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Effect of Variability on Estimates of Cohort Parameters 

Using Length-Cohort Analysis: with a guide to its use and mis-use 

Han-Lin Lai and Vincent F. Gallucci 

Center for Quantitative Science, University of Washington 

Seattle, Washington 98195 

Abstract 

A mathematical derivation for length cohort analysis (LCA) is given. Equations are 

presented for evaluating the effects of variability in the input parameters and for changes in the 

size of the length interval. The LCA is applied to a harvested bivalve stock CProthaca 

stminea). The variance of the estimate of r* (in the von Bertalanffy growth model) has the 

greatest impact upon the variability of the estimated cohort parameters from LCA, Variability 

in the instantaneous natural mortality rate results in more error in the estimated cohort 

parameters than does variability in the terminal fishing mortality rate. A length interval of 

3mm is the largest interval for grouping animals into a frequency histogram for our species. 

Any interval greater than 3mm introduces substantial error into the estimates of the cohort 

parameters. Equations and curves to predict the optimal size interval are presented. 
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Introduction 

Cohort parameters such as age-specific fishing mortality and cohort strength are 

traditionally estimated by age-dependent methods such as "virtual population analysis (VPA)" 

(Gulland, 1965) and "cohort analysis" (Pope, 1972). These methods depend on accurate age 

determination, which is not always feasible, especially for tropical fish. Jones (1979,1984) 

proposed a method of length cohort analysis (LCA) to estimate the same parameters in a steady 

state population when the ages of the animals are not available. Jones (1979, 1984) adapted
 

Pope's cohort analysis for LCA, but a theoretical background for LCA does need to be
 

elaborated to 
better understand the method and to specify any assumptions that may be implicit. 

Reasoning by analogy simply does not provide an adequate scientific basis for the future 

development of LCA. The LCA method requires a growth model to transform ages into 

lengths, which in this case is the von Bertalanffy growth equation. As in cohort analysis, LCA 

requires that the rate of natural mortality and the rate of exploitation mortality of the ternminal 

length group are known. The principle objectives of this contribution are a derivation of LCA 

and an appraisal of how variability in the essential input parameters contributes to errors in the 

estimates from a LCA. 

The analytical expression derived for LCA is based on a negative exponential cohort 

model and on Baranov's catch equation, with length as the independent variable. The 

sensitivity of the LCA model is examined given variability in the: (i) sizes of the length interval 

in the histogram; (ii) von Bertalanffy growth parameters ( L,,and K); (iii) estimate of the 

natural mortality rate over the length groups; (iv) estimate of the terminal (for the last length 

group) harvest mortality rate. The data in Jones (1979) for the Nephrops stock from the Firth 
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of Forth is used to indicate that the computer program of LCA is working as expected. The 

LCA is then applied to a bivalve population (Protothac staminea) from Garrison Bay, San Juan 

Island, Washington. The advantage of using the bivalve stock is that it is well studied by the 

authors and unrealistic estimates would be detected. 

Mathematical Analysis 

Derivation of a Continuous Length Cohort Analysis (LCA) 

1) Negative exponential length cohort model. 

Assume a population composed of several discrete cohorts, each of which exponentially 

decreases in number as the age of each cohort increases and assume that the birthday of this 

cohort is the first day of each year. Cohort abundance 'Lhus decreases by 

dN 
= -ZN (1) 

dt 

with an initial condition of N(O)=No, where Z is an instantaneous total mortality rate. The 

solution of (1) is 

N(t) = Noe-Zt (2) 
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Further, assume that the growth of an individual in any cohort follows a deterministic von
 

Bertalanffy growth model, permittirg the age of the cohort at any time instants 
 to be exchanged 

with the length at age using the von Bertalanffy growth curve (Fig. 1). The rate of increase in 

the size of an average individual of length I in a cohort is 

dt
 

= K(Lo-i-) (3) 
dt 

with an initial condition of t(to ) =0. The solutibn of (3) is 

t(t) = L., ( 1 - e-K(t - to)) (4) 

which can be solved in terms of t as 

t = to - (I/K) In ( I - t(t)/l..). (4a) 

N(t) is a compound function N(t(t)) differentiable with respect to I and t, 

dN dN dt 

dt dt dt 

from which explicit dependence upon age t is removed using (1) and (3), 

dN 
- [K(Lc, - )] = -ZN 

di 
or 
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dN -Zdt 

=. (5 ) 
N K(L -t) 

Integration from No to N(t) and to to t yields 

t ) IZ/KF(L 
N(i) =N o 1 1 (6) 

L (L-t o ) J. 

It follows that 

F L.- (t +At) ]Z/K
 

N(t+At) =No I I 
 (6a) 

L 0-to ) J 

where, N( t ) is the number of individuals in the cohort that attain length t. 

Assume that the population is in a steady state, such that a time independent 

length-frequency collection can represent all the cohorts (year classes) in the population and 

that the length-frequency distribution is grouped into intervals of length A I. The number of 

individuals at the start of length interval (t, t +At) can be expressed by dividing (6a) by (6). 
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N(l + At) 

rL*-
= N(t) 

L 

(t7+At) ]71K 

II 

J 

(6b) 

For convenience, define a function A(t) that depends on t and At, 

A(t) = 

L06- (t +At) 

(7) 

so that (6b) becomes 

N(1 + At) = N (t) A(t) - Z / K (8) 

Define that At(t) = t (t + A 1) ­ t() and use (4a) to get 

At(t) 

1 

----

K 

In 

L.- (t +At) 

L,,- t 

=-

1 

In A(t) 

K 

(9) 

Rearranging (9) yields 

A (t) - Z /K = e-ZAt(t) (10) 
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Parameters 2 
which is the survival during the time interval At(t) when fish grow from I to l+A. 

and K have the dimension of (1/time) and apply to all length groups. 

2) Catch equation. 

We have assumed that the annual instantaneous total mortality rate Z is constant over all 

total, fishing,Now, assume that there are length-specific instantaneouslength intervals At. 

and natural mortality rates (each in 1/yr): Z(1), F(t) and M(t), respectively, within each length 

The 
interval (t,+At) and the time interval corresponding to this length interval is (t(t), t+ At(t)). 

catch at any time instant, given in terms of age of the cohort, of this interval (Gulland, 1969) is 

dC 
(11) 

- F(t(t)) N(t(t)) 

dt
 

Again, based on Figure 1, C(t) is a compound function C(t(t)) and differentiable with respect
 

to . and t, then the chain rule gives, 

dt
dt 
(11 a)

F(.) N(t) dt - = F(t) N(t)dC = F(t) N (.) dt = 
dt K[L - t]

00 

The number of fish caught in any length interval (l., l.+Al.), denoted by C(l.), is found by integrating 
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the right-hand side of (1 la) from t to t+At, when F(t) is given as a constant over the interval At, 

t +At dx 

C (t) = f F(t) N(x) (12) 

K[L,,6- x ] 

where x is any point within the interval (t, t+At). N(x) can be found using (6b) with starting 

stock size N(t) at length t: 

FLO-x ]Z(K 

N(x) = N(t) I I 

L i,-t I 

Substitution into (12) and integrating yields 

F( t ) N() L - x I 

CMt x 
K(L.,- I )Z(t)/K Z(t)/KIt 

and, from (7), 

F(t) 

C(t) = N(t)[1-A(t) - Z( )/ K ] (13) 

Z(t) 
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3) Length cohort analysis 

Using a method similar to that which Pope (1972) used to derive cohort analysis, 

LCA can be derived by first multiplying both sides of (8) by A(l)M(l)/K: 

-N(t+At) A(i)M( t )/ K = N(t) A(t) F( t )/K 

where, Z (t) = M(t) + F(t), and adding and substracting N(t) in the right-hand side of the 

previous equation, 

N(t+Ai) A(t)M(t)/K =N(t) - N(t) [I- A(t)- F(t)/K] (14) 

Solving for N(t) in (13), 

Z(1)C(l) 

N(i) = (14a) 
-F(I) [1 -Ai() Z ( t ) /K ] 

and substituting (14a) into equation (14) yields 

Z(t) [1- A(t) - F(t )/K] 

N(t -Al) A(I)M(l )/ K = N(t) - C(I) (15) 
-F(t) [I- A (t) Z (I) / K ] 
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Using the approximation (1..e-X)/x e-x/2 (Seber 1982), and substituting A= A(t), 

B= Z(t)/K, and x = B InA, tihe approximation becaomes
 

(1 - A-B)
 

A-B/2.
 
