begin{aligned} & 15 \\ & 20 \\ & 25 \end{aligned}$	$\begin{array}{r} .066 \\ .088 \\ 0.111 \end{array}$
7	$\begin{aligned} & 25 \\ & 30 \\ & 35 \end{aligned}$	$\begin{aligned} & .155 \\ & .186 \\ & .217 \end{aligned}$
8	$\begin{aligned} & 25 \\ & 30 \\ & 35 \\ & 40 \end{aligned}$	$\begin{aligned} & .177 \\ & .213 \\ & .248 \\ & .319 \end{aligned}$
10	$\begin{aligned} & 30 \\ & 35 \\ & 40 \end{aligned}$	$\begin{aligned} & .266 \\ & .310 \\ & .398 \end{aligned}$

TABLE 5

Concrete and Reinforcement Steel

for Bin Hoppers

Bin Diameter (m)	Concrete $\mathrm{m}^{3} / \mathrm{bin}$	Steel $\mathrm{m}^{3} / \mathrm{bin}$
5	4.7	.072
7	9.3	.213
8	14.5	.473
9	24.3	.748
10	37.3	1.127

TABLE 6

Concrete and Reinforcement Steel for the Hopper Supporting Columns

Bin Diameter (m)	Concrete $\mathrm{m}^{3} / \mathrm{bin}$	Stee1 $\mathrm{m}^{3} / \mathrm{bin}$
5	3.2	0.027
7	6.8	0.069
8	13.1	0.173
9	16.3	0.215

TABLE 7
Concrete and Reinforced Steel for Ring Bin

Bin Diameter (m)	Concrete $\mathrm{m}^{3} / \mathrm{bin}$	Steel $\mathrm{m}^{3} / \mathrm{bin}$
5	3.82	0.067
7	9.93	0.225
8	14.76	0.276
9	20.5	0.507
10	27.8	0.401

TABLE 3
Summary of Concrete and Steel Required for Hopper, Ring-Bin and Column Supports

Bin Diameter	Concrete $\mathrm{m}^{3} / \mathrm{bin}$	Steel $\mathrm{m}^{3} / \mathrm{bin}$
5	11.72	0.166
7	26.03	0.507
8	42.36	0.922
9	61.10	1.470
10	96.10	1.927

TABLE 9

Concrete and Steel Required for Bia Roof

Bin	Intercell			
Diameter (m)	Concrete Vol m^{3}	Stee). Vol m^{3}	Concrete Vol m^{3}	Steel Vol m^{3}
5	2.36	0.031	0.136	0.004
7	5.77	0.063	0.235	0.021
9	10.82	0.119	0.303	0.031
9	15.7	0.170	0.339	0.039
10		0.229	0.442	0.061

TABLE 10
Concrete (m^{3}) and Reinforcement Steel (T) Required for Different Storage Capacities. Bin Diame こer = 5.0 m

Layout, Hoight	Binc Wile x Bins Long	$\begin{aligned} & 2 \times 8 \\ & 4 \times 4 \end{aligned}$	$\begin{array}{ll} 2 \times 12 \\ 4 \times 6 \end{array}$	$\begin{aligned} & 2 \times 16 \\ & 4 \times 8 \end{aligned}$
$\begin{gathered} 15 \text { m } \\ 2 \text { bins } \\ \text { wide } \end{gathered}$	St. (n^{3})	3622.0	5458.0	
	Con. for Bin (m.3)	808.6	1213.0	1617.4
	Reinf. Steal (T)	40.2	60.4	80.5
	Pound. Conc. (m)	233.6	350.4	467.2
	Found. Reinf. Steel (7)	21.4	32.3	43.2
$\begin{aligned} & 15 \mathrm{~m} \\ & 4 \text { bins } \\ & \text { wide } \end{aligned}$		3720.0	5653.0	7587.0
		808.9	1310.4	1618.2
		40.3	60.6	80.7
		222.8	334.2	445.6
		22.1	33.6	45.2
$\begin{aligned} & 20 \mathrm{~m} \\ & 2 \text { bins } \\ & \text { wide } \end{aligned}$		5391.0	8125.0	10858.0
		1002.2	9503.4	2004.6
		50.40	75.6	100.8
		274.4	411.6	548.8
		26.2	39.5	52.8
$\begin{aligned} & 20 \mathrm{~m} \\ & 4 \text { bins } \\ & \text { wide } \end{aligned}$		5543.0	8429.0	11314.0
		1002.5	1503.9	2005.4
		50.5	75.7	101.0
		244.8	367.2	489.6
		25.0	38.1	51.1
$2 \begin{gathered} 25 \mathrm{~m} \\ 2 \mathrm{bing} \end{gathered}$wide		7150.0	10773.0	14404.0
		1197.4	1796.2	2395.0
		60.7	91.0	121.4
		364.9	528.1	691.3
		29.1	43.9	58.6
$\begin{aligned} & 25 \mathrm{~m} \\ & 4 \text { bins } \\ & \text { wide } \end{aligned}$		7357.0	11190.0	15022.0
		1197.7	1796.8	2395.8
		60.7	91.2	121.6
		345.7	485.3	624.9
		29.8	44.1	58.3

