
-TEL AV I V U N I V EF EI TY 

FACULTY OF ENGINEERING
 
Department of Fluid Mechanics and Heat Transfer
 

P.O.Box 39040, Ramat 
Aviv, Tel Aviv 69978, ISRAEL
 
Telephone: (03)420930 Telex:342171 VERSY IL. Fay:972-3-4195!3
 

AIlD F'ROJ]ECT DF'E>-G--SS-6 ,0,,0':-.("
 
"IDE I'T IF:'cCACA TTOo iN OF I:'- LR )YD(AiL.t
AOLzJ .VI C F'FROPER" I ES UJNDER UICERTA I NTY'' 

TIR,. PR!l)FlOGR:lESSi: REPO0RT
 
O lT::E PEIRIOD .JULY I - DEC. 1., 1987
 

Ourirngqj .lhiE pe.:riod t'he Isr aei.team has carr i,ed out the folowing 
tiasI.:: al ong.:.lhe pr: j ect I 1 an.. 

(i) A thletreti:cil approach t.o idcient:if1y tho aCli.Li r prop::erties-a anti 
the naiu::ural] . under unsteady con i:itionaI. has be.n .oprecharcejo devel ed. 
The MEltiod is based on a f1o simplifyino assumptions ..nd it is much 
sc.i exi s ti.nc stochiast i c approache.. The materi al f orms partmler th.an 

u-f alii Ice ea to
at 1 p 1 an publ :i..h i r Water Re ource-,s Re.se.aarch. 
lnc: ec p 1lease f :i.nri the draft of thi s pac r t of: t he pr. oecteci 

ii ) Tihe metho. i,:i being ap:pl i tci:o a portii on of the I srael 
Coasta. AuI er. "The data have t:een coll.
:ected in the prec:ecli nq
ni)elri od anld we are in the prI:ios: of i d -iu i ,ng par amei:r and 
recharige, foir thi s acilUiffer. Thsitask.:sh-oul ci be compl eted wit.hi n the 
neox tc r or- :i. .d 

:._-.::. :i :i. tIi.'Fc ruc_.. oii2!.[. v!i':!ty ] !ofi:,.0j:iort d y D a o o ci.i 

Dur:i.ng the 6 month period sLart.ing August 1,19 8 7 tlh--. eP'ortug.Liu.Ie 

.ean wor'ked .in the foll:winy areas:
 

Collict.ion.i) and 
 anal/sis of piezomei ri c and itransmissivity
data.i H I -u Roi. o Mai or aiqiui fer and the cretaco.sia and deep qluaternary 
aq,.i I ro. of ive:i ro: 

(a I : : Ma:i or aquif v r ch l test co ct ct.id mon thl", t:l.ed 12 e t ial
 
lead 
 mesu-m: ne'a t. diat.a -f the R:i o Maior aquLifer have been ana. yse
during this semestri . F is wil11 allows for.the futu~re eval uation of
 
the rec::liarge tii i Ifcc-Ter,of a f bas-ed on the taransi e-t ana.ys:i under 
cevel opment by the: Israeli tei.,

Li) .re-....ceousaqu:i. fer of Ave:iro: addit ional tran misslvi ty data 
has been an a]. y: ec durini thi s period. The transmi ssi vivi data 
available for this aquif-er are considered to be sat :isfactory.
Iowever., unli : .:e what wa - ex.o'pected duri nci the f:i rst semester o-f 1937, 
i.t Aas no L:possb:il toibe carry out the evaluati on of the piezom trv 

:-~dir21.. -~)1. j98 

http:P'ortug.Liu.Ie


-" 2, --"
 

of this aqui fer . This is main.y due to the continuous ext.raction of
::Jrcundlwat-er by wells owcnec:..:dpumping by private i ndustri es and by th.le 
mun i c: i p a li.'e of :he regli on The Iemp or a t op .. . *f t hos e 
e;tract icrons in n cesary for the rcyovery of t.he hl c..ad. eval .a of the 
aquife. to 1 appropr iat. .I. ,"ti on it seemsla l.::k o 

unp. -ii tt3 (.this probl miwil 1 be overl-ccme i n the "ear future.
The., p.art jilci. will]. ov:r"'-t. e ss cstal: i h- contact-s w,j. h- thle
 
pr'iv.wat:e incLsLries and w:i.thli 
 tlie munic.:il:a].i.i:s try i..nq to male::a them 
aquaintw:.n: porttan: c:ev:ith the i L 1o the pIb'cb.em.
 

