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PREFACE

This report is oue of a series of publications which describe
various studies undertaken under the sponsorship of the Technology

ard Development Program at the Massachusetts Institute of Technology.

The United States Department of State, through the Agency for
International Development, awarded the Massachusetts Institute of
Technology a contract to provide support at M.I.T. for the development,
in conjunction witﬁ institutions in selected developing countries, of
capabilities useful in the adaptation of technologies and problem-
solving techniques to the needs of those countries. This parcicular
study describes research conducted iﬁ conjunction with Cairo University,
Cairo, Egypt. The analysis; conclusions, and recommendations are
those of the author and do not necessarily reflect the views of the
Agency for Internetional Development.

In the process of making the TDP supported study, some insight has
been gained into how appropriatre technologies can be identified and
adapted to the needs of developing countries per se, and it is expected
that the recommendations developed will serve as a guide to other
developing countries fur the solution of similar problems which may

be encountered there,

Fred Moavenzadeh

Program Director



ABSTRACT

This work presents a new methcd for the real time operation of
reservoir systems.

The system is represented by a set of nonlinear differential
equations describing the reservoir and river dynamics in state space
form form. The formulated reservoir operation problem calls for
finding policies which maximize the expected benefits of one system's
objective while satisfying the remaining objectives at prespecified
reliability levels. The solution is obtained by a new method named
Extended Linear Quadratic Gaussian (ELQG) controller. ELOG draws on
and extends stochastic control theory results and it is well suited
for the optimization of constrained dynamical systems. It is a
trajectory iteration algorithm theoretically expected to exhibit
reliability and computational efficiency.

The new method is emploved in case studies of two actual
reservoir systems located in the River Nile Basin. The results
indicate that ELQG's theoretical properties are indeed realized in
practice and that the method has distinct advartages over state-of-
the-art procedures.

ELQG control offers a powerful approach in reservoir system management
and opens a host of further research directicons.
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Chapter 1

INTRODUCTION

1.1 Thesis' General Framework and Outline

Reservoir Systems are large-scale projects generating a variety
of influenti-1 outputs. Water supply for municipal, industrial, or agri-
cultural use, flood protéction, energy generacion, and navigation ars
some of the many benefits these systems offar to the socieries living
within their inflence range. To fulfil these obJectlves, reservoir sys-
tems must successfully manage the water volumes provided by the uncertain
natural processes. This is where the element of risk originates and
often becomes the cause of costly operational failures. The need oZ com-
bining mathematical tools with the ever-growing computer technolog: in
the management process nas well been realized by both rasearchers and
practitioners (Proceedings of the National Workshop on Reservoir Systems
Operations, University of Colofado, Boulder, Augusc 1979). Reservoir
operation research has been supported for over 25 years and has suggesg-
tad various mathematicai optimization models. Alchough some of these
models perform satisfactorily in the particular aoplications forvwhich
they are developed, a methodology able to handle the reservoir operation
problem in its full complexity is still lacking. 4As a result, in prac-
tise the majority of reservoir Systems are operated by heuristic rules
derived by computer-aided simulation and engineering intuition. However,
the reservoir operation problem can be particularly complex and its solu-
tion is not necessarily apparent.

Optimization of uncertain dynamical systems is the subject of opti-

mal stochastic control theorv. Originallv motivated by aerospace
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applications, this field provides a well integratad mathematical Irame-
work for the treactmenc of similar problems in other angineering disci-
plines as well. & stochastic contreol study is completed in two basic
steps:

a. System model development. This is the phase Where amodel able
to adequately raproduce the system's behavior is identified. The iden-
tification process requires intuitive understanding of the laws gzovern-
ing the system dynamics and can take advantage of input-output data
records to properly adjust certain model parameters.

b. Stochastic controller design. Based on the identified model
and after adopting performance criteria correctly reflacting the sys-
tem's objectives, an optimization algorithm (controller) is designed tc
guide the system in successful operation.

This study's developments will also proceed along these lines with
emphasis on the second of the previous steps. The identification of a
reservoir system model will be discussed in Chapter 3. The objective is
to arrive at a flexible model form to represent the reservoir systems'
idiosyncracies in desirable detail. In Chapter % the reservoir system
operation problem will first be formulafed and then the development of a
suitable control algorithm will follow. Chapters 5 and 6 include two
case studies where the previous algorithm is used and testad in the opera
tion of actual systems. Chapter 7 identifies further research directions
and concludes the study. The immediately following Chapter 2 is a review

of representative reservoir control models.

13




Chapter 2

STOCHASTIC MODELS IN RESERVOIR CONTROL

2.1 Introduction and Overview

Over the last 25 years the reservoir control literature has grown
impressively (see Rosenthal, 1980, and Yeh, 1982, for survev discus-
sions). This continuing research effort is sustained not only because
of the many influencial, social, and environmental effects each reser-
voir system generactes, but also because a comprehensive methodology
capable of handling the problem in its general form has not vet been
developed. In essence, the reservoir control publications are cailored
to and perhaps adequatelv handle a particuiar reservoir system, or a
particular class of systems wich common predominant characteriscics.
tHowever, if these characteristics were to change, the methods would no
longér be adequate. This chapter will review repfesentative stocnastic
reservoir contwol studies to identify past deficiencies and to beneric
from some-successful ideas. The discussion will summarize some target

properties used in the upcoming control design.

2.2 Reservoir Control Studies

Classified by the optimization philosophy adopted, the reservoir
control models fall into one of the “ollowing general categories (Yah.
1982):

a. Linear Programming models,

b. Dynamic Programming models,

c. Jonlinear Programming models,

d. Simulation models.

14



Linear Programming models which consider uncertainty are the
Chance Constraint Programming (Revelle et al., 1969, Joeres et al.,
1971, Eisel, 1972, Sobel, 1975, Sniedovich, 1980, etc.) and the Relia-
bility Programming models (Colorni and Fronza, 1976, Simonovic and
Marino, 1980, 1982, Marino and Mohamadi, 1983). Generally, L.?. models
cannot adequately reproduce the system's stochasticity Ytemporal and
spatial correlation of che uncertain inputs and the induced similar
probabilistic structure on the system's state variables), and a global
linear approximation of the system dynamics is not likely to give
accurate results. It will also be seen (Chapter 4) that although the
assumption of linear decision rules is optimal for unconstrained sys-
tems with linear dymamics and quadratic performance measures, it per-
forms poorly in situations where the above characteristics are absent.
For these reasons, the models of this category are considered appropri-
ate for preliminary design studies rather than for operation purposes
(Loucks, 1970, Loucks and Dorfman, 1975).

The second model category adopts an optimization procedure which
is more suitable to the dynamic nature of a reservoir system. Young,
1967, introduced the Monte Carlo D.P. According to this implicitly
stochastic approzch, a model fitted to the input process generates many
possible time series of input realizations. For each rezlicacion
Dererministic Dynamic Programming is used to determine optimal releases
at each time step of the control horizon. These optimal release tra-
jectories arz next related to varicus systam variables via regression
techniques. The result is a set of decision functions which dictate
the "optimal' decisions as functions of a particular set of variables

15
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statistically correlated with the optimal solutions of the decerminis-
tic optimizatior . Major potential disadvancages of the method ars the
following points: (l) the assumption of a certain functional relation-
ship in the decision function regressions, (2) poor performance at the
extreme values of the decision function independent variables, (3) ex-
cessive storage and computar time requiremencs. With respect to the
first two, it is true (we shall extansively discuss this in Chaptar %)
that the optimal decision action at a particular point in time is a
function of the conditional (on any available observations relevant to
the system's evolution) joint probability density of the system's storage
variables. Since the shape of this multi-dimensional function is arbi-
trary, it follows that its completa.characterization requires an iafin-
ice number of parameters. Thus, a decision function of a few variables
may not suffice.

Similar to the previous approach is the Alternate Stochastic Cntim-
ization (ASO) presented by Croley, 1974. ASO is a sequential procedurs
repeated at each time step of the control horizon, and therafore it can
incorporate any additional information regarding the §ystam's present
conditions. At each time step the procedure relies on deterministic
optimization of many synthetic input process realizatioms. A probabil-
ity density function of the first period's optimal decisions is derived
and the mode or the mean is suggested as the bast decision choice. ASO
approximately yields the optimal action obtained bv a deterministic
optimization of the input realization with the maximum likelihood of
occurrence. Hence, with substantially fewer computations, the maximum

likelihood input trajectory can be generated, and the corresponding

16



optimal decision can be obtained through a deterministic procedure.

This suggesticn is somewhat attractive since it substitutes the stochas-
tic control problem for the most likely to occur deterministic approxi-
mation. The advantage results from the factz that deterministic problems
are comparatively easier to solve. However, this approach (known in
control theory as Naive Feedback concroller) is optimal only for sys-
tems characterized bv the Certaiatv Equivalence (CE) propertyl and may
vield suboptimal controls. Thus, unless a more reliable control scheme
cannot be implemented, this approach is not suggested for use. Apart
from the sequential scheme, Croley, 1974, suggests another intaresting
possibility; namely to consider only the time span having a bearing on
the first period's decision action as the control horizom. That is, if
tbe nature of the algorithm is sequential, and therefore its purpose is
to identify the best decision for the first upcoming period, it is com-
putationally efficient to consider the smaller control time norizon
achieving this goal.

A class of D.P. models explicitly considering uncertainty in fhe
optimization procedure includes the models using Markov Chain input pro-
cess description and backward D.P. (Schweig and Cole, 1968, Butche:,
1971, Su and Deininger, 1972, 1974, Arunkumar and Yeh, 1973, Alarcon and
Marks, 1979, Buchanan and Bras, 1981, etc.). In general the models of
this class perform satisfactorily in small syscems (of 2 - 3 reservoirs).

However, their extension to multireservoir systems is seriously limited

A stochastic problem possesses this simplifying property if it ac-
cepts the same solution with the deterministic approximation obtained as
mentioned in the text. It is not possible to know a priori whether the
CE property is present except in the case of Linear systems with Quadra-
tic criteria and Gaussian statistics (LQG).

17



due to dimensionality problems. Considar, for axample, a svstem of NS
resarvoirs and Nw iaputs. Then the state space of tiis formulation will
have to include Ns reservoir storageg as well as the pravious perioed's
Nw inputs. (It is assumed that the inputs follow a lag-1 Markov pro-
cess). Also assume that each state variable is discretized in Nd values.
Then, the Dynamic Programming backward recursions require the evaluation
and storage of the "cost to go'" —a D.P.'s functional of key importance—

(N, + ¥)
at N discrete locations. This exponential (with respect to

d
the number of state variables) growth of computer storage requirements
limits this method's practicability to only small reservoir systems.
Yeh, 1982, mentions an extension of the previous model to multireservoir
systems (Arunkumar and Yen, 1973). In a svstem of m reservoirs, the
approach consists of optimizing one reservoir's decision functions at a
time while keeping the others fixed until no further objective funcrion
improvemeﬁt is achieved. The method is applied to a system of two
parallel reservoirs for the optimization of the firm anergy outpur, The
approach cannot be appliad to general reservoir systems. IF the input
process is correlated, and/or the reservoirs ara in series, and/or the
objective function terms are not simply additively separable with re-
Spect to each reservoir, then the state space affecting each control law
cannot be simplified. In other words, each policy as well as the corre-
sponding "costs to zo" at each time step will ©be decendent on all the
previous period's inputs and current period's reservoii storages creat-
ing the known problems in the discretized D.P. solution. Yevr, if such
an interconnected system is still within the D.P.'s solution feasibility

range, this successive approximation idea does have an advancage. The

18



minimization operations perZormed at each time step need only be with
respect to one conctrol variable. This, however, is possible at the ex-
pense of losing the D.P.'s solution global optimality property; 1i.e.,
the policies found can only be locally optimal.

Concerning the lag-l Markov Chain modeling of the input process,
one should recognize that it becomes less satisfactory &s the orocess'
true correlacion structure involves more lags. The extension to a aulci-
lag model would require that all the previous periods' inputs which im-
prove the current period input's prediction be included in the state
space. agailn, dimensionality limitations will soon prehibic chis
attempt. Toward overcoming the multi-lag correlation problem in the
context of the Markov Chain D.P. formulation, the procedure suggestad
bv Buckanan and 3ras, 1981, has proved efficient. According to their
approach, a multi-lag stochastic model fitted to the input process '4Ses
real time observations to forecast t 2 inputs of the upcoming pericds.
The forecasts update the Markovian transition probabilities as far into
the future as there is a significant gain over the a priori sstimates.
Then the stochastic D.P. algorithm derermines the optimal policies from
which only the immediate period's decision is applied with the procedure
repeated at the next decision time (sequen Hal optimization). This
model, making use of real time input observations, is found to perform
better comparad with the original Yarkov Chain D.P. formulation. In
fact, the underlying idea can be used in a more general setting (see
Bertsekas, 1276, Section 5.5) and will be exploited here.

A last comment regarding the Yarkov Chain D.P. formulation refers
to its inabilitv to explicitly produce policies satisfying nrobabilis-

tic constraints. Such a constraintc, for example, could be a reserv/oir
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storage requirement not to exceed (or fall below) a cercain level with
probabilicy 7 (0 S v < 1). Statements like the atove ara vervy useful in
evaluating the performance of control policies for stochastic reservoir
systems. If it is not possible for the optimization program ro meect
such specifications, the practice is to follow a trial-and-error ap-
proach. Namely, a certain policy obtained by the optimization model is
evaluated through simulation, and in the event thatr its pertormance 1is.
not satisfactory, the optimization model is modified (cer=ain con-
straints are tightened, penalty terms are introduced to or dropped ZIrom
the objective function, etc.) with the hope that the new policies will
give better results. Clearly, the approach is not set up in a well de~
fined manner and can be costly.

Recognizing the importance of policies satisfying prooabiliscic
constraints, Askew, 1974a, b, 1975, Sniedovich, 1979, 1980a, b, and others
investigated the mattef Ebr a single reservoir with iadependent inflows.
The attempts were successfulip constructing algorithms which maximize
the objeccive funccion while satisfying certain system constraints ac
prespeciiied probabilistic levels. Unfortunately, these methods ara not
exterdible to a general multireservoir system, again, because of dizmen-
sionality problems.

Becker and Yeh, 1974, daveloped ~ -onthly reservoir optimization
model wnich was coupled to a daily (Yeh et al., 1976) and an nourly (Yeh,.
decker, and Chu, 1979) model and constituted a mulrilevel {(or hierarchi-
cal) structure currently u;ed to operate the Califorania Central Valley
Project. The procedure is a deterministic sequential formulacion uciliz-
ing determiniscic forecasts and exhibits good computational efiiciency.

As mentioned earlier, the method falls in the ciutegory of the Naive

20



Feedback Controllers wnich assume validity of the Certainﬁy Zquivalence
principie. However, as a gzeneral rule, the morz nonlinear (wich raspect
to its dynamics) and nonquadratic (with respect to its objective func-
tion) a system is, the less it is likely for the Certainty Equivalencs

oroperty to hold, and the greatar is the chance that the controls so ob-

tained are far from optimal. Nevertheless, it is noted that the practi-

<

cal importance of the reduced deterministic formulation should be Zull:
recognized ir. the event that a computationally efficient stochastic con-
troller is not feasible. Another weak point of the previous model is
the subjective judgement required to determine the terminal system state.
It will be seen that substantial suboptimalities can be introduced by
incorrect terminal scate choices and that the proper selection law de-
pends on many parameters (2.3., system nbjectives, control capability,
length of optimization horizon, atc.) and is not always apparent.
Regarding the multilevel structures, it has been real;zed (Hainges,
1977, Unny et al., 1981, Bechard et al., 1981, etc.) that they are par-
ticularly suitable for reservoir systams, the reason being that these
svstems' objectives are usually associated with a variety of time bases.
(For example, finding the operating policy minimi- 1g the damages orf a
particular flooding avent and operacing the system for long-term maxiImum
energy generation are two objectives of substantially different frequen-
cies.) The multilavel approach rapresents the over;ll svstem ov a
hierarchy of models. The higher stapding models involve less detailed
system descriptions; they are meant to develop operating strategies
which optimize the long-run systam performance (strategic decisions).
The more accurate lower level models are concerned with increasingly

shortar incterval optimization (tactical decisions) and finally dictate
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the vperation to hHe implemartad. According to the objective priority
ranking, each laval properly constrains the adjacenr lower level bdv ircs
decisions, but feedback is possible, as well asg upward information flow
from real time observacions. Functioning in the above intaraccive
fashion, the hierarchy can assure thar the system-will perform well over
all relevant time scales while keeping each model at a tractable compla#-
ity. Overall, hierarchical structures constitute a suitable approach

in implementing a real time reservoir control scheme.

Thus far the basic problem of the Dynamic Programming models has
been the dimensiouality limitation stemming from the need to implement
the D.P. solution in discretized form. The recent publications ov
Georgakakos, A., 1983, and Wasimi and Kitanidis, 1983, presantad a
methodology avoiding this numerical difficulty.

Wasimi and Kitanidis, 1983, modelled the system dynamics bv a sac
of actual and conceptual (corresponding to ﬁhe river reaches) linear
reservoirs and employed a quadratic penalty cost functional to force
the system's state trajectory on a praspecified track. The inputs were
assumed Gaussian random variables and the formulation did not consider
state or control constraints. Because of the LQG problem charactaris-
tics, the Dvnamic Programming solution was obcained ig analvcical form
whichiminimized the computational burden.

The model develoned oy Georgakakos, 4., 1983, also enploved the
actual-conceptual reservoir system configuration, but it allowed for
nonlinear dvnamics and general performance functional. Here the objec-
tive was to identify the most rewardireg state and control trajectories

and the procedure was an iterative oprimization scheme. At each itera-

tion, a quadratic approximation of the objective funccion and a local
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linearization of the dvnmamics around the current trajectories were per-
formed to constzuct a local LOG approximation of the original problem.

The solution obtained in a recursive amalytical form gave rise Lo new

state and control trajectories until convergence. The method axhibited
fast convergence rate and had a provision for probabilistic state con-

straints which, nevertheless, did not perform afficiently. Nc¢ control

constraints wera accountad Ior.

Both of the previous models allowed for updating of the curreant
state estimates via a Kalman (or an Extended Kalman) Filter astimactor.

Based on the many pctential advantages of the previous approaches,
this work will continue along these same lines. The intention is €O
perfact the control design so as to be efficient in nandling most svscam
idiosymncracies.

Regarding the nonlinear programming model catagory, Rosenthal, 1380,
notes that the state-of-the-art needs a breakthrough in computational
efficiency to become a practical solution technique for mulcireservoir
system control.

Although predominantly used in reservoir operation, simulation mod-
els have no opcimization structure and are suitable for performance eval-
uation rather than for optimal policy identiiication.

The preceding survey of stochastic reservoir control scudies indi-
cacted that a comprenensive model efficiantly accounting for all the
peculiar raservoir system characteriscics‘is still lacking. It also
brought up a varietv of properties which such 3 model should possess.
These structural raquirements of an efficiant controller ar2 summarized
below to set the standards with which che:subsequenc control sctudv will

be expected to comply.



h.

v

Explicitly account for the system's uncercainty.

Use local lipear approximations of the svstem's dynamics, if
any.

Optimize Sequentially. (Repeat the procedure at each decision
time.)

Take advantage of real time observations to update the estim-
ates of the system model and make efficient use of the input
process' forecasts.

Consider the shortest control horizon that has a Seariag on
the immediate period's decision action.

Account for control and probabilistic state constraints.

Overcome dimensionality problems and guarantee computational
efficiency.

Design to facilitate a multilevel control Structure's satup.

The following Chapter presents a model for a general reservoir svs-

tem. This is similar to the models introduced by Georgakakos, Aa., 19383,

2

and Wasimi and Kitanidis, 1983, but it is included hera for completeness.
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Chapter 3

MULTIRESERVOIR SYSTEM MODEL

3.1 Iatroduction and Qverview

The design of a controller is the second basic step of a control
studv. Prior o this a credible system model must be developed. 3Based
on physical consideratiouns, this chapter will show how to represant &
general reservoir system by a set of ordinary diiferential equacions.
This model's parameters can be optimally adjusted via estimation tech-
niques to comply with available input-output data records. Some issues
arising in parameter estimation will be discussed, but detailed presen-
tation of the associated theory will not be offered; instead, the reader
will be referred to selected ralevant publications. The purpose of this
chapter is to introduce & flexible moﬁel structure adjustable to the
‘reservolr system idiosyncracies. Chapter 4 will consider the detailed

and self-contained design of a comtrol algorithm.

3.2 General Characteristics of a Reservoir Svstem

A reservoir system is a number of reservoirs whose coordinated op-
eration is suggestaed from hydrologic considerations and/or institutional
requirements. Figure 3.2.1 is a schematic representation of a three
raservoir system which will introduce the elements that when combined in
series and/or in rarallal svnthesize more complicated coniiguractions.
Basic characteristics of a typical reservoir system are the following
elements:

a. A set of hvdrologic inputs (as, for example, the river flows
wal(c), wbl(c), wdl(c)in,Figure 3.2.1) which enter t- . sstem at various

boundary locatioms.
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b. A set of reservoirs located at various river branches. Each
reservoir accepts an inflow from the upstream systenm, contaias s(t)
water volume, loses or gains additional water due to evaporation, seepage,
or r:infall at a rate e(t), and releases at the controllable rates u(c).
(In Figure 3.2.lall quantities associated with a particular reservoir are
. . . -, . .th . - .th .
indexed bv two subscripts ij denoting the j reservoir of the i river
branch.) The storage variables s(t) are restrictad to vary within a
max

t), from paysical and

positive bounded range, smin(t) < s(t) «s
operational comnsiderations similar bounds govern the releases,
umin(t) <u(t) < W (o).
c. A set of river segments providing the nhydrologic linkage among
the existing reservoirs. Linkage due to ground water movement will aot
be considerad here; vet, if such a situation is suggesced by the pnvsi-
cal conditions, it too can be accounted for in the proposed framework.
(The river segments of Figure 3.l are denotad by a, b, ¢, and d.) Along
the river segments ana from the raservoirs, a number of water diversiocns
(possibly generating-return flows) may supply water to municipal, agri-
cultural, or industrial sites. (The reason why two subscripts are used
to signifv the elements ia Figure 3.2.1 will become clegr in Section 3.7
d. A set of objectives that the system is expected to serve. A&
general set of typically established objectives includes IZlood protec-
tion, water supply for municipal, agricultural, and industrial use,
energy generation, recreation, navigation, water quality improvement,

and wildlife enhancement.

Loosely cpeaking, the reservoir control problem is to identify op-

timal schedules of the controllable variables wnich will guide the svstem
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Lo . :ssfully meet its objectives. This is a rather difficulc task
due to the following system idiosyncracies: (1) uncertaiacy, (2) non-
linearity, (3) high dimensionality, and (4) multiplicity of conflictiag
objectives.

In turn, reservoir systems' uncertainty may be due to the follow-
ing sources:

la. Hydrologic input or natural uncertainty. Once the svstcem is
defined, the inputs are used to represent the real world lying outside
its boundaries. For example, the river flows wal(t), wbl(t), wal(t)
should reflect the characteristics of the rainfall-runoff processes of
their drainage basins. Consequently, the uncertainty of the omitted
processes (e.z. atmospheric randomness) will carry over tu the inaputs,
winile the corresponding dymamics will induce temporal and spatial corre-
lation structurg in their behavior (e.g. seasonalities, etc.).

1b. Uncertainty due to imperfect knowledge concerning the response
.of the reservoirs and of the river segments (also known as model uncer-
tainty).

lc. Uncertainty due to the objectives (e.g., random demand fluctua-

L J
tions, or economic uncertainty).

Nonlinearities in the system dynamics may be due to the raservoirs
as well as the river segments. The reservoir nonlinearities ars caused
by the evaporation and seepage processas taking place through che reser-
voir's irregular surfaces and also by the various constraints. The
river segments cve nonlinear elements due to many reasons: e.g. bottom
frictional effects, fluid viscosity, turbulence, channel nonuuiformity,
seepage, etc.

Examples of large reservoir systems in the U.S. are the Califoraia
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Central Vallev System, the Arkansas System, the Cclumbia Sysﬁem, the
Lower Colorado System. £Each consists of at leasc¢ 30 major nyvdroorojects.
Reservoir svstems are usually characterized by conflicting objec-
tives; namely, a certain control sequence which successfiully performs
for one objective may be undesirable for another. (Coniflicts arise,
for exampla, between nydroenerzy generation and flood protection, or
due to incompatible water use demand patterns.) Furthermore, if the svs-
tem is capable of long-term river control (i.e. if the existing storage
capacity gives overyear management flexibility of the input process'
water volumes), then there exist multiple time scales to which the ob-
jectives pertain. Namely, the system performs successfully, if it per-
forms well from short to considerably longer time ﬁeriods (e.g. hours
to a few years).
After this preliminary introduction to the reservoir systaem char-
acteristics, we‘nekt discuss the development of a rgpresehtative'system

model.

3.3 System Model Development

Consider the following quantities characterizing a reservoir at any
given time c:

(t): water volume contained in the reservoir's lake,

S..
1]
Iij(t): inflow rate to the lake from the ugpstream svstem,
1
uij(t): rate of controlled releases,
Lij(t): net water loss rate from evaporation, seepagze, and rain-

fall.

. , - .. CL .
Then, the conservation of mass law for the ij reservoir can be ex-

pressed by

i . - - '
Iij(t) uij(t:) Lij(c). (3.3.1)



Consider the iuss term Lij(t) and denote the foliowing: (1) eij(t) the
net [(evaporation) - (rainfall;] rate per unit of the lake's sur‘ace
area, (2) Aij(sij(t)) the reservoir's surface area in terms of the
stored volume, (3) gij a seepage coefficient per unit of water eleva-

tion, and (4) Eij(sij(t)) the function giving water elavation in terms

of the lake's volume. Then

Lij(t) = eij(t:) .-\ij(sij(t:)) + 3 E..(sij(t)). (3.3.2)

iy 1]

In reality the relationship yielding the seepage losses is much more
complicated. (The coefficient gij varies spatially and the form of the
seepage term depends on the general groundwater hydrclogy of the lake's
area.) However, because of the distributed parameter naturz of the
underlying phenomena (spatial nonuniformity), it is most likely thac
they will require a lumped parameter representation (as in Eq. (3.3.2))
to be hypothesized and estimated from available input-output data. In
fact, even this approach can be impossible due to identifiability prob-
lems. However, issues such as this will be discussed in Section 3.4%.

The inflow Iij(t) in Eq. (?.3.1) may be a hydrologic input, if the
reservoir lies at the system's edges, or the output from the system ly-
ing upstream of reservoir ij. If apart from the release uij(t) there
also exists some other water abstraction (say, in the form of a water
supply diversion), it can be incorporated in the inflow Iij(t) which
should then be reduced by the corresponding abstraction rate.

Consider now the river segment j shown in Figure 3.3.la. It can be
thought of (Kitanidis and Bras, 1978, Georgakakos, X. and 3ras 1980, 1982),
as a number of cascaded copceptual (fictitious) reservoirs (Figure 3.1.3b)

each of which stores and releases water according to the comservation of
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mass law:

ds,i(t)

—_t . = - -
i Iji(t) jS(c) Lji(c) (3.3.3)

where s.i(t) is the water volume contained in the ith conceptual reser-
voir of reach j at time ¢, Iji<t) is the inflow rate from the upstream
system, Lji(c) represents the seepage loss rate (it might be that Lij(t)
is pegative, implying gaias from groundwater), and jS(t) is the outilow
rate. -Iji(t) may be the outflow jS_l(t) of the previous conceptual
' reservoir, or the previous outflow minus the rate of any existing diver-
sion (as at the conceptual reservoir j2 in Figures 3.3.la, b), or the
outflow plus any vreturn flow. If i = 1, Ijl(t) may be a hvdrologic in-
put, or an actual reservoir's release, or the final outflow of another
branch, or some combination of the above (see Figure 3.2.1).

From kinematic wave type considerations (Fagleson, 1970) one can
deduce a relationship of the following form for the outilow jS(t):

mji

1 Si1 (t). (3.3.4)

jS(t) a3

Under certain uniformity assumptions for the channel geometry and flow
condition, one can express the coefficients qji and mji in terms of
physical parametrers such as bottom longtitudinal slope, channel length
and width, roughness coefficient, and water depth (Georgakakos, X. and
R. Bras, 1980). However, owing to the distributed parameter nature of
the physical situation, it is suggested that these coefficients be es-
rimated rather than obtained from the previous relationships. (In an
estimation scheme the coefficients derived by physical considerations

may serve as initial guesses.)
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The seepage (or iafiltration) losses can be representad (3urikham,
1970a, b, Granados and 3ras, 1983) bv a similar expression of the fol-

lowing form

L. (£) = 8ji<c) (3.3.5)
ji ‘<ji sji 3.

where sji lies approximataly in the range [0.8, 1.2] and Zji is the in-
filtration coefficient. Typically, these coefficients are assumed con-
stant over the same river segment or constant over the wnole basin.
However, we shall continue considering them spatially varying to arrive
at a general structure and later discuss possible (or mandatory) simpli-
fications.

After these specifications the dymamics of the river segment j por-

trayed in Figure 3.3.la can be represented by the following systam of

first-order ordinary differential equations:

ds., (t) m

1 jl _ . jl

It gy S5y (e) ‘{jl S51 +.IJl(t) ’ )
ds.z(t) J m 8

dt =ayp sy (8 -y, (t) 2 32 o,
ds., (t) m, m, 3,

i S * -1 - jL Z, b} -,

T %a-1 Sii-l (t) Y Si (v) L Si2 (t) "jz(‘C)’
s,_ (t) '
7% "z -1 JrJ BJrJ !
—_— = s, (e) = 2, (e)- { s (c)

dt r.-1 r.-1l T,

iz, ir, LF JrJ rj F J

(3.3.6)

where it has been assumed that rj conceptual reservoirs are necessary

to model segment's j rasponse.
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A property which makes this conceptual-reservoir routing model
favorable for the control purposes is its wide range of adaptability.
Namely, by properly adjusting the parameters{aji, mji' Kﬁi’ Bji’ rj}jil
any river response can be adequately reproduced. Thus, this basic
structure can be employed at any control hierarch level at commensurate
accuracy. For example, a fepresentacion of.one linear conceptual reser-
voir (if any. ;¥ suffice for a monthly decision model, while more com-—
plex structures and more‘sophisticaCed parameter estimation procedures
may be necessary for shorter decision time intervals. Another conven-
ient property of the preceding model is its rather close compatibilicy
with the model for the actual reservoir dymamics.

The dynamics of the entire system can theu be modelled by combining
the previous representations of the individgal river segments with the

. \
actual rése:voirs. (For example, it is Qtréightforward to write the set
ofndifferential equatioas modeling the 3.reservoirs and the 4 river
béanches of the system in Figure 3.2.1). To facilicate the notation let
the system dynamics be expressed by the following vector differential
equation

ds(t)
dt

= F (s(t), £) + b u(r) +G w(t) (3.3.7)

where s(t) 1is an n, dimensional vector including all actual and con-

ceptual reservoir storage variables,
u(t) 1is an n, dimensional vector of the contrnllable releases,

w(t) 1is an n, dimensional vector including the hydrologic in-

puts and any water diversions,
E(*,*) is an ng dimensional :time varying nonlinear function in-

cluding all terms e(t) A(s(t)), gE(s(t)) as®™(t), xsb(t)
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indexed after the corresponding reservoir ,

and

e
2

are respectively o, X 0O, ﬁs X o, dimensional matrices
associating the control and input vector elements with
the .appropriate differential equation. (Obviously,

these matrices are sparse.)

Notice if at any time t, all actual and conceptual storage vari-

k

ables are known (i.e. the vector gjtk? is given) and if a particular
trajectory is specified for the inputs w(t) and the releases u(t) over

an interval [tk , tt}’ then the trajectory { s(t); te([t ty ]} of the

k ?
storage variables can be computed by integrating Eq. (3.3.7). 1In other

words, the vector gﬁtk) is the only necessary informatiom from the sys-

tem's history prior to time t, in order to predict its future response

k
to certain input and release sequences. Then by definition the wvactor
_g(tk) constitutes a state for the reservoir system, ané the previcus
representation is said to be in state space form. The state is a pivo-

tal quantity in the study of systems. For a reservoir sw¥stem the grevi-

ously defined statel at any time describes the watar coctent distribu-

rt

tion throughout the system. The conrrol study's objective will be to

speclfy reservoir release schedules which result in desirable time tra-
jectories of this distribution.
As mentioned, under the availability of input-output data records,

it is best to determine the various model parameters by a parameter

estimation scheme. Some related discussions follow .

1 Often, the individual storage variables will also be referred to
as states. '
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3.4 System Identification

System identification theory is concerned with identifying a model
whose input-output characteristics correspond to those of the .actual
system. An identification study is an iterative process involving the
four steps shown in Figure 3.4.1 (Schweppe, 1976). Section 3.3 is an
example of the "HYPOTHESIZE STRUCTURE" step where physical model struc-
ture is hypothesized for further identification. The second step uses
input-output observations and parameter estimation techniques (Scﬁweppe,
1973, Sdrenson, 1980) to optimally adjust the parameters cf the hypothe-
sized structure. Followlng are validity tests evaluating whether the
model can adequately explain the system's observed behavior and the
fourth step, "DIAGNOSTIC ANALYSIS," -suggests a differeat medel s:iruc-
ture in the event that validity tests fail.

A"prerequisite element for applying the above procsfuzz i3 the
availability of measurements (observations) of certain sTstam varizbhles
over a time period. fhe measurements usuaily availakle iz raservoir
systems concern river flow discharges, reservoir wacter élavations and
releases, and evaporation rates. The river flow discharze measurezents
(e.g. the inflow and outflow discharges of a river segmenz, or the in-
flow discharge to a reservoir) are generally of fairly gocod quality with
an associated error whose standard deviation is typically equal to a
small fraction (say, 0.01) of the observed value. The reservoir water
elevation observations can be transformed to observations of the stored
water volume via the elevation-storage relationship. This function is
determined through detailed geographical mapping of the lake's area

(from surveys, etc.) and is generally accurate at least within the
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water storage normal fluctuaction range. The reservoir releases are
almost always passad through hvdropower turbines or other accuracaly de-
signed structures and can be safely considered free from measuresment
error. Good quality average evaporation rate measuremencs are rarely
available owing to the high temporal and spatial process' variabilirty.
After the associated daca base is established, the model parameters
are estimated according to, say, the Maximum Likelihood, the Extanded
Kalman Filter, or some other estimation methodologvy. However, a reser-
voir system has certain characteristics that can simplify the estimation
process. dAs mentioned, the reservoir releases are virtually perfactly
measureable. By the system's serial nature these releases are the only
connecting link between the system part lving upscream with that extend-
ing downstream of a reservoir. Thus, all information of the upstream
system measurements regarding the downstream system is carried through
these links and is captured by their perfect measurements. This intui-
tive argument implies that the parameter astimation of “h two system
parts’ models can be separately performed. As an example, reservoir
al, reservoir bl, and the rest of the system in Fizure 3.2.1 mav be
separately identified. Theoreticzlly each of the resulting individual
parts should not be further decomposed. For instance, this means that
the hypothesized system models for the river branches a, b, ¢, 4, and

for the reservoir 2, in Figure 3.2.1 be put togather and identified
d

from all relevant measurements. However, there exist serious numerical
difficulties in the identification of complex structures (see Morris and
Schweppe, 1981l) mainly from excessive computational requirements and

irregularities in the likelihood function. For this reason and because
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river flow dischargs measurements are of fairly good quality, we sug-
gest that further decomposition be emploved first to d4_-ermine smallar
vet more easily identifiable substructures. In the event that +he iden-
tified medels fail the validity tests of the identification process,
more complex configurations may be hypothesized and t;eacad. Hence,

if enough zage locations exist, then the idencéfication process mav be
decomposed and reservoirs and river segments trfeated separataiv.

A frequently arising problem in system identification applications
is related to the identifiability of the hypothesized structures param-
eters. JNamely, it mav happen that the unknown parameters canno: de
estimated by the available observation record and some model structure
changes are necessary before the process can go cthrough. aAlcthough che
"DIAGNOSTIC ANALYSIS" step will usually detect the problem, it is some-
times possible to a priori anticipate and correct such a deficiency.
Appendix I discusses this issue for the reservoir model hypothesized
in the previous section (Eq. (3.3.1), (3.3.2)). It is.shown that it is
not possible to estimate both of the parameters 2(t) and g. It is sug-
gested that either one be fixed at a physically reasonable value and
the other be estimated by some parameter estimation methodologvy. Appen-
dix I also briefly outlines how parameter estimation can be performed
for a nonlinear system. The presentation requires linear systam
(Kailath, 1980) and estimation theory (Schweppe, 1973) background, and
it may be skipped without affecting the control developments in Chapter
4. Appendix J takes up the same issues for the model of a river seg-

ment. It finally suggests that linear struccures should be identified

lf
J

first. (8,, = 1 =m,, for all i) and that both paraueter sets { X,.
Ji Ji J

i o

i=1
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T,
{e, .} . . A . .
lljiil cannot be assumed unknown (due to identifiability problems).

Finally, the river segment meodel is convertad to a form amenable to zhe

basic estimation procedures such as the Maximum Likelihood or the exten-
dad Xalnan Filter. For more detailed applications of system identifica-
tion theory, the reader is rererred to Kitanidis and Bras, 1978, Georgza-
kakos, X. and Bras, 1980, 1982, and Restrepo Posada and 3ras, 19%82.
Hereon, we shall assume that the system identification phasz has

been periormed and resulted in the following system model:

ds(t)
St = EGs(o),t) + L ule) +G w(e) + g(e) (3.4.1)

with E(-,-),q%, g as in Eq. (3.3.7) and q(t) a continuous time n_-
vector white Gaussian process which is added and identified (see Appen-
dices I and J) to account for model and other'érror sources (lineariza-
tions and other approximations of the parameter astimation procedure.

etc.). This is a zero mean stochastic process with spectral density

matrix gq(c):
E{a(e) ¢' ()} = 0 (6) §(c=s) (3.4.2)

(3(t=s)) is the dirac delta function which is zero everywhere axcent at
the origin, t=S, where it goes to infinitv.)

A separate identification procedure concerns the hydrologic iaputs
w(t). Depending on the available data, one can identifv a black-box
correlation model (e.g. Curry and 3ras, 1980, Wasimi and Xitanidis,
1883),-or a model based on the phvsics of the rainfall process (Georza-
kakos, X. and Bras, 1982). In anv case, the hvdrologic iaput modeal
will be used to forecast the future inputs and allow for better decision

makiag. Here it will be assumed that w(t) is a white Gaussian vector



with E(t) Zean vector and Qw(t) spectral density matrix. In a later
chapter it will be shown how to derive these moments from the iiscrece
time moments usually provided by a forecasting model and how to account
for the process' correlation. Given that w(t) is a white Gaussian pro-
cess and the same holds for g(t), we can lump the two and represent them

oy the following process £(t):

w(t) + q(t) . (3.4.3)

(K&

(&) =G

As the sum of two Gaussian vectors, £(t) is also Gaussian (see Jazwinski,

1970) with mean vector
Be(e)} = HG w(e) + g(e)} = G Hu(e)} + Hg(e))
= G u(t) = £(c) (3.4.3)
and spectral density matrix which can %e easily obtained as fdllows:

E{(g(t) - Z(e)) (E(s) - §<s>)T}

E@Qmw+s&>~g@”@z@)+«w—gfs»ﬂ

—

(G u(t) - G w(=G als) - 6 alsHT  +

Ha

+q(0) a'(s) + (G w(t) - G W(t)) q'(s)  +

+ng3@>-gagﬁ} .

= G 0,(0) i(c-s) '+ 9 (0) §(e-s) =
= (G 9 (0) 6"+ 9 (©) &(t=s) = 0z (&) &(t=s) (3.4.3)
Thus, T .
_Q;S(c) = E-Qw(c) G - gq(c) (3.4.9)
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(In the abuve, the superscript "T" denotes the transpose of 2 matrix and
the derivation makes use of the fact that w(t), a(s) are uncorralacad
for all times t, s.)

Lastly, the actuzl reservoir water elevation and river discharge
measurements will be grouped in a vector_g(tz) related to the system's

stata vector through

z(e)) = H (s(e,))) + _‘f(tl) (3.4.7)

where‘z(tz) is a discrete time white Gaussian process added to account
for observation errors (see Appendices I and J). ‘X(tl) has zero mean
and covariance matrix R g (assume* for generality time varying). Note,

due to decomposition of the identification process, matrices Q (t) and

R

Ras are block diagonal.

Equations (3.4.1) and (3.4.7) summarize the results of the syscen
/,

identification phase. Based on this svstem model, Chapter 4 will take

up the design of an optimizatiom algorithm (controller).
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Chapter 4

EXTENDED LINEAR QUADRATIC GAUSSIAN CONTROL

4.1 Introduction and Overview

Thus far, the discusgion has covered the first of the two major
steps 1Ia a control study; napely{ the identification of a representa-
tive system model. This chapter will be concerned with the second
step which regards the design of an optimization procedure (controller)
able to guide the model (and thereby the actual system) in success-
fully meeting its operational objectives.

We shall begin by addressing issues arising in the operation of
multiobjective and stochastic systems. The various svstem objectives
will be modelled and a general perspective of the control study will
be given. Then we shall formulate ﬁhe reservoir operation problem
and discuss its idiosyncracies. A brief review of stochastic optimal
control theory will follow to provide the framework for the subsequent
developments. The approach taken here in solving the reservoir opera-
tion problem is first to simplify it and then work with inéraasingly
more complicated versions until the complete groblem is reconstructed
and solved. Along this line the unconstrained problem, the problem
with control (release) constraints, and the problem with bota control
and state constr;in:s are successively considered. Apart from being
insightful, this presentation also reflects the saquence of operations
performed by the controller. It solves the unconstrained problem
first and halts to check for any constraint violatioms. If there

are none, it terminates because an optimal solution has been found.
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Otherwise it takes care of the violated control and state bounds.

This is a long chapter including thelmajor contributions of
this thesis. To the beét of our knowledgz, this is the first published
multireservbir contrﬁl procedure capable of solving the general opera-
tion problem formulated here. Computational experience with the new
méthod will be offered in subsequent chapters and separate publications.
This work has been motivated by problems in reservoir operation; however,
it 1s generally applicable for the control of any stochastic, dynamical,

nonlinear, multiobjective system in state-space form.
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4,2 Modeling of the Svstem's Objectives

Typically, reservoir systems are expected to serve several ob-
jecéives. Water éupply for municipal, agricultrual, or industrial
use,. flood protection, hydropower generation, navigation, water
quality comntrol, recreation, and wildlife enhancement, constitute
a set of gemerally accepted reservoir system objectives (Vater
Resources Council's Principles and Standards 1973, Revision 1979).
Althot¢h often underestimated, appropriate modeling of the system ob-
jectives is a prerequisite of a successful control design,

What complicates the reservoir control problem even more than the
objectives' multiplicity is their antagonistic natures. Take, for
instance, hydropower generation and flood protection.. For the purposes
of Ehe former, it ié profitablé to maintain'reservoir storages close
to capacity so that the power turbines are under.the highést possible
hydraulic head. At the same time for the fear of severe flooding
events, one Qould prefer to operate the systeé at lower reservoir
elevations to safely attenuate the flood wave hydrograph. Similar
conflicts also exist between water supply and nydropower generation,
navigation and water supply, as well as among other objectives.

