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LINEAR PItOGRAM \UNG iOI)E1IS are gaining increasing acceptance as tools 
for analysis of agricultural supply response and igr:cultural investment 
programs at both the regional and sectoral levels. One difficult problem in 
specifying aggrcgate models, however, lies with ways of inicorporating 
the considcrablc price, yield, and resource uncertainties that confront 
producers. 

Thim .- , now considerable literature tlia attests to the fact that farmers 
are not risk neutral. Notable examples are Officer a:id I lalter (1968) and 
O'Mara (chapter 0 of this volme), both of which in,'1ude cstitnatcs of 
farmer's utility functions. These functions typically show risk aversion in 
the relevan! range of values of farm income. A direct consequence of this 
risk aversion is that omission of risk considcratiovs in programming 
models is iikely to lead to an overestimate of the supply response for farm 
enterprises with high variance in yields, prices, or both. Furthermor'!, 
since these are often high-value enterprises, omission of risk i likely to 
lead to an overstatement of tie returns to itnestment. These biases may be 
particularly large in models of low-income agriculture, in which risk 
aversion is likely to be greatest. 

Overview 

Methodologies for iiandling risk at the individual farm level are well 
dcvcloped in the litcraturc for a wide range of decision criteria. Two of thc 
more appealing ofthcsc, when information about :he probability distribu
tions of stochastic components is available, use the E, ['decision criterior. 
(Fretind i956; Heady and Candler 1958; Markowitz 1959; McFarquhar 

NIote: This thapter is a revised and extcndcd version of Hazell and Scandizzo (1974). 
Permission of the original publisher to use unreviscd material here is gratefully acknowl
edged, 
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1961; Stovall 1966b) or the related E,cr measure (Baumol 1963; H-azcll and 
Scandizzo 1974). 

Such models are generally more descriptive of individual farm behavior 
than linear programming models that maximize expected inco..e, and 
therefore provide - more useful starting point for the construction of 
aggregate models. A( the aggregate level, however, problems arise when 
market demand structures are interfaced With the supply model to obtain 
simultaneous determination of the equilibriumii lev:els of production and 
prices under the usual assumption ofa perfectly tnpctitivc agricultural 
industry. The pioblemn then is to specify the objective function of the 
aggregate model inl such a way as to simulate the results that would be 
obtained if each farmer operated in a competitive cnvironmncnt according 
to the E, V or E,or decision criterion. 

Methods of sumulatmig competitive market eCquilibrium through linear 
programming are well dcvelocd Ior the deterministic case. Saludlson 
(1952) showed that the appropriate objective function in the aggregate 
model is the miaximization ofnct social payoff(the stm of coisunilers' and 
producers' surphs). I-fe developed this result in the context of spatial 
equilibrium models, an "akayamna and judgc (1964, 1971) flurther de
vclopcd this ob.jcctivc function to obtain a quadratic programming for
mulation for n-tltiproduct models. l)uloy and Norton (1971, 1973; chap
ter 3 of this book) suhscqucitly applied the niethod to agricultural sector 
models using linear programming alp roximationl. 

The purpose of this chapter i, to pJ)ovidC a modification oflthe I)uloy-
Norton method when prodtictioti is risky and individual farmers 
maximize 1,Lr utility instead of cxpctcd profits. A. cruicial issue in the 
devclopment of such modifications lies ill appropriate spccification of the 
equilibriu in solItIon to be si molated. The nit.irt of market equilibria 
under risk conditions is a complex subject that ha1 rccciv.d scant attention 
in the economic literature. Furtherlmore, results ar, knovn to depend very 
much on assi u ptiots made abolt thil d ynamics of markct adjiustmclt and 
on the naturc of the stochastic componcents iivolve't. In this chapter we 
assumc that the initial source of risk lies in yields. Stochastic yields also 
lead to stochastic costs for those costs which arc related to prodtuctiun 
rather than numbers of' hectares or livestock. Under these assumptions, 
and assuming lagged behavior in supply rcsponse, usel-ul results can be 
developed about market cquilibri; (t ergcmdorff, 1lazCll, and Scandizzo 
1974; 1lazcll and Scandizzo 1973; TtUrnovsky 1968). 

Some systcmatic expcricice with numerical implementation of tilis 
approach are rcported for various Mexican producing areas in the next 
chiptcr oftlis book. hI.addition, the aproach has bccn incorporated in the 
models of chapters 12, 13, and 15. 

In the following sections, we briefly review methodology for the deter
ministic case, and pose the problem for the risk situation. Relevant market 

'V 
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equilibrium results are then dcvclop.d, and a methodology for obtaining 
rarkct cquilibrim solutions assuming an E,o" decision criterion at the 
faini level iFdevelopcd. Finally, linear programming approximations are 
provided and illustrated with a schematic tableau. 

The Dcterininistic Model 

The deterministic model is pcnised on tl-e assumption that individual 
farmers are profit maxinizers, a'id that they compete in a perfectly
competitive way. Tie latter assumption implies, in particular, that farm
ers plan on the basis of constant anticipated prices. 