C::) )p.. uate( aq'lui'fe-ar Avo,:i. als:o
rrnary of for Ei aquif er
 
add!it. :i. :1. i-r.in ± ' t.i.:' i:dat:a have. been anal yz:c.d curi 0 this
 
s::,emesto-r. TLh : 51 . ty data aail. 1 able for this aqui fer is 
c:ons i dered also t :c {fkc::i- csrv. Addi ti.onal p :i zomet.r i t teasur ement
 
have 'e-. col 1 
 -Fc thefcol ILowing rec: 1 amat :ion of several. 
!::iezo s, Ec-.'¢(tttji Ic. by t:ihe project te.a,-m. Al.thoug- We numbL .r c 'f 

m.tr' i.C ni-: s: -z, I mc, t :i. till. not elundant, t. he ava i 1 alable data 
al lows for t i cap:piat:o.:n of the theory devel oped bv the IsraeltIn p 

team o thi s aqu fFer. 
(ii Dr". Del.ga do Rodri.c es from INEC, in collaboratior with Dr. 

Barr ada ani Dr. Marques ca Silva from t.he Un:i versit:y of '.Ave irct and
Dr. Pc..:i.,; ir-o from the Direct-orate General f or Na'tural RIesources 
start.d the 0. pt.i onc riea::: o:f the e o 1 ocj i C aii ti h yr a o logic
characte-r at:isC.-s of the ref errOd to aquifer"s.-..,. 

iik.....::L-.:,. .!€... ... ,.,'..2!: ' '. 

Dur n gL hh:i.s period Mr. Yoram Rubin stayed weekt: for a in LNIEC,
worl..k irg wi ii Dr. Lobo Ferrei ra in tie updat i no cf the programs
:i.mplemet t.ed in L.INiEC 's compuLer- sys t.em, and also in a prori0am fori' the
clrawi of: con..ours of n-Ltieri cal mode], oL t puts. ,-.. Duri ng thl-,i s vi si t
data c I ect.el i Lor t uga L and {f tr her- :i mp l emen t at i on of the
ti-.:ore.-Li ca aipp oaroach have been el a L:oar-at.ci 

(-, Gde1n Dapan7 

P:rofessor o.f Flu~i M-echl"anics 

i 

http:L:oar-at.ci
http:pIb'cb.em


STOCHASTIC IDENTIFICATION OF RECHARGE, TRANSMISSIVITY AND 

STORATIVITY IN AQUIFER UNSTEADY FLOW: 1. THEORY 

by 

GEDEON DAGAN and YORAM RUBIN 

Dept. of Fluid Mechanics and Heat Transfer, Faculty of Engineering 

Tel-Aviv University, Ramat-Aviv, Tel-Aviv, 69978, Israel 

Abstract
 

In a sequence of two papers, a stochastic method to identify aquifer 

natural recharge, storativity and transmissivity under transient conditions is 

developed. Four main assumptions were adopted: Y, the logtransmlssivity, is a 

normal random space function, the aquifer is unbounded, a firs t-order 

approximation of the flow equation is adopted, and the transients are 3lowly 

varying. Based on these assumptions, the expected value of Y and of the head 

H, as well as their covariances and crosscovarlances, are expressed by 

analytical equations which depend on a parameters vector 0. A major part of 

the first paper is devoted to the development of these expressions, based on 

the two-dimensional flow equation. The proposed solution of the inverse
 

problem is a double-stage procedure. First, 0 is identified stochastically, by 

a maximun-likelihocd procedure applied to the measurements of Y and H. Then, 

serves to estimate the spatial distributions of Y and H through their 

conditional mean and variances of estimation. The three main new features of 

the approach are: the possibility to identify the spatial distributlons of Y and 

H through their first two statistical moments based on transient head data and 

in the presence of pumping/recharching wells; the identification of the 

0 



stora~ivity and the stochastic identification of natural recharge. Since the 

proposed method make use of the analytic solution of the flow equation, it 

saves the need of laborious numerical schemes. Part 2 of this sequence (Rubin 

and Dagan, this issue) illustrates the application of the method to a real-life 

case. 



1. INTRODUCTION. 

The present study is concerned with the identification of aquifer flow 

parameters, known also as the inverse problem. The broad literature on the 

subject and the various methodologies employed in the past have been reviewed 

recently by Yeh (1986). The present work belongs to the recently developed 

stochastic approach, which regards the parameters as random variables or 

random space functions. These have beto identified in terms of their 

statistical moments, i.e. expected values, intervals of confidence etc. The 

determinstic approach theto inverse problem is believed to be plagued by 

non-uniqueness and stability problems (Yeh,1986, Yakowitz and Duckstein, 1980) 

and these difficulties may be alleviated in the stochastic framework (see, for 

instance, the discussions in Neuman et al, 1979, and Dagan, 1985 and Chavent, 

1974). 

So far, the stochastic identification approach has been applied mainly to 

steady aquifer flow ( Clifton and Neuman, 1982, Kitanidis and Vomvoris, 1983, 
Townley and Wilson, 1983, Dagan. 1985, Rubin and Dagan, 1987, De Marsily, 1984), 

and only recent]y and at a lesser extent to flowunsteady (Carrera and Neuman, 

1986, Loaiciga and Marino, 1987). In the present study, whicn is a direct 

continuation of our previous work And(Rubin Dagan, 1987), we address the 

problem of time-dependent flow, as encountered in many aquifers undergoing 

exploitation. A similar study about the subject is that of Carrera and Neuman 

(1986), who have cast the identification problem in a numerical frame, whereas 

we attack it in an analytical form, resulting in major computational 

simplifications. Besides, there are other significant differences between the 

various assumptions underlying the two studies, which will be recalled in 

Section 8, after rendering readersthe familiar with the present stochastic 
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approach.
 

