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ABSTRACT
 

This work presents a new methcd for the real time operation of
 
reservoir systems.
 

The system is represented by a set of nonlinear differential
 
equations describing the reservoir and river dynamics in state space
 
form form. The formulated reservoir operation problem calls for
 
finding policies which maximize the expected benefits of one system's
 
objective while satisfying the remaining objectives at prespecified
 
reliability levels. 
 The solution is obtained by a new method named
 
Extended Linear Quadratic Gaussian (ELQG) controller. ELOG draws on
 
and extends stochastic control theory results and it is well suited
 
for the optimization of constrained dynamical systems. 
 It is a
 
trajectory iteration algorithm theoretically expected to exhibit
 
reliability and computational efficiency.
 

The new method is employed in case studies of two actual
 
reservoir systems located in the River Nile Bpsin. 
The results
 
indicate that ELQG's theoretical propeities are indeed realized in
 
practice and that the method has distinct advantages over state-of
the-art procedures.
 

ELQG control offers a powerful approach in reservoir system management
 
and opens a host of further research directions.
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Chapter I
 

INTRODUCTION
 

1.1 Thesis' General Framework and Outline
 

Reservoir Systems are large-scale projects generating a variety
 

of influenti-I outputs. 
 Water supply for municipal, industrial, or 
aari
cultural use, flood protecrion, energy generation, and navigation are
 

some of the many benefits these systems offer to 
the societies living
 

within their inflence range. 
 To fulfil these objectives, reservoir sys

tems must successfully manage the water volumes provided by the uncertain
 

natural processes. 
This is where the element of risk originates and
 

often becomes the 
cause of costly operational failures. 
 The need of com

bining mathematical tools with the ever-growing computer technolog.; 
in
 
the management process has weli 
been realized by both researchers and
 

practitioners (Proceedings of the National Workshop on Reserioir Systems
 

Operations, University of Colorado, Boulder, August 
1979). Reservoir
 

operation research has been supported for over 25 years and has sugges

ted various mathematical optimization models. 
 Although some 
of these
 

models perform satisfactorily in the particular applications for which
 

they are developed, a methodology able to 
handle the reservoir operation
 

problem in its full complexity is still lacking. As a result, in prac

tise the majority of reservoir systems 
are operated by heuristic rules
 

derived by computer-aided simulation and engineering intuition. 
 However,
 

the reservoir operation problem can 
be particularly complex and its solu

tion is not necessarily apparent.
 

Optimization of uncertain dynamical systems is 
the subject of opti

mal stochastic control 
theory. Originally motivated by aerospace
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applications, this field provides a well integrated mathematical frame

treatmenc of similar problems in other engineering disciwork for the 


plines as well. A stochastic control study is completed in two basic
 

steps:
 

This is the phase where amodel able
 a. System model development. 


to adequately reproduce the system's behavior is identified. The iden

tification process requires intuitive understanding of the laws govern

ing the system dynamics and can take advantage of input-output data
 

records 	to properly adjust certain model parameters.
 

Based on the identified model
b. Stochastic controller design. 


and after adopting performance criteria correctly reflecting the sys

tem's objectives, an optimization algorithm (controller) is designed tc
 

guide the system in successful operation.
 

This study's developments will also proceed along these lines with
 

emphasis on the second of the previous steps. The identification of a
 

reservoir system model will be discussed in Chapter 3. The objective is
 

arrive at a flexible model fotm to represent the reservoir systems'
to 


In Chapter 4 the reservoir system
idiosyncracies in desirable detail. 


operation problem will first be formulated and then the development 
of a
 

suitable control algorithm will follow. Chapters 5 and 6 include two
 

case studies where the previous algorithm is used and tested in the opera
 

tion of actual systems. Chapter 7 identifies further research directions
 

a review
and concludes the study. The immediately following Chapter 2 is 


of representative reservoir control models.
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Chapter 2
 

STOC:1ASTIC MODELS 
 I RESERVOIR CONTROL
 

2.1 	 Introduction and Overview
 

Over the last 25 
years the reservoir control literature has grown
 

impressively (see 2osenthal, 1980, and Yeh, 1982, for survey discus

sions). This continuing research e;fort is sustained not only because
 

of 
the many influential, social, and environmental effects each reser

voir system generates, but also because a comprehensive methodology
 

capable of handling the problem in its general form has not yet been
 

developed. 
 In essence, the reservoir control publications are 
tailored
 

to and peLhaps adequately handle a particular reservoir system, or 
a
 

particular class of systems wich common predominant characteristics.
 

However, if 
these characteristics were 
to change, the methods would no
 

longer be adequate. 
 This chapter will review representative stochastic
 

reservoir control studies to 
identify past deficiencies and to 
benefit
 

from some-successful ideas. 
 The discussion will summarize some target
 

properties used in the upcoming control design.
 

2.2 	Reservoir Control Studies
 

Classified by the optimization philosophy adopted, the reservoir
 

control models fall into one of the 
following general categories (Yeh,
 

1982):
 

a. 	Linear Programming models,
 

b. 	Dynamic Programming models,
 

c. 
Nonlinear Programming models,
 

d. 	Simulation models.
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Linear ?rogramming models which consider uncertainty are the 

Chance Constraint Programming (Revelle ec al. , 1969, Joeres et al., 

1971, Eisgl, 1972, Sobel, 1.975, Sniedovich, 1980, etc.) and the Relia

bility Programming models (Colorni and Fronza, 1976, Simonovic and 

Marino, 1980, 1982, Marino and Mohamadi, 1983). Generally, L.?. models
 

cannot adequately reproduce the system's stochasticity (temporal and
 

spatial correlation of the uncertain inputs and the induced similar
 

probabilistic structure on the system's state variables), and a global
 

linear approximation of the system dynamics is not likely to give
 

accurate results. It will also be seen (Chapter 4) that although the
 

assumption of linear decision rules is optimal for unconstrained sys

tems with linear dynamics and quadratic performance measures, it per

forms poorly in situations where the above characteristics are absent.
 

For these reasons, the models of this category are considered appropri

ate for preliaminary design studies rather than for operation purposes
 

(Loucks, 1970, Loucks and Dorfman, 1975).
 

The second model category adopts an optimization procedure which
 

is more suitable to the dynamic nature of a reservoir system. Young.
 

1967, introduced the Monte Carlo D.P. According to this implicitly
 

stochastic approa.ch, a model fitted to the input process generates many
 

possible time series of input realizations. For each realization
 

Deterministic Dynamic Programming is used to determine optimal releases
 

at each time step of the control horizon. These optimal release tra

jectories are next related to various system variables via regression
 

techniques. The result is a set of decision functions hich dictate
 

the "optimal" decisions as functions of a particular set of variables
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statistically correlated with the optimal solutions of the determinis

tic optimizatior Major ootential disadvantages of the method are the
 

following points: (1) the assumption of a certain functional relation

ship in the decision function regressions, (2) poor performance at the
 

extreme values of the decision function independent variables, (3) ex

cessive storage and computer time requirements. With respect to the
 

first two, it is true (we shall extensively discuss this in Chaoter 4)
 

that the optimal decision action at a particular point in time is a
 

function of the conditional (on any available observations relevant to
 

the system's evolution) joint probability density of the system's storage
 

variables. Since the shape of this multi-dimensional function is arbi

trary, it follows that its complete characterization requires an infin

ite number of parameters. Thus, a decision function of 
a few variables
 

may not suffice.
 

Similar to the previous approach is the Alternate Stochastic Citim

ization (ASO) presented by Croley, 1974. ASO is a sequential procedure
 

repeated at each time step of the control horizon, and therefore it can
 

incorporate any additional information regarding the system's present
 

conditions. 
At each time step the procedure relies on deterministic
 

optimization of many synthetic input process realizations. A probabil

ity density function of the first period's optimal decisions is derived
 

and the mode or the mean is suggested as the bast decision choice. ASO
 

approximately yields the optimal action obtained by a deterministic
 

optimization of the input realization with the maximum likelihood of
 

occurrence. 
Hence, with substantially fewer computations, the maximum
 

likelihood input trajectory can be generated, and the corresponding
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optimal decision can be obtained through a deterministic orocedure.
 

This suggestion is somewhat attractive since it substitutes the s:ochas

tic control problem for the most likely to occur deterministic approxi

mation. The advantage results from the fact that deterministic problems
 

are comparatively easier to solve. However, this approach (known in
 

control theory as Naive Feedback controller) is optimal only for sys

tems characterized by the Certainty Equivalence (CE) property and may
 

yield suboptimal controls. Thus, unless a more reliable control scheme
 

cannot be implemented, this approach is not suggested for use. Apart
 

from the sequential scheme, Croley, 1974, suggests anocher interesting
 

possibility; namely to consider only the time span having a bearing on
 

the first period's decision action as the control horizon. That is, if
 

the nature of the algorithm is sequential, and therefore its purpose is
 

to identify the best decision for the first upcoming period, it is com

putationally efficient to consider the smaller control time horizon
 

achieving this goal.
 

A class of D.P. models explicitly considering uncertainty in the
 

optimization procedure includes the models using Markov Chain input pro

cess description and backward D.P. (Schweig and Cole, 1968, ButcheL,
 

1971, Su and Deininger, 1972, 1974, Arunkumar and Yeh, 1973, Alarcon and
 

Marks, 1979, Buchanan and Bras, 1981, etc.). In general the models of
 

this class perform satisfactorily in small systems (of 2 - 3 reservoirs). 

However, their extension to multireservoir systems is seriously limited 

1 A stochastic problem possesses this simplifying property if it ac

cepts the same solution with the deterministic approximation obtained as
 
mentioned in the text. It is not possible to know a oriori whether the
 
CE property is present except in the case of Linear systems with Quadra
tic criteria and Gaussian statistics (LQG).
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due to dimensionality problems. 
 Consider, for example, 
a system of NX
 
s 

reser-oirs and N 
inputs. 
 Then the state soace of 
this formulation w4il
w
 
have to include Ns reservoir storages, as well as 
the previous period's
 

N inputs. (It is assumed that the inputs follow a lag-I Markov prow 
cessY. .so assume 
that each state variable is discretized in Nd values. 

Then, the Dynamic Programing backward recursions require the evaluation 

and storage of the "cost to o" -a D.P.'s functional of key importance-
(N + N )

at N 
 discrete locations. This exponential (with respect 
to
d
 
the number of state variables) growth of computer storage requirements
 

limits this method's practicability to only small reservoir systems.
 

Yeh, 1982, mentions an extension of the previous model to multireservoir
 

systems (Arunkumar and Yeh, 1973). 
 In a system of m reservoirs, the
 

approach consists of optimizing one reservoir's decision functions at 
a
 

time while keeping the others fixed until no 
further objective function
 

improvement is achieved. 
 The method is applied to a system of two
 

parallel reservoirs for the optimization of the firm energy outpul. 
The
 

approach cannot be appli2d 
to general reservoir systems. 
 if the input
 

process is correlated, and/or the reservoirs are in series, and/or the
 

objective function terms are not simply additively separable with re

spect to each reservoir, then the state space affecting each control law
 

cannot be simplified. 
 In other words, each policy as 
 well as the corre

sponding "costs to 
go" at each time step will 
 be dependent on all the
 

previous period's inputs and current period's reservoii storages creat

ing the known problems in the discretized D.P. solution. 
 YeL, if such 

an interconnected system is still within the D.P.'s solution feasibility 

range, this successive approximation idea does have an 
advantage. The
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minimization operations performed at each time step need only be with
 

exresoect to one control variable. This, however, is possible at the 


pense of losing the D.P.'s solution global optimality property; i.e.,
 

the policies found can only be locally optimal.
 

the input process,
Concernin, the lag-i Markov Chain modeling of 


one should recognize that it becomes less satisfactory as the process'
 

The extension to a .ultitrue correlation structure involves more lags. 


lag model would require that all the previous periods' inputs which im

prove the current period input's prediction be included in the state
 

space. Again, dimensionality limitations will soon prohibit this
 

Toward overcoming the multi-lag correlation problem in the
 
attempt. 


formulation, the procedure suggested
context of the Markov Chain D.P. 


their
by Buckanan and 3ras, 1981, has proved efficient. According to 


the input process uses

approach, a multi-lag stochastic model fitted to 


forecast t 2 inputs of the upcoming periods.
real time obserations to 


The forecasts update the Markovian transition probabilities as far 
into
 

the a priori estimates.
the future as there is a significant gain over 


Then the stochastic D.P. algorithm determines the optimal policies from
 

which only the immediate period's decision is applied with the procedure
 

the next decision time (sequen tal optimization). This
repeated at 


model, -makinguse of real time input observations, is found to perform
 

formulation. In

better compared with the original Iarkov Chain D.P. 


general setting (see

fact, the underlying idea can be used in a more 


and will be exploited here.
Bertsekas, 1976, Section 5.5) 


formulation refers
A last comment regarding the :4arkov Chain D.P. 


explicitly produce policies satisfying probabilisto its inability to 


tic constraints. Such a constraint, for example, could be a reservoir
 

19
 



storage requirement not to 
exceed (or fall below) a certain level with 

probability 7 (0 < y < i). Statements like the above are very useful in 

evaluating the performance of control policies for stochastic reservoir
 

systems. If it is not possible for the optimization program to meet
 

such specifications, the practice is to 
follow a trial-and-error ap

proach. 
Namely, a certain oolicy obtained by the optimization model is
 

evaluated thzough simulation, and in the event 
that its performance is.
 

not satisfactory, the optimization model is modified 
(cer:ain con

straints are tightened, penalty terms are introduced to or 
dropped from
 

the objective function, etc.) 
with the hope that the new policies will
 

give better results. Clearly, the approach is not set up in 
a well de

fined manner and can be costly.
 

Recognizing the importance of policies satisfying probabilistic
 

constraints,Askew, 1974a, b, 1975, Sniedovich, 1979, 1980a, b, and others
 

investigated the matter for a single reservoir with independent inflows.
 

The attempts were successful in constructing algorithms which maximize
 

the objective function while satisfying certain system constraints at
 

prespecified probabilistic levels. Unfortunately, these methods are not
 

exterdible to a general multireservoir system, again, because of di-nen

sionality problems.
 

Becker and Yeh, 1974, developed ' -onthly reservoir optimization
 

model which was coupled to a daily (Yeh et 
al., 1976) and an hourly (Yeh.
 

Becker, and Chu, 1979) model and constituted a multilevel (or hierarchi

cal) structure currently used 
to operate the California Central Valley
 

Project. The procedure is a deterinistic sequential formulation utiliz

ing deterministic forecasts and exhibits good computational efficiency.
 

As mentioned earlier, the method falls in the c-tegory of the Naive
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Feedback Controllers which assume validity of the Certainty Equivalence
 

principle. However, as ( soect
a general rule, the more nonlinear reih 


to its dynamics) and nonquadratic (with respect to its objective func

tion) a system is, the less it is likely for the Certainty Equivalence
 

property to hold, and the greater is the chance that the controls so ob

tained are far from optimal. Nevertheless, it is noted that the practi

cal importance of the reduced deterministic formulation should be fully
 

recognized in the event that a computationally efficient stochastic con

troller is not feasible. Another weak point of the previous model is
 

the subjective judgement required to determine the terminal system state.
 

It will be seen that substantial suboptimalities can be introduced by
 

incorrect terminal suate choices and that the proper selection law de

pends on many parameters (e.g., system objectives, control capability,
 

length of optimization horizon, etc.) and is not always apparent.
 

Regarding the multilevel structures, it has been realized (Haimes,
 

1977, Unny et al., 1981, Bechard et al., 1981, etc.) that they are par

ticularly suitable for reservoir systems, the reason being that these
 

systems' objectives are usually associated with a variety of time bases.
 

(For example, finding the operating policy minimi*ig the damages of a
 

particular flooding event and operacing the system for long-term maximum
 

energy generation are two objectives of substantially different frequen

cies.) The multilevel approach represents the overall system by a
 

hierarchy of models. The higher standing models involve less detailed
 

system descriptions; they are meant to develop operating strategies
 

which optimize the long-run system performance (strategic decisions).
 

The more accurate lower level models are concerned with increasingly
 

shorter interval optimization (tactical decisions) and finally dictate
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the operdtion to 
be implemrted. 
 According to 
the objective priority
 

ranking, each level properly constrains the adjacent lower level by 
its
 

decisions, but 
feedback is possible, as well as 
upward information flow
 

from real tLime observacions. Functioning in the above interactive
 

fashion, the hierarchy can assure that 
the system-will perform well over
 

all relevant 
time scales while keeping each model at 
a tractable complex

ity. 
 Overall, hierarchical structures constitute a suitable approach
 

in implementing 
a real time reservoir control scheme.
 

Thus far the basic problem of 
the Dynamic Programming models has
 

been the dimensiotality limitation stemming from the need 
to implement
 

the D.P. solution in discretized form. 
The recent publications by
 

Georvakakos, A., 
1983, 
and Wasimi and Kitanidis, 1983, presented 
a
 

methodology avoiding this numerical difficulty.
 

Wasimi and Kitanidis, 1983, 
modelled the system dynamics by a set
 

of actual and conceptual (corresponding to 
the river reaches) linear
 

reservoirs and employed a quadratic penalty cost 
functional 
to force
 

the system's state trajectory on a prespecified track. 
 The inputs were
 
assumed Gaussian random 
variables and the formulation did not 
consider
 

state or 
control constraints. 
 8ecause of 
the LQG problem characteris

tics, the Dynamic Programming solution was 
obtained in analytical form
 

which minimized the computational burden.
 

The model develoed by Georgakakos, A., 
 1983, also employed che
 

actual-conceptual reservoir system configuration, but 
it allowed for
 

nonlinear dynamics and 
general performance functional. 
 Here the objec

tive was to identify 
the most rewardi-igstace and 
control trajectories
 

and the procedure was 
 iterative optimization scheme.
an 
At each itera

tion, a quadrati(: approximation of 
the objective function and 
a local
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the dynamics around the current trajectories were perlinearization of 


formed to construct a local LQG apDroximation of the original oroblem.
 

The solution obtained in a recursive analytical form gave rise to new
 

The method exhibited
state and control trajectories until convergence. 


fast convergence rate and had a provision for probabilistic state con

straints which, nevertheless, did not perform efficiently. Nr control
 

constraints were accounted for.
 

Both of the previous models allowed for updating of the current
 

state estimates via a Kalman (or an E-cended Kalman) Filter estimator.
 

Based on the man7 potential advantages of the previous approaches,
 

work will continue along these same lines. The intention is to
this 


perfect the control design so as to be efficient in handling most system
 

idiosyncracies.
 

Regarding the nonlinear programming model category, Rosenthal, 1930,
 

notes that the state-of-the-art needs a breakthrough in computational
 

a practical solution technique for multireservoir
efficiency to become 


system control.
 

Although predominantly used in reservoir oDeration, simulation mod

are suitabl.e for performance evalels have no optimization structure and 


uation rather than for optimal policy identification.
 

The preceding survey of stochastic reservoir control studies indi

cated that a comprehensive model efficiently accounting for all the
 

It also
peculiar reservoir system characteristics is still lacking. 


brought up a variety of orooerties which such a mode'l should oossess.
 

These structural requirements of an efficient controller are summarized
 

the standards with which the subsequent control study will
below to set 


be expected to comply.
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a. Explicitly account for the system's uncertainty.
 

b. Use 
 local linear approximations of the system's dynamics, iff
 
any.
 

c. 
Optimize sequentially. 
(Repeat the procedure at each decision
 
time.)
 

d. Take advantage of real 
time observations 
to update the estimates of the 
system model and make efficient use of 
the input
process' forecasts.
 

e. Consider the 
shortest control horizon 
that has a bearing on
the immediate period's decision action.
 

f. 
Account for control and probabilistic state constraints.
 
g. 
Overcome dimensionality problems and guarantee computational
 

efficiency.
 

h. Design to 
facilitate a multilevel control structure's setup.
 

The following Chapter presents a model for a general reservoir sys
tem. This is similar to 
the models introduced by Georgakakos, A., 1983,
 
and Wasimi and Kitanidis; 1983, but it is included here for completeness.
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Chapter 3
 

MELTIRESERVOIR SYSTEM MODEL
 

3.1 Introduction and Over7iew
 

The design of a controller is the second basic step of a control
 

this a credible system model must be developed. 
Based
 

study. Prior :o 


a
 
on physical considerations, this chapter will show how to represent 


general reservoir system by a set of ordinary 
differential equations.
 

This model's parameters can be optimally adjusted via estimation tech-


Some issues
 
niques to comply with available input-output data 

records. 


arising in parameter estimation will be discussed, but detailed presen

tation of the associated theory will not be offered; instead, the reader
 

selected relevant publications. The purpose of this
 
will be referred to 


introduce a flexible model structure adjustable 
to the
 

chapter is to 


Chapter 4 will consider the detailed
 reservoir system idiosyncracies. 


a control algorithm.
and self-contained design of 


3.2 	 General Characteristics of a Reservoir System
 

a number of reservoirs whose coordinated op-
A reservoir system is 


eration is suggested from hydrologic considerations and/or institutional
 

a schematic representation of a three
 requirements. Figure 3.2.1 is 


reservoir system which will introduce the elements that when combined in
 

series and/or in raraieil synthesize more complicated 
configurations.
 

are the following
a typical reservoir system
Basic characteristics of 


elements:
 

a. 	A set of hydrologic inputs (as, for example, the river flows
 

ystem at various
 
Wa(t), W (t), w (t)inFi-ure 3.2.1) which enter 	tI 

boundary locations.
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b. A set of reservoirs located at various river branches. Each 

reservoir aczepts an inflow from the upstraam system, contains s(t) 

water volume, loses or gains additional water due to evaporation, seepage, 

or r~infall at a rate e(t), and releases at the controllable rate u(t). 

(In Figure 3.2.lall quantities associated with a particular reservoir are 

.th 
indexed by two subscripts ij denoting the j reservoir of the i river 

branch.) The storage variables s(t) are restricted to vary wticin a 
min max( . 

positive bounded range, s (t) < s(t) < s (t), from physical and 

operational considerations similar bounds govern the releases, 

min max 
u (t) < u(t) < u (t). 

c. A set of river segments providing the hydrologic linkage among 

the existing reservoirs. Linkage due to ground water movement will not 

be considered here; yet, if such a situation is suggested by the physi

cal conditions, it too can be accounted for in the proposed framework. 

(The river segments of Figure 3.1 are denoted by a, b, c, and d.) Along 

the river segments and from the reservoirs, a number of water diversions 

(possibly generating return flows) may supply water to municipal, agri

cultural, or industrial sites. (The reason why two subscripts are used 

to signify the elements in Figure 3.2.1 will become clear in Section 3.7.) 

d. A set of objectives that the system is expected to ser-e. A 

general set of typically established objectives includes flood protec

tion, water supoly for municipal, agricultural, and industrial use, 

energy generation, recreation, navigation, water quality improvement,
 

and wildlife enhancement.
 

Loosel7 zpeaking, the reservoir control problem is to identify op

timal schedules of the controllable variables which will guidp the system
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to ;ssfully meet its objectives. This is a rather difficult cask
 

due to the following system idiosvncracies: (!) uncertainty, (2 non

linearity, (3) high dimensionality, and (4) multiolicity of conflicting
 

objectives.
 

In turn, reservoir systems' uncertainty may be due to the follow

ing sources:
 

la. Hydrologic input or natural uncertainty. Once the system is
 

defined, the inputs are used to represent the real world lying outside
 

its boundaries. For example, the river flows wal(t), wbl(t), wdl(t)
 

should reflect the characteristics of the rainfall-runoff processes of
 

their drainage basins. Consequently, the uncertainty of the omitted
 

processes (e.g. atmospheric randomness) will carry over to the inpuLs,
 

while the corresponding dynamics will induce temporal and soacial corre

lation structure in their behavior (e.g. seasonalities, etc.).
 

lb. Uncertainty due to imperfect knowledge concerning the response
 

of the reservoirs and of the river segments (also known as model uncer

tainty).
 

ic. Uncertainty due to the objectives (e.g., random demand fluctua

tions, or economic uncertainty).
 

Nonlinearities in the system dynamics may be due to the reservoirs
 

as well as the river segments. The reservoir nonlinearities are caused
 

by the evaporation and seepage processes taking place through the 
reser

voir's irregular surfaces and also by the various constraints. The
 

river segments are nonlinear elements due to many reasons: e.g. bottom
 

frictional effects, fluid viscosity, turbulence, channel nonuiliformity,
 

seepage, etc.
 

Examples of large reservoir systems in the U.S. are the California
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Central Vally System, the Arkansas System, the Cclumbia System, the
 

Lower Colorado System. Each consists of at leas,: 30 major hydroprojects.
 

Reservoir systems are usually characterized by conflicting objec

tives; namely, a certain control sequence which successfully performs 

for one objective may be undesirable for another. (Conflicts arise, 

for example, between hydroenergy generation and flood orotection, or 

due to incomoatible water use demand patterns.) Furthermore, if the sys

tem is capable of long-term river control (i.e. if the existing storage 

capacity gives overyear management flexibility of the input process' 

water volumes), then there exist multiple time scales to which the ob

jectives pertain. Namely, the system petforms successfully, if it per

forms well from short to considerably longer time periods (e.g. hours
 

to a few years).
 

After this preliminar7 introduction to the reservoir system char

acteristics, we next discuss the development of a representative system
 

model.
 

3.3 	 System Model Development
 

Consider the following quantities characterizing a reservoir at any
 

given 	time t: 

s ij(t): water volume contained in the reservoir's lake, 

I. .(t): inflow rate to the lake from the upstream system,
 

u..(t): rate of controlled releases,
 

L. .(t): net water loss rate from evaporation, seepage, and rain1J 

fall.
 

Then, the conservation of mass law for the ij ':eservoir can be ex

pressed by 
d s..L] (t) = I () - u (t) - L (t). (3.3.1) 

dt ij - uij ij 
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Consider the -oss term L.. (t) and denote the foliowing: (1) e.. (t) the
 

net [(evaporation) - (rainfall'] rate per unit of 
the lake's surface
 

area, (2) Aij (sij(t)) the reservoir's surface area in terms of the
 

stored volume, (3) gij a seepage coefficient per unit of water eleva

tion, and 
 (4) E. (s.(t)) the function giving water elevation in terms
 

of the lake's volume. Then
 

L j.(t) = e ij t) A ij(s ij(t)) + g.ij Eij (s ij (t)). (3.3.2) 

In reality the relationship yielding the seepage losses is much more
 

complicated. (The coefficient g. varies spatially and the form of 
the
 

seepage term depends on the general groundwater hydrclogy of the lake's
 

area.) However, because of the distributed parameter nature of the
 

underlying phenomena (spatial nonuniformity), it is most likely that
 

they will require a lumped parameter representation (as in Eq. (3.3.2))
 

to be hypothesized and estimated from available input-output data. in
 

fact, even this approach can be impossible due to identifiability prob

lems. However, issues such as this will be discussed in Section 3.4.
 

The inflow I (t) in Eq. (3.3.1) may be a hydrologic input, if the
 

reservoir lies at the system's edges, or the output 
from the system ly

ing upstream of reservoir ij. If apart from the release u..(t) there
 

also exists some other water abstraction (say, in the form of a water
 

supply diversion), it can be incorporated in the inflow I..(t) which
 

should then be reduced by the corresponding abstraction rate.
 

Consider now the river segment j shown in Figi.:e 3.3.ia. 
 It can be
 

thought of (Kitanidis and Bras, 1978, Georgakakos, K. and Bras 1980, 1982),
 

as a number of cascaded conceptual (fictitious) reservoirs (Figure 3.1.3b)
 

each of which stores and releases water according to thn conservation of
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mass law:
 

ds (t)
- - =. Ii(t) - QL()(C) (3.3.3)
dt jji j (3,3.3 

where s. . (t) is the water volume contained in the i conceptual reser

voir of reach j at time t, Iji(t) is the inflow rate from the upstream 

system, L. (t) represents the seepage loss rate (it might be that L..(t) 

is negative, implying gains from groundwater), and Qj (t) is the outflow 

rate. I.i(t) may be the outflow Q il(t) of the previous conceptual 

reservoir, or the previous outflow minus the rate of any existing diver

sion (as at the conceptual reservoir jZ in Figures 3.3.1a, b), or the 

outflow plus any return flow. If i = 1, Ij(t) may be a hydrologic in

put, or an actual reservoir's release, or the final outflow of another 

branch, or some combination of the above (see Figure 3.2.1). 

From kinematic wave type considerations (Fagleson, 1970) one can
 

deduce a relationship of the following form for the outflow Qji(t):
 

t
mji 
Q.i t) = . s.M.. (t). (3.3.4) 

Under certain uniformity assumptions for the channel geometry and flow 

condition, one can express the coefficients a±.. and m. . in terms of 

physical parametrers such as bottom longtitudinal slope, channel length
 

and width, roughness coefficient, and water depth (Georgakakos, K. and
 

R. Bras, 1980). However, owing to the distributed parameter nature of
 

the physical situation, it is suggested that these coefficients be es

timated rather than obtained from the previous relationships. (In an
 

estimation scheme the coefficients derived by physical considerations
 

may serve as initial guesses.)
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The seepage (or infiltration)losses can be represented (3urkham,
 

1970a, b, Granados and 3ras, 1983) by a similar expression of the fol

lowing form
 

L (t) = .. sA'i(t) (3.3.5)
j 1ji sji 

where 3.. lies approximately in the range (0.8: 1.2] and Z is the in

filtration coefficient. Typically, these coefficients are assumed con

stant over the same river segment or constant over the whole basin. 

However, we shall continue considering them spatially varying to arrive 

at a general structure and later discuss possible (or mandatory) simpli

fications. 

After these specifications the dynamics of the rivei segment j por

trayed in Figure 3.3.1a can be represented by the following system of
 

first-order ordinary differential equations:
 

ds 31 =- m ((t)~t s ji s ji +Ij (t)
dt =-jl sj i j1 1i 

ds.2W m m 3
 

5
d = j s 1 (Ct) - sj2 S2j2 


j2ls ja-
 (t) - K 5j2 (t), 

ds jz t) mj z_ (t) a . sm z (t) - C s j Ct) - w (t) 

dt jZ-1 jz- 1J2 j2 "J9 Jj 2. 

s.
jr. (t) m.m. 8.r.1
 
jr jr.-1 r.Jr.
 

Cts. a (t)- x. s.Jt )= jrj- Sjr-l r. jr. ) jr. Sjr 

(3.3.6)
 

where it has been assumed that r. conceptual reservoirs are necessary
j 

to model segment's j response.
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i-l 

A property which makes this conceptual-reservoir routing model
 

favorable for the control purposes is its wide range of adaptability.
 

Namely, by properly adjusting the parameters(aXi mji i , ji, rjIrJ
, 


any river response can be adequately reproduced. Thus, this basic
 

structure can be employed at any control hierarch level at 
commensurate
 

accuracy. For example, a representation of.one linear conceptual reser

voir (if any., suffice for a monthly decision model, while more com

plex structures and more sophisticated parameter estimation procedures
 

may be necessary for shorter decision time intervals. Another conven

ient property of the preceding model is its rather close compatibility
 

with the model for the actual reservoir dynamics.
 

The dynamics of the entire system can theu be modelled by combining
 

the previous representations of the individual river segments with the
 

actual reservoirs. (For example, it is straightforward. to write the set
 

of differential equations modeling the 3 reservoirs and the 4 river
 

branches of the system in Figure 3.2.1). To facilitate the notation let
 

the system dynamics be expressed by the following vector differential
 

equation
 

ds(t) 

dt F (s(t), t) + b u(t) + G w(t) (3.3.7) 

where s(t) is an ns dimensional vector including all actual and con

ceptual reservoir storage variables,
 

u(t) is an n dimensional vector of the conrrollable releases,
 

w(t) is an n dimensional vector including the hydrologic in

puts and any water diversions,
 

F(,') is an ns dimensional time varying nonlinear function in

cluding all terms e(t) A(s(t)), gE(s(t)) asm(t), Ks3(t)
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indexed after the corresponding reservoir 

and GGL ar rspctvey ns x nun ns x nw dimensional matrices 

associating the control and input vector elements with
 

the ,appropriate differential equation. (Obviously,
 

these matrices are sparse.)
 

and L are respectively 

Notice if at any time tk all actual and conceptual storage vari

ables are known (i.e. the vector s(t is given) and if a particular 

trajectory is specified for the inputs.w(t) and the releases u(t) over 

an interval [tk , tt, then the trajectory(s(t); tE[tk , tZ]Jof the 

storage variables can be computed by integrating Eq. (3.3.7). In other 

words, the vector s( tk) is the only necessary information from the sys

tem's history prior to time tk in order to predict its future response 

to certain input and release sequences. Then by definition the v.ector 

s(tk) constitutes a state for the reservoir system, and t'ahe previcus 

representation is said to be in state space form. The state is a pivo

tal quantity in the study of systems. For a reservoir system the ;revi

ously defined stateI at any time describes the water content distribu

tion throughout the system. The control study's objective will be to
 

specify reservoir release schedules which result in desirable time tra

jectories of this distribution.
 

As mentioned, under the availability of input-output data records,
 

it is best to determine the various model parameters by a parameter
 

estimation scheme. Some related discussions follow
 

Often, the individual storage variables will also be referred to
 

as states.
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3.4 System Identification
 

System identification theory is concerned with identifying a model
 

whose input-output characteristics correspond to those of the .actual
 

system. An identification study is an iterative process involving the
 

four steps shown in Figure 3.4.1 (Schweppe, 1976). Section 3.3 is 
an 

example of the "HYPOTHESIZE STRUCTURE" step where physical model struc

ture is hypothesized for further identification. The second step uses
 

input-output observations and parameter estimation techniques (Schweppe,
 

1973, Sorenson, 1980) to optimally adjust the parameters cf the hypothe

sized structure. Following are validity tests evaluating whether the 

model can adequately explain the system's observed behavior and the 

fourth step, "DIAGNOSTIC ANALYSIS," suggests a different mcdel struc

ture in the event that validity tests fail. 

A-prerequisite element for applying the above oc=-r.is t=. 

availability of measurements (observations) of cer:ain ss-e :ar--ables 

over a time period. The measurements usually available in reservoir 

systems concern river flow discharges, reservoir water elevations and 

releases, and evaporation rates. 
The river flow dish-arge =easurenents
 

(e.g. the inflow and outflow discharges of a river segaent, or the in

flow discharge to a reservoir) are generally of fairly good quality with
 

an associated error whose standard deviation is 
 typically equal to a
 

small fraction (say, 0.01) of the observed value. Tne reservoir water
 

elevation observations can be transformed to observations of the stored
 

water volume via the elevation-storage relationship. This function is
 

determined through detailed geographical mapping of the lake's area
 

(from surveys, etc.) and is generally accurate at least within the
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water storage normal fluctuation range. The reservoir releases are
 

almost always passed through hydropower turbines or other accurately de

signed structures and can be safely considered free from measurement
 

error. Good quality average evaporation rate measurements are rarely
 

available owing to the high temporal and spatial process' variability.
 

After the associated data base is established, the nodel parameters
 

are estimated according to, say, the Maximum Likelihood, the Extended
 

Kalman Filter, or some other estimation methodology. However, a reser

voir system has certain characteristics that can simplify the estimation
 

process. As mentioned, the reservoir releases are virtually perfectly
 

measureable. By the system's serial nature these releases are the only
 

connecting link between the system part lying upstream with that extend

ing downstream of a reservoir. Thus, all information of the upstream
 

system measurements regarding the downstream system is carried through
 

these links and is captured by their perfect measurements. This intui

tive argument implies that the parameter estimation of -h two system
 

parts' models can be separately performed. As an example, reservoir
 

al, reservoir bl, and the rest of -he system in Figure 3.2.1 may be
 

separately identified. Theoretically each of the resulting individual
 

parts should not be further decomposed. For instance, this means that
 

the hypothesized system models for the river branches a, b, c, d, and
 

for the reservoir ad in Figure 3.2.1 be put together and identified
 

from all relevant measurements. However, there exist serious numerical
 

difficulties in the identification of complex structures (see Morris and
 

Schweppe, 1981) mainly from excessive computational requirements and
 

irregularities in the likelihood function. For this reason and because
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river flow discharge measurements are of fairly good quality, we sug

gest that further decomposition be emolayed first to 4_-ermine smaller
 

yet more easily identifiable substructures. In the event that the iden

tified mcdels fail the validity tests of the identification process,
 

more complex configurations may be hypothesized and treated. Hence,
 

if enough gage locations exist, then the identification process may be
 

decomposed and reservoirs and river se--nents :zeated separatei-.
 

A frequenlyarising problem in system identification applications
 

is related to the identifiability of the hypothesized structure param

eters. Namely, it may happen that the unknown parameters cannot be
 

estimated by the available observation record and some model structure
 

changes are necessary before the process can go through. Although the
 

"DIAGNOSTIC ANALYSIS" step will usually detect the problem, it is some

times possible to a priori anticipate and correct such a deficiency.
 

Appendix I discusses this issue for the reservoir model hypothesized
 

in the previous section (Eq. (3.3.1), (3.3.2)). It is.shown that it is
 

not possible to estimate both of the parameters e(t) and g. It is sug

gested that either one be fixed at a physically reasonable value and
 

the other be estimated by some parameter estimation methodology. AppEn

dix I also briefly outlines how parameter estimation can be performed
 

for a nonlinear system. The presentation requires linear system
 

(Kailath, 1980) and estimation theory (Schweppe, 1973) background, and
 

it may be skipped without affecting the control developments in Chapter
 

4. Appendix J takes up the same issues for the model of a river seg

ment. It finally suggests that linear struccures should be identified
 

first. (ji = 1 = m ..for all i) and that both paraieter sets (Kjir ,
 

9i=l
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,ir ~ cannot be assumed unknown (due to identifiability problems). 

Finally, she river segment model is converted to a form amenable ;o the 

basic estimation procedures such as the Maximum Likelihood or the excen

d d aman Filter. For more detailed applications of system identifica

tion theory, the reader is referred to Kitanidis and Bras, 1978, Georga

kakos, K. and Bras, 1980, 1982, and Restrepo Posada and Bras, 1982.
 

Hereon, we shall assume that the system identification phase has
 

been performed and resulted in the following system model:
 

ds(t)
 

(3.4.1)
d = F(s(t),t) + L u(t) + G w(t) + a(t) 

with F(.,'), L, G as in Eq. (3.3.7) and q(t) a continuous time n -
S 

vector white Gaussian process which is added and identified (see Appen

dices I and J) to account for model and other error sources (lineariza

tions and other approximations of the parameter estimation procedure.
 

etc.). This is a zero mean stochastic procesc with spectral density
 

matrix _Q (t): 

Efa(t) T(s)} = 0 (t) 6(t-s) (3.4.2) 

-1 f ~~-q(342
 

(S(t-s)) is the dirac delta function which is zero everywhere except at 

the origin, t=s, where it goes to infinity.)
 

A separate identification procedure concerns the hydrologic inputs 

W(t). Depending on the available data, one can identify a black-box 

correlation model (e.g. Curry and 3ras, 1980, Wasimi and Kitanidis, 

1983),-or a model based on the physics of the rainfall process (Georga

kakos, K. and Bras, 1982). In any case, the hydrologic input model 

will be used to forecast the future inputs and allow for better decision 

making. Here it All be assumed that w(t) is a white Gaussian 'ector 
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with w(t) mean vector and 0 (c) spectral density matrix. in a later
 

chapter it will be shown how to derive these moments from the :iscrece
 

time moments usually provided by a forecasting model and how to account
 

for the proces' correlation. Given chat w(t) is a white Gaussian pro

cess and the same holds for a(t), we can lump the two and represent them 

by the following process c(t): 

£(t) G w(t) + q(t) . (3.4.3) 

As the sum of two Gaussian vectors, -(t) is also Gaussian (see Jazwinski,
 

1970) with mean vector
 

E{(t)} = E(G w(t) + R(t)} : GE+w(t)} + R(t)I 

= G w(t) = £(t) (3.4.4) 

and spectral density matrix which can be easily obtained as follows:
 

- -(s))E{(E(t) - ())((s) 

-G 
= E {(G w(t) + .a(t) wj(t)(G w(s) + q(s) - G 's))T 

= E (G w(t) - G w(t))(G w(s) - G w(s)) r +
 

T -T
 

_( a (s) + (G w(t) -G _( )) q (s) +
 

+ S() (G w_(s) - G W(s))T: 
T
 

= G0(c) (c-s) GT + 0 (t) 5(t-s)
0 


= (G 0 (t) GT + 0 (W)) (t-s) Q (t) 6(t-s) (3.4.5) 
=t 

Thus, 0 ( ) G 0 (t) GT + 0 (t) (3.4.6) 
=4
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(In the abuve, the superscript "T" denotes the -ranspose o a rix and
 

the derivation makes use of the fact that w(t), a(s) arp uncorre~aced
 

for all times t, s.)
 

Lastly, the actual reservoir water elevation and river discharge
 

measurements will be grouped 
in a vector z(t ) related to the system's 

state vector through 

z(tZ) =H (s(t )) + v(tz) (3..7) 

where v(tz) is a discrete time white Gaussian process added 
to account 

for observation errors (see Appendices I and J). v(t ) has zero mean 

and covariance matrix R. (assumt- for generality time varying). Note,
-v2
 

d'ie to decomposition of the identitication process, matrices 0 (t) and
 

R are block diagonal.
 

Equations (3.4.1) and (3.4.7) summarize the results of the system
 

identification phase. 
 Based on this system model, Chapter 4 will take
 

up the design of an optimization algorithm (controller).
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Chapter 4
 

EXTENDED LINEAR QUADRATIC GAUSSIAN CONTROL
 

4.1 Introduction and Overview
 

Thus far, the discussion has covered the first of the two major
 

steps in a control srudy; namely, the identification of a representa

tive system model. This chapter will be concerned with the second
 

step which regards the design of an optimization procedure (controller)
 

able to guide the model (and thereby the actual system) in success

fully meeting its operational objectives.
 

We shall begin by addressing issues arising in the operation of
 

multiobjective and stochastic systems. The various system objectives
 

will be modelled and a general perspective of the control study will
 

be given. Then we shall formulate the reservoir operation problem
 

and discuss its idiosyncracies. A brief review of stochastic optimal
 

control theory will follow to provide the framework for the subsequent
 

developments. The approach taken here in solving the reservoir opera

tion problem is first to simplify it and then work with increasingly
 

more complicated versions until the complete problem is reconstructed
 

and solved. Along this line the unconstrained problem, the problem
 

with control (release) constraints, and the problem with both control
 

and state constraints are successively considered. Apart from being
 

insightful, this presentation also reflects the sequence of operations
 

performed by the controller. It solves the unconstrained problem
 

first and halts to check for any constraint violations. If there
 

are none, it terminates because an optimal solution has been found.
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Otherwise it takes care of the violated control and state bounds.
 

This is a long chapter incl'uding the major contributions of
 

this thesis. To the best of our knowledge, this is the first published
 

multireservoir control procedure capable of solving the general opera

tion problem formulated here. Computational experience with the new
 

method will be offered in subsequent chapters and separate publications.
 

This work has been motivated by problems in reservoir operation; however,
 

it is generally applicable for the control of any stochastic, dynamical,
 

nonlinear, multiobjective system in state-space form.
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4.2 Modeling of the System's Objectives
 

Typically, reservoir systems are expected to serve several ob

jectives. Water supply for municipal, agricultrual, or industrial
 

use,. flood protection, hydropower generation, navigation, water
 

quality control, recreati.on, and wildlife enhancement, constitute
 

a set of generally accepted reservoir system objectives (Water
 

Resources Council's Principles and Standards 1973, Revision 1979).
 

