$$
\begin{aligned}
& 26.96 \therefore 013 \\
& 26 \text { y } 06 \\
& 14 \% \div 475-3 \\
& \text { ! 1 1 ! in? }
\end{aligned}
$$

IDENTIFICATION, ESTIMATION AND VALIDATION OF SOME RIVER CATCHMENT MODELS WITH APPLICATION

By

M. halim salem, hit. dorrah and ma. ibo el-ela

CAIRO

October 1981
(c)

Copy right by

Cairo university - massachusfits institute of technolicigy
technological planning program

$$
26+\tan -(-1+1-i)
$$

PREFACE

This report is directed towards the identification, estimation and validation of some physical data based river catchment models. Two general classes of models, with a variety of mathematical formulations and estimation methodologies, are presented. The first class is the linear stochastic difference equation models, while the second is the transfer function models selected using the minimum mean-square error criterion.

A case study of the Waki River catchment located near Lake Albert has been examined to demonstrate the applicability of the above models. Using the inpui precipitation over this catchment and the corresponding measured output discharge, it has become possible to digitally simulate the two proposed models and to scrutinize the main statistical characteristics of their output data sequence. The validity of the residual sequences generated by different structures of these models for the prespecified estimation conditions has also been investigated.

The salient features of the two best fitted linear stochastic difference equation model and noisy trarisfer function model have then been discussed in a comparative pattern in order to achieve a better representatior for the Waki River catchment. As a general view, it is concluded that the application of linear stochastic difference equation models is pragmatic both for estimation and prediction of the given catchment output discharge.

ACKNOWLEDGEMENTS

The authors would like to express their appreciation to Professor Rafael Bras and Professor Peter S. Eagleson, of the Ralph M. Parsons Laboratory of Water Resources and Hydrodynamics of the M.I.T., for commenting on the original manuscript. Special thanks are extended t.o Professor M.F. Sakr of Cairo University, Dr. Hassan Ibrahim, Director of the Waier Resources Development Institute, Ministry of Irrigation, and to Eng. A. Afifi of the Nile Control Depa,'tment, Cairo, for all the help they provided.

This study was completely sponsored by the Cairo University/ M.I.T. Technological Planning Program which is funded by a contract between the Agency for International Development, United States Department of State and the M.I.T. Technology' Adaptation Program. The views and opinions expressed in this report, however, are those of the authors and do not necessarily reflect those of the sponsors.

Many thanks are extended to the staff members of the Cairo University Program Office for their unlimited services and typing the report.
PAGE
PREFACE i
ACKNOWLEDGEIMENTS iii
TABLE OF CONTENTS v
L.IST OF SYMBOLS $x i$
CHAPTER I : INTRODUCTION 1
1.1 Art of modeling 3
1.2 Objective of study and scope of the work 3
CHAPTER II : CHOICE OF AN APPROPRIATE MODEL 7
2.1 Introduction 9
2.2 Iterative approach to model building 9
2.3 General classes of physical data based models 10
2.3.1 Deterministic models 10
2.3.2 Stochastic models 10
2.3.2a The linear filter subclass 11
2.3.2b The autoregressive subclass 11
2.3.2c The moving average subclass 11
2.3.2d Mixed autoregressive moving average subclass 12
2.3.3 The transfer function models 12
2.4 Class selection of models 13
2.5 Validation of the selected models 13
2.6 Some features of stochastic models 14
2.6.1 Stationarity 14
2.6.2 Invertibility 15
PAGE
CHAPTER III : ANALYSIS OF THE NOISY-TRANSFER FUNCTION MODEL 17
3.1 Introduction 19
3.2 Identification of the noisy-transfer function models 19
3.2.1 Least-square estimation of the impulse response vector 21
3.2.2 The constrained estimation of the impulse resporise vector 22
3.3 Assumptions about the covariance matrix 24
3.4 Estimation of the model output data sequence 25
3.5 Validation tests using residuals of estimation 26
3.5.1 Test of zero mean 26
3.5.2 Correlogram of residuals with two stand- ard deviation limits 27
3.6 Validation tests based on comparison of the various characteristics of observed and estima- ted data 28
3.6.1 Comparison of correlograms 28
3.6.2 Comparison of power spectrums 29
CHAPTER IV : ANALYSIS OF SOME STOCHASTIC LINEAR MODELS 31
4.1 Introduction 33
4.2 Description of the proposed model 33
4.3 Estimation of the parameter vector 35
4.3.1 The first procedure 36
4.3.2 The second procedure 36
4.4 Class selection of univariate stochastic mndels described by a linear difference equation 37
4.4.1 The likelihood approach 37
4.4.2 The prediction approach 38
4.4.3 Discussion of the various class selection methods 39
4.5 Validation of the fitted model 40
4.5.1 Test of normality 40
4.5.2 Test of serial independence 43
4.6 Data normalizat on 45
4.7 Recursive prediction of the output data 45
CHAPTER V : DESCRIPTION OF THE CASE STUDY (WAKI RIVER CATCHMENT) 47
5.1 Introduction 49
5.2 Topography of Waki catchment 49
5.3 Soil of Waki catchment 49
5.4 Geology of Waki catchment 56
5.5 Vegetation of Waki catchment 56
5.6 Area versus elevation for Waki catchment 59
5.7 Climate of Waki region 59
5.8 Observational networks over Waki region 59
5.8.1 Meteorologica? stations 59
5.8.2 Hydrological stations 59
8.2 hytreatogical analysis of data 66
5.9.1 Dally, monthly and annual runoff 66
5.9.2, 2ainfall-runoff relationship 66
5.9.3 Ground flow recession curve 70
5.9.4 Total runoff recession curve 70
3.10 Analysis of sypical hydrographs of Waki Catehneat 74
 Wh: काVCR CATCHMENT 77
3.1 Encroduction 79
3.2 Some features of the case study 79
5.2.1 Statiscical characteristics of the observed data 80
5.) Application of the noisy-transfer function netic! 81
 fon mexdel 89
5.4 .1 in:t of the goodness of fit 89
5. $t \cdot f$ id:t of zero mean value of residuals 91
5.3.) Tallidation tests based on the compari- son of varlous characteristics of $00:$ eried and estimated discharges 91

PAGE.

6.5 The qualitative characteristic of residuals 98
6.6 Application of the linear stochastic differen- ce equation model 98
6.7 Estimation of the parameter vector 104
6.8 Class selection of the linear stochastic difference equation model 104
6.8.1 The likelihood approach 108
6.8.2 The prediction approach 108
6.9 Validation tests of the linear stochastic difference equation mode T 108
6.9.1 Test of serial independence 108
6.9.2 Test of normality 110
6. 10 Comparison of the two best fitted models M_{4} and M_{1} 110
CHAPTER VII : CONCLUSIONS 133
REFERENCES 139
APPENDIX A : Estimation of the power spectrum 145
APPENDIX B : List of the digital computer program for the noisy- transfer function model 149
APPENDIX C : The second Kolmogrov-Smirnov Test 173
APPENDIX D : List of the digital computer proyram for the linear stochastic difference equation modei 177

LIST OF SYMBOLS

$[y(\cdot)]$	A sequance of observed output data, measured for a given river catchment (in mm/day).
\bar{y}	Mean value of the observed output data sequence $[y(\cdot)]$.
σ_{y}	Standard deviation of the observed output data sequence $[y(\cdot)]$.
γ_{y}	Skewness coefficient of the observed output data sequence [$y(\cdot)]$.
$[x(\cdot)]$	A sequence of observed input data, measured for a given river catchment (in mm/day).
\bar{x}	Mean value of the observed input data sequence $[x(\cdot)]$.
σ_{x}	Standard deviation of the observed input data sequence $[x(\cdot)]$.
γ_{X}	Skewness coefficient of the observed input data sequence $[x(\cdot)]$.
N	Number of observations for either the input or the output data sequences.
$[\tilde{y}(\cdot)]$	A sequence of normalized output data.
$[\hat{\tilde{y}}(\cdot)]$	A sequence of estimated normalized output daia.

$[\hat{y}(\cdot)]$	A sequence of estimated output data.
$\left[x_{d}(\cdot)\right]$	A sequence of dalayed input data.
$\left[\tilde{x}_{d}(\cdot)\right]$	A sequence of normalized delayed input data.
k	Lag at which either the input or the output data sequence is observed (day).
$[\hat{y}(k \mid k-1)]$	An estimate for the output sequence at lag k given $k-1$ past observations.
P	Order of the autoregressive model.
q	Order of the moving average model.
r	An observation set for the output data sequence.
\underline{U}	Impulse response vector.
$\underline{U}_{L S}$	Unconstrained estimate for the impulse response vector \underline{U}.
K。	Kernel length.
$P(\cdot)$	Probability of an event (•).
$E(\cdot)$	Expected value of an event (•).
L_{i}	Maximum Likelihood function.
${ }_{i}$	One-step ahead prediction index.

$\forall \quad$ For all values.
$\pi \quad A$ constant equals to 3.14159
$W_{1} \quad$ Frequency of variation of the normalized output data (radians/day).
$\tau \quad$ Time delay factor.
€ \quad Subset notation sign.
ε
Noise vector for the transfer function model.
[w($\cdot)] \quad$ A sequence of zero-mean Gaussian distribution random variable with unknown variance.

The ith weighting parameter for the linear filter subclass of stochastic model.
$\left[y_{D}(\cdot)\right] \quad$ A sequence of deviated output data from its mean value \bar{y}.
t
Time interval in days.
ϕ
The ith weighting parameter for the autoregressive subclass of stochastic model.
$\theta_{i} \quad$ The ith weighting parameter for the moving average subclass of stochastic model.
$E_{i}, H_{i} \quad$ The i th weighting parameters for the continuous transfer function model.

R, S	Orders of the weighting parameters E's and H's respectively.
δ_{i}, ω_{i}	The ith weighting parameters for the discrete transfer function model.
r, s	Orders of the weighting parameters δ and ω respectively.
R_{K}	Covariance at lag K.
$\underline{\underline{H}}$	Nxk matrix composed of normalized and delayed input data to the noisy transfer function model.
J	Performance index.
$\underset{\sim}{V}$	Symmetric positive definite NXN matrix.
$\stackrel{G}{\square}$	NxK matrix.
M	Number of observation sets.
\underline{i}	Unitary vector of dimension Mx].
0	Null vector of dimension $k_{0} \times 1$.
$\underline{1}$	Identity matrix of dimension NxN .
${ }^{\text {c }}$ c	A simplified quadratic performance index.
$n(\cdot)$	Residual sequence generated via the noisy transfer function model.

\bar{n}	Mean value of the sequence $n(\cdot)$.
$\hat{\sigma}_{n}$	Estimated variance of the sequence $n(\cdot)$.
θ	A biasing limit for the test of zero mean.
D_{1}	A t-distributed variable.
n	Threshold for the test of zero mean value of residuals,
$\bar{R}(k)$	Vaiue of the observed correlogram at lag k.
$R(k)$	Value of theoritical correlogram at lagk.
$R^{j}(k)$	An estimate of the jth observed correlogranl at lag k.
$R^{M}(k)$	An estimate of the actual observed correlograill at lag k.
α_{j}	The jth parameter for the linear stochastic difference equation model.
ϕ_{j}	The jth weighting function for the linear stochastic difference equation model.
$\underline{\text { a }}$	Estimated parameter vector for the linear stochastic difference equation model.
S	Covariance matrix.

$[\hat{W}(\cdot)]$	Estimated residual sequence obtained during the tuning stage of the linear stochastic difference equation model.
$[\bar{W}(\cdot)]$	Residual sequence of estimation stage for the linear stochastic difference equation model.
n	Number of autoregressive terms.
17	Number of corrective error terms.
n_{3}	Number of sinusoidal terms.
n_{1}	An integer value equal to $n+m+n_{3}$.
C_{i}	The ith class of linear stochastic difference equation model.
$\hat{\phi}_{i}$	An estimate for the conditional maximum likelihood function.
v_{i}	Field of conditional maximum likelihood functions.
$F(\bar{w})$	Continuous cumulative distribution function of \bar{W}.
$\left[w_{(i)}\right]$	Order statistics of [w(i)].
Z	Test statistic for the test of normality.
$L(Z)$	Limiting cumulative function of $D_{N} \sqrt{N}$.
Ho	Null hypothesis.
${ }_{\text {d }}$ c	Threshold value for the test of normality.

$r_{n_{2}}$	$n_{2} \mathrm{xn}_{2}$ matrix composed of autocorrelation coefficients of residunls at different lags.
$\beta(w)$	Test statistic for serial independence.
${ }^{\beta} 1$	Threshold value for the test of serial independence.
e(k)	Error of prediction al lag k.
$\mathrm{R}_{y x}(k)$	Cross-correlation coefficient of y and x with lag k.
M_{1}	The most acceptable linear stochastic difference equation model.
E。	Mean value of residual sequence $[\bar{w}(\cdot)]$.
E_{1}	Absolute mean value of residual sequence $[\bar{w}(\cdot)]$.
E_{2}	Mean square value of residual sequence $[\bar{w}(\cdot)]$.
Ma_{4}^{\prime}	The most successful noisy-transfer function model.

CHAPTER I
INTRODUCTION

CHAPTER I
INTRODUCTION

1.1 ART OF MODELING

The word "model" is used in many situations to describe the physical system at hand. Consequently, there is a strong difference of opinion as to the appropriate use of the model. It may suggest a photographic replication of the system under study which reflects all its ramifications so that the model may adequately represent that system.

Usually, complicated physical systems, such as river catchments, do not need an inextricable mathematical model to describe it. Thus, it is advisable to select a relatively simple model to a given system and increase the complexity of that model only if the simplest one is not satisfactory.

Briefly, the class selection methods furnish only the best clas: among a list of chosen classes. There is no guarantee that the best fitting model from the best class given by the class selection methods is the most appropriate one, i.e., it may not pass the validation tests. Thus, we should consider all the possible classes relevant for the physical system under consideration.

Practically, the best fitting model is that model which passes all the validation tests and have a relatively small number of parameters among the various prespecified classes.

1.2 OBJECTIVE OF STUDY AND SCOPE OF THE WORK

This research work is directed to the identification, estimation, and validation of some stochastic models suitable for river catchments.

Two families of models are discussed in some details. The first family is the linear stochastic difference equation models, while the second is the transfer function models selected using the minimum mean-square error criterion. The choice of the adequate model from either two families, for a given river catchment, is treated in the following steps :
i) Estimation of the parameters in a model using the given physical observations. This is usually known as the tuning step of the model.
ii) Choice of the appropriate structure by means of some class selection techniques.
iii) Verification of the validity of the selected structure by means of "goodness of fit" test and by a direct comparison of the various statistical characteristics of both the observed and estimated output data sequences.

Once the appropriate structure is selected, its one-step ahead prediction capability is checked by the straight forward comparison of the predicted and observed output data sequences within some prespecified levels of classification.

The following is a brief outline of the main parts of this report :

Chapter II discusses pertinent details of the model building problem as well as some alternative structures of models.

Chapter III presents an important model structure which is commonly used for river catchments. The possibility of using either the generalized least-square or constrained estimator to evaluate the
unknown parameters of that noisy-transfer function model is also scrutinized. The validity of the proposed model is then examined in order to achieve a better estimatability conditions.

In Chapter IV, a family of univariate linear stochastic difference equation models is suggested for representing the given physical data sequence. Moreover, some methods are given for estimating the :nknown parameters of these models. The nature of model validation is also discussed by using some goodness of fit tests.

In Chapter V, the Waki river catchment is selected as a case study to demonstrate ine applicability of the above modeis. A complete description of this catchment is given from both the geological. meteorlogical and hydrological view points.

Chapter VI investigates the availability of using either the noisy-transfer function model or the univariate linear stochastic difference equation model, with different concepts for each, to represent Waki river catchment. The forecasting capability of the two successful models, each developed from a prespecified family, is also tested for the given catchment.

Chapter VII presents a summary of the report as well as its main findings.

CHAPTER II
CHOICE OF AN APPROPRIATE MODEL

CHAPTER II

CHOICE OF AN APPROPRIATE MODEL

2.1 INTRODUCTION

The choice of an appropriate model for a given physical data such as river catchments is necessarily iterative, i.e. it is a process of evaluation and adaptation. Usually, when the physical mechanism of a phenomenon is completly understood, it may be possible to write down a mathematical expression which depicts it exactely, thus we obtain an ideal mathematic. 1 model. Although, insufficient information may be available initially to write an adequate mechanistic model. Nevertheless, an adaptive strategy can sometimes lead to such a model. On the other hand, the rather complete knowledge or large experimental resources needed to produce a mechanistic model are not avallable and we must then resort to a stochastic model tunad by observed physical data [Box and Hunter (1965)].

2.2 ITERATIVE APPROACH TO MODEL BUILDING

In fitting dynamic models, a theoretical analysis can sometimes tell us not only the appropriate form of the model but also can furnish good estimates of the numerical values of its parameters. The various stages of the iterative approach are:
i) From the interaction of theory and practice, a useful class of models, for the purpose at hand, is considered.
ii) Because this class is too extensive to be conveniently fitted directly to the physical data, rough methods for identifying subclass of these models are sought. Such methods of model identification employ data and knowledge
of the sr-tem to suggest an appropriate parsimonious subclass of models which may be utilized to yield rough preliminary estimates of the model's parameters.
iii) The rough estimates obtained during the identification stage can now be used as commencing values in more refined iterative methods for estimating these parameters.
iv) Diagnostic checks are applied with the object of uncovering possible lack of fit. If a permissible lack of fit is indicated, the model is ready to use, but if any inadequacy is found, the iterative cycle of identification, estimation and diagnostic checking is re-iterated until a suitable mathematical representation is attained.

2.3 GENERAL CLASSES OF PHYSICAL DATA BASED MODELS

2.3.1 Deterministic Models

It is sometimes possible to derive an empirical model, based on physical laws, which permits the calcualtion of some time-dependent quantities, almost exactly, at any instant of time. If exact calculations are attainable, such a model is entirely deterministic.

2.3.2 Stochastic Models

In diverse cases, we have to consider a time-dependent phenomenon comprising many unknown factors and can not render the application of a deterministic model possible. Thus, it may be easier to derive a model which can be used to calculate the probability of a future value lying between two specified limits. Such a class of models is called a stochastic model which is introduced to achieve an optimal forecasting and control tasks for the physical processes. The main subclasses of these stochastic models are:

2.3.2a The Linear Filter Subclass

Usually, a physical system in which successive values are highly dependent can be usefully regarded as generated from a series of independent random variable $w(t)$ by what is called a linear filter [Yule (1927)]. The linear filtering operation simply assumes a weighted sum of previous observation, so that

$$
\begin{equation*}
y(t)=\bar{y}+w(t)+\psi_{1} w(t-1)+\psi_{2} w(t-2)+\ldots \tag{2.1}
\end{equation*}
$$

where the weights $\psi_{1}, \psi_{2}, \ldots$, may be finite or infinite and the parameter \bar{y} is the mean value of the process $y(\cdot)$.

2.3.2b The Autoregressive Subciass

In this subclass, the current values are expressed as a finite linear aggregate of the previous values and a random $w(t)$. let us denote the deviation of the process $y(\cdot)$ from its mean value \bar{y} at equally spaced time intervals $t, t-1, \ldots, t-p$, by $y_{D}(t), y_{D}(t-1), \ldots, y_{D}(t-p)$ respectively. This gives
$y_{D}(t)=\phi_{1} y_{D}(t-1)+\ldots+\phi_{p} y_{D}(t-p)+w(t)$
which is called an autoregressive (AR) model of order p.

2.3.2c Moving Average Subclass

In this subclass, it is considered that the deviation of the system output from its mean value be linearly dependent on a finite number of previous random variables. That is
$y_{D}(t)=w(t)-\theta_{1} w(t-1)-\cdots-\theta_{q} w(t-q)$
which is referred to as the moving average (MA) model of order q.

2.3.2 d Mixed Autoregressive Moving Average Subclass

To achieve greater flexibility in fitting mathematical models, it is advantageous to include both autoregressive and moving-average terms to the model. This will lead to the mixed autoregressive moving-average (ARMA) model. The notation ARMA (p, q), represents an ARMA model with p consecutive AR terms $y_{0}(t), \ldots, y_{D}(t-p)$ and another q consecutive MA terms $w(t), \ldots, w(t-q)$. This model is expressed mathematically as
$y_{D}(t)=\phi_{1} y_{D}(t-1)+\ldots+\phi_{p} y_{D}(t-p)+w(t)-\theta_{1} w(t-1)-\ldots-\theta_{q} w(t-q) \cdot(2.4)$

2.3.3 The Transfer Function Models

In these models, the deviation of the input $[x(\cdot)]$ and the output $[y(\cdot)]$ from their appropriate mean values are related by a linear differential equation of the form

$$
\begin{equation*}
\left(1+E_{1} D+\ldots+E_{R} D^{R}\right) y_{D}(t)=\left(H_{0}+H_{1} D+\ldots+H_{S} D^{S}\right) x_{D}(t-\tau), \tag{2.5}
\end{equation*}
$$

where D is the differential operator, the E's and H's are unknown parameters and τ is a time delay factor.

In a similar way, for discrete data systems, we can represent the transfer function between the quantities x_{D} and y_{D} each measured at equispaced time intervals, by the corresponding difference equation
$\left(1-\delta_{1} B-\ldots-\delta_{r} B^{r}\right) y_{D}(k)=\left(\omega_{0}-\omega_{1} B-\ldots-\omega_{s} B^{s}\right) x_{D}(k-b)$
or simply
$y_{D}(k)=V(B) x_{D}(k)$,
where $V(B)$ designates the transfer function of the given physical system.

The problem of estimating the transfer function $V(B)$ is, however, practically complicated due to the presence of some undefined noises. Therefore, we adjust the ideal transfer function model (2.7) to be in the form

$$
\begin{equation*}
y_{D}(k)=V(B) x_{D}(k)+w(k), \tag{2.8}
\end{equation*}
$$

where $w(\cdot)$ is a zero-mean Gaussian distribution random variable whose variance is to be determined from the tuning process employing the physical data.

2.4 CLASS SELECTION OF MODELS

In selecting an appropraite class of models among a number of possible candidates, we need a suitable criterion which may be specified according to the goal of model building. Sometimes, many common criteria such as meansquare error may not lead to a better model selection. Hence, we shall work with a more sensitive criterion such as the likelihood or one-step ahead prediction approaches.

2.5 VALIDATION OF THE SELECTED MODELS

Once the appropriate class of models is selected, we must investigate how will that class represents the given physical data sequence, this is referred to as validation test of the model.

The first approach for validation testing is to check the validity of the assumptions behind the model. But to confirm the validity of the model, we have to directly compare the principle characteristics of the model output such as correlogram, power spectrum and histogram with these of the physical system. We accept the model if the discrepancy between the two sets of actual and simulated data characteristics is within one or two standard deviation limits of the actual data characteristics, which is inversely proportional to
\sqrt{N}, N being the number of cbservations. This acceptance criterion represents the must common used second approach for validation testing. Other validation tests will be considered later in more details.

2.6 SOME FEATURES OF STOCHASTIC MODELS

2.6.1 Stationarity

A stochastic model is said to be strictly stationary if its properties are unaffected by a change of time origin, i.e. if the joint probability distribution associated with m-observations, made at any set of times t_{1}, t_{2}, \ldots, t_{m}, is the same as that associated with other m-observations made at $t_{1}+k$, $t_{2}+k, \ldots, t_{m}+k$, where k is an arbitrary time shift operator [Papoulis (1965)].

Moreover, a stochastic model can be regarded as weakly stationary representation if the mean and covariance of its output series $[y(\cdot)]$ exist and sattsfy
$E[y(t)]=E[y(t+k)]$
ás well as
$E\left\{[y(t)-E[y(t)][y(t+k)-E[y(t+k)]]\}=R_{k}\right.$
where $E[(\cdot)]$ is the expected value of a sequence (\cdot) and \dot{R}_{k} is the covariance at lag k [kashyap and Rao (1976)].

Most of the physical processes are stationary for finite period of time but there is, of course, no sudden transition from stationary to non-stationary behaviour.

In doubtful cases, there may be an advantage in employing the nonstationary models rather than the stationary alternative. It is advisable to select the nonstationary models for those systems whose mathematical representation requires some periodic and/or time-dependent terms. On the other hand, the stationarity of a given stochastic model may ensure its convergence to a stable estimates of the unknown parameters involved by that model [Box and Jenkins (1970)].

2.6.2 Invertibility

A stochastic model is said to be invertable if the added noise sequence can be recovered, with probability one or in the mean-square sense, from a semi-infinite history of input and output data sequences. The concept of invertibility forms the basis of paramater estimation and prediction in systems with moving average terms, but it is automatically achieved by the other systems.

Definitely, the invertable stochastic models are relevant for keeping the main statistical characteristics of the added noise sequence [kashyap and Rao (1976)].

- CHAPTER llI ANALYSIS OF THE NOISY_TRANSFER FUNCTION MODEL

CHAPTER III

ANALYSIS OF THE NOISY-TRANSFER FUNCTION MODEL

3.1 INTRODUCTION

In this chapter, some numerical methods are described for identifying, fitting and checking the nsisy-transfer function model when simultaneous pairs of observations of the input and output data are available at a discrete time intervals.

3.2 IDENTIFICATION OF THE NOISY-TRANSFER FUNCTION MODEL

Alternatively, the notsy-transfer function model of (2.8) can be written in the following matrix form [Natale and Todini (1976)]

$$
\begin{equation*}
\underline{y}=\underline{\underline{H}} \underline{U}+\underline{\varepsilon} \tag{3.1}
\end{equation*}
$$

where:
i) y is $N x l$ vector designating the noramlized deviation of the output sequence from its mean value and can be written as

$$
\underline{y}=\left[\begin{array}{c}
y(1) \tag{3.2}\\
y(2) \\
\cdot \\
\cdot \\
\cdot \\
y(N)
\end{array}\right]
$$

ii) $\underset{\underline{H}}{ }$ is Nxk。 matrix denoting the deiayed normalized deviation of the input data sequence from its mean value which is related to the nodel output sequence at any time interval, and may be expressed a:

$$
\underset{=}{H}=\left[\begin{array}{cccccc}
\tilde{x}_{d}(1) & 0 & \cdot & \cdot & \cdot & \tag{3.3}\\
\tilde{x}_{d}(2) & \tilde{x}_{d}(1) & \cdot & \cdot & \cdot & \\
\tilde{x}_{d}(3) & \tilde{x}_{d}(2) & \cdot & \cdot & \cdot & \\
\cdot & \cdot & & & & \cdot \\
\cdot & \cdot & & & & \cdot \\
\cdot & \cdot & & & & \cdot \\
\tilde{x}_{d}(N) & \tilde{x}_{d}(N-1) & \cdot & \cdot & \cdot & \tilde{x}_{d}\left(N-k_{0}+1\right)
\end{array}\right]
$$

where k_{0} is the kernel length.
iii) \underline{U} is $k_{0} x l$ vector comprising the parameters of the impulse response vector, and is written as

$$
\underline{U}=\left[\begin{array}{c}
U(1) \tag{3.4}\\
U(2) \\
\cdot \\
\cdot \\
\cdot \\
U\left(k_{0}\right)
\end{array}\right] .
$$

iv) $\underline{\varepsilon}$ is $N \times 1$ vector denoting the input noise to the model at equispaced time intervals, and is given by

$$
\underline{\varepsilon}=\left[\begin{array}{c}
\varepsilon(1) \tag{3.5}\\
\varepsilon(2) \\
\cdot \\
\cdot \\
\cdot \\
\varepsilon(N)
\end{array}\right] .
$$

3.2.1 Least-Square Estimation of the Impulse Response Vector

Usually, the least-Square (LS) estimator can be invoked if the statistical characteristics of the noise vector $\underline{\varepsilon}$ are unknown, which is the most general case. In fact, by definition, the Ls estimator is that estimator which minimizes the quadratic performance index
$J=\frac{1}{2} \underline{\varepsilon}^{\top} \underline{\underline{V}}^{-1} \underline{\underline{\varepsilon}}$.
where $\underset{\sim}{V}$ is a symmetric positive definite matrix.

The performance index J can be written in the form of the impulse response vector \underline{U} as follows
$J=\frac{1}{2}(\underline{Y}-\underset{Z}{H I U})^{\top}{\underset{\Xi}{V}}^{-1}(\underline{Y}-\underset{Z}{H})$.
The recessary condition for the existence of an extreme value is that
$\left.\frac{\partial J}{\partial \underline{U}}\right|_{\underline{U}}=\underline{\hat{U}}_{L S}=0$
which yields
$\hat{U}_{L S}=\left(\underline{\underline{H}}^{\top} \underline{\underline{V}}^{-1} \underline{\underline{H}}\right)^{-1} \quad \underline{\underline{H}}^{\top} \underline{\underline{V}}^{-1} \underline{y}$,
where $\hat{\underline{U}}_{\text {LS }}$ is the least-square estimate of the impulse response vector \underline{U}. On the other hand, the sufficient condition for the existence of a minimum is then satisfied by
$\frac{\partial 2 \mathrm{~J}}{3 \underline{u}^{2}} \geq 0$.
This is attained only if the matrix $\left(\underline{\underline{I I N}}^{\top} \underline{\underline{V}}^{-1} \underline{\underline{i n}}\right)$ is positive definite.

4.2.2 The Constrained Estimation of the Impulse Response Vector

An improvement in the accuracy of the estimated impulse response vector can be produced by considering some priori additional information, which can reduce the field of the choice of \underline{U} [Natale and Todini (1976)]. A natural way of obtaining this reduction is to impose a set of constraints that must be satisfied by the true and estimated values of the impulse vector \underline{U}.

In many hydrological systems, which are mathematicaily balanced, it is possible to impose upon the impulse response vector \underline{U} a set of linear constraints, namely $\mathrm{GU}=\underline{\underline{\mathbf{I}}}$, which expresses the continuity equation. But, for those physical systems which can be described by a positive autocorrelation and cross-correlation coefficients, it is more convenient to assume $\underline{U} \geq \underline{0}$,
which represents an inequality constraint that must be satisfied by the estimated response vector $\underline{\hat{U}}$. Sometimes, we have to consider both the equality and inequality constraints based on some mathematical and physical consideration [Natale and Todini (1976)].