In multiobjective optimization one is interested in solutions
which belong on the problem's Tradeoff Surface otherwise known as
Transformation or Pareto Optimal Surface. A Pareto Optimal
solution is noninferior with respect to any other feasible solution
in the sense that it performs strictly better toward at least one

objective. In deterministic problems, the Pareto Optimal Surface
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and methods for its raconstruction are well studied (Haimes, 1977,
clapter 7). Stcchastic multiobjective problems are not as well
‘explored and the Pareto Optimal Surface needs yet to be defined.
Reservoir systems are usually provided by operating priorities
pandated by institutional agreements (e.g., the Tennessee Valley
Authority Act passed by Congress in 1933). The agreemer.ts astablish
a specific priority ranking ca the system objectives and prescribe
mandatory performance levels. A commonly encountered ranking (Yeh,
1982) appoints flood protection, water supply, water quality control
and navigation as the primary objectives and states that the remain-
ing objectives be met s0 far as they are consistent with the primary
ones. From the analyst's point of view, these specifications restrict
the investigation of the problem's Tradeoff Surface on that portion
which meets the set requirements. Including recreation and wildlife
enhancement in the set of primary objectives or assuming that they
arz implicitly satisfied when water quality standards are met, the
following approach for multiple objective reservoir operations can
be praposed. Constrain the operation to always meet the primary
objectives and maximize the hydropower production as far as possible.
Conceptually, this transforms the aultiobjective problem into a single
objective optimizationbut at the same time it allows reconstruction
of the Tradeoff Surface by varying the constraint levels or changing
the optimized objective (Cohon and Marks, 1975). This section will
discuss how this general approach for treating multiple objectives

can be quantified in relation to the system model developed in the
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previous chapter. The intention is to present a modeling framework
which can be flexibly adjusted 1n specific appiications.

Consider, for example, that a system's manager agread to supply
a user with q(t) volume <=f 'ater per unit of time (discharge) for a
;pecified time period c€[t0, tT]' Assume further that the diversion
'is located ﬁownstream of.concepCual reservoir jk. 1f the system was
not random, this agreement could be met by requiring the reservoir's
outflow Qj (t) to be greatar than or equal to some flow level qws(c)
which makes the agreed diversion possible. Namely, it would suffice

to maintain

Q5 (6) 2 477 (o), (4.2.1)

_c;[to, cT].

m,
Replacing Q‘k(t) by «. sijk(t) (c.f. Chapter. 3), we find that the
J

jk

diversion can be made as long as reservoir storage sjk(t) satisries

. 1/m,
qws (t) I ik

‘ s, (€)> |
ik %k | (4.2.2)

ﬁe[co, cT].

Consider next the same water supply requirement in a stochastic
system where storage sjk(c) as well as outflow ij(c) are only known
in a probabilistic sense. Statements such as ”ij(c) must be greater
than or equal co qws (t)'" are now meaningless unless thev are supplied
with probabilistic specifications regarding their wvaliditvy. 1In this

. ot wS
case the reservoir manager can choose a probability level‘(jk(C)
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and see if it is feasible to operate the system so that

S ws

. o _
Pr[ijﬁﬁ) <q '(c)] ST (), (4.2.3)

te [to,tT].

In words (472.3) §pecifi¢s that the agreement should bhe nmet at
reliability not less than [1 -’(?; (t)]. As before an equivalent

probabilistic statement can be written with respect to the correspond-

ing storage variable:

WS 1l/m,
P_|s., (6)2 S—ai)‘l ik < ¥5e (0, (4.2.4)
i ik 3
te [to, tT],
or altermatively
5?: (t)
P(s;, (£1,) dsy () 5*(‘;: (t), (4.2.5)
-l
te [t , tT]

In (4.2.5) p(+,*) is the probability density function (p.d.f.) of

s,, (£) at time t,
ik
ws l/mjk
Vs (t) = q (t) , (4.2.6)

ik ajk
and the lower limit of the integral represents the value below which
sjk(c) cannot lie with probabilistic significance. Thus, the
requirement to meet the water supply demand at [l - y?i (£)]

reliability level is mathematically equivalent to constraining the
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p.d.f. of the storage variable Sjk(t) in a region above a certain 5ound.
This bound is characterized by two parameters: (1) s?; (t)

which is specified by the demand level through (4.2.6) and (2) ~“°

ik (t)

which gives the probability of failing to satisfy this demand. It is
noted that as the demanded level beacomes greater.and/or the probapilicy
of violation gets smailer, éonstrainc (4.2.5) increasinglv coniines

the p.d.f.'s feasible region.

The previous example was presented to illustrate the claim that
the requirement to sat“sfy system objectives at preépecified reliapility
levels implies probabilistic constraints on the system state variables.

As a second case, consider flood protection. The associatad
probabilistic constraints can be easily derived after specifying two
characteristic parameters per storage .variable: That is, the flood
level S§k(t) wnich the storage is not allowed to exceed and the

(t)

(t). For an actual reservoir, s.

probability of exceedance Yf ik

jk

can be taken equal to the reservoir's capacity (above which water flows
£
down the spilliway), while for a conceptual reservoir sjk(t) can be

defined by the flood discharge level qr(t) and the relationship

- l/mjk

b
——“.,(“) , (4.2.7)
2N

£
sjk(t) =

The flood protection reliability constraint can then be stated by

4
. p(sjk(t)’t) dsjk(t) i‘(j.-k(t:), (4.2.8)
%3k (o)

te [to, tT]. |
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This constraint restricts the state's p.d.f, to lie below some upper
bound and becomes more restrictive for smaller y§k(c) and/or as
less severe flood condition levels are established.

The navigation objective calls for water level fluctuations within
a certain range determined by the adjustability of -1e port structursas
and the navigability of the river branches. These ranges together with
the reliabilities assigned to navigation by the system manager imply
two more probability constraints per storage variable.

Water quality control can similarly be treated by requiring river
flows to be greater than a critical level above which adequate effluent
diffusion takeg place. In fact, the actual-conceptual reservoir system
model allows for more detailed account of the water quality control ob-
jective. This can be seen in Beck, 1974, where the dynmamics of the
bioqhemical oxygen demand (BOD) and dissolved oxygen (DO) concentra-
tions are modeled by differential equations very compatible with the
system—ﬁodel of the previous chapter. However, in this work it will
suffice to translate meeting water quality standards into reliability
constraints on the system's states; diffarent treatment of the subject
along the lines mentioned will be undertaken as a separate study.

Similar bounds on the svstem's storage variables can be imposed
by the recreation objective after specifying the operating range oL
the recreational facilities along with the desirable reliability
level.

Thus, it is generally valid that the system objectives can be

quantified by a set of reliability constraints on each actual and

50



conceptual storage variablé. (As explained, hvdrovower production will
not be treated by a comstraint, but rather it will be maximized given
that all other system objectives are satisfied at the prespecified
levels.) The constraints are categorized into upper and lower ctypes
and the wost severe one can be determined from each group. (Mote

that both the storage thresholds as well as the probabilities of viola-
tion determine which are the most severe constraints. Figure 4.2.1
illustrates a case where flood protection is more binding than naviga-
tion.) It is evident that if the p.d.f. of a storage variable meets
the most severe constraints from the upper and lower group, it also

meets all others. In the sequel, these two constraints will be

denoted by
rs?in(c)
< ., min s
P(Si(t),t)C‘{si(t) " (e), (4.2.9)
- -}
)
(40
p(s, (£),8)ds, (e) S¥1%(e), (4.2.10)
max
JsT (o)
te [co, cT]
where 1 scans the storage variables: i = 1, ..., ns. (For notational

convenience, from here on the state variables will be referred to by
one index (i) rather than by two (jk).)

A Pareto Optimal point corresponding to the previous reliability
constraints can now be obtained by optimizing hydroelectric erergy

generation. Towards representing this objective, we can assume that
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FIGURE 4.2.1:t DETERMINING THE MOST SEVERE UPPER
' | PROBABILITY CONSTRAINT
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the power production function for reservoir j is given by gj(uj(c),
sj(t)) where uj(c) is the total downstream release and sj(t) is the
reservolr storage at time t. (The assumption is made that uj(c) is
passed through the turbines as long as this is feasible.) The state
sj(c) enters the pewer production function by establishing the necessarv
difference in hydraulic head. Over a period [co, :T] reservoir j will

generate

g.(u (&), s ,(r)) dt (4.2.11)
3 ]

t
0

units of energy where uj(t) and sj(t) are the actual releases and
realized storage levels. Over the same period the energy generation
of the entire system will be equal to

1

Z g .(u.(e), s,(t))de (4.2.12)
U O A
0
where the summation includes all reservoirs with power plants.
Note that it makes no sense to optimize (4.2.12) because a priori
this is a random quantity owing to the stochasticity of the storage
variables. In turn one should look for some deterministic zalar quan-

tity characterizing the underlying p.d.f. A typical choice is to

optimize the expected value:

( CT
Maximize El }
u(t) [ § gj(uj(t),sj(c)) de (4.2.13)
ta[to,tT] to
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or alternatively
t

T
. 2
minimize E z .[%,-g (u,(t),s,(t)).] de (4.2.14)
u(t) ¥ S I ]
ts[co,cT] £

where E{-} dgnotes expectation with respect to all random quantities,
.E(ﬁ) is a Qector including.all uj(t), and Tj can be taken equal to
reservoir's j installed power capacity. Performance index (4.2.14)
maximizes energy generation by quadratically penalizing energy deficits
from the maximal possible production. For optimization purposes this
second index is more attractive than the first because 6j(uj(t),sj(t))
is generally mildly nonlinear and therefore [Tj-gi(uj(t),sj(t))]2

will usuélbrbe convex. (Problems of convex struéture are generaLly
easier to.éolve.)’. -

With regard to hydropower, a ;eservoir system is operated either
to generate the maximal possiblé energy or to cover a preassigned portion
cf the power demand. (The rest of the load is undertaken by other types
of power plants.) Either (4.2.13) or (4.2.14) can be emploved to
represent tne first mode of operation, while the following performance

index can be used to represent the second:’

t:T
minimize E (T ; z g.(u.(t),'s,(t))]2 dt (4.2.15)
u(t) | . j 33 J
ta[to,tT] 0

where T is the portion of the power demand assigned to the hyvdroelectric

units.



Note that we can represent both indices (4.2.14) and (4.2.13)

by
r
ty ',
minimize J =E g(u(t), s(t))de (4.2.16)
u(t) < . - [
gt L Lo

) 2
where- g(u(c), s(e)) g [Tj - gj(uj(h), Sj(t))]

in the first case, and

gCu(t), s(6)) = [T - g (u.(6), s, ()]
j ] J J

in the second. Additionally note that other possibilities such as
run-on-the-river power plants can also be represented by this more
general performance index. (In such,cases the power prodﬁction
function will sélely depend on the corresponding conceptual storage
variable.)

As discussed in ‘the beginning of this section, our objective has
been to identify release (control) trajectories corresponding to points
on the problem's Pareto Optimal Surface. A Pareto Optimal realease
trajectory u*(c), ts[g),tT] is defined here as the one which achieves
the minimum value of performance index (4.2.16) given that it produces
a probabilistic state trajectory satisfying the reliability constraints
imposed by all other system objectives. (At this stage, the reader
should only try to follow the general concept. More rrecise under-

standing will be acquired as this chapter progresses.) Other
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Parato Optimal trajectories can be obtained by varying the probabilistic
constraint levels and the entire Pareto Optimal surface can be
generated and explored.  Notice that the priority ranking of the system's
objectives can be conveniently reflected by.the allowable levels of
probrbilistic constraint violation. Between two objectives, the
one of higher priority should have smaller v (t).

Having discussed the modeling of the system's dynamics as well as
its objectives, we shall next proceed to formulate and consiaer the

associated optimization problem.
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4.3 The Reservoir Qveration ®rcblem

From the discussicns of Chapter 3, the following mathematical

system model was seen tc result:

d s(t)
T F(s(t),e) + L u(e) + g(t), (4.3.2
where s(t) is the o dimensional state vector includiﬁg all actual and
conceptuzl reservoir storsge variables,
s(0) is assumed to be a Gaussian random vector witnL mean é(o)
and covariance gs(O),
u(t) 1is the n, dimensional control vector,
e(t) 1is the ns dimensional random disturbance vector assumed

to be Gaussian white noise (non autocorrelated in time)

with meanii(t) and positive semidefinite spectral density

matrix ge(t):

E{ g(e)} = (1),

E((e(0) - 2(0]1(e(s) - 217 = g (0) d(e-s),

t,s s[co.cT]

(3(t-s) is the dirac delta function); z(t) is also assumed

uncorrelated with s(C),

F(*,*) is the n_ dimensional time varying nonlinear function of

the state, and

G

is the ns X nu constant control coefficient matrix.
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Associated with the system in Eq. (4.3.1) is the state observa-

tion model expressed by the following vector equation:

z(t ) = Hig(e)) + vle). (4.3.2)

The outputlg(tk) includes measurements of actual reservoir elawations
(for the actual storage variables) as well as measurements of discharge
at gauged channel sections (for the observation of the conceptual
storages) taken at discrete time instants. {X(tk);.k =1, 2, ..., T-1}
is a discrete Gaussian white random process with zero mean and posi-
tive definite covariance matrix gvk’ k=1, 2, ..., T-1. It is
assumed uncorrelated with s(0) and £(t) for all t. The observation
equation may exclusively refer to discharge measurements if it is
aséuﬁednthat Ehe actuélufesefvoir elevation observations can specify
(through the elevation-volume relationships) the corresponding actual
storages with no significant error.

According to the discussion of the previous sectioﬁ, the
objective of the reservoir operation problem is to identify the
release trajectory fu*(t); ¢t [to,tT]} which minimizes

o

J =E gls(t), u(e)] d, (4.3.3)
to

subject to the following constraint:
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a. Eq. (4.3.D of the system dynamics. ]
b, a™(e) < u,(t) < 2(e)
3 =] =3
j= ?., 2, .., L te[co,t,r]
min
fsi ()
min
. < o =
c p(si(t),c) dsi(t) b A ), L
- '4.3.4)
)
P(s,(t),t) ds (£) <y or(e)
i i -1
Jsmax(t)
i
where 1 = 1, 2, ...,Ans, ts[to,tT].
d. Continuing operations after tT
J

Calling the problem above 2.i we note the following comments:

1. The expectation in (4.3.3) 1s with respect to all random
variables; n;mely {e(t); ce[to.tT]} , {zﬂtk); k=1,2, ..., T-1}, s(0).

2. The scalar function g (-, ) concerns the power objective as
discussed in Section 4.2.

3. Constraints b may reflect physical or operational considera-
tions (e.g., low flow requirements, etc.).

4, The probability densities p(si(t),t) are, for all i, con-
ditioned on 21l available measurements and all previously applied
controls.

5. It may be argued that the reservoir operation problem should

seek to minimize
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E S(ECt)».E(t))dt (4.3.5)

where + = exhausts the system's lifetime. Although this suggestion
reflects a pragmatic concern, it could mathematically lead to an
ill-conditioned problem if the integral in (4.3.5) 1s not convergent.
(For a discussion of infinite-horizon control problems, see Bertsekas,
1976, Chapter 6.) To avoid such pathologies, this work instead seeks

]

to optimize functional (4.3.3) but the finite control horizon [to,tT
and the constraintd are specified so that the. true optimal control
policy 1is identified.

6. The soLution of the stated problem will be a policy realizing
.a Qpécifiglﬁoint on the objecti&es' tradééff éurfaﬁe. This is che
point corresponding to the specified reliability levels Y?ax(t),

Yy (t) and respective thresholds s?ax(t), s:in(t), i=1, 2, ..., n_.
Varying these levels over their range of interest, portions of the
tradeoff surface can be generated and the most desirable location can
be selected.

7. Still, Problem P.l is not megnm to be formally complete; it is
rather meant to set the form of the optimization problem we are about
to tackle. Several important specifications, as for example, the
admissible form of the control policy, remain to be discussed. Such
supplements will be provided as more stochastic control theory

background is communicated.

Like most interesting real world problems, the solution of the
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reservoir operation problem will involve a digital computer. Con-
sequently, we find it appropriate to convert the previous formulation
to the discrete time representation and work with difference rather
than differegtial equations. This conversion is also justified because
in a real application solutions of the operation problem are desired
in monthly, weekly, daily, etc., time intervals;

Consider a deterministic, nominal control trajectory which is

constant within each interval [tk, l, k=0, 1, eevy T-1:

Cx+1

nom

t) = u

{EPom(

(ck), ta[tk, £, .., k=0,1, ..., T-1}. (4.3.6)

k+l

Set the random distrubance £(t) equal to its mean level £(t), and ince-
grate Eq. (4.3.1) over [to,cT] taking the expected value é(o) as initial
state condition. Then by constrﬁction the resulting nominal state

trajectory satisfies

nom
d s

dt

(€) ' :
= F(s (e),e) + L uton(e) + (e). (4.3.7)

Using a Taylor series expansion, we linearize Eq. (4.3.1), (4.3.2)
around the nominal state and control trajectories to obtain the follow-

ing linear system:

d i(t> nom , nom nom
4t “Ee (e),e)+E & (0),0(s(t)=s T (R)) +

nect

u(e) + (), (4.3.8)
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nom

z(t) = H(s it

(£) + By " () (s )=s""(e ) + v (&) (4.3.9)

where

El ds

. aom [3£<a“°“<c>,c> IF(s" (1), 1)
(s (e),5) = ) e ,

s

nom
Fepl(s_. (£),0) ] b (4.3.10)

AT T (e),¢t) afi
3si i 3F noé ,
1 & (0),0)
- i asi J |
and similarly for gl(_éom(ck)).

Define next

\

8s() = s(£) = s"°(t), 83(0) = 5(0) - 3(0).
Su(t) = u(e) - u"%(r),
E(E) = g(r) - e(v),

telty,tpl, ' (4.3.11)

nom

6z = z(5) - H(s(g)) v = v(t),

k=1, 2, ..., T-1, j

and invoke Eq. (4.3.7) to get the following linear perturbation systenm

model in continuous time:

dos () nom
dc - Ep 6 T (e),e) 8s(e) + L sult) + g(v), (4.3.12)
6z = By 7(g)) as(r) + v (4.3.13)
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Towards the discrete time formulation we need to solve the system of
differential equations in (4.3.12). The solution, which is
guaranteed to exist and is unique, consists of a homogeneous and a
forced part (Brockett, 1970, Chen, 1970, Kailath, 1980). Tge homo-
geneous part solves

d 8s(T)
dT

= E; & (0),T) 8s(), (4.3.14)

and gives the state s(t) at time t as a function of the state at any

other time tk via

8s(c) = g(c, t) 8s(e). (4.3.15)

¢(*,*) is the state transition matrix which satisfies

d ¢(t,s)

= = Elt_inom(r) »T) ¢(1,8) (4.3.16)

with initial condition

g(s,s) =I.- (4.3.17)

Among the properties of the state transition matrix are that

¢(ct,s) is invertible for all t,s, (4.3.18)
-1

o(t,s) = ¥s,t), and (4.3.19)

¢(t,s) = g(t,r) g(r,s) for any t,s,r ordering. (4.3.20)
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The forced part of the solution solves

dés(T)
dT

(inom

= E (1), 8s(T) + L Su(t) + &£(1) (4.3.21)

with initial condition 6§(tk) =0,

and is given by (variation of constants formula)
t t

és(e) = ¢(t,t) L dulvddr + g(t,7) & (T)dT. (4.3.22)

x x

If the coatrol QE(T) is assumed constant over the interval (tk,t) and

equal to Sgk’ then Eq. (4.3.22) becomes

t
t

és(t) =

t

QKt’f)dr L Ggh + o(e,T) &(T) dT . (4.3.23)
K | - |

x
Combining Equations (4.3.23) and (4.3.15), the complete solution can

be obtained: ﬁ

ds(t) = g(c,ck) 6§(ck) + ¢(t,T)dT L‘SE{( +
‘K
t
+ ¢(c,T) £(T) dT. (4.3.24)
"k

Repetitive use of (4.3.24) within the intervals (where by the assump-
tion (4.3.6) the controls are constant) results in the following discrete

time system:
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where

8s, = ds(e ),

S = 801 B
Skl

B = §(ty1y>TAT) Lo
*x
(il

& - ¢(t 10T E(T) dr.

"k

(4.3.25)

(4.3.26)

‘The integrals and derivatives involving-random processes are defined

in the mean siuare sense (Jazwinski, 1970, Chapter 3).

Apart from

this change in interpretation, however, the operations go through,

and the final results (mostly involving deterministic quantities

such as statistical moments) are meaningful in the ordinary sense

(e.g., Riemann integrals).

of the discrete time random process are now derived:

(i1

E{;‘}=E

9(t, o7 E(TdT

g(t, 0T E{(t)} dt = 0.
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With this clarification the statistics

(4.3.27)
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The last equality holds because the expected wvalus of 3(7) = =(3) - =(T)
is equal to the zero vector while the previous equation is true because

expectation and integration can be interchanged.

! (t2+1 1T 1
E {ék.ﬁgi = E 2(tk+l:r)§(r)d1 J 3(tgyy0 ) E(P)dp! ;
. , | e .
kbl [FR41
= 9(t 100 E{Q(T)QT(p)} g(t2+l,p)T dp dt.
% 'R

Substituting Eféﬁ?)é?(b)} by 98(1)6(1—9) and using the shifting propercy

the dirac delta function, we finally obtain:

[0, - ifk$ O ]
. T | , :
EG5, = g r(+.3.28)
. T,
8t 10T Q. (1) (e, ,,T)7dT, 1if k=L. |
L tk J

Equations (4.3.28), (4.3.27) completely characterize the probability

e

S which is Gaussian by definition (4.3.26).

density of the process

results from a linear operation on Gaussian wnite noise. Similar :o

Je

;o= 0 for all k,1.

- 2 1 = r
(4.3.28), one can show that E{ék SERY, E{s,vl;

On our way to the discrete time control problem, we now need to
discretize the performance index (4.3.3) and the constraints (4.3.4).

Integral (4.3.3) can be rewritten as follows:



[t Ik
(T-l [k+1
J = 1} gls(t), u(r)] dt (4.3.29)
[od —— -_— o
k=0
[k | 1)
Approximatiné the téfﬁé of the aBove summation by
“k+l f
%k
k=20,1, ..., T-l,
one obtains
T-1
= ‘ - /,
Jy = E kzo gls(t), u(e)) (e, t:k)]f (4.3.31)

Assuming that the intervals [tk’tk+l] are of the same length for all k .

and substitucingiﬁ(ck),‘g(tk) by

s(e) = s (g ) +8s,
nom (4.3.32)
u(tk) = (tk) + ng

in (4.3.31), one can cousider the following functional for minimization:

T-1 :
= 3 ° 4
J=E kzo 2, (85,5 3w, (4.3.33)

om

X DU ‘ N - a . nom
where by definition Zk(Gs , OEk) g(dik +s (tk), Su +u (tk))-

Regarding the constraints (4.3.4), we shall require their validity
at the discrete time instants to, Eys vees tT. For their representation

in terms of the variables ds, , dgk we need to know the probability
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densities p(Sgk,k) given in(tk), £ ), x=0,1, ..., T-1. Since

k

s(t) is the output of a linear system of Gaussian initial state and

inpﬁt, we conclude (this can also be seen by (4.3.24)) that it too is

, , . R nom
Gaussian for all times. It then follows fromds, = E(tk) -s  (g)

. ‘ ) . - nom )
that 9s  1is also Gaussian with mean vector s(ck) -5 (tk) and

2y S 3

covariance gs(tk) edual to the one of s(t ). The thresholds
- p— k

max min . .
(t¢,), u. (tk) will respectively translate to

min
(tk), Ly Y

max
S, t S.
= (k)’ =

nom

dszix s?ax(tk) Tos(e),
min min nom
Gsik sy (tk) - s, (Ck).

i=1,2, ..., ng» k=0, 1, 2, ..., T,

\ (4.3.34)
max max nom '
. dujk' Iz (tk) - uj. (tk),
min _ min nom
$ K u (tk} u (tk),
1=1,2 .o, n, k=0,1,2, ..., T-1,
- Sl . Jmax | max Luin _ _min
and for compatibility we define (ik (4 (tk), fik r; (Ec),
i=1,2, ..., n ,k=20,1, ..., T.

S

In summary, the discrete time reservoir operation problem which

we shall refer to as Problem P.2, is of the following form:
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Froblem P.2: The Reservoir Operation Problem in Discrete Time

7 \
' T-1
& heo
T
e

subject to

. nom -
oz, ;Il[ (tk)] s, + Vs
k=1, 2, , T-1
min _. < max
b. Gujk _pujk —-Sujk ,
j=l,2l’ :n’k=0al’ aT"'l
.Smin
(P 1k .
- n
c p(csik,k)dcﬂs:L < YTk ,
‘_.n
[+
. - max
) Smax
ik

i=1,2, ..., g k=0, 1, .... T.

d. Continuing operations after T.

Problem P.2 is not the exact equivalent of Problem P.1. This is
mainly due to the linearization of the continuous time dynamics intro-

. - nom
duced at (4.3.8). As a consequence the more s(t) deviates from (e),
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the less Problem P.2 is representative of P.l with this effect becoming
more significznt as the degree of ncnlinearity of F(s(t),t) increases.
The validity of the approximation is further jeopardized by the
presence of the random noise for, if intense, the noise originates
frequent departures of s(t) away from Eéom(t).

In order to mitigate this effact, one could consider using the
Describing Function (Gelb and Vender Velde, 1968), otherwise known as
Quasi- (Phaneuf, 1968) or Statistical (Gelb, 1973) linearization. 1In
hydrology this technique ~-- first introduced by Kitanidis and Bras,
1978, and also employed by Georgakakos, K. and Bras, 1980, 1982 --
has been shown to possess distinct advantages over the Taylor Expansion
lineraization at ﬁhe‘expense of heavier computer effort. The advan-
tages result from this method's explicit concera to minimize the
avefage approximation error. The high computational requirements are

a consequence of the additional probabilistic informacion utilized onm

the variables involved., More specifically, the linear approximation

F (s(8),t) = Fy + Ey(s(6)-s (D)) (4.3.35)

of the function F s(t),t is sought which

T

minimizes Je = E{e e}

L0051 (4.3.36)
e = E(s(t),t) - F (s(t),t)

The expectation is taken with respect to the probability density

of 5(t). This problem can be easily solved by directly differentiating
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Je with respect to the vector EO and the matrix Fl and setting the result-

ing linear expressions equal to the zero element of the corresponding

nom
s

dimension. Assuming that g(t) = (t), the optimal coefficients are

given by the following expressions:

Ey = E{E(s(t),0)} >
' (4.3.37)

e!
(]

E(E(3(6),t) (s(0)-s"" ()T} p_(0)7L,

where gs(t) is the covariance matrix of s(t). As can be seen from
(4.3.35) and the first of the (4.3.37) ralationships, the resulting
approximation is unbiased which is an important gain over the Taylor
Expansion approach. On the other hand, tha evaluation of the axpecta-

. tions in (4.3.37) could be cumbersome and may prohibit its use in a
real time application. Other properties of the Describing Function
Ihnearizatlon are that 1t preserves statistical relationships up to the
2nd moment between F(s(t),t) and s(t), and it can also be emplnyed when
F(s(t),t) is nondiffarentiable.

Apart Irom usinyg the appropriate linearization type, the credibilicy
of Problem P.2 can zlso be enforced by restricting the range where the
controls are allowed to vary from their nominal path. On the average,
this will result in state trajectories in the neighborhood of the nom-
inal one and will justify the use of the perturbation model.

This section has formulated the optimization problem associated
with the operation of a reservoir system. The formulation is based on

the system model developed in Chapter 3 and the representation of the
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system objectives discussed in Section 4.2. The resulting optimization
problem (with dymawics in difference or differential equation form and
time separable objective function and constraints) is of the optimal

coatrol variety. Working toward a solution, we shall next reviaw some

theoretical material developed for the treatmen: of similar problems.
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5.4 A Review of Optimal Control Theory

Optinal control problems.freguently a;ise in the study of physical
and so:io-economic systems.b Althéﬁgh they can be treated according
to ordinary nonlinear programming techniques, a solution process can
significantly benefit by exploiting their special structure. Depending
on the modeling aporoach, one can distinguish two types of optimal con-
trol problems: deterministic and stochascic. Deterministic problems
are counceptually better behaved to solve. Stochastic formulations can
be conceptuall& subtle and, in many cases, computationally intractable.
Both types can be treated via the main optimal control solution
methodologies; namely, the Minimum Principle of Pontryagin (Pontryagin,
et al.; 1962, Athans and Falb, 1966, Kushner and Schweppe, 1964) and
Bellman's Dynamic Programming (Bellman, 1961, Bellman and Dreyfus, 1962,
Larson, 1968, Bertsekas, 1976, Larson and Casti, 1978). Yet the Minimum
Principle is more efficient in deterministic cases where Dymamic
Programming is more appropriate in stochastic problems. This assertion
is based (1) on the premise that the Minimum Principle is an open-loop
methodology while Dynamic Programming is a closed-loop or feedback one
(these terms will soon be defined), and (2) on cthe fact that in deter-
ministic problems feedback and open-loop solutians are the same (with
the latter more easily obtainable) while in stochastic problems feed-
back solutions are more desirable.

This is a review section intended to provide the unfamiliar
reader with an understanding of basic time~-domain optimal control

theory background. Other design philosophies, such as frequency-
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domain and root-locus techniques (Jomshidi, 1980), are also available
but less intuitive at least in the water resources literature, Sicce
our éroélem i; stochastic where feedback solutions are preferatle, this
work will focus on the Dynamic Programming approach.

Consider a nonlinear dymamical system evolving according to the

following deterministic difference equation:

Siery T E (8 1 )5 s, known, (4.4.1)

k=0,1, ..., T-1,

where s, € S, is the n_ dimensional state vector,
%k "k s
Eks Uk is the nu dimensional control vector,

£,¢: S xU =+5§ . .
-k k k k+l is the n dimensional, real-valued state

transition functiou,
Sk’ Uk are sets of real numbers where the state and the control

vectors are constrained to lie at any time k.

Additionally, consider a scalar, real-valued.performance measure gk:
Sk X Uk -+ R (real numbers) assumed to represent the cost incurred at
time k when the state takes a value Sy and the control € is applied.

At the terminal finite time T, there will be a terminal cost g.:S

- 7
°T T R
associated with each terminal state of the process.
) * *
The objective is to determine the control sequence (EO,_pl, ey
*
ET-l) which minimizes
T-1
= 4,4,2
J k-z-o gk(gk,g-k) +gT(_5_T) (4.4.2)
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subject to the dynamical Equation (4.4.1) and the accompanying con-
straints on the states and controls.

Such a formulation can be seen to result from Problem P.2 of
the previous section, if omne replaces all random quantities with their
expectad values, Although in reality there exist no deterministic svs-
tems, one may be éatisfied with this approximation either because
the underlying uncertainties are not as influential or simply because
the stochastic problem is very difficult to solve.

Two methods of solution are possible: According to the first,
one assumes a particular control sequence {u', Ei’ N 2%_1},
and propagates (4.4.1) forward to get the corrésponding state
trajectory (s', gi. ceey 5%} and the associated performance index
value. Then, based on thls well-defin.d mapping {Ele - J[:_k’z_é],
one se;rches over all feaSLble control sequences to find the one in-
curring the minimum cost. This is the open-loop approach -- directly
along the ordinary nonlinear programming principles -- where the
properties of the state are not given much attention. The second
method relies on the definitijon of the stare Sy which at any zime &
summarizes all currently available information. One then attempts o
specify the optimal feedback or closed-loop control laws u;(~):
Sk - Uk’ k=20,1, ..., T-1 which give the optimal controls as functions

* *

of the states: w o= uk(gk), k=0,1, ..., T-1.

In a deterministic problem, the two approaches will result in the

application of the same control sequence as can be seen from the

following experiment: Suppose the optimal feedback laws have been
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obtained. Starting from the initial stata 35, the system (L.4.1)
: - . F_,F .
is run forward with the feedback controls w = u' (s,) evaluatad,
—x k =k
applied, and recorded. At the end the record will contain the optimal

(CL oL oL .
U u J

open-loop sequence g o Yy s ey By If this was not true,

at some time j the feedback procedure failed to generata the correspond-
, oL F . F
ing open-loop element (u;  # M.(s.)), and the law U, (*) could not

—J =3 73 =]
have been optimal. (The argument assumes all the feedback and open
loop controls prior' to time j coincided and that there is a unique
control sequence achieving the minimum cost.) Instrumental in the above
equivalence is the fact that the control input is the only influence
affecting the state trajectory. In the stochastic case this is no
longer true due to the presence of the random inputs which act in

addition to the controls and invalidate their unique correspondance

with the states.

In principle,the optimal feedback laws can be obtained via the
following Dynamic Programming algorithm:

Algorithm A4.4.1: Ovtimal Feedback Controller for Deterministic Systems.

(s..).

. Initialize: =
a nitialize JT(ET) 83y

b. Recurse: For k = T-1, T-2, ..., 0, select

*
Bolee mave) oma el F I )
e A

where M is the set of functions satisfyving u = ) €U

d

and evaluate
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* = *
= o 4 M £ v f
TlE) T s B D) ¥ Iy, |5 Gy :k‘i&))]

*
¢. Terminate: 1If JO(El) = ]J existsl, then it is the globally

minimal cost and
TN N
- WX, . s . e e .
= , ) .ET—l( ) is the minimizing policy.

Crucial in thevderivation‘of Algorithm A4.4.1 is chat the costs
are additively separable in time and that sach control u. does not
affect the costs gj(',') for j < k.

Apart from its impressive generality (no restrictive assumptions
on the functions' or sets' type were made), in the majoritv of interest-
ing cases, the gbove algorithm cannot be implemented due to excessive
high-speed aemory requifements mainly associated with the backward
propagation of the '"cost to go" Jk<§k) in Step 5. This quantity,
except for very few special cases, will have to be recursed in a dis-

cretized manner -- each value corresponding to every quantized S

_S_kEk.
When the dimensionality of the state is higher than 4 or 5, a rwason-
able quantization saturates the capacity of the e;is:ing cémputers.
(This is what is known as the "curse of dimensionalicy".)

In order to remedy this situation many efficient techniques have
been developed (Larson, 1968 , Jacobson and Mayne, 1970, Heidari, et

al., 1971, Yakowitz, 1982, Turgeon, 1982, etc.). The underlying idea

has been to start from some initial nominal control trajectory and

This specification referes to the cases where J,(s,) becomes increzsingly
negative for certain ontrol sequences but this is not likely to occur
in real world problems.
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iteratively move from local considerations to trajectories which reduce

the objective function's value. If the problem does not have a special

structure, the identified trajectory is only locally optimal, but

the procedure can be reinitiated from a different initial trajectory

to reveal other local optima and eventually detect the global one.
"Uﬁfortunately, daterﬁiﬁiétic modeling is not an adequate

approximation for the majority of real systems. Uncertaintv - be

it natural or an artifact of our inadequate state of knowledge -.

is alsmot always present impeding our means for effective systems'

control. We, therefore, turn now to stochastic formulationms.

Consider the following modification of the system equation:

= . : c
CFin” B B ®)igy Mown, - (4.4.3)

k=o’ l, ¢ 00y T-l

where Ek’ W, as in the previous formulation,
W

£ K is the o, dimensional random distur bance vector,

7!‘H' 7!3:

. ‘ . s _
: Sk X Uk X Jk - Sk+l is the ns dimensional, real-valued

state transition function,

Wk is the set from which the random disturbance takes on valiras

at time k.

Also consider a cost gk(Ek’ Y Hk) incurred at time k when the
system is at state s,, the control w is applied, and the disturbance

W, OCCcurs. (gk: Sk X Uk xW -+ R),

—* k

Concerning the modeling of the disturbance, one usually follows
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the Bayesian pnilosophy postulating some prooabilistic model. Other
descriptions are possible (e.g., the Set Theoretic approach, Schweppe,
Al973; ﬁébrd:énd'écﬁweppé;.1§80),5ut as yet théy are not develnped

for general control processes. It will then be assumed that probabil-

ity densities are given for the 's, k=0, 1, ..., T-1 (e.g. obtained

¥
by fitting available data), and furthermore (1) each disturbance K
is independent of all previous disturbances, and €¢2) the p.d.f. of

1s couditioned only on the contemporary state and control

any w,
values.
’ = .
p‘Ek/Ek’ ceey 53, Yo wves Uon My g cee EO) p(zk/ik’ik)'
(4.4.6)

A special case of the ahove is when the p.d.f. of W cannot be influenced

Lbylgk.or Ek as, for éxample, in Problem P.2. If the disturbances

are not independent over time, the problem can still be reformulated

in the above format by state augmentacion (Bertsekas, 1976, Chapter 2).
The uncertainty introduced by the random disturbances creates

two distinguishing differences over the deterministic ‘formulation:

The state of the system is now a random process and th2 cost functional

T-1 ‘

{7y gk(ik’ Yo Ek) + gT(ET)} is a random variable. Since minimiza-
tion of a random variable is meaningless, one usually specifies an
operation which maps the space of random variables to the real numbers
and continues with the minimization at a deterministic quantity. One
such intuitively satisfying map is che expected value operation but

other choices are also possible {Sain, 1969). Assume then that the
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control objective is to

.”,plzlleE.. | ‘Jw=.J“,§ l.kaogk__k,gk,zk) + gT(ET) > (4
% L
k=0,1,...,T-1 «=0,1,...,T-1

Stiil, the control4éroblem is not totally defined. There are two
ways that the wminimization (4.4.5) can be performed: Tirst we could
attempt to specify the entire control sequence {Ek}i;é independently
oc the system's evolution, or alternmatively we could assume that at
any time k the controller (or decision maker) will apply the control
o after the state Ek has become known. The difference in these two
choices is that the secoﬂd assumes future information_gathering and
takes advantage of the féct'by'detérmining optimal feedback laws

T-1
{Ek(')}k=0 , while the first ignores this possiblity and determines
controls which will be applied independently of the state values.
As the optimal open-loop sequence is a subset of Fhe optimal feedback
solutions (where the only allowable Ek(') functions are the constant
ones), it follows that utilizing information gathered during the
process's evolution can only improve the system!s performance.: The
purpose then of using feedback in stochastic protlems is to reduce
the adverse influences of the uncertain inputs.

The solution to the stcchastic control problem with perfect

state measurements can be obtained via Dynamic Programming by the

following backward recursive algorithm:
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Algorithm A.4.4.2: COptimal Controllar for Uncertain Systams with

Perfect State Information
a. Initialize: JT(ET) = gT(§T).

b. Recurse: For k =T-1, T-2, ..., 0, select

(
u (s) = ag{ min E {gk(ik"ﬁk(ik) @) +J

)
3|
k+1 (Sgerr)
AU }r

where M is the set of functions satisfying S T M (s ) E Uy

and evaluate

*
I (s,) =§ 8, (S W (s ),w) + Jk—*-lE (s ( ) ¥, ):,}
_1(

*
¢. Terminate: If JO{EO) = J exists, then it is the global minimum
and |

* * -
= 1 { e ° { o T il 1o
T {50\ Yy eeey ET-l( )} is the minimizing policy.

Figure 4.4.1 schematically presents the sequence of events
taking place in an actual system evolution and the feeaback nature
of the optimal controller.

Like the one before it, this D.P. algorithm 1s not practically
useful for most real world problems (due to che.”Curse" of dimension-
ality). VNevertheless, there exists a particular class of problems -
the class of linear systems and quadratic performance indices presented
later in this section - where the above procedure leads to analytical

solutions of significant practical value.
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Referring back to Problem P.2, we note the following differ-
ence over the stochastic formulation previously treated. Namely,
its state at each time k is not perfectly known; some other
quancity‘functionally related to the state can imperfectly be
measured instezad. This difference is a very important one because,
after all, it was'the properties of the state that made feedback
solutions possible. These problems with imperfact state information
(or inexactly known state) are subjects of the forthcoming discussion.

The system dynamical Equation (4.4.3) previously given is
also valid in this case with the exception of the initial state EIR
being a rgndom variable. 4 1s assumed to have an a priori p.d.f
p(go) and to be independent from 9 for all k. 1In addition to

that formulation, however, the state here is assumed observable only

‘through the measurements 2z

Ze 2 b (5o 5 )y (4.4.6)

k=1, 2, ..., T-1,

where is the a, dimensional measurement (or observations) vector,

A_'N

Vi is the n, dimensional random error (noise) the p.d.f. of

which is assumed to satisfy

p(zk/gk, . ..’EO'Ek—l’ . ’Eo‘y-k-l"' ¥ ey g ,EO) =

= Py, /s 1), (6.6.7)

¢t S . xU x V, = Z 1s the real-valued measurement function,
g k k-1 k k

Z are the error and measurement sets.

vk’ k
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(The case of Problem P.2, where p(zk/s » g

) = p(zk), is again a
special case of the one postulated above.

As before, the control objective is to

\
: T-1 1
minimize (J = E Z gk(ék’ﬁk’zk) + gT(§T) > (4.4.8)
1T-l S k=0 :
k=0 1T-l ‘ )
{Ekf
k=0
T=-1
{v.}
K kel

with the expectation here additionally taken over the uncertainty intro-
duced by the observations errors.

Feedback control laws are again desired, the idea of feedback
Eeiﬁg{to ucilize:all ;vailable information in the control process.
"In the case of ekactly known state, the'feeAback was on the state
because this was all the controller needed to make the best possicle
decision. Since in this formulation the.state is not accessible, che
best the controller can do is to base its &ecisions on all pieces

of information gathered s¢ far:

I_k = {51’52’ ""Ek’EO”El""’Ek-l}’ or
I = (z, }, k=1,2,...,T- b,

K Ik-l Ut_g_k , k=1,2, ,I-1, \ (4 9)
1o & (9},

In that sense the information vector Ik can be viewed as another

system's state., In fact, it can be shown that there is an equivalent

to the previous problem with exactly known statea Ik (Tenney, 1982)
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and feedback controls laws !k(Ik)° However, although Ik theoratically
qualifies for a system's state, in practice it is not so appealing
opecause of its expanding nature.

In search éf an alcerna;ive, recall that the vector Ik was con-
sidered in the first place because it contained all information of
" possible use to the controller. If there was a way to process this
infermation in a more - usable but adequate form for control
purposes, the difficulty could be alleviated. This idea leads to the
notion of sufficient statistics (Striebel 1973) one of which is the
conditional density p(s /I ). We shall next present a reformulation
of the present problem into one with an exactly known state equal to the con-
ditional probability degsity p(gk/ﬁg , the solution of which can be
obtained by-an algorithm similar to A4.4.2.

First, we must construct the dynamics of the new state p(s /Ik)'
This will be accomplighed in two steps: the propagation step and the
update step schematically illustrated in Figure 4.4.2.

a. Propagation Step.

The problem is as follows:

Given p(gk/[k) from the previous update step,

Serr T L Soot)

P(H_k/ék'_hh_() ,
find p(§k+l Ik,gk).