Althoti often underestimated, appropriate modeling of the system ob

jectives is a prerequisite of a successful control design.
 

What complicates the reservoir control problem even more than the
 

objectives' multiplicity is their antagonistic natures. Take, for
 

instance, hydropower generation and flood protection. For the purposes
 

of the former, it is profitable to maintain reservoir storages close
 

to capacity so that the power turbines are under the highest possible
 

hydraulic head. At the same time for the fear of severe flooding
 

events, one would prefer to operate the system at lower reservoir
 

elevations to safely attenuate the flood wave hydrograph. Similar
 

conflicts also exist between water supply and hydropower generation,
 

navigation and water supply, as well as among other objectives.
 

In multiobjective optimization one is interested in solutions
 

which belong on the problem's Tradeoff Surface otherwise known as
 

Transformation or Pareto Optimal Surface. A Pareto Optimal
 

solution is noninferior with respect to any other feasible solution
 

in the sense that it performs strictly better toward at least one
 

objective. In deterministic problems, the Pareto Optimal Surface
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and methods for its reconstruction are well studied 
(Haimes, 1977,
 

clapter 7). Stcchastic multiobjective problems are not as well
 

explored and the Pareto Optimal Surface needs yet to be defined.
 

Reservoir systems are usually provided by operating priorities
 

mandated by institutional agreements (e.g., the Tennessee Valley
 

Authority Act passed by Congress in 1933). 
 The agreemer.ts establish
 

a specific. priority ranking cn the system objectives and prescribe
 

mandatory performance levels. A commonly encountered ranking (Yeh,
 

1982) appoints flood protection, water supply, water quality control
 

and navigation as the primary objectives and states 
that the remain

ing objectives be met so far as they are consistent with the primary
 

ones. 
 From the analyst's point of view, these specifications restrict
 

the investigation of the problem's Tradeoff Surface on that portion
 

which meets the set requirements. Including recreation and wildlife
 

enhancement in the set of primary objectives or assuming that they
 

are implicitly satisfied when water quality standards 
are met, the
 

following approach for multiple objective reservoir operations can
 

be preposed. Constrain the operation to always meet 
the primary
 

objectives and maximize the hydropower production as 
far as possible.
 

Conceptually, this transforms the multiobjective problem into a single
 

objective optimizationbut at the 
same time it allows reconstruction
 

of the Tradeoff Surface by varying the constraint levels or changing
 

the optimized objective (Cohon and Marks, 1975). 
 This section will
 

discuss how this general approach for treating multiple objectives
 

can be quantified 4n relation to 
the system model developed in the
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previous chapter. The intention is to present a modeling framework
 

which can be flexibly adjusted in specific applications.
 

Consider, for example, that a system's manager agreed to supply
 
a user with .(t) volume ;f ,,ater per unit of time (discharge) for a
 

specified time period tE[t 0 , t. Assume further that the diversion
 

is located downstream of conceptual reservoir jk. If the system was
 

not random, this agreement could be met by requiring the reservoir's
 

outflow Q k(t) to be greater than or equal to some flow level qWS (t)
 

which makes the agreed diversion possible. Namely, it would suffice
 

to maintain
 
ws 

Qjk(t) > q (t), (4.2.1) 

ts[t, tT]. 

Replacing Q (t) by a.k jk(t) (c.f. Chapter.3), we find that the
 
jk jh hjk 

diversion can be made as long as reservoir storage sjk(t) satisfies
 

1/mjkqWS (t) 


jk jk 
 (4.2.2)
 

tE[t 0 , tT]. 

Consider next the same water supply requirement in a stochastic
 

system where storage sik(t) as well as outflow Q k(t) are only known
 

in a probabilistic sense. Statements such as "Q k(t) must be greater
 

than or equal co q (t)" are now meaningless unless they are supplied
 

with probabilistic specifications regarding their validity, in this
 

case the reservoir manager can choose a probability level y S(t)

jk 
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and see if it is feasible to operate the system so that
 

Pr -- -Q)(t) < q's ((t)I < (t), (4.2.3) 

t[ t 0 , t T I. 

In words (4.2.3) specifies that the ageement should be met at
 

reliability not less than [i - yWs (t)].).Asbfraneuvenjk As before an equivalent
 

probabilistic statement 
can be written with respect to the correspond

ing storage variable:
 

P r. jk( t a jk 1 m k]PFt ) - qw3*t /jk .() jk t) (4.2.4)
 

te (tot, TIt 

or alternatively 

sjk (t) 

P(S(t),t) ds W < (t), (4.2.5) 

tE ft, tT]
 

In (4.2.5) p(.,.) is the probability density function (p.d.f.) of 

s. (t) at time t,
jk
 

ws(t) t) ,jk (4.2.6)
 
jk 

I 

and the lower limit of the integral represents the value below which
 

s (t) cannot lie with probabilistic significance. 
 Thus, the
s
jk 


requirement to meet the water supply demand at 
[i - w's (t)] 

reliability level is mathematically equivalent to constraining the 
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p.d.f. of the storage variable Sjk(t) in a region above a certain bound.
 

This 	bound is characterized by two parameters: (1) S (t)

jk
 

which is specified by the demand level through (4.2.6) and (2) -.,ws Wjk 

which gives the probability of failing to satisfy this demand. It is 

noted that as the demanded level becomes greater and/or the probabilit; 

of violation gets smaller, constraint (4.2.5) increasingly confines 

the p.d.f.'s feasible region. 

The previous example was presented to illustrate the claim that
 

the requirement to sat'.sfy system objectives at prespecified reliability
 

levels implies probabilistic constraints on the system state variables.
 

As a second case, consider flood protection. The associated
 

probabilistic constraints can be easily derived after specifying :wo
 

characteristic parameters per storage .variable: That is, the flood
 
f 

level sjk(t) which the storage is not allowed to exceed and the
 

f 	 f 
probability of exceedance y k(t). For an actual reservoir, sjk(t)
 

can be taken equal to the reservoir's capacity (above which water flows
 
a 

down the spillway), while for a conceptual reservoir sWk(t) can be
 

defined by the flood discharge level q (t) and the relationship
 

- ( : 1/rnj 

sik =L21:1 jk (4.2.7) 

The flood protection reliability constraint can then 	be stated by
 

+Cf
 

p(sjk(t),t) dSjk W)< Yfk(t), (4.2.8) 
f 
Sjk(t)
 

tE [top trT. 

49
 



T'his constraint restricts the state's p.d.f. to lie below some upper
 

bound and becomes more restrictive for smaller jk(t) and/or as
 

less severe flood condition levels are established.
 

The navigation objective calls for water level fluctuations within
 

a certain range determined by the adjustability of xe port structures
 

and the navigability of the river branches. These ranges together with
 

the reliabilities assigned to navigation by the system manager imply
 

two more probability constraints per storage variable.
 

Water quality control can similarly be treated by requiring river
 

flows to be greater than a critical level above which adequate effluent
 

diffusion takes place. In fact, the actual-conceptual reservoir system
 

model allows for more detailed account of the water quality control ob

jective. This can be seen in Beck, 1974, where the dynamics of the
 

biochemical oxygen demand (BOD) and dissolved oxygen (DO) concentra

tions are modeled by differential equations very compatible with the
 

system-model of the previous chapter. However, in this work it will
 

suffice to translate meeting water quality standards into reliability
 

constraints on the system's states; different treatment of the subject
 

along the lines mentioned will be undertaken as a separate study.
 

Similar bounds on the system's storage variables can be imposed
 

by the recreation objective after specifying the operating range of
 

the recreational facilities along with the desirable reliability
 

level.
 

Thus, it is generally valid that the system objectives can be
 

quantified by a set of reliability constraints on each actual and
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conceptual storage variable. (As explained, hydropower production will
 

not be treated by a constraint, but rather it will be maximized given
 

that all other system objectives are satisfied at the prespecified
 

levels.) The constraints are categorized into upper and lower types
 

and the most severe one can be determined from each group. (Note
 

chat both the storage thresholds as well as the probabilities of viola

tion determine which are the most severe constraints. Figure 4.2.1
 

illustrates a case where flood protection is more binding than naviga

tion.) It is evident that if the p.d.f. of a storage variable meets
 

the most severe constraints from the upper and lower group, it also
 

meetsall others. In the sequel, these two constraints will be
 

denoted by
 

' m
rinW
 

i 
 tP(Si(t),t)dsi(t) < (4.2.)
 

(t' --i (t), (4.2.1)
, d W 


+max S~ ) =ds~)<v a
 

IsW - '( . .0
 

te [t0, t ] 

where i scans the storage variables: i = 1, ..., n . (For notational
 

convenience, from here on the state variables will be referred to by
 

6
one index (i) rather than y two (jk).)
 

A Pareto Optimal point corresponding to the previous reliability
 

constraints can now be obtained by optimizing hydroelectric e ergy
 

generation. Towards representing this objective, we can assume that
 

51
 



P (Sjk(t), t) 

Yj k0t) 

FIGURE 

... 

4.2.1: DETERMINING 

PROBABILITY 

. S~jkl 

THE MOST 

CONSTRAINT 
SEVERE 

s~(t) 

UPPER 



the power production function for reservoir j is given by g.(u.(),
 

s.(t)) where u.(t)
J J is the total downstream release and s.(t) is the

J
 

reservoir storage at time t. (The assumption is made that u.(t) is
 

passed through the turbines as long as this is feasible.) The state
 

s.(t) 
enters the prwer production function by establishing the necessary
 

difference in hydraulic head. 
Over a period [t, %T reservoir j wi-

generate
 

t 

g.(u (t), s.(t)) dt (4.2.11) 
0 

units of energy where u.(t) and s.(t)
J are the actual releases and

J 

realized storage levels. 
Over the same period the energy generation
 

of the entire system will be equal to
 

T u t) s (t))dt (4.2.12) 

where the sumnation includes all reservoirs with power plants.
 

Note that it makes no sense to optimize (4.2.12) because a priori
 

this is a random quantity owing to the stochasticity of the sLorage
 

variables. In turn one 
should look for some deterministic malar quan

tity characterizing the underlying p.d.f. 
A typical choice is to
 

optimize the expected value:
 

Maximize 4 g(u.(t),s (t)) d t (4 2 13) 
u(t) Sd~(..3


ta[t0 t T ] t o 
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or alternatively
 

tT
 

minimize E 
 -gjCu (t),s (t)
9 dt (4.2.14)
 

tE[tO'tT] 0 

where Efl denotes expectation with respect 
to all random quantities,
 

u(t). is a vector including all u.(t), 
 and T. can be taken equal to
 

reservoir's j installed power capacity. 
Performance index (4.2.14)
 

maximizes energy generation by quadratically penalizing energy deficits
 

from the maximal possible production. For optimization purposes this
 

second index is more attractive than the first because 
ej.uW(t),s.(t)) 

is generally mildly nonlinear and therefore [T-g.(u (t),s (t)) 2 

will usually be convex. (Problems of convex structure are generally
 

easier to solve.)
 

With regard to hydropower, a reservoir system is operated either
 

to generate the maximal possible energy or 
to cover a preassigned portion
 

cf the power demand. (The rest of the load is undertaken by other types
 

of power plants.) Either (4.2.13) or (4.2.14) can be 
employed to
 

represent the first mode of operation, while the following performance
 

index can be used to represent the second:
 

u~t) O(t))u]- dt ' (4.2.15)minimize E 
 [T (42t).1s

U(t).
 

t[tO,tT 0
 

where T is 
the portion of the power demand assigned to the hydroelectric
 

units. 
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Note that we can represent both indices (4.2.1.4) and (4.2.15)
 

by
 

_~ ~ T 
minimize Jc= E g(u(t), s(t))dt ( .2.l6) 

o[' tTt )o)j 

where g(u(t), s(t)) = [ [T. - g.(u.(C), s (W] 2 

in the first case, and
 

CT - g* (u (), s.( 22))]g(u(t), s(t)) 
 J
 
J
J 

in the second. Additionally note that other possibilities such as
 

run-on-the-river power plants can also be represented by this more
 

general performance index. (In such,cases the power production
 

function will solely depend on the corresponding conceptual storage
 

variable.)
 

As discussed in the beginning of this section, our objective has
 

been to identify release (control) trajectories corresponding to points
 

on the problem's Pareto Optimal Surface. A Pareto Optimal release
 

trajectory u*(t), tc[tO,tT ] is defined here as the one which achieves
 

the minimum value of performance index (4.2.16) given that it produces
 

a probabilistic state trajectory satisfying the reliability constraints
 

imposed by all other system objectives. (At this stage, the reader
 

should only try to follow the general concept. More precise under

standing will be acquired as this chapter progresses.) Other
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Parato Optimal trajectories can be obtained by varying the probabilistic
 

constraint levels and the entire Pareto Optimal surface can be
 

generated and explored. 
Notice that the priority ranking of the system's
 

objectives can be conveniently reflected by the allowable levels of
 

probtbilistic constraint violation. 
Between two objectives, the
 

one of higher priority should have smaller y(t).
 

Having discussed the modeling of the system's dynamics as well as
 

its objectives, we shall next proceed to 
formulate and consider the
 

associated optimization problem.
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4.3 The Reservoir Overation ?roblern
 

From the discussicns of Chapter 3, the following mathematical
 

system model was seen to result:
 

d s(t)
 
a = 	 F(s(t) t) + L u(t) + E(t), (4.3..) 
dt - = -	 , 

where s(t)
--

is the n
S 

dimensional state vector including all actual and 

concept,,7. reservoir storage variables, 

s(O) is assumed to be a Gaussian random vector witt, mean s(0) 

and covariance P (0),
=S
 

u(t) 	 is the n dimensional control vector,
u 

E(t) 	 is the n dimensional random disturbance vector assumed
 

to be Gaussian white noise (non autocorrelated in time)
 

with mean E(t) and positive semidefinite spectral density
 

matrix 0=E (t): 

E{ I(t)} = EW, 

E{[E(t) - 7(t)][E(s) - :(s)]T = 0 (t) 6(t-s), 

t,s E:[t ,' T] 

(6(t-s) is the dirac delta function); z(t) is also assumed 

uncorrelated with s(O), 

F(.,.) is the n dimensional time varying nonlinear function of 

the state, and 

L is the n x n constant control coefficient matrix. 

57
 



Associated with the system in Eq. (4.3.1) is the state observa

tion model expressed by the following vector equation:
 

z(t) = H'S(tk) ) + V(tk). (4.3.2) 

The output z(tk) includes measurements of actual reservoir elevations
 

(for the actual storage variables) as well as measurements of discharge
 

at gauged channel sections (for the observation of the conceptual
 

storages) taken at discrete time instants. (V(tk); k = 1, 2, ..., T-l} 

is a discrete Gaussian white random process with zero mean and posi

tive definite covariance matrix Rk, k = 1, 2, ..., T-1. It is 

assumed uncorrelated with s(0) and E(t) for all t. The observation
 

equation may exclusively refer to discharge measurements if it is
 

assumed that the actual reservoir elevation observations can specify
 

(through the elevation-volume relationships) the corresponding actual
 

storages with no significant error.
 

According to the discussion of the previous section, the 

objective of the reservoir operation problem is to identify the 

release trajectory (u*(t); t [t 0t 1} which minimizes 

c = E { g[s(t), u(t)] d (4.3.3) 

to 

subject to the following constraint:
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a. Eq. (4.3.1) of the system dynamics.
 

b. n(t) < (t) < u. (t) 

j -1, 2, ... , nu, t [tO'tT] 

I minmm(m 

C. p (s.(t) , t) ds t) < ,mi ) 

'4.3.4) 

s tP(s i(t),t) ds i(t) < Yi (t) 

i

where i = l, 2, ... , s, tt 0,tT I. 

d. Continuing operations after tT
 

Calling the problem above .l we note the following comments:
 

1. The expectation in (4.3.3) is with respect to all random 

variables; namely (s(t); tE[O0tT]} , (V(tk); k - 1, 2, ... , T-1}, s(O). 

2. The scalar function g(.,.) concerns the power objective as 

discussed in Section 4.2. 

3. Constraints b may reflect physical or operational considera

tions (e.g., low flow requirements, etc.).
 

4. The probability densities p(si(t),t) are, for all i, con

ditioned on ail available measurements and all previously applied
 

controls.
 

5. It may be argued that the reservoir operation problem should
 

seek to minimize
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E ff(a(t), u)d t} (4.3.5) 

where + - exhausts the system's lifetime. Although this suggestion
 

reflects a pragmatic concern, it could mathematically lead to an
 

1.ll-conditioned problem if the integral in (4.3.5) is not convergent.
 

O'or a discussion of infinite-horizon control problems, see Bertsekas,
 

1976, Chapter 6.) To avoid such pathologies, this work instead seeks
 

to optimize functional (4.3.31 but the finite control horizon [t0,t
 

and the constraintd are specified so that the. true optimal control
 

policy is identified.
 

6. The solution of the stated problem will be a policy realizing
 

a specific point on the objectives' tzadeoff surface. This is che
 

point corresponding to the specified reliability levels Ymax (t),
i 

smx:(), s t), 


Varying these levels over their range of interest, portions of the
 

tradeoff surface can be generated and the most desirable location can
 

be selected.
 

Y Ct) and respective thresholds Cd i =1, 2, ... , ns 

7. StillProblem P.1 is not meant to be formally complete; it is
 

rather meant to set the form of the optimization problem we are about
 

to tackle. Several important specifications, as for example, the
 

admissible form of the control policy, remain to be discussed. Such
 

supplements will be provided as more stochastic control theory
 

background is communicated.
 

Like most interesting real world problems, the solution of the
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reservoir operation problem will involve a digital computer. Con

sequently, we find it appropriate to convert the previous formulation 

to the discrete time representation and work with difference rather 

than differential equations. This conversion is also justified because 

in a real application solutions of the operation problem are desired 

in monthly, weekly, daily, etc., time intervals. 

Consider a deterministic, nominal control trajectory which is 

constant within each interval (tk, tk+l), k - 0, 1, ... , T-l: 

no~n
 
(unom(t) = u (tk), tE[tk, tk+l), k=0,1, ... , T-l}. (4.3.6) 

Set the random distrubance E(t) equal to its mean level E(t), and inte

grate Eq. (4.3.1) over (t0t I taking the expected value s(0) as initial
0'T
 

state condition. Then by construction the resulting nominal state
 

trajectory satisfies
 

d snom (t)

d t = F(snm(t),t) 
+ L un m(t) + 7(t). (4.3.7)

dt
 

Using a Taylor series expansion, we linearize Eq. (4.3.1), (4.3.2) 

around the nominal state and control trajectories to obtain the follow

ing linear system: 

d s(t)
dt 
 = F(snom(t),t) + FI sm(t),t)(s(t)-s
n(o)) 
+
 

L u(t) + E(t), (4.3.8)
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_z(s) = n (snom C )((t ) nomk ) + k) (S(tk) s (tk)) + y (t ) (4.3.9)-k 
k
 

where
 

nom FlSnom t),-)
 

Sn(4.3.10)
 

,_ as isnom (t),t=) 


asa
 

and similarly for H (sno(k)).
 

1- k
 

Define next 

s() s(t) -. nom().)6(0 0as~c)-S~t s () , 6s(o) -S(0)-s(o). 
nom
 

6S(t) _ u(t) 2 nom
 

L(t) - E(t) -E:(t), 

tr: It0, =T], 
 (4.3.11)
 

6 z ( k) - (fom(tk)) k =_(tk ) 

k = 1, 2, ... , T-1, 

and invoke Eq. (4.3.7) to get the following linear perturbation system
 

model in continuous time:
 

d6's (c:) 
nom
 

___ 

F, (s (t(, t) 6s(t) + L 6u(t) + _() (4.3.12) 

(s
Enm(k)) 6s(tk) +4 (4.3.13)
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Towards the discrete time formulation we need to solve the system of
 

differential equations in (4.3.12). The solution, which is
 

guaranteed to exist and is unique, consists of a homogeneous and a
 

forced part (Brockett, 1970, Chen, 1970, Kailath, 1980). The homo

geneous part solves
 

d s(T) 
(4.3.14)


d_ =F nom (T),T) ds(r).,
1 

and gives the state s(t) at time t as a function of the state at any 

other time tk via 

(t, tk) SS(tk). (4.3.15)6s(t) = 

4(.,.) is the state transition matrix which satisfies 

d 

dT =Of 
 (),T) p(ts) (4.3.16) 

with initial condition 

s = I. (4.3.17) 

Among the properties of the state transition matrix are that
 

6(t,s) is invertible for all t,s, (4.3.18) 

c(t,s)-I c (S,t),. and (4.3.19) 

b(t,s) = =(t,r) C=r,s) for any t,s,r ordering. (4.3.20) 
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The 	forced part of the solution solves
 

d F (snom(T),T1 6s(r) + L 	 6u(-) + (r) (4.3.21) 
_dCr =1 

with initial condition 6s(tk) = ,
 

and is given by (variation of constants formula)
 

ds(t) - (t,T) L u(T)dT + t(t,T) 9 (r)dr. (4.3.22) 

tk 

If the control 6u(T) is assumed constant over the interval (tk,t) and
 

equal to 6k, then Eq. (4.3.22) becomes
 

SS 	 = - J (tPT)dT L + 6(t,T) E(T) dT . (4.3.23) 
" tk tk
 

Combining Equations (4.3.23) and (4.3.15), the complete solution can
 

be obtained:
 

ds(t) = t(t,tk) 6s(tk) + t(t,T)dT L 54 + 
k -

Ptk 

+ 	 f (t,r) E(T) dT. (4.3.24) 

tk 

Repetitive use of (4.3.24) within the intervals (whereby the assump

tion (4.3.6) the controls are constant) results in the following discrete
 

time system:
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+BIlku++B(4.3.25) 
4k+1 -kk -k '-k +-k
 

k -=0, 1, ... s T-l,
 

where 

ak- s(tk), 

=k 1(tk+l' k)
 

B {f(t+,T)dT L, (4.3.26)
 

tk 

k+l 

'2k k+l$r (r r 

The integrals and derivatives involving random processes are defined
 

in the mean square sense (Jazwinski, 1970, Chapter 3). Apart from
 

this change in interpretation, however, the operations go through,
 

and the final results (mostly involving deterministic quantities
 

such as statistical moments) are meaningful in the ordinary sense
 

(e.g., Riemann integrals). With this clarification the statistics
 

of the discrete time random process are now derived:
 

E Q E- k lT) d-1} m (= E (T) 

itk
 

tk+ 
l
 

T(tk+l,T) E((T)} dt = 0. (4.3.27) 

=k
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The last equality holds because the expected value of j() = () 

is equal to the zero vector while the previous equation is true because 

e~xpectation and integration can be interchanged. 
t t Z+I 

E T E{[ I~ (t T)r (-r) 1 p), j(p)dp1 
E1( -Z} k+l' (zV ).
 

tk+T
 

'k+1 rtZ+I 

1(tk+lT) J E{(T) T (p)} (tZ+l p)T dp dT. 

.tk 
 tZ 

Substituting E(i() T p)} by 0(Z) (Z-p) and using the shifting proper-y
 

the dirac delta function, we finally obtain:
 

E_ T [2;t 1(4.3.28), 

j k (tk+l. ) 2E(T) Q(tk+lTITdT, 

if k=Z.
 

=k
 

Equations (4.3.28), (4.3.27) completely characterize the probability
 

density of the process ' which is Gaussian by definition (4.3.26).
 

-" results from a linear operation on Gaussian white noise. Similar :o
 

= = 
(4.3.28), one can show that E(__ 6s 0 } E( 0 for all k,Z.
 

On our way to the discrete time control problem, we now need Co
 

discretize the performance index (.4.3.3) and the constraints (4.3.4).
 

Integral (4.3.3) can be rewritten as follows:
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i'rtk+1
FT-1 

E. 0 gfsCt), u(t)] dt . (4.3.29) 

itk. . I. p 
Approximating the terms of the above summation by
 

t k+I 

g(s(t), u(t))dt = g(s(tk) , u(t ) ) 'k+ltk) , (4.3.30) 

k = 0, 1, ... , 

one obtains
 

=Jd E g(s(tk), u(tk)) (tk+l-tk) (4.3.31)
k=O .
 

Assuming that. the intervals [tktk+1] are of the same length for all k 

and substituting S(tk), u(tk) by 

nom 

u(tk) = (tk) + 5- (4.3.32) 
U(t k ) = unom(tk) + 

in (4.3.31), one can consider the following functional for minimization:
 

J = E Zk( k, (4.3.33) 

nom .,nOm
 

where by definition Zk (6, 6) g( +s (tk), au + (tk)). 

Regarding the constraints (4.3.4), we shall require their validity 

, ti, ... , For their representationat the discrete time instants to t T . 

the variables 6,k' Suk we need to know the probabilityin terms of 
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densities p(3s,,k) given p(s(t ), t k = 0, 1 ... , T-1. Since 
r 	 k' k' 

s(t) is the output of a linear system of Gaussian initial state and
 

input, we conclude (this can also be seen by (4.3.24)) that it too is
 
nlom
 

Gaussian for all times. It then follows froms = S(t) - sn ( 
s~nom) a 

that 5s is also Gaussian with mean vector 3(tk - _s (tk ) and 

covariance P (tk) equal to the one of s(tk) The thresholds =s 	 kk
 
max( ) min't k maxk rain . 

s, s, (tkt$, u (1 ui(tk) will respectively translate to
 

max max -- nom(t
 
Sik = si (t k ) - (k)
i 

Smin mrain . snom )
Sik = s (tkk i (t k)
 

i MI, 2, ..., n , k=O, 1, 2,..., T,
 

(4.3.34) 

*Umax . U.max i t - nom• 	 .. - u . .- u.... Ctk)'9
 

min = min u. (u tk) ,
Uk nom
 
sujk ui (t k) 
 u (
 

j 1, 2, ..., nu, k- 0, 1, 2, ... , T-1,
 

and 	for compatibility we define yik = max(tk), Yikn = .. *in(t), 

i = 1, 2, ..., n , k =0, 1, ..., T. 

In summary, the discrete time reservoir operation problem which 

we shall refer to as Problem P.2, is of the following form: 
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Froblem P.2: The Reservoir Operation Problem in Discrete Time
/ 
 \ 

T-1 

Minimize J 7 Zk (6kak) 

{6u IT-I o6 0 k-0 

subject to
 

a. 6s 6= + B 6
11C-k =k S- + k'
 

k = 0, 1, ... , T-1,
 

6 H (nom(\
 

-k ml[n- (tk)] k' + 
 k'
 

k= , 2, ..., T-1
 

6umax
b. 	dmin 
jk -ujk < jk 

j = 1, 2, ... , n , k = 0, 1, ... , T-1.
 

6 Min
 

iik
 
c. p(0 ik, )dSik_ ,k 

+ p(6S k) max
' kik	 dSik < Yik 

max
 
Sik 

i= 1, 2, ... , nS , k= 0, 1, .... T. 

d. Continuing operations after T.
 

Problem P.2 is not the exact equivalent of Problem P.1. This is
 

mainly due to the linearization of the continuous time dynamics intro

duced at (4.3.8). As a consequence the more s(t) deviates from s ),
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the less Problem P.2 is representative of P.1 with this effect becoming
 

more significant as the degree of ncnlinearity of F(s(t),t) increases.
 

The validity of the approximation is further jeopardized by the
 

presence of 
the random noise for, if intense, the roise originates
 

frequent departures of s(t) away from snom(t).
 

In order to mitigate this effect, one could consider using the
 

Describing Function (Gelb and Vender Velde, 1968), 
otherwise known as
 

Quasi- (Phaneuf, 1968) or Statistical (Gelb, 1973) linearization. In
 

hydrology this technique -- first introduced by Kitanidis and Bras,
 

1978, and also employed by Georgakakos, K. and Bras, 1980, 1982 


has been shown to possess distinct advantages over the Taylor Expansion
 

lineraization at the expense of heavier computer *effort. The advan

tages result from this method's explicit concern to minimize the
 

average approximation error. The high computational requirements are
 

a consequence of the additional probabilistic information utilized on
 

the variables involved. More specifically, the linear approximation
 

FFt,t) -O + l t)-sn(t)) (4.3.35) 

of the function F s(t),t is sought which
 

minimizes Je TIEfe e} 

-e l- (4.3.36) 

SF(s(t),t) - FL(s(t),t) 

The expectation is taken with respect to 
the probability density
 

of s(t). 
 This problem can be easily solved by directly differentiating
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3 with respect to the vector F and the matrixc F and setting the result

ing linear expressions equal to 
the zero element of the corresponding
 

dimension. Assuming that S(t) 
= sm(t), the optimal coefficients are
 

given by the following expressions:
 

F =E{F(s(t),)
-o
(4.3.37)
 

S (S(t),) (()_ nom())T} P(t)- I , 

where PS(t) is the covariance matrix of s(t). As can be seen from 

(4.3.35) and the first of the (4.3.37) relationships, the resulting
 

approximation is unbiased which is an important gain over the Taylor
 

Expansion approach. On the other hand, the evaluation of the expecta

tions in (4.3.37) could be cumbersome and may prohibit its use in a
 

real time application. Other properties of the Describing Function
 

linearization are that it preserves statistical relationships up to the
 

2nd moment between FCs(t),t) and s(t), and it can also be employed when
 

F(s(t),t) is nondifferenriable.
 

Apart from using the appropriate linearization type, the credibility
 

of Problem P.2 can also be enforced by restricting the range where the
 

controls are 
allowed to vary from their nominal path. On the average,
 

this will result in state trajectories in the neighborhood of the nom

inal one and will justify the use of the perturbation model.
 

This section has formulated the optimization problem associated
 

with the operation of a reservoir system. The formulation is based on
 

the system model developed in Chapter 3 and the representation of the
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system objectives discussed in Section 4.2. 
The resulting oDtimization
 

problem (with dynamics in difference or differential equation form and
 

time separable objective function and constraints) is of the optimal
 

control variety. Working toward a solution, we shall next review some
 

theoretical material developed for the 
treatment of similar problems.
 

72
 



4.4 A Review of ODtimal Control Theory
 

Optimal control problems frequently arise in the study of physical
 

and so:io-economic systems. Although they can be treated according
 

to ordinary nonlinear programming techniques, a solution process can
 

significantly benefitby exploiting their special structure. Depending
 

on the modeling approach, one can distinguish two types of optimal con

trol problems: deterministic and stochastic. Deterministic problems
 

are conceptually better behaved to solve. Stochastic formulations can
 

be conceptually subtle and, in many cases, computationally intractable.
 

Both types can be treated via the main optimal control solution
 

methodologies; namely, the Minimum Principle of Pontryagin (Pontryagin,
 

et al., 1962,- Athans and Falb, 1966, Kushner and Schweppe, 1964) and
 

Bellman's Dynamic Programming (Bellman, 1961, Bellman and Dreyfus, 1962,
 

Larson, 1968, Bertsekas, 1976, Larson and Casti, 1978). Yet the Minimum
 

Principle is more efficient in deterministic cases where Dynamic
 

Programming is more appropriate in stochastic problems. This assertion
 

is based (1) on the premise that the Minimum Principle is an open-loop
 

methodology while Dynamic Programming is a closed-loop or feedback one
 

(these terms will soon be defined), and (2) on the fact that in deter

ministic problems feedback and open-loop solutions are the same (with
 

the latter more easily obtainable) while in stochastic problems feed

back solutions are more desirable.
 

This is a review section intended to provide the unfamiliar
 

reader with an understanding of basic time-d main optimal control
 

theory background. Other design philosophies, such as frequency
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domain and root-locus techniques (Jomshidi, 1980), are also available
 

but less intuitive at least in the water resources literature. Since
 

our problem is stochastic where feedback solutions are preferable, this
 

work will focus on the Dynamic Programming approach.
 

Consider a nonlinear dynamical system evolving according to the
 

following deterministic difference equation:
 

f (S . u s0 known, (4. 4.1) 

k - 0, 1, ... , T-1,
 

where 4E Sk is the n dimensional state vector,
S 

4 Uk is the n dimensional control vector,
 

f S x U S

-k k k k+1 is the nS dimensional, real-valued state 

transition function, 

Sk' Uk are sets of real numbers where the state and the control 

vectors are constrained to lie at any time k. 

Additionally, consider a scalar, real-valued,performance measure gk 

Sk x Uk -)M (real numbers) assumed to represent the cost incurred at 

time k when the state takes a value 4 and the control u is applied. 

At the terminal finite time T, there will be a terminal cost T:ST ; 

associated with each terminal state of the process. 

The objective is to determine the control sequence ( o,_ul, 

UT_ ) which minimizes 

T-1 
(4.4.2)
J = gk(kuk) + gT(ST) 

k=0
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subject to 
the dynamical Equation (4.4.1) and the accompanying con

straints 
on the states and controls.
 

Such a formulation can be seen to result from Problem P.2 of
 

the previous section, if one replaces all random quantities with their
 

expected values. Although in reality there exist 
no deterministic sys

tems, 
one may be satisfied with this approximation either because
 

the underlying uncertainties are not as influential or simply because
 

the stochastic problem is very difficult to solve.
 

Two methods of solution are possible: According to the first,
 

one assumes a particular control sequence 
u u' "'., 

and propagates (4.4.1) forward to get the corresponding state 

trajectory (s ' I }1 and the associated performance index 
r T-1 jr T-1
 

value. Then, based on this well-defin,'d mapping .jr4
+k~ kkI,
 

one 
searches over all feasible control sequences to find the one in

curring the minimum cost. 
 This is the open-loop approach -- directly 

along the ordinary nonlinear programming principles where the 

properties of the state are not given much attention. The second
 

method relies on the definition of the state lk which at any time k
 

summarizes all currently available information. One then attempts to 

specify the optimal feedback or closed-loop control laws k 

S -0U, k = 0, 1, ... , T-1 which give the optimal controls as functions
k k 
of the states: = k = 0, l, ... , T-1. 

In a deterministic problem, the the
two approaches will result in 


application of the 
same control sequence as can be seen from the
 

following experiment: 
 Suppose the optimal feedback laws have been
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obtained. Starting frcm the initial state 
s the system -.. l) 

is run forward w-ith the feedback controls 
K
F= U (s

-k 
evaluated, 

applied, and recorded. At the end the record will contain the optimal
fOL OL OL1 

open-loop sequence .
'uo )HI ) .. ,9_UOLl If this was not true,
 

at 
some time j the feedback procedure failed to generate the correspond-


OL F F
ing open-loop element (u. # W(s.)), and the law 'a,(-) could not 

have been optimal. (The argument assumes all the feedback and open 

loop controls prior to time j coincided and that there is a unique 

control sequence achieving the minimum cost.) Instrumental in the above 

equivalence is the fact that the control input is the only influence
 

affecting the state trajectory. In the stochastic case this is no
 

longer true due to the presence of the random inputs which act in
 

addition to the controls and invalidate their unique correspondence
 

with the states.
 

In principle,the optimal feedback laws can be obtained via the
 

following Dynamic Programming algorithm: 

Algorithm A4.4.1: Optimal Feedback Controller for Deterministic Systems.
 

a. Initialize: J (ST) = T(sT). 

b. Recurse: For k = T-1, T-2, ..., 0, select
 

L(ik) = arg P(sk)mn EM k (!!k 'k(.k)) + Jk+l(41Pk(sk Jminl 

where M is the set of functions satisfying = E Uk( Lk) 
' 

and evaluate
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) 	 + .s )(s.k(-S- =gk(Sk , (s. J- -k -is' -=k' 

c. 	Terminate: If J0(Sl) J exists1 , then it is the globally
 

minimal cost and
 

,* (') "' --- I ( ) is the minimizing policy. 

Crucial in the derivation of A.lgorithm A4.4.1 is chat the costs
 

are 	additively separable in time and that each control u. does not
 

affect the costs g.(,) for j < k. 

Apart from its impressive generality (no restrictive assumptions
 

on the functions' or sets' type were made), in the majority of interest

ing cases, the above algorithm cannot be implemented due to excessive 

high-speed memory requirements mainly associated with the backward 

propagation of the "cost to go" Jk(Q1 ) in Step b. This quantity, 

except for very few special cases, will have to be recursed in a dis

cretizeJ manner - each value corresponding to every quantized sk-S k
 

When the dimensionality of the state is higher than 4 or 5, a r,'.!ason

able quantization saturates tHe capacity of the existing cor-iuters.
 

(This is what is known as the "curse of dimensionality".) 

In order to remedy this situation many efficient techniques have 

been developed (Larson, 1968 , Jacobson and Marne, 1970, Heidari, et 

al., 1971, Yakowitz, 1982, Turgeon, 1982, etc.). The underlying idea
 

has been to start from some initial nominal control trajectory and
 

This specification referes to due cases where J0 (so) becomes increasingly
 
negative for certain mntrol sequences but this is not likely to occur
 
in real world problems.
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iteratively move from local considerations to trajectories which reduce
 

the objective function's value. If the problem does not have a special
 

structure, the identified trajectory is only locally optimal, but
 

the procedure can be reinitiated from a different initial trajectory
 

to reveal other local optima and eventually detect the global one.
 

Unfortunately, deterministic modeling is not an adequate
 

approximation for the majority of real systems. Uncertainty - be
 

it natural or an artifact of our inadequate state of knowledge 

is alsmot always present impeding our means for effective systems'
 

control. We, therefore, turn now to stochastic formulations.
 

Consider the following modification of the 3ystem equation:
 

=. (.Skown, _kl (4.4.3)
-k+17l k-~. uk 

k - 0, 1, ... , T-1 

where , , as in the previous formulation, 

wk E Wk is the n dimensional random disturbance vector, 

: Sk x Uk x Wk - Sk+l is the n dimensional, real-valued 

state transition function, 

Wk is the set from which the random disturbance takes on valxes 

at time k. 

Also consider a cost g (s , U, Wk) incurred at time k when the 

system is at state ik' the control uk is applied, and the disturbance 

Hk occurs. (gk: Sk X Uk x Wk - M). 

Concerning the modeling of the disturbance, one usually follows
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T-1 

the Bayesian philosophy postulating some probabilistic model. Other
 

descriptions are possible (e.g., the Set Theoretic approach, Schweppe,
 

1973, Usoro and Schweppe, 1980),5ut as yet they are not developed
 

for general control processes. It will then be assumed that probabil

ity densities are given for the w's, k=O, 1, ..., T-1 (e.g. obtained

-k' 

by fitting available data), and furthermore (1) each disturbance w, 

is independent of all previous disturbances, and (2) the p.d.f. of 

any H is conditioned only on the contemporary state and control 

values. 

='k ""- 0 k-l' w"/) = p( s u_)HO 

(4.4.4)
 

A special case of the above is when the p.d.f. of Hk cannot be influenced
 

by s, or u as, for example, in Problem P.2. If the disturbances
 

are not independent over time, the problem can Still be reformulated
 

in the above iormat by state augmentation (Bertsekas, 1976, Chapter 2).
 

The uncertainty introduced by the random disturbances creates
 

two distinguishing differences over the deterministic'formulation:
 

The state of the system is now a random process and the. cost functional
 

Z ( ' k + gT(sT)} is a random variable. Since minimiza-
k=O 

tion of a random variable is meaningless, one usually specifies an 

operation which maps the space of random variables to the real numbers 

and continues with the -minimizationat a deterministic quantity. One 

such intuitively satisfying map is che expected value operation but 

other choices are also possible (Sain, 1969). Assume then that the 
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control objective is to
 

.minimize-. . ..... E . ,,k) + gr(AT (4.4.5) 

k=O,l,...,T-l k=O,l,...,T-i
 

Still, the control problem is not totally defined. There are two
 

ways that the minimization (4.4.5) can be performed: First we could
 
T-I
 

attempt to specify the entire control sequence u_ }k= 0 independently
 

o6 the system's evolution, or alternatively we could assume that at
 

any time k the controller (or decision maker) will apply the control
 

Li after the state s has become known. The difference in these two
-k 

choices is that the second assumes future information gathering and
 

takes advantage of the fact by determining optimal feedback laws
 
, T-1
 
_. ,while the first ignores this possiblity and determines
 

controls which will be applied independently of the state values.
 

As the optimal open-loop sequence is a subset of the optimal feedback
 

solutions (where the only allowable _ functions are the constant
 

ones), it follows that utilizing information gathered during the
 

process's evolution can only improve the system!s performance. The
 

purpose then of using feedback in stochastic problems is to reduce
 

the adverse influences of the uncertain inputs.
 

The solution to the stcchastic control problem with perfect
 

state measurements can be obtained via Dynamic Programming by the
 

following backward recursive algorithm:
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.Ugorithm A.4.4.2: 	 Optimal Controller for Uncertain Systems with
 

Perfect State Information
 

a. Initialize: JT(IT) = gT(ST). 

=
b. Recurse: 
 For k T-1, T-2, ..., 0, select
 

Z( i) ag (s 	 l k -=(k,k K), Jk+l(S-k+l)I,(S 
ra i r 	 ) W) + J/( L 

where M is the set 	of functions satisfying = k((s ) E Uk' 

and evaluate
 

kk(S = E k , -Sk!k(-k) 'k) + Jk+lL k, (1k),_1 1 

c. Terminate: If 	J0 S ') = J exists, then it is the global minimum
 

and
 

7 = . . T-1()} is the minimizing policy. 

Figure 4.4.1 schematically presents the sequence of events
 

taking place in an actual system evolution and the feedback nature
 

of the optimal controller.
 

Like the 
one before it, this D.P. algorithm is not practically
 

useful for most real world problems (due to the "curse" of dimension

ality). Nevertheless, there exists a particular class of problems 
-

the class 
of linear systems and quadratic performance indices presented
 

later in this section  where the above procedure leads to analytical
 

solutions of significant practical value.
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Referring back to Problem P.2, we note the following differ

ence over the stochastic formulation previously treated. Namely,
 

its state at each time k is not perfectly known; some other
 

quantity functionally related to the state can imperfectly be
 

measured instead. This difference is a very important one because,
 

after all, it was the properties of the state that made feedback
 

solutions possible. These problems with imperfect state information
 

(or inexactly known state) are subjects of the forthcoming discussion.
 

The system dynamical Equation (4.4.3) previously given is
 

also valid in thi3 case with the exception of the initial state s0
 

being a random variable. s is assumed to have an a priori p.d.f
 

p(s and to be independent from yk for all k. In addition to
 

that formulation, however, the state here is assumed observable only
 

through the measurements Ek
 

)h-( ' Uk-l ,k , (4.4.6) 

k = 1, 2, ..., T-1, 

where z is the nz dimensional measurement (or observations) vector,
 

v is the n dimensional random error (noise) the p.d.f. of
 

which is assumed to satisfy
 

P(Zk''""k$.s 0 1uk-l' '' 0'u-l' 'H0' -l'' '0 = 

= p(k/SIL ), (4.4.7) 

S x Uk-i x Vk Zk is the real-valued measurement function,
 

Vk, Zk are the error and measurement sets.
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(The case of Problem P.2, where p(yk/s , u = p(v., is again a 

special case of the one postulated above.
 

As before, the control objective is to
 

/ 	
T 

rT-1. 
minimize -= E gk(s LL + gT(ET{u }Z O0k (4.4.8) 

( )T-1 (k=T
k.kO 
 T-1
 

k=l
 

T-1
 

with the expectation here additionally taken over the uncertainty intro

duced by the observations errors.
 

