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ABSTRACT
 

THATTIL, RAPHEL OUSEPH, University of the Philippines at Los
 

Bafios, March 1980. 
Criteria Used in Screening Technology Prior to
 

Field Recommendation. Major Professor: Dr. Mariano B. de Ramos.
 

The yield data were categorized into 6 strata, using 3 levels
 

of labour (high, Medium and Low) and 2 levels of cash input costs
 

(High and Low), for the 1st and 2nd rice crops.
 

The distribution of the data in each strata was satisfactorily
 

explained by the Pearson type I function. The method of moments was
 

initially used in estimating the parameters of the distribution and
 

later 5mproved by using the maximum likelihood method. The concept
 

of 	stochastic dominance was then used to screen the different techno­

logies.
 

The 	conclusions that follow from the study are briefly:
 

1. 	Yield distribution of rice for a given technology are generally
 

non-normal.
 

2. 	The Pearson type I function can be used to adquately represent the
 

yield distributions.
 

3. 	The distributions become progressively more negatively skewed as
 

levels of labour and cash inputs are increased.
 

4. 	The type I moment estimates with the extremities of the curve
 

specified, may be acceptable substitutes for the maximum likeli­

hood estimates.
 

5. 	Medium labour technologies form the risk efficient set.
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INTRODUCTION
 

Agricultural research is primarily geared towards increasing
 

productivity of crops. In the field of rice research, it is centered
 

around evolving early maturing varieties, with desirable character­

istics such as high yields, pest and disease resistance and good
 

grain quality, and methods of crop establishment which enable crop­

ping intensity to be increased. These varieties however tend to
 

require high levels of inputs and management to realize their
 

potential. Successful introduction of this new technology to farmers,
 

used to late maturing varieties and traditional methods of farming,
 

is possible, only if it can pass the test of economic efficiency.
 

Economic efficiency is usually measured in terms of profitabi­

lity of new technologies. However in the past, most of the analysis
 

of new technologies for profitability have ignored the inherent
 

variability in crop yields. Profitability has been based on the
 

mean value of yields. But crop yields are stochastic; and more
 

and more researchers are discovering that adoption of new technolo­

gy is influenced by the variability of yields and related profits.
 

Various studies on technology adoption have pinpointed the fact that
 

many new technologies which have higher average yields but also high
 

variance under field conditions are rejected by farmers for more stable
 

but lower yielding technologies. This has made researchers aware of
 

the need to screen new technologies not only for higher mean levels
 

of performance but also for higher stability in the performance.
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The last few years have witnessed the incorporation of risk 1
 

considerations both in partial as well as whole farm type analysis
 

of the performance of new technologies. However, these studies
 

have tended to suffer from the limitation that they have explicitly
 

(or more frequently implicitly) assumed normality in the underlying
 

yield (or gross margin) distributions. Such an assumption cannot
 

of course be justified on 'a priori' grounds. In fact, since yields
 

are always non-negative and have a biologic maximum, there are
 

'a priori' grounds for rejecting the normality assumption. Despite
 

this very few empirical studies have attempted to look at the actual
 

form of the yield functions.
 

objectives
 

This study will be concerned only with rice farming. The
 

specific objectives can be classified into two. (a) A sample of
 

rice yields generated from IRRI cropping systems research will be
 

used to estimate the probability distribution of yield for diffe­

rent levels of cash input an6 labour costs. (b) The profit distribu­

tion obtained by transformation of the yield distribution will be
 

used to screen the technologies for 'risk efficiency' 2
 

1According to Frank Knight risk refers to a situation where
 
alternative outcomes exist with known probabilities and uncertainty
 
to the case where probabilities are unknown. However in modern
 
decision theory uncertainty is usually subsumed under risk, and we
 
shall adopt the latter approach in this study.
 

2The concept of 'risk efficiency' will be discussed in the next
 
two chaoters using different performance criteria.
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Area 	of Study and Data Source
 

The data used in this study come from the cropping pattern
 

trials conducted by the International Rice Research Institute 
(IRRI)
 

in collaboration with the Philippine Bureau of Plant Industries
 

(BPI) 	in Pangasinan during 1975-1978. Pangasinan was chosen as a
 

research site, for the following reasons:
 

(i) The represents land areas parts of which are fully irri­

gated, while some others are partly irrigated and still
 

others rainfed; which are typical conditions of major
 

agricultural lands of Asian countries.
 

(ii) 	In depth and reliable data of the project area are avail­

able at IRRI.
 

(iii) 
The area is easily accessible to the researchers.
 

Within the site, research is performed under varied micro­

economic and physical conditions, so that after such broadly deter­

mining factors such as rainfall pattern are considered, the appro­

priateness of new cropping patterns to micro-variants as soil tex­

ture 	or 
farm size can also be learned.
 

There are 2 groups of farmer-cooperators in the site, namely
 

'agronomic' and 'economic' cooperators. 
 The agronomic cooperators
 

make portions of their land available for agronomic investigations
 

of cropping patterns. They perform experiments (cropping pattern
 

trials) directed by IRRI researchers and use inputs donated by IRRI.
 

A research team, composed of members from four IRRI departments and
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the BPI are assigned to the research site to implement cropping
 

systems research on farmer's fields.
 

The climate in the area on the average has, six consecutive
 

dry months with less than 100 mm of rain and 4 consecutive wet
 

months with more than 200 mm of rainfall, of which at least one
 

month average greater than 500 mm of rainfall. The yearly average
 

of rainfall in 1980 mm. Taxonomically most soils at the site fall
 

within the Eutropept great group. Clay loam is the modal surface
 

soil texture. -he land system is composed of rxat plains of the
 

river terrace sub-system,
 



REVIEW OF LITERATURE
 

This chapter comprises 2 sections. The first section discusses
 

the estimation of yield distributions and the second reviews the
 

various criteria used in screening technologies.
 

Estimation of Yield Distribution
 

Karl Pearson in a series of papers beginning in 1895, (1895,
 

1902) was one of the first to study a family of curves which would
 

represent empirically useful distributions satisfactorily. He
 

looked at a class of frequency functions which (a) have a single
 

mode and (b) have smooth contact with the X-axis at the extremities.
 

These conditions are obeyed by density functions that satisfy the
 

differential equation
 

d logy x +a 
dx b + blx + b 

2 (1)
 

where a, bo, b and b2 are constants and y = f(x) is the frequency
 

function of the random variable x.
 

The family of curves given by the above equation is known as
 

the Pearson system of curves. This system covers a wide range of
 

curves which include the Normal, Chi-square, Beta and Gamma distri­

butions.
 

For all members of the system it can be shown that
 

nb 1nL + {(n+l) b + a}V+ {(n+2) b + l} Vn = 0 (2)0on-1 1 n22 n+1
 



where p' is the nth moment about zero given by

n 

COxn f(x) dx 

Equation (2) permits the determination of any higher order moment
 

from those of lower orders. In fact the four ccnstants can be
 

expressed in terms of the first four moments about zero. Putting
 

n = 0, 1, 2, 3, successively in equation (2), a. bo, b and b2 can
 

be found in terms of H1 to P4, In general it follows that the
 

Pearson system of distributions is completely determined by its first
 

4 moments.
 

For explicit expression of the frequency function y zzf(x),
 

the right hand side of equation (1) has to be integrated. According
 
2
 

to the nature of the roots of the quadratic b + b x + b2x , integra­

tion yields the main types of the Pearson system.
 

Elderton and Johnson (1969) give a systematic account of the
 

technique of fitting Pearson distributions. Day (1965) used the
 

Pearson system to fit distributions to field crop yields. He
 

found that yield distributions of crops were in general non-normal
 

and non-log normal.
 

Fisher (1922) showed that the method of moments was statisti­

cally ineEficient and proposed the method of maximum likelihood.
 

The likelihood function of n random variables x1 , x2, ..., x is 

the joint density of random variables f ...,x (X1 , x2,. 

x ; 0) which is considered a function of the parameter e- Then 

likelihood for a random sa.iple xl, x2, ... , xn is L () = f (X 6) 

f(x2' 0) ... f (Xn,)
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The maximum likelihood estimate is a solution to the equation,
 

d L (0) 
dO0
 

For p parameters there will be p equations to solve.
 

The maximum likelihood method has several optimal properties.
 

However, one difficulty of using the method in general 
curve fitting
 

is that the equations cannot be solved directly and iterative tech­

niques have to be used to get e:xplicit solutions to the parameters.
 

Koshal (1933) carried out Fisher's suggestion of using an
 

iterative scheme for improving the efficiency of coefficients esti­

mated by the method of moments. Koshal's method of approximation
 

was based on maximizing
 

c 
L= E n log pk 

k=l 

where nk k = 1, 2, ... c denotes the observed frequency of the kth
 

class and pk is the probability of an observation falling in this
 

class, as determined from the curve 
(and is thus a function of the
 

parameters). 
 He obtained values of L by varying one parameter at
 

a time and then by varying 2 parameters at the same time. Incre­

ments for the parameters were chosen at random. 
The method is very
 

laborious and is obsolete with the availability of good computer
 

facilities.
 

Myers (1934) followed up Koshal's work using the same data,
 

as he found that Koshal had made some computational errors.
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Serquifa (1977) and Paris 
(1978) working with rainfall data
 

showed that the maximum likelihood estimates gave very good fits,
 

as judged by the chi-square values.
 