Notice first that fiom E Q—k-—k —k) and p(w /s uk) one can

obtaia the density :(-k+l/s1’2k) emploving, for example, the method
k
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of events (Sandell and Snapiro, 1976). Next, there holds

f
p(s k+l/Ik’u“) = PS8 /T )ds, =
12
f
= p(sk¢l/sk, gk) p(s /Ik,u.)ds . (4.4.10)
Jso

The rotation implies integration over the range of §k's variation and

the equalities are true because for any two jointly distribucted randcm

vectors X, y there holds
r

p(x) = p(x,y)dy = p(x/y) p(y)dy. (4.4,11)
v y .
However, by the Markov state property, Ik does not add any information
if S is known and therefore
Also, since Sy does not depend on L
' - b4,
p(ik/Ik,gk) p(§_k/1k). ( 13)

Using (4 .13) and (4.4.12) in (4.4.10) we obtain the following equation

known as the Chapman-Kolmagorov equation (Jazwinski, 1970):

P81/ Ty ={ P(Spy1/80Y) Pls, /T, )dS, (4.4.14)

N
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b. Update Step

The problem is to evaluate the density p(-s-lq-l/ k+l) given
p(ik+l/1k’ Ek) from the propagation step,
—zk+1 ) -1&1(51&1 'S0 er)

/s

P er/Spear 8-

Employing again the method of events, we can derive p(—z-lc+l/§1c+1’ )

from z ., T By (50 l"*'k’ 1) and p(y /s ;v w). Then using

the Bayes rule we get:

P/ Tirn) = P /Tiegy 220 0y ) =
P /Sepr Tirth) Pl /o)
' p(51c+1/ Loy
P /1) P /Tom) ' (4.4.15)
Py o)
[
However, p(z,,,/T» 1) = P2y 2Sprn /T 48y
T34
f
= p('z'k'fl/ik+l ’ Ek) p(§-k+l/1k"g‘k) dik'*'l
S

(4.4.16)

Substituting (4.4.16) in (4.4.15) we have an expression of the
density P(ikﬂ/‘ld-l) as a functicm of the propagation output

p(£k+l/1k’5k) and the observation Zipy
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Thus, the dynamics of p(s ’Ik) can be symbolically represented

P(§k+l/1k+1) = Update[Propagate[p(gk/lk),Ek],£k+l], (4.4.17)

k=0,1, ..., T-1.
p(s /T ) = p(s.),
0 u )
where the update [.,-] and Propagate [.,.] operators were previously

defined. Notice that Equation (4.4.17) represents the dynamics of an

exactly known state with the role of the system's disturbance assigned
to .Ek.
Furthermore, the cost functional (4.4.8) can be reexpressed

(Tennev, 1982) in the following form:

. (T-1 | o
J = 5 {'kzogk(p(gkllk) '-‘ik) + gT.(p(g.T/IT))} , : (4.4.18).
)
{ }T-l
Zelkml
where g (p(s, /T ),y ) = 8, (S omo®) P(w /s, ,u) p(s, /T )dw, ds,
5w

Lastly, and in principle only, the optimal fesedback controller
can be recursively obtained by the following algorithm (see Figure
4.4.3 for an illustration of the system dynamics and the structure of

the optimal contreoller):
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Algorithm A4.4.3:

a. Initialize:

b. Recurse: TFor k =

[p\s /1 )]

+E
Hm

where M is the set of functicns satisfying L = Eka(gk/IgYE U

and evaluate

3, [p (s, /1)1

Optimal Controller for Uncertain Systems with

Imperiect State Information

JT[pﬁgT/IT)] = gT(inT/I:))

T-1, T-2, ,,,, 0, select

gk(pﬁik/lk)),Ek(P(gk/Ik))

1

.{Jk+l[pQ§k+l/Ik+l)JU'

k’

= B @l /1), balo(s, /T))  +

* IS
Jk+l tUpdate[Propagate[p(gk/Ik),Bk(p(gk/Ik;]

» Zeql]

~

)

*
$ . F-4 = = : :
c. Terminate: If Jofp(go/Io)] Jo[pﬁ§o)] J exists, then it is

the global minimum and

TT* = {uz(')’

*
. uT_l(°)} 1s the minimizing policy.

This solution can be seen to obey the Nonlinear Separation

Theorem which states that the structure of the optimal controller

consists of (1) a Bayesian estimator followed by (2) a memoryless
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control law using p(§k/1k).

In the general case both the estimator and the controller will
have to be implemented by some numerical discretizing scheme raising
severe limitations on the practicability of Algorithm A4.4.3.

Notable exceptions where analyticai solutions exist is the class

of probIemé'inVOIVing:linéar dynamics, gaussian uncertainties, aad quad-
ratic performance indices. These p?oblems, largely unknown in the

water resources area, will now be briefly examined as they can provide

a useful framework in the study of systems. Athans and Falb, 1966,
Kushner, 1971, Bertsekas, 1976, Sage and White, 1978, have written

texts including extensive LQG theory treatment. Furthermore, in

the prolific journal literature the papers by Athans, 1971, Meier
_et'al., 1971,>T$e, 1971, provide instructive related presgutations;.

In the LQG control problems the state difference equation is of

the following form:

S T b m Byt (46,19

k=20,1, ..., T-1

where ék’ §k are real s n, o, xn matrices respectively. The

state at the initial time and the random distur bances at all times
are assumed gaussian with first and second order moments given by

E{s .} = s,
=0 -0 (4.4.20)

E{(sy-5,
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(0, 1f k48 ]
E{gkg;} - (4.4.21)
. . gwk"‘ 1f k =2, ‘

P _
-, T ;

4 - = 1
hE-ﬁs s )wl} g for a;_ k.. (4.4.22)

Additionally, W is assumed independent of and e

p(y_k/gk.gk) = p(w,). (4.4.23)

~

The system is observable through the vector 2z which is related to

the state via
Ek = Ek Sy +'xk’ (4.4.24)
k=1, 2, ~.., T-1.

The random noise v, is Gaussian for all k and it is characterized by

—k
5

(¥, /s » W) v.)
E{zk} =0,
s oT) 0, if k 4 2,
e{v,v ;= -

Ry, if ke, r (4.4.25)

T =

E{w; z} Tg for all k,2,
E{s 0% )V } = 09 for all k.

The state, control, and aisturbance sets are the full real spaces
of the respective dimension; namely the problem is unconstrained.

The objective is to construct the optimal feedback pnlicy which

minimizes
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T T T
Ik Lo ol T Ny w) + s Nopsl W hisa26)
S k=0
2
-1

{Hk}k=0
w7

k=l

where ¥ ,, k=0, 1, ..., T are positive, semidefinité real n x n matrices
ask s s

and N

» k=0, 1, ..., T-L are positive, definit:el real o x n_ matrices.
auk u u

To facilitate the presentation of the solution we make the foll-w-

ing definitdions:

Se/e-1 ™ B/ T}
; = E{s, / }) o . ‘ .
Sk T BT o (4.4.27)
- . T
Bsie/i-1 = B8 = Sy g) (SSi ) / Ik':-l’l‘lk-l} ’

. _ _ -

where Ik is the information set defined in (4.4.9) and the expectations
are taken with respect to the appropriate conditional densities.

If employed for the above system, the Bayesian Estimation scheme
(Eq.(4.4.14), (4.4.15)) yields probability densities p(ék/Ik_l,gk_l),
p(ik/lk) which are Gaussian at all times k with mean vectors Ek/k-l,

§k/k and covariance matrices Esk/k-l’ gsk/k' These conditional

statistics are provided by the following equations which constitute

, . e LT
lA symmetric matrix g is positive (semi)definite if x Ax is greater (or
equal to) zero for all x # 0. These assumptions guarantee uniqueness of
the optimal solution.
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the well-known Kalman Filter:

Initialization:
Sg0” 20
Co (4.4.28)
g50/0 é gsO
Propagation step: For k=0, 1, ...
Ser1/k ™ AcSk/x OB
r (4.4.29)
Bak+1/k ~ 2k Zsk/k 2k T k-
Update step: For k=0,1,
- . ' - ‘ ‘ - )
Sir1 /1t ™ Sr1/ke T Dt (Birr™ Bt Sir1/id
Ly = 2 | T omo.p T + h | 17t | (4“4 50)
Bl T Bsker1/x Bierl Bl iy Berr T Bowrr ! he

a2 (I - .
Bort1/i+l = 15 = Der Bern] Bopa/xe

It is notable that the observations and thk: controls do not enter in
the covariance computations which, therefore, can be performed before
the process takes its actual course (off-line). This is an important
property providing precomputable estim;tes of the procedure's accuracy.
Combining (4.4.30) with (4.4.29) we can reformulate the problem

into one with the exactly known state Ek/k:

Sr1/irl T Bk S/ OB T e (4.4.31)

k=90,1, ..., T-1,
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where Eo is given and

B " D BB~ RS (4.4.32)
The quantities Dbl = Bep1 T §k+l§k+l/k’ k=0, 1, ... are known as
filter residuals (or as innovations sequence) and they are Gaussian

with zero mean and covariance
r h'
g, if k # %
Bl 1Tt ™ . - (4.4.33)
BeriBorrr/ic Biry * Bypyp 1 k= 2

\ 4

It follows from (4.4.32) that Ek’ k=0, 1, ..., T-1, ire also Gaussian
with
1 =
E{ﬁk‘ _g? |
- C o ’
( . ‘
0,1f k # 2
-~ -y o<
E{-IP}.} = . . T ! = (4'4.34)
T Bt Borr1/ie Bern + Bopar 1 Dpqy» 1E k=2
‘ )
ik

The reformulation of the cost function can proceed according to

the general procedure given by Equation (4.4.18). Using

E{s>

Sy } (4.4.35)

=sIy .5 + tr{§5

¥ 2k =sk3k

sk S/ Ty} k Zsk/k

we find that the objective is to derive the feedback laws which minimize
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T-1
I
kzo(_k/kfsk S T8 N ) +8 —T/T Ner S1/1

I .
+ kzo erly, B Sk/k}J | (4.4.36)

As mentioned earlier, the covariance computations are independent of ob-
servations and controls and so the last term: in (4:4.36) is a pre-~
computablie constant.

The solution of the reformulated problem can be obtained by

directly applying Algorithm A4.4.2; it takes the following analytical

form:

Algorthm A4.4.4: Optiﬁal Controller for 1QG Systems with Imperfrect

State Inforuation.

The optimal feedback control laws are given by

Ek(P(S /1)) = -L Ek/k, (4.4.37)
k=0,1,...,T-1,

where control gain nx o matrices Lk are obtained from

-1 ,T
e = Wy * B Koo B0 B Ko A (4.4.38)

k=0,1,...,T-1

and the o, x ng matrices gk are the positive semidefinite solution

of the following matrix Riccati equation:
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K = Vg

yy T -1
K = 80K = K BBy Bpyg B ¥ N, - (4.4.39)
B K K‘k+l] e t ¥

k = T-1,T=2,...,0.

The optimal "costs to go"l are recursively given by:

SALICRERT LGNS SR ME (4.4.40)
k=T,T-1,...,0

where scalars ck are such that

8 : 3
r t:r{-s'r =st/t b

S = Gy * tr{Kk+l ik *, Now B/l ) : (4.4.41)
k = T-1,T~2,...,0. J

wastly, the minimum total expected cost is

* T, = . ~
J Jb[P(gk/Ik)] $0 ¥ So * &y (4.4.42)

1
T-1
-T - T
3. [p(s, /I,)] = E L (85, Mo, S0 +UN u)
kPN My éﬁ jak 373 %s3 =313 7 =35y
i=k,...,I-1
T L
+ 5 N s +
2p/1 Y1 Syt ,Zk{“ ey PSJ/J}

J
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The computational requirements of this solucion are mainly
agsoriated with the calculation of the matrices Ek through Equation
(4.4.39). 7Tt can be seen that only the matrices at two éonsecutive
times are nez.ied for the recursions. This and the fact that
§k’ k=0, 1, ..., T, are symmetric guarantee high computational effi-
ciency.

The solution is governed by the Separation Theorem where the

estimates §. are obtained by a Bayesian Estimator (Kalman Filter),

k/k
and the control laws are linear functions of Ek/k’ k=0, 1, ..., T-1.
The coefficient matrices gk gre independent of all random quatitites'
statistics.

If one assumes perfect state information (i.e., 1f it is.possible
tgnéompletely spécifi Sk from éq. (4.4.24)) ,then the’feedback laws

minimizing

I-1- T T T ,
0T 1-2.0(5'1‘ Noe S * 8% Bup &) F o1 e &2 66003

E
Fye
1,...,T-1

k=0,

are still given by Eq. (4.4.37), (4.4.38), (4.4.39). @k,k in
Eq. (4.4.37)jshould now be replaced by Ek') The optimal costs to go

in this case take the form

T
Jk(gk) =5, e Sy +c (46.4.44)

k=T, T-1, ..., 0,

where the scalars ¢, are obtained recursively from
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6, =0
S (4.4.45)

% ™ Gep * T By Qachs
k=71, T-2, ..., O
The minimum total expected cost is now

*
I = Is0 = S0EEg* (4.4.46)

Additionally, if the disturbances in Eq. (4.4.19) are replaced

Lo
by their expected values (0 in our formulatior) and the feedback laws

are sought which minimize the deterministic function
T-1
T T T
Tl (B sty Ny ) tay Vo sy (4.4.47)

_then the solution is again provided by Eq. (4.4.37), (4.4.38), (4.4.39)

‘with Sy replacing g#/k' The optimal costs to go are now given by

T g v
Jk(gk)- s K8 '(4.4.47)
k=T, T-1, ..., 0,
and the totai minimumm cost is

* T
J = Jo(§o) = 84 50 So- (4.4.48)

In summary, a control problem with imperfect state information
‘takes on the same sblution as the corresponding problem with perfect
state information and the determin stic problem resulting when all
random quantities are replaced by their expected values. When these

are true, we say that the problem possesses the Certainty Equivalence
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(C.E.) property. Thus, the C.E. property, if valid, reduces the stoch-
astic control problem into an easiex deterministic one. However,

one must note that the more the characteristics of a certain problem
diverge from LQG, the less likely it is that the C.E. property will
hold.

The advantageous form of the solution is lost if any of the prob-
lem specifications change. For example, if the system is linear, the
disturbances are Gaussian, but the costs are nonquadratic, 'and the
Kalman Filter is still the optimal estimator; however, the control laws
For

will in general be nonlinear functions of both g and Zs

k/k k/k’
nonlinear systems, the conditional p.d.f. of the state pﬁgk/Ik) is no
longer Gauss‘an (even if all disturbances are so), and the optimal
estimator (4.4.17) cannot be simpliiied. Im these préblems the control
laws are honlinear functions of the so-called infinite dimensional
p<§k/Ik)' Hence, a significant advantage of linear systems is that
the first two conditional moments.are sufficient statistics for the
control purposes, whereas an infinity of mcments are needed when non-
linear systems are controlled.

Figure 4.4.4 schematically shows the structure of the LQG
controller.

Unfortunately, many interesting actual problems do not possess
LQG characteristics. For instance, the reservoir operation problem
of the previous section is both nonquadratic and constrained (non-
linear). For such problems the optimal feedback laws are practically

inaccessifle and consequently certain suboptimal techniques are of
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great practical interest., The Open Loop Feedbacl. Control procedure
is one such technique which can be employed to approximate the

optimal controller.

Algorithm A4 .4.5: Open Loop Feedback Controller

At any time k of the control horizon, the OLF Controller
performs the following operatioms:
a. Estimates the conditional demnsity p(§k/Ik) using the in-

formation set Ik={gl, ees Zps Uos e ET—I}'

b. Assumes that no measurements will be made in the future.

s OLFC
c. Finds the open-loop trajectory {Ekf CHFRPREETY ET-l}
which minimizes
((7-1 .
I = 1 9.=Z-k g (85> Yy» Hp) + g.I.(g,l.)/Ik

L A

9, = k,.-.,T-l

OLFC

d. Applies HOLFC <p(§k/Ik)) =y,

I

e. Redefines the information set at time k+l

0
LFC }

Tl = T U s 2

and repeats the previous steps.

The above is an open-loop procedure beacause at each decision

time the entire future control trajectory is determined assuming no
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information gathering. It is also a feedback procedure because

the applied contrels EgFFC are functions of all currently available
information. The advantage of the OLFC idea is that the computations
required to obtain EELFC are considerably simpler than those of the
true optimal controls. This holds because the assumption of no future
measurements at Step b allows one to use the deterministic Equation
4.4.14) rather than the stochastic (4.4.17) to represent the dynamics
of the state's p.d.f. (Remember that the future measurements are
random variables.) As a result, if the reformulation to perfect
state information is employed, the reduced problem is essentially
deterministic (in the p.d.f.'s space) and, hence, easier to solve.
The OLFC proéedure is suboptimal because in the specification of the
feedback OLFC contrqls, it is not taken into account that measurerent
information will be gathered in the future and used.

Other suboptimal control techniques are the Open Loop Controller
and the Naive Feedback or Certainty Equivalence Controller. The
first is based on the assumption of no information gathering and has
been discussed previously. The second arbitrarily assumes that the
problem pcssesses the Certainty Equivalence property, solves the
associated deterministic problem, and applies the resulting feédback
laws on the stochastic system. In the géneral case, both have been
found to be less reliable as compared to the OLFC proéedure
(Bertsekas, 1976).

After this section's introduction to optimal ard suboptimal
stochastic control theory, we next begin to design a suitable con-

troller for the reservoir operation problem. The co-troller will be
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of the Open Loop Feedback type and will be completed in three mzain steps.
In the first, a procedure capable of efficiently solving the unconstrainted
nonquadratic control problem will be developed; in the second and third,
the basic procedure will be modified to account respectively for possible
control or state constraint violations. Care is taken to maintain co-
herency in the presentation and for this reason lengthy mathematical

derivations and background material are relegated to the appendices.
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4.5 Solving the Unconstrained Reservoir Operation Problem

Neglecting all control and state constraints, the unconstrained
reservolr operation problem can be stated as follows (cf. Problem P.2

in Section 4.3):

Problem P.3: The Unconstrained Reservoir Opetction Problem

T-1
Minimize J = E
(63 Heno Ssg | Lo P80t + 2y (4.5
) T-1
&m0
T-1
{zk}k=l

subject to

081 = & 05y * B Sy + &y, (4.5.2)
k=0’ l’ s ey T-l

nom a
Gik = I;Il (E_ (Ck)) Oik + zk, (4.5.3)

k=1, 2, ..., T-1.

The term 2T(5§T) which is added to tlie cost functional will be
used later on to model the continuing operations requirement of the
system. The various quantitites in Eq. (4.5.1), (4.5.2), (4.5.3) have
been defined in Section 4.3.

This section will be concerned with developing a computationally
efficient procedure to solve Problem P.3. According to the termin-

ology established in the control theory review, Problem P.3 is one of
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imperfect state information. It involves linear state dynmamic and
obiservation equations, Gaussian statistics, and a nonquadratic per-
formance index. Due to the nature of the performance index, optimal
feedback solutions cannot be obtained in analytical form. As compu-
tational efficiency for large systems is a major concern, we shall

proceed by adopting the Open Loop Feedback control philosophy.

4.5.1 Open Loop Feedback Control

The OLF controller solves Problem P.3 in the manner presented
by Algorithm A4.4.5; in place of the imperfect state information problem

it solves a sequence of open loop control problems of the following

type:
. | T-1 D S |
Minigiie E Z 22(621’ GEQ) + zT(GET)/Ik (4.5:4)
- §s =k
{8u,} —%
= 4=k
g1
g’ gmk
subject to
6§£+l = 22 65& + 22 §g£ + El , ¢4.5.5)

2=k, ..., T-1.

The probabiality dersity of the state at time k has been estimated
by using all available information sumarized the Ik= 51""’Ek’ 30,

ceensdy g - It is Gaussian with

E{ng/lk} =0
(4.5.6)

T =
E{Ss, 85, /1= Boy/k.
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The random disturbances &y £ =k, ..., T-1 are also Gaussian

independent of &8s, and have zero mean and covariance

_k
Q, if 2#m, 1
E{g, £} = b 4.5.7)
2§, =2m ng’ if fe=nm J

QEZ has been defined by Equation (4.3.28). The terminal time T will
be properly determined later. For now it will be assumed as given at
each decision time k.

Equivalently, we can transform the above problem by following
the reformulation procedure presented in Section 4.4. The advantage
is that under the assumption of no future measurementg.the transformed
proﬁ}em is deterministic in the space of the state's p.d.f.

The dynamiés of the tfansforméd probleﬁ'obey Eq. (4.4.14).
Because the system is linear and the uncertéinties Gaussian, it can be

shown that p(QEQ/Ik) will also be Gaussian with mean vector and covariance

matrix given by

Spp1k T & Sso/ *t By 53,-6.5_1(/1( =0, (4.5.8)

zgk’ o0y T-l’

T
= » P . (4.5.9)
Es£+l/k 22 gsl/k 2& + g&l =sk/k given,

L=k, ..., T-1.

(Compare also with Equation (4.4.29).)

It is easy to see how these equ:-tions can be derived. Take, for
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instance 2=k. Then by the dynamics

6§k+1 = gk ng + ék dgk +'§k (4.5.10)

and the Gaussianness of 5§k, Ek’ we conclude (Jazwinski, 1970, Section

2.6) that 6§k+] is also Gaussian. Taking expectations in (4.5.10) we

find:
Soie1fie T Egy /T ) = E gy 85 + B Sy + E/T) =

= 0, E{8s, /T, } + B, Su +E {§/T} =
b 85y + BSy (4.5.11)

where apart from the linearity of expectations we used the fact that
dgk 1s deterministic and that ék is zero mean and independent of~Ik.

Similarly by definiticn

P

Borer1/k = EU0Sypn = 8810 1) GB8ypn = 8500 1) /I I

Using (4.5.10) and (4.5.11) and performing the indicated multiplica-

tions we obtain:

Esket1/k ~ E{ 9 Oy = Oziep1) B = Sz )
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Sinceék and ng are independent random vectors, the second and

third term above vanish and we have

B et/ ™ e B (0 - 05,0 GOs - 65,0/} g +
+E {§¢& /Ik}
T
= O Be/ie & t Ok’ (4.5.12)

The operations and assumptions employed in the derivation of Equations
(4.5.11) and (4.5.12) are valid for any time 2 and thus Equations
(4.5.8) and (4.5.9) can be derived by induction.

Consider now the reformulation of the cost functional:

' JOLFC = Gg {2 (GS ’OER)-*-ZR-F].(G '1,0__7-(_*_1) cee + ,QT_l((SE_T_l,GE_T_l)-!-

+ 2T<6§T{}’

where it 1s understood that the p.d.f. of Gék 1s conditioned on I

R Sy

K
Since 52 enters in the cost functional through the state §§2+i and does

not affect the cost terms at previous times, we can write:

(8s

E {Zk(ﬁgk,ﬁgk) +E {2 Spty 62k+l) + .., +

sk | &

J =
"OLFC 5 k+1

+g {RT_1<6§T_1,63T_1)+2 {8} Lo L (4.5.13)
2r-2 27-1
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or equivalently

Torre =B (485,80} + B s, 8w )} + ... +

M %8 141

+ B ol (s, .,0u. )} +E {&.(35s.)} (4.5.14)
3s -1 =T-1""-T-1 R T =T ’ U
-T-1 °§T

The expectations in (4.5.13) are taken with respect to the Gaussian

densities whose statistics are obtained through Equatioms (4.5.8) and
(4.5.9). The equivalence of (4.5.13) and (4.5.14) can bz seen by the
fact that the randomness of each cost term 22(651, §5L) is solely due

to the randomness of {s This together with the Markov pioperty of

2'0

'state establish the validity of the following auxiliary lemma:

‘E {22(5§£,§2z )} =5E {22(6§£,62£)} =5E {22(65&,53£)} (4.5.15)
% 2p-1 2,
: 12-1 3
. =L-1
Furthermore, if we define
E (Ss P s8u,) é E {2,(8s,,0u,)} (4.5.16)
2980 1 &g 2/7T T 2 TR TR e
1)

we arrive at the following reformulated problem:

~ T-1 A - P -
Mintmize I = 1208550 Bano®) A Cyeland  wsan
u, ek

subject to
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intention is to design a control methodology applicahle to other
systems as well.” If analytical specification of EZ(".'.) and §2(°,‘)
through (Equations (4.5.16) and (4.5.20))

su) & B (8,(s,, Sy}

65&

P65, 08u) = D05, 00 20
is not readily possible, one can expand 22(-,-) in power series and
cbtain as accurate analytical approximations of EZ(".’.) and Ez(-,-)
as desired by using a property of Gaussian random variables known as
Gaussian moment factoring. The details are explained in Appendix B.

In the case where 22(-,°) are quadratic, the reformulated costs are
also quadratic as can be seen by the result in Equation (4.%4.35).

The question is.hoﬁ to efficiently solve the reformulated
deterministic problem. Siﬁce this'is a general.nonlineér éroéramming
problem where analytical solutions are not likely to exist, one must
employ some minimization procedure. The design of a suitable such pro-

cedure is taken up in the following section.

4.5.2 A Newton's Method for Optimal Control Problems

There are.two major concerns about a minimization method:
raliability and efficiency. A mechod is reliable if it is guaranteed
to converge to optimal (in some sense) points, and it is efficient if it
exhibits a fast convergence rate. As can be seen in Luendberger, 1970,
Lasdon, 1970, Bertsekas, 1978, 1982, there exists an impressive plethora
of minimizacicn algorithms. Perhaps the most important class of algorithms

is the class of the Generalized Gradient methods. When minimizing a scalar
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real valued function £(x) with respect to the n dimensional real vector
x, a method of this class at the ith iteration "moves" from a point

X. to another x. . according to (Bertsekas, 1978)

=i i+l

X =% tod (4.5.22)

where for all i we have-di Z_O and

, 1T
[V, £(x)]'d, <0, £V_£(x) #0,

(4.5.23)

i, = 0, 16V £(x) = 0.

fo(gi) denotes the Gradiént vector of £(°*) at x,, Ei is the descent
direction, and oy is the stepsize of the iteration. The conditions
in (4.5.23) guarantee that a reduction of the objective function
value will 5e realized as a result of the‘iter;tioﬁ and that the method
will stop.afa.stationary point of f&') where the gradient is zero.
If £(+) is a convex function, this point is the global minimum;
otherwise, it may be a local minimum or some other stationary point
(e.g., an inflection point). |

A method of this class is completely defined once the rules
for selezcting the direction éi and the stepsize ai are established,
these rules exclusively determining whether the mithod is reliable
and efficient.

Concerning the 91 selection rule, the best, yet not always

possible, choice is to use the Newton's direction:

- 2 "1 S
4, =-Iv £Ge) TV £, (4.5.24)
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where VifoEi) is the Hessian matrix of £(+) evaluated at X, (see
Appendix A). At each iteration, the Newton's direction is specified
using first and second order derivative information concerning the
shape of the objective function, this being both its strength and
weakness. The additional information can realize a faster convergence
rate, yet it also requires heavier computationallload. Our objective
is to design an implementation of Newton's method which is computation~
ally efficient. Despite our problem's large dimensionality (the vector

N SR T
x includes now all control vectors at all times: x; [ng ET-l])

LI N ] 6
this will be accomplished by taking advantage of its special dynamical
structure.

In general, the Newton's direction (4.5.24) is obtained by

minimizing the second order Taylor series expansion of f(+) around Xt
P = £e) + 17 £e) 1 Tn,) Hiee)T 72 £(x,) (x-x.). (4.5.25)
= =i x =i == 2'==i b~ S M )

This can be easily seen by differentiating (4.5.25) with respect to x,
setting the resulting expression equal to zero, and solving for the

minimizing vector x. ,. (It is assumed that the Hessian is non-

i+l

singular.) Then the Newton's direction is given by

2 -1
dy T Xy -k = - [V £V £(x). (4.5.26)

Notice, furthermore, that the same direction would result if in place

of £(x) we had minimized some other quadratic function q(x) such that
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2
Vx4 (X)) = V;’;x £Gey)s Voo alx)) =V £Gx); (4.5.27)

namely,

q(x) = 9, + [V, q(_:gi)]r(i-ﬁi) + %(z-gi)r vix q(x,) (x-x,). (4.5.28)

This observation can be very useful in optimal control problems
where the dimensionality of the vector x is very large and a direct
evaluation of the Gradient and Hessian is impractical.

Returning back to our problem, consider a second order Taylor
expansion of each cost term El (Géilk’ 622) around the noﬁinal state

and control trajectories, i.e. around 652/k

= 0, 63& = 0 fsce Appendix A):

~ - ’ -~ . ~ T - -~

1. T 2

1T 2 3 - ~ :
* 3080 Vs 7200 S5y 30y Ty 1 (@00, +

+ SBE[ViS 22(9’9)]T6§2/k + (h?gher order terms) (4.5.29)

In Equation (4.5.29) the subscript s implies differentiation with respect

to Géllk while differentiation with respect to 621 is indicated by the
. \ 7 P ( . .
subscript u. 75 lg(QaQ)’ Vu ll.QJg) are ns, n, dimensional real vectors

-

N

, 2 3 ,
respectively, vss QZQQ*Q)’ v ZIQQaQ) arenxn_, n Xn real symmetric

uu

matrices respectively, and Vis lz(QnQ) is an n, xn real matrix.
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For notational convenience define

=sl s g ==

N, =7, 500,

l-\Iszsﬂ. - st 21(9‘9)’ q (4.5.30)
=uu2.= viu EL(Q‘Q)’

=usl [Vis ~2.(g’g)}'r

and consider the following problem -

. - R S T
Minimize J = Z [N~, 6s + N, Sy, +
1 st TR e T T O
fﬁgl}l=k
s (Gs N Ss + GuT N GSu, ) +
Z/k sl =2 [k =2 auu 2 | , .
(4.5.31)
T - .
toy Nyelfand *
T l 53
‘SST/k 3 -T/k YesT ST/K0

subject to the dynamical Equation (4.5.18).

Based on the comment concerning the Newton's method, if it were
true that problems (4.5.31) and (4.5.21) had equal Gradients and Hessians

. . T-1 T
along the nominal sequences {:)E_2 0}2 1’ {éssz 0}2 Iy then we

could obtain the Newton's direction for the latter by solving the former.

*(1)

If this direction is denoted by du , @ Newton's iteration could

then be performed to idantify a more rewarding nominal control trajectory

u(i+l):
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- (1+1) = (1) 1 * (1)
% [y 4

etV : - . +a . (4.5.32)
- {i+1) () *(4)
_Sr-1 | =11 _6“1:-1“4

The equality of the two problems' Gradients and Hessians is
demonstrated in Appendix C by direct evaluation along the nominal
control and state trajectories. The final expressions do not recommend
straightforward implementation of the Newton's method. Comparatively,
implementation through solution of problem (4.5.31) is much more
advantageous. The cpmputation of the Gradient VuE(ngfg, ""62T—l=0)

and especially of the.Hessian Viu 3(6gkég, N =0) and its inverse

Zr-1

1s bypassed and the Newton's direction
Su” = ~[v> 15w = 0 8 2017t 7 (8w =0,...,5u. .=0)
4= IV I8 = 0y k8o =0T 7 IR =0, By ;=0

is obtained from the solution of an optimal control problem with linear
dynamics and a general quadratic cost functional. This solution is
derived in Appendix D via dynamic programming and is reproduced below
as Algorithm A4.5.1. It has the advantage of being analytical and,

therefore, computationally efficient.

Algorithm A4.5.1: Computation of the Newton's Direction for the Uncon-

strained Reservoir Operation Problem.

For %=k, k+1, ..., T-1,
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Su

Ly = By Bup & * Busw

=3l R
Ay = B T Ry

FiSA

* o -
g =B Gspp) = -DylLy S5y,

+ A1, (4.5.33)
(4.5.34)
(4.5.35)
(4.5.36),

where the positive semidefinite matrices {Ez}iwk are obtained recursive-

ly by the following matrix Riccati equation:

=i
= =ssT
T T T
Bo™ oo + &g o1 &0 = [Bg Bpn 0 ¥ Nused™ -
- (4.5.37)
T -1 T
(B Koy B * Nuwnd  (Bp Boun &+ Nusd!
20 = T-l’ T—Z, ee ey k’
T
and the vectors L2£i=k result from )
N
by = Ny
R =N+ d)T h - [B K &, +N ]T
= —sg =g —L+l =2 —tl =2 “Susi
(4.5.38)
T -1 k T
CBy B Bt Nag! By s Y
)

2 =~ T-1,T-2...., k.

The optimal "<osts
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- _53

- T -
393, Ko 98y Py 88 T G L

ACE Y

where K, 31 as above and

CT = O,
Cp = Cpg =5 (By fayy¥ N1 TIBG g By + 8,070 1 4.5.39)
By ko * Nyl
L = T=1, T-2, ..., k. J
Lastly, the optimal value of the prcblem is
J (osk/k) i/k K SS * gi 881 /1 * Gt (4.5.40)

Essentially, implementation of this solution is completed in

VI are
=2 2=k

- computed by a backward pass of the corresponding equations from time

two steps: (1) the matrices (X }l -k and the vectors {fz.}

T to time k, and (2) the controls {6 } are computed by the

previous quantities and the sequence {6 } obtained from a forward

-&/k
pass of the dynamics. To illustrate how the second step is performed,

)

assume that {Kgi <k’ L}Z K have been computed. Then, the optimal
*
control SEk is obtained from
ot_Lk = =D, [Ly 6*/1( + 4] (4.5.41)

where 55 1/k = §s = 0. Thus,

—&/k
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. % T -1 .
e = Dl = -IB Kg B N B B v R (4.5.42)

Using this result in the dynamics, we find

- * *
Bz ™ B S By S = By (4.5.43)
and the next period's control vector 53§+1 .1s computed from
Su A
Setl = “Dipy [Lyqp 9 k-&-l/k R Ry
T -1 [T
(Brr1 K2 Biwr * N [ Bt Berz 2t + LygpenI”
T &

6§k+l/k Bt 2 * Euk+_1] ’ (4.5.44)

Con;inuing this process, all elements of the Newton’s direction

= [62:k cee 62;21] can be determined with minimal computatiﬁnal
requirements. These are mainly associated with the computation of
{Efg=k’ [@2}§=k and involve multiplications and inversions of nsx:ns’nux n,
nsxvnu matrices. Compared to a straightforward implementation of

Newton's method requiring the computation and inversionm of a

(T-k)uu X (’I‘-k)nu Hessian, where (T-k) could be of the order

of several hundreds, substantial computational savings should be

realized.

The second factor influencing the success of a minimization
method is the stepsize selection rule. As can be seen in Bertsekas,
1982, there are many available good choices: the minimization rule,
the limited minimization rule, the Goldstein rule, the Armijo rule,

and many others. Here we shall present the Armijoy stepsize selection
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rule because it is easily implemented and because it conveniently
generalizes for a problem with control constraints. For the general
problem of minimizing f(x) with respect to X, this rule can be

stated as follows:

The Armijo Stepsize Selectionm Rule:

Let B8 and 0 be scalars satisfying

0< B <1,0<0 < 2. (4.5.45)
Given a nonstationary'point_ﬁi and a direction 91’ the stepsize oy is
obtained from
"1
ay = g (4.5.46)
where mi,is the ‘first non-negative integer m for which
£(x,) - f(x. +87d,) > - 08%[V f(x)I% d.. (4.5.47)
s § =i -1’ - X =i —1

If X is a stationary point of £(.), we set ai=0.
The logic behind this rule is to guarantee that each iteration

will reduce the objective function's value by an amount proportional

to the Gradient and will thus prohibit convergence to a nonstationary

point.

In the case of the control problem Equation (4.5.47) becomes

-~ ~ * ~ T =%
32 0-T(B%u,, ... ,8%u 5 > 0 8717 (0, ..., 0 6,

(4.5.48)

* * *
where (du )T = [(ng)T... (GET_I)T] is the Newton's direction obtained
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by Algorithm A4.5.1. The Gradient VuJ(g,...,Q) can be efficiently
computed by the procedure developed at the end of Appendix C as

follows:

Algorithm A4.5.2: Computation of the Gradient

Counsider the sequence of vectors {21}§=k obtained recursively

by
2y = N,
T
2y 29’ 1:_2_*_1 + -blsg, ! (4.5.49)
2 = T=1,T=2,...,k J
Then
r~ L~ ! - . s T -
oy JQ,....0r B ¥ Be Biws
VuE(Q,...’Q) - :‘ = . T ) (4-5.50)
| POy 1 7@, 0 | yr-1 ¥ Bpoa®r |

Using the above results, the Armijo stepsize selection rule can

be stated as follows: Select the stepsize

where o, is the first non-negative integer m for which

T-1
~ Y, m. * m, * m T . T *
30,40, 0 -T(B 6y, .00 ,B dup_j) > ~0 B ‘ng [N, + Py, Bylou,.

(4.5.51)
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When the Newton's direction is combined with the Armijo stepsize
selection rule, the following convergence properties are realized
(Bertsekas, 1982):

i. Let {u}i be a sequence of control trajectories (E? =
[Ei .. Eg_l]) generated by the previously defined minimization method.
Then every limit point of {g}i is a stationary point of EQE).

-~

*
2. In the vicinity of a loecal minimum u where J(+) is convex,

D 4 . (®- T @)% 172

the norm |u converges to zero faster

than superlinarly with order two. Namely, it convergest to zero faster than
all sequences of the form ri=q36 ‘'where ¢>0, ge (0,1), 55(1,2

3. In the vicinity of a local minimum, the Armijo test is passed
with mi=0 and the stepsize ai equals unity,.

As will bé seen in Chapter 5, these theoretical properties are
indeed observed in practice making the previous design computationally
appealing.

When the problem is characterized by a convex structure (as, for
example, the case of linear dynmamics and convex cost terms {2;(',')}E;i,
ET(°)) the method will converge to the global minimum. Otherwise, the
minimization process should be restarted from different inmitial trajec-
tories and the global minimum should be determined by comparing
the cost functional vaiues at the indentified stationary points. In
order to prohibit movements opposite to the direction of descent, one
T
2

1 ‘s
are positive

T-
. . X A
will have fo ensure that the matrices {él} -k’ Tuugi=k

(semi)definite. A procedure that enforces these properties is included

in Appendix E.
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If the unconstrained global minimum violates no control or
state constraints, it also solves the constrained problem. In the
opposite event, a constrained minimization scheme should be adopted.
The development of a contral constrained minimization algorithm is the

following section's topic. State constraints will be accounted for in

Section 4.7.
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4.6 Accounting for Control Coqstraints

Towards reconstructing and solving the reservoir operation
Problem P.2, in this section we consider the following control constrained
formulation:

Problems P.4: The Reservoir Operation Problem with Control

Constraints.
~  T-1_

M?gimife Z 2 (SSZ/k,Gu } + 2 (SST/k (4.6.1)

—£° 2=k
subject to

a. 651+l/k ¢£6§£/k + B oul, Ek/k =0 (4.6.2)
=k, ..., T-1,

b, Su™® <6u, < 672, ,_ : (4.6.3)

Namely, we wish to develop a procedure accounting for control
magnitude constraints within the framework of the Open Loop Feedback
controller. Selectad classes of constrained minimization methods are

now briefly reviewed to find a suitable procedure.

4,6.1 Constrained Minimization Methods

Three broad classes of constrained minimization methods are
(1) the Feasible Direction methods, (2) the Manifold SuLoptimization
methods, and (3) the Projection Newton methods.

The Feasible Direction methods (e.g., Frank-Wolfe, Goldstein-
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\ . . 1
Levitin-Polyak, Zoutendijk's, etc.)” are natural extensions of the
unconstrained Generalized Gradient methods where the descent direction

gi is such thaﬁ the iteration

-’51+1"§i+°‘i% (4.6.4)
ylelds feasible points X i=1, 2, ... Gzi being the stepsize parameter).
At each iteration the feasible descent direction Ei is determined by
solving a linear or a quadratic minimization problem. This requirement
imposes considerable imputational overhead and makes these methods
unattractive for problems with many variables (such as Problem P.4).

The Manifold Supoptimization methods (e.g. Grodient brojection,
Rosen's Gradient Projection, Reduced Gradient, etc.)l are also bas;d
on (4.6.4) type {terations where the descent direction éi is obtained
by minimizing the objective function over the subspace defined by the
active constraints. If feasibility is violated, the minimization gs
repe.:ed over a new subspace defined by the currently actiye constraint
set, and the process is repeated until a point satisfying the necessary
conditions for optimality is reached. Methods of this class perform
quite well for problems of relatively small dimension, but are not
efficient for problems with many binding constraints. The reason is that

not more than one constraint can be added to the active set at each

iteration.

lFor a complete discussion, see Luendberger, 1973, Bertsekas, 1978.
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For the problem of minimizing £(x) subject to x > 0, a Projected
Newton method will perform the following iteration (Bertsekas, 1982,

Section 1.5):

+ ' n
Xipl [x, + a‘gi] (4.6.5)
+ ‘ . .
where [+] denotes the projection operator:
+ .
[ 2 ma¥{0,§l} .
+ . - L) .
[z]* = - (4.6.6)
L z, max{O,zn} ’
and gi is the descent direction given by
_91 = -Qifo(Ei). (4.6.7)

D; is a positive definite matrix of the following form.
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.. . n .
where 51 1s a positive definite matrix {h2}2=r +1 are positive numbers,

i
and the set of indices
+ | BE(x,) :
A x) =1{r+1, ..., 0} = {270 <%, < €5 Sy > 0} (4.6.9)

correspond to the binding and nearly binding constraints. The specifi-
cation 0 < Xoy < €4 is employed rather than xli = 0, to avert possible

"zigzagging'" behavior of the method. €; can be chosen from
_ _ - +
€; = min{e,wi}, v, = [xi [Ei V#f(ga)] [ (4.6.10)
with ¢ a small positive scalar.

. Thg's;epsizé ai can be obtained By an Armijo-like stepsize selection

‘rule as follows:

@ =8 (4.6.11)

where m, is the first non-negative integer m for which

f (x.)
+ - X,
f(§i)—f([§i+ aidi] ) > -g| 8 Z — dji _
jtA (x,) 3+
af (x.)
' m +

. o+
jeA in)
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and 0 € (o,-%), Be (0,1)

(Notice that if ﬁone of the constraints are binding, the previous step-
size selection rule becomes identical to the one given in Section 4.5.)
Under assumptions which are usuvally valid in actual problems, an
algoritim of the above type is guaranteed to identify constrained
critical points in a.finite number of iterations, a constrained critical

*
point being any point x such that

* )
I(x ) *
e 0, if xj >0,
]
x s (4.6.13)
f(x ) *
—3;—_2- 0, if xj='0, j=1, ..., n.
]
J
. ' : n . '
;f in addition £(°*) is convex.and Ei’ {hj}jﬂri+l are chosen eq?al
to
- - =1
2 2
IE(x) 3 £(x;)
axi : 0y, 3%, 4
i i
: P . . (4.6.14)
azf(gi) azf(zi)
X ;9X
rii 1i XL 4
L o
( -1
Prap |
hj e ,J.=ri+l, cee, 0O, (4.6.15)
iji

*
then the sequence {Ei} converges to the global minimum x faster than

superlinearly of an order at least two (see Section 4.5).
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These convergence properties make the
quite efficient for problems with simple constraints.
The previous algorithm easily generalizes to the case where X

is constrained by upper and lower bounds:

by £x b, (46.6.16)

Now, the iteration takes the form

++
Xy = [y tad ] (4.6.17)
where .
( bips 1E by < 2,
' z,, 1f b,.< z, <b
++ ’ — - 742 . :
([2]7) = 1 W= d= (4.6.18)
: b, , if z, <D '
v j— 31
i =1, ..., 0
\ ; J
and the set of active constraints is given by
of (x.)
++ =i
A (=) = {R/by <x) <by; ey and g, "
af (x.)
or b,, -€ <b —— < 0} . (4.6.19)

g2 "€y S Xy S By, and 3%,
1

With these definitions replacing the ones given above, the Projected
Newton method previously stated is also valid here.

