Consistent correction
 of census and vital registration data for Thailand, 1960-80

Norman Y. Luther, Neramit Dhanasakdi, and Fred Arnold

PAPERS OF THE EAST-WEST POPILLATION INSTITUTE, published about eight times a year, facilitate early dissemination of research findings and policyrelevant reports on the populations of Asia, the Pacific, and the United States. Cost per copy, $\$ 3$.

NOTE TO CONTRIBUTORS: The Population Institute considers unsolicited as well as commissioned manuscripts for the Paper Series. Appropriate topics are demographic trends and estimation, fertility and famiiy structure, economic development and human resources, urbanization and migration, and population policies and programs. All manuscripts are reviewed. In selecting manus ripts for publication, the Institute considers quality of scholarship and usefuluess to public officials and other professionals in the field of population; it also seeks contributions reflecting diverse cultural and disciplinary perspectives on population. The series can accommondate articles not necessarily suited for journals because of unusual length or treatment of subject. All copy must be typed double-spaced. For additional information on manuscript preparation, write to Editor, Paper Series.

OTHER SERIAL PUBLICATIONS OF THE EAST-WEST POPULATION INSTITUTE

Working Papers are circulated for comment and to inform interested colleagues about work in progress at the East-IVest Population Inciitute. They are intended to complement evidence of completed work as reflected in Papers of the EastWest Population Institute and the Reprint Series. $\$ 1$ per copy.

Reprint Series brings selected articles originating from Institute research but published elsewhe.e to the attention of population specialists who might not otherwise see them. Single copies available upon request.

Asian and Pacific Population Forum brings articles of potential value in policy formulation, F rogram administration, and research to the notice of policymakers, professionals, and scholars concerned with population matters in the AsinPacific region. Published yuarterly in November, February, May, and August. Annual subscription rate, $\$ 12$ (free to individuals and organizations involved in population-related , ork).

Serial publications except Working Papers are available without charge to libraries serving population specialists and to professionals and scholars in the field of population. Requests describin' the nature of the research or program and the intended use of the publications should be addressed to: Publication Sales and Distribution, East-West Center.

Consistent correction of census
 and vital registration data for Thailand, 1960-80

Norman Y. Luther,
Neramit Dhanasakdi, and Fred Arnold

Number 103 • December 1986

PAPERS OF THE EAST-WEST POPULATION II ISTITUTE

Abstract

NORI AN Y. LUTHER is Associate Professor, Department of Pure and Ap. plied Nlathematics, Washingtun State University, and Research Fellow, EastWest Population Institute. NERAMIT DHANASAKDI is Chief of the Population and Housing Unit, Population Statistics Branch, Population Surves Division, National Statistical Office, Bangkok. FRED ARNOLD is a Researcł Associate, East-West Population Institute.

Library of Congress Cataloging-in-Publication Data

Luther, Nornan Y., 1936-
Consistent correction of census and vital registration data for Thailand, 1960-80.
(Papers of the East-West Population Institute ; 103) Bibliography: p .

1. Registers of births, etc.--Thailand.
2. Thailard-Census, 1960. 3. Thailand-Census, 1970.
3. Thailand-Census, 1980. 5. Thailand-Statistical
services. I. Neramit Dhanasakdi, 1946- . II. Arnold,
Fred. III. Titie. IV. Series.
HA39.T4L87 1986 304.6'标23 $\quad 86-32807$
ISBN 0-86638-089-2

CONTENTS

Acknowledgments vii
Abstract 1
Method 2
Application to Thailand, 1960-80 3
Principal findings 6
Censuses 6
Vital registration 9
Life tables 12
Summary and conclusion 19
Appendix A. Derivation of the preliminary correction factors 23
Births 2.3
Censuses 24
Deaths 25
Appendix B. Tables 29
Appendix C. Formulas for deriving the life tables 35
References 37

FIGURES AND TABLES

Figures

1. Preliminary and final correction factors for males: Thailand, censuses of 1960, 1970, and 1980 II
2. Preliminary and final correction factors for females: Thailand, censuses of 1960,1970 , and 1980 I2
3. Preliminary and finat correction factors for intercensal registered deaths for males: Thailand, 1960-65, 1965-70, 1970-75, and 1975-80 17
4. Preliminary and final correction factors for intercensal registered deaths for females: Thailand, 196()-65, 1965-70, 1970-75, and 1975-80 18
5. Corrected life table probabilities of dying, $;$, 2 : Thailand, 1960-65 and 1975-80 19

Tables

1. Reported and final corrected census age distributions and estimates of completeness for males: Thailand, censuses of 1960, 1970, and $1980 \quad 7$
2. Reported and fimal corrected census age distributions and estimates of completeness for females: Thailand, censuses of 196(0), 1970, and $1980 \quad 8$
3. Final correction factors: Thailand, censuses of $19(1)$, 1970, and $1980 \quad 9$
4. Completeness estimates (percentages): Thailand, censuses of 1960), 1970, and 1980 II
5. Registered and final corrected intereensal birthe and deaths and estimates of registration completeness for males: Thailand, 1960-65, 1965-70, 1970-73, and 1975-80 1.3
6. Registered and final corrected intercensal births and deaths and estimates of registration completeness for females: Thailand, 196()-65, 1965-70, 1970-75, and 1975-80 it
7. Final correction factors for registered births and deaths: Thailand, $19(1)-65,1965-70,197(0-75$, and $1975-80$ 15 15
8. Completeness estinatees (percentages) tor death registration: Thailand, $196(1)-65,1965-70,1971)-75$, and $1975-80$ (16
9. Derived intercensal life tables for males: Thailand, 1960-65, 1965-70, 1970-75, and 1975-80 20
10. Derived intercensal life tables for females: Thailand, 19(0)-65, 1965-70, 1970-75, and 1975-80 20
11. Estimated midcensus age distributions for males and females: Thailand, 1965 and 1975 (1 April) 22
B 1. Preliminarily corrected census age-sex distributions: Thailand, 1960, 1970, and 198030
B.2. Preliminary correction factors: Thailand, censuses of 1960, 1970, and 1980 31
B.3. Coale-Demeny model North life tables for determining preliminary correction factors for registered deaths for males: Thailand, 1960-65, 1965-70, 1970-75, and 1975-80 32
B.4. Coale-Demeny model North life tables for determining preliminary correction factors for registered deaths for females: Thailand, 1960-65, 1965-70, 1970-75, and 1975-80 33
B.5. Preliminary correction factors for registered births and deaths: Thailand, 1960-65, 1965-70, 1970-75, and 1975-80 34

ACKNOWLEDGMENTS

We are grateful to Wiwit Siripak and Chintana Pejaranonda of the National Statistical Office, Bangkok, to Robert D. Retherford of the East-West Population Institute for helpful discussions and comments, arid to Robin Loomis of the East-West Population Institute for research assistance. Support for this research project was provided by the Office of Population, U.S. Agency for International Development, under a cooperative agreement with the East-West Population Institute.

Abstract

A new procedure for the simultaneous and consistent corre. tion of two or more censuses and intercensal registered births and deaths is applied to Thailand's censuses of 1960, 1970, and 1980, and to registered births and deaths for the period 1960-80. The procedure begins with a set of preliminary correction factors that are inconsistent because they are derived from a sariety of existing sources. The procedure then identifies the set of consistent correction factors that are "closest" to the preliminary tacturs.

The results show marked underenumeration of the ()-4 age group in each consus, especiatly the 1906 census in which age rounding was apparently presalent. Age exaggeration at the oldest ages is also indicated, at least in the 1970 and 1480 censuses. Birth registration completemess rose during: 1960)-80, from about 82 to 85 percent for males and from about 78 to 45 percent for pemales. Nevertheless, death registration completeness for both sexes howered within the th to 6 percent range, dedining slightly until the carly 1970 , when it leveled off ar began torise. The age proup 0 - 4 had the greatest underregistration of deathe, and underregistration at this age apparently increased throughout the period. Athough life enpectancy incredsed for both seeses during the perind, temale superiarty in life evpectancy alsonemeded. The werage number of sars of life expectancy is estimated to hase increased from for males in 1975 sio.

The Thailand censuse of 1960 , 1970 , and 1980 and vital registration during the period doth-so have been the subject of warious estimates of census undercount, difusted consus age-sex distributions, underregistration of births and deathe, intercensal life tables, and other demographic variables, many of which are mentioned helow. Howerer, these estimates, as a whole contain many incomaistenctes. The purpose of this paper is to provide a new, con sistent set of estimate for the ese data, making selective use of the presious entimater.

Io acomplish this purpuse, a new procedure for the simulaneous and consistent earrection of two or more remsunes and intereensal registered births and deathe (Luther and Rethertord 1986a, l9860) is applied to Thailand's cemsuses of 1900, 19F0, and 1980 and wo the registered births and deaths for the intervening period of 1 to (1) $8(0)$. Specificalls, for cach sex the procedure provides estimates of (1) correction factors for intercensal registered births, (2) age-specific correction iactors for intercensal registered deaths, (3) age-specific correction tactors for the age distribution at each census, and (4) life tables for the intercensal periods, such that the corrected registered births and deaths, the corrected census age distributions, and the estimated life tables are mutually consistent. Furthermore, the correctedbrthes satisty a specified sex ratio. Consiste acy here means that the usual intercensal demographic balancing equations relating census age distribu-
tions, births, and deaths by age are exactly satisfied. Net international migration was negligible for the period 1960-80, so that it may be ignored. The volume of fermanent immigration and emigration was small throughour this period. Temporary migration of contract workers to the Middle East began to increase in 1978, but it did not become substantial until after the 1980 census.

