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PREFACE
 

This report is directed towards the identification, estimation
 

and validation of some physical data based river catchment models.
 

Two general classes of models, with a variety of mathematical formu­

lations and estimation methodologies, are presented. The first class
 

is the linear stochastic difference equation models, while the second
 

is the transfer function models selected using the minimum mean-square
 

error criterion.
 

A case study of the Waki River catchment located near Lake Albert
 

has been examined to demonstrate the applicability of the above models.
 

Using the input precipitation over this catchment and the corresponding
 

measured output discharge, it has become possible to digitally simulate
 

the two proposed models and to scrutinize the main statistical character­

istics of their output data 9equence. The validity of the residual se­

quences generated by different structures of these models for the pre­

specified estimation conditions has also been investigated.
 

The salient features of the two best fitted linear stochastic difference
 

equation model and noisy transfer function model have then been discussed
 

in a comparative pattern in order to achieve a better representatior for
 

the Waki River catchment. As a general view, it is concluded that the
 

application of linear stochastic difference equation models is pragmatic
 

both for estimation and prediction of the given catchment output discharge.
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CHAPTER I
 

INTRODUCTION
 

1.1 ART OF MODELING
 

The word "model" is used in many situations to describe the
 

physical system at hand. Consequently, there is a strong difference
 

of opinion as to the appropriate use of the model. It may suggest a
 

photographic replication of the system under study which reflects all
 

its ramifications so that the model may adequately represent that
 

system.
 

Usually, complicated physical systems, such as river catchments,
 

do not need an inextricable mathematical model to describe it. Thus,
 

it is advisable to select a relatively simple mddel to a given system
 

and increase the complexity of that model only if the simplest one is
 

not satisfactory.
 

Briefly, the class selection methods furnish only the best cla,,e
 

among a list of chosen classes. There is no guarantee that the best
 

fitting model from the best class given by the class selection methods
 

is the most appropriate one, i.e., it may not pass the validation tests.
 

Thus, we should consider all the possible classes relevant for the phy­

sical system under consideration.
 

Practically, the best fitting model is that model which passes all
 

the validation tests and have a relatively small number of parameters
 

among the various prespecified classes.
 

1.2 OBJECTIVE OF STUDY AND SCOPE OF THE WORK
 

This research work is directed to the identification, estimation,
 

and validation of some stochastic models suitable for river catchments.
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Two families of models are discussed in some details. 
 The first
 
family is the linear stochastic difference equation models, while
 
the second is the transfer function models selected using the
 
minimum mean-square error criterion. 
 The choice of the adequate
 
model from either two families, for a given river catchment, is
 
treated in the following steps :
 

i) Estimation of the parameters in a 
model using the given
 
physical observations. This is usually known as the tuning
 
step of the model.
 

ii) Choice of the appropriate structure by means of some class
 
selection techniques.
 

iii) Verification of the validity of the.selected structure by
 
means of "goodness of fit" test and by a 
direct comparison
 
of the various statistical characteristics of both the
 
observed and estimated output data sequences,
 

Once the appropriate structure is selected, its one-step ahead
 
prediction capability is checked by the straight forward comparison

of the predicted and observed output data sequences within some pres­
pecified levels of classification.
 

The following is a brief outline of the main parts of this
 
report :
 

Chapter II discusses pertinent details of the model building
 
problem as well as 
some alternative structures of models.
 

Chapter III presents an important model structure which is
 
commonly used for river catchments. The possibility of using either
 
the generalized least-square or constrained estimator to evaluate the
 



5 

unknown parameters of that noisy-transfer function model is also
 

scrutinized. The validity of the proposed model isthen examined
 

in order to achieve a better estimatability conditions.
 

In Chapter IV, a family of univariate linear stochastic difference
 

equation models is suggested for representing the given physical data
 

sequence. Moreover, some methods are given for estimating the !nknown
 

parameters of these models. The nature of model validation isalso
 

discussed by using some goodness of fit tests.
 

In Chapter V, the Waki river catchment is selected as a case study
 

to demonstrate Lhe applicability of the above models. A complete
 

description of this catchment is given from both the geological,
 

meteorlogical and hydrological view points.
 

Chapter VI investigates the availability of using either the
 

noisy-transfer function model or the univariate linear stochastic
 

difference equation model, with different concepts for each, to
 

represent Waki river catchment. The forecasting capability of the
 
two successful models, each developed from a prespecified family,
 

is also tested for the given catchment.
 

Chapter VII presents a summary of the report as well as its
 

main findings.
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CHAPTER II
 

CHOICE OF AN APPROPRIATE MODEL
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CHAPTER II
 

CHOICE OF AN APPROPRIATE MODEL
 

2.1 INTRODUCTION
 

The choice of an appropriate model for a given physical data such as
 
river catchments is necessarily iterative, i.e. it is 
a process of evaluation
 
and adaptation. 
Usually, when the physical mechanism of a phenomenon is com­
pletly understood, it may be possible to write down a mathematical expression
 
which depicts it exactely, thus we obtain an ideal mathematic.l model.
 
Although, insufficient information may be available initially to write an ade­
quate mechanistic model. Nevertheless, an adaptive strategy can 
sometimes lead
 
to such a model. On the other hand, the rather complete knowledge or large
 
experimental 
resources needed to produce a mechanistic model are not available
 
and we must then resort to a stochastic model tuned by observed physical 
data
 
[Box and Hunter (1965)].
 

2.2 ITERATIVE APPROACH TO MODEL BUILDING
 

In fitting dynamic models, a theoretical analysis can sometimes tell us
 
not only the appropriate form of the model 
but also can furnish good estimates
 
of the numerical values of its parameters. The various stages of the iterative
 
approach are:
 

i) From the interaction of theory and practice, a useful 
class of models,
 
for the purpose at hand, is considered. 

ii) Because this class is too extensive to be conveniently fitted directly to
 
the physical data, rough methods for identifying subclass of these models
 
are sought. Such methods of model identification employ data and knowledge
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of the1 sv-tem to suggest an appropriate parsimonious subclass of models 
which 	may be utilized to yield rough preliminary estimates of the model's
 
parameters.
 

iii) 	 The rough estimates obtained during the identification stage can now be
 
used as 
commencing values in more refined iterative methods for e,>timating
 
these 	 parameters. 

iv) Diagnostic checks are applied with the object of uncovering possible lack
 
of fit. If a permissible lack of fit is indicated, the model is ready to
 
use, but if any inadequacy is found, the iterative cycle of identification,

estimation and diagnostic checking is re-iterated until a suitable mathe­
matical representation is attained.
 

2.3 	 GENERAL CLASSES OF PHYSICAL DATA BASED MODELS
 

2.3.1 	 Deterministic Models
 

It is sometimes possible to derive an empirical model, 
based on physical

laws, which permits the calcualtion of some time-dependent quantities, almost

exactly, at any instant of time. 
 If exact calculations are attainable, such
 
a model 
is entirely deterministic.
 

2.3.2 	 Stochastic Models
 

In diverse cases, 
we have to consider a time-dependent phenomenon com­prising many unknown factors and can not render the application of a determin­
istic 	model possible. Thus, 
it may be easier to derive a model which can be

used to calculate the probability of a future value lying between two specified

limits. 
 Such a class of models is called a stochastic model which is intro­duced 	 to anachieve optimal forecasting and control tasks 	for the physical pro­
cesses. 
 The 	main subclasses of these stochastic models are:
 



2.3.2a The Linear Filter Subclass
 

Usually, a physical system in which successive values are highly depen­
dent 
can be usefully regarded as generated from a series of independent random
 
variable w(t) by what is called a linear filter [Yule (1927)]. 
 The linear
 
filtering operation simply assumes a weighted sum of previous observation, so
 
that
 

y(t) : . + w(t) + *lw(t-l) + 2w(t-2) + ... (2.1) 

where the weights 1l 29 .... may be finite or infinite and the parameter
 
9 isthe mean value of the process y(.).
 

2.3.2b The Autoregressive Subclass
 

In this subclass, the current values are expressed as a finite linear
 
aggregate of the previous values and a random w(t). 
 Let us denote the devia­
tion of the process y(.) from its mean value . at equally spaced time intervals 
t, t-l, ... , t-p, by YD(t), YD(t-l), ... , YD(t-p) respectively. This gives 

YD(t) = l YD(t-l) + "''+ 'p YD(t-P) + w(t) 
 (2.2)
 

which is called an autoregressive (AR) model of order p.
 

2 .3.2c Moving Average Subclass
 

In this subclass, it is considered that the deviation of the system out­
put from its mean value be linearly dependent on a finite number of previous
 
random variables. That is
 

YDM)= w(t) - 0I w(t-l) - ... - oq w(t-q) (2.3) 

which is referred to as the moving average (MA) model of order q. 
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2.3.2 d Mixed Autoregressive Moving Average Subclass
 

To achieve greater flexibility in fitting mathematical models, it is
 
advantageous to include both autoregressive and moving-average terms to the
 
mode]. This will lead to the mixed autoregressive moving-average (ARMA) model.
 
The notation ARMA (p,q), represents an ARMA model with p consecutive AR terms
 

YD(t), .. ,YD(t-p) and another q consecutive MA terms w(t), ..., w(t-q).
 
This model is expressed mathematically as
 

YD(t) = YD(t-l) + ,..+ *pYD(t-p) + w(t) - Olw(t-l) - ,.. - o w(t-q) (2.4) 

2.3.3 The Transfer Function Models
 

In these models, the deviation of the input [x(,)] and the output [y(,)]
 
from their appropriate mean values are related by a linear differential
 
equation of the form
 

(I + EID + ...+ ERDR) yo(t) = (Ho + HID + ...+ HSDS) xD(t-T), (2.5) 

where D is the differential operator, the E's and H's are unknown parameters
 
and T isa time delay factor.
 

In a similar way, for discrete data systems, we can represent the transfer
 
function between the quantities xD and YD each measured at equispaced time
 
intervals, by the corresponding difference equation
 

( - 61B ... 6 - BUsBs) XD~-b
(IB -arr) YD(k):( o-'"B- "
D(k-b) (2.6)
 

or simply
 

YD(k) = V(B) xD(k), 
 (2.7)
 

where V(B) designates the transfer function of the given physical system.
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The problem of estimating the transfer function V(B) is, however, prac­
tically complicated due to the presence of some undefined noises. 
Therefore,
 
we adjust the ideal transfer function model (2.7) to be in the form
 

YD(k) = V(B) xD(k) + w(k), 
 (2.8)
 

where w(.) is 
a zero-mean Gaussian distribution random variable whose variance
 
is to be determined from the tuning process employing the physical 
data.
 

2.4 CLASS SELECTION OF MODELS
 

In selecting an appropraite class of models among a number of possible
 
candidates, we need a suitable criterion which may be specified according to
 
the goal of model building. Sometimes, many common criteria such as mean­
square error may not lead to a better model selection, Hence, we shall work
 
with a 
more sensitive criterion such as the likelihood or one-step ahead pre­
diction approaches.
 

2.5 VALIDATION OF THE SELECTED MODELS
 

Once the appropriate class of models is selected, we must investigate
 
how will that class represents the given physical data sequence, this is 
re­
ferred to as validation test of the model.
 

The first approach for validation testing is to check the validity of the
 
assumptions behind the model. 
 But to confirm the validity of the model, we
 
have to directly compare the principle characteristics of the model output
 
such as correlogram, power spectrum and histogram with these of the physical
 
system. We accept the model 
if the discrepancy between the two sets of actu­
al and simulated data characteristics is within one or two standard deviation
 
limits of the actual data characteristics, which is inversely proportional to
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4N, N being the number of observations. This acceptance criterion represents
 
the most common used second approach for validation testing. Other vali­
dation tests will be considered later in more details.
 

2.6 SOME FEATURES OF STOCHASTIC MODELS
 

2.6.1 Stationarity
 

A stochastic model 
is said to be strictly stationary if its properties
 
are unaffected by a change of time origin, i.e. if the joint probability dis­
tribution associated with in-observations, made at any set of times tl, t2,
 
t , is the same as that associated with other m-observations made at t I + k,
 
t 2 + k,.9,, t m + k, where k is an arbitrary time shift operator [Papoulis (1965)].
 

Moreover, a stochastic model 
can be regarded as weakly stationary repre­
sentation if the mean and covariance of its output series [y(.)] exist and
 
satisfy 

E [y(t)] = F [y(t+k)] 
 (2.9)
 

as well as
 

E [y(t) - E [y(t)]][y(t+k) - E[y(t+k)]]} Rk (2.10) 

where E [(.)] is the expected value of a sequence (.) and Rk is the co­
variance at lag k [kashyap and Rao (1976)]. 

Most of the physical processes are stationary for finite period of time
 
but there is, of course, no sudden transition from stationary to non-stationary
 

behaviour.
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In doubtful cases, there may be an advantage in employing the non­

stationary models rather than the stationary alternative. It is advisable
 
to select the nonstationary models for those systems whose mathematical rep­
resentation requires some periodic and/or time-dependent terms. On the other
 
hand, the stationarity of a given stochastic model may ensure its convergence
 
to a stable estimates of the unknown parameters involved by that model [Box
 

and Jenkins (1970)].
 

2.6.2 Invertibility
 

A stochastic model is said to be invertable if the added noise sequence
 
can be recovered, with probability one or in the mean-square sense, from a
 
semi-infinite history of input and output data sequences. The concept of
 
invertibility forms the basis of parameter estimation and prediction in systems
 
with moving average terms, but it is automatically achieved by the other
 

systems.
 

Definitely, the invertable stochastic models are relevant for keeping
 
the main statistical characteristics of the added noise sequence [kashyap and
 

Rao (1976)].
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CHAPTER III
 
ANALYSIS OF THE NOISY.TRANSFER FUNCTION
 

MODEL
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CHAPTER III
 

ANALYSIS OF THE NOISY-TRANSFER FUNCTION MODEL
 

3.1 INTRODUCTION
 

In this chapter, some numerical methods are described for identifying,
 

fitting-and checking the noisy-transfer function model when simultaneous pairs
 

of observations of the input and output data are available at a discrete time
 

intervals.
 

3.2 IDENTIFICATION OF THE NOISY-TRANSFER FUNCTION MODEL
 

Alternatively, the noisy-transfer function model of (2.8) can be written
 

in the following matrix form [Natale and Todini (1976)]
 

y U U + _ (3.1) 

where:
 

i) y is Nxl vector designating the noramlized deviation of the output sequence
 

from its mean value and can be written as
 

y(l)
 
y(2) 

Y (3.2) 

y(N)j
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ii) H is Nxko matrix denoting the de-ayed normalized deviation of the input 
data sequence from its mean value which is related to the model output
 

sequence at any time interval, and may be expressed a;
 

Xd(l) 0 

Xd(2) kd(l) • 

Xd(3) Xd(2 ) • 

H= ••(3.3) 

d(4) Rd (N-1) 	 . Rdd(N-ko +I) 

where 	 k. is the kernel length. 

iii) 	 U is kxl vector comprising the parameters of the impulse response vector,
 

and is written as
 

F U(l) 

U(2)
 

U =(3.4) 

U(ko)
 
L- j 

iv) e is Nxl vector denoting the input noise to the model at equispaced time 

intervals, and is given by 

E(2)
 

= 
 (3.5)
 

L(N)
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3.2.1 Least-Square Estimation of the Impulse Response Vector
 

Usually, the least-Square (LS) estimator can be invoked if the statistical
 

characteristics of the noise vector e are unknown, which is the most general
 

case. In fact, by definition, the L3 estimator is that estimator which mini­

mizes the quadratic performance index
 

- (3.6)
=lT V_ IC 

where V is a symmetric positive definite matrix.
 

The performance index J can be written in the fbirm of the impulse res­

ponse vector U as follows
 

Jl (Y IU)T vl(YHU). (3.7)
-

The necessary condition for the existence of an extreme value Is that
 

= 0 (3.8)au 

-U_ 

U -ULSL 

which yields 

(HT  v I H) -1 HT  (3.9)I V-1 

where -Usis the least-square estimate of the impulse response vector U.
 

On the other hand, the sufficient condition for the existence of a minimum
 

is then satisfied by
 

aj >0 .
 
(3.10)
 

This is attained only if the matrix (1TI 1 ) is positive definite. 
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4.2.2 The Constrained Estimation of the Impulse Rep-onse Vector
 

An improvement in the accuracy of the estimated impulse response vector
can be produced by considering some priori additional information, which canreduce the field of the choice of U [Natale and lodini (1976)]. 
A natural
 way of obtaining this reduction is to impose a set of constraints that must
be satisfied by the true and estimated values of the impulse vector U.
 

Inmany hydrological systems, which are mathematically balanced, it is
possible to impose upon the impulse response vector U
a set of linear cons­traints, namely GU 
= i,which expresses the continuity equation. But, forthose physical systems which can be described by a-positive autocorrelation

and cross-correlation coefficients, it ismore convenient to assume
 

U > 0, 
(3.11)
 

which represents an inequality constraint that must be satisfied by the
estimated response vector U. Sometimes, we have to consider both the equality
and inequality constraints based on some mathematical and physical consider­
ation [Natale and Todini (1976)].
 

For instance, the solution of the constrained estimation problem can be

found by searching for the minimum of
 

= 1 - HU)T V 1 (Y 
(3.12)
 

which reduces to
 

Oc 2 - = = HU - H v I _(=
1 UT HT V- HUUT . 3 
(3.13)
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subject to
 

(3.14)
GU--i and/or U > 0, 

where:
 

i) y is Nxl vector representing the system output, at equispaced time inter­

vals, substracted from the estimated mean value of the noise sequence
 

ii) H is an Nxko matrix composed of the delayed system input sequence [Xd(.)],
 

and may be written as
 

xd(l) 0 • 0 

xd(2) Xd(!) * * • 0 

Xd(3) xd(2) 0 

H o (3.15) 

Xd(N) Xd(N-l) • . Xd(N-ko+l) 

iii) G is Mxko matrix containing the continuity coefficients for an M input 

vectors. 

iv) i is an Mxl unitary vector and 0 is koxl null vector. Thus 

1 0 

1 0 

and 0= * (3.16)i 

1 0 
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v) V is an NxN covariance matrix of the noise sequence.
 

3.3 ASSUMPTIONS ABOUT THE COVARIANCE MATRIX
 

As stated previously, either the constrained or unconstrained estimates
 
of the impulse response vector U need apriori evaluation of the noise co­
variance matrix V. Unfortunately, it is not possible to resolve the nature
 
of the noise vector by looking at the residual sequence, thus it is assumed
 
to be a white noise so that the covariance matrix becomes
 

2 
2 0 
11 2 

V 0 
a2 2 

(3.17) 

2aNN 

Practically, to set up the noise covariance matrix we consider that,
 

[Natale and Todini (1976)],
 

V= 2 I (3.18)
 

where I is an NxN identity matrix and a is the standard deviation of the noise
 

sequence.
 

Finally, the previous constrained optimization problem could be solved
 
using the quadratic programing technique as the performance index ec is a
 

concave function [Wilson (1963)].
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3.5 VALIDATION TESTS USING RESIDUALS OF ESTIMATION
 

Usually, some validation tests are applied to check the adequacy of the
 
generated residual sequence for the priori estimation conditions, such as 

n = 0 

(3.23)
 

which is cailed the zero-mean test [kashyap and Rao (1976)].
 

3.5.1 Test of Zero Mean
 

On the basis of residuals [n(')], we have to choose one of the following
 
assumptions:
 

So n(k) = w(k) ,or 1
 
S1 : n(k) = e + w(k) 
 (3.24)
 

V k = 1, 2, ... , N, 

where w(.) isa sequence of zero mean 
random variable with distribution N(O,p),
 
and o is a biasing limit. Let
 

- 1 N 
N in(i) , and
 

(3.25)
 

1 N2 
N- [n(i) - n] 2 

be the mean and variance of the residual sequence respectively. Define 

D! = (N / p)2 (3.26)
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where D is t-distributed variable with N-i degrees of freedom independent 
of p [Kashyap and Rao (1976)]. Hence, we can employ the following decision 

rul e
ruF <no Accept So 

IFID (3.27) 
> no Reject S,, 

such that the threshold no could be chosen from the table of t-distribution 

with the corresponding degree of freedom and required significant level. 
For large values of physically based observation, one may consider 

no = 1.64 at 95% significant level , and 

no = 1.28 at 90% significant level. 

3.5.2 Correlogram of Residuals with Two Standard Deviation Limits
 

Anderson (1971) showed that, the autocorrelation coefficients of a
 

sequence of zero-mean white noise are, approximately, normally distributed
 

with zero mean and variance I/N.
 

Let
 

N1R(k) = (N-k) E n (j) n (j-k) (3.28)(NkP j=l 

be the theoretical correlogram of the residual sequence [n(.)]. Thus, for 
a zero-mean white noise, the coefficients R(k) at any lag k, k being greater 

than zero, should be: 

a) Small in comparison to unity.
 
b) Lie between the range + 2/vi-F-with probability of nearly 0.95.
 



3.6 VALIDATION TESTS BASED ON COMPARISON OF THE VARIOUS CHARACTERISTICS OF
 

OBSERVED AND ESTIMATED DATA
 

In these tests, we will 
directly compare the theoretical characteristics
 

of the observed and estimated output sequences. Of course, we can compare
 
only few characteristics such as correlograms and power spectrums [Kashyap
 

and Rao 	(1976)].
 

3.6.1 Comparison of Correlograms
 

Let
 

1N
( 	 [y(j)
-(k) 2 	 - y [y(j-k) ­(N-k) ay j=l	 (3.29) 

R (k) 	lim R (k) , and
 
N+co
 

a(k) = E [R(k) - R(k)]j 2 

where Ya denotes respectively the mean and variance of the output sequence
 

[y(.)].
 

The graph of lR(k) versus k, for fixed N, is called the observed corre­
logram whereas R(k) versus k is called the theoretical correlogram of the
 
same output sequence [y(.)]. The degree of fit between these two correlog­
rams can be quantitatively expressed in a manner consistent with the available
 

observation size. Let
 

RM I M 
Rj
R (k) = E (k) , and 

j=l
 
(3.30)
 

1[RJ(k)
(k E 	 RM(k)]212

M(k)_M-1 l L' . , 
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where:
 
i) 	M isa reasonable number of independent observation sequence for the
 

model output which can be generated by the appropriate simulation of
 
the model.
 

ii) RJ(k) isan estimate of the jth observed correlogram at lag k.
 

iii) RM(k) indicates an estimate of the actual observed correlogram at lag k.
 

iv) aM(k) isan estimate of a(k).
 

Practically, the observed correlogram can be regarded as 
being a good
 
fit to the theoretical correlogram of the model if.the following relation­
ship issatisfied
 

RM(k) - 2 aM(k) < R(R) < RM(k) + 2 aM(k) (3.31)
 

and hence the model can be considered as adequate inrepresenting the actual
 
physical system.
 

3.6.2 Comparison of Power Spectrum
 

Similarly, the qualitative decision rules may be used to test the re­
semblance between the observed and theoretical power spectrums. The theore­
tical and observed power spectrums may be evaluated as shown inAppendix A.
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CHAPTER IV

ANALYSIS OF SOME STOCHASTIC LINEAR 

MODELS 
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CHAPTER 
 IV
 

ANALYSIS OF SOME STOCHASTIC LINEAR MODELS
 

4.1 INTRODUCTION
 

In this chapter, we consider the structure of stochastic linear models
described by a finite univariate difference equation. 
This class of models
has 
a variety of terms such as autoregressive terms, moving average terms
and deterministic trend function. 

4.2 DESCRIPTION OF THE PROPOSED MODEL
 

It isconvenient, though not necessary, to assume that, [Kashyap and
Rao 
(1972)], the stochastic process [y(.)] obeys the following stationary

stochastic difference equation:
 

ny(k) 4 Xi 
 j [k-1, y(k-1), ..., y(k-n), U(k-l), 
 , U(k-n3)] 

m
 
w j=l n+jw 
 a w(k-j) + w(k) 

4 1 

where w(.) 
is the disturbance sequence whose statistical characteristics
are unknown except for 

E [w(k) 0j [k-1, y(k-l), ... , y(k-n)]j = 0, j=l, 2, ... , n (4.2)
 

E [w(k) w(k-j)] 
 = 0,j=l, 2, ... , m 
(4.3) 

where E(.) indicates the expected value of (.). 
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Usually, the deterministic trend sequence [U(.)] is introduced to reflect
 

the variation of data from its mean value during an interval M of time. This
 

sequence is expressed as
 

n 
U(i) = a. + E [ n+m+2j-I cos W.i + an+m+2j sin Wi (4.4) 

where the frequency of variation W. is defined as
 

1, 2,W. = 2 7rj/M , j 1 ... , N. (4.5) 

Alternatively, when the sequence [y(.)] is strictly positive, we could
 

assign the following multiplicative form of the difference equation
 

n 
y(k) R D (k-1, y(k-l), .... y(k-n), U(',-I), ... , U(k-n 3)]j=l
 

m n. 
I w(k) [w(k-j)] n+j (4.6) 

J=l
 

where the parameters n, n3 and m in both (4.1) and (4.6) are chosen to
 

achieve, inthe mean square sense, a better prediction ability. Moreover,
 

the function .j(.) can be expressed as
 

Yj~k) = [y(k), y(k-l), ... , y(k-n+l), 1, cos Wlk, 

sin Wik, ... , cos Wn3 k, sin Wn k] (4.7) 

where W. is the frequency of variation defined at the jth time interval.
 