B InA 

Rearranging and substituting again yields, 

Z(t) K 

-= A( t )Z( t )2K (15a) 

[1- A(t)- Z(t)/K] In A( t) 

Similarly, let B = F(I)/K to obtain 

F(t) K 

= A(I) F( t )/2K (15b) 

[1- A(t)- F(I)/K] in A( 1 ) 

Then simple substitution of the right-hand-sides of (15a) and (15b) into (15) yields 

N(I+At) A(t)M(t )/K = N(t) - C(t) A(t)M(t )/2K 

The annual instantaneous natural mortality rate is usually assumed constant over all length 

intervals, i.e., M( I )=M for all I's, although it frequently is a poor assumption. Equation (16) 

thus becomes 
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N(t) = N( t+A 1 ) A(t)M/K + C(t) A(t)M/2 K (16) 

This is essentially the same formula for length cohort analysis which is also given in Jones 

(1984), but which he reached by the replacement of the age unit in Pope's cohort analysis 

with a length unit, without mathematical verification. One difference between (16) and Jones' 

equation is that (16) is a continuous foim. To make the transition from this continuous version 

of LCA to the discrete version (present by Jones), the following two assumptions are needed. 

The equations (8) and (11) are based on the assumption that within any length interval 

(At), the decline in the number of fish in a cohort follows an exponential curve. The length 

cohort analysis, however, replaces this continuous exponential curve within any length interval 

by a "step" function, by assuming that: (i) the catch in that length interval is taken at the middle 

of the length interval and no natural mortality occurs at that exact point; and (ii) natural 

mortality occurs continuously according to an exponential curve while the cohort passes 

through the length interval (Fig. 2). 

The population size N(t) calculated from (16) is the number of fish at t, the beginning 

of the length interval (t, t+At). It is important to note that the middle point of the length 

interval is not generally at the center of the time period over which fish grow from t to t+At; it 

would be, if the growth model w--re linear instead of a von Bertalanffy growth equation. 
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Since (16) results from a Taylor series expansion, it is necessary to determine the 

range of values of M/K, F/K and A( I ) that must be satisfied to ensure a pre-specified error of
 

approximation in (16). Using the same analysis as Pope (1972), it can be shown that when
 

these parameters satisfy
 

M( I ) F( I) 
0 < lnA(t)<0.3 and 0 <lnA(t)<1.2 (17) 

K K 

the error of the estimated N() is less than 5% (Jones, 1984).
 

The estimation is a backward pirw edure, starting from the terminal length group. Let
 

C(QX) denote the catch at terminal length group, ., the population size in the group Xis 

N(X) = C(X) / E(X) (18) 

wh,.:e, E(X) =F(X)/Z(Q.) is the exploitation rate of the terminal length group .. Thus, to start 

the estimation we need prior information about M and F(X', In most of cases, a best guess of 

E(X) is used instead of F(X). 

Derivation of Effects of Variability and Mis-estimation of Parameters 

At this stage, it remains to determine the effects of variability in estimates of the 

parameters in the model (16). Since the different parameters enter non-linearly, it is possible 

for ielatively small differences to be magnified and for large variability to have only a small 
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effect on the final result of LCA. Thus, the efforts that goes into estimating different 

parameters can be rationally allocated. 

1) Effects of Changing the Size of Length Interval (Alt) 

There is no objective way to group lengths. Length frequency data are frequently 

grouped into a histogram in intuitive accord with the purpose of the analysis and the properties 

of the data. The precision of the estimates from LCA will increase when smaller sized length 

intervals are used. The size of the length interval used for grouping lengths must, however, 

provide a number of individuals per At (length interval) that is not "too small". "Too small" 

means that the ideally smooth length curve is not made into a discrete series of small peaks 

with increased variability. Equation (17) states the requirement of precision for LCA. More 

specifically, the length interval At should be kept as small as possible to avoid a large value of 

At(t) = (1/K)ln A(t) because a large At(t) always implies a large natural mortality within that 

length group, as shown in (17). 

For analytical convenience, let the length frequency data be grouped into equal 

intervals of size At. Let C(t) be the catch with lengths between length t and t+A1. We 

examine the consequence of combining the C( I ) over nAt's into a larger group, i.e., with a 

length range from I to t+nAt. The catch with length between length I to t+nAt is 
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n-I
 
C'(M= I. C(t+iAt)
 

i=0 
 (19) 

From length cohort analysis and equation (16), the estimated stock size using the combined 

length group of I to t+nAt is 

N'( I ) = N'( t+nAt ) c( t )M/K + C'( t )a( I )M/2k (20) 

From equation (7) and for Al all equal, 

ct(i) = 

L -( t+nAt ) 

LOO-1 L. -(t+At) L,, -[ 1+(n-1) At] 

X X........ x
 

L. -( t+Al.) Lm -(l+2At) LO -( t+nAt ) 

n-i
 

= 1L A( + i Ai) 
 (21)i=0 

Using a length interval of size Al, N(t) was calculated by equation (16). Applying this 

equation n times to obtain the relationship between N(t) and N(t+nAl): 
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N(t)=N(t+At) A(t)/KK + C(t) A(t)M / 2K
 

= 
[N(t+2At) A(t+At)MIK + C(t+At) A(t+At)M/2K] A(t)/K + C(t) A(t)M/2K 

n-I 
=N(t+nAt)a(t)M/K + I C(t+iAt) A(t+iAt)M/2K { (LM- t)/[Lm-(t+iAt)] }M/K 

i-0 (22a) 

n-i
 
=N(t+nAt)a(t)M/K + I C(t+iAt) 3(t)M/2K 
 (22)

i--0
 

where,
 

(L t-1)2
 

3(t+iAt) =
 

Then, defining AN( ) as the difference between (20) and (22): 

AN( t )=[N'(t+nA1.) - N(t+nAt)] ax( t )M/K + C'( t ) a( t )M/2K 

n-I 

- X C(t+iAt) p(t+iAt) M/2K (23)
i=0
 

The AN(1) in equation (23) is the difference between &,! areas A and B in Fig. 3. This is 

because the catches in several smaller intervals were combined into a larger interval and then it 
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is assumed that the combined catch is taken at the middle of this larger length, ,,terval. AN(t) 

i composed of two components: (i) the difference between N'(t+nAt) and N(t+nAt) projected 

to length 1; and (ii) the difference between the projections of combined catch C'(t) and 

individual C(t+nAt)'s, to length t. 

n-I
 
Dividing both sides of (23) by N(L)=N(i+nAt) I' A(+i6t)-Z(t+iAt)/K, and using (21)
 

i-0
 

the relative error ratio is 

p[N(i)] = AN(t)/ N(t) 

n-i
 

= piN(i+nAt)] r1 A(t+iAt)-F(t+iAl)/K
 
i=0
 

1 n-i 
-+ 'XC(t+iAt) { ()M/2K -3(t+iAt) M/2K } (24) 

N(t) i--O 

Let 
1 

p[N(t)] = p[N(t+nAt)] fl[a] + - : C(t+iAt) ([b] -[c]) (24a) 
N(t) 
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where rI[a] = rI A(t+iAt)-F(t+iAt)/K = e-[F(t+iAt)At(t+iAt)], for i--O,1 ..... ,n-1. 

[b] = a(t)M/2K 

[c] = p(t+iAt)W 2 K 

The first term in (24a) indicates that p[N(t+nAt)] over the length interval (t+nAt, t+2nAt), 

which is adjacent to the interval (t, t+nAt), is decreased by l[a] because of the negative 

F(t+iAt) in the power of [a]. The sign and magnitude of the second term in (24a) depend upon 

the relative values of [b] and [c]: [b]<[c] for those length groups with t > (t+nAt/2) and 

[b]>[c], otherwise. It is easy to show that [b]-[c] for the length groups close to L,. is larger 

than that for the length groups far from L.. For length groups where t << L., [b]-[c]--40 

and p[N(t+nAt)] I[a] dominates p[N(t)]. 