METHOD

The procedure begins with a set of preliminary correction factors that are not necessarily consistent. These preliminary correction factors are derived from previous estimates and by existing methods of demographic analysis, as detailed below. Starting from this set of preliminary correction factors and the demographic data themselves, the new procedure specifies a "best," or optimal, set of final consistent correction factors that is "closest" to the set of preliminary correction tactors. The optimization procedure finds this closest set by use of the principice, from the mathematics of finitedimensional vector spaces, that there exists in a hyperplane a unique point of minimum distance from a fixed point not in the hyperphame. The methodology is explained in I.uther and Retherford (19i6a, 198(ob), We latter source gives details for the non-mathematically-indined reader. It is shown in those sources that, by atilizeg the concept of weighted distance, the procedure allows the analyst to weight the preliminary estimales aceording to the analyst's as essment of their dacuracy The use of "proportional weights," as described in the application of the procedure to South Korean data for 1970-80 (Luther and ketherford 1986a, 1986), will spred the correction evenly over the preliminary correction tactors. This is also appropriate for the Thatand application since we would assess all of the preliminary correction factors derived below to be of comparable dacuracy:

The three-census application to thailand given in this paper illustrates an important advantage of this procedure: that it may be used to correct consistently more than two consuses at a time, along with intercensa births and deaths. In contrast, most previous procedures correct just two censuses at a time (e.g., Demeny and Shorter 1968; Preston 1983), and that typically leads to inconsistent results for the intermediate censuses from the separate applications of the procedure. In particular, most previous analyses of Thailand data have involved just two successive censuses (e.g., Fulton 1979); Arnold and Phananiramai 1975; Pejaranonda, Arnold, and Hauser 1983).

Another advantage of the consistent correction procedure is that it allows the researcher great leewdy in the amount and type of structure that is imposed. For example, one may require the final age-specific correction factors to be the same from census to census, as with the Demeny-Shorter technique (Demeny and Shorter 1968) and the "variable r " metliods (Preston
1983). No such assumptions are made for the Thai application given here, however. This latter, more flexible approach, which is often more realistic and appropriate, was adopted for the Korean application as well (Luther and Retherford 1986a, 1986b). Or one may compromise and assume that the final correction factors follow some trend. As an example of a different type of restriction that the procedure allows, we have fixed the sex ratio for the corrected Thai births. In fact, the only conditions that must be satisfied by the restrictions involsing the correction factors are that these restrictions be linear in the factors and hold when all factors are zero.

The procedure, however, has limitations. The primary one is that the final correction factess are sensitive to errors in the preliminary correction factors. Consequently, it is important to estimate the preliminary correction factors as accurately as prossible.

In any case, the final correction factors given by the procedure yield consistent adjustments of the data. The degree to which these adjustments are actually corrections depends on the atcuray of the preliminary correction factors.

APIIICATION TO THALIAND, 1960-80

All censuses are treated as if the wocurred on 1 April, although the 1960 census was taten on 25 april. The four five year interensal periods that will be frequently mentioned are those separated be I April of the years 1960, 1965, 1970 . 1975 and 1980.

The input mto the procedure, and specificalls into the computer program (which may be whained trem the authers). consists of: (1) the 1960), 1970, and 1984) reperted census age distributions by sen and five-year age groups (open-ended at age 70), given in Tables 1 and 2 in the next section. with rach censun age distribution umiformly premultiplied be a correction factor based on a censum underenumeration estimate (the details of this premultiphation are given with the derivation of the preliminary correction lactors in Appendix A); (2) total registered intercensal births by sex for each of the four fiverear intercensal periods, given in Tables 5 and 6 ; (3) total registered intercensal deaths by sen and five-vear dhe groups (openended at age 70) for each of the four five-vear intercensal periods, again given in Tables 5 and $\left(0 ;(4) l_{10}, l_{1}\right.$, and,$l_{1,}$ walues by see for each of the four five-vear intercensal periods obtained from Coale-Demeny model North iife tables (levels $16.825,17.175,17.525$, and 17.875 respectively for males given in Appendix Tatile B3.3, and 17.0, 17.6, 18.2, and 19.9 respectively for females given in Appendix Table B.t) in order to yiold are estimate of the separation factor for deaths at ages ($)-4$ by sex for cach of the four five-year intercensal periods: (3) a specified sex ratio at birth of 1.158 for each of the four fiveyear intercensal feriods; and (6) estimated preliminary correction faciors
for each of the demographic quantities listed in (1), (2), and (3). Because there are fifteen age groups (fourteen five-year age groups plus the openended one), for each sex there wil: be forty-five census correction factors (fifteen for each census) and sixty ceath correction factors: (fifteen for each five-year intercensal period). If we add to this the four correction factors for births for each sex (one for each five-year intercensal peric d), we have a total of 109 correction factors for each sex. The preliminary correction factors are put into the computer program with male factors first and female factors following. The order of preliminary correction factors for each sex is births first (in chronological order), then censuses (youngest to oldest age group in first census, in second census, etc.), then deaths (youngest to oldest age group in first interiensal period, in second intercensal period, etc.).

Because registered births and deaths (by age) for Thailand are tabulated by calendar year, it was necessary to interpolate to obtain registered births and deaths for the four five-year intercensal periods. For example, registered births for the first five-year intercensal period, 1 April 1960 to 1 April 1965, include three-fourths of the births for 1960 , all of the births for 1961-64, and one-fourth of the births fo. 1965. The same interpolation procedure was used for deaths by age group.

Coale-Demeny model North life tables have been used frequently in the analysis of Thai data, for example by Pejaranonda Arnold, and Choe (1985) and by Fulton (1979) after a careful study comparing the fit of the different Coale-Demeny (1966) moded life table families to Thai mortality experience. We opted for such model tables rather than those resulting from the Surveys of Population Change (SPC) of 1964-67 and 1974-76 (Thailand, National Statistical (Office 1969, 1978) because of the irregularity of some SPC in, values, probably due to the small sample size. At the mortality levels listed in (4) above, the Coale-Demeny model North tables are applied both for estimating separation factors for deaths at ages (0-4 and for deriving the preliminary correction factors for deaths. The one exception involves the later adult ages, where it was judged that the spe life taioles more accurately reflect Thai mortality experience during 19n()-80); therefore the SPC life tables were employed for both sexes rather than the model North life tables in order to derive the preliminary correction factors for deaths for the $70+$ age group for cach of the four five-year intercensal periods.

Moreover, the life expectancy values (e_{0}) from the spe life tables determined the levels of the model North life tables that were used. For example, the 1964-67 and 1974-76 SPC male life tables list ', values of 56.27 and
58.00 respectively. These values were assumed for the dates 1 April 1965 and 1 April 1975, which are encompassed by the respective SPCs. Model North levole of 17.0 and 17.7 were matched to these male t_{0} values at these Ahes; accordingly, life tables for males for each of the four five-year intercensal periods were obtained by linear interpolation, taking the reference dates to be the midpoints of the five-vear periods.

The same process was used to ohtain a temale life table for each fiveyear intercensal period, exceot that level 14 was used for the period I April 1975 to 1 April 198i) rather than 18.8 as would result from linear interpolation. The decision to use this higher level was based on evidence that life expectancy for females was accelerating in the .970 s, at least in relation to that for males (Hill 1979). Moreover, the results from using the lower figure of 18.8 contradicted preliminary evidence from the 198.4-86 SPC that death registration completeness leveled off in the 1970 s rather than continuing its carlier decline.

The preliminary correction factors for deaths by sex and by five-year intercensal period for the $70+$ age group were obtained from the SPC life tables as follows. The SPC life tables for 1964-67, and 1974-76 were ascribed to the dates 1 April 1965 and 1 April 1975 respectively Linear interpolation was performed, and agein the reference dates were taken to be the midpoints of the five-vear intercensal intervals.

The estimate of 1.058 as the true sex ration at birth was based on the average of the values 1.055 and 1.062 obtained by the 1964-67 and 1975-76 SPCs. The same value of 1.0 . 8 was input for each of the five-vear intercensol periods since there is no reason to expect the sex ratio at birth to vary from one five-year peried to the next. The correction procedure then requires that the corrected registered births satisfy the specified sex ratio of 1.058 for each fise-fear internensal period. This teature has been added to the correction procedure sime its original description in Luther and Retherford (1986a, l98ob).

The complete details of the derivation of the preliminary correction factors are given in Appendis A. The reader who is interested in the mechanics, as well as the results, of the consistent correction procedure can refer to that appendix. As mentioned before, the more theoretical aspects of the methodology of the procedure are given in lather and Retherford 1986a, 1986b).

Finally, it is worth noting that the cost of running the computer program for this application involving three That censuses and four five-vear intercensil periods is only about $\$ 16$.

PRINCIPAL FINDINGS

The principal findings are given in Tables 1-11, Figures 1-5, and Appendix Tables B.1-B.5.

Censuses

Tables 1-4 and Figures 1 and 2 present the final results for the censuses. In Figures 1 and 2 the final correction factors of Table 3 are compared with the corresponding preliminary correction factors given in Appendix Table B. 2 .

Especially striking is the high degree of underenumeration of the 0-4 age group for both sexes for all censuses, hut especially for the 1960 census (Table 4). This is consistent with the observation of Chamatrithirong, Debavalya, and Knodel (1978), Vanel on Thailand (1980), United Nations (1966), and others that the ()-4 age group was especially underenumerated in the 1960 census because of age rounding owing to the fact that the census question asked for ages of household members rather than dates of births. Thus the ages of children between exact ages $4 \frac{1}{2}$ and 5 were frequently rounded upward to age 5 . This was less likely to occur in the 1970 and 1980 censuses, in which date of birth was asked rather than age.

If there was rounding to the nearest age at all ages in the 1960 census, then the count of, soy, the $5-4$ age group (exact ages 5 to ! 0) induded some children between exact ages $41 / 2$ and 5 and excluded some between exact ages $91 / 2$ and 10 . Suppose the extent of rounding was substantial and of similar proportions throughout the entire population. Since the total population between exact ages $41 / 2$ and 5 exceeds that between exact ages $91 / 2$ and 10 , such rounding would tend to result in a relative overcount of the 5-9 age group and, for the same reason, those age groups above it. Thus for those age spans in which enumeration was reiatively complete, slight overenumeration would appear. The results show this to be true for ages 20-49 for both males and lemales in the 1960 consus (see Table 4). Since the 1960 census is believed to have given a relatively complete count for ages 5 and above (Linited Nations [966), such slight overemumeration for some age groups is plausible.

On the other hand, the results imply that the 1970 census contained considerable underenumeration at ages $20-49$ as well as at ages $5(0-69$. ()f course, the total population of the 1970 census was substantially more underenumerated than the $19(0)$ census (see, e.g., Fulton 1974; Preston and Hill 1980; and Luther 1983 as well as Table 4).