35 

4.3 ESTIMATION OF THE PARAMETER VECTOR
 

We shall present a heuristic development of the recursive algorithm for
computing the vector a. Alternatively, (3.1) 
may be written as
 

y(k) = aT Z (k-i) + w(k) 

(4.8)
 

where
 

: [= ' C,
lao, a1 n+m+2n3] 

(4.9)
 

and
 

ZT (k-i) : (k-i), ... , 
 on (k-n), w(k-1), ... , w(k-m)]. (4.10)
 

Let a(i) be an estimate for the.N-dimension vector a computed by using
the following recursive algorithm [Kashyap and Rao (1972)]
 

a(i+l) 
 a(i) + S(i+l) Z(i) [y(i+l) -aT(i) Z(i)] 

S(i+l) : S(i).. S(i) Z(i) ZT(i) S(i) / [i+zT(i) ST(i) Z(i)] 
 (4.11) 

w(i+l) = y(i+l) - aT (i+l) Z(i), i = 1, 2, ... , N-i 

where [w(.)] is an estimate for the residual sequence w(.) whose final esti­
mates may be given by 

i(k) = y(k) - aTF Z(k-l), 
 k = 1, 2, ..., N, (4.12)
 

where aF denotes the final 
estimate of the parameter vector a.
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Practically, the above algorithm should be initialized before it is
 

operated inthe recursive model (4.11). Therefore, either one of the
 

following procedures may be invoked:
 

4.3.1 The First Procedure
 

Let the available data be designated by [y(j)], where j=l, 2, ... , N. 

Thus, the algorithm commences as follows [Kashyap and Rao (1972)] 

a(O) = 0 , S (0)= I 

y(j) = 0 , j = -1, -2, ... , -n (4.13) 

w(K) 0 , K = -1, -2, ... , -m 

4.3.2 The Second Procedure
 

Let the available data be denoted by [y(j)], such that j=-p, -p+l, 
where p is an integer greater than or equal to 2n. Hence, the procedure for 

initialization is [Kashyap and Rao (1972)] 

T ­
-
S(O) = 0 [Z(j-I) Z (j-l)]

j=-(p-n1 ) 

and (4.14)
 

0 

a(O) = S(O) [ z Z(j-l) y(j)]
-

j=-(p-n1 ) 


where n, is an integer given by
 

n, = n + n3 + m. (4.15) 
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On the other hand, the values w(l), w(2), ..., are all generated from a
 
Gaussian random number generator with zero-mean and variance equal to the
 
sample variance of [y(O), y(-l), ..., y(-p)].
 

The first procedure iseasier to implement, while the second procedure
 
leads to a better prediction for small values of k.
 

Obviously, the parameters of the multiplicative structure (4.6) may be
 
identified by a same manner as the additive structure (4.1) but with a nat­
ural logarithmic transformation technique [Kashyap and Rao (1972)].
 

4.4 	CLASS SELECTION OF UNIVARIATE STOCHASTIC MODELS DESCRIBED BY A LINEAR
 
DIFFERENCE EQUATION
 

One of the popular methods for comparing some proposed classes of the
 
univariate stochastic models which are depicted by a linear difference equa­
tion is the method of hypothesis testing. Even though, the theory of that
 
method iselegant [Kashyap and Rao (1976)], as it involves arbitrary quan­
tities such as significant levels. Furthermore, it has limited applicability
 
inthe sense that itcan handle, essentially, two classes of models at a time.
 
Hence, two other approaches may be involved to select an appropriate class of
 
models among q-proposed classes.
 

4.4.1 The Likelihood Approach
 

The decision rule can be expressed as follows:
 

i) For every proposed class Ci, i = 0,o 1, ..., q-l, find the conditional0 

maximum likelihood estimate 0i of 0i given that oievi using the given
 
observation [ = y(j), j = 1,2, ..., N]. Then compute the corresponding
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value of likelihood fu.ction Li as follows
 

=Li = In p (4 , 0i) - ni, i (-Fi , Pi (4.16)
 

where p(. , .) denotes the conditional probability and ni is the dimen­
sion of the vector = [a., pf].
 

1 1
 

ii) Choose the class which yield the maximum value of Li among [L., 
i = 
0, 1, ... , q-l]. Specifically, for the simplified model (4.8), the mathe­
matical expressions for pi and Li are given be Kashyap and Rao (1976) as
 
follows
 

A I N ()-aT 2(-l]
Pi k~ml+l (4.17)N. [y(k) - a i -(Z(k-l)J .7 

and
 

L In Pi - ni 
(4.18) 

where mI is the number of terms involved by C0. 

4.4 2 The Prediction Approach
 

This method allows the comparison of a number of different classes of
 
models Ci, i = 0, 1, ... , q-l, simultaneously, where Ci =[Si, vi, a.], pro­
vided that they do not have average terms [Kashyap and Rao (1976)]. Thus,
 
consider the indices
 

1 N ^ 
_T z [y(k) - yi(klk-l)] 2 (.19)

k=2
 

where i = 0, 1, ... , q-l. 
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Practically, if there was only one class Ci 
 such that the index Jio is

the smallest among the set [Ji' 
i = 0, 1, ..., q-l], we select that class.
 
Alternatively, ifmore than one class can yield same minimum value of Ji'

the given data will 
be assigned to one of these classes according to other
 
subsidary measure such as minimal complexity.
 

4.4.3 Discussion of the Various Class Selection Methods
 

Among all the above presented methods, the likelihood approach is very
versatile, theoretically sound and furnishes, in practice, reasonable re­sults. 
 Itcan simultaneously handle a number of classes, including those
 
having moving average terms or log-tranformed terms.
 

One of the most distinguished merits of the likelihood approach is that,
it does not involve the use of arbitrary quantities such as significant levels.

One shortcoming of the likelihood approach for the determination of the order
of AR models is,however, that the determined order isoften higher than is
 
necessary for passing the validation tests.
 

The hypothesis testing approach ismore ambitious, since there is an
attempt to obtain a 
decision rule with certain prespecified probability of
 error. 
But, in practice, it can handle only two classes at a 
time and even
 
these two classes must be made up of generalized AR models.
 

The prediction approach is valid for systems possessing moving average

terms. 
 It is instructive to analyze the difference between the estimates

of the mean-square prediction error obtained during the design of the pre­dictor and that obtained during its testing. The difference between the two
 
mean-square errors 
isexamined to determine whether they are due to sampling

variations only or to the poor quality of model.
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On the other hand, the recursive prediction approach isespecially use­
ful with systems inwhich some of the parameters may vary with time. Alter­
natively, the prediction approach is apt to yield models that may not pass
 
the validation tests [Kashyap and Rao (1976)].
 

4.5 VALIDATION OF THE FITTED MODEL
 

Practically, no model form ever represents completely the physical pro­
cess. 
 It follows that, given sufficient physical data, statistical tests
 
can discredit models which could, nevertheless, be entirely adequate for the
 
purpose at hand. Clearly, the validation tests must be such that they place
 
the model in jeopardy, i.e. they must be sensitive to discrepancies which
 
are likely to happen. However, if validation tests, which have been thought­
fully devised, are applied to a model fitted by a reasonable large number of
 
data and fail to show serious discrepancies, then we shall rightly feel 
more
 
comfortable about using that model.
 

4.5.1 Test of Normality 

The goodness of fit between the histogram of residuals and the fitted
 
normal distribution may be visually judged by the first Kolmogrov-Smirnov
 
test as follows:
 

Given a sample of N-independent and identically distributed set of re­
siduals w(1), w(2), ... , w(N), with continuous cumulative distribution fun­
ction F( ), the first Kolmogrov-Smirnov test calculates the difference, i1 
absolute value, between the usual normal distribution function FN( ) and 
the theoretical cumulative distribution function F(w). For this purpose:
 

i) The order statistics [w(i) ] are determined by sorting the set [w(i)] into 
an ascending order. 
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ii) The measured cumulative distribution function is expressed as follows:
{ 0 for 
 <((I) 

F(w) = k/N for i(k) < < O(k+l) , k = 1,2,..., N-1 (4.20) 
1 for w(N) < . 

iii) 	 The maximum deviation DN, in absolute value, between the measured and
 
theoretical distribution can be written as
 

DN = Max IFN( ) - F( )I' 1 < 	 (4.21)(1) < 	NI 
Since 	FN(i) and F( ) are nondescending functions, the result is
 

DN = Max FN((k)) - F(W k) ' 
 (4.22)
1 < k <N I 
 I
 

Define
 

L(Z) 	= lime p[DNf-N< Z]N - N F <Z (4.23) 

where DN is a random variable, p(.) denotes the probability of all event
(.)and L(Z) is the limiting cumulative function of DN I. 

iv) The probability that Z being greater than or equal to the computed value 
of DN Nfcan be written as 

p(Z) = 1 - L(Z) 
(4.24)
 

where
 

L(Z) [1=
0 	 for Z ; 0epfr(4.25) 

L(Z) -2 FE (-l)k-I exp (-2k 2Z2 ) for Z > (425
 

i k=l
 

http:epfr(4.25
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When Z is very small, the series (4.25) converges slowly, but, using
 

Jacobi's Theta functions 02 (u,t) and 04 (u,t), defined by
 

02 (u,t) = 2 ' exp [i 7r(k+I/2)2 t] cos [(2k+l) u]l 

k=o (4.26) 
=04 (u,t) - (-l)k-1 exp (iirk 2t) cos(2k u) 

k=o 

and invoking the Jacobi imaginary transformation 

-l 
04 (Ot)= (-it) 02 (0,-I/t), (4.27) 

it follows that 

L(Z) = 04 (0,2iZ 2 / 1) 

exp [- (2k-i)2 w2 / 8Z2) (4.28) 
k=l 

which converges quickly when Z is small, see Wittaker and Watson
 

This gives
 

I 3 )2 2 2 
0
 

_2T E exp -(2k-i) i2 / 8Z2 + El (Z) for 0.27 < Z <1.0 
k=l 

L(Z) 
 4 
 -

(-l) k-
1-2 exp (-2k 2Z2 ) + E2(Z) for I.U < Z < 3.1 

k= 1 

1l for 3.1 < Z < 

where
 

1 5 )El(Z) < 6(0 when Z < I , and 

(4.29)
 

E2(Z)<10-20 when Z> 1
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Decision Rule:
 

For the value of DN given in (4.22), define a null hypothesis H which
0
assumes that both the measured and theoretical distributions are identical,
then the decision rule for accepting or rejecting H is expressed as
 

< d 4 Accept H0 
IfDNW{ 


(4.30)

> dc Reject H
°
 

where the threshold dc is chosen as
 
dc = 1.36 at 95% significant level 
, and 
dc = 1.22 at 90% significant level. 

4.5.2 
 Test of Serial Independence
 

We will determine whether the residual sequence given in (4.12), is
 
serially correlated [Whittle (1951 
and 1952)].
 
Let
 

Ci= [Si , ViO i 
 = 0, l 

So : w(k) = w(k) 
(4.31)
 

n2
 
S1 : (k)= e. w(k-j) + w(k)


j=l 

where w(.) isan independent Gaussian random variable with zero mean and 
variance p, per 

o = [e 0e2 n2 ] and v, = [e : o 0] with v,= [0]. 

Let p , P1 be the residual variances of the best fitting models for the givendata inthe two classes CO and C1 respectively, and introduce Rk as the 



physically measured covariance at lag k, so that 

kRk E w(i) (i-k). (4.32)i=k+l 

Then, we have
 

Rol =detr / detr (4.33)
-o 


where r is n x n matrix and 
n2 2 2 

(r n2)ij =R ; i, j = 1, 2, ... , n2 (4.34) 

The test statistics is given by 

- -1 -1) (4.35) 
n2 Pl
 

which is approximately follows an F-distribution with two degrees of
 

freedom n2 and N-n2 for large value of N provided that [w()] obeys Co .
 

Decision Rule:
 

For the value s(w) defined before, we can accept eit.,er C or Cl accor­

ding to the following decision rule 

< 0l 4 Accept C0 

(4.36) 

> 01 4 Accept C1 

where Bl is chosen by the corresponding significant level and n2 is considered 

as 0.1 N or 0.05 N. 
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4.6 DATA NORMALIZATION
 

Inorder to remove the periodicities of a given data sequence [y(.)],
 

two types of normalization can be performed [Kashyap and Rao (1976)]. These
 

are 

y(k) = [y(k) - y] / ay (4.37)
 

or
 

y(k) = loglo y(k) (4.38)
 

where Y, ay are the sample mean and standard deviation of the given data 

sequence [y(.)] respectively.
 

Usually, the data given by the normalized models can reproduce the mean
 

and variance with a very satisfied significance, but the prediction errors
 

with the normalized data may be larger than the original models, see Kashyap
 

and Rao (1976).
 

Clearly, the transformation given by (4.37) may be satisfactory for those
 

models of additive structures, while the otner transformation (4.38) may be
 

suitable for the multiplicative structures.
 

4.7 RECURSIVE PREDICTION OF THE OUTPUT DATA
 

Let y (k+llk) be an estimate of the natural one-step ahead prediction
 

y(k+l), then
 

y (K+TIk) = aF Z(k) + w(k) (4.39)
 

where
 

ZT(k) = 1 (k), *n(k), w(k-l), ... , w(k-m)] (4.40)
[€ n... 
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and the vector aF is the final estimate of the parameter vector a. The noise
 
sequence [w(.)] is generated from a 
Gaussian random number generator with
 
zero mean and variance similar to that of the residual sequence [(.)]. 
The
 
prediction error is defined as
 

e(k+l) = y(k+l) - y(k+l 1k) 

(4.41)
 

where
 

Y(k+J1k) = GY Y(k+ljk) + (4.42)
 

for the additive structure, and 
y(k+ljk) 

10Y(k+l I k) 
^ l 

(4.43)
 

for the multipiicative structure.
 

It is important to distinguish between w(k), which isonly a residual,

and e(k) which is a 
difference between the predicted and actual quantities.

The convergence properties of the algorithm (4.11) 
can be attained by consider­
ing the 0j(.), j = 1, 2, ..., n, as linearly independent events whose
 
cumulative mean square vlaue, 
 Oj M(k)/k, isbounded for all values of k, see 
Kashyap and Rao (1972). j=l 
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CHAPTER V
 

DESCRIPTION OF THE CASE STUDY
 

(WAKI RIVER CATCHMENT)
 

5.1 INTRODUCTION
 

The case study represents a hydrologic system whose input and output 

daily records are as illustrated in Tables (5.1) and (5.2) respectively. 

These data denote the daily precipitation over the Waki River catchment, lo­

cated near lake Albert, and the corresponding daily discharge. This catch­
ment lies between longitudes 310 18' and 310 39' E, and latitudes 10 40' and 

10 28' N. The catchment is drained by two main streams, Waki and Siba, see 

U;iO (1972). 

5.2 TOPOGRAPHY OF WAKI CATCHMENT
 

The topography of the Waki catchment is shown in Fig. (5.1). Itcan be
 
observed that the catchment is steep at its southern part but its steepness
 

drops gradually when moving towards the Waki-II hydrological station. The
 

maximum and minimum elevations are about 1402 m and 991 m respectively, while
 

the average surface area of the catchment is475 Km2, [WMO (1972)].
 

5.3 SOIL OF WAKI CATCHMENT
 

The soil types found inthe catchment are as shown in Fig. (5.2). The
 
percentages of area covered by each soil type are:
 

i) Shallow dark brown or black sandy loams 3.5%
 

i) Reddish and reddish brown gritty clay loams 39.7%
 



Table (5.1) oL
 
LIST OF PRECIPITATION OVER RIVER WAKI CATCHMENT (IN MM/DAY)
 

DAY APR. MAY 
 JUNE 
 JULY 
 AUG. 
 SEP.-
 OCT. 
 NOV.
 

1 4.90 14.30 
 2.90 
 21.50 
 2.70
2 0.00
3.30 1.10 2.60 0.90 15.10
0.00 11.20
3 6.40 4.30 0.00 
3.40 22.90 10.80
1.10 
 8.10
4 6.00
4.00 4.20
9.60 0.00 0.20
0.40 
 7.20 
 7.90
5 4.30 1.30 8.10 5.30
 

6 
2.50 0.50 7.80 2.40
5.20


9.30 4.00 4.30
2.30 2.70 2.70
7 4.10 2.10 2.90
0.40 -4.40 6.20 1.400.00
8 13.70
1.20 0.00
7.80 0.00
 
9 1.50 6.60 

4.10 0.10 11.90 10.90 5.90 6.50
2.00 
 0.00 
 6.60 
 10.40
10 6.10 1.50
0.80 5.10
0.00 0.00 0.80 
 14.90
11 10.10 1.70 0.00 0.00
0.00 0.00 5.70
12 4.50
2.80 2.10
3.70 0.00
0.00 18.10
13 1.40 5.00 
0.60 2.60 25.40 0.00
0.00 
 0.60 
 2.10
14 9.80
4.70 11.60
2.70 2.80
7.60 
 0.30 
 0.00
15 4.90
21.00 7.80
0.00 10.50
15.20 
 7.50
16 11.30 0.00 

0.00 1.10 18.40 0.90
1.40 
 0.00 
 1.80 
 1.30
17 10.10 4.90 3.20 
0.20 19.90
0.70


18 2.20 7.40 11.70 6.70
11.20 2.70
 
19 2.70 

0.00 1.60 7.60 4.20
0.00 

2.70 0.00
3.80 
 9.90 
 3.10 
 0.40
20 20.20 0.70 8.50 3.60
2.80 
 9.80
21 0.80 0.70 0.00 9.50
13.00 0.00
6.50
22 18.60 0.90 

7.60 5.70 0.90 9.20 6.00
0.00 
 13.20 
 4.10
23 19.00 4.60 
9.40 5.00 6.90
 

24 
0.00 9.70 11.10 6.60
0.60 9.20
3.40 5.70
 

25 
1.10 12.20 24.50 2.80 0.30
0.50 0.00 0.80
0.00 
 1.30
26 10.10 8.70 
0.70 0.00 0.20 0.00
0.60 
 0.00 
 2.00
27 1.70 0.00
0.00 4.00 1.00
0.30 
 0.00
28 3.90 0.00
0.00 8.20
12.10 0.00
4.20 
 0.00 
 0.00
29 0.00 7.10 0.10 

0.00 10.90 0.00
5.30 
 0.10
30 11.20 3.60 0.10
0.70 0.00
14.30 
 0.00
31 2.30 0.40 
 4.70
1.O0 0.00
0.60 
 1.30 
 0.80
 

YEAR 1970.
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Table (5.1) Cont'd. 

DAY APR. MAY JUNE JULY AUG. SEP. OCT. NOV. 

1 
2 
3 
4 

6 
7 
8 
9 

11 
12 
13 
14 

16 
17 
18 
19 

21 
22 
23 
24 

26 
27 
28 
29 

31 

4.60 
11 .60 
0.50 
6.70 
0.40 
2.00 
5.50 
5.40 
0.90 
1.50 

13.00 
29.10 

9.50 
1.00 
0.00 
5.20 
2.20 
2.20 
7.80 

23.10 
0.00 
4.20 

23.30 
0.20 
3.30 

13.40 
0.00 
0.00 
3.50 
6.10 

1 .30 
1.10 
1 .60 
0.00 
5.90 
0.00 

26.80 
4.00 
4.80 
0.20 
0.00 
1.90 
1.50 
0.00 
2.10 

17.40 
0.00 
0.00 

24.50 
4.90 

13.20 
2.40 
0.50 
0.40 
1.30 
4.40 
0.00 
5.60 
0.00 
0.20 
2.10 

0.00 
1 .00 
7.70 

15.90 
22.70 
1 .90 
0.20 
0.00 
0.00 
0.00 
0.00 
0.90 
0.00 
2.10 

15.10 
4.90 
0.00 
0.00 
0.00 
0.70 
2.70 
3.50 
0.00 
0.00 
4.90 
0.20 
0.90 
0.70 
0.80 
7.00 

2.60 
0.50 
0.80 
3.60 

13.20 
11 .50 
5.50 
0.40 
7.90 
0.00 
0.00 
0.00 
6.20 
1.60 
1.50 
4.40 
1.60 
0.00 
4.00 

14.00 
0.60 
5.50 

10.20 
1.90 

14.80 
3.30 
3.90 
9.60 
1 .40 
0.00 
1.80 

14.60 
0.00 
0.00 
6.40 
0.00 

17.40 
0.10 
1.00 
4.00 
o.AO 
2.30 
0.40 

12.70 
0.60 
4.50 
1.10 
0.00 
1.80 
0.10 
0.40 
3.00 
7.60 
1.90 

14.00 
9.10 
0.00 
3.30 
3.70 

10.40 
0.60 
0.60 

13.40 
6.70 
2.70 
1 .40 
6.20 
2.00 
3.50 
4.50 
0.00 
0.00 
9.90 
0.60 
0.00 
0.50 
0.00 
0.00 
3.40 
0.00 
3.30 
0.00 
3.00 
0.00 
2.30 
1.70 
5.20 
1.50 
0.60 

41.10 
0.00 
0.00 

4.10 
0.10 
0.50 
8.50 

12.20 
10.60 
1 .20 
0.00 
4.50 
0.00 
0.00 
0.30 
6.70 
0.30 
0.00 
0.00 

10.30 
7.40 
6.00 
2.40 
3.10 
5.10 
2.90 
7.60 
1.20 
8.10 

13.20 
14.50 

0.00 
3.70 
0.40 

0.00 
0.00 
0.00 
2.RO 

33.50 
0.00 
2.70 
1.60 
0.00 
1.80 
9.50 

15.30 
0.50 
1 .70 
0.00 
0.00 
0.00 
0.00 
1 .40 
0.00 
0.00 
0.00 
0.00 
0.20 
0.30 
2.50 
3.30 

28.90 
2.00 
0.00 

YEAR 1971 



LIST OF DISCHARGE 
Table 

ROM RIVER 

(5.2) 

WAKI CATCHMENT (IN MM/DAY). 

DAY APR. MAY JUNE JULY AUG. SEP. OCT. NOV. 