There are also methods other than use of the Pearson system to
 

describe a family of distributions. One method due to Bruns, Gram,
 

Charlier and Edgeworth (see Kendall and Stuart, 1958) seek to repre­

sent a given frequency function as 
a series of derivatives of the
 

normal frequency function. 
But the method does not satisfactorily
 

represent frequency curves nor is it an improvement over the method
 

of moments (see Elderton and Johnsom 
(1969) for worked examples).
 

The third approach is due t, Edgeworth (1898) and later writers
 

like Johnson (1949). 
 In this method the variables are transformed,
 

whereby the transformed variables may be considered to have a normal
 

distribution. 
Based on the type of transformation used Johnson
 

developed 3 systems which he called the SL 
(lognormal curve), 
SB
 

(range of variation bounded) and Su 
(range of variation unbounded)
 

systems. For the Su 
system he provides tables to facilitate the
 

fitting.
 

Other methods, such as the least squares method, cannot be
 

used as general methods for fitting curves. Least squares for
 

,:ample suffers from the weakness that it often leads to equations
 

incapable of solution.
 

In practical applications many researchers have used hand
 

smoothing in fitting frequency distributions {Schlaifer (1969),
 

Roumasset (197b)}. Roumasset actually combines the method of
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moments with hand smoothing. Anderson (1973) confronted with
 

sparse data used the jth order statistic to estimate the ­
n+l
 

fractile of the distribution. He advocates drawing a hand smoothed
 

curve through these points to then obtain the cumulative distrih­

tion function.
 

The dearth of applications of the maximum likelihood method in
 

the past have been due to the problems encountered in seeking solu­

tions to the likelihood equations. But now with greater computer
 

facilities this problem is less servere. 
Kale (1962) investigated
 

the iterative solution of the likelihood equation for a multipara­

metric case. 
 He gives various methods of solution which include
 

the Newton-Raphson process and the method of scoring for parameters
 

due to Fisher. 
Barnett (1966) went further and reviewed the methods
 

of solution where the likelihood equation has multiple roots. If
 

good computer facilities are available the iterative techniques
 

like the Newton-Raphson process and the method of false positions
 

(Reguli falsi ­ see Methodology) present no insurmountable problems.
 

Barnett shows that the method of false positions is the most appro­

priate when the likelihood equation has multiple roots.
 

Criteria Used in Screening Technologies
 

Technologies generated at research institutes need to be
 

screened for economic efficiency and farmer acceptability before
 

widescale recommendation. 
Since farming decisions are essentially
 

investment decisions under conditions of risk and uncertainty,
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screening for 'risk efficiency' of new technologies can lead to
 

better recommendations.
 

There is an extensive body of literature dealing with invest­

ment decisions under risk. Roumasset (1976), Anderson et al (1977)
 

give good reviews of decision theory and models of choice under
 

uncertainty, for farmers.
 

This study deals with criteria that can be used in screening
 

for 'risk efficient' technologies. The expected utility maximiza­

tion rule provides an appealing theoretical framework for normative
 

decisions analysis under uncertainty. It takes into account the
 

risk attitudes and beliefs of the decision maker. 
It states that
 

provided there exists a unique 'cardinal' preference scaling func­

tion for risky prospects, generally called a 'utility function' in
 

the literature, then the 'utility' of any risky prospect can be
 

calculated as a mathematical expectation of the utility function.
 

According to the rule the decision maker should act in such a
 

manner as to maximize the (subjective) expected utility, if he is
 

to be consistent with his preferences.
 

The utility function of a decision maker can be constructed,
 

based on a set of axioms of rational choice {von Neuman and Morgen­

stern, 1947). Hcwever in real life applications of this rule, many
 

problems arise, including the need for the elicitation of risk
 

attitudes of individuals.
 

Markowitz (1952, 1959) and Tobin (1958) pioneered the "Mean­

variance' approach to portfolio selection. This approach has been
 



widely used because it does not need the elicitation of preferences.
 

It considers a portfolio as efficient if no other portfolio having
 

the same or smaller variance has a larger mean or if no other port­

folio with the same or larger mean has a smaller variance. But it
 

has been shown by Feldstein (1969) and Borch (1969) that this approach
 

is consistent with the expected utility maximization rule only if
 

the individual's utility function is quadratic or if the expected
 

income is normally distributed. However many researchers {Eg. Levy
 

and Markowitz, 1979} have defended the mean-variance approach by
 

arguing that the expected utility can be approximated well be a
 

function of mean and variance, under most real world situations.
 

The weaknesses of the theoretical underpinings of the mean­

variance approach have led to the search for more practical approaches
 

which nevertheless are more in conformity with the rules of expected
 

utility maximization. 
The use of the concept of 'stochastic dominance'
 

has been put forward as one such approach. Anderson et al (1977)
 

describe the concepts and its empirical application in some detail.
 

There are various other alternative approaches to decision
 

making under uncertainty, for example, Shakle's focus loss and
 

safety first rules of thumb (Rourasset, 1976, Anderson et al, 1977).
 

Fishburn 
(1977) looks at a measure of risk which assumes that
 

'decision makers in irvestment contexts frequently associate risk
 

with failure to attain a target return'. Webster's New World Dic­

tionary defines risk as 
the chance of loss and it is commonly used
 

in this sense. In this study the probability of loss is used as
 

alternative risk criterion.
 



METHODOLOGY
 

Rice yield data are first stratified according to 3 levels of
 

labour costs and 2 levels of material input costs (Table 1). The
 

3 levels of labour costs are designated high (H), low (L) and
 

medium (M). Labor 
costs here include all costs incurred in land
 

preparation. The levels were chosen according to the intensity of
 

labour used in the various operations. Cash input costs, greater
 

than 1,100 pesos were termed high (H) while costs lower than 1,100
 

pesos were termed low (L). The same levels were used in stratifica­

tion of the first as well as the second crop of rice. More strata
 

were not possible as the frequency per stratum would then have been
 

very small (also see appendix).
 

Table 1. Stratification of Data (Costs in F/ha./season.)
 

CASH INPUT COSTS
 
High Low
 

LABOUR COST 


(>)11,100) (< Yl,i00)
 

High
 
(> 1,900) HH HL
 

Medium
 
(yl,500-1,900) MH ML
 

Low 
(< yl,500) LH LL
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For the first and second crops separate stratifications
 

were done. Preliminary testing for normality was done for data in
 

each stratum. The method of moments was then used to obtain esti­

mates to the parameters of the distribution function. In the next
 

stage the maximum likelihood method was used to improve the para­

meters. Finally the concept of stochastic dominance was used in
 

the screening of the 'risk efficient' technologies.
 

Tests of Normality
 

Chi-square Goodness of Fit Test
 

The data are grouped into classes to form a frequency distri­

bution. 
The sample irean and standard deviation are then calculated.
 

Using these quantities a normal distribution is fitted, which enables
 

the calculations of the expected value within a class. 
 The test
 

criterion is
 

- Ei)k (oi 

i=l 


2 


E.
i
 

where i = 
3, 2, ..., k is the number of classes
 

o. 
1 
= observed frequency in the ith class
 

th

E. = expected frequency in the i class
1 

If the data are normally distributed, the above quantity follows
 

the theoretical X2 distribution with (k-3) degrees of freedom.
 

(Snedecor and Cochran, 1967). 
 If the data are non-normal computed
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values of X2 
are large, and cause the rejection of the null hypothesis
 

of normality.
 

The X2 test can be used in general to test the goodness of fit
 

of a theoretical probability distribution to the observed data.
 

The test is however a non-specific test. It does not tell one
 

whether non-normality is due to skewness or hurtosis. 
Therefore
 

other tests have been developed to test specifically for skewness
 

or kurtosis.
 

Test for Skewness
 

A measure of skewness is afforded by the third moment about
 

the mean (13). If high values extend far above the mean, while low
 

values are close to the mean, V3 will be positive and conversely
 

if higher values are closer to the mean than the lower values 
3 

will be negative. The ratio 13/o 3 (where a is the standard devia­

tion) is called the coefficient of skewness. It is unitless and 

is denoted by 1/2. The sample estimate of this coefficient is
 
isdenoted by 12
 
denoted by b11/21 b 


1 =3/2
 

where 


m
 

2
 

)3Z(x ­
m 3 n
 

- x)2E(x
n-lI
m2 = 
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If the sample comes from a normal population b1 /2 is approxi­
1
 

mately normally distributed with mean zero and variance 6/n and
 

this can be used as 
the basis to test whether the sample data is
 

skewed or not. 
 For sample sizes less than 150 the assumption of
 

normality is less accurate. 
For this case, the one tailed 5% and
 

1% significant levels of 
 l/2 are available for sample sizes from

1
 

25 to 200. (Pearson and Hartley (Ed.), 1970).
 

Test for Kurtosis
 

The fourth moment about the mean, p4' can be used as a measure
 

of kurtosis, which is the degree of 'flatness' of a density near
 

its center. Values of p4/a4 (denoted by 2) greater than 3 are
 

sometimes used to indicate that a density is more 'peaked' arovnd
 

its centre than the density of a normal curve for which 82 is three.
 

(Mood et al 1963).
 

The sample estimate of $2 is denoted by b2.
 

m4 

2 2
 
m2
 

n
= 
m4
where 


The amount of kurtosis is also measurekby
 

92 = b 2 - 3
 

In this case g2 will be zero for a normal density, and positive
 

values indicate a 'peaked' distribution. The distribution of b2
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does not approach the normal closely until the sample size is 
over
 

1000 (Snedecor and Cochran 1967). For sample sizes between 50 and
 

1000 tables are available. (Pearson and Hartley (Ed) 1970). How­

ever, for sample sizes less than 50 no tables of the significant
 

levels of g2 are available. Geary (1936) developed an alternative
 

test criterion
 

mean deviation -Ix - xl a standard deviation 1/2
 
n
 2
 

These tables are also available for sample sizes down to eleven.
 