For instance, the solution of the constrained estimation problem can be found by searching for the minimum of
$J_{C}=\frac{1}{2}(\underline{y}-\underset{\underline{H} U}{ })^{\top} \underline{V}^{-1}(\underline{y}-\underline{\underline{H} U})$
which reduces to

$$
\begin{equation*}
{ }^{\theta} c=\frac{1}{2} \underline{U}^{\top} \underline{H}^{\top} \underline{V}^{-1} \underset{=}{H} \underline{U}-\underline{U}^{\top} \underline{H}^{\top} \underline{V}^{-1} \underline{y} \tag{3.13}
\end{equation*}
$$

subject to

$$
\begin{equation*}
\underset{=\underline{U}}{\underline{U}}=\underline{i} \text { and/or } \underline{U} \geq \underline{0}, \tag{3.14}
\end{equation*}
$$

where:
i) y is $N \times 1$ vector representing the system output, at equispaced time intervals, substracted from the estimated mean value of the noise sequence $[\varepsilon(\cdot)]$.
ii) $\underset{\equiv}{H}$ is an $N \times k_{o}$ matrix composed of the delayed system input sequence $\left[x_{d}(\cdot)\right]$, and may be written as

$$
H=\left[\begin{array}{cccccc}
x_{d}(1) & 0 & \cdot & \cdot & \cdot & 0 \tag{3.15}\\
x_{d}(2) & x_{d}(1) & \cdot & \cdot & \cdot & 0 \\
x_{d}(3) & x_{d}(2) & \cdot & \cdot & \cdot & 0 \\
\cdot & \cdot & & & & \cdot \\
\cdot & \cdot & & & & \cdot \\
\cdot & \cdot & & & & \cdot \\
x_{d}(N) & x_{d}(N-1) & \cdot & \cdot & \cdot & x_{d}\left(N-k_{0}+1\right)
\end{array}\right] \text {. }
$$

iii) $\underset{=}{G}$ is $M \times k$ 。 matrix containing the continuity coefficients for an M input vectors.
iv) $\underline{\underline{i}}$ is an $M \times 1$ unitary vector and $\underline{0}$ is $k_{0} \times 1$ null vector. Thus

$$
\underline{i}=\left[\begin{array}{c}
1 \tag{3.16}\\
1 \\
- \\
\cdot \\
\cdot \\
1
\end{array}\right] \quad \text { and } \quad \underline{0}=\left[\begin{array}{c}
0 \\
0 \\
\cdot \\
\cdot \\
\cdot \\
0
\end{array}\right] \text {. }
$$

24
v) $\underline{\underline{V}}$ is an NxN covariance matrix of the noise sequence.

3.3 ASSUMPTIONS ABOUT THE COVARIANCE MATRIX

As stated previously, either the constrained or unconstrained estimates of the impulse response vector \underline{U} need apriori evaluation of the noise covariance matrix $\underset{\underline{V}}{ }$. Unfortunately, it is not possible to resolve the nature of the noise vector by looking at the residual sequence, thus it is assumed to be a white noise so that the covariance matrix becomes

Practically, to set up the noise covariance matrix we consider that, [Natale and Todini (1976)],
$\underset{\underline{V}}{V}=\sigma^{2} \underline{\underline{I}}$
where $\underset{=}{I}$ is an $N \times N$ identity matrix and σ is the standard deviation of the noise sequence.

Finally, the previous constrained optimization problem could be solved using the quadratic programing technique as the performance index θ_{c} is a concave function [Wilson (1963)].

2. 4 EST MAT ION OF THE MODEL OUTPUT DATA SEQUENCE

50 Pevectivel, the mean and variance of the observed output data sequence
 neckar gatinates jerome to generate the current estimates of the model outयमद taquancz a: fallows

the: an the cultures. in the case of constrained estimator, to

$$
\begin{equation*}
{\underset{i}{t-1}}_{4_{1}} \quad \dot{f}(1){ }_{4}(x-1+1) \tag{3.21}
\end{equation*}
$$

A) Fevmasivel, the ees|cual sequence $[\mathrm{n}(\cdot)]$ for either the constrained in meanapralned eat hates of the model output data sequence $[y(\cdot)]$ may be 4) con dy

3.5 VALIDATION TESTS USING RESIDUALS OF ESTIMATION

Usually, some validation tests are applied to check the adequacy of the generated residual sequence for the priori estimation conditions, such as

$$
\begin{equation*}
\bar{n}=0 \tag{3.23}
\end{equation*}
$$

which is cailed the zero-niean test [kashyap and Rao (1976)].

3.5.1 Test of Zero Mean

On the basis of residuals $[n(\cdot)]$, we have to choose one of the following assumptions:

$$
\begin{align*}
S_{0}: \eta(k) & =w(k) \quad \text {, or } \\
S_{1}: \eta(k) & =\theta+w(k) \tag{3.24}\\
\forall k & =1,2, \ldots, N,
\end{align*}
$$

where $w(\cdot)$ is a sequence of zero mean random variable with distribution $N(0,0)$, and θ is a biasing limit. Let.
$\bar{\eta}=\frac{1}{N} \sum_{i=1}^{N} \eta(i)$, and
$\hat{\rho}=\frac{1}{N-1} \sum_{i=1}^{N}[n(i)-\bar{\eta}]^{2}$

be the mean and variance of the residual sequence respectively. Define $D_{7}=(N / \hat{\rho})^{\frac{1}{2}} \bar{\eta}$
where D_{1} is t-distributed variable with $N-1$ degrees of freedom independent of $\hat{\rho}$ [Kashyap and Rao (1976)]. Hence, we can employ the following decision rule
IF $\left|D_{1}\right| \begin{cases}<\eta_{0} & \text { Accept } S_{0} \\ \geq \eta_{0} & \text { Reject } S_{0},\end{cases}$
such that the threshold n_{0} could be chosen from the table of t-distribution with the corresponding degree of freedom and required significant level. For large values of physically based observation, one may consider

$$
\begin{aligned}
& n_{0}=1.64 \text { at } 95 \% \text { significant level, and } \\
& n_{0}=1.28 \text { at } 90 \% \text { significant level. }
\end{aligned}
$$

3.5.2 Correlogram of Residuals with Two Standard Deviation Limits

Anderson (1971) showed that, the autocorrelation coefficients of a sequence of zero-mean white noise are, approximately, normally distributed with zero mean and variance $1 / \mathrm{N}$.

Let
$R(k)=\frac{1}{(N-k) \hat{\rho}} \sum_{j=1}^{N} \quad \eta(j) n(j-k)$
be the theoretical correlogram of the residual sequence $[n(\cdot)]$. Thus, for a zero-mean white noise, the coefficients $R(k)$ at any lag k, k being greater than zero, should be:
a) Small in comparison to unity.
b) Lie between the range $\pm 2 / \sqrt{N}$ with probability of nearly 0.95 .

3.6 VALIDATION TESTS BASED ON COMPARISON OF THE VARIOUS CHARACTERISTICS OF OBSERVED AND ESTIMATED DATA

In these tests, we will directly compare the theoretical characteristics of the observed and estimated output sequences. Of course, we can compare orily few characteristics such as correlograms and power spectrums [Kashyap and Rao (1976)].

3.6.1 Comparison of Correlograms

Let
$\bar{R}(k)=\frac{1}{(N-k) \sigma_{y}^{2}}\left[\sum_{j=1}^{N}[y(j)-\bar{y}][y(j-k)-\bar{y}]\right]$,
$R(k)=\lim _{N \rightarrow \infty} \bar{R}(k)$, and
$\sigma(k)=[E[R(k)-\bar{R}(k)]]^{\frac{1}{2}}$
where \bar{y}, σ_{y}^{2} denotes respectively the mean and variance of the output sequence $[y(\cdot)]$.

The graph of $\bar{R}(k)$ versus k, for fixed N, is called the observed correlogram whereas $R(k)$ versus k is called the theoretical correlogram of the same output sequence $[y(\cdot)]$. The degree of fit between these two correlograms can be quantitatively expressed in a manner consistent with the available observation size. Let
$R^{M}(k)=\frac{1}{M} \sum_{j=1}^{M} R^{j}(k)$, and
$\sigma^{M}(k)=\frac{1}{M} \sum_{j=1}^{M}\left[\left[R^{j}(k)-R^{M}(k)\right]^{2}\right]^{\frac{1}{2}}$,
where:
i) M is a reasonable number of independent observation sequence for the model output which can be generated by the appropriate simulation of the model.
ii) $R^{j}(k)$ is an estimate of the jth observed correlogram at lag k.
iii) $R^{M}(k)$ indicates an estimate of the actual observed correlogram at lag k.
iv) $\sigma^{M}(k)$ is an estimate of $\sigma(k)$.

Practically, the observed correlogram can be regarded as being a good fit to the theoretical correlogram of the model if the following relationship is satisfied
$R^{M}(k)-2 \sigma^{M}(k) \leq R^{\prime}(k) \leq R^{M}(k)+2 \sigma^{M}(k)$
and hence the model can be considered as adequate in representing the actual physical system.

3.6.2 Comparison of Power Spectrum

Similarly, the qualitative decision rules may be used to test the rejemblance between the observed and theoretical power spectrums. The theoreoical and observed power spectrums may be evaluated as shown in Appendix A.

CHAPTER IV
 ANALYSIS OF SOME STOCHASTIC LINEAR MODELS

CHAPTER IV

ANALYSIS OF SOME STOCHASTIC LINEAR MODELS

4.1 INTRODUCTION

In this chapter, we consider the structure of stochastic linear models described by a finite univariate difference equation. This class of models has a variety of terms such as autoregressive terms, moving average terms and deterministic trend function.

4.2 DESCRIPTION OF THE PROPOSED MODEL

It is convenient, though not necessary, to assume that, [Kashyap and Rao (1972)], the stochastic process [y(•)] obeys the following stationary stochastic difference equation:

$$
\begin{align*}
y(k)= & \sum_{j=1}^{n} \alpha_{j} \phi_{j}\left[k-1, y(k-1), \ldots, y(k-n), U(k-1), \ldots, U\left(k-n_{3}\right)\right] \\
& +\sum_{j=1}^{m} \alpha_{n+j} w(k-j)+w(k) \tag{4.1}
\end{align*}
$$

where $w(\cdot)$ is the disturbance sequence whose statistical characteristics are unknown except for
$E\left[w(k) \phi_{. j}[k-1, y(k-1), \ldots, y(k-n)]\right]=0, j=1,2, \ldots, n$
$E[w(k) w(k-j)]=0, j=1,2, \ldots, m$
where $E(\cdot)$ indicates the expected value of (.).

Usually, the deterministic trend sequence $[U(\cdot)]$ is introduced to reflect the variation of data from its mean value during an interval Mof time. This sequence is expressed as
$U(i)=\alpha_{o}+\sum_{j=1}^{n_{3}}\left[\alpha_{n+m+2 j-1} \cos W_{j} i+\alpha_{n+m+2 j} \sin W_{j} i\right]$
where the frequency of variation W_{j} is defined as

$$
\begin{equation*}
W_{j}=2 \pi j / M, j=1,2, \ldots, N . \tag{4.5}
\end{equation*}
$$

Alternatively, when the sequence $[y(\cdot)]$ is strictly positive, we could assign the following multiplicative form of the difference equation

$$
\begin{align*}
& y(k)= \prod_{j=1}^{n}\left[\phi_{j}\left(k-1, y(k-1), \ldots, y(k-n), u(i-1), \ldots, u\left(k-n_{3}\right)\right]^{\alpha_{j}}\right. \\
& \prod_{j=1}^{m} w(k)[w(k-j)]^{\alpha_{n+j}} \tag{4.6}
\end{align*}
$$

where the parameters n, n_{3} and m in both (4.1) and (4.6) are chosen to achieve, in the mean square sense, a better prediction ability. Moreover, the function $\phi_{j}(\cdot)$ can be expressed as
$\phi_{j}(k)=\left[y(k), y(k-1), \ldots, y(k-n+1), 1, \cos W_{j} k\right.$,

$$
\begin{equation*}
\left.\sin W_{1} k, \ldots, \cos W_{n_{3}} k, \sin W_{n_{3}} k\right] \tag{4.7}
\end{equation*}
$$

where W_{j} is the frequency of variation defined at the j th time interval.

4.3 ESTIMATION OF THE PARAMETER VECTOR

We shall present a heuristic development of the recursive algorithm for computing the vector $\underline{\alpha}$. Alternatively, (3.1) may be written as

$$
\begin{equation*}
y(k)=\underline{\alpha}^{\top} \underline{z}(k-1)+w(k) \tag{4.8}
\end{equation*}
$$

where
$\underline{\alpha}^{\dot{T}}=\left[\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n+m+2 n_{3}}\right]$
and
$\underline{Z}^{\top}(k-1)=\left[\phi_{1}(k-1), \ldots, \phi_{n}(k-n), w(k-1), \ldots, w(k-m)\right]$.
Let $\underline{a}(i)$ be an estimate for the N-dimerısion vector $\underline{\alpha}$ computed by using the following recursive algorithm [Kashyap and Rao (1972)]

$$
\begin{aligned}
& \underline{a}(i+1)=\underline{a}(1)+\underline{\underline{S}}(i+1) \underline{Z}(1)\left[y(i+1)-\underline{a}^{T}(i) \underline{z}(i)\right]
\end{aligned}
$$

where $[w(\cdot)]$ is an estimate for the residual sequence $w(\cdot)$ whose final estimates may be given by
$\bar{w}(k)=y(k)-\underline{a}^{\top} F \underline{Z}(k-1), \quad k=1,2, \ldots, N$,
where \underline{a}_{F} denotes the final estimate of the parameter vector $\underline{\alpha}$.

Practically, the above algorithm should be initialized before it is operated in the recursive model (4.11). Therefore, either one of the following procedures may be invoked:

4.3.1 The First Procedure

Let the available data be designated by $[y(j)]$, where $\mathrm{j}=1,2, \ldots$, N . Thus, the algorithm commences as follows [Kashyap and Rao (1972)]
$\underline{\mathrm{a}}(0)=\underline{0}, \underline{\underline{S}}(0)=\underline{\underline{I}}$
$y(j)=0, j=-1,-2, \ldots,-n$
$w(k)=0, k=-1,-2, \ldots,-m$

4.3.2 The Second Procedure

Let the available data be denoted by $[y(j)]$, such that $j=-p,-p+1, \ldots$, where p is an integer greater than or equal to $2 n$. Hence, the procedure for initialization is [Kashyap and Rao (1972)]
$\underset{=}{S}(0)=\sum_{j=-\left(p-n_{1}\right)}^{0}\left[\underline{Z}(j-1) \underline{Z}^{\top}(j-1)\right]^{-1}$
and
$\underline{a}(0)=\underline{\underline{S}}(0)\left[\sum_{j=-\left(p-n_{j}\right)}^{0} Z(j-1) y(j)\right]$
where n_{1} is an integer given by
$\stackrel{\rightharpoonup}{*}$
$n_{1}=n+n_{3}+m$.

On the other hand, the values $w(1), w(2), \ldots$, are all generated from a Gaussian random number generator with zero-mean and variance equal to the sample variance of $[y(0), y(-1), \ldots, y(-p)]$.

The first procedure is easier to implement, while the second procedure leads to a better prediction for small values of k.

Obviously, the parameters of the multiplicative structure (4.6) may be identified by a same manner as the additive structure (4.1) but with a natural logarithmic transformation technique [Kashyap and Rao (1972)].

4.4 CLASS SELECTION OF UNIVARIATE STOCHASTIC MODELS DESCRIBED BY A LINEAR DIFFERENCE EQUATION

One of the popular methods for comparing some proposed classes of the univariate stochastic models which are depicted by a linear difference equation is the method of hypothesis testing. Even though, the theory of that method is elegant [Kashyap and Rao (1976)], as it involves arbitrary quantities such as significant levels. Furthermore, it has limited applicability in the sense that it can handle, essentially, two classes of models at a time. Hence, two other approaches may be involved to select an appropriate class of models among q-proposed classes.

4.4.1 The Likelihood Approach

The decision rule can be expressed as follows:
i) For every proposed class $C_{i}, j=0,1, \ldots, q-1$, find the conditional maximum likelihood estimate $\hat{\phi}_{j}$ of $\dot{\phi}_{j}^{0}$ given that $\dot{\phi}_{i} \epsilon v_{i}$ using the given observation $[5=y(j), j=1,2, \ldots, N]$. Then compute the corresponding
value of likelihood furction L_{i} as follows
$L_{i}=\ln p\left(\zeta, \hat{\phi}_{i}\right)-n_{i}, \hat{\phi}_{i}=\left(\underline{a}_{F_{i}}, \hat{\rho}_{i}\right)$
where $p(\cdot, \cdot)$ denotes the conditional probability and n_{i} is the dimension of the vector $\phi_{j}^{\circ}=\left[\underline{a}_{i}, \rho_{j}^{\circ}\right]$.
ii) Choose the class which yield the maximum value of L_{i} among $\left[L_{i}, i=\right.$ $0,1, \ldots, q-1]$. Specifically, for the simplified model (4.8), the mathematical expressions for $\hat{\rho}_{i}$ and L_{i} are given be Kashyap and Rao (1976) as follows

$$
\begin{equation*}
\hat{\rho}_{i}=\frac{1}{N-m_{1}}{\underset{\sum}{k=m_{1}+1}}_{N}^{N}\left[y(k)-\underline{a}_{F_{i}}^{\top} \underline{z}(k-1)\right]^{2} \tag{4.17}
\end{equation*}
$$

and
$\mathrm{L}_{\mathrm{i}}=\frac{N}{2} \ln \hat{\rho}_{i}-n_{i}$
where m_{1} is the number of terms involved by c_{0}.

4.4 2 The Prediction Approach

This method allows the comparison of a number of different classes of models $C_{i}, \mathfrak{i}=0,1, \ldots, q-1$, simultaneously, where $C_{i}=\left[S_{i}, v_{i}, \Omega_{i}\right]$, provided that they do not have average terms [Kashyap and Rao (1976)]. Thus, consider the indices
$J_{i}=\frac{1}{N-1} \sum_{k=2}^{N}\left[y(k)-\hat{y}_{i}(k \mid k-1)\right]^{2}$
where $i=0,1, \ldots, q-1$.

Practically, if there was only one class $\mathrm{C}_{\boldsymbol{i}_{\mathbf{o}}}$ such that the index $\mathrm{J}_{\boldsymbol{i}_{\mathbf{o}}}$ is the smallest among the set $\left[\mathrm{J}_{\mathrm{i}}, \mathbf{i}=0,1, \ldots, q-1\right]$, we select that class. Alternatively, if more than one class can yield same minimum value of J_{j}, the given data will be assigned to one of these classes according to other subsidary measure such as minimal complexity.

4.4.3 Discussion of the Various Class Selection Methods

Among all the above presented methods, the likelihood approach is very versatile, theoretically sound and furnishes, in practice, reasonable results. It can simultaneously handle a number of classes, including those having moving average terms or log-tranformed terms.

One of the most distinguished merits of the likelihood approach is that, it does not involve the use of arbitrary quantities such as significant levels. One shortcoming of the likelihood approach for the determination of the order of AR models is, however, that the determined order is often higher than is necessary for passing the validation tests.

The hypothesis testing approach is more ambitious, since there is an attempt to obtain a decision rule with certain prespecified probability of error. But, in practice, it can handle only two classes at a time and even these two classes must be made up of generalized AR models.

The prediction approach is valid for systems possessing moving average terms. It is instructive to analyze the difference between the estimates of the mean-square prediction error obtained during the design of the predictor and that obtained during its testing. The difference between the two mean-square errors is examined to determine whether they are due to sampling variations only or to the poor quality of model.

On the other hand, the recursive prediction approach is especially useful with systems in which some of the parameters may vary with time. Alternatively, the prediction approach is apt to yield models that may not pass the validation tests [Kashyap and Rao (1976)].

4.5 VALIDATION OF THE FITTED MODEL

Practically, no model form ever represents completely the physical process. It follows that, given sufficient physical data, statistical tests can discredit models which could, nevertheless, be entirely adequate for the purpose at hand. Clearly, the validation tests must be such that they place the model in jeopardy, i.e. they must be sensitive to discrepancles which are likely to happen. However, if validation tests, which have been thoughtfully devised, are applied to a model fitted by a reasonable large number of data and fall to show serious discrepancies, then we shall rightly feel more comfortable about using that model.

4.5.1 Test of Normality.

The goodness of fit between the histogram of residuals and the fitted normal distribution may be visually judged by the first Kolmogrov-Smirnov test as follows:

Given a sample of N -independent and identically distributed set of residuals $\bar{w}(1), \bar{W}(2), \ldots, \bar{W}(N)$, with continuous cumulative distribution function $F(\bar{w})$, the first Kolmogrov-Smirnov test calculates the difference, in absolute value, between the usual normal distribution function $F_{N}(\bar{w})$ and the theoretical cumulative distribution function $F(\bar{w})$. For this purpose:
i) The order statistics $\left[\bar{w}_{(i)}\right]$ are determined by sorting the set $[\bar{w}(i)]$ into an ascending order.
ii) The measured cumulative distribution function is expressed as follows:

$$
F(w)=\left\{\begin{array}{cl}
0 & \text { for } \bar{w}<\bar{w}(1) \tag{4.20}\\
k / N & \text { for } \bar{w}(k) \leq \bar{w}<\bar{w}(k+1), \quad k=1,2, \ldots, N-1 \\
1 & \text { for } \bar{w}(N) \leq \bar{w} .
\end{array}\right.
$$

iii) The maximum deviation D_{N}, in absolute value, between the measured and theoretical distribution can be written as

$$
\begin{equation*}
D_{N}=\operatorname{Max}_{1 \leq \bar{w}_{(i) \leq N}}\left|F_{N}(\bar{w})-F(\bar{w})\right| \tag{4.21}
\end{equation*}
$$

Since $F_{N}(\bar{W})$ and $F(\bar{W})$ are nondescending functions, the result is
$D_{N}=\operatorname{Max}_{1 \leq k \leq N}\left|F_{N}(\bar{W}(k))-F(\bar{W}(k))\right|$.
Define

$$
\begin{equation*}
L(Z)=\operatorname{lime}_{N \rightarrow \infty} p\left[D_{N} \sqrt{N}<Z\right] \tag{4.23}
\end{equation*}
$$

where D_{N} is a random variable, $p(\cdot)$ denotes the probability of an event (\cdot) and $L(Z)$ is the limiting cumulative function of $D_{N} \sqrt{N}$.
iv) The probability that Z being greater than or equal to the computed value of $D_{N} \sqrt{N}$ can be written as
$p(Z)=1-L(Z)$
where

$$
L(Z)=\left\{\begin{array}{lll}
0 & & \text { for } z \leq 0 \tag{4.25}\\
1-2 \sum_{k=1}^{\infty}(-1)^{k-1} & \exp \left(-2 k^{2} z^{2}\right) & \text { for } z>0
\end{array}\right.
$$

When Z is very small, the series (4.25) converges slowly, but, using Jacobi's Theta functions $\theta_{2}(u, t)$ and $\theta_{4}(u, t)$, defined by
$\left.\begin{array}{l}\theta_{2}(u, t)=2 \sum_{k=0}^{\infty} \exp \left[i \pi(k+1 / 2)^{2} t\right] \cos [(2 k+1) u] \\ \theta_{4}(u, t)=1-\sum_{k=0}^{\infty}(-1)^{k-1} \exp \left(i \pi k^{2} t\right) \cos (2 k u)\end{array}\right\}$
and invoking the Jacobi imaginary transformation
$\theta_{4}(0, t)=(-i t)^{-\frac{1}{2}} \quad \theta_{2}(0,-1 / t)$,
it follows that

$$
\begin{align*}
L(Z) & =\theta_{4}\left(0,2 i Z^{2} / \pi\right) \\
& =\frac{\sqrt{2 \pi}}{Z} \sum_{k=1}^{\infty} \exp \left[-(2 k-1)^{2} \pi^{2} / 8 z^{2}\right] \tag{4.28}
\end{align*}
$$

which converges quickly when Z is small, see Wittaker and Watson This gives

where
$E_{1}(Z) \leq 6\left(10^{-15}\right)$ when $Z<1$, and
$E_{2}(Z)<10^{-20} \quad$ when $Z \geq 1$.

Decision Rule:

For the value of D_{N} given in (4.22), define a null hypothesis H_{0} which assumes that both the measured and theoretical distributions are identical, then the decision rule for accepting or rejecting H_{0} is expressed as

If $D_{N} \sqrt{N}\left\{\begin{array}{lll}\leq d_{c} & \rightarrow & \text { Accept } H_{0} \\ >d_{c} & \rightarrow & \text { Reject } H_{0}\end{array}\right.$
where the threshold d_{c} is chosen as
$d_{c}=1.36$ at 95% significant level, and
$d_{c}=1.22$ at 90% significant level.

4.5.2 Test of Serial Independence

We will determine whether the residual sequence given in (4.12), is serlally correlated [Whittle (1951 and 1952)]. Let
$c_{i}=\left[S_{i}, v_{i}, \Omega_{i}\right], i=0,1$
$S_{0}: \bar{w}(k)=w(k)$
$S_{1}: \bar{w}(k)=\sum_{j=1}^{n_{2}^{2}} \theta_{j} w(k-j)+w(k)$
where $w(\cdot)$ is an independent Gaussian random variable with zero mean and variance $\hat{\rho}, \hat{\rho} \in \Omega$
$\theta=\left[\begin{array}{llll}\theta_{1} & \theta_{2} & \ldots \theta_{n_{2}}\end{array}\right]$, and $v_{1}=\left[\begin{array}{lll}\theta & : & \theta \neq 0\end{array}\right]$ with $v_{0}=[0]$.
Let $\hat{\rho}_{0}, \hat{\rho}_{1}$ be the residual variances of the best fitting models for the given data in the two classes C_{0} and C_{l} respectively, and introduce \hat{R}_{k} as the
physically measured covariance at lag k, so that
$\hat{R}_{k}=\frac{1}{N-k} \sum_{i=k+1}^{N} \quad \bar{w}(i) \bar{w}(i-k)$.
Then, we have
$\hat{\rho}_{0}=\hat{R}_{0}, \quad \hat{\rho}_{1}=\operatorname{det} \Gamma_{n_{2}} / \operatorname{det} \Gamma_{n_{2-1}}$
where $\Gamma_{n_{2}}$ is $n_{2} \times n_{2}$ matrix and
$\left(\Gamma_{n_{2}}\right)_{i, j}=\hat{R}_{|i-j|} ; i, j=1,2, \ldots, n_{2}$
The test statistics is given by
$\beta(\bar{w})=\left(\frac{N}{n_{2}}-1\right)\left(\frac{\hat{\rho}_{0}}{\hat{\rho}_{1}}-1\right)$
which is approximately follows an F-distribution with two degrees of freedom n_{2} and $N-n_{2}$ for large value of N provided that $[\bar{W}(\cdot)]$ obeys C_{0}.

Decision Rule:

For the value $\beta(\bar{W})$ defined before, we can accept ei ıuer C_{0} or C_{1} according to the following decision rule
$\beta(\bar{w}) \begin{cases}\leq \beta_{1} & \rightarrow \text { Accept } C_{0} \\ >\beta_{1} & \rightarrow \text { Accept } C_{1}\end{cases}$
where β_{1} is chosen by the corresponding significant level and n_{2} is considered as 0.1 N or 0.05 N .

t. 6 DATA NORMALIZATION

In order to remove the periodicities of a given data sequence $[y(\cdot)]$, two types of normalization can be performed [Kashyap and Rao (1976)]. These are
$\tilde{y}(k)=[y(k)-\tilde{y}] / \sigma_{y}$
or
$y(k)=\log _{10} y(k)$
where \bar{y}, σ_{y} are the sample mean and standard deviation of the given data sequence $[y(\cdot)]$ respectively.

Usually, the data given by the normalized models can reproduce the mean and variance with a very satisfied significance, but the prediction errors with the normalized data may be larger than the original models, see Kashyap and Rao (1976).

Clearly, the transformation given by (4.37) may be satisfactory for those models of additive structures, while the otner transformation (4.38) may be suitable for the multiplicative structures.

4.7 RECURSIVE PREDICTION OF THE OUTPUT DATA

Let $\hat{\tilde{y}}(k+1 \mid k)$ be an estimate of the natural one-step ahead prediction $\tilde{y}(k+1)$, then

$$
\begin{equation*}
\hat{\tilde{y}}(k+1 \mid k)=\frac{\mathrm{a}}{\mathrm{~T}} \mathrm{~F} \quad \underline{z}(k)+w(k) \tag{4.39}
\end{equation*}
$$

where
$\underline{Z}^{T}(k)=\left[\phi_{1}(k), \ldots, \phi_{n}(k), w(k-1), \ldots, w(k-m)\right]$
and the vector \underline{a}_{F} is the final estimate of the parameter vector \underline{a}. The noise sequence $[w(\cdot)]$ is generated from a Gaussian random number generator with zero mean and variance similar to that of the residual sequence $[\bar{w}(\cdot)]$. The prediction error is defined as
$e(k+1)=y(k+1)-\hat{y}(k+1 \mid k)$
where

$$
\begin{equation*}
\hat{y}(k+1 \mid k)=\sigma_{y} \hat{\tilde{y}}(k+1 \mid k)+\bar{y} \tag{4.42}
\end{equation*}
$$

for the additive structure, and
$\left.\hat{y}(k+1 \mid k)=10^{\hat{y}(k+1} \mid k\right)$
for the multipiicative structure.

It is important to distinguish between $\bar{w}(k)$, which is only a residual, and $e(k)$ which is a difference between the predicted and actual quantities. The convergence properties of the algorithm (4.11) can be attained by considering the $\phi_{j}(\cdot), j=1,2, \ldots, n_{k}$, as linearly independent events whose
cumlative mean square vlaue, $\sum_{j=1}^{k} \phi_{j}(k) / k$, is bounded for all values of k, see

CHAPTER V DESCRIPTION OF THE CASE STUDY (WAKI RIVER CATCHMENT)

CHAPTER V

DESCRIPTION OF THE CASE STUDY
 (WAKI RIVER CATCHMENT)

5.1 INTRODUCTION

The case study represents a hydrologic system whose input and output daily records are as illustrated in Tables (5.1) and (5.2) respectively. These data denote the daily precipitation over the Waki River catchment, located near lake Albert, and the corresponding dally discharge. This catchment lies between longitudes $31^{\circ} 18^{\circ}$ and $31^{\circ} 39^{\circ} \mathrm{E}$, and latitudes $1^{\circ} 40^{\circ}$ and $1^{\circ} 28^{\circ} \mathrm{N}$. The catchment is drained by two main streams, Waki and Siba, see 1410 (1972).