To calculate the relative error of the estimated fishing mortality rate, integrated over the 

length interval (t, t+nAt), FAt'(t), where At'(t) = At(t+iAt), we expressed AFAt'(t) as 

n-1
 

AFAt'(t) = F'At'(t) - Y F(t+iAt)At(t+iAt). 
i--O
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From which it follows that (Appendix A): 

n-i
 
p[FAt'(1)] = AF(t)At(t) / XF(t+iA)At(t+iAt)
 

i--0
 

n-i 
= in I + prN(1+At ) / Y F( t+iAt )At(t+iAt) (25) 

1+ p[N( I)] i--O 

The relative error in diffemet choices of At and this is At'(t) are utilzed in the computation 

section. 

2) Errors Due to Variation in L. and K 

Length cohort analysis assumes that the growth of individuals follows the deterministic 

von Bertalanffy growth model, therefore, to each length there corresponds only one age (Fig. 

1); in other words, the time period required for a fish to grow fi'om length t to 1+ At is At(l) as 

presented in equation (9) must be unique as a consequence. The to in the von Bertalanffy 

equation will be ignored without loss of generality. The statistical estimation of L.0 and K are 

possible sources of error in the application of the model. These errors can result from: 

(i) measurement error in estimating age and length; (ii) individual variation in growth; and 

(iii) the values of L.0 and K are wrongly guessed. 

A covariance matrix can be obtained when age-length data is fit by a von Bertalanffy 

growth equation using non-linear regression (Gallucci and Quinn, 1979). Let V(L.,), V(K) 
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and COV(Lo,,K) denote the variance and covariance of L,. and K. These statistics represent 

the uncertainty in the estimates of the von Bertalanffy parameters. Error source (ii)is 
associated with growth variability as each individual grows according to the von Bertalanffy 

model with its own (Loo,K) (Sainsbury, 1980). That is L. and K become random variables 

which are distributed with a joint distribution with the population mean of E(L.) and E(K), 

and 	covariance of V(L.), V(K), and COV(Lo0,K). The other source of error-may be due to 

the wrongly guessed Loo and K. 

Let N(t) = f(L.,K) and be analytical in the domain D defining the random variables L. 

and K with means of E(L,.,) and E(K). Then, from Taylor's Theorem (Kreyszig, 1972), there 

exists precisely one power series with center (mean) at [E(L.),E(K)], which represents 

f(L.,K). This first-oder Taylor's series approximation is also known as the Delta method 

(Seber, 1982), that is, 

f(L.c,K) = f[E(L.),E(K)] + (Df/aL.O) Ii., [ L,, -E(L..)] + (af/K) IK [K - E(K)] + R (26) 

a2f a2f 
where R =-[ L.-E( L. )][K - E(K)] + - [L.-E(L**)]2 

2 DL 0 K 2 aL00
2 

+ 	 [K- E(K)]2 + ......
 

2 aK 2
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Define that f[E(L**), E(K)] = E[N(t)], Lo,-E(L.) =AL, K - E(K) = AK; and ignore R 

which contains the second and higher order terms. 

N( t ) E[N( t )] +---N-LU I A LW + -N(I ) I AK 

DL,,* ILC* DK IK 

Let 

AN(t)=N(t)-E[N(t)]= DN(t) I AL*O+ 2N( ) I AK 

DL- IL.O DK IK 

Then the error ratio can be calculated, if E( L. ) and E(K) are known, as 

[N(t)]= AN(t)
 

E[N( I )]
 

I (aN(I) I AL . + -DN( ! AK
 

E[N(t)] L. aL., IL., 
 aK IK J (27) 
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Further, the variance of N( I ) can be found by 

Var[N(t )]= E{N(t )- E[N(t )])2
 

=E[AN( t )]2
 

E[ ELL)ALO + DN(I) AK] 2
 

DLOO DK
 

2
 
=E[ aN(t (ALOO)2 + DN(t (AK)2 + DN( I (A L,,)(AK)] 

DLM DK aL** DK 

2 

=[.N(I2 V(L.) +[ DN(l)]2 V(K) + 2[ O N()] cov(L**,K) (28) 
O, MK L.OaK 

Working backward from the abundance in the terminal length category X,N( X ) is estimated 

first. 

N( k) = C( X) Z( X)/F( X) 

which does not involve L, and K. Therefore, the variance of N(k) can be assumed to be 

zero. Since by definition, X= t+nAt, the variance of N( X - At ) follows (27): 

V[N( X - At)] (N( X- IL) 2 V( L. ) + (N( %-A" K )2 V(K) 

+ 2 ( - Al-I I L-,K)COV(LO,,K) (29) 
aOOK 
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and so on for V[N(X-2At)] ...... V[N(t)]. To calculate N(t) from N(X), (22) can be applied 

by letting X= t+nAt: 

n-1
 

N( I ) = N(X)x( t )M/K + 7 C( t+iAt ) 3(t+iAt) M / 2k (30) 
i=0 

where, 

(LM-t) 
2
 

[3(t+iAt) =
 

The derivatives of N(t) respect to L, and K are derived in Appendix B. Equation (28) 

becomes 

n-1
 

V[N( t )] = j N(X)0L- + I C(t+iAt)OL*o 2V(L..) 
i--o
 

n-i 	 n-1 

+[N(X)OK+ 	 I C( t+iA )K} 2V(K) + 2 {N()O.K + 7 C(t+iA)0L-K }COV(LC,,,K) 
i--0 i=0 (31) 
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The instantaneous fishing mortality rate summed over length interval (t, t At), F(t)At(t), 

can be written as 

F(t)At(t) 	= [Z(t)- M]At(t) = Z(t)At(t)- MAt(t)
 

= In N(t) - nN(t+At) - (M/K) In A(t)
 

Let H(t) = (M/K) InA(t). By the Delta method, the variance of F(t)At(t) is found as 

V[F(t)At(t)] = V[lnN(t)] + V[lnN(t+At)] + (aH(t)/aLOtL.)2V(L.) 

+ (DH(t)/aKIK) 2 V(K) + (a-H(t)/DLIKL ,K)COV(L ,K) (32) 

where 

V[lnN(t)] = V[N(t)]/N(t) 2 

V[lnN(t+At)] = V[N(t+At)]/N(t+At) 2 (33) 

The derivatives of H(t) respect to L,, and K are given in Appendix C. The relative error p[N(t)] 

and the variances of N(t) and F(1) are utilized in the computation section. 
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3) Effects of Variability in Natural and Terminal Fishing Mortalities 

If the true natural mortality rate is M and terminal fishing mortality rate is F(,), the number of 

individuals of length I.can be calculated using (16): 

N(t) = N(t+At)A(t)M/K + C(t)A(t)M/2K (34) 

In many studies, M and F(X) are given numerical values based only on rather vague impressions of 

the resource dynamics. If we pick some values different from the true M and F(X), say M' and 

F'(X), the number of individuals at length I becomes 

N'(t) = N'(t+At)A(t)M'/K + C(t)A(t)M'/2K (35) 

Substracting (35) from (34) leads to AN(t),
 

AN(t) = [N'(t+Ai)A(t)M'/K - N(t+At)A(t)M/K] + C(t)A(t)M/2K [A(t)AM/2k 
- 1]
 

= [N'(t+At)A(t)M'/K -N(t+Al)A(t)M'/K 
+ N(t+At)A(t)M'/K N(t+At)A(t)M/K] 

+ C(t)A(t)M/2K [A(t) MV/2K - 1]
 

= (AN(t+At)A(t)M'FK + N(t+At)A(t)M/K [A(t)AM / K ­ 1II 

+ C(t)A(t)M/2K [A(t)ztM /2 K - 1] 
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= A(t)M/K (AN(t+At)A(t)AM/K + N(t+At) [A(t) A M/ K I])-

+ C(t)A(t)M/ 2 K [A(t) A WL2K -..1] (36) 