Pearson System
 

The system of density functions developed by Karl Pearson is
 

derived from the differential equation
 

d log y x + a 
dx b + bx +bx (3) 

o 1 2 

To express the above equation in the form y = f(x), the right 

hand side of the equation has to be integrated. The form of the
 

integral will depend on the roots of the quadratic b + b1 x + b 2x2
 

which can be expressed as
 

-b + (b2 - 4b b )1/2 -b 2 - 2b - 4bo21/2 

and the criterion for fixing the form of the equation in a particular
 

case is the same as that for the nature of the roots of the equation
 

=
b + blx + b2> 0 viz. b2/4bob

o 1 2 1 o 2
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This can be shown to be identical to (see Elderton and Johnson (1969)
 

1 ( 2 + 3) 2 
4 (2 2 - 3 1 - 6)(462 - 3a ) (4) 

The above quantity is denoted by K and referred to as 
'the criterion'.
 

Three "main types" are distinguished according to the nature
 

of the roots (Table 2). In the limiting cases when one type changes
 

to another simpler forms of transition curves are obtained.
 

The criterion K can take any value from -c 
to + 0. Figure 1
 

shows how the types cover all the possible values of K without over­

lapping.
 

K=-0 K=0 K 1 K=
 

K < 0 0 < K < 1 K > 1
 

type I type IV 
 type VI
 

type III Normal when type V type III
 

= 3
2 


type II when 2 < 3
 

tyeo VII when 2 > 3
 

Figure 1. 
Pearson system and the criterion K
 

Source: Elderton and Johnson 1969, Systems of Frequency
 
Curves p. 49.
 



Table 2. Pearson System of Curves
 

PEARSON TYPE NUMBER 


Main types
 

I 


IV 


VI 


Transition types
 

Normal curve 


II 


VII 


III 


V 


VIII 


IX 


X 


XI 


XII 


VALUE OF CRITERION (K) NATURE OF ROOTS
 

K < 0 real, different signs
 

0 < K < 1 complex
 

K > 1 real, same sign
 

K = 0 1 = 0 2 = 3 bI = b2 = 0
 

K = 0 81 = 02 < 3 roots equal, opposite sign
 

K = 0 1 = 0 2 > 3 special case of Type IV
 

K very large
 

262 = 6 + 31 one root is
 

K = 1 roots equal 

K< 0, 512 - 6 1 -9 <0 special case of Type I 

K< 0, 562 - 6 1 -9> 0 special case of Type I 

1 = 4, = 9 special case ot Type III 

K < 1 212 - 3 1 -6 >0 special case ot Type VI 

512 - 6 1 - 9 = 0 special case of Type I 
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Pearson Type I
 

Elderton and Johnson (1969) give a good general account of all
 

the types and the process of fitting using the method of moments.
 

Unfortunately they do not deal with cases where certain restrictions
 

can be placed on the parameters.
 

As mentioned earlier the range of crop yields is limited. 
The
 

Pearson type I function seems to be a appropriate functional form
 

on a priori grounds for crop yield distributions, as the function
 

is of limited range and zan give rise to any kind of skewness. And,
 

it is this function that will be discussed in detail, together with
 

cases where 'a priori' information pertaining to the lower and
 

upper limits of the curve can be accomodated.
 

Method of Moments and the Type I Function
 

The Different Forms of the Type I Function
 

Assuming that the roots a2 and a1 of the quadratic b + blx + 

b2x are real and a2 > cti' the differential equation (3) can be 

written as 

d log y (x - a)
 
dx b2 (x- 1i)(x - 2)
 

mI m2
 
x -1 U2 - x (6) 

where
 

a I21 ana 2
mI = 2 i nd m2 2 i
 



20 

Expression (4)on integration yields
 

log y = m1 log (x -a1 ) + m2 log (a2 - x) + C (7)
 

where C is the constant of integration.
 

Taking antilogs of equation (5)one obtains
 

1 x) 2
y = C(x - a) (a2 - (8)
 

which is the Pearson's type I density function for
 

The Pearson's type I function can take a variety of forms de­

pending on the values of m1 and M2 : (a) m1 and m2 both positive,
 

results in the bell, cocked hat and bowl shaped forms. (b) m1 and
 

m2 having opposite signs give the J and twisted-J forms; while (c)
 

m and m2 both negative yield the U shaped forms. When P3 is
 

positive m2 is greater than m1 and vice versa.
 

The parameters al and a2 give the left and right extremeties
 

of the density function. When 'a priori' information can be accomo­

dated a or a2 or both can be fixed. In the case where both a1 and
 

a2 values can be fixed the method of estimation is the simplest,
 

since only m1 and m2 have to be estimated.
 

Method of Moments Estimation: Case I
 

If no prior hypothesis is made about the magnitude and signs
 

of the parameters, there are 4 parameters to be estimated namely
 

(11a 2, m1 and m2 .
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The kth moment about a is given by
 

k1
 
=E(x - C fr2 (x - a )M1 + k (a2 x)m 2 dx (9)al 
 2.
 

using the transformation
 

x - a 1 
x =X1 + (a - ) Y then y 12 1
 

dx= (a2 - ) dy 

substituting in equation (9)
 

k oC 21 + kk )m m2 (a )dy2 
 2 2 

k + l
= cf0 ( 2 _ lm+M2+ ym1+k ( Y)m2
- o a a y (l- y) dy 

ml+m2+k+1
 
= C (a 2 -2 ) B( + k + 1, m2 + 1) 
 (10)
 

1 inl+k 
where B (mI +k+ 1, m2 +1) =fo Y ( - y) dy 

For equation (8) to be a density function
 

.1 in2 

fa2 C(x- l) ( 2 -x) dx= 1 

ie 
0 

Using this Eq. (8) gives C +1 1
l+m2 +1 
 (ii2
 
(2 I1 Bm1 + 1, m2 + 1) 
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Using the relationships 

B(a, b) = F(aF(a+b) (12)b) 
 (2 

and 

F(a) = (a-i) F(a-1) (13)
 

in equation (10) results in
 

(a 2 - a1 ) (mi +i) 
1 (mI +1 m22 + 2) (14) 

(a2 - )%2 1 (I 1 + 2)(m
1 + 1) 

(512 (mI + 2 + 3)(mI + m2 + 2) 

(a2 -ai ) 3 (m1 + 3)(m 1 + 2)(m 1 +1) (16)
=3 (mI +1 m2 + 4)(m1 + m2 + 3)(m I1 + m2 + 2) 

+(a2 - aI) 4 (m1 4) .......... 
 (m1 + 1) (17) 
4= (mI + m2 + 5) ........ (I1 + m2 + 2) 

To express the parameters in terms of the moments about the
 

mean pk' the following relationship can be used.
 

kk
 

() (i)= E(x - 1) k = k 
j=O k-j
 

Then, equations 15-17 can be written 
in terms of the moments about
 

the means as:
 

ai)
(a2 - (mI + )(m 2 + 1) (18)

2 (ml +m 2)2 (mI + m2 + 3) 

2( 2 - 1 )3 (mI +1 )(m 2 + )(m 2 - ml) (19) 

(Mi1 + m2 + 2)3 (Mn + m2 + 4)(mI1 + M2 + 3) 
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3(a2 1 (m1 
+ 1)(m2 + 1) {( +1 )(m 1 + ­1l) m2 4) 

+ 2(m + m2 + 2)21 
4 (m1 + m2 + 2) 4 (mI + m2 + 5 )(mi + m2 + 4)(m1 + m2 + 3) (20) 

Let a a2 a,, r = m, + 2 e = (mm2 + and 1 + 1)(m 2 +)
 

then,
 

P2(e
112 2 (21) 

r (r + 1) 

2a3 e(m2 - ml) 

3 3 (r+2) (r+l) (22) 

23a4 e {e(r-6) + 2 r 
(r+3) (r+2) (r+l) 

(23)
r 

1 = E(x) = a ) a 12
E(x - + (24)
1 1 r
 

Equations (21) to 
(24) can be now used to solve for the para­

meters al. a2' m1 and m2 giving
 

= r- 2 + (t) (r 2 
- 4e)1/2 (25)
 

where 

(t = 1 when 13 < 0) 

(t = -1 when 13 < 0) 

m2 =r -m 1 -2 
 (26) 

a~mI + 1) 

al P -(27)
 

a2 a + a 
 (28)
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The procedure of using the method of moments is as follows: 

(a) compute the sample moments P to P4 
1 4 

(b)using this calculate the sample coefficients 1 and 2
 
1 2 

(c) using 1 and and substituting in the following equations
 

obtain values for r, U and e(see Elderton and Johnson, 1969
 

for derivation).
 

6(132 - 81- 1) 
r 1 (29)


3 1 - 2 + 6 

2 +)1/2 
2 0 (r+2) + 6 (r+l) where a (30) 

2 

a (+2 } "=1/2 

4r (r+l)
e -16 (r+l' + 1 (r+2)2 (31) 

(d) using the values of r, a and e from (c) and the estimate of
 

the mean, solve equations (25) to (28) to obtain estimates of
 

the parameters, whence the fitted distribution is obtained.
 