It is emphasized that the identification of the natural recharge, regarded 

as a random variable, is one of our main aims, as it was in Rubin and Dagan 

(1987). This emphasis is somewhat different from the exclusive concern of many 

previous studies with transmissivity identification. 

2. MATHEMATICAL STATEMENT OF THE PROBLEM. 

We consider here two-dimensional aquifer flow at the regional scale, i.e. 

over a planar horizontal extent much larger than the thickness. The well-known 

governing equation satisfied by the water head Ht(x,t) is as follows 

N 
3HH t 1HH wa (T HtHH
 wt 
x ) a(T -) = -R + S + ' Qi(t)6(x-xi) xED (1)

i=1
 

where x(x,y) are Cartesian coordinates in the flow domain D, t is the time, 

T(x,y) is the transmissivity, S is storativity, R is effective recharge, Qi is 

the discharge of a well located at x=x. and 6 stands for the Dirac 
1 

distribution.
 

Eq. (1) is generally supplemented 
 by boundary and initial conditions for Hto 

e.g. Ht or its derivatives are given on the boundaries and Ht is given at t=O. 

The solution of (1) for Ht, for given T, S, R, Qi, as well as given boundary and 

initial conditions, is known as the direct problem and it is well documented in 

the literature. 

In the present study, dealing with the inverse problem, the given 

information is contained in : (i) values of measured transmissivities T.=T(x.) 
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at j=I,...,M points within D ; (ii) records of the head Htlk= Ht(Xl,tk) at 

l=M+1,...,N points and at various k=1,...,P times ; (iii) QikQi(tk) , records of 

the pumping or recharge of well at atrates the located xi ( i=1,...,N w) time 

tk and (iv) boundary and initial conditions for Ht ' 

The identification problem is defined then as determining T(x), R and S 

based on the above information and with H satisfying (1). 

While in cases of continuous and careful monitoring, the information of (ii) 

and (iii) above is available on a monthly basis, as it happens for the field 

example discussed in Part 2 of this sequence, sometimes the well discharge 

records are sketchy. A simplified approach to cope with such situations is 

presented in Appendix B. In a similar vein, sometimes the boundary and initial 

conditions are poorly defined. As we shall show, in our approach their 

knowledge is not required explicitely. 

Our solution of the general identificatio, problem stated above is carried 

out with the aid of a few simplifying assumptions, which are examined in the 

following two sections. 

3. BASIC ASSUMPTIONS. 

Our basic assumptions, along the procedure byoutlined Kitanidis and 

Vomvoris (1983) and followed by Dagan (1985) and Rubin and Dagan (1987), are as 

follows : 

(i)T is regarded as a random space function of lognormal distribution, i.e. 

the values of Ym = ln Tm at an arbitrary set of points xm , form a 

multivariate normal vector. The stationary unconditional joint p.d.f. is 

characterized completely by the expected vaiue <Y>=m Y=const and the auto

covariance Cy(x m,Xn) = <Y(x m) Y(X n)> = Cy(r, in), where r'=Ir'I is the distance 
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between two points. In particular we shall adopt here also the exponential 

covariance
 

Cy(r) [1-H(r')] y-exp (-r'/Iy)= w + (2) 

where w represents an uncorrelated component of Y ( a nugget ), H(r') is here 

the Heaviside step function, y2 is the variance of spatially correlated Y 

values and I 
 is the correlation scale. Hence, Y is represented in terms of 

four parameters. 

(ii) We regard R as a function of time only, whereas S is taken as constant. 

These assumptions are justified by the lesser space variability of R and S, 

generally observed in the field (cf. Freeze, 1975 for S), and by the limited 

availability of data, which precludes the simultaneous determination of T, R 

and S as general space functions. 

(iii) A first-order approximation is adopted for the flow equation (1). 

Before expressing it in mathematical terms, wO split the total head field into 

two components 

Ht(x,t) = Hw(x,t) + H(x,t) (3) 

which satisfy the following two equations replacing (1) 

N 
H w
 

M.T VH ) = w N 
w S a i=I1 Qi(t)6(x-xi) (4) 

V.(T VH) = -R + S at)3H (5)
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Thus, Hw is a field related exclusively to the pumping wells, whose 

expression is given in Appendix A, and which is regarded as determinsitic and 
given. Furthermore, Hw is assumed to satisfy homogeneous boundary conditions 

and is singular at the wells locations. In contrast, H is related to the effect 

of recharge and of boundary conditions, and its spatial variability, regarded 

as random, is caused mainly by that of Y, and furthermore, H is a continous 

function of x. 

