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FOREWORD TO THE PRELIMINARY EDITION

This cxperimental text has been produced by the 1963
Entebbe Matheraatics Workshop for use in training colleges in
English-spcaking Africa. The Entebbe programme is a compre-
hensive one. Its general purpose 1s to write texts which reflect
recent thinking about mathematical education and which adapt
this thinking to African conditions.

Rapid progress in science and technology and in mathe-
matics itself has stimulated major cflorts to improve mathe-
matical cducation elsewhere. Principal emphasis has been put
on understanding the ideas that have nnified and simplified
modern mathematics. In addition, methods have heen adopted
which lead the student o discover things for himsell. New facts
arc established cither from first principles or from facts already
known, so that undue reliance on rote-learning is eliminaed.
A general discussion of these points will be found in the intro-
ductory scction “Why Change Our Mathematics Teaching?”’

The Entebbe Mathematics Workshop, comprising mathe-
maticiens and educators drawn from Africa, the United King-
dom and the United States of America, has produced experi-
mental tests or use in Primary One and Two and in Secondary
Onc and T'wo. These texts arc being tried out in East and West
Africa and will be revised in the light of experience in their use.
Tests have also been devised by the Workshop to measure the
cflectivencss of the material under actual teaching conditions.
Further texts are planned to [ollow those so far produced.

This experimental text is designed for usce in training colleges
for primary teachers. It aims to give teachers in training the
kind of background of understanding which will help prepare
them to teach the Primary texts produced by the Workshop, or
other texts which are written to achieve the same purpese.

Itis hoped that this text will be of interest to all those who are
concerned with the new approaches to mathematics teaching.

This text ts written so as to stimulate the discovery of central
coucepts by consideration of concrete examples. Problems are
provided, both to deepen the understanding of the teacher and

to assist in classroom tcaching.
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vi Foreword t. the Preliminary Edition

After the introductory scction, the text is planned in two
parts: “Structurc of Arithmetic” and “Introduction to Geo-
metry”. At the 1963 Entebhe Mathematics Workshop the first
four units out of a projected seven on “Structure of Arithmetic”
were written by the Teacher Training Writing Group: basic
concepts and language of sets, the whole numbers, the number
line, and fractions. For expositions of negative numbers, the
rational numbers, and the real numbers; which are the subjects
of the vnits not yet written, appropriate portions of the Entebhe
Secondary Onc and T'wo Student Texts and Teachers’ Guides
may he consulted. These presentations, however, are not neces-
sarily organized in the same way as they may be written later
for teachers. As for “Introduction to Geometry”, indications of
the directions the text for teacher training may take are to he
found in Part 3: Coutent Outline for Primary I-11I and the
Appendix: Projected Content Outline for Primary 1V-V] of
the Entebbe Mathematics Teachers’ Handbook prepared by the
Primary Writing Group at the 1963 Entehbe Mathematics
Workshop.

Lo enable both tutors and tcachers in training to pursue the
subject further, a bibliography has been provided at the end of
the book. Tutors should encourage their students to read widely
in order to further their knowledge of the new approach to
mathematics,



FOREWORD TO THE REVISED EDITION

This cdition of Basic Concepts of Mathematics, Volume I, is a
revised version of the preliminary edition which was prepared
during the summer of 1963 at Entebbe, Uganda. When the
preliminary edition was published it included a statement
acknowledging the 2xistence of editorial and production defects
occastoned by the speed with which it was produced. Neverthr-
less, it was felt that this was a small price to pay in return for
having a much nceded text in this subject available for the
1963- 6+ academic year, The intervening years have vindicated
that decision: the book was warmly received in African Teacher
Training Colleges, and is in cver-increasing demand today.