Define 

= An n X I vector of anticipated product prices 
c= An i x I vector of unit costs 

x =An n X I vector orenterprise levels 
Af = An iX n diagonal matrix of enterprise yields with jth diagonal entry my 
y = Mx is the n, X I vector of total outputs. 

Then the objective function for an, individual farm problem is: 

(7.1) max "Tr ' y - Cx, 

and this is to be maxinized over sonic set of constraints that arc usually 
specified to be linear. 

Now irthe product markets attain ain equilibrium, then regard!e:s of the 
way ii which the anticipated prices 13arc formed over time, the equilib
rium is unique. Furthermore, the market equilibrium prices and outputs 
occur at the points where the demand and implicit model supply functions
 
intersect. This fact provides the basis of the solution procedure.
 

Let X, Y, C, and W be some appropriate aggregates' of the individual
 
farms x,y,c and M matrixes, and P be the vector of unknown market
 
prices. Then, assuming the linear demand structure 

(7.2) P = A - BY, 

where B is a symmetric matrix ofdcmaiid coefficients, 2 the Duloy-Norton 
aggregate model objective function is: 

1. Aggregation should be exact t ivoid biascd results in the sector model. The usual 
approach to this problem is through appropriate classification of farms into homogeneous 
groups (Day 1963; Stovall 1966a). To simplify notation, however, it is assumcd throughout 
this chapter that thcrc is only one homogeneous group of farms in the sector. 

2. The condition ofsymmetry i- necessary to ensure the existence ofthe potential function 
in equation (7.3). An analysis of the implications of such an assumption is contained in 
Zusman (1969). 
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(7.3) maxrl X'W (A= - 0.5BWX) - C'X, 

where it is understood that Y= WX.
 
The term X'W (A - 0.5BWX) is the 
sun of areas under the product

demand functions. For cxample, in the singlc product case this would be 

0 f(a - bt) dt = y(a -- 0. 5by) = wvx(a - 0. 3bxv) 
The term C'X is total production costs, or equivalcntly, the sum of areas 
under the product supply functions. Consequently, the difference be
tween these two tcrms is the sum of producers' and consumers' surplus 
over all markets, and this reaches its maximum at the requited intcrsec
tions of supply and demand functions. 

Introduction of Risk 

The basic source of risk to be introduced is confined to yields. Thus, the 
vector of products for an individual farm now becomes 

y = Nx, 

where N is an ni x n diagonal matrix of stochastic yields withjth diagonal 
element r5 . 

Stochastic yields imiply stochastic supply functions, and hence lead to
stochastic market prices. It is assume(l, howe,cr, that input costs and the 
market demand structure remain nonstochastic, and that the Iarm lincar 
programming constraints arc affected.not The lattcr assumption can 
easily be relaxed, since scvcral techniques are available to handlc stochastic 
constraints that do not afl'ct the farm model obJcctivc function (Charnes
and C )opcr 1959; 1lillicr and Licbcrrian 1967; Madansky 1962;
 
Maruyania 1972).
 

It is further assomcd that the individual frimcrs are risk averse, and that

their behavior conforms 
 :,) a single pcriod E,o" specification. Conse
quently, the individual farin model ,,.jective function each year is 

(7.4) max - x u J(p'j,) C'x - ( 1/(l'y)i/ 2, 

wherc E and VI dcnotc, rcspcctivcly, the expectation and variance oper
ators, and t is a risk-aversion coefficient. 

In order to enumerate equation (7.4) more precisely, it is necessary to
make explicit assumptions about the nature of farmers' subjectivc expccta
tions. These in part depend on the nature of perfect competition under 
risk. 
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Perfect Competition under Risk 

As a natural generalization of the deterministic concept of perfect corn
petition, it is assumed that farmers continuc to expect their outputs to not 
have any effect on the market. A set ofassuniptions regarding behavioral 
anticipations that , rc consictent with this arc: 

(A. l) ]-( F,) = ?, 

(A.2) 1/(r,) = 2 

(A.3) E(t,,) = p, 

T2.(A.4) r) 

(A.5) cov(t,ipj ) = Up": COV(EE;) =o.,, for all i :j 

(A.6) cov(pyi) = xi cov(pir,) = 0, for all ;, 

wherc all operators arc now subjective expectations that may differ for 
the real-world parameters. 

Assumption (A.3) states that farmers expect a constant mean price for 
each product, and by making the variance honioskedastic [assulmption 
(A.4)] and the covariances between piccs and outputs zero [assumption 
(A.6)], this implics that there is no cx pect, d rclation bctwen the output of 
the individual farm and (le market. 

It is important to note that these are a set of behavoral assumptions, and 
it is not required that farmers anticipate the true state of affairs. Market 
behavior is in part a rcfcction of what farmers anticipate, but this is 
basically no different from the deterministic case where, in the short run, 
the farmers' expectatioi of prices 1i can differ from the vector of market
clearing prices P. 

