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PREFACE

This report is directed towards the identification, estimation
and validation of some physical data based river catchment models.
Two general classes of models, with a variety of mathematical formu-
lations and estimation methodologies, are presented. The first class
is the linear stochastic difference equation models, while the second
is the transfer function models selected using the minimum mean-square
error criterion.

A case study of the Waki River catchment located near Lake Albert
has been examined to demonstrate the applicability of the above models.
Using the input precipitation over this catchment and the corresponding
measured output discharge, it has become possible to digitally simulate
the two proposed models and to scrutinize the main statistical character-
istics of their output data sequence. The validity of the residual se-
quences generated by different structires of these models for the pre=
specified estimation conditions has also been investigated,

The salient features of the two best fitted Tinear stochastic difference
equation model and noisy trarisfer function model have then been discussed
in a comparative pattern in order to achieve a better representation for
the Waki River catchment. As a general view, it is concluded that the
application of linear stochastic difference equation models is pragmatic
both for estimation and prediction of the given catchment output discharge.
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CHAPTER 1

INTRODUCTION

1.1 ART OF MODELING

The word "model" is used in many situations to describe the
physical system at hand. Consequently, there is a strong difference
of opinion as to the appropriate use of the model. It may suggest a
photographic replication of the system under study which reflects all
its ramifications so that the model may adequately represent that
system.

Usually, complicated physical systems, such as river catchments,
do not need an inextricable mathematical model to describe it. Thus,
it is advisable to select a relatively simple model to a given system
and increase the complexity of that model only 17 the simplest one is
not satisfactory.

Briefly, the class selection methods furnish only the best class
among a list of chosen classes. There is no guarantee that the best
fitting model from the best class given by the class selection methods
is the most appropriate one, i.e., it may not pass the validation tests.
Thus, we should consider all the possible classes relevant for the phy-
sical system under consideration.

Practically, the best fitting model is that model which passes all
the validation tests and have a relatively small number of parameters
among the various prespecified classes.

1.2 OBJECTIVE OF STUDY AND SCOPE OF THE WORK

This research work is directed to the identification, estimation,
and validation of some stochastic mocels suitable for river catchments.



Two families of models are discussed in some details. The first
family is the linear stochastic difference equation models, while
the second is the transfer function models selected using the
minimum mean-square error criterion. The choice of the adequate
model from either two families, for a given river catchment, is
treated in the following steps :

i) Estimation of the parameters in a model using the given
physical observations. This is usually known as the tuning
step of the model.

ii) Choice of the appropriate structure by means of some class
'selection technigues.

ii1) Verification of the validity of the.selected structure by
means of "goodness of fit" test and by a direct comparison
of the various statistical characteristics of both the
observed and estimated output data sequences,

Once the appropriate structure is selected, 1ts one-step ahead
prediction capability is checked by the straight forward comparison
of the predicted and observed output data sequences within some pres-
pecified levels of classification.

The following is a brief outline of the main parts of this
report :

Chapter I1I discusses pertinent details of the mode] building
problem as well as some alternative structures of models.

Chapter III presents an important model structure which is
commonly used for river catchments. The possibility of using either
the generalized least-square or constrained estimator to evaluate the



unknown parameters of that noisy-transfer function model is also
scrutinized. The validity of the proposed model is then examined
in order to achieve a better estimatability conditions.

In Chapter IV, a family of univariate linear stochastic difference
equation models is suggested for representing the given physical data
sequence. Moreover, some methods are given for estimating the ‘:nknown
parameters of these models. The nature of model validation is also
discussed by using some goodness of fit tests.

In Chapter V, the Waki river catchment is selected as a case study
to demonstrate ihe applicability of the above modeis. A complete
description of this catchment is given from both the geologicai,
meteoriogical and hydrological view points.

Chapter VI 1nvestigates the availability of using either the
noisy-transfer function model or the univariate linear stochastic
difference equation model, with different concepts for each, to
represent Waki river catchment. The forecasting capability of the
two successful models, each developed from a prespecified family,
is also tested for the given catchment.

Chapter VII presents a summary of the report as well as its
main findings.
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CHAPTER 1I

CHOICE OF AN APPROPRIATE MODEL

2.1 INTRODUCT ION

The choice of an appropriate model for a given physical data such as
river catchments is necessarily iterative, i.e. it is a process of evaluation
and adaptation. Usually, when the physical mechanism of a phenomenon is com-
pletly understood, it may be possible to write down a mathematical expression
which depicts it exactely, thus we obtain an ideal mathematic..] model.
Although, insufficient information may be ava11ab1e'1n1t1a11y to write an ade-
quate mechanistic model. Nevertheless, an adaptive strategy can sometimes 1ead
to such a model. On the other hand, the rather complete knowledge or large
experimental resources needed to produce a mechanistic model are not available
and we must then resort to a stochastic model tuned by observed physical data
[Box and Hunter (1965)].

2.2 ITERATIVE APPROACH TO MODEL BUILDING

In fitting dynamic models, a theoretical analysis can sometimes tell us
not only the appropriate form of the model but also can furnish good estimates
of the numerical values of its parameters. The various stages of the iterative
approach are:

i) From the interaction of theory and practice, a useful class of models,
for the purpose at hand, is considered.

i1) Because this class is too extensive to be conveniently fitted directly to
the physical data, rough methods for identifying subclass of these models
are sought. Such methods of model identification employ data and knowledge
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of tha sv-tem to suggest an appropriate parsimonious subclass of models
which may be utilized to yield rough preliminary estimates of the model's
parameters.

iii) The rough estimates obtained during the identification stage can now be
used as commencing values in more refined iterative methods for esvtimating
these parameters.

iv) Diagnostic checks are applied with the object of uncovering possible lack
of fit., If a permissible lack of fit is indicated, the moudel is ready to
use, but if any inadequacy is found, the iterative cycle of identification,
estimation and diagnostic checking is re-iterated until a suitable mathe-
matical representation is attained,

2.3 GENERAL CLASSES OF PHYSICAL DATA BASED MODELS

2.3.1 Deterministic Models

It is sometimes possible to derive an empirical model, based on physical
laws, which permits the calcualtion of some time-dependent quantities, almost
exactly, at any instant of time. If exact calculations are attainable, such
a model is entirely deterministic.

2.3.2 Stochastic Models

In diverse cases, we have to consider a time-dependent phenomenon com-
prising many unknown factors and can not render the application of a determin-
istic model possible. Thus, it may be easier to derive a model which can be
used to calculate the probability of a future value 1ying between two specified
timits. Such a class of models is called a stochastic model which is intro-
duced to achieve an optimal forecasting and control tasks for the physical pro-
cesses. The main subclasses of these stochastic models are:
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2.3.2a The Linear Filter Subclass

Usually, a physical system in which successive values are highly depen-
dent can be usefully regarded as generated from a series of independent random
variable w(t) by what is called a linear filter [Yule (1927)]. The linear
filtering operation simply assumes a weighted sum of previous observation, so
that

y(f) = :Y' + W(t) + lp]W(t-]) + wzw(t"z) + ... (2'])

where the weights w], Yos «ou, May be finite or infinite and the parameter
y is the mean value of the process y().

2.3.2b The Autoregressive Subclass

In this subclass, the current values are expressed as a finite linear
aggregate of the previous values and a random w(t). Let us denote the devia-
tion of the process y(-) from 1ts mean value y at equally spaced time intervals
t, t-1, ..., t-p, by yD(t), yD(t-1), ceny yD(t-p) respectively, This gives

Yp(t) = 6y wp(t=1) + .+ 4 yy(tep) + w(t) (2.2)
which is called an autoregressive (AR) model of order p.

2.3.2c  Moving Average Subclass

In this subclass, it is considered that the deviation of the system out-
put from its mean value be linearly dependent on a finite number of previous
random variables. That is

yp(t) = w(t) - 6, w(t-1) - ... - % w(t-q) (2.3)

which is referred to as the moving average (MA) model of order q.
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2.3.2 d Mixed Autoregressive Moving Average Subclass

To achieve greater flexibility in fitting mathematical models, it is
advantageous to include both autoregressive and moving-average terms to the
model. This will lead to the mixed autoregressive moving-average (ARMA) model.
The notation ARMA (p,q), represents an ARMA model with p consecutive AR terms
yD(t), ches yD(t-p) and another ¢ consecutive MA terms w(t), ..., w(t-q).

This model is expressed mathematically as

yplt) = ¢qyplt-1) + ... + ¢pyD(t-p) tult) - oqw(t-1) - ... - eqw(t-q) « (2.4)

2.3.3 The Transfer Function Models

In these models, the deviation of the input [x(:)] and the output [y(-)]
from their appropriate mean values are related by a 1inear differential
equation of the form

(1+ €0+ ... + EDR) Yp(t) = (Ho + HD + ... + HSDS) xp(t-t)s (2.5)

R

where D is the differential operator, the E's and H's are unknown parameters

and v is a time delay factor.

In a similar way, for discrete data systems, we can represent the transfer
function between the quantities Xp and Yp each measured at equispaced time
intervals, by the corresponding difference equation

(1 -8B - ..o - 6B") yp(k) = (w - wiB = ... - w B) xp(k-b) (2.6)
or simply
yp(k) = V(B) xp(k), (2.7)

where V(B) designates the transfer function of the given physical system.
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The problem of estimating the transfer function V(B) is, however, prac-
tically complicated due to the presence of some undefined noises. Therefore,
we adjust the ideal transfer function model (2.7) to be in the form

vp(k) = V(B) xy(k) + w(k), (2.8)

where w(+) is a zero-mean Gaussian distribution random variable whose variance
is to be determined from the tuning process employing the physical data.

2.4 CLASS SELECTION OF MODELS

In selecting an appropraite class of models among a number of possible
candidates, we need a suitable criterion which may be specified according to
the goal of model building. Sometimes, many common criteria such as mean-
Square error may not lead to a better model selection. Hance, we shall work
with a more sensitive criterion such as the 11kelihood or one-step ahead pre-
diction approaches,

2.5 VALIDATION OF THE SELECTED MODELS

Once the appropriate class of models is selected, we must investigate
how will that class represents the given physical data sequence, this is re-
ferred to as validation test of the model.

The first approach for validation testing is to check the validity of the
assumptions behind the model. But to confirm the validity of the model, we
have to directly compare the principle characteristics of the model output
such as correlogram, power spectrum and histogram with these of the physical
system. We accept the model if the discrepancy between the two sets of actu-
al and simulated data characteristics is within one or two standard deviation
limits of the actual data characteristics, which is inversely proportional to



14

W, N being the number of cbservations. This acceptance criterion represents
the most common used second approach for validation testing. Other vali-
dation tests will be considered Tater in more details.

2.6 SOME FEATURES OF STOCHASTIC MODELS

2.6.1 Stationarity

A stochastic model is said to be strictly stationary if its properties
are unaffected by a change of time origin, i.e. if the joint probability dis-
tribution associated with m-observations, made at any set of times t], t2, ceey
tm, is the same as that associated with other m-observations made at t] + K,
to + ko, t, * k, where k is an arbitrary time shift operator [Papoulis (1965)].

Moreover, a stochastic model can be regarded as weakly stationary repre-
sentation if the mean and covariance of its output series [y(+)] exist and
satisfy

E Ly(t)]) = F [y(t+k)] (2.9)
as well as
E{[y(t) - E D (n)]fyer) - E[y(t+k)]]}= R, (2.10)

where E [(+)] is the expected value of a sequence (+) and Rk is the co-
variance at lag k [kashyap and Rao (1976)].

Most of the physical processes are stationary for finite period of time
but there is, of course, no sudden transition from stationary to non-stationary
behaviour.
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In doubtful cases, there may be an advantage in employing the non-
stationary models rather than the stationary alternative. It is advisable
to select the nonstationary models for those systems whose mathematical rep-
resentation requires some periodic and/or time-dependent terms. On the other
hand, the stationarity of a given stochastic model may ensure its convergence
to a stable estimates of the unknown parameters involved by that model [Box
and Jenkins (1970)].

2.6.2 Invertibility

A stochastic model is said to be invertable if the added noise sequence
can be recovered, with probability one or in the mean-square sense, from a
semi-infinite history of input and output data sequences. The concept of
Invertibility forms the basis of parameter estimation and prediction in systems
with moving average terms, but 1t 1s automatically achiaved by the other
systems.

Definitely, the 1nvertable stochastic models are relevant for keeping
the main statistical characteristics of the added noise sequence [kashyap and
Rao (1976)].
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CHAPTER 111

ANALYSIS OF THE NOISY. TRANSFER FUNCTION
MODEL
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CHAPTER III

ANALYSTS OF THE NOISY-TRANSFER FUNCTION MODEL

3.1 INTRODUCTION

In this chapter, some numerical methods are described for identifying,
fitting and checking the nsisy-transfer function model when simultaneous pairs
of observations of the input and output data are available at a discrete time
intervals.

3.2 IDENTIFICATION OF THE NOISY-TRANSFER FUNCTION MODEL

Alternatively, the noisy-transfer function model of (2.8) can be written
in the following matrix form [Natale and Todini (1976)]

yrHU+e (3.1)

[ o

where:
i) y is Nx1 vector designating the noramlized deviation of the output sequence
from its mean value and can be written as

y= r (3.2)




20

ii)

H is Nxk, matrix denoting the deiayed normalized deviation of the input

data sequence from its mean value which is related to the model output
sequence at any time interval, and may be expressed ac

=

id(]) 0 . L .
g2 w1 - e
xg3) k2 - . .
E = . . . (3.3)

g xy(N-1) %y(N-kot1)

where k, is the kernel length.

iii)

iv)

U is kox1 vector comprising the parameters of the impulse response vector,
and is written as

e is Nx1 vector denoting the input noise to the model at equispaced time

intervals, and is given by

|
|




3.2.1 Least-Square Estimation of the Impulse Response Vector

21

Usually, the least-Square (LS) estimator can be invoked if the statistical

characteristics of the noise vector ¢ are unknown, which is the most general
case. In fact, by definition, the L5 estimator is that estimator which mini-
mizes the gquadratic performance index

el Ve - (3.6)

o] —
1<

J =
where V is a symmetric positive definite matrix.

The performance index J can be written in the form of the impulse res-
ponse vector U as follows

3= (- v - H). (3.7)

The riecessary condition for the existence of an extreme value is that

J -

aul .70 (3.8)
g - HLS

which yields

~ T - _ -

bg=@ v wyy, (3.9)

where QLS is the least-square estimate of the impulse response vector U.
On the other hand, the sufficient condition for the existence of a minimum
is then satisfied by

; J > 0. (3.10)
U

This is attained only if the matrix (UTy']ﬂ) is positive definite.
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4.2.2 The Constrained Estimation of the Impulse Response Vector

An improvement in the accuracy of the estimated impulse response vector
can be produced by considering some priori additional information, which can
reduce the field of the choice of U [Natale and Todini (1976)]. A natural
way of obtaining this reduction is to impose a set of constraints that must
be satisfied by the truye and estimated values of the impulse vector u.

In many hydrological systems, which are mathematicaily balanced, it is
possible to impose upon the impulse response vector U a set of Tinear cons-
traints, namely gy = i, which expresses the continuity equation. But, for
those physical systems which can be described by a -positive autocorrelation
and cross-correlation coefficients, it is more convenient to assume

u-o, (3.11)

which represents an inequality constraint that must be satisfied by the
estimated response vector Q, Sometimes, we have to consider both the equality
and inequality constraints based on some mathematica] and physical consider-
ation [Natale and Todinj (1976)].

For instance, the solution of the constrained estimation problem can be
found by searching for the minimum of

de = .]2‘ (y - H)! L’-](X - Hu) (3.12)
which reduces to

ST T A T yTy-1
etz UH YV H-utHY Ty (3.13)



subject to

where:
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(3.14)

i) y is Nx1 vector representing the system output, at equispaced time inter-
vals, substracted from the estimated mean value of the noise sequence

[e()].”

ii) H is an Nxk, matrix composed of the delayed system input sequence [xd(-)],

gnd may be written as

-
X

o O ©

4

’ (3.15)

iii) G is Mxko matrix containing the continuity coefficients for an M input

vectors.

iv) i is an Mx] unitary vector and 0 is kox1 null vector. Thus

pres

1
1

l-—l.
]

and

0 ]
0

(3.16)
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v) V is an NxN covariance matrix of the noise sequence.

3.3 ASSUMPTIONS ABOUT THE COVARIANCE MATRIX

As stated previously, either the constrained or unconstrained estimates
of the impulse response vector U need apriori evaluation of the noise co-
variance matrix V. Unfortunately, it is not possible to resolve the nature
of the noise vechr by looking at the residual sequence, thus it is assumed
to be a white noise so that the covariance matrix becomes

2
(o]
1 7

(3.17)

1K =y
i
(e
.
-
.
-

Practically, to set up the noise covariance matrix we consider that,
[Natale and Todini (1976)],

V=0l (3.18)

where I is an NxN identity matrix and ¢ is the standard deviation of the noise

sequence.

Finally, the previous constrained optimization problem could be solved
using the quadratic programing technique as the performance index 8¢ is a
concave function [Wilson (1963)].
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3.5 VALIDATION TESTS USING RESIDUALS OF ESTIMATION

Usually, some validation tests are applied to check the adequacy of the
generated residual sequence for the priori estimation conditions, such as

n=0 (3.23)
which is cailed the zero-mean test [kashyap and Rao (1976)].

3.5.1 Test of Zero Mean

On the basis of residuals [n(:)], we have to choose one of the following

assumptions:

So ¢ n(k) = w(k) , or
n(k) = 8 + w(k) (3.24)
¥k =], 2, s sy N!

i

where w(+) is a sequence of zero mean random variable with distribution N(0,0),
and @ is a biasing limit. Let

(3.25)

|
0y = (N / 3)7 (3.26)
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where D1 is t-distributed variable with N-1 degrees of freedom independent
of p [Kashyap and Rao (1976)]. Hence, we can employ the following decision

rule
< 7 Accept S,

IF ID] | (3.27)
> n Reject So»

such that the threshold U could be chosen from the table of t-distribution
with the corresponding degree of freedom and required significant level.

For Targe values of physically based observation, one may consider

1.64 at 95% significant level , and

=
it

n 1.28 at 90% significant level.

0

3.5.2 (Correlogram of Residuals with Two Standard Deviation Limits

Anderson (1971) showed that, the autocorrelation coefficients of a
sequence of zero-mean white noise are, approximately, normally distributed
with zero mean and variance 1/N.

Let

R(k) = n (i) n (j-k) (3.28)

™M=

1
N-k) p j=1
be the theoretical correlogram of the residual sequence [n(+)]. Thus, for
a zero-mean white noise, the coefficients R(k) at any lag k, k being greater

than zero, should be:

a) Small in comparison to unity.
b) Lie between the range + 2/¢/'N with probability of nearly 0.95.
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3.6 VALIDATION TESTS BASED ON COMPARISON OF THE VARIOUS CHARACTERISTICS OF
OBSERVED AND ESTIMATED DATA

In these tests, we will directly compare the theoretical characteristics
of the observed and estimated output sequences. Of course, we can compare
only few characteristics such as correlograms and power spectrums [Kashyap
and Rao (1976)].

3.6.1 Comparison of Correlograms

Let
- 1 N i i
R(k) = — r [y(3) - y] Ly(3-k) - ¥} > (3.29)
(N-k) qy Jj=1
R (k) = 1im R (k) , and

N+ o

1

[ [R(K) - ﬁ(k)]JZ

Q
—
>
~——

I

where y, 05 denotes respectively the mean and variance of the output sequence

Ly(-)].

The graph of R(k) versus k, for fixed N, is called the observed corre-
logram whereas R(k) versus k is called the theoretical correlogram of the
same output sequence [y(-)]. The degree of fit between these two correlog-
rams can be quantitatively expressed in a manner consistent with the available
observation size. Let

(3.30)



where:

i) M s a reasonable number of independent observation sequence for the
model output which can be generated by the appropriate simulation of
the model.

ii) RI(k) is an estimate of the Jjth observed correlogram at lag k.
1i1) RM(k) indicates an estimate of the actual observed correlogram at lag k.
iv) oM(k) is an estimate of a(k).

Practically, the observed correlogram can be regarded as being a good
fit to the theoretical correlogram of the model if the following relation-
ship is satisfied

Rk - 2 oM(k) < REK) < RM(K) + 2 oMK) (3.31)

and hence the model can be considered as adequate in representing the actual
physical system.

3.6.2 Comparison of Power Spectrum

Similarly, the qualitative decision rules may be used to test the re-
semblance between the observed and theoretical power spectrums. The theore-
~ical and observed power spectrums may be evaluated as shown in Appendix A.
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CHAPTER IV

ANALYSIS OF SOME STOCHASTIC LINEAR MODELS

4.1 INTRODUCTION

In this chapter, we consider the structure of stochastic linear models
described by a finite univariate difference equation. This class of models
has a variety of terms such as autoregressive terms, moving average terms
and deterministic trend function.

4.2 DESCRIPTION OF THE PROPOSED MODEL

It is convenient, though not necessary, to assume that, [Kashyap and
Rao (1972)], the stochastic process [y(+)] obeys the following stationary
stochastic difference equation:

n
.Y(k) = b QJ ¢J- [k"]; y(k"]), very y(k"n)’ U(k"])l ey U(k‘nq)]
J=1 , )
m
L g WD) + (k) (4.1)

where w(+) is the disturbance sequence whose statistical characteristics
are unknown except for

e [wik) o5 [k-1, y(ker), o ylem)1] =0, 351, 2, ..., n (4.2)
E [w(k) w(k-j)] = 0, j=1, 2, ..., m (4.3)

where E(+) indicates the expected value of (-),

33
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Usually, the deterministic trend sequence [U(-)] is introduced to reflect
the variation of data from its mean value during an interval M of time. This
sequence is expressed as

cos W.,i sin wj i] (4.4)

n
L 3
V) = a0+ 20 Tapimago it Cnme2j

J=1

where the frequency of variation wj is defined as

WJ- = 21T j/M ) j = ]’ 2, vy Nl (4-5)

Alternatively, when the sequence [y(+)] is strictly positive, we could
assign the following muitiplicative form of the difference equation

n (VI8
y(k) = 1 [5 (k=15 ¥(k=1), vovy ylken), U(F-1), .oy U(k-ng)] J

J=

ﬁ] w(k) Dn(k-9)] ™ (4.6)

where the parameters n, ns and m in both (4.1) and (4.6) are chosen to
achieve, in the mean square sense, a better prediction ability. Moreover,
the function ¢j(-) can be expressad as

¢j(k) = EY(k)a y(k'])) cey y(k'n+]), ], ({0 ] w]k,

sin bk, ..., cos wn3 k, sin wn3 k] (4.7)

where wj is the frequency of variation defined at the jth time interval.