In view of this success a new cdition has been prepared.
Almost cvery chapter of the original text has been extensively
rewritten, and a large number of new figures have been pre-
pared. In particular, the chapters on sets and fractions received
special attention and were substantially changed. Another
significant change occurs in the treatment of the number line,
which is now introduced carly in the text (Chapter 5) and is
used throughout the discussion of arithmetic mucl as the
teacher might use it in the classroom. New problems have been
added to most chapters, and old problems have been rewritten,
A sclected list of answers to problems has also been prepared
and appeais at the end of the book, together with an updated
bibliography.

Of course, books are rarely, if ever, free from errors, and this
onc lays no claim to being an exception. Thus, in presenting
this book for use in Africa, the African Education Programme
can only repeat the hope that those who use the book will be
tole: ant of the imperfections that still remain.
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INTRODUCTION: WHY CHANGE OUR
MATHEMATICS TEACHING?

We live in a rapidly changing world. The younger nations,
like the older ones, face challenges which call for greater
knowledge and greater willingness to learn new ways. This is
why education is more important than cver hefore,

Everyone agrees that mathematics is important and that it
should be taught in our primary and sccondary schools. A
knowledge of arithmetic is necessary for everyoue in the
modern world. A much greater knowledge of mathematics is
required for those who take an active part in such things as
harnessing water power to the needs of Africa or handling the
financial problems of a nation. So we must teach mathematics
well i our schools whether our students are to become ordinary
citizens or leaders of their countries. But do we need to change
the kind of mathematics we teach or the way that we teach it?

Most of those concerned with the teaching of mathematics
feel dissatisficd with the job that has heen done in the past. In
spite of the importance of the subject, very few students have
thought of mathematics as alive, exciting and interesting., This is
not truc of other subjects. There are many people who read
history for fur:. How many read books on mathematics for fun?
Not very many! Everyone will agree that mathematics has not
been a very popular subject, This points to a weakness in the
way in which it has been taught. In any case, the methods of
the past do not meet the challenges of the present and future.

But somcthing new has happened. It has been found that
students can actually get excited about mathematics and enjoy
it tremendously. ‘T'his was a fortunate discovery. Ifit is impor-
tant to know mathematics, it is surcly also important that stu-
denats should find it interesting, 'T'he change which has come
about is the result of a big cffort to teach mathematics in a new
way.

What is this new way? In bricf] it is to get the student to
understand why things work the way they do to a much greater
extent than has been customary. Mere important is the fact that
to interest the student we must get him to take an active partin

Xv



xvi Introduction: Why Change our Mathematics Teaching ?

learning. He must be led to discover things for himself, This is
truc in all subjects; it is true in mathematics also. Mathematics
is not a strange subject in which everything is different——where,
for example, it is unnecessary to interest the student; where it is
suflicient to drill him so that he always gets the right answer.

It is widely believed that there is only one right way tu do a
problem in mathematics, so that all we need to do is to show the
student this right way and give him lots of practice in doing it.
This idea Icads the student to think that the only way he can
be original is to bewrong. Of course, he is glad to oblige us! But,
seriously, if we try to teach students to act like machines, we
should not be surprised to find that those with independence
and originality will rebel.

In fact, there are many ways to solve a mathematical prob-
lem correctly, Some may be shorter than others, Some may be
longer but more illuminating. One way may scem more natural
to onc student than to another. Not all students are alike. The
important thing is to fiud ways to solve problems that students
can think out for themselves. In this case they will have a
better chance of remembering them. Morcover the subject will
make sense ‘o them and catch their interest.

Every teacher imagines, we suppose, that he teaches the
student to understand the subject. In a way this is true. It all
depends on what you mean by “understand”. We can, il we
wish, say that a student understands how to divide one fraction
by another if he can always apply the “invert and multiply”
rule when he is given two [ractions to divide, Thus if we ask him
to divide § by § he will invert the § to 4 and multiply 2 by 4 to
get & In the process he also applics cerreetly the rule for multi-
plying two [ractions: “Multiply the numerators and multiply
the denominators.” To repeat, we can say that the student
understands a rule if he knows how to apply it with confidence
and success. In the same way, many of us can truly say that we
understand how to drive a car. But few of us understand why
it operates the way it does.