Given the above set of assumptions, the components of eqiation (7.4) 
can be enumerated as follows: 

E(p'y) =j A'x, 

where Al = E(N), 
V(p',Y)12 =(x'fIX)12,
 

where fl is an n x n covariance matrix of activity revenues with diagonal 
elements 

( 
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W.= V(pi EJ) 

= E(p' ) .-P i 

= E(p]) E(Ej) -j2 ,n 

and off-iiagonal clcmcnts 

(Ij= cov(pii, pjEj) 

= E(pipjeiEj) - E(p, ,) E(pjEj) 

= E(ppj) E(E,E.i) fijj- m,,nj 

= E(p~p,) fE(EiEj) - ftifjI+ m~ni [E~pipj) - pj 

= [T + p,4j U,, ± ?flti~C,. 

The farm problem objective function is then 

(7.5) maxu = 'Mx - c'x -. 1/2 

Obviously, atcrnativcs to assumptions (A. 1) through (A.6) arc possi
ble. However, assumptions (A. I), (A.3), and (A.6) are retained, then theo)nly effect of changing the assumptions is on the clements of l. This will
affect the market behavior and the estimation offl in a quantitative way,
but does not detcr the d,.vclopment of qualitative results about farm 
behavior. 

Let the linear programming constraints for the farm model be denoted
by Dx b, x tO, thcn thc Lagrangian finction for maximizing eqjuation 
(7.5) over this set is: 

(7.6) L = i6'Afx - c'x - ,(x'fXX) /2 + i,'(b - I).X) 

where I, is a vector of dual values. An optimal solution to the problem isthcn a "saddle poit,' and ncccss.iry ar(1 sutfficient con itions for any (x,1)
to be this saddle point, arc obtainal)le from the Kulhn-'uckcr conditions. 
The necessary conditions arc: 

(7.7) .L iI. 
,Rx ot,

-()1>0

(7 .8) e)L =t .x-=(, t,-=0. 
ox ot,
 

Of these, thc requirements in cquation (7.8) are the complemcntary
slackness requirements that an activity cannot he active and at the same
time have a nonzero opportunity cost and that a resource cannot be slack
and at thc same time have a nonzcro dual valuc. Sufficient conditions for a 



RISK IN MARKET EQUILIBRIUM MODELS 209 

saddle point can be derived, but they reduce to the requircment that D be a 
positive semidefinite matrix (Takayania and Judge 1971, p. 19). 

Applying the necessary rcquircmcnts in cquation (7.7) to equation (7.6) 
gives 

(7.9) /L= P'M - c'- 4x'fl(x'flx)-/2 _ ,'D<0, 

ax 

(7.10O) a L- = b - Dx- 0. 
01a
 

Equation (7.10) is merely the feasibility requirement, but equatior (7.9) 
contains the risk counterpart to the classical marginality rules for output 
determintatior, in a deterministic firm. Taking thcjth element of the vector 
aLlax, and rearranging terms and dividing by ii', we obtain 

(7.11) j51[-kdj+ c+ 1/ '9x'lx *1 

This states that for each product the expected marginal cost per unit of 
output must be equal to or greater than the expected price. The cxpzctcd 
marginal cost comprises expected own marginal cost c/m j , plus a mar
ginal risk factor 

+ a - 112y"(/'y~ 2 _1 d(x'fjx) 

t"i j,, 01,axx. 1 Inj,1 jx, 

plus expected opportunity costs 

1 
 Vk,dj
 

as reflected in the dual values of the resources used by that activity. This 
differs from the comparable requirements of a deterministic model pri
marily in that a risk term has bccn introduced. This is quite reasonable 
because the risk term is really nothing but a new cost; namely, the 
additional expected return demanded by farmers ,scompensation for 
taking risk. This iseven clearer when farmers can participate in a crop 
insurance program, for then the risk term is the marginal premium a 
farmer would be willing to pay to insure against risk (that is, a 'ertainty 
equivalent cost). 

This result is not new and is consistent with the results obtained for 
single-product firms in economic analysis (for example, see Magnusson 
1979). Further, the appearance of the risk factor as a marginal cost pro
vidcs the rationale for the expectation that deterministic models overesti
mate the supply response of high-risk crops. This is because YXwjjxj will 
then be positive, hence the marginal cost curve must lie above the mar
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ginal cost curve that would be obtaincd from a deterministic (or risk
neutral) model. 

Although equation (7.11) is a necessary condition, it is clear from the 
complementary slackness condition x()L/ ')x) in equation (7.8) that the 
condition will always be satisficd as an e, uality il an optimal solution for 
all activities that cntcr the basis; that is, i 2.0 Conscquently, for all basic 
activities the risk counterpart to tie pricecequals-n.irginal-cost rule can be 
written as: 

(7.12) l'k d) + C,+ p(X'flX) - /12 X 

The right-hand side of equation (7.12) is then the short-run supply finc
tion for the farm as implicitly embedded ill the programming model. This 
is a basic behavioral relation, ,. 1d cxprcsscs tie fairmer'.; determinationi of
 
X, given his expectations about yiclds; and1prices. TIat is, x, 
 -f(A I, fi, fl),

with everything else constant. Multiplying by the rcian yield trl, 
 a con
ditiolrilly expected supply f-unction is iririmnuiatcly obtaincd:
 

(7.13) /i( y,Lx,) - = i, /(A, I )1.) 