It is a method of the third type that we shall employ in the
solution of Problem P.4. The main difficulty is again related to the

computation of the direction gi.
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4.6.2 A Projected Newton Method in Optimal Control

The directiong_i of a Projected Newcon method crasists of two parts:
The first corresponds to the nonbinding constraints i=1, 2, ..., o

jé Af+K§a) and is obtained by a Newton iteration

a2, 52 -1 - -
-4 £(x,) £(x) .af (x,)
13 3> 9%,;9%, 4 ] 9%y
. .11 . i .
. == . y . (4.6.20)
. 2 5 .
-dri:: 9 f(ﬁi) aTf(x,) Bf(gi)
dx_ .93 *e 2 ox
i rii xli 8xrii ) ] riiJ

assuming that the remaining variables are fixed at the respective
bounds. The othér'isa.scaled version of a Gradient method (Luendberger,
1973) where the scaling factor is equal to the inverse of the correspond-

ing diagonal element of the Hessian at point X,

2 -1
) f(_}gi)

If(x,)
= . PS.... 2. —— i = 2
di' 5 - s 3 ri+l, ceey M. (4.6.21)
J iji ji

The question is how to efficiently compute these two directiom parts
for the control Problem P.4.Raegarding the computation of the first part,
the approach employed for the uncontratined control problem in Section
4.5.2 is alsc applicable here. The difference is that now, due to the
constraints, some control vectors cannot be adjusted towards the
unconstrained minimum. Instead they must be fixed at their currently
nominal values. Appendix F includes the derivation of an analytical
procedure for computing the nonbinding direction part given the above

requirement.
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The scaled Gradient part of the direction can be conveniently
obtained from the procedures derived at the end cf Appendix C. These
concern the evaluation of the Gradient and the diagonal submatrices of
the Hessian at the nominal sequences.

Putting all these results together, we construct the following

control constrained minimization algorithm:

Algorithm A4,6.1: A Projected Newton Method im Optimal Control

In a typical iteration the following sequence of operations is

performed:
T-1

a. Compute the Gradient vectors {ngg SECTPRRN ) D APy

from - , oo .
ous 30,000 =N, + BB (4.6.22)
where
Br = Y
By 7 & 29 * Ny (4.6.29)
2 o= T-l,...,k
b. Calculate
a, = 0P - w® 95,017 (4.6.24)

If w, = 0, then stop; a stationary (or critical) comtrol trajectory is
reached. This is true because when wi=0, any control element ujl for

all j2 satisfies one of the following first order necessary conditious

for optimality:
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33(0,...,0) }

< and —_—a 0,
32 S %50 S %5 , X
33(0,...,0)
. ,max ) , =—— <0, d (4.6.25)
ujl ujl and aéujz .
33(0,...0)
min —_ —
a " d ——m———— > 0
uJZ qu Bdujl

j=l,...,nu, L=k, ... ,T=1

/

(Under convexity assumptions Eﬁi) is then a global minimum.)

Otherwise, determliae the set A++Qi(i)) of binding control constratins

from N
) - {Jl/u §z) f_u?in + ¢, and %ig%iéiiigl >0
or 2% - e < ul) < 2 oy - ‘9;(;;:;9-’ "
. J
j’l,...,nu, =k,...,T~1 } l (4.6.26)
where Ei = min {E,wi} , (4.6.27)

with € being a small positive scalar.

c¢. Compute the Newton direction for the nonbinding control
elements as follows:

Calculate the mattrices {K and the vectors {@%}§=k

2}2 =k

from

=

= I-! 4
T ssT

T
=0=2+1 Z

r.T
Ky = Begp + 4K Kot1 &g * Yygp) |

2  =ss® - [(B £

‘ (4.6.28)

re,-1 T T
[(B£K2+132+ Noug) ) [Bg B S + Mool

2= T-1,...,k,
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- oT - +y )T .
by =N+ 8 Ry - (B Ky 22 DAL

} (4.6.29)

«f(RT T
LBy Epar B * Buy) ]

1T
IR Bt a

7

rc .
implies that the rows or the rows

where the notation (§)r or (X)
and the columns of the matrix X corresponding to all control elements

Gujz with jle A++(g(l)) have been deleted. (Note, X may also be a vector.)

-
Then determine the Newton direction du from

-k %
Sug = -Dylly 885y + 4,1 . (4.6.30)

. ) '= T . T oore ;.]_
where D [(22 Roe1:8y + gusl? 17,

T r
kp = B Bpap &0 * Jusd) - |
" (4.6.31)

—
[ ]

T T
By Ly * Ny s

L =k,...,T-1,

d 83, S5y, +B.8u, 63, =
and 68y = 8y 95g . T BeOUys O3y )y

0, (4.6.32)
=1, ..., T-1.

In (4.6.32) the binding controls Gujl are set equal to zero:

* :
Sugy = 0, 3fe AP, (4.6.33)
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d. Compute the scaled Gradient direction for the binding
constraints: Having computed the Gradient in Step a, we aaditionally
need to calculate the diagonal elements of the Hessian which can be

accomplished as follows

2 > , T
GB&GEQ.J(9’°"’£D éuul + El =G=5?.-+-l gl (4.6.34)

i=k,...,T-1

where the matrices {§£}E=k are given by

§r = Hssr
T
o= 25 G41 & *Egq r ((4.6.35)
&= T-1, ..., 1.
) J
Then, the direction for the binding controls is found from:
. 32 70,...,0 |7 33c,...,0
u, = - (4.6.36)
J 2 adu ?
aéujz 1%
j2 € AH(\_J_(i)).
e. Determine a stepsize a; such that
"1
a; = B (4.6.37)

where mi is the first non-negative integer m for which
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3@, ee050) - T(18%6u 1T o (8%, T >
: 33¢0, . ..0) 37(0,...,0)
-o|g" 300, 5“;2 L) Py [Bma“;z] '

(4.6.38)

where Re(0,1), GE(O,%O:

and
(umln_ u(i) if (i)+ Bmsu*z < JOin

3o T3 T Upg 12 2 Y4
m, ¥ oo Jam ko min (1) m, * _ max |
(B ouj,Q,] {B 6“3'9,’ if ujl < ujl + B Gujliujl . (4.6.39)
max _ (1) (1) m. . * max
ujl ujl , if ujl + B aujl > ujl |

£. Perform thé iteration

o . a4 raidg*]H' (4.6.40)

" .
i+1) and continue the

to obtain the new nominal control trajectory E(
iterations until a statiomary control trajectory gf is found with
respect to Problem P.4.

Algorithm A4.6.1 is the core of the control design developed
in this work. As will be seen in Section 4.7, the modification which
is needed to account for the probabilistic  state constraints only
involves addition of some more quadratic terms in the present perform-

ance index.

A few comments are now noted:
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1. In Step d, the computation of the diagona. Hessian submatrices
can he avoided by using an ordinary Gradient direction where the scaling
factor is unit or some other positive number. The resulting method is -
still reliable, yet it may take more itereations to converge.

2. In the absence of convexity assumptions, one must assure that
a descending direction is obtained. This can be accomplished by

enforcing positive definiteness properties on the matrices {52}§=k R
T-1
}

L=k

3. If no control constraints are found binding (i.e., if the set

(1)

{N

Niug as in Appendix E.

Af+(u ) is émpcy), then the algorithm conveniently becomes the
Newton method for unconstrained minimization presented in Section 4.5.
4. Under convexity assumptions, every limit poin% of the

sequence {E(i)} generated by this algorithm is a statiomary control
trajectory. If the method comverges to a local minimum Ef» it
identifies the set of active constraints at'g* in a finite number of

iterations. Then it becomes the unconstrained Newton method and
R

*
} converges to zero

achieves a superlinear convergence rate (i.e. f

faster than.all sequences of the form r, = qui, q>0, Be(0,1), pe(l,2)).

i
Theoretical derivation of these properties for the nonlinear programming
formulation presented in Section 4.6.2 can be found in Bertsekas, 1982.

(i+1) has been obtained,

5. After a new nominal control sequence u
one can continue the iterations by reconstructing the corresponding
Problem P.4 from P.l as has been presented in Sections 4.3, 4.5, and 4.6.
Concerning the continuous time nonlinear dynamics, this iteration is an

ordinary Gradient method iteration. However, t"~ milder the nonlinearity

of the dynmamics,the more Newtonlike the procedure becomes. With respect
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to the reservoir system, if the releases cannot effect drastic storage
changes, then linearization of the dynamics is a good approximation for
a wide release range and the procedure will exhibit fast convergence
rate.

Algorithm A4.6.1 is a well defined minimization procedure capable
of efficiently handling large numbers of control constraints. Computa-
tional experience reported in the following chapters is suggestive of

this conclusion.

Our last task is to account for probabilistic state constraints.
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4.7 Accounting for Probabilistic State Constraints

In this final effort, all state constraints are restored and
the following control probdlem is considered:

Problem P.5: The Reservoir Operation Problem with Control and

State Constraints.

~ T=1 -
Minimize J = 2Zk 22(652/k,05£) + ZT(5§T/k) (4.7.1)
{6u,} -t =
_2' 2'=k

subject to

a. § = 0 (4.7.2)

Sper/k = Qg - Osg By Suy, 85
gl’k, s ey T—l,

min max ) : )
P. 62& f_ﬁgl 5_521 , o ) (4.7.3)
L=k,...,T-1,

min 3

%SJZ
min
s g (4.7.4)

' _max
p(stz/Ik)désjzi (j,?. ,
6smax
i1

i=1,...,n_, 2=k,...,T,
S )

d. Continuing operations after T.

For consistency with the Open Loop Feedback control philosophy,
the probability densities of the states at all times %=k,...,T are
conditioned on all information available at time k. Namely, the possi-

bility of future information gathering is ignored. Under this assumption,
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in Section 4.5.2 it was shown that all probability densities zre
Gaussian with mean vectors obtained by Equation (4,7,2] and covariance

matrices resulting from (c.f., Equation (4.5.9)))

T, .
Bsari/e ™ 20 Bapse 90 F % Bewsx

1=k, ..., T-1.

given, (4.7.5)

It follows that p(ds_/I ) is given by
k

- 2
1 (889 = 659 1)

s 1
p(Ss Z/I ) = exp % (4.7.6)
T 2B/, P Gandy; J
| . th
where (gsl/k)jj denotes the j  diagonal element of gsl/k' It is now

poésible to substitute the probabilistic'constraints (3.7.4) by equiva-
lenf deterministic constraints on the mean value of the state. This

is facilitated by the following two facts: First, the demsity (4.7.6)

is completely characterized by its mean and variance. Second, the co-
variauce Equarion (4.7.5) does not depend on the controls du,, 2=k,...,
T-l. As a result, we can change the position of p(dsjl/lk) along the
Gs.z axis but we cannot alter its shape. The equivalent constraints on
the mean value can be easily derived as follows: Consider the constraint
min

3

in
p(8s, /1) dés ) < Yie (4.7.7)

Ss

x

and the standard Gaussian variate z ~ N(0,1). The level zmln can be

ja

found (from standard normal variate tables) for which
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min

z
P 12
1 s ' e 2 dz = V?;n. (4.7.8)
- Y
Then, as long as
- min
\J(—sllk T + stZ/k'Z stz 4.7.9)
min min
or ENYAL Sip " Z3g Ve (4.7.10)

holds true, the probabilistic constraint (4.7.7) is also satisfied and

vice versa. Now we can call

-min min min
st stz - sz (gsl/k)jj (4.7.11)
and in place of (4.7.7) consider the inequality
-min -
stz < stz/k' (4.7.12)

For example, if the reliability parameter Y;;n is equal to 0.025 (i.e.,

if the state stl is allowed to vioiate its lower bound as?zn at most

2.5Z of the time), the level z?in
(4.7.12) implies that the mean value dgjllk should be kept a distance

equals -1.96. Then the constraint

of 1,96 standard deviations above 6s?in.

Similarly the upper probability constraints can be transformed

to constraints of the following type

seax , (4.7.13)

jz/k < 954
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where 5§§ix = Gs?zx - z?zx \/(gsllk)jj (4.7.14)

with z?ix such that

o0 L2
I o2 4 =y, (4.7.15)
2 J

_.max

"jz

Thus, we have shown how to convert the probabilistic constraints

(4.7.4) into equivalent constraints on the state's mean:

-min - -max
. 6Sj. fr6sj2[k f-dsjl . (4.7.;6)

j-l, ..I’ ns’ zak, ...’ T,

(4.7.17)

-min = = max
or 9%, 95,28,

2=k,...,T

in vector notation.

Although these constraints are similar to the ones imposed on
the controls, they cannot be handled by the Projected Newton developed in
the previous section. The reason is that the states are functionally
related to the controls through the system dynamics, and it is‘either
the controls or the states that can serve as an independent set of
variables-for the minimization of 3. Optimal control problems with
state coastraints are best handled by Penalty Function of Multiplier

methodg a discussion of which will be offered in the following section.
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The continuing operations system requirements will be discussed later.

A last comment refers to the proposed treatment of the prébabilistic
constraints in relation to the Open Loop Feedback control procedure.
According to algorithm A4.4.5. at esach time k the OLF controller deter-
mines tge entire control trajectory {Ez}i;i assuming that no other
decision specifications take place over the period [k, T-1]. In reality
only the first member from each optimal trajectory is used and the process
is vepeated at the next decision time. Thus, owing to this sequential
set-up, the applied controls are of a feedback nature E; = H;(ék), k=0,1,
.+., although Open Loop controls are being determined. The OLF control
structure relates to this section's developments through the covariance
propagatibg Equatién (4.7.5). The covariance is propagated under the
assumption of'qben Loop ¢ontrol sequences. For a certain class of systems1
this may result in covariance matrices with diago;al elements growing-
unbounded over time. On the other hand, if the feedback laws were
taken into account, the above elements would be either stabilized at a
finite level or they would grow at a lower rate. It is evident that the
Open Loop approach could result in suboptimal control policies in the sease
that the applied controls would meet the probabilistic constraints at
greater percentages of time than the one required. However, the feedback
control functions cannot be obtained explicitly and thereforas cannot be

used in the covariance calculations. We suggest two ways to remedy the

lThis is the class of unstable systems for which some eigenvalues

ng}i;i matrices are in absolute magnitude greater than one. (For a short

but informative treatment of stability, see Kailach, 1980, Section 2.6.)
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situation. One strictly concerns the single reservoir case and will be
presented in Chapter 5 while the other will be briefly discussed now.

As explained in Section 4.5, at each time k, the optimal Open Loop

*T-1
(e

A4,5.1. "The controls are obtained by

trajectory is derived through the Dynamic Programming Algorithm

* - .
63£ = -ay BE[LE 6§£/k + AQ]’ (4.7.18)
=k,...,T-1

where o, is the stepsize of the ith iteration, and {22, L

are the control gains defined in (4.5.34), (4.5.35), and (4.5.36).

-1
2 Aghaai

Equation (4.7.18) is a linear feedback functioﬁ of the state and can be
adopted as a first order approximation of the actual feedback laws
{H;(GEQ}E:i . (Recall that (4.7.18) solves a locally linearized
aépro%imaéi;n.of the nonlinear prablem.) ‘Thé idéa is to substitute
(4.7.18) in the system dynamics and constr;ct the folldwing ""Closed

Loop" system representation:

850, = 8,85, + B[~ D [Ly 85, +11]1 + & =

= [¢, —o; B;D,L,1 Ssy —;B,Dolly + &, (4.7.19)

The covariance propagaﬁion equation for the system (4.7.19) is given

by
T 2
2o = (2970 BoDoTyl Bogpy [85705 BpDoLedl + 9y (4.7.20)
2 = k, . T-l
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and results in tighter variances than the ones obtained by Equation
(4.7.5) CAthans, 1984).

The approach can be extended to the control constrained case

T-1

by using the results of Algoritim A4.6.1 for the matrices {21’L1}2=k

{Equation 4.6.31). For Equation (%.7.20) to continue being valid,

the only modification needed is to restore the original dimensions of the
matrices by including the deleted rows and columms but with zero
elements. In other words, the suggestion is to propagate the covariance
in an OQpen Loop marnzc when the controls are binding and use the Closed

Loop approach for the unconstrained segments.

4.7.1 Penalty Functica and Multiplier Methods

The idea of the Penalty Function and Multiplier methods is to
.ohpain the solution of a constrained problem by solving a sequence of
unconstrained ones. Their ‘validity is based on the fact that for
well-posed problems the sequence of the unconstrained solutions
converges tc the solution of the constrained problem.

For Problem P.5 a Penalty Function method can be derived as
follows:

Each two-sided state inequality constraint (4.7.21) can be brokzs

up into two one-sided constraints:

-min -

5§j2 - Géjllk'i 0, (4.7.22)
- -max

5§j2/k - 5§j2 <0, (4.7.23)

j=l,...,ns, 2=k,...,T
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and these can be converted into equality constraints by introducing

the non-negative variables y?zn? yj2 :

853y - 85t yﬁ“ = 0, y‘;‘f‘ >0, (4.7.24)
8301 = 555p * y - 0, 20, (4.7.25)
j=1, oI, 2=k, ,T
Now define the Lagrangian function
to Guge o big By e oy B
= J(su seees8y 1) ¥ ;211 -Jz-‘-éi(cgg?in_ 5§j2/k + Y?zn)z +
. :‘2“- Ci<55j§)k - " + y?i")z (4.7.26)

%

where Ci is a positive penalty parameter and consider the following

sequence of problems:

. min min max max
Minim;fi Lci(SEk,...,GgT_l,zk veeesdy oYy reeea¥p Y (4.7.27)
gy} gak
{ min vmax}'r
Ly 4y =g
subject to
s = s 5s, 5, = 0 4.7.28
2 8T8y S5 TR %S %%k (4.7.28)
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b Sp" < Supc 523, (4.7.29)
2=k, ...,T-1,
c. 7p>0, ' (4.7.30)
L0, (4.7.31)
bek,...,T

where i = 0,1,..., Ci+l > Ci > 0 and Ci -+ «,

If (ng, z*)i is a global minimum of the above problem, then it can

be shown that every limit point of the sequence {QE*}i is a global minimum
of problem P.5. (Zor a proof in a general nonlinear programming context,
see Luendberger, 1973, Section'12.l or Bertsekas, 1982, Sections 2.1, 3.1).

Intuitively, this result is expected to hold because for large Ci

g5 2k + ymz fate minimized when

values the penalty terms C (dgjl/k - 59

(stl/k max +)rj2 ) approaches zero or equlvalently when the constraint
ds, —os?ax <0 is satisfied. (Similar argument holds for the lower bound
j&/k "7 —

penalties as well.

It is still questionable why one should choose to solve the
sequence 0f the above problems rather than the original one. Notice,
however, that for a particular state and control trajectory the min. iiza-
tion with respect to x?in and z?ax can be explicitly performed. Consider

for instance, minimizing the Lagrangian in (4.7.26) with respect to

ymin subject to y?in > 0. This i:. equivalent to
hE2 j -
- 2
minimize { (Gsmin 55.2/ + ymin) } (4.7.32)
e /e 7]
min

subject to y, ;n > 0. Since (4.7.28) is a convex quadratic function with

min X ;
respect Lo le , the solution is
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( -min.

, o -min -
-(Gsz - Qsjl/k)’ if stz < stz/k
(y’ﬁ“)* .. } (4.7.33)
[ -min
L 0 , if stl 3-5§jz/k
J

Similarly the optimal value of any y?zx variable can be seen to be

- -max -max -
. -(stl/k-- 6sj2 ), if stl > 6sj2/k
(yjma; 9 - (4.7.34)
-max -
0 , 1£ stl < 6Sj2/k

Substituting these results into the Lagrangian function we find

Lci(aﬁc,.--,a_’.br_l) .= J(G}#{,-.-,G&T_l) +

—min . - 2
+ 73 %Ci[maxfo,(stln-Ssjl/k)}] +

j%
1 = -max, 1,2 (4.7.35)

and our problem becomes one of minimizing (4.7.35) with respect to
{QEQ} i;t subject to the dynamics (4.7.28) and the control magnitude
constraints (4.7.29). The penalty terms in (4.7.35) are zero when the
corresponding constraints are not violated while they prescribe
quadratic costs whenever there is a violation. Notice, however,

that this problem can be solved by the Projected Newton Algorithm

A4.6.1. The only adjustment needed at each iteration is tc determine
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which of the state constraints (4.7.22) or (4.7.23) are currently
violated and include in the objective function J(ﬁgk,...,dgT_l) the
corresponding quadratic and linear penalty terms. The procedure
involves the following sequence of operations: For a level Ci of the

penalty parameter use Algorithm A4.6.1 to find the minimizingz control

*
trajectory u (Ci); then increase Ci to C > Ci and repeat the previous

i+1
step until the sequence {_g_*(ci)}i converges to the solution,gf. For
convex problems the method can also be operated by increasing Ci at
each Projected Newton iteration, but in the general case this may cause
failures.

The rate at which Ci should be increased can be determined
by preliminary experimentation. Slow increment rate will result in slow
convergence while an extremely fast rate will render the problem ill-
conditioned. .In the latter case a solufion at some iteration may not
exist or it may become increasingly difficult to obtain. However,
our computational experience with the Penalty Function method in rela-
tion to reservoir operation problems shows that the method is quite

reliable and that a penalty increment formula (see also Bertsekas,

1982, Chapter 2)

= 8C,, B8e[4,10] (4.7.36)

Cit1 1

performs well

Multiplier methods are theoretically characterized by better
convergence properties than penalty function methods, yet in practise

they are more difficult to implement.
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For the control Problem P.5 the associated Lagrangian of a

Multiplier method is defined by

o o min min max min min  max max
LCi(O%goooso}lT"l,zk,..-’ XT ’zk ! uk,""-l:l:r ’l_j(!""u—’r ) B
o 1R —~min .- min l —ain min 21
T, .. Cuyp ) §2{” p (855,85, 1+ Yip 0¥ 384088 g 88 vy )
gmax, max Smax, max
+ Z{ujz (stl/k Sig T Y3y )+ (stl/k Sy T )%}
(4.7.37)

where {Ezin,uz x}T are the multiplier vectors and Ci is the penalty

parameter as before In the orlolnal method of multipliers (Hestenes,

1969), Problem P.5 can be solved as follows First, for fixed values of

Eoin,i’ anx i, Ci we

pinimize LC (ngzoin, zoax’ umln y1 max,i)

T-1 i
{632}
min 'I.‘
ry oy J
subject to
2 03gu K T & S5yt By Sy, 95 = O,
=k,...,T-1,
b Gumin < Sy, < &
= = T = T
2=k,...,T-1,
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c. y,o 20,
max
y, 20,

As in the Penalty Function method, this problem can be explicitly solved

. min max,T , e . .
with vespect to {21 » Iy } since minimization of L. with raspect,

2=k C

i
say, to y?in is equivalent to
min,i,.-min .- min,, 1 -min_ .- min, 2
minimizing{uj2 (Ssjl stl/k + ) )+ —2-Ci(<5sj2 dsjl/k+ Y31 )7}
(4.7.38)
min
subject to yjl .2_0.
The minimumof this subproblem is either the point
' - min, i
min,i _ _ c-min _ .= oo 2
le (stl ésjl/k) Ci (4.7.39)
minimizing the parabola (4.7.34), or
min,i _
yjl 0, (4.7.40)

if the previous point is a negative number. More compactly we can

write

min,i
min,i i

Yyt = max {0, (837765, ) - b (4.7.41)

jL/k C

i

Similarly for the case of upper state constraints, we find
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Vi C

umax ,1
max,l . max o,-[sE. —ss *1- M L (4.7.42)
j2/% 773 1

Substituting (4.7.41) and (4.7.42) in the Lagrangian, the previous

problem reduces to the one that follows:

min,di- umax,i

For fixed u » , Ci

mirnimize E(GEk, ""62T-l) +

{63&}g:i
Llmin,i ] umin,i:
min,i -min_.- _ 2 1 somin o= _j};_.\
+ z uj (max S50 stl/k’ = J)+ 3C, | max Osz 6Sj2/k, 5 J
% \ 1l : i
Llmax , 1 Llmax,iq 27
i = A 2 1 max j2 i
+ z uu'zax,n. max<4 s _osmax’ e L }-i—C -Gs !
48 L2 3L/ 38 c, 271 jz/k c, f .
subject to
a. 6§2+l/k = g% 5§£/k + B3, Gu 55 x/k =0
2=k, ..., T=1
max
b. . 622 < 622 < 6u£
=k, ..., T-1.
The penalty terms in the objective functiom of this problem become
min i .-min .- l -min .-min,2
32 <05j2 - ds Z/k) + i(st2 5Sj2 ),
(4.7.43)
max i -max 1 - -max, 2
e DI LA CEIT Y T

when the corresponding constraints are violated and
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l, min,i. 2
- =(u,, >)7/c,.
273 1 ’ (4.7.44)

l, max,i. 2

when they are not. In any case this is a problem that can be
efficiently solved by the Projected Newton Algorithm A4.6.1. Having
obtained this solutionm, the procedure coutinues by updating the multi-
pliers and the penmalty parameter and repeacing the previous step. The

new multipliers can be specified by

-min

min,i+l _ min,i _ o, omin,i o
Hig Hig  C, max { (ujz /Ci)’(55j2 stZ/k)}
max,i+l _  max,i _ (08X, 1 - -max, y ¢ (4.7.45)
) ujZ + C, max { (ujl /Ci)’(dsjllk -6sj2 D
j=;,...,us, =k,...,T | )
and Ci+l can be obtained as in the penalty function method.

The main advantage of this over the Penalty Function method

' which sometimes occurs

is related to the problem of "ill-conditioning'
when very high penalty parameter values are needed to induce convergence.
In the method of multipliers, owing to the multiplier iteration (4.7.45),
convergence is brought about at moderate Ci values avoiding the previous
problem and exhibiting a faster convergence rate. These benefits,
however, are realized only if the initial multiplier values are close

to the ones at the.optimal point. In the event that the initial

guesses are "bad", the method may diverge or take too many interations

to converge. We have found that in optimal control problems, where

there are many binding state constraints, guessing good initial multi-

plier values can be a formidable assignment. For this reason and
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provided that there are no "ill-conditioning'" problems, the simpler
‘Penalty Function-method is also safer to use.

This section discussed procedures fo; handling probabilistic
state constraints and completed the third basic step in the design
of the controller. A last issue concerning‘the appropriate specifica-
tion of the control horizon T in relation to the Continuing Operations

system requirement is the topic of this chapter's concluding section.

4.7.2. The Continuing Operations System Requirement

Reservoir systems are expected to satisfactorily operate
throughout a long-time span. In fact the actual length of the operating
horizon depends on a variety of physicél and socioeconomic factors and
cgnnot be a priori determined. At the same time mathematical formulations
aiding month-to-month or day-to-day opefation should be well definea and
computationally efficient. Long-term optimal performance can be
guaranteed by optimizing the system.modeliover a control horizon T
which is of the same order of magnitude as the system's expected life-
time. However, taking T longer will result in heavier computational re-
quirements and this may render the control procedure inefficient. If
the controller was one of the optimal feedback types presented in
Section 4.4, there would be no other choice; the parameter T would have
to represent an escimate of the system's operationgl life. In contrast,
the OLF control procedure does not seek to a priori determine the best
feedback laws at all decision times. Rather, it seeks to specify the

*
bast controls" & %=0,...,T-1 one at a time. Within this framework,

the best T choice is evidently to consider the shortest control horizon
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that reveals the optimal decision 2; for the immediately upcoming time
period. In other words, if this op:iimal terminal time is denoted by Tk’
then [k'Tk] is the shortest interval [k,T] for which the first member of
the OLF optimal trajectories {u:"";E;-l} has settled to a constant
vector. The fact that 5; remains constant for T greater than some
characteristic value can be formally proved by use of Contraction Mapping
theory (Bertsekas, 1976, Chapter 6, and specifically, Section 6.7). This
behavior also makes intuitive sense becaure system conditions in the remote
future are not expected to influence present decisicn making.

Among other factors the length [k’Tk] depends on the specification
of the terminal cost term lTk(dsTk) or ETk(déTk/k). (The other factors
are related to the inputs’ variability and periodicities, thg state and
control conétrainﬁs, and the rest of the performance index; all of.which.
are specified for a particular ;ystem.) The term Eik(-) allows one to
drive the system's state to any desirable vector é;k/k

the control horizon. This is accomplished by penalizing the deviations

at the end of

-k
of the terminal time state away from s If the penalty is much

mrk/ k
T-1

L

L=k

higher than all the other costs il(dél/k’sgl)’ then the controller

will first make sure that on the average the terminal state is close to

T=-1
-* - * » [} -~ -
s Tk/k and next will be concerned with aninimizing sz 22(6§2/k,531).

Yet, if the penalty is not significant, the generated trajectories will
T-1

minimize Z i (8s ,6u_ ) paying no attention to where the terminal
=k 2 =9 /K79

state vector will end up. As the terminal system's state will also
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determine the initial conditions for subsequent operations, correct

-~

specification of~lr(.) is in general instrumental to the long-term
k

system performance. However, owing to its structure, the Open Loop Feed-
back controlle: is not so critically dependent upon these specificatiuns.

"In this procedure using some incorrect ZT (+) will only prolong the
k
*
control horizon [k,Tk] required to reveal the optimal .- One can then

-~

determine Tk by assuming a reasonable Zr(:) and trying progressively
k
longer control horizoms [k,T]. Tk will be the time for which the first
* * *
decision Ek remains constant in all optimal trajectories {uk""’uT-l}
> .
for T > 'I‘k

For cases where the above procedure fails to identify relatively
short control horizons, cmne might consider answering a more direct
question: namely, how to determine %:G.) which. corresponds to some

k

prespecified T Toward this end consider the problem of:

.
T-1 ~ _ -
minimizing zg 2,85 pe:6uy) + L,(85, 1) (4.7.46)
{GU }T"l —'k
=2’ 2=k

subject to all system constraints where T is much greater than Tk and
ZT(-) is dominated by the other running costs. According to the
Dynamic Programming Algorithm A4.4.1, this problem can be solved in

two steps where in the first we find the minimum:

— T_l ~ -
Jo (8s, )= 7 2, (8s.,

Su,) + 2 (65.) (4.7.47)
WY R A

k/k

solving the dynamic program from time T to time Tk and in the second we
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kal

minimize ) (Ss., ,) (4.7.47)
%

T —Tk/k

%082 g jyoSy) + 3 1

T-
k L
{Sug}zak

subject to all related system constaints. From Eq. (4.7.48) we
conclude that the terminal cost term should approximate the "cost to gzo"

JT (*). In practice JT.(-) will have to be obtained in discretized

k k
form by solving (4.7.47) for different initial state vectors 65& e’
/¥

However, these computations can be performed off-line (a priori) and the
resulting JT:(.) can be approximated by some analyticai function which
will serve as -he terminal cost term for all on-lire (real time) vpera-
tions.

The pfevious discussion completes the design of the Open Loop
Feedback controller for the solution of the reservoir operation problem.
Algorithm A4.6.1 modifed by the quadratic penalty terms from the
probabilistic comstraint violations is used at each decision time k=p,l,...
to identify the optimal actiomn 3; to be applied throughout the period
[tk’tk+1]' (If it fails to do so, the conclusion to be drawn is that
the system caﬁnot control the input process so as to meet its objectives
at the specified reliability levels. These levels should then btz relaxed
and the procedure repeated.) Between such computation cycles, measurements
Z of the observable system quantities become available and can help
update the statistics of the state's Gaussian p.d.f. p(gk/Ik).' The
equations for the update step (Extended Kalman Filter) are included
in Appendix G.

The method developed here will be called Extended Linear Quadratic

Gaussian control (ELQG) because it shares similar analytical
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characteristics with the Linear Quadratic Gaussian control solution and
in addition it can be employed to nonlinear, constrained, and non-
quadratic problems. The following chapters Teport computational

experience in reservoir operation case studies.
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CHAPTER 5

-A SINGLE RESERVOIR CASE STUDY

5.1 Introduction and Overview

The ELQG control method was theoretically designed to exhibit
reliability and computational afficieﬁcy for addressing dimensionally
large systems. The case study presented in this chapter will be a
first verification and test of the new method's potential in real
time decision making. It concerns the operation of Egypt's High
Aswan Dam for more efficient use of the River Nile waters.

After discussing and formulating the control problem, ELQG
will be employed in several experimental runs revealing various per-
fprmance aspects. .The runs will aiso identify certain system idiosyn-
cracies which are subsequently exploite@ in setting up an appropriate
sequential control scheme. A record of historical inflow data will
then be used in a simulation analysis to compare ELQG's performance
with other control methods. The chapter will conclude with reference

to some system specific policy-making issues.
\
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5.2 The High Aswan Dam: Hydrologic and Operational Characteristics

Calmiy flqwing from the Equatorial Lakes or turbulently from
the Ethiopian highlands, the River Nile has historically been the
only source or livelihood to Egypt:. Being so vital, the Nile has long
become the subjoct of studies seeking to modulate its markedly variable
flows and create a source of dependable water supply. These efforts
have;begun nearly 6,000 years ago with the comstruction of a masonry
dam about 20 km tothe south of Cairo (El Assiouti et al., 1979) and
culminated in 1968 with the completion of the High Aswan Dam (HAD)
located by the Egyptian-Sudanese borders (see Figure 5.2.1).

Egypt experiences a semi-arid climate and except for a narrow
coastal zona to the north of the Nile's Delta receives virtually no
rain. :A grbﬁndwater aquifer existing below the Delta regiom is solely
recharged with séepage water from the river and, consequently, the Nile
is Egypt's only source of fresh waﬁer supply. Figure 5.2.2 gives the
average monthly Nile flows based on observed data over the period
1912 to 1965 at Wadi Halfa (see Figure 5.2.1 and aAppendix H). The
apparent seasonal variability is a consequence of the different hydro-
logic responses characterizing the major Main Nile tributaries, namely,
the White and the Blue Nile. The first, contributing about one-third
of the vearly total, flows evenly throughout the year, while the second
is responsible for the violent floods arriving in August, September,
and October. Apart from this pronounced variation within a year,
the Nile also exhibits significant overyear variability. During
high flood years, the water passing by Wadi Halfa may reach 140

milliard cubic metters (1 milliard m3 = 1 billion m3 = 109 m3)
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while during drought periods, it may fall to 50 milliard cubic meters,
the bistorical average being approximately 84 (Buchanan and Bras, 1981).
Table 5.2.1 summarizes these characteristics by reporting the monthly
means, standard deviatioms, correlation coefficients, minimum, and
maximum observed flows calculated on the basis of the 1912-1965 data
record included in Appendix H.

The High Aswan Dam is by far the most effective control project
in the Nile basin. It has a storage capacity of 168 milliard cubic
meters, 32.7 of which comprise its dead storage (see Figure 3.2.3)
allocated for silt~deposits and estimated to last 460-500 vears.

Water can be released at a controllable rate through a diversion

channel which eventually divides into 24 branches. Twelve of these
branqhes are feeding the 12 turbine power plants while the rest are
designed to bypasﬁ the turbines and, if necessary, discharge up to 1
milliard cubic meters of water per day. However, the downstream river
channel and water distribution network cannot transport releases higher
than 0.25 to 0.275 milliard m3/d for fear of severe damages due to

bank erosion. To alleviate the possibility of excessive releases,

the Toshka spillway was constructed on the western bank of the reser-
voir's lake (Lake Nasser). The spillway is a free-flow channel operating
when the water elevation exceeds 178 m (above sea level) or equivalently
when the storage exceeds the volume of 137.7 milliard m3. It is designed
to dispose of 0.25 milliard m3 per day when the reservoir elevation
reaches 182.6 m. The water is directed into the Toshka depression

where it evaporates., An emergency spillway is also situated on the

reservoir's western bank and it begins to operate at 182.6 meters water
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TABLE 5.2.1: MONTHLY NILE FLOW STATISTICS (WADI HALFA)

Expected St. Correlation

Value - Deviation | Coefficient | Minimum Maximum
Month (x109 m3) (xlO9 m3) (xlO9 m3) (x109‘m3)
Jan. 3.507 0.734 0.9080 2.040 5.750
Feb. 2.452 0.681 0.7503 1.420 5.080
Mar. 2,275 0.661 0.8649 1.260 4.810
Apr. 2,042 0.685 0.8714 1.050 4,540
May 1.924 0.750 0.7953 0.880 | 4.340
June 2.073 0.772 0.4955 1.000 4.520
July 5.170 1.516 0.6377 2.230 10.000
Aug. 19.448 3.821 0.7115 7.680 27.100
Sept. 21.991 3.745 0.7851 13,400 31.700
Oct. 14.605 3.125 0.8070 7.860 | 24.200
Nov, 7.166 1.752 0.8948 4.140 12.260
Dec. 4.538 ' 0.857 0.9206 2.990 7,060
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level. 1Its purpose is to discharge in the downstream river channel
all flood wate% that would raise the water level above 183.0 m.

Due to the semi-arid climate, HAD suffers héavy evaporation
losses. The distribution of the average monthly evaportation rates
presented in Figure 5.2.4 (Buchanan and Bras, 1981) results in a mean
annual value of 2700 millimeters (mm). Multiplied by the yearly average
surface area, this rate causes the loss of 10 to 15 milliard m3 of water
per year. Other losses of smaller magnitude are due to seepage and rock
saturation (El Assiouti et al. 1979).

The primary operational objective of the HAD is to satisfy the
Egyptian agricultural, municipal, and industrial water needs. On a
monthly basis these downstream watér supply requirements follow the dis-
tribution shown in Figure 5.2.5. They amount to 55.5 milliard m3 per.
year. Comparing the previous disgribution with- that of the inflows
(Figure 5.2.1), the HAD important role as a regulation project becomes
apparent.

The other primary objective of the operation is to provide flood
protection which, as mentioned, translates to preventing channel degrada-
tion.

Lastly but very importantly, HAD is the major energy supplier
to the Egyptian Power systemand currently satisfies about half of its
total demand. Each of the twelve Francis turbines has 175 Megawatt
power capacity and can operate under net hydraulic head ranging between
35 and 77 meters. Assuming a tailwater elevation of 108 m (see Figure

5.2.3) and neglecting hydraulic friction losees, it follows that the
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the turbines can operate between water levels 143 and 185 meters; that
is, at all levels above the dead storage zone (147 m). Figure 5.2.6
(adopted from El Assiouti et al., 1979) snows the nominal relationship
of the power with the discharge and net hydrualic head. The actual
eﬁefgy produdtion.ié also a function of the load factor an average value
which is 0.70. For maintenance purgoses two turbines are always inopera-
tive,and this reduces the available power capacity to 1750 Mw. Consider-
ing energy generation only, HAD should be operated at high reservoir
elevations with uniform releases thrqughout the year (base power
station). However, this mode of operation is in conflict with the water
supply and flood control objectives for uses such as agriculture and
flood control which suggests more detailed analysis.

The River Nile is also of great importance for the country of
Sudan. By the Nile Water Agreement 61959) Egypt and Sudan established
the fol;owing rights on the Nile waters: From the 84 milliard m3
yearly average at Wadi Halfa, Egypt is entitled to use 55.5 milliard
m3 while Sudan's share is 18.5 milliard m3. The remaining 10 milliard
m3 correspond to the yearly lo;ses from the reservoir and cannot be used.
Figure 5.2.7 gives the estimated monthly Sudan abstractions in percentages
of the yearly total. This information is necessary for the 1912-1965
historical data to simulate present or future conditions because the
record assumes very littleor no Sudan abstractions, The agreement also
determines that each country accrues equal shares from the water bene-
fits of proposed upstream conservation projects. The projects (Jonglei T,

Machar Marshes, Jonglei Il, Bahr el Ghazal) are expected to increase the
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Nile's yearly average yield at Wadi Halfa by about 19 milliard m3
(UNDP TR 14) adding another 9.5 milliard m3 to each country's share.
These additional quantities are necessary to counter balance the
expected water shortages from intensive development scenarios in Egypt
and Sudan.

In summary, the HAD operation calls for satisfying the growing
downstream water supply fequirements, providing reliable flood protec-
tion, and producing as much energy as possible under changing hydrologic
conditions. With regard to flood control, it could be argued that the
construction of the Toshka spillway has essentially alleviated any
associated threat. This is indeed correct; however, it also has
created another serious concern - that is, to avoid the Toshka spills
as wmuch. as possible so that the otherwise wasted water can be used
for energy generation and water supply purposes within the constraints
imposed by channel degradation. In an era when the water availability
constrains the country's development, Egypt can use all additional bene-

fits resulting from a more effective HAD management.
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5.3 Previous Studies on the HAD

Classified by the adopted optimization procedure, the studies
on the HAQ can bé distinguished into Linear and Dynamic Programming
models.

The models of the first category (Thomas and Revelle, 1966;
Guariso, et ai. 1979, 1980) assume a deterministic inflow sequence
(average or historical monthly flows) and a linear water balance
reservoir-model (fixed evaporatinn losses), and they attempt to deter-
mine the tradeoff curve between agriculture and hydropower. For a
system of highly varying, nonstationavy flows with multi-year control
capability, this approach can produce questionable results and should
not be used in real time operation planning. The reason for this is
that the Pareto Optimal solutions identifiedlon the basis of suboptimal
modeling assumptionsvmost likely Belong to the inferior solution set .
of the true stochastic problem.

The Dynamic Programming models (E1l Assiouti, ét al., 1979;
Alarcoa and Marks, 1979; Buchanan and Bras, 1981; Thompson, 1981)
incorporate the river flow uncertainty through a Markov chain repre~
sentation. For the control of a single reservoir in monthly time
increments, the basic‘procedure is as follows:

Denote

m: the number of complete years remaining until the end of the

control horizon

n: the number of months remaining until the end of the control

horizon,
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t: the number c¢f months remaining in the current year (notice
that if n is the present month, n+l is the preceding one
and that n = 12m + t)

th |, '

s_: the 1 discrete value of tlie reservoir storage at the

beginning of month n, i = 1, 2, ..., I,
j .th .. .
wi: The j discrete value of the river flow during month n,

ji=1,2, ..., J,

J

pik: The probability that inflow wﬁ will occur given that Vol

has just been realized.
The river flows are acsumed to follow a lag one periodically stationary

Markov chain where

" ik k .
ply . = pl%, alli, k, m, . | (5.3.1)
The system incurs a cost gn(si, si, un) when the beginning of the wmonth
.storage was si, the inflow wﬂ is realized and the amount u is released.

The cost functions are also periodically statiomary in the following

sense:
i i i 1 .
81 omre (S12mre? Yizmee? Yl2mee) T 8 (Spr ¥po Up)» 3 L1 mot
(5.3-2)
It is assumed that both variables S, and W4y 3Te perfectly known at

the end of month n+l, and the objective is co determine the sequence of

feedback control laws

(3, wi.), allm, 4, 3 (5.3.3)
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which minimize the expected cost

0N
E{ g,(sg, Wy, uy)} (5.3.4)
Lzo 2892 ¥o» Yy

over a control horizonTsubject to the system dynamics

ko_ 1 ] 1 1 -
sn_1 sn + v u Ln(sn, wh, un) (5.3.5)

and the other system constraints on the reservoir release

min max
u <u < un y alln

The term Ln(""') in Equation (5.3.5) reﬁresents the various reser-
voir losses and it is also assumed to be periodically statiomary.