Method of Moments Estimation: Case II
 

Yields of field crops are always non-negative quantities and 

therefore it is reasonable to assume 'a priori' that the frequency 

function must start from zero. This means that a restriction is placed 

on one of the parameters namely a = 0, The frequency function will 

then be of the form 

y = Cx1 (a 2 - x) 

Taking moments about zero, one obtains 

- c2 (mI + 1) 

E(x) = 1 r (32) 
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E)2 (m + 2) (mI + 1)
E (x2) = Ij2 2 (3 
2 r(r +) 

3 (mI + 3)(m + 2)(m + 1) 

3 r(r + 2)(r + 1) 

Let g = / a2a g /V 2P
g1 ~2'1 an g2 1 3l 2
1 


Then,
 
(r) (ml +2)
 

g1 (r + )(m +) (35)
 

(r) ml + 3)
 
2 (r + 2) (m +1) (36)
 

r 
 1
 

From (32), a mI 1 (37)
2 m + 1
 

From (35) and (36)
 

91
 
r = m(38)
 

( + 1 g)
 

2(g - g2)I 


mi = 
 - (38)
2g2 91 -1gg9
 2
 

= r
m2 - 1 - 2 (40)
 

The method of moments procedure to obtain estimates o the
 

parameters U2' ml and m2 is similar to Case I. 
However, only 3
 

moments are required in contrast to the 4 moments needed for Case
 

I, as there are only 3 estimates to be obtained.
 

The efficiency of the moment estimates drops as 
the order of
 

the moment increases (Elderton and Johnson, 1969). Therefore using
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only the first 3 moments about zero must give rise to better estimates
 

of the parameters U2' ml and m2 than for Case I.
 

Method of Moment Estimates - Case III
 

Field crop yields, in any given environment, have an upper limit
 

imposed 
by the innate genetic potential of the crop under considera­

tion. 
Thus, in estimating crop yield distributions, we are also
 

able to place an upper limit. The value of the upper limit is a
 

function of the crop and its environment. This means that one can
 

decide on the values of xl' and U2 before estimation. In this case
 

there will be only 2 parameters m1 and m2 to be estimated.
 

Using equations (32) and (33) and setting
 

m + 1 

2 rl 
h1 

2 1ia2 r + 1 

one obtains estimates of m1 and m2 given by
 

h1 (h2 - 1) 
mI = h1 
 2­

(h I - 1)(h - 1) 

2 h2-h - 1 

The efficiency of the estimates of the parameters m1 and m2
 

will be improved compared to Cases I and II, since only the first
 

2 moments are involved in their computation.
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Maximum Likelihood Method of Estimation of Parameters
 

Fisher (1922) showed that the method of moments was statistic­

ally inefficient. The moment estimates in general lack good small
 

sample properties such as unbiasene~s and uniformly minimum variance
 

and (perhaps what is worse) also large sample properties such as
 

consistency and asymptotic normality.
 

In contrast the maximum likelihood method of estimation posses­

ses several optimal larcge sample properties. A maximum likelihood
 

estimator is asymptotically normally distributed, while a sequence
 

of maxinum likelihood estimators is best asymptotically normal (BAN).
 

Also the variance of the asymptotically normal distribution of the
 

maximum likelihood estimator is the Cramer-Rao lower bound (see
 

Mood et at 1974). In the case of a K-dimensional parameter too,
 

maximum likelihood estimators possess similar optimum large-sample
 

properties.
 

In addition maximum likelihood estimators posses the proper­

ties of invariance and minimal sufficiency statistics.
 

Unbiasedness is not a general property of maximum likelihood
 

estimators. However, in many cases the unbiased estimator is a
 

simple function of the maximum likelihood estimator. In this case
 

this function is also the minimum variance unbiased estimator (UMVUE),
 

if the UMVUE exists.
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Likelihood and Support Functions for Type I Curve
 

The likelihood function for the type I density function (equa­

tions 6) is
 

n 
 m

L = 7 C(x. - m (a - i 

m2 (41)
i=l 

The support function, defined as the natural logarithm of the likeli­

hood function (Edwards 1972), is given by
 

S = m1 Elog(x - a1) + m2 Elog(a 2 - xi 

-n(m1 + m2 + l)log (a2 - al) - n log B(mI1 + 1, m2 + 1) 

where log B (m1 + 1, m2 + 1) = log F(m + 1) + log F(m2 + 1) (42)
 

- log r(m + m2 + 2) 

The system of likelihood equation is
 

s= 0 for i = 1, 2, 3, 4.
 
1 

where
 

m
 

2

0 = 

L2
 

The system of equations can be expressed as a vectorial equa­

tion
 

G (0)=0 (43)
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where G ( ) 'saS aI as ­

1 2 1 2
 

The solution to equation (43) yields the maximum likelihood
 

estimates, provided the matrix
 

ao2 s-/ r = 1, 2, 3, 4; t = 1, 2, 3, 4
 
r t
 

is negative definite.
 

System of Equation for Type I Function: Case III
 

Where 1 and a2 assut e 'a priori' values, the system of likeli­

hood equations to be solved will be
 

as N 9log B(mI + I, m2 +
 

am1 = Z log x.1 - N log 2 am1 = 0 (45)
 

N9 log B(m + 1, m2 + 1)and am--as = E log (a - x. )-N log - 1 
2 2 a m2 = 0 (46) 

where N is the sample size.
 

Equation (45) and (46) do not admit explicit solutions and
 

iterative techniques have to be used.
 

Brief Note on Iterative Techniques to Solve for the Likelihood
 
Equations
 

The problem of finding solutions to equations 5b and 6b can
 

be viewed as the problem of finding roots for these simultaneous
 

non-linear equations. Some of the algorithms used are briefly
 

outlined below.
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(a) Direct search method, is mainly developed for single variable
 

functions. An interval known to include the optimum is identi­

fied. 
 The size of the interval is then systematically reduced
 

in a way that guarantees that the optimum is not missed. 
The
 

length of the interval containing the optimum can be made as
 

small as desired (Taha 1976).
 

(b) 
Gradient method, is used for maximizing the value of functions
 

which are 
twice continuously differentiable. The idea is to
 

generate successive points starting from a given initial point
 

in the direction of the fastest increase (maximization) of the
 

function (Taha 1976).
 

Among the gradient methods are the Newton-Raphon process
 

and the method of steepest ascent. In the Newton-Raphson process
 

for a single parameter ean initial starting point t (which
 

may be the moment estimate) is used to obtain an approximate
 
A 

value for 0 say 0" 

92s
=
8" (as) 
 (47)
 

where the differentials are obtained at 0 t. Repeating the
= 

process with the new,t 
= 0" will, under suitable conditions,
 

lead to the evaluate 0. (Edwards, 1922). In another method
 

due to Fisher (1925) known as 
'the method of scoring for para­

meters' instead of equation 47 we use
 

11as -92s ­

e"= t - 77T/ E / -2 / (48)
90 - DO2­
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For the case of several parameters Edwards (1972) gives
 

the Newton-Raphson iteration formula as
 

+ B - I 6" = e- T(e') 

where e" is the vector of trial values, T(e') is the vector
 
of the partial derivatives 9 evaluated at 0'. B is known
 

as the information matrix and is the matrix of the second par­

tial derivatives of the support function, in which the element
 

in the ith row and jth column is 02 . evaluated at 0.
 

(c) In cases where the likelihood equation has multiple roots
 

Barnett (1966) advocates the use of the method of false posi­

tions (Reguli falsi). This method is used for the case of a 

single parameter. Initially 2 values of 8 , and b0 are0 


chosen such that
 

b>0,A0< 0 0 < 0
 

writing @Lx as f(x) and putting
 

f ( a i - 1 )ai-1 f(bi-l bi-1
(bil)-fi- (ai.l) 

successive ai, bi are obtained as
 

a. = x. 
1 1
 } , f(x i ) > 0 

b =bb1_ 



32 

or
 

a f(x.) < 0
 
b. =x.
 

1 1 

The process results in a. and b. continuing to enclose
1 1 

and converge on a relative maximum of L, and is terminated
 

when b. - a. is sufficiently small and yields the maximum as
1 1 

1/2 (a. + bi). 

For quick convergence of the iterative processes, initial 

values chosen for the parameters must be very close to the 

true values. One way of choosing is to consider the moment 

estimates as initial values. However moment estimates obtained
 

may not be close to the true values. If the trial values are
 

for apart the Newton-Raphson process will not converge.
 

Bernett (1966) and Kale 
(1961) surveys the ccrinonly used
 

iterative techniques. Conte and De Boor (1972) give various
 

iteration techniques for the solution of non-linear equations,
 

which include an improvement on the method of false positions,
 

known as modified reguli falsi.
 

Iterative Technique Used in the Study
 

The computer available at the University of the Philippines
 

at Los Bafios, did not carry the necessary packages to obtain deriva­

tives of the Beta and Gamma functions. Therefore none of the itera­

tive techniques mentioned above could be used. 
The method employed
 

in the present study was carried out in 2 stages.
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(a) Using the method of moment estimates from Case III as initial
 

values, a series of values of the likelihood function was
 

evaluated directly for values of the parameters ranging from
 

m. - 5 to m. + 5 (where in., i=l, 2 are the moment estimates).
 

The parameter values were incremented by 0.1 so that for each
 

value of m1 
there were 50 values of m2 in .1 increments and
 

there were 50 x 50 
= 
2500 values of the likelihood function.
 

The likelihood values were observed and the values 
 . m1 and m2
 

corresponding to the maximum value of the likelihood function
 

were chosen to be used in the next stage.
 

