$$
54924
$$

Working Paper Series

Working Paper No. 6
"Feasibility of Relating Recruitment to
Environmental Variables"
by
Brian J. Rothschild
Chesapeake Biological Laboratory
Center for Environmental \& Estuarine Studies University of Maryland at College Park

May, 1987

> Fisheries Stock Assessment
> Title XII
> Collaborative Research Support Program

The Fisheries Stock Assessment CRSP (sponsored in part by USAID Grant No. DAN-4146-G-SS-5071-00) is intended to support collaborative research between U.S. and developing countries' universities and institutions on fisheries stock assessment and management strategies.

This Working Paper has been produced by the collaborative efforts of The University of Maryland-Center for Environmental and Estuarine Studies and The University of Costa Rica-Centro de Investigacion en Ciencias del Mar y Limnologia (CIMAR) in association with the University of Delaware and the University of Miami. Additional copies are available from the CRSP Management Office and from:

Chesapeake Biological Laboratory
Center for Environmental \& Estuarine Studies The University of maryland
P.O. Box 33

Solomons, Maryland 20683

Feasibility of Relating Recruitment to Environmental Variation ${ }^{1,2}$

by
Brian J. Rothschild
University of Maryland
Center for Environmenta? ard Estuarine Studies
Chesapeake Biological Laboratory
P.D. Box 38
Solomons, Maryland 20688 U.S.A.

Abstract

The feasibility of relating recruitment to environmental variation depends upon the development of a mocel defining this relationship. A recruitmentenvironment model would need to contain components relating both to the ecosystem "engine" and various sensors or gauges to measure its performance. Trophic transactions are an important component of the ecosystem engine. We describe a gauge capable of measuring the probability of these transactions as they are affected by motion, irradiance, and temperature. The method in principle consiaerably shortens the causal inkages that need to be examined and thereby materially increases the feasibility of developing a predictive moolel on trophic energy exchange in the sea and cpens the door to sadying the special case of the reiation of the physical environment to ichthyoplankton moriality.

Introouction

Fredicting rectuiumenc is a eeni=ui problam in fisheries biclocy. is might de inferred fron Shepherd, Pope and Cousens (1984), Our capability to predict recruitment is at about the same level as it was thirty years ayo when Carruthers, Lawford and Veley (1951) published a paper in which they claimed that they cculd forecast hadiock brood strength, Giland (1952) suggested these correlations were spurious, and Allen Saville jo59 confirmed this assertion. Tre work of Carruthers et al., at that time, examined in retrospect, was creative, Gullands coservations insightful, ana that of Saville a much neeied specific follow-up, not often seen tocay. Despite the fact that our capability to predict recruitment has been relarively static over the past thirty years. we have accuired a considerable amount of information on the probiem, perticulariy its complexity.

[^0]Bowever, apparently without regard to the early fishery-specific papers demonstrating, often by hindsight, the difficulty of relating recruitment to the oceanic environment and first lessons in statistics, many authors have succumbed to the temptation of publishing uncritical correlations. To many, though, the admonishment to seek causal rather than correlative relationships is fairly well-known and the point would not warrant additional discussion, except for the fact that $1 /$ the stakes associated with being able to understand the oceanic environment and its affects on the fish stocks are higher than ever and 2) our understanding of the process, or at least our measurement capability has lept forward in recent years, thes suggesting trat it is worthwile to reevaluate our perspective on the entire problem.

With regard to the stokes, concerns for understanding recruitment variability in fisheries have not lessenec, but in addition there is a broaiening interest in the effects of human activity upon the the atmosphere and the ocean and the combined affect of these upon the habitat of the fish stocks. These broadening interests have a strong economic content relating to a fide variety of issues. For example, shoula there be a moratorium on fishing a particular stock? Should we build or not build a power plant winich we think coild have an affect on fish stocks? Should we think that enthropogenically caused atmospheric warming will increase some stocks and decrease others, possitly having a major eifect on some of the fishery industries of the world?