, \ min max .,
The storage capac1ty constraints Sh < s, < sd are accounted for

when quantizing the range [ mln’ :ax] in I discrete levels.

The solution is obtained through the D.P. recursive equation

which specifies that for each month the optimal policy is determined

by

:i.wj )=J'a1r<r{ulllin{‘zc pJ [°(s,w::,u)+

n

w )]} o (5.3.7)

2
+J (Sn-l’ n

n—-1
where s* is given by Equation (5.3.5). The "cost to 2o J (sl wk)
n-1 °© -1""n-1""n

1s obtained recursively via ‘ -

13 . ik i K
Io(s, wiy) = lchn (g (s » w ,u (s , wn+l)) +

2 k
+ Jn—l(sn-l’ wn)] (5.3.8)
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starting from some terminal condition JO(‘,').

This is the stationary or Steady State Dynamic Programming model
(SSDP), which for an adequately long control horizon yields optimal
policies also exhibiting periodic stationarity - |

* i 3 * i 3 ..
Moot Slomres “lomes1) = Be(Spr Wipy)» a1l 1,305t (5.3.9)

Apart from the straightforward D.P. recursion, the statiomary policies
can be obtained more efficiently via the methods of Successive Approxi-
mations (Su and Deininger, 1972), or Policy Iteration (Howard, 1970,
Bertsekas, 1976).

, Due to its stationmarity assumptions, SSDP can beneficially character=-
ize the average system behavior. Towa;d'ext?nding its applicability to
nonstationary systems, the modification suggested by Buchanan and Bras,
1981, has prpved effective, According to their procedure, a multi-lag
stochastic ﬁodel fitted to the inflow process (Curry ané Bras, 1980)

uses real time observations to issue forecasts at eack time step of

the system's operation. The forecasts update the Markovian transition

probabilities T_ months into the future as long as there is a signifi-

F

cant gain over the a priuri estimates. An ordinary D.P. procedure then

determines the optimal policies from time T, up- to the present using

F

T (*,*). Next, the current month's control action

F
is taken and the procedure is repeated at the following decision time.

SSDP's "cost to go" J

This model, structured according to the Open Loop Feedback control
philosophy, will be referred to as Adaptive Markov Dynamic Programming

(AMDP). Having the ability to more accurately anticipate future
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conditions, AMDP was found to exhibit improved performance with respect
to SSDP, especially at times when the reservoir's storage approaches
critical flood Ar drought levels., The idea behind utilizing forecasted
information is the basis of an efficient suboptimal control procedure
known as Partial Open Loop Feedback Control (Bertsekas, 1976, Section
5.5) and will also be exploited in this work in a differént setting.
Inherent disadvantages of the previous D.P. procedures are (1) their
requirement to discretize the reservoir storage and inflow variables, and
(2) their inability to explicitly satisfy feligbility constraints. As a
result of the first, the identified policies are approximations of the
true optimal ones with the '"goodness" of the approximation directly
dependent upon the '"fineness" of the quantization. As a result of the
second, the above procedures cannot reconstruct the Pareto Optimal Surface
discussed‘in Section 4.2. Lastly, their épplication o multireservoir

cases is prohibited by "dimensionality" limitationms.
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5.4 Extended Linear Quadratic Gaussian Control

The purpose of this section is to outline the steps of tuning the
basic ELQC ﬁrocedure to the idiosyncracie; of a parti:zular control
problem. There is no doubt that the availability of powerful analytical
tools potentially offers an advantage; yet, their "blind" usage could
easily lead to costly implementation failures. Thus, these steps should
be carried out with an intuitive understanding of the system's character-
isties.

The emphasis of the case study 1s placed on the control aspects
of the HAD management problem. The system identification part will
not be addressed; instead, we shall employ modeling assumptions and
parameter values which are consistent with those of previous studies.

In this way, fair g?ounds can be established for comparisons and.safe

conclucsions can be drawn.

5.4.1 Reservoir Dvnamics

Let s(t) denote the HAD storage at time t, let w(t), u(t), q(s(t)),
e(t) respectively denote the inflow, release, Toshka outflow, and
evaporation rates, and let A(s(t)) be the area-storage reservoir
relationship. Then, the following water balance differential equation

can be written to model the reservoir dymamics:

diﬁt’- = -e() A(s(t)) - q(s(t)) - u(r) + w(t) (5.4.1)

Equation (5.4.1) assumes that reservoir losses due to causes other

than evaporation are negligible or that they can adequately be
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accounted for by properly adjusting e(t). Regarding the form of
A(s(t)), tae following analytic function has been fitted to and well

approximates available survey data (Alarcom and Marks, 1979):
A(s(t)) = -3164.28 + 25.4914 s(t) + 1092.92 In(s(t)). . (5.4.2)

. . . . . 2
The above gives the reservoir's surface area in square kilometers (Xm")
3

when the storage volume is expressed in milliard cubiC meters (109 m ).

This function is plotted in Figure 5.4.1 (solid line) together with

the similarly obtained elevation-storage relationship (dashed line):
H(s(t)) = 79.9734 + 0.03698 s(t) + 18.8705 in(s(t)). (5.4.3)

Again, the reservoir elevation H(s(t)) is obtained in meters when the
storage is expressed in milliard m3. The Toshka outflow rate is related

to the reservoir storage through (Buchanan and Bras, 1981):

0, if H(s(t)) < 178.0 m
q(s(t)) = 5.4.4)

0.019 [E(s(t)) - 178.01°/3, 1f H(s(t))>178.0 m

where q(s(t)) is obtained in milliard m3 per day when the elevation is
in meters.

Next, we consider a mean inflow and release time trajectories

t t
{u(e)} T {w(t)} T and ask how the system is expected to respond
t=t, , S =ty

over the interval [tk,tT] under these inputs. In other words, we are

interested in tracing the corresponding mean storage trajectory
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t
{E(t)}:z from some initial condition s (5Q. Mathematically this

can be accomplished by integrating Equation (5.4.1) with inputs and

initial condition as stated above:

d2l6) - £G(),0) - A + W), (5.4.5)

' t
where f(s(t)= -e(t) A(s(t)) -q(s(t)) and E(ﬁ‘), {u(e), w(e)} T are given.

t=t ,

This is a nonlinear differential equation whose solution can be

. . . t
accurately obtained by some numerical integration routine (a 5 R and

th

6 Runge Kutta numerical scheme was employed in this work). After
t
obtaining {S<t)}tzt we can construct the continuous time perturba-
k

tion system model corresponding to the previous nominal trajectories.
Define:
: 3

8a(t) = s(t) - 5(t),
Su(t) = u(t) - u(e),

_ (5.4.6)
z(t) = w(t) - w(t),
ts[ck, trds J
and expand £(s(t),t) = -e(t)A(s(t)) - q(s(t)) around s(t):
fés(t),t) = £(3(c), )+ Ei§§§%§%45i1S(t)=g(t)5s<:) -
= f(s(r) + fl(g(u),t) §s(t). (5.4.7)

Subtracting (5.4.5% from (5.4.1) and taking into account (5.4.6) and

(5.4.7) we find
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____diz(t) = £,(5(£),6)8s(c) - Su(e) + E(¢) (5.4.8)
where fl(g(t),t) = -e(t) 3A§:E§;j T '.83£?£§))}' (5.4.9)
s<t>=5<t>’_ s(£)=3(t)

This 1s the continuous time linear perturbation model which we shall
use In place of Equation (5.4.,1) in the ELQG computations corresponding
to the hypothesized nominal trajectories. Its credibility depends on
how well the approximation [f(s(t),t) + fl(g(t),t)Ss(t)] represents the
function f(s(t),t) over the possible variation range of s(t). Figure
5.4.2 shows a plot of the nonlinear term f£(s(t),t) = -e(t) A(s(t))-q(s(t))
for e(t) = 0.0065 m3 per day - an average evéporation rate from Figure
5.2.4 up to.the storége where the Toshka ‘spillway starts functioning
(about 137.7 x lO9 m3), this term i3 very mildly nonlinear. Beyond
this value the Toshka outflow dominates and establishes a new trend
drastically different from the previous one. Although the tramsition
from segment ab to bc is highly nonlinear, it will not jeopardize
the approximation (5.4.8). This is true because one of the system's
operational constraints will be to maintain the reservoir's storage
in the segment ab (to avoid wasting water). The possible variation
range of s(t) is specified by the corresponding probability density
function. It.will bé seen that the interval [s(t) - 2 Ps(t),
s(t) = ZPS(t)], Qhere Ps(t) is the associated standard deviation, will

9

not exceed 20 x 10 m3. Over this range and within the segment ab,

the nonlinear term f(s(t),t) and its linear approximation are practicaliy
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identical. As noted in Sectiop 4.6, due to this attribute, the
ELQC control method is expected to exhibit fast (at least quadratic}
convergence rate. In cases where substantial nonlinearities exist
in the system dynamics, one should prefer using statistical rather
than Taylor series lineavization (see end of Section 4.3).

Returning to the perturbation model (5.4.8), we have the
following expression for the term fl(g(t), t) over the segment ab on
Figure 5.4.2: |

1
s(t)

£,(3(),6) = 10™Ce(e) *[25.4916 + 1092.92 ] (5.4.10)
where fi(g(t),t) is obtained in milliard m3 per x time units when
s(t) is in milliard.m3 and e(:t) is expressed in millimeters per x time‘
units tx being any time intervals. |

Being interested in monthly policies, we can convert Equation
(5.4.8) into its discrete time counterpart by integrating it over the
monthly periods [t2”i+I]’ 2=k, k+l, ..., T-1. As has been derived for
the general case in Section 4.3, the result is the following discrete

time system model:

652+1 = ¢2 532 + B, 6u2 + EZ (5.4.11)

2=k, k+1, ..., T-1

where Gsl = da(tl) = s(tz) - E(tz), (5.4.12)
Su, = Su(z,) = ulty) - ulty), (5.4.13)
(5.4.14)

(bz = ¢ t2,+l,t2.)’
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d¢(r,t2)

I = £,6(0,7) (1,8, o(ty,ty) = 1, (5.4.15)
Co+1
B2 a (=1) ¢(t2+1’r)dr’ (5.4.16)
t 2 |
E(g,} =0, (5.4.17)
_ 0, if 2#n
z{szau} = ot (5.4.18)
Q (t,) 6% (e, AT , 1€ Loy

N ) e
Lak, ..., T-1

The derivation assumes that the releases are constant within eack monthly

interval;

{6u(t) - Gu(tl), teft ), znk,'..., T-1} (5.4.19)

2° Yo+l

and that the same is true for the spectral density of the random inflowt:

{Qw(r) = Qw(tz), Ts[tl, tz+1)' =k, ..., T-1} . (5.4.20)

Detailed discussion concerning the specification of the random inflow
statistics will be givan in the following sectionm.

The basic computations in deriving the discrete time system
model (5.4.11).are associated with the integrations in (5.4.15), (5.4.16),
and (5.4.18). These can be carried out in a systematic way by taking
advantage of the following state transition coefficient property (c.f.

Equation (4.3.20):
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Oty 1oty) = 9(Ey ,5T) ¢(T,tz) (5.4.21)

from which

$Ctp4yEy)

¢ﬁtz+l.T) = -756?7223__- . (5.4.22)

Substituting (5.4.12) in (5.4.16) and (5.4.18) we find that the

previous integraions can be performed as follows:

Simultaneously integrate

d¢(T’tL) - .
—ar - = £1(s(0),T) o(r,ey), #lry,ty) =1, (5.4.23)
d B(T,tz) 1
Tdt LT T,y B(tg,ty) = 0, (5.4.24)
d Q- (T,t,) - . .
gr -~ - . J Qr(ty.ty) = 0, (5.4.25)

6% (1,t,)

over the interval [tl’t2+l]’ 2=k, ..., T-1. Then, compute ¢2’ Bl’

B(£%) = qpy from

b = (tg 15t (5.4.26)
Bz = ¢2’ B(tgri-l"tl)’ (5.4.27)
Qe = Q,(8) 45 Quley, ). (5.4.28:

Actually, the integration of (5.4.23), (5.4.24), and (5.4.25) can also

be combined with the one of Equaticn (5.4.5) to yield all the sequences

“1 13 T-1

e 2 -
{s(t)}t=té {¢2,B2, Esz =k in one forward pass from time tk to t
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As has been derived in Section 4.5 (Equation (4.5.9)), the need
to compute ng » 2=k. ..., T-1, is related to the propagation of the

state's variance:

2
Pogriix ™ %0 Pensie. T Qs Pk = O (5.4.29

2=k, ..., T-1.

The zero initial condition reflects the fact that at time k, i.e., the
present time, reservoir storage is accurately known. Equivalent to
(5.4.29), the state variance can be obtained from continuous time

considerations. It can be shown {(Gelb, 1974, Section 3.7) that

dfs(t:)

- - zflcg(c),;? P (r) +Q (t) | .(5.4:30)

where P_(t) = E{[s(t)-5()1%} = E{6s%(m)}. - (5.4.31)

Starting from Ps(tk) = Psk/k = 0, Equation (5.4.30) can be integrated

and provide the variance Ps = Ps(tz) At any time t 2=k, ..., T-1.

2/k 2’
Hence, in place of (5.4.25) we can integrate (5.4.30) together with
(5.4.5), (5.4.23), (5.4.24) and obtain in one forward pass the mean
and variance trajectories along with the state and control coefficients
of the discrete time model. This is how these computations were
organized here with a 5th and 6th order Runge Kutta routine performing
the Integrations.

Throughout this section is has been assumed that the statistics

of the random inflow process {G(t), Qw(t); te[tk,tTD are known for the

computations performed at time €y However in reality, inflow data
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are provided in discrete time form as in Appendix H. A procedure
for retrieving the necessary information from such records and
a procedure for incoporating forecasted information are discussed in

the next section.

5.4.2 Inflow Statistics

In reality, inflow w(t) is a continuous time stochastic
process. Therefore, its complete characterization would require
knowledge of all joint probability density functions P(w(tl), w(tz),...,
w(tn); tl, tys ...,'tn) where {tl, Eys vees tn} is any set of
time instants. In general, however, such characterization is not only
very difficult to establish but it also includes much more information
thaw 1s actually needed. For example, a monthly control model is not
so concerned with hourly or daily variatioms as itiis with montély
characteristics. On the other hand, since water is being delivered
and affects storagé, elevation, perr production, ev;poration, etc.,
continuously over the month, we find it appropriate to derive the
discrete time system model from the continuous time formulation rather
than assume discrete system dynamics. The question is how to define
a continuous time random process reproducing monthly inflow character-
istics.

Assume for now that the amount of water delivered by the inflow
process during a particular month is independent of any other month's
water yleld. Let W, i=1, ..., 12 denote the corresponding random
variables. From a monthly data record (as, for instance, in Appendix H)

one can determine the first two sample statistical mcments'{ai, Qw H
i
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1=1, ..., 12} (as in Table 5.2.1). Consider now a continuous time

white Gaussian process wi(t) such that

1+l

w = wi(s)ds (5.4.32)

4

where time instants ti’ tisl designate the beginning and end of month

i. Our intention is to determine the properties of the process wi(t)

which preserves up to 2nd statistical moment the correspondence expressed

by Equation (5.4.32). The arbitrary Gaussian assumption is a mathematical

translation that we are only concerned with the first two statistical
moments. Additionally, based on Ehis section's introductory remarks,
it'will be assumed that over month ;, wi(s) is charagterized by consant
mean (E{wi(s)} = Gi(s), se[ti,ti+lj) and constant specﬁral density

B L (D, (o () - 5,61} = @, @8Ga), (7, Eley ey D).

We can now specify the parameters Gi(s), Qw.(s) by means of Equation

i
(5.4.32) as follows: Taking expectations of L:h sides we find

t

_ i+l
Bl = w; = E v, (s)ds (5.4.33)
1

or, since expectation and integration can be interchanged as linear

operators,
i+l |
Gi(s)ds. (5.4.34)

€1
it

&y

However, by assumption wi(S) is constant over [ti’ti+l) and
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_ 2
i+1 i

£tig) (5.4.35)

Regarding the variance of v, we have

{-J’ti+l ) 2}
= E w,(s)Yds - w, =
Qwi i ((8)ds = w,
- 1
- 2
|t J"1+1 ) }
= E w,(s)ds - w,(s)ds =
J i i
C ty £y
Ft. 2
= E il [wi(s) - ;i(s)]ds } =
o ti
141 Cia _ -
= E J I [w; (£) = w (D) ][w, (s) - w,(s)] drds
SR C
141 [ F1h . . '
= J- E [wi(r) - wi(r)][wi(s) - wi(s)] drds)=
ti ti : .

Ciwl ¢ B4
Q, (r)§(x-s) drds =
X
&y Y

t,

i+l
- Q, (r)dr. (5.4.36)
ey i .
And because Qw (r) was assumed constant throughout [t,,t., ,). we
i i’ i+l
finally find
Qy (s) QWi [
w (8) = — , seft,, t, ). (5.4.37)
i ti+l ti 1" i+l
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Equations (5,4,37) and (5,4,35) completely define the continuous
time Gaussian random process wi(t), i=1, ,,,, 12, which is needed
to produce first and second momént effects consistent with the monthly
lumped inflows,

Consider now the case where ghe independence assumption.concern-
ing the wvariables LT i=1l, ..., 12, is no longer valid. Namely,
assume that one could look at the previous months' inflows and more
accurately predict the inflows of forthcoming months, To efficiently
incorporate this possibility, the idea of the Partial Open loop Feed-
back Control (Bertsekag, 1976) can be very effective. First, a valid
forecasting model should be identified based on the available inflow
data, Then at each decision time tk this model uses past observations
to forecast the probability densities of future inflows over the control
horizon Itk,tT]. Adopting the updated inflow p.d.f:s. and assuming
statistical independence, the contrpller obtains the optimal policies
and the scheme is repeated at the next decision time, In other words,
at each decision time the forecasting model updates the monthly
means and variances {52, le}g;i. Then, the corresponding continuous
time statistics {§2<s)’ le(s); seltz,t£+l)}§;i are also updated via
Equation (5.%4,37), (5,4,35) and used in the ELQG control method com-
putations, According to the POLFC idea, although the existing correla-
tion structure is called for to produce better inflow predictioms, it
1s subsequently ignored in the control operations, However, the
inconsistency 1s not so influential owing to the OLF procedure seeking
not to determine all feedback laws at once but rather sequentiallv. On

the other hand, if correlation was to be optimally accounted for, it
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would require additional state variables (see Bertsekas, 1976, Section
2.3) perhaps reducing computational efficiency.

Incorporating forecasted informationm cannot result in worse
policies than those obtained'withouc it, But it will not necessarily
lead to great improvements. In order to assess the worth of forecasting
we shall consider here thres models of varying predictive power;

The first is based on the a priosri monthly statistics and simply fore-
casts the monthly means witrh the corresponding variance. The second
is known as Thomas-Fiering model and consists of twelve coupled

equations of the following form:

Iit+1 T
= by eranmme————
Vipl T Yip1 Pi41 4 o, Gy wi) * O Pid1,1 Si4l (5.4.38)
where ;i and Ui = VQw represent the a priori mean and standard
. i .
deviation of the month i inflows and D, denotes the correlation

i+l,1
coefficient between the inflows of months i+l and 1 (see Table.S.Z.l).

The random term €i+l is a zero mean Gaussian variable of unit variance.

Given that inflow v, has been realized, the previous equation can

be used to forecast the coinditional p.d.f. of L) (which is Gaussian

under the assumption for € and the linear form of (5.4.35)) by

i+l

specifying the conditional mean

g
- - i+1, -
Wi ® Bl ¥ Pi+1,1 o, (w,-wy) +0,,, 71 €i41/¥;!
— i 1+1 i
g
- i+1 -
Yiel T P11 o, Cwy=wy) (5.4.39)

and the variance
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- 2 2
~ = E {(w w Y2/} = (1 -p ) . (5.4.40)
%14-1 i 141 w174 vy 1+1,1 Q"i+1

Similarly, lead-2 forecasts can be obtained by invoking

g
=z it+2 -z I
Vit T Yie2 T Pign iv 01 (Wi = Wigp) ¥ 954071 Pi+2,i+1%142
(5.4.51)

and substituting Vil by the previously forecasted value:

ag

= 1+2 -
Vit2/4 E{wi+2/wi} LA + pi+2’i+lpi+l,i -azf-(wi-wi) (5.3.42)
- 2
= E {(w v, 5/ ) /w} = (L-p, 02 . Q. . (5.4.43)
Qwi+2/i i+2 Tit2/4 i i+2,1i+1"1+1, 1 Qwi+2

In general it can be shown (by induction) that the forecasted mean and

variance at lead lime. 2 are given by

- - I+ -
Vi /4 T Y0P g 1g-1Pi4e-1 1422 0 Pitl,iC o, (wy=w,),
| (5.4.44)
= - 2 2 e e o 2 . . .45
R T R B R R RN L I (5.4.43)

Since the correlation coefficients are always included in interval
[-1,1] (with -1,1 limiting cases), the previous formulas show that
as the forecast lead time increases, ;i+2/i and Q tend more

W, .
i+2/4
towards the corresponding a priori statistics. Eguation (5.4.45) also

shows that the forecasted variance Qw is always less than the a
i+2/ .
priori Qw with this reduction governed by the factor
iH
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2

1+L/1 (5.4.49)

R P P

2 2
i+2,4+2-1 ° "N i+l,1

also known as R-square statistic

Table 5.3.1 gives the coefficient R§+2/i of the Thomas-Fiering
model for the Wadi Halfa Nile flow data included in Appendix H. They
have been computed for lead times up to 12 months for forecasts issued
from every month of the year.

The third forecasting model is the one developed by Curry and Bras,
(1980, and also employed in Buchanan and Bras, 1981. It is a multivar-
iate regression model using Nile flow obseervations at 8 sites (in-
cluding Wadi Halfa). Its predictive capability is better than that of
the Thomas-Fiering model as canm he verified by comparing Table 5.3.1 to
5.3.2 where the R-square stagistics for the Curry;Bras'forecasting model
are'consisterty higher (resulting'in tighter forecast variances).
However, as mentioned, the need of a forecasting model for control
?urposes should be evaluated according to the relative improvements
of the system performance. Measures of the High Aswan Dam operation

performance are now discussed.
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JUNE

(1 DENOTES THE MONTH FROM WHICH AN £-LEAD FORECAST

IS ISSUED)

. LEAD  JAN. FEB. MAR. APR. MAY JULY AUG. SEPT. OCT. NOV. DEC.
1 0.8245 | 0.5629 0.7481 [0.7594 0.6325 0.2455 [0.4066 .5062 0.6165 .6512 1 0.8007 B4T S
2 0.4641 0.4211 0.5681 |0.4803 0.1553 0.0998 (0.2058 .3121 ]0.4014 .5215 | 0.6786 6987
3 0.3472 0.3198 0.3593 0.1179 0.0631 | 0.0505 |0.1269 .2032 |0.3214 44191 0.5595 3933
4 0.2636 | 0.2023 0.0882 |0.0479 0.0326 | 0.0311 ]0.0826 .1627 10.2724 L3644 1 0.3149 2942
5 0.1668 0.0497 0.0359 |0.0243 0.0197 0.0203 (0.0662 .1379 10.2246 .2051| 0.2356 2234
6 0.0409 | 0.0202 0.0182 0.0150 | 0.0128 0.0162 }(0.0561 .1137 |0.1264 .1534] 0.1789 1413
7 0.0166 | 0.0102 0.0112 |{0.0097 0.0103 0.0138 |0.0462 .0640 10.0946 .1165| 0.1132 0347
8 0.0084 0.0063 [0.0073 |0.0078 0.0087 0ﬂ6113 0.0260 .0479 10.0718 .0737] 0.0278 0L4l
9 0.0052 0.0041 0.0058 0.0066 0.0072 0.0064 {0.0195 .0364 | 0.0454 .0181| 0.0113 0071

10 0.0034 0.0033 0.0049 b.0055 0.0040 | 0.0048 |[0.0148 .0230 {0.0112 .0074F 0.0057 0044

11 0.0027 0.0028 0.0041 0.0031 0.0030 0.6036 0.0093 .0056 | 0.0045 .0037} 0.0035 0029

12 0.0023 | 0.0023 |0.0023 | 0.00623 0.0023 | 0.0023 | 0.0023 .0023 | 0.0023 .0023} 0.0023 0023
TABLE 5.3.1: Ri+l/i COEFFICIENTS.FOR THE THOMAS~-FIERING MODEL
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LEAD| JAN. FEB. MAR. APR. MAY JUNE JULY AUG.| SEPT. 0CT. NOV. DEC.
1 {0. 569 | 0.9281 | 0.9589 | 0.9822 | 0.9255 { 0.8358 [0.7502| 0.7180| 0.7724 | 0.8918 |0.9282| 0.9864
2 10.7298 | 0.8299 | 0.9298 [ 0.6928 | 0.4002 | 9.1037 |0,4571| 0.4262| 0.4285 | 0.8707 |c . 9507| 0.9089
3 [0.8166 | 0.9013 | 0.5959 | 0.2291 | 0.0279 | 0.0533 |0.3944| 0.2111| 0.6297 | 0.8992 |0.8891}] 0.6503
4 10.8649 | 0.6018 | 0.2045 | 0.0132 | 0.0451 | 0.1818 [0.1881| 0.4598| 0.8174 | 0.8637 [0.6679! 0.8289
5 10.5423 | 0.2132 | 0.0140 | 0.0466 | 0.1345 0.0526 0.3796! 0.650,| 0.7822 | 0.6191 '0.1862| 0.8284
6 10.2202 | 0.0146 | 0.0465 | 0.1343 | 0.0426 | 0.2725 |0.5565| 0.%277| 0.6113 | 0.7985 |0.7989| 0.5154
7 10.0214 | 0.0466 | 0.0541 | 0.0465 | 0.2191 | 0,4489 |0.5273| 0.4940| 0.7609 | 0.7962 |0.4942| 0.1986
8 10.0326 | 0.0475 | 0.0353 | 0.2049 | 0.3617 | 0.4194 {0.4218| 0.6992| 0.7261 | 0.4791 10.1872| 0.0107
9 10.0471 | 0.0298 | 0.2139 | 0.3355 | 0.3379 | 0.3595 !0.7034{ 0.6512| 0.4440 | 0.1678 [0.1827| 0.0800

10 [0.0301 | 0.1997 | 0.3118 | 0.3137 | 0.2344 0.2788 0.6207| 0.4066{ 0.1822 | 0.1759 |0.0916| 0.0349
11 10.1913 | 0.3035 | 0.2628 | 0.1861 | 0.6281 ! 0.5835 |0.3774| 0.1734| 0.1677 | 0.0897 [0.1027| 0.0130
12 10.2779 | 0.2684 | 0.1481 | 0.5849 | 0.5394 | 0.3631 |0.1792] 0.1651| 0.0875 | 0.0989 {0.0915{ 0.1700

TABLE 5.3.2:

2
R

PH2/4

COEFFICIENTS FOR THE CURRY-BRAS MODEL

(1 DENOTES THE MONTH FROM WHICI AN £-LEAD

FORECAST IS ISSUED)

195



5.4.3 Modeling of Objectives

The High Aswan Dam 1is primarily a water supﬁlyAand flood
brotection project and secondly a hydroelectric energy supplier.

The downstream water supply requirements preseatly amount to the
monthly quantities reported in Figure 5.2.5 and ar= satisfied as long

as HAD releases are sufficiently high:

up %" < uy, 2=k, ..., Tl . (5.4.47)
Implicitly, they also induce lower bounds on the reservoir storage to
guarantee that there will be enough wataer to make the previous releases
possible. These constraints can only be of a probabilistic nature
specifying that

Prtsl'< sgin] f_yzin, 2=k;:,.., T, . ’ . (5.4.48)__

where Szin can be taken equal to the ceiling of the dead storage zone

(32.72 x lO9 m3) and Yzin ia the permissible probabilifty of violation
(i.e., the probability of not meeting the downstream water supply
demand). Under the assumption of Gaussian state probability densities
with means and variances obtained as discussed in Section 5.4.1

(Equation (5.4.5), (5.4.30)), constraint (5.4.48) was seen in Section

4,7 to be equivalent to

- min min
- JB . =Kk, ... .b4.49
kuZ Sy zZ Pa/k’l k, ,T (5.4.49)

min ,
where 2 1s such that
min

zg 12 ,
' i (5.4.50)

1995



Some reprcsentative Y:in, zzin pairs follow:

Ymin zmin
A 2

0.500 0.000
0.100 -1.281
0.050 «1,644
0.025 -1.960
0.005 -2.575
0.001 -3.090

The flood protection objective translates into channel degrada-
‘ tion concerns which specify that monthlv releases should not exceed

the threshold at 7.6 milliard m3 per montih (or 0.253 x lO9 m3 per day):

max

u, < up?, ek, ..., T-L. (5.4.51)

The presence of the Toshka spillway dismisses other flood protec-
tion measures but it brings up the issue of minimizing spills so that
the resulting water savings can be used in energy generation or for water

supply purposes. Hence on upper probabilistic constraint is imposed:

P_ls, > szax] E_Yzax, L=k, ...T, (5.4.52)
max max
or l/k :_s =z, Vﬁsl/k (5.4.53)

where Szax denotes the storage of 137.72 milliard m3, Toshka's operating
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threshold. the previously given representative (Yiin, zzin) values

are also valid for the (Yzax, zzax) pair with the difference that

zmax - - min
2 Zs

Based on historical data, the HAD energy production function is

given by (Thompson, 1981):

1.194 1.268

uy (5.4.54)

E, = 0.517 [ﬁz - 108.1]]

L

where El is obtained in GWH per month when the monfhly reservoir release
1s expressed in mill;ard m3 and the monthly average water elevation )
is in meters (see Equation (5.4.3)). This function accounts for

the systum's load factor and is in close agreement with TFigure (5.2.6)'s
turbirn characteristic curves. As the 10 operational HAD turbines can
produce at most 1280 GWH pef wonth (Buchanan :and Bras, 1981; Thompson,.

1981), according to the discussion in Sections 4.2, 4.3 we shall consider

the following penalty cost function for minimizatioh:

T-1
J= E Z g(sz,ul) + gT(sT)} (5.4.55)
{s,} =k
27 L=kt
where g(s,,u,) = [1280. - 0.517 ul'194[n(s2)-1os.]1'268]2, (5.4.56)
H(s)) = 79.9734 + 0.03698 s, + 18.8705 ln(s,), (5.4.57)
SZ = s(tz), Sy given. (5.4.58)

(The terminal cost term will be defined later.)

Following the procedure in Section 4.5.1 we should next proceed

to specify the cost functions
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l(ész,dul) = +631, u +6“z)’ (5.4.59;

2
z(asl/k, Psz/kyduz) = 65 {1(632‘,602)1' ’ (5.4.60)
2(6sl/k,6u ) = Z(Gsl/k’ Z/k’aul)’ (5.4.61)
where 651+l/k ¢2651/k + R OuZ, 65 k/k =0 (5.4.62)
2 .
P52+l/k = ¢ Psl/k + le, Sk/k = Q (5.4.63)

gl-lc, caasy T-ll

"Now (5.4.56) is of a general nonlinear form and this a priori calls

for the analytical approximation procedure presented in Appendix B.
However, pldtting rthis function (Figures 5.4.3, 5.4.4.) shows that it
is well app;oximated by a quadratic fuuctional. The particular
approximation shown on fhesé figures is a second order Taylor expansion

of the function g(sz,uz) around so=125, u0=6.5 and is given by

0 0 0 0
v/ = - -
g \sz,ul\ g(s ,u’) + Ns(sl s7) + Nu(“z u ) +

0.2 0.2
+ %Nss(sl-s ) %Nuu(gl_u )
+ N (u -uo)(s —so) (5.4.64)
us " % 2

where g(so,uo) = 71593.05,

N = -1906.931 = 28(123.6:5)
s ) 9S
‘N = -99522.65 = 28(123,6:5)
u Ju
2
N__ = 36.23141 = 28(123.6.3) r (5.4.69
SS
98
N = 66203.65 = 28133,6.3)
uu Bu
B I 29(125,6.5)
N, = 975.1393 T
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Since the approximation is satisfactory within the range of the
possible storage variation, we shall assume that the cost function
g(sz,uz) (Equation (5.4.56)) is adequately represented by a quadratic
approximation around the nominal state and control trajectories.
Namely, in specifying the functioms (-,*), E(-,v,-), E(-,-)
(according to the Appendix B procedure) we shall not use Taylor series
terms of order higher than two. Thus these functions are obtained

as follows:

l(Gsz,GuZ) a g(sz/k,uz) + NSZGSZ + Nul Guy +

1
7 Vs

2 . 2 -
L850 + -]z—Nud‘@uz) + N (Bu))(Ss)), (5.4.66)
2088y P io88y) = 8(sy qoty) + Nyp 85y e+ Npfuy ¥
' =2 L . 2
+ ]f*‘say.(ész}k FPamt %.Nuul(éul) +

+ Nugféuz)(dsz/k), (5.4.67)

or neglecting the constant terms (which do not affect the control

operations)

-~ - . - - L - 2
285 /i »8u)) = N_)8sp  + N o Suy %Nssl(ésl/k) +

+ %Nuul(auzﬂnuszesz/k)(5u2). (5.4.68)

Thus, the reformulated cosc function for minimization becomes:
T-1

I = 1065 .. ,8 o 4.
J zzk 2(8 z/k’°“z) + zT(osT/k) (5.4.69)
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N T-1
where 2(+,*) as above and {Nsl’NuQ’ No oo N o Nusl}l-k

given by the derivative (5.4.65) at the nominal state and control

values.

With these specifications the HAD operation problem has taken
the form required by the ELQG control procedure. The following section
will discuss the mechanics and the performance of the method in some

experimental runs.

5.4.4 Extended Linear Quadratic Gaussian Control

The ELQG method for the contxrol of a single reservoir is summarized
by the following algorithm. Some possible variations are subsequently

mentioned.

Algorithm A5.4.1: 'ELQG Control of a Single Regervoir

a. Forecast the continuous time inflow statistics w(t), Q,(t)
(mean and spectral density) over the control horizon tE[tk,tT] as
explained in Section 5.4.2.

Assume that as a result of i previous iteration's nominal
trajectoryigi = ui,..., u;_l has been obtained. Then the operations
that follow are performed during iteration i+l.

b. Compute the state's mean and variance trajectories as well
as the coefrficients of the discrete time perturbation mcdel b&

integrating the following system of differential equations over the

1 =1 .
intervals [tz, t2+lj, 2=, 0.0, T=12

dst (1) -1 i -

-—-—SdTT = £(s(T),T) - u (1) + w(1) (5.4.70)
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di
Ps(r)

=— = 26, (10,1 PL) +Q (D) (5.4.71)

a$* (v, ) .

- = fl(s (W,T) ¢(T,t1) (5.4.72)

dBi(T,t )

T——& = - — L (5.4.73)
¢ (T, t0)

where £(*,*) is the state transition function (Section 5.4.1) and

-
£,GH(D,T) .{iiﬁ&iﬁil;ll

s(0) (5.4.74)

s(T) = (1)

The initial conditions for the mean state and variance equations are
the results of the previous integration step:- Ei(tz), P:(tl)’ while

for (5.4.72) and (5.4.73) there holds

1 1 |
o7 (ty, ) = 1, B7(ty, tg) =0 (5.4.73)
for any £, i. At time tk’Pi(tk) = O (perfect state information) and

gi(tk) equals the currently observed s(tk).

Then the discrete time quantities are given by

-1 - =i 4,76
Soe1/k s (t2+l)’ (5.4.76)
i i
= 477
Psﬂ+l/k Ps(t2+l)’ (5.4.77)
1 i Y
by = 97(ty,10E0), | (5.4.78
i i
Bg = 9y B(t2+l’ tz), (5.4.79)
2 =k, ..., T-1


http:Pi~t(5.4.77
http:pi(5.4.76
http:A/x(5.4.72

and the associated perturbation system model is as follows:

sst -3 =i 1 4 ,
"Sp41/k T Sa+l/k T Shl/k T ¢ 552/k + B, Suy (5.4.80)
gk, ..., T-1
1 1
where Uy T 4T | (5.4.81)

c. Compute the coefficients of the quadratic costs

i 1.1
1(5Sz/k'6 ) = 652/k + N Ouy +

-+

N-_ (853 )2+-£ N (st ) +
2 "ss% T 2/k 2 “uuyg

+ N, ( 2/k)(su ), (5.4.82)

for zﬂk’ooc, T—l by

=1 i, - \
Ni - ag(sg‘/k!uz)
sl o8 ?
. ~ =1 i
Ni - ag(sﬂ,/k’ uz)
uf du ’
2 -1 i
og(s, ;. »u,)
1 /K8 . \
Nssl 3 (5.4.83)
2 -1 i
R 28(sy 1> %)
Suul ou‘ ’
2 -1 i
Ni ) 3g(sz/k,u£
usi duss

(g(*,*) is given in Section 5.4.3) and similarly for the terminal cost term
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l 2
2(63T/k) u agT/k (QST/k . (5.4.84)

d) Cheék the validity of the probabilistic state constraints:

-1 smin - zmin Pi
') 2 si/%’

;1_ < ghax _ max Pi
Lk = "2 L s/k *

v

"

(5.4,8)

max
2 }r

from the probabilistic allowances {

where {zzin, z g=ge1 2T specified as explained in Sectiomn 5.4.3

min max}

Yl ’Yl Ig some constraint

L=k+1"
at time m is violated, modify the corresponding quadratic cests in

; Steé c'by

, .
K an +c, & (5.4.86)
ssm ssm i “ssm
)
R S Y (5.4.87)
sm s i ssm m
where
r DN
-1 min min i ,
sm/k - (sm -z Psm/k)’ for lower constr. violoation
A's = < "
m .
-1 max max i . .
Sp/k ~ (sm - Zp Psm/k)’ for upper constr. violation
) (5.4.88)
and Ci = Ci (here i is the expoment, C €[4,10]. (5.4.89)
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e) Compute the Gradient vector of the performance index

I S
Ja= § L(Ss

i 5 o=l
Gul) + ZCSST/R)

. . . -i i \-i
at-the current.nom;nal.trajectorles - {Gsllk 0, Guz 0}, 85y = 0 by

3J i i
— = N 4+ B P ,
[:3%]1 oA (5.4.91)

»Ql:k, cs oy T-l

t_ i
where pT NST
1.4 i1
=N, + , 5.4.92
Py " Va3 ¥ 93 Py [ | (5.4.52)

jo=T-1, ..., kfl

f) Compute the diagonal elements of the Hessian matrix at the

N

ith nominal trajectories from
%3] L e ah?i |
2 uul A 241
dug 14
r (5.4.93)
lnk' ey T-l
)
i i
where GT NssT
i i 1.2
. =N + (¢, (5.4.94)
G ssi (¢J)

j =T-1, “ o 0y k+1-
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g. Test the optimality of the ith nominal trajectory by the

following criterion:

Compute
1/2
. 2
4+
T--1 R 27
w = | 1 [ui- [ui-(g—j'/g I ) ] J (5.4.95)
=k L u, /i
. L
where
[(min Lo 1 I3 % Ein )
- o~ H ) 2
ui - (33 _/ 3J - 9~
A du, QUZ Iy - J GBBX g ui - gg_y/g_g_ L Bax }
~ J H >
) 2 'A 8u2 aui { 2
=k, ..., T-1 - 9~
' i aJ /97 J
|y - o/ -2 . , otherwise
: au i
L . J'A . : J‘
(5.4.96)

Assuming that the problem is convex, if W, is negligibly small, then
the ith nominal trajectory is a global minimum. This holds because
w, = 0 implies either that QQ_,Z 0 or that u equals one of their

i aul

bounds with the descent direction pointing toward infeasible regions

. . e . .th ,
Given that W = (0, then if Ci is sufficiently high, the 1t nominal
trajectory is the optimal solution to the.control and state constrained

problem. If Ci is not as.high, some state constraints may be violated.

In that case set

G ui
2 i)
(5.4.97)
2=k, ,.., T-1
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and repeat steps d, e, £, g.
323
If the problem is not convex, then [-—jrﬂ
Buz i

should be

replaced by a positive number (unity could be a choice). 1In this case,

w, = 0 implies a point satisfying the first order necessary conditions

i
for optimality (see Equation (4,6.25)).

If wi is not negligible, continue to step h.

h. Determine the binding constraint set A++(g?) from

+, 1 min 1 min aJ
A (u) = {j/uj <u] f_uj + €, and Buj . >0
max i max a8J
or uj - ei f_uj f_uj and Buj A <0

j=k, v.., T-1}

where €, = min{e,wi}, with € being a small positive number.

i, Compute the two parts (nombinding and binding) of the
Newton's direction as follows:

For the nonbinding control variables (i.e, % ¢ A++(g%))

4 i 4 i -1 i ol d
. (8 oot By Koyq 990 Ssgpe v Nyt Br oy
it = -
2 1 1.2 4
Nor T @) Ko
where
gt oyt
T NssT
i1
kT NsT

(5.4.98)

(5.4.99}

(5.4.100)

(5.4.101)



and for %=T-1, ..., k1, 1f 2 ¢ AT (ud)

1 1.4 1.2
48 K
L . [ N~ +'B 6 1
Ry = N. , + 62K, - us_ 2 ML 4 , (5.4.102)
ssl 2 2+1 \Il +‘(Bi) 2 Ki
“aug” My, 2+1
1 T R S S S
K
bt ogly ol 1 (Nusgt By Saug 89) Wit By By ) 3
g =Ny + o, W1 T i 1.2 .1 (5.4.103)
: N+ (B)TK
we” Be) N
vhile 1f 2 € A T (uD)
i i .2 1 )
Kg = N, + (6, K2+1 (5.4.104)
k; = Niz + ¢i ki+1' (5.4.105)
The state deviations ng/k in (5.4.99) are obtained from
-i i -t 1.4 (5.4.106)
Spr1/ T %y Syt By g

L=k, ,,., T~1

. -1
with Gsk/k

otherwise.

= 0 and d; as given by (5.4.99) if 2 ¢ A++Qii) and zero

The binding Newton's direction (i.e. when 2 A++(gi)) is given by

- ~, o

af = - 212 (5.4.107)
u 2
L) \Ou, ) 1
2
2y
(In nonconvex problems 2 should be replaced by some positive
du
A

number.)

j» Select a setpsize ai from the following Armijo stepsize selec-

tion rule:

o = g™t (5.4.108)

i
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where m, is the first nconnegative integer m for which

7o) - 308" ¢ >

9J n 1.+
i\auz i 4 L 550 187 4] _'
247 () ren Tl * 1 -
(5.4.109)
1
and Be (0,1), oe(1, -2—)
( ) 3
min i i m,1 min
- £
ul ul, if ul + 8 dl < uz ,
max i .1 m,i max
et - - 1if D
[Bmd;.] ,j uy s 1f ug + Bd) > o, } (5.4.110)
Bmdi, otherwise
! : J
k, Perform the‘iteration
i+l i i :
u, T =y tagdy | , (5.4.111)

La ky ooy Tl

*. T~
and rapeat steps to k uncil an optimal trajectory {uz}g=% (according to
the criterion in Step g) is identified. (Care should be taken so

max min}

than the specified probabilistic levels {Y allow for a

L=k+1

nonempty feasibla solution set.)