(b) In the second stage the value of m0 
= (m -. 2) and m0 = m -. 2

1 1 2 2 

were used as starting points in the iteration. The corres­

ponding value of the likelihood function L0 '0 
was then calcula­

ted; 3 m0 was then incremented by 0.001 and LI'0 
was calcula­

ted. If 1'0 > L0'0 the incrementing process was carried out 

further unit LS '0 < LS- I '0 where S denotes the Sth increment
 
S-1
 

to mI. At this point the value oh 
mI was kept fixed and
0S 
m2 = mI - .2 was incremented by 0.001 until LS l 'r < LS - l r -l 

where 
r denotes the r increment to m2 . The value of m2 was
 

-
now kept fixed and m 1 was incremented again until the value
 

3LiJ refers to the likelihood value computed for values of
m1 (ith increment to m1 ) and m3 
(jth increment for m2 ).
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of L stopped increasing. Then m2 was incremented again from
 
r-i1
 

mr-till the same thing happened. Iteration was stopped when
 

increases in m1 or m2 did not further increase the value of L.
 

The value of mI and m2 obtained at this stage are the maximum
1 


likelihood estimates of the parameters. Figure 2 given below
 

shows the flow-chart for the program used in the second stage
 

of iteration.
 

Screening of Techniques
 

Different management techniques give rise to different yield
 

distributions for the same crop in a given environment. Once the
 

yield distributions are estimated, they can be used to generate
 

the profit distributions associated with the different management
 

techniques. Such profit distributions can then be screened using
 

appropriate criteria to eliminate the 'non-risk efficient' subset
 

of the management techniques.
 

In the present study the yield distributions will be trans­

formed to generate profit distributions for each management tech­

nique, to be used in screening for economic viability which will
 

explicitly incorporate risk considerations.
 

In screening of new technologies intended for adoption by
 

large groups of farmers, the criteria that is used should not
 

require information about risk attitudes of each farmer; clearly
 

gathering such information cannot be a realistic proposition for
 

agricultural researchers. Therefore in the present study we propose
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START 

×DATA, CREM
 

2A Fig. 2. Flow chart of Fortran Program to compute
 

i maximum likelihood estimates.
 

YSW-J=O
0 I XDATA - Yield data I - Iteration no. 

r CREM -- Increment J -Counter to check 
Ml , M2 - Moment estimates L?-< L
 

=
I I + I ALPHA - Max. limit of yield L - Likelihood value
COMPUTE L = I -YSW Increment MI MSI,MS2 - Max. likelihood 

-0 - Increment M2 estimates 

No LStore No No
 
Il<L 
 +CE 

YesYes Yes
 

LStore L LStre L IMI=Mf C
MI=MI + CREM d I 

J+li No = No MS2 :M 2YSW I M 2 MMI=MI+CREM 

Yes Yes
 

I=2 MSI = MI 
Yes M2=M2+CREM -

Pr MSIMS2 
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to use two methods for screening which do not require such informa­

tion.
 

Probability of Loss
 

The first method that we will use is based on the concept of
 

the probability of loss. The basis for screening (and ranking) of
 

technologies using this method will be the probability of obtaining
 

net returns less than zero, for each management package. Here we
 

make the following assumptions:
 

(a) Small farmers are risk averse.
 

(b) Technologies with lower probabilities of loss are preferred.
 

The first assumption, of course, is widely made and is backed by
 

substantial empirical evidence.
 

The second assumption, however can be more restrictive, since
 

it assumes that only the probability of loss is important and
 

ignores other characteristics of the profit distribution such as
 

the mean level of profit.
 

Concepts of Stochastic Efficiency
 

The second more theoritically appealing approach is that based
 

on the concept of stochastic dominance. Here, we proceed from the
 

very simDle assumption of risk aversion through progressively stron­

ger assumrtion regarding the nature of risk attitudes.
 

(a) First-degree stochastic dominance 
(FSD) rests on a very
 

reasonable behavioural assumption that decision makers prefer
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more to less of x. More formally the assumption is that the
 

utility function of an individual is monctonically increasing.
 

The first degree rule is generally stated in terms of the cumula­

tive distribution function (CDF). 
 If F and G1 are a pair of conti­

nuous CDFs associated with 2 risky prospects F and G, within the
 

interval a, b.
 

y
where 	 FI(Y) = f(x) dx
1 a 

and 	 Gl(y) = Yg(x) dx,
 

Then, F is said to dominate G in the sense of first degree
 

stochastic dominance if F1 (y) < G1 
(y) for all possible y in the
 

range 	fa, b1 with at least one strong inequality.
 

An undominated set is called an 'efficient set'. 
 The efficiency
 

criteria is transitive, i.e. if F dominate G and G dominates H then
 

F dominates H.
 

(b) Second degree stochastic efficiency (SSE) concept requires
 

an additional behavioural assumption namely, that the decision
 

makers are risk averse. This implies that the utility function
 

is not only monotonically increasing but also strictly concave.
 

ied 	U(x) >0
 
dx
 

and d U(x) 0 
2 

dx
 

where U(x) is the utility function.
 

The 2nd degree stochastic efficiency rule is defined in terms
 

of the area under the CDF.
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if F 2 (Y) = ry F (x) dx2 al1 

and G2 (Y) = fY G (x) dx
2 al1 

Then F is said to dominate G in the sense of second degree stochas­

tic dominance (SSD) if F2 (y)< G2 (y) for all possible y with at
 

least one strong inequality.
 

Using the FSD and SSD rules we end with the SSE set. 
If an
 

additional assumption about U (Y) is made we can go on and isolate
 

the third degree stochastic efficient (TSE) set.
 

The 3rd degree stochastic dominance 
(TSD) concept requires a
 

further assumption that as people become richer they become dec­

reasingly averse to risk. 
This is equivalent to saying that
 

d3 U (x) > 0 

dx 3 

To state the TSD rule we consider
 

F3 (y) = fy F (x) dx3 a 2 
and
 

G3 (y) = fy G (x) dx3 a 2 

which are the areas under the SSD cumulative functions. F is now
 

said to dominate G in the sense of TSD if F3 
(y) < G3 (y) for all 

y, with the strict inequality holding for at one value of y, and
 

if F2 (b) < G2 (b)where b is the upper range.
 

With the use of this rule we end up with third degree stochasti­

cally efficient (TSE) set. This is as 
far as we go in the present
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study. For 	higher degrees of stochastic dominance further assump­

tions regarding risk attitudes have to be made, which may be unduly
 

restrictive. To use the stochastic dominance approach it is necessary
 

to obtain the definitive integrals of the type I function. 
This
 

makes it necessary that the estimated function bc transformed in
 

an appropriate manner. 
This is carried out as follows:
 

Consider the type I function derived using the assumptions
 

that UI = 0 and = 
1 U2 a where a is the hypothesized upper limit of
 

the curve.
 

mI m2
 
y =C x ( - x) , 0 < x < a
 

where
 

C m + m + 
1
l m2 +iB(m 1 + I, m2 + 1) 

If the transformation
 

z = X/a
 

is used, ie x measured in units of 
a.
 

then 	 dx
 

dz
 

and we obtain
 

Y= B(mI + + ) 1 (1-z) 2 1 (z) (49) 

Equation (49) gives function which belong to the family of
 

beta distributions.
 

The cumulative distribution function FZ (z; m 	 )
+ 1, m+ = 
Iz)z 1 ml m2
 

(0,I) ( 0 Bml+l, m2+l) u 
 (1-u) du + I(l W)(z) is called
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the incomplete beta and has been tabulated extensively.
 

However, the integrals that can be obtained from the tables
 

are only for discrete value of m1 and m2 . Therefore the method 

employed in obtaining the intagrals in the present case is by the 

use of Simpson's rule of approximation for integrals. 



RESULTS AND DISCUSSION
 

When the yield data for each season is stratified as mentioned
 

earlier, it is observed that for the HL and HH strata of the second
 

crop the number of observations are very few 
(five or less). These
 

strata are therefore omitted in the analysis except to find the
 

probability of loss, associated with 
these technologies, using the
 

empirical cumulative distribution function to obtain the cumulative
 

distribution function of profit.
 

Preliminary Tests
 

Test of Normality
 

The yield data in each stratum was tested for normality using
 

the test of skewness and Geary's test of kurtosis for small samples.
 

Table 3 shows the values of the test statistics b/2 and a. 
 The
 
1
 

table also gives their level of significance and the value of the
 

criterion K used to distinguish between the diffexent types of
 

Pearson curves.
 

It is seen from the table 3 that yield distributions in
 

seven out of the ten strata deviate significantly from the normal
 

in terms of the skewness or kurtosis or both. 
The strata MH and
 

HH for the first crop and ML and MH for the second crop shows
 

departure from the normal with respect to their skewness, while
 

the strata ML, HL and HH for the first crop and LL for the second
 

crop differ from the normal with respect to kurtosis. It is
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Table 3. 
Tests of Normality and Value of Criterion.
 