TABLE 11
Concrete (m^{3}) and Reinforcement Steel (T) Required for Different Storage Capacities. Bin Diameter - 7 m

TABLE 12
Concrete (m^{3}) and Reinforcement Steel (Tons) Required for Different Capacities. Bin Diameter $=8.0 \mathrm{~m}$

Layout Height (1)	Bing Wide X Bine Long	2×3	2×5	$\begin{aligned} & 2 \times 8 \\ & 4 \times 4 \end{aligned}$	$\begin{array}{r} 2 \times 12 \\ 4 \times 6 \end{array}$	$\begin{gathered} 2 \times 16 \\ 4 \times 8 \end{gathered}$
	Telues	8160.0	10415.0	16798.0	253080	
	Explained	882.0	1470.3	2352.6	35308.1	33819.0 4705.5
${ }_{31 \text { as }}$	in Table	78.0	-130.2	208.4	3529.7	4705.5
bina	1.10	399.5	5645.9	1015.5	1508.3	2001.1
		25.6	42.5	67.8	101.7	135.5
$\begin{aligned} & 25 \\ & \text { a bins } \\ & \text { wide } \end{aligned}$				17244.0	- 26200.0	35157.0
				2353.2	3530.3	4707.3
				208.9	- 313.7	418.5
				947.0	1403.8	1860.6
				69.5	-105.3	141.0
$\begin{aligned} & 30 \\ & 2 \text { bins } \\ & \text { M1do } \end{aligned}$		7801.0	13194.0	21285.0	32072.0	42859.0
		997.2 89.9	1662.3	2659.8	3989.9	5319.9
		439.7	150.1\%	240.1 1085	360.3	500.3
		$\begin{array}{r} 439.7 \\ 26.9 \end{array}$	697.9 44.3	1085.2	1601.6	2118.0
				70.4	105.2	140.0
30 4 blno Hde				21864.0	33230.0	44597.0
				2660.4	3991.1	5321.7
				240.6	261.3	481.9
				1185.6	1696.8	2208.0
				74.3	111.3	148.3
$2 \begin{gathered} 35 \\ \text { bins } \\ \text { vido } \end{gathered}$		9442.0	15973:0	25771.0	38835.0	51898.0
		1112.4	1854.3	2967.0	4450.7	5934.3
		103.5	172.8	276.7	415.2	553.6
		722.1	1093.7	1651.1	2394.3	3137.5
		31.8	52.0	82.3	122.7	163.0
$\begin{gathered} 35 \\ 4 \text { bins } \\ \text { wide } \end{gathered}$				26483.0	40259.0	54035.0
				2967.6	4451.9	5936.1
				277.2	416.1	555.1
				1635.6	2235.0	2834.4
				85.2	124.9	164.6
\qquad	Blas Wide	X	2×3			
	Bins Long				$\begin{array}{r} 2 \times 8 \\ \times 44 \end{array}$	$\begin{array}{lll} 2 & \times 12 \\ 4 & \times 6 \end{array}$
$\begin{aligned} & 20 \\ & 2 \text { bins } \\ & \text { wide } \end{aligned}$						
	Faluas		11101.0	18790.0	30323.0	
	Explainad		1542.6	2571.3	4114.2	45171.5
	41.10		117.6 1220.9	196.2	314.0	471.1
			1220.9	1726.7	2485.4	3497.0
			38.9	61.5	95.3	140.5
$\begin{aligned} & 40 \\ & 4 \text { bins } \\ & \text { wide } \end{aligned}$					31187.0	47428.0
					4114.8	6172.7
					314.5	472.1
					2547.9	3343.1
					101.8	145.7

TABLE 13
Concrete (m^{3}) and Reinforcement Steel (Tons) Re uired $D=9 \mathrm{~m}$

TABLE 14
Concrete (m^{3}) and Reinforcement Steel (T) Required $D=10.0 \mathrm{~m}$