*
1. Applythe optimal action uy and repeat the previous operations

at time k+1.
Before presenting computational experience with the above algorithm

some variaiions will be noted:
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1. In the verscion outlined the method at each iteration simultane-
ously accounts for both comtrol and state comnstraints. This is expected
to be effective for convex probiems with linear or mildly nonlinear dy-
namics and convex cost functionals (as, fo? example, the HAD operacion
case). The theorstically correct approach (see Section 4.7.1) is to
completely solve the control constrained problem for =ach new increase
of the penalty parameter. Although this will add computational load,
it will also be'a safer route to follow.

2. In the event of "ill-conditioning" where Ci has been raised to
numerically problematic levels and there are still more iterations
needed for the algorithm to converge, we have found it relialle to
restart the Ci incremegt cycles until convergence is induced. The idea
is that increasingly better'nominal trajectories are being identified
and used as initial choices. However, this may be an issue in problems
of very long control hori;ons (>1000 t .me steps).

3. A medification which in certain cases can be particularly ef-
fective refers to second guessing the binding control counstraint set
A++(gi). Notice that the Newton's directions computed in Step i are
specified according to the set A++(gi) determined in the previous
Step h. However, this set is identified based on steepest descent con-
siderations which may under- or overestimate the Newton's direction
steps. Thus, after having computed the directions {di}g;;, the idea

is to go back to Step h and second guess the binding constraint set

A++(g?) from
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- min i min i min
At (u) {j/ uj_<_u + g iandu +dj s + ey
max i max . i i
oruj Eiiujiuj" and u "‘iiuj"'dj
J = k, e e 0y T_l}c (5.4.112)

At first this may seem to impose more computational load, yet it may
save iterations especially when there are many loosely binding con-
straints at the solution. The above can be repeated until the
same binding set A++(5?) is determined in two subsequent iteratioms.
4. At the end of Section 4.7 a suboptimality of the previpus
algori;hm was mentioned_concerning the use of the variance Psl/k in
the spécification of the state bounds. In_essence the problem is created
becavse the Open Loop Feedback controller at time k assumed no future
decision adjustments and specifies the optimal trajectory for the
entire control horizon. However, in reality only u; will be used and
the decision procedure will be reinipiated to identify what is to he

applied next. Hence, attempting to maintain

- min - max max
S8~ g Pejcandsyy tzy P <s, (5.4.113)

ignores that at times k+l»- -, T-1 thereexiscs the opticn tomodify the decision

considered optimal at time k. On the other hand, the allcwable modifica-

tion is contingent upon the control bounds and it may not oe possible. An
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idea attempting to remedy the situation is illustrated in Figure 5.4.5.
Consider the optimal two-period control sequence (ABl), (BZC)
producing the (ABC) mean state trajectory with (ADE) the associated

: , - WAX  m—— '
upper uncertainty region (52 +.zz VPsl'k’ 9 = ktl, k+2), (These

/&

trajectories result from integrating the corresponding differential
equations and onlf for simplicity are here portrayed by straight lines.

The lower uncertainty region is not shown.) According to the OLFC

philosophy, the mean state value at time k+2 is confined to be lower

ma s
k+2 " Fsieb2/k

Next, consider that during period [tk’ tk+1]’ control (ABI) is applied

or equal to C since C + 2 touches the upper state bound.
and the inflow realigation brings the state to D. If control (BZC)
determined at time k is then used, the new state trajectory would be
(DG) and (DE).would be the corresponding uncertainty regiqh. Héwever,
at time k+l there exists the oﬁtion of readjusting Wl within it;
bounds (which in this case it is suggested since (BZC) was optimal
when the mean staté trajectory was passing from B) including the choice
of the maximum release (DH). If control (DH) is used, the mean state
trajectory would be (DH) and the associated uncertainty region would be
(DF). Hence although at time k it was required that the mean state
value at time k+2 be at least (EC) distance away from the upper

bound, the probabilistic constraint could still be met even if the
previous distance was reduced to (FC). This implies that the feasible
state regiun can safely be augmented by considering the trajectory
changes which the unused control portion (DHCBZ) could, if necessary,
‘=ing about. However, notice that no state shift would be possible if

tne time k nominal control sequence was (ABl), (IH). Since these
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Upper State Bound
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FIGURE 5.4.5: MODIFYING THE VARIANCE OF THE
OLFC PROCEDURE
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trajectory changes are precompucable, the following modification of the
state bounds 1s suggestad: Sunpose that at a particular time 2 the

3D

minimun allowable distance of the mean state trajectory from its upper

. . naz” . .
bound has been specified to be X Determine the state variance
man . s sy , max
‘~“;h which based on the probabilistic allowance ly correspouds
(P O RN
L. max
Lo X, 3 nanely
max 2
x
plax 2
al/k LUA% ' (5.4.114)
L

where 29 is as in Section 5.4.3. Assume, further, that the current

nominal control and state trajectories are dencted by {Ei/k}€=k’
i,T-1 . - . .

{ul}lnk' Satting the control variable u(Tt), T °[t2’t2+l] at its

upper bound, integrate the state's mean and variance equatiouns

ds -

_3_5.11 = £(5(1),T) = w1y 4 (1) | (5.4.115)

dP_(7) -

-—a—_‘r-_- = 2fl(s(T),T) PS(T) + Qw(T) (5.4.116)
over the interval [t,, t,,.] with initial conditions Ei and PT2%

2> "2+l ' 2/% s2/k

respectively. Denote Ezii/k and Pé£+l/k as the resulting end of
the period quantities. If

gmax o max o ot (5.4.117)

So+l/k TPl "Tenal/x 2 Si+i/k

max -max max -1 ,
X _ Vi - 5.4.1
set  Xp1 T Spei/k T 1 Fesel/k So+1/k’ (3.4.118)

otherwise set

max
-, = [ iKY 9
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and continue with the next time period until the end of the control
horizon. Case (5.4.119) corresponds to enough evailable control flex-—
ibility to reduce the probabilistic state bound as far as the mean
state trajectory. Clearly, no further reduction is possible. Similar
considerations govern the modification of the lower state bounds. The
procedure should start from time k+l since this is the first time when
any control adjustments can take place. Notice that the proposed
modifications depend on the current state and control trajectories

and may require some more iterations before convergence is achieved.

T
s2/k’ =k+1

can lead to substantial suboptimalities which justifies the addi-

However, it will be seenthat using the OLFC variance {P

ticnal effort. If the nominal control trajectory lies on any of its
boundaries, the proposed p;ocedure bgcomes identical to the OLFC
uncercainty bound specification approach.

A typical ELQG iteration cycle is shown on Figures 5.4.6 ~ 5.4.17
and Tables 5.4.,1 ~5.4.6, The application seeks to determine the
optimal HAD release trajectory over a 3-year period (36 months).

The Nile inflows to Lake Nasser are assumed to follow their historical
monthly distributions with the means and variances shown on Table 5.2.1
(a priori statistics in the terminology of Section $.4.2). The
monthly means are reduced by the monthly 3Sudan abstractions having

the Figure 5.2.7 distributign and a 16,5 x 109 m3 yearly total.

The monthly evapcration rates and downstream water supply requirements
are those of Figures 5.2.4 and 5.2.5. The reservoir storage at time 0

(beginning of the control horizon) is set at 95 x lO9 m3 and at any

3 , ,
time it is not to exceed 137.72 x 109 m~ (Toshka operating threshold)
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or fall below 32.72 x lO{:j m3 (dead storage zone ceiling) at reliability
Y = 0.975. The maximum allowable downstream release is set at

7.59 x 109 m3 per month. The objective 1s to maximize the expected
energy generation given the previous constraints and the requirement

to leave the expected terminal reservoir storage (beginning of the 37th

month) at 95 x lO9 m3. The initial nominal control trajectory is taken
equal to the downstream water supply requirements and is shown on Figure
5.4.6 together with the upper release bound. Figure 5.4.7 shows the
corresponding mean state trajectory (under dotted line) along with the
associated modified uncertainty bound. Notice that since the nominal
control trajectory‘equals its lower release bound, there can be no

upward state shift and hence the lower uncertainty region equals that

of the QLFC procedure. On the contrary, the upper uncertainty region

is substaﬁtiall? reduced as a result of the existing capability to

release at higher than the nominal rates. The.pronounced storage fluc-
tuation is a combined effect of the marked intra-year mandatory release
and expected infloy variation. Table 5.4.1 gives the values of some para-
meters used and some representative quantities computed at each itera-
tion. The '"HYDROPOWER" gives the energy in GWH which will be produced

if the nominal control and mean state trajectories are realized. The
associated value of the penalty cost function actually minimized is ziven
under "PENALTY". Apart from penalizing energy produntion lower than

1280 GWH per month, this functicn also penalizes terminal mean storages
away from 95 x lO9 m3 according to E(ET/k) = CET/k-95)2 x 108.

"Z" stands for parameter z corresponding to the reliability level Y

and "C" represents the penalty parameter C which is increased at each
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iteration i according to CiﬂCi. "BETA" and "SIGMA" are the paramaters
B and g of the Armijo stepsize selection rule and "EI" specifies the
value of Einmin{é,wi} introduced in Step h of Algorithm AS5.4.1,'™"

and "ALPHA" are the integer m

m
i . . . s . .
a, = g8 satisfying the Armijo stepsize rule test and '"WI" is the

5 and the corresponding stepsize
Euclidean nora v, of the optimality criteripn. The columns from left

to right display the months, mean storage values, nominal releases,
first derivatives of the cost functionwith respect to the controls

at the nominal sequences, second cost function derivatives with respect
to the controls at the nominal sequences, upver uncertainty bound,

lower uncertainty bounds, and the binding contraint set., The positive
second derivativgs (%:%)i (="DUUJI") give an indisation of the problem's
convexity while the negative first derivative (%%_°i<="DUJd> show that
the cost fgnction can be decreased by increasing the nominal releases.
A binding lower control comstraint is indicated by "-1", a binding
upper control constrfint by "1", and a noumbinding constraint by "0".
Notice that since (%%)i are found negative, the procedure does not
indicate binding countrol cons:raints. The high value of "WI" implies
that the initial nominal control trajectoryv is far from being optimal.
The first iteratiom produces the nominal control and state trajectories
shown on Figure 5.4.8, 5.4.9, and Table 5.4.2. The releases are ncw set
higher because over a short time horizon (as the one considered “ere)

it is in the interest of the energy generation to pass high discharges
through the turbines rather than maintain High hydraulic head. This

can 3also be deduced from Figures 5.4.3 and 5.4.4 where it is seen that

the energy production function is much more sensitive to the reservoir
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releases than to storage changes. After cutting dowm the original
stepsize by a factor of 2, this iteration has reduced the penalty cost
function, increaged the energy generation, and brought the terminal
storage from 107.1 x lO9 m3 to 93.2 x lO9 m3 (i.e. substantially
closer to the desirable value 95 x lO9 m3). Notice the reduction of
the lower uncertainty region as a result of the control trajectory dis-
placement away from the lower bound. The new binding constraint set is
drastically different and the magnitude of v, has decreased but remains
significant. No state constraint is binding. Iteration 2 is shown on
Figure 5.4.10, 5.4.11, and Table 5.4.3. It places the terminal
storage at 94.2 x lO9 m3 wnich further éeduces the cost function although
energy generation is now decreased and the associated penalty increased.
.‘All binding constraints at Iteration 1 are also binding here but the set
A++Q32) is now larger. Iéeration 3 (Figure 5.4;12, 5.4.13, and
Table 5.4.4) reduces even more the cost function by building up higher
terminal storage and identifying one more binding constraint. The
following Iteration 4 (Figure 5.4.14, 5.4.15, and Table 5.4.5) shares
the same binding constraint set with Iteration 3, and as theoretically
predicted, materializes on impressive convergence rate essentially
terminating the search. This is indicated by the unegligible wi value
and is readily concluded by comparing ics results with those of Itera-
tion 5 (Figure 5.4.16, 5.4.17, and Table 5.4.6). (Notice, in particuvlar,
the coincidence of the last two iterations' nominal control trajectories
3

and the terminal storage value of 94.999 x lO9 @~ .) The iterations

may continue but the additional improvements are marginal. The
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Nominal Control Trajectory
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Nominal Control Trajectory
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Nominal Control Trajectory
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Nominal State Trajectory
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computations required 25 seconds CPU time on a Honeywell 68/DPS

digital computer., It it notable that only in the first and the last
itaration it becsme necessary to cut in half the original stepsize

and cthis is ¢ypical with this procedure (avoiding multiple cost

function evalutzrions and adding to the overall computational
efficiency). To this end using small ¢ values is instrumental. Lastly,
note that a very good approximation of the optimal solution has already
been obtainaed at the 3rd iteration.

To cest if the method performs as well in longer control
horizous, the previous problem's control horizon was extended to 360
mouths. The initial nominal contrnl trajectory was again taken
equal to the downstream water supply requirements, and it is shown in

‘Figure 5.4;184‘ figufe 5.4.19 disﬁlayé the correspohding nominal stéte
trajectory. The Toshka épillway is not assmmed operational and no
probabilistic constraints afe imposed. (i.e., the bounds shown
on Figure 5.4.19 at 137.72 x 109 m3 aad 32.72 x 109 m3 reservoir
storage are not active, ¢ = 0.00). The coefficient of the terminal
storage quadratic.penalty was Increased to 1010. Figures 5.4.20 and
5.4.21 show the nominal trajectories of the lst iteration. ELQG con-
verges to the trajectories shown in Figure 5.4.22 and 5.4.23 at the 6th
iteration., Some characteristic quantities of the o iterations are
reported on Table 5.4.7. As in the pravious experiments the algoritim
locks on the optimal traj~ctory in one iteration after the final binding
constraint set is identified. Also notice the progression of the terminal

storage towards 95.000 x 109 m3 and the use of unity stepsize for most
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of the iterations. These computations required 4 minutes and 35 seconds
CPU time of a Hdneywell 68/DPS computer. By contrast, a straightforward
Dynamic Programming sclution of the same problem (Algorithm A4.4.2 or
the D.P. procedures in Section 5.35 would require hours of CPU time.
chﬁsing cn the éptiﬁai stagétrajgétory on Figufe 5.4.23, we observe
an intuitive result. Namely, from a long-run energy perspective, it is
best to build up reservoir storage and operate under high hydraulic head
rather than raising the release rate. This is accomplished by releasing
the downstream water supply requirements (Figure 5.4.22) during most of
the time ( 20 years) and thereaftar gradually raising the releases until
the end of the wontrol horizon. (Also compare the energy generation at
the trajectories of the first iter;tion yith that of thé sixth in
éabié 5;4;7).2 The fast-poftién.of.tﬁe.control horiébn where'the
releases are higher shows how long the ferminal storage requirement
remains influential.

Following is an experimental run where the problem includes
probabilistic state constraints. The additional requirement is to
keep the reservoir storage lower than 137.72 x lO9 m3 and higher
than 32.72 x lO9 m3 at reliability 0.975 (2=1.96). The optimal
trajectories of the previous experiment (Figure 5.4.22, 5.4.23) are
taken as iInitial aominal trajectories. The new optimal trajectories
are shovm in Figures 5.4.24, 5.4.25. There are 1l state and 284 bind-
ing control constraints and the energy production has now dropped

6
(with respect to the state unconstrained optimum) to 0.23900460 x 10 GWH.

The terminal storage is again 95.000 x 109 m3. The penalty parameter
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was taken equal to 10. However, the procedure in Comment 2 following
Algorthm A5.4.1 had to be employed, and 2 iteration cycles were
nicessary to yiéld the trajectories shown. Although reliable overall,
the handling of state constraints via the penalty function method is, in
general, less efficient than the treatment of the control constraints
via the Projected ﬁewton*s method. Notice again that the optimal
release tr#jectory follows the minimum requirements until the

reservoir storage rises to its upper bound. Subsequéntly,the

controls are adjusted to maintain the highest feasible storage and

as before the iast part draws the reservoir dowm to 95.000 x lO9 m3,

By contrast if the unmodified OLFC variance is used, the
probabilistic state trajectory in Figure 5.4.25 looks like Figure
x-5f4‘26',ufh¢ drastically larger'unce;tainty regions are due to the
high OLFC standard deviation which in time stabilizes at about 15 x 109'm3.
This effect is caused by the negative evaporation term in the system
dynamics (see footnote in Section 4.7). If it were not for this
term, the variance would grow unbounded which brings up the necessity
of a modification scheme. Figures 5.4.27 and 5.4.28 show the optimal
trajectéries of the OLFC variance case where there are 25 state and 183
binding control constraints. The energy generation is reduced here to
0.22908150 x lO6 GWwH, considerably lower production with respect to the
previous experiment.

These computational runs were performed to Jdemonstrate the
efficiency of the ELQG control method. Regarding the HAD operation
problem, we intend to establish a sequential control shceme with a

much shorter control horizon. The discusion in Section 4.7.2 is
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relevant here, and the question becomes one of properly specifying the
terminal state penalty term. (The crucial influence of this tarm on

the optimal trajectories is apparent in all the previous experimental
runs.) To this end, it was noted that in the long run it pays

(int energy generation) to build up high reservoir elevations by releas~
ing the minimum dcwnstream requirements (see, for instance, Figures

0 5.4.22, 5.4.23, and 5.4.24, 5.4.25). The releases are modified due

to either the terminal penalty term infiunence or the upper storage bound
being reached. It turms out that this behavior is independent of the
initial storage, and therefore, in an infinite horizon problem it leads to
the following operation policy: Release the minimum requirement until
the upper state bound is reached. Thereafter, optimize the releases to
:maintain the highest feasible reservoir storage and maximize the energy
generation. As another ex#mﬁle,verifying the abcve, see Figures 5.4.29
and 5.4.30 where a 720 month control problem was solved. Here y = 0.50
(2 = 0.00) implying expected value (deterministic optimization) with
initial reservoir storage at 125 x 109 m3 and terminal storage as great
as feasible. The active state bound is at 137.72 x lO9 m3. Clearly it
is optimal to release minimal amounts as long as storage remains
feasible. The same conclusion was drawn when (1) the mean monthly
inflew levels and/or the monthly water supply requirement were set
higher (to consider future condition9 anu (2) when only che first year's
inflows were increased with the upcoming years/ inflows at their histor-
ical levels. (The second set of experiments was run to simulate the
real-time operating conditioms when, based on the forecasting models in

Section 5.4.2, it is not realistic to make overyear predictions other
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than the historical means at the historical variances.) Considering Toshka,
due to the rapidly escalating losses when reservoir storage exceed
137.72 x 109 m3 (see Figure 5.4,2), it is evident that the operation
should avoid excessive spills by passing higher (yet feasible) dis-
charges tirough the power plant turbines. Thus, the otherwise wasted
water can be used in energy generation and other dowpstream water uses
(e.g., using the available storage downstream of the HAD, the water in
excess of the current water supply requirements can be used as
a reserve supply to prevent reservoir drawdowns, to support land reclama-
tion activities, or to help replenish the Nile Delta groundwater aquifer).
Figures 5.4.31 and 5.4.32 show the solution of a 240—month'control problem
where Tashka is active. (The line at 137.72 x 109 m3 reservoir storage
has. no boundary signficance. The problem had no upper state constraint.)
The initial reservoir storage was set at 130 x 109 m3, and the te%minal
gtorage was required to be at 137.72 x lO9 m3. As expected, Tecshka
acts similarly to an upper boﬁnd and forces the optimal state trajectory
lower by somewhat greater releases. e storages in excess of
137.72 x 109 m3 make up for the energy loss from not establishing
higher elevations by utilizing the water that would have been spilled.
From' the previous considerations we can easily deduce what penalty
term should be employed in a short horizon sequential control scheme;
the term should seek to leave the reservoir at the highest feasible
elevation. Note that it was necessary to look at the long-term system
behavior to establish the upper storage bound and the terminal cost term.
These specifications cannot be done with short-run investigations

because over a short horizon it 1is energy-optimal to empty the reservoir.
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The value where, according to Figure 5.4.32, the upper bound should be
placed is approximately 139.25 x 109 m3,
To further test ELQG in a real time operation and to compare

its performance with other optimization procedures, extensive simulation

' experiments were run. The results are reported in the following section.
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5.5 Simulation Analysis

The historical Nile flows at Wadi Halfa (entrance of the HAD
reservoir) from January 1912 to December 1965 were the. data base
for the simulation experiments (see Appendix H). The recorded lavels
were adjusted by the estima;ed Sudan abstractions having the monthly
distribution of Figure 5.2.7 and 16.5 x 109 m3 vearly total. The down-~
stream water supply requireménts, channel degradation threshold, evapora-
tioﬁ rates, etc.; were.as in the previous sections. (The parameters
which differed from run to run will be separately mentioned.) In the
ELQG simulation experiments, Algorithm AS.4.1 was implemented with a
12 month control horizon, C=10,and a terminal cost term penalizing any
terminal storage deviation from the upper bound. The forecasting models
of Sec:iog'5.472“a:g'hg;e dgpp;gd‘by "A=S' (aAp:iqri statistics), "T-F"

.kThomas—Fiering lag-1 ﬁniyariate seasonal.aﬁtoreéressivéléodel), and

"c-B" (multivariate seasonal autoregressive model, Curry and Bras, 1980).
Results from using the Steady State Markov Dynamic Programﬁing ("'ssMpP')
and Adaptive Markov Dynamic Programming ("AMDP'") methods (see Section 5.3)
in the same simulation experiments are also reported here from Buchanan
and Bras, 1981, for purposes of comparison.

This section is organized in two basic parts: The first will
discuss the ELQG's performance for various combinations of vy (reliability
parameter) levels, different forecasting models and with respect to other
control methods' performance. The second will employ ELQG in determining
the tradeoff between two system objectives. The intention here is to
verify the new method's potential in real time decision making. There

is a plethora of issues related to the HAD operation which ELQG can
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thoroughly investigate. Some of these possibilities will be mentioned
at the end of this section.

Table 5.5.1 presents some results from 8 simulation runms (each
column represents a 54 year simulation experiment). The quantities
reported are the total volume of water supply deficits (i.e., the amount
by which the models failed to meet the Juwnstream water supply require-
ments), the total volume of water released in excess of 7.59 x lO9 3
per month, the total volume of spills to Toshka, the mean annual energy
productlon (GWH), the reservoir storage at the end of the simulation
period the correctéd mean anﬁual eneroj generation according to the
terminal storage difference, and the mean annual evaporation losses.

All Runs were started at 180 meters reservoir elevation (or at

149.55 x lO9 m3 ;eservoir storage). The correction of the mean annual
énergy generation was necessary for the energy comparisons since the model,
which hzs maintained higher terminal étroage, could have altermatively
generated more energy. The adjustment was as follows: The lowest terminal
storage was subtracted from the rest, and the resulting amcunt was assumed
to generate energy at maximum release for as long as it lasted. The evapora-
tion rate was that of January. The energy produced was divided by 54 and
added to the mean annual energy production. Terminal storage information
was not available for the SSMDP and AMDP methods, and therefore no energy
connection was attempted. In all ELQG runs the upper storage bound was
placed at 139.25 x lO9 m3 (see previous section). It was found that all
models met the downstream water supply requirements and prevented channel

degradation at all times. The ELQG models caused significantly less Toshka



spills, and as a result produced on the average about 300 GWH more

energy per year over the SSMDP and AMDP methods. Instrumental for this
result is ELQG's ability to explicitly account fof control and state
constraints as weil as its analytical structure. Owing to the latter,

the ELQG models required about 30 minutes CPU computer time to complete
the 51mulatlons By contrast AMDP required 50 CPU hours (Buchanan arnd
Bras, 1981) whlle SSYDP 20 sec. (Concernlng SSMDP, the above figure

does not include the time needed to obtain the release policies wahich were
used unchanged. throughout the simulation period - SSMDP is not a
sequential scheme.) Focusing on the performance of the various ELQG model
combinations, it is seen that those with reliability comstraint provisions
incur less Toshka spills thaﬁ thei; deterministic counterparts. (Compare,
for iﬁstéﬁéé;.ﬁQAei ké;l;9é;wA;S) to'(zQO, 4-S) and (z=1.96, T-F) ﬁo

(z=0, T-F). ). More successful in this sense was the (z=1.96, C-B) model
which had more accurate foresight and as a result waé able to more effec-
tively manage the incoming flows. In fact, the comparison was not exactly
fair for the (z=1.96, C—B) combination because its  forecasting model was
not implemented but instead was simulated as fallows: Based on the a )
priori inflow variance and the R2 statistic of ,the Curry-Brass forecasting
model, the forecast variances were obtained for the upcoming 12 months'
inflows (see Fquation (5.4.43), (5.4.46) and Table 5.3.2 in Section 5.4.2).
Subsequently a Gaussian random number generator was used to derive a
value from each of 12 probability densities having the actual inflows

as means and the previously obtained forecast variances as second moments.

These values were adopted as the expected values of the forecasts'
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p.d.f.s, Notice that this procedure utilizes the process's correlation
structure ounly in the variance specification and not in the forecast's
mean; therefore, it is at a disadvantage with respect to:the Thomas-
Fiering procedure whicb was_fitted to and forecasted the 54 year
ﬁistorical inflow.daté.. This &iséd#antage apéears somewaht in the
energy generation where the (z=1,96, C-B) ccmbination does only

éiigﬁtlr better com@éfed“to they§thér stocahstic combinations. Model
(2=0, Perfect Forecasts) was run so that on upper bound estimate of the
sgqueg;ial_models:'perfp;mance couvld be obtained. It had perfect
knowledge of the 12 upcoming inflows, and consequently, it generated

the most energy allowing for Toshka spills in accorance with the upper
state constraint. However, notice that all ELQG models perform well
desﬁite théi; imp;éciééuiﬁfbrﬁationvconcefning the future inflow sequence;
As the performance differences are not signficant, anotner conclusion to
be drawn isAthat, presently forecasted information is not of critical
significance to the HAD operation planning. The reasons are (i) that
most of the time the reservoir has enough available storage to accommodate
the incoming flows and (2) that the presence of Toshka has eliminated
any threat for severe flooding events. However, the importance of
accurate forecasting is expected to rise at a future time whrn the
problem will not be one of maximizing energy generation but rather one
of striving tc meet the growing water supply requirements. Ancther
comment regarding Table 5.5.1 refers to the competing nature of energy
maximization and Toshka spills prevention by forcing the reservoir to

operate at lower heads (via the reliability constraints). For instance,



UNITS
ENERGY GWH
VOLUME x107 w3
ELQCG
: PERFECT
L SMDP AMDP z=0,A-S |2=0, T-F | 2=0,FORECASTS | z=1.96, A~S | z=1.96, T-F z=1.96,C~B
WATER :
SUPPLY [1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
DEFICITS
EXCESSIVE
S
RELEASES 3.000 0.000 0.000 0.000 ofooo 0.000 0.000 0.000
TOSHKA
SPILLS 100.700 [100.700 | 5.073 |3.298 2.584 3.188 2.370 2.898
(OVER 54 .
YEARS)
MEAN ANNUAL
ENERGY 7,787.00]7,787.00| 8,051.95|8,077.06 | 8,088.52 8,066.18 8,079.84 8,070.57
PRODUCTION .
TERMINAL :
STORAGE _ _ 136.145 [130.859 136.962 133.321 129.110 132.880
CORRECTED ‘
MEAN ANNUAL 7
380. 7
ENERGY B B 8,070.94(8,081.75 | 8,109.73 8,077.50 8,079.84 8,080.70
PRODUCTION
MEAN ANNUAL S .
EVAPORATION [13.600 [13.600 13.446 113.236 13.226 13.208 13.111 12.940
LOSSES : "

TI\BI)E 5-5.1:

SIMULATION RESULTS
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ELQG model (z=0, T-F) manages to produce more power than the stochastic
models by maintaining on the average higher hydraulic head (this is
evident from the heavier mean annual evaperation losees), although it

also causes higher Toshka spills, However,'the same is not repeated in
the (z=9, A—S)'case. Oﬁing to this ﬁodel}s naive inflow predictor, it
cannot help Spllllng motre substantial water volume thus limiting its
potential for éﬁergy generation. To vest ELGQ's performance with the
OLFC.raﬁher than the modifiedlvariance, the model (z=1.96, T-F¥) wac also
run w1thout the variance adgustment The rPsults were Toshka spills
0.705 x lO9 m3, anergy vroduction 8, 019 079 GWH (mean annual) terminal
storage 122,242 x lO9 m3, and evaporation losses 12.417 x lO9 m3 (mearn
annual). As has been noted, this procodure is overly cornservative keeping
- the reservoir storage lower than actually needed = but consequently
generating less energy. Tables 5.5.2 and.5.5.3 show two years (1916,
1917) from the simulations of the models (z=0, A~S) and (z=1.96, C-B).
These are two consecutive high flood years {especially cthe inflows in
September and October are approximately 3 stancard deviations above the
historical means) and they demonstrate the anticipative ability of models
with forecasted information. The first controller becomes alerted and
starts releasing at maximum rate only after the flood has arrived and
Toshka is already in action (October L917). The second is aware of the
probable emergency and suggests higher releascs one year before the
flood's arrival. As a result, it incurs.minimal Toshka losses and
generates 2,676 GWHs more compared to the first mcdel's energyv production
over this two-year period. Table 5.5,4 gives more statistics from the

results of the (Z=1.96, C-3) simulation experiment; namely, it reports
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zLEVATION | STORAGE
(METERS) | (10xx9 C,H,./N.,)
mINTH  AINIMUM  #AXINMUM MEAN ST.OEV.I MINIMUM MAXIMUA MEAN ST.0EY,
--------------- TV s e o e 0 e o e e e o e v e | et e T e > > o -
JANL 147,231 178,79 174,403 2.899 | 346.083 132.759 113,737 14.:127
T2, 130.183 173.0°T 173.5L3 S.003 I 32,002 128,223 11S.%29 :13,21°
“aR. 189.38% L77.%12 1720341 3.062 1 79,138 124,327 111.20a 13,123
APR. 134,313 1Ti.TI2 0 172,180 3127 1 76,375 1320332 105340098 L3,100
Ay 133,197 LTa tusd A7 10T 3.279 1 T1.429 0 t27.137? 0 123.2%6 14,203
JUMG 131,280 1TTL140 0 147,551 3.495 1 55.32% 122.003 P5.74Z L32.C1e
Sl 199,437 1T4.4S7 123,952 3.630 1 5Q.007 113,431 92,945 14,22°
AUG. 151,293 1735.713 171.109 2,179 1 47,020 12S.223 163,193 12.73%
BER. L353.,991 LTTLEFS 1740100 2,909 1 79,3234 133,318 117.803 13,77
ACT. 187.898 L72.H267  LUT.AR39 2.795 | 23,721 142.729 124,247 14.989
MGV, 193,183 173.2%1 179,324 1.799 1 89,889 LZ7.17% 122,542 13,334
QEC. 167.%3& 173.017 173,229 .7TL L 89,9746 137,7TYS 121,391 13,724
T35HAKA L3Q33Z3 ! SUSFIRATION
(10xx9 g, M, M) $ i Tlokx( ToNLAPY
AGMTH <oalNe . A AEAN ST.OEY. OATAI mINIZRhUM mAXIAUM SESAN ST.OEY,
—————————— ;--—-—--—-——————-——----..-—-—_-_—_———l--—--———_—---————_--.—_-—__-_-_—---—
JANL .00 J.172 R DD Y 2 1 92,706 1.349 242729 YoL29
ZZ. 0.039 9.08¢9 J.039 2,200 1t 92.325 5.3481 0,271 AN,
b TY SO B 5 2l 30012 DRt DRI 1 1 0.338 0,594 DTl .223
~ERL. 040090 2,000 0.990 0.300 o 1 2.331 2.224 B.,7%5 2.37S
A 0300 I.000 DEDDD DD D DI B N M 1.G3%3 'e3%s GaLan
UM 0.900 0.200 2.290 2.29Q 9 1 0.,7S8¢e . 1,256 £,243  0.1lé
<UL D300 2,000 DD D DI D] | D.314% t.414 1e139 DINBAE 1
‘AUG.  0.090" 04000 - 0,000 - 5,300 0 I .Q0.922% 1.397 1,322 2,159
3ER, 2,090 DD DY 7.5990 PR D) ) l 1127 1,777 1.548 2.130
9CT. 2.990 9,037 J.019 2.013 9 t 1.179 1.530 1.989 2022
A0Y. 20001 9,097 0,022 2,634 T L0 I 1.079 L 1,406 5,132
DEC- ‘30‘301 9,034 .18 2,012 7 | 0.37¢ 1.:31 1.124 T.133
RELEASE ! HYDROFOWEK .
(1OXxX9 C,M,/MH,} | (GWHH/M,)
|

MONTH  MINIMUM HAXIMUN HEAN 3T.DEY, AINIMUM AXIMUM nEAl ST.O0EY.

JAMN, J.430 S0 530 2.32 Y.798 | 101.73 12390.939 532.43 134491
FZE. 1.018 T.599 $ 252 9.437 I 473,487 120%.32 73,29 112,30
4AR, 4,230 T30 1.430 V.724 I 497,1% 1212,35 41ae.73 135,22
AFR. %.049 7,590 3,153 0.4629 I %61.34%4 1135.13 950,72 112.3%
T4 5.312 3.544 5.39 7.240 I 523.77 380,32 743.37 s2.25
JUN. 6,524 6,321 5,321 0.300 I 738,77 1013.30 215.%50 &2.48
JUbl 4.759 5,779 5,999 0300 I 778.21 1037.04 °71.32 T1.,22
AUG. 5,210 $.310 3.311 9.000 I 711,47 $45.39 371.79% 97.34
TEF. 3,251 +.492 4,293 2.027 I ¥77.09 431,13 S575.41 33.52
JCT. 3.741 7,590 2.013 2.3653 I 437,17 128%.38 563.7°% 143,27
13, 2.417 TG99 4,242 1.377 t431.97  1279.54 412,71 219,12
2€C., 3,019 7.390 2.830 1,209 ! 348,32 1232.19 311.33 Z220.:7

ANNUAL FOWER STATISTICS

(GHH/Y .
MINIMUN ¢ a430.7%37
HAXIMUN ¢ 11379.911
MEAN ¢ 3070.357
3T, 0EV. $745.,354

TABLE 5.5.4: SOME MONTHLY AND ANNUAL STATISTICS OF THE ELQG
(z=1.96, C-B) SIMULATION EXPERTMENT RESULTS
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monthly maximum and minimum values, mean values, and standard deviations
for reservoir elevation, storage, Toshka losses, evaporation, release
and energy generation. The same statistics are’ also computed for the
annual energy generation.

It éhould be pointed out that a more conclusive analysis would re-
qﬁire siﬁulation eﬁperimenﬁs on symnthetically generated inflow series
as well. ELQG parameters which éan be determined from such a study
are the reliabiliﬁy leQels (Y can change from month to month) and the
control hori;qpu1quth_maximi;iqg_expgc;gd energy production. With
respect to the comtrol horizonm, it should.improve the model's performance
if it is increased because of the peculiar Nile fiow behavior to persist

in high or low levels. In setting up the previous experiments, ELQG is

-

noﬁ aware of such'teﬁdeﬁciéé siﬁée'it.élans oq.historidally-averagé in~ -
flows for the upcoming vears. To this end, an annual flow predictor
chould be useful.

As the simulation experiments have shown, HAD reservoir suffers
heavy evaporation losses (approximately 13 billion cubic meters are lost
per year). On the‘other hand, its storage capacity is more than
adequate for the current water supply purposeé. For instance, this
can be seen in Table 5.5.4 where throughout the (z=1.96, C-B) simulation
experiment the reservoir storage has not fallen below 60 x lO9 m3. If
it were possible to maintain lower reservoir elevations whila always
meeting the water supply requirements, there would be some water gains
from evaporation and some energy losses owing to the lower hydraulic

head. This is the tradeoff we wish to determine in the second part of
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this section. It has a practical interest because in the years to come
water rather than hydropower availability will be the limiting factor
for the development of the Egyptian economy. The issue mzy also become
particularly crucial if the seismic activity affecting the HAD

reservoir continues>to inteﬁsify forcing operation at lower alevations.
The procedure adopted here was to place the upper state bound at in-
Creasingly lowef levels and perform simulation experiments. ELQG was
used with (2=0, T-F). The initial storage was assumed equal to the
corresponding upper bound. Table 5.5.5 reports some results of these
.expériﬁéﬁts:: The maximum allowable elevation was decreased from 178 m
(137.72 x 109 m3 storage) to the point where water supply deficits

could not be avoided (at approximately 171 meters). (In fact, if a

) Stbchaétic EKQG'model_had.beep;used, the upper bound -could have been
safely decreased. even further.) 'The'resﬁlt; show that on the average
about 2 milliard m3 can be saved from evaporation at the expense of 350
GWH per year (maximum elevation at 173 m) or 0.9 milllard m3 at 100 GWH
(maximum elevation at 176 m). With Egypt and Sudan already involved in
costly expenditures on water conservation projects (Egyptian Ministry

of Irrigation, Main Report and TR 5, 1981), for fear of shortages,

these results become particularly signficant. Note further that compared
to the other control mechods as well as the currently employed nevristic
operation pclicy (see Buchanan and Bras, 1981) ELQG control results in
over 2 milliard m3 water benefits at 7,800 GWH annual energy production
(compare also with Table 5.5.1 although in those runs the initial

reservoir storage was equal to 149.55 x 109 m3). Table 5.5.6
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UNITS
ENELCY GWH
VOLUME x107m”
'I ELEVATION METERS i
f-—
UPPER STORAGE BOUND
(ELEV/TION)
137.72 132.00 126.50 121.25 116.25 111.50 196.50 102.00

_ (178.008) |{177.000) |{175.989) (175.000) | (174.016) (173.053) | (172.002) (171.02 )
WATER _
SUPPLY 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.874
DEFICITS :
EXCESSIVE '
RELEASES 0.000 | 0.000 0.000 0.000 0.000 0.000 0.000 0.000
TOSHKA |
SPILLS . o p
(OVER 54 3.843 1.098 0.404 0.048 0.0C0 0.000 0.000 0.000
YEARS)
MEAN
ANNUAL L .
ENERGY 8,036.405 | 7,997.292 | 7.752.810 | 7,856.111f 7,777.291 | 7,689.793| 7,590.068 | 7,484.844
PROD. '
MEAN
ANNUAL . ; o
EVAPORA- 13.155 12.954 12.254 11.866 11.483 11.094 10.679 10.275
TION . : = v
LOSSES
MINIMUM .
STORAGE 59.345 55.767 51.381 47.152 43.055 39.273 35.414 32.714
(ELEVATION) (159.223) | (157.917) | (156.210) | (154.432)] {152.565) | (150.691)| (148.596) | {(147.000)
(OVER 54 : :
YEARS)

TABLE 5.5.5: WATER SAVIN@S FROM EVAPORATION V5. ENERGY GENERATION REDUCTION
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~ gives some additional statisticg from the simulation experiment with
upper storage bound at 111.50 x 109 m3 (173 m elevation).

The vital importance of the High Aswan Dam Reservoir to the
Egyptian economy has been ewmphasized earlier. In this chapter it was
shown how the resgrvoir can bgcomekmoré energy efficient, if optimally
operated‘at élevatigns béiow Tdshka;s threshold. Estimates of water
savings and. energy losses were obtaimed from operacing at lower eleva—
tions, aﬁd a potentially attractive tradeoff to the Egyptian water planning
authorities resulted. The ELQG coutrol method can be used to analyze
--& variety of other relatsd issues. .For instaﬁce, optimal reservoir
operation under varying hydrology conditions (such as resultiné from
upstream wakter conservation prcjects and the growing Sudan abstractions)
_and changgs_;gﬁ:he downsgreagvy;:g: §emand (consequence of the.intense
de;eiopment programg can bhe tho¥oughly investigated to assist in success-
ful long-term planning. Gradual modification ;f the irrigation demand
pattern (constituting the bulk of the &ownstream water supply require-
ments) may be studied aiming to achieve a better complenentarity with the
energy generation objective. Similarly, the apnropwiate reclamation rate
of desert lands and their cropping pattern need to be determined in connec-

tion with agroeconomic studies. Apart from long-term planning issues,
a hierarchy of ELQG models can be put together to dictats real time,
day to day (or shorter interval) reservoir operation. These along
with many other investigations can positively assist in the optimal
managzement of the Nile waters.

With regard to the ELQG control method, this chapter has demon--

strated that its theoretically predicted properties are indeed realized
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in practice. The following chapter will briefly discuss amn application
Lo a three reservoir system and will conclude this work. Case
studies on dimensicnally higher systems will be reported in separate

publications..
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Chapter 6

A THREE RESERVOIR CASE STUDY

6.1 Introduction and Overview

This chapter's objective is to assure that the method's previously
demonstrated efficiency is also present in high order system applications.
The second example is a three lake system 2lso located in the Nile River
basin. After preseﬁﬁing a medel for this system's dynamics, a centrol
problem will be set up and solved. Due to the limited data base, this
case study will not involve simulation experiments. However, further
qsagevpf.tpg'mgthqd alopg_thg l;nes of the»preyious chapter is straight-

forward.

6.2 The Equatorial Lake System

. <" The River Nile emapates at the Equatorial (or Grgat) Lake region in
the Eastern part of Africa (see Figure 5.2.1). ~Figure 6.2.1 focuses on
this area's three major lakes, namely, Lakes Victoria, Kyoga, and Albert
(or Mobutu Sese Seco). Connected by the Victoria and Kyoga Nile branches,
these lakes fcrm a cascaded system containing enormous quantiries of
fresh water (about 3,200 km3). The outflow of this system (approximately
2.3 x 109 m3 per month at the mouth of Lake Albert) eventually joins the
White Nile waters after first passing through the Sudd Swamps (Figure
5.2.1), where half of it is lost to evaporation. The Lakes (especially
Victoria and Albert) are natural reservoirs of large storage capability
and can be regulated for the benefit of the riparian countries (Kenya,
Tanzania, and Uganda) as well as the Sudan and Egypt. The regulation

studies are still at a preliminary phase (regulation structures have not

N
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FIGURE 6.2.1:

A MAP OF THE EQUATORIAL LAKES
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yet been constructed), but they gain increasing importance as the Jonglei
Canal Project (a chanmel to bypass the swampy region) is well under con-
struction. The Jonglel Project will strengthen the hydrologic coupling
of the Equatorial Lakes with the rest of the Nile system and will facili-
tate the coordinated operation of all the major Nile control projects
(Ministry of Irrigation, Water Master Plan, TR 15).

Hera the Equatorial Lake system will provide an example of a short
ELQG case. study. The objective is to test the new method's performance
in handling systzums of wmore than one reservoir. Potential comprehensive
usage of the method in the particular system will also be discussed.