1 
2 
3 
4 
5 
6 
7 

9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

0.4800 
0.5000 
0.5100 
0.5300 
0.5500 
0.5500 
0.5900 
0.6000 
0.5800 
0.5700 
0.6000 
0.6500 
0.6400 
0.6200 
0.6300 
0.7600 
0.8200 
0.8600 
0.8200 
0.7800 
0.9400 
0.8800 
1.0100 
1.1400 
1.0200 
0.9300 
0.9600 
0.8700 
0.7900 
0.7400 1 

0.8000 
0.9100 
0.8400 
0.8200 
0.8700 
0.8100 
0.7800 
0.7300 
0.7600 
0.7600 
0.7200 
0.7000 
0.7000 
0.7000 
0.6900 
0.6600 
0.6300 
0.6400 
0.7100 
0.6900 
0.6700 
0.7400 
0.7100 
0.7100 
0.7100 
0.6700 
0.7100 
0.7100 
0.7900 
0.8100 
0.7600 

0.7300 
0.7000 
0.6700 
0.6200 
0.5900 
0.5700 
0.5600 
0.6300 
0.6200 
0.6000 
0.5600 
0.5300 
0.5100 
0.4800 
0.5100 
0.5900 
0.5800 
0.5500 
0.5200 
0.5200 
0.5200 
0.5500 
0.5200 
0.5000 
0.4800 
0.4700 
0.4600 
0.4400 
0.4500 
0.4300 

0.4900 
0.6100 
0.5800 
0.5500 
0.5200 
0.5300 
0.5200 
0.5300 
0.5100 
0.4800 
0.4600 
0.4400 
0.4300 
0.4200 
0.4100 
0.4000 
0.3900 
0.4000 
0.3900 
0.4200 
0.46G0 
0.4800 
0.5400 
0.5800 
0.6300 
0.5900 
0.5500 
0.5200 
0.5000 
0.5100 
0.4900 

0.4700 
0.4800 
0.5300 
0.5700 
0.6000 
0.5900 
0.5800 
.1.5600 
0.6200 
0.6400 
0.6200 
0.6300 
0.7500 
0.7200 
0.6800 
0.7000 
0.6700 
0.7000 
0.6800 
0.6700 
0.6400 
0.6600 
0.7100 
0.7700 
0.9700 
0.9000 
0.8500 
0.8200 
0.7600 
0.7100 
0.6900 

0.6600 
0.6400 
0.6400 
0.6700 
0.7000 
0.7400 
0.7200 
0.8100 
0.8900 
0.9400 
1.0300 
0.9900 
0.9300 
0.9700 
0.9500 
0.9000 
0.8400 
0.9000 
0.9200 
0.8500 
0.7900 
0.7500 
0.7500 
0.7600 
0.7500 
0.7100 
0.6900 
0.6600 
0.6300 
0.6300 

0.6100 
0.6200 
0.8000 
0.8100 
0.8700 
0.8500 
0.8400 
0.8000 
0.8400 
0.8300 
0.7900 
0.7900 
1.0400 
1.1200 
1.1400 
1.3000 
1.1600 
1.1800 
1 .1500 
1.1800 
1.2200 
1.2300 
1 .1900 
1.2200 
1 .1100 
1.0200 
0.9700 
1.0100 
1.0800 
1.0000 
0.9900 

0.9400 
1.0500 
1.1300 
1.0400 
1.0400 
1.0300 
0.9800 
0.9300 
0.9600 
0.9600 
0.9100 
0,8500 
0.8100 
0.7900 
0.8700 
0.8400 
1.0200 
0.9800 
0.9200 
0.9100 
0.8500 
0.8700 
0.9100 
C.9200 
0.8800 
0.8400 
0.8100 
0.7800 
0.7500 
0.7300 

YEAR 1970 



Table (5.2) Cont'd. 

DAY APR. MAY JUNE JULY AUG. SEP. OCT. NOV. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

0.4100 
0.4200 
0.4600 
0.4200 
0.4400 
0.4100 
0.4000 
0.4100 
0.4200 
0.4000 
0.3900 
0.4400 
0.6000 
0.6200 
0.5900 
0.5400 
0.5400 
0.5100 
0.4900 
0.5100 
0.6300 
0.5800 
0.5600 
0.7100 
0.6300 
0.6000 
0.6500 
0.6000 
0.5500 
0.5300 

0.5300 
0.5200 
0.5100 
0.5100 
0.4900 
0.5100 
0.4900 
0.6700 
0.6700 
0.6600 
0.6200 
0.5900 
0.5800 
0.5600 
0.5400 
0.5300 
0.6400 
0.6100 
0.5800 
0.7500 
0.7300 
0.8000 
0.7600 
0.7100 
0.6700 
0.6400 
0.6300 
0.6000 
0.6100 
0.5800 
0.5500 

0.5500 
0.5100 
0.4900 
0.5100 
0.5900 
0.7300 
0.6900 
0.6300 
0.5700 
0.5300 
0.4900 
0.4600 
0.4300 
0.4100 
0.4000 
0.4700 
0.4700 
0.4400 
0.4200 
0.4000 
0.3900 
0.3800 
0.3800 
0.3700 
0.3500 
0.3600 
0.3600 
0.3500 
0.3500 
0.3500 

0.3700 
0.3700 
0.3600 
0.3500 
0.3500 
0.4000 
0.4400 
0.4500 
0.4300 
0.4600 
0.4300 
0.4100 
0.4800 
0.4900 
0.4700 
0.4500 
0.4500 
0.4300 
0.4100 
0.4100 
0.4700 
0.4500 
0.4600 
0.4900 
0.4700 
0.5400 
0.5200 
0.5200 
0.5400 
0.5200 
0.4800 

0.4700 
0.5400 
0.5100 
0.4800 
0.5000 
0.4900 
0.5800 
0.5400 
0.5200 
0.5300 
0.5100 
0.5000 
0.4800 
0.5400 
0.5200 
0.5300 
0.5100 
0.4800 
0.4700 
0.4500 
0.4400 
0.4400 
0.4700 
0.4500 
0.5200 
0.5500 
0.5200 
0.5200 
0.5200 
0.5600 
0.5300 

0.5000 
0.5700 
0.5900 
0.5900 
0.5600 
0.5800 
0.5700 
0.5700 
0.5700 
0.5400 
0.5100 
0.5500 
0.5300 
0.5100 
0.4900 
0.4700 
0.4500 
0.4600 
0.4500 
0.4500 
0.4400 
0.4400 
0.4300 
0.4300 
0.4300 
0.4500 
0.4400 
0.4300 
0.7100 
0.6700 

0.6200 
0.6200 
0.5900 
0.5800 
0.6200 
0.6900 
0.7400 
0.7000 
0.6600 
0.6600 
0.6200 
0.5900 
0.5600 
0.5800 
0.5600 
0.5400 
0.5200 
0.5700 
0.6000 
0.6300 
0.6200 
0.6200 
0.6200 
0.6100 
0.6400 
0.6200 
0.6500 
0.7300 
0.8200 
0.7600 
0.7400 

0.6900 
0.6400 
0.6100 
0.5800 
0.5700 
0.8400 
0.7900 
0.7600 
0.7200 
0.6700 
0.6500 
0.6900 
0.7900 
0.7400 
0.7200 
0.6700 
0.6300 
0.5900 
0.5700 
0.5500 
0.5300 
0.5100 
0.4900 
0.4700 
0.4600 
0.4500 
0.4600 
0.4700 
0.6600 
0.6400 
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iii) Dark redy clay loams occasionally lateritized 35.2% 

iv) Yellowish red clay loams occasionally shallow over phyllites 21.6% 

5.4 GEOLOGY OF WAKI CATCHMENT 

The geological structure of the catchment is illustrated inFig. (5.3).
The percentages of areas for the two types of rock formation in the catchment
 
are:
 

i) Undifferentiated gneisses including elements of P(B) and, inthe north,
 
granulite facies rocks 


36.9%
 
ii) Bunyoro series and Kyoga series: shales arkoses and quartizites with
tillites, like rocks inthe Bunyoro series 
 63.1%
 

5.5 VEGETATION OF WAKI CATCHMENT
 

The vegetation types in the Waki catchment are given in Fig. (5.4). 
 The
percentages of area covered with the different types of vegetation are:
 

i) Dry combretum savannah 

13.8%
 

ii) Moist combretum savannah 

10.8%
 

iii) 
 Medium altitude moist semi-deciduous forests 
 26.6%
 

iv) Forest / savannah mosaics 

47.7%
 

v) Grass savaiinah 
1.1% 
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5.6 AREA VERSUS ELEVATION FOR WAKI CATCHMENT
 

Areas of the Waki catchment between contours of 200 feet intervals
 
are given inTable (5.3). Using the relationship between area and elevation
 

shown in Fig. (5.5), it can be seen that an area of 365 Km2 lies between 3250
 
and 3640 feet with change inelevation of 490 feet, while the remaining area
 

of 110 Km2 lies between 3640 and 4600 feet with change in elevation of 960
 
feet. Weighting the elevation of the two areas, the mean elevation of the
 
catchment comes to 3601 feet appr-oximately, see WMO (1972).
 

5.7 CLIMATE OF WAKI REGION
 

There are two climatological stations near the catchment. Station Masindi
 
is located to the east, and station Butiaba lies to the north-west. Statistics
 

of climatic elements of temperature, humidity, rainfall and wind speed for
 
these two stations are given in Tables (5.4) and (5.5) respectively.
 

5.8 OBSERVATIONAL NETWORKS OVER WAKI REGION
 

5.8.1 Meteorological Stations
 

The meteorological stations existing within and around the Waki catchment 
are shown in Fig. (5.6). The particulars of these stations are illustrated 
in Table (5.6). Itcan be observed that there is a dense network of rain 
gauges in Siba sub-catchment and one self-recording rain gauge in the whole 
of Waki-II catchment. Most of these stations started its operation in1970, 

[WMO (1972)]. 

5.8.2 Hydrological Stations
 

Waki-I, Waki-Il and Siba are the main hydrological stations found within
 
the Waki catchment. The first station lies on Waki tributary upstream and
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Table (5.3)
 
WAKI II
 

AREA VS ELEVATION FOR RIVER WAKI IICATCHMENT
 

Elevation range 
 Area inSq. Kns Cumulative area Sq. Kms.
 

3250' - 3400' 51.7 
 51.7
 

3400' - 3600' 213.4 
 265.1
 

3600' - 3800' 
 121.2 
 386.3
 

3800' - 4000' 
 38.7 
 425.0
 

4000' - 4200' 
 26.0 
 451.0
 

4200' - 4400' 
 18.5 
 469.5
 

4400' - 4600' 
 5.2 
 474.7
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Table (5.4) 
CLIMATOLOGICAL STATISTICS FOR SATATION MASINDI0 0 

Lat. 01 41'N Long. 31 43'E Alt. 1146 meters 

Month 

Temperature (1931-1954) 

Average 
ax. + ean ean M 

Mi. Range Max. Min.2
2 C C°o C C 

Rela- Rainfall (1907-1962) 

-five 
Humi- Monthly Total 
dity
1200 Aver- High- Low-
GMT. acje est est , r (mm) 

Average 

wind speed 
(1938-1962) 

0600 1200 
GMT. GMT.
Knots Knots 

January 

February 

March 

April 

May 

June 

July 

August 

September 

October 

November 

December 

23.8 

24.1 

24.0 

23.3 

22.9 

22.3 

21.6 

21.5 

21.9 

22.5 

22.9 

22.9 

14.2 

14.1 

12.8 

11.5 

10.7 

11.2 

10.6 

10.7 

11.5 

11.7 

12.2 

12.9 

30.9 

31.2 

30.4 

29.1 

28.2 

27.9 

26.9 

26.9 

27.7 

28.4 

29.0 

29.3 

16.7 

17.1 

17.6 

17.6 

17.5 

16.7 

16.3 

16.2 

16.2 

16.7 

16.8 

16.4 

41 

43 

49 

59 

64 

64 

63 

65 

63 

60 

53 

51 

29 

55 

103., 

157 

148 

99 

111 

141 

143 

144 

118 

44 

103 

183 

227 

287 

292 

242 

242 

275 

233 

277 

340 

105 

0 

0 

12 

61 

40 

31 

40 

46 

61 

41 

3 

0 

4 

4 

4 

4 

4 

3 

3 

4 

4 

4 

4 

4 

10 

9 

9 

7 

7 

7 

7 

7 

7 

8 

8 

8 

Year 22.8 12.0 28.8 16.8 56 1292 1717 1009 4 8 
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Table (5.5) 
CLIMATOLOGICAL STATISTICS FOR STATION BUTIABA
 

0 	 0 
Lat, 01 50'N Long. 31 20'E Alt. 621 meters
 

Temperature (1931-1954) Rela- Rainfall (1904-1962) Average
 

tive wind speed
 
Month Average Humi- Monthly Total (1938-1954)
dity

Max. + Mean Mean ean 	 120 
1200 Aver_- H-ih- Low- 0600U~ 1i2*Min. Range Max. Min. 	 GMT. age est est GMT. GMT. 

2 C Co C co ° o 	 % (mm) (mm) (mm) Knots Knots 

January 26.1 7.9 30.1 22.2 66 14 55 0 4 7
 
February 26.5 7.5 30.2 22.7 67 31 179 
 0 5 7
 
March 26.5 7.2 30.1 22.9 68 56 162 
 13 3 7 
April 25.9 7.3 29.6 22.3 70 101 205 24 3 6 
May 25.7 7.2 29.3 22.1 70 96 234 8 3 6 
June 25.3 7.3 29.0 21.7 69 55 191 4 4 6 
July 24.8 7.0 28.3 21.3 70 68 269 5 5 6
 
August 24.5 6.5 27.8 21.3 
 70 86 169 22 5 6
 
September 25.1 7.4 28.8 21.4 70 75 125 10 5 6
 
October 25,5 7.3 29.1 21.8 71 84 184 14 4 
 6
 
November 25.6 7.4 29.3 21.9 69 72 
 280 3 4 7
 
December 25.7 7.8 29.6 21.8 67 
 27 105 0 4 6
 

Year 25.6 7.4 29.3 21.9 69 165 1263 400 4 6
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Table (5.6) 
EXISTING METEOROLOGICAL STATIONS 

AT WAKI - II CATCHMENT 

Sr. 
No. Name 

Regis-
RediNo. 

tered No 
Type Latitude 

Attd 
Longitude Altitude 

(Feet) 

aeo 
Date of 
Start 

1. Waki 8831150 Rainfall o
1 43'N 

0
31 22'E 3250 5.7.68 

2. Karongo 8831062 "iinfall 
0
1 41'N 31 

0
30'E 3550 6.9.70 

3. Nyantonzi 8831065 Rainfall o
1 39'N 

0 
31 29'E 3600 5.9.70 

4. 

5. 

Bubwa 

Kisabagwa 

8831149 

8831048 

Rainfall 

Rainfall 

1 37'N 
0 

1 32'N 

31 

31 

27'E 

24'E 

3500 

3900 

4.7.68 

3.7.68 

6. Siba 8831038 Rainfall 1 39'N 31023'E 3400 1968 

7, 

8. 

9. 

Nyabyeya 

Bwinamira 

Budongo 

8831024 

8831056 

8831057 

Hydromet 
St. 
Rainfall 

Rainfall 

1 40'N 
o 
1 38'N 

0o 

1 39'N 

31 32'E 
0 

31 32'E 

31 34'E 

3900 

3550 

3650 

18.4.70 

15.4.70 

10. 

]I. 

12. 

13. 

Nyankwanzi 

Kitonozi 

Kyabagenyi 

Kikobwa 

8831060 

8831064 

8831063 

8831066 

Rainfall 

Rainfall 

Rainfall 

Rainfall 

1 37'N 
o 

1 38'N 
o 

1 38'N 
o 

1 38'N 

31 34'E 
o 

31 39'E 
0 

31 35'E 
o 

31 38'E 

3650 

3850 

3550 

3750 

17.4.70 

4.9.70 

9.9.70 

2.9.70 

14. Kimanya 8831068 Rainfall 
0 

1 35'N 
0 

31 31'E 3700 4.9.70 

15. Kaangoire 8831059 Rainfall 0
1 35'N 

0
31 33'E 3700 16.4.70 

16. 1 Bulyango 8831067 Rainfall 
0 
1 38'N 31 

0 
33'E 3600 10.9.70 

17. Kabango 8831058 Rainfall 
0 
1 39'N 

0
31 35'E 3650 14.4.70 
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near forestry station while the others are located on the main Waki River and
 
Siba River respectively.
 

5.9 HYDROLOGICAL ANALYSIS OF DATA
 

5.9.1 Daily, Monthly and Annual Runoff
 

For the thiree hydrological stations of Waki catchment, runoff is evalu­
ated after applying shift corrections to the observed gauges according to the
 
following equation 

-r
= 1 (G,. +3G +
8 + 3G. 2 + 22.1+ G 3 ) (5.1) 

where
 

G, : Mean daily gauge.
 

GI,2 : First reading of the day under consideration. 

G1.3 : First reading of the next day,
 

G2.1 : Second reading of tha previous day.
 

G2.2 : Second reading of the day under consideration.
 

The percentages of monthly to annual 
runoffs are illustrated inTable
 
(5.7). The average values of these percentages range from 4.8 to 12.4 which
 
means that the variations of monthly runoff are not high.
 

5.9.2 Rainfall - Runoff Relationship 

Runoff coefficient for some months of the period of observed data are
 
shown in Table (5.8). Obviously there is a high influence of the storage
 
capacity of the catchment on the hydrological regime since runoff coefficients
 
higher than unity have been obtained in some months. The percentage of annual
 
runoff to annual rainfall ranges from 11 to 15 which is very low.
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Table (5.7) 
Waki - II Runoff Coefficient 

Year & 
Month 

Rain-fall 
(mm) 

Runoff 
(mm) 

Runoff co 
fficient 

Year & 
Month 

Rain-fall 
(mm) 

Runoff 
(mm) 

Runoff co 
fficient 

% /
/0 

1967 1970 
Nov. 165.2 24.1 15 Jan. 49.3 14.0 28 
Dec. 12.2 14.6 120 Feb. 20.5 8.5 42 
1968 Mar. 153.5 12.6 8 
Jan. 15.9 6.3 40 Apr. 221.1 24.8 11 
Feb. 43.8 6.5 15 May 153.6 20.5 13 
Mar. 59.6 8.4 14 June 80.2 13.3 17 
Apr. 183.6 9.2 5 July 120.9 13.8 11 
May 180.4 21.2 12 Aug. 176.0 21.0 12 
June 89.0 12.7 14 Sep. 140.3 22.9 16 
July 58.5 8.4 14 Oct. 210.6 32.9 16 
Aug. 166.6 '14.8 9 Nov. 95.0 22,9 24 
Sep. 147.7 13.5 9 Dec. 10.5 14.3 136 
Oct. 147.5 13.6 9 Annual 1431.0 221.6 15 
Nov. 125.5 12.4 10 1969 
Dec. 103.1 18.4 18 Jan. 119.2 12.1 10 
Annual 1321.2 145.6 11 Feb. 93.1 11.0 12 

Mar. 124.0 12.5 10 
Apr. 104.9 7.9 8 
May 216.6 21.1 110 
June 88.5 13.2 115 
July 74.8 10.8 14 
Aug. 91.9 9.8 11 
Sep. 118.7 11.7 10 

Oct. 177.8 15.8 9 

Nov. 164.9 19.7 12 
Dec. 88.1 32.5 37 

.... _ Annual 1462.5 178.1 12 
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Table (5.8) 
WAKI II 

To~al Runoff Recession Data
 

q. = Initial discharge (C.M.S) 

qt = Discharge (C.M.S) after 12 hours 

Period of qo qt Period of qo qt 
hydrograph kydrogr'.ph 

2 - 10 5.60 5.43 11 - 19" 6.75 6.30 
December 1967 5.43 5.22 Decombor 1969 6.30 5.60 

5.22 4.97 5.60 5.19 

4.97 4.65 5.19 4.77 

4.65 4.30 4.77 4.57 
4.30 4.07 4.57 4.30 

4.07 3.83 4.30 4.09 

3.83 3.64 4.09 3.97 
3.64 3.38 3.97 3.90 
338 3.20 3.90 3.77 
3.20 3.00 3.77 3.64 
3.00 2.90 3.64 3.50 

2.90 2.75 3.50 3.37 
2.75 2.65 3.37 3.25 

2.65 2.50 3.25 3.20 

2.50 2.40 25- 28 
2 - 6 
May 1968 7.37 6.26 

April 1970 
10.25 8.00 

6.25 5.44 5.00 6.70 

5.44 4.90 6.70 5.85 

4.90 4.37 5.85 4.95 
3.37 3.65 4.95 4.28 
3.65 2.97 26 ­ 29 

2.97 2.55 August 1970 7.00 5.75 

2.55 2.25 5.75 4.90 
25 - 28 4.90 4.17 

Novembor 1969 6.45 5.40 4.17 3.75 
5.40 4.55 3.7 3.40 
4.55 4.09 3.75 3.40 
4.09 3.75 
3.75 3.30 
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5.9.2.1 Relationship based on monthly values
 

For this relationship effective rainfall 
is used in order to introduce
 
the effect of soil moisture on runoff. The effective rainfall has been cal­
culated from two months of observed data using weighting factors of 0.9 and
 
0.1, 0.8 and 0.2, 0.7 and 0.3 and so on. 
 Using the rank test, the effective
 
rainfall computed with weighting coefficients of 0.7 and 0.3 is found to be
 
the best. The coefficient of correlation of monthly runoff and monthly effec­
tive percipitation isfound to be 0.63.
 

Itwas found that rainfall - runoff relationship based on monthly data
 
could not be improved further with all months put together. Perhaps a better
 
relationship could be obtained if each month was taken separately.
 

5.9.2.2 Relationship based on ten-day values
 

Inthe view of short time data available for Waki-II catchment, rainfall­
runoff relationship was attempted on the basis of ten-day values. 
Ten-day
 
rainfall, ten-day mean discharge and Antecedent Precipitation Index (API) were
 
used in multiple correlation technique for each month of observed data. 
 After
 
several trials with various API values, Itwas found that API calculated by
 
the following equation furnishes the best relationship [WMO (1972)]
 

API = o.8P1 + 0.4P2 + O.1P3 (5.2)
 

where Pl, P2 and P3 are rainfalls of first, second and third ten-day periods.
 

The coefficient of correlation computed from these relationships came to
 
0.92 which is quite satisfactory.
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5.9.3 Ground Flow Recession Curve
 

From the observed hydrographs, two hydrographs where the falling limb
 
had reached the ground flow, are selected and plotted on semi-logarithmic
 
paper as illustrated in Figs. (5.7) and (5.8). The ground flow recession
 
is exponentially decayed according to
 

qt = qo Kt (5.3) 

where
 

q. : Initial discharge.
 
qt : Discharge at time t.
 

K : Recession constant.
 

The straight line portion at the end of the falling limb of the two hyd­
rographs gives part of ground flow hydrograph. The value of recession con­
stant K at time t equals to 24 hours is found to be 0.98 in both cases.
 

5.9.4 Total Runoff Recession Curve
 

In the separation of compound hydrographs, information of total runoff
 
recession can sometimes be useful. Therefore, a number of observed hydrographE
 
with different peaksre selected and for each hydrograph, values of discharge 
at intervals of 12 hours are read out starting after the inflection point on 
the falling limb. A plot of q, vs qt was done together for the data of these
 
hydrographs given in Table (5.8) as shown in Fig. (5.9). There is a consi­
derable scattering in the plotted point because the falling limbs of these
 
hydrographs are generally distorted by rain falling over the Waki catchment
 
even after the hydrograph peak has been reached. Therefore, the falling limb
 
of the total runoff hydrograph does not represent simple depletion of the
 
channel storage but is mixed with more surface runoff coming into the streams.
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5.10 
ANALYSIS OF TYPICAL HYDROGRAPHS OF WAKI CATCHMENT
 

The pattern of rainfall of Waki catchment is such that the falling limbsor"the hydrographs reach base flow after a long period and the hydrographsare mostly compound. 
During the rainy season it nearly rains every day and
a real 
break is unusual. For separating the base flow from direct runoff, a
simpler procedure is applied. 
The base flow hydrograph isfixed by joining
the lowest points reached by the daily discharge hydrograph when rainfall
stopped for some days or was very small. 
 The base flow hydrograph is shown
 
in Fig. (5.10).
 

As mentioned earlier, it is impossible to find a 
simple hydrograph,
therefore the compound hydrograph observed from 16th to 30th April 
for 1970
was 
selected to analyse the unit-hydrograph. 
As shown in Fig. (5.11), the
selected hydrograph has three peaks. 
 Each of these peaks has been produced
by three separable rain spells. 
This hydrograph is therfore composed of
three simple hydrographs. 
 The first hydrograph is then used for the deter­mination of the unit hydrograph and its final configuration is shown in Fig.
 
(5.11).
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CAHPTER VI
 

APPLICATION OF THE MODEL BUILDING TECHNIQUES
 

TO WAKI RIVER CATCHMENT
 

6.1 INTRODUCTION
 

The construction of mathematical models from observed time series is
 
practiced ina 
variety of disciplines, including engineering, ecology and
 
applied statistics with specific objectives. For example, Kashyap and Rao
 
have suggested the stochastic difference equation models to represent some
 
hydrological systems.
 

Inapplication, a plausible classes of models can 
ba obtained by the
 
inspection of the given time series and examination of their characteristics.
 
Consequently, the availability of using either the noisy-transfer function
 
model or the linear stochastic difference equation model 
for an appropriate

simulation of the case study previously presented in Chapter V will be
 
studied in some details.
 

6.2 SOME FEATURES OF THE CASE STUDY
 

The data used for this study isselected inthe rainy season of Waki
 
catchment which includes eight successive months, starting with April, 
to
 
avoid data non-stationarity. Therefore, the data length for both the input
 
sequence [x(.)] and output sequence [y(.)] illustrated in Tables (5.1) 
and
 
(5.2) respectively includes 488 points [WMO (1972)].
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6.2.1 Statistical Characteristics of the Observed Data
 

Consider , and y as the observed mean, standard deviation and skew­
ness coefficient of the measured output data [y(,)], wilereas the same nota­
tions for the input data [x(-)] are i, ax and yx respectively. The variations
 
of these notations with the sample size for both the input rainfall and out­
put discharge are elucidated in Figs. (6.1) and (6.2) respectively,
 

The cross-correlation coefficient of the output discharge [y(.)] and the 
input rainfall 

formula 

[x(.)] at different time lags k have been calculated using the 

(k) 1 N-k+l 

Ryx (E 1 Y(i) - [x(ki-l)' - . (6.1) 

This yields the results shown in Fig. (6.3), where the maximum value has been
 
located at a time lag equals three days. In practice, this value of time lag
 
represents a very suitable estimate for the time delay factor T.
 