4.3 ESTIMATION OF THE PARAMETER VECTOR

We shall present a heuristic development of the recursive algorithm for
computing the vector a. Alternatively, (3.1) may be written as

y(k) = ol Z (k-1) + w(k) (4.8)

where

gf = laos oy, o, an+m+2n3] (4.9)
and

20 k1) = Doy (k1) v gy (Ken) s wke1),s e w(kem) ], (4.10)

Let a(i) be an estimate for the N-dimension vector a computed by using
the following recursive algorithm [Kashyap and Rao (1972)]

a(i+1) = a(1) + 5(i+1) 2(1) [y(4+1) - a'{1) 2(1)]

w

S(i+1) = §(1) -

1}
o

(0260 270 st 7 o276 STy 201 » e

>

n

W(i41) = y(i41) - al (i41) Z(1), i =1, 2, ... N1 ]

where [w(+)] is an estimate for the residual sequence w(-) whose final esti-
mates may be given by

W(k) = y(k) - a'_ z(k-1), k=1,2, ..., N, (4.12)

where a. denotes the final estimate of the parameter vector q.
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Practically, the above algorithm should be initialized before it is
operated in the recursive model (4.11). Therefore, either one of the
following procedures may be invoked:

4.3.1 The First Procedure

Let the available data be designated by [y(j)], where j=1, 2, ..., N.
Thus, the algorithm commences as follows [Kashyap and Rao (1972)]

a(0) =0, $(0) =] )
.y(J) =0 y J ¢ "], "2, y =N ? (4-]3)
w(k) =0, x=-1,-2, ..., -m d

4.3.2 The Second Procedure

Let the available data be denoted by [y(j)], such that j=-p, -p+1, ...,
where p is an integer greater than or equal to 2n. Hence, the procedure for
initialization is [Kashyap and Rao (1972)]

5(0) = x [2(3-1) 2'(5-1)17"
) j=-(p-n,
and (4.14)
a(0) = 5(0) [ 2(3-1) y()]
- J""(p'n])

where ny is an integer given by

s |
ng =n+ng+m (4.15)
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On the other hand, the values w(1), w(2), ..., are all generated from a
Gaussian random number generator with zero-mean and variance equal to the
sample variance of [y(0), y(-1), ..., y(-p)].

The first procedure is easier to implement, while the second procedure
leads to a better prediction for small values of k.

Obviously, the parameters of the multiplicative structure (4.6) may be
identified by a same manner as the additive structure (4.1) but with a nat-
ural logarithmic transformation technique [Kashyap and Rao (1972)].

4.4 CLASS SELECTION OF UNIVARIATE STOCHASTIC MODELS DESCRIBED BY A LINEAR
DIFFERENCE EQUATION

One of the popular methods for comparing some proposed classes of the
univariate stochastic models which are depicted by a linear difference equa-
tion is the method of hypothesis testing. Even though, the theory of that
method is elegant [Kashyap and Rao (1976)], as it involves arbitrary quan-
tities such as significant levels. Furthermore, it has 1imited applicability
in the sense that it can handle, essentially, two classes of models at a time.
Hence, two other approaches may be involved to select an appropriate class of
models among gq-proposed classes.

4.4.1 The Likelihood Approach

The decision rule can be expressed as follows:

i) For every proposed class C , 1=0,1, ..., g-1, f1nd the conditional
maximum 1ikelihood est1mate ¢ of ¢ given that ¢ €V using the given
observation [z = y(j), j =1, 2, ..., N]. Then compute the corresponding
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value of Tikelihood function Li as follows

=Mnp(z,4;)-n 0, = (gFi, p;) (4.16)
where p(+ , -) denotes the conditional probability and n; is the dimen-
sion of the vector I [a > p3].

ii) Choose the class which yield the maximum value of L among [L y 1 =
0, 1, ..., g-1]. Spec1f1ca11y, for the simplified mode] (4. 8), the mathe-
matical expre551ons for p and L are given be Kashyap and Rao (1976) as

follows

~ ] N T 2

Py = N-m L [.Y(k) 'QF Z_(k"])] (4.]7)
- k=m]+1 i

and

L, _§1 oy - N, (4.18)

where my is the number of terms involved by C,.

4.4 2 The Prediction Approach

This method allows the comparison of a number of different classes of
models C » 1=0,1, ..., g-1, simultaneously, where C =[S j* Vis B, 1, pro-
vided that they do not have average terms [Kashyap and Rao (1976)] Thus,
consider the indices

J; = o g [y(k) -y, (k]k-1)72 (4.19)
. N?T i 4.

where i = 0, 1, ..., g-1.
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Practically, if there was only one class Cio such that the index J].° is
the smallest among the set [Ji’ 1=0,1, ..., g-1], we select that class.
Alternatively, if more than one class can yield same minimum value of Ji’
the given data will be assigned to one of these classes according to other
subsidary measure such as minimal complexity.

4.4.3 Discussion of the Various Class Selection Methods

Among all the above presented methods, the 1ikelihood approach is very
versatile, theoretically sound and furnishes, in practice, reasonable re-
sults., It can simultaneously handle a number of classes, including those
having moving average terms or log-tranformed terms.

One of the most distinguished merits of the Tikelihood approach is that,
it does not involve the use of arbitrary quantities such as significant levels.
One shortceming of the 1ikelihood approach for the determination of the order
of AR models is, however, that the determined order is often higher than is
necessary for passing the validation tests,

The hypothesis testing approach is more ambitious, since there is an
attempt to obtain a decision rule with certain prespecified probability of
error. But, in practice, it can handle only two classes at a time and even
these two classes must be made up of generalized AR models.

The prediction approach is valid for systems possessing moving average
terms. It is instructive to analyze the difference between the estimates
of the mean-square prediction error obtained during the design of the pre-
dictor and that obtained during its testing. The difference between the two
Mean-square errors is examined to determine whether they are due to sampling
variations only or to the poor quality of model.
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On the other hand, the recursive prediction approach is especially use-
ful with systems in which some of the parameters may vary with time. Alter-
natively, the prediction approach is apt to yield models that may not pass
the validation tests [Kashyap and Rao (1976)].

4.5 VALIDATION OF THE FITTED MODEL

Practically, no model form ever represents completely the physical pro-
cess. It follows that, given sufficient physical data, statistical tests
can discredit models which could, nevertheless, be entirely adequate for the
purpose at hand. Clearly, the validation tests must be Such that they place
the model in jeopardy, i.e. they must be sensitive to discrepancies which
are 11kely to happen. However, 1f validation tests, which have been thought-
fully devised, are applied to a model fitted by a reasonable large number of
data and fail to show serious discrepancies, then we shall rightly feel more
comfortable about using that model.

4.5.1 Test of Normality

The goodness of fit between the histogram of residuals and the fitted
normal distribution may be visually judged by the first Koimogrov-Smirnov
test as follows:

Given a sample of N-independent and identically distributed set of re-
siduals w(1), w(2), ..., W(N), with continuous cumulative distribution fun-
ction F(w), the first Kolmogrov-Smirnov test calculates the di fference, in
absolute value, between the usual normal distribution function FN(W) and
the theoretical cumulative distribution function F(w). For this purpose:

i) The order statistics [Q(i)] are determined by sorting the set [w(i)] into
an ascending order.



i)

iii)

iv)

41

The measured cumulative distribution function is expressed as follows:

0 for w < w(1)
FW) =9 k/N - for (k) < i < a(kt1) , k=1, 2,.... N-] (4.20)
1 for w(N) < w.

The maximum deviation DN’ in absolute value, between the measured and
theoretical distribution can be written as

DN = Max
EENORL
Since FN(W) and F(w) are nondescending functions, the result is

[Fn(® - FGa)| (4.21)

=1

o< | FiGigey) - Fliigy) K (4.22)
Define
L(z) = l]\‘ime p[Dy (N < 7] (4.23)

where Dy is a random variable, p(-) denotes the probability of an event
(+) and L(2) is the limiting cumulative function of DN Jﬁ?

The probability that Z being greater than or equal to the computed value
of DN Jﬁwcan be written as

p(Z) =1 - L(2) (4.24)
where

0 for Z<s 0
L(Z) = (4.25)

1-2 £ (-5 exp (<2428 for 7 .


http:epfr(4.25
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When Z is very small, the series (4.25) converges slowly, but, using
Jacobi's Theta functions 0, (u,t) and 0, (u,t), defined by

0, (ut) =2 F  exp [i 7 (k#1/2)° t] cos [(2k+1) u]
k=o (4.26)

1- % (—1)k'] exp (inkzt) cos(2k u)

8, (u,t)
4 k=0

and invoking the Jacobi imaginary transformation

-1
8, (0,t) = (-it) 2 8, (0, -1/t), (4.27)
it follows that
- .2
L(Z) = 64 (0, 2i2° / =)

Jé_zl\ 5 exp [- (2k-1)% 22 / 82%] (4.28)

which converges quickly when Z is small, see Wittaker and Watson
This gives

[ 0
3
Zr £ exp -(2k-1)2 % / 827 + €, (7) for 0.27 < 7 < 1.0
7 k=1
L(Z) =<
4 k-1 2.2
1-2 ¢ (-1) exp (-2k°Z°) + E2(Z) for 1.U < Z < 3.1
k=1
R for 3.1 <7 < w
where

E,(Z) < 6(1071°) when Z <1, and

(4.29)

20

E,(Z) <10 when Z > 1.
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Decision Rule:

For the value of DN given in (4.22), define a null hypothesis H, which
assumes that both the measured and theoretical distributions are identical,
then the decision rule for accepting or rejecting HO is expressed as

< d. + Accept Hy

If Dy | ‘ (4.30)
> dc - Reject H0

where the threshold dc is chosen as

dc = 1.36 at 95% significant leve] » and

dc = 1.22 at 90% significant level,

4.5.2 Test of Serial Independence

We will determine whether the residual sequence given 1in (4.12), is
serially correlated [Whittle (1951 and 19562)].
Let

L.i=[s,i, \’_i, Q_i] ,.i=0,]

(4.31)

w
<z
—
=~
~—
1]
=
—
=~
~—

‘ 8. w(k-3) + w(k)
7

=

-

=
g

"
nmMm =

J
where w(+) is an independent Gaussian random variable with zero mean and
variance 5, peq

8 = [676,...6_ ], and v, = [6 : 8 #0] with v, = [o0].
172 no 1

Let 50, 5] be the residual variances of the best fitting models for the given
data in the two classes C0 and C] respectively, and introduce Rk as the
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physically measured covariance at lag k, so that

~ 1 N -y s
R, = ¢4 L w(i) w(i-k). (4.32)
L g

Then, we have

-~

p_ = Ro, Py = det rnz / det rnz_] (4.33)

o}

where rn2 is n, x n, matrix and

(rnz)i,j = Rl.i_jl ; 1., j = ], 2, ER] nz ' (4-34)

The test statistics is given by

B W) = =1) (B o) ’ (4.35)
. P

which is approximately follows an F-distribution with two degrees of
freedom n, and N-n, for large value of N provided that [w(<)] obeys Cy

Decision Rule:

For the value (W) defined before, we can accept eiu.er Cj or C, accor-
ding to the following decision rule

< B -+ Accept C0
B(w) (4.36)
> By -+ Accept C]

where By is chosen by the corresponding significant level and Ny is considered
as 0.1 Nor 0.05 N.
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4.6 DATA NORMALIZATION

In order to remove the periodicities of a given data sequence [y(:)],
two types of normalization can be performed [Kashyap and Rao (1976)]. These

are

y(k) = [y(k) - y1 /o (4.37)
or

y(k) = Togy ¥{k) (4.38)

where ¥, ay are the sample mean and standard deviation of the given data
sequence [y(+)] respectively.

Usually, the data given by the normalized models can reproduce the mean
and variance with a very satisfied significance, but the prediction errors
with the normalized data may be larger than the original models, see Kashyap
and Rao (1976).

Clearly, the transformation given by (4.37) may be satisfactory for those
models of additive structures, while the otner transformation (4.38) may be
suitable for the multiplicative structures.

4.7 RECURSIVE PREDICTION OF THE OUTPUT DATA

Let y (k+1lk) be an estimate of the natural one-step ahead prediction
y(k+1), then

§ (k+1|k) = gg Z(k) + w(k) (4.39)

where
27(k) = [0 (k) ooy 0 (KD, wlkeT)s oy w(kem)] (4.40)
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and the vector 3 is the final estimate of the parameter vector a. The noise
sequence [w(-)] is generated from a Gaussian random number generator with
zéro mean and variance similar to that of the residual sequence [w(+)]. The

prediction error is defined as

e(kt1) = y(k+1) - y(k+1 | k) (4.41)
where
y(k#1[k) = o, §(k+1|k) +y (4.42)

for the additive structure, and
(ka1 ]k) = 109 (k1 [ K) (4.43)
for the multipiicative structure,

It is important to distinguish between W(k), which is only a residual,
and e(k) which is a difference between the predicted and actual quantities.
The convergence properties of the algorithm (4.11) can be attained by consider-
ing the ¢j(-), J=1,2, ..., n‘.z as linearly independent events whose
cumulative mean square vlaue, z ¢j(k)/k, is bounded for all values of k, see

.

Kashyap and Rao (1972). 3=
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CHAPTER V

DESCRIPTION OF THE CASE STUDY
(WAKI RIVER CATCHMENT)

5.1 INTRODUCTION

The case study represents a hydrologic system whose input and output
daily records are as illustrated in Tables (5.1) and (5.2) respectively.
These data denote the daily precipitation over the. Waki River catchment, lo~
cated near lake Albert, and the corresponding daily discharge. This catch-
ment 1ies between longitudes 31° 18" and 31° 39° E, and latitudes 1° 40° and
1° 28" N. The catchment is drained by two main streams, Waki and Siba, see
W0 (1972),

5.2 TOPQGRAPHY OF WAKI CATCHMENT

The topography of the Waki catchment is shown in Fig. (5.1). It can be
observed that the catchment is steep at its southern part but its steepness
drops gradually when moving towards the Waki-II hydrological station. The
maximum and minimum elevations are about 1402 m and 991 m respectively, while
the average surface area of the catchment is 475 Km2, [WMO (1972)].

5.3 SOIL OF WAKT CATCHMENT

The soil types found in the catchment are as shown in Fig. (5.2). The
percentages of area covered hy each soil type are:

i) Shallow dark brown or black sandy loams 3.5%

i) Reddish and reddish brown gritty clay loams 39.7%



LIST OF PRECIPITATION OVER RIVER WAKI CATCHMENT (IN MM/DAY)

Table

(5.1)

DAY APR. MAY JUNE JULY AUG. SEP.. 0CT. NOV.
1 4.90 14.30 2.90 21.50 2.70 0.00 0.90 15.10
| 2 3.30 1.10 2.60 0.00 11.20 3.40 22.90 10.80
3 6.40 4.30 0.00 1.10 8.10 6.00 4.20 0.20
4 4.00 9.60 0.00 0.40 7.20 7.90 8.10 5.30
5 4.30 1.30 2.50 5.20 0.50 7.80 2.40 4.30
6 9.30 4.00 2.30 2.70 2.70 2.10 2.90 1.40
7 4.10 0.40 14.40 6.20 0.00 13.70 0.00 0.00
8 1.20 7.80 4.10 0.10 11.90 10.90 5.90 6.50
9 1.50 6.60 2.00 0.00 6.60 10.40 1.50 5.10
10 6.10 0.80 0.00 0.00 0.80 14.90 0.00 0.00
11 10.10 1.70 0.00 0.00 5.70 4.50 2.10 0.00
12 2.80 3.70 0.60 0.00 18.10 2.60 25.40 0.00
13 1.40 5.00 0.00 0.60 2.10 9.80 11.60 2.80
14 4.70 2.70 7.60 0.30 0.00 4.90 7.80 10.50
15 21.00 0.00 15.20 0.00 7.50 1.10 18.40 0.90
16 11.30 0.00 1.40 0.00 1.80 1.30 0.20 19.90
17 10.10 4.90 0.70 3.20 7.40 - 11.70 6.70 2.70
18 2.20 11.20 0.00 0.00 1.60 7.60 4.20 0.00
19 2.70 2.70 3.80 9.90 3.10 0.40 8.50 3.60
20 20.20 0.70 2.80 9.80 0.70 0.00 9.50 0.00
21 0.80 13.00 7.60 5.50 5.70 0.90 9.20 6.00
22 18.60 0.90 0.00 13.20 8.40 2.10 5.00 6.90
23 19.00 4.60 0.00 9.70 11.10 6.60 y.20 5.70
24 0.60 3.40 1.10 12.20 24.50 2.80 0.30 0.80
25 0.50 0.00 0.70 0.00 1.30 0.00 0.20 0.00
26 10.10 8.70 0.60 0.00 2.00 1.70 0.00 1.00
27 0.00 4.00 0.30 0.00 3.90 0.00 8.20 0.00
28 0.0C 12.10 4.20 0.00 0.00 0.00 10.90 0.00
29 0.0cC 7.10 0.10 5.30 0.10 3.60 0.10 0.00
30 11.20 0.70 14.30 0.00 2.30 0.40 4.70 0.00
3] c.00 0.60 1.30 0.80

YEAR 1970.

0S



Table (5.1) Cont'd.

DAY APR. MAY JUNE JULY AUG. SEP. 0CT. NOV.
1 4.60 1.30 0.00 2.60 14 .60 13.40 4.10 0.00
2 11.60 1.10 1.00 0.50 0.00 6.70 0.10 0.00
3 0.590 1.60 7.70 0.80 0.00 2.70 0.50 0.00
4 6.70 0.00 15.90 3.60 6.40 1.40 8.50 2.80
5 0.40 5.90 22.70 13.20 0.00 6.20 12.20 33.50
6 2.00 0.00 1.90 11.50 17.40 2.00 10.60 0.00
7 5.50 26.80 0.20 5.50 0.10 3.50 1.20 2.70
8 5.40 4.00 0.00 0.40 1.00 4.50 0.00 1.60
9 0.90 4.80 0.00 7.90 4.00 0.00 4.50 0.00

10 1.50 0.20 0.00 0.00 0.50 0.00 0.00 1.80

11 13.00 0.00 0.00 0.00 2.30 3.90 0.00 9.50

12 29.10 1.90 0.90 0.00 0.40 0.60 0.30 15.30

13 9.50 1.50 0.Go 6.20 12.70 0.00 6.70 0.50

14 1.00 0.00 2.10 1.60 0.60 0.590 0.30 1.70

15 0.00 2.10 15.10 1.50 4.50 0.00 0.060 0.00

16 5.20 17.40 4.90 4.40 1.10 0.00 0.00 0.00

17 2.20 0.00 0.00 1.60 0.00 3.40 10. 30 0.00

18 2.20 0.00 0.00 0.00 1.80 0.00 7.40 0.00

19 7.80 24.50 0.00 4.00 0.10 3.30 6.00 1.40

20 23.10 4.90 0.70 14.00 0.40 0.00 2.40 0.00

21 0.00 13.20 2.70 0.60 3.00 3.00 3.10 0.00

22 4.20 2.40 3.50 5.50 7.60 0.00 5.10 0.00

23 23.30 0.50 0.00 10.20 1.90 2.30 2.90 0.00

24 0.20 0.40 0.00 1.90 14.00 1.70 7.60 0.20

25 3.30 1.30 4.90 14.80 9.10 5.20 1.20 0.30

26 13.40 4.40 0.20 3.30 0.00 1.50 8.10 2.50

27 0.00 0.00 0.90 3.90 3.30 0.60 13.20 3.30

2 0.0G 5.60 0.70 9.60 3.70 41.10 14 .50 28.90

29 3.50 0.00 0.80 1.40 10.40 0.00 0.00 2.00

30 6.10 0.20 7.00 0.00 0.60 0.00 3.70 0.00

31 2.10 1.80 0.60 0.40

YEAR 1971

IS



LIST OF DISCHARGE FROM RIVER WAKI CATCHMENT (IN MM/DAY).

Table

(5.2)

DAY APR. MAY JUNE JULY AUG. SEP. OCT. NOV.
1 0.4800 0.3000 0.7300 0.4900 0.4700 0.6600 0.6100 0.9400
2 0.5000 0.9100 0.7000 0.6100 0.4800 0.6400 0.6200 1.0500
3 0.5100 0.8400 0.6700 0.5800 0.5300 0.6400 0.8000 1.1300
4 0.5300 0.8200 0.6200 0.5500 0.5700 0.6700 0.8100 1.0400
5 0.5500 0.8700 0.5900 0.5200 0.6000 0.7000 0.8700 1.0400
6 0.5500 0.8100 0.5700 0.5300 0.5900 0.7400 0.8500 1.0300
7 0.5900 0.7800 0.5600 0.5200 0.5800 0.7200 0.8400 0.9800
8 0.6000 0.7300 0.6300 €¢.5300 1.5600 0.8100 0.8000 0.9300
9 0.5800 0.7600 0.6200 0.5100 0.6200 0.8300 0.8400 0.9600
10 0.5700 0.7600 0.6000 0.4800 0.6400 0.9400 0.8300 0.9600
11 0.6000 0.7200 0.5600 0.4600 0.6200 1.0300 0.7900 0.9100
12 0.6500 0.7000 0.5300 0.4400 0.6300 0.9900 0.7900 0.8500
13 0.6400 0.7000 0.5%00 0.4300 0.7500 0.9300 1.0400 0.8100
14 0.6200 0.7000 0.4800 0.4200 0.7200 0.9700 1.1200 0.7900
15 0.6300 0.6900 0.5100 0.4100 0.6800 0.9500 1.1400 0.8700
16 0.7600 0.6600 0.5900 0.4060 0.7000 0.9000 1.3000 0.8400
17 0.8200 0.6300 0.5800 0.3900 0.6700 0.8400 1.1600 1.0200
18 0.8600 0.6400 0.5500 0.4000 0.7000 0.9000 1.1800 0.9800
19 0.8200 G.7100 0.5200 0.3900 0.6800 0.9200 1.1500 0.9200
20 0.7800 0.6900 0.5200 0.4260 0.6700 0.8500 1.1800 0.9100
21 0.9400 0.6700 0.5200 0.4600 0.6400 0.7900 1.2200 0.8500
22 0.8800 0.7400 0.5500 0.4800 0.6600 0.7500 1.2300 0.8700
23 1.01C0 0.7100 0.5200 0.5400 0.7100 0.7500 1.1900 0.9100
24 1.1400 0.7100 0.5000 0.5800 0.7700 0.7600 1.2200 C.9200
25 1.0200 0.7100 0.4800 0.6300 0.9700 0.7500 1.1100 0.8800
26 0.9300 0.6700 0.4700 0.5900 0.9000 0.7100 1.0200 0.8400
27 0.9600 0.7100 0.4600 0.5500 0.8500 0.6900 0.9700 0.8100
28 0.8700 0.7100 0.4400 0.5200 0.8200 0.6600 1.0100 0.7800
29 0.7900 0.7900 0.4500 0.5000 0.7600 0.6300 1.0800 0.7500
30 0.7400 0.8100 0.4300 0.5100 0.7100 0.6300 1.0000 0.7300
31 0.7600 C.4900 0.6900 0.9900

YEAR 1970

A



Table (5.2) Cont'd.