Table t also indicates considerabie age exageperation at the older ages in both the 1970 and 1990 censuses, although the dge exaggeration for males in 1970 was not sufficient to offee the general underount. One cannot discern from the procedure, howeser, whether such dge exaggeration occurred

Table 1. Reported and final corrected census age distributions and estimates of completeness for males: Thailand, censuses of 1960,1970, and 1980

Age group	1460		1970		1980	
	Reported	Currected	Reporied	Correited	Reported	Corrected
$0-4$	$2,141.554$	$2.512,313$	2,860.Fャ2	3,234,784	2,771.779	3,040,599
5-9	2.016 .266	2.011 .074	2,682, 2 601	2,757,912	2,979,485	3,204,070
10-14	1, Э¢5, isc	1,558, 905	2.312 .473	2,353,701	3,006,300)	3,071,068
15-19	1,265, 152	1.297.945	1.834,446	1.932,295	2,696,618	2,676,213
20-24	1.214 .350	1.202,446	1,323,314	$1.300,287$	2,239,837	2,275,485
25-29	1,026,654	1,014,704	1.099,47.3	1,236,913	1,743,323	1,847,351
30-34	885,681	8 8.6.690	1,048, 6.44	1,141,353	1,333,155	1,423,980
35-39	643.448	690.219	954.165	960,952	1,161,496	1,170,734
40-4	569.744	563.445	775.308	818.919	1,064,541	1,075,500
45-49	494.691	487.183	599.876	034.543	927,227	891,716
50-54	402.425	403.137	472,783	507,599	74.4.588	744,492
55-59	322.258	322,151	388,820	424,953	543,743	555,018
60-64	229,018	242.226	301.182	333,743	411,260	422.898
65-69	149,291	157,901	213,227	245,685	296,774	328,157
$70+$	177,685	187.933	250,973	267,276	408,481	395,836
Total	13,154,122	13,522.828	17,123,86!	18350,923	22,328,607	23,123,208
Completeness (\%)	97.27		93.31		96.56	

Sources: Reported figures are from Thailand, Central Statistical Office (1962: table 3, p. 9); Thailand, National Statistical Office (1972: table 4. p. 12; 1983: table 4, pp. 22-23). Unknown age's are allocated proportionally.

Table 2. Reported and final corrected census age distributiors and estimates of completeness for females: Thailand, censuses of 1960, 1970, and 1980

Age group	1960		1970		1980	
	Reported	Corrected	Reported	Corrected	Reported	Correcied
0-4	2,105,216	2,439,170	2.709,770	3,117,372	2,654,067	2,954,623
5-9	1,982,900	1,974,806	2,609,020	2,673,382	2,955,893	3,129,504
10-14	1,527,751)	1,520,03¢	2,255,500	2,308,528	2,898,19;	3,000,334
15-19	1,238,223	1,242,389	1,887,756	1,918,301	2,711,64,	2,616,050
20-24	1.206,022	1.198.094	1,363,440	1,475,896	2,281,192	2,257,910
25-29	1,048,097	1,038,303	1,14, 824	1,200,251	1,811,104	1,865,258
30-34	871.233	867,134	1,078,451	1,154,181	1,365,493	1,426,153
35-39	681,001	677,001	958,819	992,093	1,183,324	1,155,458
40-44	$56+.692$	561,835	767,302	819,472	1,102,535	1,107,333
45-49	483,720	480,027	598,210	633,529	967,187	940,695
50-54	410.99 .4	+18,251	490,414	519,371	768,793	765,667
55-59	329,554	334,693	402,239	434,036	567,740	577,231
60-64	245,371	262,045	324,633	365.000	+42,596	457,181
65-69	163,855	174,990	239.203	271,841	333,312	358,791
$70+$	245,099	261,755	353,933	347.895	552,857	522,357
Total	13,103,737	13,448,530	17,273,514	18,231,149	22,495,933	23,134,546
Completeness (\%)	97.44		94.75		97.24	

[^0]Tahle 3. Final correction factors: Thailand, censuses of 1960, 1970, and 1980

Age group	1960		1970		1980	
	Males	Females	Mates	Females	Males	Femalos
$0-4$	1.173	1.158	1.129	1.113	1.097	1.113
5-9	. 992	99\%	1.028	1.025	1.075	1.096
10-14	. 495	. 995	1.018	1.024	1.021	1.035
15.19	1.026	1.003	1.053	1.016	. 992	. 965
20-2.4	.990)	. 993	1.134	1.083	1.016	. 990
25-29	. 993	. 491	1.125	1.049	1.060	1.030
30-34	.989	(9)3	1.088	1.070	1.068	1.044
35-39	. 995	. 994	1.007	1.034	1.008	. 977
40-4	. 990	. 995	1.056	1.068	1.010	1.005
45-49	. 985	. 992	1.058	1.059	. 962	. 973
50-54	1.002	1.018	1.073	1.059	1.000	. 996
55-59	. 949	1.016	1.092	1.079	1.020	1.017
6 ()-64	1.058	1.068	1.109	1.125	1.029	1.033
65-69	1.058	1.068	1.152	1.136	1.105	1.076
$70+$	1.058	1.068	1.065	. 983	. 969	. 945

Nite: The entries here may be whtai ned by dividing the corrected population by the corresponding reporsed population in Tablers 1 and 2 .
in the 1960 census. With the choice of the same preliminary correction factors for the last three age groups in the fiist of the three ce nsuses and the use of the "proportional weights," mentioned earlier, to spread the correction evenly, it can be shown that the procedure will necessarily yield the same final correction factors for those last three age groups in the first census. thise the figures 1.058 for males and 1.068 for females for the 1960 census should be considered as the final correction factors (and, correspondingly, 94.5 percent for males and 93.6 percent for females as the final completeness estimates) for the combined $6(0)+$ age group rather than for the $6(0)-64,65-69$, and $70+$ age groups separately.

As; Figures 1 and 2 indicate, the preliminary and final correction factors for the censuses agree quite well except at the late ages. This shows that a considerable degree of consistemy is already present with the determination of the preliminary correction factors (see Appendix A).

Vital registration

The vital registration results are given in Tables 5-8 and in Figures 3 and 4 , in which preliminary and final correction factors for deaths are compared.

Table 4. Completeness estimates (percentages): Thailand, censuses of 1960, 1970, and 1980

Age group	1960		1970)		1980	
	Males	Females	Males	Females	Males	Females
0-4	85.3	86.4	88.6	89.8	91.2	89.8
5-9	100.8	100.4	97.3	97.6	93.0	91.2
10-14	100.5	100.5	98.2	¢7.7	97.9	96.6
15-19	97.5	99.7	95.1	98.4	100.8	103.6
20-24	101.0	100.7	88.2	92.3	98.4	101.0
25-29	100.7	100.9	88.9	45.3	94.3	97.1
30-34	101.1	100.7	91.9	93.5	93.6	95.8
35-39	100.5	100.6	$99 . .7$	96.7	99.2	102.4
40-44	101.0	100.5	94.7	93.6	99.0	(9). 5
45-49	101.5	100.8	94.5	94.4	104.0	102.8
50-54	99.8	98.2	93.2	94.4	100.0	100.4
55-59	100.1	98.4	91.6	42.i	98.0	98.3
60-64	94.5	43.6	90.2	88.9	97.2	96.8
65-69	94.5	93.6	86.8	88.11	90.5	92.4
$70+$	94.5	93.6	93.9	101.7	103.2	105.8

Note: The entries here are the reciprocals (expressed an percentages) of the entries of lable 3. Alternatively, thev may be obtained by dividing the reported population be the corresponding corrected population in lablea 1 and?

The birth registration results are in reasonable agreement with those of the United Nations (1976), U.S. Bureau of the Census (1978), Hill (1979), and others. (See table 7 of Panel on Thailand 1980 for a good summary of estimates of birth registration completeness prior to 1976.) The upward trend, as well as the level, of the estimates of the completeness of birth registration is also consistent with a preliminary birth completeness estimate of about 89 percent for the combined seves from the first vear of the 1984-86 SPC (subject to change).

The death registration results also compare quite well with other estimates. (Again, table 7 of Pand on Thailand 1980 gives a good summary of estimates of death registration completeness.) The results indicate a decrease in death registration completeness during the 1960 s and early 1970 s and a slight upturn in the late 1970 s on the whole-an upturn for males and a leveling off for females (Tables 5 and 6). This trend and the level are consistent with the results of the 1964-67 and 1974-76 SPCs and a preliminary finding of the first year of the $1984-86 \mathrm{SPC}$. which gives an estimate of about 76 percent completeness for death registration of both sexes combined (subject to change).

Figure 1. Preliminary and final correction factors for males: Thailand, censuses of 1960, 1970, and 1980

Note: Remult are plotled at the midponts of live-vear age groups.

It is not surprising that the results indicate greatest underregistration of deaths at the youngest and oldest ages, and especially at ages 0-4 (Table 8). It is somewhat surprising, however, that death registration completeness at ages (0-4 declined steadily and substantially during the period 196()-80. This trend is present in the preliminary correction factors as well.

Another interesting leature of the results, especially evident from inspection of Figure 3 , is the high degree of underregistration of male deaths at ages 20-29 for all five-vear intercensal periods. This trend also emerges for females (Figure 4), but only after 1970).

The preliminary and final correction factors for deaths show considerable agreement except at the late ages, as was true for the censuses (Figures 3 and 4). Thus the preliminary correction factors as a whole reflect a considerable degree of consistency, although less so at the late ages.

Figure 2. Preliminary and final correction factors for females: Thailand, censuses of 1960, 1970, and 1980

Note: Results are plotted at the midpuints of five-vear age groups.

Life tables

The intercensal life tables for the four five-year intercensal periods, which are derived from the results of the consistent correction procedure, are given in Tables 9 and 10, and the life table death probabilities for the extreme periods 1960-65 and 1975-80 are shown in Figure 5. The life tables are computed directly from corrected deaths and population by age, as detaled in Appendix C where precise formulas are given. The calculations use the estimated midcensus age-sex distributions of Table 11 produced by the consistent correction procedure, which pertain to 1 April 1965 and 1975, and the corrected data given in Tables 1, 2, 5, and 6 .