Since all tie Cxpcctatio1s in volved ;i ,CsUb1 'c-tI an ticipatiorls,.e it is useful
 
to dcenote cquation (7. 13) as the ";1ntiipatcd supply function" for the farm
 
to distinguish it from a true statistical rcl"tion.
 

Market Equilibriumi undcr Risk 

lBy summing the alticipatcd supply functions over all farmis, all -,ggrc
gate anticipated supply tuction .,il he 
 btairrcd as a basic behavioral
 
relition ill the market. Ignoring iggrc.gaiton problems for now, thejth
 
supply 'function cal be writtcn i
 

(7.14) 1:( '', .\,) .=, ' , xo(if, F), 
whcrc X,, i', 11', (), and I' .r ';r it.iblc agrt,,atcs n ., y1, Al, I;, and fi,
respcctivcly, and 1', is the itl dil);or,..l clement of It'.
 

Given Ni, actual supply is
 

(7.15) ")jx,= c,.'X, = ', F)(f',"), 
where cj is a suitable aggre gite of the far e 'S such that E(e,) = u.. 
Clearly, actual supply is stn hasnic with cl and, furthermore, is of a 
specification in which the slope of thne supply flltctiotn is stochastic. 
Ignoring the unnccessary complication ofa stochastic intercept term, and 
assuming that ci is bounded on some positive interval <,, ce, the 
ni',rkct situation can be portrayed as shown in figure 7-1. 

LI 
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Figure 7-1. Market Situation under Agrcgatce 
Anticipated Supply Function 

p .s3 

- Antiiuiled supply 

,e,.Xj 

"r----------.. 

Demand 

C)Yj Quantity 

If IVind r remain constant, the anticipated supply fuliction is fixed, and

aggregate anticipated supply is dcterin icd by ().
Thus for given f) with
I= p.',farmers will plan their aris so that aggregate cxpectcd output is 
yO. Yet, because yiehls are stochastic over the range c,, to c.., actual supply
can take on any value between R and S. More generally, the actual supply
function can rotate around the anticipated supply function to any position
contained in the funnel defined by c,\j and e,Xj. It follows that market
price must alwayF be stochastic and will fluctuate with both ej as well as
with X.ifthe latter does not stabilize to some equilibrium amount. Further
complicitions arise when Wor F is not fixed, for then the whole "supply
funnel" may shift structurally over time. 

The question of what is a perfccr!y competitive and equilibrium solution to the market now arises, 2nd, since it is obviously not a point
solution, the further question of what characteristics can usefully be 
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derivcd with a mathematical programming model be Thecan posed.
intuitive answer would bc to view the market as stabilizing in its price
distribution, and to seek the perfectly compctive solution for expected
price and output at the intersection of the demand and anticipated supply
schedulcs. Unfortunately, although equilibrium is appropriately vicwed
in terms ofa stabilizing ,ri~c distribution, the properties of this distribu
tion do depend on the way in which farmers form thcir expcctations about p , IW, a-id fl. That is, the equilibrium is interdlepcndent with the adjust
ment niechanisni. Furthermore, only under certain conditions do the
demand and anticipated supply schedules actually intersect at the equilib
riuni va'uc of expected price. It is thercforc necessary to explore these 
problems in a little more depth.


To initiate the analysis, the following assumptions arc made:
 

(A.7) IF and F arc fixed. 

(A.8) Xis a linear fuiction in p, of the form X = Xfj, where X is sonic
appropriate fuj;,ction of IV and F and is therefore a constant by
assumption (A.7)-that is, the response finction for Xj in a
prograrmiing model is being appioxitiated by a straight line;
actual supply in the tth year is theni Y,, , C,.VP= 

(A. 9) Demand is linear and of the form ID,, = a - bI , 
(A. 10) Farmers foirm thcir anticipated price f'orccasts each year as a 

wcight(d average of pasL pri :cs.'
 
That is, from assunlption (A. 10),
 

(7.16) fi,,=- ,- 1 'YP,_I and y,= I 

Note that a "lai,,e cobweb" for;lnulatior, and the Ncrlove-type adaptive
expectation ,modcls are special cases of cquation (7.16), so that the for-
IilIlationI is quite gc ral. A firithcr assiiiption is that 

(A.l I) cov(c,,, r , = 0, for all t. 

That is, the yield of an individuial activity is uncorrclatcd with itself over 
tile. 