5.2 TOPOGRAPHY OF WAKI CATCHMENT

The topography of the Waki catchment is shown in Fig. (5.1). It can be observed that the catchment is steep at its southern part but its steepness drops gradually when moving towards the Waki-II hydrological station. The maximum and minimum elevations are about 1402 m and 991 m respectively, while the average surface area of the catchment is $475 \mathrm{Km}^{2}$, [WMO (1972)].

5.3 SOIL OF WAKI CATCHMENT

The soil types found in the catchment are as shown in Fig. (5.2). The percentages of area covered by each soil type are:
i) Shallow dark brown or black sandy loams 3.5\%
i) Reddish and reddish brown gritty clay loams 39.7\%

Table (5.1)
LIST OF PRECIPITATION OVER RIVER WAKI CATCHMENT (IN MM/DAY)

Table (5.1) Cont'd.

DAY	APR.	MAY	JUNE	JULY	AUG.	SEP.	OCT.	NOV.
1	4.60	1.30	0.00	2.60	14.60	13.40	4.10	0.00
2	11.60	1.10	1.00	0.50	0.00	6.70	0.10	0.00
3	0.50	1.60	7.70	0.80	0.00	2.70	0.50	0.00
4	6.70	0.00	15.90	3.60	6.40	1.40	8.50	2.80
5	0.40	5.90	22.70	13.20	0.00	6.20	12.20	33.50
6	2.00	0.00	1.90	11.50	17.40	2.00	10.60	0.00
7	5.50	26.80	0.20	5.50	0.10	3.50	1.20	2.70
8	5.40	4.00	0.00	0.40	1.00	4.50	0.00	1.60
9	0.90	4.80	0.00	7.90	4.00	0.00	4.50	0.00
10	1.50	0.20	0.00	0.00	0.70	0.00	0.00	1.80
11	13.00	0.00	0.00	0.00	2.30	9.90	0.00	9.50
12	29.10	1.90	0.90	0.00	0.40	0.60	0.30	15.30
13	9.50	1.50	0.00	6.20	12.70	0.00	6.70	15.30 0.50
14	1.00	0.00	2.10	1.60	0.60	0.50	6.70 0.30	0.50
15	0.00	2.10	15.10	1.50	4.50	0.50 0.00	0.30 0.00	1.70
16	5.20	17.40	4.90	4.40	1.10	0.00	0.00	0.00
17	2.20	0.00	0.00	1.60	0.00	3.40	10.30	0.00
18	2.20	0.00	0.00	0.00	1.80	0.00	7.40	0.00
19	7.80	24.50	0.00	4.00	0.10	3.30	6.00	1.40
20	23.10	4.90	0.70	14.00	0.40	0.00	2.40	0.00
21	0.00	13.20	2.70	0.60	3.00	3.00	3.10	0.00
22	4.20	2.40	3.50	5.50	7.60	0.00	5.10	0.00
23	23.30	0.50	0.00	10.20	1.90	2.30	2.90	0.00
24	0.20	0.40	0.00	1.90	14.00	1.70	7.60	0.20
25	3.30	1.30	4.90	14.80	9.10	5.20	1.20	0.30
26	13.40	4.40	0.20	3.30	0.00	1.50	8.10	0.30 2.50
27	0.00	0.00	0.90	3.90	3.30	0.60	13.20	2.50 3.30
28	0.00	5.60	0.70	9.60	3.70	41.10	14.50	28.90
29	3.50	0.00	0.80	1.40	10.40	0.00	14.50 0.00	28.90 2.00
30	6.10	0.20	7.00	0.00	0.60	0.00	3.70	0.00
31		2.10		1.80	0.60		0.40	

Table (5.2)
LIST OF DISCHARGE FROM RIVER WAKI CATCHMENT (IN MM/DAY).

DAY	APR.	MAY	JuNE	JULY	AUG.	SEP.	OCT.	NOV.
1	0.4800	0.3000	0.7300	0.4900	0.4700			
2	0.5000	0.9100	0.7000	0.6100	0.4800	0.6600	0.6100 0.6200	0.9400 1.0500
3	0.5100	0.8400	0.6700	0.5800	0.5300	0.6400	0.8000	1.1300
4	0.5300	0.8200	0.6200	0.5500	0.5700	0.6700	0.8100	1.0400
5	0.5500	0.8700	0.5900	0.5200	0.6000	0.7000	0.8700	1.0400
6	0.5500	0.8100	0.5700	0.5300	0.5900	0.7400	0.8500	1.0300
7	0.5900	0.7800	0.5600	0.5200	0.5800	0.7200	0.8400	0.9800
8	0.6000	0.7300	0.6300	0.5300	ก. 5600	0.8100	0.8000	0.9300
10	0.5800	0.7600	0.6200	0.5100	0.6200	0.8900	0.8400	0.9600
11	0.6000	0.7200	0.6000	0.4800	0.6400	0.9400	0.8300	0.9600
12	0.6500	0.7000	0.5300	0.4600 0.4400	0.6200 0.6300	1.0300	0.7900	0.9100
13	0.6400	0.7000	$0.5: 00$	0.4300	0.6300 0.7500	0.9900 0.9300	0.7900 1.0400	0.8500
14	0.6200	0.7000	0.4800	0.4200	0.7200	0.9700	1.1200	0.7900
15	0.6300	0.6900	0.5100	0.4100	0.6800	0.9500	1.1400	0.8700
16	0.7600	0.6600	0.5900	0.40 ga	0.7000	0.9000	1.3000	0.8400
17	0.8200	0.6300	0.5800	0.3900	0.6700	0.8400	1.1600	1.0200
18	0.8600	0.6400	0.5500	0.4000	0.7000	0.9000	1.1800	0.9800
19	0.8200	0.7100	0.5200	0.3900	0.6800	0.9200	1.1500	0.9200
20	0.7800	0.6900	0.5200	0.4200	0.6700	0.8500	1.1800	0.9100
21	0.9400	0.6700	0.5200	0.4600	0.6400	0.7900	1.2200	0.8500
22	0.8800	0.7400	0.5500	0.4800	0.6600	0.7500	1.2300	0.8700
23	1.0100	0.7100	0.5200	0.5400	0.7100	0.7500	1.1900	0.9100
24	1.1400	0.7100	0.5000	0.5800	0.7700	0.7600	1.2200	C. 9200
25	1.0200	0.7100	0.4800	0.6300	0.9700	0.7500	1.1100	0.8800
26	0.9300	0.6700	0.4700	0.5900	0.9000	0.7100	1.0200	0.8400
27	0.9600	0.7100	0.4600	0.5500	0.8500	0.6900	0.9700	0.8100
28	0.8700	0.7100	0.4400	0.5200	0.8200	0.6600	1.0100	0.7800
29	0.7900	0.7900	0.4500	0.5000	0.7600	0.6300	1.0800	0.7500
30	0.7400	0.8100	0.4300	0.5100	0.7100	0.6300	1.0000	0.7300
31		0.7600		0.4900	0.6900		0.9900	

YEAR 1970

Table (5.2) Cont'd.

DAY	APR.	MAY	JUNE	JULY	AUG.	SEP.	OCT.	NOV.
	0.4100	0.5300	0.5500	0.3700	0.4700	0.5000	0.6200	0.6900
2	0.4200	0.5200	0.5100	0.3700	0.5400	0.5700	0.6200	0.6400
3	0.4600	0.5100	0.4900	0.3600	0.5100	0.5900	0.5900	0.6100
5	0.4200	0.5100	0.5100	0.3500	0.4800	0.5900	0.5800	0.5800
6	0.4000	0.4900	0.5900	0.3500	0.5000	0.5600	0.6200	0.5700
7	0.4100	0.5100	0.7300	0.4000	0.4900	0.5800	0.6900	0.8400
8	0.4000	0.4900	0.6900	0.4400	0.5800	0.5700	0.7400	0.7900
9	0.4100	0.6700	0.6300	0.4500	0.5400	0.5700	0.7000	0.7600
10	0.4200	0.6700	0.5700	0.4300	0.5200	0.5700	0.6600	0.7200
11	0.4000	0.6600	0.5300	0.4600	0.5300	0.5400	0.6600	0.6700
12	0.3900	0.6200	0.4900	0.4300	0.5100	0.5100	0.6200	0.6500
13	0.4400	0.5900	0.4600	0.4100	0.5000	0.5500	0.5900	0.6900
14	0.6000	0.5800	0.4300	0.4800	0.4800	0.5300	0.5600	0.7900
15	0.6200	0.5600	0.4100	0.4900	0.5400	0.5100	0.5800	0.7400
16	0.5900	0.5400	0.4000	0.4700	0.5200	0.4900	0.5600	0.7200
17	0.5400	0.5300	0.4700	0.4500	0.5300	0.4700	0.5400	0.6700
18	0.5400	0.6400	0.4700	0.4500	0.5100	0.4500	0.5200	0.6300
19	0.5100	0.6100	0.4400	0.4300	0.4800	0.4600	0.5700	0.5900
20	0.4900	0.5800	0.4200	0.4100	0.4700	0.4500	0.6000	0.5700
21	0.5100	0.7500	0.4000	0.4700	0.4500	0.4500	0.6300	0.5500
22	0.6300	0.7300	0.3900	0.4700	0.4400	0.4400	0.5200	0.5300
23	0.5800	0.8000	0.3800	0.4500	0.4400	0.4400	0.6200	0.5100
24	0.5600	0.7600	0.3800	0.4600	0.4700	0.4300	0.6200	0.4900
25	0.7100	0.7100	0.3700	0.4900	0.4500	0.4300	0.6100	0.4700
26	0.6300	0.6700	0.3500	0.4700	0.5200	0.4300	0.6400	0.4600
27	0.6000	0.6400	0.3600	0.5400	0.5500	0.4500	0.6200	0.4500
28	0.6000	0.6300	0.3600	0.5200	0.5200	0.4400	0.6500	0.4600
29	0.5500	0.6000	0.3500	0.5200	0.5200	0.4300	0.7300	0.4700
30	0.5300	0.6100	0.3500	0.5400	0.5200	0.7100	0.8200	0.6600
31		0.5800	0.3500	0.5200	0.5600	0.6700	0.7600	0.6400
	0.5500		0.4800	0.5300		0.7400		

Fig.(5.1) WAKI II CATCHMENT_RELIEF.

Fig. (5.2) WAKI II CATCHMENT-SOILS.

56

iii) Dark redy clay loams occasionally lateritized 35.2%
iv) Yellowish red clay loams occasionally shallow over phyllites 21.6%
5.4 GEOLOGY OF WAKI CATCHMENT

The geological structure of the catchment is illustrated in Fig. (5.3). The percentages of areas for the two types of rock formation in the catchment are:
i) Undifferentiated gneisses including elements of $P(B)$ and, in the north,
granulite facies rocks
36.9\%

> 1i) Bunyoro series and Kyoga series: shales arkoses and quartizites with tillites, like rocks in the Bunyoro series

5.5 VEGETATION OF WAKI CATCHMENT

The vegetation types in the Waki catchment are given in Fig. (5.4). The percentages of area covered with the different types of vegetation are:
i) Dry combretum savannah
ii) Moist combretum savannah $\quad 10.8 \%$
iii) Medium altitude moist semi-deciduous forests $\quad 26.6 \%$
iv) Forest / savannah mosaics 47.7\%
v) Grass savaınah

Fig.(5.3) WAKI II CATCHMENT_GEOLOGY.

vegetation

iry thiokete

Dry combretum sarannaa

Knist nombretien finvannan

Modiun altitude moluc goral-dooiduous foreats

Fereat/Eavonnah mosatos
Orase mavannahs

Fig.(5.4) WAKI II CATCHMENT _ VEGETATION.

5.6 AREA VERSUS ELEVATION FOR WAKI CATCHMENT

Areas of the Waki catchment between contours of 200 feet intervals are given in Table (5.3). Using the relationship between area and elevation shown in Fig. (5.5), it can be seen that an area of $365 \mathrm{Km}^{2}$ iies between 3250 and 3640 feet with change in elevation of 490 feet, while the remaining area of $110 \mathrm{~km}^{2}$ lies between 3640 and 4600 feet with chànge in elevation of 960 feet. Weighting the elevation of the two areas, the mean elevation of the catchment comes to 3601 feet approximately, see WMO (1972).

5.7 CLIMATE OF WAKI REGION

There are two climatological stations near the catchment. Station Masindi is located to the east, and station Butiaba lies to the north-west. Statistics of climatic elements of temperature, humidity, rainfall and wind speed for these two stations are given in Tables (5.4) and (5.5) respectively.

5.8 OBSERVATIONAL NETWORKS OVER WAKI REGION

5.8.1 Meteorological Stations

The meteorological stations existing within and around the Waki catchment are shown in Fig. (5.6). The particulars of these stations are illustrated in Table (5.6). It can be observed that there is a dense netwonk of rain gauges in Siba sub-catchment and one self-recording rain gauge in the whole of Waki-II catchment. Most of these stations started its operation in 1970, [WMO (1972)].

5.8.2 Hydrological Stations

Waki-I, Waki-II and Siba are the main hydrological stations found within the Waki catchment. The first station lies on Waki tributary upstream and

Table (5.3)
WAKI II
AREA VS ELEVATION FOR RIVER WAKI II CATCHMENT

Elevation range	Area in Sq. Kms	Cumulative area Sq. Kms.
$3250^{\prime}-3400^{\prime}$	51.7	51.7
$3400^{\prime}-3600^{\prime}$	213.4	265.1
$3600^{\prime}-3800^{\prime}$	121.2	386.3
$3800^{\prime}-4000^{\prime}$	38.7	425.0
$4000^{\prime}-4200^{\prime}$		461.0
$4200^{\prime}-4400^{\prime}$		469.5

Table (5.4)
CLIMATOLOGICAL STATISTICS FOR SATATION MASINDI Lat. $01^{\circ} 41^{\prime} \mathrm{N}$ Long. $37^{\circ} 43^{\prime} \mathrm{E}$ Alt. 1146 meters

Month	Temperature (1931-1954)				Relative Humidity 1200 GMT. \%	Rainfall (1907-1962) Monthly Total			Average wind speed (1938-1962)	
	Average									
		Mean Range C°	Mean Max. C°	Mean Min. C°		Averaqe (mm)	$\begin{aligned} & \text { High- } \\ & \text { est } \\ & (\mathrm{mm}) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Low- } \\ & \text { est } \\ & (\mathrm{mm}) \\ & \hline \end{aligned}$	0600 GMT. Knots	1200 GMT. Knots
January	23.8	14.2	30.9	16.7	41	29	103	0	4	10
February	24.1	14.1	31.2	17.1	43	55	183	0	4	9
March	24.0	12.8	30.4	17.6	49	103.	227	12	4	9
April	23.3	11.5	29.1	17.6	59	157	287	61	4	7
May	22.9	10.7	28.2	17.5	64	148	292	40	4	7
June	22.3	11.2	27.9	16.7	64	99	242	31	3	7
July	21.6	10.6	26.9	16.3	63	111	242	40	3	7
August	21.5	10.7	26.9	16.2	65	141	275	46	4	7
September	21.9	11.5	27.7	16.2	63	143	233	61	4	7
October	22.5	11.7	28.4	16.7	60	144	277	41	4	8
November	22.9	12.2	29.0	16.8	53	118	340	3	4	8
December	22.9	12.9	29.3	16.4	51	44	105	0	4	8
Year	22.8	12.0	28.8	16.8	56	1292	1717	1009	4	8

Table (5.5)
CLIMATOLOGICAL STATISTICS FOR STATION BUTIABA Lat. $01^{\circ} 50^{\prime} \mathrm{N}$ Long. $31^{\circ} 20^{\prime} \mathrm{E}$ Alt. 621 meters

Month	Temperature (1931-1954)				Relative Humidity 1200 GMT . \%	Rainfall (1904-1962) Monthly Total			Average wind speed (1938-1954)	
	Average									
	$\begin{aligned} & \text { Max. }+ \\ & \frac{\text { Min. }}{2} \mathrm{C}^{\circ} \end{aligned}$	Mean Range C°	$\begin{aligned} & \text { Mean } \\ & \text { Max. } \\ & \mathrm{C}^{\circ} \\ & \hline \end{aligned}$	$\begin{array}{r} \text { Mean } \\ \text { Min. } \\ C^{\circ} \\ \hline \end{array}$		Average $(m m)$	High- est $(\mathrm{mm})$$\|$	$\begin{aligned} & \text { Low- } \\ & \text { est } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{aligned} & 0600 \\ & \text { GMT. } \\ & \text { Knots } \end{aligned}$	$\begin{aligned} & 1200 \\ & \text { GMT. } \\ & \text { Knots } \end{aligned}$
January	26.1	7.9	30.1	22.2	66	14	55	0	4	7
February	26.5	7.5	30.2	22.7	67	31	179	0	5	7
March	26.5	7.2	30.1	22.9	68	56	162	13	3	7
April	25.9	7.3	29.6	22.3	70	101 *	205	24	3	6
May	25.7	7.2	29.3	22.1	70	96	234	8	3	6
June	25.3	7.3	29.0	21.7	69	55	191	4	4	6
July	24.8	7.0	28.3	21.3	70	68	269	5	5	6
August	24.5	6.5	27.8	21.3	70	86	169	22	5	6
September	25.1	7.4	28.8	21.4	70	75	125	10	5	6
October	25.5	7.3	29.1	21.8	71	84	184	14	4	6
November	25.6	7.4	29.3	21.9	69	72	280	3	4	7
December	25.7	7.8	29.6	21.8	67	27	105	0	4	6
Year	25.6	7.4	29.3	21.9	69	165	1263	400	4	6

Table (5.6)
EXISTING METEOROLOGICAL STATIONS
AT WAKI - II CATCHMENT

Sr . No.	Name	Registered No.	Type	Latitude	Longitude	Altitude (Feet)	Date of Start
1.	Waki	8831150	Rainfal 1	$1^{\circ} 43^{\prime} \mathrm{N}$	$31^{\circ} 22^{\prime} \mathrm{E}$	3250	5.7 .68
2.	Karongo	8831062	Fainfall	$1^{\circ} 41^{\prime \prime} \mathrm{N}$.	$31^{\circ} 30^{\prime} \mathrm{E}$	3550	6.9 .70
3.	Nyantonz 1	8831065	Rainfall	$1^{\circ} 39^{\prime} \mathrm{N}$	$31{ }^{\circ} 29^{\prime \prime} \mathrm{E}$	3600	5.9.70
4.	Bubwa	8831149	Rainfall	$1^{\circ} 371 \mathrm{~N}$	$31{ }^{\circ} 27^{\prime \prime} \mathrm{E}$	3500	4.7 .68
5.	Kisabagwa	883i048	Rainfall	$1^{\circ} 32 \cdot \mathrm{~N}$	$31{ }^{\circ} 24^{\prime} \mathrm{E}$	3900	3.7 .68
6.	Stba	8831038	Rainfall	$1^{\circ} 39^{\prime} \mathrm{N}$	$31^{\circ} 23^{\prime \prime} \mathrm{E}$	3400	1968
7.	Nyabyeya	8831024	Hydromet	$10^{\circ} 40 \mathrm{~N}$	$31^{\circ} 32 \cdot \mathrm{E}$	3900	
8.	Buinamira	8831056	St. ${ }^{\text {Rainfal } 1}$	$1{ }^{\circ} 38^{\prime} \mathrm{N}$	$31^{\circ} 32^{\prime \prime} \mathrm{E}$	3550	18.4.70
9.	Budongo	8831057	Rainfall:	$1^{\circ} 39^{\prime} \mathrm{N}$	$31{ }^{\circ} 34^{\prime} \mathrm{E}$	3650	15.4.70
10.	Nyankwanzi	8831060	Rainfall	$1^{\circ} 37^{\prime} \mathrm{N}$	$31{ }^{\circ} 34^{\prime} \mathrm{E}$	3650	17.4.70
11.	Kitonozi	8831064	Ráinfall	$1^{\circ} 38^{\prime} \mathrm{N}$	$31^{\circ} 39^{\prime} \mathrm{E}$	3850	4.9.70
12.	Kyabagenyi	8831063	Rainfall	$1^{\circ} 38^{\prime} \mathrm{N}$	$31^{\circ} 35^{\prime} \mathrm{E}$	3550	9.9.70
13.	Kikobwa	8831066	Rainfall	$1^{\circ} 38^{\prime} \mathrm{N}$	$31^{\circ} 38^{\prime} \mathrm{E}$	3750	2.9.70
14.	Kimanya	8831068	Rainfal 1	$1^{\circ} 35^{\prime} \mathrm{N}$	$31^{\circ} 31 \mathrm{I}$ E	3700	4.9 .70
15.	Kaangoire	8831059	Rainfall	$1^{\circ} 35^{\prime} \mathrm{N}$	$31{ }^{\circ} 33^{\prime} \mathrm{E}$	3700	16.4.70
16.	Bulyango	8831067	Rainfall	$1^{\circ} 38^{\prime} \mathrm{N}$	$31{ }^{\circ} 33^{\prime} \mathrm{E}$	3600	10.9.70
17.	Kabango	8831058	Rainfall	$1^{\circ} 39^{\prime} \mathrm{N}$	$31^{\circ} 35^{\prime \prime} \mathrm{E}$	3650	14.4.70

Fig. (5.5) WAKI II AREA_ELEVATION CURVE.

Fig.(5.6)
near forestry station while the others are located on the main Waki River and Siba River respectively.

5.9 HYDROLOGICAL ANALYSIS OF DATA

5.9.1 Daily, Monthly and Annual Runoff

For the tiree hydrological stations of Waki catchment, runoff is evaluated after applying shift corrections to the observed gauges according to the following equation
$G_{n}=\frac{1}{8}\left(G_{2.1}+3 G_{1.2}+3 G_{2.2}+G_{1.3}\right)$
where
Go : Mean daily gauge.
$G_{7.2}$: First reading of the day under consideration.
$G_{1.3}$: First reading of the next day.
$G_{2.1}$: Second reading of the previous day.
$G_{2.2}$: Second reading of the day under consideration.

The percentages of monthly to annual runoffs are illustrated in Table (5.7). The average values of these percentages range from 4.8 to 12.4 which means that the variations of monthly runoff are not inigh.

5.9.2 Rainfall - Runoff Relationship

Runoff coefficient for some months of the period of observed data are shown in Table (5.8). Obviously there is a high influence of the storage capacity of the catchnent on the hydrological regime since runoff coefficients higher than unity have been obtained in some months. The percentage of annual runoff to annual rainfall ranges from 11 to 15 which is very low.

Table (5.7)
Waki - II Runoff Coefficient

Year \& Month	$\begin{aligned} & \text { Rain-fall } \\ & (\mathrm{mm}) \end{aligned}$	Runoff (mm)	Runoff co fficient \%	Year \& Month	$\begin{aligned} & \text { Rain-fall } \\ & (\mathrm{mm}) \end{aligned}$	Runoff (mm)	Runoff co fficient $\%$
1967				1970			
Nov.	165.2	24.1	15	Jan.	49.3	14.0	28
Dec.	12.2	14.6	120	Feb.	20.5	8.5	42
1968				Mar.	153.5	12.6	8
Jan.	15.9	6.3	40	Apr.	221.1	24.8	11
Feb.	43.8	6.5	15	May	153.6	20.5	13
Mar.	59.6	8.4	14	June	80.1	13.3	17
Apr.	183.6	9.2	5	July	120.9	13.8	11
May	180.4	21.2	12	Aug.	176.0	21.0	12
June	89.0	12.7	14	Sep.	140.3	22.9	16
July	58.5	8.4	14	Oct.	210.6	32.9	16
Aug.	166.6	14.8	9	Nov.	95.0	22,9	24
Sep.	147.7	13.5	9	Dec.	10.5	14.3	136
Oct.	147.5	13.6	9	Annual	1431.0	221.6	15
Nov.	125.5	12.4	10	1969			
Dec.	103.1	18.4	18	Jan.	119.2	12.1	10
Annual	1321.2	145.6	11	Feb.	93.1	11.0	12
				Mar.	124.0	12.5	10
				Apr.	104.9	7.9	8
				May	216.6	21.1	110
				June	88.5	13.2	115
				July	74.8	10.8	14
				Aug.	91.9	9.8	11
				Sep.	118.7	11.7	10
				Oct.	177.8	15.8	9
				Nov.	164.9	19.7	12
				Dec.	88.1	32.5	37
				Annual	1462.5	178.1	12

Table (5.8)
WAKI II
Toial Runoff Recession Data
$q_{0}=$ Initial discharge (C.M.S)
$q_{t}=$ Discharge (C.M.S) after 12 hours

Period op hydrograph	S_{0}	q_{t}	Poricd of hydrograph	q_{0}	q_{t}
$\left\|\begin{array}{c} 2-10 \\ \text { Decomber 1967 } \end{array}\right\|$	5.60	5.43	11 - 19^{-} Docomber 1969	6.75	6.30
	$5 \cdot 43$	5.22		6.30	5.60
	5.22	4.97		5.60	5.19
	4.97	4.65		5.19	$4 \cdot 77$
	4.65	4.30		4.77	$4 \cdot 57$
	$4 \cdot 30$	4.07		4.57	4.30
	4.07	3.83		4.30	4.09
	3.83	3.64		4.09	3.97
	3.64	3.38		3.97	3.90
	3.38	3.20		3.90	3.77
	3.20	3.00		3.77	3.64
	3.00	2.90		3.64	3.50
	2.90	2.75		3.50	3.37
	2.75	2.65		3.37	3.25
	2.65	2.50		3.25	3.20
$\begin{gathered} 2-6 \\ \text { May } 1968 \end{gathered}$	2.50	2.40	$\begin{aligned} & 25=28 \\ & \text { April } 1970 \end{aligned}$		
	7.37	6.26		10.25	8.00
	6.25	5.44		8.00	6.70
	5.44	4.90		6.70	5.85
	4.90	4.37		5.85	4.95
	$3 \cdot 37$	3.65		4.95	$4 \cdot 28$
	3.65	2.97	$\begin{gathered} 26-29 \\ \text { dusust } 1970 \end{gathered}$		
	2.97	2.55		7.00	$5 \cdot 75$
	2.55	2.25		$5 \cdot 75$	$4 \cdot 90$
$\begin{gathered} 25-28 \\ \text { November } 1969 \end{gathered}$				$4 \cdot 90$	4.17
	6.45	5.40			
	5.40	$4 \cdot 55$		4.17 3.75	3.75 3.40
	4.55	4.09		3.75	3.40
	4.09	3.75			
	3.75	3.30			

5.9.2.1 Relationship based on monthly values

For this relationship effective rainfall is used in order to introduce the effect of soil moisture on runoff. The effective rainfall has been calculated from two months of observed data using weighting factors of 0.9 and $0.1,0.8$ and $0.2,0.7$ and 0.3 and so on. Using the rank test, the effective rainfall computed with weighting coefficients of 0.7 and 0.3 is found to be the best. The coefficient of correlation of monthly runoff and monthly effective percipitation is found to be 0.63 .

It was found that rainfall - runoff relationship based on monthly data could not be improved furiher with all months put together. Perhaps a better relationship could be obtained if each month was taken separately.

5.9.2.2 Relationship based on ten-day values

In the view of short time data avallable for Waki-II catchment, rafnfallrunoff relationship was attempted on the basis of ten-day values. Ten-day rainfall, ten-day mean discharge and Antecedent Precipitation Index (API) were used in multiple correlation technique for each month of observed data. After several trials with various API values, it was found that API calculated by the following equation furnishes the best relationship [WMO (1972)]

$$
\begin{equation*}
A P I=0.8 \mathrm{P}_{1}+0.4 \mathrm{P}_{2}+0.1 \mathrm{P}_{3} \tag{5.2}
\end{equation*}
$$

where P_{1}, P_{2} and P_{3} are rainfalls of first, second and third ten-day periods.

The coefficient of correlation computed from the se relationships came to 0.92 which is quite satisfactory.

5.9.3 Ground Flow Recession Curve

From the observed hydrographs, two hydrographs where the falling limb had reached the ground flow, are selected and plotted on semi-logarithmic paper as illustrated in Figs. (5.7) and (5.8). The ground flow recession is exponentially decayed according to
$q_{t}=q_{0} k^{t}$
where
q_{\circ} : Initial discharge.
q_{t} : Discharge at time t.
K : Recession constant.

The straight line portion at the end of the falling limb of the two hydrographs gives part of ground flow hydrograph. The value of recession constant K at time t equals to 24 hours is found to be 0.98 in both cases.

5.9.4 Total Runoff Recession Curve

In the separation of compound hydrographs, information of total runoff recession can sometimes be useful. Therefore, a number of observed hydrographs with different peaks, are selected and for each hydrograph, values of discharge at intervals of 12 hours are read out starting after the inflection point on the falling limb. A plot of $q_{0} v s q_{t}$ was done together for the data of these hydrographs given in Table (5.8) as shown in Fig. (5.9). There is a considerable scattering in the plotted point because the falling limbs of these hydrographs are generally distorted by rain falling over the Waki catchment even after the hydrograph peak has been reached. Therefore, the falling limb of the total runoff hydrograph does not represent simple depletion of the channel storage but is mixed with more surface runoff coming into the streams.

Fig.(5.7) WAKI II OBSERVED HYDROGRAPH AND RAINFALL.

Fig,(5.8) WAKI II COMPOUND HYDROGRAPH (WITHOUT DISTINCT
SEPARATE PEAKS) 1967.

Fig. (5.9) WAKI II . FALLING LIMB OF HYDROGRAPH.

5.10 ANALYSIS OF TYPICAL HYDROGRAPHS OF WAKI CATCHMENT

The pattern of rainfall of Waki catchment is such that the falling limbs of the hydrographs reach base flow after a long period and the hydrographs are mostly compound. During the rainy season it nearly rains every day and a real break is unusual. For separating the base flow from direct runoff, a simpler procedure is applied. The base flow hydrograph is fixed by joining the lowest points reached by the daily discharge hydrograph when rainfall stopped for some days or was very small. The base flow hydrograph is shown in Fig. (5.10).

As mentioned earlier, it is impossible to find a simple hydrograph, therefore the compound hydrograph observed from 16th to 30th April for 1970 was selected to analyse the unit-hydrograph. As shown in Fig. (5.11), the selected hydrograph has three peaks. Each of these peaks has been produced by three separable rain spells. This hydrograph is therfore composed of three simple hydrographs. The first hydrograph is then used for the determination of the unit hydrograph and its final conflguration is shown in Fig. (5.11).

Fig (5IO) WAKI II HYDROGRAPH ANALYSIS.

Fig. (5.11) UNIT HYDROGRAPH OF WAK! II RIVER (DURATION $1 / 2$ HOUR).