In other woris, in acidition to direct concems for fishing, there is also concem regarding how man's activities affect the oceanic habitat. In this regard, the populetion dunamics of fish constitute an important bioassay for anthropogenic effects. The bioassay is particularly important because it provicies an opportunity not only to measure the efeects of man's activity, but to consider as well the tradeofifs between the costs and benefits of human activity and the costs and benefits associated with anthropogenically induced cranges in fish scocks, should these in fact exist

With regard to our understanding of the process, the dymamics of recruitment veriabilizy seems co behave much life the weather anc ciimats (J. Smagorinsky, pers. comm) in the sense thet it is a sustem ciaracterized by nonimeariries, positive and negative feediacks, with an over-all necative feediback. The understanding of such a system will require exiracriinary theoretical development. This theoretical development is not likely to occur in one giant leap but in a series of small increments explicitly involving empirical observations interspersed with theoretical advance. The new" opportunities for empirical development are extensive, ranging from CItecinclogy to acivanced plankton nets, to acoustic imacery on plankion.

This paper explores the factors asscciated with the Eeasibility of ac:uancing beyord a more-or-less correlative approach toward a more direct wherstanding of recruitment varizility. The remaindez of sinis paper didesses the problem setzing, the constraines to understancing tiot interaction
 oE flinirating tie conseraints.

Eroblen Secting

In thinking abour tre need for emirical and theoretical development it is
well to exarnine some examples that deal with causality and to resurrect the old argument cf whether a change in stock abundance can be attributed to the environment, or a fishery or both. While in recent years we have often attributed stock declines to fishing, the evidence is not always clear.

For exanple, Jakobsson (1985) presented time-series data on fishing mortality and stok abundance for a number of herring stocks. Figure 1 shows his time-series graph for the Icelandic summer spawning herring and Figure 2 shows his time series graph for the Norwegian spring spawning herring. The time series for the Icelandic summer spawning herring shows that the stock increased under fairly constant fishing mortality until about 1960. As fishing mortality increases, the stock begins to decline. Later, as fishing mortality decreases, the stock ixreases agair. In other words, fluctuations in Icelandic sunmerspawning herring stock abundance appear to be closely coupled with fishing intensity. The Norwegian spring-spawning herring, however, provides a contrasting example (Figure 2). This stock began its decline before any great intensification of fishing effort and has not recovered even though fish mortality has deciined. In other words, the fluctuations in the Norwegian s_{i} :ing-spawning berring do not seem to be closely coupled to fishirg mortality.

As a third example, consider the famous decline of the Peruvian anchoveta which is often attributed to El Nino or ENSO as it is now called. In effect the major collapse of the anchoveta may have been related to the particularly great abundance of the anchoveta just before the collewse, a statement not intending to discount ENSO influence or the swsequent interaction of fishing, but rather emphasizing the possibility of an extraordinary effect of enso and fishing because the population was at a high level of abundance.

For exarule, the Report of the Consultative Group on the State of the Stocks of Anchoveta and Other Pelagic Species (Lima, Juiy 1977) noted that through the late 1960's the spawning-stock size was maintained at a level of about 15 million tors and a high recruicment was in evidence. However, the snawning in September of 1971 resulted in weak recriitment. This was noticed in early 1972. Jrxieed, the recruitment from thic year-class appeared to be one-eigith of the recruitment in the late 1960 s .

The El Nino of 1972 caused, as is typical, warmer waters in early 1972. This caused the fish to be more concentrated in the cooier waters close to the shore. This nade the nominal unit of fishing effort more effective and the combination of the poor recruitment: and intense fisining caused the spawning stock in September of 1972 to decline to about 2 million tons.

Ffter 1972, catcries were somewhat less than the mooerate recruitment and the spawning stock averaged about 4 million tons up until 1975. In 1975, the recruitment conditions aparenty improved and Ehe spawing stock iricreased in early 1976 to about 10-12 million tons.

This optimistic note was deshed, however, when the El Nino and its warmer water :eappearec off the Feruvian coas": in 197E. A三ain, the fish concentrated off tie coast, but feecing concitions were eparently unfavorable since the normal diatom/zooplankton mix was replaced by cinoflageilates in unusual aburdance. The fishes growth was reduced; they we:e lean and had a low fat content. The September 1976 spawning from these fish was "cisastrously low, not more than half a miliion tons, or well below one-tenth of that of the late 1960's adaitional evidence of the unusucl characteristics of the anchoveta
stocks was that in September 1976 the length of first maturity was 8-9 cm, a few centimeters lower than normal."