Feedback control laws are again desired, the idea of feedback
 

being to util'ze all available information in the control process.
 

In the case of exactly known state, the feedback was on the state
 

because this was all the controller needed to make the best possible
 

decision. Since in this formulation the.state is not accessible, the
 

best the controller can do is to base its decisions on all pieces
 

of information gathered so far:
 

I 	 = ,z . . ,u ,u }, or 

k Ik_ 1 U(.ki,; k=l,2,. T-l, (4.4.9) 

S{0}.
 

In 	that sense the information vector I can be viewed as another
k 

system's state. 
In fact, it can be shown that there is an equivalent 

to the pre%4ious problem with exactly known state I k (Tenney, 1982) 
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and feedback controls laws (k). HFlowever, although I theoreticall!
 

qualifies for a system's state, in practice it is not so appealing
 

because of its expanding nature.
 

In search of an alternative, recall that the vector I was conk 

sidered in the first place because it contained all information of
 

possible use to the controller. If there was a way to process this
 

information in a more usable but adequate form for control
 

purposes, the difficulty could be alleviated. This idea leads to the
 

notion of sufficient statistics (Striebel 1973) one of which is the
 

conditional density p(4/Ik). We shall next present a reformulation
 

of the present problem into one with an exactly known state equal to the con

ditional probability density p(s /I) , thesolution of which can be
-k k 

obtained by.an algor.thm similar to A4.4.2.
 

First, we must construct the dynamics of the new state p(Ak/l ). 

This will be accomplished in two steps: the propagation step and the 

update step schematically illustrated in Figure 4.4.2. 

a. Propagation Step.
 

The problem is as follows:
 

Given p(ak/k) from the previous update step,
 

!k+1 11 k k w::-,
 

k'
 

find p(kl' '-) 

)Notice first that fiom jk+l= f(sk'' and p(Hk/ik,k) one can 

obtain the density :(s +l/S,) employing, for example, the method 
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of events (Sandell and Shapiro, 1976). Next, there holds
 

p(s /I ) J-- p (9~-k+l '-k/i k '-kP(k+i/ k' _=P ~U.) k )d lk
 

-k 

(s I ,,k) p (s/k,_.)ds,. (4.4.10) 

The notation implies integration over the range of k's variation and
 

the equalities are true because for any two jointly distributed random
 

vectors x, t
there holds 

p(x) = j 
! 

p(x,y)dv = J p(x/y) p(v)dv. (4.4.11) 

However, by-the Markov state property, Ik does not add any information
 

if ak is known and therefore
 

p (sk+ /zsk I k' (-k+i / , ). (4.4.12) 

Also, since Ik does not depend on
 

p= p(.k/"k). (4.4.13) 

Using (4.4.13) and (4.4.12) in (4.4.10) we obtain the following equation
 

known as the Chapman-Kolmagorov equation (Jazwinski, 1970):
 

= p(+l/ p(/Ik)dk (4.4.14){ 
-k
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b. Update Step
 

The problem is to evaluate the density p(.sl/Ik+l) given
 

p(=+i/Ik, k) from the propagation step,
 

z b (s .'
-k+1l - m~ -k-:kl
 
.
• P(k+l -k+l' 1 -

Employing again the method of events, we can derive p(zkis )
,
 

) =
AC+1= k+1(='+l' '-kZk+1 :k+l/=k+l' -)=knusnfrom = and pv Is u) Then using 

the Bayes rule we get: 

p.(s I' )k+l k+1 =(k+.I~k+l,-Ek+l uk)
 

.- 1'=k+l"k'uk) p(+."+l ,)
(z (s./-ak 

-k+l .k+l'-%) P(s- Ik' (4.4.15)
 

P (-k+l Ik' k
 

f
However, p( k , ) = k+ /ik,k)ds,+1 = 

-Sk1 

I ' u p
= s Pk+('l/Sk+1 k+i/!k' ) dSk! 

(4.4.16)
 

Substituting (4.4.16) in (4.4.15) we have an expression of the
 

density p(sI /: ,l) as a functicn of the propagation output 

p( i/Ik,! k) and the observation 
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Thus, the dynamics of p(sj ) can be symbolically represented
 

by
 

p(~/Ik Update [Propagate [ (s /Ik),u ,, (4.4.17) 

k - 0, 1, ... , T-1.
 
p(s IT) p(s),
 

where the update [-,.I and Propagate [.,.1 operators were previously 

defined. Notice that Equation (4.4.17) represents the dynamics of an
 

exactly known state with the role of the system's disturbance assigned
 

to -k"
 

Furthermore, the cost functional (4.4.8) can be reexpressed
 

(Tennev, 1932) in the following form:
 

jE k /I)t)+ 'T(P(./IT)}, (4.4.18) 

T-1
 

where (p 9k u,/~K u~ (/~~~ 

Lastly, and in principle only, the optimal feedback controller
 

can be recursively obtained by the following algorit=hm (see Figure
 

4.4.3 for an illustration of the system dynamics and the structure of
 

the optimal controller):
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Algorithm A4.4.3: Optimal Controller for Uncertain Systems with
 

Imperfect State Information 

a. 	 Initialize: JTp(s /I] g T(Ps/I
 
1 T)
a. 	 T -T T T /;-T 

b. 	Recurse: 
For 	k = T-1, T-2, ,,,, 0, select 

k = 	 ik(~k1id'P (P (i/k 

+ {klP--l/kl 

where M is the set of functions satisfying u = .kfp( /I) Uk'E 

and 	evaluate
 

[p(s /Ik) (s 	 P(/((/Ik, 

+ 	 +i {Jk+l tUpdate f[rpagate[p (s /Ik) , 	 ( /k+] 

c. 	Terminate: If J0[p(S/Id] = J 0 [p(sO9] = J exists, then it is 

the global minimum and 

= {P0 (') "' T- ) is the minimizing policy. 

This solution can be seen to obey the Nonlinear Separation
 

Theorem which states that the structure of the optimal controller
 

consists of (1) a Bayesian estimator followed by (2) a memoryless
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controllaw using p(sk/Ik). 

In the general case both the estimator and the controller will
 

have to be implemented by some numerical discretizing scheme raising
 

severe limitations on the practicability of Algorithm A4.4.3.
 

Notable exceptions where analytical solutions exist is the class
 

of problems involving linear dynamics, gaussian uncertainties, and quad

ratic performance indices. These problems, largely unknown in the
 

water resources area, will now be briefly examined as they can provide
 

a useful framework in the study of systems. Athans and Falb, 1966,
 

Kushner, 1971, Bertsekas, 1976, Sage and White, 1978, have written
 

texts including extensive LQG theory treatment. Furthermore, in
 

the prolific journal literature the papers by Athans, 1971, Meier
 

et al., 1971, Tse, 1971, provide instructive related prese :ations.
 

In the LQG control problems the state difference equation is of
 

the following form:
 

Sj l k + Bk- + 4 (4.4.19) 

k = 0, 1, ... , T-1 

where A=k, k are real ns . n a, nS x nu matrices respectively. The 

state at the initial cime and the random disturbances at all times 

are assumed gaussian with first and second order moments given by 

E{s0 1= So
 
- 0 -;1 
 (4.4.20) 

E{(s -s )(s -T = Pso' 
*-090 
 J 
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}- 0
 

E{w_T (4.4.21) 

E r( -) = 0 for all k. (4.4.22) 

Additionally, Ek is assumed independent of ak and 4:
 

p,/_Sk-k) " p( k). (4.4.23) 

The system is observable through the vector ak which is related to
 

the state via
 

lk =HH -2 + Yk' (4.4.24) 

k 11, 2, .... , T-l. 

The random noise 4 is Gaussian for all k and it is characterized by 

)P(1/- ''k-- P(-)' 

E(yk} = 0,
 

1,
T [0, if k 

E{.kZV} (_Rvk' if k=Z, 
 (4.4.25)
 

=E{__ 0 for all k,Z,
-{T
 

E.s0-s )v = 0 for all k.
 

The state, control, and aisturbance sets are the full real spaces
 

of the respective dimension; namely the problem is unconstrained.
 

The objective is to construct the optimal feedback policy which
 

minimizes
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ST-1
 

Z 
j) 
(SIS-k+ U- Nk-k 

+s T N 
-TT 

sI 
-ETr 

, (4.4.26) 

T-1 

k= 0 

T-1
 

k=,. 

where N kO, 1, ...

=s's

, T are positive, semidefinite real n matrices
x n 
s 
and N=uk, k-O, 1, ..., T-L are positive, definite1 real n x n matrices.
 

To facilitate the presentation of the solution we make the foll-,w

ing definitions:
 

_2k/k-1 . -:,- k-l,'-_l} 

(4.4..27) 

Rsk/k E{(k-k/k) ( lk2k) /-kl 

where 
k is the information set defined in (4.4.9) and the expectations
 

are 
taken with respect to the appropriate conditional densities.
 

If employed for the above system, the Bayesian Estimation scheme 

(Eq.(4.4.14), (4.4.15)) yields proz-bability densities P(S /Ik_!,_Uk-l) 

p(s /) which are Gaussian at 
all times k with mean vectors !/k ' 

Sk/k and covariance matrices 2 k/kl' 2s/k" These conditional
 

statistics are provided by the following equations which constitute
 

A symmetric matrix A is positive (semi)definite if -cTx is greater (or
A-x 
equal to) zero for all x # 0. These assumptions guarantee uniqueness of 
the optimal solution. 
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the well-known Kalman Filter:
 

Initialization:
 

Solo -' Io
 
(4.4.28)
 

1sO/O =LO
 

Propagation step: For k = 0, 1, 

-kl/k "Ak~k/k + Bk '
 

Rsk+i/k A=k Psk/k -k= wk
~s~/ ~~kkT ~wJ(4.4.29)
 

Update step: For k-0,1,
 

-k+l/k+l -k+i/k + gk+lE[k+l- -k+l Sk+l/k],
 

T T
Hk+, + R ~~k+ll$(..0
1+ "Vsk+I/k 'k+i[k+l Psk+j/k k+i + Rv 

isk+l/k+l = k+l4+11 Psk+l/k. 

It is notable that the observations and th controls do not enter in
 

the covariance computations which, therefore, can be performed before
 

the process takes its actual course (off-line). This is an important
 

property providing precomputable estimates of the procedure's accuracy.
 

Combining (4.4.30) with (4.4.29) we can reformulate the problem
 

into one with the exactly known state sk/k:
 

-k+l/k+l = A= Sk/k + = + wk'4.4.31)
 

k 0, 1, ...,jT-l 9
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where s is given and
-0
 

" 
- "'i+1[i+l (z+l-k+i/k (4.4.32)
 

The quantities - H +iSk+i/k, k=O, 1, ... are known as
 

filter residuals (or as innovations sequence) and they are Gaussian
 

with zero mean and covariance
 

fo,ifk 2 

E Hr~kIr+I (4.4.33)T 


-k+l sk+l/k k+l =vk+l 

It follows from (4.4.32) that W-k k=0, 1, ... , T-l, are also Gaussian 

with
 

E{w 0, 
.. ~.. .. .. 

oif k
 

E~ £  (4.4.34) 

n C T ~+ R ~ ik2k=Zk+l[=k+l Psk+l/k T+1 =vk+l =k+ if 

The reformulation of the cost function can proceed according to
 

the general procedure given by Equation (4.4.18). Using
 

E{s Ns Ii} = S N s + tr{N Ps } (4.4.35)-ksk -k k -k 1sk0k + sk Esk/k'
 

we find that the objective is to derive the feedback laws which minimize
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ST-1TT 

J E sk/k:sk -k/k + T u -/{k
-k

k0,1, . . .,T-l 

+ k=0fTsk/k -sk j (4.4.36) 

As mentioned earlier, the covariance computations are independent of ob

servations and controls and 
so the last term. in (4.4.36) is a pre

computable constant.
 

The solution of the reformulated problem can be obtained by
 

directly applying Algorithm A4.4.2; it takes the following analytical
 

form:
 

Algorthm A4.4.4: Optimal Controller for LQG Systems with Imperfrect
 

State Informaation.
 

The optimal feedback control laws are given by
 

k(p( / )) - Lk-- 4/k' (4.4.37) 

k=0,l,...,T-l,
 

where control gain n x n matrices L. are obtained from 

lk = I'uk + BkTk k+l 1 k +l A' (4.4.38)
 

k=O,l,... ,T-l
 

and the n x n matrices Kk are 
the positive semidefinite solution
 

of the following matrix Riccati equation:
 

97
 



Ilk N-1(4.4.39) k 

T
 
4k .k+l1 .k + U 

k - T-1,T=2,...,0. 

'I
The optimal "costs to go are recu.sively given by:
 

jk[p(./k)] - _Tk/k -k -k/k --ck' 
 (4.4.40)
 

k-T,T-1,... ,0
 

where scalars ck are such that 

c,-tr(N
 
T = {sT =st/t
 

k MCIl + tr{.Kk+l k + Nsk -sk/k} 
(4.4.41)
 

k T-1,T-2,...,0. 

Latly, the minimum total expected cost is
 

S o=P -0 o- + co (4.4.42) 

j=k,. ., r-i
. F s +. 

T lT
 
+ gT 
 ,z+:I Z(tr N}
 
-T/T sT -T/ j=k sj/jj 
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The computational requirements of this solution are mainly 

associated with the calculation of the matrices K through Equation 

can be seen that only the matrices at two consecutive(4.4.39). tt 


times are nes ed for the recursions. This and the fact that
 

1, ..., T, are symetric guarantee high computational effi-
Kk, k0, 


ciency.
 

The solution is governed by the Separation Theorem where the
 

estimates sk/k are obtained by a Bayesian Estimator (Kalman Filter),
 

and the control laws are linear functions of sk/k' k-0, 1, ..., T-1.
 

The coefficient matrices Lk are independent of all random quatitites'
 

statistics.
 

If one assumes perfect state informazion (i.e., if it is possible
 

to completely specify 2k from Eq. (4.4.24)Ythen the feedback laws
 

minimizing
 

( s k + s T (4. 4. 43)wk ~~ ' = -;- ukI" ) N~tTT T 

k-0,!.,... ,T-l 

are still given by Eq. (4.4.37), (4.4.8), (4.4.39). (Sk/k in
 

Eq. (4.4.37) should now be replaced by Rk.) The optimal costs to go
 

in this case take the form
 

(..4
(fs T 

kJ(Sk)k s k sk + ck (4.4.44) 

k=T, 1-1, ... , 0,
 

where the scalars ck are obtained recursively from
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T -' (4.4.45) 

Ck" ck+l + tr k+l } 

k - T-l, T-2, ;.., 0 

The minimum total expected cost is now 

* (S) s 0 K c (4.4.46) 

Additionally, if the disturbances in Eq. (4.4.19) are replaced
 

by their expected values (0 in our formulatior) and the feedback laws
 

are sought which minimize the deterministic function
 

T-1IT T T
 
- k10 5k Nsk !k + k ukk + -2Nsr2(4.4.47)
 

then the solution is again provided by Eq. (4.4.37), (4.4.38), (4.4.39) 

with .2 replacing Sk/k. The optima- costs to go are now given by 

J(-s s K s (4.4.47) 
k=k k ~k -'
 

k-T, T-1, ... , 0,
 

and the total minimum cost is
 
TJ* = (4.4.48) 

= (S , 10 E0 !-

In summary, a control problem with imperfect state information
 

takes on the same solution as the corresponding problem with perfect
 

state information and the determin stic problem resulting when all
 

random quantities are replaced by their expected values. When these
 

are true, we say that the problem possesses the Certainty Equivalence
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(C.E.) property. Thus, the C.E. property, if valid, reduces the stoch

astic control problem into an easier deterministic one. However,
 

one must note that the more the characteristics of a certain problem
 

diverge from LQG, the less likely it is that the C.E. property will
 

hold.
 

The advantageous form of the solution is lost if any of the prob

lem specifications change. For example, if the system is linear, the
 

disturbances are Gaussian, but the costs are nonquadratic, *and the
 

Kalman Filter is still the optimal estimator; however, the control laws 

will in general be nonlinear functions of both s and P For-k/k =sk/k'
 

nonlinear s7stems, the conditional p.d.f. of the state p(s /Ik) is no
 

longer Gauss4an (even if all disturbances are so), and the optimal
 

estimator (4.4.17) cannot be simplified. In these problems the control
 

laws are nonlinear functions of the so-called infinite dimensional
 

p( k/Ik). Hence, a significant advantage of linear systems is that
 

the first two conditional moments are sufficient statistics for the
 

control purposes, whereas an infinity of mcments are needed when non

linear systems are controlled.
 

Figure 4.4.4 schematically shows the structure of the LQG
 

controller.
 

Unfortunately, many interesting actual problems do not possess
 

LQG characteristics. For instance, the reservoir operation problem
 

of the previous section is both nonquadratic and constrained (non

linear). For such problems the optimal feedback laws are practically
 

inaccessirFle and consequently certain suboptimal techniques are of
 

101
 



LQ CONT'ROLLER
 

KALMAN FILTER 11 

_wk ks _.
SYSTEM 

FIGURE 4.4.4: LQG IMPLEMENTATION 

102
 



great practical interest. The Open Loop FeedbacL Control procedure
 

is 	 one such technique which can be employed to approximate the 

optimal controller.
 

Algorithm A4.4.5: Open Loop Feedback Controller 

At any time k of the control horizon, the OLF Controller 

performs Lhe following operations: 

a. 	 Estimates the conditional density p(/ using the in

}
formation set Ik={Zl , ..., 11,9 OP .... Si
 

b. 	Assumes that no measurements will be made in the future. 

c. 	Finds the open-loop trajectory -k, uk+l s T-1OLFC 

which minimizes 

J E ('T- g ( uk,, gT(S)/Ikg 

9-= 	 k, . .. ,T-l 

d. 	 Applies _OLFC OLFC 

.-k k --4 

e. 	Redefines the information set at time k+1
 

I 	I U (OLFC
 
kkk+1 ' k+l} 

and 	repeats the previous steps.
 

The above is an open-loop procedure because at each decision
 

time the entire future control trajectory is determined assuming no
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information gathering. It is also a feedback procedure because
 

the applied controls OL'C are functions of all currently available

-k
 

information. The advantage of the OLFC idea is that the computations

OLFC
 

required to obtain u are considerably simpler than those of the
 

true optimal controls. This holds because the assumption of no future
 

measurements at Step b allows one to use the deterministic Equation
 

4.4.14) rather than the stochastic (4.4.17) to represent the dynamics
 

of the state's p.d.f. (Remember that the future measurements are
 

random variables.) As a result, if the reformulation to perfect
 

state information is employed, the reduced problem is essentially
 

deterministic (in the p.d.f.'s space) and, hence, easier to solve.
 

The OLFC procedure is suboptimal because in the specification of the
 

feedback OLFC controls, it is not taken into account that measurement
 

information will be gathered in the future and used.
 

Other suboptimal control techniques are the Open Loop Controller
 

and the Naive Feedback or Certainty Equivalence Controller. The
 

first is based on the assumption of no information gathering and has
 

been discussed previously. The second arbitrarily assumes that the
 

problem possesses the Certainty Equivalence property, solves the
 

associated deterministic problem, and applies the resulting feedback
 

laws on the stochastic system. In the general case, both have been
 

found to be less reliable as compared to the OLFC procedure
 

(Bertsekas, 1976).
 

After this section's introduction to optimal ar's suboptimal
 

stochastic control theory, we net begin to design a suitable con

troller for the reservoir operation problem. The coztroller will be
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of the Open Loop Feedback type and will be completed in three main steps.
 

In the first, a procedure capable of efficiently solving the unconstrainted
 

nonquadratic control problem will be developed; in the second and third,
 

the basic procedure will be modified to account respectively for possible
 

control or state constraLnt violations. Care is taken to maintain co

herency in the presentation and for this reason lengthy mathematical
 

derivations and background material are relegated to the appendices.
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4.5 Solving the Unconstrained Reservoir Operation Problem
 

Neglecting all control and state constraints, the unconstrained
 

reservoir operation problem can be stated as follows (cf. Problem P.2
 

in Section 4.3):
 

Problem P.3: The Unconstrained Reservoir Ope'cation Problem
 

Minimize J E T-1'
 
(4.5.1)T-1 S O 1k + Z 

6jk=O 

}T-1
{Y-k k=l 

subject to
 

+6s 6s B (4.5.2) 

k=0, 1, ... , T-1 

z=H (snom.((.53
 

--k =1-- (t) ) 6-4.5.3)k 

k=l, 2, ... , T-1. 

The term ZT(62T) which is added to tie cost functional will be 

used later on to model the continuing operations requirement of the 

system. The various quantitites in Eq. (4.5.1), (4.5.2), (4.5.3) have 

been defined in Section 4.3. 

This section will be concerned with developing a computationally
 

efficient procedure to solve Problem P.3. According to the termin

ology established in the control theory review, Problem P.3 is one of
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imperfect state information. It involves linear state dynamic and
 

observation equations, Gaussian statistics, and a nonquadratic per

formance index. Due to the nature of the performance index, optimal
 

feedback solutions cannot be obtained in analytical form. As compu

tational efficiency for large systems is a major concern, we shall
 

proceed by adopting the Open Loop Feedback control philosophy.
 

4.5.1 Open Loop Feedback Control
 

The OLF controller solves Problem P.3 in the manner presented
 

by Algorithm A4.4.5; in place of the imperfect state information problem
 

it solves a sequence of open loop control problems of the following
 

type:
 

(4.5.4)
Minimize E Z (as uz) +Z (2S)/Il
k
 

{a IT-1 6- Z=k Z--IT 

Z Z.k }T-1
 

subject to
 

= 6SEZ + B, 6.a + Z (4.5.5) 

Z=k T-1.
 

The probabiality der!;ity of the state at time k has been estimated
 

by using all available information summarized the Ik=
 

" '4-i It is Gaussian with
 

E(6/I k}= 0 
(4.5.6)
 

E{6Ss T/IJ
=k =k/sk/k.
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The random disturbances L., = k, ..., T-1 are also Gaussian
 

independent of % 
 and have zero mean and covariance
 

, = 19 U ,if kim J 
has been defined by Equation (4.3.28). The terminal time T will
 

be properly determined later. 
 For now it will be assumed as given at
 

each decision time k.
 

Equivalently, we can transform the above problem by following
 

the reformulation procedure presented in Section 4.4. 
 The advantage
 

is that under the assumption of no future measurement; the transformed
 

problem is deterministic in the space of the state's p.d.f.
 

The dynamics of the transformed problem obey Eq. (4.4.14).
 

Because the system is linear and the uncertainties Gaussian, it can be
 

shown that p(6s/Ik) will also be Gaussian with mean vector and covariance
 

matrix given by
 

BZ 6 .,6s 0,6s -fi = (4.5.8) 

Z - k, ... , T-l, 

PT +C4.5.9)
 
=
=sk+l/k Z s/k Z + EZ ' sk/k given,
 

Z = k, ..., T-1.
 

(Compare also with Equation (4.4.29).)
 

It is easy to see how these eqtuations can be derived. Take, for
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instance Z-k. Then by the dynamics
 

as 6b ds + (4..1u 

and the Gaussianness of 6s, ,-k' we conclude (Jazwinski, 1970, Section
 

2.6) that 6S-k+sis also Gaussian. Taking expectations in (4.5.10) we
 

find:
 

-Sk+iik E{dk+I/k} - E % sk + k S/S}c + = 

kkdl//k l;--k +E{V/I + 
+=E{klk}+ B u,. E {/_k/} 

gk -k/k + -Uk, (4.5.11) 

where apart from the linearity of expectations we used the fact that 

61 is deterministic and that E is zero mean and independent of I 

Similarly by definition 

=Psk+i/k t{(6k+1 - 6-k+l/k ) (-k+l - 6Sk+1/k) T/Ik 

Using (4.5.10) and (4.5.11) and performing the indicated multiplica

tions we obtain:
 

Psk+i/k = E k(64 - 6 kT-) T +TT 


Ek(4- 6-ak/k~ +k=k(5 - k/ I + 

T+ 
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Since - and Ss are independent random vectors, the second and
k =
 

third term above vanish and we have
 

P bE'f6 s )(s
- -
=s k+1/k = kk 5 )T/) /1 k } T+-k/k (-k -k/k + 

+ E = 

T
 

-k Psk/k =k + C4.5.12)
C2k" 


The operations and assumptions employed in the derivation of Equations
 

(4.5.11) and (4.5.12) are valid for any time Z and thus Equations
 

(4.5.8) and (4.5.9) can be derived by induction.
 

Consider now the reformulation of the cost functional:
 

SOL C F.. k..()mZk+1 ++ I 0p6I* 

~Z Z-k
 

+ £T( ST)}, 

where it is understood that the p.d.f. of 64 is conditioned on Ik '
 

Since i enters in the cost functional through the state 3asZ+l and does
 

not affect the cost terms at previous times, we can write:
 

J E {Z(6s 5 
OLFC 6s k( , + E (2, (s , ~)+ .. +Lk k+1( k+lSuk+l 

6+ E (T(s uT_I,6UT_I) + E ZT ( sT)}} } (4.5.13)(.. 


2T -- -i
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or equivalently
 

- E {Zk( A,6 )} + E. ( +, u)} + ... + 
OLFC 14 k s l-*k+ 1 kl 


+SE Z + E {Z (T(sT (4.5.14) 

S-4r-Tl -u(s 1 )} T -;--T) 

The expectations in (4.5.13) are taken with respect to the Gaussian
 

densities whose statistics are obtained through Equations (4.5.8) and
 

(4.5.9). The equivalence of (4.5.13) and (4.5.14) can be seen by the
 

fact that the randomness of each cost term ZQ(6s., 6u.) is solely due
 

to the randomness of sZ. This together with the Markov pioperty of
 

state establish the validity of the following auxiliary lemma:
 

E {Z2 (6s_, ,u 2 )} = E (Z (st,Su 2 , )} = E (Zz( s . ud} (4.5.15) 

-k ~6.-l 

J -k{-j juk 

Furthermore, if we define
 

)} ' ( s /k'uZ) E (2. (2 s u , (4.5.16) 

we arrive at the following reformulated problem:
 

T-1 
Minimize J =k Z (Z(--1k PsZ/k' U£ + ZT(S--T/k'PsT/k) (4.5.17)

T-1 Z=k 

subject to
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intention is to design a control methodology applicable to other
 

systems as well. If analytical specification of Zz("• ) and Z (0,0)
 

through (Equations (4.5.16) and (4.5.20))
 

'
2./k ?sZ/k' Ez Z 

is not readily possible, one can expand Z(.,- in power series and
 

cbtain as accurate analytical approximations of Z (4,.,.) and
 

as desired by using a property of Gaussian random variables known as
 

Gaussian moment factoring. The details are explained in Appendix B.
 

In the case where Zij.,.) are quadratic, the reformulated costs are
 

also quadratic as can be seen by the result in Equation (4.4.35).
 

The question is how to efficiently solve the reformulated
 

deterministic problem. Since this is a general nonlinear programming
 

problem where analytical solutions are not likely to exist, one must
 

employ some minimization procedure. The design of a suitable such pro

cedure is taken up in the following section.
 

4.5.2 A Newton's Method for Optimal Control Problems
 

There are two major concerns about a minimization method:
 

raliability and efficiency. A mechod is reliable if it is guaranteed
 

to converge to optimal (in some senqe) points, and it is efficient if it
 

exhibits a fast convergence rate. As can be seen in Luendberger, J970,
 

Lasdon, 1970, Bertsekas, 1978, 1982, there exists an impressive plethora
 

of minimization algorithms. Perhaps the most important class of algorithms
 

is the class of the Generalized Gradient methods. When minimizing a scalar 
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real valued function f(x) with respect to the n dimensional real vector
 

tb.
 
x, 	a method of this class at the i iteration "moves" from a point
 

to another xi+1 according to (Bertsekas, 1978)
 

+ 	 =x +a d. (4.5.22)
 

where for all i we have-a. > 0 and
 
I

Vf/x.)]Td < 0, if V f(x*zi1 #10,1 
(4.5.23)
 

if V f(x.) = 0.-i ,_ 


V f(x.) denotes the Gradidnt vector of f(-) at , d is the descent
 
x ;2.-i 

direction, and ai is the stepsize of the iteration. The conditions 

in (4.5.23) guarantee that a reduction of the objective function 

valu. will be realized as a result of the iteration and that the method 

will stop ata stationary point of f(-) where the gradient is zero. 

If f(.) is a convex function, this point is the global minimum; 

otherwise,it may be a local minimum or some other stationary point 

(e.g., an inflection point). 

A method of this class is completely defined once the rules 

for selecting the direction d. and the stepsize a. are established, 

these rules exclusively determining whether the method is reliable 

and efficient. 

Concerning the d. selection rule, the best, yet not always
3. 

possible, choice is to use the Newton's direction:
 

d. 	 =-[V 2 fx)]l V f.xi), (.4.5.24) 
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2
 
where 72f(x.) is the Hessian matrix of f(.) evaluated at x (see


xx -1 
 1
 

Appendix A). At each iteration, the Newton's direction is specified
 

using first and second order derivative information concerning the
 

shape of the objective function, this being both its strength and
 

weakness. The additional information can realize a faster convergence
 

rate, yet it also requires heavier computational load. Our objective
 

is to design an implementation of Newton's method which is computation

ally efficient. Despite our problem's large dimensionality (the vector
 

T T T
includes now all control vectors at all times: x. [6u.. 

this will be accomplished by taking advantage of its special dynamical 

structure. 

In general, the Newton's direction (4.5.24) is obtained by 

minimizing the second order Taylor series expansion of f(.) around x.: 
L 

f(x) f(x.) + [V f(X )]T(x- )+(x T V2 f()(x-). (4.5.25) 

This can be easily seen by differentiating (4.5.25) with respect to x, 

setting the resulting expression equal to zero, and solving for the 

minimizing vector xi+1 . (It is assumed that the Hessian is non

singular.) Then the Newton's direction is given by
 

d i= -. :x= -i[ ' -]f(x- 7 f(x ) (4.5.26) 

Notice, furthermore, that the same direction would result if in place
 

of f(x) we had minimized some other quadratic function q(x) such that
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V ( V2= f(.S) , VX q ) V. fx,) C4. .27) 

namely,
 

X. ) + V2
q(x) = q + [Vx q(-)] (x-.) q(2)(x-x. (4.5.28) 

This observation can be very useful in optimal control problems
 

where the dimensionality of the vector x is very large and a direct
 

evaluation of the Gradient and Hessian is impractical.
 

Returning back to our problem, consider a second order Taylor 

expansion of each cost term ZY (6sa/k, 6.!) around the nominal state 

and control trajectories, i.e. around 6s = 0, c6uz 'sce Appendix A): 

s Z/k, ) = 9,z(O,0) + [Vs z (Ogj]Tcs9 /k + [Vu ( T u + 

+1 - 2 '~~9.k+iT T 2
+
+ 7 6-k tu V Z 2.C0,0)6u + 

+ 6_-us) . (09 T6oZs/k + (higher order terms) (4.5.29)
 

In Equation (4.5.29) the subscript s implies differentiation with respect
 

to °SZ/k while differentiation with respect to 6u is indicated by the
 

subscript u. 7s Y.(0,0), 7u 9-(00)are ns, n dimensional real vectors
?2

respectively, 7V2tZ(O,O), 72 z0,0) are nsx ns, n x n real symmetric
 
ss uu 9.-a it u
 

matrices respectively, and 7s Z (0,0) is an n x n real matrix.

US -1- S U
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For notational convenience define
 

N -Y7. Zx(010)
 

N -v x (os o
 UZ U. Z-

-ssi ss Y--- (4.5.30) 

2
u=
 

2U -- )IT

N = V21 (0,0)]musy. us ,-

and consider the following problem
 

T-I
 

Minimize -(NT 5 + T 6u +
 
T-1lp ). -Zik Y-u .
 

(Su 2 =k
 

+
+2(-4/k Nssk-I2/k+ 6u2_Uuu ) 

(4.5.31)
 
T
 
+6 1
u z -uZZ/k


T +1 6;T

-sT 6-T/k 2 -T/k NssT 
 -ST/k
 

subject to the dynamical Equation (4.5.18).
 

Based on the comment concerning the Newton's method, if it were
 

true that problems (4.5.31) and (4.5.21) had equal Gradients and Hessians 

along the nominal sequences u -I {6-/k T then we 

could obtain the Newton's direction for the latter by solving the former. 

If this direction is denoted by 6u (i), a Newton's iteration could 

then be performed to identify a more rewarding nominal control trajectory 

1i+l)6 
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U)+1) "i)
 

(i+) 	 + a " (4.5.32) 

)) :L6u*(i) 

The equality of the two problems' Gradients and Hessians is
 

demonstrated in Appendix C by direct evaluation along the nominal
 

control and state trajectories. The final expressions do not recommend
 

straightforward implementation of the Newton's method. 
 Comparatively, 

implementation through solution of problem (4.5.31) is much more 

advantageous. The computation of the Gradient VuJ(u-O ... 

and especially of the.Hessian V2uu -J(62k=0, ... ,UT=O) and its inverse
 

is bypassed and the Newton.'s direction
 

-(V J(6.-% 	 t., } ,a- lo)-i O, "0
LU- U 	 - - u.:rl ) 

is obtained from the solution of an optimal control problem with linear
 

dynamics and a general quadratic cost functional. This solution is
 

derived in Appendix D via dynamic programming and is reproduced below
 

as Algorithm A4.5.1. It has the advantage of being analytical and,
 

therefore, computationally efficient.
 

Algorithm A4.5.1: 	 Computation of the Newton's Direction for the Uncon

strained Reservoir Operation Problem.
 

For X=k, k+l, ..., 	T-1,
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S( S/k) D[, sZ/k + ], (.4.5.33) 

D Z B K 1 B + N (4.5.34) 

-. =z 4+1 112 uu9Z 

(4.5.35)

T ,Z+
L 
 _z~ Z + k 

B=2,T ---Z+I +N uZ (4.5.36), 

}T
where the positive semidefinite matrices { k are obtained recursive

ly by the following matrix Riccati equation:
 

=T Nss T 

++l_s •7sst + T4+1 - , 

(4.5.37) 

T -1 T
 

* Ez2+1 2,+ Muu9) z~24+1 t + '-u2, 

and the vectors T result from
 

-Nk
 

k N + T (B K 1 T 

(4.5.38)
T.K£+ ' + Nuu -1 (T k+,=I [)~ :-_+: + NuZ] T 
2, =Z~ =UUZ [Bu 

Z ET-1,T-2...., k. 

...The optimal "'osts to go" are given for Z=T, T-1, , 

by
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- "1-2',k2 SZ/k + k. 's/k + CZ 

where K., as above and.
 

CT = 0,
 

Cg =C£+ I -C k£+i+ ]T [BT KZ+1 BZ + NuuL ] (4.5.39) 

• [Bky.+i + -Hut 

Z - T-1, T-2, ... , k. 

Lastly, the optimal value of the prrblem is
 

1 /-TgT
 
k (k/k k/kk k/k k -k/k k (4.5.40) 

Essentially, implementation of this solution is completed in
 

two steps: (1) the matrices (K}T= and the vectors fk IT are
 
z-2k Z=k 

computed by a backward pass of the corresponding equations from time
 

T to time k, and (2) the controls f6}T-1 are computed by the
 

previous quantities and the sequence (6k/k} obtained from a forward
 

pass of the dynamics. To illustrate how the second step is performed,

TT 

assume that (Kik," t- IZ=k have beean computed. Then, the optimal 

control 6Rk is obtained from
 

.= =-]-k[=k - Ik + (4.5.41) 

where s = 0. Thus,
-k/k '-Lk/k = 
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T U - k +1 N ] (4.5.42) 

Using this result in the dynamics, we find
 

-lk+l/k = =k +s B B (4.5+43)-k/k =k -k Bk@ (4.5.43) 

and the next period's control vector 6_q iAs computed from
 

~kl ~=k+ELskl +1 'Sk+l/k + -k] 

-k(BT %+2 k+l ++ =uuk+l I-
1~ [Bk+1 =k+2 1- + N=tsk+l" 

=klk --kic+2 + (4.5.44)6-i* +BTk+1 +N-- (4544 

Continuing this process, all elements of the Newton's direction
 

U*T = [ .. UTI can be determined with minimal computational 

requirements. These are mainly associated with the computation of 

{K~Zk, kZ}Tk and involve multiplications and inversions of n . ns-n x nS U 

n
S 

x n
U 

matrices. Compared to a straightforward implementation of 

Newton's method requiring the computation and inversion of a
 

(T-k)n x (T-k)n Hessian, where (T-k) could be of the order u u 

of several hundreds, substantial computational savings should be
 

realized.
 

The second factor influencing the success of a minimization
 

method is the stepsize selection rule. As can be seen in Bertsekas,
 

1982, there are many available good choices: the minimization rule,
 

the limited minimization rule, the Goldstein rule, the Armijo rule,
 

and many others. Here we shailpresent the Armijoy stepsize selection
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rule because it is easily implemented and because it conveniently
 

generalizes for a problem with control constraints. For the general
 

problem of minimizing f(x) with respect to x, this rule can be
 

stated as follows:
 

The Armijo Stensize Selection Rule:
 

Let 8 and a be scalars satisfying 

0 < < 1,0< a < 1 . •(4.5.45) 

Given a nonstationary point i and a direction d the stepsize a is
 

obtained from m i i
 

ai (4.5.46) 

where mi is the first non-negative integer m for which
 

i. 

f(x ) df(x) > - f()]T . (4.5.47)-=i x -i. 

If 2 is a stationary point of f(.), we set a =0. 

The logic behind this rule is to guarantee that each iteration
 

will reduce the objective function's value by an amount proportional 

to the Gradient and will thus prohibit convergence to a nonstationary 

point. 

In the case of the control problem Equation (4.5.47) becomes
 

_ _ k' >-a 8 _ _-7-k . . 1°T_111 > - 17[ uJ(_,.. ,O)] 6u 

(4.5.48)
 

where ( 6 *)T = [ T is the Newton's direction obtained wr ( 
 T-l
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by Algorithm A4.5.1. The Gradient VuJ(O,...,O) can be efficiently
 

computed by the procedure developed at the end of Appendix C as
 

follows:
 

Algorithm A4.5.2: Ccmputation of the Gradient
 

Consider the sequence of vectors obtained recursively
 

by
 

.T "ST 

+ (4.5.49) 

2 - T-I,T-2,...,k. 

Then
 

76. J(0,......) Y + T-uk =k 2-k+l 

V-; (0, ... ,0.) ,,•" • T (4.5.50) 

-T-l_ • •-uT-I + BT_2]T 

Using the above results, the Armijo stepsize selection rule can
 

be stated as follows: Select the stepsize
 

M.ai =B 1 

where m. is the first non-negative integer m for which 

S- * *T-1 >n T T
J (0,...,0) --( -m ,...,S OUT l) -Z m ( B=-z•611u> Pz+i 

(4.5.51)
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When the Newton's direction is combined with the Armijo stepsize
 

seluction rule, the following convergence properties are realized
 

(Bertsekas, 1982):
 

1. Let {u}. be a sequence of control trajectories (uT 
1
 

T- T 1 ) generated by the previously defined minimization method.
 

Then every limit point of {u}i is a stationary point of J(u).
 

2. In the vicinity of a local minimum u where J(.) 
is convex,
 

lu ( i ) the norm -U* I [(u i) - 1 / 2u*)T Cu Ci) -*)] converges to zero faster
 

than superlinarly with order two. 
 Namely, it convergest to zero faster than
 

all sequences of the form r.=q p 
where q>O, BE(0,1), pE(l,2 )
 

3. In the vicinity of a local minimum, the Armijo test is passed
 

with m.=0 and the stepsize a. equals unity.
 

As will be seen in Chapter 5, these'theoreticaal properties are
 

indeed observed in practice making the previous design computationally
 

appealing.
 

When the problem is characterized by a convex structure 
(as, for
 

example, the case of linear dynamics and convex cost terms 2 (',),T-1
Z Z=k' 
ZT(')) the method will converge to the global minimum. Otherwise, the
 

minimization process should be restarted from different initial trajec

tories and the global minimum should be determined by comparing
 

the cost functional values at the indentified stationary points. 
 In
 

order to prohibit movements opposite to the direction of desdent, one
 
will have to ensure that the matricesk'K .T N=I - are positive
 

.Z ) -uuZZ=k
Z 

(semi)definite. 
A procedure that enforces these properties is included
 

in Appendix E.
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If the unconstrained global minimum violates no control or
 

state constraints, it also solves the constrained problem. In the
 

opposite event, a constrained minimization scheme should be adopted.
 

The development of a control constrained minimization algorithm is the
 

following section's topic. State constraints will be accounted for in
 

Section 4.7.
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4.6 Accounting for Control Constraints
 

Towards reconstructing and solving the reservoir operation
 

Problem P.2, in this section we consider the following control constrained
 

formulation:
 

Problems P.4: The Reservoir Operation Problem with Control
 

Constraints.
 

r T-l 
Minimie Z(6s , ,a) + T(Y6T/k)} (4.6.1) 

(64ZkZ~k 

subject 	to
 

a. =6 + 6.u. 0(462
+B 6s 

= . -Z+l/k -Z/k =Z -u -k/k - (4.6.2) 

=k, ... , T-1, 

b. 6umin <6Iu. < 6 2Z 	 (4.6.3) 

Z=k,...,T-1
 

Namely, we wish to develop a procedure accounting for control
 

magnitude constraints within the framework of the Open Loop Feedback
 

controller. Selected classes of constrained minimization methods are
 

now briefly reviewed to find a suitable procedure.
 

4.6.1 Constrained Minimization Methods
 

Three broad classes of constrained minimization methods are
 

(1) the 	Feasible Direction methods, (2) the Manifold SuLoptimization
 

methods, 	and (3) the Projection Newton methods.
 

The Feasible Direction methods (e.g., Frank-Wolfe, Goldstein
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Levitin-Polyak, Zoutendijk's, etc.) 1 
are natural extensions of the
 

unconstrained Generalized Gradient methods where the descent direction
 

d is such that the iteration
 

2Ei+l = x,-- + a d (4.6.4)
 

yields feasible points xi, i=l, 2, .... 
 i being the stepsize parameter). 

At each iteration the feasible descent direction d is determined by
 

solving a linear or a quadratic minimization problem. This requireme'.nt
 

imposes considerable imputational overhead and makes these methods
 

unattractive for problems with many variables (such as Problem P.4).
 

The Manifold Supoptimization methods (e.g. 
Gradient projection,
 

Rosen's Gradient Projection, Reduced Gradient, etc.) 1 
are also based
 

on (4.6.4) type iterations where the descent direction d. is obtained
 
--L 

by minimizing the objective function over the subspace defined by the
 

active constraints. 
 If feasibility is violated, the minimization is
 

repe-Zed over a new subspace defined by the currently active constraint
 

set, and the process is repeated until a poin~t satisfying the necessary
 

conditions for optimality is reached. Methods of this class perform
 

quite well for problems of relatively small dimension, but are not
 

efficient for problems with many binding constraints. The reason is that
 

not more than one constraint can be added to 
the active set at each
 

itera1ion.
 

For a complete discussion, see Luendberger, 1973, Bertsekas, 1978
 

126
 

http:requireme'.nt


For the problem of minimizing f(x) subject to x.> 0, a.Projected 

Newton method will perform the following iteration (Bertsekas, 1982, 

Section 1.5): 

[x. + a d ] (4.6.5) 

where [.]+ denotes the projection operator: 

KFmax{0,1[z] + = i"(4.6.6)
 

zn max{ O,n 
 , 
and d. is the descent direction given by
 

d = -D i V f (x). (4.6.7)
 

D is a positive definite matrix of the following form.
 