Table 5．Registered and final corrected intercensal births and deaths and estimates of registration completeness for males：Thailand，1960－65，196ラ－70，1970－75，and 1975－80

Births deaths and age group	14001－65		1465－70		1970－75		1975－80	
	Repurted	Cirrected	Reported	Cirrected	Reported	Corrected	Reported	Corrected
Births	26.30 .151	3，194．78	2.944 .43	3，562，74n	3，050，797	3，628．987	2，811，543	3，318，567
Completeness（ ${ }^{\circ} \mathrm{O}$ ）	\＄2．33		82.65		84.17		84.72	
Deaths								
0－4	224.812	400， 58.	191.302	＋14．457	161．667	408.795	114.808	353，137
5－9	33，20\％	53，298	32，834	56.786	30， 189	60,236	26.830	58，212
10－14	12.047	24.933	18.345	27，943	18，979	30，080	18，725	32，687
15－19	15，スマッ	26．229	14.579	31，394	24，350	36，402	28.405	40,395
20－24	17.40 n	3i，34，	14.474	34，681	25.213	＋2， 108	34，247	49，555
25－29	17.153	30.468	18，667	30,907	21，26i	33，789	28，100	41，822
30－34	18.542	27，6．38	20.938	31， 414	22，404	31，309	25，424	34，895
35－39	20.504	20， 83.5	23，819	29．438	20.012	32，171	28，646	32，365
40－4	21.800	25.428	25.539	30， 134	29，430	32，950	34，024	35，861
45－49	25．87\％	25.808	27．100	28，457	31，377	34，913	37，72．4	37，489
50－54	29.031	30，362	31.7211	32,419	33，649	37，130	39，701	43，501
55－59	30.562	31,804	34.254	35.791	36，937	39，127	39，933	43，506
60－64	32.972	35，684	38，825	40，830	＋2，805	47，027	47，810	49，641
65－69	29，125	35.565	36.553	$4+6012$	i2，954	51，940	47，423	57，736
71）＋	70.276	106.767	96,868	138，106	116，912	164，488	135，619	182，003
Total	610，129	$415,10 \mathrm{n} 3$	635，817	1，011，375	6n＋4， 139	1，082，462	687，419	1，092，807
Completeness（\％）	6n．to		62.87		61.35		62.90	

Sources：Registered births：Thailand，National Statistical Office（n．d．：No．30，1972－73，table 29，p．84；n．d．：No．32，1976－80，table 23，p．45； 1982）．Registered deaths：Thailand，Ministry of Public Health，Division of Vital Statistics（1962，1965，1968，1972，1977，1983）．

Table 6. Registered and final corrected intercensal births and deaths and estimates of registration completeness for females: Thailand, 1960-65, 1965-70, 1970-75, and 1975-80

Birthsideaths and age group	1960-63		1965-70		1970-75		1975-80	
	Reported	Corrected	Reported	Corrected	Keported	Corrected	Reported	Corrected
Births	2,363,132	3,019.648	2,715,779	3,367,435	2,855,596	3,430,045	2,668,218	3,136,641
Completeness (\%)	78.2n		80.65		83.25		85.07	
Deaths								
0-4	179.14.4	326.591	156.281	322,376	128,101	299,387	87,644	230,302
5-9	28.697	+4.300	28.574	+4.230	26,629	2, $+3,815$	22,848	230,302 36,716
10-14	13,066	22.003	14,417	23,249	15,082	23,511	14,225	22,567
15-19	12.699	20,210	14,951	23,460	17,026	25,13;	17,742	24,770
20-24 2-29	17,128	20,309	16,315	22,608	17,126	26,552	17,607	27,821
25-29 $30-34$	17.818 18.996	22,999 20.721	16,064 18,593	21.149	14,373	23,553	14,539	26,578
$30-34$ $35-39$	18,996 19.349	22.721 21.737	18,593 20,059	23,368 23,332	16,417 19,252	21,450	14,281	22,803
40-4	18,638	21.737 20.457	20,059 19886 18.83	23,332 23,534	19,252 21,014	24,170 25,873	16,822 21,218	21,778 26,299
+5-49	12.435	19,517	19.035	21,216	20,562	24,908	21,218	26,299
50-54	15.896	22,208	21,055	23,738	22,454	26,417	24,628	30,375
55-59	20,050	24,879	22,003	26.519	24,353	28,759	25,672	30,896
60-64	22, $1+4$	29.241	27.055	32,896	28,6\%3	35,524	31,768	38,309
65-69	21,484	32,793	26,940	38,687	31,284	43,940	33,738	47,897
$70+$	80,530	128,931	103,983	155,187	122,355	171,486	140,629	205,244
Total	506,628	778,916	525,211	825.548	524,701	844,480	505,662	818,809
Completeness (\%)	05.04		63.62		62.13		61.88	

Sources: Same as Table 5.

Table 7. Final correction factors for registered births and deaths: Thailand, 1960-65, 1965-70, 1970-75, and 1975-80

Births deaths and age group	19n(1)-65		1965-70		1970-75		1975-80	
	Male	Femaler	Aates	Females	Males	Fencaies	Males	Females
Births	1.215	1.274	1.210	1.240	1.190	1.201	1.180	1.176
Deaths								
()-4	1.809	1.824	2193	2.063	2.529	2.337	3.076	2.628
5-9	1.605	$1.5+4$	1.724	1.548	1.995	1.645	2.170	1.607
10-14	i.th3	1.610	1.523	1.613	1.585	1.559	1.746	1.586
15-19	1.068	1.591	1.603	1.569	1.495	1.476	1.422	1.396
20-24	1.735	1.186	1.781	1.386	1.670	1.550	1.447	1.580
25-29	1.77	1.291	1.656	1.317	1.589	1.639	1.488	1.828
30-34	1.491	1.196	1.454	1.257	1.397	1.307	1.373	1.597
35-39	1.309	1.121	1.215	1.163	1.237	1.253	1.130	1.295
40-44	1.166	1.098	1.180	1.183	1.120	1.231	1.054	1.239
45-49	1.001	1.119	1.069	1.115	1.113	1.211	. 994	1.135
50-54	1.046	1.175	1.022	1.127	1.103	1.177	1.096	1.233
55-54	194	124 !	1.045	1.205	1.059	1.181	1.089	1.203
O0-64	1.082	1.320	1.052	1.216	1.099	1.239	1.038	1.206
65-é	1.228	1.526	1.220	1.436	1.209	1.405	1.217	1.420
$70+$	1.4 $\%$	1.601	1.426	1.492	1.407	1.402	1.342	1.459

[^1]Table 8. Completeness estimates (percentages) for death registration: Thailand, 1960-65, 1965-70, 1970-75, and

Age group	1960-65		1965-70		1970-75		1975-80	
	Males	Females	Males	Females	Males	Females	Males	Females
0-4	55.3	54.8	45.6	48.5	39.5	42.8	32.5	
5-9	62.3	\%. 8	57.8	64.6	50.1	60.8	32.5 46.1	38.1 62.2
10-14	68.4	62.1	65.7	62.0	63.1	64.1	57.3	62.2 63.1
15-19	60.0	62.9	62.4	63.7	66.9	67.8	70.3	71.6
20-24	57.6	84.3	56.1	72.2	59.9	64.5	69.1	63.3
25-29	56.3	72.5	60.4	75.9	62.9	51.0	67.2	54.7
30-34	67.1	83.6	68.8	79.6	71.6	76.5	72.8	62.6
35-39	76.4	89.2	82.3	86.0	80.8	79.7	88.5	77.2
$40-44$ $+5-49$	85.8	91.1	84.7	84.5	89.3	81.2	94.9	80.7
$45-49$ $50-54$	99.9 95.6	89.4 85.1	93.5	89.7	89.8	82.6	10.96	88.1
50-54 $55-59$	95.6 96.1	85.1 80.6	97.8 95.7	88.7	90.7	85.0	91.2	81.1
60-64	92.4	80.6 75.8	95.7 95.1	83.0 82.2	94.4 91.0	84.7 80.7	91.8	83.1
65-69	81.4	65.5	82.0	69.6	91.0 82.7	80.7 71.2	96.3 82.2	82.9 70.4
$70+$	71.4	62.5	70.1	67.0	71.1	71.3	74.5	70.4 68.5

Note: The entries here are the reciprocals (expressed as percentages) of the entries of Table 7 . Alternativelv, they may be obtained by dividing
the reported deaths by the correspondiny corected deaths in the reported deaths by the corresponding corrected deaths in Tables 5 and 6.

Figure 3. Preliminary and final correction factors for intercensal registered deaths for males: Thailand, 1960-65, 1965-70, 1970-75, and 1975-80

Notes: Results are ploted at the midpoints at five-year age proups For births, the preliminary and final correction factors are: 1960-65, 1.224 and $1.215 ; 1965-70,1.220$ and 1.210 ; $1970-75,1.199$ and 1.190 ; 1975.80, 1.179 and 1.180).

The life tables generally show morality improvements with time, as one would expect. The improvements are more substantial for females than males (Figure 5). The improvement in life expectancy is greatest for the youngest age group, in accordance with the pattern in most countries. Both the $5 \%_{0}$ estimates, based on marked underregistration of deaths at ages (0-4, and the life expectancy estimates agree quite well with those given by the SPCs for 1964-67 and 1974-76, and by Rungpitarangsi (1974) for 1960 and 1970). Moreover, the widening gap between male and female life expectancies during the period $196(0)-80$ is consistent with the conclusions of Hill (1979:34-35) and the results of the SPCs.

Figure 4. Preliminary and final correction factors for intercensal registered deaths for females: Thailand, 1960-65, 1965-70, 1970-75, and 1975-80

Notes: Results are plotted at the midpoints of five vear dge groups. Fire birthes, the preliminary and final correction faturs are: Wat 65, 1.300 and 1278 ; 1065 -70. 1.250 and 1.240 ; $1970-75,1.211$ and 1.201 : 1475 80. 1.174 and 1.176 .