The decline of the anchoveta in association with the two El Ninos is particularly interesting-because the response of the fish to conditions was evidently different. In 1972 the fish were especially large; but the proportion of mature females during spawning time was parricularly low. The fact that these fish may not have spawned is evidenced by the failure of their fat content to decline (see Report of the Fourth Session of the Panel of Experts on Stock Assessment on Peruvian Anchovetal as is typical for clupeoid fish at spawning time (see, e.g. Perkins and Dahlberg, 1971). In adcition, the number of eggs was greatly reduced. The conditions in 1977 appeared to be somewhat different in that the stock size was at a low level, growth was poor, and dinoflagellates dominated the plankton. The low fat content suggested that the fish were in spawning condition, but the apparently low nutritional level may have affected the spawning capability. There is no evidence to indicate at this point whether the poor recruitment was related to spawning or events during the egg and larval stage.

The scenario is that the 1972 and the 1976 collapses were associated with different phenomena. In 1972 it appears that eqg proauction was constrained while in 1976 it appears that feeding conditions for larvae were inadequate. There was no question that fishing was substantial and there is no question that there were environmental perturbations. If these kinds of effects cannot be separated, then it is difficult to make predictions.

There are, of course, questions of why the stock did not recoverpossibly high fishing mortaiity, genetic changes in tine stock, or an "environnent" that becanie or continued to be unfavorable. No one knows.

In sum, the interrelationships between the effects of fishing and the environment continue to be inextricably entwined. There are instances where stock fluctuations are closely coupled with fishing intensity, but there continues to be examples where the picture is not clear and we are concerned as to whether these examules reflect natural charoes, changes which owe to fising, but not directly coupled with fishing mortility, or changes which owe to some other non-fisining anthropogenic factor.

Constraints to Understanding

It thus appears that the critical issue of separating fishing from the environment are still with us, and while the difficulties of this problem are ultimately associated with the complexity of the popula'sion dymamics process, it is clear that a major constraint to our understanding of the recrujitment process involves an uneven treatment of the proclem.

To show this we have prepared a flow chart (Eigure 3) of the populationcyamics proces in a fish poxulation and show that ony parts ce tris process are covered by the conventional projuction model, stock-anc-recnitment, and yield-per-recruit theory (Eotischild, In Press). Lacking theoretical coverage, are the events intermediary between stock and recruitment; the partirioning between somatic and reprocuctive biomass; and, most relevant to our discussion bere, the relation between the environment and any of the elements in the population dymamic process.

In thinking about filling these large theoretical gaps, several approaches come to mind, and of these, it seems apparent that an understanding of the dynamics of fish stocks might be best furthered at this time, not by directly studying the fish, but by better identifving the environment that affects fishstock variability.

There have been several approaches to "identify" the oceanic environment and we might contemplate the use of these as a theoretical substrate for fishstock population dymamics. It appears that most of these approaches fit into two categories. The first involves box models which partition the ecosystem into various boxes enabling the study of the standing stock in any box, and the flow among boxes (e.g. Fasham 1985). The second involves characterizing the biota in terms of the size spectrum of individuals that comprise the biota (e.g. Platt 1935).

While both approaches lend considerable insights into the dynamics of the organisms of the sea, both have recognized difficulties. The major difficulty with the box models is that the ecosystem partitioning is idiosyncratic. In Other words, since there are no particular rules for constructing boxes, different individuels, depending upon their background, knowledge, etc. are likely to develop different parti\&ionincs or sets of boxes for the same ecosystem leading to very different interpretations of how the same ecosystem works. The major difficulty with the size spectrum approach is that it is difficult to separate the factors that affect the change in size particularly growth and reproduction. This might not be a problem if, for example, the relation between stock-and-recruitment in fish and in the other organisms could be accounted for by simple mathematical relationsinips that could be incorporated in size spectrum or box models, a feat that seems unlikely.

A much deeper issue though is the distinction betweer what we might call the ecosystem engine and the gauges that measure its performance. The ecosystem engine is the way the ecosystem works; it allocates ecosystem biomass in space and time. An important part of this allocation is the periodic initialization of biomass througn the teprouctive processes of trie populations that comprise the ecosystem. Any moiel that attempes to recresent the engine then, mist include the density-dependent and density-independent reprouuctive processes, the stock-and-recruitment processes of the populations, as important components. Orice the engine is described we can thini of various gauges or sensors to measure its performance. While the dividing line is sometimes blurred, it appears that both the box mocel and the size spectrum notion reiate more to gauges trat can be used to measure engine performance than to the ergine itself.