Thé hydrélogy of iﬁe’Lakesf a?ea is thoroughly discussed in the four
volumes of the "Hydrometaorological Survey of the Catchments of Lakes
Victoria, Kyoga, and Albert," World Meteorological Organization, 1974.
Most of th: data used here are taken f~om that study and from coﬁmunica«
tion with Engineer A. Fahmy of che Egyptiaﬁ Ministry of Irrigation (1982).
Table 6.2.1 gives monthly average evaporation and rainfall depths over
the three lakes, and Table 6.2.2 giveé the m&nthly mean and standard devia-
tions of the net basin contributions to each lake. The net basin contri-
butions have been calculated from water balance considerations of histori-
cal data over the period 1948-1958 as follows: Let s, denote a lake's
storage at the beginning of month 2, A(sz) the surf:ce area corresponding
to SZ’ ez the evaporation minus rainfall rate from Table 6.2.1, QR the
lake's outflow minus any upstream lake's inflow (for Kyoga and Albert),
and w,  the net basin contribution. Then, the following water balance

2

equation can be written for month 2:

- e A((SR +

o417 S, . )/2)- Q2 + Nl . (6.2.1)

So+1
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TABLE 6.2.1: MONTHLY EVAPORATION AND RAINFALL RATES FOR LAKES

VICTORIA, KYOGA, AND ALBERT

L. VICTORLA L. KY0GA L. ALBERT
MOMTH |Evap. (mm) Rain.(mm) Evap.(mm) Rain.(mm)|{ Evap. (mm) Rain.(mm{
JAN. 96 105 110 28 160 17
FEB. | 106 |  1i3 161 46 138 27
wr., | 135 | 197 146 107 149 60
APR. 133 287 161 178 118 108
MAY 136 226 171 164 112 71
JUN. 156 a8 117 94 116 44
JUL. 143 60 91 85 107 58
AUG. 119 71 123 130 238 66
SEP.” | 106 | 83 113 120 67 66
0CT. 106 ' . 163" 109 ' ilsl 93 | 91
NOV. 128° 180 130 96 93 77
DEC. 109 178 104 37 155 24
ANNUAL | 1473 1691 1516 1220 1546 709
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TABLE 6.2.2: MONTHLY MEANS AND ST. DEVIATIONS OF THE NET

BASTN CONTRIBUTIONS (x 10°m°)
L. VICTORTA L. KYOGA L. ALBERT

MONTE Mean St. Dev. Aean St. Dev Mean St., Dev
JAN. -0.209 1.763 20.299 0.409 0.470 0.231
FEB. 0.394 3,005 -0.062 0.332 0.199 0.315
MAR.. -1.225 3.542 -0.234 0.263 0.233 0.188
APR. 0.385 3.952 ~0. 004 0.196 -0.055 0.738
MAY 2.228 4.592 ~0.273 0.720 0.741 0.592
JUN. 1.151 2.688 0.258 U.916 0.388 0.261
JUL. 1.290 2,402 -0.041 0.325 6. 450 0.354
AUG. 0.773 0.981 G.007 | - 0.305 1.308 0.283
SEP. | 0.39% 2.907 10.277 0.546 0,678 0.349
OCT. 0.004 . 2.374 -0.255 0.485 0.434 0.243
NOV, -2.151 4.955 -0.159 0.313 | 0.276 0.397
DEC. 0.132 6.508 ~0.437 0.483 ¢.856 0.522
ANNUAL | 3.666 -1.222 5.777
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(For better apprroximation A((;2 + 52+l)/;)was used rather than A(sz) oL
A(sg+l)') Table 6.2.3 gives adequate analytical approximations of avail-
able storage-elevation and storage-area dJata. ™hese fu.ctions are used
Lo transform_histofical lake water elevation measurements into storage
and surface area sequences which finally yielded net basin contribution
estimates via Eq. (5.2.1) and historical lake outflow data. The assuip-
tion was made that a lake's outflow was also inflow to the downscream
lake with any channel losées or gains included in the downstream lake's
net basin contribution. The procedure did pot consider measurement errors.
Noticze that some of the net basin contributions were negative as a result
of using the (evaporation-rainfall) rates reported in Table 6.2.1 through-
out the period 1948-1958. Another consequence of this assumption is the
high net basin contribution variance for Lakes Viutor;a and Albert.

- ~Table 6.2.4 specifies maximym and minimum lake storage and outflow
values based on assumptions of previous regulation studies (see Ibrahim
et al., 1981).

In the follcwing section a model for the Equatorial Lakes is presen-

ted and, subsequently, used in experimertal ELQG computer runs.

6.3 Extended Linear Quadratic Gaussiaa Contrcl

Based on the previous section's assumptions, the three lake systaem

can be represented by

N

dsg (¢)
T T () Aylsy(e)) - uy(e) (o)

dsK(t)
Tt —eK(c) AK(sK(t)) + uv(t) - uK(t) + wK(t)

—~

u

(6.3.1)

dsA(t)
dt

= -, (£) A, (s, (£)) + up(e) = u, (€) + wy(e)) .
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TABLE 6.2.3: ELEVATION E(m), STORAGE s(x 109m3), AND SURFACE
AREA A(x 109m2) RELATIONSHIPS

LAKE VICTORIA (Water Elevations at Jinja Gauge)

E = 932.74105 + 0.00739997+ s+ 22.426219 - ln s

s = -8.9288208 + 23.280746 - E + 662.33163 -1n E -
32394526./E + 351.29970 * tan (7gz * E)

A = 719.47935 + 0.06934627 « s - 517065.27/s -

-10.231907/(0.00739997 + 22.426219/s)

LAKE KYOGA (Water Elevations ar Bugondo Gauge)

]

= 1027.5663 + 0.15630936 * s + 1.1132319 - 1n s

= 90092.272 + 19.404901 * E - 15867.164 * 1n E
A = 84.83482 + 1.4969286 + s =~ 33.946833 * ln s -

1]

171.76682/s

. LAKE ALBERT (Water Elevations at Butiaba Gauge)

E = 67.459566 - 1.4489289 + s + 0.00226650 - g2 +

143.3840714 - 1n s

s = 15016.319 - 40.183467 - E - 0.02335817 ° E2 +

0.00006388 * E° + 591.63559 ° la E

4 = 45.69575 + 0.5773356 + s - 0.0013191016 * s

19.405298 * 1n s [
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TABLE 6.2.4: STORAGE AND OUTFLOWY BOUMDS

L. VICTORIA |L. KYOGA |L. ALBERT
MAX. STORAGE (x 10° m3) 3,100 30.0 175.0
© MIN. STORAGE (x 10° m3) : 2,915 - 5.5 145.5
MAX. OUTFLOW (x 109 m3/MON'1'H‘) " 4.666 4.666 3.888
MIN. OUTFLOW (x 10° m3/M0NTH 1.037 1.037 1.256
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Each variable or function is defined as in the previous section and is
indexed after the corresponding lake. In vector notation system (6.3.1)

can be expressed as follows:

ds(t)
7t = E(s(t),e) + L u(r) + w(e) ' (6.3.2)
where - - - - - '
' ‘ sy (e) | u-v(c) wy, (€)
.._s__(t) = _sK(t) . g_(t) = jup(e) ], w(t)= Wy (€)
55 (8) u, (€) 1w, ()
~ey (£) A, (sy(2) Froo o0
F(s(e),t) = —ep ()4, (s, (1)) ’ L=|1 -1 0
-eA(t)AA(sA(t)i .E 1 -{

System (3.6.2) can next be converted into the continuous time linear-
ized perturbation version and then into the discret: time formulation by
following the genmeral procedure outlined in Chapter 4. (There is no ob-
servation equation - perfect state information is again assumed). The

resulting model is of the following form:

8841 = 84 88, B, U, +E, (6.3.3)
2= 0, oen,T-1

where
¢s, = ds(t)) = s(e)) - s(e))
=2 =2 - —f
Su, = Sule)) = ule,) ult,)

9y =858
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_ii("z’tz) =1

d g(f,tz)
at “Elfg(r),r)g(r,tz) :
- aAv('s"v(t))
- -ev(t) as(c) 0 3 0
T B (5 (£)
Lsto.o = ° %) Teto -
B ) 3, (5, (£))
ATTAC7
0 0 eA(t) 3e00)
t:‘5?,+l |
By = f ¢ (y DT L
€y
E{ 52} = 9- ,

if L # ¢

9

t
2+1 T
o(t, 1T g () -} (tu_l,r)d'r if g =y

. 2
and E?(t) - [;&(t) Ek(t) ;A(t)] is obtaine from the integration of.

ds(t) _ _

T = F(s(t),t) + L u(t) + w(t) (6.3.4)
whereig(t) is the mean net basin contributing vector. The elements of
this vector as well as those of the matrix

0 0 ]

Q. (v)
Qwv
0 Qw (e) 0
X

,gw(t) =
. 0 (t)
QWA ]

are obtained from the discrete time values reported in Table 6.2.2
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according to the procedure discussed in Section 5.4.2 of the Single
Reservoir Case Study. The nominal control trajectory E(t), ta[to,cr],

is piecewise constaat (monthly intervals):
{y_(r) =_l_1_(tl) ’ rs[tz, t2,+l)} .

The differential equatiorn for the state covariance Es(t) is as

follows.(;qmpare'wich (5.4.27)):.

dPs(t)

= "B G, 20 +2 () §G0),0) + g (6) (6.3.5)

Since the initial condition is the zero matrix and gﬂ(t), £l<§(t),t)
are diagonal, it follows that gs(t) is also diagonal and the system
(6.3.5) can be easily solved by the separate integration of three dif-
ferential equations.

The : agulation of the Equatorial Lakes is a multiobjective problem.
It involves egeréy generatgsn (there exists a power plant at Jinja),
navigation and £lood control requirements (iméosing constraints on the
lakes' fluctuation and outfiow), aﬁd meeting the downstream demand
(water supply, flood protection, energy generation, et;.). However,
detailed data are not presently available to this author. To continue
with the case study, it will be assumed that the objective is to have
the lakes track certain storage and outflow (release) trajectories sub-
ject to the constraints in Table 6.2.4.

As an exaniple, consider a 12 month control problem with the lake
storages at the following initial values:

Syp~ 3,020 x lO9 m3

9 3
sKo--le 10" m
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9 3
Syo® 150 x 10" m

Suppose that the objective is to

12 _
i = 1 _ e’y T % o w T o
min ? "S{ 2.-20 2 E‘EQ “%9) _Li_ssg(ig‘ 52,) + (22 5'2.) _L_\_quz(_liz 5.2')
=2 -7 . .
=0, ..., 12
, o e *
* 2383 N3 (8130 5),) } 1 (6.3.6)

subject to the dynamical Equatioﬁ (6.3.3) and the other system con-
straints (Table 6.2.4). The target storages and releases are given in

13 12
Table 6.3.1 along with the diagonal matrices {N ]

Yoo o g,
' JSQJZ___O :_‘UUZ 2":0
The elements of the coefficient matrices were taken equal to

R C i |
- C(6.3.7)

uugd,

for all three lakes, while the coefficient of the terminal storage term
was addiéionally multiplied by 109 (to make sure that the terminal stor-
ages will be close to the target values at the end of the control hori=
zon). The relationships (6.3.7) were used to comparably penalize the
various variables' deviations from their target values. The target re-
leases were taken equal to the corresponding lake's average water gain
over the period 1948-1958 (based on the previous section’s modeling
assumptions).

Tables 6.3.2, 6.3.3, and 6.3.4 present some results of the iterations

required by the ELQG control algorithm to solve the above problenm.
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TABLE 6.3.1 : DATA FOR THE COMPUTATIONAL EXPERIMENT

L. VICTORIA L. KYOGA L. ALBERT

*

s, (x 10° o) 3,000. 20. 160.

£=0, ..., 13

£ g9 3
u, ( x 107 m”/month){ 1.332 1.324 1.400
220, ..., 12

- 0.292 x 10~ 0.16659 x 10°2 0.11491x1G°2
2 =0, ..., 12 "
Nos13 0.292 A 10° 0.16659 x 10’ 0.11491 %107
-1 -1

N 0.759406 x 10 0.759406 x 10 0.1488435
L= 0, ..., 12
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"OBJ. FUNCTION 1" reports the performance index value (6.3.6) neglecting
the covariance terms, "OBJ. FUNCTION 2" additionally includes the con-
tributions f{rom any state constraint violations. "WI", "d", and "ALPHA"
are as in the single reservoir case. The number of the binding control
constraints is given next. The tables report trhe trajectories of the
mean storage values ("E{S}'), St. Deviations ("ST.DEV."), releases ("U"),
first ("DUJ"), and second (“DﬁUJ")objective function control derivatives.
Under "A", the control constraints are signified by "-1" if they are
lower binding, "1" if they are upper binding, and "0" if they are unot
active. The procedure starts at nominal release trajectories which are
equal to each lake's target releases. To test the method's convergence
properties, the linearization of the dynamics is performed only once at
the initial nominal sequences, and the resulting linear model is also
Qséd.ét the Subgeﬁuént itérétidns. Convergence-is bractically achieved
in two iterations as can be seen by ;he Gradient elements and the "WI"
value on Table 6.3.4., In fact, the algorithm converges in one iteration
after the binding control constraint set is identified. The terminal
storages equal the desired targets. This experiment did not involve
probabilistic state'constraints. (The St. Deviations are computed ac-
cording to the Open Loop procedure.) The iterations required approxi-
mately 8 seconds CPU time on a 68/DPS Honeywell computer. Computational
experience with variations of the above problem (longer control horizons,
different target values and feasible constraint ranges, etc.) suggests
the following:

1. After identifying the binding constraint sets, the algorithm con-

verges in very few iteratious (2 ~3 for nonlinear dynamics, 1 for linear).
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2. The number of iterations until the binding constraint set is
found depends on how restrictive these constraints are. Namely, many
loosely active constraints may slow down the convergence rate,

3. Generally, the Armijo test is passed at low m values.

4. Before increasing the penalty terms for any state constraint
qulations, convergence Or near convergence of the control constrained
algofithm is firsﬁ recommended. (This way 1ll conditioning problems
are avoided.)

5. Computer time and storage requirements are impressively low.

Under a more extensive data base, ELQG can be used in a comprehen-
sive investigation of the Equatorial Lake Project. Different regulation
alternatives can be evaluated and assist in international agreements.
For example,_an objective of the previous regula;ion studies has been
to operate the lakes so that Lake Albert's outfiow will alwa&s be equal
to its historical mean. This all-the—yeaf;round steady outflow regula-
tién aims at providing downstream users with safe water supply. The
question is how much lake storage is necessary to achieve this goal and
what are the costs involved. Regarding the associated costs, they refer
not only to the explicit costs of the regulation structures but also to
implicit costs related to the navigability of the existing lake ports,
possible reductions in energy generation, and the effects on other ac-
tivities (fisheries, etc). Nct suffering from dimensionality problems,
ELQG can also investigate the benefits of coordinating the Equatorial
Lake system with the High Aswan Dam. Towards this end, the lakes can
serve two purposes: First, as an overyear assignment they provide a

dependable reserve water supply in periods of severe Blue Nile droughts,
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and secondly, un a seasonal basis, they can help diminish the HAD's
level fluctuations caused by Blue Nile floods (dAugust, September, October)
and the downstream water demand peak (May, June, July, Augusr). Based

on our experieace with the first case study, the second of the above
tasks will help increase the HAD powar productiom while the first will
gdd to the.reliability of meating the water supply requirements. This
second tegulation stfategy, hawever, 7ay require substantial lake stor-
age valumes which may be in comflict with the interests of shoreliae
residants. However, by establishing the true tradeoffs among the vari-

ous objectives, fair ygrounds can be established Zor the lake regulatiorn

agreements.
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Chapter 7

CONCLUSIONS AND FURTHER RESEARCH RECOMMEMNDATIONS

7.1 Summary of Resulcs

This work has used stochastic control theory background to design
a method for the orerational management of reservoir systems.

The actual reéérvoir'énd river segment reswvonse was modelled by a
set cf coupiéd ﬁ6ﬁiiheér differenfiél equations in contiauous time.
Potential pafametefliéenﬁifiability proBleﬁs were discussed, and an
identification procedure for separately treating reservoirs and river
segments was suggested. The system model was linearized around nominal
control and scate trajectories and subsequently converted into a discrete
time linear perturbation model where the discretization irtervals can‘be
arbitrary.

= fﬁé.variSué S&sfém.oﬁiécﬁi?és';h& 6pera£ional éhé;adteriéfics wefé

seén to induce 9ontrol and probabilistic state comstraints. The goal
acsigned to the control prncedure was to generate pointé on the properly
defined tradeoff surface. When treated according to the Open Loop Feed-
back control philosophv, the resulting stochastic control problem was
seen to be equivalent'to a deterministic nroblem in the space of the
state's prcbability demsity. Due to the linearizations employed, this
function was locally approximated by a Gaussian density. Tte algorithm
designed to solve this problem was named Extended Linear Quadratic Gaus-
sian (ELQG) controller, and ‘it is of the trajectory iteratiomn type. It
successively treats the unconstrained problem, the problem with control

constraints, and the problem with both control and state constraints.

For these operations it respectively uses a Newton, a Projected Newton,



and 2 Penalty Function method. ELQG iterate§ along directions obtained via
analytical considerations. It identifies locally optimal trajectories,
and it is expectec to display reliability and a fast-convergence rate.

By its analytical structure, it does mot suffer from dimensionality limi-
tations.

The method was tested in case studies of two actual reservoir sys—
tems. The first case study concerned the coantrol of ;he High Aswan Dam
in Egypt. The problem was to maximize expected emergy generation subject
to release and probabilistic storage constraints resulting from other
operational requirements (water supply and flood control objectives).
FJ.QG was employed in several computational experiments and performed im-
pressively even for very long control horizons. Congrol constraiats were
accounted for within very few iterations (5 or 6), while the handling of

the proBaEilistic state constraints was satisfactory overall, although
léss efficient. Compzared with state-of-the-art procedures, the method
exhibited superior performance. The second case study concerned the con-
trol of the Equatorial three lake system located in northeast Africa. It
was shown that the previously Zdentified ELQG properties also charactear-

ize the method's performance in multireservoir system problems.

7.2 Further Research Racommendations

Further research wotrk can proceed along several directions;

1. Although local linearizatioun of the system dynamics was seen in
both case studies to be overall adequate, the possibility of second order
approximations can be investigated for strongly nonlinear systems. In
such a procedure the method's iterative steps will utilize the Newton's

direction ‘or the nonlinear control problem (and not of {its linearized
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version as was the case here) which will result in faster convergence
rate.

2. Theoretiéally, multiplier methods are characterized by better
convergenée prope?éies compared &2 the Penalty Function approach. If
the initial multiplier guess problem is alleviated, these methods will
add to the overall ELQG éffilcienc_}?.

3;_ Computatioﬁal_exﬁerience with large systems should be acquired,
and the system order up to which the naw method can be advantageously
employed should be determined. For higher order systems, research ef=-
forts can turn to ELQG decomposition schemes. The problem consists of
two separate parts: (1) decomposition of the probabilistic state dynam-
ics and (2) decomposition of the control gain equations. Toward this
end, theserial reservoir system nature may be usefully exploited.

4, 'Rggafding practical.applications, the method can be employed in
studies of wvarious actual systems. Casas hith impérfect state informa~
tion as well as ELQG models with on line system identification procedures
can be implemented. Car: should be taken to properly account for the
particular problem's characteristics. The method cannot substitute for
intuitive system understanding.

5. Hierarchical control structures can b~ designed to consist of
ELQG models differing in the discretization intervals, the performance

index, and possibly the input process descriptiom.

As a concluding remark, ELQG ~an be rewarding to both theoretical

research and to actual reservoir systems operation applications.
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Appendix A

MATHEMATICAI. REVIEW

Some mathematical definitions and results are collected here to
supplement the presentation of the main text.

Consider the scalar function f£(x) of the n dimensional vector X.
The Gradient vector~of‘f(§) with respecﬁ to x is denoted as vxf(xl and

is given by
| B

v £(x) = Sz : (a.1)

The matrix of the second f(x) derivatives with respect to the vector x

"is called the Hessian of f(§}.and is defined as- follows:

[ A (x) 9f (%)
VeF (8) = : : . (4.2)
£(x) £(x)

The function £(x) can be approximated around some vector X4 by the
following an order Taylor series expression:
£(0) = £(x) + T8 () (xmx) + =(x-x )T 7 £(x) (x-x,) (a.3)
= =0 X" =07 = =0 2 ==0 =0 = =) )

("T" denotes transpose.)

Higher order Taylor series expressions of f(x) can be obtained from
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. .3
+ (xn an) ox J
n

m-1
1 [ )
F@x) = ) = (K= R )T kL
= 0 m! L 1 “o1 ax)
L E(xy) (A.4)

where the expression in the brackets is an operator applied to £(x),

E‘O'
R™ > RT (IR? de-

and the resulting expression i35 evaluated at
Consider an m dimensional real function f(x)
The Gradient matrix of

notes the space of j dimensional real vectors).

£(C) with respect to § is defined by
Sfl(ﬁ) afm(ﬁ)
) Bxl axl
V(8 (x) = . , : (A.5)
A, (x) of (x)
ax ox
n n -
I £(x) = h(g(x)) (A.6)
where h: RF - R and g: R® » |R", there holds
VL@ =V 8@ 7h (g0) (4.7
(chain rule of differentiatiom).
Using this result we obtain the following expressions:
T T
vlax) =7 (x 2 = a (A.8)
Vx(zsré;s) =ax+ax (a.9)

where a is an n-vector and A is an n x n matrix.
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APPENDIX B

ANALYTICAL APPROXIMATION OF THE

REFORMULATED COST TERMS

We wish to obtain analytical approximations of the cost terms
22(3}',') or 22(',') defined by

E {22(6§£,62£)} (B.1)

6§£

.. Lo 8y s Bopio®y) = Ez(‘séz/kﬁ-‘iz) =
where (*,*) is"a given real valued function, 652 is a Gaussian ng
- dimensional vector, and 65£ is tche nu dimensional control Yector.

To illustrate the approach we shall begin with the case of scalar
state and control. In fact, this analysis will suffice. when 21 (+,*) is
.sepatrable into terms depending only .on one state and control variable
(compare Qith‘performance index (4.2.14)). The idea is to represent

22 (Gsz,éuz) by a finite number of Taylor series terms and analytically

evaluate the expectation in (B.l):

M--1
R 3 3 (B.2)
Bo(8sy,8up)= [ 2185 + Su i z(-‘ssz"s“z)]éss =0
. m=0 % 2 A

5u2=0

where the expansion is around the current nominal state and control
trajectories. In the notation of Equation (B.2) the quantity in
brackets is an operator applied on lz(-,-). Expanding the powers

in (B.2), we find
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L Gsy u)= T i{ P =) Lisuy) 2
s A} 00 m! ol ,m, my 'm, ! 2

3"1400,0] }

B dla
: Yy 1 (8.3)
(3652) (3du, )
where m,,m, are all non-negative integers for which there holds
'mlfmzn?#m:' Taking expectations in (B.3) we find
Mol a2 1% (0,07]
3{9‘2(552’5“2)}2 2 p— ) — -
=0 ™\ @ ,m, 17727 .o Pl ™2
1772 (96sg) (Bduz)
m1+m2=m4 .
o, m,
E{(Ss,) }(Guz) (B.4)

Equation (B.4) ;an provide an analytical approximation of %ﬁosl/k’Psi/k’
5uz) if E{(ész) 1} can be expressed in terms of the mean value

agz/k and the variance Ps Toward this end we shall make use of

L/k’

the "Gaussian momert factoring', a simplifying property characterizing
Gaussian random variables. For a Gaussian variable x with mean value x

and variance g, there holds (Jazwinski, 1970, Section 2.2)
0, all odd m > 1
E{(x-x )"} (-3)
l.3.5...(m—l)3m} all even m > 2,
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Result {(B.5) can be easily derived from the properties of the associlated

M"characteristic function”. Using (B.S5) one can also evaluate any

-~ m ot .
statistical wmoment Eix } by induction:

| - - -2 2
m=2: E {(X-T)z} = E{xz}—ZE{x}x +x =g, o0r
E(x7} = £+ 00

' - 3 . 2. - ) - -
m=3: E{(x-x)B} = E{x;}-3E{x }x + 3E{x}x2 - x3 = 0, or
E{xB} =%+ BEGZ,
m=4: E{x4}=3-c4 + t5§2+34,

S

eeg -

These expressions can also be obtained from the characteristic

function
. 125-%2202 2 K
Sy me 4, iha o, U (B.6)
and the fact that
- -
L d"q (2)
m 1
Ex} = = ——-qz . (B.7)
1 L dz 2-0
. m
Hence, E c 3 s
{(5sp) } can be expressed in terms of S/1° Psl/k

and Equation (B.9) can be used to approximate @2(;,-,-) = Ez(.,.)

at any desirable accuracy.

Regarding the multidimensicnal case where 6§ s ﬁuz are n_,

n dimensional vectors respectively the previous equations become
.
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M-1 =
- 1
2,05 ,0up)= mZO ol [5511 T et =0t 6u - —
12 s n 1 12 Tug “n ﬁ
S u
* 10.(8s,,8u )] > (B.8)
2 5s =0
ﬂ' ——
Su,=0
M-1 1
m=0
| f m!
o o, m 'm m !
msl,. . ,munu sl sng ul! o
m ,+...+m +m _+...+m =m
sl sn ul . unu
3%12,(0,0)]
. m m m m )
y sl ., sm ul un
(86512) "‘(365u§£’ s(BGulz) ...(Béunég u
m m m m
. sl sn . ul un (B.9)
E {5512> .(Gsn Q s} (6u12> ...(Gun 2) u .
s u
m
fs1... 2 st

Again, E{(Gslf) (Usn52 %} can be obtained in terms of the

elements of the mean vector §s and the covariance matrix P

L/k =si/k
by the "Gaussian moment factoring" result, which in this case takes
the following form (Sandell and Shapiro, 1976): Let {xl,xz,...xn }

be a set >f jointly Gaussian random variables with mean values
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{Ei}iil and covariances cij’ 1 <i,j < ng- Let {kl, kz, cees kL}

be a set of integers selected from {l,2,...,ns} with repetition

allowed. It holds that

0, L odd

{ - = ' . .
E: ('ckl xk) ka) Jz _ s ’ (B.10)

3 L even
21“2 2.2, B %o

where the summatlon in (B 10) is over all distlnct pairs of subscripts
{ll lz EL} which are permutations of {k kL} Although
more complicated, this result can be used inductively to provide the
desirable expressions.

'i‘Airernetively, the séme resuits can %e'obteined through the

n

joint characteristic function which,;ﬁe;the case of the {xl,...,x }
s

jointly Gaussian variables becomes

qx(;_) = exp {i_z_r_T:E --12: £ z} (B.11)

where 2z is on n dimensional vector, §T = [E Koees X ] and P is
- s = 172 n =X

s
the covariance matrix of EF = [xl7"xn ]. Then,
s
E{x, x, . X '} = —5;-[v q (2)] (B.12)
172 """ "n n z = =
s is -

m m
where qux(g) is the gradient of qx(g) Moments such as E{xll X,

X
n
L]

ey Do in the jointly Gaussian set.

ns} can also be obtained by repeating mi of the variables xi, i=],
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Although the accuracy of the analytical approximation suggested
here can be improved by retaining more Taylor expansion terms, in

practice the first few terms will generally suffice.
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APPENDIX C

EVALUATION OF GRADIENT AND HESSIAN

Consider the following two cptimal control problems reproduced

here from Section 4.5:

e e L .
Minimlze J = 2 (S5 ,Gu ) + 2 (5
{ E,Zk 2/ ST/k}
{6u }ﬂ'_‘k

subject to

O T8y SSp v B S8 St D
L=k,..., T-1
and _ T-1 . . .T
. ;.minimlze K] Q.'Zk [N l&gzlk-i-'guldgl +—6s
{63£}2=k
1. T T -
+ 30y Wyl + 08y NogeSspnd *

T = 1= -
Sz * P21k Yesr Sk
subject to

SS41/k ™ & =7

lak,---,T"l

where N, =v5§9«/k 2,(0,0),
N, =v622 1,0,0,
N =

agsd 552/k551/k 2 (0,0), (symmetric)

a o2
guul Véu 5u 2 Q, O/, (symmetric)
N . =[V: ~ T
= 0,0
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We wish to show

ou = 0) ] (C'3)
T u -T-1 -
2 = . o i . 2 = -
vuu J(Su, =0, S8n 1 = 0) = vuu J(d-q‘!f-g-""’oy‘r-l = 0) (Cc.4)
where - -~ _ _ _
v J 2 e 2 <
Su, °© Ve J Y
e 55&5_\5& ngﬁg_ -1
VI= . v2 7 ) ) (C.5)
u uu . .
\v 3 2 * I 2 <
8 Vs J.o. V J
L. -1 I R S Sup1®8

and similarly for 7 J, A% J.
u uu

As a proof we shall directly evaluate representative elements

of the above Gradients and Hessians and show that along the nominal
sequences (: {652=0}§;t,{6§£/kég}§=k, ) they are equal. To this end
we shall need the following fact:

6§j+l/k = o(j+1,k) 531 /k + igk $(3+1, 1i+l) Ei Ggi (C.6)

A =
where 83,004 8. ) 8. .- s 8D = L, (c.7”
for any j > k.
The validity of (C.6) can be established by recursing the

dynamics from time k to time j+1l:
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SSp1/k ™ S S t By Suy s

s Su
e /ie ™ Bear (8 S/ T B * Bryg O%p =

* S & %S T dr By °9 * By MWy T

| et
= s * i 6
= 40e2,k) S5 izk S(k+2,1+1) 3, Su,,

which by induction leads to (C.6).

' Now consicer taking the derivative of J with respect to the

control vector at time 2:

Voo T =V (2 (83, ps6w) + .. +0. (83 . .6u.) +
R S A R 20929 /100y

+ 2y 63 sz,+1/k'5—z+1) SR RSP (c.8)
Since the cost terms prior to time & are not affected by the control
’Ei’ they vanish after the differenciation. The only cost term
explicitly involving 6u is Ez<5§z/k’5ﬂﬂ) while the terms Ej(égj/k’agj)
for j > 2 are implicitly affecrted through the state vectors. In view
of the above

T-L

Ve J =V, L,(63 Buy)) ¥ ) T 85, Te= (S, ,8u)
Su, Su, "LT=2/k =841 6y, "=j/k 6§j/k b PA
+ 0. 68 Tes 235,000, (c.9)
Su, 2T/k 63, "1 O%1/k
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The expressions in Equation (C.9) result from application of the chain

rule for vector differentiation according to which (see Appendix A):

ng) = Vs_-ds. 7o' 22(65j 5Ej)- . (C.10)

To evaluate V. 85. 1, j=L+1, ..., T, we next invoke the result (C.6):
8y, =i/k

B} - ogm

vsuzs%/k [d)(j k)ésk/k + izk $(3,1+1) B, du.] =

T T
ngltg(i.lﬂ) B, Su,1 = By &°(J, &+1) (C.11)

where the following vector differentiation rule was also used (see

Appendix A):

V. [¢(i,2+1) Bl Su,] = (0(j,4+1) B ]

)

Substituting (C.11l) in (C.9) we have

T-1
~ T ’I‘ ~ -
Ve J =9, z (65, ,0u,) +B°| ) & (3.4+1)V.=  2.(8s,, ,6u.) +
532 052. -2/% 7L l’:j=-2+l dgj/k 3 =ik
+ d)T(T 2+1) © 2 (85, ,.) (€.12)
= " 6§T/k 31/ * |

Since we wish to evaluate the above Gradient at the nominal trajectories,

T-1 - T
= N1l -
we set {GuJ 0} j=k {oij/k j=k

the zero con:rol sequence, the dynamics, and the zero initial state

= g} (the zero state sequence results from

conditlon) to arrive at
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T
= T T,,
V‘S“Q J@uu =0, .oy up = 0 =N, + 3B, ._.g LCRELS) N (C.13)
- j=i41
. ‘ T , . "
where the coefficients N 02 {n j}j=l+l have been defined in (C.2).

To prove equality of Gradients for problems (C.l) and (C.2), w=

need to show that the righthand side of (C.13) also represents

vd&g J(ﬁgkég, R 0). To this end we observe that all operations
invoked to derive (C.12) are valid for problem (C.2) as well, the oculy

difference being the form of the cost terms. If we denote the quadratic

TS, S [
j/k’°5j)’j=0’ T 27/%

for the derivatives indicated in (C.12):

costs by {15(55 ), we find the following expressions

Vou, "1 0% /10) = Nop * Nuue O * Rus®Spe0
V.- T.(85., ,6u.) = +N .85, +NF . 6u
égj/l it =j/k’ —sj sssj ~3j/k  =usj =’
) r (C.14)
jo= 241, ..., T-1
Voo 2.(8s.,,) =N _ +N 85,y - .
€S2 1 T =T/k —sT = =ssT T/k J

To carry out these differentiations, we have used the fact that for
two real vectors x, y and a symmemtric matrix A of compatible

dimensions there holds



T-1
Vou,? * Ny * Buut®u,* Jusp®S/ * L %ﬂ 2 (1,240 -

- _ T .
msj + ‘r!ssjdij/k + §usj csu 1 +; ds (T,2+1) [N +¥_ . T/k]} (C.15)

N o 0T
Finally, setting {du O} k’ {65 $/k —<9}j=k in (C.15) we find that

Foed

=Q) is given by

vG_g J(65k=_(_)_, cees 62’1‘-1
o : o ' " T
Vou, TOB0s e s0uy 1=0) = Ny + By [j-_-g-i-lg @44 Byl (€16

-

Since equations (C.16) and (C.13) hold for any time 2 = k,...,T-1,
their equality proves the claim that alcng the nominal sequences problems
(C.1) and (C.2) have equal Gradients.

We turn now to the evaluation of the Hessians. Regarding problem
- (C.1) we shall start By differgntiating Equation (C.lZS with respect
to a control vector §2m where welassume k<m<2Q:

2 - - 2

v6u Su J = vd 6§£/k' V

I3 (8s, ,, ,0u,) +

L.,%ﬂV 55/ dsj/ 555 2(83;/,06808(1,041) +

2

+ VG T/k ds
ﬂ

T/kosl‘/k 9, (SsT/k) g(T,z+1)j] B, - (C.17)

Equation (C.17) results solely by use of the chain rule of differemtia-
tion since all terms in (C.12) are implicity functions of 6Em through

the state vectors and the dynamics. Similarly to (C.1ll) we find
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(C.18)

and ‘so

2 s T T
v J=B ¢ (2, m+l) V Z (Gs ,0u,) +
52% §2m =m = | "Su 26 9/k =L/’

o+

47

L
5i/k

o, 2
(j,m+l) V= = ) (8s, ,51.1.) $(3,%+1) +
jad+l 2 %5 n® 3=k = |

+ cb (T,m+1) v3- - 2. (8s.,,) ¢(T,2+1); B
| 8s T/’d St /k -T/k’ = J =

(C.19)

Evaluating this expression along the nominal sequences we get

S i o ol Ty T
u,Su J(dgkig’ ’ CSET—lno) 1=3rm & (Z,utl) 1-:{t.v.s'ﬁl, +
=" —m

3

T .
T
+ B (G,ml) N__. 0(3,%+1)| B,. (C.20)
l:j=§,+lg -ssd i, =1

8

Regarding the Heséian of problem (C.2), we differentiate Equa-

tion (C.15) with respect to GEm to obtair

N
[
i
<
=

T-1

- T = .
v 3s N + v 8., N . 0(3,24+1) +
Su,8u_ §a_ “-/k =us [ gu_ =i/k =ssj =

gy Sy Yogr o(T5 z+1)J B, - (c.21)
o

Invoking (C.18) the above becomes
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2 = T .T T
Taye T =B g m N, ¢
~-m
-.T T
T | ) &G N o 8L, B (c.22)
=m | j=2+1
which by (C.20) is equal to Vé 5 J(ng=0,...,GET_1=O).

Similarly, for 2=m we can show that

T
2 ~ o T T,
v529,52.1 J(8w=0, ...,8u; ;= 0) =N o+ éll-. ; 6 (§,2+1) Moo

2 -
* 8D By + Vs sy (c.23)
=2 =L
and for & < Q i’f_iA
2 -~
vsulsu J(S&C = _O_’OO-yGBr_l’O) = Eusm g(m,ﬂ,'l'l) EQ, +
=L -m
. (C.24)

+ BT ET(jm-i-l)N ('2,+1)JB = g2 3
[ LA by 200 [ 8 T,
proving that problems (C.1l) and C.2) also have equal Hessians along
the nominal sequences.
Before concluding this appendix we shall present a result to
be used later in Chapter 4. The purpose is to provide efficient ways
to compute the Gradient Vg 3(2,...,9) and the Hessian chi fu 3(9_,---,2)

LY} W,Cuy

at any time 2=k, ., T-1. Consider the sequence of vectors

T
{p;}{a) and matrices {gi}§=k obtained recursively by
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Py = Ny L
= ®T.R- + N
By T By T 5y

i = T“l, T-2, .lc’k’

and gT = éssr
G, =8 G, b, +X 1\
=i =1 =i+l1"i  =ssi
i=7T-1, T-2, ..., k.
)
.We claim that for any 2=k, ..., T-1
V. J(0,...,0) =N  +3B%
Sy, TS T S Tosg Beare
V2 J(,.. + 87

-Sufuy’

9 = Byg * By G By

?

(€C.25)

(C.26)

(€.27)

(C.28)

To see why this is so we shall prove that (C.27) and (C.28) are

respectively equal to the expressions (C.13) and (C.23) derived earlier.

Recursing (C.25) backwards we get

N

—sT’

ET ) .
T T

Qg Byt Ny v N

+
~sT

T
br.2

T N\
Grp By 70 -

T
87 (T,1-2) N
T

)

3=T-2

T

T,.
2 (J ’T-Z) §'Sj ’

where use was
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d

made of the definition (C.7).

=

T

+ mT(T-l,T-z) N
. = ——s

T-1

Or-2

T-1

b

T :
2='I‘-l EsT—l + NST*2

T
=2 . T=2
+ 4 (T=2,T-2)N

2



Continuing the induction up to time %=1, we find

T

T
P = Z (j,%+1) N ..
b+l j=2+12 >

Substituting {C.29) in (C.27) we obtain

| -
A T4 T T
Vey JC0,...,0) =N +B [ ] ¢ (j,+1) N_.]
) Bl 5 s

which is the same expression of 7
oy,

(C.13).

(c.29)

(C.30)

J(0,...,0) as the one in Equation

Similarly, regarding the diagonal submatrix of the Hessian, we

recurse Equation (C.26) to find

_”‘g'+N

T ' =gsT .
. . +of. ¢ + N = ol N ; +
Sro1 T Oro1 &p &ro1 T Vogre1 T ro1 Heer 2142

N

asgT-1

T
QT_z 21-_2 g'r-l 31‘-2 * g:IssT-Z
T LT T
2T-2 2T-l 3gsT QT-l 2’1‘-2 * g‘I‘—-Z IissT—l 2‘I‘—2 * I;ISST"Z
- o7, _ 9 oT ¢m_1 7o d (T-1.T-2
$°(1,T-2) ¥oer 2(3,1-2) +2° (T-1,T-2) EssT-—l’:(T 1.1-2) +

T
+ 47 (1-2,1-2) §__,_, &(T-2,1-2) =
¥ T
= ] oG- N, 8G,T-2).
§aT-2 7 Sss]

which by induction leads to
g T
Sor1 7 §+£2 (3,4+1) N, 8(3,4+D).
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Substituting this result into (C.28) we find

. T
2 It T T .
v o J(0....,0) = N + B’ i, 2+1) N, 6(3,2+1)1B
01_12'022’ (._ _..) 'éxuu.Q, 23, [j=§+1 :@. &] ) 2gsj = J )]f-‘-l

(C.32)

whiCthf1c6mpafi30n'wifh'Equatibn (C.28) proves the ..aim.
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APPENDIX D

COMPUTATION OF THE NEWTON'S DIRECTION

*T-1

We wish to determine the zontrol sequence {621}2=k which
minimizef J = 2Zk[N 2 2g/% TRy, 0 T Bt T
R R ¢ ) T
t 70 Bung 5% Oy Hugfnd ¥
T - 1T . .= 1
+ o) .
Hor 837/ ¥ PS1/x Nser 5-S-T/kJ (0.1)
subject to
Sspar/e 2881k T BeSuys S8 = O
l’k’ * 0oy T—la . }

To guarantee uniqueness of the solution, we addiﬁionally require that

@%sgi:i are positive semidefinite and that {ﬁﬁw}::i

definite matrices. These assumptions are expected to be valid due to

are positive
the form of the objective function discussed in Section 4.2; yet, if
they are not there are still ways’to remedy the situion. One would be
:0 convexify the performance index by placing higher expcnent penalties
on the power target deviatioms. Others will be mentioned as the dis-
cussign progresses.

The solution of problem (D.1) will proceed according to the Dynamic
Programming Methodology outlined by Algorithm aA4.4.1.

At the terminal time T there 1s no control variable and we

simply set
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T - -T
Tp[837 1] = Hgy ‘SET/k+ 8s1/1 Yes1 31/ (D.2)

Stepping backward, we want to select the feedback control law

Qg;_l = (GsT l/k) so that
B (63 ) =.arg mln“} | 7 T s NT du
:“‘r-l Sr- l/k. , by Ipo1 T Nopop OSpag/ict Myper ©8p
4 . -1

8s 6u N Su

[53 T-1/k Nssr-1081-1/%" 8871 Nuur-1 S8p.1!

+ ‘SET 1 Nogre1 Sepoijie T (‘Ssr/k)}

(D.3)

Substituting for 6§'7k‘from the dynamiés

s Su

S8ppe = -1 SSpo3/w T Brog S8p

and using (D.2), we can restate (D.3) as follows:

X - - .7 T -
Uy 3 @y ) = at8 g‘in {JT-l = N 8p g *F 8 p gl S8p g
-1

T T 1.-T T ,
N By * Ny 10up g * 3080y by Negrdpanl *

T
- +
L SuT [ET-l §ssT ET—l+§uuT l]OET 1

+X sgsT- l] G—T—l/k + 2 °=r-1

T -
+ 6wy (Br Nogp 8po + Nygp ] 6§T—l/k1 : (D.4)

Because of the positive ({semi)definiteness assumptions on N_ and §uuT-l’
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T .,
it follows that ET—l §ssT ET-l + §uuT-l

a basic fact from matrix algebra, Strang, 1980) proving that J

differentiate with respect to GuT-l

T L T
ET‘l EST Tt [§T-l I;Issfr S * E-Iw.‘.ul“-l](sg‘l’-l

T -
* By Neor o1t Nuer-1168005 = O

is also positive definite (as

is
T-1
a convex function of Su,, 1" To find the unique global minimum, we
S

and set the result equal to zero.

(D.5)

In the derivation of (D.5) we have used that for the vectors x, v and

the symmetric matrix A of compatible dimensions there holds

v ly'xl =z =7 [z,

V [x'ax] = ax + ATk = 2.

o D

"Equation (D.5) can be solved for GET—l to yield:

* > I T -1
Sup g =W Csp_ ) = =By Yeor Brop * Nuur-1!

T T
(Broy Yeor 71 * Nusra1 + B ]

sy 1/ * Bpog Nop * Nl

] -l
Calling Dy ” [gé-l EssT g'I‘-l + guuT—l] ’
CT
Lre1 ™ Brop Sger &1 + Bygr-10
=8 N+
App = S S T Ny

(C.6)

(D.7)

(D.8)

(D.9)

we see that the optimal control law is the following linear function of
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%

63'1'—1 (‘SST l/k) - 2‘1‘_1 [L'T—l 6§T—l/k + A—T-l] . (D.10)
In casé D does not exist, one can still solve (D.5) using generalized

aT=1
inverses (Bellman, 1957) but the solution is not necessarily unique.)