DAY APR. MAY JUNE JULY AUG. SEP. OCT. NOV.
1 0.4100 0.5300 0.5500 0.3700 0.4700 0.5000 0.6200 0.6900
2 0.4200 0.5200 0.5100 0.3700 0.5400 0.5700 0.6200 0.6400
3 0.4600 0.5100 0.4900 0.3600 0.5100 0.5900 0.5900 0.6100
4 0.4200 0.5100 0.5100 0.3500 0.4800 0.5900 0.5800 0.5800
5 0.4400 0.4560 0.5900 0.3500 0.5000 0.5600 0.6200 0.5700
6 0.4100 0.5100 0.7300 0.4000 0.4900 0.5800 0.6900 0.8400
7 0.4000 0.4900 0.6900 0.44G0 0.5800 0.5700 0.7400 0.7900
8 0.4100 0.6700 0.6300 0.4500 0.5400 0.5700 0.7000 0.7600
9 0.4200 0.6700 0.5700 0.4300 0.5200 0.5700 0.6600 0.7200
10. 0.4000 0.6600 0.5300 0.4600 0.5300 0.5400 0.6600 0.6700
11 0.3900 0.6200 0.4900 0.4300 G.5100 0.5100 0.6200 0.6500
12 0.4400 0.5900 0.4600 0.4100 0.5000 0.5500 0.55900 0.6900
13 0.6000 0.5800 0.4300 0.4800 0.4800 0.5300 0.5600 0.7900
14 0.6200 0.5600 0.4100 0.490¢C 0.5400 0.5100 0.5800 C.7400
15 0.5900 0.5400 0.4000 0.4700 0.5200 0.4900 0.5600 0.7200
16 0.5400 0.5300 0.4700 0.4500 0.5300 0.4700 0.5400 0.6700
17 0.5400 0.6490 0.4700 0.4500 0.5100 0.4500 0.5200 0.6300
18 0.5100 0.6100 0.4400 0.4300 0.4800 0.4600 0.5700 0.5900
19 0.4900 0.5800 0.4200 0.4100 0.4700 0.4500 0.6000 0.5700
20 0.5100 0.7500 0.4000 0.4100 0.4500 0.4500 0.6300 0.5500
21 0.6300 0.7300 0.3900 0.4700 0.4400 0.4400 0.6200 0.5300
22 0.5800 0.8000 0.3800 0.4500 0.4400 0.4400 0.6200 0.5100
23 0.5600 0.7600 0.3800 0.4600 0.4700 0.4300 0.6200 0.4900
24 0.7100 0.7100 0.3700 0.4900 0.4500 0.4300 0.6100 0.4700
25 0.6300 0.6700 0.3500 0.4700 0.5200 0.4300 0.6400 0.4600
26 0.6000 0.6400 0.3600 0.5400 0.5500 0.4500 0.6200 0.4500
27 0.6500 0.6300 0.3600 0.5200 0.5200 0.4400 0.6500 0.4600
28 0.6000 0.6000 0.3500 0.5200 0.5200 0.4300 0.7300 6.4700
29 0.5500 0.6100 0.3500 0.5400 0.5200 0.7100 0.8200 0.6600
30 0.5300 0.5800 0.3500 0.5200 0.5600 0.6700 0.7600 0.6400
3] 0.5500 0.4800 0.5300 0.7400

£S
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Fig.(5.1 ) WAKI II CATCHMENT. RELIEF.
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ii1) Dark redy clay loams occasionally lateritized 35.2%
iv) Yellowish red clay loams occasionally shallow over phyllites 21.6%

5.4 GEOLOGY OF WAKI CATCHMENT

The geological structure of the catchment is illustrated in Fig. (5.3).
The percentages of areas for the two types of rock formation in the catchment
are;

i) Undifferéntiated gneisses including elements of P(B) and, 1in the north,
granulite facies rocks N 36.9%

11) Bunyoro series and Kyoga series: shales arkoses and quartizites with
tillites, like rocks in the Bunyoro series 63.1%

5.5 VEGETATION OF WAKI CATCHMENT

The vegetation types in the Wakt catchment are given 1in Fig. (5.4). The
percentages of area covered with the different types of vegetation are:

i) Dry combretum savannah 13.8%
1) Moist combretum savannah 10.8%
iii) Medium altitude moist semi-deciduous forests 26.6%
iv) Forest / savannah mosaics 47.7%

v) Grass savannah | 1.1%
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5.6 AREA VERSUS ELEVATION FOR WAKI CATCHMENT

Areas of the Waki catchment between contours of 200 feet intervals
are given in Table (5.3). Using the relationship between area and elevation
shown in Fig. (5.5), it can be seen that an area of 365 sz 1ies between 3250
and 3640 feet with change in elevation of 490 feet, while the remaining area
of 110 sz lies between 3640 and 4600 feet with change in elevation of 960
feet. Weighting the elevation of the two areas, the mean elevation of the
catchment comes to 3601 feet appiroximately, see WMO (1972).

5.7 CLIMATE OF WAKI REGION

There are two climatological stations near the catchment. Station Masindi
is located to the east, and station Butiaba 1ies to the north-west. Statistics
of climatic elements of temperature, humidity, rainfall and wind speed for
these two stations are given 1n Tables (5.4) and (5.5) respectively.

5.8 OBSERVATIONAL NETWORKS OVER WAKI REGION

5.8.1 Meteorological Stations

The meteorological stations existing within and around the Waki catchment
are shown in Fig. (5.6). The particulars of these stations are illustrated
in Table (5.6). It can be observed that there is a dense network of rain
gauges in Siba sub-catchment and one self-recording rain gauge in the whole
of Waki-II catchment. Most of these stations started its operation in 1970,
[WM0 (1972)].

5.8.2 Hydrological Stations

Waki-I, Waki-II and Siba are the main hydrological stations found within
the Waki catchment. The first station lies on Waki tributary upstream and
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Table (5.3)
WAKI 11

AREA VS ELEVATION FOR RIVER WAKI II CATCHMENT

il
ETevation range Area in Sq. Kms Cumulative area Sq. Kms.s
3250' - 3400 51.7 51.7
3400' - 3600 213.4 265.1
3600' - 3800 121.2 386.3
3800' - 4000' 38.7 425.0
4000' - 4200 26.0 451.0 |
4200" - 4400° 18.5 469.5
4400' - 4600 5.2 474.7 j




Table (5.4)
CLIMATOLOGICAL STATISTICS FOR SATATION MASINDI

61

Lat. 01 41'N  Long. 31°43'€  Alt. 1146 meters
Temperature (1931-1954) Rela- [Rainfall (1907-1962) | Average
tive wind speed
Month Average gqmi- Monthly Total (1938-1962)
Max. +Mean Mean Mgan ];Sﬁ Aver- | High-{ Low- [ 0600 |1200
Min. |Range | Max. | Min. GMT. |age est est GMT. | GMT.
2 cof ce ce ce % (mm) (mm) | (mm) | Knots | Knots
January 23.8 | 14.2 30.9( 16.7 41 29 103 0 4 10
February | 24.1 | 14.1 31.21 171 43 55 183 0 4 9
March 24.0 | 12.8 30.4117.6 49 103.. | 227 12 4 9
April 23.3 | 11.5 29.11{ 17.6 59 157 287 61 4 7
May 22.9 | 10.7 28.2117.5 64 148 292 40 4 7
June 22.3 | 11.2 27.9) 16.7 64 99 242 31 3 7
July 21.6 | 10.6 26,9} 16,3 63 m 242 40 3 7
August 21.6 1 10,7 | 26.9]16.2 65 141 276 46 | 4 7
September| 21.9 | 11.5 | 27.7| 16.2 63 143 233 61 4 7
October | 22,5 | 11.7 | 28.4|16.7 60 144 277 4 4 8
November | 22,9 | 12.2 29.01| 16.8 53 118 340 3 4 8
December | 22.9 | 12.9 29.3( 16.4 51 44 105 0 4 8
Year 22.8 | 12.0 28.81 16.8 56 1292 (1717 1009 4 8




CLIMATOLOGICAL STATISTICS FOR STATION BUTIABA

Table

(5.5)

Lat. 01 50'N Long. 31 20'E  Alt. 621 meters
Temperature (1931-1954) Rela- [Rainfall (71904-1962) | Average
tive wind speed
Average Humi - Monthly Total (1938-1954)
Month dity .
Max. ‘ Mean | Mean Mgan 1200 | Aver-| High-] Low- | 0600 | 1200
Min. Range | Max. [Min. GMT. | age est est GMT. | GMT.
2 o] c° ce ce % (mm) | (mm) | (mm) | Knots | Knots

January 26.1 | 7.9 30.1 | 22.2 66 14 55 0 4 7
February | 26.5 | 7.5 30.2 | 22.7 67 21 179 0 5 7
March 26.5 | 7.2 30.1 22.9 68 56 162 13 3 7
April 25.9 1 7.3 29.6 | 22.3 70 101 ~ | 205 24 3 6
May 25.7 | 7.2 29.3 | 22.1 70 96 234 8 3 6
June 25.3 | 7.3 29.0 | 21.7 69 55 191 4 4 6
July 24,8 | 7.0 28.3 | 21.3 70 68 269 5 5 6
August 24,5 | 6.5 27.8 | 21.3 70 86 169 22 5 6
September| 25.1 | 7.4 28.8 | 21.4 70 75 125 10 5 6
October 25.5 | 7.3 29.1 | 21.8 71 84 A]84 14 4 6
November | 25.6 | 7.4 29.3 | 21.9 69 72 280 3 4 7
December | 25,7 | 7.8 29.6 | 21.8 67 27 105 0 4 6
Year 25.6 | 7.4 29.3 | 21.9 69 165 [1263 400 4 6




Table

(5.6)

EXISTING METEOROLOGICAL STATIONS

AT WAKI - II CATCHMENT

63

ag: Name ESEZZ'NO. Type Latitude {Longitude ?;Z;Egde gg;itOf
1, Waki 8831150 |Rainfall | 1 43'N | 31 22'E | 3250 5.7.68
2. Karongo 8831062 | ainfall | 1 41'N | 31°30'€ | 3550 6.9.70
3. Nyantonzi | 8831065 |Rainfall | 1°39'N | 31°20'E | 3600 5.9.70
4, Bubwa 8831149 |Rainfall | 1°37'N | 31°27'€ | 3500 4.7.68
5, Kisabagwa | 8837048 |Rainfall | 1 32'N | 31 24'E | 3900 3.7.68
6. S1ba 8831038 [Rainfall | 1°39'N | 31°23'c | 3400 1968
7. Nyabyeya | 8831024 [Hydromet | 1 40°'N | 31°32' | 3900

8. Bwinamira | 8831056 [Reinfal 138" | 31°32'E | 3550 | 18.4.70
9. Budongo 8831057 |Rainfall: | 1°39'N | 31°34' | 3650 | 15.4.70
10. | Nyankwanzi | 8831060 [Rainfall | 1 37'N | 31°34'E | 3650 | 17.4.70
11. | Kitonozi | 8831064 [Rainfall | 1°38'N | 31°39'E | 3850 4.9.70
12. | Kyabagenyi | 8831063 [Rainfall | 1°38'N | 31°35' | 3550 9.9.70
13. | Kikobwa 8831066 Rainfall | 1 38'N |31°38'E | 3750 2.9.70
14. | Kimanya 8831068 [Rainfall | 1 35'N |31 31'E | 3700 4.9.70
15. | Kaangoire | 8831059 [Rainfall | 1°35'N |31°33'E | 3700 |16.4.70
16. | Bulyango | 8831067 [Rainfall | 1 38'N |31°33'E | 3600 |10.9.70
17. | Kabango 8831058 Rainfall | 139'N |31 35'E | 3650 | 14.4.70
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near forestry station while the others are located on the main wak1 River and
Siba River respectively.

5.9 HYDROLOGICAL ANALYSIS OF DATA

5.9.1 Daily, Monthly and Annual Runoff

For the three hydrological stations of Waki catchment, runoff is evalu-
ated after applying shift corrections to the observed gauges according to the
following equation

_ ]
where
Go ¢ Mean daily gauge.
Gy o ¢ First reading of the day under consideration.

G] 3¢ First reading of the next day.
62 1! Second reading of tha previous day.

G Second reading of the day under consideration.

2.2 ¢

The percentages of monthly to annual runoffs are illustrated in Table
(5.7). The average values of these percentages range from 4.8 to 12.4 which
means that the variations of monthly runoff are not nigh.

5.9.2 Rainfall - Runoff Relationship

Runoff coefficient for some months of the period of observed data are
shown in Table (5.8). Obviously there is a high influence of the storage
capacity of the catchment on the hydrological regime since runoff coefficients
higher than unity have been obtained in some months. The percentage of annual
runoff to annual rainfall ranges from 11 to 15 which is very law.



Table

(5.7)

Waki - II Runoff Coefficient

67

Year & Rain-fall{ Runoff |Runoff cot Year & |Rain-fall Runoff |Runoff co-
Month (mm) (mm) ffi;ient Month (mm) (mm) fficient
1967 1970
Nov 165.2 24.1 15 Jan. 49.3 14.0 28
Dec. 12.2 14.6 120 Feb. 20.5 8.5 42
1968 Mar. 153.5 12.6 8
Jan 15.9 6.3 40 Apr, 221.1 24.8 M
Feb. 43.8 6.5 15 May 153.6 20.5 13
Mar 59.6 8.4 14 June 80.° 13.3 17
Apr. 183.6 9.2 5 July 120.9 13.8 n
May 180.4 21.2 12 Aug. 176.0 21.0 12
June 89.0 12.7 14 Sep. 140.3 22.9 16
July 58.5 8.4 14 Oct. 210.6 32.9 16
Aug. 166.6 14,8 9 Nov. 95.0 22.9 24
Sep. 147.7 13.5 9 Dec. 10.5 14.3 136
Oct. 147.5 13.6 9 Annual  ]1431.0 221.6 15
Nov. 125.5 12.4 10 1969
Dec. 103.1 18.4 18 Jan. 119.2 12.1 10
Annual 1321.2 145.6 11 Feb. 93.1 11.0 12
Mar. 124.0 12.5 10
Apr. 104.9 7.9 8
May 216.6 21.1 110
June 88.5 13.2 115
July 74.8 10.8 14
Aug. 91.9 9.8 11
Sep. 118.7 11.7 10
Oct. 177.8 15.8 9
Nov. 164.9 19.7 12
Dec. 88.1 32.5 37
Annual 11462.5 178.1 12 |
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Tocal Runoff Recession Data

Table

(5.8)

WAKI II

Go = Initial discharge (C.M.S)
q, = Discharge (C.M.S) after 12 hours
Pericd of q q Periced of q q
hydrograph ° t hydrograph ° N
2 -10 5¢60 | 5443 | 21 - 19" 6475 | 6430
December 1967 5043 | 5.22 Ducomber 1969 6430 | 5.60
5022 | 4.97 560 | 5.19
4497 | 4465 5419 | 4477
4465 | 4430 4477 | 4457
4430 | 4.07 4457 | 4430
407 | 3.83 4430 | 4009
3.83 | 3464 4.09 | 3497
3464 | 3.38 397 | 3.90
3438 | 3.20 3490 | 3.77
3420 | 3400 37T | 3464
3.00 | 2.90 3464 | 3450
2,90 | 2.75 350 1 3437
2,75 | 2.65 3437 | 3e25
2465 | 2.50 3425 | 3e20
2080 | 2.40 | 25 - 28
2-6 April 1970
May 1968 Te37 | 6426 10.25% | 8.00
6e25 | 5444 BeOU | 6470
5044 | 4490 6470 | 5485
4490 | 4437 5485 | 4495
3037 | 3.65 4495 | 4.28
365 | 2.97 | 26 -~ 29
2097 | 2.55 |Au8uet 1970 | 4 06 | 5,75
2455 | 2.25 575 | 4.90
25 - 28 4+90 | 4417
Novembar 1909 g:zg Z:g? 4017 | 3475
3455 | 4.09 3475 | 3440
4409 [ 3.75
375§ 3430
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5.9.2.1 Relationship based on monthly values

For this relationship effective rainfall is used in order to introduce
the effect of soil moisture on runoff. The effective rainfall has been cal-
culated from two months of observed data using weighting factors of 0.9 and
0.1, 0.8 and 0.2, 0.7 and 0.3 and so on. Using the rank test, the effective
rainfall computed with weighting coefficients of 0.7 and 0.3 is found to be
the best. The coefficient of correlation of monthly runoff and monthly effec-
tive percipitation is found to be 0.63.

It was found that rainfall - runoff relationship based on monthly data
could not be improved further with all months put together., Perhaps a better
relationship could be obtained if each month was taken separately.

5.9.2.2 Relationship based on ten-day values

In the view of short time data available for Waki-II catchment, rainfall-
runoff relationship was attempted on the basis of ten-day values, Ten-day
rainfall, ten-day mean discharge and Antecedent Precipitation Index (API) were
used in multiple correlation technique for each month of observed data. After
several trials with various API values, it was found that API calculated by
the following equation furnishes the best relationship [WMO (1972)]

API = 0.8Py + 0.4P, + 0.1P, (5.2)
where P1s P2 and P3 are rainfalls of first, second and third ten-day periods.

The coefficient of correlation computed from these relationships came to
0.92 which is quite satisfactory.
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5.9.3 Ground Flow Recession Curve

From the observed hydrographs, two hydrographs where the falling 1imb
had reached the ground flow, are selected and plotted on semi-logarithmic
paper as illustrated in Figs. (5.7) and (5.8). The ground flow recession

is exponentially decayed according to

qt = Qo Kt (5-3)

o : Initial discharge.
G Discharge at time t.
K : Recession constant.

The straight 1ine portion at the end of the falling 1imb of the two hyd-
rographs gives part of ground flow hydrograph. The value of recession con-
stant K at time t equals to 24 hours is found to be 0.98 in both cases.

5.9.4 Total Runoff Recession Curve

In the separation of compound hydrographs, information of total runoff
recession can sometimes be useful. Therefore, a number of observed hydrographs
with different peaks,are selected and for each hydrograph, values of discharge
at intervals of 12 hours are read out starting after the inflection point on
the falling 1limb. A plot of go vs q; was done together for the data of these
hydrographs given in Table (5.8) as shown in Fig. (5.9). There is a consi-
derable scattering in the plotted point because the falling limbs of these
hydrographs are generally distorted by rain falling over the Waki catchment
even after the hydrograph peak has been reached. Therefore, the falling 1imb
of the total runoff hydrograph does not represent simple depletion of the
channel storage but is mixed with more surface runoff coming into the streams.
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5.10 ANALYSIS OF TYPICAL HYDROGRAPHS OF WAKI CATCHMENT

The pattern of rainfall of Waki catchment is such that the falling 1imbs
o7 the hydrographs reach base flow after a long period and the hydrographs
are mostly compound. During the rainy season it nearly rains every day and
a real break is unusual. For Separating the base flow fram direct runoff, a
simpler procedure is applied. The base flow hydrograph is fixed by joining
the lowest points reached by the daily discharge hydrograph when rainfall
stopped for some days or was very small. The base flow hydrograph is shown
in Fig. (5.10).

As mentioned earlier, it is impossible to find a simple hydrograph,
therefore the compound hydrograph observed from 16th to 30th April for 1970
was selected to analyse the unit-hydrograph. As shown in Fig. (5.11), the
selected hydrograph has three peaks. Each of these peaks has been produced
by three separable rain spells. This hydrograph is therfore composed of
three simple hydrographs. The first hydrograph is then used for the deter-
mination of the unit hydrograph and its fina] configuration is shown in Fig.
(5.11).
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CAHPTER VI

APPLICATION OF THE MODEL BUILDING TECHNIQUES
TO WAKI RIVER CATCHMENT

6.1 INTRODUCTION

The construction of mathematical models from observed time series is
practiced in a variety of disciplines, fncluding engineering, ecology and
applied statistics with specific objectives. For example, Kashyap and Rao
have suggested the stochastic difference equation models to represent some
hydrological systems,

In application, a plausible classes of models can ba obtained by the
inspection of the given time series and examination of their characteristics.
Consequently, the availability of using either the noisy-transfer function
model or the linear stochastic difference equation model for an appropriate
simulation of the case study previously presented in Chapter V will be
studied in some details.

6.2 SOME FEATURES OF THE CASE STUDY

The data used for this study is selected in the rainy season of Waki
catchment which includes eight successive months, starting with April, to
avoid data non-stationarity. Therefore, the data length for both the input
sequence [x(+)] and output sequence [y(+)] iNlustrated in Tables (5.1) and
(5.2) respectively includes 488 points [WMO (1972)].
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6.2.1 Statistical Characteristics of the Observed Data

Consider y, oy and Yy as the observed mean, standard deviation and skew-
ness coefficient of the measvred output data [y(-)], whereas the same nota-
tions for the input data [x(-)] are X, o, and Y, respectiveiy. The variations
of these notations with the sample size for both the input rainfall and out-
put discharge are elucidated in Figs. (6.1) and (6.2) respectively.

The cross-correlation coefficient of the output discharge [y(+)] and the
input rainfall [x(«)] at different time lags k have been calculated using the
formula '

N-k+1

. ] - _ -
Ryx (k) = Jﬁ§71§rrﬁ:gpr) 151 fy(1) = ¥1 [x(R+1-1) = X]. (6.1)

This yields the results shown in Fig. (6.3), where the maximum value has been
located at a time lag equals three days. In practice, this value of time lag
represents a very suitable estimate for the time delay factor t.

Consider the correlograms of measured rainfall and output discharge
shown in Figs. (6.4) and (6.5). - The first correlogram reflects considerable
fluctuations compared with that of the output discharge which shows a Tittle
variability. Consequently, the smootfied raw estimates of the power spectrum
evaluated for the output discharge reveals a small damping response as de-
lineated in Fig. (6.6). Finally, the probability of bot! the measured input
rainfall and output discharge are shown in Figs. (6.7) and (6.8) respec-
tively.

6.3 APPLICATION OF THE NOISY-TRANSFER FUNCTION MODEL

The basic premise of this study is the appropriate selection of an es-
timation methodology which yields an adequate results for the case study. .
Therefore, we shall consider different structures of the noisy-transfer fun-
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ction model on the basis of causality principle. Systematicaly, these stru-

ctures can be described as follows:

i) The normalized values of the measured input rainfall sequence [x(+)] are
mathematically delayed as

x(k-1) for k > t + 1

x4(k) = (6.2)
0 for K < ¢ + 1

to achieve a better coincidence with the similar values of the output
discharge sequence [y(+)]. Practically, the kernel length ko can be
chosen, such that \ K

U (ko=1) > U (o), (6.3)
and

ko .

121 U (i) = 9, [ oy (6.4)

Then, the unconstrained numerical solution may be 1nvoked,'together with
(6.3) and (6.4), to obtain the values of the impulse response vector U
since the matrix (ﬂT g'] H) appears to be il1-conditioned in most of the
usual cases [Abadie (1970)].

The =valuated impulse response vector Q together with (6.2) are invoked
to estimate the output of the first model M], as follows
Ko

y(Kk) = ay [151 0(1) xy4(k=i#1)] + § -



-.-i)

Further, it is alleged that the autoregressive models have to be pre-
ferred since they can achieve much better estimatability conditions for
those systems whose complete mathematical description is not available.
Thus, the normalized discharge is used to generate the vector 2} as

follows
-9(2)_

(3

y=1| - (6.6)
| y(N) |

y(1y o . . . 0
y(2) y(ny o . . 0

H=|" ' . ' . (6.7)
(1) y(N=2) e e y(N-ko)

Obviously, the necessary and sufficient condition for estima%ting the
kernel length ko is

[=]

U(i) = 1. (6.8)

N~ x

i=1
The unconstrained numerical solution, together with (6.8), are used to
evaluate the impulse response vector U. Thus, the current estimates of

the output data generated from the model M; may be expressed as follows

ko . -
o L 5. (1) y(k-i)1 + §, k=2, 3, ..., N
y(k) = = (6.9)
o, y(k) +y , for k=1.

y
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iii)

Consequently, the one-step ahead predicted vaiues of the output dis-
charge [y(+)] may be defined as

yik) = 5 O() Y(k-141), k=1, 2, ..., N. (6.10)

1

[{ B e Bl g
—

As mentioned earlier, the constrained approach may lead to a considerable
improvement in the accuracy of estimated output data. Thus, it is ad-
visable to consider the numerical sclution of the optimization problem
(3.13) tdgether with the two constraints of (3.14).