STRATA 
TEST FOR SKEW-

NESS 

(b 1 / 2 ) 
1 

TEST FOR 
KURTOSIS 

(a) 

CRITERION 
(K) 

NUMBER OF 
OBSERVATION 

First crop: LL 

ML 
HL 
LH 
MH 
HH 

.1846 

-.1513 
.0488 
.2783 

-1.2289** 
-.6395* 

.7947 

.8557* 

.7319* 

.7733 

.7749 

.7531* 

-.0252 
-.0085 
.00267 

-.0498 
-3.3336 
2.7098 

54 

51 
36 
21 
35 
53 

Second crop: 

LL 
ML 
LH 
MH 

.1317 
-.6744* 
-.3642 
-.8327* 

.8561* 

.7575 

.83 

.8256 

-.00575 
-.2553 
-.05254 
-.2129 

53 
19 
63 
29 

* 5% level of significance 

** 1% level of significance 
a = .7979 for normal distribution 

bl/2
1 

= 0 for normal distribution 
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interesting to note that for the strata which show significant depart­

ure in skewness, the coefficient of skewness is less than zero, i.e.
 

the observations in these strata viz. MH and HH for first crop and
 

ML and MH for second crop are negatively skewed. 
 It is also observed
 

that LL for both crops show positive skewness (though not signifi­

cant at the 5% level). 
 Also, in general there exists a tendency
 

towards greater negative skewness as the levels of inputs and labour
 

(especially labour) are increased.
 

Type of Pfarson Curve
 

The value of the criterion K for the different strata as shown
 

in Table 3 is seen to be generally negative except in the case of
 

HL and HH for the first crop. This indicates that generally condi­

tional yield distributions follow the type I Pearson distribution.
 

Positive values of K for HL and HH for the first crop may be
 

due to the inefficiency of moment estimation. 
 The above results
 

lend support to the "a priori" hypothesis that the conditional
 

yield distribution of rice can be represented by -the Pearson type I
 

distribution.
 

Method of Moments Estimates of Parameters
 
For Type I Function
 

Case I: aI and a2 Unspecified
 

The type I function was used in fitting distributions to the
 

yield data of each stratum. The parameters U1 and 
a2 which deter­
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mine the extremities of the curve were unspecified. Thus the values
 

of the 4 parameters m, 
m2 , aI and a2 are determined only for the
 

strata which showed negative values of K. 
Table 4 presents the
 

results of fitting the type I function to the data in these strata.
 

Table 4. Type I Parameters with aI and a2 Unspecified.
 

TYPE I PARA4ETERS MINIMUM 
 MAXIMUM
 
STRATA m1 I
m2 1 VALUE OF OBSERVED
 

OBSERVED 2 YIELD
 
YIELD VALUE
 

First crop LL 
 4.053 2.683 -1.7087 0.1 5.4455 4.952
 
ML 0.4395 0.198 
 2.248 2.10 5.5075 5.375
 
LH 3.367 1.805 -2.2668 0.1 5.3414 5.2
 
MH 29.302 0.9845-16.3805 
1.3 5.8791 5.727
 

Second crop LL 0.054 -0.0941 -0.224 0.272 4.4948 
 4.588
 
ML 3.2325 
 0.601.6 -0.0433 1.8 5.6509 5.4
 
LH 0.8933 0.2018 -0.47 0.253 
 4.6811 4.665
 
MH 0.0759 -0.5595 2.7429 2.7 4.67 
 4.769
 

In nearly all cases the parameters m1 and m2 are positive which
 

means that the type I functions are of the cocked hat, bell or bowl
 

shaped forms. The two exceptions to this are in LL and MH second
 

crops, where m2 is negative. For these cases the form of the
 

function is of the J and twisted J shapes.
 

A look at the values of ai reveal that in 2 cases, namely ML
 

(1st crop) and Mi-
 (2nd crop), the left extreme points of the curve
 

are 
greater than the minimum yield values observed for those strata.
 

This is a serious shortcoming of the method of moments, because it
 

would mean that the probability of observing values less than 
a
I
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is zero. Similarly the probability of observing values greater than
 

U2 is zero. But values greater than a2 is observed in LL (2nd crop)
 

and MH (2nd crop). In the MH strata (1st crop) the value of 
cx
1
 

(-16.3805) is much lower than zero.
 

Crop yields being positive, the probability of obtaining a
 

negative yield is zero. Incorporating this restriction, namely
 

that aI = 
0, would improve the estimates of the parameters. In
 

the next stage of estimation this is done.
 

=
Case II O2 Unspecified, a, 0
 

When one of the parameters (in this case a1 ) is specified, the
 

calculation of the remaining parameters involve only the first 3
 

moments. In the calculation of the moments about zero, the x values
 

are taken to the power of the order of the moment. The higher the
 

order of the moment, higher the power of x. 
Thus, in the calcula­

tion of the fourth moment x is raised to the power of four. 
 The
 

precision of estimation of moments is therefore more affected as
 

the order of the moment increases. The first 3 moments are estima­

ted with more precision than the fourth moment. 
In the present
 

case as only 3 moments are involved, the paraneters ml, m2 and 
 2
 

would be estimated with nore precision.
 

Table 5 presents the results of fitting the type I function
 

with the restriction cc = 
0, to the yield data in the different
 

strata.
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Table 5. 
Type I Parameters with a2 Unspecified, ,= 0.
 

TYPE I PARA14ETERS
 
STRATA WITH a = 0 

ml m2 2 Maximum Observed 
Yield 

First crop LL 1.168 1.82 5.59 4.952 
ML 7.833 5.4 6.945 5.375 
HL 16.016 18.85 9.651 6.4 
LH 0.55 1.235 5.777 5.2 
MH 2.435 -.248 5.498 5.727 
HH 2.527 .457 6.77 6.984 

Second crop LL .082 .265 5.019 4.588 
ML 3.159 .578 5.643 5.4 
LH 0.249 -.179 4.443 4.665 
MH 8.576 1.204 5.056 4.769 

Here again as in Case I the range conditions are violated. MH
 

and HH 
(first crop) and LH (2nd crop) have the estimates of a2 less
 

than the maximum observed yield values in these strata. 
The para­

meter estimates of the yield function in these strata cannot there­

fore be used as starting values in the maximum likelihood iteration
 

process.
 

Case III: a1 = 0, a2 = a
 

As noted earlier the yield of a rice crop is limited by the
 

level of management, and the inherent genetic potential. 
There­

fore based on the level of management used, the following maximum
 

limits to rice yields that could be obtained in faziners fields
 

were specified.
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Specified
 
Strata value of a2 = a
 

LL 
 5.0
 
ML 
 5.5
 
HL 
 6.5
 
LH 
 5.5
 
HH 6.0
 
HH 
 7.0
 

When a1 and 	a2 are both specified the only remaining parameters
 

to be estimated are the shape parameters m1 and m2 . These para­

meters can be expressed in terms of the first two moments only,
 

and by using the same argument as in the last section, we can say
 

that the precision of the estimates will be further improved. 
Table
 

6 shows the 	estimates of m and m2 for the different strata.
 

Table 6. Type I parameters, a, = 0, 2 

TYPE I PARAMETERS
 
STRATA U1 AND a2 SPECIFIED
 

STAT 
 1 2
mI 	 m
 

First crop 	LL 0.8812 0.9904
 
ML 4.267 0.926
 
HL 
 8.53 3.377
 
LH 0.461 0.935
 
MH 4.129 0.693
 
HH 2.887 0.792
 

Second crop 	LL 0.0753 
 0.249
 
ML 2.798 0.312
 
LH 0.906 1.004
 
MH 15.807 6.728
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It is noticed that mI and m2 are both positive. 
This means
 
that the distributions of yields in all the strata are of the cocked
 

hat, bowl or bell-shaped forms. 
 For both crops m2 is greater than
 

m 
in the strata LL and LH which means that the distribution in
 
these strata show positive skewness. 
When the Jevel of labour is
 
increased the distributions become negatively skewed. 
This is in
 
accordance with the preliminary analysis of the data which also
 

showed a tendency towards greater negative skewness as labour and
 

input levels were increased.
 

The moment estimates from Case III were next used as initial
 

values in the maximum likelihood iteration process.
 

Maximum Likelihood Estimates of Type I

Function With O1 and a2 Specified
 

The maximum likelihood estimates obtained ft-om the iteration
 

process are shown in Table 7, together with the moment estimates
 

from Case III for easy comparison.
 

Comparison between the parameter estimates obtained from the
 

moment method and the maximum likelihood method shows that the
 
estimates from the moment method are very close to the maximum like­

lihood estimates. 
It is also obserced from the above table that
 
whenever m1 is greater than m2 
(negative skewness) in the maximum
 

likelihood estimated, the same is true of the moment estimates, and
 
vice versa. Another interesting feature is that when the moment
 

estimate of m1
 is greater than it! corresponding maximum likelihood
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Table 7. Maximum Likelihood and Moment Estimates with 
ai and a2
 
Specified.
 

SAMPLE MAXIMUM LIKELIHOOD MOMENT ESTIMATES
 
STRATA 
 STZE ESTIMATES
 

(n) m1 m2 m1 m2 

1st crop LL 54 0.587 0.65 0.8812 0.9904 
ML 51 3.976 0.776 4.267 0.926 
HL 36 6.327 2.302 8.53 3.377 
LH 21 0.318 0.677 0.461 0.935 
MH 35 4.608 0.895 4.129 0.693 
HH 53 2.081 0.381 2.887 0.792 

2nd crop LL 53 0.216 0.381 0.0753 0.249 
ML 19 2.473 0.173 2.798 0.312 
LH 63 0.836 0.992 0.906 1.004 
MH 29 17.253 7.422 15.807 6.728 

estimate, the same is true of the estimate of m2
 . Similarly when the
 

moment estimate of m1 
is less than its maximum likelihood estimate 

the same holds true for the estimate of m2 . It is therefore appa­

rent that the moment estimates of m1 and m2 are both either slightly
 

underestimated or slightly overestimated compared to the maximum
 

likelihood estimates.
 