‘There is therefore a deeper meaning of “understand”. Sup-
posc that the student asks, “Why do we invert and multiply
when we wish to divide enc [raction by anothier?” To answer
this question it is not cnougl to say, “I'hat is the rule”. What
we haveto do isto give a reason fer the rule. We have to lead the
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student to sce that the rule expresses what ought to be done. We
have to explain the rule. An explanation always has to be given
in terms of something clse --something which is already known.

Later we shall return to this example and show what kind of
an explanation could be given, We are not quite ready for it
now. L'he point is that mathiematics hangs together, It Las a
plot like a novel. Knowledge has to be built up in stages. You
have to know something about what happened in the carlier
chapters. In this respect, mathematics is again like other sub-
Jects. You cannot understand modern physics without first
learning something about carlier discoveries and ideas, nor
modern history without some knowledge of its background.

We have sa, « that we should teach mathematics so that the
student can discover things for himself and can understand why
he doces what he does. This is what makes learning exciting.

But there is another difference between the newer approach
to the teaching of mathematics and the older one. The differ-
ence is particularly important for the students who will go on
to more advanced mathematics.

Mathematics itself has changed. It has surprised many
people to learn this. They know that scicnee and technology do
not stand still. They expect a man to be sent to the moon one
of these days. New discoveries are made and science grows and
renews itsclf like a living thing. New knowledge cannot be
added to the old like a new room built on 1o a house. T'he whole
subject must be rebuilt from time to time t take account of new
and better ways of thinking about old facts. New ways of talk-
ing about the older knowledge are invented which help us to
understand it better and to connect it with recent discoverics.

Few people think of mathematics in the same way. Almost
everyone tends to think of it as somchow finished and complete,
so that what we know was discovered long, long ago and has not
been added to since. T'his is simply not true. Mathematical
knowledge is growing faster than cver before. New mathe-
matics is constantly being created to answer questions that the
scientist and engincer need to answer so that they can forge
ahead in new directions,

"The situation is exactly the same as with all other subjects of
knowledge. There are many new important things that have to
be added to existing knowledge if we are to have the tools we

ner-B



xviii  Introduction: Why Change our Mathematics Teaching?

nced to solve our problems. There is only so much time. Some-
thing has to be done to make room for the new, There are two
things which can be done;
(1) Rework the older material so that it hangs together
better, is more understandable and tics up with the new.
(2) Leave out some things which no longer scem as important
as they once did.

Both these have been done. Ifwe think alout it, it scems obvious
that this should be so. Mathematics s not somcthing apart,
unconnected with other human concerns, Throughout history
it has been developed to solve problems which mankind needed
to solve. As human needs have changed with changing condi-
tions, mathematics has spread out in new directions and sct
itself to new kinds of problems. Like everything alive, it must
mecet new challenges or dic.

We have said that to make room for newer mathematics we
have to look at the older mathematics in a different way., We
arrange the knowledge in new patterns. Tt is the same with
technology. We arc continually {inding new and more suitable
ways ol doing old things. Africa is able to take advantage of the
experience of the Western nations over the past century or more,
It is unnecessary to go through all the stages over again, We can
profit by the experience of others, In matlicmatics, too, we have
learned by experience. Quicker and better ways of doing things
have been found. The Grecks made wonderful discoveries in
geometry 2,000 years ago but mankind has not been idle all
these ycars: for example, the volume of a sphere can now be
found by much simpler methods than the Greeks knew about,
"This docs not mean that they were wrong. Tt docs incan that a
good deal has happened since their time, We do make progress.