CHATER VI.
 APPLICATION OF THE MODEL BULLDING TECHNIQUES TO WAKI RIVER CATCHMENT

CAHPTER VI

APPLICATION OF THE MODEL BUILDING TECHNIQUES

 TO WAKI RIVER CATCHMENT
6.1 INTRODUCTION

The construction of mathematical models from observed time series is practiced in a variety of disciplines, including engineering, ecology and applied statistics with specific objectives. For example, Kashyap and Rao have suggested the stochastic difference equation models to represent some hydrological systems.

In application, a plausible classes of models can be obtained by the inspection of the given time series and examination of their characteristics. Consequently, the availability of ustig either the noisy-transfer function model or the linear stochastic difference equation model for an appropriate simulation of the case study previously presented in Chapter V will be studied in some details.

6.2 SOME FEATURES OF THE CASE STUDY

The data used for this study is selected in the rainy season of Waki catchment which includes eight successive months, starting with April, to avoid data non-stationarity. Therefore, the data length for both the input sequence $[x(\cdot)]$ and output sequence $[y(\cdot)]$ illustrated in Tables (5.1) and (5.2) respectively includes 488 points [WMO (1972)].

6.2.1 Statistical Characteristics of the Observed Data

Consider \bar{y}, σ_{y} and r_{y} as the observed mean, standard deviation and skewness coefficient of the measured output data $[y(\cdot)]$, whereas the same notations for the input data $[x(\cdot)]$ are \bar{x}, σ_{x} and γ_{x} respectiveiy. The variations of these notations with the sample size for both the input rainfall and output discharge are elucidated in Figs. (6.1) and (6.2) respectively.

The cross-correlation coefficient of the output discharge $[y(\cdot)]$ and the input rainfall $[x(\cdot)]$ at different time lags k have been calculated using the formula
$R_{y x}(k)=\frac{1}{\sqrt{\sigma_{y} \sigma_{x}}(N-k+1)} \sum_{i=1}^{N-k+1}[y(i)-\dot{y}][x(k+1-1)-\dot{x}]$.
This yields the results shown in Fig. (6.3), where the maximum value has been located at a time lag equals three days. In practice, this value of time lag represents a very suitable estimate for the time delay factor τ.

Constder the correlograms of measured rainfall and output discharge shown in Figs. (6.4) and (6.5). The first correlogram reflects considerable fluctuations compared with that of the output discharge which shows a little variability. Consequently, the smoothed raw estimates of the power spectrum evaluated for the output discharge reveals a smail damping response as delineated in Fig. (6.6). Finally, the probability of both the measured input rainfall and output discharge are shown in Figs. (6.7) and (6.8) respectively.

6.3 APPLICATION OF THE NOISY-TRANSFER FUNCTION MODEL

The basic premise of this study is the appropriate selection of an estimation methodology which yields an auequate results for the case study. . Therefore, we shall consider different structures of the noisy-transfer fun-

Fig(6.1) VARIATION OF THE MEAN,STANDARD DEVIATION AND SKEWNESS COEFFICIENT UF THE MEASURED DISCHARGE DATA WITH THE SAMPLE SIZE.

Fig.(6.2) VARIATION OF THE MEAN,STANDARD DEVIATION AND SKEWNESS COEFFICIENT OF THE MEASURED RAINFALL. WITH the sample SIZE.

Fig.(6.3) CROSS_CORRELATION COEFFICIENT AT DIFFERENT LAGS.

Fig, (6.4) CORRELOGRAM OF THE MEASURED RAINFALL DATA.

Fig.(6.5)CORRELOGRAM OF THE MEASURED DISCHARGE DATA.

Fig.(6.6)POWER SPECTRUM OF THE MEASURED RAINFALL DATA.

ction model on the basis of causality principle. Systematicaly, these structures can be described as follows:
i) The normalized values of the measured input rainfall sequence $[x(\cdot)]$ are mathematically delayed as

$$
\ddot{x}_{d}(k)=\left\{\begin{array}{cc}
x(k-\tau) & \text { for } k \geq \tau+1 \tag{6.2}\\
0 & \text { for } k<\tau+1
\end{array}\right.
$$

to achieve a better coincidence with the similar values of the output discharge sequence $[y(\cdot)]$. Practically, the kernel length k_{0} can be chosen, such that
$\hat{U}\left(k_{0}-1\right)>\hat{U}\left(k_{0}\right)$,
and

$$
\begin{equation*}
\sum_{i=1}^{k_{0}} \quad \hat{u}(i)=\sqrt{\sigma_{y} / \sigma_{x}} . \tag{6.4}
\end{equation*}
$$

Then, the unconstrained numierical solution may be invoked, together with (6.3) and (6.4), to obtain the values of the impulse response vector $\underline{\bigcup}$ since the matrix ($\left.\underline{U}^{\top} \underline{\underline{V}}^{-1} \underset{\underline{H}}{ }\right)$ appears to be ill-conditioned in most of the usual cases [Abadie (1970)].

The evaluated impulse response vector $\underline{\hat{U}}$ together with (6.2) are invoked to estimate the output of the first model M_{1}^{\prime}, as follows

$$
\left.\begin{array}{l}
\hat{y}(k)=\sigma_{y}\left[\sum_{i=1}^{k_{0}} \hat{u}(i) \tilde{x}_{d}(k-i+1)\right]+\bar{y} \tag{6.5}\\
\forall k=1,2, \ldots, N .
\end{array}\right\}
$$

-i) Further, it is alleged that the autoregressive models have to be preferred since they can achieve much better estimatability conditions for those systems whose complete mathematical description is not available. Thus, the normalized discharge is used to generate the vector $\underline{\tilde{y}}$, as follows

$$
\tilde{y}=\left[\begin{array}{c}
\tilde{y}(2) \tag{6.6}\\
\tilde{y}(3) \\
\cdot \\
\cdot \\
\cdot \\
\tilde{y}(N)
\end{array}\right]
$$

as well as the following matrix

Obviously, the necessary and sufficient condition for estimating the kernel length k_{o} is

$$
\begin{equation*}
\sum_{i=1}^{k_{0}} \hat{U}(i)=1 . \tag{6.8}
\end{equation*}
$$

The unconstrained numerical solution, together with (6.8), are used to evaluate the impulse response vector \underline{U}. Thus, the current estimates of the output data generated from the model M_{3}^{\prime} may be expressed as follows
$\hat{y}(k)= \begin{cases}\sigma_{y}\left[\sum_{i=1}^{k_{0}} \hat{U}(i) \bar{y}(k-i)\right]+\bar{y}, & k=2,3, \ldots, N \\ \sigma_{y} \bar{y}(k)+\bar{y} & , \text { for } k=1 .\end{cases}$

Consequently, the one-step ahead predicted vaiues of the output discharge $[y(\cdot)]$ may be defined as

$$
\begin{equation*}
\hat{y}(k+1)=\sum_{i=1}^{k_{0}} \hat{u}(i) \hat{y}(k-i+1), \quad k=1,2, \ldots, N . \tag{6.10}
\end{equation*}
$$

iii) As mentioned earlier, the constrained approach may lead to a considerable improvement in the accuracy of estimated output data. Thus, it is advisable to consider the numerical solution of the optimization problem (3.13) together with the two constraints of (3.14).

Specifically, the incomplete mathematical balance of the system under study strengthen the hypothesis of inequaiity constraint alone. Thus, the optimization problem reduces to
$\operatorname{Min} \theta_{C}=\frac{1}{2} \underline{U}^{\top} \underline{\underline{H}}^{\top} \underline{V}^{-1} \underset{=}{\underline{U}}-\underline{U}^{\top} \underline{\underline{H}}^{\top} \underline{\underline{V}}^{-1} \underline{y}$
subject to $\underline{U} \geq 0$,
Where the kernel length k_{0} may be evaluated using (6.3), (6.4) together with (6.11).

The impulse response vector $\underline{\bigcup}$ that minimizes the previous optimization problem is then invoked to transfer the delayed input data of the model M_{5} into its output part according to (3.21).
iv) Unfortunately, the three impulse response vectors obtained before demonstrated an oscillatory pattern due to the irrepresentability of the observed input and/or output data [Blanke et al. (1970)]. Thus, it is relevant to point out that, these oscillatory vectors may be mathematically smoothed using the Hamming window algorithm discussed in Appendix A. Consequently, we can obtain another three models $M_{2}^{\prime}, M_{4}^{-}$and M_{6}^{-}.

Practically, all necessary estimates can be evaluated using the computer program listed in Appendix B. Let
$n(k)=y(k)-\hat{y}(k)$
$\forall k=1,2, \ldots, N$
be the residuals of estimation at lag k.

The numerical values of the impulse response vectors for the previous models as well as the mean and variance of each residual sequence $[\eta(\cdot)]$ are summarized in Table (6.1), where
$\bar{n}=\frac{1}{N} \sum_{i=1}^{N} \eta(i)$,
and
$\sigma_{n}=\frac{1}{N-1} \sum_{i=1}^{N}[n(1)-\bar{n}]^{2}$.

6.4 VALIDATION TESTS OF THE NOISY-TRANSFER FUNCTION MODEL

Kashyap and Rao (1976) have suggested that the appropriate class of models can be obtained by investigating its validation for the prespecified estimation conditions. Thus, we shall use the validation tests discussed in Chapter III to select an adequate model dmong the six noisy-transfer function models presented before.

6.4.1 Test of the Goodness of Fit

Usually, the goodness of fit between the two histograms of observed and estimated discharges may be checked by using the se: und Kolmogrov-Smirnov test given in Appendix C. Consequently, the statistical responses of the six models

Table(6.1) SUMMARY OF THE NOISY_TRANSFER FUNCTION MODELS.

MODEL	DELAY FACTOR	THE IMPULSE RESPONSE												$\bar{\eta}$	σ_{η}
		duration	U(1)	U (2)	U(3)	U(4)	U(5)	U(6)	U(7)	U(8)	U(9)	U (10)	U(11)		
M_{1}^{\prime}	3	10	-20789	02175	-0.1230	01279	-01702	-0.024	-01282	$\left\|\begin{array}{c} 1 . \\ 0.1273 \end{array}\right\|$	-0.0028	0.0463	-0.020	0.00111	02¢199
M_{2}^{\prime}	3	5	$\left\|\overline{\bar{O}}_{4522}\right\|$	-0.1455	0.0123	0.0039	-0.070	-0.097	-	-	-	-	- 0	0.00072	0.23355
M_{3}^{\prime}	0	5	-1.0000	2.0551	-0.2465	0.2260	-0.3162	2. 2030	-	-	-	-	-	0.00018	0.13818
M_{4}^{\prime}	0	5	0.4050	0.8218	0.3901	-0.078	-0.070	-0.035	-	-	-	-	-	-0.00045	0.15504
M_{5}	3	10	00000	0.0160	00000	0.0118	0.0000	0.0208	0.0000	00188	0.0000	00163	00071	-0.24178	021834
$M_{6}{ }^{-}$	3	10	0.0073	0.0086	0.0054	0.0064	0.0075	0.0112	0.0031	0.0102	0.0091	0.0104	0.0113	-0.21652	0.18276

$\bar{\eta}$: MEAN OF THE RESIDUALS.
σ_{η} : STANDARD geviation of residuals.
are illustrated in Table (6.2).
As a general view, the test statistics of the model M_{4} are acceptable on both the 0.95 and 0.90 significant levels, while the other model M_{3}^{\prime} may be accepted on the second level only.

6.4.2 Test of Zero-Mean Value of Residuals

Obviously, the estimators of the output data sequence may be unblased for those models whose residual sequence has a zero-mean value. Thus, the results shown in Table (6.3) insure the validity of the unconstrained models $M_{1}^{\prime}, M_{2}^{\prime}, M_{3}^{\prime}$ and M_{4}^{\prime} for the zero-mean value and consequently the unbiasing condition.

6.4.3 Validation Tests Based on the Comparison of Various Characteristics of Observed and Estimated Discharges

For an appropriate reduction for the field of choice, we may consider only the two successful models M_{3}^{\prime} and M_{4}^{\prime}. Specifically, the correlograms, power spectrums, histograms, and the normalized cumulative histograms of these two models compared with the corresponding characteristics of the observed output data are illustrated in Figs. (6.9) to (6.14).

These results indicate that :
i) The standard deviation $\sigma^{M}(k)$ governed by (3.30) is found to be 0.24 which represents a very convenient qualitative decision limit for both models.
ii) The correlogram, power spectrum and histogram of the generated data using M_{4}^{\prime} are quite similar to those of the observed output data. Thus the qualitative validation test strengthen the hypothesis of choice M_{4}^{-}.

Table(6.2) RESULTS OF THE SECOND KOLMOGROV_SMIRNOV TEST

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{MODEL} \& \multirow[t]{2}{*}{TEST STATISTIC} \& \multicolumn{10}{|c|}{LAG}

\hline \& \& 5 \& 10 \& 15 \& 20 \& 25 \& 30 \& 35 \& 60 \& 45 \& 50

\hline $M_{1}{ }^{\prime}$ \& $$
\begin{aligned}
& \quad z \\
& \epsilon_{1}=0.05 \\
& \epsilon_{2}=0.10
\end{aligned}
$$ \& $$
\begin{gathered}
1.5814 \\
R \\
R
\end{gathered}
$$ \& $$
\begin{array}{|c}
1.7889 \\
R \\
R
\end{array}
$$ \& $$
\begin{array}{c|c}
9.460 \\
R \\
R
\end{array}
$$ \& $$
\begin{gathered}
60.7506 \\
A \\
A \\
\hline
\end{gathered}
$$ \& $$
6 \left\lvert\, \begin{gathered}
6.2728 \\
A \\
R \\
\hline
\end{gathered}\right.
$$ \& $$
8 \begin{gathered}
1.4201 \\
R \\
R \\
\hline
\end{gathered}
$$ \& $$
\begin{array}{|l|l}
1.7928 \\
R \\
R \\
\hline
\end{array}
$$ \& $$
\begin{array}{c|c}
8 & 1.9007 \\
R \\
R
\end{array}
$$ \& $$
\begin{aligned}
& 1.7919 \\
& R \\
& R
\end{aligned}
$$ \& $$
9 \left\lvert\, \begin{gathered}
1.5000 \\
R \\
R
\end{gathered}\right.
$$

\hline M_{2} \& $\epsilon_{2}=2$
ϵ
$\epsilon=0.05$

$=0.10$ \& \[
$$
\begin{array}{|c|}
\hline 1.5811 \\
R \\
R \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{gathered}
2.0125 \\
R \\
R \\
\hline
\end{gathered}
$$

\] \& \[

$$
\begin{array}{|c}
1.6432 \\
R \\
R \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{gathered}
0.9437 \\
\text { A } \\
\text { A }
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1.4142 \\
R \\
R \\
\hline
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1.9365 \\
R \\
R
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
2.3905 \\
R \\
R
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
5.6833 \\
R \\
R
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
2.035 \\
R \\
R
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
2.4000 \\
R \\
R
\end{gathered}
$$
\]

\hline M_{3} \& \[
$$
\begin{aligned}
& \epsilon_{1}=0.05 \\
& \epsilon_{2}=0.10
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
1.2649 \\
A \\
R
\end{gathered}
$$

\] \& \[

9 $$
\begin{gathered}
1.3416 \\
A \\
R \\
\hline
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1.2780 \\
\text { A } \\
\text { R }
\end{gathered}
$$

\] \& \[

$$
\begin{array}{|c|}
\hline 1.1067 \\
\text { A } \\
\text { A } \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{gathered}
0.9899 \\
\mathbf{A} \\
\mathbf{A}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0.9036 \\
\text { A } \\
\text { A }
\end{gathered}
$$
\] \& 0.8366

A

A \& $$
\begin{array}{|c}
\hline 1.2298 \\
A \\
R \\
\hline
\end{array}
$$ \& \[

$$
\begin{gathered}
1.1595 \\
A \\
A
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1.1000 \\
\text { A } \\
\text { A }
\end{gathered}
$$
\]

\hline $M_{4}{ }^{-}$ \& \[
$$
\begin{gathered}
z \\
\epsilon_{1}=0.05 \\
\epsilon_{2}=0.10
\end{gathered}
$$

\] \& \[

\left|$$
\begin{array}{c}
03162 \\
A \\
A
\end{array}
$$\right|

\] \& \[

$$
\begin{array}{|c}
\hline 08944 \\
\text { A } \\
A \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{gathered}
0.9128 \\
\mathbf{A} \\
\mathbf{A} \\
\hline
\end{gathered}
$$

\] \& \[

$$
\begin{array}{|c}
0.9486 \\
\text { A } \\
\text { A }
\end{array}
$$

\] \& \[

$$
\begin{array}{|c|}
0.8485 \\
A \\
A \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{gathered}
0.7746 \\
\text { A } \\
\text { A }
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0.9562 \\
\mathbf{A} \\
\mathbf{A}
\end{gathered}
$$

\] \& | 08944 |
| :---: |
| A |
| A | \& \[

$$
\begin{gathered}
0.6325 \\
A \\
A
\end{gathered}
$$

\] \& | 0.6000 |
| :---: |
| A |
| A |

\hline $M_{5}{ }^{\text {- }}$ \& \[
$$
\begin{aligned}
& \epsilon_{1}=0.05 \\
& \epsilon_{2}=0.10
\end{aligned}
$$

\] \& \[

$$
\begin{array}{|c|}
\hline 1.5811 \\
R \\
R
\end{array}
$$

\] \& \[

$$
\begin{array}{|c|}
\hline 2.236 \\
R \\
R \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{|c|}
\hline 2.7386 \\
R \\
R \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{|c}
3.0042 \\
R \\
R \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{|c|}
\hline 2.8284 \\
R \\
R \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{|c}
2.5819 \\
R \\
R \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{|c|}
\hline 2.5099 \\
R \\
R \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{gathered}
2.6833 \\
R \\
R \\
\hline
\end{gathered}
$$

\] \& \[

$$
\begin{array}{|c}
2.8461 \\
R \\
R
\end{array}
$$

\] \& \[

$$
\begin{gathered}
3.2000 \\
R \\
R
\end{gathered}
$$
\]

\hline $M_{6}{ }^{-}$ \& $\epsilon_{1}=z$
$\epsilon_{1}=0.05$

$\epsilon_{2}=0.10$ \& \[
$$
\begin{array}{|c|}
\hline 1.5819 \\
R \\
R \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{|c|}
\hline 2.3361 \\
R \\
R \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{gathered}
2.7386 \\
R \\
R
\end{gathered}
$$

\] \& \[

\left.$$
\begin{gathered}
2.6979 \\
R \\
R
\end{gathered}
$$ \right\rvert\,

\] \& \[

$$
\begin{gathered}
24042 \\
R \\
R
\end{gathered}
$$

\] \& \[

$$
\begin{array}{|c|}
\hline 2.1947 \\
R \\
R
\end{array}
$$

\] \& \[

$$
\begin{gathered}
2.7348 \\
R \\
R
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
2.9236 \\
R \\
R
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
2.4244 \\
R \\
R
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
2.8000 \\
R \\
R
\end{gathered}
$$
\]

\hline
\end{tabular}

A : ACCEPT THE NULL HYPOTHESIS Ho.
A : reject the null hypothesis Ho.

Tabie (6.3) RESULTS OF THE ZERO MEAN TEST.

TEST STATISTIC	MODELS					
	M_{1}^{\prime}	M2'	M 3	Ma_{4}	M 5	M'́
$\begin{array}{lc}\epsilon_{1}= & 0.05 \\ \varepsilon= & 0.10\end{array}$	O. 04534	$\begin{gathered} 0.3300 \\ A \\ A \end{gathered}$	0.02524 A A	$\begin{gathered} 0.01069 \\ A \\ A \end{gathered}$	$\begin{gathered} 11.43045 \\ R \\ R \end{gathered}$	$\begin{gathered} 11.18838 \\ R \\ R \end{gathered}$
	ACCEPT		So.			
	REJECT		So.			

Fig.(6.9) CORRELOGRAMS OF THE MEASURED AND ESTIMATED DISCHARGE DATA.

Fig. (6.10) POWER SPECTRUMS OF THE MEASURED AND ESTIMATED DISCHARGE DATA.

Fig. (6.II) NORMALIZED CUMULATIVE HISTOGRAMS Fig(6.12) HISTOGRAMS OF MEASURED AND OF MEASURED AND ESTIMATED DISCHARGE DATA. ESTIMATED DISCHARGEDATA.

Fig.(6.13) NORMALIZED CUMULATIVE HISTOGRAMS OF THE MEASURED AND ESTIMATED DISCHARGE DATA.

6.5 THE QUALITATIVE CHARACTERISTICS OF RESIDUALS

The ten-days mean-values of residuals obtained by using the two successful models M_{3}^{\prime} and M_{4}^{-}are delineated in Fig. (6.15).

The correlograms of daily residuals, evaluated via the two models M_{3}^{-} and M_{4}, are illustrated in Figs. (6.16) and (6.17) respectively. It can be observed that the coefficients $R(k)$ of the first residual sequence are more acceptabie than those of the second sequence. since they lie within the specified standard deviation limit.

The smoothed raw estimates of the puver spectrum for both daily residual sequences are shown in Figs. (6.18) and (6.19), which demonstrate a considerable variability but with a negligable magnitudes w.r.t. $S\left(w_{0}\right)$.

Finally, the histogram of residuals generated by the most successful model M_{4}^{\prime} and its normalized cumulative values are shown in Figs. (6.20) and (6.21). These histograms coincide with the normal distribution $N(-0.00045$, 0.16), see Clark (1969).

6.6 APPLICATION OF THE LINEAR STOCHASTIC DIFFERENCE EQUATION MODEL

In this section, the linear stochastic difference equation model is applied to the physical system under study. The multiplicative and additive structures are utilized with the following assumptions:
i) The proposed model has only autoregressive terms of a variable order n.
ii) In addition to these n-autoregressive terms, another mth order term representing the residuals may be fedback to the output part of the model inorder to achieve a corrective pattern.

FIg.(6.15)VARIATION OF THE TEN_DAYS MEAN OF RESIDUALS FOR BOTH MODELS Ḿ ${ }_{3}$ AND M ${ }_{4}^{\prime}$ WITH T!ME.

Fig. (6.16) CORRELOGRAM DF RESIDUALS WITH TWO STANDARD DEVIATION LIMITS FOR M_{4}^{\prime}.

Fig(6.17) CORRELOGRAM OF REOIDUALS WITH TWO STANDARD DEVIATION LIMITS FOR M

Fig(6.18) POWER SPECTRUM OF RESIDUAL.S (MODEL M4).

Fig(6.19) POWER SPECTRUM OF RESIDUALS (MODEL M ${ }_{3}^{\prime}$).

「ig. (6.20) HISTOGRAM OF RESIDUALS (MODEL M4́).

Fig.(6.21) NORMALIZED CUMULATIVE HISTOGRAM OF RESIDUALS (MODEL Má).
iii) Another sinusoidal term of frequency $2 \pi j / 244, j=1,2, \ldots, N$, is added to the nth order autoregressive model to trace the daily oscillations of the data.

The number of autoregressive, residuals and sinusoidal terms for both the additive and multiplicative models are illustrated in Table (6.4).

6.7 ESTIMATION OF THE PARAMETER VECTOR

Using the recursive algorithm (4.11) together with first procedure of initialization, the parameter vector $\mathfrak{a}(i), i=1,2, \ldots, N$, is identified. The final values of the estimated parameter vector \mathfrak{a} as well as the mean, absolute mean and mean-square values of residuals for both the additive and multiplicative sturctures are shown in Tables (6.5) and (6.6), where
$E_{0}=\frac{1}{N} \underset{i=1}{N} \bar{w}(i)$,
$E_{1}=\frac{1}{N} \sum_{i=1}^{N}|\bar{W}(1)|$
and
$E_{2}=\frac{1}{N} \underset{i=1}{N}[\bar{W}(i)]^{2}$
indicate respectively the mean, absolute mean and mean-square values of the residual sequence $[w(\cdot)]$.

6.8 CLASS SELECTION OF THE LINEAR STOCHASTIC DIFFERENCE EQUATION MODEL

Among the different classes of the linear stochastic difference equation model illustrated in Table (6.4), the most acceptable model can be obtained

Table (6.4) LIST OF PARAMETERS FOR THE ADDITIVE AND MIJLTIPLICATIVE MODELS.

| PARAMETER | MODELS | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $M_{1} \& M_{9}$ | $M_{2} \& M_{10}$ | $M_{3} \& M_{11}$ | $M_{4} \& M_{16} M_{5} \& M_{3}$ | $M_{6} \& M_{14}$ | $M_{7} \& M_{15}$ | $M_{8} \& M_{16}$ | |
| n | 2 | 3 | 4 | 5 | 2 | 3 | 2 | 3 |
| m | - | - | - | - | 2 | 2 | - | - |
| n_{3} | - | - | - | - | - | - | i | 1 |

n : Ni hizer of autoregressive terms.
n3 NUMBER OF SINUSOIDAL TERMS.
m : NUMBER OF ERROR TERMS.
$M_{1} ; 1=1-8$: ADDITIVE models.
Mi ; $1=9-16$: MULTIPLICATIVE MODELS.

Table(6.5) SIIMMARY OF THE RESULTS OF THE ADDITVE MODELS

${ }^{0} 0$	a_{1}	a_{2}	a_{3}	${ }^{0}$	a_{5}	${ }^{0} 6$	${ }^{\text {a }} 7$	${ }^{\text {a }} 9$	${ }^{a_{10}}$			
1	$\tilde{Y}\left(K_{-1}\right)$	$\tilde{Y}\left(k _2\right)$	$\tilde{Y}\left(K_{-3}\right)$	Y(K_4)	$\widetilde{Y}(\mathrm{~K}, 5)$	SIN W $\mathrm{F}_{1} \mathrm{~K}$	cos why	$\bar{W}\left(K_{-1}\right)$	$\bar{W}\left(K_{-} 2\right)$	E_{0}	E_{1}	E_{2}
0.000024 0.000048 0.000038 0.000170	D. 989151 0.990626 0.992343 0.996483	0.034769 0.074076 0.077380 0.08546	0039635 0083911 0091488		0.096106			$-$		$\begin{aligned} & 0.000013 \\ & 0.006876 \\ & 0.000049 \\ & 0.000086 \end{aligned}$	$\left\{\begin{array}{l} 0.006702 \\ 0.036015 \\ 0.007058 \\ 0.007720 \end{array}\right.$	$\begin{aligned} & 0.000072 \\ & 0.001222 \\ & 0.000081 \\ & 0.000105 \end{aligned}$
$\left\lvert\, \begin{aligned} & 0.000012 \\ & -0.000047 \end{aligned}\right.$	0.978184 0979631	$\left\lvert\, \begin{aligned} & -0.04 \mathrm{~K} 85 \\ & -0.0732533 \end{aligned}\right.$	0032415	$-$	$-$	$\left.\begin{aligned} & -0.043227 \\ & -0.02782 \end{aligned} \right\rvert\,$	$\left\lvert\, \begin{aligned} & 0.022563 \\ & 0.023852 \end{aligned}\right.$	-	-	$\begin{aligned} & 0.000140 \\ & 0.000212 \end{aligned}$	$\begin{aligned} & 0.015308 \\ & 0.015996 \end{aligned}$	$\left\|\begin{array}{l} 0.000186 \\ 0.000212 \end{array}\right\|$
0.002097 0.001883	$\begin{array}{\|l\|} 0.579018 \\ 0.549516 \end{array}$	$\left\|\begin{array}{l} 0.360508 \\ 0.235870 \end{array}\right\|$	-	-	-	$-$		$\left\|\begin{array}{l} 0.449080 \\ 0477697 \end{array}\right\|$	$\begin{aligned} & -0.002664 \\ & 0.148089 \end{aligned}$	$\begin{aligned} & 0.000169 \\ & 0.000285 \end{aligned}$	$\begin{aligned} & 0.022580 \\ & 0.023390 \end{aligned}$	0.000276

Eo: mean value of the residuals.
E_{1} : absolute mean value of the residuals.
E_{2} : mear: square value of the residuals.
W_{1} : THE MAIN FREQUNCY OF THE OBSERVED OUTPT DATA.

Table (6.6) summary of the results of the multiplicative models.

${ }^{0} 0$	a_{1}	a_{2}	a_{3}	a_{4}	a_{5}	${ }^{\text {a }} 6$	${ }^{\circ} 7$	a_{8}	${ }^{\text {a }} 9$			
1	$\tilde{r}_{2}\left(k_{-1}\right)$	$\tilde{r}_{2}\left(K_{2} 2\right)$	$\tilde{Y}_{2}(\mathrm{~K}-3)$	$\tilde{Y}_{2}\left(x_{-4}\right)$	$\tilde{Y}_{2}\left(K_{-} 5\right)$	SIN $W_{1} K$	$\cos ^{W} x$	$\bar{w}(\mathrm{~K}, 1)$	$\vec{w}(\mathrm{~K}, 2)$	E_{0}	E_{1}	Σ_{2}
$\left\|\begin{array}{l} -0.025724 \\ -0.022711 \\ -0.021777 \\ -0.021103 \end{array}\right\|$	$\left\lvert\, \begin{aligned} & 0.579371 \\ & 0.538685 \\ & 0.532248 \\ & 0.530324 \end{aligned}\right.$	$\left.\begin{array}{\|} 0.301895 \\ 0.223713 \\ 0.212368 \\ 0.209142 \end{array} \right\rvert\,$	— 0049375 0.098336	$\left\{\begin{array}{c} - \\ - \\ 0.049375 \\ 0.028958 \end{array}\right.$	$\left\lvert\, \begin{gathered} - \\ - \\ - \\ 0.038258 \end{gathered}\right.$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$		$-$		$\left\|\begin{array}{l} 0.006826 \\ 0.013548 \\ 0.006878 \\ 0.0067 i 1 \end{array}\right\|$	$\begin{aligned} & 0.029192 \\ & 0.059635 \\ & 0.046378 \\ & 0.024044 \end{aligned}$	$\left\lvert\, \begin{aligned} & 0.001146 \\ & 0.002382 \\ & 0.001467 \\ & 0.001212 \end{aligned}\right.$
$\left\|\begin{array}{l} -003433 \\ -0.030421 \end{array}\right\|$	$\begin{aligned} & 0.558548 \\ & 0.524503 \end{aligned}$	$\begin{aligned} & 0.282152 \\ & 0.214345 \end{aligned}$	0.120754	-	-	$\left\|\begin{array}{l} -0.011022 \\ -0.010336 \end{array}\right\|$	0.008888 0.007069	-	-	0.013527	$\begin{aligned} & 0.070874 \\ & 0.048891 \end{aligned}$	0.002625
$\left\lvert\, \begin{aligned} & -0.038117 \\ & -0.035376 \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & 0.497887 \\ & 0.433579 \end{aligned}\right.$	$\begin{aligned} & 0.320977 \\ & 0.217850 \end{aligned}$	0.181635	-		-	-	$\left\|\begin{array}{l} 0.227203 \\ 0.254027 \end{array}\right\|$	0.046531	0.019652 0.019138	0.090558 0.068282	$\left\|\begin{array}{l} 0.003420 \\ 0.003799 \end{array}\right\|$

E : MEAN YALUE OF THE RESIDUALS.
$E_{1}: \quad A B S O L U T E$ MEAN VALUE OF THE RESIDUALS.
E. MEAN SQUARE VALUE OF THE RESIDUALS.
W_{1} : THE MAIN FREQUNCY OF THE OBSERVED OUTPUT DATD.