Igr.oring thc jtil subscript for convenicnce, we fiid that if the market 
cleas cach year, then niarkct-clcarin price is, 

3. It is in he noted that in 1:,(r decisiom specification snates only which price and yidd
paramctcrs are relvanit each year; it does not state how amic ipatioms about ihese parameters 
are formed over time. 
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(7.17) 	 p= ,p 

a X 
,b ,b -

Equilibrium can now be defincd according to the convergent properties of
P,over time. There are a number ofalternative properties to choose from
(13ergendorff, HazelI, and Scandizzo 197,4; Turnovsky 1968), but all basi
cally are varianits of thc concept of( omvcrgence in the probability density
function of;, and its various central moments. Consider first the conver
genice of cxpected price: 

(7.18) 	 L:(P,) 

I) I, li , )
 

a X 
- - - III *' (P 

b I, ,=I 

This is an ruth order diffcrence equation and, if convergence occurs,' has 
the particular solution 

(7.19) JimIn (P,) = 
I"- b + Xu, 

Further, it is the same for any cJoice of -y weights satisfying equation 
(7.16). 

Solving now for the intersection pric (/*) of demand and anticip,tecd
suapply (Y, A', = X1n', r3,), 	 we obtain a - bP, = XP*, hence P, = I/
(b + Xw) , which is i(entical to li -, 

Thus, tndc dss,,,ilptiols (A.7) through (A. 11), the asymptotic cx
m3ectatioj of market price is the samne regardless of the specific price

learning modcl and, flrtlhcrlnorc, corrcspoils to tic lcdsircd nttt'rsectiOgl
of the demand and anticipated fulctions It is also clear front the derivation
of anticipatecd supply that 	at this point 1im I-(I,) - l(marginal costs),
which provides an acceptable equivalence to the ecitilibrit m point of a
competitive but dceterininistic market. Tlese results also hold for the
mnuhiproduct case, as is shown in the appendix to this chaptcr.


Turning now 
LO other properties of the equilibriu m, vc can see that. 

4. Ncccssary conditions for convergence depcnd on the characeristic rooti of equation(7. 18), but a sufficienot condition 	is sinply A/I, < I /u, aid w hich is aso ti c necessarycondition for the naive coliweb (tiergendorff, lazeli, and Scandizzo 1974). 
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even under assumptions (A.7) through (A. 11), the variance and probabil
ity density function ofprice do tiol convcrgc to the sanc limits for alterna
tivc choices of the -y weights (llcrgcndorff, I lazcll, and Scanldizzo 1974; 
Flazell and Scaidizzo 1973). These properties of the equilibriun do c
pcnd on the way farmers form their price anticipations each year and, 
conscquently, can only be citmmeratcd through simulation-typtc procc
durcs givcn explicit assumptions about the behavior ievolved. A sinilar 
result pertains for the stochasticity of Input decisions, and hence Xj. 

The results for ]-(P,) are clcarly quite useful, but what happens i",',iy of 
the assumptions (A.7) through (A. 11) are relaxed? 

" Ifeither assuuptioln (A.8) or (A.';) is relaxed to permitt uttlitiariti, s, then 11ut1 
E(P,) ustially bccottics depcttd,'ttt otn the -y weights itn eqtatiot (7.16) and no 
longer correspodts to the intcvsectton of deCinn11d anid .nticipated supply. 
Under these conditiotts the intersection price is otnly a linear approxitation to 
the asymptotic cx pectation of p tIC. 

" Rlelaxatito ofassttupttoi (A.7) leads to asttuatiott in which the slope of the 
supply forttatiotn (N) ".ries strtmturally over titte, and the IOCatiott of the 
anticipated slipply futlttlton will Itt) Iotlger be fixcd, I lowvcvcr, i If"ad I' 
converge,' then a stable eqttilibrum is attained with the above properties, 
though the length and tature of tie aiotittlcot path it. tutitlg this cqutlib
rium may bc quit' tiffcrett. A similar r'stilt pertains woen . sstittiot (A. 10) 
isrelaxed provtditg lirt V'(0,) -litt i:(I',), othcrwise appro:(ittatiotts are again 
itvolved. 

" Assumptiott (A. It) is ottly a sitttplf'yig .I.SSt'tpttt, and ca1 be rclaxed to 
cositdcr autocorrelatd ytehVlprovtdt.; the stochastic residual of the process 
satisfies asstmpttot (A. II). tlat is. c, I I±L, where wv(, ,, t) =-0,-c, , 

and p.is a consitit. In this case the basic equtlibrittm properties still hold, and 
the tatit cl-ccts are ott tite lcitgtit atd naturc of tlte adjttstmttetnt path. 

Ifit is acccd':etI that assttrtptiotts (A.7) throught (A. II) and the possible 
modificatiots stated abovc arc quitc rcasotiaolc, thin any mrathematical 
progratmit g t ttdcl that cotid provide tih' iterstion soluttotns for 
dematnd atnd attticipatcd sttpply wottld geiteratc rcstilts that have ., direct 
and rclcvattt cconotmtc intcrpretatiot and t0t13t \votitld be rcasonably gcn
cral with respect to the way itn which faruers form their price and yield 
anticipations oiver time. The task of providing a modificationr to the 
Duloy-Norton objective function that solves this problem in an aggregate 
model remains. 