Specifically, the incompiete mathematical balance of the system under
study strengthen the hypothesis of inequality constraint alone. Thus,
the optimization problem reduces to

-1

1 Ty ¥

= LT T
Min 8. = U H'V

-1 - QT

I
nc
e

(6.11)
subject to U > 0,

where the kernel length k., may be evaluated using (6.3), (6.4) together
with (6.11).

The impulse response vector U that minimizes the previous optimization
problem is then invoked to transfer the delayed input data of the model
Mg into its output part according to (3.21).

Unfortunately, the three impulse response vectors obtained before de-
monstrated an osciilatory pattern due to the irrepresentability of the
observed input and/or output data [Blanke et al. (1970)1. Thus, it is
relevant to point out that, these oscillatory vectors may be mathemati-
cally smoothed using the Hamming window algorithm discussed in Apeendix

A. Consequently, we can obtain another three models Mé, M; and M6
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Practically, all necessary estimates can be evaluated using the com-
puter program listed in Appendix B. Let

n(k) = y(k) - y(k)

(6.12)

¥k 1, 2, «.os N

be the residuals of estimation at lag k.

The numerical values of the impulse response vectors for the previous
models as well as the mean and variance of each residual sequence [n(+)] are
summarized in Table (6.1), where

ﬁ=%; r n(i), (6.13)
1=1
and
p N -2
o " T 1!_:] [n(1) - n]°. (6.14)

6.4 VALIDATION TESTS OF THE NOISY-TRANSFER FUNCTION MODEL

Kashyap and Rao (1976) have suggested that the appropriate class of models
can be obtained by investigating its validation for the prespecified esti-
mation conditions. Thus, we shall use the validation tests discussed in
Chapter III to select an adequate model among the six noisy-fransfer fun-

ction models presented before.

6.4.1 Test of the Goodness of Fit

Usually, the goodness of fit between the two histograms of observed and
estimated discharges may be checked by using the second Kolmogrov-Smirnov test
given in Appendix C. Consequently, the statistical responses of the six models



Table (6.1) SUMMARY OF THE NOISY_

TRANSFER FUNCTION MODELS.

STANDARD DEYIATION OF RESIDUALS.

THE IMPULSE RESPONSE
Mopey | DELAY S A
FACTORpuraTIoNU (1)]u (2)]u(3)]u(4) UES)H e ut7)ule)f ut9um uom
- 1.
M, 3 10 Licisslo21751-0323d01279 | 01702}-0024 -0128210.1273/-0.0028/0.0463 -0.0201{000111 |0.2¢199
’ - k
M, 3 > [04s2210ussp.0123-000-0.0m4-000m — | — | — | | _ 0.00072 {0.23359]
7
M, 0 > [H.000020551 026502260 0316202030 — | — | — | _ | _ 0.00018 |013818
M, 0 > |ososojos218003901L000ml007D}0035] — | — | — | _ | _ -0.000450-15504
MZ 3 10 Looooo 0.0160/000000.0118 |0.000010.02080.0000 00188 (0.0000{0016 3 |00071 026178 0218 34
Mg 3 10 10.007310.0086 j0.0054 | 0.0064| 0.0075]0.0112}0.0031/0.0102 0.009110.0104{0.011 3 |-0.21652[018276
7 MEAN OF THE RESIDUALS.
23
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are illustrated in Table (6.2).
As a general view, the test statistics of the model M4 are acceptable
on both the 0.95 and 0.90 significant levels, while the other model M3 may

be accepted on the second level only.

6.4.2 Test of Zero-Mean Value of Residuals

Obviously, the estimators of the output data sequence may be unbiased
for those models whose residual sequence has a zero-mean value. Thus,. the
results shown in Table (6.3) insure the validity of the unconstrai~ed models

], 2, M3 and M4 for the zero-mean value and consequently the unbiasing con=
dition,

6.4.3 Validation Tests Based on the Comparison of Various Characteristics
of Observed and Estimated Discharges

For an appropriate reduction for the field-of choice, we may consider
only the two successful models M3 and M4 Specifically, the correlograms,
power spectrums, histograms, and the normalized cumulative histograms of
these two models compared with the corresponding characteristics of the
observed output data are i1lustrated in Figs. (6.9) to (6.14),

These results indicate that :

i) The standard deviation oM(k) governed by (3.30) is found to be 0.24 which
represents a very convenient qualitative decision 1imit for both models.

ii) The correlogram, power spectrum and histogram of the generated data using
M, are quite similar to those of the observed output data. Thus the qua-
litative validation test strengthen the hypothesis of choice M4.
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Table(6.2) RESULTS OF THE SECOND KOLMOGROV_ SMIRNOV TEST

LAG
MODEL TEST
STATISTIC S |10 15 [ 20 | 25 30 | 35| 40 45
s Z 1.58% (1.788911.4606|0.7906(1.2728 |1.4 201 (1.7928 [1.9007/(1.7919

M 1€=005 'R 'R | R | A | A | R|R|R |R
€=010 [ R ] R R | A|R|R|R| &R | R

. Z 1.5811 12.0125(1.6432|0.9437(1.414 2 [1.9365(2.3905(26833 2.63 5
M2 (€,=005 /' R f R | R | A |R | R|R| R|R

€ =010 R R R A | R R | R R|R

- Z 1.2649|1.34161.2780|1.1067 |09899/0.9036|0.8366(1.2298 | | 1595
My [€4 =005 A | A A A | A A A A A
€, =010 R | R R | A | A A | A R | A

- yA 03162 |08944|0.9128 (0.9486 [0.84850.7746 J0. 9562/08944 66325

M, [€/=005 [ A [ A | A
€2°010 | A | A | A

- Y4 1.581112.2361(2,7386|3.0042(2.8284 | 2.5819(2. 5098/ 2 68 33| 2.8461
Ms €1 =2 005 R R R
€2 =010 R R R

T D
D
1]
D
2
b o]

N z 1.5811)2.3361|2.7386 | 2.697924042|2.194 7 |2.7346(2.9236 |2 4244
Mg |€ =005 | R [ R R | R|R | R|R|R | R
€22010 | R /R | R |R|R|R|[R|]R]| R

A ACCEPT THE NULL HYPOTHESIS Ho.
A - REJECT THE NULL HYPOTHESIS Ho.



Tabie (6.3) RESULTS OF THE ZERO MEAN TEST.

TEST —
7 Fd
STATISTIC | MY Mo M3 Mg Mg Mg
D 0. 04534 | O. 330_0 0.02524 0.01069 11.43045}11.18838
€= 0.05 A A A A R R
€= 0.10 A A A A R R
A ACCEPT So.
R REJECT So.

€6
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6.5 THE QUALITATIVE CHARACTERISTICS OF RESIDUALS

The ten-days mean-values of residuals obtained by using the two suc-

-

cessful models M3 and M& are delineated in Fig. (6.15).

The correlograms of daily residuals, evaluated via the two models Mé
and M4, are illustrated 1in Figs. (6.16) and (6.17) respectively. It can be
observed that the coefficients R(k) of the first residual sequence are more
acceptabie than those of the second sequence. since they lie within the
specified standard deviation limit.

The smoothed raw estimates of the power spectrum for both daily re-
sidual sequences are shown in Figs. (6.18) and (6.19), which demonstrate a
considerable variability but with a negligable magnitudes w.r.t, S(wo).

Finally, the histogram of residuals generated by the most successful
mode] M4 and its normalized cumulative values are shown in Figs. (6.20) and
16.21). These histograms coincide with the normai distribution N(-0.00045,

0.16), see Clark (1969),

6.6 APPLICATION OF THE LINEAR STOCHASTIC DIFFERENCE EQUATION MODEL

In this section, the linear stochastic difference equation model is
applied to the physical system under study. The multiplicative and additive
structures are utilized with the following assumptions:

i) The proposed model has only autoregressive terms of a variable order n.
i1) In addition to these n-autoregressive terms, another mth order term rep-

resenting the residuals may be fedback to the output part of the model in-
order to achieve a corrective pattern.
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iii) Another sinusoidal term of frequency 2xj/244, j=1, 2, ..., N, is added
to the nth order autoregressive model to trace the daily oscillations of

the data.

The number of autoregressive, residuals and sinusoidal terms for both
the additive and multiplicative nodels are illustrated in Table (6.4).

6.7 ESTIMATION OF THE PARAMETER VECTOR

Using the recursive algorithm (4.11) together with first procedure of
initialization, the parameter vector a(i), i=1, 2, ..., N, is identified,
The final values of the estimated parameter vector a as well as the mean,
absolute mean and mean-square values of residuals for both the additive and
multiplicative sturctures are shown in Tables (6.5) and (6.6), where

B=l oy a

°=—_ L Wil ’

Ny
N

- 1 -

By = & ¢ w(1)

and (6.15)
N

ARSI W CCh

indicate respectively the mean, absolute mean and mean-square values of the
residual sequence [w(-)].

6.8 CLASS SELECTION OF THE LINEAR STOCHASTIC DIFFERENCE EQUATION MODEL

Among the differcnt classes of the Tinear stochastic difference equation
model illustrated in Table (6.4), the most acceptable model can be obtained



Table (6.4) LIST OF PARAMETERS FOR THE ADDITIVE AND
MULTIPLICATIVE MODELS.

MODELS
PARAMETER

M & Mgl MaB Mg M3 BM, M 8 My MB M IM &M IMEM M M
n 2 3 4 5 2 3 2
m - — — — 2 2 S
n —-— —_ — —_ — —_— I

3

n Z NU A3ER OF AUTOREGRESSIVE TERMS.

na NUMBER OF SINUSOIDAL TERMS.

m - NUMBER OF ERROR TERMS.
My, I=1I—8.: ADDITIVE MODELS.
M , i=9—I6: MULTIPUICATIVE MODELS.

SOl



Table( 6.5) SUMMARY OF THE RESULTS OF THE ADDITVE MODELS

Go 01 02 03 Ql. QS QG 07 Qg 010
~ ~ ~ —~ —~ - - EO E1 EZ
1 YOK_1) [ YOK 20 Y(K_3) | Y(K_s JIY(K_S)|sIN Wl K [COS V%K)W(K-l ) IW(K.2)
0.000024 b.%91 511 0034769 — o _ — — —_ _ 0.000013 P.0067¢2[0.000072
0.000048{0.9906 26 | 0074076|0039635] — —_ —_ — — 0.0068 76 0036015 0001222
0.000038 10.992343 0.0773&L0.08391‘l 004464 — —_ — —_— —_ 0.000045|0007058 {0000081
0000170/0996483 | 0.08546[0091488] 033812010094 106 - — — — .000086 0007720 |0.000105
0.00001210.978184 |-0041485] — — - -0.04322710022563 - - 0.000140 10.015308 00001856
~0.0000470979631 -0.0732530032415 —_ — [F004278210.023852 - — (0000 212 0015936 }0.000212
0.002097 10.5 79018 |0.360508 — _ — — -_ 0.442080]-000266410.000169 |0.02258010.000276
0001583 |0.549516{0.235870101514 711 — —_ - — |0A77697{0148088 10.000285{0.023390(0.000309
Eo MEAN VALUE OF THE RESIDUALS.
E, ABSOLUTE MEAN VALUE OF THE RESIDUALS.
E, MEAKN SQUARE VALUE OF THE RESIDUALS.
w

THE MAIN FREQUNCY OF THE OBSZRVED OUTPT DATA.

901



Table {6.6) SUMMARY OF THE RESULTS OF THE MULTIPLICATIVE MODELS.

9o a, a, as 72 Qg Qg as ag Qg
Ld ~ L -~ Land p— — - E

1 Y(K_1)]Y,(X.2) V(K_3)|G(K_4) Y,(K_ 5)}SIN W K|COSWK| w (K_1fw(K.2) E, E, 2
-00257240.579271(0.301895| — — —_ —_ — — — |0.006826{0029192|0001146
-002271|0.538083 {0.223713 0133374 — —_ — — — —  ]0.013548}0.059£25]000 2382
~0.0217770.532248|0.212368 10049375 01)1.9375|0 — — — —_ — |0.006878|0.045 278|00014 67
-0.021103}0.530324/0.20914 2|0.09833610.028958 j0.038258] — —_ — — 10.0067i1|0.024044 10001212
-003433/0558548(0.282152] — - — {-00m022{0.008888 | — —  10013527(0.07087% |0.002625
-0.030421{0.5245030.214345{0120754) — — -0010336/0007069] — — 10013244 {0.048891 0002432
-0.038117/049788710.320971] — — —_ — — ]0.227203|0.046531 |0019652|0090558/0.003420
-0.03537600.433579/C.217850{0.181635| — - — — 10.254027]0.071917 |0.019138 {0.0 682820007199

Eg : MEAN JALUE OF THE RESIDUALS.

g, ABSOLUTE MEAN VALUE OF THE RESIDUALS.

E? MEAN SQUARE VALUE OF THE RESIDUALS.

w

-

THE MAIN FREQUNCY OF THE OBSERVED OUTPUT DATD.

LO1L
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Dy using the class selection procedure depicted previously in Chapter IV.

6.8.1 The Likelihood Approach

According to (4.16) the 1ikelihood function Li’ i=0, 1, ..., 15, is
evaluated for each proposed model. It is found that, the additive model M],
furnishes the largest value of the Tikelihood function Li‘ Consequently, the
given data may be assigned to that successful model.

6.8.2 The Prediction Approach -

Using the estimated parameter vector a together with the noise sequence
[w(+)] generated via a Gaussian random variable generator whose mean and
variance are quite similar to those of the residual sequence [W(+)], the one-
step ahead prediction of the output discharge can be vbtained. The quality
of predicted values mey be checked by using (4.19). Finally, the values of
L; and Jys 12041 , ..., 15, for both the additive and multiplicative models
together with their corresponding rank are 11lustrated 1n Table (6.7).

6.9 VALIDATION TESTS OF THE LINEAR STOCHASTIC DIFFERENCE EQUATION MODEL

It is convenient to test the validity of the proposed models illustrated
in Tables (6.5) and (6.6) for the utility condition (4.3), together with the
normality of the generated residual sequence [w(-)].

6.9.1 Test of Serial Independence

Using the residual sequence for both the additive and multiplicative
models in addition to the computer program listed in Appendix D, the test
statistics B(w) are computed according to (4.35). The decision of acceptance



Tabla{6.7) RESULTS OF THE LIKELIHOOD APPRGACH AND PREDICTION APPROACH FOR
THE CLASS SELECTION OF THE ADDITIVE AND MULTIPLICATIVE MODELS .

ADDITIVE MODELS MUL TIPLICAT IVE MODLS

M Mz (M3 M, Mg Mg My (Mg [Mg Mio [Min [Miz [Miz [ My, [Myg |M,,

l.i 237648(1633.57 {229, 74 | 223042 208290|205991995 61 196805[16512% 1172.22 158999163609 1448.52[1466 66 1384 96 140027

Jix105 7370|121448| 8024110392| 18.448] 21.026] 27430 30,647 1114130 236 74[145.50 | 119.96 |260.89 | 241 21 33989/ 317.93

RANK | 4 10 2 3 4

-
1]

- (N/2) In f;i_n;

N
Z [y(k)-?(k/k_l)] /N
k=2

—
"

601
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or rejection the class C, may be made by comparing the values of g(w), at
different lags, with those of the F-distribution function having Ny and
N-n2 degrees of freedom, where ny is the corresponding lag. The response
for both the additive and multiplicative models to that test is illustrated

in Tables (6.8) and (6.9) respectively.

Briefly, acceptance of C, insures the serial independency of the spe-

cified residual sequence [w(-)].

6.9.2 Test of Normality

As discussed before, the histogram of estimated residual sequence [w(+)]
can be compared with the standard normal distribution curve, having the same
mean and variance, by employing the first Kolomgrov-Smirnov test. The test
statistics as well as the decision of acceptance or rejection the null hypo-
thesis H, for both the additive and multiplicative models are elucidated in
Tables (6.10) and (6.11). On the other hand, the probability of acceptance of
the null hypothesis Ho for the most successful model M] is 11lustrated in
Table (6.12).

Finally, the variations in coefficients of the iwo successful models M]
and M; with sample size are demonstrated in Figs. (6.22) and (6.23) respect-
ively. It can be observed that, these coefficients exhibit significant
changes with the variation of sample size.

6.10 COMPARISON OF THE TWO BEST FITTED MODELS M; AND M]

Using the two output data sequences generated by the best fitted noisy-
transfer function model M4 and the successful linear stochastic difference
equation model M], the major features of these two models can be summarized

as follows



m

Table (6.8) RESULTS UF THE SERIAL CORRELATION TEST FOR THE ADDITIVE

MODELS.
LAG
MODEL | TEST
STATISTIC S |10 | 15| 20| 25| 30 | 35 | 40 | 45 | s0
n(W) 05630 0.5272/0.5054(0. 3961(0.3186 (0.2767|0.2227|0.2056|0.1772 |0.1612
My | € =005 A A A A A A | A A A A
€2=0.10 A A A A A A | A A A A
n(w)  [1.7622]1.6514(1.7221|1.6614|1.432(1.3733]1 4141 14001 1.3910 14120
M2 | €=005 R R R R R R| R R R R
€,=0.10 R R R R R R| R R R R
n(W)  04468(0.42530.4013 0.3961(0.35120.3213]0.2015(01732]0.1701 016 51
M3 el =0.05 A A A A A A A A A A
€2=0.10 A A | A Al Al Al A Al A A
n{W)  10.32105.27524.5010(4.2010 |3.9221(35268 31519 [2528 |2.3187 [21525
M, [€1=0.05 | R R | R R | R R [ R R | R R
€2=0.10 R R R R R R R R R R
n (W)  [15.962112.715110.510|98155|8.66 31| 7434061416 |5.5501(5.9030(6 5220
Ms |€1 =005 R R R R R R R R R R
€220.10 R R R R R R R R R R
n(W)  1567135.7314(6.91326.51436.3152(6.015254220(51107 4.3143|49212
Mg [€1= 0.05 R R R R R R | R R R R
€22 010 R R | R R R R R R R R
niw) 6814 5149182|2.7170(3.2817(2,8187(2.0103/1.8132 [1.5182[1.4130 [1.3730
M; €, =0.08 R R R R R R R R R R
€220.10 R R | R R R R R R R R
n(w)  8.8173 |9.1320003107 [9.7541(9.2512 [8.7373|7.7125 [7.5412 [ 6.5962/6.2130
Mg |€,=0.05 R R R R R R R R R R
€,=010 R R R R R R R R R R
A ACCEPT Co.
A REJECT Co.
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Table (6.9) RESULTS OF THE SERIAL CORRELATION TEST OF THE
MULTIPLICATIVE MODELS.

TEST LAG
MODEL
STATISTIC | & 0 | 5| 20| 25| 0| 35| 0! 45| 50
niw) I53086 [7.50864.9641 [3.8013|3.0891| 2.6171 | 2.1356 [1.9523{1.6291| 1.4892
Mg €,= 005 R R R R R R R R R R
€2=0.10 R R R R R R R R R R
(W) 3.44003:2643 30776 | 2.6786 [2.6653 | 24.331 |2.2251 [1.9626 [1.5732 11126
My [€E1 =005 R R R R R R R R R R
€, =010 R R R R R R R R R R
nlw)  |44682]4.253% [3.4952[31258 31415 2.8871|2.5960/2.1696 | 2.0606{1.3606
M,, |€1=005 R R R R R R R R R R
€= 0.10 R R R R R R R| R R R
nlw) |348393.3051[31161|2.9145|2.69832 4634(2.21111.93511.58631.124 6
M2 |€9=0.05 R R | R R R R R R R R
€22 010 R R R R R R R R R R
niw ) [3472]3.2997[3.1110 |2.9100 | 2.6 22| 2.4594 |2.1998 [1.9309 [1.5783 | 13214
Mp 62005 R R R R R R R R R R
€21 010 R R R R R R R R R R
nlw) [32077]3.0282|28374]|2.2331(24317|2.2197|2.1117 |1.8940[1.5604 {1 111 6
Mq |€92005 | R | R R| R | R| R| RIR|RIR
G2=01C | R R R R R R R R! R R
n(w) )6.5“7 5 5042(8.4047] 4.8681) 23 360] 3, 2844 [305202,7317 [ 2,2201 |1.8410
Mg | €1 2005 R R R R R R R R R R
€22 0.10 R R R R R R R R R R
n{w)  16.7230/5.6378] 54 251|4.8726|3 538 2|3, 2661|30536| 2.7970{ 2.2207{1.6905
Mg | €1 = 0.08 R R R R R R R R R R
€2= 010 R R R R| 'R R R| R R R
A ACCEPT Co.
R ' REJECT Co.
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Table (610) RESULTS OF THE FIRST KOLMOGROV_SMIRNOV TEST OF THE
RESIDUAL NORMALITY FOR THE ADDITIVE MODELS.

TEST LAG
MODEL

STATISTIC| 5 10] 15| 20] 25| 30| 35| 40| 45 | 50

Z 0.3162(04472{03651]0.3162 | 0.2828/0. 2582|03586|0.3354 0.316 3| 0.3000
My |[€ =005 A A A A A A A Al A A
€,=0.10 A A A A A A A A A A

VA 1.6324 [1.9487 | 16708{1.5477 [14743 [1.4243 | 1.3873[15976 |{1.5590{1 .5000
M, |[€7=0.05 R R R R R R R R R R
€2=010 R R R R R R R R R R

Z {03162 ]04472/0.3651/0.3162]0.2828{0.3873 04 7810447204216 04000
M, [€1=0.05 A A A A A A A A A A
€,=0.10 A A A A A A Al A A A

Z 1.160 | 0576309309091 98(04595[1.6942|1.9100|2.2202 2.2997| 24000
Ms [€4=0.05 A Al A A|l Al R| R R R R
€2 =0.10 A Al A Al A R| R R R R

y4 0.632 [044720.3651 |0.3612{1.2843] 1 8190{1.8551(1.54101,6 228{1.5000

Ms e, » 0.05 A A A A R R R R R R

Me |€1

™

~N

n o

0O

Oow
>
> ¢
=
P o)
0
0
> ¢
D
0
D

c&
>
=
b
]
D
prs ]
o
P
b1
20

1.6325{1.4472(1,36511.3162| 1.2728] 18351 14270 |1 4001 [1,3977 {1, 2000
R R R R R R R R R R
R R R R R R R R R R

K 4

B

o

u
OONI/DON|]OON

X
<@
o

non
—_ O
ow

Z . STATISTIC OF THE FIRST KOLMOGROV_SMIRNOY TEST.
A " ACCEPT THE HYPOTHESIS OF NORMALITY.
R ! REJECT THE HYPOTHESIS OF NORMALITY.



http:Table(6.10

114

Table (6.11) RESULTS OF THE FIRST KOLMOGROV. SMIRNOV TEST OF THE
RESIDUAL NORMALITY FOR THE MULTIPLICATIVE MODELS.