It is like the opening up of a new territory. A fertile valley
may have been reached by a very roundabout route. Once dis-
covered it is possible to get there by a shorter route, In the end
paved roads are built which help us to get where we want to go
quickly and comfortably. We do not have to [ollow the old
country roads. Mathemuticians have been busy building wide
straight roads so that they can get to the limits of the known
fairly quickly. They are not worn out by the time they reach
the fronticr. This is lucky, because there is too much mathe-
matics for any one person to kuow in detail.,
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The newer programraes of instruction have been worked out
with the advice of mathematicians, They have tried to save
time and labour for the students who are coming on, and so to
make their paths casier and more comfortable. They have hoped
that the student will reach places where he can look over the
landscape and enjoy the view without losing himsclfin the bush.

What kind of understanding do we hope that the student will
rcach? What sort of views do we expect him to get on this jour-
ney through mathematics? We surely want him to think of
mathematics as more than a collection of unrelated facts to
learn by heart. We hope that he will sce how the facts fall into
patterns so that they make sense to him. For one thing, when
he discovers these patterns lic will not have to remember so
much. If hic should forget something, it is not lost for ever. He
can work out for himself what he neceds tc know., He will
not be like a man lost in a rain forest.

To take a simple example, suppose that the pupil has for-
gotten how to add fractions, say to find 2-- 2. This is a matter

5

which puzzles many adulis. If he multiplics 2 4- 2 by 10, thus

getting 10 x (3 -i- 4), he casily gets 10 x 2 -+ 10 X & which
is 4 4- 15 = 19. If 10 times the required answer is 19, that
answer must be 19,

Again il the pupil wishes to multiply 82 by 9¢ he can of course
multiply in the well-known way. If; however, he netices that
98 =100 — 2, he can multiply 82 by 100, w hich is casy, then
multiply 82 by 2 which is also casy, and do a simple subtraction.
This makes arithmetic more fun. It changes it from a dull
routine into something more like a game. It gives the student
a chance to usc his mind instead of operating like a machine. A
machine does not notice anything it has not been instructed to
notice. It does not discover patterns for itself,

I't sometimes happens that students who have been encour-
aged to work things out for themselves discover new ways of
doing things. For example, a class was asked to subtract 28
[rom 42. Of course the standard way to do this is to say that 8
cannot be subtracted from 2. Thercfore we must borrow from

42
28

14



XX Introduction: Why Change our Mathematics Teaching?

the next column and subtract 8 from 12 giving 4 in the ones
place and 1 in the tens place. One student Jid this in quitc a
different way. The class had some familiarity with negative
numbers. The boy said that 2 — 8 = —6 and 40 — 20 = 20.
He rcasoned that the answer must be the sum of 20 — 6, that
is 14. We do not say that this is a better way to do this exercise.
But it is obvious that to be able to invent this new method is to
add greatly to one’s understanding. It also gives the student the
very pleasant fecling of creating something new.

42
28

—6

20

14
‘This is an important fecling for the student to have, It gives
him confidence in using his own mind. In a changing world, we
mceet new situations. We cannot meet all of our problems by
following rules. We have to jnvent new ways of doing things.
This means that we must look for new ways of thinking. The
most important thing which any teacher can do is to cncourage
any sign of originality in his students. If one of them has a new
way of doing a problem, do not tell him that he must do it in the
textbook way. Let him discover for himself that the textbook

way is better, if it is. Mcanwhile give him the pleasure of using
his own mind.



Basic Concepts and Language of Sets UNIT I

Introduction

A flock of goats, a herd of cattle, a class of pupils arc all
cxamples of sets. Each of the words “flock”, “herd”, ““class”,
implies that we are thinking about a collection of things.
Every language has a large number of words with this mcaning.
A few more in English are:

bunch—a bunch of bananas

bundle—a bundle of sticks

family—a family of leopards, or a family of PCOE.C
pack—a pack of cards, or a pack of wolves

In mathematics a single word is used to talk about a collection
of things. That word is seT. The concept of a sct is the basic
idca in mathematics. In .his unit you will learn some of the
clementary facts about sets. In the later units these facts will
e used to study numbers and the arithmetic taught in school.