Finally, comparison of the $196(1-65$ and $1965-70$ male life tables reveals a possible slight anomaly in the results. The T_{01} value decreases a bit whereas the l_{70} volue increases. This medns that proportionately more people survived t: age 70 according to the $1965-70$ life table than according to the 1990-65 one, but that the greater number lived fewer person-vears thereafter. This reversal may be real. Another possibility is that the SPC life tables do not reflect the mortality experience of males accurately at the oldest ages. This reversal is slight, however, compared with a more pronounced reversal of this same type that results for females when one uses model North life tables rather than the SPC life lables to determine the prelimi-

Figure 5. Corrected life table probabilities of dying, $5 q_{x}$: Thailand, 1960-65 and 1975-80

nary correction factors for the $70+$ age group. It was primarily on this basis that the SPC life tables were chosen to determine the preliminary correction factors for the $70+$ age group.

SUMMARY AND (ONCLUSION:

This paper has appled a new procedure tor the simulaneous and consistent correction of two or more censuses and intercensal registered births and deaths to the three That emsuses of 1960, 1970, and 1980, and to the registered birtbs and deaths for the intervening period 1960-80. The results reveal marked underenumeration of the 0 tage group in each census and especially in the logocensus, in which age monding was apparently prevalent. There is also an indialion of age exagieration at the aldest ages at least in the 1970 and 1980 censuses.

The results also indiate that birth registration mompleteness rose during 196()-80, whereds, death registration completeness dedined slightly until the early 1970 sand then lesoled off or began to rise. The greatest underregictation of deathe was at ages (0 - and the registration completeness for deathes at this age appears to have decreased throughout the period.

Life expectance rose for both males and females, at an average of about one-fith vear per yoar for males and two-fifths year per vear for females between 1960 and jus0) Thus bemale superiority in life expectancy inereased during the period, hom about 4.5 gears in $1960-65$ to dhout seven veats in 1975-80.

Finally, it should be noted that these results are reasonably consistent with previous estimates. The results of this paper, however, have the advantage of providing consistent corrections for multiple sets of data involving more censuses and intercensal periods than in previous studies.

Table 9. Derived intercensal life tables for males: Thailand, 1960-65,

Age ${ }_{\text {d }}$	1960-65			1965-70		
	54.	18	I_{1}		$1{ }_{s}$	L_{1}
0	. 13134	100, 1000	450,391	120以上	100,000	453,974
5	. 02417	80,800	+29.551	. 02192	87.908	+ $3.35,061$
10	. 01426	84,766	421.15.4	. 01298	85.981	427,369
15	.01850)	83,557	+14,24.3	. 01821	84,865	420,906
20	. 02428	82,01?	1015,215	. 02493	83,319	411,837
25	. 127 (6)	80,020	34.460 .4	. 02536	81,243	401,200
30	.122932	77.812	. 383.707	. 02832	79,182	390,700
35	. 134770	75,530	371.773	. 03163	76,434	378,991
40	.) 4091	72.9019	357,648	. 0403.4	74,506	365,798
45	. 04945	(6) 927	341,421	. 04861	71,500	349,523
50	.06846	(6). $46{ }^{(1)}$	321,707	.106514	618.024	329,600
55	.14883,	61,918	296,\%)2	. 0×6 6, T_{7}	63,593	305,116
60	12764	$56,44^{4}$	265,801	. 12435	58,088	273,699
65	18392	4) 2.24	226,597	. 18223	50,865	233,161
70	1.000\%	41, 187	402,04, 3	1.100000	41,59\%	388,560
t_{0}			$5+4.83$			55.65

Table 10. Derived intereensal lite tablen for females: Thailand, 1960-65,

$A \mathrm{Se}_{2}$	1960			1965-70		
	4	1	1.	\cdots	1.	, 1
0	. 11184	1000000	458,300	(1)9845	100.000	462,870
5	. 1221.48	88.851	$4.40,093$	01757	90,155	447.179
10	. 01283	87.031	4.32,705	01097	88.572	$440,6.39$
15	. 01478	85.915	426.6.697	01.380	87.6101	$4.35,339$
20	. 01665	84.645	+19,8,39	01678	86,386	$428,6+4$
25	. 020165	83.236	+12,152	0101764	84, 4937	420, 975
30	. 122405	81,518	4113,078	(12141	83.438	+13,010
35	02858	79.557	342,721	02530	81,652	+103,513
40	. 03328	77,283	380, 48.3	0318.4	79,586	392,296
45	. 03766	74.711	366, 9.47	. 035572	77,05?	378,913
50	. 04959	71,898	3511,949	. 047761	74,299	303,195
55	. 066658	68.336	331.2.41	. 10.22 .4	70,761	34,3,319
60	. 109863	6.3.786	304,4(6)	(09428	66, 357	317,479
65	. 15376	57.495	268,423	. 1.4460	60, 101	280, 3.42
70	1.100000	48.654	5388.142	1.000000	51,411	559,210
c_{0}			59.26			60.87
			<			

1965-70, 1970-75, and 1975-80

Agex^{\prime}	1970-75			1975-80		
	$57 . x$	I_{x}	L_{*}	5%	I_{x}	${ }_{5} L_{x}$
0	. 11320	100,000	455,822	. 10458	100,000	453,119
5	.02039	88,68.1	439,155	. 01826	89,542	443,680
10	. 01187	86,872	431.960	. 01129	87.907	437,20)
15	. 01713	85,841	425,865	. 01613	86,915	431,32.0
20	. 02488	84.371	+17.213	. 02372	85.513	422,960
25	. 02492	82,272	406,660)	. 02533	83,485	412,752
30	. 02637	30,221	395,959	. 122642	81,370	401,925
35	.03079	78.106	38.4,948	.02802	79.221	390,702
40	. 03720	75,701	371,905	. 03540	77,001	378,691
45	. 04867	72,885	356.495	. 04397	74,275	363,731
50	. 06556	69,338	336,258	. 06369	71,009	344.967
55	.08426	64,792	311,000	. 08230	66,486	319,893
60	. 12437	59.337	279,474	. 11683	61,014	288,159
6.5	. 18057	51,957	238,038	.17419	53,886	247,646
70	1.00000	12,375	403,076	1.00000	44,499	464,938
ι^{\prime}			56.54			58.07

1965-70, 1970-75, 1975-80

Age,	1970-75			1975-80		
	5%	1	St	51.7	13	${ }_{5} L_{x}$
0	. 08777	100,000	465,90.4	. 07226	100.000	470,985
5	. 01531	91.223	452,843	. 01186	92.774	461,165
10	. 00950	89,826	447,141	.00801	91,674	456,653
15	. 01199	88.973	442,430	01011	90,940	4.52,559
20	. 01590	87.9016	436,469	. 01343	90,021	447349
25	. 01778	86,514	429,060	. 01617	88,812	440,920
30	. 01823	84,970	421,016	. 01754	87,376	433,416
35	. 02262	83.421	412,696	. 01887	85,844	425,213
i)	. 02878	81,534	402,287	.1025 7	84,224	416,178
45	. 03480	79, 187	389, 823	. 03029	82, 104	404,827
50	. 144616	76,432	.374,0.32	. 04345	79,617	390,341
55	. 060160	72,90.4	354, 164	. 05666	76,118	370,668
60	. 08893	68,486	327.937	. 08.596	71,805	344,588
65	. 13898	62,396	292,240	. 13159	65,633	307,631
70	1.00000	53,724	643,952	1.00000	56.996	701,129
i]			62.92			65.24

Table 11. Estimated midcensus age distributions for males and females: Thailand, 1965 and 1975 (1 April)

	1965			1975	
Age	Males	Females		Vates	
$0-4$	$2,877,805$	$2,767,810$	$3,31,6,346$	$3,196,146$	
$5-9$	$2,396,066$	$2,342,268$	$3,116,518$	$3,029,976$	
$10-14$	$1,961,963$	$1,941,655$	$2,712,754$	$2,639,719$	
$15-19$	$1,533,324$	$1,498,930$	$2,320,461$	$2,284,206$	
$20-24$	$1,269,707$	$1,222,129$	$1,893,040$	$1,892,458$	
$25-29$	$1,172,027$	$1,176,440$	$1,462,338$	$1,450,844$	
$30-34$	990,641	$1,015,443$	$1,204,364$	$1,177,749$	
$35-39$	848,454	842,905	$1,109,613$	$1,131,371$	
$40-44$	664,088	655,904	928,391	967,072	
$45-49$	538,282	541,848	784,987	794,082	
$50-54$	459,053	459,164	598,521	607,866	
$55-59$	372,054	394,707	469,471	491,783	
$60-64$	288,405	307,633	381,876	401,894	
$65-69$	206,500	231,028	284,260	325,268	
$70+$	221,184	291,397	322,508	426,281	
Total	$15,799,553$	$15,689,261$	$20,897,448$	$20,816,715$	

Note: These re the estimated midcensus age-sex distributions given by the consistent correction procedure.

APPENDIX A. DERIVATION OF THE PRELIMINARY CORRECTION FACTORS

Births

A linear increase was assumed in the birth registration completeness of both sexes combined, from 78 percent on 1 April 1960 to 86 percent on 1 April 1980. This agrees quite well with the estimates of the U.S. Bureau of the Census (1978) and Hill (1979). We should note that the latter estimates are based on the Ministry of Public I lealth (MOPII) registration figures, whereas ours are based on the Ministry of Interior (MOI) figures, which are larger in most vears; see the corrigenda sheet of Hill (1979) for a comparison of these figures through 1974. A se ratio at birth of 1.058 for each five-year intercensal period was also used to help calculate the preliminary correction factors for births by sex.

From this assumption regarding birth registration completeness, it follows that the average birth registration completeness for the combined sexes was 79, 81, 83, and 55 percent for the successive five-year intercensal periods. The calculation of the preliminary correction factors for male and female births for the first five-year intercensal period will be shown in detail for illustrative purposes.

Let $k_{n \text { : }}$ and $k_{\text {f }}$ be the preliminary correction factors for numbers of male and female registered births B_{m} and β_{1} respectively for the five-year period. Then $k_{m} B_{m}$ and $k_{t} B_{y}$ denote the estimated true numbers of male and female births. Assuming a 1.058 sex ratio at birth, one has

$$
\begin{equation*}
k_{m} k_{m}=1.058 k_{q} B_{t} \tag{1}
\end{equation*}
$$

Assuming, moreover, 79 percent birth registration completeness for 1960-65, one may equate two different expressions of the true number of births for the combined sexes as follow's:

$$
\begin{equation*}
k_{m} R_{m}+k_{1} B_{1}=\left(R_{m}+B_{f}\right) /(.79) \tag{2}
\end{equation*}
$$

Since $B_{m}=2,630,151$ and $B_{1}=2,363,132$ are known, they may be substituted into cquations (1) and (2). These equations then represent a system of two linear equations in the two unknowns, k_{m} and k_{p}, which may be solved simultaneously to yield the values of k_{m} and k_{t}.