LAG
MODEL| 1657
STATISTIC | 5 0 115 | 20| 25 | 30 | 35 | 40 | 45 | s0
z 163241167091, 5477 1.4 246 0. 5163)0.7171] 06708[0 .6 315 | 0.6000{0.9 912
M €,=0.05 | R R | R R| A | A A Al A A
Slezyo10 |R I RIR | R| A & al alala
Z 0948600.6 71805471 [14745[1.3205 {14 24 21,3872 1.5976|1. 5590| 0.5000
Mo |€=005 | A | A | A | R|A|R]|]R|R|R]| A
€22 010 A |l A | & R| R R R R| R | A
Z 09571107602/ 0.54 210.7721{0.8 312/0. 8872|1.1271 [ 1.4213]1.5271]1.5000
My [ §=0.05 A A | A A | A | A A R R R
€2=010 A A | A A |l A A A R R| R
yA £.5572/0.7814 [0.9652111243 |1.1571 | 11742 1.217]1. 2571 | 1. 3%0]1.5000
M2 [€ =005 A A A A A A | A A R R
€, =010 A Al A | A ] A A A R| R | R
r4 Q7324 (0.7211 {0.6614 | 0.7415(0.8999] 1.1215]1.5432 {1.6780 [1.7641 | 1.8000
M3 {€,=005 Al A | A Al A | A R R f R
€,=010 Al A | A ]| A ] A ]|A R R R | R
Z 0.7324 (0.7 211 |0.6915(0.76 21{0.9120| 11714 | 1.7450(1.7785 |1.8417{2.0071
My, |€1=0.05 Al AT A Al A | A R R| R| R
€2 =010 Al Al A Al Aa]a R R R R
Z 1.3162 11.670811.54 77 [1.474 3 /1.4 26 2 [1.3872(1. 3685(1.3 951 |1.4 21671.6000
Mg [1=a02 | A [ R IR | R|R|R|R|R|R R
€ =010 A R | R R R R | R R | R R
y4 1.3162/1. 3407)1.5386 (1437214 245(14010 {1.3850|1.38711.4320{1.7000
Me |€ =005 A A | R R R R R R | R R
€, =010 A A | R R R R R | R|R R
z STATISTIC OF THE FRIST KOLMOGROV.SMIRNOV TEST.
A ACCEPT THE HYPOTHESIS OF NORMALITY.

R

REJECT THE HYPOTHESIS OF NORMALITY.



Table(612) RESULTS OF THE FIRST KOLMCGROV _SMIRNOV TEST FOR THE ADDITI

LAG (DAYS)
TEST STATISTICS
5 10 15 20 25 30 35 L0 45 50
y4 0.316228 o.um?:.assv.a 0.316228/0.252843 |0.258199 0.3585640.335410 0.31622¢{0300000
€ =005 A A A A A A A A A A
€=010 A A A A A A A A A A
PROB. 0.95965 10988261 0.999420.999965/0.999938 | 100000 0.99952410.999871{0.999965/0.99999
A ACCEPT THE MULL HYPOTHESIS Ho.
PROB"

PROBABILITY OF ACCEPTANCE OF THE NULL HYPOTHESIS Heo.

VE MODEL M.

=113
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i) Simulation Capability:

The discrepancy between the statistical characteristics of the observed
and generated sequences discriminates its simulation capability. Thus, some
statistical characteristics such as correlograms, power spectrums, histograms
and cumulative histograms of the two output sequences generated by M; and M]
are compated with those of the measured output discharge. The results of
that comparative procedure are illustrated in Tables (6.13) to (6.15), which
confirm the ability of model M] to generate an adequate output sequence.

ii) Estimatability:

Some bisidary estimation conditions play an‘éctive part in the model
selection techniques. The estimatability of a given model may insure its
ability to generate an accurate estimates of parameters as well as appropriate
statistics of residuals. Consequently, the significance of estimated pa=-
rameters for the two successful models M; and M] may be tested as suggested
by Clark (1969), The numerous mathematical operations naeded to evaluate
the 1mpulse response vector U lead to a marginal significance of 1ts coe~
fficients, whereas the parameters of M] estimated by the recursive algorithm
(4.11) show a small variability and better level of significance. On the
other hand, the discrepancy between the histogram of residuals and the normal
distribution curve, with similar mean and variance, 1s more acceptable for
M] rather than M;. Furthermore, the histogram of residuals as well as its
cumulative values for .he successful model M] are shown in Figs. #.24) and
(6.25) respectively.

iii) Forecasting:

According to the general classification of monthly output data illustrated
in Fig. (6.26), the forecasting ability of the two successful models M4 and
M] can be quantatively compared via Fig. (6.27). Clearly, the one-step ahead

-

prediction capability of the model M] is much better compared with that of M4.
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Fig (613) COMPARISON OF THE CORRELOGRAMS OF THE MEASURED AND GENERATED DISCHARGE
DATA FOR THE TWO SUCCESSFUL MODELS MZ AND M,.

LAG (DAYS)
TYPE O DATA

5 10 15 | 20 25 30 35 40 L5 50

MEASURED 0.806272|0.677308 Pﬂ.577811 0.4 9514 51044 4279|0401704 |0.342013{0.227529{0112896 | 0053637

GENERATED BY 1819805 |0687749}p58:87 |0.501245 |0450134 | 0.4 07119|0346501|0.230257]0105087 | 0058214
Mg

CENERATED BY lo804605 | 0575017057804 |0.4 92689| 0.442457{039996 2| 0340875 0226 302| 0111361 | 005 2620
M
1




Table (6.14) COMPARISON OF POWER SPECTRUMS FOR T
DATA FOR THE SUCCESSFUL MODELS

Id

4AND M;.

TYPE OF DATA

FREQUENCY

( RADIANS /7 DAY)

m/ i0

x/5

3W/10421t/ 5

m/2 |3n/4

ITn/10

41/ 5

o9n/i0

MEASURED

0.50284

0.00840¢

0360824{0.00653

0278187 |0.00361

0.215088

0.001280

0071462

0.017034

GENERATED BY

M4

0.52904

0000C0q0371395 bOOOOO

©.286564/0.00000

0220589

0.00000
!

0.069447

Q00000

GENERATED BY
M

0.50180!1

0.008372

0358947

0005503

0.2770450003595

0214372

0001273

0.070491|0.016711

HE MEASURED AND GENERATED DISCHARGE

(et
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Table (615) COMPARISON OF THE MEASURED AND GENERATED DISCHARGE

HISTOGRAMS FOR THE TWO SUCCESSFUL MODELS ML’ AND M,

CLASS [INTERVAL
TYPE OF DATA

0.3-04 104 -0.505.0.6/0.6-0.7/0.2.0.8 {0.8.0.9/0.9.1.0 1.0_1.1 111.2112.13{13.14

OBSERVED 18 100 126 | 89 64 37 27 13 10 3 1

GENERATED
. 251 91 (128 94 | 63 | 38 | 24 | 14 8 2 1
By My
GE NERATED
14 1104 | 127] 96 | 60 | 39 | 26 9 11 2 -
By M,

COMPARISON OF THE MEASURED AND GENERATED DISCHARGE

CUMULATIVE HISTOGRAMS FOR THE TWO SUCCESSUF MODELS MIZ&MI

CLASS INTERVAL

TYPE OF DATA
0.3.0.4)04 .0.5/05.06§06.0.7 [07.0.8/0.8.0.9/09_1.0[1.0.1.1 11 .1.2]12.13[13-

OBSERVED 18 M8 | 264 (333 [397 | 434 | 461 | 474 | 484 | 487 | 488

GENERATED

, 25 | 116 | 244 | 338 | 401 | 439 | 463 | 477 | 485 | 487 | 488
By M,

GENERATED
By M,

14 118 | 245 | 341 | 401 | 440 466 | 475 486 | 488 | 488




]
‘l—’ FREQUENCY

~
L=
l

60—

30—

20—

=30

—24 -8 =12 =6 o 6 12 i8 24 30X 10™3
CLASS

Fig.(6.24) HISTOGRAM OF THE RESIDUALS FOR THE MODEL M.
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NORMALIZED CUMULATIVE FREQUENCY
e

04| _
0.2}—
| | | 1
-30 —24 -18 -2 -6 0 6 12 18 24 30Xi0->
CLASS

Fig.(6.25) NORMALIZED CUMULATIVE HISTOGRAM OF THE MODEL ‘M; RESIDUALS.



FREQUENCY

TOTAL

MEAN

TOTAL STANDARD DEVIATION

TYPE
OF LEVEL

LOWER LMITJUPPER LIMIT

1 VERY LOW DISCHARGE

) 9.8
II LOW DISCHARGE 9.8 14.6
124 MM MEDIUM Low DISCHAR| 4.6 I7.0
45 um
IV MEDIUM DISCHARGE | 170 21.8
V MEDUIM HIGH DISCH.| 21.8 .2
VI HIGH DISCHARGE 242 29.0
VIl VERY HIGH DISCHAR] 29.0 s

i
I
I
|
;
-—4—
!
|
!
|
|

I,V
U

)4 B 20

24 28 32 38

SYSTEM DISCHARGE {MM/MONTH )

Fig. (6.26)CLASSIFICATICN OF THE SYSTEM OISCHARGE.
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DISCHARGE (MM /DAY)

| X
(-
1.2}—
1 .0—
0.8 —
O MEASURED
X X
X X ® PREDICTED USING M,
0.6 ¢ X
X PREDICTED USING M,’,
b 4
b 4
04—
VERY HIGH DISCHARGE
OCTOBER 1970
0.2}—
00 1 1 | | | | | x -
0] 4 8 12 i6 20 24 28 32

TIME (DAY

Fig. (6.27) A PLOT OF MEASURED AND PREDICTED DISCHARGE DATA FOR
M| AND M4( TOTAL DISCHARGE IS 30.8 MM/MONTH ).
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DISCHARGE (MM/ DAY)

HIGH DISCHARGE
NOVEMBER 1970

0.6 — X
o MEASURED
0.4 e PREDICTED USING M,
X PREDICTED USING M4
02—
00 | | | l l ;' | l
o 4 8 12 T3 20 24 28 32
TIME (DAY)

Fig. (6.27) CONT. D

( TOTAL DISCHARGE IS 273 MM /MONTH ).
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DISCHARGE ( MM/ DAY)

i MEDIUM HIGH DISCHARGE
APRIL 1970

0.4 — " o MEASURED
 PREDICTED USING M,
0.2|— X PREDICTED USING M4
0.0f | | I ] | | ] |
@ 8 12 G 20 24 28 =
TIME (DAY)

Fig.(6.27) CONT.D { TOTAL DISCHARGEIS 2.9 MM / MONTH ) .
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\ MEDIUM DISCHARGE
MAY 1971

)} O} —

DISCHARGE (MMNDAY )

oe}l— x o

MEASURED

€© PREDICTED USING M,

»

02— PREDICTED USING M4

jpasass
—
—
]

00 | ] | l

o 4 8 12 16 20 24 28 32
TIME (DAY)

Fig( 6.27)CONT.'D (TOTAL DISCHARGE IS 18.6 MM/MONTH ).
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(MM /DAY)

DISCHARGE

| .2}—

MEDIUM LOW DISCHARGE

SEPTEMBER 1971

Fig.(6.27) CONT.D

(TOTAL DISCHARGE IS 154 MM/ MONTH)

N

04} — © MEASURED
® PREDICTED USING M,
0.2/ X PREDICTED USING M4
0.0 | | | | ] ! N
0 4 8 2 16 20 24 28 32
TIME (DAY )

|

o€l



(MM/Day )

Discharge

1.0

0.8

0.2

0.0

LOW DISCHARGE
JULY 1971

o MEASURED
® PREDICTED USING M)

x PREDICTED USING Mg

4 8 12 i€ 20 24 28 32

Time ( Dav)

Fig(6.27) CONT.D (TOTAL DISCHARGE IS 13.9 MM/MONTH).
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CHAPTER VII

CONCLUSION

The major emphasis of this endeavour has been the identification, esti=
mation and validatiun of noisy-transfer function and linear stochastic diffe=
rence equation models appropriate for the representation of physical hydro-
logical systems. A case study of the Waki River catchment, located near to
lake Albert, has been selected. Using the input precipitation and the out-
put discharge measured during the rainy season of that catchment, 1t has be-
came possible to simulate the two proposed models on the digital computer to-
gether with the main statistical characteristics of their output data, More=
over, the validity of the residual sequences, generatad by the diffarent stru-
tures of these models, for the prespecified estimation conditions nas also
been investigated.

The important features of the two tuned noisy-transfer function and
linear stochastic difference equation models have been quantitatively examined
in a comparative pattern in order to achieve the best representation of the
Waki catchment. As a general view, the performance of linear stochastic
difference equation model is more favourable than that of the noisy-transfer
function model.

The main findings of this work can now be summarized as follows:

i) The application of linear stochastic difference equation models is pra-
gmatic for both prediction and estimation of the river catchment response.
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i)

iii)

iv)

vi)

The Tinear stochastic difference equation models yield excellent pre-
diction for the most given classifications, whereas the predictability
of the noisy-transfer function models is restricted by using their auto-
regressive structure during the low level of output data.

The multiplicative sturcture of the linear stochastic difference equation
models has failed to attain the same accuracy obtained by the additive
structure, this is mainly due to its inadequacy to the physical system

at hand. Moreover, it is advisable to fit a relatively simple class of
models and increase its complexity only if the simplest class proves to

be unsatisfactory.

The identification procedure of the linear difference equation model is
equivalent to specifying the suitable number of autoregressive, corrective
error and/or sinusoidal terms necessary for an adequate results, Alter-
natively, the basic premise in identifying the noisy-transfer function
model is the evaluation of its appropriate kernel length.

It is advantageous to invoke the constrained estimators to evaluate the
parameters of noisy-transfer function model adequate for some river cat-
chment systems whose complete mathematical balance is available, together
with the representability of their measured data. On the other hand, the
recursive parameter estimation of the linear stochastic difference equa-
tion models is relevant for both the additive and multiplicative struc-
tures, provided that a proper data transformation procedure is manipulated.

The validation of the two proposed families of models for the prespecified
estimation conditions was checked both by examining their residuals and
comparing the basic statistics of their generated output data such as
mean, variance, correlogram, histograms and power spectrum with the others
of observed sequence. It has been demonstrated that, the appropriate
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class of models should pass all validation tests at the required signi-
ficance Tevel in order to vendicate its adequacy for the system at hand.

The most fruitful area of future research would be the implementation of
partitioned estimation technique together with the pre-whitening of the input
data to the noisy-transfer function model. In addition, the sensitivity of
linear stochastic difference equation model to the recursive manipulation of
corrective error terms obtained via the Fourier analysis of residuals is
suggested for further studies. Finally, it is recommended that the methodo-
logies presentad in this work be invoked to other physical systems in diverse
areas of engineering and applied sciences, as well as to multi-input multi-
output situations.
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APPENDIX A

ESTIMATION OF THE POWER SPECTRUM

The power spectral density function can be obtained by using the following
formula [Kamal Abo El-Hassan (1980)]

M
k
%— £ E y(k) cos —%5 | (A.1)

PS(w,.) =
h k=0

where Wh is the frequency in radians per unit time,

_ hn -
wh"M—', h"'o,], n-o’M (AoZ)
and
1 for 0 < k<M
1
7 for k=0, M

such that y(k) is the normalized autocorrelation function at lag k and M is
an integer nearest to 0.1N or 0.05N, such that N denotes the number of obser-

vations.

These estimates are then smoothed employing the Hamming window alogrithm
to obtain more refined values of the power spectrum, that is
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for k = 0:5(wo)
for 0<k<M:S(wk)
and for

k = M:S(w

0.54 PS(w,) + 0.46 PS(w]),
0.23 PS(wk_]) + 0.54 PS(wk) + 0.23 PS(wk+]),

(A.4)

0.54 PS(w,,) + 0.46 PS(w

M) M) M-l).

The accuracy of computation was checked for the above procedure by

evaluating

M-1
(n/M) [%-[S (wo) + S (wM)] + kEI S (wk)] (A.5)

which must be-equal to y(0), see Dixon (1970).
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APPENDIX B
LIST OF THE DIGITAL CMPUTER PROGRAM

FOR THE NOISY=TRANSFER FUNCTION
MODEL



101

FROGRANM(SOLT)
LNPLT 1=CRrRQ
CLTFUT Z=LFU/ 16N
ThACT D

"NC

MASTER KAXN

C LER RS EEE PREETERT 3 & ****ﬁ**}i**iﬁﬂ*‘ﬁﬁ***i*ﬁ*****‘*#ﬂi**iﬁi*’ﬁﬂiﬂﬁﬁ*ﬂﬁiﬂi
c CEJECT:

c THAS PPOGRAM XS USED TO ADENTXFY THE RELATIONSHIpP BETWEFN INPUT

c RALNFALL AND GUTPUT DISCHARGE FOR WAKI CATCHEMENT,

c THIS HYDROLZC SYSTEM CAN BE CONSIDEKED AS LYINEFR CONSTRAINFD ONE

¢ UNITS CF TNPUT RAINFALL ARE MM,WHICH IS THL SAME AS DYSCHARGL

¢ CATA SOULCF = NIL"™ BAXSN SERIES FOR YEARS 11970,1971,.1972 AND 1974
c THE ORSZ: VLD BATA 7S HECORDED DAXLY FOR THE GIVEN CATCHFMENT

c IIIIIIII//II///IIll/llIIIll//l///lllIIIIIIIIIIIIIII/IIIIIIIIIIIIII
c .

LINENSTON PORTAT(488),VINPUT(488),APIX(488),QH(488),Hb130),A(78),
*xt12),51(1?),U(1?),XSTAR(12),R(12,37),IBB(12),10(12),!Rc12),18(3?)
*#,JC(37),0TAT(12) ,vi12)

DIMENSTON R1C(4G) ,E2C49) ,PS(49)

DCUELF PRECISION A,B,X,U,V,5,5Q,XSTAR,EFS

/ATUGER TE,TC,PP,6Q,TB,FL,TYPE

CCvMon /21/8€2),56(2),ND

CCYVON /A2/MJ, Vs, FD

LFTA TE,FP,QQ/1(i,"PP’,%aQ"/

PATA ML,PHI/49,3.94159274 ’

C ® uuuuw*mnw*a***wﬁ*:uan*i‘*#**iﬂ*in’u****ﬂiiw*tiﬂ***t*ﬂitﬁitﬂﬁﬂﬂﬂi**i
c REAVING FOKWMATS
1000 FCRATC?IZ)
1720 FCRMAT(2FL .1 ,2F4 1)
1A FCRMAT(RFL L)
1050 FCRMAT(2T4)
c
C MATN PROCKAM OUTPUT FOKFMATS

V70 FCRFATOYHT 27 ,10X ," THE CuL oS IS LINEAR AND TIME XNVAFRIANT®,
%) J1GX L85 CTH*))
¢ 17 FCRMATCIHY /7 ,10%, " THE Col.oS IS NONLIYNEAR AND TIME INVARIANTY,
) L1050 ,45C1H*))
Alielt FCVNATCOIHT, 72/ ,10%,°THE CoL oS IS NONLINEAR AND TIME VARZANT®,
1,V X, L5 CiH*))
¢h3l FCRMAT(/ 10X, THi ORDINARY LEAST SQUARE IS USED TO ESTIMATE®
“," THi 4vPULSE RESPONSE VECTOR®,/,10X,80C1Hx*))
76T FCRMAT(/,1UX,*ONLY SNEQUALITY CONSTRAINTS ARCE USED TC ESTIMATE®
A, THc L MPULSE KRESPONSE VECTOR®,/,10X ,81(1H%))
2 e" FCFMAT(//,lﬂx,'x-VALUEs:',/,6(6x,F&.5),/)
¢ +++++++++++++++++#+++++++++++++++++++++++++++++++++++++++++44+++++
C
RLALCT1,1050) ND,MD
TEADCT,T000) XP, .S, IV, IW, NT,LAG,TC
rEADCT1,1040) (PORTAT(I),X=1,ND)
MV ,NC,KS ,TFL=(
Ti,LAL=N


http:IW.NT.AAG.TC

BE¥

100

160

17
CED
‘SC

<17

~

K F=ND
HS=LWw=TU+1

TF(NT %@ .0) GO TO 20

READCY ,1020) XM, AL ,FHT ,TR
CECAL .ME LQ L) AL =1

T1=T¢+NT+1

Ki1=Ty

FE(uu ' .0) GO TO 44

DC 30 T=KZ,ND

VINPUT(X)=PORTAT (D)

¢C TG #0

TFCIFLY 50,50 ,60

READCY,1040) (VINPUT(I),X=KL,ND)
TFCLAG.FRL) 60 TO 90

JF=KF

VANPUTCIFI=VINPUT CJF =L AG)

IFC(JF FQ . (KL+LLAG))GO TC 75

JF=JF=1

=0 TO 70

TFCTYPFEQ .GQ) CQ TO 90

LC &0 I=KI, JF

VINPUTCI) =00

MV=MD=NC

T3=TB+1

MVENV4TP

LF(NV 4LE JMV) GO TO 400

CC TO0 260

FL=

PC 160 J=1,MD

X(4)=0.0

'i(J)=0 -O

vi=0.0

€' (J)=0.0

Ip(u)=0

12(J)=0

LFCTC=1) 190,17(,170G

0C 187 K=1,MD

L9(K) =1

CALL JNPUTT(VEINPUT,PORTAT,TI)

CoLL AT AC(VINPUT ,PORKTAT,TY,TE',FL ,A,B ,NV ,NC)
YIZMU4NC

J2=3%17+41

CFLL ALGOCA,R ,X,U,v,S1,IE8,10 ,R,XSTAR,28,J4C,3R,NV,NC,1Z,JZ,KA)
SK=0.0

DC 220 N=1,NV

SK=SK+¥X(N)

[F(KA .NE.O.OR.SK.EQR.D.0) GO TO 260
WEITF (2, L6L) (X(I),I=1,NV)

CALL QHAT(VINPUT ,PORTAT,QH,X,TB,TI,KS,NS)
CALL ERROR(PORTAT AQAH,STAT,TIAPIX,IW)
WOLIT= (2, 0l))

GO TO 250

LFCLALY 30,230 ,240)

WailTF(Z,2010)

Ce T0 250

O WRITI(Z,712y)

CFCTC o5Q 1) WRITE(2,2931)

TF(TC o680 o1) WRITD(2,2040)
AF(TC.FR.2) WREITH(2,2G50)

CAUL WREITHEZ(STAT ,PORTAT,QH X ,NV)
CALL ™¥S*(PORTAT,9H AP XX,ND)
STCP

H )
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SUBROUTINE MISR(Y,YE,YR,ND)
PUKPOSE:

(T TESTS THE RESZDUAL VECTOR Yk.
*a******+***************************************a**ﬁi*t****t***ti