In thinking about the projlem, we know that in any region of the sea there is a biota and its associated environment. We can easily imasine cheracterizing and circumscribing the comalex of biota and environmenc as an ecosvstem. It is much more difficule to imacine how the ecosustem eng ine worrs. The fact that we can describe the appearance of the ergine does not mear. tize we uroerstand how it works. Even if we oio not unae:stane how an engine works, we can attach to it various sensors or gauces to obtain some ioee of its performance. For example, we could develop sensors or gauces to measure tre flow of energy or matericils amono cumpnents or groups of components, or we could develop other sensors or gauges to monitor the size of components in the $s y s t \in m$ and to examine treir metabolism. The question remains, nowever, as to
whether these gauges are measuring the right variable in the right way. Arswering this question depends upon the structure of the engine and the purpose for monitoring its performance.

The discussion suggests that a predictive capability reguires a description of the engine and the gauges appropriate to the predictive process. I have considered the mpulation-dynamics engine elsewhere (Rothschild, In press) and am concemed bere with giving an example of a gauging system that reduces the length of the long and often complex dendritic causal chain between the physical environment and recruitment success (at least with regard to that component of recruitment success that relates to egg and larval mortality) and thereby increases the feasibility of developing a stock-recruitmentenvironmental model which is a prerequisite for year-class strench prediction. My aiscussion of this type of gauge uses fish larvae as an example. However, it will be obvious that it can be used to monitor all trophic interactions that involve particulate prey, whether the prey are living or dead.

The gange generalizes the idea of a search-rube (Blaxter and Staines, 1971). The search-tube relates to the volume swept cleai by the perceptive range of a fish larvae searching for food. The notion is generalized by defining four search volumes.
D_{0} volume: The D_{0} volume is the track taken by a fish larvae through the water. If the track is considered as being in one dimension then it has no volume. But if the track is in fractal dimension (Mandelbrot 1977) or in the diuension swept clear by the larval corpus, a volume exists. In actuality, we are more concemed by the path and whether it is straight or convoluted in the presence or absence of focd, for example (see tinter and Thomas, 1974).

D volumer This is the volume specified by Elaxter and Staines and consists of the perceived volume swept clear by the fish larvae. However, this volume is only useful for considering prey that do not move because if prey have a particular velocity more will be contacted as their velocity increases. In otherwords, as the fish larvae moves through its D_{1} volume, it may contact more or less prey depending on the velocity of the prey.
\underline{D}_{2} volume. If we consider that prey have a velocity then we need to construct a D_{2} occupancy volume, which has a diameter winich is a function of not only the perceptive capabilities of the precator, but of the relative velocity of both, a well known theory of search strategy (e.g. icooman 1956). The difficulty with the D_{2} volume is that it still does not account for the dyramics of the sea.
\underline{D}_{3} volume. The D_{3} volume is intended to take account of the dynamics of tie se $\frac{3}{2}$ because it considers the perceptive fields, the $v \in l \propto i z y$ of the prey, ac affected by the pinsics of the sea. For example, small-scale turbulence and shear affect the relative velocity of prey and precitor; differences in irradiance as a function of the intersity of lighe srriking the sea surface, turdicity, and depth all effect the perceived area swept clear as well; and
 won the length of the D_{0} dimension.
hithout going into much detail, we can see trat we have deen able to develop some ideas that a) express the intimate reletjon between physical variables and the oceanic environment crearing a research climate to examine
the essence of the relationships rather than relying on lengthy and corvoluted causal chains such as the relation between some function of windspeed, for example, and recruitment, b) provide a mechanism for thinking about the population dynamics of particles in the sense that intersection of D_{3} spaces of organisms is a prerequisite for density-dependent intra-specific interactions, as well as incerspecific interactions, and we can easily see, for example, the effects of increases in turbulent kinetic enercy, changes in irradiance, and temperature on the intersection of D_{3} occupancy volumes, c) provide a framework for a quite general description of oceanic biota which is compatible with the size tpectrum and other notions of biovariability in the sf:a. In fact, the spectra that are most interesting are those of D_{3} volumes since they show how variability in the physical properties of the sea affect all trophic transactions.