An important observation is that when the end points of the
 

distribution can be specified (as done in Case III), the moment
 

estimates of m1 
and m2 tend to be very close to the maximum likelihood
 

estimates. The slight under (over)- estimation involved is compensa­

ted by the great reduction in computations that result from the use
 

of the methods of moments.
 

Figure 3a to 3j shows the fitted curves superimposed on the
 

histograms of the observed data, for the different strata.
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Fig. 3. Fitted curves supperimposed on histograms for the different strata. 
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Fig. 3. Fitled curves supperimposed on histograms for the different strata. 
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Fig. 3. Fitted curves supperimpo,;ed on histograms for the different strata.
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Fig. 3. Fitted curves supperimposed on histograms for the different strata. 
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Fig. 3. Fitted curves supperimposed on histograms for the different strata. 
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The Histograms are drawn using the relative frequencies rather
 

than the actual frequencies, so that the area under the histograms
 

add up to unity. The class interval chosen in this case was 0.5
 

ton per hectare. The Kolmogorov-Smirnov test is used to test the
 

goodness of fit, as 
this test is more powerful than the more widely
 

used X2 test (Siegel, 1956). The value of the Kolmogorov-Smirnov
 

test statistic D is also given with the different curves. 
 The null
 

hypothesis stated as 
"The fitted distribution is not significantly
 

different from the observed distribution (histograms)' cannot be
 

rejected even at the 20% level of significance. The fit as judged
 

from the calculated D values seem to be very close, though unfortunately
 

it cannot be tested at a significant level greater than 20%, since
 

tie table.s of D go only from significant levels of 1 to 20 percent.
 

Empirical Cumulative Distribution Function
 

In a situation where the number of observations is very small,
 

the j order statistic can be used to estimate the j/n+ 
fractile
 

of the empirical cumulative distribution function (Mood and Graybill,
 

1963). 
 For HL and HH of the 2nd crop this method was used to obtain
 

the CDFs of yield and profit.
 

The CDFs of yields are given in figure 4. From the CDFs the
 

probability of obtaining yields less than 2 tons/ha was calculated.
 

Table 8 gives the probabilities of obtaining a yield of tons
 

or less per hectare for the different technologies.
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Fig. 4. Empirical cumulative distribution functions for
 
high labor, low and high cash inputs, second crop.
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Table 8. Probabilities for yield < 2 tons/ha.
 

STRATA P(Y < 2) MEAN YIELDS 
(tons/ha) 

First crop LL .381 2.43 
ML .021 4.03 
HL .005 4.45 
LH .42 2.37 
MH .009 4.51 
HH .035 4.79 

Second crop LL .43 2.31 
ML .039 4.09 
HL .132 4.07 
LH .337 2.68 
MH .0001 4.11 
HH .098 4.86 

Results show that the probability of obtaining a small yield
 

(2 tons or less) is low in the case of the medium labour high input
 

technology. The probability for the MH technology 
is 0.009 for the
 

first crop and 0.0001 for the second crop. 
The LL and LH technolo­

gies give the highest probability of a low yield for both crops.
 

This means that when labour level is low, high input levels do not
 

decrease the probability of a low yield. 
On the other hand for a
 

medium labour technology increase of the input level reduced the
 

probability of loss for both crops. 
 The same tendency is seen for
 

the high labour technology for the second crop. 
For the first crop
 

however, increase in material inputs in the high labour strata has
 

not reduced the probability of a low yield, but the probabilities are
 

yet very small, .005 for HL and 
.035 for HH.
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It is clearly seen that increasing the labour component in the
 

low input technologies lead to the progressive zeduction of the pro­

bability of a low yield. For the high input case the reduction in
 

probabilities occurs only when one goes from low to medium labour.
 

When one goes from MH to HH the probabilities of low yields actually
 

increase. This may be due to sampling variation or due to the limita­

tions of the stratification method used (see limitations).
 

The general indication is that medium levels of labour with
 

high input levels are associated with reduction of the probability
 

of obtaining low yields.
 

The Profit Function
 

From the estimated yield functions, the profit functions for
 

the various technologies can be derived.
 

The general form of the yield function is 

y = C x (a-x) 2O1 }(x) 

where x is yield measured in tons/ha.
 

Using the transformation T = p.x - L - I 

where p = price/ton of rice
 

L = mean labour cost for a given stratum
 

I = mean input cost for a given stratum
 

= Tr+ L+ I
 
X ,
 

p
 

dx = 1/p d T 
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The profit function is
 

c + L+ j1 ()ml ( + 1: + Y))m 2 

p p p 

E +) < < . p-

The integrals of the profit function are calculated using
 

numerical integration (Simpson's rule).
 

Family labour was costed at a constant rate of 17.50/man day.
 

Price of rice was taken as l.00/kilo. For mean labour and cash
 

input costs see appendix.
 

Screening of Technologies
 

First Degree Stochastic Dominance (FSD)
 

The FSD rule, outlined in the earlier Chapter can be restated
 

as follows. A FSD curve (CDF) to be called efficient (undominated)
 

must lie nowhere to the left of any other FSD curve. Figure 5a and
 

5b show the CDFs of the 6 different technologies for the first and
 

second crop respectively.
 

It is clear from figure 5a that the CDFs of ML and MH for
 

the first crop lie to the right of all other curves, except at the
 

uppermost region. Thus if the FSD rule is applied strictly, no
 

single technology can be said to dominate another in the FSD sense.
 

The same is true for the second crop as seen in Figure 5b.
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Fig. 5a. Cummulative density functions of profit, first crop. (H= High, M= Medium, L= Lowl. 
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Second Degree Stochastic Dominance (SSD)
 

To eliminate distributions from the first degree stochastic
 

efficient set, we need to use the SSD rule. The SSD rule given in
 

Chapter 3 can be restrated, so that it is easy to view it graphically.
 

Consider the distributions F1 and G1 given in Figure 6.
 

1.0
 

8 
Cumulative
 
probability
 

0 

profit
 

Figure 6. Illustration of SSD (areaA > area B) 

Source: 	Anderson, Dillon and Hardaker (1977). Agricultural
 
Decision Analysis, Iowa State University Press, p. 285.
 

The SSD rule can be viewed graphically as follows. F1 is said
 

to dominate G1 if it lies more to the right in terms of differences
 

in area between CDF curves cumulative from the lower values of
 

profit. This means that the area marked A must exceed area marked
 

B for F1 to dominate GI
.
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Applying this rule to the CDFs it can be seen from Figure 5a
 

that MH dominates all other technologies in the case of the first
 

crop. In fact a ranking can be made as follows,
 

MH > ML > HL > HH = LL > LH
 

For the second crop the technologies ML and MH from the second
 

degree stochastically efficient set (SSE set). While LL and LH are
 

the most inefficient technologies. Thus for both crops, it is
 

observed that in general the medium labour technologies are the
 

most efficient.
 

Third Degree Stochastic Dominance (TSD)
 

In the case of the first crop there is no need to go into third
 

degree stochastic dominance, as the SSD rule has eliminated LL, ML,
 

HL, LH and HH leaving only MH in the SSE set. But for the 2nd
 

crop the SSE set is made up of MH and ML. 
Therefore if technologies
 

are to be screened further the TSD rules have to be used.
 

Similar to the restatement of the SSD rule, the TSD rule can
 

be stated in terms of the second degree CDFs. Given 2 technologies
 

F and G, F is said to dominate G if F2 (2nd degree CDF of F) lies
 

more to the right of G2 
(2nd degree CDF of G) in terms of differences
 

in area between the 2nd degree CDF curves, cumulative from the lower
 

values of profit.
 

The second degree CDFs of ML and MH for the 2nd crop is shown
 

in Figure 7.
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It is observed that even the use of the TSD rule cannot sepa­

rate the ML and MH technologies. Thus the third degree stochasti­

cally efficient set is the same as the SSE set.
 

In conclusion we can state that by the S. D. criteria MH is the
 

most efficient technology in the case of the first crop, while ML
 

and MH form the efficient set in the case of the second crop.
 

Probability of Loss
 

As discussed earlier, a simple approach to screening technolo­

gies for 'riskiness' is to rank them by the probability of loss.
 

While this criterion by itself ignores the mean performance, in this
 

section we present the corresponding mean values. Table 9 gives the
 

estimated probabilities of loss and the means 
for the different
 

technologies.
 

Table 9. 	Probability of Loss and Means for the Different Technolo­
gies.
 

TECHNOLOGY PROBABILITY OF LOSS MEAN 
(STRATA) 1st crop 2nd crop 1st crop 2nd crop 

LL .3945 .4293 444.09 344.9 
ML .0739 .094) 1417.07 1512.44 
HL .1423 .332 988.55 1079.0 
LH .5334 .4322 62.06 275.58 
MH .0701 .0181 1476.78 1186.84 
HH .3181 .261 574.69 1351.25 
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In terms of this criterion, the low labour high input (LH)
 

technology has the worst performance for both crops. It has the
 

highest probability of loss (.5334 for the 1st crop and .4322 for
 

the 2nd crop) and the lowest mean profit (62.00 for the first crop
 

and 275.58 for the second crop). The technologies associated with
 

a low level of labour have a high probability of loss and low mean
 

profit. The medium labour technologies have the lowest pxobability
 

of loss while the high labour technologies seem to be intermediate.
 

This is generally true for both crops.
 

The MH technology has the lowest probability of loss for both
 

crops and also the highest mean profit in the case of the first
 

crop. While the ML technology has the highest mean profit for the
 

2nd crop (Y1512.44). However the MH technology also yields a high
 

level of profit for the 2nd crop (Pi186.84).
 