Chapter 1
SETS AND SUBSETS

1-1 Sets and elements

Since we shall be talking about scts constantly from now on,
we define the word again:

A sET is any collection of things

The important point to remember here s that when we ialk

about a set we arc not talking about the particular things which

make up the sct. We are talking about the collection as a whole.
It is casy to give examples of sets. For instance:

A. The sect consisting of the numbers 1, 2,3,4,5
B. The sct of letters in the English alphabet
C. The set of pupils in your school

You can certainly think of many more such examples,

In describing a sct there is only onc rule that must be fol-
lowed. Tt is this. A set must be described so that there is no
doubt about which objects are in it and which arc not. Thus
a phrase such as “a set of pupils” docs no¢ describe a specific
sct, because it does not tell us which pupils belong to the set
and which de not. On the other hand, the phrase “the set of all
pupils in Primary 1 in Uganda” does describe a sct. For in this
case we can tell whether a particular pupil is in the set or not,

Suppose you are given a set. Any set at all, Then cach of the
objects in that sct is called an ELEMENT or MEMBER of the set,
We say that an clement BELONGS to a sct. Thus the number 1
is an clement of the set in Example A above. It belongs to that
set. So do the numbers 2,3, 4 and 5. All of them are clements of
the set.

Note that to describe a set you must say preciscly what are
its elements,

Exercisg 1-1

1. What are the clements which belong to cach of the following

sets?
2
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a. The set of days in the week whose English names begin
with the letter S.

b. The sct of the last six lctters in the English alphabet.

c. The sct of months in the year whose English names begin
with the letter J.

d. The sct of letters in your name.

e. The set of persons who live in your home,

2. Hecre arc scveral phrases. Some of them describe scts; some
do not. Dccide which do and which do not.
a. The sct of &1l African countrics.
b. The set of summer months in the year.,
¢. The set of all small whole numbers,
d. The sct of all books in your school library.
e. The sct of all Nigerian citizens.
f. The set of all numbers less than 100.
g. The sct of all mountains in the world more than 10,000
feet high.
h. The set of all children.
i. The set of all large islands.

1-2 Describing sets

We have seen how sets can be described in words y saying
such things as “the sct of all letters in the English alphabet”. In
fact, we constantly give such descriptions when we talk to one
another, even though we may not usc the word “set”., Everyone
says such things as “my family”, “our footbull team”, “the
population of Africa”. And when he docs, he has described a
sct.

However, there is another way of describing sets which cach
of us also uses almost cvery day. It consists of listing the clements
in the set. Every teacher doces this when he writes out a list of the
pupils in his class. This list describes the sct of pupils in his class.
A ncwspaper docs the same thing when it lists the names of the
players in a football match. It is describing the sct of pecople
who p! .yed in that match,

In mathematics we also describe sets by listing their clements.
When this is done we always enclose the list in curly brackets.
The brackets are uscd to show that we arc thinking about the
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list as a set. Thus the sct consisting of the numbers 1, 2, 3, 45
would be described by writing

i1,2,3, 4,5}

We read this as “the set whose clements are the numbers
1,2,3,4and5”. The commas are used to scparate the clements
b b b

in the sct, Other examples of sets described by lists are

{Ghana, Kenya, Nigeria}
!
W, b: ) l) 2}

The first of these is the set whose clements are the nations
Ghana, Kenya and Nigeria. The sccond is the set whose cle-
ments are the letters a, b, ¢ and numbers 1, 2. This last example
shows that the clements of a set do not all have to be of the
same type. That is, all of them do net have to be leteers, or all
of them numbers, ctc. There may be clements of many diflerent
kinds in the same set,

Now consider the following example. At a party two girls
wore green dresses, one wore a white dress and three wore red
dresses. The colours of the dresses form a set which we might
write as

{green, green, whitc, red, red, red}

But the only colours which belong to this sct are green, white
and red. Thus it is enough to write