5. Note that if assumptions (A. I) through (A.6) are a true description of competitive 
behavior, then I- is unlikely to converge to its real statistical valuc, for there will almost 
certainly be nonzero correlations betwecn individual farm outputs and market prices. 
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Solving for the Asymptotic Expectation of Price 

X, Y, IV,C, 0, and F have already been defined as aggregates ofthe farm 
x, y, Al, c,;j,and i matrixes. Also, let (1)bc an aggregate of the farm risk 
parameters ( . 

Thcrc arc definite problems in forming these aggrcgates that are closely
relatcd to the problem of establishing criteria of farm classification for 
exact aggregation in quadratic models. This problem lies beyond the 
scope of this chapter, and it is merely noted that the aggregate variables r 
and (l must be chosen so that 

=(7.20) (X1'),\)'' 2 I 4,(X' f1k Xk)" 2 

k 
where k denotes the kth individual farm. This equation states that the 
aggregate levJ of risk calculated for the model must be equal to the sum of
individual risks over all Farms. Without this condition, covariancc rela
tions 'octwccnfarms could be exploited ;n the aggregate model in seeking
efficient diversification, and this would be inconsistcnt with assumed 
competitive behavior. For example, theif all farms were identical, a
suitable choice of the aggrigatc variables woIld be (1)= (I/k) and 
I = f), 'o that 

l)k(X'k 141k)/2 K ()(x' 1 x) /2k 
= )(kx' F k.x)'' 2 

- 1(X' 11,)D'1 2 , 

where X = Kx = _,xk. 

Given the necessary aggregate variables and parameters, it is now
possible to imiodif-y lie l)uloy-Norton objective function to obtain the
solution corrcsponding to the intersection of deimiand and anticipated
supply schcdulCs. This mlodified fiunction is: 

(7.21) max U = X'IV(A -- (.51311"X) - Q-'LV- (l(X'FX)'12 

where X' V(A -- ).5IBIVX) is now (lie sum k'expected areas under the
demand curvcs and C'X + i (X' \-)1/- is a revised stii of arcas tinder the 
suppl, curves. 

T., verify that equation (7.21) gives the desired market equilibrium 
solution, form the Lagrangian function 

L = X'W(A - 0.5BIVX) - CX - (i(X'rx)1 2 + t,'(b - DX), 
where b and D denote the aggregate constraints and v is a vector of dual 
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valucs. Apart from complcmentary slackness r luircments, the necessary 
Kuh-Tuckcr conditions arc: 

(7.22) WA - WB W - C - (PI FX(X'FX)-1/2- D'V O 

and 

(7.23)aL = 1 - DX 0. 

Equation (7.23) is the feasibility requircincnt, and equation (7.22) can be 
rearranged as: 

1 2(7.24) (A - I-X) < [C+ 1) ,IX(XII'X)- + D'',)]. 

Now IVX is the vcctor ofanticipated supt)lics E(YIX), and A - BWX is 
the corresponding vector of narket prices. Further, the right-hand side of 
equation (7.24) is the sum ofcxpcctcd marginal cost curves over all farms 
[thcjth component is thc sum of the right-hand sides of cquations such as 
(7.11)]. That is, it is the vector ofaggrcgate anticipated supply fiunctions. 
The inequality in equation (7.24) states that, in aggregate, f(arners must 
operate around some expected point on the anticipated supply functions 
that lie at or above the intersectiony with demand. Bccause of the comn
plenmentary slackness co:idition X(dL/ oX) = 0, optimality will occur at 
the intersection point for ail iionzero activities iinhe solution, and then 
A - BIX is the intcrsection pricc vector. Conditions, howevcr, have 
already becn cstablij'icd for this to be an appro: mation to the vector of 
asymptotically expected priccs, and if thcsc conditions are met, the per
fectly competitive solution for lil 11(P) = I-(marginal costs) will have 
been obtained. 

Linear Programming Approximations 

The aggregate model with the objective function defined in equation 
(7.21) is a quadratic programming problem. Because of the large dimen
sions of any realistic sector model, and the difficulties that still exist with 
computer codes for quadratic programming, it is clearly desirable to 
linearize this problem. 

6. In order for tie Kuhn-Tucker conditions to be nccessary and sufficient, it is required
that the matrix (WBJX + r) be positive scinidefinite. Since 11fis a diagonal matrix, it is 
sufficient that the individual matrices B and r be positive semidcfinite. This condition is 
invariably satisfied for covariance (I') matrixes and isgenerally satisfied for demand coef
ficicnt (B)matrixes. 
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Dtuloy and Norton (1971, 1973) have shown how the term Y' 
(A - 0.53Y), where Y= WX, can be lincari/cd. To illustrate their 
method, consider the Simplest case when 13 is diagonal, implying that tile 
product den;ids are indpcndent. Thnc, letting I . denote the area under 
the demand curve (the definite integral) From G,to Y' for thejth product, 

(A - 0.513Y) 1. 