Consider the correlograms of measured rainfall and output discharge
 
shown in Figs. (6.4) and (6.5). The first correlogram reflects considerable
 

fluctuations compared with that of the output discharge which shows a little
 
variability. Consequently, the smoothed raw estimates of the power spectrum 
evaluated for the output discharge reveals a small damping response as de­
lineated in Fig. (6.6). Finally, the probability of both the measured input 

rainfall and output discharge are shown in Figs. (6.7) and (6.8) respec­

tively. 

6.3 APPLICATION OF THE NOISY-TRANSFER FUNCTION MODEL
 

The basic premise of this study is the appropriate selection of an es­
timation methodology which yields an adequate results for the case study.
 
Therefore, we shall consider different structures of the noisy-transfer fun­
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ction model on the basis of causality principle. Systematicaly, these stru­

ctures can be described as follows:
 

i) The normalized values of the measured input rainfall sequence [x(.)] are
 

mathematically delayed as
 

for k > T + 1j x(k-t) 
(6.2)
Xd(k) 


0 for k < r + I 

to achieve a better coincidence with the similar values of the output
 

discharge sequence [y(.)]. Practically, the kernel length ko can be
 

chosen, such that
 

U (ko-1) > U (ko), (61) 

and
 

(6.4)
E (i) = y / (Yx 
i=l
 

Then, the unconstrained numerical solution may be invoked, together with
 

to obtain the values of the impulse response vector U
(6.3) and (6.4), 


since the matrix (HT V_ H) appears to be ill-conditioned in most of the
 

usual cases [Abadie (1970)].
 

invoked
The 3valuated impulse response vector U together with (6.2) are 


as follows
to estimate the output of the first model MI, 

ko ^ ­

Y(k) c Iy U()xr-~ + 
(6.5)
yY l 


Vk = 1,2, .... N. 
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*i) Further, it isalleged that the autoregressive models have to be pre­

ferred since they can achieve much better estimatability conditions for
 

those systems whose complete mathematical description is not available.
 

Thus, the normalized discharge isused to generate the vector y, as
 

follows
 

y(2)
 

y(3)
 

S= (6.6)
 

_y(N)
 

as well as the following matrix
 

y(l) 0 . 00 
y(2) y(l) 0
 

I. '(6.7) 

y(N-l) y(N-2) y(N-k)J
 

Obviously, the necessary and sufficient condition for estimating the
 

kernel length k. is 

k•
 ,U(i) = I. (6o8)
 
i=l
 

The unconstrained numerical solution, together with (6.8), are used to
 

evaluate the impulse response vector U. Thus, the current estimates of
 
A 

the output data generated from the model M3 may be expressed as follows
 

[ U(i) y(k-i)] +y, k=2, 3, ... , N 

y(k) = Il (6.9)
1ly y(k) + j for kW. 
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Consequently, the one-step ahead predicted values of the output dis­
charge [y(.)] may be defined as
 

A 
 koA
 
y(k+l) = E U(i) y(k-i+l),

i=1 
k=l, 2, ... , N. (6.10) 

iii) As mentioned earlier, the constrained approach may lead to a 
considerable
 
improvement inthe accuracy of estimated output data. 
 Thus, it is ad­
visable to consider the numerical solution of the optimization problem
 
(3.13) together with the two constraints of (3.14).
 

Specifically, the incomplete mathematical balance of the system under
 
study strengthen the hypothesis of inequality constraint alone. 
 Thus,
 
the optimization problem reduces to
 

=IuTHT V- UT HT V" Mine - HU-

(6.11)

subject to U 00,
 

where the kernel length k. may be evaluated using (6.3), (6.4) together
 
with (6.11).
 

The impulse response vector U that minimizes the previous optimization
 
problem is then invoked to transfer the delayed input data of the model
 
M5 into its output part according to (3.21).
 

iv) Unfortunately, the three impulse response vectors obtained before de­
monstrated an oscillatory pattern due to the irrepresentability of the
 
observed input and/or output data [Blanke et al. 
 (1970)]. Thus, it is
 
relevant to point out that, these oscillatory vectors may be mathemati­
cally smoothed using the Hamming window algorithm discussed in Appendix
 
A. Consequently, we can obtain another three models M2 , M4 and M6 . 
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Practically, all necessary estimates can be evaluated using the com­

puter program listed in Appendix B. Let
 

n(k) = y(k) - y(k) 

(6.12)
 

k = 1,2, ... , N 

be the residuals of estimation at lag k.
 

The numerical values of the impulse response vectors fo'r the previous 

models as well as the mean and variance of each residual sequence [n(')] are 

summarized in Table (6.1), where 

1 N (6.13)- nn i), 
N1 i=l
 

and
 

S N (1) - 2. (6.14)
 
n T 1I 

6.4 VALIDATION TESTS OF THE NOISY-TRANSFER FUNCTION MODEL
 

Kashyap and Rao (1976) have suggested that the appropriate class of models
 

can be obtained by investigating its validation for the prespecified esti­

mation conditions. Thus, we shall use the validation tests discussed in
 

Chapter III to select an adequate model among the six noisy-transfer fun­

ction models presented before.
 

6.4.1 Test of the Goodness of Fit
 

Usually, the goodness of fit between the two histograms of observed and
 

estimated discharges may be checked by using the se'jnd Kolmogrov-Smirnov test
 

given in Appendix C. Consequently, the statistical responses of the six models
 



Table (6.1) SUMMARY OF THE NOISY-TRANSFER FUNCTION MODELS. 

MODEL DELAY 
 THE IMPULSE RESPONSE
 
FACTOR -UR 
 U (2) u(3) u(4) U(5) U(6) U(7) U(8) U(9) U(10) u(11)
 

3 10 1 9 Q21175 0.1279 -0.1702 -Q024 -03282 0.1273 -0.0028 0.0/63 -0.0201 000111 0.2Fc199 

2
M 3 5 0522 -0.1455 0.0123 -0.0039-.0X -0.0971 - ­ - -0- .00072 0.23355 

M3 05 =-1.OO(C 20551 -0.2485 0.2260 -0.3162 G 2030 -­ - -I.000180 0.13818 

5
M 0 4,OSO .8218 03901 -0.0078 -007M0-0.035j 
0-0-0-5-­

we5 3 10 0JO000 )O160OD00O 0.0118 0.0000 0.0202 0.0000 CL0188 0.000010,016 3 00071 -. 24178 0218 34I 

M 3 .0054 0.0064 0.0075 0.0112 0.0031 0.0102 0.0091 0.0104 0.0113 
10 0.0073 0.0096 

-0216520.18276 

MEAN OF THE RESIDUALS.
 

STANDARD DEVIATION 
 OF RESIDUALS. 
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are illustrated inTable (6.2).
 

As a general view, the test statistics of the model M4 are acceptable
 
on both the 0.95 and 0.90 significant levels, while the other model M3 may
 
be accepted on the second level only.
 

6.4.2 Test of Zero-Mean Value of Residuals
 

Obviously, the estimators of the output data sequence may be unbiased
 
for those models whose residual sequence has a zero-mean value. Thus,,the
 
results shown inTable (6.3) insure the validity of the unconstraiied models
 
M M2, M3 and M4 for the zero-mean value and consequently the unbiasing con­
dition. 

6.4.3 
 Validation Tests Based on the Comparison of Various Characteristics
 

of Observed and Estimated Dischar se 

For an appropriate reduction for the fieldof choice, we may consider
A A 
only 	the two successful models M3 and M4. Specifically, the correlograms,
 
power spectrums, histograms, and the normalized cumulative histograms of
 
these two models compared with the corresponding characteristics of the
 
observed output data are illustrated in Figs. (6.9) to (6.14).
 

These results indicate that :
 

i) The standard deviation aM(k) governed by (3.30) is found to be 0.24 which
 
represents a very convenient qualitative decision limit for both models.
 

ii) 	The correlogram, power spectrum and histogram of the generated data using
 
M are quite similar to those of the observed output data. Thus the qua­
litative validation test strengthen the hypothesis of choice M4.
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Table(6.2) RESULTS OF THE SECOND KOLMOGROVSMIRNOV TEST 

1 ' 
1MODEL TEST LAG 

STATISTIC 5 10 15 20 25 30 35 /0 45 50 
.- Z 1..5814 1.7889 1.46060.7906 1.2728 1.4201 1.7928 1.9007 1.7919 1.5000 

M1 =0.05 R R R A A R R R R R 
E2 =0.1 0 R R R A R R R R R R2 Z 1.5811 2.0125 1.6432 0.94371.4142 1.9365 2.3905 2.6833 2.635' 2.400M2 l 0.05 R R R A R R R R R R 

c =0.10 R R R A R R R R R R 

Z 1.2649 1.3416 1.2780 1.1067 0.9899 .9036 0.8366 1.2298 1.1595 1.1000
M3 6 1 0.05 A A A A A A A A A AG2 0.10 R R R A A A A R A A 

- z 03162 0.94 0.9128 19486 011485 .7746 95620.69440 .6325 0.6000
M4 6.,0.05 A A A A A A A A A A 

- 0,10 A A A A A A A A A A 
z 1.5811 2.2361 2,736 30042 2.828412.5819 2.509 2.68 33 2.8461 3.2000M5 1 = 0.05 R R R R R R R R R R 

2 = 0.10 R R R R R R R R R R 
m Z 1.S811 2.3361 2.7386 24972A04221947 2.73482,9236 2h,244 2,1000H6 F, u 0.05 R R R R R R R R R R62 =0.10 R R R R R R R R R R 

A ACCEPT THE NULL HYPOTHESIS Ho. 

A REJECT THE NULL HYPOTHESIS Ho. 



Tobie (6.3) RESULTS OF THE ZERO MEAN TEST.
 

I MOD ELS 
T EST _ _ _ _ _ _ _ _ _ 

STATISTIC M m M M4 M5 M6 

D! 0.04534 0-3300 0.02524 0.01069 11.43045 11.18838 
=Ei 0.05 A. A A A R R 

e= 0.10 A A A A R R 

A ACCEPT So. 

R REJECT So. 
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6.5 THE QUALITATIVE CHARACTERISTICS OF RESIDUALS
 

The ten-days mean-values of residuals obtained by using the two suc­
cessful models M3 and M4 are delineated in Fig. (6.15).
 

The correlograms of daily residuals, evaluated via the two models M3
and M4 , are illustrated i.n 
Figs. (6.16) and (6.17) respectively. Itcan be
observed that the coefficients R(k) of the first residual sequence are more
acceptable than those of the second sequence. since they lie within the
 
specified standard deviation limit.
 

The smoothed raw estimates of the p .ver spectrum for both daily re­sidual 
sequences are shown in Figs. (6.18) and (6.19), which demonstrate a
considerable variability but with a 
negligable magnitudes w.r.t. S(wo).
 

Finally, the histogram of residuals generated by the most successful
model M4 and its normalized cumulative values are shown in Figs. (6.20) and
(6.21). 
 These histograms coincide with the normal distribution N(-0.00045,
 
0.16), 
see Clark (1969).
 

6.6 APPLICATION OF THE LINEAR STOCHASTIC DIFFRENCEEQUATIONMODEL
 

Inthis section, the linear stochastic difference equation model 
is
applied to the physical system under study. 
The multiplicative and additive
 
structures are utilized with tha following assumptions:
 

i) The proposed model 
has only autoregressive terms of a variable order n.
 

ii) Inaddition to these n-autoregressive terms, another mth order term rep­
resenting the residuals may be fedback to the output part of the model 
in­
order to achieve a corrective pattern.
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iii) Another sinusoidal term of frequency 2wj/244, j"-l, 
2, ... , N, is added 
to the nth order autoregressive model to trace the daily oscillations of
 
the data.
 

The number of autoregressive, residuals and sinusoidal 
terms for both
 
the additive and multiplicative models are illustrated in Table (6.4).
 

6.7 ESTIMATION OF THE PARAMETER VECTOR
 

Using the recursive algorithm (4.11) together with first procedure of
 
initialization, the parameter vector a(i), i=l, 
2, ..., N, is identified.
 
The final 
values of the estimated parameter vector a as well 
as the mean,

absolute mean and mean-square values of residuals for both the additive and
 
multiplicative sturctures are shown in Tables (6.5) and (6.6), where
 

1 NEo:
 

i=l 

N 
and 


(6.15) 

1 N2 N i =1 

indicate respectively the mean, absolute mean and mean-square values of the
 
residual sequence [w(.)].
 

6.8 
CLASS SELECTION OF THE LINEAR STOCHASTIC DIFFERENCE EQUATION MODEL
 

Among the different classes of the linear stochastic difference equation

model illustrated in Table (6.4), the most acceptable model 
can be obtained
 



Table (6.4) LIST OF PARAMETERS FOR 

MtJLTiPLICATIVE MODELS. 

THE ADDiTIVE AND 

n 

M1_ 

2 

M9 M2_ _Ic 

3 

M3 

4 

11 M4 a 

5 

MODELS 

MilMl5 

2 

M 

3 

M14 M7 M15 M8 &  

2 3 

M16 

m 2 2 

n 3 

M, 

M4 

n ­

m 

I =1-8 

i= 9-16: 

N. n3ER OF AUTOREGRESSIVE TERMS. 

NUMBER OF SINUSOIDAL TERMS. 

NUMBER OF ERROR TERMS. 

ADDITIVE MODELS. 

MULTIPUCATIVE MODELS. 

0 
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Table( 6.5)SIIMMARY OF THE RESULTS OF THE ADDITVE MODELS 

0 1 2 3 4 5 6 7 9-'-...)E a10 
E0 I E 2
 

Y(K-_) Y(K_2)(K-3) V(K_,4) Y(K_5)SIN W K COSV KWI W(1K-2) 

0.000024 ).989151 0.034769 ­
- .000013 D.006702 0.000072 

0.000048 0.990626 00740760.039635 -_ 006876 0D36015 001222 
0.000038 .992343 0.0773800.083911 Oj4464 - O.O0049 0705B 0000081O 

0000170 .996483 0.085460J91488 0.138120 .09106 
 0.000086 0007720 0.000105 

0.000012 0.978184 -0.041485 ­ -0.043227 0.022563 - - 0.000140 0.015308 0000186 
0.0000470 -979631 -0.073250032415 -)D&782 0.023852 ­ - OD00212 0.015996 0.000212 

0.002097 0.579018 0.360508 ­ 0.449080 G002664 .000169 0.0225600.000276 
0.001883 0.5 4 9 51610.235870 0151411 -­ 0776 97 0.148088 0.000285 0.023390 0.000309 

L- -~ -

Eo MEAN VALUE OF THE RESIDUALS.
 

ABSOLUTE
E 1 MEAN VALUE OF THE RESIDUALS. 

E 2 MEAN SQUARE VALUE OF THE RESIDUALS. 
W1 THE MAIN FREQCUNCY OF THE OBSERVED OUTPT DATA. 



Table (6-6) SUMMARY OF THE RESULTS OF THE MULTIPLICATIVE MODELS. 

a0 a, 
 a 2 03 G4 (15 a 6 a a8 I
 

1 Y2(K_1) Y 2(K2) Y 2 (K_3)Y 2 (K_(K5JSIW w-72) E0 E1 2: (K 

0.025724 0.579371 0.301895 ­ 0.006826 0.029192 0001146 

-0.022711 0.538,83 0.223713 0.133374 ­ 0.013548 0.0594'35 0002382 

-0.021777 0.532248 0.212368 0009375 0-01937 - 0.006878 0.046 378 0.0014 67 

-0.021103 0.530324 0.209142 0098336 0028958 038258 0.0067il O.02404 0.0U1212 

-003433 0.558548 0.282152 ­ - -0.011022 0.O0W88 -0.013527 0.070874 0002625 

-0.030421 0.52450 0.214345 0.120754 - - 0.010336 ).007069 - .013244 0.048891 0,002432 

-0.03811? 0.A97887 0.320971 - - - 0.227203 0.046531 0.019652 0.090558 0.003420 

0.03537 0.433579 0.217850 0.1816351 ­ 0.254027 0.071917 0.019138 0.068282 0.003199 

E0 " MEAN JALUE OF THE RESIDUALS. 

E ABSOLUTE MEAN VALUE OF THE RESIDUALS. 

E2 MEAN SQUARE VALUE OF THE RESIDUALS. 

W L THE MAIN FREQUNCY OF THE OBSERVED OUTPUT DATD. 
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oy using the class selection procedure depicted previously in Chapter IV.
 

6.8.1 The Likelihood Approach
 

According to (4.16) the likelihood function Li S i=O, 1, ... , 15, is 
evaluated for each proposed model. 
 It is found that, the additive model Ml,
 
furnishes the largest value of the likelihood function Li. Consequently, the
 
given data may be assigned to that successful model.
 

6.8.2 The Prediction Approach
 

Using the estimated parameter vector a together with the noise sequence 
[w(.)] generated via a Gaussian random variable generator whose mean and 
variance are quite similar to those of the residual sequence [ (.)], the one­
step ahead prediction of the output discharge can be obtained. 
The quality
 
of predicted values may be checked by using (4.19). Finally, the values of
 
Li and Jl, t=O,1 , ,.., 15, for both the additive and multiplicative models 
together with their corresponding rank are illustrated inTable (6.7),
 

6.9 VALIDATION TESTS OF THE LINEAR STOCHASTIC DIFFERENCE EQUATION MODEL
 

It is convenient to test the validity of the proposed models illustrated 
in Tables (6.5) and (6.6) for the utility condition (4.3), together with the 
normality of the generated residual sequence [i(.)]. 

6.9.1 Test of Serial Independence
 

Using the residual sequence for both the additive and multiplicative
 
models in addition to the computer program listed in Appendix D, the test
 
statistics a(w) are computed according to (4.35). 
The decision of acceptance
 



Tobit(6.7) RESULTS OF THE LIKELIHOOD APPROACH AND PREDICTION APPROACH FOR
THE CLASS SELECTION OF THE ADDITIVE AND MULTIPLICATIVE MODELS. 

ADDITIVE MODELS 
MULTIPLICATIVE MOOLS 

M_1 __IM 2 M3 M4 M__ MM6 8 M 9 10M H11 M12 M13 M1M14 M 1 6 
L. 2326,8 1633.57 229.74 223042 2082.90 2059 1995.61 '196W5 1651 . 72.22 5899911636091,,8.52 IZ66.6 6 

Jx 1O 7.170 121/.48 8.024 10.3 92 18.448 21j026 274.30 30.647 114-130 236.74 145.50 119.96 260.89 241.21 339.89 -317-93 
RANK 1 10 2 3 4 5 6 7 8 12 11 9 14 13 16 

Li = - (N/2) In Pi- ni 

N 
Ji = jy [y ( k)-(k/k-1 ) /Nl
 

k =2
 

0D 

15 

http:5899911636091,,8.52
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or rejection the class C. may be made by comparing the values of 0(w), at 

different lags, with those of the F-distribution function having n2 and
 

N-n2 degrees of freedom, where n2 is the corresponding lag. The response
 

for both the additive and multiplicative models to that test is illustrated
 

in Tables (6.8) and (6.9) respectively.
 

Briefly, acceptance of C0 insures the serial independency of the spe­

cified residual sequence [N(.)].
 

6.9.2 Test of Normality
 

As discussed before, the histogram of estimated residual sequence [c(.)] 
can be compared with the standard normal distribution curve, having the same
 

mean and variance, by employing the first Kolomgrov-Smirnov test. The test
 

statistics as well as the decision of acceptance or rejection the null hypo­

thesis H. for both the additive and multiplicative models are elucidated in
 

Tables (6.10) and (6.11). On the other hand, the probability of acceptance of
 
the null hypothesis H. for the most successful model MI is illustrated in 

Table (6.12).
 

Finally, the variations in coefficients of the "Lwo successful models M,
 

and M3 with sample size are demonstrated in Figs. (6.22) and (6.23) respect­

ively. It can be observed that, these coefficients exhibit significant
 

changes with the variation of sample size.
 

6.10 COMPARISON OF THE TWO BEST FITTED MODELS M4 AND. M
 

Using the two output data sequences generated by the best fitted noisy­

transfer function model M4 and the successful linear stochastic difference
 

equation model M, the major features of these two models can be summarized
 

as follows
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Table (6.8) RESULTS UF THE SERIAL CORRELATION TEST FOR THE ADDITIVE 

MODELS.
 

LAG_MODEL TEST 
STATISTIC 5 

_ 

10 
_ 

15 20 25 30 35 40 45 50 
'1 (W) 0.5630 0.5272 .50540 .3961 0.3186 0.2767 0.2227 0.2056 O1772 O1612 

MI 61 =0.05 A A A A A A A A A A 
62=0.10 A A A A A A A A A A 

ui(w) 1.7622 1.6514 1.7221 1.6614 14324 1.3733 1.141 1.4001 1.3910 1.4120
M2 C =0.05 R R R R R R R R R R 

_ 2 =0.10 R R R R R R R R R R 

n (w .4468 0.425 0,4013 0.3961 0.3512 0.3213 0.2015 0.1732 0.1701 0.1651 
M3 61 =0.05 A A A A A A A AA A 

62= 0.10 A A A A A A A A A A 
ni (W) 10.3 5.27524.5010 4.2010 3.9221 3.5268 3.1519 2.528 2.3187 2)525

N4 61 = 0.05 R R R R R R R R R R 
C2= 0.10 R R R R R R R RR R 

l ()w 15.962112.7151 10.5140 9.8155 8.66 31 7A340 6J416 5.5501 5.9030 65220M5 61 =0.05 R R R R R R R R R R 
C2 0.10 R R R R R R R R R R 

'I(W ) 5.6713 5.7314 6.9132 6.5143 6.3152 6.0152 5.220 5.1107 4i3143 49212 
M6 61 0.05 A R R R R R R R R R 

2 i010 R R R R R R R R R 
F1(W) 65143 4,182 j,',1O 3.2517 2.8157 2,0103 1.3132 1,6162 1.4130 1,3730&1,05 A RNI r 0 0 R A A A R 
=C-2 0.10 R R R R R R R R R R 
i(;) 8.8173 9.132010.3107 9.7541 9.2512 8.7373 7.712517.5412 6.5962"6.2130

130.05 
62 =0.10 R R R R R R R R R 

8 x R R R R R R R R R R 
R 

A ACCEPT Co 

A REJEC T Co• 
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Table (6.9) RESULTS OF THE SERIAL CORRELATION TEST OF THE 

MULTIPLICATIVE MODELS. 

LAG
TEST
MODEL - - -STATISTIC 5 10 15 20 25 30 35 40 45 

.1086 2.6171(w X) 7.506 4.961 3.801 3 3.0891 2.1356 1.9523 1.6291 1.4%91 
R R R R R R R Rc O05 R RM9 

R R62= 0.10 R R R R R R R 

q(W) 3.440932643 30776 2.8788 2.6653 24331 2.2251 1.9626 1.5732 1.1126 
M10  61 = D05 R R R R R R R R R R 

R R R R R62 =0.10 R R R F R 

,q( W) 4.4682 4.2534 3.4952 31258 3.1415 2.8871 2.5%0 2.1696 2.0606 1.36)6 
RMl1 61 = 0.05 R R R R R R R R R 

= R R R R R6 2 0.10 R R R R R 

'q(w) 34839 3.3051 31161 2.9145 2.6983 2.4634 2.2111 1.9351 1.5863 1.124 6 
M12 61 = 0.05 R R R R R R R R R R 

R R R R R62= 0.10 R R R R R 

'7)(w ) 3.A82 3,2997 3.1110 2.9100 2,6942 2.4594 2,1998 19309 1.5783 1.3214 

Mm 6 a 0.05 R R R R R R R R R R 
E;2 = 01 0 R R R R R., R R R R R 

n( w) 3.2077 3.0282 2,374 &.L331 2A317 2.2197 2.1117 1.8940 1.5604 1,1116
 
MI 4 1 0.05 R R R R R R R R R R
 

c_ ,f R R A R R R
e2 0 R R R R 

i ( ) 6.5,7 5$942 5.40? 4.561 353W 3.20"' 30520 2,7917 2,2201 1,8410 
MI 5 E1 0.05 R R R R R R R R R R 

R R R R Re2 "-0.10 R R R R R 

1w() 6.7230 5.6378 54251 4.8726 3538 3,2861 30536 2*7970 222071.6905 
M1 6  61 0.05 R R R R R R R R R R 

-2 0-.10 R R R R IR R R R P, R 

A ACCEPT Co. 