With h(x,t) = H - <H> the residual, a first-order approximation is adopted 

for H, resulting in the following two equations which replace (5) 

V2 <H> R + S @<H> (6)TG TG at 

VhS 	 Th 

V2h = 	S V.(Y' V<H>) (7)
TG D 

where 	 TG=exp(mY) is the geometric mean, and R and S are taken as time 

dependent and fixed, respectively. 

The rational behind the first-order approximation has been d.4scussed in the 

literature. It is recalled that: it simplifies considerably the original 

equation of flow with variable, random, coefficients (1), since (6) and (7) are 

linear; in principle it is valid o'ly for small 2 , but it has been shown 

Pagan, 1985b ) that it leads to accurate results for Oy as large as unity 

and, as demonstrated by the analysis of Hoeksema and Kitanidis (1984), the last 

condition is met by many aquifers. 

The alternative formulation, able to handle in principle large variances 52 

is the 	numerical one. The numerical simulations of Smith and Freeze (1979) 	 and 
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Desbarats (1987) have shown, however, that serious difficulties are encountered 

in the case of large 2, and the subject can be considered as still opened. 

Under these circumstances, problem the of thethe becomes one identifying 


four parameters characterizing 
 Y, as well as R(t) and S, for the given 

measurements of Y. (j=I,...,M) and of Ht,lk ( l=M+1,...,N ; k=1,...,P ), such 

that (6) and (7) are satisfied. 

A numerical solution of the inverse problem may be envisaged now. By 

discretizing the space coordinates in D and the time, a numerical solution of 

<H> and h satisfying (6) and (7), respectively, may be obtained in terms of the 

boundary conditions and the unknown parameters. Then the problem becomes one 

of best fit between calculated and measured Y and H . Such an approach has 

been suggested for the steady-state flow by Hnpkser-1 and Kitanidis (1984). 

Although the problem becomes considerably simpler than the original one 

expressed by (1) due to linearization, it is still a formidable one, involving 

large computational volumes and development of suitable algorithms. In line 

with our previous work on steady flow, we choose to further simplify the 

problem, by adopting additional assumptions. 

4. ADDITIONAL SIMPLIFYING ASSUMPTIONS. 

(iv) The head drop s caused by the pumping wells is represented as follows 

StF -r' 2 S '. 
s(x,t) = S Q(t,)exp _ dt' r'=I x-x (8)e.hge haoTe ty sutn f
 

i.e. the generalization of the Theis elementary solutions for each well and for 
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time depending Qi ( Carslaw and Jaeger, Chap.10). To simplify calculations, we 

separate the pumping wells into two classes. The first one contains M, wells 

for which the transmissivity T ( j=1,...,Ml ) has been measurea. For them, T. 

has been taken in (8) as constant and given, since most of the drawdown is 

assumed to take place in an area of radius smaller than Iy, in which the 

spatial variability of Y can be neglected. The second class contains the wells 

in areas of unknown transmissivity, in which we adopt the effective value TG 

for T. This simplifies considerably the computations and can be justified by 

the fact that for a large number of wells the errors cancel each other. In any 

case, the requirement water mass balance obeyed by (8).basic of is Further 

transformations of (8), accounting for the discrete measurement of Q. in time 

and for the fact that Ht is generally measured after a short recovery period, 

are given in Appendix A. 

(v) The solution for h (7) is derived for an unbounded domain, disregarding 

conditions. assumption bythe boundary This can be justified the existence of 

the forcing function related to spatial variability in the right-hand-side of 

(7), which dictates the behaviour of h. Boundaries might have an influence upon 

the statistical moments of h points close to thefor boundary, but we shall 

apply the solution outside such regions. It is reminded that in many cases 

boundaries locations and boundary conditions are poorly defined. 

(vi) The expected value <H> is regarded as having a slowly varying trend in 

space and time, and we adopt for it an expression similar to the quadratic 

trend taken by Rubin anG Dagan (1987) for steady flow, i.e. 

<H(x,t)> ± H,(t) - Jo(t)'x - cW(t) x i x. (i,j=1,2) (9) 
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where Ho is the head H at the origin, Jo is its gradient there and cij are three 

independent coefficients (C12=021). The summation convention for repeated 

indices is adopted in (9) and in the sequel. 

Eq. (9) does not satisfy exactly Eq. (6), unless R, J, and c i are time 

independent and is a linearHo function of time. Then, substitution of (9) into 

(6) leads to the simple relationship 

011+22 = R - STGdHo/dt (10O) 

generalizing the similar one for, steady flow (Rubin and Dagan, 1987, eq. 14). 

The additional freedom offered by the remaining independent coefficients of the 

quadratic trend is presumably taking into account the departure of the average 

flow from a uniforin one, due to boundary conditions. 

We shall adopt (10) as a valid approximation even if H, is not linear and R 

is time depending. This is accurate if these functions are slowly varying in 

time, such that the time derivatives of J, and c i, appearing in (6) by 

substitution of (9), are negligible. 