Dy using the class selection procedure depicted previously in Chapter IV.

6.8.1 The Likelihood Approach

According to (4.16) the likelihood function $L_{i}, i=0,1, \ldots, 15$, is evaluated for each proposed model. It is found that, the additive model M_{1}, furnishes the largest value of the likelihood function L_{i}. Consequently, the given data may be assigned to that successful model.

6.8.2 The Prediction Approach.

Using the estimated parameter vector a together with the noise sequence [iv(•)] generated via a Gaussian random variable generator whose mean and variance are quite similar to those of the residual sequence $[\bar{w}(\cdot)]$, the onestep ahead prediction of the output discharge can be ubtained. The quality of predicted values mey be checked by using (4.19). Finally, the values of L_{i} and $J_{1}, i=0,1, \ldots, 15$, for both the additive and multiplicative models together with their corresponding rank are illustrated in Table (6.7).

6.9 VALIDATION TESTS OF THE LINEAR STOCHASTIC DIFFERENCE EQUATION MODEL

It is convenient to test the validity of the proposed models illustrated in Tables (6.5) and (6.6) for the utility condition (4.3), together with the normality of the generated residual sequence $[\bar{w}(\cdot)]$.

6.9.1 Test of Serial Independence

Using the residual sequence for both the additive and multiplicative models in addition to the computer program listed in Appendix D, the test statistics $B(\bar{W})$ are computed according to (4.35). The decision of acceptance

Tabla(6.7) RESULTS OF THE LIKELIHOOD APPRGACH AND PREDICTION APPROACH FOR THE CLASS SELECTION OF THE ADDITIVE AND MULTIPLICATIVE MODELS.

$L_{i}=-(N / 2) \ln \hat{P}_{i}-n_{i}$
$J_{i}=\sum_{k=2}^{N}\left[y(k)-\hat{y}\left(k / k_{-1}\right)\right] / N_{-1}$
or rejection the class C_{0} may be made by comparing the values of $\beta(\bar{W})$, at different lags, with those of the F -distribution function having n_{2} and $\mathrm{N}-\mathrm{n}_{2}$ degrees of freedom, where n_{2} is the corresponding lag. The response for both the additive and multiplicative models to that test is illustrated in Tables (6.8) and (6.9) respectively.

Briefly, acceptance of C_{0} insures the serial independency of the specified residual sequence [$\bar{w}(\cdot)$].

6.9.2 Test of Normality

As discussed before, the histogram of estimated residual sequence $[\bar{w}(\cdot)]$ can be compared with the standard normal distribution curve, having the same mean and variance, by employing the first Kolomgrov-Smirnov test. The test statistics as well as the decision of acceptance or rejection the null hypothesis H_{o} for both the additive and multiplicative models are elucidated in Tables (6.10) and (6.11). On the other hand, the probability of acceptance of the null hypothests H_{0} for the most successful model M_{1} is illustrated in Table (6.12).

Finally, the variations in coefficients of the iwo successful models M_{1} and M_{3} with sample size are demonstrated in Figs. (6.22) and (6.23) respectively. It can be observed that, these coefficients exhibit significant changes with the variation of sample size.

Using the two output data sequences generated by the best fitted noisytransfer function model M_{4}^{\prime} and the successful linear stochastic difference equation model M_{1}, the major features of these two models can be summarized as follows

Table (6.8) RESULTS UF THE SERIAL CORRELATION TEST FOR THE ADDITIVE MODELS.

MODEL	TEST STATISTIE	LAG									
		5	10	15	20	25	30	35	40	45	50
M_{1}	$\begin{aligned} & \eta(\bar{w}) \\ & \epsilon_{1}=0.05 \\ & \epsilon_{2}=0.10 \end{aligned}$	$\begin{gathered} 0.5630 \\ A \\ A \end{gathered}$	$\begin{gathered} 0.5272 \\ A \\ A \end{gathered}$	$2 \begin{gathered} 20.505 \\ A \\ A \end{gathered}$	$\begin{gathered} 0.396 \\ A \\ A \end{gathered}$	$\begin{gathered} 0.3886 \\ A \\ A \end{gathered}$	$\begin{gathered} 0.2767 \\ A \\ A \end{gathered}$	$\begin{gathered} 0.2227 \\ A \\ A \end{gathered}$	$\begin{gathered} 0.2056 \\ A \\ A \end{gathered}$	$\begin{gathered} 0.1772 \\ A \\ A \end{gathered}$	$\begin{gathered} 0.1612 \\ A \\ A \end{gathered}$
M_{2}	$\begin{aligned} & n(\bar{w}) \\ & \xi_{1}=0.05 \\ & \varepsilon_{2}=0.10 \end{aligned}$	$\begin{gathered} 1.7622 \\ R \\ R \end{gathered}$	$2 \begin{gathered} 1.6514 \\ R \\ R \\ \hline \end{gathered}$	$4 \begin{gathered} 1.7221 \\ R \\ R \end{gathered}$	$1 \begin{gathered} 1.6614 \\ R \\ R \end{gathered}$	$\begin{gathered} 1.4324 \\ R \\ R \\ \hline \end{gathered}$	$4 \begin{gathered} 1.3733 \\ R \\ R \end{gathered}$	$\begin{gathered} 1.4141 \\ R \\ R \end{gathered}$	$\left\lvert\, \begin{gathered} 1.4001 \\ R \\ R \end{gathered}\right.$	$\begin{gathered} 1.3910 \\ R \\ R \end{gathered}$	$\begin{array}{c\|c} 1.4120 \\ R \\ R \end{array}$
M_{3}	$\begin{gathered} n(\bar{w}) \\ \epsilon_{1}=0.05 \\ \epsilon_{2}=0.10 \end{gathered}$	$\left\lvert\, \begin{gathered} 0.4468 \\ A \\ A \end{gathered}\right.$	$3 \begin{gathered} 0.4253 \\ A \\ A \\ \hline \end{gathered}$	$\begin{gathered} 0.4013 \\ A \\ A \end{gathered}$	$\begin{gathered} 0.396 \\ \text { A } \\ \text { A } \end{gathered}$	$\begin{gathered} 0.3512 \\ \text { A } \\ \text { A } \end{gathered}$	$\begin{gathered} 0.3213 \\ A \\ A \end{gathered}$	$\begin{gathered} 0.2015 \\ A \\ A \end{gathered}$	$\begin{gathered} 0.1732 \\ A \\ A \end{gathered}$	$\begin{gathered} 0.1701 \\ A \\ A \end{gathered}$	$\left\lvert\, \begin{gathered} 0.1651 \\ A \\ A \end{gathered}\right.$
M_{4}	$\begin{aligned} & n(\bar{w}) \\ & \epsilon_{1}=0.05 \\ & \epsilon_{2}=0.10 \end{aligned}$	$\left\lvert\, \begin{gathered} 10.3200 \\ R \\ R \end{gathered}\right.$	$\begin{gathered} 5.2752 \\ R \\ R \end{gathered}$	$\begin{array}{\|l} 4.5010 \\ R \\ R \end{array}$	$\begin{gathered} 4.2010 \\ R \\ R \end{gathered}$	$\begin{array}{\|c} 3.9221 \\ R \\ R \end{array}$	$\begin{gathered} 3.5268 \\ R \\ R \end{gathered}$	$\begin{gathered} 3.1519 \\ R \\ R \end{gathered}$	$\begin{gathered} 2.528 \\ R \\ R \end{gathered}$	$\begin{array}{\|c} 2.3187 \\ R \\ R \end{array}$	$\begin{gathered} 2.1525 \\ R \\ R \end{gathered}$
M_{5}	$\begin{array}{r} \eta(\bar{w}) \\ \epsilon_{1}=0.05 \\ \epsilon_{2}=0.10 \\ \hline \end{array}$	$\begin{array}{\|c\|c\|} \hline 15.9621 \\ R \\ R \\ \hline \end{array}$	$\begin{gathered} 12.7151 \\ R \\ R \\ \hline \end{gathered}$	$\begin{array}{\|c} 10.5140 \\ R \\ R \\ \hline \end{array}$	9.8155 R R	$\begin{gathered} 8.6631 \\ R \\ R \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 74340 \\ R \\ R \\ \hline \end{array}$	$\begin{gathered} 61416 \\ R \\ R \end{gathered}$	$\begin{gathered} 5.5501 \\ R \\ R \end{gathered}$	$\left[\begin{array}{c} 5,9030 \\ R \\ R \end{array}\right]$	$\begin{gathered} 6.5220 \\ R \\ R \end{gathered}$
M_{6}	$\begin{gathered} n(\tilde{w}) \\ \epsilon_{1}=0.05 \\ e_{2}=0.10 \end{gathered}$	$\left[\begin{array}{c} 5.6713 \\ A \\ h \\ \hline \end{array}\right.$	$\begin{array}{\|c} 5.7314 \\ R \\ A \\ \hline \end{array}$	$\begin{gathered} 6.9132 \\ R \\ A \\ \hline \end{gathered}$	$\begin{gathered} 6.5143 \\ R \\ R \\ \hline \end{gathered}$	$\begin{gathered} 6.3152 \\ R \\ R \\ \hline \end{gathered}$	$\begin{array}{\|c} 6.0152 \\ R \\ R \end{array}$	$\left[\begin{array}{c} 5.4220 \\ R \\ R \end{array}\right.$	$\begin{gathered} 5.1107 \\ R \\ R \\ \hline \end{gathered}$	$\begin{gathered} 4.3143 \\ R \\ R \end{gathered}$	$\begin{gathered} 4.9212 \\ R \\ R \end{gathered}$
M_{7}	$\begin{aligned} & \quad \eta(\bar{w}) \\ & \epsilon_{1}=0.05 \\ & \epsilon_{2}=0.10 \\ & \hline \end{aligned}$	$\left[\begin{array}{c} 6.514 \\ R \\ R \end{array}\right]$	$\begin{gathered} 4.9102 \\ R \\ R \end{gathered}$	$\begin{gathered} 3.7170 \\ A \\ R \end{gathered}$	$\begin{array}{\|c\|} \hline 3.2817 \\ R \\ R \\ \hline \end{array}$	$\left.\begin{gathered} 2.8157 \\ R \\ R \end{gathered} \right\rvert\,$	$\begin{array}{\|c\|} \hline 2.0103 \\ R \\ R \end{array}$	$\begin{gathered} 1.8132 \\ R \\ R \end{gathered}$	$\left\|\begin{array}{c} 1.8152 \\ R \\ R \end{array}\right\|$	$\begin{gathered} 1.4130 \\ R \\ R \end{gathered}$	$\begin{gathered} 1.3730 \\ R \\ R \end{gathered}$
M_{8}	$\begin{aligned} & \quad \eta(\bar{w}) \\ & \epsilon_{1}=0.05 \\ & \epsilon_{2}=0.10 \\ & \hline \end{aligned}$	$\begin{gathered} 8.8173 \\ R \\ R \end{gathered}$	9.1320 R R R	$\begin{gathered} 10.3107 \\ R \\ R \\ \hline \end{gathered}$	$\left.\begin{gathered} 9.7541 \\ R \\ R \end{gathered} \right\rvert\,$	$\begin{gathered} 9.2512 \\ R \\ R \end{gathered}$	$\begin{gathered} 8.7373 \\ R \\ R \end{gathered}$	$\begin{gathered} 7.7125 \\ R \\ R \end{gathered}$	$\left.\begin{gathered} 7.5412 \\ R \\ R \end{gathered} \right\rvert\,$	$\begin{gathered} 6.5962 \\ R \\ R \end{gathered}$	$\begin{gathered} 6.2130 \\ R \\ R \\ \hline \end{gathered}$

A : ACCEPT Co.
A : REJECT Co.

Table (6.9) RESULTS OF THE SERIAL CORRELATION TEST OF THE MULTIPLICATIVE MODELS.

MODEL	TEST STATISTIC	LAG									
		5	10	15	20	25	30	35	40	45	50
M_{9}	$\begin{aligned} & \eta(\bar{w}) \\ & \epsilon_{1}=0.05 \\ & \varepsilon_{2}=0.10 \end{aligned}$	15.1086 R R	$\begin{gathered} 7.5006 \\ R \\ R \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 4.9641 \\ R \\ R \\ \hline \end{array}$	$\begin{array}{\|c} 3.8013 \\ R \\ R \\ \hline \end{array}$	$\begin{gathered} 3.0891 \\ R \\ R \end{gathered}$	$\begin{gathered} 2.6171 \\ R \\ R \end{gathered}$	$\begin{array}{\|c} 2.1356 \\ R \\ R \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 1.9523 \\ R \\ R \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 1.6291 \\ R \\ R \\ \hline \end{array}$	$\begin{gathered} 1.4892 \\ R \end{gathered}$
M_{10}	$\begin{aligned} & \eta(\bar{W}) \\ & \epsilon_{1}=0.05 \\ & \epsilon_{2}=0.10 \end{aligned}$	$\left\|\begin{array}{c} 3.4409 \\ R \\ R \end{array}\right\|$	$\begin{gathered} 3: 2643 \\ R \\ R \end{gathered}$	$\begin{gathered} 3 \Omega 776 \\ \mathbf{R} \\ \mathbf{R} \end{gathered}$	$\begin{gathered} 2.8788 \\ R \\ f \end{gathered}$	$\begin{array}{\|c} 2.6653 \\ R \\ R \end{array}$	$\begin{gathered} 24331 \\ R \\ R \end{gathered}$	$\begin{array}{\|c} 2.2251 \\ R \\ R \end{array}$	$\left\lvert\, \begin{gathered} 1.9626 \\ \mathbf{R} \\ \mathbf{R} \end{gathered}\right.$	$\left\lvert\, \begin{gathered} 1.5732 \\ R \\ R \end{gathered}\right.$	$\begin{gathered} 1.1126 \\ R \\ R \end{gathered}$
M_{11}	$\begin{gathered} \eta(\vec{w}) \\ \epsilon_{1}=0.05 \\ \epsilon_{2}=0.10 \end{gathered}$	$\begin{array}{\|c} 4.4682 \\ R \\ R \\ \hline \end{array}$	$\begin{gathered} 6.2534 \\ R \\ R \\ \hline \end{gathered}$	$\begin{gathered} 3.4952 \\ R \\ R \end{gathered}$	$\begin{array}{\|c} 31258 \\ R \\ R \\ \hline \end{array}$	$\begin{gathered} 3.1415 \\ R \\ R \end{gathered}$	$\begin{gathered} 2.8871 \\ R \\ R \\ \hline \end{gathered}$	$\left\|\begin{array}{c} 2.5950 \\ R \\ R \end{array}\right\|$	$\left\lvert\, \begin{gathered} 2.1696 \\ R \\ R \end{gathered}\right.$	$\begin{gathered} 2.0606 \\ R \\ R \end{gathered}$	$5 \left\lvert\, \begin{gathered} 1.3606 \\ R \\ R \end{gathered}\right.$
M_{12}	$\begin{aligned} & \eta(\bar{w}) \\ & \epsilon_{1}=0.05 \\ & \epsilon_{2}=0.10 \end{aligned}$	$\begin{gathered} 3.4839 \\ R \\ R \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 3.3051 \\ R \\ R \\ \hline \end{array}$	$\begin{array}{\|c} 31161 \\ R \\ R \\ \hline \end{array}$	$\begin{gathered} 2.9745 \\ R \\ R \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 2.6983 \\ R \\ R \\ \hline \end{array}$	$\begin{gathered} 2.4634 \\ R \\ R \\ \hline \end{gathered}$	$\left\|\begin{array}{c} 2.2111 \\ R \\ R \end{array}\right\|$	$\begin{gathered} 1.9351 \\ R \\ R \end{gathered}$	$\begin{array}{\|c} 1.5863 \\ R \\ R \end{array}$	$\left\lvert\, \begin{gathered} 1.1246 \\ R \\ R \end{gathered}\right.$
$M_{\text {B }}$	$\begin{array}{r} \eta(\bar{w}) \\ \epsilon_{1}=0.05 \\ \epsilon_{2}=0.10 \end{array}$	$\begin{gathered} 3.4782 \\ R \\ R \\ \hline \end{gathered}$	$\begin{gathered} 3.2997 \\ R \\ R \end{gathered}$	$\begin{gathered} 3.1110 \\ R \\ R \end{gathered}$	$\begin{gathered} 2.900 \\ R \\ R \end{gathered}$	$\begin{array}{\|c} 2,6942 \\ R \\ R \\ \hline \end{array}$	$\begin{gathered} 2.4594 \\ R \\ R \end{gathered}$	$\begin{gathered} 2.1998 \\ R \\ R \end{gathered}$	$\begin{gathered} 1.9309 \\ R \\ R \end{gathered}$	$\begin{gathered} 1.5783 \\ R \\ R \\ \hline \end{gathered}$	$\begin{array}{\|c\|} 1.3214 \\ R \\ R \\ \hline \end{array}$
M14	$\begin{gathered} \eta(\vec{w}) \\ \epsilon_{1}=0.05 \\ \epsilon_{2}=0.10 \end{gathered}$	$\begin{array}{\|c\|} \hline 3.2077 \\ R \\ R \\ \hline \end{array}$	$\begin{gathered} 3.0282 \\ R \\ R \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 2.3374 \\ R \\ R \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 2.2331 \\ R \\ R \\ \hline \end{array}$	$\left.\begin{array}{\|c\|} 24317 \\ R \\ R \end{array}\right]$	$\begin{array}{\|c\|} \hline 2.2197 \\ R \\ R \\ \hline \end{array}$	$\begin{gathered} 2.1117 \\ R \\ R \\ \hline \end{gathered}$	$\begin{gathered} 1.8940 \\ R \\ R \end{gathered}$	$\begin{gathered} 1.5604 \\ R \\ R \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 1.1116 \\ R \\ R \\ \hline \end{array}$
M_{15}	$\begin{aligned} & \eta(\bar{w}) \\ & \epsilon_{1}=0.05 \\ & \varepsilon_{2}=0.10 \end{aligned}$	$\begin{array}{\|c\|} \hline 6.5667 \\ R \\ R \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 55842 \\ R \\ R \\ \hline \end{array}$	$\begin{gathered} \hline 5.6047 \\ R \\ R \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 4.8691 \\ R \\ R \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 35360 \\ R \\ R \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 3.2046 \\ R \\ R \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 30520 \\ R \\ R \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 2.717 \\ R \\ R \\ \hline \end{array}$	$\left\|\begin{array}{c} 2,2201 \\ R \\ R \end{array}\right\|$	$\left\|\begin{array}{c} 1.8410 \\ R \\ R \end{array}\right\|$
M_{16}	$\begin{gathered} \eta(\bar{w}) \\ \epsilon_{1}=0.05 \\ \epsilon_{2}=0.10 \end{gathered}$	$\left\|\begin{array}{c} 6.7230 \\ R \\ R \end{array}\right\|$	$\begin{gathered} 5.6378 \\ R \\ R \end{gathered}$	$\begin{gathered} 56251 \\ R \\ R \\ \hline \end{gathered}$	4.8726 R R	$\begin{gathered} 3538 \\ R \\ R \end{gathered}$	$\left\lvert\, \begin{gathered} 3.2867 \\ R \\ R \end{gathered}\right.$	$\begin{gathered} 30536 \\ R \\ R \end{gathered}$	$\text { 2:7970 } \begin{gathered} \text { R } \\ R \end{gathered}$	$\begin{gathered} 2.2207 \\ R \\ R \end{gathered}$	$\left\lvert\, \begin{gathered} 1.6905 \\ R \\ R \end{gathered}\right.$

A: ACCEPT Co.
R : REJECT Co.

Table (6.10) RESULTS OF THE FIRST KOLMOGROV_SMIRNOV TEST OF THE RESIDUAL NORMALITY FOR THE ADDITIVE MODELS.

MODEL	TEST STATISTIC	LAG									
		5	10	15	20	25	30	35	40	45	50
M_{1}	$\begin{gathered} z \\ \epsilon_{1}=0.05 \\ \epsilon_{2}=0.10 \end{gathered}$	$\begin{gathered} 0.3162 \\ \text { A } \\ \text { A } \\ \hline \end{gathered}$		$\begin{gathered} 0.3651 \\ A \\ A \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 0.3162 \\ \mathrm{~A} \\ \mathrm{~A} \\ \hline \end{array}$	$\begin{gathered} 0.2828 \\ \mathrm{~A} \\ \mathrm{~A} \\ \hline \end{gathered}$	$\left[\begin{array}{c} 0.2582 \\ A \\ A \end{array}\right.$		$\begin{gathered} 0.3356 \\ \text { A } \\ \text { A } \\ \hline \end{gathered}$	$\begin{gathered} 0.3163 \\ \mathrm{~A} \\ \mathrm{~A} \\ \hline \end{gathered}$	$\begin{gathered} 0.3000 \\ A \\ A \end{gathered}$
M_{2}	$\begin{gathered} z \\ \epsilon_{1}=0.05 \\ \epsilon_{2}=0.10 \end{gathered}$	$\begin{gathered} 1.6324 \\ R \\ R \end{gathered}$	$\begin{gathered} 1.9487 \\ R \\ R \end{gathered}$	$\left\|\begin{array}{c} 1.6708 \\ R \\ R \end{array}\right\|$	$\begin{gathered} 1.5477 \\ R \\ R \end{gathered}$	$\begin{gathered} 1474.3 \\ R \\ R \end{gathered}$	$\left\lvert\, \begin{gathered} 1.4243 \\ R \\ R \end{gathered}\right.$	$\begin{gathered} 1.3873 \\ R \\ R \end{gathered}$	$\begin{gathered} 1.5976 \\ R \\ R \end{gathered}$	$\begin{gathered} 1.5590 \\ R \\ R \end{gathered}$	$\left\{\begin{array}{c} 1.5000 \\ R \\ R \end{array}\right.$
M_{3}	$\begin{gathered} z \\ \epsilon_{1}=0.05 \\ \epsilon_{2}=0.10 \end{gathered}$	$\begin{gathered} 0.3162 \\ A \\ A \end{gathered}$	$\begin{gathered} 0.4472 \\ A \\ A \end{gathered}$	$\left\|\begin{array}{c} 0.3651 \\ A \\ A \end{array}\right\|$	$\left\|\begin{array}{c} 0.3162 \\ A \\ A \end{array}\right\|$	$\begin{gathered} 0.2828 \\ A \\ A \end{gathered}$	$\left\lvert\, \begin{gathered} 0.387 \Sigma \\ \text { A } \\ \text { A } \end{gathered}\right.$	$\begin{gathered} 781 \\ A \\ A \end{gathered}$	$\left\|\begin{array}{c} 0.4472 \\ A \\ A \end{array}\right\|$	$\begin{gathered} 0.4216 \\ A \\ A \end{gathered}$	$\begin{gathered} 0.4000 \\ A \\ A \end{gathered}$
M_{4}	$\begin{aligned} & \epsilon_{1}=0.05 \\ & \epsilon_{2}=0.10 \end{aligned}$	$\begin{gathered} 1.1160 \\ A \\ A \end{gathered}$	$\left\lvert\, \begin{gathered} 0.5783 \\ A \\ A \end{gathered}\right.$	$\begin{gathered} 0.9309 \\ \text { A } \\ \text { A } \end{gathered}$	$\begin{gathered} 09198 \\ A \\ A \end{gathered}$	$\begin{gathered} 04595 \\ A \\ A \end{gathered}$	$\left\|\begin{array}{c} 1.6942 \\ R \\ R \end{array}\right\|$	$\begin{gathered} 1.9100 \\ R \\ R \end{gathered}$	$\left[\begin{array}{c} 2.2202 \\ R \\ R \end{array}\right.$	$\left\lvert\, \begin{gathered} 2.2997 \\ R \\ R \end{gathered}\right.$	$\begin{gathered} 24000 \\ R \\ R \end{gathered}$
M5	$\begin{array}{ll} & \\ \epsilon_{1} & z \\ \epsilon_{2} & 0.05 \\ & 0.10\end{array}$	$\begin{gathered} 0.6324 \\ A \\ A \end{gathered}$	$\left\|\begin{array}{c} 0+472 \\ A \\ A \end{array}\right\|$	$\begin{gathered} 0.3651 \\ A \\ A \end{gathered}$	$\left\|\begin{array}{c} 0.3612 \\ A \\ A \end{array}\right\|$	$\left\lvert\, \begin{gathered} 1.2843 \\ R \\ R \end{gathered}\right.$	$\left\|\begin{array}{c} 18190 \\ R \\ R \end{array}\right\|$	$\begin{gathered} 1.8551 \\ R \\ R \end{gathered}$	$\left\|\begin{array}{c} 1.5410 \\ R \\ R \end{array}\right\|$	$\left.\begin{gathered} 1.6228 \\ R \\ R \end{gathered} \right\rvert\,$	$\begin{gathered} 1.5000 \\ R \\ R \end{gathered}$
M6	$\begin{gathered} z \\ \epsilon_{1}=0.05 \\ \epsilon_{2}=0.10 \end{gathered}$	$\begin{gathered} 1.1160 \\ A \\ A \end{gathered}$	$\begin{array}{\|c\|} \hline 1.5783 \\ R \\ R \end{array}$	$\begin{gathered} 1.9309 \\ R \\ R \end{gathered}$	$\begin{gathered} 2.1998 \\ R \\ R \end{gathered}$	$\begin{gathered} 26596 \\ R \\ R \end{gathered}$	$\begin{gathered} 2.6962 \\ R \\ R \end{gathered}$	$\begin{gathered} 2.9100 \\ R \\ R \end{gathered}$	$\begin{gathered} 3.1110 \\ R \\ R \end{gathered}$	$\begin{gathered} 3.2997 \\ R \\ R \end{gathered}$	4782 R R
M_{7}	$\begin{aligned} & \quad z \\ & \epsilon_{1}=0.05 \\ & \epsilon_{2}=0.10 \end{aligned}$	$\begin{array}{\|c\|} \hline 1.1125 \\ A \\ A \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 1.573 \\ R \\ R \\ \hline \end{array}$	$\begin{gathered} 1.9269 \\ R \\ R \\ \hline \end{gathered}$	$\begin{gathered} 2.2251 \\ R \\ R \end{gathered}$	$\begin{gathered} 24331 \\ R \\ R \end{gathered}$	$\begin{gathered} 2.6653 \\ R \\ R \end{gathered}$	$\begin{gathered} 2.8788 \\ R \\ R \\ \hline \end{gathered}$	$\begin{gathered} 3.0776 \\ R \\ R \end{gathered}$	$\begin{gathered} 32643 \\ R \\ R \\ \hline \end{gathered}$	$\begin{gathered} 3,4409 \\ R \\ R \end{gathered}$
Mr_{8}	$\begin{aligned} & \epsilon_{1}=0.05 \\ & \epsilon_{2}=0.10 \end{aligned}$	$\left\|\begin{array}{c} 1.6325 \\ R \\ R \end{array}\right\|$	$\begin{array}{\|c\|} 1.4472 \\ R \\ R \end{array}$	$\begin{gathered} 1.3651 \\ R \\ R \end{gathered}$	$\begin{gathered} 1.3162 \\ R \\ R \end{gathered}$	$\left\|\begin{array}{c} 1.2728 \\ R \\ R \end{array}\right\|$	$\begin{gathered} 1.5351 \\ R \\ R \\ \hline \end{gathered}$	$\begin{gathered} 1 / 4270 \\ R \\ R \\ \hline \end{gathered}$	$\begin{gathered} 14001 \\ R \\ R \end{gathered}$	$\begin{gathered} 1.3977 \\ R \\ R \\ \hline \end{gathered}$	$\begin{gathered} 1.3000 \\ R \\ R \\ \hline \end{gathered}$

Z : STATISTIC OF THE FIRST KOLMOGROV_SMIRNOV TEST.
A : ACCEPT THE HYPOTHESIS OF NORMALITY.
R : REJECT THE HYPOTHESIS OF NORMALITY.

Table(6.11)RESULTS OF THE FIRST KOLMOGROV. SMIRNOV TEST OF THE RESIDUAAL NORMALITY FOR THE MULTIPLICATIVE MODELS.