Hi 0 

Ri hrA-1". 

0 ... h 

n 
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where H. is 
a positive definite matri, {h } +1 are positive numbers,
 

and the set of indices
 

A (x) = (ri+1, nI {Z/O <.. xzi < E., x > 0} (4.6.9) 

correspond to the binding and nearly binding constraints. The specifi

cation 0 < x z < Ei is employed rather than x i = 0, to avert possible
 

"zigzagging" behavior of the method. 
gi can be chosen from
 

= ei min{',wi wi Ixi- [x-Vxf(x )]+ (4.6.10) 

with E a small positive scalar. 

The stepsize ai can be obtained by an Armijo-like stepsize selection
 

rule as follows:
 

a i, (4.6.11)
 

where m i is the first non-negative integer m for which
 

+ F af (x.)
 
f(x.)-f([x.+ aid I] ) > - sm 
 -- d 

jiA-X ax ji ji 

fE(xi) 

-- . (x i- [x. i+ md..] (4.6.12) 

jCA() ji 
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andoa (0, 1), G (0,1) 

(Notice that if none of the c.onstraints are binding, the previous step

size selection rule becomes identical to the one given in Section 4.5.)
 

Under assumptions which are usually valid in actual problems, an
 

algorithm of the above type is guaranteed to identify constrained
 

critical points in a finite number of iterations, a constrained critical
 

point being any point x such that
 

af(x*) 
axj = 0, if x > 0, 

, (4.6.13)Df(x ,afx)ifx= 0, j=l, ". ni. 

ax -

If in addition f(.) is convex.and H i' jI r hse qa 
Mi +1 

to 

.h mri+l are chosen equal 

a2f(xi)2 a2f(x.)2 -1
 
2 ax3
 

.(4.6.14)
S
 

a fy 2
f*a(2E, 

axr iax a 2 
Xr.i
 

1 

[2h. = } =r +i ... , n, (4.6.15) 
xji 

then the sequence fx.} converges to the global minimum x faster than 

superlinearly of an order at least two (see Section 4.5). 
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These convergence properties make the
 

quite efficient for problems with simple constraints.
 

The previous algorithm easily generalizes to the case where x
 

is constrained by upper and lower bounds:
 

b < x < b (4.6.16)--l - -- = 

Now, the iteration takes the form
 

1
+ ai-i (4.6.17) 

where
 
b if b zJ2' j2-<.1
zj, if b <zj< 

(z] ++)= i J< -- bj2 (4.6.18)
b if z b 

j =1, ... , n 

and the set of active constraints is given by
 

af(x.i )
 
A+ (x.) {Z/bzi<--x,.<bl +, and ;x > 0
 

af(x.) 
or b 

Z2 
- < <b2 and 1 < 0} (4.-6.19)
i-_Z,- 22 
 axz.
 

With these definitions replacing the ones given above, the Projected
 

Newton method previously stated is also valid here.
 

It is a method of the third type that we shall employ in the
 

solution of Problem P.4. The main difficulty is again related to the
 

computation of the direction d..
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4.6.2 A Projected Newton Method in Optimal Control
 

The direction d. of a Projected Newcon methQd c,-sists of two parts: 

The first corresponds to the nonbinding constraints j=l, 2, ... ,ri 

j A-(x i ) and is obtained by a Newton iteration 

a2f(x.) 02f(x.) 
 -i -f (2i 
dli 
 a2 
 xr.ia ali axli
axli i . 

a " (4.6.20)2' 2
 
dr af(X) a f(x.) af (x.)
 

rax aa2 9
i ii i
 

assuming that the remaining variables are fixed at the respective 

bounds. The other isa scaled version of a Gradient method (Luendberger, 

1973) where the scaling factor is equal to the inverse of the correspond

ing diagonal element of the Hessian at point x.: 

dij J 2.'i ax ]x. ax~Ji ' r.+l, ..., n. (4.6.21) 

The question is how to efficiently compute these two direction parts
 

for the control Problem P.4.Regarding the computation of the first part,
 

the approach employed for the uncontratined control problem in Section
 

4.5.2 is alsc applicable here. The difference is that now, due to the
 

constraints, ,4ome control vectors cannot be adjusted towards the
 

unconstrained minimum. Instead they must be fixed at their currently
 

nominal values. Appendix F includes the derivation of an analytical
 

procedure for computing the nonbinding direction part given the above
 

requirement.
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The scaled Gradient part of the direction can be conveniently
 

obtained from the procedures derived at the end cf Appendix C. These
 

concern the evaluation of the Gradient and the diagonal submatrices of
 

the Hessian at the nominal sequences.
 

Putting all these results together, we construct the following
 

control constrained minimization algorithm:
 

Algorithm A4.6.1: A Projected Newton Method in Optimal Control
 

In a typical iteration the following sequence of operations is
 

performed:
 

T-1
 
a. Compute the Gradient vectors (V J(O,...,O)} Zk 

from 

V J(O ....Q)- BZ + (4.6.22) 

where 

pT - NST,
 

-DT + N(4.6.23)
 

Z - T-l.,....,k 

b. Calculate
 

w= Lui) - [u() u _cJ(O... 0)]+ (4.6.24)
-

If w = 0, then stop; a stationary (or critical) control trajectory is
 

reached. This is true because when w.=O, any control element u. for
 

all jZ satisfies one of the following first order necessary conditiuLcn
 

for optimality:
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min max a 0,...,,_)
uj2 <ujZ < uj andj; 

aj(o,... ,o) 

< of (4.6.25)max and 3u 

ujz u an96u.% = uj z and> uJz O 

j=l,...,n ,) =k,...,T

(Under convexity assumptions u(i) is then a global minimum.)
 

Otherwise, determlae the set A++(u(i)) of binding control constratins
 

from
 

i.I ( W Min ( < min +>and 
i ) )A+ (u r jz < u ujz + 0u-< 

- C <um .~and.or ujmax <u(i) Umax (o,... ,O) <0~.~ 

J-l,...,n u s, =k,-...,T-I (4.6.26) 

where e min (w} , (4.6.27)i 

with E being a small positive scalar.
 

c. Compute the Newton direction for the nonbinding control
 

elements as follows:
 

and the vectors {k}T
Calculate the mattrices (K } 

=2z Z=k '

from
 

K N= = =ssT'T 

K-N +BTz+ r ]T 
KZ = ssz + =2.E+l dy - I[ = + us) " (4.6.2) 

rc - T N=us2) r "[(BzKz+T:zl=u
1 BZ NuZ) (= =+1 A[Bz + N 

Z= T-l,...,k,
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+ N2 s) rTrT ."N + 

(4.6.29) 

T K B- + rc T k + r 

where the notation X)r or (X)rc implies that the rows or the rows
 

and the columns of the matrix X corresponding to all control elements
 

6u. with jk: A"+(uWi ) have been deleted. (Note, X may also be a vector.)
 

Then determine the Newton direction 6u from
 

6 =,-[D [L Sk +6A] (4.6.30) 

T rc-1
 

where D [(BT K + N 

-, 2 = +1 + UyK+1 .t+LZ % =Z ot: 

(4.6.31)

kz + N rAA, Mi((Z. -)+l =9 ' 

2.= k,. ..,T 

-- * * -* 

ands+/k - -2s/k -' -k/k -, (4.6.32) 

Z = 1, ..., T-1. 

In (4.6.32) the binding controls 6ujZ are set equal to zero: 

6u =0, jZE A+FCu(). (4.6.33)
j13
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d. Compute the scaled Gradient direction for the binding
 

constraints: Having computed the Gradient in Step a, we aaditionally
 

need to calculate Lhe diagonal elements of the Hessian which can be
 

accomplished as follows
 

Vuau J(O,...,_ Nu + BT G+ B (4.6.34) 

6-k,... ,T-I 

where 	the matrices T= ar given by

ZZkar
 

G
-T -N-ssT
 

=
G2 g G ,2 +.Nss, (4.6.35) 

9- T-l, .. , 1. 

Then, 	the direction for the binding controls is found from:
 

6u. 2 	 , (4.6.36)j 
A++(Cu 	 i)) 

e. 	Determine a stepsize ai such that
 

ai ,= a (4.6.37)
 

where 	m is the first non-negative integer m for which
 
1
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J~~o,_,o (s ++ m * ++)JO,... - ([m6 ] ... (a I ]U)_T>. 

m a . + J0,...,01 m 

eA ( j 2 j 'zEAL 
u * 

(u i) ) 

(4.6.38) 

where (0,1), 1 

and
 
min U() iM)+ m * min
u -u if u +<6u u z
 

^m * ]++m* 
 " min (j) mW* maxu if u.£ < uj9 + jau< . (4.6.39) 

ujmax (i) if + aM6u1* > .ax-U.) uj£)(i)+mau 
j2 JUj2, jz - ujz~ 

f. Perform the iteration
 

U (i+l) . u*] + +ui) + ai (4.6.40) 

to obtain the new nominal control trajectory u and continue the
 

iterations until a stationary control trajectory u is found with
 

respect to Problem P.4.
 

Algorithm A4.6.1 is the core of the control design developed
 

in this work. 
As will be seen in Section 4.7, the modification which
 

is needed to account for the probabilistic state constraints only
 

involves addition of some more quadratic terms in the present perform

ance index.
 

A few comments are now noted:
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1. In Step d, the computation of the diagona-l Hessian submatrices
 

can he avoided by using an ordinary Gradient direction where the scaling
 

factor is unit or some other positive number. The resulting mef:hod is
 

still reliable, yet it may take more itereations to converge.
 

2. In the absence of convexity assumptions, one must assure that
 

a descending direction is obtained. This can be accomplished by
 

enforcing positive definiteness properties on the matrices {%}T
 

T-1 
{N } - as in Appendix E.
suuZ 2.=k 

3. If no control constraints are found binding (i.e., if the set
 
A (u(i) is empty), then the algorithm conveniently becomes the
 

Newton method for unconstrained minimization presented in Section 4.5.
 

4. Under convexity assumptions, every limit poin. of the 

sequence {u(i)} generated by this algorithm is a stationary control 

trajectory. If the method converges to a local minimumu , it 

identifies the set of active constraints at u in a finite number of 

iterations. Then it becomes the unconstrained Newton method and 

achieves a superlinear convergence rate (i.e. lu(i)-U*l converges to zero 

faster than..all sequences of the form r, = q~pi, q>O, e(0,1), -p(1,2)). 

Theoretical derivation of these properties for the nonlinear programming 

formulation presented in Section 4.6.2 can be found in Bertsekas, 1982. 

5. After a new nominal control sequence u(4+l) has been obtained,
 

one can continue the iterations by reconstructing the corresponding
 

Problem P.4 from P.1 as has been presented in Sections 4.3, 4.5, and 4.6.
 

Concerning the continuous time nonlinear dynamics, this iteration is an
 

ordinary Gradient method iteration. However, t> milder the nonlinearity
 

of the dynamics,the more Newtonlike the procedure becomes. With respect
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to the reservoir system, if the releases cannot effect drastic storage
 

changes, then linearization of the dynamics is a good approximation for
 

a wide release range and the procedure will exhibit fast convergence
 

rate.
 

Algorithm A4.6.1 is a well defined minimization procedure capable
 

of efficiently handling large numbers of control constraints. Computa

tional experience reported in the following chapters is suggestive of
 

this conclusion.
 

Our last task is to account for probabilistic state constraints.
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4.7 	 Accounting for Probabilistic State Constraints
 

In this final effort, all state constraints are restored and
 

the following control problem is conaidered:
 

Problem P.5: The Reservoir Operation Problem with Control and
 

State 	Constraints.
 

Minimize { I z (6 kUZ) + ZT(6 } (4.7.1)
z2 '-Z T-/(6T-1 Z=k 


subject to
 

a. -s - + B au s =0 	 (4.7.2)
-Z.+l/k -9.k -=Z) -k/k
-z 

9..= k, ..., T-1, 

min
6 P 

Z .	 <--C. P(6s jz/Ik)d55j9 Y< 

--. rdSa- l (4 .7 .4) 
S p( sji/Ik)d6sj,, < ,~a 

sjz
 

d. Continuing operations after T.
 

For consistency with the Open Loop Feedback control philosophy,
 

the probability densities of the states at all times 9=k,...,T are
 

conditioned on all information available at time k. Namely, the possi

bility of future information gathering is ignored. Under this assumption,
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in Section 4.5.2 it was shown that all probability densities are
 

Gaussian with mean vectors obtained by Equation (4,7,21 ahd covariance
 

matrices resulting from (c.f., Equation (4.5.9)))
 

=s2+i/k = s bT + 0 i/k given, (4.7.5) 

Z - k, ... , T-1. 

It follows that p(6s/Ik) is given by
 

1 1i (asji- asjl/k) 2 

P(6sjZ/Ik) = exp (?sZ/k) (4.7.6)' - ( sZ/k~jj
 

where (s/) denotes the jth diagonal element of P It is now
(!sZ/k jj =S2./k 
possible to substitute the probabilistic constraints (4.7.4) by equiva

lent deterministic constraints on the mean value of the state. This 

is facilitated by the following two facts: First, the density (4.7.6) 

is completely characterized by its mean and variance. Second, the co

variance Equation (4.7.5) does not depend on the controls 6.uZ, Z=k,..., 

T-1. As a result, we can change the position of p(6sjz/Ik) along the 

Ssi, axis but we cannot alter its shape. The equivalent constraints on 

the mean value can be easily derived as follows: Consider the constraint 

in 
as 


Z/Ik) d~s < j1 (4.7.7) 

and the standard Gaussian variate z ",N(O,l). The level z can be
 

found (from standard normal variate tables) for which
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J
minn
 
j2 
 1 2 

1 e* dz -vI (4.7.8) 

Then, as long as
 

rain xzj2. (P+asa + >-s mil4V'( s9/k)jj Us.Z/k -- (.4.7.9) 
- S rwin rmin 

or 6s' > i - zmi(n (4.7.10)
-JYZk 1 asj, ji ' sL/kij 

holds tine, the probabilistic constraint (4.7.7) is also satisfied and 

vice versa. Now we can call 

min dsmin min
6-S - zjz F-sI/k)jj (4.7.11) 

and in place of (4.7.7) consider the inequality 

asj ..< asjZ/k. (4.7.12) 

For example, if the reliability parameter min is equal to 0.025 (i.e.,
mrin 

if the state 6sj is allowed to violate its lower bound os at most 

2.5Z of the time), the level zi equals -1.96. Then the constraint
 

(4.7.12) implies that the mean value 
 js/k should be kept a distance
 

min
of 1.96 standard deviations above s •
 

Similarly the upper probability constraints can be transformed
 

to constraints of thu following type
 

asJ/k< 6sC C4.7.13) 

141
 



-max maEx max
 
where 6sjx = 6s - z V(Ps/k)jj (4.7.14) 

with max such that
 

1 2
 
:/- e dz YjY (4.7.15)
___ -, max, 
 4..5
 

Jul, .. , n, lZ k, ... , T. 

Thus, we have shown how to convert the probabilistic constraints
 

(4.7.4) into equivalent constraints on the state's mean:
 

-mn 
 m 
 C4.7.16)
 

6sj--IY.. ''j 

j-l, ... , ns o ,=k, ..., T, 

o-min . s/< smax
 
or SY <,6; (4.7.17)


-=Z -- /k- Z 

Z=k, . . . ,T 

in vector notation. 

Although these constraints are similar to the ones imposed on 

the controls, they cannot be handled by the Projected Newton developed in 

the previous section. The reason is that the states are functionally 

related to the controls through the system dynamics, and it is either 

the controls or the states that can serve as an independent set of 

variablesfor the minimization of J. Optimal control problems with 

state constraints are best handled by Penalty Function of Multiplier 

methD& a discussion of which will be offered in the following section. 
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The continuing operations system requirements will be discussed later.
 

A last comment refers to the proposed treatment of the probabilistic
 

constraints tn relation to the Open Loop Feedback control procedure.
 

According to algorithm A4.4.5. at each time k the OLF controller deter

* T-1
mines the entire control trajectory (1ZI =k assuming that no other
 

decision specifications take place over the period [k, T-1]. In reality
 

only the first - ember from each optimal trajectory is used and the process 

is repeated at the next decision time. Thus, owing to this sequential
 
* * 

set-up, the applied controls are of a feedback nature u= i(s ), k=0,1,
k 

although Open Loop controls are being determined. The OLF control
 

structure relates to this section's developments through the covariance
 

propagation Equation (4.7.5). The covariance is propagated under the
 

assumption of Open Loop eontrol sequences. For a certain class of systems1
 

this may result in covariance matrices w:[th diagoual elements growing*
 

unbounded over time. On the other hand, if the feedback laws were
 

taken into account, the above elements would be either stabilized at a
 

finite level or they would grow at a lower rate. It is evident that 'the
 

Open Loop approach could result in suboptimal control policies in the sense
 

that the applied controls would meet the probabilistic constraints at
 

greater percentages of time than the one required. However, the feedback
 

control functions cannot be obtained explicitly and therefore cannot be
 

used in the covariance calculations. We suggest two ways to remedy the
 

1This is the class of unstable systems for which some eigenvalues
 

{_,}T-IZ=k matrices are in absolute magnitude greater than one. (For a short
 

but informative treatment of stability, see Kailath, 1980, Section 2.6.)
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situation. One strictly concerns the single reservoir case and will be 

presented in Chapter 5 while the other will be briefly discussed now. 

As explained in Section 4.5, at each time k, the optimal Open Loop 
S* T-I. 

trajectory fu I*} is derived through the Dynamic Programming Algorithm 

A4,5.l. "The controls are obtained by 

- + A C4.7.18)
 

th T-1 
where ai is the stepsize of the i iteration, and {D,, LZ A}IT 


are the control gains defined in (4.5.34), (4.5.35), and (4.5.36).
 

Equation (4.7.18) is a linear feedback function of the state and can be
 

adopted as a first order approximation of the actual feedback laws
 
* T-1
 

(Recall that (4.7.18) solves a locally linearized
 

approximation of the nonlinear problem.) The idea is to substitute
 

(4.7.18) in the system dynamics and construct the following "Closed
 

Loop" system representation:
 

6s = 6s + B [-a DL 5I +A] + = 
Z9+l =Z =Zi .- /k -+='z-Z. = 


B D sz --a B D A + - (4.7.19) 

Z=k, .. . ,T-I. 

The covariance propagation equation for the system (4.7.19) is given
 

by
 

Ps2+2 [--i -a B9D£.] PsZ/k -Di B D IT + (4.7.20) 

I = k, . T-1 
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and results in tighter variances than the ones obtained by Equation
 

(4.7.5) (Athans, 1984). 

The approach can be extended to the control constrained case
 

by using the results of Algorithm A4.6.1 for the matrices {2ZLZ}T-l
 0L~ Z=k
 

(Equation 4.6.31). For Equation C4.7.20) to continue being valid,
 

the only modification needed is to restore the original dimensions of the
 

matrices by including the deleted rows and columns but with zero
 

elements. In other words, the suggestion is to propagate the covariance
 

in an Open Loop maunA:j when the controls are binding and use the Closed
 

Loop approach for the unconstrained segments.
 

4.7.1 Penalty Functica and Multiplier Methods
 

The idea of the Penalty Function and Multiplier methods is to
 

obtain the solution of a constrained problem by solving a sequence of
 

unconstrained ones. Their 7alidity is based on the fact that for
 

well-posed problems the sequence oi the unconstrained solutions
 

converges to the solution of the constrained problem.
 

For Problem P.5 a Penalty Function method can be derived as
 

follows:
 

Each two-sided state inequality constraint (4.7.21) can be broka,
 

up into two one-sided constraints:
 

-min - 6_j9k < 0, (4.7.22) 

j -max < 0 (4.7.23) 
~-j -

j , .. . ,n , Z=k,...,T 
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and these can bu zonverted into equality constraints by introducing
 

m max

the non-negative variablEs ymm 


-min - min min 
+ Yj = 0, yj2 > 0, 	 C4.7.24)

jyI - 6SjZ/k 
max
- -max + max 

6sjZ/k_ sjZ yj Z 0, YJZ > 0, (4.7.25) 

J-1,...,n s, Z=k,...,T. 

Now define the Lagrangian function
 

+T ) 
s min min. max 

i 

6.~l + Ci(6s.n 6- ai) 
I 2 1 it sj/k Yjt" 	 '''( T 

-max max 
+ 	a . Ci(s/k S ist + yj (4.7.26)
Jt 

Jin Lmin 	 m n 2a
(6z 


where Ci is a positive penalty parameter and consider the following
 

sequence of problems: 

Minimize L'''r1Z 	 min minZma a (4.7.27) 
-

6ukYkYTI-(U1T-1 


T({m3n .max 

subject to 

+ 

a. 5s£+/ 6s,/, B£ ~/ 0 	 (4.7.28)
 

Z-k,... ,T-I,
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Smin maxSR__Z 	 , (4.7.29) 

c. 	 min >0, (4.7.30)
 

ax > 0, 
 (4.7.31)
 

Z=k, . .	 . ,T 

where 	i = 0,3,..., Ci+ l > Ci > 0 and C -

If (u , y )i is a global minimum of the above problem, then it can 

be shown that every limit point of the sequence (6u*}. is a global minimum 

of problem P.5. (:or a proof in a general nonlinear programming context, 

see Luendberger, 1973, Section 12.1 or Bertsekas, 1982, Sections 2.1, 3.1).
 

Intuitively, this result is expected to hold because for large Ci
 

values the penalty terms C (6 / - 6s ± minimized when ma ax J/k Z 

(6sjz/k-dsx +ym %) approaches zero or equivalently when the constraint 
6s' max <0 is satisfied. (Similar argument holds for the lower bound 

j;i/k7 jZ. 

penalties as well.
 

It is still questionable why one should choose to solve the
 

sequence if the above problems rather than the original one. Notice,
 

however, that for a particular state and control trajectory the min .iiza
mn 
 max 

tion with respect to v and m can be explicitly performed. Consider
 

for instance, minimizing the Lagrangian in (4.7.26) with respect to 

Ymi subject to y.i > 0. This i- equivalent to
 

1 ,-rain -min2 
minimize {-7i(SS -6s/k + (4.7.32) 

mini 1 JZ jZ/k + min 

yjZ 
mmn
 

subject to ymi > 0. Since (4.7.28) is a convex quadratic function with
 

min
 
respect to yj , the solution is
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-mi 6 -min 

(6 sj, sJ9,/0) if asjZ < 6S~J2/k 

min *(4
(Yj - (4.7.33) 

0 ,if as; > 6sJ/k 

Similarly the optimal value of any y a variable can be seen to be
 

-- m-ax -max 

)(6Sjzlk - 6-s ) if s > j/k 
-mx (4.7.34)(J.4 

0 ,if sma < 6s 

Substituting these results into the Lagrangian function we find
 

LC (64P,..., _UTl= J(64...,6 1TUl) +) 

+IC °max'(,_Sm-6s/k)} 2 + 
jZ j/
J 2i1 


s-max+ 1 (6S-(max(O, 2 (4.7.35) 
jk/k- j)JCimI

jZ 


and our problem becomes one of minimizing (4.7.35) with respect to 

{6uz} T-1 subject to the dynamics (4.7.28) and the control magnitude 

constraints (4.7.29). The penalty terms in (4.7.35) are zero when the 

corresponding constraints are not violated while they prescribe 

quadratic costs whenever there is a violation. Notice, however, 

that this problem can be solved by the Projected Newton Algorithm 

A4.6.1. The only adjustment needed at each iteration is to ietermine 
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which of the state constraints (4.7.22) or (4.7.23) are currently
 

violated and include in the objective function J(dk,..., a_l) the
 

corresponding quadratic and linear penalty terms. The procedure
 

involves the following sequence of operations: For a level Ci of the
 

penalty parameter use Algorithm A4.6.1 to find the minimizing control
 

trajectory u (Ci); then increase C. to Ci+1 > Ci and repeat the previous
 

step until the sequence f (Ci)}i converges to the solution u . For
 

convex problems the method can also be opeiated by increasing Ci at
 

each Projected Newton iteration, but in the general case this may cause
 

failures.
 

The rate at which Ci should be increased can be determined
 

by preliminary experimentation. Slow increment rate will result in slow
 

convergence while an extremely fast rate will render the problem ill

conditioned. In the latter case a solu'tion at some iteration may not
 

exist or it may become increasingly difficult to obtain. However,
 

our computational experience with the Penalty Function method in rela

tion to reservoir operation problems shows that the method is quite
 

reliable and that a penalty increment formula (see also Bertsekas,
 

1982, Chapter 2) 

Ci+l $Ci,i [f4, i0] (4.7.36) 

performs well
 

Multiplier methods are theoretically characterized by better
 

convergence properties than penalty function methods, yet in practise
 

they are more difficult to implement.
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For the control Problem P.5 the associated Lagrangian of a
 

Multiplier method is defined by
 

L(d min min max max rain min max max 

C (-k . T-14 ..,. T 4, YT k'.. . ...--k P 

l)+,(in- .min)+ 1 -rain - mrain 2, 
J(6...S _ls.+-os. . y j + i(s -6 sj /+ j ) } 

J,"j Zjx jZ j)./k Y Zj - j/ 

MA mx max) (8 -max+ ma~x)Os--6 
 6 -6 

Sj Y' J~ S1j,-/k SJ) + YjZ )+ 2i( jZ/k-Sj Y 

(4.7.37)
 

win max T 

where lin ' zm k are the multiplier vectors and C is the penalty 

parameter as before. In the original method of multipliers (Hestenes, 

1969), Problem P.5 can be solved as follows: First, for fixed values of 
mirn,i max ,i
 
_1 ,1_ , C we
 

minimize win max min,i max,i
 
f T-1 LCi 

yin maxT
 

subject to
 

a.s cb6 63/ +B 6u as =0,
a.s+li/k =Z =Z =Z' -k/k
 

Z=k,... ,T-l,
 

< , maxb. rain <6a 
-2. -- -u£z -u 

,*=. . ,T-l, 
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c. Ymin -> 01 
max 

2." k,. . .,T-1 

As in the Penalty Function method, this problem can be explicitly solved 

with -espect to min, y since minimization of L with r2spect, 

min
 
say, to y is equivalent to
 

min, i (asj-min ) + -:i-i (6sjmin-os /- min2minimizing{fji -sj/+y£ min- .- z/+Yj 
j , jL/k +yj Z 2i1 jZ jZ/k j 

(4.7.38)
 

subject to yj >__0.
 

The minimumof this subproblem is either the point
 

mln,i ,o-mi sj 

YJZ Y/i - j-asjA) - C (4.7.39) 

minimizing the parabola (4.7.34), or
 

min,i 0, (4.7.40) 

if the previous point is a negative number. More compactly we can
 

write
 
rain,i 

min,i .min .
yj2. max {0, _ j9- -s JZ/k) - (4.7.41) 

Similarly for the case of upper state constraints, we find
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Umax,i
 
max,i -max _ z.
 

(4.7.42)
yj9. max 0,-[3sjZ/k,6sjz 


Substituting (4.7.41) and (4.7.42) in the Lagrangian, the previous
 

problem reduces to the one that follows:
 

For fixed P, in'i Ma , C. 

minimize J(Suk$ ....'u -) +
 

=Z -T-l min,i min,
 

n'i ~ mi It -in 
+ jz.L sj z JZ/k' C 2 i jz /k' CJ 1 J 

ax,i m..,max m x 

=k, .. . , T-m. 

The penalty terms in the objective function of this problem become 

mini -in 2. /k' -mn.- +72min2,
 

(4.7.43) 
9. j9.Z~/k k-j9. ) + 6z 

-
;jZ/k 0 }•max~i(sj ~ .-max 1- -max 

when the corresponding constraints are violated and 
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i min,i 2 1 
l i 
 F(4.7.44) 

1( max,i)2/ 

J)J 

when they are not. In any case this is a problem that can be
 

efficiently solved by the Projected Newton Algorithm A4.6.1. Having
 

obtained this solution, the procedure continues by updating the multi

pliers and the penalty parameter and repeating the previous step. The
 

new multipliers can be specified by
 

mini+l Uin miin,i /Ci) ,-min Sm
 
.nj j i - 4 j JZ jZ/k


ma~~mximNi/) - -max), (4.7.45)
 

lmij l = maxi + Ci max {- (Pj Ci ),(as ) . 
J=l,...,ns, =k,...,T3 


and Ci+ can be obtained as in the penalty function method. 

The main advantage of this over the Penalty Function method 

is related to the problem of "ill-conditioning" which sometimes occurs 

when very high penalty parameter values are needed to induce convergence. 

In the method of multipliers, owing to the multiplier iteration (4.7.45),
 

convergence is brought about at moderate C. values avoiding the previous
1 

problem and exhibiting a faster convergence rate. These benefits,
 

however, are realized only if the initial multiplier values are close
 

to the ones at the optimal point. In the event that the initial
 

guesses are "bad", the method may diverge or take too many interations
 

to converge. We have found that in optimal control problems, where
 

there are many binding state constraints, guessing good initial multi

plier values can be a formidable assignment. For this reason and
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provided that there are no "ill-conditioning" problems, the simpler
 

'Penalty Function-method is also safer to use.
 

This section discussed procedures for handling probabilistic
 

state constraints and completed the third basic step in the design
 

of the controller. A last issue concerning the appropriate specifica

tion of the control horizon T in relation to the Continuing Operations
 

system requirement is the topic of this chapter's concluding section.
 

4.7.2. The Continuing Operations System Requirement
 

Reservoir systems are expected to satisfactorily operate
 

throughout a long-time span. In fact the actual length of the operating
 

horizon depends on a variety of physical and socioeconomic factors and
 

cannot be a priori determined. At the same time mathematical formulations
 

aiding month-to-month or day-to-day operation should be well defined and 

computationally efficient. Long-term optimal performance can be 

guaranteed by optimizing the system.model over a control horizon T 

which is of the same order of magnitude as the system's expected life

time. However, taking T longer will result in heavier computational re

quirements and this may render the control procedure inefficient. If 

the controller was one of the optimal feedback types presented in 

Section 4.4, there would be no other choice; the parameter T woujd have 

to represent an estimate of the system's operational life. In contrast, 

the OLF control procedure does not seek to a priori determine the best 

feedback laws at all decision times. Rather, it seeks to specify the 

best controls , k=0,...,T-l one at a time. Within this framework, 

the best T choice is evidently to consider the shortest control horizon 
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that reveals the optimal decision for the immediately upcoming time
 

period. In other words, if this opimal terminal time is denoted by Tk,
 

then [k,Tk] is the shortest interval [k,T] for which the first member of
 

the OLF optimal trajectories (,.... 
 _i} has settled to a constant
.*
 

vector. The fact that remains constant for T greater than some
 

characteristic value can be formally proved by use of Contraction Mapping
 

theory (Bertsekas, 1976, Chapter 6, and specifically, Section 6.7). This
 

behavior also makes 4.tuitive sense becau-'e system conditions in the remote
 

future are not expected to influence present decision making.
 

Among other factors the length [k,Tk] depends on the specification
 

of the terminal cost term ZTk(6sTk) or ZTk(6sTk/k). (The other factors
 

are related to the inputs' variability and periodicities, the state and
 

control constraints, and the rest of the performance index, all of which
 

are specified for a particular system.) The term T ) allows one to
 
Tk
 

drive the system's state to any desirable vector sT 1k at the end of
 

the control horizon. This is accomplished by penalizing the deviations
 

of the terminal time state away from sTk/k. If the penalty is much
 

T-1
 
higher than all the other costs I ZZ(Os/k, ), then the controller
 

Z=k
 

will first make sure that on the average the terminal state is close to
 

_, 
 T-1
 
Tk1k and next will be concerned with minimizing Z O( /6)
 
k Zk 

Yet, if the penalty is not significant, the generated trajectories will
 

T-1l
 
minimize 6 paying no attention to where the terminal
Z(Ssk, U) 


state vector will end up. As the terminal system's state will also
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determine the initial conditions for subsequent operations, correct
 

specification of 2.5.) is in general instrumental to the long-term
 
k
 

system performance. However, owing to its structure, the Open Loop Feed

back controle-.' is not so critically dependent upon these specifications. 

In this procedure using some incorrect ZT(.) will only prolong the 

control horizon [k,Tk] required to reveal the optimal u. One can then 
determine Tk by assuming a reasonable %(-) and trying progressively 

k k 
longer control horizons [k,T]. Tk will be the time for which the first 

decision Uk remains constant in all optimal trajectories (uk,...,uT_I} 

for T > Tk 

For cases where the above procedure fails to identify relatively 

short control horizons, one might consider answering a more direct 

question: namely, how to determine whi .c corresponds to some 
k 

Orespecified T . Toward this end consider the problem of: 

T-1 -
minimizing I Z (6;/6u ) + ZT(6; (4.7.46) 

- l £ 

subject to all system constraints where T is much greater than Tk and
 

IT(') is dominated by the other running costs. According to the

Ta
 

Dynamic Programming Algorithm A4.4.1, this problem can be solved in
 

two steps where in the first we find the minimum:
 

T-1
 

(6 ) . Z~ Z O) es + 1.(6s)(7.) (4.7.47)k(Tk/k =Z=Tk Z k/k, T(2T) 

solving the dynamic program from time T to time Tk and in the second we 
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4 

TkT1l
 
( 6 ;minimize d(S; 6/aZ + (4.7.47)

T- ./k(
 

subject to all related system constaints. From Eq. (4.7.48) we
 

conclude that the terminal cost term should approximate the "cost to go" 

JT'). In practice JT(.) will have to be obtained in discretized
 
Tk k
 

form by solving (4.7.47) for different initial state vectors 6s
-T k'
 
However, these computations can be performed off-line (a priori) and the
 

resulting JT (.) can be approximated by some analytical function which
 

will serve as 
:he terminal cost term for all on-lire(real time) opera

tions.
 

The previous discussion completes the.design of the Open Loop
 

Feedback controller for the solution of the reservoir operation problem.
 

Algorithm A4.6.1 modifed by the quadratic penalty terms from the
 

probabilistic constraint violations is used at each decision time k=0,1,...
 

to identify the optimal action 
 to be applied throughout the period
 

[tk, tk+l]. 
 (If it fails to do so, the conclusion to be drawn is that
 

the system cannot control the input process so as 
to meet its objectives
 

at the specified reliability levels. 
 These levels should then b- relaxed
 

and the procedure repeated.) 
 Between such computation cycles,'measurements
 

of the observable system quantities become available and can help
 

update the statistics of the state's Gaussian p.d.f. p(s /Ik). 
The
 

equations for the update step (Extended Kalman Filter) are included
 

in Appendix G.
 

The method developed here will be called Extended Linear Quadratic
 

Gaussian control 
(ELQG) because it shares similar analytical
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characteristics with the Linear Quadratic Gaussian control solution and
 

in addition it can be employed to nonlinear, constrained, and non

quadratic problems. 
The following chapters report computational
 

experience in reservoir operation case studies.
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CHAPTER 5
 

-ASINGLE RESERVOIR CASE STUDY
 

5.1 Introduction and Overview
 

The ELQG control method was theoretically designed to exhibit
 

reliabilit7 and computational efficient7 for addressing dimensionally
 

large systems. The case study presented in this chapter will be a
 

first verification and test of the new method's potential in real
 

time decision making. It concerns the operation of Egypt's High
 

Aswan Dam for more efficient use of the River Nile waters.
 

After discussing and formulating the control problem, ELQG
 

will be employed in several experimental runs revealing various per

formance aspects. The runs will also identify certain system idiosyn

cracies which are subsequently exploited in setting up an appropriate
 

sequential control scheme. A record of historical inilow data will
 

then be used in a simulation analysis to compare ELQG's performance
 

with other control methods. The chapter will conclude with reference
 

to some system specific policy-making issues.
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5.2 The High Aswan Dam: 
 Hydrologic and Operational Characteristics
 

Calmly flowing from the Equatorial Lakes or turbulently from
 

the Ethiopian highlands, the River Nile has historically been the
 

only source of livelihood to Egypt. Being so vital, the Nile has long
 

become the subjo'ct of studies seeking to modulate its markedly variable
 

flows and create a source of dependable water supply. These efforts
 

have: begun nearly 6,000 years ago with the construction of a masonry
 

dam about 20 km to the south of Cairo (El Assiouti et al., 1979) and
 

culminated in 1968 with the completion of the High Aswan Dam (HAD)
 

located by the Egyptian-Sudanese borders (see Figure 5.2.1).
 

Egypt experiences a semi-arid climate and except for a narrow
 

coastal zone to the north of 
the Nile's Delta receives virtually no
 

rain. :A groundwater aquifer exiating below the Delta region is solely
 

recharged with seepage water from the river and, consequently, the Nile
 

is Egypt's only source of fresh water supply. Figure 5.2.2 gives the
 

average monthly Nile flows based on observed data over the period
 

1912 to 1965 at Wadi Haia (see Figure 5.2.1 and Appendix H). The
 

apparent seasonal variability is a consequence of the different hydro

logic responses characterizing the major Main Nile tributaries, namely,
 

the W~hite and the Blue Nile. 
 The first, contributing about one-third
 

of the yearly total, flows evenly throughout the year,while the second
 

is responsible for the violent floods arriving in August, September,
 

and October. Apart from this pronounced variation within a year,
 

the Nile also exhibits significant overyear variability. During
 

high flood years, the water passing by Wadi Halfa may reach 140 
3 3 93) 

milliard cubic metters (1 milliard m = 1 billion m = 109 ) 
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while during drought period; it may fall to 50 milliard cubic meters,
 

the bistorical average being approximately 34 (Buchanan and Bras, 1981).
 

Table 5.2.1 summarizes these characteristics by reporting the monthly
 

means, standard deviations, correlation coefficients, minimum, and
 

maximum observed flows calculated on the basis of the 1912-1965 data
 

record included in Appendix H.
 

The High Aswan Dam is by far the most effective control project
 

in the Nile basin. It has a storage capacity of 168 milliard cubic
 

meters, 32.7 of which comprise its dead storage (see Figure 5.2.3)
 

allocated for silt deposits and estimated to last 460-500 years.
 

Water can be released at a controllable rate through a diversion
 

channel which eventually divides into 24 branches. Twelve of these
 

branches are feeding the 12 turbine power plants while the rest are
 

designed to bypass the turbines and, if necessary,- discharge up to 1
 

milliard cubic meters of water per day. However, the downstream river
 

channel and water distribution network cannot transport releases higher
 

than 0.25 to 0.275 milliard m3/d for fear of severe damages due to
 

bank erosion. To alleviate the possibility of excessive releases,
 

the Toshka spillway was constructed on the western bank of the reser

voir's lake (Lake Nasser). The spillway is a free-flow channel operating
 

when the water elevation exceeds 178 m (above sea level) or equivalently

3
 

when the storage exceeds the volume of 137.7 milliard m . It is designed 

to dispose of 0.25 milliard m per day when the reservoir elevation
 

reaches 182.6 m. The water is directed into the Toshka depression
 

where it evaporates. An emergency spillway is also situated on the
 

reservoir's western bank and it begins to operate at 182.6 meters water
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TABLE 5.2.1: MONTHLY NILE FLOW STATISTICS (WADI HALFA)
 

Expected St. Correlation 
Value Deviation Coefficient Minimum Maximum 

Month (xl0 m3) (xlO m3 ) (xl0 9 m (xO 9. m 

Jan. 3.507 0.734 0.9080 2.040 5.750 

Feb. 2.452 0.681 0.7503 1.420 5.080 

Mar. 2.275 0.661 0.8649 1.260 4.810 

Apr. 2.042 0.685 0.8714 1.050 4.540 

May 1.924 0.750 0.7953 0.880 4.340 

June 2.073 0.772 0.4955 1.000 4.520 

July 5.170 1.516 0.6377 2.230 10.000 

Aug. 19.448 3.821 0.7115 7.680 27.100 

Sept. 21.991 3.745 0.7851 13,400 31.700 

Oct. 14.605 3.125 0.8070 .7.860 24.200 

Nov. 7.166 1.752 0.8948 4.1.40 12.200 

Dec. 4.538 0.857 0.9206 2.990 7,060 
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level. Its purpose is to discharge in the downstream river channel
 

all flood water that would raise the water level above 183.0 m.
 

Due to the semi-arid climate,HAD suffers heavy evaporation
 

losses. The distribution of the average monthly evaportation rates
 

presented in Figure 5.2.4 (Buchanan and Bras, 1981) results in a mean
 

annual value of 2700 millimeters (mm). Multiplied by the yearly average
 

3
surface area, this rate causes the loss of 10 to 15 milliard m of water
 

per year. Other losses of smaller magnitude are due to seepage and rock
 

saturation (El Assiouti et al. 1979).
 

The primary operational objective of the HAD is to satisfy the
 

Egyptian agricultural, municipal, and industrial water needs. 
 On a
 

monthly basis these downstream water supply requirements follow the dis

tribution shown in Figure 5.2.5. They amount to 55.5 milliard m 
3 

per
 

year. Comparing the previous distribution with- that of the inflows
 

(Figure 5.2.1), the H.D important role as a regulation project becomes
 

apparent.
 

The other primar- objective of the operation is to provide flood
 

protection which, as mentioned, translates to preventing channel degrada

tion.
 

Lastly but very importantly, HAD is the major energy supplier
 

to the Egyptian Power system aid currently satisfies about half of its
 

total demand. Each of the twelve Francis turbines has 175 Megawatt
 

power capacity and can operate under net hydraulic head ranging between
 

35 and 77 meters. Assuming a tailwater elevation of 108 m (see Figure
 

5.2.3) and neglecting hydraulic friction losees, it follows 
that the
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the turbines can operate between water levels 143 and 185 meters; that
 

is, at all levels above the dead storage zone (47 m). Figure 5.2.6
 

(adopted from El Assiouti et al., 1979) sHovs the nominal relationship
 

of the power with the discharge and net hydrualic head. The actual
 

energy production is also a function of the load factor an average value
 

which is 0.70. For maintenance purposes two turbines are always inopera

tive,and this reduces the available power capacity to 1750 Mw. Consider

ing energy generation only, HAD should be operated at high reservoir
 

elevations with uniform releases throughout the year (base power
 

station). However, this mode of operation is in conflict with the water
 

supply and flood control objecttves for uses such as agriculture and
 

flood control which suggests more detailed analysis.
 

The River Nile is also of great importance for the country of
 

Sudan. By the Nile Water Agreement (1959) Egypt and Sudan established
 
3
 

From the 84 milliard m3
the following rights on the Nile waters: 


yearly average at Wadi Halfa, Egypt is entitled to use 55.5 milliard
 

3 3
 
m while Sudan's share is 18.5 milliard m . The remaining 10 milliard 

3 
m correspond to the yearly losses from the reservoir and cannot be used.
 

Figure 5.2.7 gives the estimated monthly Sudan abstractions in percentages
 

of the yearly total. This information is necessary for the 1912-1965
 

historical data to simulate present or future conditions because the
 

record assumes very little or no Sudan abstractions. The agreement also
 

determines that ea-h country accrues equal shares from the water bene

fits of proposed upstream conservation projects. The projects CJonglei I,
 

Machar Marshes, Jonglei I1, Bahr el Ghazal) are expected to increase the
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Nile's yearly average yield at Wadi Halfa by about 19 milliard m3
 

(UNDP TR 14) adding another 9.5 milliard m3 to each country's share. 