DIMENSION Y(488),YE(488) ,YR(488)
DOUSLE PRECXSIuUN COR(50) ,GAMA(50Q,50) ,CORD
EQUAVALENCE (COR(1) ,GAMA(1,1))
DATA :0,E1,EZ,U,choo,S/4*0.0,4,1.0l
DATA IC, 1A, ML ,ISIZE/2%0,50,5/
LEE 2 32 2T ***************i********t*t****i************{*** khkhkAkknhiid
OUTPUT FORMATS:
1000 FORMAT(10x,3HEO=,F10.6,10x,3HE1=,F10.6,ﬂ0x,3HE2=,F10.6,I)
17117 FORMAT(//,10%, TESTING OF THE RESIDUALS:")
1020 FORMAT(1OX,'TEST:2',I,10X,2HZ=,Fﬂﬂ.é,l,ﬂOX,SHPROB=,F10.6,Iﬁﬂ0X,
*"MAXIMUM DIFFERENCE DN=*_F10.6,7)
153 FORMAT(10X,'SECTION:2‘,I,1OX,'KOLMOGROV SMIRNOV TEST.',/,10%,
*'TEST:1',/,10X,2HZ=,F10.6,/,10X,5HPROB=,F1Q.6)
1747 FORMAT(10X,"SECTXONz1",/,10X, "MEANS OF THE RESIDUAL.'")
1050 FORMAT(TUX ,*SECT1ON 3% .1 10X, THE F~TEST.',I,10x,'VALUE=',ﬁ1U.6,
*10x,'LAG=',13,:,10x,60(1H*),/)

160 FORMAT(1UX,’MLL=',12,10X,'I=',IZ,10X,'GAMA(MLL,I)=',DZb.2ﬂ)

TEER==z==cx SDS=nzSoSos===x :::::::::::::::::::z::B:::zz::::ﬂ:::::::::::

ISUM=TA+XC+1
WRITE(2,1010)
NN=ND=TS UM
DO 1M I=XSUM,ND
SC=EN+YR (X)) /NN
E1=E1+ABS(YRCI)/NN)
B2=F2+(YR(I)*%2) /NN

10 CONTTNUE
WRITE (2 ,1040)
WRITE(?2,1000) EO0,E1,E2
CALL AUTO(YE,ND,ML,IFCOD,COR,COROD)
CALL AUTO(YR,NN,ML,XSUM,COR,CORD)
DO 21 J=2, ML
DO 20 I=y, ML
GAMA(ZI,J)=GAMA(I=1,4-1)
GAMA (J=1,1)=GAMA (X, J=1)

21 CONTINUE
CALL STNACGAMA,ML,LIREV)
PO 37 T=1SIZE ML ,ISIZE
MLL=]
CALL KOLM1(YR,I,IFR,(FCOD,U,S,PROBT,21)
CALL XOLM2(Y,YE,X,%,22,PROB2,DN)
WAITEC2,103.0) 21,PROB1
WRXTE(?2,1020) 22 ,PROB2,DN
WRITE(2,106U) MLL,I,6AMACI,I)
FF=CORO/GAMA (T, X)
FT=(FF=1.0)%((NN/T)=1)
WAITE(2,1050) FT,I

3.4 CUNTINUE
CALL KOLM1(YR,ND,IER,IFCOD,U,S,PROBY,Z1)
CALL KOL¥2(Y,YE,ND,ND,22,PROB2,DN)
WRITE(2,1030) 21,PRORY
WETTE(2,1020) 22,PROB2,DN
CALL CCORCY,YR, ML ND)
RETURN
£ ND
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SUBROUTIME SMARNCX,Y)

PUSPOSE:
CALCULAT S VALUES OF THE LIMITING DISTRIBUTION FUNCTION FOR
THF KOLMOGROV-SMIRNOV STATISTIC.
R LR R R R R RN R s 2l R R R R R R R R 2 R AR A R R R R R R A RS R 22222024
DCUBLE PRECISXON X,C1,C2,C4,C8,Y
wF(X=~ua2?7) 1,1,2
1 vy=u.0
GO TO 9
2 AF(x=1.:1) 3,6,6
5 CA=EXP(1,23371)1/7X#%2)
Ci=C1=C1
C4=C2»C2
CE=ChxCh
iIF(CE=1,0E-25) 4,5,5
4 CR=()aD)
S Y=(2.506428/X)%C 1 (1, 0+4C8*x(1,)+C8%C8))
GO0 TO 9 .
6 TF(X=3.1) &,7,7
7 Y=1.0
GO TO 9
E CA=EXP (=7 J0%X *X)
Cu=Cl+C1
C4=C2 »C2
C8=C4H»Ch
Y=1,N=2.0x(C1=CL+C8*(C1=C8))
7 RUTURN
TND
SUFROUTINE SINA(B ,KC,XREV)
DOUBLL PRECLSION EB(SL,50),TEMP
SRiv="
DO 20 T=,KC
K=x
? IF(3(K,E)) 11,110,141
1.1 K=K+1

TF(K=KC) 9,9,51
11 IF(I-K) 12,14,51
12 DU 13 M=1,KC
TEMP=6 (T M)
6O, ®)=B (K M)
12 B (K,M)=TEMP
IREV=IREV+1
14 [I=1+1
IFCIT.GT.KC) GO TO 51
DO 17 M=1II,KC
18 (F(3(M,I)) 19,117,149
19 TEVP=R(M,I)/B(L, D
DO 16 N=1,KC
16 B(M NI=B(M N)=B(I,N)*TEMP
17 CONTINUE
21 CONTANUE
51 %ETURN
TND
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SUBROUTINE NDTR(X,P,D)

AX=ABS (X)

D=i1,3989 423 %xEXP(=X*X/2 M)

P=1_0-D*T*((((1.?30274*T-1.821256)*T+1.781478)*T~0.3565638)*

*T+00.3193815)
IF(x) 1,2,2
P=1,}=P
RETURN
=MD

SUEROUTINE OLSCLX ,LY,M1,M2,5N1,IN2,W,Y,R0,A,B ,NV,NC)

MATRIX CALCULATIONS

DIMZNSAON W(4L88),Y(488),A(78),8(13Q)

INTEGLR UX,UY,UL

DOUSLL PRECXSION A,b,XX,XY,AX,S,SD,RN
~COMMON /A1/S(2) ,5D(2) ,ND

UX=mIi+LX~1
uy=m2+Ly-1
LX1=LX+1
LYT=LY+1?

TF(LX.NZ.LY) GO TO 4

DO 3 J=LVY, UY
JM=J =LY

N=J¥+1
I=tX+J=x(J=1)/2
Ax=y,C

DO 1 K=M_ND
XX=W(LINT+K)
XY=Y (IN2+K=JF)
AXSAX=XX*XY
CONTINUL
ACT)=AXTH
LFOIMILE i) GO
DO ¢ U1=1x1,J
I=X1+4*x(Jy~1)/2
ACTY=ACL~-d)
CONTINUC

CONT INUZ
RETURN

PO 7 Jd=LY, UY
JM=)=LY

M=JM+1
(=LX+Jx(J=1)/2
AX=.aU

DO 5 K=M_ND
XX=W(XNT+K)
XY=SY(IN2+K=JM)
AXZAX=XX xXY
CONT INUE
A(L)=AX/R

T0

UL=FINOCLX+JM, UX)

TF(LXT.6T.UL) GO TO 7

PO 6 al=LX1,UL
TEITHd(U=1) /2
ACI)=A(I~4)
CONTTNUE
CONTINUE

3
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L LN

Do 1% Li=LXx1,UxX
V=T 1elX

M=Lm+1
I=IT4LY*(LY=-1)/2
AX=0,0

DO 8 K=M,:i'D
XX=W(INT+K=2M)
XY=Y(INZ+K)
AXSAX=XX*XY
CONTINUE

ACX)=AX/RN
UL=FZNO(LY+£M-1,UY)
IFC(LY1.GT.LUL) GO TO 10
D0 9 J=LY1,UL
I=J144%(J=1)/2
ACI)=A(1=Y)

CONT INUE

CONTINUE

RETURN

END

FUNCTION VALUE(X ,X,J ,K ,A B ,NV)
DAIMENSION A(78),8¢130),X(12)

DPOUBLE PRECISION AsBoX,AU,VX,TN

DATA TN/ D/

IF(K.NELI) GO TO 8

OPERATION ON THE OBJECTIVE FUNCTION (K=0)
IF(LNELI) GO TO 7

LF(JNESi]) GO TO 4

CALCULATION OF THE VALUE OF THE OBJECTIVE FUN.
VX=TN

NT=NV*(NV+1)/2

DO 3 JUN=1,NV

AU=T] i

DO 1 IN=1,JN

SRX=IN+FINN(IN=1)72

AU=AU+ACIEX) #X (IN)

CONTINUE

JJI=IN+1T

YF(JJaGTuNV) GO TO 3

DO 2 IN=JJ, NV

YEX=JN+IN®(IN=-1)/?

AU=AU+ACIEX) #X ( IN)

CONTINUE

VX=VUX+(AU/2 a=(NT+JIN) ) &Y (IN)

VALUE=VX

RETURN

CALCULATYON OF THE FIRST DERIVATIVE OF THE 0BJ.=FUN,
NT=ENVX(NV+1)/2

VX==pA(NT+J)

DO 5 IN=1,)

TEX=IN+I*(J-1)72

VX=VX+A CLEX > *#X ( IN)

CONTXNUE

JJd=J+1

IF(JJ.GT.NV) GO TO 61

DO o IN=JJ, NV

TEXSI+INR(IN=1) 72
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VX=VX+A(XEX) AX (iN)

CONTINUE

CONTINUEC

VALUR=VX

PEITURN

CAI CULATON OF TYHE SECOND DZRIVATLIVE OF THE OBJECTIVE FUN.
CEX=4+yx(J=1)/?

TFCL.6Tad) YEX=y+I*x(L=-1)/8E

VALUIE=A(TEX)

RETURN

TFCLANELT) GO TO 11

LFCd NELT) GO TO 10

NW=NV+1

VX=B(K*NW)

DO 9 IN=I1_,NV

LEX=INENW S (K=1)

VXSUX+BCXEX) *X (LIN)

CONTINUE

VALUF=VX

RETURN

CALCULATION OF THE FIRST DFRIVATXIVE OF THE K=CONSTRAINT
TLX=J+(NV+T) x(K=1)

VALUE=R(ZEX)

RETURN

CALCULATLON OF TH& SECOND DERIVATIVE OF THE K CONSTRAINT
VALUF=T."

RETURN

END

SUERQUTANE ERROR(G,QH,STAT ,NING,RES, IW)
YT CALCULATE THE STATXSTYCS OF THE RESXDUALS
MAAAASAAGARASRALES LRSS EE R T 2 S L T N S S PR

DAiMENSION Q(488),QH(488),RES(488),STAT(ﬂ2)
pou=t £ PRECISAON AMEAN,SD,XX,XY,XZ,PM,ENM,PS,PSN,TV,S,SS
COor. W /JA1/8(2),S5(2) ,ND

DATA AMEAN,SD,PM,ENM,XZ,PS,PS1,QM,QHN/9 %), 0/
NN=NTING+ i

DO 3 I=1,ND

AX=3H(T)

XY=Q()

XX=XX =Xy

RES(I)=XX

ANEAN=AMSANSX X ’
SD=SD+XX =XX

LF(XY JLE QM) GO TO 1

KPH=T

QM=XY

IF(PMLLT JXX) PM=XX

VFCOENMGTOXX) ENM=XX

LF(XX%XZ LT&)) GO TO 2

PS1=PS 1+ XX

GO TO 3

PS=PS+PS I %PS 1

PS1=XX

XZ=XX
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~N Q- un

NPH=SQ&T (FLOAT(ND)) /2.
LUSMINO(ND ,KPH+NPH)
LL=MAXD (1, KPH=NPH)
DO & i=LI,LU

AF(AH(T) JLE.QGHMIGO TO &
QHK=QH (X)

-

CONTINUE
TF(KefQall aOR KulAWLU) LL==2
XX=DFLOAT(ND)
TV=SS (NN)>=S(NN) &S (NN) /XX
STATC1)=AMFAN/ XX
STAT(2)=DSQRT((SD~CAMEANXAMEAN) /XX)/ (XX=1.0))
KFCIW-1) 7,5,7
CALL TEST(RES,ND,ND,3{)
CALL OUTPTACKRES,3)
STAT(3)=(TV=~(SD~AMEAN*AMEAN/XX)) I TV
STAT(4)=PS/SD
STAT(S)=pM
STAT(6)=ENM
STAT(7)=(QHM=QN) /QMR10C.0
STAT(8)=K=KPH
STATC(9)=LL+1
STAT(17) =Ly
STAT(11) =KPH
STAT(12) =a¥
RLTURN
= ND

SUBROUTINE ALGOCAT BT ,X,U,V,51,IBB, LA, R,XSTAR,IB,LIC,/IR,NV,NC,
w12, KAPUT)

MATHEMAT ICAL PROGRAMING
v 2 2 12 22222222222 222X TR RTI A2 AT DAL LR AT A0 AL S PTL L)

DIMENSTON R(12,37),XSTAR(12) ,AT(78) ,8T(130),X(12)
*,U(12),V(12),S1(12),IBB(12),IO(42),!R(42),IB(37),JC(37)
DousLE PKECISION X,U,XSTAR,EPS, AT, BT,V

COMMON /AZ2/ML ,MX,¥D

CNITYAL FARAMETER VALUS SELECTION

L TM=0

NKL=¢

EPS=1 /g5

i0=1

T2E=1

LP2=1.0K-25

0fd==1.1i%+36

KP0=3

NN=NV+NC

LA=(Z2ANN)+ 1

LANS=LA+NN

NVP=NV+1

K ¥==1

LF(NN=MD) 1,1,997

“NITAAL 2ASKXS DESCRIPTION

1 NG=)

K=NN
DO 7 N=1.NN
SFCIQ(N)) 3,2,3
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~n

~ O~

10
11

12
13

14
15
16

17

18

19

L8(K) =N
JSNN+K

IBCJ) =NN+N

K=K=1

GO TO 6§

NG=NQ+1

J=NN+NQ
LFCIBB(N)) 5,4,5
TE(NQ)=NN+N
YE(J) =N

GO TO 6

IB(NQ) =N

IB(J) =NN+N
J=LA+N

xBdJ)=y

IB(LA)Y =LA
JFCIZTM) 997,930,8

‘CHECK CONSISTENCY OF INTTIAL VALUES

J=7
DO 11 N=1,NN

IFQIB(N)=NV) 11,11,9

TFCIB (N) -NN=NV) 10,10,11

J=J+1

CONTINUE

“FQI=NV) 12,12,997

APPROXIMATE THE SADDLE FUNCTION BY A QUADRATIC
KQaF=0

KQF=KQF+1

KL=y

ESTABLISH COLUMN LOCATIONS AND VAKRIABLE VALUES
PO 35 J=1,LAN

JC)=y

DO 16 J=9,NV

XSTARCJ) =X ()

PO 17 K=1,NC

J=NV+K

XSTAR(J) =U(K)

FILL THZE TABLEAU

DO 26 X=1,NN

DO 18 J=NVP,LAN

RCI,J) =01

J=NN+Z

K=bLA+}

R€i,d)=1.0

R (X, K)=1 i)

LFCI=-NV) 19,19,25

DO 22 J=1,1
A=VALUE(X,I,J,IZE,AT,BT,NV)

DO 21 K=1,NC

YFCUCK)) 2n,21,2%
A=A+U(K)!VALUE(X,E,J,K,ATrBT,NV)
CONTINUF

RCi,J)=A

ACJ,T)=A

R (’:'LA)=:'V.!-LUE(X ’IZE’I 'IZE’AT'BT'NV)
K=NV

K=K+1

159
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AF(K-=NN) 24,24 ,26
24 R(T,K)=VALUE(X,i2E,Z,K=NV,AT,BT, NV)
R(K ,I)==x(1,K)
GO TO 23
5 RO,LA)=VALLG(X, X2E,X2E, I~NV,AT BT, NV)
& "BB(Y)=L
DO 28 N=1,NN
A=R(N ,LA) .
DO 27 J=1,Nv
27 A=A+X(J) *R(N,J)
¢8 HIN,LA)=A
C INVERT THE MATRIX OF EASXC COLUMNS
NP=()
30 NP=NP+1
LF(NP=NN) 21,311,369
31 JP=LB(NP)
C FIND MAXIMAL PIVOT
32 A=0.0
DO 35 Z=1,NN
IFCigB (L)) 997,33,35
335 AA=ABS(R(X,JP))
LF(AA=A) 35,34 ,34
34 A=AA.
Lp=X
355 CONTINUE
LF(A=EP2) 960,960,306
36 LK(NPI=XP
Irg(IrP)=1
C UXECUTFE PIVOTING OPEKATION
37 kPi=1
<8 GO0 TO 900
C OPT. MX7E THE QUADRATIC PROGRAM
29 1F(NQIO9D7,72,40
¢ CKECK FOKR OBTIMALITY
Cii AP=0.0
AP=(.0
DO 46 N=1,_NQ
£=IR(N)
AA=R(Y,LA)
TFCXB(N)=NV) &42,47,41
41 KXFCXBIN)=NN-=NV) 44,4442
42 IFC(AA=AP) 43,46,46
I AP=AA
NFP=N
GO TO 4é
bt LTFCAASAD) 45,46,406
45 AD=aA
N FD=N
L6 CONTINUE
C CHECK PRaIMAL FEASYBILITY
t7 TF(AP) 51,48 ,997
48 LF(AD) 49,722,997
49 NFP=NFD
SU NPC=NN+NFP
IRFP=IR(NFP)
. 51 I&FP=XB(NFP)
C LOCAL PIVOT ROW
52 LP=XB(NPC)
JP=JC(LP)
IPN=NFP
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912 IF(ABS(RC(IRFP,JP))=EPZ) 55,55,913
913 CONTINUE .
AA=RCIRFP,LA) /RCIRFP,JP)
TF(AA) 53,55,56
53 XF(RCIRFP,JIP)=EPZ) 55,55,54
PROBLEM NOT CONCAVE
54 KE=5%KE
WRITE(2,9003)
9003 FORMAT(/10X,21H PROBLEM NOT CONCAVE /)
55 AA=1.0E+36
IPN=D)
56 DO 62 N=1,NaQ
I=IR(N)
A=R(X,LA)
XF(A) 62,57,59
57 YF(R(I,JP)) 62,62,58
58 R(IL,LAI=EPZ+1,0E=25
GO TO 52
59 XF(R(YX,JP)=EPZ) 62,462,460
60 A=A/R(X,4P)
IFC(A=AR) 61,61,62
61 AA=A
IPN=N
62 CONTINUE
YFCIPNY 997,940,67
UNBOUNDED SOLUTION
63 Kn=7#KE
IFCITM) 997,997,664
64 DO 65 K=1,NC
65 UKI=1,0+41.,1080(K)
IB(NFP)=LP
JE(HNPC)= B FP
66 GO TO 98
67 IP=IRC(IPN)
KPI=2
GO TO 900
68 KP=IB(XPN)
JCLPI=JC(KP)
JC(KP)Y=JP
IB(NFP)=LP
IFCIPN~NFP) 69,70,69
69 IPPN=NN+3IPN
IB(NPC)=IB (IPPN)
~BCIPPN)=KP
IBCIPN)=1BFP
IR(NFP)=1P
TRCIPN)=IKFP
GO TO 52
71 IB(NPC)=IBFP
71 GO TO 40
72 KvA=1
LFCITM) 997,73,920
73 KVA=2
74 GO TO 920
75 JP=1B(1)
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JP=JC(JP)
JPK=[B(2)
JPK=JC(JPK)
JPKK=XB(3)
JPKK=JC(JPKK)
GO TO (2183,2i)84),1D
2084 WRITE(2,2085) JP,JPK ,JPKK,KVA KL ,KQF ,NQ
285 FORMAT(1IX,'JP,eee,NQ*,7,400X,7(15,5X))
283 KFy=f)
76 KL=KL+1
YF(KL=KQF*KPO) 761,761,94
761 CONTINUF
Y’YY=0.0
CALCULAT= THE R.H .S OF THE EQUATION
DO 79 J=1,NV
A=VALUE(X,XZE,J,XZE,AT BT NV)
DO 78 K=1,NC
IFCU(K)) 77,78,77
77 A=A+U (K)’*VALUE(X':I:Z E’J ’K’AT'BT'NV)
78 CONTINUE
79 RWJ,JP)=A+V(J)
83 DO 81 K=1,NC
J=NV+K
81 RW,JP)==VALUE(X, .2€,1I2E,K, AT ,BT,NV)+S1(K)
CKECK FOR CONVERGENCE
KpP=0
DEL=0 N
83 DO 9F) K=1,NN
N=XR(K)
A=
84 DO 85 I=1,NN
J=LA+ )
85 A=A+R(X,JP)*R(N,J)
R(N,JPK) =A
XF(ABS CA)=(1.0E~25)) 87,87,851
851 CONTINUE
YYZYY+AXA
Y=Y+A*R (N, JPKK)
AA=ABS (A/R(N,LA))
IF(AA=DLL) 87,87,86
86 DEL=AA
87 LF(K=NQ) B8,88,9)
88 XF(R(N,LA)-A+EPZ) 89,90,90
89 KP=K
90 R(N,LA)=R(N,LA)=A
TF(KEY) 892,892,890
894 LF(Y) 894,892,892
B92 YYY=YY
KEY=KEY+ |
DO 893 N=1,NN
BS3 RN,JPKKI=R(N ,JPK)
GO TO 899
894 xiiv=0
KL=KL-1
895 TH==Y/(YYY=Y)
896 Kp=0
DO 898 N=1,NN
A=R(N,LA)+R(N,JPKI+TH*R(N,JPKK)
TF(A+EPL) 897,897,898
897 KP=N
R98 R(NLA)=A
R99 CONTINUE
IF(KP) 997,91,40
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91 60 TO (1191,2091),ID
2N91 waxrs<2,=u92) A,AA \ vv DEL TH,KEY,KP
1091 GO TO (9001 ,9002) ,NKL
9nfi1 KVA=4
GO TO 920
9002 KVA=3
GO0 TO 920
92 "F(DEL=EPS) 94,94,93
93 XF(KL+3-KQF*KPO) 76,76,98
94 DO 95 J=1,NV
IF(DABS(XSTARCJI) =X (J)) ~EPS*DABS(XSTAR(J))) 95,95,98
95 CONTINUE
DO 96 K=1,NC
J=NV+K
~F(DABS(XSTARCJ) =U(K)) =~EPS#DABS (XSTAR(J))) 96,96,98
‘96 TONTINUE
TTVN=KQF
97 KAPUT==KE=1
GO TO 950
98 YF(KQF=ITM) 13,996,996
900 A=x(iP,JP)
XF(ABS (A)=EPZ) 901,901,906
901 KE=3*KE
' IFCITM) 997,997,902
972 XF(XPN=NFP) 903,904,903
903 KE(NFPI=LP
AR(NPC) = BFP
904 DO 905 J=1,NV
U5 X(J)m1,0+1,10%X(J)
GO TO 98
9ué 00 907 I=1,NN
947 R(X,JPI=~R(X,JP)/A
R(XIP,JIP)=1.0/A
DO 911 K=NP,LAN
J=¥3(K)
J=JC(J)
IF(y~-4P) 908,911,909
918 AA=RC(IP,J)
LFCAA) 909,911,909
99 DO 910 =1 ,NN
910 k(X,d)=R(I,J)+AA*K(L,JP)
RCIP,J)=AA/A
911 CONTINUE
GC TO (30,68) ,KPX
~DETYFYCATION OF VARYABLE VALUES
9¢d DO 921 J=1,NV
X(J)=0.0
91 vad=0.0
DO 922 K=1,NC
UkKI=0.0
922 <1(x)=Q.0
DO 929 N=1,NN
L=IR(N)
J=13(N)
SF(J=NN) 923,923,926
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523 IF6(J)=1
FFCJ=NV) 924,924,925
924 X(J)=R(L,LA)
GO TO 929
925 J=J=NV
UW)I=R(I, LAY
60 TO 929
926 J=J=NN
ABB(J )=
YF(J=NV) 927,927,928
9¢7 V(J)=R(1 ,LA)
GO TO 9¢9
Glb J=joNy
SH(JI=R(X,LA)
9¢7 CONTINUE
6C¢ 10 (75,97,974,92,999) ,KVA
970 LAN=LA
GO TO R
G40 DO 942 N=1,NQ
J=NN+N
J=I3 ()
J=JC(J)
A=RCIRFP _J)
IF(A~AR) 941,942,942
941 AA=A
TPN=N
942 CCONTLINU
IF(AA+EPZ) 67,63 ,63
C STORE INVERSE OF BASIC MATRIX
950 DC 953 N=1,NN
L= LRON)
1rI3(N)
IF(I=NN) 952,952,951
751 T=Y=NN
952 DO 953 J=1,NN
JJ=LA+J
953 ROZI,I=KR(LL,IJ)
RETURN
961 (FUJP=NN) 961,961,962
G661 “B(NP)=JP+NN
GO TO 31
962 IR(NPI=JP=NN
GO TO 21
C CHECK TH# OBJECTXVE VALUE 0BJ
970 ACBJ=0QPJ
0BJ=VALUG(X,X2E,TZE ,I2E AT ,BT ,NV)
TF(ABS(AOBJ=~0BJ) ~iCPS*0 . 1*ABS(AOBY)) 94,94,92
C CRROR EX :T
996 Kb=2#Kf
997 KVa=S
GO TO 92 ¢
999 KAPUT=KE
RETURN
END