Dividing both sides of (20) by N(t) = N(t+At)A(t)Z(t)/K, the relative error ratio, p[N(t)], is 

AN(t+At) 

p[N(t)] = A(t)M/ K { A(t) - Z(t )/K A(t) AM / K + A(i)- Z(t)/K [A(t) A M/ K - 1] } 
N(t+ht) 

C(t) 

+- A(t) M f2 K [A(t)A M 2 K- 1] (37) 
N(t) 

Substitute (8) into (34), 

N(t) = N(t) A(t)-Z(t)/K A(t)M/K + C(t)A(t)M/2K 

= N(t) A(t)-F(t)/K + C(t)A(t)M/2K 

Rearranging this equation, 

C(t)A(t)M/'2K
 

= 1- A(t)-F(t)/K
 

N(t) 
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Substituting this into (36), 

p[N(t)] = A(t)NM/Kf p[N(t+At)] A(t)-Z(t)/K A(t)AM/K + A(t)-Z(t)!K [A(t)AM/K 1])-

+ [ 1- A(t)-F(t)/K ][A(t)AM/2K - 1] 

= p[N(I+At)] A(t)-F(t)/K A(t)AM/K + A(t)-F(t)/K [A(t)AM/K- 1] 

+ [ 1- A(t)-F(t)/K ][A(t)AM/2K - 1] (38a) 

Expanding the second and third terms on the right-hand side of (38a) and rearranging, 

p[N(t)] ={p[N(t+At)] A(t)-F(t)/K A(t)A M /K) + {[A(t)AM/2K - 1I[1- A()-F(t)/K A(I)AM/2K] 

(38) 

Starting from the last length group, X,the number of individuals calculated by using 

F(X), M, F'(%), and M' are 

Z(X) 
N( X) = C( X) 

F(X) 

and 

Z'( X) 
N'(X)=C(X) 

F'( X) 
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Then 

Z'(X) Z(X) 
C(M) - C(M)
 

F'( X F( k)

p[N(F)]=
 

Z(X)
 

C(X)
 

F(k) 

Z'(? )FOL) 1+ [Z'()Z(x)- ] 

Z( X ) F'(X) 1+ [F'( X)/F( -1] 

1 +p0[7__( X)] 
:- 1 (39) 

1 + p[F( X)] 

Substituting (39) into (38) and proceeding backward to the length group t, the generalized 

equation of p[N( t )] is 
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p[N(t)] p[N(k)] a(t)l l" (A(X-At)-Fol-At)/K A(X-2At)-F(X-2At)/K... A(t)-F(t)/K) 

+ [A(X-At)-AW2K-,][l+ A(X-At)(-2F(X-At)+ AM)/2K] x 

A(X-2At)(-F(X-2At)+AM)/K ... A(t)(-F(t)+AM,)/K] 

+ [A(t)-AW2K-,][I+A(l)(-2F(I)+AM)/2K] 

n
 

P[N(X)l a(t)' M/K 7C [A(t+iAt)-F(t+iAt)/K)
 

n-I 

+ 	 I [[A(t+iAt),L M)/2K-lj[I+A(t+(i-l)At)(-2F(t+(i-I)At)+AM)/2K]x 
i=O 

i 

71 A(t+jAt)(-F(t+jAt) + AM) /K] I 
j--o 

n i 

p[N(X)] (x(t)AM/K 7C f [a] I + 1: f [b][c][d] (40) 
i=l j--o 
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where, n = (X.-t)/At is the number of length groups between length 1.to 

[a] = A(t+iAt)-F(t+iAt)/K 

[b] = A(t+iA,)AM)/2K-1 

[c] = 1+A(t+(i- 1)At)(-2F(t+(i- 1)At)+ AM )/2K 

i 

[d] 	= [7t A(t+jAt)(-F(t+JAlt) + AM) /K]
 

j=0
 

and when j=i--0, let A(t+jAt)(-F(t+JiAt) + AM) /K = 1. 

It is more convenient to examine (40) in the fohowir-. ways: (i) Fix M and change 

F(X), ie., AM/K--0, a(t)AM/K=-l and [b]--O. nt[a] is a positive value and decreases as i 

increases because a< 1. The second Lnrm in (40) vanishes. Thus, the relative error ratio is 

dependent upon p[N( .)] and the sign of AF(X) and will be decreased by 7t[a] as i increases. 

(ii) Fix F(%) and change M, ie., p[N(?.)]= p[Z()] whose sign is dependent upon AM. The 

sign of [b] is dependent upon AM and [c] and [d] are positive values, thus, the sign of the 

second term is dependent upon AM. If AM<0, then 0<ax(t)AM/K<1. The values of 7r[a] and 

[d] decline as i and j increase. Thus, the relative error ratio will be reduced from a quite large 
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p[NQ.)] to an asymptotic level as the LCA processes backward starting from X. However, if 

AM>0, o((t) AM K>1, and the attenuation of ir[a] will be not so effective as in the case of 

AM<0. If AM>F>O, the relative error ratio will accumulate exponentially from Xto l. The 

second term in (40) accumulates to a positive value, but its effect is not as strong as the first 

term. 

The relative error ratio of F(i)At(t) can be computed as 

- F(t)At(t)] / F(t)At(t)p[F(I)At(l)] = [F(t)At(l) 


AMAt(t))/ F(.)At(t)
= {[Z'(t)At(t) - Z(t)At(t)] ­

N'(t) N(t)
 

+ In /F(t)At() - AM/F(l)
= -In 


N'(t+At) N(t+At)
 

1 N(t) N'(t+At) 

__ -In [ ] - AM/F(t) 
F(t)At(t) N'(,) N(t+A1t) 

1 1+ p[N(t+At] 
(41)[ ] - AM/F(1)

_In 

F(Tl t(t) 1+ p[ N(t)] 

The relative error p[ N(t)] and p[F(t)at(t)] are utikized in the computation section. 
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Mathematical Computation and Data Analysis 

Example for Jones' data 

Confidence in a numerical result from a complex computer algorithm based on a long 

analytical derivation is often like accepting an article of faith. Since we re-derived the equations 

for LCA and since we want to check our computer program, the data given in Jones (1979, 

Appendix I) for male Nephrops was repeated. The estimates of the von Bertalanffy growth 

parameters of the hake are Lo,= 70cm and K = 0"51yr. The annual instantaneous natural mortality 

rate, M--0"2/yr, provides M/K= 0"4. Assume that the 

E(X.) = F(X)/ .Z(k)= 0"7, where .=65cm corresponds to the terminal length group (65-70cm), the 

population size at the start of the length group X is calculated with (17) to be 

N(.) = 3 x 103 / 0"7 = 4"29 x 103 

and that of 60-65cm group from (16a) is 

N(%-At) = 4"29 x 103 [(70 - 60)/(70-65)] 0 '4 + 10 x 103 [(70 - 60)/(70-65)] 0 '4/2 

= 1714 x 103 

The survival calculated in Table I is the ratio of the number surviving to each successive length 

group. For example, for the 55-60cm group, 

S = 17'14 / 122"10 = 0"14 

where, 122'10 x 103 is the number of survivors in the 50-55cm group. This estimate is the 
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proportion of fish surviving during the time required to grow from 55cm to 60cm. Therefore, S is 

not an annual survival rate. The corresponding instantaneous total mortality is 

ZAt = - In (S) =1"963 

The exploitation rate, E = F/Z = C(t)/[N(t)-N(t+At)], for the 55-60cm group is calculated by 

E = F/Z = 94/[122.10- 17"101 =0"896 

Then, the corresponding fishing mortaliy in 55-60cm group is 

FAt = E (ZAt) = 1"758 

Because L., and K are known, we can compute At for each length group (the second column in 

Table 1). The annual instantaneous total and fishing mortality rates, Z(t) and F(t) are calculated 

from Z() = ZAt/At and Ft) = FAt/At. For 55-60cm group, 

F(t) = 1"758/0'811 = 2'167 and Z(t) = 1"963/0"811 = 2'421. 

A comparion of the results in Table 1 with those in Jones (1979, Appendix 1)show the results to 

be exactly the same. 