R REJECT Co. 

50 
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Table(6.10) RESULTS OF THE FIRST KOLMOGROVSMIRNOV TEST OF THE 

RESIDUAL NORMALITY FOR THE ADDITIVE MODELS. 

TEST LAG
MODEL------------------------__STATISTIC 5 10 15 20 25 30 35 .0 45 50 

Z 0.3162 0/472 0.3651 0.3162 0.2828 0.2582 Q3586 0.3354, 0.3163 0.3000 
M1 61 = 0.05 A A A A A A A A A A 

6.2= 0.10 A A A A A A A A A A 

Z 1.6324 1.9487 1.670C 1.5477 1A743 1.1243 1.3873 1.5976 1.5590 1.5000 
M2 6 =0.05 R R R R R R R R R R 

62 = 0.10 R R R R R R R R R R 

Z 0.3162 0.472 03651 0.3162 0.2828 0.387Z 0,471 04472 04216 '0.00 
M3 61=0.05 A A A A A A A A A A 

62 =0.10 A A A A A A A A A A 

Z 1.1160 05783 0.930 09198 0.4595 1.6942 1.9100 2.2202 2.2997 2.400C 
M4 61 0.05 A A A A A R R R R R 

62 =0.10 A A A A A R R R R R 

Z 0.6324 0.472 0.3651 0.3612 1.28Q 1,8190 1.8551 1.5410 1.6228 1.5000 
M5 61 0.05 A A A A R R R R R R 

62 0.10 A A A A R R R R R R 

Z 1.1160 15783 1.9309 2.1998 2A594 2.6942 2.9100 31110 3.29973 A782 
M6 C1 00.5 A R R R R R R R R R 

=E'2 0.10 A R R R R R R R R R 

Z 1.1125 1.5733 1.9269 2.2251 2A331 2.66 2.8788 3.07763 2643 3A409 
M7 61 0.05 A R A R R R A R R R 

62 0,10 A R R R R R R R R R 

Z 1.63251.4472 1.36 113162 1,2726 1.5351 1A270 11#001 1,3977 1,3000 
Me 16, 0.05 R R R R R R R R R R 

62 0.10 R R R R R R R R R R 

Z STATISTIC OF THE FIRST KOLMOGROVSMIRNOV TEST. 

A ACCEPT THE HYPOTHESIS OF NORMALITY. 

R REJECT THE HYPOTHESISOF NORMALITY. 

http:Table(6.10
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Ta ble (6.11) RESULTS OF THE FIRST KOLMOGROV. SMIRNOV TEST OF THE 
RESIDUAL NORMALITY FOR THE MULTIPLICATIVE MODELS. 

LAGMODEL TEST 
STATISTIC 5 10 15 20 25 30 35 40 /-5 s 

Z 1.6324 1.6709 1.5477 1.4246 OL5163 0.7171 0.6708 0.6315 0.60000.991 
N 9 c1 =0. 05 R R R R A A A A A A 

C2 =0. 1 0 R R R R A A A A A A 
Z 0.9486 .6718 0.5471 1A71,5 1.3205 1.4 242 1.3872 1.5976 1.5590 0.5000

M10 E( = 0.05 A A A R A R R R R A
 
C2= 
0.10 A A A R R R R R R A 

Z Q9571 QL7602 0.5421 0.7721 0.8 312 .8872 1.1271 1.4213 1.5271 1.5000
mil 	 f, =0.05 A A A A A A R RA R 

_ 2 =0.1 0 A A A A A A A R 	 R R 
Z G.5572 .7814 0.9652 1.1243 1.1571 1.1742 1.2017 1.2571 1.37401.5000 

M12  C1= 0o. 5 A A A A A A A A R R 
C2 = 0.10 A A A A A A A R 	 R R 

Z Q7324 0.7211 0.6814 0.7415 0.8999 1.1215 1.5432 1.6780 1.7641 1.8000
M13  e 1 = 0.05 A A A A A A R R Fl R 

62 =0.10 A A A A A A R R R R 

Z 	 0.7324 0.7211 0.6915 0.7621 0.9120 11714 1.7450 1.7785 1.8417 2.1071=H14  	 ci 0.05 A A A A A A R R R R 
C2 = 0.10 A A A A A R R RA R 

Z 1.3162 1.6708 1.5477 1.4743 1.4242 1.3872 1.3685 1.3951 1.4216' 	1.6000M15  1 O A R R R R R R R R R 
C2 =0.10 A R R R R R R R R R 

Z 1.3162 1.34071.5386 1.4372 1.245 1.4010 1.3850 1.3871 1.432011.7000M 1 0.05 A A R 	 R R R R R R R 
E2 =0.10 A A R 	 R R R R R I R 

Z STATISTIC OF THE FRIST KOLMOGROV.S-MIRNOV TEST.
 
A ACCEPT THE HYPOTHESIS OF NORMALITY.
 

R REJECT THE HYPOTHESIS OF NORMALITY. 



Table(6.12) RESULTS OF THE FIRST KOLMCGROV SMIRNOV TEST FOR THE ADDITIVE MODEL M1 . 

TEST STATISTICS LAG ( DAYS 
10 15 20 25 30 35 40 45 50 

Z 0.316228 0.447214 .365148 .3162280.282843 0.258199 0.35856 0.3354,10 0.316228 0300000 
cl 105 A A A A A A A A A A 
-2 = 0 .10 A A A A A A A A A A 

PROB. 0.99965 0.988261 0.99942 0.999965 r.999998 100000 0.999524 .999871 0.999965 0.999991 

A ACCEPT THE MULL HYPOTHES5 Ho. 
PROW" PROBABILITY OF ACCEPTANCE OF THE NULL HYPOTHESIS Ho. 

ul 

http:Table(6.12
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Fig. (6.22) VARIATION OF THE COEFFICIENTS OF THE 
MODEL MI WITH THE SAMPLE SIZE IN DAYS. 
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i) Simulation Capability:
 

The discrepancy between the statistical characteristics of the observed
 
and generated sequences discriminates its simulation capability. 
Thus, some
 
statistical characteristics such as correlograms, power spectrums, histograms

and cumulative histograms of the two output sequences generated by M4 and MI
 
are compated with those of the measured output discharge. The results of
 
that comparative procedure are illustrated in Tables (6.13) to 
(6.15), which
 
confirm the ability of model M 
to generate an adequate output sequence.
 

ii) Estimatability:
 

Some bisidary estimation conditions play an active part in the model
 
selection techniques. The estimatability of a given model may insure its
 
ability to generate an accurate estimates of parameters as well as appropriate

statistics of residuals, Consequently, the significance of estimated pa­
rameters 
for the two successful models M4 and M1 may be tested as 
suggested

by Clark (1969). The numerous mathematical operations needed to evaluate
 
the impulse response vector U lead to a marginal significance of its coe­
fficients, whereas the parameters of M, estimated by the recursive algorithm

(4.11) show a small 
variability and better level of significance. On the
 
other hand, the discrepancy between the histogram of residuals and the normal
 
distribution curve, with similar mean 
and variance, is more acceptable for
 
M, rather than M4. Furthermore, the histogram of residuals as well 
as its
cumulative values for The successful model M are shown in Figs. t.24) and
 
(6.25) respectively.
 

iii) Forecasting:
 

According to the general classification of monthly output data illustrated
 
in Fig. (6.26), the forecasting 
ability of the two successful models M4 and
 
M, can be quanta:ively compared via Fig. (6.27). 
 Clearly, the one-step ahead
prediction capability of the model M 
is much better compared with that of M4.
 



Fig. (6.13) COMPARISON OF THE CORRELOGRAMS OF THE MEASURED AND GENERATED DISCHARGE 
DATA FOR THE TWO SUCCESSFUL MODELS M/ AND M 1 . 

LAG (DAYS)
TYPE 01- DATA 

5 10 15 20 25 30 35 40 45 50
 

MEASURED 0.806272 Q6730B 0-577811 h.9514910,44279 0.401704 0.342013 0.227529 0.112896 
 0.053637 

GENERATED BY B19805 0.657749 D583387 0.501245 0.A50134 0.407119 0.346501 0.230257 0.109087 (1058214 

M 

4
 

GEEAEDB0.84605 0.675017 057/,804 !0.926891 0./4245 0399962 0340875 0.226302 0.111361 0.05262D 
M 1
 



Table (6.14)COMPARISON OF POWER SPECTRUMS-FOR THE MEASURED AND GENERATED DISCHARGE
DATA FOR THE SUCCESSFUL MODELS M4AND M I.
 

FREQUENCY (RADIANS/ DAY)

TYPE OF DATA 3/02m5_______


i10 "/5 
3 R/ 1 2-1/5 i 2 3n/4 7"n110 4T/ 5 9U/1O Tt
 

MEASURED O.5028410.0084010360124 0.005531 0278187 0.00361 0215088 0.001280 0.0714620.017034 

GENERATED BY 
 0.52904 0.OOX 0.,1395 0-00000 0286564 0.00000 0-220589 0.00000 0.069447 000000
 
M'
 

GENERATED BY 0.501801 O.008372 8947 0005503 0.27704bQ0035950.214372 0.001273 0.0704910.016711M I
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Table (6.15) COMPARISON OF THE M-EASURED AND GENERATED DISCHARGE 
HISTOGRAMS FOR THE TWO SUCCESSFUL MODELS M AND M 

CLASS INTERVAL 
0.3-04 .4-0. .5.0.6 .6-0.70..0.8 Q80.90.91.0 .0. 1.1 1.1-1.2 1.1.3 1.3-1.4 

OBSERVED 18 100 126 89 64 37 27 13 10 3 1 

GENERATED
 
,0 25 91 128 94 63 38 24
By M 4 14 8 2 1 

GE NERATED
 
14 104 127 96
By M 1 60 39 26 9 11 2 

COMPARISON OF THE MEASURED AND GENERATED DISCHARGE 
CUMULATIVE HISTOGRAk1S FOR THE TWO SUCCESSUF MODELS M'&M 

CLASS INTERVALTYPE OF DATA[ 
030. 4 ..0.5Q5.Q6 6-0.7 07.0.8 0.8.Q9 91.01.0.1.1 1.1..-1.2 12.1.3 13- I 

OBSERVED 18 244118 333 397 434 461 474 484 487 488 

GENERATED 
 1
338 43B y 

BM 
m/ 

25 116 244 401 463 477 485 487 4B,8 

GENERATED 14 118 245 '341 401 440 466 475 486 488 488By M1 
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TYPE 

OF LEVEL LOWER LIMIT UPPER LIMIT 

I1 VE RY LOW DISCHARGE 0 9.8 

11 LOW DISCHARGE 9.8 14.6 
TOTAL MEAN 14 MM 
TOTAL STANDARD DEVIATION 3ll MEDIUM4A m LOW DISCHA 14.6 17.0 

IV MEDIUM DISCHARGE 17.0 21.8 
V MEDUIM HIGH DISCH. 21.8 24-2
 

VI HIGH DISCHARGE 
 24.2 29.0 

I
 IVII VEiNYHIGH-D1SCHAR. 29.0)O 

ILI 

Ii II

I I
 

I I I{ ,
 

8 12 Is 20 24 28 
 32 36
 
SYST13A DISCHARGE (MM/ MONTH)
 

Fig. (6.26)CLASSIFICATION OF THE SYSTEM DISCHARGE. 
4A 
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CHAPTER VII 

CONCLUSION
 

The major emphasis of this endeavour has been the identification, esti­
mation and validativn of noisy-transfer function and linear stochastic diffe­
rence 
 equation models appropriate for the representation of physical hydro­
logical systems. 
A case study of the Waki River catchment, located near to
 
lake Albert, has been selected. Using the input precipitation and the out­
put discharge measured during the rainy season of that catchment, it has be­
came possible to simulate the two proposed models on the digital computer to­
gether with the main statistical characteristics of their output dAta, 
More­
over, the validity of the residual sequences, generated by the different stru­
tures of these models, for the prespecified estimation conditions has also
 
been investigated.
 

The important features of the two tuned noisy-transfer function and
 
linear stochastic difference equation models have been quantitatively examined
 
in a comparative pattern in order to achieve the best representation of the
 
Waki catchment. As a 
general view, the performance of linear stochastic
 
difference equation model is more favourable than that of the noisy-transfer
 
function model. 

The main findings of this work can now be summarized as follows:
 

i) The application of linear stochastic difference equation models ispra­
gmatic for both prediction and estimation of the river catchment response.
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ii) 	The linear stochastic difference equation models yield excellent pre­
diction for the most given classifications, whereas the predictability
 
of the noisy-transfer function models is restricted by using their auto­
regressive structure during the low level of output data.
 

iii) The multiplicative sturcture of the linear stochastic difference equation
 
models has failed to attain the same accuracy obtained by the additive
 
structure, this ismainly due to its inadequacy to the physical system
 
at hand. Moreover, it isadvisable to fit a relatively simple class of
 
models and increase its complexity only ifthe simplest class proves to
 
be unsatisfactory.
 

iv) 	The identification procedure of the linear difference equation model is
 
equivalent to specifying the sutable number of autoregressive, corrective
 
error and/or sinusoidal terms necessary for an adequate results, Alter­
natively, the basic premise in identifying the noisy-transfer function
 
model isthe evaluation of its appropriate kernel length.
 

v) It is advantageous to invoke the constrained estimators to evaluate the
 
parameters of noisy-transfer function model adequate for some river cat­
chment systems whose complete mathematical balance is available, together
 
with the representability of their measured data. On the other hand, the
 
recursive parameter estimation of the linear stochastic difference equa­
tion models is relevant for both the additive and multiplicative struc­
tures, provided that a proper data transformation procedure ismanipulated.
 

vi) 	 The validation of the two proposed families of models for the prespecified 
estimation conditions was checked both by examining their residuals and 
comparing the basic statistics of their generated output data such as 
mean, variance, correlogram, histograms and power spectrum with the others 
of observed sequence. Ithas been demonstrated that, the appropriate
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class of models should pass all validation tests at the required signi­
ficance level inorder to vendicate its adequacy for the system at hand.
 

The most fruitful area of future research would be the implementation of
 
partitioned estimation technique together with the pre-whitening of the input

data to the noisy-transfer function model. 
 Inaddition, the sensitivity of
 
linear stochastic difference equation model to the recursive manipulation of
 
corrective error terms obtained Via the Fourier analysis of residuals is
 
suggested for further studies. 
 Finally, itisrecommended that the methodo­
logies presentad inthis work be invoked to other physical systems indiverse
 
areas of engineering and applied sciences, as well as to multi-input multi­
output situations.
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APPENDIX A
 

ESTIMATION OF THE POWER SPECTRUM
 

The power spectral density function can be obtained by using the following
 

formula [Kamal Abo El-Hassan (1980)]
 

2 M 	 khx
PS(wh) =- E Ek y(k) cos (M)
 
k=O
 

where 	wh is the frequency in radians per unit time,
 

wh = hT h = 0, 1, ... , M 	 (A.2)h M 

and
 

Fi for 0 < k < M 

Ek = 	- (A.3)
 
1 for k = 0, M
 

such that y(k) is the normalized autocorrelation function at lag k and M is
 

an integer nearest to O.IN or O.05N, such that N denotes the number of obser­

vations.
 

These estimates are then smoothed employing the Hamming window alogrithm
 

to obtain more refined values of the power spectrum, that is
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for k = O:S(wo) = 0.54 PS(wo) + 0.46 PS(w1 ), 
for O<k<M:S(wk) = 0.23 PS(wk-)+ 0.54 PS(wk) + 0.23 PS(wk+l),(} 
and for (A.4) 

k = M:S(wM) =0.54 PS(wM) + 0.46 PS(wM.1) 

The accuracy of computation was checked for the above procedure by
 

evaluating
 

ri-1 
(T/ M) LS (W.) + S (WM)] + E S (wk ) (A.5) 

hIh mk=l I
 

which must be-equal to y(O), see Dixon (1970).
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APPENDIX B 
LIST OF THE DIGITAL CMPUTER PROGRAM 

FOR THE NOISY-TRANSFER FUNCTION 

MODEL 



IWI
 

P ,OGRAIV(SOI.T) 
.LINPLT I:CR0 
OLTPUT 2=LFOI/1611 
ThACC D 

MASTE.N RAIN 

C Qi-JeCT: 
C THkS PPO!RAM XS USED TO 1DENTIFY THE RELATIONSHIP BE7WEFN 
INPUTC kINFILL AD OUTPUT DISCHARGE 
FOR WAKI CATCHEMENT.

C TH;:S HYDROLIC SYSTEM 
CAN BE CONSIDERED AS 
LINFR CONSTRAINFD ONL
C Li :TS (F 'NPUT RAYNFALL ARE MMWHCH IS THL 
SAVE AS DYSCHARGL
C CATA SOU,C!" : NIL': BAXSN SERIFS FOR YEARS '197,1971,1973,AND 1974
C THE OPS&:VLD DATA 
7S FECORDED DA7LY FOR THE 
GIVEN CATCHFMENT
 

C 
!b-',V;
NSON PORTAT(488),VXNPUT(488)pAPIX(48B)oGH(488) 
B(130).,/(78)0
 

*, JC (37), STAT(12). %1(12) 
DjMFNSXOhN R1(49),F;2(49),PS(49)
 
DCUeLP PRECISION A,&,X,U,V.SSQ,XSTARoEFS
 
NT
. GLR T TC,PP.Q.TB ,FL, TYPE
 

CCIvON /AI/S (2),SQ(2),ND
 
CCI"!ON IA?1/FJ,I'..,FD
 
DPTA TF,r-P,QQ 1(),bPP1.1QQ's

DATA ML,PHI/4Q,3.114139?7
 

C
 
C REALJ Nf- FORMATS
 

1 C FCi,,AT(7ZZ)
 
1I F'F 'r-,A T (2 F4 .1.2F4 .'1)

I14 1, F C 1vA T FF(I .G)
 

IC5L FCH(,'AT(?14)
 
C 
C PA"N PSOL,kAP OUTPUT FOtVATS

~2t FC;'AT H-1,) QX p'THE C.L S IS
/I0!1(X 4;- (I-1H*) ) LINIAR AND T1ME INVAF1ANT" 

e;1; FCPrAT(IHl,I,V1X, 'THE C.L.S IS 
NONLXNEAR AND TIME INVARYANT"A
 

CIAT(H1/,XETHE

*,1 *,X,.5 (Cl.)) 

C.L.S IS NONLNEAR AND TIME VARIANT', 

F 1EX TH t'CMATORDNKARY LEAST SQUARE USED TO
IS EST1MATL
 
-, TH L.'PULSE RrSPONSL VECTOR' /,.loxgo(IH*))


2"4' FCRVAT(/,ILX,ONLY XNEQUALITY CONSThAINTS 
ARE USED TC FSTIMArE'
 
*1H' THc 
.PPULSE kESPONSE VECTOR',./1Ox,81(1H.))
e " F CPf'A T ( //, I IIX , 'X-VA LU r.S :'I /,6 (6 ) F8-. 5) vI ) 

C 
P'LAU(1,105'O) NDMD 

FA D(1(pI001) jP, b S. IU, IW.NT.AAG.TC
 
k -AD (1,1 04I0) (PORTAT (1),.
X IND) 
NvNCLS=,IFL=0
 
T i ,A L=t 

http:IW.NT.AAG.TC


K F-ND 
, S ! W*-. Ut 1
 
F(NT. 'Q.O) GO TO 21
 
I AD(.1 ,VO!O0) XM,,AI..FH7 0T R
 

:F (h.,L AP,E .0 .0 ) Z.A t.=1 
't; T!=T 4,+NT #1
 

K -Ti
 
F(;U.( ' .0) GO TO 4'
 

D(C 30 7=Ki,:eND
 
iV : NtPUT (i)=PORTAT (:)
 

(C TO "0
 
4( -F(IFL) 50,5',60I
 
5 RI-AD(1,1O4) (ViNPUT(1),X=K1,ND)
 
6' F(LAG..C) GO TO 90
 

J F=K F
 
7 V.'NPUT(J F)-V NPUJT(JF-LAG)
 

IF(JF.FQ.(K.,+I.AG))CO TC 75
 
J F=J F-I
 
.;O TO 70
 

75 7F(TYPr.EQ.QQ) CO TO 9!0
 
D;C 80 ,=KI,JF
 

.: V IN P UT ( I=C . 0
 

9' MV=MD-IJC 
T=TB +I
 
'IV=NV+TP
 
X(F(NV LEMV) GO TO .10
 
CC TO '60
 

100 	 FL =I
 
DC 160 J=,1,MD
 
X (J)=0.0

1 (J)=O.O 
V (J )0.O 
FIEB (J) =0
 

160 ()U =0
 

IF(TC-!) 1W(,17fj, 17U 

17', 	DC ]Si" Kzi,MD
1i 	 JA(K)=1 

q C CALL "NPL'T!(V^'NPUT,PORTAT,TI)
 
.1. C "11. PATr,.(Vt'NPUTPOKTATTXTB',FLOAEBoNVNC)
 

"' = NiV + KNC 
J7 =3 17 f1 
CtLL ALGO(A,-, X,U,VSI oIEBIQR,XSTARI ErJCIR..NVONCjIZJZ KA) 
S K=0.O 
DC 22( N-:I NV 

S' K=SK+X(N) 

IF(KA.NE.O.OR.SK.EQ.0.O) GO TO 260W ZTr ( -,, 61.:) ( X ( D ,1=1 NV ) 
CALL QHAT(VINPUT,PORTAT,QH,X,TB,T1,KS,NS) 
CALL LPRR)R (PORTAT ,Q H ,S TAT ,T I,AP ,Xx.1W)

W (.,1T '( 
 ',. +~ 
GO TO 250 
.F(LAL) ",230,?40

)3 	 W , TF (Z 20 10 

GC TO 250:J4YW , =TE (: : .1 ) 

:' F(TC.EQ. 1) WRIT':(2,2131+).. F T C Q ) 7(2. ° WRIT Z ,26)40) 

-. F(TC .1 .21) WrYT:'(2, 2050) 
C II.L W TPFT(STATPORTATQHXNV)
 

t
CALL N,S (PORTAT,9H,APXX,ND) 
" STCP 

• r'f 

http:7F(TYPr.EQ.QQ


153
 
SUBROUTINEi MISR(Y,Y E,YR,ND) 

C PUkPOS!7:
 
C (T TESTS THE RESA~DUAL VECTOR Yk.
 
C ****
 

C
 
DIMENSION Y(488),Yki(488),YR(488)

DOUBLE PRFEClSluN COR(50)jGAMA(5Q.,50),CORO

EQUIVALENCE. (COR(l),GAMAC1 ,'1))
DATA :1O,El,2,U,FCOD,S/4*.1,0
 
DATA ICj,IAMLZXS ZE/2*O,50,5,
 

C OUTPUT FORMATS:
 
11000 
FORMAT(lr0X,3HE=, FIO.6,1OX,3H El=,F1O.6,i1OX,3HE2=,FIO.6,/)

111'1 FORMAT(//10X,STE2STING OF THE 
RESIDUALS:')
10 20 FORMA T(IOXj.-rESTr:2-4-pi lOXp 2 HZ=..F 06/ilOX 5HPROB,F1 0 6 /, 1X,*'MAXIMUM DIFFERENCE DN=I,F1Ij.6,/)
1 3" FORMA T(1OXp'SECTZON :2 @/jI OX , KOLMOGROV SM IRNOV TEST .,aoip1Ox,*'TLST:l,/,OX2HFO6,1pOX,5HPROBFlCI
 

6 )
1.14 i FORM*AT(I0X,SECTXON:1,,OX,'MEANS 
OF 	THE RESIDUAL.$)
105b 
FORMAT(1IOX,'SECTION 30 ,/,10X,'THE F'TEST.'..,.0XVALUE=SF1r]6,

*L-OX,ILAG=I,I3 .1 lIox 
60(IH*),/)
 

i'060 FORMAT(1 CiX.MLL=',I2,1OX,e I= 
,X2,1OX,'GAMA(MLLpl)=epD26.21")
 

C
 
ISUM=IA+Ic+l 
WRITE (2p1OIU) 
NN=ND'.ZSUM
 
DO inl I=XSUM,,ND
 
'=E~O+ YR( )1NN
 

F.1El +ABS5(YR ( 1) /NN) 
F2=E2+(YticI)**2) INN
 

li CONTXNUE
 
WRITE(2p1O4Q)
 
WRITE(?2,100o) EOpfilpE2
CALL AUTO( YE,NDfML, IFCOD,COR,,COR:O)

CALL AUTO(YRNNeML,XSUMCORo-CORU)
 
Do 211 J=2,PL
 
DO) 21l I=J,ML
 
GAMA(!,J )=GAMA(I-1,J-1)
 
GAMA(J-J ,D)GAMA(,J.;-1)
 

2.1 	 CONTINUE
 
CALL Sl'Nt.(GAf0A,fIL,lREV)
 
DO 3D~ tISIZEoMLplSlZE
 
MLL=I 
CALL KOLMI(YRptptFRIXFCODpU,SPROB1,Zi)
 
CALL KOLM2 (Y,YE, X,X,Z2,,PROB2,DN)
 
WXd"JEC2,103,J) Z1,PROB1
 
WRITE(?,1020) Z2,PROB2,DN
 

FFCOI:O/ GA MA ( ML,I 
 GM(II 
FT=(FF-1 .O)*((NN/ID-l)
 
Wl'rIE(2,1O50) FT,!
 