http:CF(JP".NN

165

SUBROUTINE WRITE2(STAT,OUT,QH,V,NV)
DAMENSION STAT(12),vG(12),QHC488) ,0UT(488)
DCUBLE PRECISION V
WRITE(?,410)
WRITE(2,411) STAT(1)
WRITE(2,412) STAT(2)
WRITE(2,413) STAT(3)
WHATE(2,415) STAT(4)
WRITE(Z2,416) STAT(S)
WRITE(2,417) STAT(6)
WRITE(2,418) STAT(?7)
WRITE(?2,.420) STAT(9)
WRITE(2,421) STAT(10)
WRITE(Z2,422) STAT(12)
“WRITE(2,30D)
WRITE(2,400) (v(X),I=1,NV)
WRITE(2,423)
CALL OUTPTI(OUT,1)
CALL OUTPT1(QH,2)
RETURN
300 FCRMAT(//,10X,°VALUES OF THE "IMPULSE RESPJUNSE FUNCTICN®)
40C FCRFMAT(O(4LX,FB.4))
410 FCRMAT(//,10X ,"STATISTICS OF THE RESIDUALS®)
417 FCRMAT(/ ,10X,*MEAN OF THE RESIDUALS® . 14X,"=? ,F14.6)
412 FCRMAT(10X,*STANDARD DEVIATION OF RESIDUALS®,4X, "=, F14.6)
413 FCRMATC(10X,"DETERMINAT ION COEFFICYENT® . i0X,°=" ,F14.6)
415 FCRMAT(10X,°*COEFFICIENT OF PERSISTANCE? ,9X,°=? F14.6)
416 FCRMAT(T10X ,"MAXIMUM POSITXIVE ERROR® ,13X ,%=? F14,6)
417 FCRMAT (10X ,"MAXIMUM NEGATIVE ERROR' ,13X,'=? F14.6)
418 FCRMAT(10X,’PERCENTAGE ERROR BETWEEN PEAKS® ,5X,'=" r14,.6)
420 FCRMAT(10X,*INDEX OF LOWER LIMIT OF SEARCH®,5X ,'=? P15,6)
41 FCRMAT(10X,* INDEX OF UPPER LINIT Of SEARCH®,5X,'=' F14.6)
422 FCRMAT(10X,°*MAXIMUM OBSERVED RUNOFF® ,12X,"=° ,F14,6)
423 FCRMATC(/ ,10X,°DAILY RECORDED AND ESTIMATED DISCHARGES IN MM FOR WA
*KJ CATCHMENT®,/,10X ,68 (1H=),/)
END

SUBROUTXINE TEST(A,_N,N1,ML)
DIMENSION A(488) : :
DOUBLE PRECISION XN,SX,SXX,SDX,X1,X2,XX,QT
DATA SX,SDX,QT/3x0.0/
XN=DFLOAT(N)
ML=ML+1
bo 1 I=1,N
XX=A(I)
SX=SX+XX
SDX=SDX+XX*XX
1 CONTINUE
SX=SX/XN :
SDX=DSART((SDX=SX*SX*XN) 7/ (XN=1.D0))
DO 3 J=1,ML
SXX=0.0
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DO 2 X=J,N
X1=A(I=J+1)=5X
X2=A(X)=SX
SXX=SXX+X1xxX2
2 CONTTNUE
XNT=XN=DFLOAT (J)
SXX=SXX/ (XNT#SDX*SDX)
TF(J.GTal) QT=QT+SXX 2SXX
3 CONTINUE
GT=QT+DFLOAT(NT)
SDX=SDX*SDX
WRTITE(2,10) SX,SDX
WRITE(?,200) QT
SETURN
100 FORMATC(/ ,10X ,"INNOVATION MEAN="',F10.6,7,10X, " XNNOVAT ZON VARIA®
*,'NCE=",F10.6,/)
210 FORMATCIVX,'Q=TEST="F10.6)
END

SURROUTINE OUTPTI(OUT,LL)

OBJECT:

IT WRITES THE OUTPUT RESULTS.

HAANRAARARARER AR AN RN R AR AN YBERAA RN AR RN RRAANBNNANNARR T ANNARAARRARNR AR

s el Nl

DIMENSXON OUT(4B8)
624 FOKMAT (B (XB,F10.6))
1000 FORMATC(/,5X,'RECORDED DISCHARGE:~")
10900 FORMAT(/ ,5X ,*ESTIMATED DISCHARGE:=")
1N20 FORMATC(/ ,5X, 'THE RESIDUAL:=")
¢ [ — --------------------------------u----:-----u-:-—-:-:---:-:-'n-:-:n
C
6o TO0 (10,15,25),LL
19 WRITE(2,1000)
G0 TO X0
15 WRITE(Z,1010)
GC T0 20
25 WRITE(2,102Q)
30 DC 20 I=1,61
11=1+61
I2=X1+61
I5=12+61
X4=13+61
I5=14+61
I16=15+61
I17=16+61
WRXTE(2,424) 1,0UTCL),I1,0U0T(X1),X2,0UT(X2),X3,0UTC(X3),X4,0UT(X4),
*15,6UT(15) ,16,0UT(X6),%7,0UT(17)
¢ CONTINUE
RETURN
END
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SUBROUTINE MATR(VINP,OUT,NI,TEHP,FL,A,B,NV,NC)
AUTOCORRELATXON AND (ROSS CORRELATION PROGRAM.

-""--'-"-—--------"-----------'ﬂ-,--,""-','--"-.-'-.Q_--.,-- .-4-.'--..ﬁ.,--..
DIMENSION VINP(488),0UT(488),A(78),B(130)

INTEGER TEMP,FL

DCUBLE PRECISION A,B,S,SD,RO

CCMMON /A1/5(2),5DC2) ND

INT,IN2=0

Ix=1

L1=TEMP

1Y=Xx

L2=L1

IF(FL.EQ.O) 60 TO 1

RC=SD (1)

CALL OLS(IX,IY,L1,LZ,INl,INZ,VINP,VINP,RO,A,B,NV,NC)
EY=XY+L2

LZ=xxX

RO=DSQRT(SD(1)*SD(2))

CALL OLS CIX,IY,L1,L2,INT,IN2,VINP,OUT,RO,A,B,NV,NC)
RETURN

END

SUEROUT ANE SMOOTH(V ,NV,X)

IT SFOOTH THE OSCILATORY KERNAL FUNCTION ACCORDING TO HAMING
ALGORLTHM, .

Aatk******ﬂﬂinﬁﬁﬁt*************ﬂiﬂi*ﬂi*****ﬁi******ﬂ**ﬁﬁt**iiﬁ'ﬂi

DINENSION V(12) ,X(12)

DOUBLE PRECISION X,V

NVV=NV =1

DO 2 I=1,NV

SFC1LFQL1) XD =0.544V(1)+0.464V (T+1)

IF(To6T o1 uAND T LELNVV) X(X)=0.23aVX-1)40.544V(X) #0232V (1+1)
TFCXZEQaNV) X(I)=0.544V(E)+0.46aV(I=1)

CONTINUE

RUTURN

END

SUB; INF SMOS(V,NV)
i?BQSSETHg AND waTEs THE POWER SPECTRUM BY USING THE HAMING
55?395/?5??5517?;//////////////////////////////////////////////:
DIMENSION V(50),%X(50)
NVV=NV -9
TrCloEs ) 0.54%V (X)+0.464v(I+1)

=054y +U,
ii:i:g?:1zA:;f;-LE.NVV) XCX)=0,23#v(X-1)+0.54*V(XI)+0.234V(T+1)
IFCILEQLNY) X(I)=0.542V(T)+0.40%V(I~-1)
CONTXNUE
WRITE(2,2060) (X(D,i=1,NV)
RETURN
FORMATC// 40X ,*X~VALUES:" ,/ ,10(5% ,F10.6),/)
END


http:IF(I.EQ.NV
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SUBROUTINE INPUTﬂ(VINF,OUT,N)
DIMENSION VI.P(488),0UT(488)
DCUBLE PRECISION s0,SI,SDX,Y,S
COMMON /k1/S(2),SD(2),ND
0C 20 I=1,N
SI=4.0
S0X=0.0
KA=(X=1) aND
DO 10 J=1,ND
K=J+KA
Y=VINP(K)
SI=SI+Y
SDX=SDX+Y%Y
A0 CONTINUE
S(X)=51
SDCX)Y=SDX
20 CONTINUE
K=N+1
5$1=0.0
SDX=0.0
DC 30 I=1,ND
Y=0UT(I)
SYI=SI+y
30 SOX=SDX+YRy
S(K)=S1
SDO(K)=SDX
RETURN
END

SUBROUTINE CONV(X,Y,Z,NX,NV,IS)
C T CALCULATES THE CONVOLUATION OF VECTOR Y WITH X
*ii**iiﬁnti**tt*ia***ﬂi**itiﬁlﬁﬂlﬂ**i*ﬂi*ﬂtdﬁﬁiiti*ﬂii*

(]

DIMENSION X(12),Y(488),2(488)
DCUBLE PRECISION X,Yy, 22
JM=1
IFCIS LT .0) JM=2
DC 3 J=JmNY
22=0.0
Jx=J
TFCIS LT .0) UX=J=1
IU=MINOCJIX NX)
IFCIU-1 3,1,1
1 pC 2 I=1,1u
IX=XI-1
IFCIS LT Q) IX=I
YY=Y(J=IX)
2 22=27+X(CY)#YY
YY=Z(J)
2{J)=YY+22
IFCIS.LT.0) Y(WI)=2()
3 CONTINUE
RETURN
END


http:SDpSISDX.YS
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SUBROUTINE CCORCX,Y,K,N)

CROSS CORRELATION COEFFXCIENT PROGRAM
X,Y:INPUT ARRAYS N,N

K :NU.OF CORRELATION COEFFXCLIENT REQUIRED

DIMENS TON X(488),Y(488)
12 FCRNAT(10X,"R*,12,°=",F6.4)
20 FCRMAT(//,10X,°CROSS CORR. COEF.")
WRITE(2,20)
DC & J=1,K
Ja=J=1
$=0.0
§1=0.0
$2=0.0
53=0-O
S$4=0.0
CL=EN=U
pCc 2 I=1,L
S=5+X (I).4Y (T+JJ)
§1=514X(I)
SZ=S2+X (L) #X (1)
2 CCNTINUE
I=JJ+1
bC 3 M=I,N
§I=S3+Y (M)
S4=S44Y (M) aY (M)
3 CCNTANUE
RE(S=S1#S3/L) /SART((S2S1#S1/L) R(SA=53xS3/L))
WRITE(C2,92) JJ,R
4 CONTINUE
KLTURN
END

SUBROUTINE QHAT(P,Qa1,82 X ,TE,N,KS,NS)
DIMENSION X(12),P(458),01(488),02(488)
INTEGER TE

DOUBLT PRECLSYCON X,S,SQ, R0
COMMON/AYIZ2S(2),SA(2) ND

K=1

IS=NS

NN=N+1

bO 10 F=1,ND

Q2C¢X)="_i

K1=K+TE~1

TF(KS .FQ .1) GO TO 25
RI=DSAPT(SQ(NN)/SQ(N))

DO 20 J=K,K?

X(J)=X(J)=R}

LFC(XS JF@ .1) GO TO 35U

GO TO &40

. CALL CONV(X,P,G2,TE,ND,IS)
U RETURN

END

169
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SUBERQUTINE KOLM2(X,Y,N,M,2,PROB,DN)

TZSTS TH: DYFFERENCE BETWEEN TWO SAMPLE DISTRIBUTION FUNCY IONS
USING THI KOLMOGROV=~SMIRNQOV TEST,

X:(N*1)TNPUT VECTOR.

Y:(M=*1)INPUT VECTOR.

PRO3:TH" PROBABILXTY OF THE STATXSTIC BEINSLGE.Z.

Z:0JTPUT VAIIABLZ CUNTAINXING THE GREATEST VALUE WITH RESPECT

TO THE SPECTRUM OF X AND Y.
***k*t******************************************************t****i

CUMENSION Y(488),X(4E8)
STORL X (NTO ASCu:NDLNG ORDER ,
DO 5 I=2,N
TRX(D-Xx(1=~1))1,5,5

TERP=X (1)

IM=I-19

DU 3 J=1,iN

L=I-4

IFCTEMP=X(L)) 2,4 ,4
X(L+1)=x(L)

CONTXNUJ

X(1)=TEMP

GO TO §

X(L+1)=TEMP

CONTZINUE

SORT Y INTO ASCENDING ORDER .
PO U Tz p

IFCY(D)=-Y(I~1)) 6,10,10
TEMP=Y(L)

IM=T w1

DO 2 y=1,qM

L=1=y

LF(TEMP=-Y(L))7,7,9

Y(L+1)=Y (L)

CONTINUL

Y(1)=TEMpP

Go o 10

Y(L+1)=TEMP

CONT XNUE

CALCULATE DN=A3S(FN=GM) OVEK THZ SPECTRUM OF X AND Y .
XN=FLOAT (N)

XN1=1.0/XN

YM=FLOAT (M)

XM1=1,0/xM

1,J,kK,L=0

DN=0.0
LFE(X(I+1)=y(a+1))12,13,18

K=1

Go To 14

K=0

I=1+1

LF(R=N) 15,21,21
VFXCL+1)=XCI) )16 ,14 16

IF(K) 17,18,17

CALCULATY THE MAX¥MUM DIFFERENCE DN o
DN=AMAXT(DN,ABSCFLOATCI)RXNT=FLOAT(J) #XM1))
IF(L) 22,11,22

J=J+1

IF(J=-M) 49,20.20
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19
20

22

7

IF:Y(J+1)-Y(J)) 18,18 ,17

L:

o TO 17

L=1

GO To 16

CALCULATE THE STATISTIC 2 o
I=DN®SQRTCCXNRXM) /(XN+XM))
CALCULAT .. THE PROEABILITY ASSOCIATED WITH 2 .
CALL SMNIRN(Z,PROB)

PR0O3=140 'PRO3

RETURN

LEND

SURSOUT INE KOLM1(X,N,XER,IFCOD,U,S,PROB,Z)
TLSTS THE DIFFER:NCF BETWEEN THE EMPARICAL AND THEOR ITICAL

DISTRIBUTIONS USING THE KOLMOGOROV SMIRNOV TEST.

X :INPUT VECTOR OF N ZNDEPENDANT OBSERVATXONS.
PRO3 :THE PROBABYLXTY OF STATISTYC BEING .GE. TO Ze

LFCOD:COLE OF THE THEORITICAL DTSTRIBUTXON FUNCTION.

L,S =:STATISTICS OF VECTOR X ACCORDING TO IFCODF.

EXTANTRT TRRATXAARARAAAENRANARNCNRRNA BN ARV ARANNNNY 121222322 2% 22

IER :FRROR INDEX VALUE,

DINENSION X(4B8)

NON DECR{ASING ORDER OF X(I) .
IER=0

b0 5 I=2 N
IF(XCX)=X(I=1))1,5,2

1 TERP=X(X)

IN=1~1

DO 3 J=1,IM

LeXey

TF(TEMP=X(L)) 2,4 ,6
X(L+1)=X (L)

CONT INJE

X(1)=TEMF

Go o 5

O w0~

X(L+1)=TuMP

CONTINUE

COMPUTES NMAX'FUFM DEVXATION DN .
NMI=N=1]

XN=N

pN=0.0

FS=0.\)

IL=1

O 7 I=XL,NM1

J=1

IF(XC=XI+1)) 9,7,9
CONTANUT

J=N

IL=J+1

FI=FS

FS=FLOAT (J) /XN
IFCIFCOD=2) 10,13 ,17


http:STATIST.YC
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10 IFC(S) 11,11,12
11 IER=1
GO TO 29
12 7=(x(J)=u)/s
CALL NDTRCZ,Y,D)
GO 10 2?27
13 IF(3) 11.-11,14
16 Z=2(X(J)=U)/S+1,.")
IF(2Z) 15,15,16
15 v=0.0
G0 TO0 27
15 Y=1.0-EXP(=2)
GO TO 27
17 IFCIFCOD-4) 18,20,2¢6
18 TF(S) 19,11,19
19 Y=ATAN((X(J)-u)IS)ao.3183o99+0.S
GO TO 27
20 LF(S=u) 11,11,21
Y TF(XCg)Y=U) 22,22,25
22 Y=0.0
GO 10 27
3 IFXCy)as) 25,25,
(.[0 Y=1.°
G0 To 27
T3 YE(X(J)=U)/(5~U)
GO 10 27
ey Ick=1
GO TO 29
27 EI=a6S(Y=F1)
ES=A3S(Y=FS)
CN1=AMAX1(ES ,EI)
ON=AMAXT1 (DNT1,DN)
LFCIL=N) €,8,28
28 2=DNWNSART(XN)
CALL SMIRNCZ,PROE)
PROEB=1,0=PROS
27 RETURN
END
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APPENDIX ¢
THE SECOND KOLMOGROV-SMIRNOV TEST



£PPENDIX ¢

THE SECOND KOLMOGROV-SMIRNOY TEST

The goodness of fit between the two histograms of observed and gene-
rated séquences may be checked by using the second Kolmogrov-Smirnov test,

Let F and G be the cumulatijve distribution functions of the generated
and obsarved sequences respectively, N] and Nz be the length of these two
séquences. Let H, be the hypothesis that both cumulative distributien fun-
ctions wereobtained from the same population series. Then, the test sta-
tistics d can be expressad as

’”1”2 ma x '
d = % Fy (8) -6, (9) (c.1)
N-I +N2 - i< l N-l Nz '

Decision Rule

The decision rule for accepting or rejecting the null hypothesis H, is
given by

< d. +  Accept H,
d (c.2)
> dC + Reject H,
where the threshold dc may be expressed as
1.36 at 95% significant level
d = (C.3)

C
1.22 at 90% significant level.

175
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APPENDIX D
I.IST OF THE DIGITAL COMPUTER PROGRAM
FOR THE LINEAR STOCHASTIC DIF FERENCE
EQUATION MODEL
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PROGRANM(RAIN)
INPUT 1=CRY()
OUTPUT 2=1LP07160
TRACE O

END

MASTER RAO

KRR N TR AR RN AT R AN N AR AR NN R AR R AR AN AR A AN AR AR AN AR RR NN AR R ANARARANARRR
THIS PROGRAM XDENTYFY THE NECFESSAKY PARAMETERS FOR RAO AND KASHAP
DAZLY DATA MODEL.THESE PARAMETERS ARE THEN USED FOR THE PREDICTION
OF DAILY STREAM FLOW Y AT ANY XINSTANT I.

DFSCRIPTION OF PARAMETERS:

YCI) A SEQUENCE OF DAILY INPUT DATA THE REQUIRED LENGTH IS ND.
YEC(I):A SEQUENCE OF DAXLY ESTIMATED OUTPUT DATACSTREAMFLOW) .
YRCI):A SEQUENCE OF DALY RESIDUAL.

A :VECTOR OF UNKNOWN PARAMETERS THE NECESSARY DINENSION IS L.

Z :VECTOR CONTAINS CERTAIN FUNCTIONS OF Y(I) AND YR(I),

S :(L*L) MATRIX.

B :wWORK VECTOR OF DIMENSION L.

f1:TRANSFOKFATION PARAMETER.

Y2:ANOTHLR TRANSFORMATION PARAMETER,.