These additional quantities are necessary to counter balance the 

expected water shortages from intensive development scenarios in Egypt 

and Sudan. 

In summary, the HAD operation calls far satisfying the growing 

downstream water supply requirements, providing reliable flood protec

tion, and producing as much energy as possible under changing hydrologic 

conditions. With regard to flood control, it could be argued that the 

construction of the Toshka spillway has essentially alleviated any 

associated threat. This is indeed correct; however, it also has 

created another :,jerious concern - that is, to avoid the Toshka spills 

as much.as possible so that the otherwise wasted water can be used 

for energy generation and water supply purposes within the constraints 

imposed by channel degradation. In an era when the water availability 

constrains the country's development, Egypt can use all additional bene

fits resulting from a more effective HAD management.
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5.3 	 Previous Studies on the HAD
 

Classified by the adopted optimization procedure, the studies
 

on 	the HAD can be distinguished into Linear and Dynamic Programming
 

models.
 

The 	models of the first category (Thomas and Revelle, 1966;
 

Guariso, et al. 1979, 1980) assume a deterministic inflow sequence
 

(average or historical monthly flows) and a linear water balance
 

reservoir-model (fixed evaporation losses), and they attempt to deter

mine the tradeoff curve between agriculture and hydropower. For a
 

system uf highly varying, nonstationary flows with multi-year control
 

capability, this approach can produce questionable results and should
 

not be used in real time operation planning. The reason for this is
 

that the Pareto Optimal solutions identified on the basis of suboptimal
 

modeling assumptions most likely belong to the inferior solution set
 

of the true stochastic problem.
 

The Dynamic Programming models (El Assiouti, et al., 1979;
 

Alarcon and Marks, 1979; Buchanan and Bras, 1981; Thompson, 1981)
 

incorporate the river flow uncertainty through a Markov chain repre

sentation. For the control of a single reservoir in monthly time
 

incremerits, the basic procedure is as follows:
 

Denote
 

m: 	 the number of complete years remaining until the end of the
 

control horizon
 

n: 	 the number of months remaining until the end of the control
 

horizon,
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t: 	 the number cf months remaining in the current year (notice
 

that if n is the present month, n+l is the preceding one
 

and that n - 12m + t)
 
i ith
 
s : 	the i discrete value of the reservoir storage at the
 n 

beginning of month n, i = 1, 2, ... , I, 

The jth discrete value of the river flow during month n, 
n 

j - 1, 2, ... , J, 

will occur given that wn
 pP : The probability that inflow wn n+l 

has just been realized. 

The river flows are axumed to follow a lag one periodically stationary 

Markov chain where 

Pjk t jk all j k, m, t. 	 (5.3.1)
Pl2m+ Pt 

i
The system incurs a cost g (sn, Sn U) when the beginning of the month 

storage was si, the inflow Wi is realized and the amount u is released. 

n n n 

The cost functions are also periodically stationary in the following 

sense:
 

2m+t, +t, 	 wi12m+t(swi Ul2m+ t ) O , u ), all ij, m,t. 

(5.3.2)
 

It 	is assumed that both variables sn and wn+l are perfectly known at
 

the end of month n+l, and the:objective is o determine the sequence of
 

feedback control laws 

* * i i 

u n(s, Wn+l, all n, i, j (5.3.3) 
n= n n ~ 1 
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which minimize the expected cost
 

T

EfI yO y w, P£U 
 5.3.4)
 

over a control horizonT subject to the system dynamics
 

Sk = S + n - u - L (s Wn U) 
 (5.3.5)
 
n-i n 
 n n n n n n
 

and the other system-constraints on the reservoir release
 

mmn max
 
U < u < U , all n
 n - n - n 

The term L (.,.,.) in Equation (5.3.5) represents the various resern
 

voir losses and it is also assumed to be periodically stationary.

The storage capacity constaints 
 n< < max. are accounted for 

n  n  n
 
m in


when quantizing the range [sn 
 s 
max 

in I discrete levs.
 
n n
 

The solution is obtained through the D.P. recursive equation
 

which specifies that for each month the optima. policy is determined
 

by
 

n' ara{min pj[,i, (si k,
(s=Iwn* 

*(i a k )+
u k
 

n 

+ J n-' w) (5.3.7)
 

where sz 
 is given by Equation (5.3.5). The "cost to go-2 J- (sn - ' k
 

is obtained recursively via
 

Jn sn n+l) = .jkn gn Sn k ij (si , k (i ' Wn' nC* n Wn+l) ++
 

2k
 

(n)
+ Jn-i n-i' w (5.3.8)
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starting from some terminal condition Ja(6,').
 

This is the stationary or Steady State Dynamic Programming model
 

(SSDP) , which for an adequately long control horizon yields optimal
 

policies also exhibiting periodic stationarity
 

* i " * i "~ 

1 (2m+t(Sl2m+t, = t , W3), all i,j,mt. (5.3.9)1l2m+t+l ) 1J(s 

Apart from the straightforward D.P. recursion, the stationary policies
 

can be obtained more efficiently via the methods of Successive Approxi

mations (Su and Deininger, 1972), or Policy Iteration (Howard, 1970i
 

Bertsekas, 1976).
 

Due to its stationarity assumptions, SSDP c~n beneficially character

ize the average system behavior. Toward extending its applicability to
 

nonstationary systems, the modification suggested by Btchanan and Bras,
 

1981, has proved effective. According to their procedure, a multi-lag
 

stochastic model fitted to the inflow process (Curry an6 Bras, 1980)
 

uses real time observations to issue forecasts at each time step of
 

the system's operation. The forecasts update the M4arkovian transition
 

probabilities TF months into the future as long as there is a signifi

cant gain over the a priori estimates. An ordinary D.P. procedure then
 

determines the optimal policies from time TF up to the present using
 

SSDP's "cost to go" JTF(0,). Next, the current month's control action
 

is taken and the procedure is repeated at the following decision time.
 

This model, structured according to the Open Loop Feedback cont:rol
 

philosophy, will be referred to as Adaptive Markov Dynamic Programming
 

(AMDP). Having the ability to more accurately anticipate future
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conditions, AIMP was found to exhibit improved performance with respect
 

to SSDP, especially at times when the reservoir's storage approaches
 

critical flood or drought levels. 
The idea behind utilizing forecasted
 

information is the basis of an efficient suboptimal control procedure
 

known as Partial Open Loop Feedback Control (Bertsekas, 1976, Section
 

5.5) and will also be exploited in this work in a different setting.
 

Inherent disadvantages of the previous D.P. procedures are 
(1) their
 

requirement to discretize the reservoir storage and inflow variables, and
 

(2) their-inability to explicitly satisfy reliability constraints. 
As a
 

result of the first, the identified policies are approximations of the
 

true optimal ones with the "goodness" of the approximation directly
 

dependent upon the "fineness" of the quantization. As a result of the
 

second, the above procedures cannot reconstruct the Pareto Optimal Surface
 

discussed in Section 4.2. 
 Lastly, their application :o multireservoir
 

cases is prohibited by "dimensionality" limitations.
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5.4 Extended Linear Quadratic Gaussian Control
 

The purpose of this section is to outline the steps of tuning the
 

basic ELQC procedure to the idiosyncracies of a partizular control
 

problem. There is no doubt that the availability of powerful analytical
 

tools potentially offers an advantage; yet, their "blind" usage could
 

easily lead to costly implementation failures. Thus, these steps should
 

be carried out with an intuitive understanding of the system's character

istics.
 

The emphasis of the case study is placed on the control aspects
 

of the HAD management problem. The system identification part will
 

not be addressed; instead, we shall employ modeling assumptions and
 

parameter values which are consistent with those of-previous studies.
 

In this way,'fair grounds can be established for comparisons and safe
 

conclusions can be drawn.
 

5.4.1 Reservoir Dynamics
 

Let s(t) denote the HAD storage at time t, let w(t), u(t), q(s(t)),
 

e(t) respectively denote the inflow, release, Toshka outflow, and
 

evaporation rates, and let A(s(t)) be the area-storage reservoir
 

relationship. Then, the following water balance differential equation
 

can be written to model the reservoir dynamics:
 

ds(t)dt = -e(.) A(s(t)) - q(s(t)) - u(t) + w(t) (5.4.1) 

Equation (5.4.1) assumes that reservoir losses due to causes other
 

than evaporation are negligible or that they can adequately be
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accounted for by properly adjusting e(t). Regarding the form of
 

A(s(t)), the following analytic function has been fitted to and well
 

approximates available survey data (Alarcon and Marks, 1979):
 

A(s(t)) = -3164.28 + 25.4914 s(t) + 1092.92 ln(s(t)). (5.4.2) 

The above gives the resurvoir's surface area in square kilometers (kn 2 ) 

when the storage volume is expressed in milliard cubic meters (109 m3
 

This function is plotted in Figure 5.4.1 (solid line) together with
 

the similarly obtained elevation-storage relationship (dashed line):
 

H(s(t)) = 79.9734 + 0.03698 s(t) + 18.8705 in(s(t)). (5.4.3)
 

Again, the reservoir elevation H(s(c)) is obtained in meters when the
 
3
 

storage is expressed in milliard m , The Toshka outflow rate is related 

to the reservoir storage through (Buchanan and Bras, 1981): 

0, if H(s(t)) < 178.0 m 

q(s(t)) = -<5.4.4) 

0.019 [H(s(t)) - 178.0] 5 / 3 , if H(s(t))>178.0 m } 

3 

where q(s(t)) is obtained in milliard m 
per day when the elevation is
 

in meters.
 

Next, we consider a mean inflow and release time trajectories

tT tT 

{ )} = {w(t)}t=t and ask how the system is expected to respond 
k9 k
 

over the interval [tk)tT] under these inputs. In other words, we are
 

interested in tracing the corresponding mean storage trajectory
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,tT
 

-sc~lftT from some initial condition s (ty. Mathematically this
 

can be accomplished by integrating Equation (5.4.1) with inputs and
 

initial condition as stated above:
 

ds(t)= f(s(t),) - ut) + w(t), (5.4.5)
t ~) 545 

dt f( 

StT
 

where f(s(t)= -e(t) A(st)) -qCsCt)) and s( u(t), w(t)} t=,aze given. 

This is a nonlinear differential equation whose solution can be
 

accurately obtained by some numerical integration routine (a 5
th and 

6 t Runge Kutta numerical scheme was employed in this work). After 
tT 

obtaining (s(t)} t= we can construct the continuous time perturba
k 

tion system model corresponding to the previous nominal trajectories.
 

Define:
 

cs(t) .* s(t) -() 

6u(t) u(t) -(t), 
(5.4.6) 

C(t) - w(t) -(t),
 

tEtk, t T
 

and expand f(s(t),t) = -e(t)A(s(t)) - q(s(t)) around s(t): 

f(s(t),t) fFf(s(t),t)] s(t) = 

,+s(t)'-s(t)=s(t)
 

= f(s(t) + f (s(),t) 6s(t). (5.4.7) 

Subtracting (5.4.5> from (.5.4.1) and taking into account (5.4.6) and
 

(5.4.7) we find
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(5.4.8)dt f1 (S(t,)s(t) - 6u(.t) + (t) 

where f (t(t),t) = -e(t) [LAsct.s(t= (s(t) ) (5.4.9) 

Thi1s is the continuous time linear perturbation model which we shall
 

use in place of Equation (5.4.1) in the ELQG computations corresponding
 

to the hypothesized nominal trajectories. Its credibility depends on
 

how well the approximation [f(sct),t) + f1(s(t),t)6s(t)] represents the
 

function f(s(t),t) over the possible variation range of s(t). Figure
 

5.4.2 shows a plot of the nonlinear term f(s(t),t) -e(t) A(s(t))-q(s(t))
 

3for e(t) = 0.0065 m per day - an average evaporation rate from Figure
 

5.2.4 	 upr to the storage where the Toshka'spillway starts functioning
 

9 3
 
(about 137.7 x 10 m ), this term !s very mildly nonlinear. Beyond
 

this value the Toshka outflow dominates and establishes a new trend
 

drastically different from the previous one. Although the transition
 

from segment ab to bc is highly nonlinear, it will not jeopardize
 

the approximation (5.4.8). This is true because one of the system's
 

operational constraints will be to maintain the reservoir's storage
 

in the segment ab (to avoid wasting water). The possible variation 

range of s(t) is specified by the corresponding probability density 

function. It will be seen that the irterval [s(t) - 2 PS t), 
=
s(.t) 2P (t)], where P (t) is the associated standard deviation, will
 

93
 
not exceed 20 x 10 m . Over this range and within the segment ab,
 

the nonlinear term f(s(t),t) and itn linear approximation are practically
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identical. As noted in Section 4.6, due to this attribute, the
 

ELQC control method is expected to exhibit fast cat least quadratic)
 

convergence rate. In cases where substantial nonlinearities exist
 

in the system dynamics, one should prefer using statistical rather
 

than Taylor series linea-ization (see end of Section 4.3).
 

Returning to the perturbation model (5.4.8), we have the
 

following expression for the term fl(s(t), t) over the segment ab on 

Figure 5.4.2:
 

f1(s(t)'t) 10 6 eCt)'[25.4914 + 1092.92 1 (5.4.10)1' s(t) 

:(s(t),t) is obtained in milliard
where 1. m3per x time units when
1


3s(t) is in milliard m and eC") is expressed in millimeters per x time 

units (x being any time interval).
 

Being interested in monthly policies, we can convert Equation
 

(5.4.8) into its discrete time counterpart by integrating it over the
 

monthly periods [tV, +1], Z=k, k+l, ..., T-1. As has been derived for
 

the general case in Section 4.3, the result is the following discrete
 

time system model:
 

6s +l = O 6sz + B 6uz6u + (5.4.11)
 

Z=k, k+l, ... , T-1 

where 6ss = $3(tz) = s(t ) - s(t ), (5.4.12) 

6u z = 61L(t ) = u(t ) - u(t£), (5.4.13) 

tz+ 1 tZ), (5.4.14)= 
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dO	(:,tZ)-

B= f ((T,T) d(T, 
 (5.4.15) 

B2 	 )= (5.4.16) 
zt 

E{ = 0 (5.4.17) 

0, if LOU 
E= PQ %(tY t~ 2 (tZ~,T)dT if Zp(5. 4.1) 

t. 

t-k, ... , T-1 

The derivation assumes that the releases are constant within eac- monthly
 

interval:
 

{du(T) - 6u(t2 ), C[t, tZ+l), Zk, ... , 	 T-l} (5.4.12) 

and that the same is true for the spectral density of the random inflowT
 

{Qw() = Qw(tz), Tct2 , t+l ), L=k, ... , T-1} . (5.4.20)
 

Detailed discussion concerning the specification of the random inflow
 

statistics will be givan in the following section.
 

The basic computations in deriving the discrete time system
 

model (5.4.11) are associated with the integrations in (5.4.15), (5.A.1.6),
 

and (5.4.18). These can be carried out in a systematic way by taking
 

advantage of the following state transition coefficient property (c.f.
 

Equation (4.3.20): 
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(tZ+i, tZ) - 0(t+,T) 0(T,tZ) 	 (5.4.21) 

from which
 

,r) = ( t) (5.4.22)
 

Substituting (5.4.121 in (5.4.16) and (5.4.18) we find that the
 

previous integraions can be performed as follows:
 

Simultaneously integrate
 

d 	 (r,tt) 

dT = fl(s(r),T) c(Ttz), 4(tz,tz) = 1, (5.4.23) 

d 	B(T,tz) 1d (,it
1 	 B(tz'tz) 0,S (5.4.24)
 

d Q (T,tz) ____ 

dT = ¢22Q(T,tz (tt)= 0, (5.4.25) 

over the interval [t,,tZ+l] Z=k, ... , T-1. Then, compute ¢, BZ, 

E 2} = Q from 

, 


(t9l t9) , (5.4.26) 

BZ = O B(t2+ltz), (5.4.27) 

= (t2) 2 Q (t+tz). (5.4.28: 

Actually, the integration of (5.4.23), (5.4.24), and (5.4.25) can also 

be combined with the one of Equation (5.4.5) to yield all the sequences
tT T 
{s(t)}t ¢,B E2} 1 
{ t) (IpZB, E( I"}=k in one forward pass from time tk to tT' 
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As has been derived in Section 4.5 (Equation (4.5.9)), the need 

to compute QZ , Z=k. ..., T-1, is related to the propagation of the 

state's variance: 

2 s /k=+ Q P (5.4.22) 

2 "k, ... , T-1. 

The zero initial condition reflects the fact that at time k, i.e., the
 

present time, reservoir storage is accurately known. Equivalent to
 

(5.4.29), the state variance can be obtained from continuous time
 

considerations. It can be shown (Gelb, 1974, Section 3.7) that
 

df (t) 
s 2f1(s(t),t) P (r) + s Qw(t)dt (5.4.30)
 

2 2where P (t) = E{[s(t)-s(t)1 } = E(6s ()}. (5.4.31)
S 

Starting from Ps(t) Psk/k 0, Equation (5.4.30) can be integrated 

and provide the variance Ps/k = PS(t ) at any time t, Z=k, ..., T-1. 

Hence, in place of (5.4.25) we can integrate (5.4.30) together with 

(5.4.5), (5.4.23), (5.4.2.4) and obtain in one forward pass the mean
 

and variance trajectories along with the state and control coefficients
 

of the discrete time model. This is how these computations were
 

organized here with a 5th and 6th order Runge Kutta routine performing
 

the integrations.
 

Throughout this section is has been assumed that the statistics 

of the random inflow process {(t), Q?(t); t[rtktTD are known for the 

computations performed at time tk' However in reality, inflow data 
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are provided in discrete time form as in Appendix R. A procedure
 

for retrieving the necessary information from such records and
 

a procedure for incoporating forecasted information are discussed in
 

the next section.
 

5.4.2 Inf!ow Statistics 

In reality, inflow w(t) is a continuous time stochastic 

process. Therefore, its complete characterization would require 

knowledge of all joint probability density functions P(w(t1 ), w(t2),..., 

W(t ), t i t "'.,tn) where {tl, t2 , ..., tn} is any set of 

time instants. In general, however, such characterization is not only
 

very difficult to establish but it also includes much more information
 

tha is actually needed. For example, a monthly control model is not
 

so concerned with hourly or daily variations as it is with monthly
 

characteristics. On the other hand, since water is being delivered
 

and affects storage, elevation, power production, evaporation, etc.,
 

continuously over the month, we find it appropriate to derive the
 

discrete time system model from the continuous time formulation rather
 

than assume discrete system dynamics. The question is how to define
 

a continuous time random process reproducing monthly inflow character

istics.
 

Assume for now that the amount of water delivered by the inflow
 

process during a particular month is independent of any other month's
 

water yield. Let w., i=l, ..., 12 denote the corresponding random
 

variables. From a monthly data record (as, for instance, in Appendix H)
 

one can determine the first two sample statistical moments wi, Qw ;
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i=1, ..., 12} (as in Table 5.2.1). Consider now a continuous time
 

white Gaussian process wi(t) such that
 

i+ 

Wi wi s)ds (5.4.32) 

ti 

where time instants ti, ti+1 designate the beginning and end of month
 

i. Our intention is to determine the properties of the process wi(t)
 

which preserves up to 2nd statistical moment the correspondence expressed
 

by Equation (5.4.32). The arbitrary Gaussian assumption is a mathematical
 

translation that we are only concerned with the first two 
statistical
 

moments. Additionally, based on this section's introductory remarks,
 

it will be assumed that over month i, w (s) is characterized by consant
 
i 

mean CE{wi(s)} = w i(s), s[ti' i+ ) and constant spectral density 

(E{(wi)(r) r))(wi(s) - wi(s))} = i (r)6(r-s), (r,s)sEti,ti+l). 

We can now specify the parameters .(s), Q (s) by means of Equation 

(5.4.32) as follows: Taking expectations of Loh sides we find
 

i+ wt 

Lt~w 

sdsl
 

E{w } =E f ds) 
 (5.4.33)
 

or, since expectation and integration can be interchanged as linear
 

operators,
 

ti+l
 

( s ) d s " w, 
 wi (5.4.34) 

However, by assumption wi(s) is constant over i,t i+l) and
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(S - ,sEt [ ii+l) (5.4.35) 

Regarding the variance of w. we have
 

([=sEi+lw (s~ds 
ii 

t i+l 

W E f ws) -

' 2}1 

f i+l 

J (s wis ds = 

- E fi+l [ wi(S) 

ti 
t" i+l f ti+l 

- -(s)ddsr 

S:{: =E wi(r) -wi(r)]([w±s) - wi(s)] drdj 

= Ei(r) 
 (r-s) drds =
 

It t
 

i t i
 

ti+J 
-f %w(Odr. (5.4.36) 

And because %(r) was asstmed constant throughout [ti c ). we 

finally find 

Qwi(S) = t i+1 _ i ,s [ti ,  ti+i) . (5.4.37)
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Equationa (5,4,37) and (5,4,35) completely define the continuous
 

time Gaussian random process wi(t), i=l, ,,, 12, which is needed
 

to produce first and second moment effects consistent with the monthly
 

lumped inflows,
 

Consider now the case where the independence assumption.concern

ing the variables wl, i=l, ,,,, 12, is no longer valid. Namely, 

assume that one could look at the previous months' inflows and more
 

accurately predict the inflows of forthcoming months, To efficiently
 

incorporate this possibility, the idea of the Partial Open loop Feed

back Control (Bertsekas, 1976) can be very effective. First, a valid
 

forecasting model should be identified based on 
the available inflow
 

data. Then at each decision time tk this model uses past observations
 

to forecast the probability densities of future inflows over the control
 

horizon Itk,t 1 , Adopting the updated inflow p.d.f.s. and assuming
 

statistical independence, the controller obtains the optimal policies
 

and the scheme Js repeated at the next decision time, In other words,
 

at each decision time the forecasting model updates the monthly
 

- k ' 
means and variances Ni, Qw }T Then, the corresponding continuous
 

time statistics {W (s), Qw (S); sEtl,tZ+lk)}= k are also updated via
 

Equation (5,b,37), (5.4,35) and used in the ELQG control method com

putations. According to the POLFC idea, although the existing correla

tion structure is called for to produce better inflow predictions, iL
 

is subsequently ignored in the control operations. Ifowever, the
 

inconsistency is not so influential owing to the OLF procedure seeking
 

not to determine all feedback laws at once but rather sequentially. On
 

the other hand, if correlation was to be optimally accounted for, it
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would require additional state variables (see Bertsekas, 1976, Section
 

2.3) perhaps reducing computational efficiency.
 

Incorporating forecasted information cannot result in worse
 

policies than those obtained without it, but it will not necessarily
 

lead to great improvements, In order to assess the worth of forecasting
 

we shall consider here three models of varying predictive power.
 

The first is based on the a priri monthly statistics and simply fore

casts the monthly means with the corresponding variance. The second
 

is known as Thomas-Fiering model and consists of twelve coupled
 

equations of the following form:
 

Oi+l+P(wi- iww + a (.438wi+1 inWi+l +(i+l,i a i ai+l i+l,i 1+i (5.4.38)
 

=
where Y and a VQw represent the a priori mean and standard 
Si. w i 

deviation of the month i.inflows and P denotes the correlation
 

coefficient between the inflows of months i+l and i (see Table 5.2.1).
 

The random term Ei+l is a zero mean Gaussian variable of unit variance.
 

Given that inflow w. has been realized, the previous equation can
 

be used to forecast the cnditional p.d.f. of wi+ 1 (which is Gaussian
 

under the assumption for Zi+l and the linear form of (5.4.35)) by
 

specifying the conditional mean
 

ai+l
 
w. a Efw + p -(w-_w.+ a ArP E /W.}
i+i/i i+l i+l,i a. i i+l i+
 

ai+l 
+SWi+l Pi+l,i ai (wi-wi) (5.4.39) 

and the variance
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Ei/iE(wi W±+l/i) 2 /w.} = (1 - Qw (5.4.40)i~i+i
 

Similarly, lead-2 forecasts can be obtained by invoking
 

a +2 - Z 
( i+l)wi+2 =w + i+2,i+l l i+l i+2 i+2,i+li+2ii+2ai+2,w -w-)a i+2i+2
 

(5. 4.41) 

and substituting wi+1 by the previously forecasted value:
 

ai+2 w Ew + - (wi-wi )w.} (5.3.42.)
wi+2/i=E{wi+2/wi i+2 + Pi+2,i+li+l,i a wi

wi2/ E (i2i+/) =1-i+2,i+10i+T

- )2 /wi} -p P2 1 ~ 1. • (5.4.43).w 

In general it can be shown (by induction) that the forecasted mean and
 

variance at lead lime. Z are given by 

wi+ ¢ fi wi+ +iI+Zi+Z-1pi+Z-i 1+9-2 ...Pi+l'i i iz (wi-w-i) 

(5.4.44) 

= (1_01-" 2 2 )Q (5.4.45) 
i+z/i iz,i+9-I Pi+9-,i+Z-2* i+! "i 

Since the correlation coefficients are always included in interval 

[-1,11 (with -1,1 limiting cases), the previous formulas show that 

as the forecast lead time increases, wi+/i and Q tend more 
i+i ) wi+Z/i 

towards the corresponding a priori statistics. Equation (5.4.45) also
 

shows that the forecasLed variance 0-wi+ z/- is always less than the a
 

priori Q, with this reduction governed by the factor
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R2 P2 iZ ... P2 (..6
i+2/i Pi+2.,i+Z-l i+l,i (5.4.46) 

also known as R-square statistic
 

Table 5.3.1 gives the coefficient R
2
 

i+z/i If the Thomas-ierin
 

model for the Wadi Halfa Nile flow data included in Appendix H. They
 

have been computed for lead times up to 12 months for forecasts issued
 

from every month of the year.
 

The third forecasting model is the one developed by Curry and Bras,
 

(1980, and also employed in Buchanan and Bras, 1981. It is a multivar

iate regression model using Nile flow obseervations at 8 sites (in

cluding Wadi Halfa). Its predictive capability is better than that of
 

the Thomas-Fiering model as can be verified by comparing Table 5.3.1 to
 

5.3.2 where the R-square statistics for the Curry-Bras forecasting model
 

are consisterty higher (resulting in tighter forecast variances).
 

However, as mentioned, the need of a forecasting model for control
 

purposes should be evaluated according to the relative improvements
 

of the system performance. Measures of the High Aswan Dam operation
 

performance are now discussed.
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LEAD JAN. FEB. MAR. APR. j MY JUNE JULY AUG. SEPT. OCT. NOV. DEC. 

1 0.8245 0.5629 0.7481 0.7594 0.6325 0.2455 0.4066 0.5062 0.6165 0.6512 0.8007 0.8475 

2 0.4641 0.4211 0.5681 0.4803 0.1553 0.0998 0.2058 0.3121 0.4014 0.5215 0.6786 0.6987 

3 0.3472 0.3198 0.3593 0.1179 0.0631 0.0505 0.1269 0.2032 0.3214 0.4419 0.5595 0.3933 

4 0.2636 0.2023 0.0882 0.0479 0.0320 0.0311 0.0826 0.1627 0.2724 0.3644 0.3149 0.2942 

5 0.1668 0.0497 0.0359 0.0243 0.0197 0.0203 0.0662 0.1379 0.2246 0.2051 0.2356 0.2234 

6 0.0409 0.0202 0.0182 0.0150 0.0128 0.0162 0-0561 0.1137 0.1264 0.1534 0.1789 0.1413 

7 0.0166 0.0102 0.0112 0.0097 0.0103 0.0138 0.0462 0.0640 0.0946 0.1165 0.1132 0.0347 

8 0.0084 0.0063 0.0073 0.0078 0.0087 0.0.13 0.0260 0.0479 0.0718 0.0737 0.0278 0.0141 

9 0.0052 0.0041 0.0058 0.0066 0.0072 0.0064 0.0195 0.0364 0.0454 0.9181 0.0113 0.0071 

10 0.0034 0.0033 0.0049 0.0055 0.0040 0.0048 0.0148 0.0230 0.0112 0.0074 0.0057 0.0044 

11 0.0027 0.0028 0.0041 0.0031 0.0030 0.0036 0.0093 0.0056 0.0045 0.0037 0.0035 0.0029 

12 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 

2 
TABLE 5.3.1: R COEFFICIENTS FOR THE TIIOMAS-FIERING MODEL 

(i DENOTES TIE MONTH FROM WHICH AN 2£-LEAD FORECAST 

IS ISSUED) 



(Q2InssI SI .LSVoIu0.a 

QV3f---NV IIDIII 1H01&1 IIJ.NOW 311h1 S:I10WN3U T) 

OOLT0 ;T60*0 6860*0 9L80*0 IT9T0 Z61T-1t01 0O-fl6l! 0 6178S-0 189T-0 99Z-6LLZ-0 ZT 

0C-10o LZO0V0 L680*0 LL9T*0 fVL10T'~O -0S~' TOZ9'0 198170 OZ9V0O r.[OC* £161*0 TT 

69Et00 9T60*0 6MLT0 U8170O 990'1*0 LOZ9*0 88LV0O tV9CfjO LETUIO 9TIVO L66V*0 10C00O 01 

0080*0 LZBT10 fL9VO' 01'Pi*0 Zl,9'0 t,[L*U q6rCV0 6LLC7O Sf f7 61TV'O 86Z00O IL90O0 6 

LOIO*O ZLVT10 I6LtO 19ZL0O Z669*0 8*1Z'* 96TWO LT9C0O 6'OQVO £COO ;L90O 9Zf00O V 

986V0 Z969'0 Z96L*0 609L'O09Ot61/' CLN*0 689W0 T6IV'O 9M00 TV 0O 99lvi0 MI0*0 L 

',ISO 696L0 96L'0 C119*0 LLLbIO 9 50 SZLVO 9ZWO tPt17 99,0 0 99-1010 z0zz0 9 

t,Rlf*O Z981*0 1619*0 Z7f8L0 ':0M9O 96LU0 9ZB800 9 U'0 99"iYO OtTO ZCTiV0 [£VSO 

6890' 6L99*0 LOWF 9tlV*O 96c,9'0 [BB810 81817 E';00 ZftO'o tIt)) 13109'0 6M398O0 

C£S90 T689'0 Z66V0 L6Z9*0 IT1V10 It6f2 fAc00 6LZO*0 T6ZZ* 6c,6§0* C106*0 991ff0 c 

6806'0 L0S6J L0L90 fgvr*o Z9ZlI, 0 TLS'1O [COT0 Zoot' 8Z69-0 96Z6'0 66ZR0 86ZL*0 Z 

M96*0 Z8Z6*0 9169*0 172LLO 081LO ZO;L' RSCU80 Z6'0 ZZ96O 68c60 TUZ6*0 69 ; 0 T 

Da AON JI Id3HL~S !),IV A'Ifl-f 3uHC AXVIT lidtV HV14 1M.1 NVfP UV311 



5.4.3 Modelin of Objectives
 

The High Aswan Dam is primarily a water supply and flood
 

protection project and secondly a hydroelectric energy supplier.
 

The downstream water supply requirements presently amount to the
 

monthly quantities reported in Figure 5.2.5 and are satisfied as long
 

as HAD releases are sufficiently high:
 

W.S. 
u£_S.< up*,9£=k, ... , T--I. (5.4.4 ) 

Implicitly, they also induce lower bounds on the reservoir storage to
 

guarantee that there will be enough water to make the previous releases
 

possible. These constraints can only be of a probabilistic nature
 

specifying that
 

riin min
 
Pr [sZ < Z Z, =k, ... , (5.4.48) 

mI
 
where sm can be taken equal to the ceiling of the dead storage zone
 

9 3 Min(32.72 x 10 m ) and yZ-is the permissible probability of violation
 

(i.e., the probability of not meeting the downstream water supply
 

demand). Under the assumption of Gaussian state probability densities
 

with means and variances obtained as discussed in Section 5.4.1
 

(Equation (5.4.5), (5.4.30)), constraint (5.4.48) was seen in Section
 

4.7 to be equivalent to
 

- >min -mmin
 

=
mi min Z-,k ,''',T (5.4.49)
 

min
 
where . is such that
 

rmin
 
mm 
 1 2 min
 

1 e' dz =Z
e2 (.5.4. 50)
 

/2-rO
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min min 
Some reprcsentative y, , z2 pairs follow: 

S min min 
Z z 

0.500 0.000
 

0.100 -1.281
 

0.050 -1.644
 

0.025 -1.960
 

0.005 -2.575
 

0.001 -3.090
 

The flood protection objective translates into channel degrada

tion concerns which specify that monthly releases should not exceed
 

the threshold at 7.6 milliard m per month (or 0.253 x 109 m3 per day):
 

u< uma, =k, ... , T-1. (5.4.51) 

The presence of the Toshka spillway dismisses other flood protec

tion measures but it brings up the issue of minimizing spills so that
 

the resulting water savings can be used in energy generation or for water
 

supply purposes. Hence on upper probabilistic constraint is imposed:
 

P [s > 5 max] , Z=k, .T (5.4.52)2 


or sk s~ a z a x /s/ (5.4.53) 

max ma
 

where smax denoces the storage of 137.72 milliard m , Toshka's operating 
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threshold. the previously given representative (ym , zm ) values
 
.maX max 

are also valid for the (ym , zm ) pair with the difference that 

max min 
z -- z 

Based on historical data, the HAD energy production function is 

given by (Thompson, 1981): 

E 0. 1. 194 1.268 
= 0.517 [ - 108.]] (5.4.54) 

zz
 
where Ez is obtained in GWH per month when the monthly reservoir release
 

is expressed in milliard m and the monthly average water elevation
 

is in meters (see Equation (5.4.3)). This function accounts for
 

the system's load factor and is in close agreement with Figure (5.2.6)'s
 

turbir, characteristic curves. As the 10 operational HAD turbines can
 

produce at most 1280 GWH per uonth (Buchanan :and Bras, 1981; Thompson,.
 

1981), according to the discussion in Sections 4.2, 4.3 we shall consider
 

the following penalty cost function for minimization:
 

I uz (5.4.55)
J E i=k g(su) + gT(sO TT)
{s Tr 
ZsZ=k+ • 

1
where g(s,,u£) [1280. - 0.517 u .1 94 [H(sz)-108. ] 2 (5.4.56) 

H(s ) = 79.9734 + 0.03698 s, + 18.8705 in(s), (5.4.57) 

sz= s(t Z ), sk given. (5.4.58) 

(The terminal cost term will be defined later.) 

Following the procedure in Section 4.5.1 we should next proceed
 

to specify the cost functions
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WS)6 g fssz 9 +611 Z), (5 .4.59, 

S(aZ/k' PS9,/k'aU) = E (U szauz)} (5.4.60) 

6- z 

(ds/k,5 u6z) = Z(&S,/k, PSZ/k,6UZ), (5.4.61) 

where s + auz, 5S/=0 (5.4.62)

whr sz+l/k 6 /+AZa k/k 

(5.4.63)
sZ+.l/k = P/k + Q Psk/k 


Z-k, ... , T-1.
 

Now (5.4.56) is of a general nonlinear form and this a priori calls
 

for the analytical approximation procedure presented in Appendix B.
 

However, plotting this function (Figures 5.4.3, 5.4.4,) shows that it
 

is well approximated by a quadratic functional. The particular
 

approximation shown on these figures is a second order Taylor expansion
 

of the function g(s ,u) around s0=125, u0=6.5 and is given by
 

g SU = g(s0 ,u 0 ) + Ns (s-Cs 0 ) + Nu(u u 0) + 

+ -- (s _So0 )2+--i u u_0) 2+ 
2 ssz2 uuu) +
 

+ Nus (u -u 0) (s -s 0) (5.4.64) 

where g(s0,u0 71593.05, 

25,6.5)-1906.931 =g(1
NS = , 

= ;g(125,6.5)N = -99522.65 


N = 36.23141 32g(125, 6.5) , (5.4.65)
 
ss as2
 

Nuu 32g(125,_6.5)

N = 66203.65 - u1 "
 

= g(125,6.5)

N,.. = 975.1393 
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Since the approximation is satisfactory within the range of the
 

possible storage variation, we shall assume that the cost function
 

g(sZ'uZ) (Equation (5.4.56)) is adequately represented by a quadratic
 

approximation around the nominal state and control trajectories.
 

Namely, in specifying the functions Z, ), ,,), 2(-,-)
 

(according to the Appendix B procedure) we shall not use Taylor series
 

terms of order higher. than two. Thus these functions are obtained
 

as follows:
 

(s, )= g(s /1 uZ) + N 6s + N 6uu + 

+-N (6 sI- + 'eu ) 2 + (6 (6s (5.4.66)
2 ss+ uZ2 Z us Z ,
 

+ N u 2 +(6s4/kPsZlk,'6U ) - g(s .,k, u + Nst 6S /k 6UZ 

+4- ((5;2 +P + I Z+
 
2sat~ )'k sV/+K2 (6.
 

+ N((u) (61), (5.4.67) 

or neglecting the constant terms (which do not affect the control
 

operations)
 

Ws /k,1UZ) = Nsz 6SZ/k + N . 6uu2 +Z2 sszSz/k)2+ 

+ 1.4 (u u s+Tes/ )(6u). (5.4.68) 
2 uuZ Z .~SZ Z/kZ 

Thus, the reformulated cosr function for minimization becomes:
 

~ T-I~
 
(5.4.69)J = Z(6sZ/k,6uZ) + ZT(6ST/k) 

Z=k
 

202 



T-I

where Z(-,.) as above and {SZNuR, NssZ, NuuZ, NuszIck
 

given by the derivative (5.4.65) at the nominal state and control
 

values.
 

With these specifications the HAD operation problem has taken
 

the form required by the ELQG control procedure. The following section
 

will discuss the mechanics and the performance of the method in some
 

experimental runs.
 

5.4.4 Extended Linear Quadratic Gaussian Control
 

The ELQG method for the control of a single reservoir is summarized
 

by the following algorithm. Some possible ,ariations are subsequently
 

mentioned.
 

Algorithm A5.4.1: ELQG Control of a Single Reservoir
 

a. Forecast the continuous time inflow statistics w(t), Qw(t)
 

(mean and spectral density) over the control horizon tE[tkvtT ] as
 

explained in Section 5.4.2.
 

Assume that as a result of i previous iteration's nominal
 

i i i
 
trajectory u = Uk,...$ UT_ has been obtained. Then the operations
 

that follow are performed during iteration i+l.
 

b. Compute the state's mean and variance trajectories as well
 

as the coefficients of the discrete time perturbation model by
 

integrating the following system of differential equations over the
 

intervals [t, t 1
Z+I, =i, .... T-l:
 

-i i
ds (T) f(Sit) ,T) - u (T) + w(T) (5.4,70) 
dr 
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i
 
dPs r) 

d_ = 2f1(s (),T) P (CT) + Qw(T) (5.4.71) 

dOi(-r, t) fs (s ,
d (5.4.72)
 

Zdc~ i (T,t ,) i A/x(5.4.72) 

dB ((tz)1 " 


where f(eC) is the state transition function (Section 5.4.1) and
 

" 
fl1(Si(T),T) s 'fsS)r (5.4.74) 
s 1r s(T) (ti~) 

The initial conditions for the mean state and variance equations are
 

the results of the previous integration step:. s (tz), P (tz), while
 

for (5.4.72) and '(5.4.73) there holds
 

¢i(tz, tz) = 1, Bi(tz, tz) =0 (5.4.75). 

for any Z, i. At time tk,P±(tk) = 0 (perfect state information) and 

si(tk) equals the currently observed s(tk). 

Then the discrete time quantities are given by
 

pi (5.4.76)
 sZ+l/k =S (tz+), 


P i Pi~t(5.4.77) 
~s9Z+lk st 2 ,+9 
i (t tz), (5.4.78) 

B I B(tZ+l, tz),  (5.4.79)
 

z =k, ... , T-1
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and the associated perturbation system model is as follows:
 

-I- -i i -i i u 5 .0 
s = SZ/k + z
.SZ+l/k sZ+l/k - 4 +i/k Z , 

2=k, ... , T-1 

54.li ± 
(5.4.81)
where u = u UZ 


c. Compute the coefficients of the quadratic costs
 

s2, Vsk + 
i zZ(s/k'u)Z Ni -i uU£iMa-i 6u.i 


1 Ni -si 2+ 1 i i 2 + 
2 ssz Z/k) uuZ z. 

i i/ i (5.4.82)
usk (u ), 

for Z-k,..., T-1 by

-i 

i g(s Z/k'uZ)
 

N -i 

N' i ag(s Z/k, uZ ) 

Ni i-i i 

z -i iag(S/,U
 
N sUZ aus
 

2.
us 3uas
 

(g(.,') is given in Section 5.4.3) and similarly for the terminal cost term
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i) N(sT/k) (5.4.84) 

T/k ST *T/k +2 NssT T
 

d) Check the validity of the probabilistic state constraints:
 

-i min min-
/k, Z-- z VPis,t 

S~i < sz 2- Px (5.4.85 )-A. max max i(5 

I- k-i, .. , T. 

wherezminz maxZ K+l are specified as explained in Section 5.4.3 

max T I oecntanfrom the probabilistic allowances (mintrin maxI If some constraint 
LsZ, Z=k+l" 

at time m is violated, modify the corresponding quadratic costs in
 

Step c by 

Ni ' = Ni + Ci Ni (5.4.86) 
sam sam ±ssam 

N = N + C N As (5.4.87) 
sm a-M ssm m 

where
 
- mmn m n ~k ,fr oe[-i/k 


Si - (s - Zm , for lower constr. violoation
 

s im - m for upper constr. violation
 

(5.4.88)
 

Ci C E:[4,10] . (.5.4.89)and C. = (here i is theexponent, 
3. 
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e) Compute the Gradient vector of the performance index
 

T-1
 

-= T Q(6s 6,u + (S (5.4.90)
T/k
=kk' 


at the current nominal trajectories - {Sz0 &uZ =0}, 6ST = 0 by 
Z~k7 z T/k
 

N___i i i 

14 JU,1 i= U1z+1(5.4.91:) 
)-k, ... 9 T-1 

I Ni 
where PT NsT 

p =N + p I (5.4.9Z)
i sj i +11
 

j - T-1, ... , k+1 

f) Compute the diagonal elements of the Hessian matrix at the
 

ith nominal trajectories from
 

au2N= + (Bz) GZ+i 
Z- i C5.4.93) 

Z=k, ... , T-1 

I
 
N


where GT 


G. N + ( ) (5.4.94)
j ssj 

J -T-1, ... , k+l. 
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g. Test the optimality of the ith nominal trajectory by the
 

following criterion:
 

Compute
 

2 1/2
 

k~ i 

where
 

min min 
U if
 

-a 2 1 zi 

__... -u ~2J = max , _Ii -3J/J 2 max 

z auZ 1iZ-, T-1 

-U otherwise 
u a i 


the~~~~ t nifnaz ~~ zs 2odagolmimu. urjtr Thi eas
 

(5.4.96)
 

Assuming that the problem is convex%, if w. is negligibly small, then
 

the i t nominal trajectory is a global minimum. This holds because
 

wi 0 implies either that - = 0 or that u equals one of their

DUz
 

bounds with the descent direction pointing toward infeasible regions
 

Given that w. = 0, then if Ci is sufficiently high, the ith nominal
2.1
 

trajectory is the optimal solution to the control and state constrained
 

problem. If C. is not as .high, some state constraints may be violated.
 

In that case set 

i+l i 

z (5.4.97) 

£= k, ..., T-1 
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1 

and repeat steps d, e, f, g.
 