Hence, we regard the average head component <H>, associated directly with 

the recharge R and indirectly with the boundary conditions, as a sequence of 

steady states. This assumption simplifies considerably the identification 

process and can be validated a-posteriori, as shown in Section 6. 

(vii) The residual h satisfies the Poisson equation 

V2h =- V.(Y' V<H>) i.e. V2 h =-[(J - cij x.) Y']
1 
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replacing (7). The neglect of the time derivative of h in (7) is valid on the 

same grounds of slow variation in time. Indeed, by solving the quasi-steady 

version (10) of (7), the time shows in the solutionup throughout Jo and cij , 

whose derivatives with respect to time are supposed to yield terms which are 

negligible compared to the others. Again, this assumption can be validated 

a-posteriori, as shown in Sect.6. 

As a matter of fact, a time dependent uncorrelated noise can be added to h, 

without altering the results for the covariances of the Y,h field, which are 

shown in Section 5. 

Summarizing the last two sections, the assumptions are identical to the 

ones adopted in our previous studies of steady flow ( Dagan, 1985; Rubin and 

Dagan, 1987). The additional assumption is of quasi-steadiness, i.e. the 

expected value <H> and the head residual h are regarded as a sequence of 

steady states, such that at each instant tk, they are identical to the ones 

corresponding to R, H0, J, and cij at the same instant, provided that R is 

supplemented by the term SdHo/dt (see eq.10). Hence, the unconditional 

statistical structure of H depends on these functions of time, besides the four 

parameters characterizing Y. 

As mentioned above, the quasi-steady approximation is exact in the case in 

which <H> is a linear function of t, in which case appearst only in the term 

HO of (9). If H, changes nonlinearly with time, a time scale characterizing its 

departure from linearity may be defined, for instance by 

r=I(dHo/dt)/(d2H,/dt2)I The validity. of the quasi-steady approximation has been 

examined theoretically by Dagan (1982). It was shown there that in
 

two-dimensional flow the head variogram adapts to its steady-state expression 

if the following criterion is satisfied 
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T TG 5 r'/I y 

S Iy2 > > 8 ln(r'/IY) (12) 

where r' is the distance between the two points in the plane and r>>Iy. As we 

shall show in Part 2 of this sequence, this condition has been satisfied for 

the field case we have analyzed. The extension of our analysis to cases of 

relatively rapid time variations of the head is a subject for future 

inves tigations. 

5. THE UNCONDITIONAL Y, H STATISTICAL MOMENTS. 

In the stochastic approach, the aquifer is regarded as a realization 

belonging to an ensemble of formations with the same statistical structure of 

the transmissivity. The variables of interest, i.e. Ht and Y, are random space 

functions and are defined completely by their various statistical moments. 

Since Y is normal, the same is true in the first-order approximation for the 

residual h, which satisfies the linear equation in Y' (11). Hence, the entire 

statistical structure of the bivariate normal variables Y(x) and H(x',t) is 

exhausted by the expected values <Y>, <H> and the covariances Cy(XX') = 

<Y'(x)Y'(x') >, CYH(x,x,,t) = <Y(x)h(x',t) and rH(x,x',t,t') = (1/2) <[ 

h(x,t)-h(x',tt)]2>. By unconditional moments we refer to the ensemble of 

formations in which the constraints imposed by measurements at the 

measurement points are not taken into account. Furthermore, all the above 

moments are for given values of S and R(t), which are regarded as fixed in 

space.
 

Under the assumptions of Sects. 3 and 4, we are able to write the above 

moments in terms of a series of parameters, by following closely the 
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procedure of Rubin and Dagan (1987). Thus, 
<Y> =y and the given Cy (r') 2)
 

are expressed in terms of the four parameters
 

01 = my ; 02 2 ; e = w ; 34 = I (13) 

It is emphasized that other forms of covariances, e.g. semi-spherical, could 

be selected, with a somewhat different parametrization. 

The expected value <H t>=H w+<H> is given by (A.2) and (9), respectively, in 

terms of the additional parameters 

05 = S ; 06 = Jo (t) 07 = JO (t) 

(14) 

ea = C11(t) ; 09 = 2c1 2(t) ; 00 = C22 (t) ; 01, = Ho(t) 

The remaining two covariances CyH and rH are derived by using the equation 

of flow (1) for h. The solution is given by 

(x,t) = -i {V" '['(x")J(x'l,t)]}G(x,x")dx" (15)
!D
 

where G(x,x") = -(I/2u) inix-x" I is the Green function, and V" denotes 

differentiation with respect to x". It is immediately seen that the expressions 

of CyH and FH can be obtained from (15) by the same procedure which has been 

used in Rubin and Dagan (1987) for .-Leady flow, the only difference being that 

6. ( j= 6 ,...,11) are now time-dependent. Hence, we can transfer directly the 

appropriate expressions as follows 



-12 -

C (xxl 	 ;t) = a2 Ic()H + c(2)j (16) 

where 

Ic(1)YH(x,x',t)= r Z [e-r (+r) -	 (17) 

and 

c(2 )YH(rt) = Iycij(t) ijL + r 	 i,j=1,2 (18) 

where 

L=e-r(1 	 333 _ 3 r' 

r 7 - and r-y 

The two parts comprising C display different features: c(IH was shown in 

the study of Rubin and Dagan (1987) to be highly anisotropic, being equal to 

zero in a direction perpendicular to the direction of the mean flow, and is 

also antisymmetrical. the hand, isOn other c (2)YH isotropic and symmetrical. 