The same process may be used to find the preliminary correction factors for registered birthis for the other five-year intercensal periods. The values whained for the suceessive periods are 1.234, 1.220, 1.149, and 1.179 for males and 1.300, 1.250, 1.211, and 1.174 for females. They are recorded in Appendia Taole B. $\overline{\text { a }}$.

Censuses

The preliminary correction factors for censuses are derived directly from the following corrected census age-sex distributions obtained from outside sources: (1) For the 1960 census, the correction given in United Nations (1966); (2) for the 1970 census, the correction of the 0-4 and 5-9 age groups in Arnold and Phananiramai (${ }^{9775}$), and of the other age groups in Fulton (1979); and (3) for the 1980 census, the correction given by Pejaranonda, Arnold, and Hauser (1983). We use the final census report (Thailand, National Statistical Office 1983) rather than the Advance Report (Thailand, National Statistical Office 1981) for the corrected female 1980 census population age $70+: 552,900$ rather than 562,900 . These "preliminarily corrected" census age-sex distributions are recorded in Appendix Table B. 1; and the resulting preliminary correction factors, obtained by dividing these preliminarily corrected populations by the corresponding reported populations from Tables 1 and 2, are given in Appendis Table B.2.

A certain amount of consistency is built into the preliminary correction factors for censuses, by the use of the census corrections above, each of which is derived in part from the preceding census correction. However, the preliminary correction factors for births are derived independently; and to an extent, the same may be said for the preliminary worrection factors for deaths (see below).

As with Pejaranonda, Aroold, and Hauser (1983), we have opted for the Fulton (1979) corrections of the 1970 census age-sex distributione rather than those of Arnold and Phananiramai (1975). The preliminarily corrected census age--sex distributions of Appendix Table B.1, which have been used for deriving the preliminary correction factors for censuses, are used to calculate total population preliminary correction factors for each sex at each census. The reciprocals of these factors in turn yield census underenumeration estimates bey sex for each census. The total population preliminary correction factors are given in the last row of Appendix Table B.2.

The reported census age-sex distributions (given in Tables 1 and 2) are uniformly premultiplied by these total population preliminary correction factors of Appendix Table 3.2 before being put into the computer. For example, each female five-year age group is premultiplied by 1.051 for the 1970 census and by 1.025 for the 1980 census. To compensate, cach preliminary correction factor given in Appendi, Table B. 2 must be divided accordingly before it is put into the computer. This will insure that each input census age-sex group population multiplied by the corresponding input preliminary correction factor still yields the preliminarily corrected census age-sex group population of Appendi Table B.1. Thus, for example, each preliminary correction factor for females must be divided by 1.051 for the 1970 census, and by 1.025 for the 1980 census, before being put into the
computer. In particular, the input preliminary correction factors for females of ages $0-4$ for the 1970 and 1980 censuses are 1.104/1.051 $=1.050$ and $1.110 / 1.025=1.083$ respectively. These adjustments of the reported census age-sex distributions, as well as of the preliminary correction factors for the censuses, must be put into the computer program to get appropriate census underenumeration levels in the final results (output). This is true because the compater program is written so that for the last census (the 1980 one in our case), there is equality between the total input population for bootl: sexes combined and the total output (corrected) population for both sexes combined. This equality was incorporated into the computer program to obtain more control over the census underenumeration levels in the final results.

Finally, except for the (1) 4 age group, in which underenumeration is very evident because of age rounding (see section on principal findings), all preliminary correction factors for both seves for the 1960 census were chosen to be i , on the basis of United Nations (1966). First of all, the opposing effects of age rounding partially compensate in all age groups except $0-4$ and $70+$, and the effect is relatively small on the $70+$ age group. Second, wher than for the (0-4 age group, the 1960 census count appears to be fairly complete and accurate by five-year age groups (United Nations 196(9). Moreover, this choice was made simply for lack of better evidence.

Deaths

Coale-Demeny model North life tables were used to determine the preliminary correction factors for deaths for all age groups below 70 . The levels used were based on the e_{0} values of the 1964-67 and 1974-76 S1 C life tables, as described in the section on application of our method to, Thailand, 196()-80. The life tables corresponding to these levels for males and females are given in Appendix Tables B. 3 and B. 3.4 respectively:

For the $70+$ age group the SPC life ables were used rather than model tables. That is, the preliminary correction factors for deaths for the $70+$ age group were derived from life tables obtained from the SPC life tables by an interpolation process described in the section on application of the method.

The 196()-65 and 1970)-75 preliminary correction factors for deaths were derived from the life tables be a forward survival method involving the 1960 and 1970 prciiminarily corrected census age-sex distributions. Similarly, the 1965-70 and 1975-80 factors were derived by a reverse survival method involving the 1970 and 1980 preliminarily corrected census age--sex distributions. The preliminarily corrected census age-sex distributions are given in Appendix Table B.1, and the preliminary correction factors for deaths are given in Appendix Table B.S.

More precisely, the forward survival formula used for the periods 1960-65 and 1970-75 to calculate the preliminary correction factor for deaths $\left(h_{a}\right)$ at age a to $a+5$ is

$$
\begin{align*}
h_{a} & =\left(\begin{array}{c}
P_{a-5} \cdot \\
5 l_{a} \\
L_{a-5}
\end{array}\right)\binom{l_{a}-l_{a+5}}{l_{a}} / D_{a} \\
& =\begin{array}{c}
5\left(l_{a}-l_{a+5}\right) P_{a-5} \\
{ }_{5} L_{a-5} D_{a}
\end{array} \tag{3}
\end{align*}
$$

where I_{a} denotes life table survivors at exact age $a ; L_{a}$ denotes life table person-years lived between exact ages a and $a+5 ; D_{a}$ denotes the number of registered deaths of age a to $a+5$ for the period; and P_{a} denotes the preliminarily corrected population of the age group a to a +5 for the census immediately preceding the period in question (the 1960 census for the period 1960-65 and the 1970 census for the period 1970-75).

The rationale behind formula (3) is as follow's. In the first line of formula (3), the first factor in the numerator gives the number of those age $a-5$ to a in the prelimimarily corrected census population at the beginning of the period who have survived to attain age a during the period, based on the life table used for the period. The second factor in the numerator is the life table probability of dying between age a and $a+5$ for the period. Thus the numerator, which is the product of these tion factors, gives an estimate of the true number of deaths between ages a and $a+5$ for the period. When divided by D_{a}, the registered number of deaths between ages a and $a+5$ for the period, this yields the estimated (preliminary) correction factor for deaths for this age group.

Similarly, the reverse survival formula used for the periods 19t. 70 and 1975-80) is

$$
\begin{align*}
h_{a} & =\left(\begin{array}{cc}
l_{a} \cdot & 5 l_{a} \\
5 L_{a}
\end{array}\right)\binom{l_{a}-l_{a+5}}{l_{a}} / D_{a} \\
& =5\left(l_{a}-l_{a+5}\right) P_{a} \tag{4}
\end{align*}
$$

where the notation is as above except that P_{10} is the preliminarily corrected population of the age group a to $a+5$ for the census immediately following the period in question.

Formula (4) is the same as formula (3) except for the first factor in the numerator. In both formulas, this first factor estimates the true number of people who have attained age a during the period. In formula (4), the number who have attained age a during the period is obtained by reverse survival of those aged a to $a+5$ in the preliminarily corrected census
population at the end of the period rather than by forward survival of those aged $a-5$ to a in the preliminarily corrected census population at the beginning of the period, as in formula (3).

Clearly the forward survival formula for 1960-65 and 1970-75 is not applicable for the age group 0-4. However, its natural analogue is

$$
\begin{equation*}
h_{0}=\frac{\left(l_{0}, l_{5}\right) B}{l_{10} D_{0}} \tag{5}
\end{equation*}
$$

where β denotes the estimated true number of births for the period and the other notation is as before. Equation (5) is used to determine the preliminary correction factor for deaths at ages $0-4 . B$ is obtained by using the preliminary correction factors for births determined above to estimate the true number of births. For example, the preliminary correction factor for deaths for females of ages $0-4$ for the period $1960-65$, given in Appendix Table B.5, is

$$
h_{11}=\begin{gathered}
(100,000-89,462)(1.300)(2,363,132) \\
(100,000)(179,043)
\end{gathered}=1.808
$$

Here, 89,462 is the l, value from the Coalo-Demeny model North level 17.0 female life table.

Special formulas are needed also for the preliminary correction factor for deaths for the $70+$ age group. The approximate reverse survival formula that is used may be obtained from equation (4) by letting $a=70$ and $a+$ 5 be an age beyond which anyone lives. Hence it is the same as equation (4) with $a=70$; $l_{a}+5$ set equal to 0 ; P_{a} and D_{a} replaced by the preliminarily corrected census population P_{70}, and registered deaths $D_{70}+$ respeclively; and $L_{a i}$ replaced by T_{70}, the life table person-years lived above age 70. Thus

$$
h_{70}=\begin{align*}
& 5 l_{70} P_{71}, \tag{6}\\
& \Gamma_{71} D_{71},
\end{align*}
$$

As before, P_{70}, refers to the census immediately following the period in question.

For example, the volue of h_{70} for males for the period 1965-70 is

$$
h_{50}=\begin{gathered}
5(43,881)(280,900) \\
(428,383)(96,868)
\end{gathered}=1.485
$$

(Recall that the interpolated SPC life tables are used for the $70+$ age group.)
If census and death registration data and SI'C life tables for five-year age groups bevond age 70 are wailable, as is true for some periods, one may use a more precise lormula than equation (6) for h_{70}. This formula would consist of a sum with terms like equation (4) for the five-year age
groups and equation (6) for the open-ended age group. However, it was found that this more cumbersome formula yielded correction factors that differed little from those given by formula (6).