{green, white, red}

to describe the set. We do not have to repeat any of the colours,
I'rom now on we agree not to repeat clements inside the curly
brackes when describing a set by a list since listing an element
several times does not tell us more than we already know,

In teaching young children about sets it is often helpful to
draw pictures. For instance, you might want to talk about a set
whose clements arc a circle, a triangle and a squarc. One way
of doing this is to draw a picture such as

(@A G }

Note that we suli use brackets. They tell the children that we
arc thinking about a set, and not about three scparate things,
As you draw more and more of these pictures, using brackets
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each time, your pupils will learn to think about sets and to use
brackets correcity.

1-3 Describing sets (continued)

At times it is unreasonable or impossible to list all of the
clements in a sct. This happens whenever the sct has a large
number of elements. However, we may still want to deseribe
the set by a list. T'o do this we leave out part of the list, and put
three dots in its place.

For example, suppose we wanted to describe the set of letters
in the English alphabet. 1f we wished we could write them all
down. But the list would be rather long. A much better idea
would be to write something like this:

{211 l), C) MRS | Z}

The three dots take the place of the missing letters. We imagine
that the letters are still there, even though they are not written
dewn. In the same way

2,46,8,...,20}
is just an casy way of writing
{2,,6. 8,10, 12, 14, 16, 18, 20}

Both stand for the same set.

When you replace part of a list by three dots you must make
surc that enough of the list is left so that cveryone knows what
you want in place of the dots. Thus, if you write

{2, '+, 6, 8: LIRS 32}
Lo onc will misunderstand you. However,
{2,4,...,32}
is not enough, because someone might think you meant
2,4, 8, 16, 32}

Sometimes in making a list we have no choice. We must
usc three dots, T'or instance, to describe the set consisting of the
numbers 1, 2, 3, 4, and so on, we write

1,2,3,4,...}
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Here the three dots stand for the words “and so on”, They mecan
that the list gocs on and on, without stopping. Of course, we
could also describe this st by writing

11,2,3,..
or 1,2,3,4,5,...)

‘The important point is to write out enough of the list so that
cveryone will know what you have in mind.
Other examples of this sort are

2,4,6,8,...}
(1,5,5,7,...)
15,10, 15, .. .}

Do these lists tell you enough for you to write the next element
in cach of them? The next three? The next onc hundred? If
they do not, more clements should be listed.,

ExEercist 1-3 A
L. Describe the following scts in words.

a. {Thursday, Tucsday}
b. {¢,a,b,¢, d}
¢. {January, February, March}
d. {2,4,6,8, 10}
e. {25, 20, 15, 10, 5}
2. What are the next three clements in the lists for the following
scts?
a. {10, 20, 30,...}
b. {2,5,8,11,...}
c. {100, 96,92, 88, .. ., 0}
d. {1, 10, 100, 1000, . . .}
e {1,4,9,16,25,..}
£ {2,22,222,,
g. {99,88,77,...)
3. Tor which of the following sets is it possible to list all of the
clements, provided you had the necessary information?
a. The sct of all whole numbers from | to 1,000,000,
b. The sct of all whole numbers greater than 10 which end
ina3j,
¢. The sct of all words in the English language.
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d. The sct of all living human beings.
e. The set of all whole numbers exactly divisible by four.

4, Use the three-dot notation to describe the following sets:

a. The set of whole numbers between 1 and 1,100 which are
exactly divisible by 3.

h. The sct of whole numbers from 9 to 100.

c. The sct of whole numbers ending in 5.

d. The sct of whole numbers greater than 5 which leave
a remainder of 1 when divided by 3.

e. The sct of all whole numbers which can ¢ written using
only the digit 7.

f. The sct of all whole numbers ending in 5 or 6.

14 Special sets

We have given several examples of scts, and you have found
morec in the exercises. In this section we shall describe a number
of spccial sets which will be used frequently from now on.