If the problem is not convex, then [---- should be
 
au£ i
 

replaced by a positive number (unity could be a choice). In this case,
 

wi 0 implies a point satisfying the first order necessary conditions
 

for optimality (see Equation (4.6,25)).
 

If w is not negligible, continue to step h.
 
i 

h. Determine the binding constraint set A++(u ) from 

A++(u)( J/umn<U < umn+ and >>0
 
j -i-i , i 

or uma - E < u <uma and (2)< 0 
ji-i-i 

j - k, ... , T-l} (5.4.98) 

where i min{' w with E being a small positive number. 

i. Compute the two parts (nonbinding and binding) of the 

Newton's direction as follows: 

A +(u ))For the nonbinding control variables (i.e. Z 


i i i i -i * i+B i

(i4 + B K dh)s + NZ B2N usz Bz Z+I SZ/k + " . Z+l 4. 99)di =.(.5. 

Ni + (B) 2 Ki
 

uuz 2+
 

where 

K Nis (5.4.100)r ssT 

= (5.4.101)
sT
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and for X=T-1, ... , k+l, if Z A u i) 

B£i ¢01 
s + N_)K +us l Z (5.4.102) 

uu+(BZ) ICZ~ 

i)(Ni+ B i
(Ni+BKi 


+ K±i . iut?Z)Z (5.4.103) 
SZ+l 

while if 2 e A+(i_,) 

i i 1 2 i1KI SsZ + ( ) " +1 (5.4.104) 

k Ni +4) k' (5.4.105)Z. 2.
ZZ+11
 

The state deviations ds/ in (5.4.99) are obtained from
£1k
 

1 -i 3 (5.4.106)
 

+l/k Z k Z k
 

Z-k, ... , T-1 

i iwith sk/ = 0 and d2 as given by (5.4.99) if Z £ A +(u ) and zero 

otherwise. 

The binding Newton's direction (i.e. when Z A++(u )) is given by 

d V(5.4.10.7) 

2 

(In nonconvex problems should be replaced by some positive 

number.) 

j, Select a setpsize c. from the following Armijo stepsize selec

tion rule: 

a, m i (5.4.108) 
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where m1 is the first nonnegative integer m for which
 

J(o) - J(ra d I' ) > 

m i ai m i-H7 

Cu_~A\++A (ui) i _, 

(5.4.109). 

and 8e (0,1), oc(l, I
 

mil i i m i min
 
u - u if u + md < U , 

m 	 Umax u fUi+adi>umax (5.4.110) 
md otherwise 

k. Perform the iteration
 

2. 2. 


Z- k, .. ,T.-].
 

uL uz + ad1.2 	 (5.4.lll' 

and repeat steps to k unti. an optimal trajectory ( *-I (according to
 
u2 £=k
 

the criterion in Step g) is identified. (Care should be taken so
 

that the specified probabilistic levels {Ymax,Yin}k allow for a
 

nonempty feasible solution set.)
 

1. Apply the optimal action uk and repeat the previous operations 

at time k+l. 

Before presenting computational experience with the above algorithm
 

some variations will be noted:
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1. In the version outlined the method at each iteration simultane

ously accounts for both. control and state constraints. This is expected
 

to be effective for convex problems uith linear or mildly nonlinear dy

namics and convex cost functionals (as, for example, the HAD operation
 

case). The theoretically correct approach (see Section 4.7.1) is to
 

completely solve the control constrained problem for each new increase
 

of the penalty parameter. Although this will add computational load,
 

it will also be a safer route to follow.
 

2. In the event of "ill-conditioning" where Ci has been raisEd to
 

numerically problematic levels and there are still more iterations
 

needed for -he algorithm to converge, we have found it relialle to
 

restart the C. increment cycles until convergence is induced. The idea
 

is that increasingly better nominal trajeccories are being identified
 

and used as initial choices. However, this may be an issue in problems
 

of very long control horizons (>1000 t me steps).
 

3. A modification which in certain cases can be particularly ef

fective refers to second guessing the binding control constraint set
 

_++ i
A (ui). Notice that the Newton's directions computed in Step i are 

specified according to the set A++(u i) determined in the previous 

Step h. However, this set is identified based on steepest descent con

siderations which may under- or overestimate the Newton's direction 

steps. Thus, after having computed the directions f d} T=k , the idea 

is to go back to Step h and second guess the binding constraint set 

A++(u i ) from 
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+imin i min i i min 
A (u {jl/uj+ u a d i d < n + Ea 

imax aix max 
<or - < u < u and u. i uj + 

J - k, ... , T-l}. (5.4.112) 

At first this may seem to impose more computational load, yet it may
 

save iterations especially when there are many loosely binding con

straints at the solution. The above can be repeated until the
 

same binding set A +(u ) is determined in two subsequent iterations.
 

4. At the end of Section 4.7 a suboptimality of the previpus
 

algorithm was mentioned concerning the use of the variance PsZ/k in
 

the specification of the state bounds. In essence the problem is created
 

because the Open Loop Feedback controller at time k assumed no future
 

decision adjustments and spacifies the optimal trajectory for the
 

entire control horizon. However, in reality only uk will be used and
 

the decision procedure will be reinitiated to identify what is to be
 

applied next. Hence, attempting to maintain
 

min - min S-- max x (5.4.113) 
s Z sz/ - z i Zs -/kand -S + z < 5413 

Z/kkaZd)/kn Z9 v6s.k- Z 

Z = k+l, ... , T 

to modify the decisionignores that at times k+l, •• T-1 there exists the option 

On the other hand, the allov'able modificaconsidered optimal at time k. 

may not be possible. Antion is contingent upon the control bounds and it 
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idea attempting to remedy the situation is illustrated in Figure 5.4.5. 

Consider the optimal two-period control sequence (AB ), (B2C) 

producing the (ABC) mean state trajectory with (ADE) the associated 
- max _. +,k+) (hs
 

upper uncertainty region (sZ +F Z k4l, k+2). (These
 

trajectories result from integrating the corresponding differential
 

equations and only for simplicity are here portrayed by straight lines.
 

The lower uncertainty region is not shown.) According to the OLFC
 

philosophy, the mean state value at tire k+2 is confined to be lower
 

or equal to C since C + z touches the upper state bound.

k+2 slk+42/k 

Next, consider that during period ft t control (AB ) is applied
k' k+1'
 

and the inflow realization brings the state to D. If control (B2C)
 

determined at time k is then used, the new state trajectory would be
 

(DG) and (DE) would be the correspoading uncertainty region. However,
 

at time k+l there exists the option of readjusting Uk+l within its
 

bounds (which in this case it is suggested since (B2 C) was optimal
 

when the mean state trajectory was passing from B) including the choice
 

of the maximum release (DH). If control (DH) is used, the mean state
 

trajectory would be (DH) and the associated uncertainty region would be
 

(DF). Hence although at time k it was required that the mean state
 

value at time k+2 be at least (EC) distance away from the upper
 

bound, the probabilistic constraint could still be met even if the
 

previous distance was reduced to (FC). This implies that the feasible
 

state regiun can safely be augmented by considering the trajectory
 

changes which the unused control portion (DHCB2) could, if necessary,
 

:ing about. However, notice that no state shift would be possible if
 

.ne time k nominal control sequence was (AB1 ), (LiH). Since these
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FIGURE 5.4.5: MODIFYING THE VARIANCE OF THE
 
OLFC PROCEDURE
 

215
 



t rajectory ch;&nges are pre:ompucabv , the following modification of the 

state bounds is suggested:' Sun-s:,e that at a particular time Z the 

miniriumm allowable distan.ce of the mean state crajectory from its upper 
mga:_
 

bound has been specified to be x . Determine the state variance 

mz1% max 
j 1.,hich based on the probabilistc allowance corresponds 

Co Xx, ; namnely 
max 2
 

max x.
 

PsY/k max (5.4.114)
 

where z is as in Section 5.4.3. Assume, further, that the current
 

-i iT
 
nominal control and state trajectories are denoted by (s £/kZ=k, 

{UZ I Z Seting the control variable u(T), T C[tztZ+ I at its 

upper bound, integrate the state's mean and variance equations 

ds-r) i f(s(T),T) -u (-) + g(T) (5.4.115) 

dP()dT 2f 1 (s(t),t) Ps(r) + %(T) (5.4.116) 

-i 1max
 

over the interval [t V tZ+ I ] with initial conditions sZ/k and PsZ/k
 

-max and 

respectively. Denote s +i/k and sZ+i/k as the resulting end of 

the period quantities. If 

-max max '( 1 
sZ+l/k + Z+l V- s+/k-- > s+i/k(5.4.117) 

=set z+ S11/ k s£+i/k,xZ+maxI 2 -maxsz+i/k + max sZ+ i - - (5.4.118) 

otherwise set
 

max = 0 (5.4.119) 

2+l 
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and continue with the next time period until the end of the- control
 

horizon. Case (5.4.119) corresponds to enough evailable control flex

ibility to reduce the probabilistic state bound as far as the mean
 

state trajectory. Clearly, no further reduction is possible. Similar
 

considerations govern the modification of the lower state bounds. The
 

procedure should start from time k+l since this is the first time when
 

any control adjustments can take place. Notice that the proposed
 

modifications depend on the current state and control trajectories
 

and may require some more iterations before convergence is achieved.
 

However, it will be seen tat using the OLFC variance jP 
s9Z/k Zk+l 

can lead to substantial suboptimalities which justifies the addi

tional effort. If the nominal control tiajectory lies on any of its 

boundaries, the proposed procedure becomes identical to the OLFC 

uncert'ainty bound specification approach. 

A typical ELQG iteration cycle is shown on Figures 5.4.6 - 5.4.17 

and Tables 5.4.1 -.5.4.6. The application seeks to determine the 

optimal A-D release trajectory over a 3-year period (36 months). 

The Nile inflows to Lake Nasser are assumed to follow their historical
 

monthly distributions with the means and variances shown on Table 5.2.1
 

(a priori statistics in the terminology of Section S.4.2). The
 

monthly means are reduced by the monthly Sudan abstractions having
 

93
the Figure 5.2.7 distribution and a 16.5 x 109 m yearly total.
 

The monthly evaporation rates and downwstream water supply requirements
 

are those of Figures 5.2.4 and 5.2.5. The reservoir storage at time 0
 
93
 

(beginning of the control horizon) is set at 95 x 109 m and at any
 

3
time it is not to exceed 137.72 x 109 m (Toshka operating threshold)
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or fall below 32.72 x 10 m3 (dead storage zone ceiling) at reliability 

y - 0.975. The maximum allowable downstream release is set at
 

93
 
7.59 x 109 m per month. The objective is to maximize the expected 

energy generation given the previous constraints and the requirement 

to leave the expected terminal reservoir storage (beginning of the 3 7th 

93 
month) at 95 x 10 m . The initial nominal control trajectory is taken 

equal to the downstream water supply requirements and is shown on Figure 

5.4.6 together with the upper release bound. Figure 5.4.7 shows the
 

corresponding mean state trajectory (under dotted line) along with the
 

associated modified uncertainty bound. Notice that since the nominal
 

control trajectory equals its lower release bound, there can be no
 

upward state shift and hence the lower uncertainty region equals that
 

of the OLFC procedure. On the contrary, the upper uncertainty region
 

is substantially reduced as a result of the existing capability to
 

release at higher than the nominal rates. The pronounced storage fluc

tuation is a combined effect of the marked intra-year mandatory release
 

and expected inflow variation. Table 5.4.1 gives the values of some para

meters used and some representative quantities computed at each itera

tion. The "HYDROPOWER" gives the energy in GWH which will be produced
 

if the nominal control and mean state trajectories are realized. The
 

associated value of the penalty cost function actually minimized is given
 

under "PENALTY". Apart from penalizing energy production lower than
 

1280 GWH per month, this function also penalizes terminal mean storages
 
93 / 95
 

away from 95 x 10 m according to Z(sT/k= T/ ) x 10
 

"Z" stands for parameter z corresponding to the reliability level y
 

and "C" represents the penalty parameter C which is increased at each
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i 
iteration i according to C.-C . "BETA" and "SICIMA" are the parameters 

S and a of tha Armijo stepsize selection rule and "El" specifies the 

value of ..=min{E,wi } introduced in Step h of Algorithm A5.4.1."M" 

and "ALPHA" are the integer mi and the corresponding stepsize
mi 

a . = a satisfying the Armijo stepsize rule test and NWI" is the 

Euclidean norm w. of the optimality criterion. The columns from left 

to right display the months, mean storage values, nominal releases, 

first derivatives of the cost functionwith respect to the controls 

at the nominal sequences, second cost function derivatives with respect 

to the controls at the nominal sequences, upper uncertainty bound, 

lower uncertainty bounds, and the binding contraint set. The positive 
.
2 


second derivatives (u-J) (="DUUJ") gi'se an indication of the problem's
 

convexity while the negative first derivative (-) 'DUJ") show that
 
au i 

the cost function can be decreased by increasing the nominal releases. 

A binding lower control constraint is indicated by "-l", a binding 

upper control constraint by "l", and a nonbinding constraint by "0". 

Notice that since (3u) are found negative, the procedure does not 
au i
 

indicate binding control cons'.raints. The high value of 'WI" implies
 

that the initial nominal control trajectory is far from being optimnal.
 

The first iteration produces the nominal control and state trajectories
 

shown on Figure 5.4.8, 5.4.9, and Table 5.4.2. The releases are ncw set
 

higher because over a short time horizon (as the one considered here)
 

it is in the interest of the energy generation to pass high discharges
 

through the turbines rather than maintain high hydraulic head. This
 

can also be deduced from Figures 5.4.3 and 5.4.4 where it is seen that
 

the energy production function is much more sensitive to the reservoir
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releases than to storage changes. After cutting down tie original
 

stepsize by a factor of 2, this iteration has reduced the penalty cost
 

function, increased the energy generation, and brought the terminal
 
939
 

3
storage from 107.1 x 109 m to 93.2 x 109 m (i.e. substantially
 

closer to the desirable value 95 x 109 m3). Notice the reduction of
 

the lower uncertainty region as a result of the control trajectory dis

placement away from the lower bound. The new binding constraint set is
 

drastically different and the magnitude of wi has decreased but remains
 

significant. No state constraint is binding. Iteration 2 is shown on
 

Figure 5.4.10, 5.4.11, and Table 5.4.3. It places the terminal
 

storage at 94.2 x 1093m watich further reduces the cost function although
 

energy generation is now decreased and the associated penalty increased.
 

All binding, constraints at Iteration 1 are also binding here but the set
 

-H- 2

A (u ) is now larger. Iteration 3 (Figure 5.4.12, 5.4.13, and
 

Table 5.4.4) reduces even more the cost function by building up higher
 

terminal storage and identifying one more binding constraint. The
 

following Iteration 4 (Figure 5.4.14, 5.4.15, and Table 5.4.5) shares
 

the same binding constraint set with Iteration 3, and as theoretically
 

predicted, materializes on impressive convergence rate essentially
 

terminating the search. This is indicated by the uegligible w. value

1
 

and is readily concluded by comparing ics results with those of Itera

tion 5 (Figure 5.4.16, 5.4.17, and Table 5.4.6). (Notice, in particular,
 

the coincidence of the last two iterations' nominal control trajectories
 

93
and the terminal storage value of 94.999 x 109 m3.) The iterations
 

may continue but the additional improvements are marginal. The
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computations required 25 seconds CPU time on a Honeywell 68/DPS 

digital computer. It it notable that only in the first and the last 

iteration it became necessary to cut in half the original stepsize 

and chis is cypical with this procedure (avoiding multiple cost 

function evalutations and adding to the overall computational 

efficiency). To thi end using small a values is instrumental. Lastly, 

note that a very good approximation of the optimal solution has already 

been obtained at the 3rd iteration. 

To cest if the method performs as well in longer control
 

horizons, the previous problem's control horizon was extended to 360
 

mouths. The initial nominal control trajectory was again taken
 

equal to the downstream water supply requirements, and it is shown in
 

Figure 5.4.18, Figure 5.4.19 displays the corresponding nominal state
 

trajectory. Tha Toshka spillway is not assilmed operational and no
 

probabilistic constraints are Imposed. (i.e., the bounds shown
 
93 93 

on Figure 5.4.19 at 137.72 x 1.09 m and 32.72 x 109 m reservoir 

storage are not active, C = 0.00). The coefficient of the terminal 

10 
storage quadratic penalty was increased to 101. Figures 5.4.20 and
 

5.4.21 show the nominal trajectories of the 1st iteration. ELQG con

verges to the trajectories shown in Figure 5.4.22 and 5.4.23 at the 6th
 

iteration. Some characteristic quantities of the 6 iterations are
 

reported on Table 5.4.7. As in the previous experiments the algorithm 

locks on the optimal traj-ctory in one iteration after the final binding
 

constraint set is identified. Also notice the progression of the terminal
 

93
 
storage towards 95.000 x 109 m and the use of unity stepsize for most
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of the iterations. These computations required 4 minutes and 35 seconds
 

CPU time of a Honeywell 68/DPS computer. By contrast, a straightforward
 

Dynamic Programming solution of the same problem (.lgorithm A4.4.2 or
 

the D.P. procedures in Section 5.3) would require hours of CPU time.
 

Focusing on the optimal state trajectory on Figure 5.4.23, we observe
 

an intuitive result. Namely, from a long-run energy perspective, it is
 

best to build up reservoir storage and operate under high hydraulic head
 

rather than raising the release rate. This is accomplished by releasing
 

the downstream water supply requirements (Figure 5.4.22) during most of
 

the time ( 20 years) and thereafter gradually raising the releases until
 

the end of the control horizon. (Also compare the energy generation at
 

the trajectories of the first iteration with that of the sixth in
 

Table 5.4.7). The fast portion of the control horizon where the
 

releases are higher shows how long the terminal storage requirement
 

remains influential.
 

Following is an experimental run where the problem includes
 

probabilistic state constraints. The additional requirement is 
to 

keep the reservoir storage lower than 137.72 x 109 m and higher 

than 32.72 x 109 m3 at reliability 0.975 (z-1.96). The optimal 

trajectories of the previous experiment (Figure 5.4.22, 5.4.23) are 

taken as initial nominal trajectories. The new optimal trajectories
 

are shLnrt in Figures 5.4.24, 3.4.25. There are 11 state and 284 bind

ing control constraints and the energy production has now dropped
 

(with respect to the state unconstrained optimum) to 0.23900460 x 106 GWH.

93
 

The terminal storage is again 95.000 x 109 m . The penalty parameter
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was taken equal to 10. However, the procedure in Comment 2 following
 

Algorthm A5.4.1 had to be employed, and 2 iteration cycles were
 

necessary to yield the trajectories shown. Although reliable overall,
 

the handling of state constraints via the penalty function method is, in
 

general, less efficient than the treatment of the control constraints
 

via the Projected 7 Notice again that the optimal
Fewton's method. 


release trajectory follows the minimum requirements until the
 

reservoir storage rises to its upper bound. Subsequently,the
 

controls are adjusted to maintain the highest feasible storage and
 

9 3
as before the last part draws the reservoir down to 95.000 x 10 M 

By contrast if the unmodified OLFC variance is used, the 

probabilistic state trajectory in Figure 5.4.25 looks like Figure 

5.4.26. The drastically larger uncertainty regions are due to the
 

93high OLFC standard deviation which in time stabilizes at about 15 x 10 m
 

This effect is caused by the negative evaporation term in the system
 

dynamics (see footnote in Section 4.7). If it were not for this
 

term, the variance would grow unbounded which brings up the necessity
 

of a modification scheme. Figures 5.4.27 and 5.4.28 show the optimal
 

trajectories of the OLFC variance case where there are 25 state and 1M3
 

binding control constraints. The energy generation is reduced here to
 

0.22908150 x 106 GH, considerably lower production with respect to the
 

previous experiment.
 

These computational runs were performed to demonstrate the
 

efficiency of the ELQG control method. Regarding the HAD operation
 

problem, we intend to establish a sequential control shceme with a
 

much shorter control horizon. The discusion in Section 4.7.2 is
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relevant here, and the question becomes one of properly specifying the
 

terminal state penalty term. (The crucial influence of this term on
 

the optimal trajectories is apparent in all the previous experimental
 

runs.) To this end, it was noted that in the long run it pays
 

(in energy generation) to build up high reservoir elevations by releas

ing the minimum downstream requirements (see, for instance, Figures
 

5.4.22, 5.4.23, and 5.4.24, 5.4.25). The releases are modified due
 

to either the terminal penalty term influence or the upper storage bound
 

being reached. It turns out that this behavior is independeLt of the
 

initial storage, and therefore, in an infinite horizon problem it leads 
to
 

the following operation policy: Release the minimum requirement until
 

the upper state bound is reached. Thereafter, optimize the releases to
 

maintain the highest feasible reservoir storage and maximize the energy
 

generation. As another example verifying the abcve, see Figures 5.4.29
 

and 5.4.30 where a 720 month control problem was sol-'ed. Here y - 0.50 

(z = 0.00) implying expected value (deterministic optimization) with 
93 

initial reservoir storage at 125 x 109 m and terminal storage as great 
19 3 

as feasible. The active state bound is at 137.72 x 10m 
 Clearly it
 

is optimal to release mininal amounts as long as storage remains
 

feasible. The same conclusion was drawn when (1) the mean monthly
 

inflow levels and/or the monthly water supply requirement were set
 

higher (to consider future condition4 anu (2) when only che first year's
 

inflows were increased with the upcoming years/ inflows at their histor

ical levels. (The second set of experiments was run to simulate the
 

real-time operating conditions when, based on the forecasting models in
 

Section 5.4.2, it is not realistic to make overyear predictions other
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than the historical means at the historical variances.) Considering Toshka,
 

due to the rapidly escalating losses when reservoir storage exceed
 

137.72 x 109 m3 
(see Figure 5.4,2), it is evident that the operation
 

should avoid excessive spil*.&by passing higher (yet feasible) dis

charges t'rough the power plant turbines. Thus, the otherwise wasted
 

water can be used in energy generation and other downstream water uses
 

(e.g., using the available storage downstream of the HAD, the water in
 

excess of the current water supply requirements can be used as
 

a reserve supply to prevent reservoir draw.iowns, to support land reclama

tion activities, or to help replenish the Nile Delta groundwater aquifer).
 

Figures 5.4.31 and 5.4.32 show the solution of a 240-month control problem 
where Tashka is active. (The line at 137.72 x 109 93m reservoir storage 

has.rio boundary signficance. The problem had no upper state constraint.)
 

93
The initial reservoir storage was set at 130 x 10 
m , and the terminal
 

93
 
storage was required to be at 137.72 x 109 m . As expected, Toshka
 

acts similarly to 
an upper bound and forces the optimal state trajectory
 

lower by somewhat greater releases. The storages in excess of
 

137.72 x 109 m make up for the energy loss 
from not establishing
 

higher elevations by utilizing the water 
that would have been spilled.
 

From the previous considerations we can easily deduce what penalty
 

term should be employed in a short horizon sequential control scheme;
 

the term should seek to leave the reservoir at the highest feasible
 

elevation. Note that it was necessary to look at the long-term system
 

behavior to establish the upper storage bound and the terminal cost term.
 

These specifications cannot be done with short-run investigations
 

because over a short horizon it is energy-optimal to empty the reservoir.
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The value where, according to Figure 5.4.32, the upper bound should be
 

placed is approximately 139.25 x 109 m3
 

To further test ELQG in a real time operation and to compare
 

its performance with other optimization procedures, extensive simulation
 

e-xperiments were run. The results are ieported in the following section.
 

260
 



5.5 Simulation Analysis
 

The historical Nile flows at Wadi Halfa (.entrance of the HAD
 

reservoir) from January 1912 to December 1965 were the. data base
 

for the simulation experiments (see Appendix H). The recorded levels
 

were adjusted by the estimated Sudan abstractions having the monthly
 
93
 

distribution of Figure 5.2.7 and 16.5 x 109 m yearly total. The down

stream water supply requirements, channel degradation threshold, evapora

tion rates, etc., were as in the previous sections. (The parameters
 

which differed from run to run will be separately mentioned.) In the
 

ELQG simulation experiments, Algorithm A5.4.1 was implemented with a
 

12 month control horizon, C=10,and a terminal cost term penalizing any
 

terminal storage deviation from the upper bound. The forecasting models
 

of Section 5.4.2 are here denoted by "A-S" (a priori statistics), "T-F"
 

(Thomas-Fiering lag-l univariate seasonal autoregressive model), and
 

"C-B" (multivariate seasonal autoregressive model, Curry and Bras, 1980).
 

Results from using the Steady State Markov Dynamic Programming ("SSMDP")
 

and Adaptive Markov Dynamic Programming ("AMDP") methods (see Section 5.3)
 

in the same simulation experiments are also reported here from Buchanan
 

and Bras, 1981, for purposes of comparison.
 

This section is organized in two basic parts: The first will
 

discuss the ELQG's performance for various combinations of y (reliability
 

parameter) levels, different forecasting models and with respect to other
 

control methods' performance. The second will employ ELQG in determining
 

the tradeoff between two system objectives. The intention here is to
 

verify the new method's potential in real time decision making. There
 

is a plethora of issues related to the HAD operation which ELQG can
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thoroughly investigate. Some of these possibilities will be mentioned
 

at the end of this section.
 

Table 5.5.1 presents some results from 8 simulation runs (each
 

column represents a 54 year simulation experiment). The quantities
 

reported are the total volume of water supply deficits (i.e., 
the amount
 

by which the models failed to meet the U'uwnstream water supply require

ments), the total volume of water released in excess of 7.59 x 109 m3
 

per month, the total volume of spills to Toshka, the mean annual energy
 

production (GWH), 
the reservoir storage at the end of the simulation
 

period, the corrected mean annual energy generation according to the
 

terminal storage difference, and the mean annual evaporation 
losses.
 

All Runs were started at 180 meters reservoir elevation (or at
 

149.55 x 109 m reservoir storage). The correction of the mean annual
 

energy generation was necessary for the energy comparisons since the model,
 

which his maintained higher terminal stroage, could have alternatively
 

generated more energy. The adjustment was as follows: 
 The lowest terminal
 

storage was subtracted from the rest, and the resulting amount was assumed
 

to generate energy at maximum release for as long as it lasted. 
The evapora

tion rate was that of January. The energy produced was divided by 54 and
 

added to the mean annual energy production. Terminal storage information
 

was not available for the SSMDP and A2MP methods, and therefore no 
energy
 

connection was attempted. 
 In all ELQG runs the upper storage bound was
 

placed at 139.25 x 109 m3 
(see previous section). It was found that all
 

models met the downstream water supply requirements and prevented channel
 

degradation at all times. 
The ELQG models caused significantly less Toshka
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spills, and as a result produced on the average about 300 GWH more
 

energy per year over the SSMDP and AMDP methods. Instrumental for this
 

result is ELQG's ability to explicitly account for control and state
 

constraints as well as its analytical structure. Owing to the latter,
 

the ELQG models required about 30 minutes CPU computer time to complete
 

the simulations. By contrast A DP required 50 CPU hours (Buchanan and 

Bras, 1981) while SSMDP, 20 sec. (Concerning SSMDP, the above figv.re 

does not inlude the time needed to obtain the release policies which were 

used unchanged:throughout the simulation period - SSMDP is not a 

sequential scheme.) Focusing on the performance of the various ELQG model
 

combinations, it is seen that those with reliability constraint provisions
 

incur less Toshka spills than their deterministic counterparts. (Compare,
 

for instance, model (z=1.96, A-S) to '(z=0, A-S) and (z=1.96, T-F) to
 

(z=O, T-F). ) More successful in this sense was the (z=1.96, C-B) model 

which had more accurate foresight and as a result was able to more effec

tively manage the incoming flows. In fact, de comparison was not exactly 

fair for the (z=1.96, C-B) combination because its forecasting model was 

not implemented but instead was simulated as follows: Based on the a 

priori inflow variance and the R2 statistic of.the Curry-Brass forecasting 

model, the forecast variances were obtained for the upcoming 12 months' 

inflows (see Equation (5.4.45), (5.4.46) and Table 5.3.2 in Section 5.4.2). 

Subsequently a Gaussian random number generator was used to derive a 

value from each of 12 probability densities having the actual inflows 

as means and the previously obtained forecast variances as second moments. 

These values were adopted as the expected values of the forecasts' 
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p.d.f.s. Notice that this procedure utilizes the process's correlation
 

structure only in the variance specification and not in the forecast's
 

mean; therefore, it is at a disadvantage with respect to the Thomas-


Fiering procedure which was fitted to and forecasted the 54 year
 

historical inflow data. This disadvantage appears 6omewaht in the
 

energy generation where the (z=1.96, C-B) combination does only
 

slightl' better compared to the other stocahstic combinations. Model
 

(z=O, Perfect Forecasts) was run so that on upper bound estimate of the
 

sequential models' performance could be obtained. It had perfect
 

knowledge of the 12 upcoming inflows, and consequently, it generated
 

the most energy allowing for Toshka spills in accorance with the upper
 

state constraint. However, notice that all ELQG models perform well
 

despite their imprecise information concerning the future inflow sequence.
 

As the performance differences are not signficant, another conclusion to
 

be drawn is that, presently forecasted information is not of critical
 

significance to the HAD operation planning. The reasons are (1) that
 

most of the time the reservoir has enough available storage to accommodate
 

the incoming flows and (2) that the presence of Toshka has eliminated
 

any threat for severe flooding events. However, the importance of
 

accurate forecasting is expected to rise at a future time wheni the
 

problem will not be one of maximizing energy generation but rather one
 

of striving to meet the growing water supply requirements. Another
 

comment regarding Table 5.5.1 refers to the competing nature of energy
 

maximization and Toshka spills prevention by forcing the reservoir to
 

operate at lower heads (via the reliability constraints). For instance,
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UNITS 
ENERGY GWII 

VOLUME x109 m3 

E LQ G 
PERFECT 

3SMDP AMDP z=0,A-S z=0, T-F z-O,FORECASTS z=1.96, A-S z=1.96, T-F z=1.96,C-B 

WATER 
SUPPLY 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
DEFICITS 

EXCESSIVE ?000 O.000 0.000 0.000 0.000 0.000 0.000 0.000 
RELEASES 

TOSIIKA 
SPILLS 4 00.700 100.700 5.073 3.298 2,584 3.188 2.370 3.898 
(OVER 54 

YEARS) 
MEAN ANNUAL 

ENERGY 7,787.00 7,787.00 8,051.95 8,077.06 8,088.52 8,066.18 8,079.84 8,070.57 %D 

PRODUCTION 

TERMINAL 
STORAE 136.145 130.859 136.962 133.321 129.110 132.880 

CORRECTED 
MEAN ANNUAL,ENERGY 8,070.94 8,081.75 8,109.73 8,077.50 8,079.84 8,080.70 

PRODUCTION 

MEAN ANNUAL 
EVAPORATIGN L3.600 13.600 13.446 13.236 13.226 13.208 13.111 12.940 
LOSSES 

TABLE 5.5.1: SIMULATION RESULTS 



ELQG model (z=O, T-F) manages to produce more power than the stochastic
 

models by maintaining on the average higher hydraulic head (this is
 

evident from the heavier mean annual evaporation losees), although it
 

also causes higher Toshka spills. However, the same is not repeated in
 

the (z-9, A-S) case. 
Owing to this model's naive inflow predictor, it
 

cannot help spilling more substantial water volume thus limiting its
 

potential for energy generation. To test ELGQ's performance with the
 

OLFC rather than the modified variance, the model (z=1.96, T-F) was also
 

run without tile variance adjustment. The results were Toshka spills
 

0.705 x 109 , energy production 8,019.079 GWH (mean annual) terminal
 

93 

3
storage 122.242 x 10 m , and evaporation losses 12.417 x 10 m

3 
(mean 

annual). As has been noted, this proccdure is ovarly conrerative keeping
 

the reservoir storagt 10ower than actually needed- but consequently
 

generating less energy. Tables 5.5.2 and.5.5.3 show two years (1916,
 

1917) from the simulations of the models (z=O, A-S) and (z-1.96, C-B).
 

These are two consecutive high flood yewrq (especially the inflows in
 

September and October are approximately 3 standard deviations above the
 

historical means) and they demonstrate the anticipative ability of models
 

with forecasted information. The first controller becomes alerted and
 

starts releasing at maximum rate only after the flood has arrived and
 

Toshka is already in action (October 1917). The second is aware of the 

probable emergency and suggests higher releases one year before the 

flood's arrival. As a result, it incurs minimal Toshka losses and 

generates 2,676 GWHs more compared to the first model's energy production 

over this two-year period. Table 5.5,4 gives more statistics from the 

results of the (Z=1.96, C-3)' simulation experiment; namely, it reports 
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a'36 .62 6 91000 
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TC 

' 

to a 3 0'; 1 7 . r6 715., 0 0 ;7 ' 4 

JIJL6 - 4 - 21' 6,?? 83;'3 1E7,78. 9PWER 1 L0c.00 10/ 1.)E10
 

C'd. , 175,30S GWH/sl19 000 00 1'C'h
1 

Orn,, 71..53 '3 -.Z 5 7 50~ 119t 7.73 136.53 0.000 4000 10. 6:73 

NO. 5 1 18'6 548.1O6~ 138'- '170,7' 3706 0,000 10.000' '1.510
 
C-E5 617', 7 6-71 3617 177 1 99..56 000 ) 000 1 Z9
 

ITABLE 5. 5'. 3: TWO HIGH' FLOOD YEARS 'FROM THE 4EL QG, 

l.'=]9 6,C ) SflULATIO0N EXPERIMET 
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----- ---- ---- ----- ---- -------- ----- ------------------------------------

----------------- ------ -----------------------------------

-- ----------------------------------------- ----------------------------------

---------------------------------------------

ELEVAT ION 	 'TO F,AGE
 
(METERS) 	 t C.M./M.)
(O3z9 

m'2NTH *tN.nUM rlAX IUM MEAN -3T.OEV.I MINIMUM MAXIMUM .EAN ST.Dv,
 

,
"
 .AN. t.. 31 L7 .75 tr4.403 2.89o 1 96.083 142.i9 t18.?39 t4.U_
 
°
 1-0.163 173.00T 173-615 2.003 1 32.002 128.223 115.020 "..21 

-4R. t15,39 L77.412 l _:"1:' 3.062 1 79.48 1212937 uI1.2o 14.123 
A4R. 1..1 .7.7: 172 io 3..1Z7 76.375 130. 423 10G.050 1.00 

.. 1) 17. ..f 3-179 1.43 ,27.t39 1-) 3.25o 1,Z, 3 
,
I",3.14 !:6.?20 	 i 3 2.003 s 9.451 .3Q 1 96.942 .,

" L. 4V' 114.457 t: .5,42 3.630 60.007 1.13.411 92.545 :4 '0 
AUG'. 12. 175.,.3 77.15 ".175 1 67.o0 1Z5 '2 10. 19T .. , 
:BEF'. L05.59t t77.. 75 174.1)O 2. 1087,.z 84 135.216 "17,408 :2. 
2CT. 167.8q@ 17I.86 v 7 . 43Q 2.7qf 1 33.721 142.729 124.26 9 :4.065 
jC'Q. 1:. 138 . 173 . ::,1 1 5 2- 2.759 1 .,89 "29,17'7 122.542 13.336 
DEC. 167 .?2 173.017 17i.30 2.771 1 89.076 137,775 121.'9. 3.7 4 

T 3HKA L,2'37E3 	 E'Q :A
F P T :2 N 
(10x o C. 'M.' * '1Z( C Z .'.M.,, 

GN-T • M EA.4 EV m.N-hUM iEAN EV.MAX. ST.., 0ATA, I ,'iA..I JM 5T. 

IAN 0 .122 0.,7 6 '0.')z6 2 1 0.706 1,.865 2.?2 ) .:5 

MAR. 
-. 

0. 3 

0.00 

0.099 
0-.0.*,').0

.000 

0.039 
2 
0.000 

0.300 
. ')

0.10 

1 
1 
0 

20.3:6 
0 388 

^.361 
),!'6
.3:4 

,? 
, . 
0."'' 

, 
... 3 

1 730.,75 
,-; 2. 00. '). 0 0 :',? )J 1 ..,0 1.253 2:,.52.:,:, 
.UN. 0.200 0.000 -)200 .000 0 1 0.750 1.256 1,48 ,0.. 
,JUL 
'AUG 

'L,-)00 
0.000". 

0.000 
0.000-

)' 
0..O0. 

.000 
0.O0. 0 

1 
1 

0.814 
0.725 

.41q 
1.597 

1 ). 
L.332 

.149 
0.5S 

QEP'2.000 '0.00) ).000 0. ) 1 1.107 .777 1 .548 0.160 
OCT. 000. 0.057 .015 0 ,018 8 I .!79 1.330 1.525 3. .52 
0'O'J '001 ,).0o7 0.239 3,034 t0 I" 1.075 1..t47 I. i,11 , .132 
DEC 0.001 0.034 0.015 , 012 7 I 0.870 1.221 1.124 ,.103 

RELEASE HYOROPOWER •
 
(1,, x C.M,/M.' IwCH/M.)
 

MNTH -N MUH MAXIMUM MEAN ST.EV. I MINIMUM MAXIMUM mEA4 .DE .
 

JAN. 3. ') - 2.323 	 1 12300 :36.17.590 ;).?8 401,78 53 .48 

. 4.018 ".590 4 2!2 ,-.639 1 475.6 :2,'.46
4._- 572.22?,

Ar,R. .240 7.590 4.450 o. 26 1 4Q",,.5 I Z12.5 -b. 73 135.22 
APR. ,0-040 7.590 4.163 0.629 1461.34 1135.13 550.72 113.35 
aM 5.312 i.346 5 357 ,2.40 523.77 930.92 743.37 2,26 
JUN. 6. 6..521 6.5:1 0.000 1 766.77 1014.80 °15 .50 6Z.62 
JUL. .?' 9 .9'9 5.?9'9 0.000 1 798.21 1087.04 'z71.82 I,2 
AUG. i.310 6.310 6.311 0.000 1 711.6,7 965.89 971.75 5'.34 
-EP. - 0,027,.25, 4,452 '- 1 477.09 631.13 575.41 34.52 
OCT. 3.741 	 7.5Q0 4.03 0.a65 137.17 1265.S0 563. 1 .5'
 
"i'd. 2.6!'9 7,S 0 4..4: L.177 431,99 1279.56 6!:,?l 21:). 22
 
DEC. 3.019 7.590 3.650 1,209 1348.32 1232.19 511.5s 270.2"
 

ANNUAL POWER STATISTICS
 

(GWH/Y.
 

MINIMUM 6:30.737
 
MAXIMUM : 11379.511
 
MEAN '8070.-57
 

3T. OEV. : 	 76.384
 

TABLE 5.5.4: 	 SOME MONTHLY AND ANNUAL STATISTICS OF THE ELQG 

(z=1.96, C-B) SL4IJLATION EXPERDIENT RESULTS 
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monthly maximum and minimum values, mean values, and standard deviations
 

for reservoir elevation, storage, Toshka losses, evaporation, release
 

and energy generation. The same statistics are also computed for the
 

annual energy generation.
 

It should be pointed out that a more conclusive analysis would re

quire simulation experiments on synthetically generated inflow series
 

as well. ELQG parameters which can be determined from such a study
 

are the reliability levels (y can change from month to month) and the
 

control horizon length maximizing expected energy production. With
 

respect to the control horizon, it shouldimprove the model's performance 

if it is increased because of the peculiar Nile flow behavior to persist
 

in high or low levels. In setting up the previous experiments, ELQG is 

not aware of such tendencies since it plans on historically average in

flows for the upcoming years. To this end, an annual flow predictor 

should be useful.
 

As the simulation experiments have shown, HAD reservoir suffers
 

heavy evaporation losses (approximately 13 billion cubic meters are lost
 

per year). On the other hand, its storage capacity is more than
 

experiment the reser-oir storage has not fallen below 60 x 10 If 

adequate for the current water supply purposes. For instance, this 

can be seen in Table 5.5.4 where throughout the (z=1.96, C-B) simulation 

9 3 
m . 

it were possible to maintain lower reservoir elevations while always 

meeUing the water supply requirements, there would be some water gains
 

from evaporation and some energy losses owing to the lower hydraulic
 

head. This is the tradeoff we wish. to determine in the second part of
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this section. It has a practical interest because in the years 
to come
 

water rather than hydropower availability will be the limiting factor
 

for the development of the Egyptian economy. 
The issue may also become
 

particularly crucial if the seismic activity affecting the HAD
 

reservoir continues to 
intensify forcing operation at lower elevations.
 

The procedure adopted here was to place the upper state bound at in

creasingly lower levels and perform simulation experiments. ELQG was
 

used with (z=O, T-F). The initial storage was assumed equal to the
 

corresponding upper bound. 
 Table 5.5.5 reports some results of these
 

experiments. 
The maximum allowable elevation was decreased from 178 m
 

3
(137.72 x 109 m storage) to the point where water supply deficits
 

could not be avoided (at approximately 171 meters). (In fact, if a
 

stochastic ELQG model had been used, the upper bound-could have been
 

safely decreasedeven further.) The results show that on the average

3
 

about 2 milliard m can be saved from evaporation at the expense of 350

3 

G74H per year 
(maximum elevation at 173 m) or 0.9 milli.ard m at 100 GWH 

(maximum elevation at 176 m). With Egypt and Sudan already involved in
 

costly exp -nditures on water conservation projects (Egyptian Ministry
 

of Irrigation, Main Report and TR 5, 1981), 
for fear of shortages,
 

these results become particularly signficant. 
 Note further that compared
 

to the other control methods as vell as the currently employed heuristic
 

operation policy (see Buchanan and Bras, 1981) ELQG control results in
 

3
over 2 milliard m water benefits at 
7,800 GWH annual energy production
 

(compare also with Table 5.5.1 although in those runs 
the initial
 

reservoir storage was equal to 149.55 x 109 m3). Table 5.5.6
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ENEr.(Y 
VOLUME 

ELEVATION 

UNITS 

GWIT 
xl0in' 
METERS 

UPPER STORAGE BOUND 
(ELEVtATION) 

137.72 
1(178.008) 

132.00 
(177.000) 

126.50 
(175.989) 

121.25 
(175.000) 

116.25 
(174.016) 

111.50 
(173.053) 

IU6.50 
(172.002) 

102.00 
(171.02) 

WATER 
SUPPLY 

DEFICITS 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.874 

EXCE-SSIVE 

RELEASES 

0.000 o0ooo 0.000 0.000 0.000 0.000 0.000 0.000 

TOSIHKA 

SPILLS 
(OVER 54 
YEARS) 

HEAN 
ANNUAL 

3.843 

8,036.405 

t 

1. 098 

7,997.292 

0.404 

32.810 

0.048 

" 

7,856.111 

0.000 

7,777.291 

0.000 

7,689.793 

0.000 

7,590.068 

0.000 

7,484.844 

fr 

PROD.MEAN '-' 
. _. 

ANNUAL 
EVAPORA-
TION 
LOSSES 

13.155 12.954 

_ 

12.254 11.866 
I 

11.483 11.094 10.679 10.275 

MIN IMMIJ 
STORAGE 

(ELEVATION) 
(OVER 54 
YEARS) 

59.345 

(159.22)) 

! 

55.767 

(157.917) 

51.381 

(156.210) 

i _ 

47.152 1 43.055 

(154.432) (152.565) 

I-_ 

39.273 

(150.691) 

35.414 

(148.596) 

32.714 

(147.000) 

TABLE 5.5.5: WATER SAVINGS FROM EVAPORATION VS. ENERGY GENERATION REDUCTION 



gives some additional statistics from the simulation experiment with
 

upper storage bound at 111.50 x 109 m3 
(173 m elevation). 