LCA on PMtjio otawnea 

We demonstrate now the impacts of variability in the input estimates by using the equations 

derived. To minimize the faith aspect, a case is chosen where we have a great deal of auxiliary 

data from field expeiments where variances of estimates are ususally available. Further, the 

system is well-known to us and some sense of intuition about what is reasonable has developed. 

http:94/[122.10
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The family of bivalves in Garrison Bay, Washington has been under investigation for about 

a decade. Papers by Scherba and Gallucci (1976), Gallucci and Rawson (1979), Gallucci and 

Gallucci (1982), Gallucci (1985) and Gallucci, Lai and Orensanz (in prep.) describe the 

environment, the bivalves and the data management scheme. Protothaca staninea is a Venerid, 

hardshell clam harvested commerically over most of the Pacific coast of North America, and is thus 

important to non-federal, regional, management agencies. In Garrison Bay it is harvested 

recreationally. Tagging experiments and an analysis of growth based on the Von Bertalanffy model 

yielded the following estimates: 

L'O = 61-0ram, V(Lo) = 7"053 

K = 0-346, V(K) = 0'00017 

An estimate of natural mortality, M, was computed by using two sets of data: data from 

creel census experiments where the size distributions of harvested clams were sampled to get a 

length frequency distribution of harvest, C(t), and data from a stratified random sampling design 

where all clams present in each sample unit were identified and measured. A length-frequency 

distribution of the stratified random sampling data was converted into an observed population 

abundance (Gallucci and Rawson, 1979) for each length group, N(t). The LCA algorithm was 

applied to the C(t) distribution to compute a predicted abundance, N(t)A, by iterating over natural 

mortality M until the sum of squares between N(t) and N(t)A was minimized for all I-values. The 

validity of this approach rests upon the generally high reliability that can be placed upon estimates 

from benthic surveys. Recruitment in the benthos is an active area of research. While definitive 

processes are only partially understood, it is clear that the operating factors for a bivalve stock are 
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more accessible to study than is common for marine fisheries in general. Further, our study have 

shown that, for this population, there are sequences of years with approximately constant 

recruitment (Orensanz, unpubl. dissertation). 

A value of M must be selected to initiate the analysis. Although it could be guessed at, and 

frequently is, we have choosen a soiewhat unorthodox way to "compute" M. Tlie estimated M is 

0.47 and results from minimizing Y((N(t)-N(t)A) 2 , where, N(t) is the estimated population size 

from stratified random sampling data (GaUuccl and Rawson 1979) and N(t)A is the predicted 

population size from (16) for a given M. An independent study has come up with an M which is 

about 50% lower. The key issue in this case is what is the smallest sized bivalve that will be 

included in the mortality estimation. This is vague and subject to interpretation but we feel that 

M=0.47 is a realistic estimate for this analysis. 

We assumed from the harvest data that fishing mortality for the terminal length group is 

about F(X) = 0"1. The LCA program was used with the input data on growth and mortality to 

obtain the estimates in Table 2. These estimates show reasonable magnitudes of abundance in the 

size classes and they show that a relatively major jump occurs in the estimate of fishing mortality 

(and thus in annual total mortality) in the low 40mm range. This result coincides nicely with the 

harvest data. 
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Effects due to changing size of length interval 

The results in Table 2 are carried out based on the histogram of Protothaca samin with a 

1mm size interval. We now group the histogram into 3mm, 5mm, 7mm and 9mm size intervals 

respectively. In order to avoid the effects of changing M and F(X), we set the final length interval 

to be lmm. In general, the estimates of stock size (N'(X)) for data grouped with At >1mm is 

progres',ively overestimated as A t increases from 1mm to 9mm (Fig. 4). The relative error ratio, 

p[N(t)] = [N'(L) -N(t)]I/N(t) where N(1) is the estimate for data grouped at lmm, is quite large at 

length group X-At. p[N(t)] declines to different, apparently asymptotic levels each corresponding 

to At being used. The point where p[N(l.)] is approximately constant is where MAt(t) becomes less 

than 0"3 regardless of At. 

The instantaneous fishing mortality rate, FtAt'(t), of grouped histograms is underestimated 

as Al increases (Fig.5). Further, p[FAt'(t)] oscillates with a trend such that its absolute value 

increases for larger At. In contrast to p[N(t)], p[FAt'(t)]is in the negative direction. For both 

estimates, the absolute relative errors are larger than 5% when At >5mm. 
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This example shows that At =3mm is probably the largest At that could be used for 

grouping the length frequency distribution of Potothaca staminea because p[N'(t)] and 

p[F'(t)At'(t)] are greater than 5% when a larger At is used. The leasson here is to keep as many 

length intervals in tie fui' recruited stock (about 40mm) as possible. The factor of MAt(t) >0-3 

may also play an important role if the majority of fully recruited bivalve length groups (eg., 

t>40mm) are combined such that MAt(t)>0.3. This follows from the fact that p[N(X-At)] 

increases drastically and then declines as the backward computation of LCA proceeds. 

Errors due to variation of L. and K 

The variances of L. and K were estimated from the tagging data. Cov(L.,K) is not 

available from the estimation so we assume that Cov(Lc,,K)--O, e.g., see Sainsbury (1980). 

Using V(L,)=7'053 and V(K)--0"00017 and (3 ), the 95% confidence intervals for N(t) and 

F(t)At(l) are shown in Figures 6 and 7. 

Figure 6 shows that the 95% confidence interval (95% c.i.) of N(I) increases almost 

exponentially as LCA progresses backward. In contrast, the 95% c.i. of F(t) decreases to an 
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apparent asymptotic level when t<44mm (Fig.7). 

It is of interest to examine which component in (28) or (31) dominates the variance of N(t). 

Figure 8 shows how the derivative of N(t) varies with respect to L,, and K. It is obvious that 

IaN/aKl = la2N/aL,,.aK1 >> laN/aLOO1. 

(42) 

However, Figure 9 shows that ION/aL 0 12V(L.) = V[N(t)]. This implies that V(L.,), which is 

much larger than V(K), is the main factor that determines the values of V[N()]. It can also be 

shown that the evidence that the selection of the value of L0 is less critical, as long as the value is 

approximately right, but the value of V(L.,) is important. Thus, if a population has a large V(L.), 

LCA must be used with caution. 

In addition to the question of how N(t) affected by the variance of estimated LOO and K, 

there is also the question of how does N(t) change if the input L. and K are guessed incorrectly, 

Equation (27) addresses this question. It is possible to plot a sensitivity, p(N(t), to evaluate the 

question, but the inequality (42) clearly indicates that estimates of N(t) are more sensitive to 

deviation from the true values of K than L*. 
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Effects due to variability of M and F(X) 

According to Table 2, the true M and F(X,) are assumed to be 0'47 and 0 1respectively. 

We will examine the effects of changing M and F(.) separately. First, fix F(X) and change M by 

0'2, 0'3, 0"7, 0-8, 0'9 and 1'0. When M--02 and 0.3, AM<0 and p[ N(t)]<O. The absolute 

value of p[ N(X.)] is reduced by 0<c(t)tM/K<I and 0<t[a]<l graduately from the last length 

group backward to the preceeding groups. Also, [b]<0, [c]>l, which makes the second term in 

(40) negative. However, 0<[d]<1, the value of [d] declines as j increases, and thus decreases 

the magnititude of the second term. As shown in Fig. 10, p [ N(t)] -1"0 when AM<0, and 

remains quite constant over all length groups. 

As expected, p[ N(t)]>O and accumulates geometrically as AM>O (Fig. 10). Although 

p[N(t)] is attenuated by 7t[a], ca(t)AM/K>I will decrease the effect due to 7t[a]. Also, the second 

termin (40) accumulates AM over all length groups in LCA. The effects increase rapidly as AM 

becomes larger because AM is accumulated as a power in (40). Evidently, increase of M' from 

M--0'47 causes more error in piN(t)]. 
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Effect of AM on p[F(t)] is opposite to the direction of p[N(t)]. p[F(t)At(t)]<O when
 

AM>O and p[F(t)At(t)]>O, otherwise (Fig. 11). 
 The values of p[F(t)At(t)] increase as the LCA 

proceeds backward through the length groups, but its magnitude is not as large as that of p[N(t)]. 