Feasibility of Eliminating Constraints

It seems then, that the benefits that would accrue from a better understanding of the interrelation of climate ard fish-stock recruitment could be substantial. It further appears that the correlative approach has reached its maximum performance. If we are to push beyond the correlative approach we will have to build, as a point of departure, the kinds of models that, relate climate and the fish stocks to the ecosystem engine and develof the most efficient gauges or sensors which can be used as independent variables in the predictor process. It seems that we have the methodolocy in hand to extend our predictive capability by considering the effects of the physical environment on tropnic transactions in the sea. The factors that effect mortality of larval fish are, of course, a special case of this more general problem.

LITERATURE CITED

Blaxter, J.ts. and M. Staines. 1971. Food searching potential in marine fish larvae. Four. Europe Mar. Biol. Symp. (D.J. Crisp, ed.). Cambridge University Press, 467-485 pp.

Carruthers, J.N., A. Lawfora, and V.F.C. Veley. 1951. Fishery Hudrography: Brood strength fluctuations in various liorth Sea fish with suggested methods of prediction. Rieler Meeresforsch. 8(1):5-15.

Fasham, MJ.R. 1985. Flow analysis of materi:ls in the marine euphotic zone, p. 139-162 In R.E. Ulanowicz and T. Dlatt (eds) Ecosystem Theory for Biological Cceanograpiy, Can. Bull. Fish. Aguat. Sci. 213, 260 pp.

Gulland, JA- 1952. Correlations on fisheries hydrography. Letters to the editor. J. Cons. Perm. Int. Explor. Her 18:351-353.

Lunter, J.f. and G.L. Thomas. 1974. Effect of prev diseribution and density on the searching and behavior of larval anchovy Encraulis mordax Gerarau. p. 559-574 In J.H.S. Elaxter (ed.) The Early Life History of Eish, Springer-Virlag, Berlin, beideloerg, and liew York.

Jatobsson, J. 1985. Monitoring and management of the Northeast Atlantic herring stocks. Can. J. Fish. Aquat. Sci., Vol. 42:207-221.

Roopman, B.O. 1956. The theory of search. I. Kinematic bases. operations Research, Vol. 4, No. 3:324-531.

Mandelbrot, B.B. 1977. Fractales: Form, Chance, and Dimension. W.H. Ereeman.

Perkins, RJ. and M.D. Dahlberg. 1971. Fat c"pcles and condition factors of Altannaha River shads. Ecology, 52(2):358-362.

Platt, T. 1985. Structure of the marine ecosystem: Its allometric basis, p. 55-64 In R.E. Ulanowicz and T. Platt (eds.) Ecosystem Theory for Biological Oceanography, Can. Bull. Fish. Aquat. Sci. 213, 260 pp .

Pothschild, BJ. In Press. Dynamics of Marine Fish Populations. Harvara University Press, Canioriäge, Mass.

Saville, A. 1959. The planktonic stages of the haddock in Scottish waters. Mar. Res. 3:1-23.

Shepherd, J.G., J.G. Pope, and R.D. Cousens. 1984. Rapp. D.-v. Reun. Cons. int. Explor. Mer, 185:255-267.

Figure 1. "Spawning stock bioness (Icelancic sumer spawners) and fishinc mortality rate (F) for $3-y r_{\text {an }}$ older herzing, 1950-82." From Figure 16, Jakoisson, J.. 1985. Siclogicel, Social, ani Emanic ispects of Herrirg Eisheries $N=-$ gement. Car. J. Fisin. Acuat. Sci., 42:207-221.

 spanours), az

 Daceesunc et al. (1980) ane znavonous (1984)." Eram Eicure ミ, Jakossson, J. 1çs. Eiciogical, Sociel, ane Eanaric Isperts c E Eering Eisheries

[^0]: ${ }^{1}$ Portions of this paper were excerptea from Rotischild (In Press).
 2 This paper has partially supported by the Fisheries Stock pssessment Coilaborative Research Program. Grant furded by the United States Agency for Intemational Development/Boara for Intemational Food and Agricultural Development.