MODEL	TEST STATISTIC	L AG									
		5	10	15	20	25	30	35	40	45	50
M_{9}	$\begin{gathered} Z \\ \epsilon_{1}=0.05 \\ \epsilon_{2}=0.10 \end{gathered}$	1.6324 R R	$14 \begin{gathered} 1.670 \\ R \\ R \end{gathered}$	1. 5477	$\begin{array}{l\|c} 7.4246 \\ R \\ R \end{array}$	$\begin{gathered} 0.5163 \\ A \\ A \end{gathered}$	$3 \begin{gathered} 0.717 \\ A \\ A \end{gathered}$		$\left\lvert\, \begin{gathered} 0.6315 \\ A \\ A \end{gathered}\right.$	$5 \left\lvert\, \begin{gathered} 0.6000 \\ A \\ A \end{gathered}\right.$	
M_{10}	$\begin{gathered} z \\ \epsilon_{1}=0.05 \\ \epsilon_{2}=0.10 \end{gathered}$	$\left\lvert\, \begin{gathered} 0.9486 \\ A \\ A \end{gathered}\right.$	$\begin{gathered} 6.6718 \\ A \\ A \end{gathered}$		$\begin{gathered} 147.5 \\ R \\ R \end{gathered}$	$\begin{gathered} 1.3205 \\ A \\ R \end{gathered}$	$5 \left\lvert\, \begin{gathered} 1.424 \\ R \\ R \end{gathered}\right.$	$\begin{array}{c\|c} 2 & 1.387 \\ R \\ & R \end{array}$	$\begin{gathered} 1.5976 \\ R \\ R \end{gathered}$	$6 \left\lvert\, \begin{gathered} 1.5590 \\ R \\ R \end{gathered}\right.$	$\begin{gathered} 0.5000 \\ \text { A } \\ \text { A } \end{gathered}$
M_{11}	$\begin{aligned} & Z \\ & \epsilon_{1}=0.05 \\ & \epsilon_{2}=0.10 \end{aligned}$	0.957 A A	0.7602 A A	0.5421 A A	$\begin{gathered} 0.7721 \\ A \\ A \end{gathered}$	0.8312 A A	$\begin{gathered} 0.8872 \\ A \\ A \end{gathered}$	$2 \begin{gathered} 1.1271 \\ \mathrm{~A} \\ \mathrm{~A} \end{gathered}$	$\begin{gathered} 1.4213 \\ R \\ R \end{gathered}$	$3 \left\lvert\, \begin{gathered} 1.5271 \\ R \\ R \end{gathered}\right.$	$\begin{gathered} 1.5000 \\ R \\ R \end{gathered}$
M_{12}	$\begin{gathered} z \\ \epsilon_{1}=0.05 \\ \epsilon_{2}=0.10 \end{gathered}$	$\begin{gathered} \mathrm{C} .5572 \\ A \\ A \end{gathered}$	$\begin{gathered} 0.7814 \\ A \\ A \\ \hline \end{gathered}$	$\begin{gathered} 0.9652 \\ A \\ A \end{gathered}$	$\begin{gathered} 1.1243 \\ A \\ A \end{gathered}$	$\begin{gathered} 1.1571 \\ \text { A } \\ \text { A } \end{gathered}$	$\begin{gathered} 1.1742 \\ \text { A } \\ \text { A } \end{gathered}$	$\begin{array}{l\|l} 1.2017 \\ \mathrm{~A} \\ \mathrm{~A} \end{array}$	$\begin{gathered} 1.2571 \\ A \\ R \end{gathered}$	$\begin{gathered} 1.3 \pi 0 \\ R \\ R \end{gathered}$	$\left\|\begin{array}{c} 1.5000 \\ R \\ R \end{array}\right\|$
M_{13}	$\begin{aligned} & \quad z \\ & \epsilon_{1}=0.05 \\ & \epsilon_{2}=0.10 \end{aligned}$	$\left[\begin{array}{c} 07324 \\ A \\ A \end{array}\right]$	$\begin{gathered} 0.7211 \\ A \\ A \end{gathered}$	$\begin{gathered} 0.6814 \\ \text { A } \\ \text { A } \end{gathered}$	$\begin{gathered} 0.7415 \\ \text { A } \\ \text { A } \end{gathered}$	$\begin{gathered} 0.8999 \\ A \\ A \end{gathered}$	$\underset{A}{1.1215}$	$\begin{gathered} 1.5432 \\ R \\ R \end{gathered}$	$\left\lvert\, \begin{gathered} 1.6780 \\ R \\ R \end{gathered}\right.$	$\begin{gathered} 1.75<1 \\ 11 \\ R \end{gathered}$	$\begin{gathered} 1.8000 \\ R \\ R \end{gathered}$
${ }^{\mathrm{M}} 14$	$\begin{aligned} & \quad z \\ & \epsilon_{1}=0.05 \\ & \epsilon_{2}=0.10 \end{aligned}$	$\left\|\begin{array}{c} 0.7324 \\ A \\ A \end{array}\right\|$	$\begin{gathered} 0.7211 \\ A \\ A \end{gathered}$	$\left[\begin{array}{c} 0.6915 \\ A \\ A \end{array}\right]$	$\left\|\begin{array}{c} 0.7621 \\ \text { A } \\ \text { A } \end{array}\right\|$	$\begin{gathered} 0.9120 \\ A \\ A \end{gathered}$	$\begin{gathered} 19714 \\ A \\ A \end{gathered}$	$\begin{gathered} 1.7450 \\ R \\ R \\ \hline \end{gathered}$	$\left\lvert\, \begin{gathered} 1.7785 \\ R \\ R \end{gathered}\right.$	$\left\lvert\, \begin{gathered} 1.8417 \\ R \\ R \end{gathered}\right.$	$\left\|\begin{array}{c} 2.071 \\ R \\ R \end{array}\right\|$
M_{15}	$\begin{gathered} z \\ \epsilon_{1}=0.0 \mathrm{~g} \\ \epsilon_{2}=0.10 \end{gathered}$	$\left\|\begin{array}{c} 1.3162 \\ A \\ A \end{array}\right\|$	$\begin{array}{\|c\|} \hline 1.6708 \\ R \\ R \\ \hline \end{array}$	$\begin{gathered} 9.5477 \\ R \\ R \\ \hline \end{gathered}$	$\begin{array}{\|c} 1.4743 \\ R \\ R \\ \hline \end{array}$	$\left.\begin{gathered} 1.424 .2 \\ R \\ R \end{gathered} \right\rvert\,$	$\left\lvert\, \begin{gathered} 1.3872 \\ R \\ R \\ \hline \end{gathered}\right.$	1.3685 R R	$\left\|\begin{array}{c} 1.3951 \\ R \\ R \end{array}\right\|$	$\left\|\begin{array}{c} 9.4216 \\ R \\ R \end{array}\right\|$	$\left\|\begin{array}{c} 1.6000 \\ R \\ R \end{array}\right\|$
M_{16}	c $\epsilon_{1}=$ $=$ $\epsilon_{2}=0.05$	$\begin{gathered} 1.3162 \\ A \\ A \\ \hline \end{gathered}$	$\left\|\begin{array}{c} 9.3407 \\ \text { A } \\ \text { A } \end{array}\right\|$	$\begin{gathered} 1.5386 \\ R \\ R \end{gathered}$	$\left\|\begin{array}{c} 1 \\ \hline \end{array}\right\| 372$	$\left\|\begin{array}{c} 1.4245 \\ R \\ R \end{array}\right\|$	$\left\lvert\, \begin{gathered} 1.4010 \\ R \\ R \end{gathered}\right.$	$\left\|\begin{array}{c} 1.3850 \\ R \\ R \end{array}\right\|$	$\left.\begin{gathered} 1.3871 \\ R \\ R \end{gathered} \right\rvert\,$	$\left.\begin{gathered} 1.4320 \\ R \\ R \end{gathered} \right\rvert\,$	$\begin{gathered} 1.7000 \\ R \\ R \end{gathered}$

Z : STATISTIC OF THE FRIST KOL MOGROV. S:MIRNOV TEST.
A : aCCEPT THE hYPOTHESIS OF NDRMALITY.
R : reject the hypothesis of normality.

Table (6.12) RESULTS OF THE FIRST KOLMOGROV_SMIRNOV TEST FOR THE ADDITIVE MODEL. M.

TEST STATISTICS	LAG (DAYS)									
	5	10	15	20	25	30	35	40	45	50
Z	0.316228	0.447214	0.36548	0.316228	0.282843					
$\epsilon_{1}=0.05$	A	A	A	A	A 28284	0.258199	0.358569	0.335410	0.316228	0300000
$\epsilon_{2}=0.10$	A	A	A	A	A	A			A	A
PROB.	0.99965	0.988261	0.99942	0.999965	0.999998				A	A
						10000	0.999524	0.999871	0.999965	0.999991

A. : ACCEPT THE MULL HYPOTHESSS Ho.

PROB: PROBABILITY OF ACCEPTANCE OF THE NULL HYPOTHESIS Ho.

116

Fig. (6.22) VARIATION OF THE COEFFICIENTS OF THE mODEL M_{1} WITH THE SAMPLE SIZE in dAYS.

Fig.(6.23) VARIATION OF THE COEFFICIENTS OF THE MODEL M_{3} WITH THE SAMPLE SIZE.

Fig. (6.23) CONT.'D

i) Simulation Capability:

The discrepancy between the statistical characteristics of the observed and generated sequences discriminates its simulation capability. Thus, some statistical characteristics such as correlograms, power spectrums, histograms and cumulative histograms of the two output sequences generated by M_{4}^{\prime} and M_{1} are compated with those of the measured output discharge. The results of that comparative procedure are illustrated in Tables (6.13) to (6.15), which confirm the ability of model M_{1} to generate an adequate output sequence.

ii) Estimatability:

Some bisidary estimation conditions play an active part in the model selection techniques. The estimatability of a given model may insure its ability to generate an accurate estimates of parameters as well as appropriate statistics of residuals. Consequently, the significance of estimated parameters for the two successful models M_{4}^{\prime} and M_{1} may be tested as suggested by Clark (1969). The numerous mathematical operations needed to evaluate the impulse response vector \bigcup lead to a marginal significance of its coon fficients, whereas the parameters of M_{1} estimated by the recursive algorithm (4.11) show a small vartablitity and better level of significance. On the other hand, the discrepancy between the histogram of residuals and the normal distribution curve, with similar mean and variance, is more acceptable for M_{1} rather than M_{4}. Furthermore, the histogram of residuals as well as its cumulative values for , he successful model M_{1} are shown in Figs. (6.24) and (6.25) respectively.
iii) Forecasting:

According to the general classification of monthly output data illustrated in Fig. (6.26), the forecasting ability of the two successful models M_{4}^{-}and M_{1} can be quantatively compared via Fig. (6.27). Clearly, the one-step ahead prediction capability of the model M_{1} is much better compared with that of M_{4}.

Fig. (6.13) COMPARISON OF THE CORRELOGRAMS OF THE MEASURED AND GENERATED DISCHARGE DATA FOR THE TWO SUCCESSFUL MODELS M_{4}^{\prime} AND M_{1}.

TYPE Gİ DATA	LAG (DAYS)									
	5	10	15	20	25	30	35	40	45	50
MEASURED	0.806272	0.677308	0.577811	0.495149	0.444279	0.401704	0.342013	0.227529	0.112896	0.053637
GENERATED BY M_{4}^{\prime}	0819805	0687749	0.583387	0.501245	0450134	0.407119	0.346501	0.230257	0.09087	0.058214
GENERATED BY M_{1}	0.804605	0.675017	0.574804	0.49269	0.442457	0399962	0340875	0226302	0.111361	0.052620

Table (6.14) COMPARISON OF POWER SPECTRUMS FOR THE MEASURED AND GENERATED DISCHARGE DATA FOR THE SUCCESSFUL MODELS MÁAND M.

Table (6.15) COMPARISON OF THE MEASURED AND GENERATED DISCHARGE HISTOGRAMS FOR THE TWO SUCCESSFUL MODELS M_{4} AND M_{1}

TYPE OF DATA	CLASS INTERVAL										
	0.3-04	$0.4-0.5$	10.5.0.6	0.6-0.7	0.20.8	0.8 _0.9	0.9.1.0	7.0.1.1	1.1.1.2	1.2.7.3	1.3-1.4
OBSERVED	18	100	126	89	64	37	27	13	10	3	1
generated $\mathrm{By}_{\mathrm{Y}} \mathrm{M}_{4}$	25	91	128	94	63	38	24	14	8	2	1
GE MERATED By M_{1}	14	104	127	96	60	39	26	9	11	2	-

COMPARISON OF THE MEASURED AND GENERATED DISCHARGE CUMULATIVE HISTOGRAAAS FOR THE TWO SUCCESSUF MODELS M/\&M,

TYPE OF DATA	CLASS INTERVAL										
	0.3.0.4	0.4 -0.5	0.5.0.6	0.6-0.7	a.7.0.8	0.8-0.9	0.9 .10	1.0.1.1	1.1-1.2	1.2.1.3	13- $-\infty$
OBSERVED	18	118	364	333	397	434	461	474	484	487	488
generated $B_{Y} M_{4}^{\prime}$	25	116	244	338	401	439	463	477	485	487	488
GENERATED $B_{Y} \quad M_{1}$	14	118	245	'341	401	440	466	475	486	488	488

Fig. (6.24) HISTOGRAM OF THE RESIDUALS FOR THE MODEL M.

Fig.(6.25) NORMALIZED CUMULATIVE HISTOGRAM OF THE MODEL: Mi RESIDUALS.

Fig. (6.26)CLASSIFICATION OF THE SYSTEM DISCHARGE.

Fig. (6.27) A PLOT OF NEASURED AND PREDICTED DISCHARGE DATA FOR M_{1} AND Má (TOTAL DISCHARGE IS $30.8 \mathrm{~mm} / \mathrm{MONTH}$).

Fig. (6.27) CONT.'D (TOTAL DISCHARGE IS $273 \mathrm{MM} / \mathrm{MONTH}$).

Fig(6.27) CONT.'D (TOTAL DISCHARGE IS $18.6 \mathrm{MM} / \mathrm{MONTH}$).

Fig.(6.27) CONT.'D
(TOTLL DISCHARGE IS $15.4 \mathrm{MM} / \mathrm{MONTH}$)

Fig. (6.27) CONT.'́ (TOTAL DISCHARGE IS 13.9 MM/MONTH).

CHAPTER VIII CONCLUSIONS

CHAPTER VII

CONCLUSION

The major emphasis of this endeavour has been the identification, estimation and validatiun of noisy-transfer function and linear stochastic difference equation models appropriate for the representation of physical hydrological systems. A case study of the Waki River catchment, located near to lake Albert, has been selected. Using the input precipitation and the output discharge measured during the rainy season of that catchment, it has became possible to simulate the two proposed models on the digital computer together with the main statistical characteristics of their output data. Moreover, the validity of the residual sequences, generated by the different strutures of these models, for the prespecified estimation conditions ias also been investigated.

The imporiant features of the two tuned noisy-transfer function and linear stochastic difference equation models have been quantitatively examined in a comparative pattern in order to achieve the best representation of the Waki catchment. As a general view, the performance of linear stochastic difference equation model is more favourable than that of the noisy-transfer function model.

The main findings of this work can now be summarized as follows:
i) The application of linear stochastic difference equation models is pragmatic for both prediction and estimation of the river catchment response.
ii) The linear stochastic difference equation models yield excellent prediction for the most given classifications, whereas the predictability of the nois ${ }_{j}$-transfer function models is restricted by using their autoregressive structure during the low level of output data.
iii) The multiplicative sturcture of the linear stochastic difference equation models has failed to attain the same accuracy obtained by the additive structure, this is mainly due to its inadequacy to the physical system at hand. Moreover, it is advisable to fit a relatively simple class of models and increase its complexity only if the simplest class proves to be unsatisfactory.
iv) The identification procedure of the linear difference equation model is equivalent to specifying the suitable number of autoregressive, corrective error and/or sinusoidal terms necessary for an adequate results. Alternatively, the basic premise in identifying the noisy-transfer function model is the evaluation of its appropriate kernel length.
v) It is advantageous to invoke the constrained estimators to evaluate the parameters of noisy-transfer function model adequate for sone river catchnent systems whose complete mathematical balance is available, together with the representability of their measured data. On the other hand, the recursive parameter estimation of the linear stochastic difference equation models is relevant for both the additive and multiplicative structures, provided that a proper data transformation procedure is manipulated.
vi) The validation of the two proposed families of models for the prespecified estimation conditions was checked both by examining their residuals and comparing the basic statistics of their generated output data such as mean, variance, correlogram, histograms and power spectrum with the others of observed sequence. It has been demonstrated that, the appropriate
class of models should pass all validation tests at the required significance level in order to vendicate its adequacy for the system at hand.

The most fruitful area of future research would be the implementation of partitioned estimation technique together with the pre-whitening of the input data to the noisy-transfer function model. In addition, the sensitivity of linear stochastic difference equation model to the recursive manipulation of corrective error tems obtained via the Fourier analysis of residuals is suggested for further studies. Finally, it is recommended that the methodologies presentad in this work be invoked to other physical systems in diverse areas of engineering and applied sciences, as well as to multi-input multioutput situations.

REFERENCES

1) Anderson, T.W. (1970), "The Statistical Analysis of Time Series", John Wiley and Sons, New York.
2) Abadie, J. (1970), "Integer and Non-Linear Programing" North-Ho?land Publishing Co., Amsterdam.
3) Blank, D., Delleur, J.W. and Giorgini, A. (1971), "Oscillatory Kernel Functions in Linear Hydrologic Systems", Water Resources Research, Vol. 7, No. 5.
4) Box, G.E.P., and Hunter, W.G. (1965), "The Exper!mental Study of Physical Mechanisms", Technometrics, Vol. 7, No. 23.
5) Box, G.E.P., and Jenkins, G.M. (1970), "Time Series Analysis, Forecasting and Control", California, Holden Day, p. 553.
6) Clark, R.H. (1969), "College Statistics", Thomas Nel son and Sons, London, p. 267.
7) Diskin, M.H. and Boneh, A. (1973), "Determination of Optimal Kernels for Second-Order Stationary Surface Runoff Systems", Water Resources Research, Vol. 9, No. 2.
8) Dixon, W.J. (1970), "Biomedical Computer Programs", University of California Publications in Automatic Computations No. 2, University of California Press, Berkeley, California.
9) Dorrah, H.T. and Nichols, S.T. (1975), "Nonlinear Parameter Estimation via a Stochastic Steepest Descent Approach", Automatic Control Theory and Applications, Vol. 3, No. 2.
10) Dorn, W.S. (1963), "Nonlinear Programing-A survey", Management Science, Vol. 9, No. 2.
11) Feller, W. (1948), "On the Kolmogrov-Smirnov Limit Theorems for Empirical Distributions", Annals of Math. Stat., p. 177.189.
12) Gnedenko, B.V. (1962), "The Theory of Probability", Chelsea Publishing Co., New York, p. 384-401.
13) Hannon, E.J. (1960), "Time Series Analysis", Methuen, London.
14) Kamal Abo El-Hassan (1980), "Some Autoregressive Moving Average Models for the River Nile", M. Sc. Thesis, Cairo University, Cairo.
15) Kashyap, R.L. and Rao, A.R. (1973), "Real Time Recursive Prediction of River Flows", Automatica, Voi. 9, p. 175 -183.
16) Kashyap, R.L, and Rao, A.R. (1974), "Stochastic Modeling of Riyer Flows", IEEE Trans. on Automatic Control, Vol. AC-10, No. 6.
17) Kashyap, R.L, and Rao, A.R. (1976), "Dynamic Stochastic Models from Empirical Data", Academic Press, New York, p. 334.
18) Lilliefors, H.W. (1967), "On the Kolmogrov-Smirnov Test for Normal ity with Mean and Variance Unknown", J.A.S.A., p. 399-402.
19) Mass, N.J. and Senge, P.M. (1978), "Alternative Tests for the Seleciion of Models Variables", IEEE Trans. on System, Man and Cybernetics, Vol. SMC-8, No. 6.
20) Natale, L. and Todini, E. (1974), "A Constrained Parameter Estimation Technique for Linear Models in Hydrology", Proceedings of Workshop on Mathematical Models in Hydrology, IBM Piza Scientific Center, Piza, Italy.
21) Natale, L. and Todini, E. (1976), "A Stable Estimator for Linear Models", Water Resources Research, Vol. i2, No. 4.
22) Papoulis, A. (1965), "Probability, Random Variables and Stochastic Processes, McGraw-Hill Book Co., New York.
23) Sage, A.P. and Melsa, J.L. (1974), "Estimation Theory with Applications to Communications and Control", McGraw-Hill Book Co., New York.
24) Whittle, P. (1951), "Hypothesis Testing in Time Series Analysis", Almquist and Wiksell, Upsala.
25) Whittle, P. (1952), "Tests of Fit in Time Series Analysis", Biometrika, Vot. 39, p. 309-318.
26) Wilson, R.B. (1963), "A Simplified Algorithm for Concave Programming", Harvard University, Boston.
27) Wittaker, E.T. and Watson, G.N. (1952), "A Course of Modern Analysis", Cambridge University Press, Cambridge, England, p. 462-476.
28) WMO (World Meteorological Organization) (1972), Technical Reports, Geneva, Vol. I to IV.
29) Yule, G.U. (1927), "On a Method of Investigating Periodicities in Disturbed Series, with Spectial Reference to Wölfer's Sunspot number", Phil.Trans., p. 226-267.

APPENDIX A

estimation of the power spectrum

APPENDIX A

ESTIMATION OF THE POWER SPECTRUM

The power spectral density function can be obtained by using the following formula [Kamal Abo El-Hassan (1980)]
$\operatorname{PS}\left(w_{h}\right)=\frac{2}{\pi} \sum_{k=0}^{M} E_{k} r(k) \cos \frac{k h x}{M}$
where w_{h} is the frequency in radians per unit time,
$w_{h}=\frac{h \pi}{M}, \quad h=0,1, \ldots, M$
and
$E_{k}= \begin{cases}1 & \text { for } 0<k<M \\ \frac{1}{2} & \text { for } k=0, M\end{cases}$
such that $\gamma(k)$ is the normalized autocorrelation function at lag k and M is an integer nearest to 0.1 N or 0.05 N , such that N denotes the number of observations.

These estimates are then smoothed employing the Hamming window alogrithm to obtain more refined values of the power spectrum, that is

148

for $k=0: S\left(w_{0}\right)=0.54 \mathrm{PS}\left(w_{0}\right)+0.46 \mathrm{PS}\left(w_{1}\right)$,
for $\left.0<k<M: S\left(w_{k}\right)=0.23 \operatorname{PS}\left(w_{k-1}\right)+0.54 \operatorname{PS}\left(w_{k}\right)+0.23 \operatorname{PS}\left(w_{k+1}\right),\right\}$
and for

$$
\begin{equation*}
k=M: S\left(w_{M}\right)=0.54 \operatorname{PS}\left(w_{M}\right)+0.46 P S\left(w_{M-1}\right) . \tag{A.4}
\end{equation*}
$$

The accuracy of computation was checked for the above procedure by evaluating
$(\pi / M)\left[\frac{1}{2}\left[S\left(w_{0}\right)+S\left(w_{M}\right)\right]+\sum_{k=1}^{M-1} S\left(w_{k}\right)\right]$
which must be equal to $\gamma(0)$, see Dixon (1970).

APPENDIX
 B

LIST OF THE DIGITAL CMPUTER PROGRAM FOR THE NOISY-TRANSFER FUNCTION MODEL

```
FiOGRAN(SOIT)
\APLT T=CRO
CLTFUT < =LFU/16|
THACE O
raC
```

MASTER KANN

C

111 F (VNAT (7İ)
1!3:FCRMAT(2F4.1,2F4.!)
1!.41 FCKMAT (8F(i.i.)
1(5L F GKiAT(2I4)
C

* 1 , 1 (ix, $45(1 H *))$

*/, 1i, X, $45(1.1 \mathrm{H} *))$
 */, 1.|X, $45(1 H *))$

FCRMAT (/, ILX, ONLY IONEQUALITY CONSTKAINTS ARE USED TC FSTIMATE'
*."THE \therefore MPULSE KESPONSE VECTOR', $1,10 X, 81(1 H *))$

i
C
$\therefore F A D(1,10011)$ XP, $\because S, I U, I W, N T, L A G, T C$
in \because AD ($1,104(1)$ (PORTAT(I), $\dot{I}=1$, ND) $N V, N C, K S, I F L=(1$
$T \dot{T},: A L=1$

```
    \(K F=N D\)
    \(H S=1 W-T U+1\)
    IF(NT.EQ.O) GO TO 2 !
    © 1 AD (1, 1!0:0) XM,AI.,FHE,TK
    \(\therefore F(A L=A E=0.0) \quad Z A L=1\)
```



```
    \(K j=T 1\)
```



```
    DC \(30 \quad 1=K ?, N D\)
    \(7_{i} \quad V: M P U T(\ddot{i})=\) POKTAT \((\because)\)
    (6)TC +0
    \(4!-F(I F L) 50,5 i, 60\)
    5 GIFAD (i,iO4i) (VINPUT(I), \(\dot{X}=K 1, N 0)\)
```



```
    \(J F=K F\)
    7: V.NPUT(JF)=ViNPUT(JFALAG)
    IF (JF. FQ. (Ki \(\dot{I}+\mathrm{L} A \mathrm{G})\) ) GO TC 75
    \(J F=J F-1\)
    ir) TO 70
    \(75=F(T Y P!\). EQ.QQ) EO TO \(9!0\)
    にC \& O \(\quad i=K I, J F\)
    © ! VIAPUT (I) = l: O
    G: \(M V=M D-N C\)
    \(T:=T B+1\)
    \(M V=N V+T P\)
    AF (NV.LE.MV) GO TO. AO
    CS TO 360
\(100 \mathrm{FL}=1\)
    DC \(160 \mathrm{~J}=1\), MD
    \(x(J)=0.0\)
    \(1 ;(J)=0.0\)
    \(V(J)=0.0\)
    - ' (J) \(=0.0\)
    I:E ( \(J\) ) \(=0\)
160 TO(J) \(=0\)
    IF(TC-1) 140,170,17U
    \(17 \%\) DC \(18 \AA^{\circ} K=i, M D\)
    \(\therefore\) ?
    \(\therefore G[C A L L\) INPUT: (VINPUT,PORTAT,TI)
```



```
    \(\because Z=F V+N C\)
    J \(7=3 * I Z+1\)
    \(C A L L A L G O(A, B, X, U, V, S I, I E B, I Q, R, X S T A R, I E, J C, I R, N V, N C, I Z, J Z, K A)\)
    \(S K=0.0\)
    DC 2 2 ( \(N=1\), NV
\(\because a^{\prime} \because S K=S K+X(N)\)
```



```
    W4:Tr (?, (jol: ) (X (I), I=1, NV)
    CALL QHAT (VINPUT, POËTAT, OH, X,TB, TI,KS,NS)
```



```
    W:IT \(=\) ( \(? \therefore\) (1H1H)
    GOTO 250
    \(\therefore F(1 A L) \quad: 217,2311,240\)
\(\therefore\) ? \({ }^{1}\) WHOTF (2, 2010)
    GCTO 250
```



```
TG \(\because\) F(TC.EO. 1) WRITE \((2,29311)\)
    YF(TC.EQ.1) WRIT: \((2,2040)\)
    \(\therefore F(T C . E A .2) W R I T:(2,2050)\)
    C al.L WF \(\because\) TFin (STAT رPORTAT, QH,X,NV)
    CALL \(\sim\) IS: (FORTAT,OH, AP XX,ND)
\(\because 6\), -
```

SUBROUTINE MISR(Y,YE,YR,ND)
C PUKPOSE:
C CT TESTS ThF RES YDUAL VECTOR Yk.