3,1 	CONTINUE
 
CALL KOLTI (YR,ND,IER,IFCODUSPROB1,ZI)
 
CA~LL KOLYC2(Y,YE,ND,NDZ2,PROB2,IDN) 
WRXTU2,1030) Zl,PRO31
 
w" rEA.,.1020) 72,PROE32,DV
 
CALL CCOR(YpYRML~pND)
 
Rh.TUR N
 
iND
 

http:X2,1OX,'GAMA(MLLpl)=epD26.21
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SUBROUTINE SM.RN(X,Y)
 
C PUPOSE:
 
C CALCULAT:S VALUES OF THE LIMITING DISTRIBUTION FUNCTION FOR
 
C THI KOLMOGROV-SMIRNOV STATISTIC.
 
C
 
C 

DOUBLE PRECISZON XrC1,C2,C4,C8,Y
 
F(X-0.27) 1,1,2
 

1 Y=6.O 
GO TO 9
 

2 :.F(X-1.J) 3,6,6
 
3 C=EXP(-'.2337t01/X* 2)
 

C2=C1*C1 
C4=C2 *C2
 
C=C4wC4
 
XF(Cb-I.OE-25) 4,5,5 

4 C8=0.0 
5 Y=(2.506628/X)*C1*(1.f+C8*(.I.J)+C8*C8))
 

GO TO 9
 
6 F(,-3.1) b,7,7
 
7 Y=1.0
 

GO TO 9
 
6 Ci=c5XP(- .O*x*x)
 

CZ=cl *c1
 
C4=CC *C2
 
C8=C4*C4
 
Y=I.n-fl.O*(C1-C4.+C8 *(C,-C8))
 

9 R;TURN
 
w.ND
 

SUFROU'r'IN. SINA(B ,KCeXREV) 
DOUBLL" P4iFCXSION E(5(j,5C),TEMP
 
:':rI v='
 
DO 2(i C=,,KC
 
K=
 

9 ;F(-(K,I)) 11,10,11
 
1i K=K+1
 

XF(K-KC) 9,9,51
 

11 IF(I-K) 12,14,51
 
12 D6 13 M21,KC
 

TFMP=R (I.,M)
 
li('!,M)=B (K,M)
 

13 F-(K,M)=TEMP
 
IREV= IREV+ 1
 

14 	 II=1+1 
IF(II.,T.KC) GO TO 51
 
DO 17 M=II,KC


!8 	: F(3(M,I)) 19,17,19
 

19 	 T P= (M ,I)/B (1,1)
 
DO 16 N=1,KC
 

16B (f0,N)=B (M ,N) -B(lN) *TrMP
 
17 CONTINUE
 
2'1 	 CCI.'TXNUi 
51 	r,'
ETU 9 N
 

9I2ND
 

http:IF(II.,T.KC
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C 

SUE3ROUTINr NDTR(X ,P,D)
AX=ABS (X)
 
T=l W~ (1 .0+1).2316419,*AX)
 
D=;..3989 423*CEXP(-X*X,12 F0i
 
P=l.O-D*T*((k'1.7,:#274*T-1.821256)*T+1.781478)*T-...356s


6 3 8 )*
*kT4I).3193 815)
:'(F(X) 107r? 

1 P=1.o'PP
 
2 P TURN
 

SUFPROUTINI: OLS(LX ,LYMI ,M2 jPNlpXN2.WpY.RO,.ABPNV,.NC) 
MATRIX CALCULATIONS 
DIM-NSION W(488),Y(488) ,A(78),3 (.130) 
lN'TFC'LR UX,.UY,UL 
DOU'-;L PRECXSION A,b,XXOXY.,AX,S,SD,Rl 
COMM~ON /A1 IS (2) SD( e),ND
 
UX~f1+LX-1 
U =m2 +L Y-1 
LX1=L.X*+
 

!F(LX.Nt .LY) GO TO 4
 
DO 3 J=LY,UY
 
JM=J-LY
 

I=LX+J*(J-1 )/2
 
AX(J .C:
 
DO 1 K=M,ND 

XY=Y ( N2+K-JV')
 
AX=AX-XX*XY
 

1 CONTYNUU
 
A ( !)=A XI/.,) 
.F(JM.LE.') GO TO 3
 
DO '1=..X1,J
 
1=x1+J*(J-1 )/2
 
A ( T)=A(X-J )
 
CONTYNUE
 
C0N T.'(NU
 
R ET UR~N
 

4 flO 7 I=LY,UY
 
JV=J-LY
 
m=jJ + 1
 
'(LX+J* (J-1 )/2
 
AX=,j .0 
DO 5 K=M,ND 
XXW (XN 1+K)
 
XY=Y CTN2+K-JM)
 
AX=AX-X~ 'XY
 

5CONT::NUE 
A CX)AXIP1'
 
UL=PXNO CLX+JM,UX)
 
TF (LX1 GT UL) GO TO 7
 
Do 6 .1=LX1,UL
 

+J-'.JAJ-1) 12 
A (I)=A(I-J)
 

6COtJTrNWu. 
'CONTXtNUE
 

http:jPNlpXN2.WpY.RO,.ABPNV,.NC


DO 1 II1=LXlUX
 
fiv= 1-LX
 

M=lm+i
 
!=1I4LY*(LY-1)/2
 

AX=O.0
 
DO 8 K=M,;:D
 
XX=W ( Nl +K- 11)
 
XY=Y(1N2+K)
 

AX=AX-XX*XY
 

8 CONTINUE
 
A(X)=AX/Rl
 
UL=V 7NO([Y+ IM-1,UY)
 
IF(LY1.GT.UL) 
GO TO 10
 
DO 9 J=LYIUL
 
I=II+J*(J-1 )/2
 
A (I)=A (.sJ)
 

9 CONTINUE
 
10 CONTINUE
 

RETURN
 
END
 

FUNCTION VALUF(X,XJpoK *ABNV)
 
DIMENSION A (78)pB(130),X(12)
 
DOUBLE PRECISION ABXAUVXTN
 
DATA TN/(I.O/
 
IF(K.NE.'I) GO TO 8
 

C OPEXATION ON THE OBJECTIVE FUNCTION 
(KO)
 
IF(I.NE.1)) GO TO 7
 
XF(J.NE.0) GO 
TO 4
C CALCULATION OF 
THE VALUE OF THE 
OBJECTIVE 
FUNs
 
VX=TN
 
NT=Nv*(NV+1)/2
 

DO 3 JN=I,NV
 
AU =j 
DO 1 ZN=IpJN
 
ZLX=IN+JN*(JN-I)/2
 
AU=AU+A (ZEX)*X(IN)
 

1 	CONTINUE
 
JJ=JN+1
 
rF(JJ.GT.NV) 
GO TO 3
 
DO 2 IN=JJ,NV
 
TFX=JN+IN*(IN-1 )/.
 
AU=AU+A( IEX)*X(IN)
 

2 CONTINUE
 
Z 	VX=VX+(AU/2.-(NT+JN)),*X(JN)
 

VALUE=VX
 
RETURN
 

C CALCULATXON OF 
THE FIRST DERIVATIVE OF 
THE OBJ-'-FUN.
 
4 	NT=NV*(NV+.I)/2
 

VX=-A (NT+J)
 
DO 5 IN=I,J

.tFX=IN+J,(J-1)/2 

VX=VX+A ('EX;' *X (IN)
 
5 CONTXNUE
 

JJ=J+l
 
TF(JJ.GT.NV) GO TO 61
 
DO a IN=JJPNV
 
!.UX=J+'lN*(XN-1 I? 

http:TF(JJ.GT.NV
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VX=VX+A (EX) *X (i.N) 

6 CONTINUE
 
61 CONTINUE
 

VALUF=vX
 
OlTURN 

C CAICULAT:'ON OF THE 
SECOND DERIVATiVE OF THE OBJECTIVE FUN.
 
7 EX=I+J*(J-I)/? 

IF(I.GT.J) lLEX=J+'*(-j) /2 
VALUr=A (EX) 
P :TURN 

* rF(;.N -. ) GO TO 11 
(F(J.NL.;) GO TO 10 
NW=NV+1 
VX=B (K *NW) 
DO 9 xN=I,NV
 
;:EX= N+NW-)(K-1) 
VX=VX+B ( EX ) *X (IN)
 

9 CONTINUE
 
VA LU F=VX 
R TUkN 

C CAL.CULAT,'ON OF THE FIRST DERiVATXVE OF THF K-CONSTRAINT 
1'- ILX=J+(NV+I)*(K-1) 

VALUF=R ( EX) 
RPTUPN 

C CALCULATXON OF TH2 SECOND DFRIVATIV.E OF THE K CONSTRAINT 
11 VALUF=]. ' 

RhTURN 
FND 

SIJEROUTXrE ERROR(QQH.STATrNXNG,RESoW) 
C xT CALCULATE THE STATYSTCS OF THE RESXDUALS 
C .............................................................
 
C 

D:if'-NSOON Q( 4 8 8),QH(488),RES(488),STAT(i12)
 
DOtW'" E PkE:CISXON AMEAN,SDXX,XYXZ,PM,NM,PSPSTVSSS 
CO,. A iA1IS(2),SS(2),ND 
DATA AMEAN,SD,PM,LNM,XZ,PS,PS I,QM,QHM/9(J.rl/ 
NN=NNG+
 

DO 3 1=,ND
 
,'X=H (X) 
XY=Q ( )
XX=XX-XY 

R 'S( Z)=XX 
AfkAN=AM *AN+X X 
S D=SD+XX :XX 
XF(XY.Lt.EQM) GO TO I 
K PH= T 

1 IF(PM.LT.XX) PM=XX 
F(I-NM.GT.XX) ENM=XX 

IF(XX*(Z .LT.0) GO TO 2 
PSI=PSI+XX 
GO TO 3 

2 PS=PS+ps [*Ps1 
Ps1=xx 

I XZ=XX 

http:F(I-NM.GT.XX
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NPH=SQr-T (FLOAT (ND)) i2 
LU=MINO(ND ,KPH+NPH) 
LMAXO( t,KPH-NPH)
 
Do 4 =LI.,LU
 
XF ( H( .)Lfr..QHM) GO To 4 
QHK1.=Q0H ()) 

4 	CONTINUE~ 
3'F(K. 0-.LL.OR.K.E...LU) LL='2 
XX=DFLOAT(ND)
 
TV=SS(NN)-S(NN)*S(NN)/XX
 
STAT (1)=AMFAN/XX 
STAT(2)=cDSORT((SD-(AjEAN*AMEAN)/XX)/(XX-1.O))
 

5 	 CALL T FST (RES NDND0311) 
6 	 CALL OUTPTI(KES,3) 
7 	STAr(3)=(TV-(SD-AMFAN*AMEANiXX)) ITV
 

S TAr (4)=PS /SD
 
STAT(5)=Pm.
 
STAr*(6)=ENM
 
STAT(7)=(QHMIQr') IQPI*100O 
STAT (E,)=K-KPH 
STAT (9)=LL41 
S TAT (1 )) =LU-­
STAT(11)--KPH
 
JTAT (12) =2
 

QLTURN 
" NO 

SUBROUTINE ALGO(ATBTp.X,U,VS!I IBB,~QR,.XSTARZBJCr!.rRvNV.NC, 
*XZ,JZ ,KA PUT) 

C 14ATHEMAT XCAL PR0GRAMINE 
C ****~*********** 	 g*********Ww,.aw 

C 
0 IMENSTO'J R(12,037),XSTAR (12) ,AT(78),eBT(,130),X ('12) 

DOU3LE PRECISION XoU,XSTAREPS,AT,BT#V 
COMM'ON /A2/ML,MX,VD 

C -N,'TTAL PARAIVETER VALUS SELECTION 

NKL=2 

t.Pz=1 .OL:-25 
OPiJ=-1 . ~+36 

N14=N V+NC 
LA=(t' NN )*1
 
LAN=LA+N N 
NVP=NV+1 
K 	:-l 

C '-'14rXAL 9 ASIS DESCRXPTION 
I N03J 

K=NN 
DO 7 N=1.NN 

:J(I(N))3,2,3 

http:g*********Ww,.aw
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c 


C 


C 


C 


2 .' (K) =N
 
J=NN+K
 

ZEB(J)=NN+N 
K=K-1 
GO TO 6
 

3 NQ=NQ+1
 
J=NN+NQ

F(IBB WN) 5,4,5 
4 Tb(NQ)=NN+N
 

.X2(J) =N 
GO TO 6
 

5 IS(NQ)=N
 
!B(J)=NN+N
 

6 J=LA+N 
7 XB(J)=J 

IF(LA)=LA 
.F(ZTM) 997,93U,8 
CHECK CONSZSTENCY OF 
INITIAL VALUES
 

8 J=."I 
DO 11 N=1NN 
.X.F(IB(N)-NV) 11,11,9
 

9 !F(IB(N)-NN-NV) 
 1(1,10,11

10) J =J*1 

11 CONTINUE
 
:;.F(J.NV) 12,12,99? 
APPROXIMATE THE SADDLE FUNCTION BY A QUADRATIC
 

12 KQF=O
 
13 KQF=KQF+'i
 

KL=dJ 
ESTABLYSH 
COLUMN LOCATIONS 
AND VAkIABLE VALUES
 

14 DO 15 Jul,,LAN
 
15 JC(J)=j
 

DO 16 J lsNV
 
16 XSTAR(J)=X(J)
 

DO 17 K=1,NC
 
J=NV+K
 

17 XSTAR(J)=U(K) 
FILL TH2' TABLEAU
 
DO 26 =I,NN 
DO 18 J=NVPLAN


F R (10,J ) =j I-) 

J =NN+ :c
 
K=LA+.
 
R (.:.,J) =1 .0
 
R (I,K)=1 ..J 

F(I-NV) 19,19,25
 
19 DO 22 J=1,3
 

A=VALUr.(X, 1,JZ EAT,BT,NV)
 
DO 21 K=I,NC
 
!F(U(K)) 2 fl,2 1 .2 11 

2i A=A.+U (K) .V ALUE(X p.iJKeAT.BT,NV) 
21 CONTINUF
 

R (.L,J )=A 
22 P(J,r,)=A 

R (X,LA)=.-V,..LUF(X -IZ.- r ,IZEAT .BT.NV) 
K=NV 

23 K=K+1 
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C 


C 


C 


C 


C 


C 


C 


"F(K-NN) 24,24,26
 
24 R ( ,K)=V ALUE(X,bZE, Z,K-NV,AT,BTNV)


k (K, ) .,K)1-( 

GO 	TO ?3

-'5 R (1,L A)= VALLE(X,.1ZE, lZ EI.NV, AT,BT,NV). 
26 76B(8 =f 

DO 28 N=I,NN
 
A=R(N ,LA)
 
DO 27 J='I,NV
 

27 A=A+X(J) RR(N,J)
 
28 .R(N,LA)=A
 

INVERT THE MATRIX OF EASIC COLUMNS 
NP=0
 

30 NP-NP+l
 
.(F(NPc-NN) 31,31,39
 

31 JP= B(NP)
 
FIND MAXIMAL PZVOT
 

32 	A=30
 
DO 	 35 '=IoNN 
.XK(i(1)) 997,33,35
 

33 AA=ABS(R(I,JP))
 
tF (A-A) 35,34,34
 

34 A=AA.
 
7P=I 

35 	CONTINOi
 
X(F(A-F.PZ ) 960,960,36 

36 	*(NP)= P
 
I,8..(z P)= I
 
-:Xf:CUT. PIVOTING OPERATION
 

37 KP =l
 
38 GO TO 900
 

OPT,':fAX?7. THE QUADRAT7C PROGRAP 
9 lF(NQ)997,72,4si 

CKkCK FOR OBTIMALITY 
40 	 APZO.0
 

AD=O. 0
 
DO 46 N=INQ
 
9=IR(N)
 
AA=R( !,LA)
 
!F(YB(N)-NV) 42,42,41 

41 XF(XB(N)-NNi-NV) 44,44,,42 
42 IF(AA-AP) 43,46,46 
43 AP=AA 

NFP=N 
GO 	TO 46
 

44 XF(AA- AD) 45,46,46 
45 AD=AA 

N FD=N 
46 	CONTINUE
 

CHLCK PRIMAL FEASIBILITY 
/.7 ".F(AP) 5 l,48,99? 
48 F(AD) 49,72,997
 
49 NFP=NFD 
JdNPC=NN+NFP 

IRFP=IR(NFP) 
51 !FFP=1B(NFP)
 

LOCAL PIVOT ROW
 
52 LP=XB(NPC)
 

J P=JC (LP) 
XPN-NFP 

http:X(F(A-F.PZ
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912 IF(ABS(R(IRFP,JP))-EPZ) 55,55,9:13 
913 CONTINUE
 

AA=R( IRFPLA)/R( XRFP,JP) 
IF(AA) 53,55,56 

53 	IF(R(IRFP JP)-EPZ) 55,55s.54 
C PRO3LEM NOT CONCAVe 

54 	Kt0=5*KE
 
WRITE(2,900)3) 

9003 FORPAT(/10X,21H PROBLEF 
NOT CONCAVE I) 
55 AA=I.OE+36 

:PN =() 

56 	DO 62 N=INQ 
1=IR(N)
 
A=R(XLA)
 
IF(A) 62,57,59
 

57 	 IF(R(I,JP)) 62,62,58 
..58 R(ILA)=EPZ+1,OE-25
 

GO TO 52
 
59 .F(R(I,JP)-EPZ) 62,62,60
 
6) 	A=A/R(IJP)
 

IF(A-AA) 61,61,62
 
61 	AA=A
 

IPN=N
 
62 CONTINUE
 

F(MIPN) 997,940,67 
C UNBOUNDED SOLUTION
 

63 K '=7*KE
 
AF(ITM) 997,r997,64
 

64 DO 65 K=1,NC
 
65 U(K)x1.0+1,IO*U(K)
 

IB(NFP)=LP
 
YB(NPC)=.B FP 

66 	GO TO 98
 
67 	 ZP=IR(XPN)
 

K PT=2
 
Go TO 900
 

68 	KP=IB(XPN)
 
J C(LP) =J C(KP) 
JC(KP)=JP
 
IB(NFP)=LP
 

XF(IPN-NFP) 69,70,69 
69 	IPPN=NN+IPN
 

IB(NPC)=IB(IPPN)
 

'.:B(XPPN)=KP
 
IB(IPN)=IBFP
 
IR(NFP)=IP
 
XR(XPN)= IRFP
 
GO TO 52
 

7'1 IB(NPC)=ISFP
 
71 GO TO 40}
 
72 KVA=I
 

!F(ITM) 997.73, 920 
73 KVA=2
 
74 GO TO 92.0
 
75 	 JP=IB(1) 

http:55,55s.54


JP=JC (JP)
 
J PK= 1B (2 )
 
J PK=J C (J PK)
 
J PKK=X8 (3-)
 
JPKK=JC(JPKK)
 
GO 	TO (2 i83,2i)84),ID 

2U84 WRITE(2,2085) JPJPKIJPKKoKVAOKLKQFNQ
 
2,185 F0OR 4A T (1 OX JXNQ!) 1
 

24183 KFY=(!
 
76 KL=KL+
 

IF(KL-KQF*KPO) 761,761,94
 
761 CONTINUE
 

Y,YY=U.O 
C CALCULATe.THE R.H.S OF THE EQUATION
 

DO 79 J=I,NV
 
A=VALUE( X, IZ E,J, IZEAT oBTvNV)
 
DO 78 K=1,NC
 
F(U(K)) 77,78,77
 

77 	A=A+U(K),*VALUE(XL.ZE,JK,ATBTNV)
 
78 CONTINUE
 
7-9 R(JJP)=A+V(J)
 
80 DO 81 K=INC
 

J=NV+K 
81 R(JJP)=-VALUE(X,.ZE,IZE,K,ATBT,NV)+SI(K) 

C CKECK FOP CONVERGENCE 
K P=O
 
D FL=O ,P
 

83 	DO 90 K=',NN
 
N=XR(K)
 
A=1.;
 

84 DO 85 1='INN
 
J=LA+X
 

85 A"A+R(X, JP)*R(N,J)
 
R(N,JPK) =A
 
XF(AB (A)-0(.OE-25)) 

851 CONTINUE
 

YY=YY+A*A 
Y=Y+A*R(N,JPKK) 
AA=ABS (A/R(N,LA)) 
IF(AA-DLL) 87,87,86 

86 DtL=AA
 
87 XF(K-.NQ) 88,88,9.
 

87,87,851
 

88 XF(R(N,LA):.-A+EPZ) 89,90,90
 
89 KP=K
 
9U) R(N,LA)=R(N,LA).-A
 

7F(KEY) 892,892,890
 
89., !F(Y) 894,892,892 
892 YYY=YY
 

KEY=KEY+ I
 
DO 893 N=I,NN
 

893 R(N,JPKK)=R(No.JPK)
 
GO TO 899
 

894 K !UY=f'
 
KL=KL-1 

895 TH=-Y / (YYY-Y) 
896 KP=O 

DO 898 N=I,NN
 
A =R (N ,LA)+R(N,JPK)+TH*R (N,JPKK)
 
7F(A+EPZ) 897,897,898
 

897 KP=N
 
898 R(NLA)=A.
 
899 CONTINUE
 

IF(KP) 997,91,40
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91 GO TO (1"191,2 091),ID 
2 091 WRTE(2,.U92) A,AAYoYYDELwTH.,KEYKP 
2 192 FORMAT(//,IOX,'A,...,KP',,1OX,6(r.15.3,5X),2(5,5X)) 
1091 GO TO (900l,90U2),NKL 
9tII KVA=4
 

GO TO 920
 
90i02 KVA=3
 

GO TO 92'0
 
92 "F(DFL-EPS) 94,,94,93
 
93 IF(KL+3-KQF*KPO) 76,76,98
 
94 DO 95 J=INV
 

IF(DABS(XSTAR(J) '-X(J))-EPS*DABS(XSTAR(J))) 95,95,98 
95 CONTINUE 

DO 96 INCK=
 

J =NV+K
 
'F(DABS(XSTAR(J)-U(K)) -EPS*DABS (XSTAR(J))) 96,96,98
 

96 CONTINUE
 
XTF=KQF 

97 	KAPUT"-KE-i
 
GO TO-950
 

98 ZF(KQF-ITM) 13,.996,.996
 
900 A=H(!P,JP)
 

IF(ABS(A)-EPZ) 901,901,906 
901 	KE=3*KE
 

IF(UTM) 997,997,902
 
9 -2 F(lPN-NFP) 903,904,903
 
903 XP(NFP)=LP
 

P (NPC)"* B FP
 
904 DO 905 J=INV
 
90)5 	 X(J)nI.0+I.1O*X(J) 

GO ro 98
 
9u6 DO 907 I=INN
 
9 17 R(X,JP)=-R(IJP)/A
 

R(IP,JP)=1I.OA
 
DO 911 K=NP,LAN
 
J = 3 (K)
 
J=JC(J)
 
IF(J-JP) 908,911,909 

9f18 	 AA=R(IPJ) 
XF(AA) 909,911,909
 

9 '9 DO 910 X=1,NN
 
91U R(X,J) =R (I,J) +AA *R( ,JP)
 

R(!PP,J)=AA/A 
911 	CONTINUE
 

GC TO (3.C',68),KPI 
c ,.DETF CPTON OF VARIABLE VALUES 

9Z. DO 921 J=INV 
X(J)=O.O 

9L1 	 V(J)=O.O
 
DO 922 K=I,NC
 
U(K)=0.0
 

9Z2 	S((K)=0.0
 
DO 929 N=I,NN
 
1=H(N)
 