The indication is that medium labour technologies, especially
 

the MH technology, perform very well in terms of low probability of
 

loss and high profit levels. The results here, agree closely with
 

that obtained using stochastic dominance rules.
 

Limitations of the Study
 

The limitations of the study are maily due to the limitations
 

imposed by the data that was available. Variations in planting dates
 

and topography were not incorporated in the stratification as these
 

would have made the number of observations per stratum very small.
 

For the same reason more categories of labour and inputs costs could
 

not be made.
 

http:Pi186.84
http:Y1512.44
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In the stratification, we used technology in a broad sense and
 

associated different technologies with different levels of inpbts
 

and the strictly technical differences between different technologies
 

were not explicitly taken into account. 
The discrepancy observed in
 

some of the results obtained may be due to this.
 

The results obtained and conclusions reached cannot be indis­

crimately extrapolated to any region. The magnitudes and the type
 

of variability in yields obtained would be different in regions
 

dissimilar in the environmental conditions.
 



SUMMARY AND CONCLUSION
 

The yield data were categorized into 6 strata, using 3 levels
 

of labour costs (low (L), medium (M) and high (H) and 2 levels of
 

input costs (low (L) and high (H)) 
for both firt and second rice
 

crops. The high labour (HL and HH) technologies for the second
 

crop had very few observations and were therefore not used in the
 

main part of the analysis.
 

Preliminary analysis of the data in the other 10 strata 
(6
 

for 1st crop, 4 for 2nd crop) involved testing for normality. Data
 

in seven out of the ten strata deviated significantly from the normal
 

distribution in terms of skewness or kurtosis or both. 
A tendency
 

towards greater negative skewness as the levels of labour and inputs
 

(especially labour) were increased, was seen.
 

The 'criterion' K used to distinguish between the different
 

types in the Pearson system gave negative values for all but 2 strata.
 

Therefore the Pearson type I curve was used in the general curve
 

fitting. Type I estimation with no specification and with the left
 

extreme of the curve specified lead to observations that fell out­

side the ranges of the curves.
 

It was therefore decided to specify both the left extreme and
 

the right extreme of the curve, in the moment estimation. This was
 

possible as yields are non-negative and have a biological maximum.
 

The estimation now involved only 2 parameters (mI and m2). Results
 

showed that the estimated values of m1 and m2 were both positive,
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whereby the cocked hat, bowl or bell shaped forms of the type I function
 

were implied.
 

The moment estimates (with 0 and o specified) were used as
 

initial values in the maximum likelihood iteration procedure. The
 

iteration procedure involved maximizing the likelihood functions
 

directly, as packages and functions needed for the usual procedures
 

(Newton-Raphson procedure, method of false positions, method of
 

scoring, etc) where not available in the computer centre of UPLB.
 

It was found that the moment estimates were very close to the
 

maximum likelihood estimates. The slight under (over) estimation
 

involved is negligible compared to the simplicity of calculating
 

the 	moment estimates.
 

The empirical cumulative distribution was used for the high
 

labour technologies (HL, HH) of the 2nd crop, due to the small sample
 

sizes for these technologies. The CDF was derived by using the jth
 

order statistic to estimate the j/n+l fractile of the distribution.
 

The various technologies were screened using the concept of
 

stochastic dominance. For this the yield distributions were trans­

formed to give CDFs for profit. It was found that the medium labour
 

technologies were in the efficient set. Risk measured as the pro­

bability of loss also showed that the medium labour technologies
 

(especially with high input) gave the lowest probabilities of loss.
 

The conclusions that follow from the study can be briefly
 

enumerated as follows:
 

1. 	Yield distribution of rice (for a given technology) are
 

generally significantly non-normal.
 



70 

2. 	Yield distributions of rice can be adequately represented
 

by 	the Pearson type I function.
 

3. 	The distributions become progressively more negatively
 

skewed as labour and input levels (especially labour)
 

are increased.
 

4. 	The type I moment estimates with the extremes of the
 

curve specified, may be acceptable substitutes for the
 

maximum likelihood estimates.
 

5. 	Medium labour high cash input technologies form the risk
 

efficient set for the first crop; 
this result is obtained
 

when both stochastic dominance criteria and the probabi­

lity of loss criteria is used. For the second crop the
 

medium labour technologies (MH and ML) were in the effi­

cient set when stochastic dominance criteria are used.
 

However the medium labour high cash input technology gave
 

the lowest probability of loss.
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APPENDIX
 

A.I. 	Mean Labour and Cash Input Costs for the Different
 
Strata (Y/ha).
 

STRATA 	 MEAN LABOUR COSTS MEAN CASH INPUT COSTS
 

1s t 2n d 1s t 2n d 
crop crop crop crop
 

LL 1126.77 1084.98 888.33 911.28
 

ML 1704.49 1675.95 931.76 923.00
 

HL 2552.22 2222.00 939.94 948.40
 

LH 1073.19 1115.35 1409.24 1247.00
 

MH 1746.66 1621.14 1261.17 1297.66
 

HH 2828.36 2170.00 1403.43 1336.50
 



A.2. Frequency Distributions for Labour and Material Input Costs. 

LABOUR COSTS 

(0/ha) 

<1100 1100- 1200- 1300- 1400- 1500- 1600- 1700- 1800- 1900- 2000 >2100 

Frequency 
(1st crop) 26 10 15 13 11 23 13 21 17 11 12 78 

Frequency 

(2n d crop) 54 9 12 20 21 20 16 7 3 2 4 5 

Material costs 
(0/ha) <700 700- 800- 900- 1000- 1100- 1200- 1300 >1400 

Frequency 
(ist crop) 8 18 26 39 50 44 23 15 27 

Frequency 

(2n d crop) 15 5 17 14 26 46 18 15 17 

Lfl 
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A.3. 	 Source Program for Calculating Maximum Likelihood
 
Estimates.
 

0001 DIMENSION X(7))

0002 REAL*8 Ml,M2 ,MSI,MS2L,LS,LX,ALPHA,Z,RI,R2,R3,GA,Y,YYDAGB,
 

lGI,G2,G3,CREM
 
0003 DATA x/70*0./
 
0004 WRITE(6,6)
 
0005 READ(5,7)CREM
 
0006 DO 10 I=1,10
 
0007 READ(5,1,END=90) M,M1,M2,APLHA,(X(II), II=1,M)
 
0008 DA=DLOG(ALPI'A)
 
0009 Y=0
 
0010 YY=0
 
0011 90 DO 20 J=1,M
 
001.2 	 LX=X (J) 
0013 IF(LX.LE.0)GO TO 11
 
0014 Y=Y+DLOG(LX)
 
0015 Z=ALPHA-LX
 
0016 IF(Z.LE.0)GO TO 12
 
0017 20 YY=YY+DLOG(Z)
 
0018 NS=0
 
0019 NSY=0
 
0020 
 NSW=I
 
0021 
 N=0
 
0022 99 IF(NSY.EQ,1)NS=N
 
0023 N=N+I
 
0024 RI+MI+1
 
0025 R2=M2+1
 
0026 R3=RI+R2
 
0027 Gl=DGAMMA(RI)
 
0028 G2=DGAMMA(R2)
 
0029 G3=DGAMMA(R3)
 
0030 GA=GI*G2/G3
 
0031 IF(GA.LE.O)GO TO 13
 
0032 GB=DLOG(GA)
 
0033 L=Ml*Y+M2*YY-M*GB-M*(R3-1.)*DA
 
0034 IF(N.EQ.1)GO TO 98
 
0035 IF(L.LT.LS)GO TO 97
 
0036 NSY=0
 
0037 IF(NSW.EQ.1)GO TO 98
 
0038 LS=L
 
0039 MS2=M2
 
0040 M2=M2+CREM
 
0041 98 LS=L
 
0042 MSI=MI
 
0043 MI=Ml+CREM
 
0044 GO TO 99
 
0045 97 NSY=1
 
0046 NSI=NS+I
 
0047 IF(NS1.QE.N)GO TO 96
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Appendix A.3. (Continued)
 

0048 IF(NSW.EQ.1)GO TO 95
 
0049 NSW=I
 
0050 MI=MI+CREMA
 
0051 GO TO 99
 
0052 96 IF(N.EQ.2)GO iO 95
 
0053 GO TO 10
 
0054 95 NSW=2
 
0055 M2=ML+CREM
 
0056 GO TO 99
 
0057 11 WRITE(%,3)LX
 
0058 GO TO '99
 
0059 12 WRITE(6,4)A,A.LPHA,LX
 
)060 GO TO 999
 
0061 13 WRITE 6,5)GA,G1,G2,G3
 
A062 GO TO 999
 
0063 10 WRTIJ. ",2)L,N,MS1,MS2,I,M
 
0064 999 STOP
 
0065 1 FORMAT(12,3F6.1 /4(20F4.3/))
 
0066 2 FORMAT(IX,D16,8,5X,14,7X,D16.8,D16.8,TllO,12,TI26,12)
 
0067 3 FORMAT(IX,D16.8)
 
0068 4 FORMAT(1X,3Di6.8)
 
0069 5 FORMAT(IX,4DI6.8)
 
0070 6 FORMAT (IHI,T4,'LIKELIHOOD',T20,'ITERATION',T108,'DATA SET',
 

T122,"N lUMBER OF'/T6,'VALUE',T22,'NUMBER',T40,'MI'.T56,
 
'M2',T109,'NUMBER', 1T121, 'OBSERVATIONS'/)
 

0071 7 FORMAT(F6.3)
 
0072 END
 