YZ:CONSTANT EQUAL T0 1

X4:CONSTANT CQUAL TO 2

I5:CONSTANT EQUAL TO 3

COMMON /A2/Z(6),Y(976) ,YE(DTE) ,YR(OT6) ,ACH) ,5(6 ,6)
DYMENSTON B1(6),B2(6) ,XSTAR(6,6),VOUT(576)

COMMON /C1/AMEAN,STDEV ,ASK

CGMMON /A1/L ,ND

DATA ML, ISYZE/50,5/

- e mm e o = S G G A e o e i o S e S e G G S i e A S G G S e (D Gm W M M S G S e S GMP M GT e GET A G e v W b S o G Gy W W
=53 3 3 324 E-F -S4 34 S+ A4+ X SR S+ 5 SR F IR F - B4 SN X F 23 3 S-F 5 3]

READING FORMAT
FORMAT(3X4)
FORMAT(8F0.0)
FORMAT (1012)

MaLN PROGRAM oUTPUT FORMATS:=

FORMATC// ,10X ,"VALUES OF PARAMETER VECTOR A:=")
FORMAT(6(6X,F10,.6))

FORMAT (27 ,1GX ,*THIX ADDITIVE MODEL IS USED FOR PREDICTION THE DAILY

= DATA L")
FORVMAT(//,10X,*THE MULTXPLICATIVE MODEL XS USED FOR PREDICTION THE

* DALLY DATAL")
FORMAT(10X,'ONLY THE PERIOD FROM APRIL TO NOVEMBER IS CONSIDFRED.®
x,/,10%,*YEARS OF OBSERVATION ARE 19741,1971,1973 AND 4974.°,/ ,10X,
**NAME OF THE CATCHEMENT:WAKX RIVER CATCHEMENT.')
DIVDDIIDIIINERIEI 0000000000000 80000000000 00000100000011071117)
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c PHLELETIAD 000000008000 800000000000080000000000000800 100010700

WEAD(1,1100) 11,52,I3,I4,ND,L,TER,IAUT,SC,XP,LAG,NYEAR, L5
RCADC1,1010) (Y(I),I=1,ND)
IF(I1-3) 10,20,20
10 WRiITE(2,2020)
G0 TO 30
20 WRITE(2,2030)
20 WRITE(2,2040)

CALL EQUQ
CALL OUTPT1(Y,13)
CaALL PARACY, ND,AMFAN,STDEV,ASK)
CALL TRANSCX1,Y,ND,AMEAN,STDEV)
CALL PRINT1(XAUT,IER,IP,ISC,LAG)
CALL ZGEN(O,YER,IAUT,XSC,IP)
WRITF(2,2000)
IF(LAG.EQ.()D GO TO 70
JF=ND
40) YCIF)=Y(JF=LAG)
IF(JF.FQ.(LAG*+1)) GO TO 50
JF=JF=1
GO TO 40
50 00 60 I=1,Jf
Y(I)=0.0
6'i CONTINUE
70 DO 1) I=1_ND
IF(XERLNELD) YR(X)=Y(X)
CALL MARS(A,Z,i3,SC,XSTAR)
CALL VARC(I3,14)
CALL MULT(I4,B1)
SCC=Y () =SC
po 80 J=1,1L
ACII=ACI)+SCCHBT(Y)
IFC(IER.NE.O) YRCID=YR(I)=AC(J)I*Z(J)
80 CONTINUE
WRITE(2,2010) (A(K) K=1,L)
CALL ZGENCX,IER,IAUT,ISC,IP)
10 CONTXINUE
b0 110 I=1,ND
CALL ZGENCI,IER,XAUT,ISC,IP)
YE(1)=0.0
0O 116 J=1,L
YECI)=YECI)+A(J) RZ(J)
110 CONTINUE
CALL ERROR
CALL OUTPT1(YR,IS)
CALL PARA(YE,ND,AMEAN,STDEV,ASK)
CALL TRANS(C(I2,YE,ND,AMEAN,STDEV®
CALL OUTPT1(YE, X&)
CALL TEST(IAUT, XSC, ML, ISI2E)
STOP
END
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SUBROUTINE TEST(XA,IC, ML,ISXZE)
PURPOS3E:

IT TESTS THE RES XDUAL VECTOR YR,
HAXRR KKK AR AR RIS AT R AR IAARRRENR R ARNARR N AR N AN AN A RN ARAARA AR R A RA R AR

COMMON /A1/L,ND
COMMON /A2/2(6),Y(976) ,YE(976),YR(976),A(6),55(6,6)
DOUBLE PRECESXON COR(50) ,GAMA(50,50),CORD
EQUIVALENCE (COR(1),GAMA(CT, 1))
DATA EN,F1,E2 ,U,XFCOD,5/4%0.0,1,%.0/
AR AN R AR AR AT AR TR NN EARARR T ARR AN NG AN R ORI AN AR RR W ANRRERRATEAAR
OUTPUT FORMATS: '
1000 FORMAT(1DX,3HEO=,F10.6,10x,BHE1=}F1U.6,10x,3HE2=,F10.6,/)
1040 FORMAT(//,10X, TESTING OF THE RESIDUALS:") :
1112i FORMAT(10X,°TEST:2",/,10% ,2H2=,F10.6,/ ,10X ,5HPROB=,F10.6,/ ,10X,
**MAXIMUM DIFFERENCE DN=',F10.6,/)
1030 FORMAT(10x,°"SECTION:2°,/,10X, KOLMOGROV SMIRNOV TEST.*,/,10X,
**TEST:=1%,/ 10X ,2H2=,F10.6,/ ,10X ,5HPROB= ,F10.6)
1040 FORMAT (10X ,°SECTIONz1",/,10X, "MEANS OF THE RESIDUAL.")
1050 FORMAT(10X,*SECTZON 3°,/,10X, "THE F=TEST.',/ ,10X, VALUE=" F10.6,
*10X,'LAG=",13,/,10%,60(1H*) /)
1060 FORMATCTOX,*MLL=",22,10X,°X=",12,10X, "6AMA(MLL, 1) =",D26.20)

P33 4 - ======:=3=ﬂ==ﬂ=======:::::::'—:‘ﬂ:ﬂ:zﬂ:ﬂ::'BI: sSxZ =TS == cos

CSUM=XA+ {C+1
WRITE(2,101M)
NN=ND =S UM
DO 10 I=ASUM,ND
FUsENn+YR(I)/NN
FI1=E14+ABS(YRCI)/NN)
E2=sg2+(YR(X)»*x2) /MN

AN CONTTNUE
WRITR(2,1040)
WRITE(?,1000) EO,E1,E2
CALL AUTO(YE_ND,ML,IFCOD,COR,CORD)
CALL AUTOCYR,NN,ML,XSUM,COR,CORD)
DO 3% I=LSXZE, ML ,XSIZE
CALL KoLwm2(Y,YE,X,X,22 ,PROB2,DN)
WRYTF(2,1020) 22,PROB2,DN

2 CONTINUE
CALL KOLM2(Y,YE,ND,ND,Z2,PROB2,DN)
WRITE(2,1020) 22,PROB2,DN
CA'.L CCORCY,YR,ML,ND)
RETURN
END

SUBROUTINE ERROR
IT COMPUTES THF RES IDUALS VECTOR YR
AN ENR AT ARR AR AR R RA XA U RN LR AR R AR R AR B BRARB AR RN AW ARk ok

COMMON /A1/LND
COMMON /A2/2(6),Y(976) ,YE(9TE),YR(976) ,A(6),5(6,6)
bo 10 I=1,ND
YR(D) =Y(I)=YE(L)
10 CONTLNUE
RETURN
END
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SUFXOUTYtE ZGENCIGEN,XER,LAUT,ISC,IP)
“T GENERATFS THE I VECTOR FOR THE GIVEN INSTANT
AR aEkh AR AR ARAR A AR A TR A AN AR AARKNRRRERRN AR NANNR G ACATATRAR AT AR

COMMON JA2/2(6) ,Y(976) ,YE(976) ,YR(ITE) ,A(6),5(6,6)
2(M=1.0

GENERATE THE 7AUT ORDER AUTOREGRFSIVE TERMS.

po 17 1I=1,IAUT

"NDEX=YIGEN=I+1

IFCINDEX osLELD) 2(141)=0.0

TFCINDEX .6To0) Z(I+1)=YC(INDEX)

" CONTINUE

¢ NERATZ THE SECOND ORDER ERROR TERM XF ANY,
“FCIER) 40,40,20

Y-R1=IAUTHZ

TVR2=IAUTH3

DO 30 I=IEk1,LKER2

JNDEX=T6 “NwL+ XER1

"F(JNDEX .Lt.0) (D =0.0
LFCJNDEX o6T 0> ZCX)=YRC(INDEX)
CONTINUE

vF(isc) 60,60,50

G NiRATE SIN AND COS TERMS IF ANY,
ISC1=IAUT+2

1SC2=1AUT+DZ
7(15C1)=STIN(LL D256 LEN/1708.0)
Z7(ISC2)=CO0SC44 NAZGEN/1708 &1))
IfF(.P) 90,90,70

GUNERATLE PURIODIC TERMS XF ANY,
SP1=XIAUT 42

7(2P1)=0,.0

po t0 I=1,7

II=1~4

2 (1P1)=(7CXP1)+Y (I6EN=244+11))/7 40
CONTSHUY

R“TURN

T

SURROUTINE EQUO
“7 YNXTIALZNZL BOTH VECTOR A AND MATRIX S.
ANk AR kA AR kR KRR AR RANNRAARRRERRRNARA R AR AAA AR AR R AR A AR

COMMON /A1/L,ND

COMMON JA227(6) ,Y(976) ,YE(9T6) ,YR(976) ,AC6),5(6,6)
po 10 T=4,L

BCE)= 44 !

DO 1 4= ,L

SF(LobQad) SCA,d)=1.0

YF(LaNFod) SCH, )=l

CONTINUE

Rt TUKRN

D
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SUBROUTINE MULT(M,B)
PURPOSE:

PERFORMS MATRIX AND VECTOR MULTYPLICATION.

A:XNPUT VECTOR OF DAMENSION L o

Xt NPUT MATRIX OF DYIFENSION C(LXL) ~

F:OUTPUT VECTOR OF DIMENSION L ,

M:PCKFORMANCE INDECY .

IF M=1;R=Ax%X .

IF M=2:B=X%*A »
***********k*******ti********tt****#***i****t*tt****!i***t*ti***i**

COMMON/AR/Z(6),Y(976),YE(IT6) ,YR(IT6) ,AC6) ,X(6,6)
COMMON /A1/L,ND

DIMENSXON B(6)

€0 TO ¢10,30),M

00-20 1=1,L

B(X)=0.0

Do 20 J4=1,L
RCI)=B(I)+Z(JI*X(J,T)
CONTINUL

GO TO 50

PO 40 I=1,L

B(I)=0.0

PO 40 J=1,L
BOD=B(I)+X(L,J)n2(J)
CONTINUE

RETURN

END

SUBROUTINE ¥ARS(B1,B2,L,SCATB ,ABT)

PURPOSFK:

IT 6IVES THE PRODUCT OF MULTIPLYCATICN OF A TRANSPOSED VECTOR &1
AND THF OTHER VECTOR B2 WHICH A SCALAR SCATB FOR L=t,

AT ALSO GXVES THE PRODUCT OF MUTIPLICATION OF VECTOR B1 AND A

TFANSPOSED VECTOK B2 WHICh A MATRIX ABT FOR L=2.
********k****i******t**********t****k*tt***&*******ﬁi****th*t***i*

DIMENSTON B1(6),B2(6),ABT(6,6)
COMMON /A1/LL,ND

GO TO (10,30),L

SCATEH=0.0

DO 20 r=1,LL
SCATB=SCATB+B1(I)#82(1)
CONTINUE

RETURN

DO 40 I=1,LL
D0 40 J=1,LL
ABT(I1,J)=B1(I)*B2(J)
CONT SNUE

RETURN

END
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SUBRROUTINE AUTQ(A,N,L,ISUM,RT,COD
DIMENSTON A(976) ,k1(50) R2(50)
DOGUBLFE PRECISYION kK1,C0,SUM,AVER
PH1=22.0/7 .0

AVEK':0.0

IF(N-L) 50,50,60

R1(1)=0.0

6o TO 150

WRITS(2,200)

DC 110 I=ISUM,N

AVER=AVER+A(CI)

FN=N

AVik=AVEx/FN

CALCULATE AUTOCOVARXENCES o

D0 130 J=1'L

NJ=N=J+1

sum=0.0

pe 120 X=fLSUM, NJ

xJ=i+J =1

SUM=SUM+ (A CI) =AVER) ®(A(ZJ)=AVER)
FNJ=NJ

R1CJ)=SUM/FNJ

R2CJI=RT1CII/RT1(T)

K=d=1

WRITE(2,300) K,R1(J) ,R2(J)
CONTINUE

cd=R1<(1)

CALL POWHR(L,PHI,R2)

RETURN

FOUMATY (//,10X ,61CIH®Y ,/,20%,°K"®,9%X, AUTO(K) * 9% ,*AUTO(K) /AUTOCH)*,
*) 410X ,61(1H*))

50D FORNAT(20X ,X2,2(7X,F1e6))

T

ZND

SUBROUTINE VARC(I2,1I4)

PURPOSE:

THIS SUBKOUTINE UPDATES THE S MATRIX.
A:VECTOR OF UNKNOWN PARAMETERS.

2:VECTOKk OF FUNCTIONS OF THE INPUT STREAMLOW,
S:UPDATAD S MATRIXa

L:NUFBER OF UNKNOWN PARAVMETERS.

ND:LUENGTH OF INPUT DATA.
e T R L R R R R e R e e R e R L I R R R R L A T

DXMENSTION B1(6),82(8) ,XSTAR(6,6)
COMMON 7A1/L,ND

COMMON /A2/2(6),Y(976) ,YE(976),YR(9T76) ,AC6),5(6,6)
CALL MULT(I4,BT1)

CALL MULTC(X3,B2)

CALL MARS(B1,8B2,14,SC1,XSTAR)
CALL MULTC(Z3,B1)

CALL MARS(B1,2,I3,SC,XSTAR)

00 10 I=1,L

bc 10 J=1,L
S(I,J)=SCL,J)~XSTARCI,JII/(1.0+SC)
CONT iNUE

RETURN

FND
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SUPYOUTINE OUTPTI(OUT ,LL)
OLJECT:

«T WRITES THE OUTPUT RESULTS.
*****************t**************f********t****t******‘i***********t*

DEMENSTON OUT(976)
FORMAT(S (8, F110a6))

FORMATC/ ,SX,"RECORD D DISCHARGE ::«"*)
FOKMAT(/ ,5X ,*FSTIMATED DISCHARGE:=")
FOKMAT(/,5X,*THE RESIDUAL:=")

66 T0O (10,15,25),LL
WRITE(2,1000)

GO TO 30

WRLTE(2,1010)

GO TO 20

WRITE(2,1020)

DO 200 I=1,61

I1=1+61

I12=11+61

I3=12+41

I4=13+61

I5=T4461

I6=TI5+61

17=16+61 »

WRITE(2,424) I,OUT(I),I1,0UT(I1),IZ,OUT(IZ),IS,OUT(IJ),I4,0UT(I4),
*15,0UT(15),16,0UT(16),27,0UT(17)

¢) CONTINUE

RETURN
END

SUEROUTINE PRINT1(IA ,IE,IP,XS ,LA)
PURPOSF:

LT WRITES THF INPUTS.
+++++++++++++++++++++++++*++++++++++++++++++++++++++++++++++++++++

COMMON /A1/L ,ND
COMMON /A2/Z(6),Y(976) ,YE(9T6),YR(976) ,A(6) ,5(6,6)
COMMON /C1/AMEAN,STDZV,ASK

THE NCCESSARY FORMATS:

200 FORMATC(1:X ,*NUMBER OF AUTOREGRESSIVE TERMS=" X2,/ ,101X,*NUMEER OF E

#RROR TFRMS=",42,7,10X%, *NUMBER OF PERIODXC TERMS=',I2,/,10X, ' NUMBR
* OFf SIN AND COS TERMS=',IZ,/,ﬂﬂX,'LAG=',IZ,/,10X,'NO. GF DATA',

$1=Y T4 ,0)

¢f13 FORMAT(10X, PARAMLETER SELECTION FOR RAO AND KASHYAP MODEL')
2211 FOKMAT(3X,"VALULS OF TRANSFORMED DISCHARGE®)

27130 FORMAT(B(IX,F7<4))

274t FORMAT(/, 10X, *MEAN OF DISCHARGE=",F10.6,/,10X, STAND ARD DEVIATIOM

*OF DISCHARGE="',F10.6,/,10X,*SKEWNESS COEFFICIENT OF DISCHARGE=",

*F10.6,/7)
k**ﬁﬁ***k**i**t**tt******tttt***i*************t****fit********it*i

WRXTEC(2,2011)
WRITE(2,20000) IA, E,XP XS LA ND
WRITE(2,7040) AMILIAN,STDEV,ASK
WRITF(2 ,272) .
WRITE(?,2030) (YCX),(=1,ND)
KRETURN

END
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QU xQUT ST KOLMT (X, N, (LR, LFCOD,U,S,PROB,Z)

TESTS TH DAFFER_NCw FUTWEEN THE EMPIRICAL AND THEOR ZTLCAL
DYSTRTIRL FLONS US NG THL KOLMOGOROV SFIRNOV TEST.

X - TNPUT VECTN:N OF N INDUPENDANT OBSERVATIONS.

PLGR :TH ® OROBAR LTTY OF STATXST! C BEING .GE. TO 1.

LFCOD:=CO"%: OF TH& THLORITICAL D«STRIBUTION FUNCTION.

uv,S -STATASTACS OF VECTOR X ACCORDING TO XFCODE.

LR :TR%0R INDZX VALUE.

ki kA k Rk Rk ok kA Ak kAR RKRARIA R PR aRARRA A AR AN KRR AT N AXR R AN N AN RRAN

DLIMUENSTYON X(976)

NOM DEC?IASLNG OxDER OF X(X) o
CER=0

DO 5 :==21N
TFXN(I) =X (I=1))1,5,5
TErFP=x(I)

W= =1

po 3 J=1,1IH

L=I-J

TE(TEMP=X (1)) 2,4,4
x (L+1)=X (L)

CONT INUE

X(1)=TENMP

60 TO S

X(L+1)=TEMP

CONTYNUR

COMPUTES MAXYMUM DEVIATIXON DN ,
MrrY=N =1

XN=N

DN=0.0

FS=ei)

wL=1

DG 7 =il ,NMI

J=1

TR CIY=X(J+1)) 9,7,9
CONTINUE

J=H

IL=J+1

FLI=FS

FS=FLOAT (J)/XN
FEC2FCOD~2) 10,13 ,17
TF(S) 11,111,112

“IR=1

GCe To 29
2=(X(J)-~-U) /S

CALL NDTR(Z,Y,D)

G0 TO 27

YF(S) 11,11,14
7=(X(J)=U)/)S+1.U
YF(Z) 15,15,16

Y=U.0

CG TO0 24

Y=9. \=3Xp(=2)

GG TO &7

SFCZFCOD-4) 18,2 1,26
TF(S) 19 ,11,19
Y=ATANC(X(J)=U)/S)I*0.3183099+0.5
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Go To 27

IFCs=u) 11,11,21
SF(X(d)=u) 22,22 23
Y=0,0

60 T0 27

IF(X(J)=5) 25,25 ,24
¥Yy=1.0

GO TO 27
Y=(X(Jd)=U)/(S=U)

GO TO 2?27

IrR=1

GO TO 29
EI=ABS(Y~FI)
ES=ABS(Y~FS)
DNI=AMAX1(ES,EX)
DN=AMAX1 (DN1 ,DN)
IFCIL-N) 6,8,28
Z=DN*SQRTCXN)

CALLL SMIKN(Z_,PROB)
P¥03=1.0~PROB
RFTURN

END : -

SUBROUT INE KOL#Z(X,Y,N,N,Z,PROB,DN)
TESTS THE DIFFERENCE BETWEEN TWO SAMPLE DISTRIBUTION FUNCTLONS
USING THtE KOLMOGROV=SMIRNOY TEST,
X:(N*#1) INPUT VECTOR,
Y:(M*1) INPUT VECTOR,
PROB:THE PROBABILITY OF THE STAT.STXC BEYNGoGE o2
Z:0UTPUT VARIABLE CONTAINING THE GREATEST VALUE WITH RESPECT
TO THE SPECTRUM OF X AND Y.
LERE LA L S EE T TR WEN NG T NRNRRRG BAVN BB LR AR AN R ANy n NRWWIEh R hwd ok

DYMENSXON X(976) ,¥(976)
STORE X INTO ASCENDING ORDER .
PO 5 T=2 N
IF(x(I)-X(I-1))1,5,5
TEMP=X(I)

alV=%=1

D0 3 J=1,1m

L=X=J

IF(TEMP=X (L)) 2,0 ,4
XCL+1)=x (L)

CONTINUE

X(1)=TFMp

G0 TO 5

X(L+1)=TEmMpP

CONTINUE

SORT Y INTO ASCENDXING ORDER
PO 13 ¥=2_M
TECY(X)=Y(I=1)) 6,10,10
TEMP=Y(Y)

AM=i=1

00 8 J=1,1IM

L=I=y
LF(TEMP=Y(1))7,9,9
Y(L+1)=Y (L)

CONTANUE

Y(1)=TEwrp
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CALCULAT  LN=A8S(FN-GM) OVER THE SPECTKHM OF X AND Y

AN=FLOAT(N)

XN1=1 00/ YN

XV=FLOAT (M)

Xm1=1.,0/xM

,d,K,0L=0

DM=aty
CFCXCL+1) =y (J+13)12 ,13 ,18
K=1

6O TO 14

2 K:O

(=x+1

IF(I=N) 15,21 ,21
IFOXCT+1)=X(E))14,14,16

IF(K) 17 ,18,17

CALCULATE THE MAXIMUM DLFFERENCE,DN &
DN=AMAXT(DN,ABSCFLOATCL) *XNT=FLOAT(J) %X M1))
TFC(LY 22 ;11,22

J=d+1

IFC(I=M) 19,20,20

IF(Y(J+1)=YLJ)) 18,18,17

L=1

6o TO 17

L=1

GG TO 16

CALCULATE THE STATISTIC Z .
73DNASORTCOXNARXK ) /CXN4XN))

CALCULATE THE PROBABILITY ASSOCXATED WITH 2
CALL SMIRN(Z ,PROB)

PROB=1,0~PRGB

FETURN

FND

SUEROUTXNE PARACT ,N,AMEAN,AST ,ASK)

/2

iT COVMPUTES FMEAN,STANDARD DEVIATION AND SKEWNESS OF THE VECTOR T,

AMEAN:MEAN VALUE
AST:STANDARD DEVIATION
ASK:SKEWNESS COFFFICIENT

AARAEMAAN KRANTRARAR AR R AR RAR AN AN AANRNRN AT A AN AR R A AN M ARRARARARARAR

DIMENSION T(976)

AN=N

Sum=0,0

p0 10 1=1,N

SUM=SUM+T(Y)

AMEAN=SUM/AN

Sum=0.0

sum1=0.0

DO 20 I=1i,N

SUF=SUM+ ((T(1)=AMEAN) #*22)
SUMT=SUMT+((T(Y) =AFEAN) a%3)
CONTINUL

AST=SQGRT (SUM/AN)
ASK=SUM1/ (AN®AST #23)
RETUSN

END
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SUBROUTANE POWEK (ML ,PHI,R2)

OHJECT:

IT CALCULATES AND WRITES THE POWER SPECTRUNM PS.

FANERRARMARAR R AN AAR R AR ARRE N MAN LA NI NANARRANANAINANN AN AN NNNNN NS
DIFENSYONM R2(49) ,PS (49)
FORMAT(TOX,34(1H*),I,14X,'HH',15X,'PS(I)',/,10X,34(1H*))

FORMAT (12X ,F10.6 ,8% ,F10.6)

WRITFE(2,1000)
DC 15 I=1,ML
I1i1=)~1

WH=PHI#TI/NL

PS(X)=0.0
TF(T. Q. 1.0R.YX.EQ..ML) EK=0.5S
TFCILNFL1.AND ST NELML) EK=1.0

DC 1Y JE1, ML

10

135

10

2064

Jd=4=1

PSCL)=PS (XI)+ (EK*R2(LI*COS{PHIAJIRTII/NL))
CCNTINUE .

PS{I)=2.04PS(I)/PHIX

WRITE(?,2000)wWH,PS(I)

CCNTINUE
RETURN
END

SUBROUTXINE SMOSC(V,_NV)

TT SKOOTHS AND WRITES THE POWER SPECTRUM BY USING THE HAMXING
WINDOW ALGORITHM e

PLIRIIEY 0000000000000 0000000000000000000000000004000100100101011010
DIMENSXON V(50),X(50)

NVV=NY =1

PO 10 I=1,NV

LF(IaEQat) XC(X)=0L54aV(I)+046%VI+1)

IFCIoGTo1oAND aToLENVY) X(I)=0.23aVv(I-1)40.54%V(L)+0 23aV(I+1)
LIF(ILEQoNV) X(I)=0u54*V(X)+).46%V(I=1)

CONTANUE

WARNTE(2,2060) (X(D),I=1,NV)

RETURN

FORMAT(//,10X ,*X=VALUES:",/,10(5X,F10.6),/)

END