J =13(N)
 
, F(J-NN) 923,923,926 

http:R(IP,JP)=1I.OA
http:FORMAT(//,IOX,'A,...,KP',,1OX,6(r.15
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C 


C 


c 


923 XF6(J)=l
 
XF(J-NV) 924,924,925
 

924 X(J)=R(i,LA)
 
GO TO 929
 

9?5 J=J-NV
 
U (J)=R(I,LA)
 
GO TO 929
 

926 J=J.'NN
 
E B ( J) I
 
'F(J-NV) 927,927,928
 

927 V(J)=R(i,LA)
 
GO TO 9 9
 

9Z8 J =J.-NV
 
S I (J) = (.,LA)
 

9c 9 C;NT .NUE
 
GC TO (73,97,97,492,999),KVA
 

930 LAN=LA
 
GO TO P
 

94) DO 942 N=INQ
 
J=NN4 N 
J I[:3 ( J) 

J=JC (J)
 
A=R( FP ,,J)
 
IF(A-'AA) 941,942,942
 

941 AA=A
 
7PN=N 

942 CCNTINU" 
IF(AA+FPZ) 67,63,63 
STOR !NVERSE OF BASIC MATRIX 

950 DC 953 N=INN 
A mCN) 

ZF(I-NN) 952,952,951
 
951 	 7.=.-NN 
952 	DO 953 J=1,NN
 

JJ=LA+J 
953 R(Zr,J)=k (1,JJ) 

RETURN 
961 'CF(JP".NN) 961,961,962 
961 ' P(NP)=JP+NN 

GO TO 31 
962 	Y.(NP)=JP-NN 

GO TO 31 
CHI-CK TH;! OBJECTXVE VALUE OBJ 

970 ACBJ=OPJ 
OBJ=VALU ;(X,XZEIZ .,IZ EAT,BTPNV) 

F(ABS (AOBJ-OBJ)-LPS*O.I*ABS(AOBJ)) 94,94,92 
2KR OR EX.-T 

996 Kt.=2*K.
 
997 KVA=5
 

rO TO Q2 
Q99 	KAPUT=KE 

RLTUR N 
END 

http:CF(JP".NN
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SUBROUTINE WRITE2(STATOUT.QH.VNV) 
DIMENSION STAT(12).V(I12),QH (488),OUT(488)
 
DCUBLE PRECISION V
 
WRITE(?,410)
 
WRITE(2,4111) STAT(1)
 
WRITE(2,412) STAT(2) 
WRITE(2,413) STAT(3)
 
WrLTE(2,415) STAT(4)
 
WRITE(2•416) STAT(5)
 
WRITE(2,417) STAT(6)
 
WRITE (2,418) STAT(7)
 
WRITE (?,420) STAT(9)
 
WRITE(2,421) STAT(10)
 
WRITE(2,.422) STAT(12)
 
WRITE (2,300) 
WRITE(2,400) (V(I),I=I,NV)
 
WRITE (2,423) 
CALL OIJTPTl(OUTl) 
CALL OUTPT1(QH,2)
 
RFTURN
 

300 FCRMAT(//,IOX,VALUES OF THE"IMPULSE RESPJNSE 
FUNCTION,)

400 FCRPAT(6(4XF8.4))
 
/,10 FCRMAT(liIOX•'STATISTICS OF 
THE RESIDUALS')

411 FCRMAT(I,IOX,'MEAN OF 
THE RESIDUALS0,'14X,..',F,14.6)
 
412 FCRMAT(IOX,'STANDARD DEVIATION OF RESIDUALSv'A4Xj4..F14.6)

4,13 FCRMAT(IOX.'DETERMINATION COEFF2ClENTlo,OX,'u',f14.6)
415 FCRIAT(IOX,'COEFFICIENT OF PER$|STANC9@,9X,'m',F14.6)
 
416 FCRMAT(IOXo'MAXIMUM POSITIVE ERROR',139,'mFp14.6)

417 FCRMAT(IOX,,'MAXIMUM 
NEGATIVE ERRORl3X ,'.orjl4.6)
418 FCRMAT(IOX,'PERCENTAGE ERROR BETWEEN PEAKSff5X,'m',p14.6)
420 FCRMAT(IOX,'INDEX OF LOWER LIMIT OF SARCH',5X,'u'mP,1i.6)
421 FCRPAT(lOXoINDEX OF UPPER LIVIT OF SEARCH ,5Xo.'.rv14.6)
422 FCRMAT(IOX,'MAXIMUM OBSERVED RUNOFF'0o12Xo'*',F14,6)
423 FCRMAT(I,ICXe'DAILY RECORDED AND ESTIMATED DISCHARGES IN MM FOR WA

*KI CATCHMENT',.lOXr68(lH-),/) 
END
 

SUBROUTINE TEST(A,.,N.IL)
 

DIMENSION A(488)

DOUBLE PRECISION XN.SX.SXX,SDX,X1.X2,pXX.QT
 
DATA SX.SDXQT/3*O.O/
 
XN-DFLOAT(N)
 
ML=ML+
 
DO 1 I=1,N
 
XX=A(I) 
SX=SX+XX
 
S DX=S DX+XX*XX 

1 CONTINUE
 
SX=SX/XN
 
SDX=DSQRT( (SDX-SX*SX*XN)/(XNI. .DO))
 
DO 3 J=IML
 
SXX=n.0
 

http:XN.SX.SXX,SDX,X1.X2,pXX.QT
http:TEST(A,.,N.IL
mailto:PER$|STANC9@,9X,'m',F14.6
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DO 2 =J,N
 

X1=A(I-J+I)-SX
 
X2=A ( I) -SX
 
SXX=SXX+XI *X2
 

2 	CONTnNUE
 
XNI=XN-DFLOAT(J)
 

SXX-SXXJ (XN1*SDX*SDX)
 
IF(J.GT.1) QT=QT+SXX*SXX
 

3 	CONTINUFE
 
QT=QT+DFLOAT (NI)
 
SDX=SDX*SDX
 
WR!TE(2,1,I) SXSDX
 
WRITE(?,2110) QT
 
RETURN
 

120 FORMAT(/,10X,'INNOVATION I4EAN-',FlO.6,,l..OX,NNOVAT0ON VARIA'
 
*,vNCE=',F10.6,1)
 

2 'LJ FOkMAT(IX,'Q-TFST=',FlIO.6) 
END
 

SUPROUTINE OUTPT1(OUTLL)
 

C OBJECT:
 
C IT WRITES THE OUTPUT RESULTS.
 

C
 
C
 

DIMENSION OUT (488)
 
424 FOMAT(8(8,F10.6))
 

1000 FORMAT(/,5X,'RECORDD DISCHARGE:-')
 
1'ir! FORMAT(/,5X,'.STIMATED DISCHARGE:-')
 
ln20 FOxMAT(/,5X, 'THE RESIDUAL:-')
 

-- - -.- ---..-C --- -- - ...- -... .. ... .. ..- - ------- . --
C 

60 TO (10,15,25),LL 
1J WRITE(2,1000) 

GO TO 30 

15 WRITE(2, 1010) 
GO TO 30
 

25 WRITF(2,102Q)
 
30 Do 20 1=1,61
 

1l=S+61
 
12=11+61
 
3=12+61
 

X4=13*61
 

15=I4+61
 
I6=I5+61
 
17=16+61
 
WRITE(2,424) 'IOUT(T),II,0UT(II),12,OUT(12),13,OUT(13),14,0OUT(I4),
 

*±5,OUT(15),16.OUT(16), X1oOUT(17)
 

20 CONTINUE
 

RETURN
 
LE14D 
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SUBROUTINE MATR (VNPOUTNT EMP#FLoABoNVONC)
C AUTOCORRFLATION AND 
CROSS CORRELATION PROGRAM.
 
C------------------------------------------mmaq
C 

m 

DIMENSION VINP(488),OUT(488),A(78),B(a

1 3'C)
INTEGER TEMP.FL
 

DCUBLE PRECISION ABS,SDQO 
CCMMON iAl1S(2),SD(2)oN D 
INI,1N2=O
 
!X=l
 
L =TEMP 
IY=IX 

L2=L1
 
IF(FL.EQ.O) GO TO I 
R(=SD (1)
CALL OLS(IXIY,L,L2,IN ,IN2,VINPVINPRABNVNC) 

1 Y=IY+L2
 
L2=IX 

RO=DSQRT (SD(,)*SD(2))
CALL OLS(-IXIYLLZIFl1IN2,VNPOUTROA,B,NVNC) 
RiTURN
 
END
 

SUEriOUTjNE SMOOTH(VNV,X)
C IT SMOOTH THE OSCILATORY KERNAL 
FUNCTION ACCORDING TO HAPING

C ALGORITHM.
 
C 
C
 

DIENSION V(12),x(12) 
DOUBLE PRECISION X,,V

NVV=NV-1 
DO 2 I=1,NV
 
X(F(i.EQ.1) X(I)=0.54,V(I)0.46,V(IZ1,)
 
lF (I.GT .1 .AND.I.LE.NVV) X(I)=O.23*v(1-i1)s.54*v(z)+O.2],*v(I+,1)
 
IF(I.EQ.NV) X(I)=O54V(i)+O.46V(11)
 
CONTINUE
 
RLTURN 
FND
 

SUBROUTINFR SMOS(V,NV)C IT SMOOTHS AND WRITES THE POWER SPECTRUM BY USING THr HAMING
C WIN)OW ALGORITHM. 
C
 

DIMENSION V(50),X(50) 
NVV=NV-.
 
DO 10 I=t,NV
IF(I.E0.1) X (r)=0.54*V (I) +0.46,V (1+1) 
IF(I.GT.1.AND .I.LE.NVV) X(I)=0.2 3*V(1-1)+0.54*V(I)+0.23*V(I+1)
IF (I.E).NV) X(I)=0.54*V(X)+0.46*V(I-1) 

1) CONTXNUE
 
WRIrE(2,2060) (X(I),.=1,NV)
 
RF.TJRN
 

2063 FOVl AT(II.IUX.,X-VALUES:'Io10(SXOF10.6),/)
END 

http:IF(I.EQ.NV
http:AND.I.LE
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SUBROUTINE INPUTI (VINP',OUTN

DIMLNSION VI,,P(488)OUT(488)

DCUBLE PRECISION SDpSISDX.YS
 
COMMON /AIl/S(2).SD(2),ND
 
DO 	 20 1=1,N 
S=O.o

SD)X=O.o 

KA=(t-1) *ND
 
DO 	 10 J=ilND 
K=J+KA
 
Y=VINP(K)
 
S3=SI+Y
 
S DX=S DX+Y*Y 

.In 	CONTINUE
 
S (I)=SI 
SD(I)=SDX 

20 	CONTINUE
 
K=N41
 
S !=O.O
 
SDX=0.O 
DC 	 30 1Il,ND 
Y=OUT(Q)
 
S I=S14Y
 

3C SDX=SDX+y*y

S (K)=Sl
 
SD(K)zSDX 
RETURN
 
END
 

SUBROUTINE CONV(XYoZoNX.NYoS)
C !T CALCULATES THE CONVOLUATION OF VECTOR Y WITH X 
C 
C
 

DIMENSION X(12),Y(488)'jZ(488)

DCUBLE PRECISION X,YY,ZZ

JM=1
 

IF(IS.LT.O) JM=2
 
DC 	 3 J=JM,NY 
ZZ=O.
 
JX=J 
IF(IS.LT.O) JX=J-g 
IU=MINO(JXNX)
 
IF(lU-1) 3,1.1 

1 DC 2 I=1 ,Iu
!X= I..,
 

IF(IS.LT.O) IX=I 
YY=Y(J.-IX)
 

2 ZZ=ZZ.X('()*YY
 
YY=Z(J)
 
Z(J)=YY+ZZ
 
IF(IS.LT.O) Y(J)=Z(J) 

3 CONTINUE
 
RETURN
 
END
 

http:SDpSISDX.YS
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SUEIROUTINE CCOR(X,Y,K,N)
 

C CROSS CORRELATION COEFFICIENT PROGRAM 

C XY:INPUT ARRAYS NN 

C K :NO.OF CORRELATION COEFFILIENT REQUIRED 

C 
D)MENS!ON X(488),Y(488)
 

12 	 F CRFAT (l'OX ,R ',12,' =', F6.4) 
20 	 FCRMAT(1i. 1OXCROSS CORR. COEF.') 

W4ITE(2,20)
 
DC 4 J=1 ,
 

J J=J'-1
 
S=0.0
 
S 1=0.0 
S2=0.0
 
S3=0.0 
s4=0.0 
L=N-i J
 
DC 2 1-1lL
 
S=S+X (1),*Y(I+JJ)
 
S1=Sl+X( I)
 
S 2=s2+X( I) *X (I)
 

2 	 CCNTINUE 
I=JJi+l
 
DC 3 M=I,N
 
SZ=S3+Y(M)
 
S 4=S4"Y(M) aY (M) 

3 	 CCNTXNUE 
R=(S-SI*S3/L)JSQRT((S2'hSil*S 1L)*(S4-S3S3/L)) 
WRITE(2,1Z) JJ,R 

4 	CONTINUE
 
R LTU RN
 
END 

SUBROUTINE QHAT(P,Q1,Q2,XoTEpNoKSNS)
 

D lMF.NS.!OP X(12),P(488) ,Qi (488),Q2(488)
 

INTEGER TE
 
DOUBLE PRECIS(ON XSSQR)
 

COMMON/A l/S (2) ,SQ (2) ,ND
 

K =1
 
TS=NS 

NN=N+1
 
DO 	 10 ,T=IOND 

KI=K+Tr-1 
XF(KS.FQ.1) GO TO 25
 

Rr=DSQPT(SQ(NN)/SQ(N))
 
DO 211 J=K,KI
 

2r, X(J)=X(J)ARI' 
25 i.F(lS.FQ.1) GO TO 30 

GO TO 40 
3 t. CALL CONV(X,P,Q2,TE.NDIS) 
4U 	RkTURN
 

rND
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SUFROUT:XNFt KOLM2(X,Y,N,M,ZPROB,DN)
 
C TFSrs tH5 
DiLFFERENCE BETWEEN TWO SAMPLE DISTRZBUTZON FUNCTIONS
 
C USEJG TH. KOLMOGROV-SMIRNOV TEST.
 
C X:(N*i)71.NPUT VECTOR.
 
C Y:(-vl)!NPUT VECTOR.
 
C PQO:TM'- PROBABILXTY OF 
THE STATISTIC BEING.GE.Z.
 
C 
 Z:OJTPUT VAYIABLE CUNTAINXNG THE GREATEST VALUE WITH 
RESPECT 
C TO THE SPECTRUM OF X AND Y. 
C *** **** 
C 

0'CM;-NS.tON Y(488),X(488) 
C STORE X £NTO ASCLINDING ORDER 

DO 5 I=2,N 
F(X ( T)-X (.-I)) 1 ,5,5 

1 TEMP=X(X) 

DC 	 3 J=,j:fM 
L=I-J
 
IF(rEMP-X(L)) 2,4,4


;X(L+I)=X(L)
 

3 	CONTXNd.!
 
X () =TEMP
 
GO TO 5
 

4 X(L+I)=TEMP
 
3 CONrxNUE
 

C 	 SORT Y INTO ASCENDING ORDER .

DO 10. 7.=,4 P
 

IFC(Y ()-Y(I-I)) 6,10,10
 
5 TEMP=Y(t)
 

zm:ZI-


L=I-J
 

IF (TEMP-Y(L)) 7,9,9
 
7 Y(L+I)=Y(L)
 
5 CONTINOj
 
Y()=TEMp
 
Go ro 10
 
Y(L+I)=TEMP
 

1) CoNrxNJE
 
C C ICULATE DN=A3S(FN-GM) OVER THE 
SPECTRUM OF X AND Y
 

XN=.FLOAT (N)
 
XN=1.-O/XN
 
YM=FLOAT (M)
 
x11= 1 . 0/ XM 

I,J,K,L=O
 

DN=0.O
 
11 IF (U ( 1+1 )-Y(J+1)) 12.13,18

12 	K=I
 

c, ro 14
 
13 K=O
 

14 I=1+1
 
: F( -N) 15,21,21
 

15 CF(X ( - I) -X(l))14,l4,1l6
 

15 rF(K) 17,18,17 
C CALCULATV THE MAX-'MUM DIFFERENCEDN o
17 	DN=AMAXI(DN,ABS(FLOAT(I)*XN1E.FLOAT(J)*XMI))
 

IF(L) 	22,11,22
 
13 	J=J+1
 

IF(J-M) 19,20,20
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19 IF(Y(J+I)-Y(J)) 18r18,17
 
ZO L=I
 

60 TO 17
 
1 1=1 

GO To 16 
C CALCULATE THE STATISTIC Z •
 

22 Z =DN*SQRT((XN*XM) I(XN+XM))
 
C CALCULAT.. THE PROEABILITY ASSOCIATED WXTH Z 

CALL SmIRN(Z,PRO8)
 
PR03=1.0 'PROB
 
RETURN
 
E ND 

SUPSOUTI!FJE KOLI('',N,IERIFCODU,S,PROB,Z) 

C TLSTS THE DIFFERENCF BETWEEN THE EMPIRICAL AND THEORITICAL 
C DX.SrRIUTIONS USING THE KOLMOGOROV SMIRNOV TEST.
 

C X :XNPUT vECTOR OF N rNDEPFNDANT OBSERVATIONS.
 
C PRO3 :THE PROBABLITY OF STATIST.YC BEING 0GE, TO Z.
 

C IFC3D:CODE OF THE THEORITICAL D-STRIBUTION FUNCTION. 
C US :STATISTXCS OF VECTOR X ACCORDING TO IFCOD.
 

C IEP :ERROR INDIX VALUE. 

C 
DIVSNSION X(488) 

C NON DLCR(!ASlNG ORDFR OF X(I) 
ZER=O
 
DO 5 1=2,N
rF (X(l)-X (I-1)) 1,5,5 

1 TEMP=X(i)
 

DO i J=li4M 
L: 1-J
 
IF(TEMP-X(L)) 2,L,4


2>X(L 1)=X (L) 

3 CONTI NJE 
X(1)=TEMP 
GO ro 5 

4 X(L 1)=TkMP
 
5 CONTINLJ 

C COMPUTFS rAX",UF UEV:ATlON DN 
NMI =N -I 
XN=N 
DN=O.O 
FS=O.,
 
IL=1
 

S DO 7 I=ILNMI1
 
J=1
 
IF(X(J)-X(J+l)) 9,7,9
 

1 CoNT -tJiJ
 
SJ=N 

9 I =J+1 
FI=FS 

FS=FLOAT (J)/XN
 
IF(IFCOD-2) 16,13,17 

http:STATIST.YC
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10 IF(S) 11,11,12
 
11 IER=I
 

GO TO 29
 
12 Z=(x(J)-U)/S
 

CALL NDTR(ZrY,D)
 
GO TO 27
 

13 IF(M) 11-11,14
 
14 Z=(x(j)-U)IS+1. )
 

IF(Q) 15,15,16
 
15 Y=0.0
 

GO TO 27
 
15 Y=1.O-Exp(-Z)
 

GO TO 27
 
17 IF(IFCOD-4) 18,20,26
 
18 !F(S) 19,11,19
 
19 Y=ATAN((X(J)'u)/S)**O.3183099+O.5
 

GO TO 27
 
20 XF(5-U) 11,11,21
 
21 IF(X(J)-U) 22,22,23
 

Y=0.0
 
GO TO P7
3IF (X j -S ) 2 5, 5, ,4 

i4 Y=1.0
 

rO TO ?7, Yl(X (J)"U) /(S-U)
 

GO TO 27
 

GO To 29
 
",7 EI=,bS(Y-Fl)
 

ES=A- S(Y-FS)

DNI=AMAX j(ES,"EI)
 
DN=AMAXI (DNI,DN)
 
YF(L-N) 6S,28
 

28 Z=D'*S. RT(XN)
 
CALL SMIRN(Z,PROF)
 

=
PROE I .O-PRO9
 
2? RETURN
 

END
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APPENDIX C 
THE SECOND KOLMOGROV.SMIRNOV TEST 
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APDPENDIX C
 

THE SECOND KOLMOGROV-SMIRNOVI 
TEST
 

The goodness of fit between the two histograms,of observed and gene­rated sequences may be checked by using the second Kolmogrov-Smirnov test.
 

Let F and G be the cumulative distribution functions of the generated

and observed-sequences respectively, N
1 and N2 be the length of these two
 sequences. 
 Let 	H, be the hypothesis that both cumulative distribution fun­ctions wereobtained from the same population series. Then, the test sta­
tistics d 
can 	be expressed as 

max ( M .d "2N () ' I FNI GN (c.l) 

Decision Rule
 

The decision rule for accepting or rejecting the null hypothesis H. is
 
given by
 

<_ dc 4 Accept Ho
d 

(C.2)
 
> dc Reject Ho
 

where the threshold dc may be expressed as
1.36 at 	95% significant level
d 	­
(C.3)
 

1.22 	at 90% significant level.
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APPENDIX D
 
LIST OF THE DIGITAL COMPUTER PROGRAM
 
FOR THE LINEAR STOCHASTIC DIFFERENCE
 

EQUAT ION M O DE L
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PROGRAF( R!A IN) 
INPUT I=CR0
 
OUTPUT 2=1.PO/160
 
TtlAC E 0 
LND
 

MASTER RAO
 
C ****************************************************************
 

C THIS PROGRAM XDENTIFY THE NECESSARY PARAMETERS FOR RAO AND KASHAP 
C DAIfLY DATA MODEL.THESE PARAMETERS ARE THEN USED FOR THE PREDICTION 
C -OF DAILY STREAM FLOW Y AT ANY INSTANT 1. 
C DFSCRIPTION OF PARAMETERS: 
C Y(!) :A SEQUEiNCE OF DAILY INPUT DATA THE REQUIRED LENGTH ZS ND.
 
C YE(X):A SEQUENCE OF DAILY ESTIMATED OUTPUT DATA(STREAMFLOW).
 
C YR(I):A SEQUENCE OF DAILY RESIDUAL.
 
C A :VECTOR OF UNKNOWN PARAMETERS THE NECkSSARY DIFENSION XS L.
 
C Z :VECTOR CONTAINS CERTAIN FUNCTIONS OF Y(I) AND YR().
 
C S :(L*L) MATRIX.
 
C B :WORK VECTOR OF DIMENSION L.
 
C .(:TRANSFORVATION PARAMETER.
 
C 12:ANOTHER TRANSFORMATION PARAMETER.
 
C 13:CONSTANT EQUAL TO I
 
C X4:CONSTANT EQUAL TO 2
 
C 15:CONSTANT EQUAL TO 3
 
C 

COMMON IAIZ(6),Y(976) Yr (976)eYR(976),A(6),S(6,6)
DXMLNSTON B31 (6),B2(6),XSTAR(6,.6),VOUT(976)
 
COPVMON /C1/AMEAN,STDEVoASK
 
COMMON /AliLOND
 
DATA ML, IS IZE/50,5/ 

C 
C 
C READXNG FORMAT 
1000 FORMAT(314)
 
1010 F ORMAT (8FO.0)
 
1020 FORMAT(1012)
 

C 
C MAN PROGRAM OUTPUT FORMATS:­

2!0111 FORMAT(i,1OX,'VALUES OF PARAPETER VECTOR A:-') 
2010 FORMAT(6 (6X,F10.6)) 
2'i2 i FORMAT(//.,IOX.'THI- ADDITIVE MOD0I. IS USED FOR PREDICTION THE DAILY 

DATA.') 
'2-3"A FORvAT(//,10X,'THr MULTIPLICATIV MODEL IS USED FOR PREDICTION THE 

* DAILY DATA.') 
2,14U FORMAT(10X,'ONLY THE PERIOD FROM APRIL TO NOVEMBER IS CONSIDPRED.' 

:1,/,1OX,'YEARS OF OBSERVATION ARE 1970,11971,1973 AND ,1974.'01IpOXp 
*'NAME OF THE CATCHFMENT:WAKI RIVER CATCHEMENT.')
 