It should be noted that when M increases and becomes greater than MAt(t) >0'3, p[N(t)] is 

under-estimated because N(t) is expanded with a Taylor series expansion where the remainder is 

omitted. Further, p[F(t)At(t)] appears to be over-estimated as seen in Fig. 13. 

When we fix M and change F(k) from 0"1 to 0"01, 0'05, 0"2, 0'3, 0"5 and 1"0, p[N(X)] is 

quite large at the beginning and then becomes approximately asymptotic at the 44mm length group 

(Fig.12). This should be expected because the second term vanishes ([b]=O) and p[NQ.)] is 

attenuated by 7t[a]. Figure 12 also shows that AF(X)<O (i.e., F(.)=0"01 and 0"05) causes greater 

error in p[N(t)] than AF(X.)>0 ( F(X)= 0'2, 0'3, 0'5, and 1'0). 

Figure 13 shows that the dirction of p[F(t)At(t)] corresponding to AF(X) opposites that of 

p[N(t)]. When AF(X)>O, p[N(t)]>0 and decreases rapidly from a large positive value to an 

apparent asymptotic close to zero. However, when AF(X)<0, p[N(t)]<0 and appears to be 

asymptotic from the negative direction. 
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Discussion 

The results of a length-based cohort analysis are not the end-product in the management 

of a fishery. Usually the results will be used to estimate a potential yield and perhaps guide 

decisions about how that yield may be extracted, e.g., with respect the pressure that may be put 

on size or age groups. Upon these decisions there usually rest an array of important 

socio-economic consequences. One concern, therefore, of cohort analysis should be the extent 

that variability in the data and the variances of the estimates combine to introduce uncertainty in 

the results. Another concern is the peculiarity of any model itself, viz., are the effects of 

biased or highly variable estimates magnified or minimized in the generation of the output from 

the model. 

These types of concerns were not obvious in the literature until the 1985 conference at 

Mazara del Vailo on length-based fish stock assessment. Prior to the meeting, only Laurec 

and Mesnil (1985) had raised the issue of the sensitivity of the results the manager gets to the 

variability in the input data for LCA. Our analysis provides a prescription for predicting the 

error that will result from poor estimates of input parameters and for predicting the effects of 

different grouping of length intervals. The next step is the filtering of such results to the level 

of making specific recommendations for specific stocks. 

In our example, the results of the LCA on rotothac staminea show a trend that is 

similar to the species harvesting history, but this must be carefully interpreted. The confidence 

intervals around the estimated values of N(t) and F(t) are quite large and the c.v. of N(t) is 

greater than 500%. We recommend that the estimates of N(t) be viewed as indicators of the 
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characteristics of a cohort subject to harvesting pressure, rather than used as the exact
 

estimates of the population size. The standard deviation of L. is 2"67cm with a coefficient of
 

variation (c.v.) less than 5%. Nevertheless, even this low variance of L., contributes
 

substantially to the overall variance of N(I) via (28).
 

The parameters L., and K are treated as deterministic rather than stochastic (i.e.,
 

E(L.)=L. iii (27)). The relative error ratios p[N(t)] and p[F(t)] accumulate to a high level 

because of the large values in aN/K and DN/aL. around the true L., and K (Fig. 6). This 

illustrates how difficulties may result via the choice of LO., e.g., by choosing the largest 

size fish (Jones, 1985) or the largest size plus 5% (Pauly, 1983). Instead, being aware of how 

Lo- contributes to the variability of N(t), implies that LO. should be very carefully estimated. 

When LCA is carried out on a length frequency histogram with a length grouping of At, 

it is based on the supposition that catches are evenly distr.buted over smaller intervals within 

At. In our bivalve example, using Al=3mm instead of 1mm introduces a p[N(L)]=2.5% for 

lower I-values and a p[N(t)]>5% for higher I-values. Working with Pope's age cohort 

analysis, Sims (1982) varied the time intervals between catch samples (analogous to varying 

the age interval, if steady state is assumed) and found that p[N(t)] was minor unless M and F 

are both high. Since length and age are linked by the von Bertalanffy growth model in LCA, a 
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similar pattern should also occur. In fact, p[N(t)] did increase when At change l from 1mm to 

3mm, 5mm, 7mm, and 9mm, as did F(t). Figure 4 shows that p[N(t)] increases rapidly 

when MAt(t)>0"3. It appears to us that MAt(t)>0.3 is more important than the assumption 

that catches be evenly distributed over the smaller intervals within At. Thus, At should be 

selected such that the condition of equation (17) is true for all length groups. 

The results in Fig. 4 provide a useful criterion by which to judge whether LCA is an 

appropriate method to analyze a given length frequency data set. LCA should not be employed 

when too many length groups do not satisfy the condition in (17). 

In our bivalve example, an over-estimate of the natural mortality rate may cause more 

error in both N(t) and F(t) than an under-estimate would. Sims (1984) found a similar result 

for Pope's age cohort analysis. V," I Uity ini the natural mortality rate (M) results in more 

error than variabilty in the terminal fishing mortality rate, which can usually only be guessed 

at, whereas one might expect M to be somewhat known from independent experiments. Thus, 

if M cannot be estimated confidently, the estimated cohort parameters should be used only as 

population indicators. 

The derivation of the theory of length cohort analysis is similar to that of Pope's age 

cohort analysis, and thus the assumptions made in age cohort analysis can be found in length 

cohort analysis. The most notable assumption is that a relatively large part of the total loss 

from the population be due to fishing. This guarantees that the catch at length sample 

represents a major part of the information about the total loss from the population. In other 
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words, F >>M and thus, the estimation of stock size N( t ) is a good replication of the
 

population even if M is poorly known.
 

There are, however, some differences between age cohort analysis and length cohort
 

analysis which include:
 

(i) The steady state assumption for length cohort analysis is essential because the length 

cohort analysis is done on only one collection of length frequency samples at a particular 

instant. Therefore, the length freq "ency data collected must be able to replicate the progress of 

the cohort; thus, significant effort needs to go into obtaining a representative sample. Jones 

(1984) suggested that length frequencies over several years be summed together to smooth the 

variability due to the effects of year-class and mortality rate fluctuation, but the consequences 

of this prescription are not known. 

(ii) Length cohort analysis estimates the average numbers attaining each length t during a 

year, as well as the average number in a length interval at "any" particular moment under the 

assumption of steady state. Thus, the birthday of the cohort need not be assumed to be the 

first day of the birth year, but, the growth parameters for all individuals must be essentially 

the same. Therefore, N(t) indicates the number of individuals who attain the length I 

irrespective of the time at which this happens during the course of a year. Incontrast, age 

cohort analysis does not involve the growth of fish and the assumption of steady state, but it 

does assume that the birthday is the first day of the year, so that N(t) is the average number in 

a cohort attaining age t at the beginning of the year and no further additions occur until the next 

year. 
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(iii) Equation (5) implies that 1.< L.. This condition requires that the upper bound of the 

terminal length group (X)be smaller than L**. Therefore, length groups of t > L., should be 

combined into the terminal group. This is the reason that the average number in the terminal 

length group is estimated by (18). Another reason to combine data for t > L. is that the 

length frequency for extremely large fish cannot always be collected precisely 1md there 

may be many empty length intervals in the histogram. 

(iv) The length cohort analysis also assumes that age and length are in a one-to-one 

correspondence and thus are deterministically convertible. This may be the c,.itical point that 

deviates from reality. 

(v) Since the middle of the length interval is not equal to the middle of the age interval, length 

cohort analysis is restricted to the use of the average length composition over a given time 

period (Jones, 1984). Cohort analysis, however, permits the use of either an estimate of the 

average age composition in any year (ic., synthetic cohort), or an estimate of the numbers 

from a year-class as its abundance decays over its life time. 