The head residuals variogram is given by: 

rH(X,t,x ,t,) = 2yi2 y [(1) + -(2)] (19) 

21T
 
The overbar for r denotes an isotropic average, i.e. rr dO can be 

employed in lieu of r H if the head measurement points are quite evenly 

distributed in the plane. In (19): 

= LIJoi(xt)Joj(x,t'){Ei(-r)+ln(r) +e-r-l+Ej ;lj-1,2 (20) 

where E=0.5772 is Euler's constant and x=-(x+x'). Also: 
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(2) y (xo-e-r(ajr'+a 2r+(x,)-otr2-a' Ein(r)_E i(r)]}1 (21) 

a=( 25-3E)(clc1 ,+c2c 22 ,) +(27-9 , (22)129-3
TTE)cc2 (293:E CIIC21' C2 

1 = 13C 12C,' + 32(CNC02'+C 'C22) +3--(C 11 C1'+C22C22') 

3 32 
25to 8c 2l2 29 

U2= -- (C11C11 '+C22C22V) - + (C 1 2 '+ 11C22 - C12C12' 

II ' ) 5 011 C '+C22022 + C12C12 1 (C11C22'+C 2 2C 11 ) 

Wb x E denotes the exponential integral. In the above expressions, cij stands for 

cij(t), while .I=c.. For t=t', andc. '(t'). c. .=c..*', the above expression of 

rH(x,t,x',tl) reduces to the one given in eq.(20) of Rubin and Dagan (1987a). An 

in-depth discussion of the structure and characteristics of the steady-state 

version of rH is given in the study of andRubin Dagan (1987). Herein a few 

points: '(0) is the arithmetic mean of two head variograms - for r parallel 

and perpendicular to the mean flow direction, respectively. Its asymptotic 

behavior for large r is logarithmic; in contrast, Y(2) is isotropic for cij a6ij 

and behaves like r2 for large r. 

Summarizing this section, we have arrived at the of theexpressions 

unconditional moments Y and terms a ofof H in of vector parameters 0 (13) and 

(14). If the time is discretized values tk theat ( k=1,...,P ), then parameters 

become a matrix 0jk (j=1,...,11 ; k=1,...,P), with the dependence on k
 

suppressed for the first five parameters, i.e. for j=I,...,5. 
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6. OUTLINE OF PARAMETER IDENTIFICATION ( UNCONDITIONAL ) PROCEDURE. 

The procedure follows closely the one developed for steady flow. In the 
present case the input, measured, variables are : the wells discharges Qik 

( i=1,...,N w;k=l,...,P ) where i designates the location of the well, while k 

stands for the time t k; measured logtransmissivities Yj=Y(x.) ( j=I,...,M ) and 

measured heads Ht,lk=Ht(Xl,tk) ( I-M+I,...,N;k=I,...,P ). 

In the stage of parameter identification, the objective is to identify the 

matrix of parameters 0jk (13, 14). This is achieved by the procedure suggested 

by Kitanidis and Vomvoris(1983) and Hoeksema and Kitanidis(1984) and followed 

by Rubin and Dagan (1987), namely by a maximum likelihood procedure (MLP) 

applied simultaneously to the multivariate normal vector Y. and Hjk' whose 

dimension is M + (N-M).P. The estimates 0jk are obtained from the minimization 

of the likelihood function, defined as usual by 

-1M+(N-M)PI 1 _ ( 2 
F=(27T) 2IQ, 

- -11exp 1(z-<z>) TQ-1( _Z )(2 

Here, Z is the vector of observations, angle brackets denotes the expectation 

operator and Q is the covariance matrix defined by Q=<(Z-<Z>)(Z-<Z>) T> where 

superscript T denotes transpose. 

The output of the MLP is an estimator a of 0, and the error covariance 

matrix E of 0. The matrix E, the inverse of the Fisher information matrix, i/ 

sometimes referred to as the Cramer-Rao lower bound, and is found in many 
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cases (of. Schweppe, 1973) 
to establish a tight asymptotic estimator for the 

parameters (co-)variances. 

With given E, the confidence limits of the parameters can be evaluated. 

Approximate confidence limits are calculated from the standard 
error of the
 

parameters and the appropriate value of Student's t-distribution
 

1/2 1/2)
 

1 < 
 i + 1/2 ]=p (23)
 

where Eii is the parameter variance 
and t =tvp is the value of the t

distribution for confidence level 
p and v degrees of freedom. A tight limit for
 

the parameters is indicative of a correct model parametrization, and hence of
 

the suitability of the suggested approach to the problem 
at hand. 