DIMENSION Y(488), YE (488),YR(488)
DOUBLE PKECZSIUN COR (50) GAMA 50,50$)$, CORD
EOUGVALENCE (COR(1),GAMA(1,1))
DATA $\because 0, E 1, E 2, U, O F C O D, S / 4 * 0.0,1,1,0 /$
DATA IC, IA,NL, IS IZE/2*0, 50,51
c
c OUTPUT FURMATS:
1000 FORMAT(10X, $3 \mathrm{HEO}=, \mathrm{F} 10.6,10 \mathrm{X}, 3 \mathrm{HE} 1=, \mathrm{F} 10.6,10 \mathrm{X}, 3 \mathrm{HE} 2=, \mathrm{F} 10.6,1)$
111.1 FORMAT(11,10X, "TESTING OF THE RESTDUALS: $\left.{ }^{\circ}\right)$
 *'MAXIMUM DIFFERENCE DN=',F10.6.1)
 $*^{\circ}$ TFFST: $1^{\circ}, 1,10 \mathrm{X}, 2 \mathrm{HZ}=, \mathrm{F} 10.6,1,10 \mathrm{X}, 5 \mathrm{HPROB}=, \mathrm{F} 1 \mathrm{~B} .6$)
$1.74^{\circ} \mathrm{B}$ FORMAT(10 O, "SECTXON: $1 \%, 1,10 \mathrm{X}$. "MEANS OF THE RESIDUAL. ${ }^{\circ}$)

$x==========\Sigma$
1 SUM $=I A+I C+1$
WRITE(2,1010)
$N N=N D:=I S U M$
DO 1 II I = XSUM, ND
$E C=E(Y R(I) / N N$
$E q=E 1+A B S(Y R(I) / N N)$
$\xi 2=E 2+(Y R(\Sigma) *+2) / N N$
ifi CONTTNUE
WRITE(2,1040)
WRITE(? 1000) EO,E1,E2
CALL AUTO(YE,ND,ML,IFCOD,COR, CORO)
CALL AUTO(YR,NN,ML, XSUM,COR,CORO)
DO 20 $J=2, \mathrm{ML}$
DO $20 \mathrm{I}=\mathrm{J}, \mathrm{ML}$
GAMA ($2, J)=$ GAMA $(I-1, J-1)$
GAMA $(J-1, I)=\operatorname{GAMA}(X, J,-1)$
2.4 CONTINUE

CALL STN\&(GANA,ML,IREV)
DO 3 III ITSSIZEAL, ISIZE
$M L L=I$
CALL KOLM1 (YR, I, TFR, YF COD,U,S ,PROB1, Z1)
CALL KOLMZ (Y,YE, X, X, Z 2 , PROB $2, D N$)
WA:TE(?,103.J) 21,PROB9
WRITE(?,1020) $22, P R O B 2, D N$
WRITE(2,1(6U) MLL, I,GAMA(I,L)
$F F=C O R O / G A M A(X, X)$
$F T=(F F-1.0) \star((N N / I)-1)$
WITTE(2, 1050) FT, I
3. continue

CALL KOLM1(YR,ND, IER, IFCOD,U,S, PROB1, Z1)
CALL KOLNZ (Y,YE,ND,ND,Z2, PROB2,DN)
WRITE (2,1030) 21, PROR1
W?:TE(?, 1020) 22,PROB2,DN
CALL CCOR(Y,YR,ML,ND)
RGTURN
CND
SUBROUTINE SMIRN(X,Y)
PUGPOSE:
PUGPOSE：
CALCULAT ：S VALUES OF THE LIMITING DISTRIBUTION FUNCTION FOR THF KOLMOGROV－SMIRNOV STATISTIC．

DCUBLE PRECISION X，C1，C2，C4，C8，Y
$\because F(x-\omega .27) 1,1,2$
$1 Y=j .0$
GO TO 9
2 if（x－1．i． $3,6,6$

$C \ddot{z}=c 1 * C 1$
C $4=\mathrm{C} 2$＊ C 2
C $8=C 4 \times C 4$
「F（C8－1．OE－25）4，5，5
$4 \mathrm{CE}=0 \mathrm{j}$ ． 1
$5 Y=(2.506628 / x) * C 1 *(1 .(1+C 8 *(1.7)+C 8 * C 8))$
GOTO 9
6 K．F（x－3．1）8．7．7
$7 \quad y=1.0$
GO TO 9
$\delta \quad$ C $1=\leq x p(-2.0 * x * x)$
C に $=1+C 1$
C $4=\mathrm{C}$ ？＊ C 2
C $8=\mathrm{C} 4 *$ C 4
$Y=1.0-3.0 *(C 1-C 4+c 8 *(c \cdot 1-c 8))$
\Rightarrow RT：TUKN
END
SUFROUTINE SINA（B，KCAREV）
DOUAL：PAECISZON E（5U，50），TEMP
$\because B \mathrm{~B}=1$
DO 211 ？$=$ i，KC
$k=i$
$7 \quad 3 \mathrm{~F}(3(\mathrm{~K}, \pm) \mathrm{I}$ 11，10，11
1．：$K=K+1$
？$\quad \mathrm{F}(\mathrm{K}-\mathrm{K} C)$ 9．9，51
11 IF（I－K）12，14，51
$12 \mathrm{DU} 13 \mathrm{M}=1, \mathrm{KC}$
$T F M P=F(I, M)$
$H(B, N)=B(K, M)$
13 $\mathrm{E}(\mathrm{K}, \mathrm{M})=\mathrm{TEMP}$
IREV＝IREV＋1
14 II＝I＋1
IF（II．FT．KC）GO TO 51
DO $17 \mathrm{M}=\mathrm{II}, \mathrm{KC}$
18 ： $\mathrm{ZF}(3(\mathrm{M}, \mathrm{I}))$ 19，17．19
17 TENP＝B（M，I）／日（I，I）
DO $16 \mathrm{~N}=1, \mathrm{KC}$
$16 \quad 日(M, N)=B(M, N)-B(I, N) * T K M P$
17 CONTANUE
2＇1 CONTINUE
51 EETURN
ERD

```
            Subroutint. NDTR(X,P,D)
            AX=ABS (X)
            T=1.|/(1.0n+11.2316419(1)A ()
            D=4.3989423*EXP(-x**/2.fi)
            P=1.0-D*T*(({(1.750274*T-1.821256)*T+1.781478)*T-0.3565638)*
    *T+1).3193815)
            ZF(x) 1, こ.?
    1P=1.!)~P
    2 RETURN
    END
    MUROUTINE OLS(LX,LY,M1,M2,IN1,IN2,W,Y,RO,A,B,NV,NC)
    MATKIX CALCULATIONS
    DKMENSKON W(488),Y(488),A(78),R(130)
    INTH:GER UX,UY,UL
    DOUSLE PRECISSION A,G,XX,XY,AX,S,SD,RT
```



```
    UX=M1+LX-1
    UY=NZ+LY-1
    LXP=LX+1
    LY1=LY+1
    TF(LX.NLE.LY) GO TO 4
    DO 3 J=LY,UY
    JM=J-LY
    N=JN+1
    L=LX+J*(J-1)/2
    AX=U.U
    DO 1 K=M,ND
    XX=W(XN1+K)
    XY=Y(LNZ+K-JM)
    AX=AX-XX*XY
1 CONTRNUL
    A(:) =A \ (!0)
    ZF(JM.LE.G) GO TO 3
    DO c :1=1.j \1,J
    I=\1+J*(J-1)/2
    A(r)=A(Z-J)
CONTYNUE
` cONTINUE
    RETURN
4 nO 7.I=LY,UY
    Jr=J-LY
    M=JM+1
    (=LX+J*(J-1)/2
    AX=|.U
    DO 5 K=M,ND
    XX=W(XN1+K)
    XY=Y(?NZ +K-JM)
    AX=AX - XX KXY
> CONT:NUE
    A(X)=AX/R:I
    UL=MINO(LX+JM,UX)
    YF(LX1.GT.UL)GO TO 7
    D0 6 +1=LX1,UL
    T= =1+J:(J-1)/2
    A(I)=A(I-J)
C CONTTNUR.
7 CONT:NUE
```

c

$$
\begin{aligned}
& \therefore N=? 1-L X \\
& M=1 M+1 \\
& \pm=I 1+L Y *(L Y-1) / 2 \\
& A X=0.0 \\
& 008 \mathrm{~K}=\mathrm{M}, \mathrm{~B} \mathrm{D} \\
& X X=W(: N 1+K-: M) \\
& X Y=Y(Y N Z+K) \\
& A X=A X-X X * X Y \\
& 8 \text { CONTINUE } \\
& A(X)=A X / R ? \\
& U L=N \because N O(L . Y+S N-1, U Y) \\
& \text { IF (LY1.GT.UL) GO TO .10 } \\
& 009 \mathrm{~J}=\mathrm{LY} 1, U L \\
& I=I 1+J \star(J-1) / 2 \\
& A(I)=A(I \sim J) \\
& 9 \text { CONT INUE } \\
& 10 \text { CONTINUE } \\
& \text { RETURN } \\
& \text { END }
\end{aligned}
$$

C

```
        VX=VX+A(IEX)*X(IN)
        O CONTINUE
        B1 CONTENUE
        VALUF:=VX
        \square:TUPN
        CAICULAT:ON OF THE SECOND DERIVATIVE OF THE OBJLCTIVE FUN.
        7 (EX=1+J*(J-1)/?
        JF(I.GT.J) LEX=J+I*(Y-1)/Z
        VALUI:=A(PEX)
        R&TURN
        & PF(..NE.?) GO TO 11
        GF(J_NE.i) GO TO 10
        NW=NV+1
        VX=Q(K*NW)
        DO % ZN=1,NV
        \becauseEX=:N+NW:I(K-1)
        VX=VX+B(IEX)*X(IN)
        O CONTINUE
        VALUE:=VX
        R:TUKN
        CAI.CULAT:AON OF THE FIRST DERIVATXVE OF THE K-CONSTRAINT
        1., ILX=J+(NV+1)*(K-1)
        VALUFF=A(ZEX)
        R&TURN
C
    CALCULATION OF TH:̈ SE゙COND OFRIVATIYE OF THE K CONSTRAYNT
        1} VALUF=7.:1
        RETURN
        FND
```

 SUEFOLTXNE ERROR (Q,QH,STAT,NING,RES, IW)
 \(\therefore\) CALCULATE THE STATYSTYCS OF THE RESXDUALS
 C
C
DSNENSTON Q(488), QH (488),RES (488),STAT (112)
DOLIニ E PKESCISTON AMEEAN,SD,XX,XY,XZ,PM,ENM,PS,PSI1,TV,S,SS
COR. N/A1/S(2),SS(2),ND

$N N=N ? N G+i$
DO $3 \quad I=1, N D$
$\therefore X=3 H(T)$
$X Y=Q(\because)$
$X X=X X-X Y$
$R E S(\ddot{B})=X X$
$A N:: A N=A M: A N+X X$
$S D=S D+X X: X X$
$\lambda F(X Y-L E Q Q M$ GO TO 1
$K P H=\pi$
$Q M=X Y$
1 LF(PM.LT $\quad X X) \quad P M=X X$
IF $(1: N M, G T . X X)$ ENM $=X X$
LF (XX*XZ LT.D) GOTO 2
PS $1=$ PS $1+X X$
GOTO?
$\therefore P S=P S+P S I * P S 1$
$P S I=X X$
$\Xi \quad x Z=X X$

```
    NPH=SQCT(FLOAT(ND))/Z.
    LU=MINO(ND,KPH+NPH)
    LL=MAXO(1,KPH-NPH)
    DO 4 }\quad=~LI,L
    AF(\OmegaH(I) LKH.QHM)GOTO4
    QHK=QH(X)
    K=$
    4CONTINUE
```



```
    x X=DFLOAT(ND)
    TV=SS(NN)-S(NN)*S(NN)/XX
    STAT (1) = AMF.AN/XX
    STAT (2)= DSQRT ((SD-(AMEAN*AMEAN)/XX)/(XX-1.0))
    iF(EW-1) 7,5,7
5 CALL TEST(RES,ND,ND,30)
6 CALL OUTHT1(KES,3)
7 STAT(弓)=(TV-(SD-AMFAN*AMEAN/XX))/TV
    STAT(4)=PS/SD
    STAT (S)=FM
    STAT(6)= ENM
    STAT(7)=(QHM-QN)/QM*10C.0
    STAT(\varepsilon)=K 听PH
    STAT(9)=LL+1
    STAT (1'`) =LU*=1
    STAT(11)=KPH
    ¿TAT(12)=QN
    RLTURN
    FND
    SUBROUTINE ALGO(AT,BT,X,U,V,S:1,IBB,MQ, R,XSTAR,YB,JC,':R,NV,NC,
    * %Z,NZ,KAPUT)
C MATHEMAT ICAL PROGRAMING
    DIMENSIO:N R(12,37),XSTAR(12),AT(78), OT(130) , X(12)
    *,U(12),V(12),S1(12),IBE(12),IQ(12),IR(12),IB(37),JC(37)
    DOUGLE PKECISION X,U,XSTAR,EFS,AT,BT,V
    COMMON /AZ/ML,ML,ND
C ON:.TYAL HARANETER VALUS SELECTSON
    ITM=O
    NKL=2
    EPS=1.OEE 5
    CO=1
    72E=7
    f:PZ=1.0E-25
    ORJ=-1.1:= 36
    KPO=3
    NN=NV+NC
    LA=(2 *NN)+1
    LAN=LA+NH
    NVF=NV+1
    KH=-1
    ZF(NNGMD) 1,1,997
    GNATIAL QASIS DESCRIPTION
        1 NG=J
            K=NN
    DO }7\mathrm{ N=1.NN
    \becauseF(IQ(N)) 3,2,3
```

C

```
    \(2:-S(K)=N\)
        \(J=N N+K\)
        \(\Xi B(J)=N N+N\)
        \(K=K-1\)
        GOTO 6
    \(3 N Q=N Q+1\)
        \(J=N N+N Q\)
        IF \(F(I B G(N)) 5,4,5\)
    \(4 \quad\) TE (NQ) \(=N N+N\)
        \(\mathrm{SE}(J)=N\)
        GOTO 6
        \(5 \quad Y E(N Q)=N\)
        \(Z B(J)=N N+N\)
        \(6 \mathrm{~J}=L A+N\)
        \(7 \times B(J)=J\)
            \(i \in(L A)=L A\)
            \(\because F(\) ITM ) \(997,93 U, 8\)
    C. CHECK CONSISTENCY OF UNITIAL VALUES
        \(8 \mathrm{~J}=1\)
            DO \(11 N=1\),NN
            IF(IB(N)-NV) 11,11,9
            \(9 \quad!F(I B(N)-N N-N V) 10,10,11\)
            \(10 \mathrm{~J}=\mathrm{J}+1\)
    11 CONTINUE
        \(\because F(J \sim N V) 12,12,997\)
        APPROXIMATE THE SADDLE FUNCTION BY A QUADRATIC
        \(12 K \otimes F=1\)
        \(13 K Q F=K Q F+1\)
        \(K L=i j\)
    \(c\)
        ESTARLISH COLUMN LOCAT JONS AND VAKYABLE VALUES
        14 DO \(15 \mathrm{~J}=1\) LAN
        \(15 \mathrm{JC}(J)=\mathrm{J}\)
        DO \(16 \mathrm{~J}=1\),NV
        \(16 \times \operatorname{STAR}(J)=X(J)\)
        DO \(17 \mathrm{~K}=\mathrm{i}\), NC
        \(J=N V+K\)
        \(17 \times \operatorname{STAR}(J)=U(K)\)
        FILL THE TABLEAU
        DO \(26:=1\), NN
        DO 18 J=NVP, LAN
    1\& \(R(\Sigma, J)=i=1\)
        \(J=N N+?\)
        \(K=L A+I\)
        \(Q(K, J)=1.0\)
        \(R(I, K)=1, i\),
        \(\because F(I-N V) 19,19,25\)
    17 DO \(22 \mathrm{~J}=1, \mathrm{I}\)
        \(A=V A L U E(X, X, J, I 2 E, A T, B T, N V)\)
        DO \(21 K=1\), NC
        if(U(K)) \(211,21,2!\)
```



```
    21 CONTINUF
        \(R(., J)=A\)
    22 2 (J, Y) =A
        \(R(K, L A)=,-V \operatorname{CLU}(X, I Z E, I, I Z E, A T, B T, N V)\)
        \(K=N V\)
    \(23 K=K+1\)
```

```
        IF(KONN) 24,24,26
        24 H(%, K)=VALUE(X, %2E\rho#,K-NV,AT,BT,NV)
        K(K,X)=-K(J,K)
        GO TO ?3
        25R(X,LA)=VALUG(X,IZE, XZE,I~NV,AT,RT,NV)
        2t 5BB(5)=1,
        DO 28 N=1,NN
        A=R(N,LA)
        DO 27 J=%,NV
        27 A =A +X (J) *R (N,J)
        << :
        INVERT THE MATRIX OF EASIC COLUMNS
        NP=G
    30NP=NP+1
        {F(NPONN) 31,31,39
    31 JP=OB(NP)
    C FIND MAXIMAL PIVOT
    32 A=G.?
        DO 35:=1 NN
        Xf(afo(S)) 997,33.35
    33 AA=ABS(R(I,JP))
        IF(4A=A) 35,34,34
    34 A =AA.
        TP=I
    35 CONTINUS
        XF(A-R:PZ) 960,960,36
    36:H(NP)=:P
        dFt(IP)=1
C ::XECUTE PIVOTING OPE:RATION
    37 KPi=1
    38 GO TO 900
        OPT:MZ7E THE QUADRATIC PROGRAM
    #7 aF(NQ)997,72.4:4
        CKECK FOK OBTIIMALITY
    4! AP=O-D
        A }=0.
        DO46 N=1,NQ
        s=IR(N)
        A A=R(I,L A )
        IF(IB(N)-NV) 42,42,41
        41 XF(XB (N)-NN=NV) 44,44,42
        42 IF (AA - AP) 43,46,46
        43 AP=AA
        NFP=N
        GO TO LG
    44 if(AA -AD) 45,46,46
    45 AC=AA
        NFD=N
    \angleG CONTSNUE
            CHECK PRIMAL FEASIBILITY
        & PF(AP) 5 1,48,997
        48 IF(AD) 49,72,997
        4% NFP=NFD
        5J NPC=NN+NFP
        IRFP=IR(NFP)
    51 TEFP= XB(NFP)
C LOCAL PIVOT ROW
    52 LP= IB (NPC)
        JP=JC(LP)
        IPN=NFP
```

```
    912 IF(ABS(R(IRFP,JP))-EPZ) 55,55,9:13
    913 CONTINUE
        AA=R(IRFP,LA)/R(IRFP,.IP)
        3F(AA) 53,55,56
        53 IF(R(IRFP,JP) OEPZ) 55,55,54
C PROBLEM NOT CONCAVE
    54 K!:=5*KE
        WRITE(2,9003)
    9UO3 FORMAT(/10X,21H PROBLEN NOT CONCAVE 1)
    55 AA=1.0E+36
        ZPN=1)
    56 DO 62 N=1,NQ
        I=IR(N)
        A=R(I,LA)
        IF(A) 62,57,59
    57 IF(R(I,JP)) 62,62,58
    58 R(IpLA )=EPZ+1,0E-25
        GO TO 52
    59 XF(R(I,JP):-EPZ ) 62,62,60
    OU A=A/R(X,JP)
        IF(A-AA) 61,61,62
    61 AA=A
        IPN=N
    6 2 \text { CONTINUE}
        YF(IPN) 997,940,67
        UNBOUNDED SOLUTION
    63 K!: 7*KE
        ZF(ITM) 997.997.64
    6 4 ~ D O ~ 6 5 ~ K = 1 , N C ~
    65U(K)=1.0+1, 10#U(K)
        IG(NFP)=LP
        IE(NPC)= %B FP
    66 GO TO 98
    67 RP=IR(XPN)
        KPI=2
        GO TO 900
    68 KP=IB(IPN)
        JC(LP)=JC(KP)
        JC(KP)=JP
        LB(NFP)=LP
        \F(IPN-NFP) 69,70,69
    6 IPPN=NN+IPN
    IB(NPC)=IB(IPPN)
    \becauseB(XPPN)=KP
    IR(IPN)= LBFP
    IR(NFP)=IP
    IR(IPN)= IRFP
    GO TO 52
    7\ IE(NPC)=IBFP
    71 GO TO 40
    72 KVA=1
    #F(ITM) 997.73,920
    73 KVA=2
    74 GO TO 92.0
    75 JP=IB (1)
```

```
        JP=JC(JP)
        JPK=IB(2)
        JPK=JC(JPK)
        JPKK=\8(E)
        JPKK=JC(JPKK)
        GO TO (2 183.2i184),ID
    2U84 WRITE(2,2085) JP,JPK,JPKK,KVA,KL,KQF,NQ
```



```
    2f83 K KY=%!
        76 KL=KL+9
        IF(KL-KQF*KPO) 761,761,94
    761 CONTINUF
        Y,YY=0.O
    C CALCULATE THE R.H.S OF THE EQUATION
    DO 79 J=1.NV
    A=VALUE(X,IZE,J,,YZE,AT,BT,NV)
    DO 78 K=1,NC
    xF(U(K)) 77,78,77
    77 A=A+U(K)**VALUE(X,迆E,J,K,AT, BT,NV)
    7 8 \text { CONTINUE}
    7.7 R(J;JP)=A+V(J)
    80 DO 81 K=1,NC
    J=NV+K
    81 R(J,JP)=-VALUE(K, ZZE,IZE,K,AT,BT,NV)+SI(K)
C CKECK FOR CONVERGENCE
    KP=0
    OEL=O.N
    83 DO 9F1 K=1,NN
    N= KR(K)
    A=.0.0
    84 DO 85 I= I,NN
    J=LA+C
    85 A=A+R(X,JP)#R(N,J)
    F(N,JPK)=A
    XF(ABS (A)~(1.0E~25)) 87,87,8519
    851 CONTINUE
    YY=YY+A*A
    Y=Y+A*R(N,JPKK)
    AA=ABS(A/R(N,LA))
    IF(AA~DLL) 87,87,86
    86 DEL=AA
    87 [F(KONQ) 88,88,9!
    88 XF(F(N-LA):\smileA+EPZ) 89.90,90
    89 K P=K
    90)R(N,LA)=R(N,LA)=A
    _F(KEY) 892,892,890
    89, दF(Y) 894,892,892
    892 YYY=YY
        KEY=KEY+1
    DO 893 N=1,NN
    8G3R(N,JPKK)=R(N,JPK)
    GO TO 899
    894 K(:Y=?)
    KL=KL-1
    895 TH=-Y/(YYY-Y)
    890 KP=0
    DO 898 N=1,NN
    A=R(N,LA)+R(N,JPK)+TH*R(N,JPKK)
    TF(A+EPZ) 897,897,898
    897 KP=N
    898 R (N, PA) = A
    897 CONTINUE.
    IF(KP) 997,91,40
```

```
    91 60 TO (1 194,2:191),ID
    Z[191 WRKTE(2,?U92) A,AA,Y,YY,DEL,TH,KEY,KP
    2:92 F(RMMAT(/I,10X,`A, ....,KP',l,10X,6(F:15_3,5X),2(I5,5X))
    1191 G0 TO (9001,9002) ,NKL
    9n\1 KVA=4
    GO TO 920
    9|n2 KVA=3
    GO TO 92'O
    92 "F(DEL-EPS) 94,94,93
    93 IF(KL+3-KQF*KPO) 76,76,98
    9400 95 J=1.NV
    IF(DABS(XSTAR(J) LX(J)) =EPS*DABS(XSTAR(J))) 95,95,98
    95 CONTINUF
        DO 76 K=1,NC
        J=NV+K
        #F(DABS(XSTAR(J)-U(K))-EPS*DABS(XSTAR(J))) 96,96,98
    96 TONTINUE
        YTN=KQF
    97 KAPUT=-KE-1
        GO TO-950
    98 IF(KQF-ITM) 13,996,996
    900 A=K(IP,JP)
        IF(ABS(A)-EPZ) 9001,901,906
    901 KE=3*KE
    IF(ITM) 997,997,902
    9:2 !.F(IPN-NFP) 903.9004,903
    903 㣍(NFP) x LP
    C(P(NPC)=:GBF
    9J4 DC 905 J=1 NNV
    9(15 X(J)=1.0+1.10*X(J)
    GO 10 98
    9106 D0 9U\ I=1,NN
    9:17 R(X,JP)=-R(I,JP)/A
    R(IP,JP)={.0/A
    DO 91! K=NP,LAN
    J=j.3(K)
    J=JC(J)
    IF(J-JP) 908,911,909
    9!18 AA=R(IP,J)
    KF(AA) 909,911.909
    9 ' DO 910 R=1 NN
    91J |(X,J)=R(I,d)+AA*R(I,JP)
    R(\SigmaP, J)=AA/A
    911 CONTINUE
    GC TO (30,68),KP&
c
    GDETYF:CATION OF VARAABLE VALUES
    9ZU DO 921 J=1,NV
    X(J)=0.0
    9`1 V(J)=0.0
    DO 922 K=1,NC
    U(K)=0.0
9с2 S1(K)=0.0
    DO 929 N=1,NN
    l=IK(N)
    J=13(N)
    ZF(J-NN) 923.923.926
```

```
    G23 IFG(J)=1
    #F(J-NV) 924.924,925
    924 x(J)=R(i,LA)
    GO TO 929
    9?5 J=J-Nv
    U(J)=R(I,LA)
    GO TO 929
    9.% J=J:NN
    AEB(J)=1
    YF(J-NV) 927,927,928
    9`7 V(J)=R(I,LA)
    GO TO 9%.9
    Gi& J=j0NV
    S:(J)=R(i,LA)
    #CZ CONTYNUE
    G0 TO (75,97,97,4,92,999),KVA
    930 LAN=LA
    GO TO &
    94.) DO742N=1,NQ
        J=NN+N
        J=İ(J)
        J=JC(J)
        A=R(IKFP,J)
        IF(A~AA) 941,942,942
    941 AA=A
    "PN=N
    94% CONTINU:
    LF(AA+EPZ) 67,63,63
C STORE INVERSE OF BASIC MATRIX
    950 DC 953 N=1,NN
        A=LR(N)
        IFIz(N)
        7F(I-NN) 952,952,951
    751 :=X-NN
    95200 753 J=1,NN
        JJ=LA+J
```



```
        RETURN
    96] IF(JPONN) 961.961.962
    961 TP(NP)=JP+NN
        GO TO 39
    962 IP(NP)=JP-NN
        GO TO \1
C CHECK THE: OBJECTIVE VALUE OBJ
    97. ACBJ=0PJ
        ORJ=VALU:(X,X2E,IZE,IZE,AT,BT,NV)
        ?.F(ABS (AOBJ-OBJ)-LPS *0.1*ABS(AOBJ)) 94,94,92
C EKROR EX IT
    996 Kt=2*KE
    997 KVA=5
    GO TO 92:
    997 KAPUT=KE
        RI:TURN
        BND
```

```
    SUBROUTINE WRITEZ(STAT,OUT,QH,V,NV)
    DIMENSION STAT(12),V(112),QH(488),OUT(488)
    DCUBLE PRECISION V
    WRITE(2,416)
    WRITE(2,4111) STAT(1)
    WRITE(2,412) STAT(2)
    WRITE(2,413) STAT(3)
    WFATE(2,415) STAT(4)
    WRITE(2,416) STAT(5)
    WRITE(?,417) STAT(6)
    WRITE(2,418) STAT(7)
    WRITE(?.420) STAT(9)
    WA1TE(2,421) STAT(10)
    WRITE(2.422) STAT(12)
    WRITE(2,300)
    WRITE(2,4(JO) (V(I),I=1,NV)
    WRITE(2,423)
    CALL OUTPT1(OUT,1)
    CALL OUTPT1(QH,2)
    RETURN
300 FCRMAT(/',10X, 'VALUES OF THE IMPULSE RESPJNSE FUNCTICN')
40C FCRMAT(6(4X,F8.4))
410 FCRMAT(/1,10X,'STATISTICS OF THE RESIDUALS')
411 FCRMAT(/,10X, 'MEAN OF THE RESIDUALS',14X,' =', F'14.6)
412 FCRMAT(10X, STANDARD DEVIATION OF RESYDUALS*"&X," =0, F14.6)
4.33 FCRMAT(1OX,'DETERMINATION COEFFICYENT'NOOX, ='0,F14,6)
415 FCRMAT(10X, "COEFFICIENT OF PERSISTANCE'0, 9x,"=0,F14.6)
416 FCRMAT(1OX 'MAXIMUM POSITIVE ERROR',13X,'=',F14.06)
417 FCRMAT(10X,'MAXIMUM NEGATIVE ERROR',13X,'=',F94.06)
418 FCRMAT(1OX,'PERCENTAGE ERROR BETHEEN PEAKS',5x,'=0,FF14.6)
420 FCRMAT (10X,'INDEX OF LOWER LIMIT OF SEARCH:,5X,'=0,P13.6)
421 FCRMAT(1OX,"INDEX OF UPPER LIMIT OF SEARCH0,5X,"=0,F14.06)
422 FCRMAT(10X,'MAXIMUM OBSERVED RUNOFF',12X,'=0,F14.6)
423 FCRMAT (1,IOX, "DAILY RECORDED AND ESTIMATED DISCHARGES IN MM FOR WA
*KI CATCHMENT',1,10X,68(1HE),0)
END
```

SUBROUTINE TEST(A,N,N1,ML)
DIMENSION A (488)
DOUBLE PRECISYON XN,SX,SXX,SDX,X11,X2,XX,QT
DATA SX,SDX,QT/3*0.01
XN=DFLOAT(N)
$M L=M L+1$
DO $1 \mathrm{I}=1, \mathrm{~N}$
$X X=A(I)$
S $x=S x+x x$
SDX=SDX+XX*XX
1 CONTINUE
$S X=S \times / X N$
SDX=DSQKT((SDX-SX*SX*XN)/(XN-1.DO))
DO $3 \mathrm{~J}=1 \mathrm{ML}$
$5 \times X=0.0$

```
            DO i I =J,N
            x 1=A(I-J+1)-S X
            X2=A(I) -SX
            SXX=SXX+X1*X2
            2 CONT:NUE
            XN1=XN-DFLOOAT (J)
            SXX=SXX/(XN1*SDX*SDX)
            SF(J_GT.1) QT=QT+SXX*SXX
            3 CONTINUF
            BT=QT+DFLOAT(N1)
            SDX=SDX*SDX
            WRTTE(2,1INC!) SX,SDX
            WRITE(7.2.170) QT
            GETURN
    100 FORMAT(/,10X,'INNOVATION PAEAN=',F10.6,1,10X, "INNOVATION VARIA"
            *,'NCE=',F10.6,1)
己ilU FONMAT(1,:X,'Q-TEST=',F10.6)
    END
    SURROUTINE OUTPTI(OUT,LL)
    OBJFCT:
C IT WRITES THE OUTPUT RESULTS.
```



```
C
    DIMENSION OUT(488)
    424 FOKMAT(8(18,F10.6))
    1OOO FORMAT(/ ,5X, 'RECORDED DISCHARGE;*')
    1!1PF FOKMAT(I,SX, 'ESTIMATED DISCHARGE:-0)
    1\cap20 FOKMAT(/,5X,'THE RESIDUAL:-')
C
C
    GO TO (10,15,25),LL
    1ij WRITE(2,1000)
    GO TO ?0
    15 WRITE(2,1010)
    GO TO 30
    25 WRITE(2,102Q)
    30 DC 20 I=1,61
    IT=5+6'1
    I2=T1+61
    1.j=12+61
    x4=13+61
    I5=I4+61
    It = I5+61
    IT= 16+61
    WRITE(?,424) I,OUT(I),I1,OUT(I1),N2,OUT(I2),I3,OUT(I3), I4,OUT(I4).
    *IS,OUT(15),I6,OUT(16),I7,OUT(17)
20 CONTINUE
    RFTURN
    EIND
```

SUEGOUT LNE SMOOTH (V,NV, X)
IT SMOOTH THE OSCILATORY KERNAL FUNCTION ACCORDING TO HAFING

```
        SUBROUTINE INPUT:1 (VINP',OUT,N)
        DIMENSION VI,P(488),OUT(488)
        DCUBLE PRECISION SD,SI,SDX,Y,S
        COMMON /A:1/S(2),SD(2),ND
        DO 20 I=1,N
        SI=0.0
        SDX=0.0
        KA=(I-1)*ND
        DO 10 J=i1 ND
        K=J+KA
        Y=VINP(K)
        S I=SITY
        S DX=S DX Y Y #Y
    10 CONTINUE
        S(X)=SI
        SD(1)=SDX
    2! continue
        K=N+1
        S I=0.0
        SDX=0.0
        DC 30 I=1,ND
        Y=OUT (I)
        Sy=S I +Y
30 SDX=SOX+Y*Y
    S(K)=S I
    SD(K)=SDX
    RETURN
    END
    SUBROUTINE CONV(X,Y,Z,NX,NY,IS)
    ?T CALCULATES THE CONVOLUATION OF VECTOR Y WITH X
    DIMENSION X(12),Y(488)',Z(488)
    DCUBLE PRECISION X,YY,ZZ
    JN=1
    IF(IS LTT.O) JM=2
    DC 3 J=JM,NY
    Z2=0.0
    Jx=\
    IF(IS -LT .0) JX=J-m
    IU=MINO(JX,NX)
    IF(IU-1) 3,1,1
1 DC 2 I=1,IU
    IX=I-1
    IF(IS LT =0) IX=I
    YY=Y(J.-IX)
Z ZZ=ZZ+X(1) #YY
    YY=Z(J)
    Z(J)=YY+ZZ
    IF(IS.LT.0) Y(J)=Z(J)
3 CONTINUE
    RETURN
    END
```

C
C

```
    SUEROUTINE CCOR(X,Y,K,N)
C CROSS COHRELATION COEFFICIENT PROGRAM
C X,Y:INPUT ARRAYS NPN
C K :NG.OF CORRELATION COEFFILIENT REQUIRED
C
    D IMENSION X(488),Y(488)
    12 FCRNAT(1!OX,"R',IZ,"=',F6.4)
    20 FCRMAT(/1/10X, "CROSS CORR.COEF.")
    WHITE(?,20)
    DC 4 J=1,N
    JJ=J-1
    S=0.0
    S 1=0.0
    S 2=0.0
    S 3=0.0
    S 4=0.0
    L=N-JJ
    DC 2 I =1,L
    S=S+X(I).*Y(I+JJ)
    S1=S 1+X(I)
    S \overline{c}=S2+X(I) 由X(I)
    2 CCNTINUE
    I= JJ+1
    DC 3 M=I,N
    SZ=S3+Y(M)
    S4=S&+Y(M)的(M)
    3 CCNTINNUE
    R=(S~ST*S3/L)/SQRT((SZ゙-Sif*ST/L)*(S4-53*S3/L))
    WRITE(2,12) JJ,R
    4CONTINUE
    KLTURN
    END
```