The reverse survival equation (6) was used to determine h_{70} not only for the periods 1965-70 and 1975-80, but also for the periods 1960-65 and 1970-75 after forward surviving the age group $65+$ preliminarily corrected population of the 1960 and 1970 censuses to 1965 and 1975 respectively. It can be shown that the same result is obtained by using the forward survival formula

$$
h_{70}=\frac{5 l_{70} P_{65+}}{T_{65} D_{70}+}
$$

where P_{65+} is the preliminarily corrected population of the age group $65+$ for the census immediately preceding the period in question.

APPENDIX B. TABLES

Table B.1. Preliminarily corrected census age-sex distributions: Thailand, 1960, 1970, and 1980

Age group	1960		1970		1980	
	Males	Females	Males	Females	Males	Females
0-4	2,517,000	2,448,000	3,219,100	3,090,100	3,074,700	2,945,500
5-9	2,016,300)	1,982,900	2,725,400	2,64,500	3,208,900	3,083,900
10-14	1,565,400	1,527,800	2,350,100	2,300,700	3,103,700	2,975,700
15-19	1,265,20\%	1,238,200	1,904,900	1,919.400	2,672,900	2,587,500
20-24	1,214,400	1,206,000	1.475,000	1,480,000	2,283,800	2,265,600
25-29	1,026,700	1.048.100	1,263,200	1,192,300	1,866,600	1,862,800
30-34	885,700	871.200	1,147,400	1.153,900	1,447,200	1,421,600
35-39	693,400	681,000	965,700	990,200	1,178,700	1,172,900
40-44	569,700	564,700	826,100	821,400	1,063,100	1,105,100
45-49	494,700	483,700	6.37 .800	635,800	884,600	931,100
50-54	402,400	411,000	512,500	519,800	732,200	761,100
55-59	322,300	329,600	430,200	434,600	552,100	573,900
60-64	229,000	245,400	332,400	353,900	416,400	456,400
65-69	149,300	163,900	244,400	263,200	321,100	357,400
$70+$	177,700	245,100	280,90 ${ }^{\prime}$	354,000	400,100	552.900
Total	13,529,700	13,446,000	18,315,100	18,159, 500	23,206,100	23,053,400

Sources: For 1960: United Nations (1966). For 1970: Arnold and Phananiramai (1975: table 11), for ages 0-4 and 5-9; Fulton (1979: tables 17, 18), for ages $10+$. For 1980. 「ejaranonda, Arnold, and i iauser (1983: table 11).

Table B. 2 Preliminary correction factors: Thailand, censuses of 1960, 1970, and 1980

Age group	1960)		1970		1980	
	Males	Females	Males	Females	Males	Females
0-4	1.175	1.163	1.123	1.104	1.109	1.110
5-9	1.000	1.000	1.016	1.014	1.077	1.080
10-14	1.000	1.000	1.016	1.020	1.032	1.027
15-19	1.000	1.000	1.0138	1.017	. 991	. 954
20-24	1.000	1.000	1.115	1.085	1.020	. 993
25-29	1.000	1.000	1.149	1.041	1.071	1.029
30-34	1.000	1.000	1.09 .4	1.070	1.086	1.041
35-39	1.000	1.000	1.012	i.039	1.015	. 991
40-44	1.000	1.000	1.066	1.071	. 999	1.002
45-49	1.000	1.000	1.06 .3	1.063	. 954	. 963
50-54	1.000	1.000	1.06. 4	1.060	. 983	. 990
55-59	1.000	1.000	1.1106	1.080	1.015	1.011
60-6.4	1.000	1.000	1.10.4	1.090	1.012	1.031
65-69)	1.000	1.000	1.146	1.100	1.082	1.072
$70+$	1.000	1.000	1.114	1.000	. 979	1.000
Totals	1.029	1.026	1.070	1.051	1.039	1.025

Note: The preliminary correction factors for censuses are calculated by se and age group by dividing the corrected populations of Table B. 1 by the corresponding reported populations given in Tables 1 and 2.

Table B.3. Coale-Demeny model North life tables for determining preliminary correction factors for registered deaths for males: Thailand, 1960-65, 1965-70, 1970-75, and 1975-80

Agex	1960-65		1965-70		1970-75		1975-30	
	l_{x}	$=1.3$	13	$=L_{\text {a }}$	l_{x}	${ }_{5} L_{x}$	l_{x}	${ }_{5} L_{x}$
0	100,000	451.43 .3	100,000	453.753	100,000	456,072	100,000	458.392
5	87, 3.41	432.926	88,170	+36,320	88,799	439,715	89.428	443,109
10	8ร. 630	425,476	86,358	429.240	87.087	433,005	87,815	436,769
15	84.301	419.212	$8=.338$	423,207	86,115	427,201	86,892	431,197
20	83,124	410, 3 \%	83.445	414,511	84,766	419,065	85.587	423,319
25	S1,094	400.3 -4	81,979	404.908	82,860	409,461	83,740	414.015
30	79,043	384.843	79.984	394,698	80,925	399,553	81,866	404,408
35	7n, 84\%	778.588	77.890	383,754	78,897	388.921	79,898	394.087
40	74.541	.065,789	75.607	371,291	76,672	376.793	77,738	382,295
45	71.774	350,038	72.910	356,490	74,045	362,341	75,181	368,193
50	nis.aso	331.681	69.686	337.847	70.891	344.013	72,097	350,179
55	64.192	309805	65.453	314.230	66.714	320,672	67.975	327.106
(6)	58.401	277.125	(r) . 2.43	283.736	n1.955	290,347	62,867	296,958
65	51,919	230.904	53.251	243.480	54.583	250,051	55,915	256,623
70	42,844	+12.342	+4.141	429.776	45,438	447,210	46,735	464,644

[^2]Table B.4. Coale-Demeny model North life tables for determining preliminary correction factors for registered deaths for females: Thailand, 1960-65, 1965-70, 1970-75, and 1975-80

Age $_{x}$	1960-65		1965-70		1970-75		1975-80	
	I_{x}	L_{2}	12	; L_{2}	12	L_{*}	I_{x}	$s L_{x}$
0	100,000	+59,370	100,000	+62.864	100.0%	466,359	100,000	470,935
5	89,462	43.154	90.425	+48.401	91,388	453,648	42,6\%	460,502
10	87,800	436,542	88.936	+42.444	90,072	+48,346	91,536	+56,060
15	86,817	431.191	58,042	437.535	89.267	+43,879	90.8 ¢	+52,179
20	$85.661)$	424,759	86.973	431.559	88,286	438.360	90, (\%):	+47,268
25	84,244	417.186	85.652	+24,480	87,059	431,792	88,904	441,372
30	82,630	408.648	84, 144	416.517	85.678	424,386	87,645	+34,726
35	80, 829	399.064	82.463	+07,560	84.097	416.057	86,245	427,241
40	78,797	388,007	80.562	397.135	82,327	406,262	84,651	418,301
45	76,406	375.313	78,292	385,051	80.179	394.759	82,669	407,593
50	73,732	359, 85	75.729	370,217	77,726	380,449	80,368	394,013
55	70,263	340,249	72,359	351.013	74,455	361.776	77,237	376,091
60	65,837	313,593	68,047	324,895	70.256	336,198	73,199	351,290
65	59,600	276,099	61,912	287,767	6-4.223	299,435	67,317	315,098
70	50.839	526,512	53.195	562,554	55,551	598,297	58,722	647,334

[^3]Source: Same as Table B. 3 .

Table B.5. Preliminary correction factors for registered births and deaths: Thailand, 1960-65, 1965-70, 1970-75, and 1975-80

Births deaths and age group	1960-65		1965-70		1970-75		1975-80	
	Males	Females	Males	Females	Males	Females	Males	Females
Births	1.234	1.300	1.220	1.250	1.199	1.211	1.179	1.174
Deaths								
0-4	1.799	1.808	2.194	2.045	2.534	2.325	3.088	2.624
5-9	1.604	1.543	1.724	1.537	2.001	1.637	2.177	1.596
10-14	1.460	1.609	1.522	1.612	1.587	1.556	1.751	1.578
15-19	1.682	1.594	1.601	1.568	1.503	1.478	1.424	1.393
20-24	1.746	1.187	1.795	1.388	1.685	1.549	1.455	1.582
25-29	1.773	1.286	1.667	1.318	1.602	1.645	1.503	1.827
30-34	1.485	1.191	1.449	1.252	1.396	1.313	1.385	1.603
35-39	1.304	1.117	1.209	1.158	1.228	1.250	1.128	1.301
4(1-44	i. 162	1.095	1.175	1.180	1.108	1.224	1.045	1.234
45-49	. 991	1.116	1.064	1.112	1.102	1.206	. 982	1.128
50-54	1.042	1.183	1.012	1.124	1.093	1.173	1.085	1.228
55-59	1.044	1.260	1.041	1.213	1.040	1.178	1.079	1.200
60-64	1.113	1.364	1.055	1.235	1.092	1.264	1.019	1.203
65-69	1.287	1.596	1.251	1.480	1.219	1.459	1.211	1.445
$70+$	1.45	1.671	1.485	1.562	1.417	1.456	1.352	1.514

[^4]
APPENDIX C. FORMULAS FOR DERIVING THE LIFE TABLES

The following formulas were used to calculate the intercensal abridged life table for five-year age groups for the five-year period beginning 1 April of the vear $1960+5(i-1)(i=1,2,3,4)$:

$$
\begin{aligned}
& { }_{5} L_{11}=\left(P_{i+1,11} / B\right)\left(5 l_{11}\right) \\
& { }_{5}^{\prime}-a+5={ }_{5} L_{a}\left(P_{i+1,1,+5} / P_{i, a}\right) \\
& T_{75}=\left({ }_{5} L_{71} P_{i+1,75+}\right) /\left(P_{i, 70+}-P_{i+1,75+}\right)
\end{aligned}
$$

where ${ }_{5} I_{a}=$ life table person-years lived between ages a and $a+5 ; T_{75}=$ person-years lived after age 75; $P_{i, a}=$ corrected age a to $a+5$ population on 1 April of the year $1960+5(i-1), i=1,2,3,4,5$ (see Tables 1,2 , and 11); $B=$ corrected births in the five-year period; and $l_{a}=$ life table survivors at exact age a. The second of these three formulas was applied iteratively.