At the completion of the stage of model validation, the recharge can be 

calculated, by employing eq.(10). First we define At as the (presumably equal) 

time period between tk and tk+ . Assuming that the estimates c'kkC22k ,
, 


and Ho k are independent normal variables, we get 

Rk=(kc A(^M(o 0 - Ho, > k=l,..,P (24)k (m(/ <+k,k+1 k 

The estimation variance of Hk is given by
 

02 (Rk) = 2xP",knkexexp([exp(o)-] (25) 
111k+8 222k ep2my)eXp( I Ie) In (5 

+ 1 0(2 V<2^ k +2+(o2^ +22 )exp(2my)exp(2OIn+ EtYa V<H"k + k 

clik c22,k S k1 0 
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W~ee 2 o2 and 02 - are the variances of estimation of C1, C 2 2 , in
c11,k C;2,k m S 

and 9, respectively. 

The time sequence of Rk (k=1,..,P) can supply useful information. For 

example, multi-seasonal water balances offer the possibility to estimate the 

relation between precipitation and natural recharge. A simple model for that 

would be Rk=(Pk-B) where a and B are empirical coefficients, Rk and Pk are 

recharge and precipitation at time tk, respectively. A quick and simple way to 

estimate this model quantitatively is by some best-fit technique applied to the 

series of and Pk'Rk 

7. THE CONDITIONING STAGE 

The unconditional moments derived previously define stochastically an 

ensemble of realizations. Only in a subset of them Y and H assume the measured 

values at the measurements points. The conditional p.d.f. of Y and H is defined 

as the one based on this subset, and the con. ditloned Y and H are multivariate 

normal as well. 

The method for computing the conditicnal moments of Y(x) is given in the 

study of Rubin and Dagan (Section 3, 1987). It is similar to kriging and it 

consists of a linear function of the head and transmissivity residuals (with 

respect to the unconditional mean) at the measurement points. The coefficient 

for each residual is a function of its relative position with regard to x.. The 

coefficients are computed by solving a linear system of equations, which 

require the knowledge of the unconditional second moments. In general, 

conditioning must be carried out simultaneously for Z, the vector of all 

measurements at all times. When the parameters of the quadratic trend (9) 

change slowly in time, the unconditional second moments which are expressed by 
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these parameters, are practically constant in time. Consequently, the 

coefficients are also invariant in time, and they can be computed for any 

subset Zk of Z, which contain all the trdnsmissivity measurements and the head 

measurements at time tk1 and conditioning is carried out on Zk rather then Z. 

The conditional mean of Y at different times t k can then be averaged, since 

they might differ slightly.
 

Finally, the computation of the conditional variance of 
 Y is carried out 

according to the method outlined in the previuos study of Rubin and Dagan 

(1987), and it includes the effect of parameters' variances of estimation. 

The computation of the conditional moments of H is very similar to that of 

Y. The general relations between the conditional and unconditional moments are 

given in Dagan (1 984) and they can be applied directly by using the expressions 

derived here for the unconditional moments. 

8. CONCLUDING REMARKS 

In this study, an analytic-stochastic method to solve the inverse problem 

under transient conditions was developed. This method provides a simple and 

inexpensive mean to identify the transmissivity field, the storativity and the 

recharge, based on a limited number of measurements. The method can also be 

employed to obtain a stochastic solution to the direct problem, i.e. the head 

field.
 

After rendering the reader familiar with the principles and methodology, we 

compare now briefly the present method with the work of Carrera and Neuman 

(1986), which is aimed at solving the inverse problem in a probabilistic frame. 

Their solution is based on a numerical solution of the flow equation (1), and 

thus it provides in principle more generality and flexibility, while the 
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analytical method described herein is limited to cases of G2 y<1 (see Dagan, 

1985b). A recent survey by Hoeksema and Kitanidis (1985) showed, nevertheless, 

that this requirement is met in many aquifers. 

Another point to be made when comparing numerically-based solutions with 

analytical ones is that of computational cest and complexity. In order to avoid 

artificial zonation and to capture accurately the aquifer heterogeneity, the 

numerical modeler has to resort to a fine mesh as computational grid. This may 

result in huge matrices that are costly to store and manipulate. Furthermore, 

it was pointed out by Sun and Yeh (1985) that in case of scarcity of data, 

fine-meshing often leads to unstable solution. The present method avoids these 

pittfalls, by providing an analytical solution to the flow equation, which is 

much simpler to apply. Depending on the amount of data at hand, it need not be 

applied to the whole aquifer, but only to a subsection of it. The problem of 

data scarcity is reduced, since there are fewer parameters to identify.
 