C I/t tt/iiii t/I/II/iIll//l l/ll ///l/////lllltlll//l/lllll/ 
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CC 
READ (1,1! 100) 111,2,.Z3,14,ND,L, tER,:AUTXSC,IP,LAG,NYiARP5 
READ (1,1 (11) (Y(1).I=1,ND) 
IF(I1-3) 10,20,20 

10 	WR!TE(2,2020)
 
GO TO 30
 

20 WR TF(2,2030)
 
31 WRITE(?,2040)
 

C
 
CALL EQUO
 

CALL OUTPTI(Y,I3)
 
C ALL PARA(Y,ND,AI FAN,STDEV,ASK)
 
CALL TRANS(Il1YNDoAMEANSTDEV)
 
CALL PRINT1(IAUTOZERIPISC,LAG)
 
CALL ZGEN(0, .ER, IAUT,ISC,IP)
 
WRITE(?,2000)
 

IF(LAG.EQ.(1) GO TO 70
 
J F=ND
 

40 	Y(JF)=Y(JF-LAG)
 
IF(JF.FQ.(LAG4I)) GO TO 50
 
J F=J 	F-1 
GO TO 40
 

5) DO 60 X=1.JF
 
Y(l)=O.0 

6'.i CONTINUE
 
70 DO 101.) =I,ND
 

IF(IER.NE.O) YR( X)=Y(1)
 
CALL MAR S (A,Z ,13 oSCXSTAR)
 
CALL VARC(13014)
 
CALL MULT(X4B 1)
 
SCC=Y (I) -SC
 
DO 80 J=1,L
 
A (J)=A (J) +SCC*BI(J)
 
IF (IER.NE.O) YR(I)=YR(I)-A(J)*Z (J)
 

80 	CONTINUE
 
WRITE(2,2010) (A(K),K=.1,L)
 
CALL ZGEN(IIER,IAUT,rSc,ip)
 

li'U 	CONTINUE
 
DO 110 I=I,ND
 
CALL ZGEN(I,IERXAUTISCXp)
 
YE(I)=0.0
 
DO 	11 J=IL
 
YE(r)=YE(I)+A(J)*Z(J) 

110 	CONTINUE
 
CAL.L ERROR
 
CALL OUTPT1(YR,I5)
 
CALL PARA(YE.NDAMEAWSTDEV.ASK)
 
CALL TRANS (12,YE.NDAMEANSTDEV' 
CALL OUTPTI(YE,14)
 
CALL TEST(IAUT.ISC.MLISIZE)
 
STOP
 
END
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SUBROUTINE TEST(IA,IC,ML,ISIZE)
 

C PURPOSE:
 
C IT TESTS THE RESIDUAL VECTOR YR.
 
C
 
C
 

COMMON /AI/L,ND 
COMMON /A2/Z(6),Y(976),YE(976),YR(976),A(6),SS(6,6)
 
DOUBLE PRECISXON COR(50),GAMA(50,,50)oCORO
 
EQUIVALFNCE (COR(1),GAMA(1,1))
 
DATA E A.!1 .,E2,U.,FCODS14*0.Olpll.O 

C OUTPUT FORMATS:
 
1000 F ORMA T (1OX ,3HEO=,F0.6 alOXX ,HEl='F I .6 aIOX,3HE 2=,FIG.6,/) 
Il0 FORMAT(//,1OX,'TESTING OF THE RESIDUALS:')
1!42;1 FORMA T ( OX,'TEST :2 ./ loOX ,2HZ=,F1U.6 ,/1 IOX .5HPROB==F 10.6,.1AOX 

*'MAXIMUM DIFFERENCE DN=',FIO.6,/) 
1030 FORMAT(IOX,'SECT'ON:2',/,IOXKOLMOGROV SMIRNOV TEST.',/,IOx,

*'TEST: I,1OX,2HZ=,FIO.6,1/,lflX,5HPROB.,FIO.6) 
I(4U FORMAT(1OX,'SF TION:I1/,IOX,'MEANS OF THE RESIDUAL.') 
1050 FORMAT(IOX,-SECTION 3',/,IOX,'THE F-TEST.',IIlOX.*VALUE=',F1O.6, 

*1OX,' LAG=',13,/, UX,60(IH*),/) 
=
1060 FORMAT(fIOX,'MLL=0',2,1OX'1 ' ,12,0LX,'GAMA(MLL V)=*,D26.20)
 

C 
C
 

.CSUM-XMYA '%C+1 
WRXTE(?,lIolf) 
NN=ND-SUP
 
DO 10 I=' SUMND 
FU=k(I+YR CZ)/NN 
F I=EI+ABS(YR( I/NN) 
r'?==a2+(Y R( ) **2) /MN

Ir 	CONT'NUF
 
WPXT' (2,1040) 
WRlTE(?,I000) EO,.E fE2 
CALL AUTO(YE,ND, ML, IFCOD,COR,COR 0) 
CALL AUTO(YRNN,MLrSUMrCORCORO)
 
DO 	 3ed I=iSIZE,ML,XSIZE 
CALL KOLM2(Y,YEI,I,,z2, PROB2,,DN)
 
WRXTF(2,1020) Z2,PROB2,DN 

31", 	CONTINUE
 
CALL KOLM2(YYE,ND,ND,Z2,PROB2,DN)
 
WPITE (2, 020;) Z2,PROB2,DN 
CAI.L CCOR(Y.YRMLND) 
R ETURN 
END 

SUBROUTINE ERROR 
C IT COMPUTES THE RESIDUALS VECTOR YR 
C 
C 

COMMON JAI/LND 
COMMON /A21Z (6),Y (976) ,YE(976),YR(976) 
DO 10 r=I,ND 

,A(6),S(6,6) 

YR(I)=Y( I)-YE(D) 
10 CONTNUE 

RETURN 
END 

http:V)=*,D26.20
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SU" OUT O3 Z GEN( !G"N,lER,lAUT-,1SC,lP) 

C ",T GENFRATPS THF I VFCTOR THE GIVEN INSTANTFOR 

C 
C 

COMMON iAdZ(6),Y(976) ,YE(976)pYR(976),A(6),.S( 
6 , 6 ) 

C 

Z (1)=1.0 
GrNERAT THE AUT ORDER AUTOREGRFSIVE TERMS. 

DO 1 =I,IAUT 
', NDLX = IGEN-I-+ 1 

IF(INDFX .LE.O) Z (1+l)=.O0 
Y F(INDEX .GT.0) Z (I+1)=Y(INDEX) 

1' CONT'NUF 

C GNiRAT5 THE SECOND ORDER ERROR TERM IF ANY. 

F(.ER) 40,40,20 

;RI2=IAUT+3 
DO 30 I=30 1,'tER2
J r['EX =)G N -L+,YERI 

.F(JNDEX.LL.O) Z(I)=O.O 
!F(JNDEX .GT.O' Z(1)=YR(JNDEX) 

30 CONTINUE 
4 :F("SC) 60,60,50 

C G"Ni.RATE SLN AND COS TERMS IF ANY* 

5j xSCl=XAUT*2 
NSC2=IAUT+3
 
Z (13C1)=SI.N(44.0*G N/1708 .0)
 

Z (ISC2)=COS(44.l*IGEN/lO 
8 t))
 

6') IF(:.P) 90,90,70 
C G ,NIERATIU PfRIODIC TERMS IF ANY. 

70 .*PI=IAUT+?
 •.7 (ZP1)=O.OQ 

DO b0 I=i,7 
II=1-4 P 1 ) + Y ( I G E N 2 4 4 + 11 ) ) 1 T ' O -Z (IPI)=(7(l 

80 C(jNT-NU: 
90 R!'TURN
 

SUbROUTI , EQUt 

C :'T !NXTIAL.NZL BOTH VECTOR A AND MATRIX S. 
C * ************************* 

C 

COIMON /AI/L,ND 6 "6 )

C' MMON IA2?:(6),Y(

9 76 ) .YE(976),YR(976),A(6),S(
 

A (',):J. 

DO 101 J= ,L 

XF(f.N-.J) S( ,J)=11.I 

1' CONTNUI: 
R 'TURN 
NC..h
 

http:ZP1)=O.OQ
http:F(JNDEX.LL
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SUBROUTINE MULT(M,B) 
C PURPOSE:
 
C PERFORMS MATRIX 
AND VECTOR MULTIPLZCATION.
 
C A:XNPUT VECTOR OF DiMENSION L • 
C X:','NPUT MATRIX OF DIMENSION (LXL). 
C F:OUTPUT VECTOR OF DIMENSION L 
C M:PCRFORMANCE INDEX 
C IF M=l:P=A*X , 
C lF M=2:B=X*A •C *************************************************************** 

C 
COMMON/A2/Z(6),Y(976),YE(976),Yr (9 7 6 ),A( 6 ),X(6, 6 )
COMMON /AI/L,ND 
DIM.NSXON B(6) 
CO TO (1O,30)eM 

10_ DO-20 I=1,L 
B (X)=O.O 
DO 20 J=I,L
 
B (I)=B (I)-+Z (J)*X (J , )
 

20 CONTINUE 
GO TO 50 

30 DO 4) II,L
B(I)=D.O 
DO 40 J=IfL 
B (I)=B(I)+XI(,J)*Z(J) 

4r' CONTINUE
 

5U RCTURN
 

SUBHOUTiNE MARS(B 1,B2,L,SCATB,ABT) 
C PURPOSF: 
C 
C 
C 

C 

IT GIVES THE PRODUCT OF MULTIPLICATILN OF A TRANSPOSED VECTOR BilAND THF OTHER VECTOR B2 WHICH A SCALAR SCATB FOR L=I.
IT ALSO GIVES THE PRODUCT OF MUTIPLICATION OF VECTOR B AND A
TRANSPOSED VECTOR B2 WHICh A MATRIX ABT FOR L=2. 

C ******** 
C 

DX-)IV.NSXON B1(6),B2(6),ABT(6,6) 
COMMON /A1/LL,ND 
GO TO (10O,30),L 

10 SCATB=0.D 
DO 20 Y=I,LL 
SCATB=SCATB B I(I) *82 (I) 

20 CONTINUF
 
RETURN 

C 
30 Do 40 X=ILL 

DO 40 J=1,LL 
ABT (I,J )=B1 (I)*B2 (J) 

40 CONT '.NUE
 
RETURN
 
b.ND
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C 


C 

C 
C 

C 

C 
C 

C 

C 

C
 

SUBROUTINE AUTO(AN,L,ISUM,RI,CO)
 
D!MENSEON A(976) ,Rl (5),R2(50) 
DOUBLE PRECISION RI,COSUMAVER
 
PHI=22.0t7.0
 
AVEk=0.0
 
IF(N-L) 50,50,60 

50 RI()=0.0 
GO TO 150
 
WRITS:(2,200) 

11,) DO 110 I=ISUM,N 
11,I AVER=AVER+A(I) 

FN=N
 
AVIk=AVFx,,/ FN
 
CALCULATE AUTOCOVARXENCES a 

DO 130 J=1,L
 
NJ=N-J+I
 
SUM=.O 
DO 120 X=lSUM,NJ 
kJ=x+J -'1 

12U SUM=SUM+ (A (1)-AVER) *(A(ZJ) -AVER) 
FNJ=NJ 
R 1(J) =SUM/ FNJ 
R2(J)=RI(J)lR1(1)
 
K=J-1 
WR TE(2,30O) KRI(J),RZ(J) 

130 	CONTINUE 
CO=i1 (1) 
CALL POW .R(L, PH.,R2) 

150. 	R FTUR N 
2uJ'. 	 FORMAT(//,1OX,61(IH*),/ZOX,'K',9X,'AUTO(K) ,9X,,AUTO(K)IAUTO(f)', 

* ,1;IX 6 1 (IH*)) 
300 FOR'AT (2 OX,12,2(7X, F 1.6)) 

"ND
 

S UBROUT. NE VA RC (3 I4) 
PURPOSE:
 
THIS SUBROUTINE UPDATES THE S MATRIX.
 
A:VECTOR OF UNKNOWN PARAMETERS.
 
Z :VLCTOR OF FUNCTIONS OF THE INPUT STREAMLOWo
 
S :UPDATD S fOATR(X.
 
L:NUFBFR OF UNKNOWN PARAYETERS.
 
ND:LLNGTH OF INPUT DATA.
 
***************************************************************** 

DXMENSTOI' BI (6),82(6),XSTAR(6,6)
 
COMMON IA1/L.ND
 
COMMON /A2/Z (6),Y(976) ,YE(976),YR(976),A(6),S(6,6)
 
CALL MULT(14re1)
 
CALL MULT(x3,B2)
 
CALL MAR S(B1I,B2,14, SC ,XSTAR)
 
CALL MULT(13,BI)
 
CALL MARS(Bl,Z,13,SC,XSTAR)
 
DO 10 1=1A1
 
DO 10 J=1,L
 
S(j,J)=S(l,J)-XSTAR(I,J)/(l.n+SC) 

lit CONr:NIJE 
k ,'TUR N
 
FND
 

http:IA1/L.ND


- - ---------- -------- 

SUPiiOUTjtqE OUTPTI(OUTLL)
 
C O.,J-CT: 
CC ;T WRIT%*** 	 ** ** *********************THE OUTPUT RLSULTS. ****b************************** 


**** * 
C 

D)MVNSON OUT(Y76)
 
4?4 FO1V'AT (5 ( 18, F 1it.6))


1 '01 FOR AT(/,5X,'RECORD"D DISCHARGE:'.-')
1711 FOkAT(/ ,SX,'(STIMATED DISCHARG:-')
1ri2 	1 FOfMAT(/,5X,'THE RESIDUAL:-') 

C ----

- -ai a aaa-a- -a-----C	 a aaa 

GO 	 TO (l0,15,25),LL 
10 WRITE(2,1000)
 

GO TO 30
 
15 WRXTF(2,1010)
 

GO TO 0
 
25 WRXTE(2, 1020)
 
30 DO 20 1=1,61
 

11=1+61
 
12=11+61
 
13=12+61
 
r4=I3+61
 
15=14+61
 
16= r5 +6 1
 
17=I6+61
 
WRITE (2,424) I'OUT()-II,oUT(II),I2,oUTc(1), 

13,	 0 UT(I), 4 ,0UT(14),*I5,OUTCI5),16,OUT(16),,Z7,OUT(I7)	 1 

20 	COtTXNUE
 
REITURN
 
FND
 

SUUROUTINE PRINTI(IAIE,!PISLA) 
C PURPOSF:
 
C XT WRITFS THF INPUTS. 
C ++ ..+++.+.+++++ +..++.. ++++.++. +...+.+++.++++++++ 	 ...
 + +++
 
C 

COMMON /A1/LND
COMMON /A2/Z (6 ),Y(976),YE(976), YR(976)OA(6),S( 

6 p 6 )
COMMON /C1/AMEANSTD.V,ASK
 

C 
C THE NECESSARY FORMATS:

2GLOO FORMAT(1lX,'NUMBEq 
OF 
AUTORCGRESSIVL TERMS=',I2,/,IX,lNUM6F OF E
ARRON TFRMS='l,2,/,lOX,'NUMBER OF 
PERIODIC TERMS=',I2/,10X,NUMB[-R
* OF SIN AND COS TERMS=',I2,/,,I10x'LAG=s12,/IOX, 'NO-. OF DATA',
 

?r'10 FORMAT(1OX,'PARAMETER SELECTION 
FOR RAO AND KASHYAP P#ODEL')2.'2h FOkMAT(3X,'VALUES OF TRANSFORMED DISCHARGE'l
 
2V13) FORlMAT(8 (3X,F7.4))

2 ]4;1 FOkMAT(/,lOX,'MEAN 
 OF 	DISCHARGE=',FlO.6,/,lOX,STANDARD 


DEV:ATXON
*OF DISCHARGE=',F10.6,/jIOX ,SKEWNESS COEFFICIENT OF 	 DISCHARGE=' 
*F I .6,/) 

C 
C
 

WRITE (?,2 1I) 
WITE (2,2000) IA, :L.P..XSoLAND 
WRITF(2,?040) AMf-AN,STDEV,ASK

WR 	 TF(2,'L-1ll2) 
WRIT E (, ."r130) (Y (I), X=l,ND) 

k ETUl: N 
END
 



C 

1B6
 

c 
SI','-,OUTJ-' 
T :STS TN 

- KOLrI (Y, 

VMP 
,.N'R,±FCOD,U,SPROB,Z) 

TWEN THK -MFRICAL AND THEOR:T.CAL 

C 
C 
CC 

'TR(PUIIONS US ',NG THLU KO1.POGOROV SP IRNOV TEST. 

x :'NF'UT VPCTO; OF N TNDEPENDNT OBSERVATIONS. 

PLGe :TH DROFAfJL.TY OF STATIST'C BEING .GE. TO Z. 
.FCOD:CO" OF TH THU.ORiTCAL D STR1BUTION FUNCTION. 

C L,S :STAT.LSTICS OF VECTOR X ACCORDING TO IFCODE. 

C :C'.R :rRiOP JND;X VALUE. 

C 

D:"MNSTON X(976) 

C NON DEhC -ASKNG O.,DER OF X(X) 

:(ER=O 
DO 5 :r=2,N
TF (X ( 1) -X ( 1-1 1),5,v5 

I T EfP=X (I) 

DOC3 J 1,I1l 
L= Z-J 
':F(TrE.Mp-x(l)) 2,4,4 

2 X(L+1)=X(L) 
3 CONTINUE 

X( )=TEMP 
GO TO 5 

4 X(L+1)=TEMP 
5 CONT .NUF" 

COMPUTES PAXIMUM DEV'CATXON DN 
N1I=N-1 
X NN 
DN=0.0
 
F S-)i. 
U=~1 

6 DO 7 .1= &PNM1 
J 	=x 

F(X ( J )-X ( J+ )) 9,r7 9 

7 CONT '.NUC 

9 J 1 
9 iL=J+1 

F i=FS 
FS=FLOAT (J)/XN 
Y;F(:FCOD-2) 10,13,17 

1q 	 "F(S) 11,11,12 

C(', 	 TO ?9 
IZ 	 Z=(X(J)-(J)/S 

CALL NDT(Z,Y,D) 
GO TO 27 

13 XF(S) 11,11,14 
14 7 =(X (J)-U)IS+1.U 

SF(Z) 15,15,16 
15 	Y=0.0 

C TfO ?' 
16 	 Y=1. )-,::-X P*( -Z) 

GO 	 TO 27 

17 !F(UFCOD--4) 18,2t,26 

18 !F(S) 19,11,19 
19 Y=ATA N((' (J) U) SS)*O 3 183099+0.5 



oTo 27 187 
23 IF(S-U) 11,11,21
21 "F(X(J)-U) 22,22,23 
22 Y=0.A 

GO TO 27 
23 IF(X(J)-S) 25,25,24 
24 Y=I.O 

GO TO 27 
25 Y=(X (J)-U)/(S-U) 

GO TO 27 
?6 1iR=I 

GO To 29 
27 EI=ABS (Y-F I) 

ES=ABS (Y*-FS)
DN1=AvAX 1(ES, EX)
DN=AMAX1 (DN1,.DN) 
IF(IL-N) 6,8,28 

2F Z=DN*SQRT(XN) 
CALL SMI*N Z,PROB) 
PFO =i .0-PROB 

29 Ro*TUR N 
END 

C 

C 
C 
C 
C 
C 

C 

SUBROUTANE KOLF2(X,Y,N,ZPROBDN)
TESTS THE DIFFERLNCE BETWEEN TWO SAMPLE DISTRIBUTZON 
USING THL" KOLMOGROV-SMIRNOV TE.ST,
X:(N*1)LNPUT VECTOR. 
Y:(M*1)INPUT VECTOR,
PkOB:THE PROBABTLITY OF THE S(AT.STZC BEING.GE.Z.Z:OUTPUT VARIABLE CONTAINING THE GREATEST VALUE WITH

TO THk SPECTRUM OF X AND Y. 

FUNCTION 

RESPECT 

C 
C 

C 
D1rsENSON )(976) ,Y(976)
STORE X INTO ASCENDING ORDER 
DO 5 t=2 ,N 
XF(X( I)-X(I-1)),5,5 

1 TEMP=X(r) 

DO 3 J=1,IM 
L=X-J 
• F(TEMP-X(L)) 2,4,4 

2 X(L+1)=x(L) 
3 CONTINUE 

X(1)=TFMP 
GO TO 5 

4 X(L+I)=TEMP 
5 CONTiNUE 

C SORT Y INTO ASCENDXNG ORDER 
DO 1 r=2,M 
.F(Y ( )-y ( I )) 6,1!0,,10 

6 TEMP=Y(I) 
AM=1-1 
DO 8 J=1t N 
L=I-J 
lF(TEMP-Y() ) 7,9,.9 

7 Y(L+I)=Y(L) 
8 CONTXNUE 

Y(1)=TEIVp 



C. T 
9 v + i) T r­

10 C.iT ' NJ : 
c CALCULAT DN=A5S(FNoGP) OVER TH: SPECTIJF. OF X AND Y 

X t,=F LOAT ( N) 
XN11 .01 YN 
XV=FLOAT (Iv 

XFl1=1 .0/0F 
) 

(,JK ,L=0 

11 1 F (X (i+ 1 )-Y(J 1)) 1 ?,13 18 
"12 K=1 

G0 TO 14 
13 K=O 
14 :=X+l 

TF(I-N) 15,21,21 
15 IF(X (1+1 )-X(I))14,14,16 

C 
16 IF(K) 17,18.,17 

Ci.CULATE THE MAXIMUM DIFFERENCCE,DN 
17 DN=AMAXI(DN,ABS(FLOAT()*XN1-FLOAT(J)*XMI)) 

TF(L) 22..11,22 
18 J=J+1 

19 
IF(J-M) i9,,20,20
IF(Y(J+I)"Y(J)) 18,18,17 

20 L=I 
GO TO 17 

21 L=I 
GO TO 16 

C CALCULATE THE STATISTIC Z 

C 
22 Z zDN*SQRT((XN*XP )/(XN+XM)) 

CALCULATE THE PROBABILITY ASSOCIATED WITH Z 
CALL SMZRN(ZPROF) 
PROB = 1.0-P ROB 
RETURN 
FND 

SUEROUTINL PARA(TN,AM EANASTASK) 
C T COMPUTES PEANSTANDARD DEVIATe.ON AND SKEWNESS OF THE VECTOR T. 
C AMEAN:MEAN VALUE 
C AST :STANDARD DEVIATION 
C ASK:SKI.-WNESS COFFFICIENT 
C ** -***** 
C 

DIMENSION T(976) 
A N=N 
SUM=O.0 
DO 10 I:1,N 

10 SUM=SUM+T(I) 
AMEAN=SUMlAN 
SUM=O.0 
SUM1=0.0 
DO 20 1=',N 
SUr=SUM+((T(1)-AMEAN)**2) 
SUM1=SUM1+((T(Z")-AI'kAN)**3) 

20 CONTINUE 
AST=SQRT (SUM/AN) 
ASK=SUMI / (AN*AST **3) 
EETUI N 
END 
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StJPROUTNF POWER(PL,PHIR2) 
C OfJECT:
 
C IT CALCULATES AND WRITES THE POWER SPECTRUP PS.
 
C *
 

D]rENSYON R2 (49).PS (49)

1'000 FORMAT(1OX.34(1H*),,/.14X, WH,,15X.,PS( ) ,. 
 10X.34 (1H*))

2000 FORMA T (2XF1.68X rF10.6)
 

WkX TF-(2, 1000) 
DC 15 1=1,ML
1I=I-I 
W =PH *rii/NL 
PS(I)=O.O
 
IF(I. -'Q. 1.OR .X. .M[.) FK=O .5
 
IF(I.NF.l .AND .I.NF*.ML) EK= .0
 
DC. V1 J-;I,ML 
J J=J'l
PS (I)=PS (X)'l(EK*R2 (1)*COS (PH£'*JJJ' IIIML)) 

IC! CCNTINUE •
PS (l)=?.0,=PSQ(1PHI 

WI.TE (?,200W)WH.PS(T)
 
15 CCN7i&NUE
 

RETURN 
EhD 

SUBROUTINE SMOS(V,,NV)

C 7T SVOOTHS AND WRZ.TES THE POWER SPECTRUM BY USING THE HAMING
 
C WINDOW ALGORITHMe
 

DIMENS XON V(50),X (50) 
NVV=NV-1
 
DO 10 !=INV
 
iF(I.t.Q.1) X(X)=0.54*V(I)+0.46*V(I+I)
 
lF(I.GT.I.AND .I.LE.NVV) X(I)=0.2i*v(r-i)+0.54*V(I)+O.23*V(I+tI)
XF (I.EQ.NV) X(I) =0.54*V (T) l.46*V (I-1) 

10 CONTINUE 
WT1".I"E (?,2060) (x (),I=INV
 
R Y:TUR N
 

1(161; FOPMAT(I,IOX,'X-VALUES'',II (5X,F10.6),I)PN D 