Now V iFa quadratic, concave function when plotted against Y., and,
since the progtamruing model is a ma X,1iviiation problem, 1. can be 
approxinated by a series oflirni.ar segmtnents using convzntional computercodes for linear programming. l)uloy and Norton introduce segmcnt
weighting activities, V,,O1 V ' I, i = I to k, Fer each I'.; assign seg
tnent upper bounds g:, on 1j, over which interval ,, is relevant; and '.ssign 
"1single value of T';-say , ,-which is tw approximate V. over tle intervalYj--,,j. They then suggest that the part of tile programming problem
involving Max V' (A - 0.513Y), with V = I/X, be replaced by the linear 
programming problem: 

(7.25) max I . d,i Viij i=1 , 

such that 

(7.26) X{in- Eg. V>0, for all j, 

(7.27) EV _ I , for allj. 

This method adds only two rows for each product, but permits inclusion
 
of as many Vill activities as necessary to Increase 
 the accuracy of the
 
approximation 
 to any desired degree of precision.


When F is estimated on the basis of time-serice data, an efficient way of
 
linearizing tile remaining quadratic term (Ii(X'F 
 ) is to use the mean
 
absolute deviation (MsAD) method proposed by I tazell (I071).
 

Let ri, = i, ,, denote tre tth year's observation on the revenue ofthcjth

activity X,, 
 t = I to T', 111d let Fj denote the satmplc mean revenue for the
 
activity over the 
 7' years.' Then, the MAD estimator of the standard 
deviation of income' is: 

(7.28) est(X'FA)" 2 = A I- I - (yf ) x 

7. The raw data should first be analyzed for any trend and other systematic movements 
over time, and thcsc components removed to obtain a random residual. 

8. Since costs are nonstochastic by assumption, the variances ofinconse and total revenue 
are identical. 

/ 

http:oflirni.ar
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where 

/2(T- 1)/ 
is Fishcr's (1920) corrcction factor to convert the samplc MAD to an 
estimate of the population standard deviation,' and n is the mathematical 
constant, 

To obtain a linear programming formulation, dcfine new variables 
Z->0 for all I such that 

(7.29) z, + X
i 

(r,, - i) > 0 , 

where Yj(rj, - Fj)X ncasures the deviation in total revenue front the mean, 
X1J 1Xj, for the tili set of revenue outcomes. Now, if the z, variables are 
selected in a minimial way, dien for each I either z, = 0 when Xj(rt - F.)Xj is 
positive, or z, nicasures the absolute value ofthe negative deviation in total 
revenue when lj(rj, - fj)Xj is negative. Consequently, 1, z,measures the 
suni of thc absolute values of the negative deviations. Since the suI of the 
negative dcviation around thc mean is always equal to the sum of the 
positive deviations for any random variable, it follows that 2 X, zr is the 
sum of absolute deviations in total revenue, and hence 

est(XTX)" 2 = X z,. 

In sunimary, the appropriate linear programming subproblem to mini
mize CF (x'rX)112 is: 

(7.30) min K X Zr, 
t
 

-
such that z, + X'(rj, - i)X > 0 for all f, where K= 4) (2A / T) is a constant. 
The reliability of this method, compared with using quadratic pro

gramming directly on (i (X'F X) 1/2, has been discussed elsewhere (Hazell 
1971a; 1971h). It basically depends on the relative efficiency of the sample 
MAD compared to the sample standard deviation as an estimator of the 
population standard deviation." Surprisingly, the satmplc MAD may actual
ly be better than the sample standard deviation for skewed income dis
tributions (Hazell 1971b), but it is less efficient for normal distributions 
(Hazell 1971a). 

9. Strictly speaking, this form of Fisher's correction factor only holds when income is 
normally distributed (that is, Ijrj,,\j - N). For other distributions, appropriate correction 
factors should be used (see Fisher 1920). 

10. More favorable results about the ability of the samplC MAI to rank farm plans 
efficiently (Thomson and Hazell 1972) do not hold in the current problem, because the MAD 

2estimate of (X'rx)1 is required to appear in the weighted objective function defined in 
equationl (7.21). 
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In order to show how all these approximations Fit together, a complete 
linear programming tableau is Formulated in table 7-1, which approxi
mates the suhtion to the original quadratic programining problcm. If the 
quadratic variablcs V, _/ 1 to ti, are cach approximated by k segments, 
the linearized problem adds an additional ku + 7 activities and 2u 4- 7 
rows to the problem, but this is highly efficient computationally when 
solutions are obta;ned through a reviscd simplex algorithm. 

Conclusions 

In this chapter a methodology has bcen developed For simulating, with a 
lincar programming model, the market equilibrium of a perfectly com
petitive but risky agricultire in which produccrs behave according to an 
E-', decision criterion. Such results are useijl for comparative static 
analysis oFpol icy probleis, and, accocding to the dcgcc oFrisk involved, 
should be miore descriptive than existing modcls that ignore risk. 