Besides these general observations, there are some 
 specific differences 

between the present method and that of Carrera and Neuman (1986). The first 

refers to the definition of the parameters and their stochastic structure: 

Carrera and Neuman (1986) identify the logtransmissivity covariance and head 

variogram from measurements without employing the flow equation. Furthermore, 

they neglect the cross-covariance between heads and logtransmissivity. At the 

later stage of MLP applied to the measured values, the same covariance and 

variogram are utilized while assuming that they are known with certainty, 

except for a constant of proportionality. In the present case, the parameters 

are defined as structured space random functions. The covariances and 

cross-covariances of the parameters are obtained by a linearization of the 

flow equation and they are identified by a MLP procedure, as well as their 

variance of estimation. 
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In Part 2 of the present study (Dagan and Rubin, this issue), the application 

of the method to a subsection of Israel's coastal aquifer is presented in 

detail. 
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APPENDIX A 

DERIVATION OF H 

In the case of constant Qi, reduces the ofeq.8 to sum Theis' solution for 

each well, i.e. 

NW Qi -10 2(x,X i)S 
(Hw(xt)=Hin + L- 4 T.E 4T.t (A.1) 

where Hin=H is the initial head distribution at t=O, and the pump n 

discharges Qi are taken constant over time. It is more common for Qi to 

change over time in a stepwise fashion. The common practice in Israel's coastal 

aquifer, for example, is to monitor heads and well discharges on a monthly 

basis. This periodic variation can be accomodated into eq.(A. 1) as follows. We 

P 
define first LZ Qik' where Q is the average pumpage between t andk=1 ik 

tk# and. P is the number of (presumably equal) periods between t, and t=tp, the 

last denoting the time of measuring Ht (x, t p). We further define the periodic 

fluctuations by AQi,k =Qi,k - Qi" Due to the oflinearity the solution for (8), H 
can now be written as a function cf the avergae Qi and its fluctuations as 

f ollows 

N 

- wHw(xtp)>= H(X,O) Q ln 2 

1=1 r'(xXi)S 
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" Tik E,(-U. - ) (A.2)( 
1 i ,k (-U iUk+1 

i k=1 


aX( t , t p ' ( x ) n 2 . 2 5 T,- . .Nt 

i i 

where 
A A 

r(xx)S r 2(xX )S 
U.1,k +1 -c (t-tk1 1 ; U1U,k 4-ui(t-t ) 

1 k+1 i k) 

and
 

e < Y> I <i: Mj 

1 

T.1 M1+1 <i N" W 

where a(t,t ) equal unity when t>tis to and to zero otherwise. Similarly, 

a'(x,x i ) is equal to unity when x=x i and zero otherwise. The last term in (A.2) 

represents the case in which a short period of recovery is allowed before 

heads are measured at the pumping wells, i.e. heads are not measured at tp, 

but rather at t>t . Hence, t- t is the duration of the recovery period and r w. 

is the radius of the well located at x. This is the common practice, for 

example, followed by the authorities monitoring Israel's coastal aquifer, where 

a rcovery period of 24-48 hours is usually allowed. It should be noted, 

however, that the recovery period affects only the close vicinity of the well. 

Following our discussion in Section 14,we made here a distinction between M, 

wells of unknown transmissivities, and the rest wellsM2 with known 

transmissivi ties. 
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APPENDIX B
 

A SIMPLIFIED MODEL OF WELLS INFLUENCE 

A more simple-minded approach to solve the problem defined in Section 2 is 

to define an effective constant recharge which combines the point source/sink 

terms of eq.1 together with the natural recharge R, i.e., 

N 
w 

Rff R- LA- >1 (t) (B. 1)Ref f 

1=1 

where A is the area of the aquifer. The mean flow field is given now by eq.(9) 

solely, and there is need solve H w, was inno to for which given eq.(A.2). 

Note, however, that the analysis directed toward the identification of the 

natural recharge of Section 6 is not applicable now, since the parameters 

representing the mean flow field reflect now the joint effect of the recharge 

and that of the flow towards the wells. 

The stochastic analysis which is based on the substitution of Ref f into (1) 

is limited to the following cases: 

(1) When point pumpage/discharge is negligible relative to the natural 

recharge. 

(2) When the aquifer is uniformly pumped, i.e. a large number of wells are 

scattered quite evenly all over the andaquifer, it is known that they are 

being operated with similar pumping regimes. A sufficient recovery period 

before the periodical measurement of the heads enhances the applicability of 
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the simplified analysis, since the local effect of the particular well is 

attenuated.
 

(3) When no pumpage/recharge record is available, and it is assumed that the 

situation described in (2) prevails.
 

Two benefits are obtained in this 
manner. The first is the simplification of 

the computation, as discussed above. The second benefit is in the possibility 

to obtain estimates for the Y-covariance model, as well as to identify the 

areal distribution of the heads and logtransmissivities, even in the absence of 

pum page/discharge record. 

The main limitation of this approach resides in the inability to identify the 

storativity S and the natural rechargh R, since both cannot be separated from 

the sum in (B.1). 
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