All three formulas result from equating the survival ratios of the life table to those of the corrected data. In particular, the third is obtained by solving for T_{75} in

$$
T_{75} /\left({ }_{5} L_{70}+T_{75}\right)=P_{i+1,75+} / P_{i, 71+}
$$

which equates the survival ratio of the life table with that of the corrected data for the open-ended age group.

Then

$$
l_{a+5}=\left(_{5} L_{a} / 5\right)\left(1-D_{a l}^{\star} / l_{, a}^{3}\right)
$$

where D_{a}^{\star} denotes the corrected number of deaths during the five-year period occurring before exact age $a+5$ to those aged a to $a+5$ at the beginning of the period.

REFERENCES

Arnold, Fred, and Mathana Phananiramai
1975 Revised Estimates of the 1970 Population of Thailand. Research Paper No. 1. Bangkok: National Statistical Office.

Chamratrithirong, Apichat, Nibhor Debavalya, and John Knodel
1978 Age Reporting in Thailand: Age at Last Birthday Versus Age at Nert Birth. day. Paper No. 25, Institute of Population Studies. Bangkok: Chulalongkorn University.

Coale, Ansley J., and Paul Demeny
1966 Regional Model Life Tables and Stable Populitions. Princeton: Princeton University Press.

Demeny, laul, and Frederick C. Shorter
1908 Estimating Tiurkish Mortality, Fertility, and Age Structure. Publication No. 218, Faculty of Economics, University of Istanbul. Istanbul: Istanbul University Press.

Ftilton, John Peter
1975 Evoluation of Selected Aspects of the 1970 Census of Thailand. Paper 29, Institute of Population Studies. Bangkok: Chulalongkorn University.

Hill, Kenneth
1979 Estimating fertility in Thailand from information on children ever born. In The Survey of Population Chanse, 1974-76; Special Report on Fertility, Nuptiality, and Infant Mortality Measures, pp. 1-48. Bangkok: National Statistical Office.
L.uther, Norman Y.

1983 Measuring changes in census coverage in Asia. Asian and Pacific Census Forum 9(3):1-11, 16.

Luther, Norman Y., and Robert D. Retherford
1986a Consistent correction of census and vital registration data. Unpublished paper, East-West Population Institute, Honolulu.
1986b A new method ior consistent correction of census and vital registration data. Working Papers of the East-West Population Institute, No. 35. Honolulu: East-West Cente::

Panei on Thailand
1980 Fertility and Mortality Chanses in Thailand, 1950-75. Committee on Population and Demography, National Academy of Sciences. Washington, D.C.: National Academy Press.

Pejaranonda, Chintana, Fred Arnoid, and Minja Choe
19851980 Population an Housing Census: Provincial Level Fertility Estimales for Thailand, 1965-1979: An Application of the Own-Children Method. Subject Report No. 4. Bangkok: National Statistical Office.

Pejaranonda, Chintana, Fred Arnold, and Philip M. Hauser
1983 Revised Estimates of the 1980 Population of Thailand. Bangkok: National Statistical Office.

Preston, Samuel
1983 An integrated system for demographic estimation from two age distributions. Demography 20(2):213-26.

Preston, Samuel, and Kenneth Hill
1980 listimating the completeness of death registration. Population Studie's 34(2):349-66.

Rungpitarangsi, Benjawan
1974 Mortality Trends in Thailand: Estimates for the Period 1937-1970. Paper No. 10, Institute of Population Studies. Bangkok: Chulalongkorn University.

Thailand, Central Statistical Office 1962 Thailand Population Census: 1960, Whok Kinglom. Bangkok.

Thailand, Ministry of Public Health, Division of Vital Statistics 1962-83 Public Health Statistics. Bangkok.

Thailand, National Economic and Social Development Board; Institute of Population Studies, Chulalongkorn University; and National Statistical Office

1973 Population Projections for Thailaml, 1960-2000. Bangkok: National Statistical Office.

Thailand, National Statistical Office
1969 Report: The Surocy of Population Chance: 1964-67. Bangkok.
1973 1970 Population and Housing Census: Whole Kingitom. Bangkok.
1978 Report: The Survey of Population Change, 1974-76. Bangkok.
1981 Alvance Report: 1980 Population and Hotsing Comsus. Bangkok.
1982 Statistical Handbook of Thailand. Bangkok.
19831980 Population and Housing Cinsits: Wholl' Kimgdom. Bangkok.
no date Statistical Yearbook: Thailand. No. 30, 1972-73. Bangkok
no date Statistical Yearbok: Thailand. No. 32, 1976\#80. Bangkok.

United Nations
1966 An evaluation of the demographic statistics of Thailand. Mimeographed. Bangkok: Economic and Social Commission for Asia and the Pacific (ESCAP), Population Division.
1976 Population of Thailumd. ESCAP Country Monograph Series, No. 3. Bangkok: ESCAP.
U.S. Bureau of the Census

1978 Country Demugraphic Profiles: Thailand. Washington, D.C.: U.S. Government Printing Office.

Recent available papers of the east-west porulation institute

84 Circulation and interpersonal networks linking ruial and urban areas: the case of Roi-et, Northeastern Thailand, Ly l'aul Lightfout, Theodore Fuller, and Peerasit Kammuansilpa, March 1983, vi + 4h pp.
85 Development perspectives and population change, by Ozzie G. Simmons, April 1983, $\checkmark i+41 \mathrm{pp}$.
86 Ine effects of indvecd abortion on subsequent reproductive function and pregnancy outcome: Hawaii, by Chin Sik Chung and Patricia G. Steinhoff in collaboration with Roy Cs. Smith and Ming-Pi Mi, June 1983, xii +144 pp .
60. F. Intluences o. childbearing intentions across the fertility career: demographic and sorcioeconomic factors and the value of children, by Rodolfo A. Bulatao and James 1 : Fawcett, June 1983, x + 152 pp .
87 Inpulation mobility and wealth transfers in Indonesia and other Third World secieties, by Grame J. Hugo, Jnly 1983, vi +50 pp .
88 Structurat change and prospects sor urbanization in Asian countries, by Gavin W. Jones, August 1983, vi + to pp.
sy irban growth and local taxes in less developed countries, by Roy Bahl, Daniel Holland, and Johannes limn, September $198:$ vi +33 pp .
90 A false fertility transition: the case of American blacks, by Paul Wright and Peter Pirie, February 1984, viii +81 pp .
60-G The old-age economic security value of children in the Philippines and Taiwan, by Susan De Whs, March i984, viii +72 pp .
91 A profile of Hawaii's elderly population, by Eleanor C. Nordyke, Richard K.C. Lee, and Robert W. Gardner, August 198.4, viii +39 pp .
92 City characteristics, migration, and urban development policies in India, by Mahendra K. Premi with Judith Ann L. Tom, June 1985, viii + 127 pp .

93 Urbanization in China: new insights from the 1982 Census, by Sidney Goldstein, July 1985, vi + 73 pp .
94 Comparison of fertility trends estimated altertatively from birth histories and own children, by Robert D. Retherford and Lqbal Alam, July 1985, viii + 39 pp.
95 Population mobility in the People's Republic of China, by Sidney Goldstein and Alice Goldstein, October 1985, vi $+46 \mathrm{p} p$.
96 Factors in the achievement of below-replacement ferility in Chiang Mai, Thailand, by T: ng, Pardthaisong. Morch [986, viii + 46 pp.
97 Thי: Population of Burma: An analysis of the 1973 Census, by M. Ismael Khin Maung. Af ril 1986, viii + 32 pp .
9. Pupulation aging in Australia: Implications for social and economic policy, by Graeme Hugo, April 1086, viii +47 pp .
3) Marriage and fertility in Tianjin, China: Fifty years of transition, by Burton Pasternak, July 1986, viii + 76 pp.
100 Migration in Thailand: A twenty-five-year review, by Sidney Goldstein and Aiice Goldstein, July 1986, viii + 54 pp .
101 Recent fertility trends in the Pacific Islands, by Michael J. Levin and Robert D. RetherFord, August 1986, viii +72 pp .
102 Malnourisled children: An economic approach to the causes and consequences in rural Thailand, by Sirilaksana Chutikul, December 1986, viii + 64 pp .

THE EAST-WEST CENTER is a public, nonprorit educational institution with an international board of governors. Some 2,000 research fellows, graduate students, and professionals in bu:amess and government each year work with the Center's international staff in cooperative study, training, and research. They examine major issues related to population, resources and development, the environment, culture, and communication in Asia, the Pacific, and the United States. The Center was established in 1960 by the United States Congress, which provides principal funding. Support also comes from more than 20 Asian and Pacific governmerts, as well as private agencies and corporations.

Situated on 21 acres adjacent to the University of Hawaii's Manoa Campus, the Center's facilities include a 300 -room office building housing research and administrative offices for an international staff of 250 , three residence halls for participants, and a conierence center with meeting rooms equipped to provide simultaneous translation and a complete range of audiovisual services.

THE EAST-WEST POPULATION INSTITUTE, established as a unit of the EastWest Center in 1969, carries out multidisciplinary research, training, and related activities in the field of population, placing emphasis on economic, social, psychological, and environmental aspects of population problems in Asia, the Pacific, and the United States.

[^0]: Sources: Same as Table 1.

[^1]: Note: The entries here may be obtained by dividing the corrected births or deaths by the corresponding reported births or death, in Tables 5 and 6 .

[^2]: life tables for $1904-67$ and 1424 - 0 , hearly interpolated, were used to determine preliminary correction factors for rewistered deaths for the age group 70 - for each five-year intercensal period.
 Source: Coale and Demens (1,

[^3]: Note: Model North femaie life table levels are 17.0. 17.6. 18.2 and 190 for 1900-65, 1955-70, 1970-75, and 1975-80 respectively. SPC female life tables for $1964-67$ and $1974-76$, linearly interpolated, were used to determine the preliminary correction factors for registered deaths
 tor the age group $70+$ for each five-year intercensal period. tor the age group $70+$ for each five-yar intercensal period.

[^4]: Niote: Preliminary correction hators for registered births and deaths are determined as described in Appendix A.