 SUEROUTINE QHAT(P, Q1, Q2,X,TE,N,KS,NS)
 DIMENSTON \(X(12), P(488), Q 1(488), Q 2(488)\)
 INTEGER TE
 DOUELE: PRECIS YON X,S,SQ,RO
 COMMON/A1/S(2),S2(2),ND
 \(K=1\)
 IS \(S=\mathrm{NS}\)
 \(N \mathrm{~N}=\mathrm{N}+1\)
 DO \(10 ; i=1, N D\)
 10 $02(\mathrm{X})=\mathrm{in} .1$
K1=K+TVー?
XF(KS.FQ.1) 60 T0 25
RI = OSQFT(SQ(NN)/SQ(N))
DO 2い J=K, K1
$x(J)=x(J) \div R!$
LF(IS.EQ.1) GOT0 30
GO TO 40
3: CALL CONV (X,P, Q2,TE,ND,IS)
4U RETURN
FND

```
    SUEROUTKAZ KOLM2(X,Y,N,M,Z,PROB,DN)
```

1) CONTZ̈Nut:

CAICULATE DN=A3S(FN-GM) OVER THE SPECTRUM OF X AND Y.
XN=FLOAT(N)
$X N 1=1.0 / X N$
$X M=F L O A T(M)$
$X M 1=1 . i) X M$
$I, J, K, L=0$
$D N=0.0$
$11 \operatorname{IF}(K(I+1)-Y(J+1)) 12,13,18$
$12 \mathrm{~K}=1$
Go ro 14
$13 \mathrm{k}=0$
$14 \mathrm{I}=i+1$
$\quad \mathrm{F} F(\mathrm{X}-\mathrm{N})$ 15,21,21
$15 \mathrm{ZF}(X(I+1)-X(I)) 14,14,16$
$15 \mathrm{IF}(\mathrm{K}) 17,18,17$
CALCULATH THE MAX 'MUM DIFFERENCE, DN

IF(L) 22.11,22
$13 \mathrm{~J}=\mathrm{J}+1$
IF (J-M) i9.20.20

```
    19 IF(Y(J+7)-Y(J)) 18,18,17
    20 L=1
        FO ro 17
    `1 L=1
    GO TO 16
    calculate the statistic z .
    22 Z=DN*SQRT((XN*XM)/(XN+XM))
    CALCULAT:- THE PROEAEXLITY ASSOC BATED WITH Z.
    CALL SMIRN(Z,PROB)
    PRO3=1.0 PROG
    RETURN
    A:ND
    SUPGOUTINE KOLN1(X,N,IER,IFCOD,U,S,PROB,Z)
    TLSTS PHE DIFFER ENCF BETWEEN THE EMPIRICAL AND THEORITICAL
    OJSTRZBUTIONS USING THE KOLMOGOROV SMIRNOV TEST.
    X :INPUT VECTOR OF N INDEPENDANT OBSERVATIONS.
    PROZ :THE PROBAB SLITY OF STATISTINC BEING GGE. TO Z.
    IFCJD:COUE OF THE THEORITICAL D:STRIBUTION FUNCTION.
    U,S :STATISTICS OF VECTOR K ACCORDING TO IFCODE.
    IER. :ERROR INDEX VALUE.
    DINENSION X(488)
    NON DLCREASING ORDER OF X(I).
    IER=0
    DO 5 I=2,N
    IF(X(I) -X(I-1))1,5,5
1 TEMP=X(%)
    IM=I-1
    DO; J=1,.IM
    L=$ --J
    IF(TEMP-X(L)) 2,L,4
? X(L+1)=x(L)
    3 CONTINJE
    x(1)=TEMF
    GO 「0 5
    4 X(L+1)=TLMP
    5 CONTINUE
    computFs max",run vevization dN .
    NM1 =N-1
    XN=N
    ON=0.0
    FS=0.1
    IL=1
    S DO T I=IL_NM1
    J=I
    IF(x(J)-X(J+1)) 9,7,9
l CONTINUE
3 J=N
9 I!=j+1
    FI=FS
    FS=FLUAT(J)/XN
    IF(IFCOD-2) 10,13,17
```

```
    10 IF(S) 11,11,12
    11 IER=1
        GO ro 29
    12 z=(x(J)-ij)/s
        CALL NDTR(Z,Y,D)
        GO ro 27
13 IF(%) 11, 11,14
14z=(x(J)-U)/S+1.g
    IF(Z) 15,15,16
    15 Y=0.0
    G0 10 27
1S Y=1.0-EXP(-Z)
    G0 10 27
17 IF(IFCOD-4) 18,20,26
18 rF(S) 19,11,19
19 Y=atan((X(J)\cdotU)/S)*0.3183099+0.5
    GO ro 27
20 \FF(S-U) 11,11,21
#1 IF(x(J)-1ر) 22,22,23
?? Y=0.0
    60 ra ?7
23 If(x(J)-S) 25,25,:4
44 r=1.0
    ro ro 27
\therefore5 Y=(x(J)-u)/(s-u)
    G0 ro 27
2) IEk=1
    G0 10 27
`7 EI=4ES(Y-FI)
    ES=A3S(Y-FS)
    ONY=AMAXI(ES,EI)
    DN=AMAX1(DN1,DN)
    TF(IL-N) 6-9,28
28 2=DN*S\RT(XN)
    CAIL SMIRN(Z,PROF)
    PKOE=1.O-PROB
27 RETURN
    END
```


APPENDIX C

THE SECOND KOLMOGROV_SMIRNOV TEST

PPPENDIX C

THE SECOND KOLMOGROV-SMIRNOV TEST

The goodness of fit between the two histograms of observed and generated sequences may be checked by using the second Kolmogrov-Smirnov test.

Let F and G be the cumulative distribution functions of the generated and observed sequences respectively, N_{1} and N_{2} be the length of these two sequences. Let H_{0} be the hypothesis that both cumulative distribution functions wereobtained from the same population series. Then, the test statistics d can be expressed as
$d=\sqrt{\frac{N_{1} N_{2}}{N_{1}+N_{2}}} \max _{\infty<\delta<\infty}\left|F_{N_{1}}(\delta)-G_{N_{2}}(\delta)\right|$

Decision Rule

The decision rule for accepting or rejecting the null hypothesis H_{0} is given by
$d\left\{\begin{array}{l}\leq d_{c} \rightarrow \text { Accept } H_{0} \\ >d_{c} \rightarrow \text { Reject } H_{0}\end{array}\right.$
where the threshold d_{c} may be expressed as
$d_{c}=\left\{\begin{array}{l}1.36 \text { at } 95 \% \text { significant level } \\ 1.22 \text { at } 90 \% \text { significant level. }\end{array}\right.$

APPENDIX D
 IIIST OF THE DIGITAL COMPUTER PROGRAM
 FOR THE LINEAR STOCHASTIC DIFFERENCE EQUATION MODEL

```
PROGRAN(:IAIN)
INPUT 1=CR!
OUTPUT 2=1.PO/160
TKACEO
END
```


MASTER RAO

THIS PROGRAM XDFNTLFY THE NECESSAKY PARAMETEFS FOR RAO AND KASHAP DA:LY DATA NODEL.THESE PARAMETERS ARE THEN USED FOR THE PREDICTION OF DAILY STREAM FLOW Y AT ANY LNSTANT I. DFSCRIPTYON OF PARAMETERS:
Y(I) : A SEQUENCE OF DAILY INPUT DATA THK REQUIRED LENGTH ?S ND. YE(I): A SEQUENCE OF DAILY ESTIMATED OUTPUT DATA(STREAMFLOW). YF(I):A SEQUENCE OF DAILY RESIDUAL.
A : VECTOR OF UNKNOWN PARAMETERS THE NECESSARY DINENS ION IS L. 2 : VECTOR CONTAINS CERTAIN FUNCTIONS OF Y(I) AND YR(I).
S : (L*L) MATRIX.
E : WORK VECTOR OF DIMENSION L.
11:TRANSFORMAT:ON PARAMETER.
I2:ANOTHI:R TRANSFORMATXON PARAMETER.
I?:CONSTANT EQUAL TO 1
I4:CONSTANT GOUAL TO 2
I5:CONSTANT EQUAL TO 3
COMMON /A? / IZ (6), Y(976), YE(976),YR(976),A(6),S(6, 6)
DIMENSTON B1(6), B2(6),XSTAR(6.6), VOUT(976)
CONMON /CI/AMEAN SSTDEV,ASK
CCMMON /AI/L,ND
DATA ML, ISYZE/50,51

READANG FORMAT
1000 FORMAT(3I4)
1010 FORMAT (8 FO. 0)
1020 FORMAT(10I2)
C
C MAIN PROFRAM OUTOUT FORMATS: ${ }^{-}$
2!!(1) FORMAT(1), 1OX, 'VALUES OF PARAMETER VECTOR A:-')
2010 FORMAT(6(6X,F10.6))
 = DATA.')
 * DAILY DATA.')

2 , 44 FORMAT(1OX, ONLY THE PERIOD FROM APRIL TO NOUEMBER IS CONSTDFRED."
 *' NAME OF THE CATCHEMENT:WAKI RIVER CATCHEMENT.")

```
c
C
    HEAD(1,1!110) I1,I2,I3,I4,ND,L,IER,IAUT,ISC,IP,LAG,NYEAR,I5
    RCAD(1,1!110) (Y(I),I=1,ND)
        IF(I1-3) 10,20,20
    10 WRETE(2,2020)
        GO TO 30
    20 WRTTE(2,2030)
    3:/ WRITE(?,2040)
        CALL EQUO
        CALL OUTPT1(Y,I3)
        CAILL PARA(Y,ND,ANFAN,STDEV,ASK)
        CALL TRANS(II,Y,ND,AMEAN,STDEV)
        CALL PRINTI(LAUT, IER,IP,ISC,LAG)
        CALL IGEN(O,IER,IAUT,ISC,IP)
        WRITE(?.2000)
        IF(LAG.EQ.(I) GO TO 70
        JF=ND
    40) Y(JF)=Y(JF-LAG)
    IF(JF.FG.(LAG+1)) GO TO 50
    JF=JF-1
    60 T0 40
    50 DO 60 I=1,JF
    Y(I)=0.0
    6:i CONTINUE
    70 DO 101) I=1,ND
    IF(IER.NE.0) YR(X)=Y(X)
    CALL MARS(A,Z,I3,SC,XSTAR)
    CALL VARC(I3,14)
    CALLL MULT(I4,日1)
    SCC=Y(I) -SC
    DO 80 J=1,L
    A(J)=A(J)+SCC *B1(J)
    IF(IER.NE.O) YR(I)=YR(I)-A(J)*Z(J)
    80 CONTINUE
    WRITE(2,2010) (A (K),K=1,L)
    CALL ZGEN(I,IER,IAUT,ISC,IP)
iiU cont\NuE
    DO 110 I=1,ND
    CALL ZGEN(I,IER,IAUT,ISC,IP)
    YE(I)=0.0
    DO 119 J=1,L
    YE(I)=YE(I)+A(J)*Z(J)
110 CONTINUE
    CAl.L ERROR
    CALL OUJTPTI(YF,I5)
    CALL PARA(YE,ND,AMEAN,STDEV,ASK)
    CALL TRANS(12,YE,ND,AMEAN,STDEV.
    CALL OUTPTI(YE,I4)
    CALL TEST(IAUT,ISC,ML,ISIZE)
    STOP
    END
```

```
    SUBROUTINE TEST(YA,IC,ML,ISIZE)
    C PURPOSE:
C IT TESTS THE RESIDUAL VECTOR YR.
```



```
C
    COMMON /AG/L,ND
    COMMON /AZ/Z(6),Y(976),YE(976),YR(976),A(6),SS(6,6)
    DOUBLE PRECISXON COF(50),GAMA(50,50),CORO
    EQUIVALENCE (COR(1),GAMA(1,1))
    DATA EN, E1, E2,U,IFCOD,S/4*0.0,1,T,01
```



```
C OUTPUT FORMATS:
    1000 FORMAT(90X,3HEO=,F10.6, 10X, IHES1=,F10.0, 10X, 3HE2=,F10.6,1)
    1110 FORMAT(//,10X."TESTING OF THE RESIDNALS:")
```



```
        *"MAXIMUM D IFFERENCE DN=',F10.6.1)
    1030 FORMAT(10X,OSECTYON:2*,1,10X, KKOLMOGROV SMIRNOV TEST.*.,10X,
    *'TEST:1', 10X,2HZ=,F10.6,1,10X,5HPROB=,F10.6)
    1140 FORMAT(10X,SECTION:1",1,10X,"MEANS OF THE RESIDUAL.")
    1050 FORMAT(1OX,'SECTYON 3',1,10X, 'THE F-TEST.' / . 10X, 'VALUEF' FF10.6,
        *1(1X,'LAG=',13,1,1UX,60(1H*),1)
    1060 FORMAT(10X, 'MLL=',I2,10X,'I=',I2,10X, 'GAMA(MLL,I)=',D26.20)
```



```
C
    CSUM= =A+:C+1
    WRITE(?.1010)
    NN=ND-TSUN
    DO 10 I=ISUM,ND
    FH:EII+YR(I)/NN
    F1=E1+ABS(YR(S)/NN)
    E:Z=EZ + (YR(I)**2)/AN
IT CONT:NUE
    WPITE(2.1040)
    WRITE(?,1000) EO,E1,E2
    CALL AUTO(YE,ND,ML,IFCOD,COR,CORO)
    CALL AUTO(YR,NN,ML,XSUM,COR,CORO)
    DO 30 I=LSIZE,ML,ISIZE
    CALL KOLMZ(Y,YE,I,I,22,PROB2,DN)
    WRITF(2,1020) 22,PROB2,DN
30 CONTINUE
    CALL KOLM2(Y,YE,ND,ND,I2,PROBZ,DN)
    WRITE(2,112[1) Z2,PROB2,DN
    CAIL CCOK(Y,YR,ML,ND)
    RETURN
    END
    SUBROUTINE ERROR
    IT COMPUTES THF RESIDUALS VECTOR YR.
```



```
    COMMON /A1/L.ND
    COMMON /AZ/Z(6),Y(976),YE(976),YR(976),A(6),S(6,6)
    DO 10 I= {,ND
    YR(I)=Y(I) -YE(I)
10 CONT\NUE
    RETURN
    END
```

SUE KOUTVM: ZGEN(ZGEN, YER, IAUT, ISC,IP)
$\because \because R=I A U T+S$
DO $30 \mathrm{I}=\mathrm{IE} \mathrm{K} 1, \mathrm{FR} \mathrm{R} 2$
JNGOX=IG $\because N \sim I+Y E R 1$
$\therefore F(J N D E X . L E . D) Z(I)=0.0$
I.F(JNDEX.GT.O? $Z(I)=Y R(J N D E X)$
$3 \because C O N T I N U E$.
4. $\because F(\because \because S C) \quad 60,60,50$
$5 J \quad \mathrm{LSC} 1=I A U T+2$
$\because S C 2=\Sigma A \cup T+?$

6.1 IF($\because P) 90,90,70$

G:ONFRATL PGRIODIC TERMS IF ANY.
$70: \therefore 1=I A U T+2$
$7(1) 1)=0.0$
DO $\subset D I=1,7$
$I I=I-4$
$Z(1 P 1)=(7(X P 1)+Y(I G E N-244+I I)) / 7.0$
80 CONTOMU:
90 F:TURN
$\because \mathfrak{A}$

SUFROUTINE EQUAT
$\because T$ GNXTIALENZL $80 T H$ VECTOR A AND MATRIX S.
.T GFNFRATFS THF Z VFCTOR FOR THE GIVEN INSTANT
COMMON $1 \therefore Z / Z(6), Y(976), Y E(976), Y R(976), A(6), S(6,6)$
$Z(1)=1.0$
DO $17 \mathrm{I}=1$, IAUT
: NDEX=IGEN-I+1
IF(INDFX LEEO) $Z(I+1)=0.0$
IF(INDEX.GT.O) $2(I+1)=Y(I N D E X)$
1. CONTINUE:
G NERATE THE SECOND ORDER ERROR TERM IF ANY.
F(IER) $40,40,20$
.F(2SC)
GNi:RATE SZ̈N AND COS TERMS IF ANY.

```
        SUBROUTINE: MULT(M,B)
    PUKPOSE:
    PERFORNS MATKIX AND VECTOR MULTYPLICATION.
    A:XNPUT VECTOR OF DIMENSION L.
    X: YNPUT MATRIX OF DINENSION (LXL).
    F:OUTPUT VECTOR OF DIMENSION L.
    M:PEKFORMANCE INDEX.
    If M=1:A=A*X .
    IF M=2:B=X*A .
    COMMON/A?/2(6),Y(976),YE(976),YR(976),A(6),X(6,6)
    COMMON/A1/L,ND
    DIMENSION B(6)
    GO TO (10,30),M
10.00.20 x=1,L
    B(I)=0.0
    DO 20 J=1,L
    H(I)=B(I)+Z(J)*X(J,I)
20 CONTINUL
    GO TO 50
30 DO 40) Im1,L
    B(I)=0.0
    DO 40 J=1,L
    E(I)=B(I)+X(I,J)由Z(J)
4C: CONT?NUE
5U RETURN
    END
    SUBKOUTINE MARS(B1,B2,L,SCATB,ABT)
    PURPOSF:
    DIMENSTON B1(6), B2(6),ABT(6,6)
    COMMON /A1/LL,ND
    GO TO (10,30),L
10 SCATE=0.0
    DO20 J=1,LL
    SCATB=SCATB+B1(I)*B2(I)
2D CONTINUE
    RËTURN
    0040 J=1,LL
    ABT (I,J)=B1(I)*B2(J)
40 CONT Z:NUE
    RETURN
    END
```

```
    SURROUTINE AUTO(A,N,L,ISUM,R1,CO)
    DIMENSTON A(976),K1(50),R2(50)
    DOUBLF PRECISION K1,CD,SUM,AVER
        PHL=22.0/7.0
        AVEH=0.0
        IF(N-L) 50,50,60
    5J R1(1)=0.0
    GO TO 150
    6"WFIT苂(2,200)
    1ITI DO 110 I=ISUM,N
    11,1 AVFR=AVER+A(I)
        FN=N
        AVI:K=AVFK/FN
    12U SUM=SUM+(A(I)-AVER)*(A(IJ)-AVER)
    FNJ=NJ
    R1(J)=SUM/FNJ
    R2(J)=R1(J)/R1(1)
    K=\ -1
    WRITE(2,3OD)K,R1(J),R2(J)
130 CONTINUF
    CO=R1(1)
    CAL.L POWF:R(L,PHI,R2)
15! REYURN
```



```
    */ 1i|x,61(1H*))
30D FORFAT(2OX,N2,2(7x,F1{1.6))
    END
    SUBROUTINE VARC(IZ,I4)
C PURPOSE:
C THIS SUBHOUTINE UPDATES THE S MATRIX.
C A:VECTOR OF UNKNOWN PARAMETERS.
C Z:VECTOK OF FUNCTIONS OF THE INPUT STREAMLOW.
C S:UPDATr̈D S MATRIX.
C L:SUNBER OF UNKNOWN PARANETERS.
C ND:LENGTH OF INPUT DATA.
    DZMENSTON B1(6), B2(6),XSTAR(6,6)
    COMMON/A1/L,ND
    COMMON/A2/Z(6),Y(976),YE(976),YR(976),A(6),S(6,6)
    CALL MUITT(14,B1)
    CALL MULT(X3,B2)
    CALL MARS(B1, B2,14,SC.1,XSTAR)
    CALL MULT(73,B1)
    CALL MARS(B1,2,I3,SC,XSTAR)
    DO IO I= 1,L
    DC 10 J=1,L
    S(I,J)=S(I,J) -XSTAR (I,J)/(1, \cap+SC)
I| CONT:ONUE
    i:!TURN
    F.ND
```

C
C
C

SUPGOUTINE OUTPTI(OUT,LL)
C OEJシCT:
C $\because T$ WतिT: THE OUTFUT RESULTSE

C
GIMENSTON OUT (y76)
$4 \geq 4$ FOMNAT ($8(\angle 8, F 11.6)$)

C
C
GGTO (10,15,25),LL
10 WRITE $(2,1000)$
GO TO 30
15 WRITF $(2,1010)$
GO TO ? 0
65 WRXTE $(2,1020)$
3() $00 \quad 21!\quad I=1,61$
$I 1=I+61$
$I 2=I 1+61$
$I 3=I 2+61$
$I 4=13+61$
$I 5=I 4+61$
$I 6=I S+61$
$I 7=16+61$
WHITE(2,424) I,OUT(I),I9,OUT(IT),I2,OUT(I2),I3,OUT(I3),I4,OUT(I4), * 15,OUT(I5),I6,OUT(IG),I7,OUT(I7)

ZO CONTINUE
RETURN
END
SUEROUTINE PRINTI(IA,IE,IP,IS,LA)
C PURPOSF:
C IT WRITES THF INPUTS.
$\mathrm{C}++t+t+++++++++++t++t++$
C

```
COMMON/A1/L,ND
    CUMMON/AZ/Z(6),Y(976),YE(976),YF(976),A(6),S(6,6)
```

C
C THE NECESSARY FORMATS:

 $*^{\prime}={ }^{\prime},[4,1)$
$2 \because 10$ FORMAT (10X, "PARANLITER SELECTION FOR RAO AND KASHYAP MODEL')
$2 \cdot 21$ FOKMAT ($3 \times$, VALULS OF TRANSFORMED DISCHARGE')
$2!30$ FOFMAT $(8(3 x, F 7.4))$
2 "4il FOKMAT (/, 10 X , "MEAN OF DISCHARGE=", F10.6, /,10X, 'STANDARD DEVGATION *OF DISCHARGE=', F10.6.1.10X, 'SKEWNESS COEFFICIENT OF DISCHARGE=", *F1(1.0,1)

> WFITE (2, 21119)

WHLTE (2,?(100)
WRITH (2, 2040)

METURN
FND

$2 x(L+1)=x(L)$
3. CONTINUE
$X(T)=$ TEMP
GOTO 5
$4 \times(L+1)=T E M P$
5 CONTYNUB
COMPUTES NAXYMUM DEVICATZON DN.
$N N^{\prime}=N-1$
$X A=N$
$D N=0 . D$
$F S=i, i l$
$\therefore L=1$
6 DO $7:=2 l$,NM1
$J=1$
$x F(X(J)-X(J+1)) 9,7,9$
7 CONTXNUE
- $\mathrm{J}=\mathrm{N}$
$7 \quad I L=J+1$
Fi=FS
$F S=F L O A T(J) / X N$
$\because F(\because F C O D-2) 10,13,17$
$1 \mathrm{if}(\mathrm{S}) 41,11,12$
i $1: \because R=1$
G: T0 29
1с $z=(X(J)-U) / S$
CALL NOT? $(2, Y, D)$
GOTO 27
$13 \quad \mathrm{XF}(\mathrm{S}) 11,11,14$
$147=(x(J)-U) / S+1 . U$
$Y F(2) 15,15,16$
$15 \quad y=0.0$
for 10 ?:
$16 \quad \mathrm{Y}=1.1-\mathrm{Fxp}(-2)$
GO TO 27
17 ¿F(2FCOD-4) 18, 21,26
18 IF (S) $19,11,19$
$17 \mathrm{Y}=\operatorname{ATAN}((\mathrm{X}(\mathrm{J}) \mathrm{x}(\mathrm{J}) / \mathrm{S}) * 0.3183099+0.5$

```
            GO TO 27
    C] \(\mathrm{EF}(\mathrm{S}-\mathrm{U}) 11,11,21\)
    21 KF \(\mathrm{X}(\mathrm{J})-\mathrm{U}) \quad 22,22,23\)
    \(22 \quad Y=0.0\)
    GO TO 27
    23 IF (X (J)-S) \(25,25,24\)
    \(24 Y=1.0\)
    G0 TO 27
    \(25 Y=(x(J)-U) /(S-U)\)
    GOTO 27
    ?. 6 If.R=1
    GOTO 29
    ¿ \(7 \mathrm{EI}=\mathrm{ABS}(Y-F I)\)
        \(E S=A B S(Y-F S)\)
        DN1=ANAX1(ES,EX)
        \(D N=A M A X 1(D N 1, D N)\)
        IF (IL-N) 6,8,28
    द? \(\quad 2=D N * S Q R T(X N)\)
        (AILI SMIEN(Z,PROB)
        PHOZ=1.O-PROB
    27 RFTURN
    END
    SUBROUTINE KOLM2 (X,Y,N,M, \(2, P R O B, U N)\)
    TESTS THE DIFFERENCE BETWEEN TWO SAMPLE DISTRIBUTION
        FUNCTIONS
        USING THE KOLMOGROV OSMIRNOV TEST.
        \(X:(N * 1)\) INPUT VECTOR.
        \(Y:(M * 1)\) INPUT VECTOR
        PKO日:THE PROBAB咀ITY OF THE STATISTIC BEYNG.GE.Z.
        2:OUTPUT VARIABLE CONTAINXNG THE GREATEST VALUE WITH RESPECT
        TO THE SPECTRUM OF \(X\) AND \(Y\).
        DTENSYON X(976) -Y(976)
        STORE X INTO ASCENDING ORDER.
        DO \(5 \quad z=2, N\)
        XF(X(I)-X(I-1))1,5,5
    1 TEMP = \(X(I)\)
        \(\Rightarrow N=R=1\)
        DO \(3 \mathrm{~J}=9 \mathrm{MM}\)
        \(\mathrm{L}=\mathrm{x}-\mathrm{J}\)
        XF(TEMP-X(L)) 2,4,4
    \(\bar{x}(L+1)=X(L)\)
    3 Continue
        \(X(1)=T\) FMP
        GOTO 5
        \(4 \times(L+1)=T E M P\)
        5 CONTINUE
        SORT Y INTO ASCENDRNG ORDER
        DO \(10 \quad T=2, M\)
        SF(Y(I)-Y(I-1)) 6.10,10
    6 TEMP=Y(X)
        \(\perp M=\Sigma-1\)
        DO \(8 \mathrm{~J}=1\) 。IM
        \(L=I-J\)
        IF(TEMP-Y(I.)) 7 9,9
    \(7 Y(L+1)=Y(L)\)
    8 CONTINUE
        \(Y(1)=T E N P\)
```

```
        \(\begin{aligned} & \square \\ & \square 10 \\ & 0\end{aligned}\)
        \(7 \vee(1 .+i)=T M \Gamma\)
    10 C!んT"NU:
```



```
    X \(1:=\mathrm{FLOAT}(N)\)
    \(X N T=1001 Y N\)
    \(X N=F L O A T(N)\)
    \(X_{M 1}=1.0 / X M\)
    \(i, J, K, l=0\)
```



```
    11 i \(F(X(1+1)-Y(J+1)) 12,13,18\)
    \(12 k=1\)
    GO ro 14
    \(13 k=0\)
    \(14 \quad s=k+1\)
        IF (IロN) 15,21.21
    \(15 I F(X(I+1)-X(I)) 14,14,16\)
    16 IF (K) \(17,18,17\)
C
    17 DN=AMAXT(DN,ABS(FLOAT(L) *XNTMFLOAT(J) *XM1))
    IF(L) 22.11.22
    \(18 \mathrm{~J}=\mathrm{J}+1\)
        IF \((J-M)\) i9, 20,20
    \(17 I F(Y(J+1)=Y(J)) 18,18,17\)
    \(20 L=1\)
        GOTO 17
    \(21 L=1\)
    GO TO 16
    C CALCULATE THE STATISTICZ.
```



```
C CALCULATE THE PROBABILITY ASSOCIATED WITH 2 -
    CALL SMIRN(Z,PROB)
    \(P R O B=1.0 m P R G B\)
    f ETURN
    FND
    SUEROUTINE PAFA(T, N, AMEAN, AST, ASK)
    ZT CONPUTES NEAN, STANDARD DEVIAT ZON AND SKEWNESS OF THE VECTOR T.
    AMEAN:MEAN VALUE
        AST:STANDARD DFVIATION
        ASK:SK : WWNESS COFFFICIENT
```



```
    DLMENSION T(976)
    \(A N=N\)
    \(S U M=0.0\)
    DO \(10 \quad I=1, N\)
    \(10 S U M=S U M+T(X)\)
    AMEAN \(=\) SUM/AN
    \(S \cup M=0.0\)
    SUM1 \(=0.0\)
    DO \(20 \mathrm{~J}=\mathrm{i}, \mathrm{N}\)
    \(S U F=S U M+((T(I)-A M E A N) \star * 2)\)
```



```
    20 CONTINUI:
    \(A S T=S O R T\) (SUM/HN)
    ASK=SUM1/(AN*AST**3)
    戶ETUFN
    END
```

```
        SUEROUTINF POWER(ML,PHI,RZ)
C OFJECT:
C IT CALCULATES AND WRITES THE POWER SPECTRUM PS.
```



```
    DJNENSION R2(49),PS(49)
    1'000 FORMAT(10X,34(1H*), %.14X,.'WH',15X,'PS(I)',1,10X,34(1H*))
    2000 FORMAT(12X,F10.6,8X,F10.6)
[
    WR゙TF(2,1000)
    DC 15 I=1,ML
    II=I-1
    WH=PHI#II/ML
    PS(I)=0.0
    IF(T.HQ.1.OR.X.EQ.ML. ) EK=0.5
    IF(I.NE.1.AND.I.NE.ML) EK=1.0
    DC 1!\ J=1,ML
    JJ=J-1
    PS(I)=PS(I)+(EK*R2(I)*COS(PHI*JJ*II/ML))
    10 CCNTINUE.
    PS(I)=?.0#PS(%)/PHY
    WF,TTE(?,200L)WH,PS(I)
    15 CCNTINUE
    GETURN
    END
        SUBROUTINE SMOS(V.NV)
C IT SHOOTHS AND WRITES THE POWER SPECTRUM BY USING THE HAMING
C WINDOW ALGORITHM.
```



```
    DIMENSYON V(50),X(50)
    NVV=NV-1
    DO }10I=1,N
    IF(I.KO.1) X(X)=0.54*V(I)+0.46*V(I+9)
    IF(InGT.1.AND.I-LE.NVV) X(I)=0.23*V (I-1)+0.54*V (I)+0.23*V(I+iq)
    IF(I.EO_NV) X(I)=0.54*V(I)+9.46*V(I-V)
    10 CONTINUE
        WMYTE(2,2060) (X(I),I=1,NV)
        R!TURN
<(16:1 FORMAT(//,10x,'X-VALUES:',1,10(5x,F10.6),1)
    END
```