The development of this niethiodniogy has piiipointcd a number of 
lificult issues ,ith respect to both the dcsign and iiplkmnientation of 

aggregate risk models. 
First, market equilibrium is considerably more complicated under risk 

hain in a deceriinistic setting, with interactive elfects between the way 
farmers form their antici pations about priccs and yields and the properties
of an equilibrium if attained. Conscquently, it is dillicult to design a 
general progiainuit model that will always provide imcaiingk.I cco
nomic answers. In this chapter, the problem 
was resolved by specifying 
set of plausiblc ass,,:nptiois under which the proposed nmdcl is appropri
ate, albeit with an obvious loss in generality.
 

Second, an aggregate imidel must be (clfi'icd with variables that arc
 
inhercntly difficult to mcasure. 
 This is partly because such variables are 
based on individual farmers' utility limnctions amd subjcctive expectations 
about stochastic variables and arc therefore diffcMlt to observe, but partly 
bccause such variables irvolve aggregation procelures that have not been 
adequately explored in the litcature. Although practical ways of over
coming these problems arc demonstrated i other chalters of this book, 
more refined procedures really ought to be developed. 

Appendix. l)crivation of Market Equilibrium
 
Results for the Multiproduct Case
 

In the multiproduct case it is likely that there will be interrelations on th. 
demand side as well as contemporaneous correlations between yields. 
With this in mind, the market structure can be written as: 



Table 7-1. Layout of Tableaufor the Linearized Problem 

n sets ofactivities to linearize 

Constraint and Production activities area, under demand fanctions T negative 
equation number aeviation 

intext X, X2 ........... . ... . X. VIC" V,, V21 "'" VZ "" V. ...V." counters RHS 

Objective function, 
(7.21). (7.24). and (7.29) -cl -c 2. . . . . . . . . . . . . - c- dll" d d21  d.- d.1 ..-d.k -K.... K (Max) 

n commodity 
balance constraints, (7.25) ml m2 -g 11 *.-. gl -g21. 

0 
m., -9-g ... kg 

n convex combinatioa 
constraints. (7.26) 1 

1"--I 

T revenue constraints 
containing sample 
data, (7.28) r -it r2 - F2......r.1 - 1 

r1T-r r2 T- r2..r -

Resource constraints D Matrix S b Vector 

RHS = Right-hand side. 
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Y, r, G, (L) P, 

D= A - BP, 

where Y,and D, are n X I vectors of quantities supplied and demanded 
respectively; P,is the n X I vector of prices; 1', is the n X tn matrix with ijth 
element y, = Xij ej,; G (L) is a polynomial form in the lagged operator L; 
and A and B are the demand coefficient matrixes defined earlier. 

It is again assumed that yields are distributed independently over time, 
so that cov (ely,, 1)= 0, for all i, j, and that anticipated prices irareey,
linc'r lagged functions of past prices. In particular, let: 

S ,-,(L') . . . . 0 PI, 

¢,=G, (L)P,= 

0 . .. . i S.,-,(L') P.,j 

where 7' ,- = 1, for all j. 

The expected market clearing price is then 

(7.31) E(P,) = B-' A - B- I C, (L) E(P,), 

=where r = E(F,) has 0'th element -y,,Xj I,,, and u,= E(eq). 
Equation (7.31) defines a system ofnith order difference equations, and 

if convergence occurs, has the p.articular solution 

(7.32) lini E(P,) = [I + B-' P G]-' B-' A, 

where we have assumed that G = linr G, exists. 
Conditions for convergence can be dcvcloped as follows. Decomposing 

the G, niatrix in equation (7.31) and applying the lig operator gives the 
more explicit version: 

EP,= 1- A - B-' P [GI, EP,- I + G2,tP,._ 2 

+ ... + G,EP,-,],
 

where G,,, i = I to Im, are n x I diagonal matrixes with jth diagonal 
element 8j,-I . Necessary and sufficient conditions for equation (7.32) to 
hold are that the roots of the polynomial equation 

1lim [GI, p" + G 2, P' + ... + G,, Fj = 0, 
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whcrc P is an i x I vector witiijith elccnt j!'], arc all within thc unit
 
circlc. Sufficient conditions for ckinvcrgcnic can, however, be obtained by
 
noting that attainmcnt of equation (7.32) is guaranteed if
 

lirn (B-1 FG,)= 0, i = I to in, 

but
 
lir (B- I I -),=,
Tp Gj) lir(H ti 

wherc 

C, lir G,, 

'tfi is the diagonal matrix formed by the characccristic roots of B-I' Gi,
 
and Hi is the appropriate orthogonal tranisformation niatrix." This result
 
implies that all the roots ofthe inatrix B - I'F , must be real, nonncgativc,
 
and equal or less than I, a result that generalizes the singlc product
 
condition (X / b) < (1 / wv). '
 

Turning no c.' to the interaction price vector (11*) for demands and
 
anticipated supplies, we flind that this occurs whcre:
 

[G P- = A - BI'*. 

Solving, we obtain PTM= [I + B - P G]- 11 - 1 A, which is the same as 

lir E (P,) 

in equation (7.32). 
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