Layout Height (m)	Pins Hide I Bins Long	2×3	2×5	$\begin{array}{lll} 2 \times 8 \\ 4 \times 4 \end{array}$	$\begin{array}{r} 2 \times 12 \\ 4 \times 6 \end{array}$
$\begin{gathered} 30 \mathrm{~m} \\ 2 \text { bins } \\ \text { wide } \end{gathered}$	Values	9649.0	16315.0	26315.0	39647.0
	Explained	1208.6	2014.6	3223.5	4835.4
	in Table	128.8	214.9	344.1	516.3
	11.10	724.8	1127.8	1732.3	2538.3
		35.8	59.3	94.6	141.7
$\begin{aligned} & 30 \mathrm{a} \\ & 4 \text { bins } \\ & \text { Wide } \end{aligned}$				27017.0	41051.0
				3224.2	4836.8
				344.7	517.5
				1589.5	2282.7
				95.6	143.6
$\begin{gathered} 35 \mathrm{~m} \\ 2 \text { bins } \\ \text { wide } \end{gathered}$		11724.0	19830.0	31989.0	48201.0
		1337.6	2229.6	3567.5	5351.4
		144.6	241.3	386.2	579.5
		1190.5	1742.5	2570.5	3674.5
		44.0	70.8	111.0	164.6
$\begin{aligned} & 35 \text { m } \\ & 4 \text { bins } \\ & \text { wide } \end{aligned}$				32858.0	49940.0
				3568.2	5352.8
				386.8	580.7
				107.5	3015.6 158.5
40 m 2 bins wide		13819.0	23384.0	37730.0	56860.0
		1819.4 165.5	3032.6	4852.3	7278.6
		165.5 1689.2	276.0	441.9	662.9
		$\begin{array}{r} 1689.2 \\ 55.7 \end{array}$	2382.0 87.3	3421.2 134.6	4806.8
$\begin{aligned} & 40 \text { a } \\ & 4 \text { bins } \\ & \text { wide } \end{aligned}$				8786.0	58971.0
				4853.0	7280.0
				442.5	664.2
				3293.0 127.5	4349.0
				127.5	183.6

FIGURE 1. Typical Section of Concrete Bins.

FIGURE 2. Layout of Two Bins Wide Concrete Battery

FIGURE 3. Layout of Four Bins Wide Concrete Battery

FIGURE 4. Design of Hopper Support.

APPENDIX II
COST AND CLASSIFICATION OF GRAIN CLEANERS

TABLE 1
Grain Cleaners. Type: Air Screen Separator

Brand Hame Desc	tion	$\begin{gathered} \text { Caproity } \\ T / B \end{gathered}$	Cost	Power 54	No. of Aspirators
Elipper Porm Size Cleaner ASS 10.50					
Ball Tray Sereen Cleaner	ASS	3.1 to 7.5	4334	2.25	Single
Ball Tray Soraen Cleaner	dSS	3.5 to 10	4770	3.75	Single
Double Cap Cleaner	ASS	17.5 to 22.5	24133	7.5	Double
Double Cap Cleaner	ASS	25 to 30	24227	7.5	Double
High Cap Cleaner	ASS	62.5 to 75	26449	7.5	Double
High Cap Cleaner	dSS	62.5 to 75	30251	7.5	Double
Soalper	ASS	20	15107	2.25	Single
Scalper	LSS	40 to 75	17963	2.25	Singlo

TABLE 2
Grain Cleaners. Type: Rotary Cylinder, Cleaner - Grade (RCG)

Brand Namo	Description	$\begin{gathered} \text { Capacity } \\ \text { T/B } \end{gathered}$	Cost \$	Power KH	No. of Aspirators
Reto Klean Scalper	8 CO	17.5	4196	.75	-
Roto Elean Scalpur	RCO	50	4867	. 75	--
High Capacity Grain Cleazos	800	40	1375	. 37	--
High Capacity Grain Cleaner	RCG	55	1850	.75	--
Bigh Capaoity Grain Cleaner	RCG	75	5150	2.25	-

Source: Chung ot al. (1986)
Desoription: Separation and sizing according to width and thickness by a set of wire mesh oylinders with or without the use of air aspiration.

TABLE 3
Grain Cleaner. Type: Air Separator (AIS)

| Brand Hame | Description
 Capacity
 T/B | Cost
 $\$$ | Power
 KW | No. of
 Aspirators |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Portable Aspirator AIS | 37.5 | 12550 | 5.6 | - |

Desaription: Soparator by air aspiration only.

TABLE 4

Grain Cleaner. Type: Gravity Screen Separator (GSS)

Brand Name	Desoription	$\begin{gathered} \text { Capacity } \\ \text { T/H } \end{gathered}$	Cost \$	Power KW	No. of Aspirators
Grapity Grain Cleaner	OSS	25	1286	--	--
		25	1278	--	\sim
Gravity Grain	GSS	75	2390	--	--
Cleaner		75	3456	-	-
Gravity Grain	GSS	175	5866	-	--
Cleaner		175	7953	--	--
Bewton Gravity Grain Cleaner	GSS	200	14000	5.6	--
Newton Grapity Grain Cleaner	ass	200	9000	-	--
Nowton Gravity Crain Cleaner	GSS	100	10000	3.75	5 -
Neuton Gravity Grain Cleaner	GSS	100	6300	\cdots	--
Newton Gravity Grain Cleaner	GSS	300	19800	11.25	5 --
Newton Gravity Grain Cleaner	GSS	600	34500	22.5	-
Newton Grapity	GSS	900	49000	37.5	\cdots

Source: Chung et al. (1986).

[^0]: - Sampling Equipment: probes, triers, mechanical diverter sampler, official sample pans, falling stream sampler (Pelican or Ellis sampler)
 - Moisture tester
 - Test weight scale
 - Standard balance scale
 - Sample containers
 - Official grain dockage sieves