The vital importance of the High Aswan Dam Reservoir to the 

Egyptian economy has been emphasized earlier. In this chapter it was 

shown how the Leseroir can become more energy efficient, if optizally 

operated at elevations below Toshka's threshold. Estimates of water 

savings and energy losses were obtained from operating at lower eleva

tions, and a potentially attractive tradeoff to the Egyptian water planning 

authorities resulted. The ELQG control method can be used to analyze 

oa: variety of other related issues. For instance, optimal reservoir
 

operation under varying hydrology conditions (such as resulting from
 

upstream water conservation projects and the growing Sudan abstractions)
 

and changes in the downstream water demand (consequence of the intense
 

development program4 can be thoroughly investigated to assist in success

ful long-term planning. Gradual modification of the irrigation demand
 

pattern (constituting the bulk of the dowmstream water supply require

ments) may be studied aiming to achieve a better complt-nentarity with the
 

energy generation objective. Similarly, the appropiate reclamation rate
 

of desert lands and their cropping pattern need to be determined in connec

tion with agroeconomic studies. Apart from long-term planning issues,
 

a hierarchy of ELQG models can be put together to dictate real time,
 

day to day (or shorter interval) reservoir operation. These along
 

with many other investigations can positively assist in the optimal
 

management of the Nile waters.
 

With regard to °
the ELQG control method, this chapter has demon 

strated that its theoretically predicted properties are indeed realized
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in practice. The following chapter will briefly discuss an application
 

to a three reservoir system and will conclude this work. Case
 

studies on dimensionally higher systems will be reported in separate
 

publications..
 

275
 



Chapter 6
 

A TIIPEE RESERVOIR CASE STUDY
 

6.1 Introduction'and Overview
 

This chapter's objective is to assure that the method's previously
 

demonstrated efficiency is also present in high order system applications.
 

The second example is a three lake system also located in the Nile River
 

basin. After presenting a model for this system's dynamics, a control
 

problem will be set up and solved. Due to the limited data base, this
 

case study will not involve simulation experiments. However, further
 

usage of the method along the lines of the previous chapter is straight

forward.
 

6.2 The Equatorial Lake System
 

The River Nile emanates at the Equatorial (or Great) Lake region in
 

the Eastern part of Africa (see Figure 5.2.1). -Figure 6.2.1 focuses on
 

this area's three major lakes, namely, Lakes Victoria, Kyoga, and Albert
 

(or Mobutu Sese Seco). Connected by the Victoria and Kyoga Nile branches,
 

these lakes fcrm a cascaded system containing enormous quantities of
 

fresh water (about 3,200 km3). The outflpw of this system (approximately
 

2.3 x 109 m per month at the mouth of Lake Albert) eventually joins the
 

White Nile waters after first passing through the Sudd Swamps (Figure
 

5.2.1), where half of it is lost to evaporation. The Lakes (especially
 

Victoria and Albert) are natural reserv¢oirs of large storage capability
 

and can be regulated for the benefit of the riparian countries (Kenya,
 

Tanzania, and Uganda) as well as the Sudan and Egypt. The regulation
 

studies are still at a preliminary phase (regulation structures have not
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yet been constructed), 
but they gain increasing importance as the Jonglei
 

Canal Project (a channel to bypass the swampy region) is well under con

struction. The Jonglei Project will strengthen the hydrologic coupling
 

of the Equatorial Lakes with the rest of the Nile system and will facili

tate the coordinated operation of all the major Nile control projects
 

(Ministry of Irrigation, Water fasterPlan,TR 15).
 

Here the Equatorial Lake system will provide an example of 
a short
 

ELQG case.study. 
The objective is to test the new method's performance
 

in handling systems of more than one reservoir. Potential comprehensive
 

usage of the method in the particular system will also be discussed.
 

The hydrology of the Lakes! area is thoroughly discussed in the four
 

volumes of the "Hydrometeorological Survey of the Catchments of Lakes
 

Victoria, Kyoga, and Albert," World Meteorological Organization, 1974.
 

Most of th -data used here are 
taken from that study and from communica

tion with Engineer A. Fahmy of 
che Egyptian Ministry of Irrigation (1982).
 

Table 6.2.1 gives monthly average evaporation and rainfall depths over
 

the three lakes, andTable 6.2.2 gives the monthly mean and standard devia

tions of the net basin contributions to each lake. 
 The net basin contri

butions have been calculated from water balance considerations of histori

cal data over the period 1948-1958 as follows: Let sr denote a lake's
 

storage at 
the beginning of month Z, A(s ) the surface area corresponding
 

to sZ, eZ the evaporation minus rainfall rate from Table 6.2.1, Q 
the
 

lake's outflow minus any upstream lake's inflow (for Kyoga and Albert),
 

and w the net basin contribution. Then, the following water balance
 

equation can be written for month Z:
 

Sp+2=S - e2 A((s + s )/2)- Q + N ' (6.2.1) 
Z. Z 7 Z +l Z 
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TABLE 6.2.1: 	 MONTHLY EVTPORATION AND RAINFALL RATES FOR LAKES 

VICTORIA, KYOGA, .ND ALBERT 

L. VICTORIA 
 R L. KYOGA 	 L. ALBERT 

MOI1TH Eva, (iml Rain, (rm Evap.(mm: Rain.(m) Evap.(mm) Rain.(mm' 

JAN. 96 105 110 28 1.60 17 

FEB. 106 113 141 46 138 27 

MAR. 135 197 146 107 149 60 

.PR. 133 287 161 178 118 108 

MAY 136 226 171 164 112 71 

JUN. 156 88 117 94 116 44 

JUL. 143 60 91 85 107 58 

AUG. 1-9 71 123 130 238 66 

SEP. 106 83 113 120 67 66 

OCT. 106 103 109 115 93 91 

NOV. 128 180 130 96 93 77 

DEC. 109 178 104 37 155 24 

ANNUAL 1473 1691 1516 1220 1546 709 
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TABLE 6.2.2: MONTPF.1Y V.NSST.DND DEVIATIONS OF THE NET 

BASIN CONTRIBUTIONS (x 109m
3 )
 

L. VICTORIA L. KYOGA L. ALBERT 

MONTH Mean St. Dev. X ean St. Dev. Hean SL. Dev. 

J.ANq. -0.209 1.763 -0.299 0.409 0.470 0.231 

FEB3 0.394 3.005 -0.062 0.332 0.199 0.315 

MAR.. -1.225 3.542 -0.234 0.263 0.233 0.188 

APR. 0.885 3.952 -0.004 0.196 -0.055 0.738 

MAY 2.228 4.592 -0.273 0.720 0.7&i 0.592 

JUN. 1.151 2.688 0.258 0.916 0.388 0.261 

JUL. 1.290 2.402 -0.041 0.325 0,450 0.354 

AUG. 0.773 0M981 0.007 0.305 1.308 0.283 

SEP. 0.394 2.907 0.277 0.546 0.478 0.349 

OCT. 0.004. 2.374 -0.255 0.A85 0.434 0.243 

NOV. -2.2.51 4.955 -0.159 0.313 0.276 0.597 

DEC. 0.132 6.508 -0.437 0.483 0.856 0.522 

ANNUAL 3.666 -1.222 5.777 
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(For better approximation A((s + sZ+!)/2) was used rather than A(sz) or 

Table 6.2.3 gives adequate analytical approximations of avail

able storage-elevation and storage-area data. 
These fu.ictions are used
 

to 
transform hiscorical lake water elevation measurements into storage
 

and surface area sequences which finally yielded net basin contribution
 

estimates via Eq. (3.2.1) and historical lake outflow data. 
The assump

tion was made that a lake's ou,,_l-ow vas also inflow to the downscream
 

lake with any channel losses or gains included in the downstream lake's
 

net basin contribution. 
The procedure did not consider measurement errors.
 

Notice that some of the net basin contributions were negative as a result
 

of using the (evaporation-rainfall) rates reported in Table 6.2.1 through

out the period 1948-1958. Another consequence of this assumption is the 

high net basin contribution variance for Lakes Victoria and Albert. 

-.Table 6.2.4 specifies maximum and minimum lake storage and outflow
 

values based on assumptions of previous regulation studies (see Ibrahim 

et al., 1981). 

In the follcwing section a model for the Equatorial Lakes is presen

ted and, subsequently, used in experimertal ELQG computer runs. 

6.3 Extended Linear Ouadratic Gaussian Control
 

Based on the previous section's assumptions, the three lake system
 

can be represented by
 

ds t)
 
dt = -Pa.(t) Av(sv(t)) - UV(t) + WV(t)
 

dsK(t)
 

dt =-eKt) AK(SK(t)) + uV(t) -UK(t) 
 + wK(t) (6.3.1) 

dsA(t) =-eA)t) A(S(t))dt ( ) + UK.t)"- UA(t) + wA(t)( 0 t
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TABLE 6.2.3: ELEVATION E(m), STORAGE s(x 109m ), AND SURFACE 

AREA A(x 109m 2) R1ELATIONSHIPS
 

LAKE VICTORIA (Water Elevations at Jinja Gauge)
 

E = 932.74105 + 0.00739997" s+ 22.426219 •in s
 

s = -8.9288208 + 23.280746 • E + 662.33163 "In E

32394526./E + 351.29970 • tan ki- E) 

A = 719.479.35 + 0.06934627 • s - 517065.27/s 

-10.231907/(0.00739997 + 22.426219/s) 

LAKE KYOGA (Water Elevations at Bugondo Gauge)
 

F = 1027.5663 + 0.15630936 s + 1.1132319 in s
 

s = 90092.272 + 19.404901 E - 15867.164 • in E
 

A = 84.83482 + 1.4969286 • s - 33.946833 in s 

171.76682/s 

LKE ALBERT (Water Elevations at Butiaba Gauge)
 

E = 67.459566 - 1.4489289 • s + 0.00226650 • a +
 

143,3840714 - In s
 

s = 501.319-4.18467 E 0.233517 E2
 

= 45.69575 + 0.5773356 •s - 0.0013191016 •s2
A 


19.405298 i
In s
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TABLE 6.2.4: STORAGE AND OUTFLO0 BOUIDS
 

L. VICTORIA IL. KYOGA [L. ALBERT 

MAX. STORAGE (x 109 m ) 3,100 30.0 175.0 

MIN. STORAGE (x 109 m ) 2,915 5.5 145.5
 

MAX. OUTFLOW (x 109 m3/MONTH) 4.666 4.666 3.888 

MIN. OUTFLOW (x 109 m3/MONTH 1.037 1.037 1.296 
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Each variable or function is defined as in the previous section and is
 

indexed after the corresponding lake. In vector notation system (,6.3.1)
 

can be expressed as follows:
 

ds(t)
 
SFCs(t),t) + L u(t) + w(t) (6.3.2) 

where ... .. .. 
sv(t) 	 u ) v(t) 

I 

S(t) = sK(t) , u(t) = u(t) , w(t)= WK(t) 

SA() 	 U t) WA(t) 

-eV(t) AV(sv(t) 	 -1 0 0 
F(s(t),t) 	 -(t)AK(SK(c)) L 1 -1 0
 

-e A(t)AA(SA(t) ) 0 1 -1
 

System (3.6.2) can next be converted into the continuous time linear

ized perturbation version and then into the discret Lime formulation by
 

following the general procedure outlined in Chapter 4. (There is no ob

servation equation - perfect state information is again assumed). The 

resulting model is of the following form: 

Z = 0. ... ,T-1 

where
 

= 6s(t ) = s(t ) - s(t ) , 

O-z = 5_(t 2 ) 	 =z(t ) - u(t), 

_ ==(t 	 2,t) 
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d
 

dt-f F(s (-C) T) -(T'%t (.,t .
 

.- ev -)a(V 0 0 

. KA(s A()) 

0 0 -eA(t) as(t)
( t z
 as t)"]
 

,td J 

•nt) : ta j SZ+l)) 

st)
 

= F(s(t),t) + L u(t) + -(t) (6.3.4) 

where w(t) is the mean net basin contributing vector. The elements of
 

this vector as well as those of the matrix
 

I-v0(t) 0 0 

(t) 0 %K(t) 0 

0 0 1A(t) 

are obtained from the discrete time values reported in Table 6.2.2
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according to the procedure discussed in Section 5.4.2 of the Single
 

Reservoir Case Study. The nominal control trajectory u(t), tE:tOtT]
,
 

is piecewise constant (monthly intervals):
 

u r u(t ) , TF-[t 2,ft 2+l). 

The differential equation for the state covariance P (t) is as
 

follows (,...mpare with (5.4.27)):
 

dps (t).
 
d Fs(t),t) P (t)+P W FT((t),t)
---:I- =S : _ -- + w(t) 	 (6.3.5) 

Since the initial condition is the zero matrix and Q(t), F((t)
 

are diagonal, it follows that P (t) is also diagonal and the system
 

(6.3.5) can be easily solved by the separate integration of three dif

ferential equations.
 

The: gulation of the Equatorial Lakes is a multiobjective problem.
 

It involves energy generation (there eists a power plant at Jinja),
 

navigation and flood control requirements (imposing constraints on the
 

lakes' fluctuation and outflow), and meeting the downstream demand
 

(water supply, flood protection, energy generation, etc.). However,
 

* detailed data are not presently available to this author. To continue
 

with the case study, it will be assumed that the objective is to have
 

the lakes track certain storage and outflow (release) trajectories sub

ject to the constraints in Table 6.2.4. 

As an exaLple, consider a 12 month control problem with the lake
 

storages at the following initial values:
 
= 93
 

0, 	 3,020 x 109 
m 

= 93 

10 x 109 mSK0 
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l0 9 3m150 xSA0 


Suppose that the objective is to
 

mi N'E (s -s + ) N (u -ur I Z _--ss -- --u_£ w 27= Z --Uu Z -Z_ 

=,..., 12 

+L* T * (6.3.6)2 (-13 -s13 ='s13 (A13" --13) 

subject to the dynamical Equation (6.3.3) and the other system con

straints (Table 6.2.4). The target storages and relec.ses are given in
,3 " 12 
N1s2,
the diagonal matricesTable 6.3.1 along with 

The elements of the coefficient matrices were taken equal to
 

1
 
N t~~2 '~=0, '1 

12
min2
ssZ max 


(6.3.7) 

Nuu. (max min) 2 Z= 0,.,., 12 

for all three lakes, while the coefficient of the terminal storage term
 

was additionally multiplied by 10 (to make sure that the terminal stor

ages will be close to the target values at the end of the control hori

zon). The relationships (6.3.7) were used to comparably penalize the
 

various variables' deviations from their target values. The target re

leases were taken equal to the corresponding lake's average water gain
 

:ver the period 1948-1958 (based on the previous section's modeling
 

assumptions).
 

Tables 6.3.2, 6.3.3, and 6.3.4 present some results of the iterations
 

required by the ELQG control algorithm to solve the above problem.
 

287
 



TABLE 6.3.1 DATA FOR THE COMPUTATIONAL F-XPERIyENT 

_ L. VICTORIA L. KYOGA L. ALBERT 

sz (x 10 m ) 3,000. 20. 160. 

V = 0, ... , 13 

u( x 109 m3/monh) 1.532 1.324 1.400 

Z - 0, ... , 12 

NSSz 0.292 x 10-4 0.16659 x 10- 2 0.114 91xi0 2 

Z = 0, ... ,12 

NSS13 0.292 , 105 0.16659 x 107 0.11491 xi0 7 

NUUz. 0.759406 x 101 0.759406 x 10j  0.1488435 

Z 0, ... ,12 
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"OBJ. FUNCTION 1" reports the performance index value (6.3.6) neg-lecting
 

the covariance terms. 
 "OBJ. FUNCTION 2" additionally includes the con

tributions from any state constraint violations. "WI", ""p, and ".ALPHA" 

are as in the single reservoir case. The number of the binding control
 

constraints is given next. 
 The tables report the trajectories of the
 

mean storage values ("E(SY'), St. Deviations ("ST.DEV."), releases ("U"), 

first ("DUJ"), and second ("DUUJ") objective function control derivatives. 

Under "A", the control constraints are signified by "-i" if they are 

lower binding, "" if they are upper binding, and "0" if they are Dot 

active. The procedure starts at nominal release trajectories which are 

equal to each lake's target releases. To test 
the method's convergence
 

properties, the linearization of the dynamics is performed only once at
 

the initial nominal sequences, and the resulting linear model is also 

used at the subsequeut iterations. Convergence is practically achieved
 

in two iterations as can be seen by the Gradient elements and the "WI"
 

value on Table 6.3.4. In fact, the algorithm converges in one iteration
 

after the binding control constraint set is identified. The terminal
 

storages equal the desired targets. This experiment did not involve
 

probabilistic state constraints. 
 (The St. Deviations are computed ac

cording to the Open Loop procedure.) The iterations required approxi

mately 8 seconds CPU time on a 68/DPS Honeywell computer. Computational
 

experience with variations of the above problem (longer control horizons,
 

different target val 
es and feasible constraint ranges, etc.) suggests
 

the following:
 

1. After identifying the binding constraint sets, 
the algorithm con

verges in very few iteratiots (2 -3 for nonlinear dynamics, 1 for linear).
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2. The number of iterations until the binding constraint set is
 

found depends on how restrictive these constraints are. Namely, many
 

loosely act4.ve constraints may slow down the convergence rate.
 

3. Generally, the Armijo test is passed at low m values.
 

4. Before increasing the penalty terms for any state constraint
 

viilations, convergence or near convergence of the control constrained
 

algorithm is first recommended. (This way ill conditioning problems
 

are avoided.)
 

5. Computer time and storage requirements are impressively low.
 

Under a more extensive data base, ELQG can be used in a comprehen

sive investigation of the Equatorial Lake Project. Different regulation
 

alternatives can be evaluated and assist in international agreements.
 

For example, an objective of the previous regulation studies has been
 

to operate the lakes so that Lake Albert's outflow will always be equal
 

to its historical mean. This all-the-year-round steady outflow regula

tion aims at providing downstream users with safe water supply. The
 

question is how much lake storage is necessary to achieve this goal and
 

what are the costs involved. Regarding the associated costs, they refer
 

not only to the explicit costs of the regulation structures but also to
 

implicit costs related to the navigability of the existing lake ports,
 

possible reductions in energy generation, and the effects on other ac

tivities (fisheries, etc). Nct suffering from dimensionality problems,
 

ELQG can also investigate the benefits of coordinating the Equatorial
 

Lake system with the High Aswan Dam. Towards this end, the lakes can
 

serve two purposes: First, as an overyear assignment they provide a
 

dependable reserve water supply in periods of severe Blue Nile droughts,
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and secondly, un a seasonal basis, they can help diminish the HAD's
 

level fluctuations caused by Blue Nile floods (August,September, October)
 

and the downstream water demand peak (May, June, July, August). Basee
 

on our experience with the first case study, the second of the above
 

tasks will help increase the HAD power production while -he first will
 

add to the. reliability of meeting the water supply requiremento. This
 

second regulation strategy, however, may require substantial lake stor

age volumes which may be in conflict with the interes-ts of shoreliae
 

residents. However, by establishing the true tradeoffs among the vari

ous objectives, fair grounds can be established for the lake regulation
 

agreements.
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Chapter 7
 

CONCLUSIONS A.ND FURTHER RESEARCH RECOMMENDATIONS
 

7.1 	 Summary of Resulcs
 

This work has used stochastic control theory background to design
 

a method for the orerational management of reservoir systems.
 

The actual reservoir and river segment response was modelled by a
 

set of coupled nonlinear differential equations in continuous time.
 

Potential parameter identifiability problems were discussed, and an
 

identification procedure for separately treating reservoirs and river
 

segments was suggested. The system model was linearized around nominal
 

control and state trajectories and subsequently converted into a discrete
 

time linear perturbation model where the discretization intervals can be
 

arbitrary.
 

The various system objectives and operational characteristics were
 

seen to induce control and probabilistic state constraints. The goal
 

asigned to the control procedure was to generate points on the properly
 

defined tradeoff surface. When treated according to the Open Loop Feed

back control philosophy, the resulting stochastic control problem was
 

seen to be equivalent to a deterministic nroblem in the space of the
 

state's probability density. Due to the linearizations employed, this
 

function was locally approximated by a Gaussian density. Tl-e algorithm
 

designed to solve this problem was named Extended Linear Quadratic Gaus

sian (ELQG) controller, and'it is of the trajectory iteration type. It
 

successively treats the unconstrained problem, the problem with control
 

constraints, and the problem with both control and state constraints.
 

For these operations it respectively uses a Newton, a Projected Newton,
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and a Penalty Function method. ELQG iterates along directions obtained via
 

analytical considerations. It identifies locally optimal trajectories,
 

and 	it is expectee to display reliability and a fast-convergence rate.
 

By its analytical structuire, it does not suffer from dimensionality limi

tations.
 

The method was tested in case studies of two actual reservoir sys

tems. The first case study concerned the control of the High Aswan Dam
 

in Egypt. The problem was to maximize expected energy generation subject
 

to release and probabilistic storage constraints resulting from other
 

operational requirements (water supply and flood control objectives).
 

ETQG was employed in several computational experiments and performed im

pressively even for very long control horizons. Control constraints were
 

accounted for within very few iterations (5 or 6), while the handling of
 

the probabilistic state constraints was satisfactory overall, although
 

less efficient. Compared with state-of-the-art procedures, the method
 

exhibited superior performance. The second case study concerned the con

trol of zhe Equatorial three lake system located in northeast Africa. It
 

was shown that the previously identified ELQG properties also character

ize the method's performance in multireservoir system problems.
 

7.2 	 Further Research Recommendations
 

Further research work can proceed along several directions;
 

1. Although local linearization of the system dynamics was seen in
 

both case studies. to be overall adequate, the possibility of second order
 

approximations can be investigated for strongly nonlinear systems. In
 

such a procedure the method's iterative steps will utilize the Newton's
 

direction :or the nonlinear control problem (and not of its linearized
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version as was the case here) which will result in faster convergence
 

rate.
 

2. Theoretically, multiplier methods are characterized by better
 

convergence properties compared o the Penalty Function approach. If
 

the initial multiplier guess problem is alleviated, these methods will
 

add to the overall ELQG efficiency.
 

3. Computational experience with large systems should be acquired,
 

and the system order up to which the nnw method can be advantageously
 

employed should be determined. For higher order systems, research ef

forts can turn to ELQG decomposition schemes. The problem consists of
 

two separate parts: (1) decomposition of the probabilistic state dynam

ics and (2) decomposition of the control gain equations. Toward this
 

end, theserial reservoir system nature may be usefully exploited.
 

4. Regarding practical applications, the method can be employed in
 

studies of various actual systems. Cases with imperfect state informa

tion as well as ELQG models with on line system identification procedures
 

can be implemented. Car4 should be taken to properly account for the
 

particular problem's characteristics. The method cannot substitute for
 

intuitive tiystem understanding.
 

5. Hierarchical control structures can b- designed to consist of
 

ELQG models differing in the discretization intervals, the performance
 

index, and possibly the input process description.
 

As a concluding remark, ELQG ,'anbe rewarding to both theoretical
 

research and to actual reservoir systems operation applications.
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Appendix A
 

MATHE&ATICAL REVIEW 

Some mathematical definitions and results are collected here to
 

supplement the presentation of the main text.
 

Consider the scalar function f(x) of the n dimensional vector x. 

The Gradient vector of f(x) with cespect to x is deaozed as 7 ;(x) and 

is given by
 

V f(x) = a (A.1) 

Dx
 
n 

The matrix of the second f(x) derivatives with respect to the vector x
 

is called the Hessian of f(x).and is defined as-follows:
 

af(x) 3f(x) 
axl 1 xlax 

VXXf(x) = . (A.2) 

f(x) f(x) 

axnn 1x 

The function f(x) can be approximated around some vector O by the
 

following 2nd order Taylor series expression:
 

f(x) = f- ) + 7 Tf )( 1 T (A.3) 

("T" denotes transpose.) 

Higher order Taylor series expressions of f(x) can be obtained from
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m
m-1 1 (

fF X X " + + ( X -

m=O .X1 n n0 axn 

f (20 ) (A. 4) 

where the expression in the brackets is an operator applied to f(x), 

and the resulting expression is evaluated at 

Consider an m dimensional real function f(x): IRn IRm (IR j de

notes the space of j dimensional real vectors). The Gradient matrix of 

fQ) with respect to -cis defined by 

f() f (x)
 

X _ ). (A.5) 

Ii f h(( x (A.6) 

r lR n  where h: IR
rn 

JR7 and : IjR 
rr , there holds 

V f(x) = V g(x) 7 h (g(x)) (A.7) 

(chain rule of differentiation). 

Using this result we obtain the following expressions: 

S(ax) = (x T a) = a (A.8)x -- -- x- - -

T T
 

7 (x T A x) A x- + AT 9)-X= =A .9) 

where a is an n-vector and A is an n x n matrix.
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APPENDIX B 

ANALYTICAL APPROXIMATION OF TE 

REFORMULATED COST TERMS 

We wish to obtain analytical approximations of the cost terms 
A 

" or Z(") d'efined by
 

A 

Z.(s2./kslkuZ Zz(6Q;/k,6-Hd E {2f (~s . 5 2 ) Bl 
2. 

where (,) is a given real valued unction, 6 s is a Gaussiai ns 

dimensional vector, and 6u is the n dimensional control vector. 
z U 

To illustrate the approach we shall begin with the case of scalar
 

state and control. In fact, this analysis will suffice.when 2 (-.) is
 

:separable into terms depending on state and control variableloni.yone 

(compare with performance index (4.2.14)). The idea is to represent 

2z (6s2 ',u) by a finite number of Taylor series terms and analytically 

evaluate the expectation in (B.1): 

zz 11 if[6i. Is u asVSU) Z0 m' + 6uz6ujl'Z)]s6u)1.~ z(L2 s'6u s= 0 (B.2) 
6u=O
 

where the expansion is around the current nominal state and control
 

trajectories. In the notation of Equation (B.2) the quantity in
 

brackets is an operator applied on 2Z(.,.). Expanding the powers
 

in (B.2), we find
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M-1 r mS1 __!
 

m&O ml"m2=mI~ 

( s ( (B.3)
(3S 3(aduZ) 

where ml,m 2 are all non-negative integers for which there holds
 

,m. Taking expectations in (B.3) we find
 

M-1 3m[ (o,)]
 

m=O ml 1 !2 (306sz) (c1 2
 

{"ml+m2 mZ
 

Wd{(Zs1)} (6u) (B.4)
 

Tm 2
 

Equation (B.4) can provide an analytical approximation of ZZ(6Sz/kPsZ/k
 ,
 

m l}
6uZ) if E((6sz) can be expressed in terms of the mean value
 

sZ/k and the variance PsZ/k" Toward this end we shall make use of
 

the "Gaussian moment factoring", a simplifying property characterizing
 

Gaussian random variables. For a Gaussian variable x with mean value x
 

and variance 0, there holds (Jazwinski, 1970, Section 2.2)
 

0, all odd m > 1
 

E{(x-x)m} (B.5)
 

1.3.5...(m-i~a m , all even m > 2.
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Result (B.5) can be easily derived from the properties of the associated
 

"characteristic function". Using (B.5) one can also evaluate any
 

statistical moment ErXm } by induction:
 

2 2 - 2 
m=2: 	 E {(x--)} = Ex }-2E{x}x + x = , or
 

E x2 -2 2
 

m=3: E{(x-X) 3} = E~x3}-3E(x 2 }x+ 3Ex}xz - x = 0, or
 

3 + 3xo
2 ,
 

x
E{x	3 


4 -4 --2 4
m=4: 	 E } = x + tz- + 3 

These 	expressions can also be obtained from the characteristic
 

function
 

-1 2 2
 
izx-lz " qxz.=e • ., i 2 """ - ,(B. 	 6)' 

and the fact .that
 

1 dmqx(z)( 
E(Xm} dzm B 7 

z-0
 

Hence, E{( Sp) } can be expressed in terms of 6 /k' Ps/k 

and Equation (B.9) can be used to approximate Z 2 (., ., .) = z(., .) 

at 	any desirable accuracy.
 

Regarding the multidimensi,nal case where 6s, 6u are ns ,
 

n dimensional vectors respectively the previous equations become
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M! [" 11 . . .+6 Sn. 3 6Ua .6un1 acu 
s U 

M-I 1
 

m0m
 

.2
 
sls m M ...'M Msl .. Msn ! ul!" .Un
 
sl S...+sn un U
ul --


S" U 

(Szmsl+...(m sn M 1.=MnUi.n(Uln 

3L-[Z (2,.2)2 

rl ul un 
b~ 3S. Z' s(6 . U 

*E b S1 £) ... ( sn 5 ( l.U ( n un (B.9) 

s U 

m s 

Again, E{((,S, ) sl"(6sj s} can be obtained in terms of the 

elements of the mean vector 6s and the covariance matrix P
 

by the "Gaussian moment factoring" result, which in this case takes
 

the following form (Sandell and Shapiro, 1976): Let {xl,x 2,...xn
 
s 

be a set Df jointly Gaussian random variables with mean values
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n
 
(x S and covariances a < i,j < n Let {kk }
-i~ - S 2' ., L 

be a set of integers selected from {1,2,...,n } with repetition 

allowed. It holds that
 

0, L odd 

E{(> (B.10) 

*I. L even 
1 2 314 L-1lL9 

where the summation in (B.10) is over all distinct pairs of subscripts
 

{Z1,, ... z} which are permutations of {kl,k 2 ,.... k . Although
 

more complicated, this result can be used inductively to provide the
 

desirable expressions.
 

Alternatively, the same results dan 'be obtained through the
 

joint characteristic function which,IW'the case of the {x ,...,x }

1s
 

jointly Gaussian variables becomes
 

qx (z) - e.p {izx_ - .1 .z P z} (B.11) 

where z is on n dimensional vector, xT = I) .. and P is-- 1 f- n =MX 

the covariance matrix of xT = [x 1 ... xn . Then, 

n 
s is --

where Vzq (z) is the gradient of q,(z). Moments such as E(xll 2 ..
 
m 

xns} can also be obtained by repeating m. of the variables xi, i=1,
 
s 

ns, in the jointly Gaussian set.
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Although the accuracy of the analytical approximation suggested
 

here can be improved by retaining more Taylor expansion terms, in
 

practice the first few terms will generally suffice.
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APPENDIX C
 

EVALUATION OF GRADIENT AND HESSIAN
 

Consider the following two cptimal control problems reproduced
 

here from Section 4.5:.
 

Minif.fize. =.M Zk¢,T(6i; ) + + Z6sT/k)}
T-1 =
 

(C.1)

subject to 


'4~+1/k '419 - ' k
+ A 2/kA:'~ 


Z=k,..., T-1
 

and T

nd Mi . T[+ lmiZe: T1 

X- u-,Z/ -uZ usZ-9Jk l 

sT + N N.-T -=2 

+T -T N 6
 
-sT T/k + 2 T/k =ssT
 

subject to 

%+l.k 19, 63.I k + 6ZM -_k/k (C.2) 

Z-k,... ,T-l
 

=
where N 7-sZ/k Z O)O 1
 

NI 7z (010), 
-'-ESSZ72 

= 6ssZ (symmetric)S/k-Z 21 (0,0), 


U =U 72 (0.,0 ) , (symmetric)
 

6Rz 4 - - T
 
6 .- z jO o)]
us2 = 9.Ik 
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We wih to show
 

1 =0) = V J(6u =0,...,JUTl 0), (C.3) 

V J(u,S

uu = 
Vuu, --It0---- '' T-1. 0 "u /uu, -0' '°--- 0 C 4 

where
 

rV j 72 .. 72 
-614kJ~ T-1 

~ V j- (C.5)
U UU,• 

7 vjJ2 2 

and similarly for V J, A
2
 

U UU, 

As a proof we shall directly evaluate representative elements
 

of the above Gradients and Hessians and show that along the nominal
 

sequences ({uZ=0}=TL, S_ =k , ) they are equal. To this end
 

we shall need the following fact:
 

6s. = (j+l,k) + (j+1,0kk i+l) Bi au. (C.6)
-j+l/k:-/k +i-k = 

where P(j,k)A -b. ' =' (C.7) 

for any j > k. 

The validity of (C.6) can be established by recursing the 

dynamics from time k to time j+l: 
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k+l/k 6 + 5k/k k 6

-k+2/k tk+lr 6-UJ+B =k 

= +I -k/k -k+l B= k + =k+l 'u-k+l 
k+l 

= =(k+2,k) 6s-klk + l=(k+2,i+l) B6 ' 
k/k i=k 

which by induction leads to (C.6).
 

Now consider'taking the derivative of J with respect to the
 

control vector at time Z:
 

k)6++m 6.-4 -k/k' k +-*-~ ~, k 6 

+ 2,+l(0Sz+i/k'k+l ) + + T(6ST/k)]. (C.8) 

Since the cost terms prior to time Z are not affected by the control 

)4, they vanish after the differentiation. The only cost term 

explicitly involving 6 Zz(sZ /k,is uz) while the terms Zj (Sj/k,6u) 

for j > Z are implicitly afferted through the state vectors. In view 

of the above 

T-L 
76.z i =7 _ zu ;Z/koUZ) +j=2z+1 7 uR 6-ij/k . 6 / £(%/k) -j 

+ V6ST/k'6s ZT(oST/k)] (C.9) 
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The expressions in Equation (C.9) result from application of the chain
 

rule for vector differentiation according to which (see Appendix A):
 

u j (6si/k) j/k' 6.). (C.10) 
-j/k 

6
To evaluate 7 s /k' j=Z+ 1, ,.., T, we next invoke the result (C.6): 

J=l
 
Vus/k6s V ((j k) 6sk/k + Z g(J.,i+l) Ei =
 

[!(J,Z+1) Z .T (j, i-+l) (c.l)3 ' 


where the following vector differentiation rule was also used (see
 

Appendix A).: 

7u[P.(jZ-!-I) BZ 6£1 = [ 2.(j,+l) B 

Substituting (C.11) in (C.9) we have
 

Su£ J Ou.)ZZ+Zk(6s / k ' ) A62 (;-J/k) - +6u u u + BT It T(j Z+l) 7Z 

T 
+ (b(T,Z+l) V - Z (6s (C.12)= 
 OT/k T-


Since we wish to evaluate the above Gradient at the nominal trajectories, 

we set 0=01Tkk,- {sj/k = (the zero state sequence results from 
J 

the zero con'rol sequence, the dynamics, and the zero initial state
 

condition) to arrive at
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V~ J(6U =0, .. UTl 0 N~u + B T(j ,ZINs](C. 13) 

6k -'' -s-z j=9+l -Tl 


where the coefficients N, (.\I I= have been defined in (C.2).
 

To prove equality of Gradients for problems (C.l) and (C.2), 1-;a
 

need to show that the righthand side.of (C.13) also represents
 

u Z T( =O, ... ,T 0). To this end we observe that all oparations 

invoked to derive (C.12) are valid for problem (C.2) as well, the only 

difference being the form of the cost terms. If we denote the quadratic 
byss{(s. ,,u.y T - 1 

costs (j=0, T 6T/k , we find the following expressions
 

for the derivatives indicated in (C.12):
 

6u. Z Zaz/ki'~-Z =--n 6ua + N s -/ 

-6 z 5U N' +N 6 + N 6.
 
65jjlk5 /J =ssj -J/k usj -

(C.14) 

s/ Z--T(ST/k) =sT + NssT -T/k-ST/k -

To carry out these differentiations, we have used the fact that for
 

two real vectors x, Z and a symmemtric matrix A of compatible
 

dimensions there holds
 

7X(T) = (XTV) = v 

V(xTAx) = A x + ATx = 2A x. 

In view of (C.14) and (C.12) we obtain,
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10. =UU liusz -9./k Z 1 

_T+_ T ,+1-+ 
u s j [N + "I 6Ss + NT Su +.,AT(T, 9+) N3+NTS i (C.15)--sj =ssj -j/k =uj j -t =ssT -T/k. 

T-1- T
Finally, setting (6u 0} {6 = 0} in (C.15) we find that
 

76u J(-70, ... , aTu=0) is given by 

V-O) - j + BT (T T(J,2 +l) N ] (C.16) 

Since equations (C.16) and (C.13) hold for any time Z =k,..,,T-,
 

their equality proves the claim that alcng the nominal sequences problems 

(C.1) and (C.2) have equal Gradients.
 

We turn now to the evaluation of the Hessians. Regarding problem
 

(C.1) we shall start by differentiating Equation (C.12) with respect
 

to a control vector 6u where we assume k < m < Z:
 

2 2 
&uuSu = u -9.Z/k* Su6 6;sk + 

• 2 

- -/k sJ/k6SjI k = 
+ 1 6 •.(6s /,.):b(j,9,+l) +] 

2s- / T k+ V 6;_ 7ST/ ~ T(6i/k 6(T,Z+I) B. (C.17) 

V6 -T'k 5s-Tk- c.
 

Equation (C.17) results solely by use of the chain rule of differentia

tion since all terms in (C.12) are implicity functions of 6u through--m 

the state vectors and the dynamics. Similarly to (C.11) we find
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-  -  

and so
 

2 _ jJ BT !t(Z,m+) .	 z~ 6U ). BZ Ous k ) +
 
6.aq 6 u =M6 s Z Z k'uZ)
 

-fj/k(S,_-j1i k+ 	 BT AT ,+ Vjel -jz (6+ ,2 
-j/k -/k (j/k6 - ' 

+ b (T,m+l) 	 ZT (sT/k) (T,Z+1)B 
-T/k1 -sT/k T 	 =9; 

(C.19) 

Evaluating this expression along the nominal sequences we get
 

02 	 BT NT + 

+ BF I I (jm+l) N b 	 (C.20).c(j.z±1)lB 

=m j=+ 	 ssj
 

Regarding the Hessian of problem (C.2), we differentiate Equa

zion (C.15) with respect to 6u to obtain
 

12 J5 T + [Ti I 6s N (jl) +
 
6u j +uk -j/k Nssj =
 

+A 6s 	 _.
B(T,+ (C.21)
 

6U-mn -T/k L=ssT=
 

Invoking (C.18) the above becomes
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B' T( NT +
2 


suzUM =m = usk, 

2+l) ssj b( ,+ 20 (C.22) 
w hBch b(J,yl 

which by (C..20) is equal to 2 6T-l
 

Similarly, for £=m we can show that
 

2 -(sk=O ... ,6 _= 0) N + B (b(j,+l)N 
6.k614ZIj=Uk =Z+j= ssJ 

I(Ju+l 2 (C.23) 

and for Z < m < T-1 

2u = s0, ... , _-0) - (m,4+l) B2 + 

= (C.24)+ B T gim )N ( Zl] 

proving that problems (C.1) and C.2) also have equal Hessians along
 

the nominal sequences.
 

Before concluding this appendix we shall present a result to
 

be used later in Chapter 4. The purpose is to provide efficient ways
"2 
to compute the Gradient 76u J(O,...,O) and the Hessian 72 

at any time Zk, ... , T-1. Consider the sequence of vectors 

T T 

{-}i=k and matrices {i }t obtained recursively by 
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-T
 

21s(.C.25) 2~l 1N 


i = T-1, T-2, ...,k, 

and G =N
 
=T 	 SST 

T G + ITi (C.26)
2i ai+lj. SS
 

i = T-1, T-2, ... , k.
 

We claim. that. for any Z=k, .... T-1, 

+ BVu 	 J(o,...,Q) N (C.27) 

2 	 TV 	 J(_,...,_) + BG+ Bg. (C.28)
 

To see why this is so we shall prove that (C.27) and (C.28) are
 

respectively equal to the expressions (C.13) and (C.23) derived earlier.
 

Recursing (C.25) backwards we get
 

P-T ="-ST' 

=T + T
 +

2
*P-i= PT + -"ST-1 IT-1 -"ST +-Tl
 

T T T T
 
= 	 + =PT-2 --- 2 -T-1 -sT-2 = --- 2 --- 2 !- - 1 +-NsT-N 2 

= (bT(TT2) 	N + T (T-.1,T.2) N + (bT(-,-sT-2 
-ST -ST-1 (-T-sT

T 	 T 
I I 	(j,T-2) N i 

j=T-2 

where 	use was made of the definition (C.7).
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Continuing the induction up to time .:-I, we find
 

T
 
(C.29)
 

- PT(j ,Z+l1N 
-s
j=z+i 


Substituting (C.29) in (C.27) we obtain 

TT T 

V6J (O,... ,0) - N + B (C.30)
 

which is the same expression of 7 J(O,...,O) as the one in Equation
 

(C.13).
 

Similarly, regarding the diagonal submatrix of the Hessian, we
 

recurse Equation (C.26) to find
 

=T - ssT
 

T
+ TGNs N

2T-l + -1 2T IT-1 + 'ssT-l =Tl-sT !T-1 =ssT-1 

T " 
2T-2 IT-2 2T-1 AT-2 + NssT-2 

T~- T- (b +T+T l (b2+ NT =N2 N 

".T(T,T-2) NT A(T,T-2) + T (T-IT-2) Ns T (T-l,T-2) + 
=ssT ssT-l 

+ IT (T-2,T-2) =ssT-2 =(T-2,T-2) 

T T(jT- 2) Nss j t(j,T-2). 

j=T-2
 

which by induction leads to
 

T 
 T 
= (J+l) ss (j,+l). (C.31) 
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Substituting this result into (C.28) we find 

2 - T T1(O....,Q) ~N +B r T jZ1 

(C.32) 

which by comparison with Equation (C.28) proves the -.aim. 
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APPENDIX D
 

COMPUTATION OF TEE NEWTON'S DIRECTION 

We wish to determine the control sequence {ou67~ which 

T-1r ~T +NT +1 -T-

minimizes I ( -Un + 2 IZZ/k NssZ6°Z/k + 

-1 	 T 
Z N 3.2Z + u Nu z/k] + 

T -5 Il-T -k()l
 

++ 	 sT -ST/k ?ST/k NssT -TI (D.1) 

subject to
 

Z+1k I--9Z/k + B -k/k =0 

Z=k, ... , T-l. 

To guarantee uniqueness of the solution, we additionally require that
 

T-I T-I 
TsT-1 are positive semidefinite and that {a re positive 

definite matrices. These assumpuions are expected to be valid due to 

the form of the objective function discussed in Section 4.2; yet, if
 

they are not there are still ways to remedy the situion. One would be
 

;o convexify the performance index by placing higher exponent penalties
 

on the power target deviations. Others will be mentioned as the dis

cussion progresses.
 

The 	solution of problem (D.1) will proceed according to the Dynamic
 

Programming Methodology outlined by Algorithm A4.4.1.
 