Given that at time T-1 the control law (D.10) will be applied,

[SET-l/k] becomes

the o 1 "cost to go" J
R

- - _ T
JT-l(‘sfr-l/k) - —T 1/k —T-l d— -1/k +

T a c
*lyoy SSpoapc t T-1, (D.11)

: §¥;l 1iss'l'--l + QT-I tiss'l‘ 2-T--l‘ *

T ' a7 =
*Lypoy Brop Brog Yoo gT-l + Nour-1) Bpag L

T

=2 Lpg Bpg [Bpoy Negp Spop * Nygra b (D.12)
T T
= N + ¢ (B
k']."'l —sT-1 =T'-l v LT-l =T-1 Sl 1 T '—'UT-l] +
+ LT (B2 B .+ N 1D
Loo1 By Bpog Sgor B * Nuur-1! Brog Mg
-6 N B, .+N . 1D . (D.13)
=T-1 =ssT =T-1 =usT-1" =T-1 f1-1 ° '
T e = —[V B + N° ] D +
T-1 SsT 2r-1 © Zur-17 =r-1 Ar-1
+3 8 Doy [BE N B +N 1D an . (D.14)
2 -1 =T-] -1 =ssT =T-1 =guT-1‘ =T-1 &T-1

The above relationships result by substituting (D.10) in the expression

(D.4) for J N

. \l
and use of the fact that ¥__., HesT-1’ Yuur-1 Bro1?

T-1
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http:NuuT-l(D.14

BT N B

aT=1 =5sT =T-1 +

are symmetric.
=yul-1

Equivaleﬂtly, Equation (D.12), (D.13),

as follows after invoking (D.7), (D.8), (D.9):

T T T
Bt = Veare1 ¥ &r-1 Yoot Sr-1 ™ Bro1 Yoot 2p-1 ¥ Yuer-i!
‘(87 Your Brop * Yura! Bt Beer fr1 ¥ Syera! 019
= T - T h 1 T *
Bry ® opn O Nop 7 Brog Soer 81 F Buerad!
T : -1 (T
(Brg Neor Bro1 * Nyur-)  Braa &+ 80 (D.16)
I T T -1
cpap =5 [Biop Nop * Nypa! Bpa s B F Yur-1)
T \{
(Bp1 Nop * Ny (D.17)
" , " n 3 '
Having determined the form of the optimal "cost to go T l[ ET—l/k]

(D.14) _.an be rewritten

by Equation (D.1l1), (D.15), (D.16), (D.17), we may nocw step backward

at time T-2 and select

* = - o7
2) = = \T +
B @sp ) = 278 g‘tﬂ {JT-Z Yo 881-ond Nug-2- %12
=12
+ [ N 3s + ouT N Su +
71S7-2/k ZssT-2 °-T-2/k -2 =uul-2 ~—-T-2
3S +J s . .
* 531*—2 Bust-2 O%r-2/k Jr—l(‘sir-l/k)} (D.18)
{
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where

[3 B + N ~1

2 =I=’1'-- ="I‘ 1 aT-2 —uuT—Z] ’

aT-2

Lr2 ® Bpoo §ro1 &ro2 * Buer2e

T
.M- Bpep gy T E

* ‘ -
Putting GET-Z from (D.21) into the expression for JT-Z

the various terms, we obtain -

l

(6 ) = = &8s R

ST 2/k T-Z/k Sr-2 %Sroo/k +

T
4'h‘r-') Sr-2/k T Sr-2

1-2 7 Bser-2 * -sr-z KT- &2 *

T

+ Le2 Dro2 [BT 2 5101 Brn §uuT-2]2T-2 I

T
= 2L 2o b1 Kre1 87-2 ¥ NusT-21>

T

T
By = Nypp ¥ 870 &= Ly Do Z[BT 2 Rp_g * Nyp ol +

T

+Lra Bro2 [ET-Z Bro1 Bp0 EuuT-Z] Dr2 2~

T
- [¢T 2 Bro1 Brog * Nugr-2!Bpo0 Moo

T T
c = ¢ - [k B +N.. 51D A
-2 7 S1-1 7 My Bro2 T Rur-2t B2 A+
1,7 T
Y r + i .
* 7 80 Dpop [Bpop Bpop Broo F Nuurop! Bro Apoo

Lastly, using (D.22), (D.23), and (D.24) we can refine the above

expressions as shown below:
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(D.22)

(D.23)

(D.24)

and regrouping

(D.25)

(D.26)

(D.27)

(D.28)



As before, we next substitute J ( ) from (D.11) and (SS.r 1/%
from
8s T-1/k = 2n- —T-Z/k * By O¥1
to obtain. -
u* (Ss 5 = arg min {3 a | T o) + N T 18s
Br 2008 2k . p-2 © ‘Bpog Qg Y Hrpd0S o t
! L
-2
r 1.-T T
[—T-l Brog ¥ Noipol S8y o + 3880 0y [8p g Byog Sy g
+ N 165 + 50l 3T B .+ N 160 +
Noor-21981o0/1c T 087203722 5rop Broo * Huur-21%%_,
T T . (D.19)
Hug o (Br_p By $rg + Nogro188p 0 * o1y

ET-I can be seen by Equation (D.15) tc be positive semidefinite which

da T . (] s
guarantees that gT-l ET-I ET-Z + guuT-Z is ' positive definite and that
JT-Z is convex with respect to GET—Z'

Differentiating J and setting the derivative equal to the

T-2

zero vector we obtain

T .
Brg Rpop v Nypp t [§T-2 Koor-1 Br-2 ¥ Yuur-2188p o +
+ [BL . X 1 68 = 0 (D.20)
Broo Bro1 Opop ¥ Nygpopd 9%y 7 2
* L (ss [L. . &5 + A (D.21
or §up o = Mp {88y 5p) = "Dy plkp_p OSppp *t 2r_o] -21)
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_ ) T
K2 ™ Nger-2 ¥ QT 2 51 & =T 2 8po1 & F Nyer-2d

T 1L

(Br.; Bro1 Bz * Nuur-2 [BT 2 81 & T Bugr-als
(D.29)
R =N _ . +o8 R & ]
22 Npp v 8 By -T-Z Kro1 Orop * Nugr-2
S -1 T
(Br_p Bpog Broo * Nuur—2d [Bpop Rpg +N o)1
(D.30)
se oL LT
Crop = Cpoy = 7B —k'fr-l + ¥or- 2] (B Bz ¥po1 Bpoo * Yyur-2]
: T
(By_p Rpy + N . ;1 (D.31)

' *
Comparing the expressions for 8u,, 2, J (§s

L o L S0 & =2’

at £ = T-1, T—Z; we can easily recognize a well deflned recursive

Ry cz

solution pattern. The induction may be continued by deriving the optimal

* -
control law 6“T-3’ but since the form of J (6 ) is the same as

3r-2/k

the form of J (s the results will be analogous to the omnes

)
T-1""=T-1/k"’

obtained at time T-2. Thus, it can be stated that the optinal solution

of problem (D.l) is as follows:

For & = k, k+1, ..., T-1,
* L
=2 E— A .
6—“—9. U (asi/k) DR[LZ ot _g, (D.32)
- -1 .
Dy = [Bz Boe1 B ¥ Y : (D.33)

w‘
By "8 K & Huse (D.34)

(-
H

/T
i RS W (D-39)
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where the positive semidefinite matrices {gl}zak are obtained

recursively by the following matrix Riccati equation:

IST - gssT

T T
B " Vs ¥ & Ko -& -18; Reep 2 78 ]
L . o o B _ A “usi
T T )
By 2o B Ty z] (B, Kpa1 & + Nuged

= T-1, T-2, ..., k,

and the vectors {E&}E=k are obtained from
by = By
S a T T
By ot Ngp t 8 Koy - (B Koy g+ 1T
Bk B +8 1¥miel. +n.]
3 Ser1 22 T Suwe! 'Ep Baer TAw .
21 = T—l’ T-z’ c sy ko
The optimal "costs to go" are given by
- .- - T pT sz
SPACERYR 8Sp/x Ba %k T By Ssgp T ©
k
where 52,._2 as above and
ey = 0,
= c -1:[BT£z + N ]T[BTK B +1i ]
€L T Sl T 7'Zp Zgbl T Sugt 'Sg SpHl 3 Bamg
g = T-1, T-2, ..., k
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-1..T
[gzhz+l

NS

+
N

(D.36)

(D.37)

(D.38)

]

N

(D.39)



Lastly, the optimal value of the problem is

=T

= .= -1 a T =
TG0 = 7 0%/ K OB T B St Sk (p.40)

which for problem (D.1l) is equal to S since 5:S_-k/k = 0.

Further discussion of this solution's properties and implementa-

tion aspects is offered in Section 4.5.
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APPENDIX E

- ENFORCING POSITIVE DEFINITENESS

The following procedure enforces the positive d2finiteness
property on an nxn symmetric matrix A. This is accomplished by
forming the Cholesk& factorization of A (Bertsekas, 1978) while
seqpentially adding the elements of a positive definits diagonal matrix
g. The final results is given as a prduct of a lower triangular and

an upper triangular matrix:

L ;.T-=§+1§ (E.1)

The procedure is as follows: Let p > 0 be a fixed s,calar and dernot

the elements of é. Consider the 1x. i lower triangular matricies

1]
Li recursively defined by
Ya.., 1f Yo > U
Li - 11 11 (E.2)
u, otherwise
L 0
L‘i = i-l ’i = 2’.-- ’ n (E¢3)
2T A
=1 ii
r \
%11 ,
where 2, = (L, 17 a,, o = : (E.4)
L Cz:f.--].:f.)
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T xf T
\/aii g, 1 a - XLy M

A, =) ,
ii H , otherwise

. (E.5)

. _ . s s s . T
Then the transformed positive definite matrix is given by érén'
Parameter U should be large enough so that the resulting matrix is

not nearly singular.
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APPENDIX F

COMPUTATION OF THE NONBINDING PROJECTED NEWTON DIRECTION

Recall that in Section 4.5 the Newton direction for the uncon-
strained nonquadrasic problem was obtained by solving a quadratic.
At each time 2 that sclution was determined via Dynamic Programming

considerations (See Appendix D) as follows:

%

=Ny Sson ¥ N oSy * ~682,/k YeaaSSi i ¥

"E:
z.:

(Ggllk) = arz min 32
532

T -
*3 59—2\‘ 288y * 08y NigeSspne ¥

+ (589+l/k } , (F.1)

. of, after substituing for 3°+l(6 L+J/k) from

1 T ¢
(652.+l/k) 2 5§-g+1 /k S 6§Z+l/k + kz+1 Se+1/k T a1 (F.2)
and for 652+l/k
asw_/k b, 88,5 T B, 4, (F.3)
- - T
= - +
(630 * as b {JZ CHRENIRS WLE She T
T T 1 ,.-T T
[kyp1 By * N, 08uy + 5685, (9 Boyp &g 7
+ N 185 i o"uT[BT X B, + N ]18u
Ve 08/ T2 98180 Spuq By ™ £u21°%
T..T .
T Oup(By By &yt Nsl/k} : (F.4)
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Now assume that the nominal value for the jth contrcl component
of 52& is currently equal to the upper control bound u?zx and that
aJ(o,o.- _9)

¥ < 0. UYnder these conditions a '"movement" of u., beyond
ng j%

. max
the bound ujz wo¢id reduce the o%JerL-"e function's va1ue bur it would

be infeasible. Then the optimal constrained value for the conuxol Sujl
1s zero and the same is true for amy coatrol element at the lower bound

with positive Gradient. (It is assumed that K ar~ pesitive

=2+1’ § ul
. e : T
& lCe i SO 4as
semléeflnitc and def;n e rgspec ively so a El 52 1 Bl + Eu 2 to

be positive definite and 32 convex.)
Substituting these values fcr the binding control elements we

find that 32 becomes

- T ‘ . T \s .
To o= (Rpey &y +M,185, 0 + [Ey,1 By + N ¥ 1%y,
+ % 83T [0y Kpoq &y +N__,16s +
5 020 Bogg &g+ Nogpl98g

1l .-T . T TC
* 58y [By Koy By v N1 Sy
+ SuL[Bl Ros1 22 + N Z] Tss 2/k (F.5)
where Su, denotes the nonbinding control elements [hT B, =+ VT ]
2 8 LSS -1 R )
implies that from the vector fﬁ +1 Bz + VTQ the columns corresponding
to binding controls have been deleted, and the same is tyue for the
respective nows and columns cf iLne matrix gg "Z 3, + 8 . and the
= =41 =y =uul
T
F .
rows of the matrix 51 ~2+l 92 + N ush

Now we can differentiate (F.5) with respect to Sgg, see the

result ejual to zero, and solve the the minimizing concrol to find
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kR -
Sup = Up(8sy ) = ~Dylly 95y + M1

where
[(B 5, 8 )%,
Dy By Kot )
.
L, < (3 Koe1 &0 8,60

T T
L= By Ry TR

(F.6)

(F.7)

(F.8)

(F.9)

Substituting this result into (F.5) and regrouping the corresponding

terms we obtain

T s T -
34650 =% S5 K SSas By STyt
where
ZocaN 4+ G b
=2 a2ggl 2 2241 =1
T e L ) re -
TLhoDB B B TNl Dl
T T T
= 2Lp DplBy Epyg &y *H D
. T T
L N tey kg ke g[8y gy + Ng]
T T re
+ Lg 22 [gg gz+l 22 * guull Qzél
T T ,c
e Q .’\
2 S+l = +§usjz,] DL,
c, = -l B, +8,1%D,A +
= Sl T Rgt1 By T Rapt =
T T re
T8y 0By Bpa By FE up?
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(F.10)

(F.11)

(F.12)

(F.13)



Using (F.7), (F.8), and (F.9), the above can be simplified as shown

below:

- T ' r,T
Ko ® Nggn ™ o Sre1 & 7 [y By 8 F Y )]
re,-1.T
1@ &y, 2o ") T IEy By 8y gl (F.14)
S T r.T
kg =Nty Ry - [y Ry 8y Nygg) ]
r ;
[y Kpuq By *+ N ™1 VB gy Npls (F.15)
- . 4'_ = T re,~-1
% [@z ey * 5,071 (@) Ky B+ g 1.
R k.
(@, Bypy + 5,071 (F.16)

These equatioqs have the same form as the ones derived for the
unconstrained problem in Appendix D except that now they are applicable
to the nonbinding controls. 1In the event that no controls are binding,

they assume the full form of the unconstrained case.
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APPENDIX G

STATE STATISTICS' UPDATE

The problem of updating the estimate of the state's p.d.f.
_ » : *
arises as follows: Suppose that the optimal control action w is

applie§ during the ;nterval [tk, Also let gk/k’ gsk/k denote

]
tk‘f‘l" .

the best estimates of the state's mean vector and covariance matrix

~nsed on observations up to and including time t (That is, these

*
{El""’ik’go’”"

K
are estimates based on the information set Ik =

*
o1 }.) Then, by means of the system dynamics we can obtain

the a priori (prior to observation estimates of the state

)
et
statistics at time t . In fact, these have already been obtained

kt+l
s nom
at the last iteration of the OLF procedure. If s  (t

k+l) 1? the

nominal state trajectory (see Section 4.3) ccrresponding to the
optimal control sequence and gk is the associated state transition

matrix, then

; - snom(t )

“k+l/k = k+1 (G.1)

P =4 P dJT + 0 . .

ssk+lk 2k =sk/k=k = =¢ck
At time tk+l measurement Zyyy 1S taken. The question is how to obtain
optimal a posteriori estimates §k+l/k+l' Zsk+l/k+l based on the new

*

information set Ik+l + Ik U{Ek+l’ Ek} To this end one can employ

the Extended Kalman Filter (EKF) procedure which basically consists

of applying the Kalman Filter results on a linearized version of the
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nonlinear problem. In our case the EKF procedure is as follows:

St /ierl ™ Sert/ie T Diort Bnn = By Sanid 1 (G.2)
Baer1/itl = 12~ Dewr B G i) Baern /e (6.3)
- T =p ' ﬁT(E ) (H (E. )P Y (5 R .17t
=ikl 7 Sskdl/k S1-L/k) S Bkl /K Ssk Lk S10 2L/ Svkekl
(G.4)

In the above equations the vector EO(') and the matrix El(-) result from
the linearization of the state observation function H(:) about the a
priori state estimate (cowpare with Equatioms (4.3.2), (4.3.9)). I is
the identify n.x o matrix. If the system was linear, the abcve proce-
.dure would yield unb?a;ed,.minimum.variance estimates (Jazwinski, l97Q).
In the nonlinear case these properties are no ionger valid (ﬁnbiaéness
may be retained by employing statistical linearization) yet in practice

the resulting estimates have been found to adequately perform.
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Appendix I

IDFNTIFYCATION OF A SINGLE RESERVOIR MODEL STRUCTURE

The physically hypothesized structure of a single reservoir was seen
in Section 3.3 to be (omitting all subscripts for notational convenience):

égéél = I(t) - u(e) -‘e(C) A(s(t)) + g E(s(t)) (I.1)

(ef. Eq. (3.3.1) ; (3.3.2)). Further, it will be assumed that observa-
tions of I(t), u(t), E(s(t)) are available at the discrete time instants
tZ’ 2 =0, ... N. The identification problem is to estimate the param-
eters e(t), g so that the model (I.l) will generate input (I(t), u(t)) -
output (E(s(t))) sequences compatible with the previous observationms.
The purpose of this appendix 1is to resolve the issue of parameter
idéntifiability. The suggested approach is to follow an outline showing
how parameter estimation cam be practically performed.up'to ﬁhe point
where some conclusions regarding the previous problem can be d;awn.
Assﬁme that the release u(t) 1is constant within the observation

intervals; namely

{u(t) = u(cz), te[tz, t2+l]’ 2=0, ..., N—l} (1.2)

which is realistic because reservoir releases are not continuously ad-
justed. Also, the input I(t) will be considered known from the corre-
sponding measurements and the approximate relationship

) - I(t)

I(t .
- cz)

(t

2+l

I(t) = I(tz) + (t-tz) te[tz, t2+l] , (1.3)

2+l
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The possible errors in the {I(t )}fN measurements will be assigned to
a random term added at a later s;;;g (see Schweppe, 1973, Section
3.2.15, 2ud case, for a justification of this assumption). The approxi-
mation (I.3) wili, in general, suffice because the identification phases'
purpose is to determine a valid wodel useable in discrete time optimal
control (this Qill 5ecome clearer after the developments in Chapter 4).
Ih fact, (I.3) may be replaced by a relationship similar to (I.2) and
still be adequate.

To take advantage'of parameter estimation techmiques developed for

linear system;, Eq. (I.1l) can be linearized around the state traj=zctory"

s(t), ta[co, tV] obtained by integrating

%)- = I(t) - u(t) - e(t) A(s(e)) - g E (5(t)) (I1.4)

d
with initial condition ;Ytd)a s(to) éorresponding to the measurement
E(s(to)). (Some aumerical integration routine can generally be em-
ployed.) To carry out the above integration, parameters e(t), g are
set equal to their current estimates. (The procedure is iterative.)

Thus, (I.1) can be locally approximated by

_ ! =
428) 2 1) - u(e) - e(t) AG(D) - e(e) [Ml‘] (s(t) -s(e))

dt 3as(t) _
s(t)=s(t)
- ok (s(t) -, 3
- 3 EG() - g ‘—-"-a*f(é——)t—l] s(r) - Fe) (1.5)
s(t)= s(t)
which after invoking (I.4) and defining
x(t) = s(t) - s(t) (I.6)
becomes
O o (a (o) + 2,0 x(®) (I.7)
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dA(s (L))
where al(t:) = "E(t) [: aS(t) ’

s(t)=s(t)

(1.8)

éz_(s(t)):l (1.9)

3,(c) = -g [—as(t) _
s(e)=s(t)

The observation equaticn corresponding to the water elevation measure-

" ments

H(t,) = E(s(t,)) . (1.10)

can also be linearized around ;ktz) to give

— JE(s(t)) —
H<t2,) = E(s(tz))+[-———-as(t) (S(tz)-s(tz)). (I.11)
s(t)=§(t2)
Defining
c2(ty) = H(g) - E(s(e))), - o0 . (T.12)
E(s(eN) )
a.3(t2') u [:‘B_S(T:)% _ , (1.13)
s(t)-s(tz)

Eq. (I.11l) can be equivalently expressed as follows:
z(tz) = aj(tz) x(:z)' . (1.14)

Next, it will be assumed that the coefficients al(t) and az(t) are

approximately constant over the intervals [tZ , € ]. This assumption,

2+1
made here to facilitate the presentation,. can also be argued on the
basis of the following considerations: Generally, the water volume
added or subtracted from a reservoir by the releases, input process,

evaporation, seepage, and rainfall over the intervals [tz, t 1, 2 =0,

2+1

. , N-1, is a small fraction of the wolume s(tz) in store. Hence,

345



when [tz, t ] is on the order of a few days, the derivations of the

o+l
functions A(s(t)), E(s(t)) evaluated at s(t) will be approximately con-
stant. Secondly, the parameter e(t) is a lumped parameter depending on

climatic conditions and can be considered coustant over a szason (and

therefore constant over [tz, t2+l]). Setting
al(t)'= al(tz)
az(t) = az(tl) . k (I.15)
te[tz' tz+1)’ 2=0,1, ... N-1 ‘
we can integrate (I.7) over [tl’ t2+l] to get
(a, (£ ) + a,(t.))aA
SN A ;
x(t2+l) e ‘ x(tg) (1.16)
where A = ﬁ2+i -'ti' At this point we can add a discrete time white

Gaussian noise term e(tz), 2 =1, ... N, to account for the input mea-
surement errors and various approximations' errors (i.e., linearizations,

modeling assumptions, etc.):

x(t, 1) = 9(c) x(g,) +e(t)) (1.17)

where e(tz) is Gaussian with

E{a(tz)} = 0 , (E{°} denotes expectation) (1.18)
0 if o4 m

E{e(tl) e(tm)} = , (1.19)
Qe(tz)’ ifg =nm

(al(tz) + az(tg)) A . (1.20)

and ¢(t2) = e
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Variance Qa(ti) is another unknown parameter to be estimated and can be
assuged constant or periodically constant (with a period of one year to
account for nonuniform yearly variab’lity of the evaporation and rain-
fall processes). |

'A discrete zero mean Gaussian noise process of small known variance
may_ai§o be'addéd to the obggfvation equation to account for the ap-
proximations inlE(s(t)) and iﬁs linearized version.

Sﬁmmérizing, the hypotheéized structure for an actual reservoir

is as follows:

x(tp

) = ¢(e)) x(e)) +€(e)) ’

z(tz) = a3(tz) X(:z) + V(tzl

$4=0,1, ... , N-1

- (a,(t,) + a,(t,)) A

gt ) ="e e 2T
R

al(tz), az(tz): nnknowy.

33(t2): known

q (1.21)
e(tz), v(tz) Gaussian random variables with

' E{E(ti)} = 0, all ¢

0, 9 #m

2fe e e e} =
Q(ty) 2 =m (unknown)

E{ V(ti)} = , all g
0 , L# m

E{ V(ti) (tm?}
, L= m  (known)

E{ v(tl) e (t )} a0 , all g, m.
m
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The initial state condition x(to) may also be assumed as an unknown

parameter to be estimated, or since a measurement z(to) is available,

it can be taken as a4 zero mean Gaussian random variable with E[xz(to)} =
R
2
;a(tn) ‘
v(ty) for all 2.
Mode] structure (I.21) is now in a format which allows straight-

In the second case, x(to) should be independent at E(tl) and

forward application of parameter estimation techniques such as the Maxi-
mum iRelihood or the Extended Xalman Filter. For example, the Maximum
Likelihood parameter est¢imates are obtaiued from the solution of the fol-

lowing optimization problem:

, - 1
Maximize {Q(N) =3 [%bias(N) + Eobs(N{] }
al(tﬂ,)’ az(tf,), QE(C,Q,) 2: = O’ 1’ a0 ’ N
where N
Byyae @ - Wl - [ 1alpe/e )|
=1 : '
. . 2
® § 2(ty) - a;(ey) ¢(r) ) X(tz-l/tz-li]
Eopg M == I - ‘
obs a1 P (g, /e, 1)

. 2 ?
Poltgitgy) =R ¥ 33(“2)[§ (g )Py (Epr/Eg) ¥ Qe(tl-lﬂ '

x(e,/e,) = ¢(e, ) ¥(ey /e, 4) +

[¢2(t9,_l ?:;(;L-l/tz-l>+ Os(ti.-l):la3 (tl) z (tz)'a3 (t£)¢ (tz-l§ (tl-l/tz-l)]
¥ P, (t,/t, ;)

T2 | 1R ,
Px(tl/tl) = [% (tz_l)Px(tz_l/tz-l)Qa(tl-l)_JPz(tz/tz_l)

g =1, ... M,
£<co/co = E {x(to)} =0 |,

p, (ty/ty) = E {xz(to)} S

(to).

(1.22)

a2
3
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Thisg formulation will not be further explained here. For a complete dis-
cussion on the Qubject see Schweppe, 1973, Chapter l4. Notice, however,
that due to the way the unknown parameters al<t2) and a2<tg) enter the
above optimization problem (I.22) it is not possible to identify each
one ;ndividually. Rathgr, only their sum al<tz) + a2<tz) can be esti-
mated. Given this situation, one can either assign some reasonable
value to parameter g and account for any discrepancies by estimating
e(t) or assume a sequence for e(t) (yearly periodic) from existing (even
though questionable spatial) measurements and assign possible errors to
the estimate of g. The choice also depends on the magnitude of the par-
ticular terms. For example, g may be completely disregarded in case the
main losses are due to evaporation. (This happens with the High Aswan
Dam reservoir as discussed in Chapter 5). Another possibility is to con-
sider e(t) as a qhite-Gaussian noilse of known mean and unknown variance,
but this complic;tes the analysis and is not suggested unless the previ-
ous altermatives fail.

It is generally advantégeous to have the identified model in continu-
ous time because then the controller can be adjusted to any control hier-
archy level by discretization over the appropriate time intervals. Toward
this end we need to define a continuous time white Gaussian noise which
produces statistical effects consistent with the discrete time process
€<t2)' If we denote this new process by q(t) there holds (Galb, 1974)

t
2+1
€<t1) ==[ ) (r;“_l, 1) qt)dr (1.23)

where [a, (t, ,.) +a,(t DI -1) (1.24)
0 (5, , T =e 1'% +1 ‘2 S+ 41
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Assuming that q(t) has constant amean Ekt), Te[tl+l’tl]’ we can take ex-

pectations in (I.23) to ohtain:

Earl

0 = q(1) [ Bt Tt (I1.25)

€y

Since ¢(:2*l T) is not of any special form (e.g. antisymmetric), it

' ?
follows that q(t) = 0. Regarding q{t)'s specrral density (E { q(t)q(p)} =
Q_(1)8(r=p) where §{t-p) is the dirac delta function), we again have from

(T.23):

t 2
2+1 ,

tl J

S |
[ [T et E a0 ¢ (e s (126)
Cz Cg‘ .o

Using the shifting property of the dirac delta function, we get

t
Qe(ty) = fti+l ¢2(t2+1’r) Qq(T)de (1.27)

and taking Qq(T) constaut over [tl’t2+1]’ we finally find

Qe("sz.)
t

[Ra! 2
J ¢ (tg+l,T)dT

)

Qq(r) = , Ta[tz. t2.+1]' (1.28)

Thus, with the unknown parameters estimated, the single reservoir

model is given by
ds(t) _ 1¢ey E(s(t)) +
e - L(e) = u(e) - e()A(s(t)) - g E(s(t q(t) (T.29)

with q(t) as above.
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Appendix J

IDENTIFICATION OF A RIVER SEGMENT MODEL STRUCTURE

For reference ease let the systam of differential Eq. (3.3.5) de-

. .th .
scribing the response of the j river segment be denoted by

gj_(t) = f_(ij.(t)).+ e IjJ_(t) (t) - (J.1)

i AT

where F (=) is the rj vector functiovn of the special form shown in

(3.3.5), 2y k=1,2, 1is an rj vector of zeros with a 1 at the kth row,
and s, (t) denotes the time derivative of s, (t).
=3 =3

Measurements of only the segment's iaputs Ijz(t)’ sz(t) and final
outflow er (tz) are avallable at the discrete time instants tl’ 2.=0,
]
1y «oo , N o

irj
(¢,) =a,_ s,
j:_z _ Jrj- jr.

(tl)' (J.2)
J ' ‘
This appendix will discuss the estimation of the previous modei’s

Y

parameters. Some jidentifiability issues will be examined and will neces-
sitate changes in the original model structﬁre. The resulting model will
be brought into a format directly amenable to the basic estimation tech-
niques.

Consider a normal trajectory of the conceptual storage state vector
E&(t) such that (Ijl(t), wjz(t) are assumed known as in Appendix I, Eq.

(I.3), (I.2))
S () = El

s, (e) . (7.3)
~J -3

()] + N Ijl(t) -8, ka

s.(t). If we define

Next, linearize the system (J.1l) around £y

T ox(0) = 5 (0) = F(0) (J.4)
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we easily get to the folluwing result:

le(c) = ~[%jl(t) + “jl(tE} le(t) )

Ky (8) = A3 (e) =, (e) - I}jz(.t:) + ujz<c)_] x5 (t)

. S B ' | (7.5)

= () - ¢
2 (9 a1 (0w (©) [*jz‘t) ¥ “jg(t)] *ig(0)

e,
® .
. . . A ®

ch,__j (€)= Agy 2 (8) x4 (0) - Ejri(t) + ujfj,“?’ xjrj(c)J :
where my B

Aj1<t) = aJ i ji(c) , uji(t) = £, i i1 ji(t)
Also m,

@ = O (@) - o, iy i, L (5) = My ) 0 (7.6)

The previous equations specify a very general system model. The
question is whether the parameters are identifiable. This is a crucial
issue and should be resolved before a final structure Is suggested for
identification. Appendix X deals with this problem for a time invariant
version of the above system. Assuming that the coefficients in (J.5)
are slowly varying (which is a good apprroximation 1f E&(t) corresponds to
the uniform channel flow condition), the results carry over éo the gen-
eral case. The conclusion of that amalysis (which can be used for any
linear time invariart system) is that { T 1 3 can be identified only

i)i=1

if the initial conditioms x (t,) are known. If ga(to) is not known, only

0
.- r_ 3 .
Ay UMy i ) can be estimated. In our case Ej(to) is not knowm, and this

necessitates some more assumptions. Instead, consider the seepage losses

known. Set Bji = 1 for all { since this is the middle point of its
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variation. Furthermore, by observing the inputs (Ijl(t), w4z(t)) and

]

the output Q, (&) for a long enough time interval [tl,tzl (longer than

jr
any system timi constant) and comparing the total i.acoming volume of
water with the outflow, we can have an estimate of the cumulative losses.
Assuming the sanme Kji = Kj for all i the same segment, we can for each
trajectory of linearization.specify a Kj which will account for the above
différencgf In this Qay K3 can be assumed known, which makaes the coeffi-
cients Hji(t) known as Qeli.v Computational experience with the coeffi-
cient mji shows (Georgakakos, XK. and Bras, R., 1980, Restrepo Posada, P.
and Bras, R., 1982) that for short river segments a value of 0.8 performs
satisfactorily even in flash-flood conditions. In times of low flows,
long reaches, or when the response of interest concerns average behavior
over significant time intervals, it can be assumed that the river behaves

linearly or that m, '=.i for all i..

ji

Notdice that if mji = ] = Bji

linear and no approximations are needed. Thus, to avoid identifiability

1 for all i, the original system is
problems and to keep the model's structure as simple as possible, we

first suggest that the following linear model be estimated:
§,,(t) = - + L (E) + I, (t
20 == oy + 5] 50 1@
sjz(t) =y sjl(t) - E‘jz + KJ] sjz(t)
. . + (J.7)

55 () = &5 9-1 sjz—l(t) - E‘jz + ;{J:J sjl(t) - wjz(t)

N\

s, (t) =qa  _, s, _ .(t) -Et. + K:I s, (t)
jrj jrj 1 Jrj 1 Jrj k| Jrj J
zJ. (t,?,) = a’jri sjrj(tz) . (J.8)
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To construct a discrete time system model we need to find the tran-

sition matrix. The system in Eq. (3.7) can be written in matrix nota-

tion as follows:

_ ] 1 ol
Ajl 8] 0 1 ? Ijl(t)
H®= 22 HE 0T ®
0 -"jz -xj3 |
. th _
° o . _l TOoW
. 0 o
0 0 o, _ =2
i 3e4-1 iz 0 o (J.9)
z(n) = [0 0 ajrj] 5; (tn) (J.10)
where o -_.kji - -.[aji + gJ .] .

As 1s shown in Appendix K the system matrix, denote it . A, can be

diagonalized by a similarity transformation as follows:

r—kj 1 0 _,
(J-11)

115
B
li<
<
]
=

A,
jr

.

where V 1s the matrix of the eigenvectors and !fl its inverse. V and

v l can be explicitly otbained here due to the special structure of

the matrix A and were found to be of the form:
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1 0
Y_ =
k
\ = r[
Lk.z m=2+l X'I-A
ka2,
rl 0
-1
Y_ =
-l k+2
v “=(=1)
ke

2-1., LR )

» rj"'l

(J.12)

(J.13)

The system transition matrix ¢(t,t) can then be found to be

(Brockett, 1970, pg. 31-32)

e

¢(e,7) = ¥

0

- -kjl(t-T)

=\, (t=-1)
e Jl'.j

<

-1 (J.16)

The solution of the system (3.1.3-13), (3.1.3-14), which we denote for con-

venince by

_é_j(t) +A s.(t) =B u(e)
= =5 ==

z(tz) = C

c Ej(tz)
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is in the interval [t ] as

2 Sl

) = 9 (

35(tgy

z;tz) = g%

(e,)

follows:

)

b

€ ol
t2.+1’t2)i_j (tl) +J g(tz_,_l,r) _E_g(r) dy

If we assume that u(t) is approximately constant over [t .t 1, then

the integral term above can be integrated explicitly. Adding white

noise terms to account for possible model errors and uncertainty in

Ijl(t:) we arrive at

-\, 4
e jl
%(tzﬂ) =y .
Lo
-A
’_1.1_ (1-e
jl
+ y
1
0 }\jr
L b

!fl

318 ]

-\ 4.
(l-e jrj )

—

.z(tz) = ng(tz) +v(t,)

2y

(to): unknown

where B , ¥, V™, C are as given above, and
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s, (t

—j

-1

v

27 4+l

2

g E-(tz) + e(tz)

(J.16)



E {E(tg)} =0 , E {E(tz) g?(cﬁ)} a :g » 2#m

Qr(tz) , & =m (unknown)
-

E.{v(cg)} =0, E {V(tQ)V(tm)} = (0, 2¢m

IR ,  g=anu (known)
-

v(tz), gﬂtm): uncorre}ated for all ¢, m.

Model structure (J.16) can now be treated through Maximum Likelihood
methods (Filtering or Smoothing algorithms, Schweppe, 1973) or the Ex-
tended Kalman Filter (Gelb 1974) for the estimation of its parameters.
The number of the conceptual reservoirs rj also needs to be determined,
and this may be done by identifying and teséing the validity of increas-
ingly more conceptual reservoir. The first valid model can be adopted
in the further consideraticomns (iﬁ'accordance with the principle of parsi—
mony) .

It is conveniént for the control purposes Eo have the system model
in continuous time, and for this reason it is desirable to identify a
continuous time white Gaussian process corresponding to the previously
introduced vector g_(tz), 2 =0, ... , N. We shall devote this new pro-
cess by g(t) and we shall assume that it has constant mean Vvector and

spectral density matrix over the intervals [tl’ t2+l]. There holds

Jtz+1

e(ey) = %(tHl’T) q(r) dt G.17).

2

Where gﬁcl+l t) is the state transition matrix given by (J.14). Taking
]

expectations of both sides in (J.17) we find
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2+1
g-f ¢(2+lr)E{3(t)}d'c. (J.18)

Since E {3( T)}is assumed constant over [tl’t2.+1]’ it follows that it
should be zero because the state transition matrix ¢ (t:z 1 T) is not of
any special form. Regarding the spectral density matrix gq(*:), we have
Ye1 R T
(t Q= {g(t )g_ (c )} I ¢(t 1 Dalndr J 9(t9.+1 Q)g_(p)dpjl
g %
(t!.-i-].

J

I 7 +1 A ) T T .
. : -_~_;(t2+1'r) Eqs ()g (p) g (t2,+l,p) dpdt ,

Substituting Hi(r)gT(r) by gq(r)d(r-p) and using the shifting property

of the dirac delta function, we obtain:

R+ _ T .
g, (g) = ( 8 gy R 2 (g T (J.19)
- t
- . 1

K.nowiné g-s(tz)’ ¢~(t2,+l;r) (cf.lEq. J.14), and assuming gq(f) constant

over [f ] suffice to determine the elements of gq(r) from (J.19).

g’ Cal
Alternatively, an approximate procedure to obtain gq('r) from Q- (ty) is

the following relationship: (Gelb, 1974)
1

gq('l") =gt(t2) [t2'+l_ tz] (J.ZO)

Eq. (J.20) becomes increasingly accurate as t - t gets smaller. Thus,

o+l

after the estimation of its parameters, the river segment model takes

the following form:

_éj(t) = _T:_'_(gj(t)) +e

1 Ijl(c) - g wjz(t:) + q(t) (J.21)
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Appendix K

IDENTIFIABILITY STUDY

The following concerns the parameter identifiability of Eq. (J.3)
(J.6) time invariant version which consists of a system~-model for a
- river segment response. However, the procedure may be used for a gen-

eral time invariaunt ifnéar'system. Consider a 3-dimensional system

strgcture:
r;‘i(t) T_al 0 0 xl(t)
¥(0) 1= 1A oy 0| x(e) (K.1)
_x3(t)J _-0 Ay -a3_J f3(t)J
z(‘t) = [0 0 }\3] xl(t) (K.2)
xz(t)
x3(t)
where a, = Ay o+ My and x(ty) = Xy

The question is if it is possible to specify the parameters

3
‘ {Ai’ui} by observing z(t) with or without knowledge of X5

i=l

First, we shall transform the system into a state-space form which
is more convenient to work with, %.e., the Jordan Canonical form.

The matrix in (X.1l) is lower triangular and its eigenvalues are the
diagonal elements Ty O, < O (Strang, 1980, pg. 187), which are
assumed distinct; otharwise, say a) =0y, there is no reason to distin-
gulsh between the two conceptual reservoirs 1 and 2, but rather they
should be lumped together. (The assumption is that z(t) is indeed genera-

ted by the hypothesized structure and the only problem is to identify
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the parameters.) The associated eigenvectors can be easily found, due

to the special structure of the matrix, from

e, 0 07 [Ty Vi
A ) ‘
oo 0 P T M| (K.3)

B 1 ] 0 ™ 0]
Ay
v, = y U, = 1 y, U, = | 0 (X.4)
1 Ay g 2 3
A A, Ay | .
_(a3-al) (az.-al)_ 33-0.2_}. T

Consider nexﬁ a similafity transformation which-produdes a new set

of state variables:

3(&) = ¥ x ()

(K.5)
where y= [21 | v, | _Q3]
(The double underscore denotes matrices.)
Differentiating, we find
(R.6)

(£) =¥ &(t) = ¥V A x(¢) = ggg’l x(¢)

where A is the system matrix in (K.1l) and !fl exists because Ups Ups Uy

are linearly independent, being associated with distinect eigenvectors.

Also,
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2@ = [0 0 A] YT g ®.7)

and 2(0) = ¥ x, | (X.8)

From Strahg, 1980, pg. 190, we have that

-, 0 o |
Va E'I"a A= 0 -, 0 _ ' (X.9)
0~. 0 -,

and we also find (using Y_!_-l = I or more direct formulas) that

avany

B 1l 0 0
=A
-1 1
g_ = -(?2—-:—&-]—.) . 1 0 (X.10)
A Ay A L
_(a3-0:2) (c'.3-'al) ' (a3-az) , |

Combining the above, we arrive at the following new system form (Jordan

Canonical Form):

P Ty 0 0
y@® = | o0 -, 0 (8 (K.11)
i 0 0 —aj _
A =X A
1"2"3 273 : (X.12)
z(t) = — A y(t)
i (a3-a2) (a3-al) (a3 0‘2) 3}
(K.13)
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By the nonsingularity of V we have that identifiability of the system im~
plies 1identifiability of the original system and vice versa.
We can now solve (K.1ll) to get (decoupled differential equatioms

of first order):

I -
. & 0 0
. —gat 0
y{e) = | 0 e ?2 : I
o .
0 0 e 3
-a. t - -a,t -
z(t) = MAgds o TV Thadg 2 g F e By, (X.15)
(a3-a2)(a3-al) (a3‘a2) 3 )

The objective is to dotermine if by knowing z(t) we can find the param-
eters of the right hand sides.
Studying the Laplace transform of z(t), we can express it in the

form

2
bo 3" + bl s + b2

s + al)(s + az)(s + a3)

z(s) = ( (K.16)

The above holds true from the assumption that z(t) is generated by
a third order time invariant system which ensures that its transfer func-
tion is proper and rational with the denominator being a cubic polynomial
in s (Chen, 1970, pg. 151). Hence, by knowing the signal z(t), we can
specify the poles -al, -az, —a3 and the coefficients bo, bl’ b2. Next,
taking the Laplace transform of Eq. (K.1l5), we find

MA2A3Yg oMY |, Aa¥sg
(@y=ay) (@y=ap) (stay)  (agmay) (sto,) - (sta,)

2(5) = (X.17)
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Or

b

M A3y g(stey) (stay) A A3Y9q(stay) (stay)
(a.- Y (a.-o ) - T — ) + X3Y30(5+al)5+a2)
2(s) = U370y Lay7 0 X
(s+a. ) (s+a,) (s+a,)
1R (K.18)
Comparing (A-18) with (A-16) we find a; = a, i=1,2,3, and
%3 Yrg - - Mad3 Ve (K. 19)
= _ Xa 7 .
07 Togme) (aymap)  (ag-ap) 23 730
A A |
b = L2371007%) 19 a7pg ) AaFr (s ) (K. 20)
1 (a3-a2)(a3-al) (a3-a2) 3730'%17°%2
AMAAy Fia@n8a  AjAaYa~ a.a
b, = (i EaB (io-i 3 B 2(2 32 )l >+ A3¥90 %1% (K.21)
37% ) (ag=ay 37%

If we.were able to specify the A's from the- above system, theﬁ all param-
éﬁérs {li’ ui}i=1. wduid Bé identifiable. This can indéed'be done ohly if
the initial conditions Y10° yzo, yéo are known. (We shall not go into the
algebraic manipulation, but it is easy to see the logic of solution.)

In short, we came to the following conclusion: If the initial condi-
3

tions 50 are assumed known, then all parameters {ki’ ui} can be identi-
i=1
fied. If Eois not known, then only Ai + Hyo i1 =1, 2, 3 can be determined.

The above are also valid for higher dimensional systems of similar struc-

ture,

363