I. The fust of these special sets is the set containing no
clements at all. It is called the emMprry ser. But what do we
mcan by speaking about a collection when no clements belong
to the collection? Surely this is never donc in everyday life. Or
15 it? Let’s take a closer look.

Supposc you happen to meet a tourist who knows very little
about Alrica, and supposc he asks you to think about the sct
of all cities in Africa with a population of more than 5 million.
Has he describec - set? Yes, because we can tell whether any
particular African city belongs to this st or not. But this sct has
no members at all. It is empty.

Aunother example. Consider the set of all people in a certain
classroom at your school. At nine o’clock on a schoolday morn-
ing this sct will have many clements. But what would you say
about the set at midnight? Again, the set has no elements since
10 onc is in the room. It is the empty sct. The empty set is very
important in mathematics. We shall meet it aguin when we
talk about the number 0.

We shall represent the empty st by a pair of brackets with
nothing inside:
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II. We have said that in mathematics the term “set” is used
to refer to a collection of things. Any collection whatever. Thus
a collection of things which has only one member is a sct. Such
scts are very common. For example, the set

(3)
is a sct whose only member is the number 3, Similarly, the sct of
all headmaste, < ~f your school, and the set of all children in 2
family with only one child are sets o this type. I'ry to give more
such examples.

Our reason for calling attention to these sets is to cmphasize
that a set containing ouly one clement is somcthing quite
different from the clement itself, The first is a collection; the
second is a particular individual.

IIL. Finally, we introduce two special sets which arise con-
stantly in arithmetic. The first of these i< the famiiliar set

(1,2,3,4,. .1

Its clements are the numbers I, 2, 3, 4, and so on, which we use
for counting things. For this reason these numbers are all called
COUNTING NUMBERS, or NATURAL NUMBERS, and the st
itsell is known as the set of counting numbers, or the set ol
natural numbers,

In arithmetic we also nced the set whose clements are the
counting numbers together with the number zcero. In order to
distinguish this sct from the sct of counting numbers we call
its clements whoLe NUMBERS. Thus the sct of whole numbers
is the set,

{0,1,2,3,...}

The only difference between this set and the set of counting
numbers is that it contains the number 0,

Exercise |-}
1. Use the bracket notation to describe the following scts:
a. The sct of months of the year whose Engli<h names begin
with the letter N,
b. The sct of days of the week whose English names begin
with the letter N,
¢. The sct cf all counting numbers less than 1.
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d. The sct of all counting numbers less than 100 which are
exactly divisible by 10 and by 11,

e. Theset of all counting numbers less than 50 which end in
2 and are exactly divisible by 7.

2. Is the set consisting of just the whole number 0 cmpty?
Explain your answer.

1-5 Equal sets
When you say that two plus two equals four, and write
24-2=+4

you mecan that 2 + 2 and 4 stand for the same number. In
other words, what you writc on one side of the sign = and what
you write on the other side are just different names for the same
number.

This is the point of view which we want to adopt. The state-
ment “a = 6" means that the thing named “a” and the thing
named “6” are the same. For instance, when we write
S ={1,2,3,4,5} we mcan that S and {1, 2, 3, 4, 5} stand for
the same set.

Here are some more examples:

Africa == the sccond largest continent
Tokyo = the capital of Japan
(5 +3) +4 =12
{1, 2, 3} = the sct of counting numbers less than 4

Let us apply this to the following scts:

A= {1, 3, 11‘5 3, 2}

B = 2,4, 1, 3, 5}

C = the sct containing the first five
counting numbers

If you compare sct A with set B you will find that they con-
tain exactly the same clements.

The clements of set A arc the numbers 1, 2, 3, 4, 5,

The elements of sct B arc the numbers 1, 2, 3, 4, 5.

The only diflerence between A and B is the order in which
their clements were listed. But, as you will recall, the definition
of a set makes no mention of any order for clements. Order
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doesn’t matter. It follows that A and B are difTerent names for
the same sct, and we write A = B.