Of course, LCA is not the only approach for a length based analysis of a cohort. If the 

two assumptions made for LCA hold (steady state and convertibility of age and lengrth by the 

von Bertalanffy growth model), a length-based virtual population analysis (here called LVPA) 

analogous to that of Gulland (1965) can be developed. To see this, divide (8) by (13) 

N(t+At) Z(t) A(t)-Z(t)/K 

(42) 
C(t) F(t) (1- A(t)-Z(t)/K 
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Assuming that the instantaneous natural mortality rate (M) and the terminal instantaneous 

fishing mortality rate (F(X)) are known, the stock size in the terminal length group (X), can be
 

calculated by rearranging (13) as
 

C('&) Z(X) 
N(X) = (43) 

F(X) [1- A.(X)-Z(X)/K] 

F(X-At) is estimated by substiniting N(X) and C(X-Ai) into (42) and solving by 

numerical iteration (Johnson and Riess, 1982). N(X-At) is estimated by substituting F(X-At) 

and N(X) into (8). Applying this procedure in reverse, the sequence of parameters F(X-2At), 

N(X-2At), F(.-3A.), C(X-3AI) can be estimated until the first length group is reached. 

LVPA may provide more accurate estimates than LCA since it does not use a Taylor series 

approximation. In fact, LVPA may be recommended if the condition in (17) is not adequately 

fulfilled. 

It can be argued that there are also other growth models which can be used to replace the 

von Bertalanffy model in either LCA or LVPA. The mathematical derivations would follow 

along lines similar to those given in this paper. 

The FORTRAN programs and documentation used in this paper for LCA ai, available 

through the authors via the Management Assistance for Artisanal Fisheries (MAAF) project at 

the authors' address in the School of Fisheries, University of Washington. 
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Appendix A. Derivation of AFAt'(i) in Equation (25) 

n-i
 
AFAt'(t) = F'At'(,) - ' F(t+iAt)At(t+iAt).
 

i--0
 

n-1 n-i 
= [Z'(t) - M]At'(t) - [ I Z(t+iAt)At(t+iAl) - I MAt(t+iAt)] 

i=0 i=0 

n-i n-1
 
= [Z'(t)At'(t) - I Z(t+iAt)At(l+iAt)] - [MAt'(t) - 7, MAt(t+iAt)] 

i=O i=0 

Because M is constant over the length and At'(t) can be partitioned into the sum of At(t+iA.), 

n-I 
the term [MAt'(t) - Y,MAt(t+iAt)] vanishes. 

i=0
 

N'( t+nAt) n-1 N[t+(i+i)At]
 

AFAt'(t) = In -7, In
 

N'(t) i=0 N( t+iAt) 

N'( t+nAt) Ntt + At ) N( t+2At) N( t+nAt) 

=In -Inf X x..... }
 
N'( 1) N( t) 
 N( t+A1 ) Nl+(n- 1)At) 
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= I N'( t+nAk _ In N( t+nA1 ) 

N'(t) N(t) 

= In 	 N'(t+n6l) -InN'(1) 

N(1+nAi.) N(t) 

I i1+rN(t+nAt)]
 

1+ p[N(t)]
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Appendix B. Derivatives of N(l) with Respect to L, and K 

From equation (30), 

n-1
 

N( t)= N(X)x(I )M/K + C(b+iA1 )3(t)M2 kI 
i--0
 

where, 

LOO - I. 

Lc -( 1.+nAlt) 

and 

(L.- )2 

{L(t-(t+i)L) (Lo,-[ t+(i+ m)At] 

It is obvious that aN/OL0,, aN/OK and a2N0LC,.K are dependent on a(l) and P(t). Define 

the following terms: 

OLU=--c) i9Lo ; OK=aCx(t) laK; OL 0 K=a 2 a(t) /LoODK 

and 

L.-Jp(t) /DL,,; 0K--aO(t) /aK; 0oK---@2p~) /KoK. 
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The explicit forms of these variables are 

1 1 

OL. = (M/K) (a(t)M/K[ 

LL-tL-( L- +nAt) 

0 K = -(MIK2) ca(t)M / K In a(t) 

OLOK =-(l/K) OL 0 [(M/K) In a(t) +1] = 0A.{ [OK/a(t)] -(l/K)] 

1 2 [ L,.-(t+iAt)] + At 

0L,,, K =(M/2K) p(t)M / 2 K f - -1 

L**-t [L**-(t+i~t)] [L~o-(t+(i+ 1)At)] 

OK = -(M/2K 2) 3(t)M/2K In P(t)
 

eLoK = eL- p(t)-M/2K[o K - (M/2K2)/p(t)]
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Appendix C. Derivation of H(t) with Respect to L., and K 

DH(t) D M 1
 

- InA(t)M/K = - -


DLOO aLO K Lm - t 
 L. - (t+Al) 

DH(t) a M 

- lnA(t)MIK - lnA(t)

aK aK K2
 

DH(t) 0-2
 

= - InA(t)M/K
aL aK aL,,K 

M 

aLOO ( KK2 inA(t)MIK) 

M 1 1
( ) 

K2 LO - I L. - (1+At) 
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Table 1. LCA on Jones' data (Jones, 1979, Appendix 1). 

Length (mm) At( t) Catch Stock Size FAt( t) ZAt( t) F( t)( 1) Z( t)
( 0 (103) (103) 

10.0-15.0 .1740 1 20246.46 .00005 .03485 .00144 .2002915.0-20.0 .1906 163 19552.93 .00853 .04666 .18287 .2447620.0-25.0 .2107 1390 18661.60 .07909 .12126 
 .65223 .5754725.0-30.0 .2356 4120 16530.45 .29424 .34172 
 .86106 1.45065

30.0-35.0 .2671 4730 11745.63 .53243 
 .58717 .90678 2.1986235.0-40.0 .3083 3040 6529.37 .65196 .71591 .91068 2.3221040.0-45.0 .3646 1650 3191.22 .76469 .84133 .90891 2.3072645.0-50.0 .4463 827 1375.86 .98278 1.07950 .91040 2.41884
50.0-55.0 
 .5754 312 467.47 1.21278 1.34249 .90338 2.3332855.0-60.0 
 .8109 94 122.10 1.75832 1.96331 .89559 2.42106
60.0-65.0 1.3863 10 17.14 1.07826 1.38625 .77783 .99996

65.0-70.0 -- 3 4.29 -- -- .70 -­

LO,=70.0mm, K=0.5, M--0.2, MK--0.4, F(?.)/Z(X)--0.7, where X=65mm. 

FAt( t) and ZAt( t) are the integrated instantaneous fishing and total mortality rates over the 

corresponding length group 1. 
At( 1)is the time required for an individual to grow from t to t+At, where At=5mm. 

http:11745.63
http:16530.45
http:18661.60
http:19552.93
http:20246.46
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Table 2. LCA on RE1tJ= sminea in 1975. 

Length (m) Catch Stock Size 

f . C(J N ) Fg ;) ~ tC ) F(-)/Z( ) Z() 

10.0- 11.0 
11.0- 12.0 
12.0- 73.0 
13.0- 14.0 
14.0- 15.0 
15.0- 16.0 
16.0- 17.0 
17.0- 18.0 
18.0- 19.0 
19.0- 20.0 
20.0- 21.0 
21.0- 22.0 
22.0- 23.0 
23.0- 24.0 
24.0- 25.0 
25.0- 26.0 
26.0- 27.0 
27.0- 28.0 
28.0- 29.0 
29.0- 30.0 
30.0- 31.0 
31.0- 32.0 
32.0- 33.0 
33.0- 34.0 
34.0- 35.0 
35.0- 36.0 
36.0- 37.0 
37.0- 38.0 
38.0- 39.0 
39.0- 40.0 
40.0- 41.0 
41.0- 42.0 
42.0- 43.0 
43.0- 44.0 
44.0- 45.0 
45.0- 46.0 
46.0- 47.0 
47.0- 48.0 
48.0- 49.0 
49.0- 50.0 
50.0- 51.0 
51.0- 52.0 
52.0- 53.0 
53.0- 54,0 
54.0- 55.0 
55.0- 56.0 
56.0- 57.0 
57.0- 58.0 
58.0- 59.0 
59.0- 60.0 