At the terminal time T there is no control variable and we
 

simply set 
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-- 1 -T 
JT[--T/k = - k -ST/k
T TiS -T/k NssT (D.2)
 

Stepping backward, we want to select the feedback control law
 

--i so hat
soT-lt-/k) 


%- 1IT-l' T-1/k) Ti~s- T1k-Ti TJ
 
... ""-" lS~ik"""' =.. arg minum • T-. NT- S-/+ NT-I°T
 

-T T 


-1 -Tl~k'T 1. ST-1-T-1/k -uT-1 =uuT-.'I (6 mi -r Oi 
2[-Tl/k NssT-l STl/+ UT_ Nuu_ -TI 

NusT_1 T-1/k + JT(6 ST/k) } 
(D.3)
 

Substituting for 6ST/k from thi dynamics 

62~ T/k-i + h 5-uS--Td-Ik = Ss-/ dynamics-

and using (D.2), we can restate (D.3) as follows: 

T T s 
- T arg min = [NT + NT s- +

T-1u -sT -l -ST-i -T-l/k 

T T 1-T T+[N B61 +-sc~ =T_~ ~ ~- 1Tj.-uT-i -RT-1+ 2-1/kT-1 ssT T-1 

1 T TB N B +N >Su.., + 
=ssT- ST-1/k + 

5
-fUT-l=T-I =ssT =T_1+NuuT-I --

~T rT N -+U _T- T- 5ST-i/k" (D.4)=ssT +NusT-l 

Because of the positive (emi)definiteness assumptions on Ns- and N
 

3uuT-l'
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it follows that B ssT T1 uuT is also positive definite (as
 

a basic fact from matrix algebra, Strang, 1980) proving that JT-1 is
 

a convex function of Su_. To find the unique global mini-mum, we
 

differentiate with respect to 6 T-1 and set the result equal to zero.
 

T 	 N ++N BT B 
 T

Tl -ST -uT-1 -ZT-1 ST T-l + uuT-l -- 

+ 	T_ N-T_ + [BN s -BT_ (D.5)I]T_ 

-T-1 =ssT + =- _ (D.5)=usT-l]'ST-1/k 

In 	the derivation of (D.5) we have used that for the vectors x, v and
 

the 	symmetric matrix A of compatible dimensions there holds
 

T 	 T
 

V 	1sTAx]=Ax+ A x 2Ax. x 

'Equation (D.5) can be solved for 6u to yield:

-;-T-. 

* *T 	 N
UT	 1 = (STl/k) = -[BT_ 1 NssT _T_1 + NuuT-1 • 

•(T_T Nss T 6T_ 1 + usTI))6 TI/k +BT+ T_ 1 NT + NuT I . (.6 

i NuurN ] -i 

=
Calling DT_ [ Nss T B + .	 (D.7)

+LT-1 BT-T- 1NssT ---T-I NuT-I'(D8
 

L B + 1 (D.8)
Ns +N
=T-1 Tl ssT --T -l =usT-l
T 
-+ 	  (D.9)


A T-1 LsT + -uT-l' 

we 	see that the optimal control law is the following linear function of
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5--	 --T-1 (-T-1/k ) - RT-l[T-l ST-l/k + LT-l' (D.1) 

In case 	DT_ does not exist, one can still solve (D.5) using generalized

=T-1 

inverses (Belinan, 1957) but the solution is not necessarily unique.) 

Given that at time T-1 the control law (D.10) will be applied, 

the optimal "cost to go" JT-1 [&sT 1/k ] becomes 

T-l( T-i/k) = 7ST-i/kO=T-l 6ST-/k + 

T 
L + -l -T-l/k r-l, 	 (D.ll) 

--	 ssT -T-1 I--l 

+ T T N B N
Ti-I DT-1 [=T-l NssT -T-1 uuT-l] T-1 -T-1 

2LT [B N (b + N I],(.2 
- 2--T-1NT-1 =T-1 =ssT :--T-l =usT-. 	 (D.13) 

kT-I.. = 	 -[ T T-N + BT[_N- T-] +NT1I-I T +iTl- i-
1 T T=T-1. =T -T-1 =s T-l T1Ki*(l)
 

cl ssTT-l + N sT 1 AT-1 +T
1 

1 DT-1 	AT-I2 :-1 Dr-. [=T 1 -ssT BT-1 + NuuT-l	 (D.14) 

The above relationships result by substituting (D.10) in the expression
 

(D.4) for J and use of the fact that Ns Ns uT-l, D 
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http:NuuT-l(D.14


--

T_ N B +N are symmetzic.
BT-1 NssT RT-1 =uuT-1

.an be rewritten
Equivalently, Equation (D.12), (D.13), (D.14) 


as follows after invoking (D.7), (D.8), (D.9):
 

TbT sT IT-.. T N b +N 

+ T -- T NssT + NusT-ssT-l 


[1 + __uuT-l =T-1
T 

T[ N s 1BT N -i TusT-Ns+T -B (D.15) 

+ NusTkT-iIN T T - [ 1 N T 

sT-1 + !T NsT -TT-

T -1 [-i W (D.16)T + N 

[BT-1 ssT BT- + NuuT-1I [_T-1 S. -uT-i 

1 T T T 

T-1 - T-1 --sT uT-I T T N BT-i =uuT-i 

Ti N +NT T (D.17) 
,,- [ _S_I/
s 


Having determined the form of the optimal "cost to go" JT-iI aT-1/k 

by Equation (D.iI), (D.15), (D.16), (D.17), we may now step backward 

at time T-2 and select 

T -T _ +* = a r v m i n NTT_6 ST 2/+ NTT _2 _r 
! T - (6S- 2/ ) 

TT-2
 

T Nu +
+ i- ST-2/k + 0UT_2 NuuT-2 -T-221[5_T-2/k NssT-2 


(D.18)
+ N 8s."-


+ U 2 usT-2 ST-.2/k + JT-I(5ST-I/k) • 
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where 

T-2 = T B +N(D.22) 
-D -- -T-2 1 BT-2 NuuT-2 ] 2) 

LT-2 - BT_ (DU3
(D.23)- T-2 KT-1 T-2 + NusT-2' 

'T-2 =T-2 -kil'-1 + N T-2. (D.24) 

Putting S-2 from (D.21) into the expression for iT-2 and regrouping
 

the various terms, we obtain
 

m 1 T-2(ST-21k ) 2 .-T-2/k KT-2 -ST-2/k + 

+ -- m2 6-T-2/k + CT-2 (D.25)
 

S T
 

-- 2." -ssT-2 + lT-2 'T-1 !T-2. +
 

T T + N 
-T -2 T-2 %-2 -T-1 4 2- +UUT-2 -2 i-2 

2 T_1T _2 [T_ (D.26)
-T-2 2T-2 -KT + usT-2] 

A=2 + T T D_ T + N +2 ]  
+ T- + i-T1_ T2S- BT + 2 iD _T-

T T-2- T-2 '- =T-2 +UUT-2 PT-2 T-2 

~-2 IT-1 4T-2 + UST-2]PT-2 PT-2' (.7-

-T-

CT c (kfT B + N T-2 DT2 = 22T-_ -T-1,uT-2 

+.LT LB=T2 +T-NT (D.28)+ 2 T-2T-2 -- T-1 + NuuT-2 1 DT-2 AT-2' 

Lastly, using (D.22), (D.23), and (D.24) we can refine the abo,7e
 

expressions as shown below:
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As before, we next substitute T-) from (D.11) and 6--T-i/k 

from 

6--1/k " -,-2 '-T-2/k B-.2 T+B-2 

to obtain
 

-.T~- +NT-arg min (b.. +~-

.+(TiT1- T .T+ 
.....[_ _ B, + NT,] v_1_-T _T_2 ,T_1 &_-+ 

-V;1 TT-2T-2 NuT-2/kT-2-2+- + =-I 

ssT_2 + 2'Ur-2T- 2 r-i 4-2 =UuT-22T]S2/k .
 

+ CT (D.9)+ NuaT-2]'T-2/kB+ T-2BT-2 - IT-2 

=T- can be seen by Equation (D.15) tG be positive semidefinite which 

guarantees that BT 1 T-2 + NuuT-2 is positive definite and that 

JT-2 is convex with respect to 6UT_ 2 . 

Differentiating JT-2 and setting the derivative equal to the 

zero vector we obtain 

T T 

B ka ++ B + N ++ N ( T + )~
BT-2 -- -uT-2 BT-2 KssT-1 BT-2 uuT-2]-T-2 

T 

BT- 2 KT_ 1 T-2 + NUsT-2 T-2/k = O (D.20) 

* * 

or = 6UT2 2 /k) DT 2 [LT2 6T2(cST_ST_2/k + A (D.21) 
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__

2 r-l -T2 + T-2-rs-T T -1 T 

-2 Kr-1 T-2 + "'UuT-21 [T-2 "T-1 Zr-2 + U sT-23' 

(D.29)
 

T1-2 = T'2 + -;-2 --T-.-BT-2 T-l =T- 2 + 'usT-2
 

BU+7 -1 T_
 
-[BT-2 T-1 2T-2 + NuuT-2 [T-2 -T-1 +N.u-2] 

(D.30)
 

= C [B_ - T[ T + TCT_ - kCT-2 uB 2 =uT-23
T-2 -1 T -T -u-2 T-2 K=-1 BT-2 

TBT k +N (D.31) 

T-2 "T-1 -uT-i 

L ,k_ 


fZ' cI at Z T-l, T-2, we can easily recognize a well defined recursive
 

solution pattern. The induction may be continued by deriving the optimal
 
control law but since the form of j) is the same as
 

Comparing the expressions for 6M, , A ,
 

bu'Tne-hef3'o T-2(-T-21k) 

the form of Tl(6ST/) the results will be analogous to the ones

T-1. -T-i/k, 

obtained at time T-2. Thus, it can be stated that the optinal solution
 

of problem (D.1) is as follows:
 

For Z = k, k+l, ..., T-1, 

=uz _ ( k = - 2 [L sjk +6 (D.32) 

]-IDI = B K B + (D.33)

=9 Z=2=2+l =2Z =u2 

L =B T K Ns, (D.34) 

A =BT~ k +m (D.35)
Z~ 9,-2.+l -uZ. 
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T 
where the positive semidefinite matrices {K }T_ are obtained 

recursively by the following matrix Riccati equation:
 

= " ssT
 

K N
K9 6 -= K
Nss2, I+ TZ=K+1K (Br= K%+1 6 =+ N ]T
 

usz
 

• ZB =z+ 1 Ba + -,_!uu2] - I =ZK+ 1 ca +Nusz] (D.36) 

= 7-1, T-2, .. , v. 

and the vectors _k}T are obtained from
Z 9.=k
 

!T -ST
 

(bT k(T+N T
 
Al -- '=2 -9-1~ 9.-1 '=2
 

T -1 Ty
*[__ KZ+ 1 B2 + N1 [B2. M +Nu%] (D.37) 

z. T-1, T-2, ..., k.
 

The optimal "costs to go" are given by
 

1 -T T c(D.38) 
Z(-Z/k ) 2 -9/k KZ 6-Z/k + Z-2. 2 is + , 

where KZ, k as above and 

CT = 0, 

1 T TT B 
cz= c I - [B k + ]T[B K B + u-i T +N 

2,+2 - +1 -u2 -Z 2.+1 2. =iu2.z .~Z1-2 

Z = T-1, T-2, ... , k. 

(D.39)
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Lastly, the optimal value of the problem is 

.1 6 T ~T k, C(D.40) 
k -kI 2-k/k '-k -k/k -zK6'k/k 'k 

which for problem (D.1) is equal to ck sincek 
6s-k/k -

Further discussion of this solution's properties and implementa

tion aspects is offered in Section 4.5.
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APPENDIX E
 

ENFORCING POSITIVE DEFINITENESS
 

The following procedure enforces the positive definiteness 

property on an nxn symmetric matrix A. This is accomplished by 

forming the Cholesky factorization of A (Bertsekas, 1978) while 

sequentially adding the elements of a positive definits diagonal matrix 

The final results is given as a prduct of a lower triangular and
 

an upper triangular matrix:
 

T
 
L L .=A+M(El
 

The procedure is as follows: Let . > 0 be a fixed .calar and denot
 

the elements of A. Consider the ix.i lower triangular matricies
 

recursively defined by
 

j~ (11(E.2)
 
L , otherwise
 

-2 n (E.3) 

(E.4)
iwhere Li a,, 

3 i-l 
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if a1f
 

lii ' otherwise
 

.
 

Then the transformed positive 
definite matrix is given by L 

LT
 

that the resulting matrit is
 
Parameter 'i should be large enough 

so 


not nearly singular.
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APPENDIX F
 

CCZPUTATION OF I.E NONBINDING PROJECTED NEWTON DIRECTION 

Recall that in Section 4.5 the Newton direction for the uncon

strained nonquadrai..:i" oroblem was obtained by soiving a quadratic. 

At each time Z thzt solution was determined via Dynamic Programing 

conUsderations (See Appendfx D) as follows:
 

=Z0 k) ar- min Sl Ms-Z*ar-nt= NT -5;,*+ N ,6u + ;/k' . s, + 
-sz .k
LZk5uzt- u--- -Zk=s -21k
 

+ T T N 
2 --2. uu2. -2. z =usZ6-2/k+ 

+ k+l( ; l/kJ, (.1) 

of, after substituing for J +l(6S +l/k)from 
1 -T" 

1 (6; 6- (s + (F.2)
+l1--+l/k 2 22+1lk =),+l -+l/k + -T+i S+l/k d+1 

and for s / from

-2+1/k
 

6- k 6s + B Z u, (F.3)
-2*1l/k AL. -Zlk 2 1
 

*(6; arg min ( 2 = [Ii - + NT 6s/k +
 

P4(5u6zIjz -+19 -s2.6-/ +
 

T T 1-T T

[kZ B- + N J,6u, + -f6sZ01( K ~ 6Z + 

-2.+.ZR-Z Z *-Zk+2'S~ Nu211Z
 
+ ss]Sz/k + u + Nuuo] 

+ TT}T K _z+ - (.4)
=Z+ I us). Szlk
Z 6 
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th
 
Now assume that the nominal value for the j control ,:ornponent
 

of Su is currently equal to the upper control bound uma and that
 

_(2...,o) 
beyond
< 0. Under these conditions a "movement" of uj, 


max
thethe5nudbound uxjZ would reduce the objecLive function's value, but it would
 

be infeasible. Then the optimal constrained value for the conc-rol 6u,

jZ
 

is zero and the sane is true for any control element at the lower bound
 

with Positive Gradient. (It is assumed that K ar- pesitive
=.Z+l' Squu.zar'pstv 

semidefinite and definite respectively so as BT K to=Z =Z+l Z , ,uu2 

be positive definite and conve:.) 

Substituting these values for the binding control elements we 

find that J becomes 

Z'- J +NsZ' OsZ/k +_Z+Nu .2 
[kT + T I^- [kT B TN 2
 

+ L -T fN 16
 

+Z/k"1£ R+ 1 -Z + NssZ]6 Z/k +
 

T B-T rc - +
 
+2 -_CBZ KZ+1 4z + uul
 

+u[BT R + IN1 6; (F.5)T
-

B + N
where denotes the nonbinding control elements, [k.T

whee L,,-Z+l =Z N 

implies that from the vector + B + NT the columns corresponding 

to binding controls have been deleted, and the sae is true for the 

respective nows and columns Cf Lhe matrix B =T-. ." - and the 
T + 

rows of the matrix B__ K+ 1 + Nu. 

Now we can differentiate (F.5) with respect to 6$, see the 

result ejual to zero, and solve the the minimizing concrol to find 
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OUZ -- (sk -ZL~OZ/k + 

where 

S KT rc-1 	 F.7) 

L9= (BT K _! + NusZ)r , (F.8) 

(B T kZ~i + ,, r. (F.9) 

Substituting this result into (F.5) and regrouping the corresponding
 

terms we obtain 

i -T 

Y=-,/k 2 -9k- ,z- =Z/k + : -9/k 	 (F.lo) 

where
 

N + T+ 
=Z 	=s . i +uZ L
Kl B , ,n 


+LT 	D=9-t=~[BTK Bz + N%u. rcM z 

Tz _[B T £ + N 1r (F.1l) 

r +
T +NT
k LN TD 

-Z 	 =Z- z U
 

T T T T 	 r
 

+ 	 LT D E+ K B + NuZI D I. 

- (b TK B 4- NT CD A ,(F.12) 
= Z+1 =Z =USZ = -% 

T T c 
c 	 =c,+.- BZ +N ] A + 

rc 
+i D [CB 

T K B + Nuu] DA(F.13)
2 -Z = =L+ =9 =uuzF3 
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Using (F.7), (F.8), and (F.9), the above can be simplified as shown
 

below:
 

) I
K __ssi +TK+I ___[B K+ 1 = usz
 
+ (b+T(K [(BT K + N )r1IT 

T K -N rcl Tr
[(]-i K z + (F.14)B +i -__B+l [ z _us] =z 


T T
.ft-Ti
 
T K B + IN rc -1'r (F.15) 

c2 C - .1.(BT~k ~ )rT [(3T ++Nu )rc-1
2=2 Z+l Z-Z2 =2=+1-Z 2 uQ,
 

-.+i. -u"2F.
 [(B=2z + r (F.16) 

These equations have the same form as the ones derived for the
 

unconstrained problem in Appendix D except that now they are applicable; 

to the nonbinding controls. In the event that no controls are binding,
 

they assume the full form of the unconstrained case.
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APPENDL G
 

STATE STATISTICS' UPDATE
 

The problem of updating the estimate of the state's p.d.f. 

arises as follows: Suppose that the optimal control action k is 

applied during the interval [t t Also let s P denote 
kV k+l' -k/k' Esk/k 

the best estimates of the state's mean vector and covariance matrix
 

I_sed on observations up to and including time tk' 
 (That is, these
 

are estimates based on the information set Ik
 

-.) Then, by means of the system dynamics we can obtain
 

the a priori (prior to observation z + ) estimates of the state
 

statistics at time tk+1 . In fact, these have already been obtained
 
norm ,
 

at the last iteration of the OLF procedure. If s (tk+l is the
 

nominal state trajectory (see Section 4.3) :crresponding to the
 

optimal control sequence and (b is the associated state transition
 

matrix, then
 

-- nom.
 

Sk+l/k _s Tk+l ) (G.1)
 

P + 0 

Psk+/k= Zk Psk/k k Ok 

At time tk+l measurement -k+l is taken. The question is how to obtain 

optimal a posteriori estimates sk+i/k+ , Psk+i/k+l based on the new 

information set Ik+l + I U . To this end one can employ 

the Extended Kalman Filter (EKF) procedure which basically consists 

of applying the Kalman Filter results on a linearized version of the 
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nonlinear problem. In our case the EKF procedure is as follows:
 

-IT +1 [z -Hs )] (G.2)
Sk .l/k+l -k+l/k + =k+l[ k+l o (k+l/k) 

=sk+l/k+l - =k+l =1 -k+l/k Psk+l/k' (G.3) 
-- T -1r- . 

Tr P~H (sk )+
;k+l =sk+l/k E-l(Sk+l/k)[l(S-k+i/k)Psk+l/k =l(k+1/k =vk+l
 

(G.4)
 

In the above equations the vector H0(.) and the matrix H result from
 

the linearization of the state observation function H(.) about the a
 

priori state estimate (compare with Equations (4.3.2), (4.3.9)). I is
 

the identify n x n matrix. If the system was linear, the above proce-
S 

dure would yield unbiased, minimum variance estimates (Jazwinski, 1970).
 

In the nonlinear case these properties are no longer valid (dnbiasness
 

may be retained by employing statistical linearization) yet in practice
 

the resulting estimates have been found to adequately perform.
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Appendix I
 

IDFlITIFICATION OF A SINGLE RESERVOIR MODEL STRUCTURE
 

The physically hypothesized structure of a single reservoir was seen
 

in Section 3.3 to be (omitting all subscripts for notational convenience):
 

ds(t). I(t) - u(t)Y- e(t) A(s(t)) + g E(s(t)) 

dt 

(cf. Eq. (3.3.1) , (3.3.2)). Further, it will be assumed that observa

tions of I(t), u(t), E(s(t)) are available at the discrete time instants 

£ ZZ = 0, ... N. The identification problem is to estimate the param

etrs e(t), g so that the model (I.1) will generate input (I(t), u(t)) 

output (E(s(t))) sequences compatible with the previous observations. 

The purpose of this appendix is to resolve the issue of parameter
 

identifiability. The suggested approach is to follow an outline showing
 

how parameter estimation can be practically performed up to the point
 

where some conclusions regarding the previous problem can be drawn.
 

Assume that the release u(t) is constant within the observation
 

intervals; namely
 

{u(t) = u(tZ), tC[tZ., t +1 ], Z - 0, ... , N-l} (1.2) 

which is realistic because reservoir releases are not continuously ad

justed. Also, the input I(t) will be considered known from the corre

sponding measurements and the approximate relationship
 

I(t ~) - I(t ) 
tz ]
ItW it) + I Z I Z (t-t ) t-[t£ (1.3) 

(tZ+ 1 - Z) ' 

£ 0, ... , N-I 
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The possible errors in the {I(t)}N measurements will be assigned to 

a random term added at a later stage (see Schweppe, 1973, Section 

3.2.15, 2nd case, for a justification of this assumption). The approxi

mation (1.3) will, in general, suffice because the identification phases' 

purposE is to determine a valid wodel useable in discrete time optimal
 

control (this will become clearer after the developments in Chapter 4).
 

In fact, (1.3) may be replaced by a relationship similar to (1.2) and
 

still be adequate.
 

To take advantage of parameter estimation techniques developed for 

linear system;, Eq. (I.1) can be linearized around the state trajectory 

s(t), te(t 0 , ,] obtained by integrating 

ds(t) = I(t) - u(t) - e(t) A(s(t)) - g E (s(t)) (1.4) 

S(to) corresponding to 


E(s(t 0)). (Some numerical integration routine can generally be em

ployed.) To carry out the above integration, parameters e(t), g are
 

set equal to their current estimates. (The procedure is iterative.)
 

Thus, (I.1) can be locally approximated by
 

-t IA (s (t))] (~)-()
 

with initial condition s(t$ S the measurement
 

dst___)t -e(t) - e(t) L s))
= I(t) -u(t) A(s(t)) 


s9(t)=s(t) 

- g E(s(t)) - s() - ) (1.5)g Ks(t) 
s(t)= s(t) 

which after invoking (1.4) and defining 

x(t) = s(t) - s(t) (1.6) 

becomes 
=
dx(t) (al(t) + a2 (t)) x(t) 
 (1.7)
 

dt 2 



18
as-(t) J'(1.8)where a() -e(t) [A(s (t)) 
S W MS(t) 

[L(t) Co 

2(t) -- g s t)_ (1.9) 

s(t)=s(t) 

The observation. equation corresponding to the water elevation measure

ments 

Ht E(s(t)) (1.10) 

can also be linearized around s(t ) to give 

Ho E. Y aESso to) (s (tZ )-s (t). (ll 

s(t)-s(tZ) 

Defining 

z(tz) H(t) (s(tz)> (. 12) 

a3(t) as() (1.13) 
s (t)=S(t Z 

Eq. (1.11) can be equivalently expressed as follows: 

z(tz) - a3 (tZ) x(2) . (1.14) 

Next, it will be assumed that the coefficients a1 (t) and a 2 (t) are 

approximately constant over the intervals [t , ]. This assumption, 

made here to facilitate the presentation,. can also be argued on the 

basis of the following considerations: Generally, the water volume 

added or subtracted from a reservoir by the releases, input process, 

evaporation, seepage, and rainfall over the intervals [tV tZ+], Z =0, 

. N-l, is a small fraction of the volume s(t ) in store. Hence,
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when [tZ t +lI is on the order of a few days, the derivations of the
 

functions A(s(t)), E(s(t)) evaluated at s(t) will be approximately con

stant. Secondly, the parameter e(t) is a lumped parameter depending on
 

climatic conditions and can be considered constant over a season (and
 

therefore constant over [t , t +I). Setting
 

a (t) a
a(t)
 

a 2 (t) a 2 (t ) (1.15) 

Z+t) 0, 1, ...t , 21 , = N-i 

we can integrate (1.7) over [t., t 9+l to get 

X +,)- e x(t ) (1.16) 

where A -.t-. At this point we can add a discretL time white 

Gaussian noise term E(t ), = 1, ... N, to account for the input mea

surement errors and various approximations' errors (i.e., linearizations, 

modeling assumptions, etc.): 

x(t+) = x(t ) +cEt ) (1.17) 

where r (tZ) is Gaussian with
 

( = 0 , (E ( } denotes expectation) (1.18) 

0 if 2, m
 
E{ (t) r(tm)} = ,(.)
 

Q(t 2 ), if Z =M 

(1.20)
 
and Z e(a(t) + a 2 (t 2Z)) . 

346
 



Variance Q (t,) is another unknown parameter to be estimated and can be
 

assumed constant or periodically constant (with a period of one year to
 

account for nonuniform yearly variab.lity of the evaporation and rain

fall processes).
 

A discrete zero mean Gaussian noise process of small known Variance
 

may also be added to the observation equation to account for the ap

proximations in E(s(t)) and its linearized version.
 

Summarizing, the hypothesized structure for an actual reservoir
 

is as follows:
 

X( = (t 2 ) x(t ) + s(t ) 

z(t) a 3 (t £ ) x( 2 ) " 

Z 0, 1, ... , N-i 

......... (a (t9 + a (t .
' 


aI( t) a2 (t) : unknown, 


(tZ lknown
 
(1.21)
 

e(t2Z), v(t) Gaussian random variables with
 

E{ ()} , 0, all Z 

0 2,m
 

QI ( ), = m (unknown)
 

E{ v(t,)} 0 , all Z 

0 m 

' I:
, 9..-R m (known)
 

E{ v(t,) E(tm)} 0 , all J, m. 
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The initial state condition x(t0) may also be assumed as an unknown 

parameter to be estimated, or since a measurement z(t0 ) is available, 

it can be taken as a zero mean Gaussian random variable with E(x2 (t 0 ) = 

2 R . In the second case, x(tO) should be independent at E(ti) and 

.a.(t.) 

,V(tg) for all Z. 

ModeJ structure (1.21) is now in a format which allows straight

forward application of parameter estimation techniques such as the Maxi

mum Likelihood or the Extended Kalman Filter. For example, the Maximum
 

Likelihood parameter estimates are obtai.aed from the solution of the fol

lowing optimization problem:
 

Maximize { (N) = 1 [ bias(N) + gobs(N)] } 
al1(tZ) a2(t ) Q (tZ ) 	 0, 1, , N 

where N 
Ebias (N) - -Nln (27r) . in I z (=£t £ _ ) 

, , 


le
 

-12A 

obs 	(N) =- - (tl/t ) 

Pz~tI'CI) R + a2(f. )[ (t _)P(t 1 /t1 ~) + Q (tZI)] 

x (t/t(R + 0- _i2 )	 + 

+ 	 p(t/t_ )
 

z Z Z-1

2 R, 

Px(tZ/tZ) = /tZ-1)O- (tZ-l) Pz (tZ/t -1)R)Px(tZ-

S= i, ... M, 

X(t	 0 /t 0 = E )= 0 

Px(tO/to) E x2((t) (1.22) 
fa3(t). 
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This formulation will not be further explained here. For a complete dis

cussion on the subject see Schweppe, 1973, Chapter 14. Notice, however,
 

that due to the way the unknown parameters a (t Z ) and a2(t Z ) enter the 

above optimization problem (1.22) it is not possible to identify each
 

one individually. Rather, only their sum a1 (t) + a2 (t ) can be esti

mated. Given this situation, one can either assign some reasonable
 

value to parameter g and account for any discrepancies by estimating
 

e(t) or assume a sequence for e(t) (yearly periodic) from existing (even
 

though questionable spatial) measurements and assign possible errors 
to
 

the estimate of g. The choice also depends on the magnitude of the par

ticular terms. For example, g may be completely disregarded in case the
 

main losses are due to evaporation. (This happens with the High Aswan
 

Dam reservoir as discussed in Chapter 5). Another possibility is to con

sider e(t) as a white Gaussian noise of known mean and.unknown variance,
 

but this complicates the analysis and is not suggested unless the previ

ous alternatives fail.
 

It is generally advantageous to have the identified model in continu

ous time because then the controller can be adjusted to any control hier

archy level by discretization over the appropriate time intervals. Toward
 

this end we need to define a continuous time white Gaussian noise which
 

produces statistical effects consistent with the discrete time process
 

:(t ). If we denote this new process by q(t) there holds (Gelb, 1974)
 

E( ), q(T)d&(1.23) 

where ( + - ) (1.24) 
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Assuming that q(r) has constant mean q(ri, E,tZ can take ex- t2 ], we 


pectations in (1.23) to obtain:
 

tZ+1
 

0 fJ t (%+l'z)dr((t) (1.25) 

Since (tZ+I, r) is not of any special form (e.g. antisymmetric), it 

=follows that q(T) 0. Regarding q(T)'s specrtral density (E fq(,)q(p)} = 

Qq ()6(T-P) where 6Tr-p) is the dirac delta function), we again have from 

(1.23): 

E{L (t,+l), )(z)d] T
Jr% 

k 
I 

f + t t+j T)i q(T)q(po (t+lVp)dp-ti (1.26) 
•. 

Using the shifting property of the dirac delta function, we get
 

QC(ty) T ) Qq(r)d- (1.27) 

and taking Qq (T) constaut over [t 2 ,tZ 1 ], we Einally find 
q = 

Qq (T) = tQ(9 , t Z+l]. (1.28)
f +1 2(tZ+,T ) d 

Thus, with the unknown parameters estimated, the single reservoir 

model is given by 

ds(t) = (t) - u(t) - e(t)A(s(t)) - g E(s(t)) + q(t) (1.29) 

with q(t) as above. 
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Appendix J 

IDENTIFICATION OF A RIVER SEGMENT MODEL STRUCTURE 

For reference ease let the system of differential Eq. (3.3.5) de
th
 

scribing the response of the j river segment be denoted by
 

s.(t) = F(s. (t)) + e j (t) -2e,wJ (t) (J.1) 

where F (-) is the r. vector functiona of the special form shown in -- 3 

(3.3.5), e, k=l,2, is an rj vector of zeros writh a 1 at the kth row,
 

and s (t) denotes the time derivative of s.(t).
--_J -3 

Measurements of only the segment's inputs I. (t), w, (t) and final 
iz jZ 

outflow Qjr (t ) are available at the discrete time instants tV, 9=0, 

I, . .. , N: N: M. 
rQj!2(tZ Xjrj sj ~r (t ). (J.4^) 

3. .J 

This appendix will discuss the estimation of the previous model's 

parameters. Some identifiability issues will be examined and will neces

sitate changes in the original model structure. The resulting model. will 

be brought into a format directly amenable co the basic estimation tech

niques.
 

Consider a normal trajectory of the conceptual storage state vector
 

s. (t) such that (Ijl(t), wiz(t) are assumed known as in Appendi-x I, Eq. 

(1.3), (1.2)) 

s (t =) F[_(t)s + eI j1(t) - . UjZ(t) . (J.3) 

Next, linearize the system (J.l) around s.(t). If we define
 

X (t)= s. (t) - s (t) (J.4) 
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we easily get to the follwing result:
 

x jl(t) - _ XJl1(t) + Pi3.(t ]X Jl(t) 

XJ 2 (t) XjI(t) x - [Xj 2 () + 4j 2 (t xj 2 (t) 

* S ' (J.5) 

Xj (t) '(t) X- [(t) J+ "r (t Xi(t) 

Xjr ( t ) Xjr W x jr -W [X jrj ()+1j . r t 

where m 
- ji-l - u-I 

ji sji ' ji ji 8ji sjiXji(t) = at)m.j (WW) = ( ) 

Also mj. 

z(n) - Qjr (a) - jr Sjrj (tn) Xjr(n) x ir. (n) (J.6) 

The previous equations specify a ver-y general system model. The 

question is whether the parameters are identifiable. This is a crucial 

issue and should be resolved before a final structure is suggested for 

identification. Appendix K deals with this problem for a time invariant 

version of the above system. Assuming that the coefficients in (J.5)
 

are slowly varying (whijh is a good approximation if s. (t) corresponds to 

the uniform channel flow condition), the results carry over to the gen

eral case. 'he conclusion of that analysis (which can be used for any 

linear time invariar.t system) is that i, i can be identified only 

if the initial conditions x (t0 ) are known. If x. (t 0 ) is not known, only 

i 1 can be estimated. in our case x.(t0 is not known, and this 

necessitates some more assumptions. Instead, consider the seepage losses 

known. Set $j i - 1 for all i since this is the middle point of its 
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variation. Furthermore, by observing the inputs (Ij(t), w. t)) and 

the output Qjr(') for a long enough time interval [tl,t 2] (longer than 

any system time constant) and comparing the total icoming volume of 

water with the outflow, we can have an estimate of the cumulative losses. 

Assuming the same Kji. = K. for all i the same segment, we can for each 

trajectory of linearization specify a K. which will account for the above 

difference. In this way K. can be assumed known, which makes the coeffi

cients 9 i(t) known as well. Computational experience with the coeffi

cient mji shows (Georgakakos, K. and Bras, R., 1980, Restrepo Posada, P.
 

and Bras, R., 1982) that for short river segments a value of 0.8 performs
 

satisfactorily even in flash-flood conditions. In times of low flows,
 

long reaches, or when the response of interest concerns average behavior
 

over significant time intervals, it can be assumed that the river behaves 

linearly or that m.i 1 for all i.. 

Notice that if mji - 1 = ji for all i, the original system is 

linear and no approximations are needed. Thus, to avoid identifiability
 

problems and to keep the model's structure as simple as possible, we
 

first suggest that the following linear model be estimated:

§jl W -"- [j1 + Kj] Sj 1W + Ij1W 

J2(t)- a1j sj (t) - ~j 2 + K] sj2 (t) 

(J.7)

§' Wt = aJZ-i sjZl(t) -a zj+ 31sjz(t) - wjz W) 

= -a s. t) - + s.
 

jr ( =jr 1 - r -1, " at r+ ] jr.
 

z(t) a si (tZ) (J.8) 
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To construct a discrete time system model we need to find the tran

sition matrix. The system in Eq. (3.7) can be written in matrix nota

tion as follows: 

-x0 0] 10W0 
jii 

.. (t) aj2 jZ s W + 0 W 

0 aJ2 j3 

th* -1 ":'~£ row 

0 0 . 

* * 

0 0 ajr.-1 Ar 0 0 (J.9)
 

Z(n) w 0 c.jr] (J.10) 

where 'a + 

As is shown in Appendix K the sy'stem matrix, denote it A, can be 

diagonalized by a similarity transformation as follows: 

-Xj 1
 

A 
 -V (Jell)
 

0 -A. 
jr. 

where V is the matrix of the eigenvectors and V its inverse. V and
 

can be explicitly otbained here due to the special structure of
 

the matrix A and were found to be of the form:
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1 0 0 

V=
 
- (J.12) 

k 
a
 

M=Z+l X,.-X
-11 

k =.2,. ... ,r 
J 

1 0 o 

V (J.13) 

0
 
6 - )k+2 - a M 

m-Z k -m 1 

The system transition matrLi .(t,T) can then be found to be
 

(Brockett, 1970, pg. 31-32)
 

- eil~ -r 0 

v V1 (J.14) 

(t~r-A. (t. = 

e jr.
0 

The solution of the system (3.1.3-13), (3.1.3-14), which we denote for con

venince by
 

"j(t)+ A s.(t) = B u(t) 
= 
 -- (J.15) 

z(t) - s.(tZ) 
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is in the interval (tz, t Z+] as follows:
 

t +

+1f 

-- (- 9 -( )t 


z(tz) -C s.(t )
 
-- J-z 

If we assume that u(T) is approximately constant over tt 1, then 

the integral term abave can be integrated explicitly. Adding white 

noise terms to account for possible model errors and uncertainty in
 

Ijl(t) we arrive at 

e 0 

£+l) _v v s(t) + 

jr
01' e 


1 (le-xJlA) O" 
ji
 

_- u(t ) + e(t ) (J.16) 

-z
 

L 0 Jrj~le j) 

z(tz) = Cs (t ) +v(t ) 

(t 0 )  unknown 

where B , _ , V 1 , C are as given above, and 
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E t} )E ) } = m (unknown)

{: 0 M E {v.) 0 , E {v(t)V(tm)} = 0 

....... . . :. , £R m (known) 

v(t z), (tm ): uncorrelated for all Z , m. 

Model structure (J.16) can now be treated through Maximum Likelihood
 

methods (Filtering or Smoothing algorithms, Schweppe, 1973) or the Ex

tended Kalman Filter (Gelb 1974) for the estimation of its parameters.
 

The number of the conceptual reservoirs r. also needs to be determined,
 

and this may be done by identifying and testing the validity of increas

ingly more conceptual zeservoir. The first valid model can, be adopted
 

in the further considerations (in accordance with the principle of parsi

mony).
 

It is convenient for the control purposes to have the system model 

in continuous time, and for this reason it is desirable to identify a 

continuous time white Gaussian ;.rocess corresponding to the previously 

introduced vector e (t) Z = 0, ... , N. We shall devote this new pro

cess by R(t) and we shall assume that it has constant mean vector and 

spectral density matrix over the intervals [t, t Z+l. There holds 

tZ++ 

ft .(tZ+l,-T) a(r) dt (j.17)f 
where (t+l,T) is the state transition matrix given by (J.14). Taking 

expectations of both sides in (J.17) we find 
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t+," dr%t+1 ()}T (J.18) 

Since E {j()}is assumed constant over [tzty+1, it follows that it 

should be zero because the state transition matrix '_ (t T) is not of 

any special form. Regarding the spectral density matrix,Q ( ). we have 

TT
 

%++1
Substituting ) 9
)r) by qr)S(T-p) and using the shifting property
 

* •a
 

Knowing tutn (TC) T( r) (cf. Eq. J.14), and assuming (gr) constant
 

over [tL , t suffice to determine the elements of from (J.19).
 

Alternatively, an approximate procedure to obtain 0(r) from .Q(tz) is
 

the following relationship: (Gelb, 1974)
 

( "')-= (t) E +1 tZ (J.20) 

Eq. (J.20) becomes increasingly accurate as tZ+ 1 - t gets smaller. Thus, 

after the estimation of its parameters, the river segment model takes 

the following form: 

F((s.t)) +--1 I.(t) - e w. C) + q() (J.21)
j1 -Z J2 
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Appendix K
 

IDENTIFIABILITY STUDY
 

The following concerns the parameter identifiability of Eq. (J.5)
 

(J.6) time invariant version which consists of a system-model for a
 

river segment response. However, the procedure may be used for a gen

eral time invariant linear system. Consider a 3-dimensional system 

structure: 

x (t) 0 0 x (t) 

x2 = Xl -a2 0 x2 (t) (K.) 

x 3 (t) 0 2 -a3 x 3 (t) 

z(t) = 0 0 X -] (K.2) 
-. XZ(t) " 

Lx3W= 

where ai XL+ jxi and x(t 0) -nO. 

The question is if it is possible to specify the parameters
 
3 

Xi~iK=1 by observing z(t) with or without knowledge of E0.
 

First, we shall transform the system into a state-space form which
 

is more convenient to work with, i.e., the Jordan Canonical form.
 

The matrix in (K.1) is lower triangular and its eigenvalues are the 

diagonal elements -i' -a2, - a3 (Strang, 1980, pg. 187), which are 

assumed distinct; otherwise, say a = a2 ' there is no reason to distin

guish between the two conceptual reservoirs 1 and 2, but rather they 

should be lumped together. (The assumption is that z(t) is indeed genera

ted by the hypothesized structure and the only problem is to identify 
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the parameters.) The associated eigenvectors can be easily found, due
 

to the special structure of the matrix, from
 

-a, 0 0 -i! 	 U12 

2a	 0 i2 -i i2 (K.3)
 

"2 	 -t3 1 3 U1 3 

for 	1i, 2, 3. Theyare 

1 0 0
xl 

U -  = 0 (K.4) 

-1 X2 X2 

(a3-a) (a2-a1) a3-a 2 I 

Consider next a similarity transformation which produces a new set
 

of state variables:
 

.2(t) V X Wt 
(K.5)
 

where 	 V=[P1I2I 423] 

(The 	double underscore denotes matrices.)
 

Differentiating, we find
 

±(t) 	= V .(t) - V A x(t) = V A V- 1 y(t) (K.6) 

where A is the system matrix in (K.1) and V-1 exists because 1, _3, 

are linearly independent, being associated with distinct eigenvectors.
 

Also,
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vz(t) - [o 0 X3] 1 aW (K. 7) 

and (0) -V 20 (K.8) 

From Strang, 1980, pg. 190, we have that
 

ac 0' 

-
A V0 A'= -a2 (K.9) 

1
and we also find (using V V- I or more direct formulas) that
 

S0 0 

V- (a2 -a) 1 0 (K.10) 

: i2 1 1
 

(a 3 -a 2 ) (a3 -a) (a 3 - 2 ) 1 

Combining the above, we arrive at the following new system form (Jordan 

Canonical Form): 

-a 0 0] 

0 -a2 0 x(t) (K.ll) 

0 0 -a3 

(K.12)z(t)= 2X3 x 2X3S (a 3 -a 2 ) (a3 - ) (a3 - a 2 ) X Y(t) 

(K.13)
Y0 =V 
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By the nonsingularity of V we have that identifiability of the system im

plies identifiability of the original system and vice versa. 

We can now solve (K.ll) to get (decoupled differential equations 

of first order): 

-alt 0 0 
e
 

-&t
• (t) -" 0 e 0 
Z9 

0 e- a3t
.0. . 0 

z(t) = 0(a 2 + A 3 Y3 0 . (K.15) 

(cz3ct 2) (3) (a*2 

The objective is to determine if by knowing z(t) we can find the param

eters of the right hand sides.
 

Studying the Laplace transform of z(t), we can express it in the
 

form 
s 2,.b 0 + b s +b 2 

z~)0
Z(s) = (s + a1)(s
1 
+ a2)(s

2 
+ a) (K.16)
 

The above holds true from the assumption that z(t) is generated by
 

a third order time invariant system which ensures that its transfer func

tion is proper and rational with the denominator being a cubic polynomial
 

in s (Chen, 1970, pg. 151). Hence, by knowing the signal z(t), we can
 

specify the poles -al, -a2, -a3 and the coefficients b0, bi, b2 . Next, 

taking the Laplace transform of Eq. (K.15), we find 

A Y1 2X3yl0 X2A3Y20  +~3 
z(s) = (a 1a2) 3YI)0- _23Y2 + 13Y30 (K.17) 

3( (a3a 2 )(s+ 2 ) 

362
 



Or
 

11 2x3ylo (s+t 2 ) (s+a 3 ) 2 x3 y2 0 (s+2) (s+a 3 ) +
 

z's) = "12c2) 3Y30
 

(s+al) (s+c) (s+c) 
 (K.18) 

Comparing (A-18) with (A-16) we find ai 
= ai i 1,2,3, and 

b 0 1 x 2x3•Y10 x2 x3 Y20  37 (K.19)0 a(O,)(_ ) (a32)+ 30 

b 1lA2 x3Y10 (a2+a3) 2x3Y20(a1+a3) -+(.0 
I (a3 -a2 )(a3_nI) (a 3-a2) + x3 y3 0 (l+a 2) (K. 201 

b1 2X3 Y10a 2a3 2X3y20 a1a3
2 (a3-a (a3 -a1 ) (a3 _a2) + 
-X

3Y20 alc 2 (K.2l)
 

If we were able to specify the X's from the above system, then all param

eters jX, ii} would be identifiable. This can indeed be done only If 

the initial conditions y10, Y20, Y30 are known. (We shall not go into the
 

algebraic manipulation, but it is easy to 
see the logic of solution.)
 

In short, we came to the following conclusion: If the initial condi
( 3

tions - are assumed known, then all parameters xil } can be identi

fied. If xis not known, then only X + ui' i 1, 2, 3 can be determined. 
=0 i 

The above are also valid for higher dimensional systems of similar struc

ture.
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