.0572 

.0584 

.0596 

.0608 

.0622 

.0635 

.0650 

.0664 

.0680 

.0696 
0714 
.0732 
.0751 
.0771 
.0792 
.0814 
.0838 
.0863 
.0889 
.0918 
.0948 
.0980 
.1014 
.1051 
.1091 
.1134 
.1180 
.1230 
.1285 
.1345 
.1410 
.1482 
.1563 
.1652 
.1752 
.1865 
.1994 
.2142 
.2313 
.2515 
.2755 
.3045 
.3404 
.3859 
.4455 
.5269 
.6449 
.8315 

1.1719 
--

7.0 
2.0 
.0 

1.0 
.0 

1.0 
1.0 
1.0 
1.0 
2.0 
1. 1 
3.0 
5.0 
2.0 
6.0 
9.0 

10.0 
9.0 
6.0 
3.0 
15.0 
7.0 
2.0 
9.0 
7.0 

14.0 
11.0 
14.0 
12.0 
17.0 
22.0 
19.0 
37.0 
36.0 
36.0 
50.0 
62.0 
55.0 
47.0 
43.0 
26.0 
26.0 
12,0 
10.0 
15.0 
6.0 
5.0 
4.0 
3.0 
1.0 

4641.64 
4511.54 
4387.44 
4266.25 
4144.99 
4025.65 
3906.25 
3787.82 
3670.38 
3553.93 
3437.52 
3323.14 
3207.85 
3091.72 
2979.76 
2865.01 
2748.62 
2632.69 
2519.24 
2410.23 
2305.56 
2190.45 
2085.03 
1986.02 
1881.51 
1780.66 
1674.64 
1573.61 
1471.61 
1373.74 
1273.15 
1170.22 
1073.11 
961.46 
855.00 
752.86 
641.82 
525.24 
422.64 
334.58 
256.75 
201.20 
150.17 
116.89 
88.36 
58.16 
40.10 
25.32 
13.84 
5.70 

.00153 

.00045 

.000O 

.00024 

.00000 

.00025 

.00026 

.00027 

.00028 

.00057 

.00030 

.00092 

.00159 

.00066 

.00205 

.00321 

.00372 

.00349 

.00243 

.00127 

.00667 

.00328 

.00098 

.00466 

.00382 

.00811 

.00678 

.00920 

.00844 

.01285 

.01802 

.01695 

.03641 

.03968 

.04484 

.07185 

.10661 

.11651 

.12470 

.14628 

.11411 

.14905 

.09034 

.09808 

.20772 

.12353 

.15555 

.21048 

.32696 

.10000 

.02843 

.02789 

.02801 

.02884 

.02921 

.03011 

.03079 

.03150 

.03224 

.03331 

.03384 

.03531 

.03687 

.03688 

.03927 

.04147 

.04309 

.04405 

.04423 

.04440 

.05122 

.04933 

.04865 

.05406 

.05509 

.06138 

.06223 

.06701 

.06882 

.07605 

.08430 

.08663 

.10987 

.11735 

.12722 

.15958 

.20045 

.21734 

.23363 

.26477 

.24380 

.29256 

.25054 

.27974 

.41825 

.37182 

.45987 

.60408 

.88698 

.57000 

.05380 .49673 

.01612 .47770 

.00000 .47000 

.00825 .47391 

.00000 .47000 

.00838 .47397 

.00844 .47400 

.00851 .47404 

.00859 .47407 

.01718 .47822 

.00874 .47415 

.02602 .48256 

.04306 .49115 

.01786 .47855 

.U3229 .49593 

.07732 .50939 

.08626 .51437 

.07933 .51050 

.05504 .49738 

.02866 .48387 

.13031 .54043 

.06640 .50343 

.02020 .47969 

.08612 .51430 

.06941 .50506 

.13205 .54152 

.10887 .52743 

.13726 .54479 

.12261 .53569 

.16899 .56561 

.21375 .59782 

.19565 .58437 

.33138 .70309 

.33817 .71034 

.35247 .72607 

.45026 .85554 

.53183 1.00527 

.53606 1.01471 

.53375 1.00993 

.55248 1.05287 

.46805 .88505 

.50946 .96075 

.36058 .73598 

.35059 .72486 

.49664 .93879 

.33222 .70562 

.33824 .71307 

.34844 .72653 

.36863 .75689 

.17544 -­
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Fig. 1 

Fig. 2 

Fig. 3 

Lists of Figures 

A demonstration of how the age and length of a cohort are related. 

A demonstration of the concept of length cohort analysis. Catch is assumed to be taken 

at the middle of a length interval (solid lines). Dashed line indicates catch is taken 

continuously over the length interval. 

A demonstration of the consequence of using smaller (solid lines) and larger 

(dashed lines) sized length intervals in LCA. 

Fig. 4 Relative error ratio of N(t) corresponding to the use of different sized At. From 

upper to lower curves: At= 9mm, 7mm, 5mm, and 3mm. Right-hand side of 

dashed lines indicates the length intervals where MAt(t)>0"3. 

Fig. 5 Relative error ratio of FAt(t) corresponding to the use of different sized At. From 

upper to lower curves: AL=3mm, 5mm, 7mm, and 9mm. 

Fig. 6 The 95% confidence interval for N(t) with V(L,)=7"053 and V(K)=0'00017. 

The solid line is the estimated N(t) and dashed lines are the 95% confidence interval. 

Fig. 7 The 95% confidence interval of FAt(t) with V(L*)=7"053 and V(K)=0'00017. 

The solid line is the estimated N(t) and dashed lines are the 95% confidence interval. 
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Fig. 8 The values of the derivatives of N(t) with respect to L,,, K, and L**K. The solid 

line is IDN/aL.I, the dashed line is IaN/DKI, and the dotted line is ID2 N/aL.AKI. 

Fig. 9 The values of (aN/DL.) 2 V(Lo,) (dashed line) and V[N(t)] (solid line). 

Fig. 10 Relative error ratio of N(t) as M takes the values 0"1, 0"2, 0"7, 0'8, 0'9, and 1"0 

(from lower to upper curves), while F(k) is fixed. 

Fig. 11 Relative error ratio of FAt(t) as M takes the values 0"1, 0"2, 0"7, 0"8, 0"9, and 

1"0 (from upper to lower curves), while F(?,) is fixed. 

Fig. 12 Relative error ratio of N(t) as F(X) takes the values 0"01, 0"05, 0"2, 0-3, 0'5, 

and 1-0 (from upper to lower curves), while M is fixed. 

Fig. 13 Relative error ratio of FAt(t) as F(X) takes the values 0"01, 0"05, 0"2, 0"3, 0'5, 

and 1.0 (from lower to upper curves), while M is fixed. 
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Fig. 7 	 The 95%6 cwzfldwze im 'wI ctPL(1) with V(L ,)=7-053 and V(K)0 00017. 

"[the mu ine heeae dN(I) -rnS e lis ye the 95 confdance izwva. 
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Fig. 8 	 TMevalun of the derv uvs(Ni) wihrespea to L,. K. WnI.,,K. Thbe zld 

line is PaNIdLJ theMedline is jatfaY mthedotd line is P2N/aL,.8Kj. 
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Fig. 9 The values of (aN/'L.) 2 V(Lj (dashed line) and V[N(Q] (solid line). 
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I 1.0 RehfivccnvrroNQ a M Wm the vale 0-1, 0-2, 0"7, 0-8, 0"9, and I'0 

(frimlower to uppercwu), while F() is fied. 
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Pig. 11 Rdtiveoerr" iodFt)MestluNv2ueu 0-, 2,0-7, 0-8, 0-9,md 0 

1-0 (fron uppartoower cwvu), while F.)isfixed. 
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Fig. 12 ReItivemfr rtiocN(t) a F(.)kosthevalue 0-01,O05, 0-2. 0-3, 0-5, 

m 10-(frt upia tolowu crves). wikM isrixd. 
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Fig. 13 Rd i rraurfiofPQa)up l)U tevlues 0-01, O.0, 0-2,0-3,0-5, 

a I-0 (frum lower to ufr curv), while Id is fixed. 