Now look at sct C. It too has the numbers 1, 2,3, 4,5 as ele-
ments. Since these are the same clements which belong to A and
to B, we can say that B = C and A == O, Altogether we have
A=B=_C,

This example illustrates the principle of cquality for scts:

T'wo sets are EQuAL when they contain the same clements

Thus whenever we writc A = B for scts we mean that every
clement of A is also an clement of B, and cvery clement of B is
also an clement of A,

ExErcisE 1-5
L. Which of the following pairs of sets are equal?
a. A ={a,¢0ef}
B = {c,/, q, e}
b. A = {a,¢,¢, [}
B = {a, ca‘f}
¢. A = the sct of different letters in the word “banana”
B = {4, b, n}
d. A = the set of pupils in a class containing 10 children
B={1,23..., 10}

e. A = the sct of pupils in a class containing 10 children
B = {10}

f. A = {0}
B={}

8. A = the sct of counting numbers which end in 5 and are
exactly divisible by 4
B={}

h. A = the sct of counting numbers lcss than 99 which are
cxactly divisible by 9
B = {10-1, 20-2, 30-3, .. ., 100-10}

1-6 Subsets
Consider the following pairs of scts:
((l) A={1, 2} B ={1:?~, 3, 4}

(0) A ={a,c, 1,0, u} B ={a,bec,...,z}
(¢) A == {book} B = {pin, tree, book}
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In cach case you will find that every clement of sct A is also an
clement of the corresponding sct B. When this happens we say
that A is a subsct of B. Thus in the first pair of sets (a) the cle-
ments of A arc the numbers 1, 2, and both of these numbers
belong to B. Similarly,in () A containsthe letters a, ¢, 1,0, u, and
cach of thesc ictters belongs to set B because B contains all the
letters in the Iinglish alphabet. Finally, in (¢) the only clement
of A'is “book”, and this clement alsc belongs to B. In cach case
we say that sct Ais a sunseT of the corresponding set B,
In general, the term “subset” is defined as follows:

If cach cleient of sct A is also an clement of sct B, then set A
is called a sunskeT of set B.

Scts which are subscts of other scts appear continually in
mathematics. As illustrations we give some cxamples from
arithmetic,

(a) The sct
A=10,2,4,6,...}

is called the sct of EVEN WHOLE NUMBERS. Lvery number
which belongs to this sct is said to be an ecven number. Thus a
whole number is even if it is exactly divisible by 2. Remember
that 0 is exactly divisible by 2 since 0 =~ 2 = 0, with no remain-
der. The sct of even whole numbers is a subset of the sct of all
whole numbers.

(b) The set
A={,357...)

is called the sct of opp wnoLE NuMBERS. Every number
which belongs to this set is said to be an odd number, Thus a
whole number is odd if it is not exactly divisible by 2. The set
of odd numbers is a subsct of the sct of all whole numbers. It is
also a subset of the set of all counting numbers,

(¢) Another interesting subset of the sct of whole numbers is
the sct of prime numbers. A whole number is said to be a
PRIME NUMBER if it is greater than 1 and is exactly divisible
only by itself and 1. Thus 2 is a prime number, since it is
greater than 1 and is exactly divisible only by 2 and 1. The
number 3 is also prime. However, 4 is not, since it is divisible by
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2. You should note that 1 is not a prime number. The first ten
prime numbers are

2,3,5,7, 11, 13, 17, 19, 23, 29

The sct of all prime numbers is a subset of the set of all whole
numbers,

It is an interesting problem to determine how many uum-
bers there arc in the set of all prime numbers. What do you
think? Does the list go on and on, or is there a largest prime
number? This is not an casy question to answer. However,
mathematicians have shown that che list of prime numbers goes
on and on without stopping. Tu other words, there are infinitely
many prime numbers, This fact was first proved by Euclid in
about 300 p.c.

Exercise 1-6
L Let X = {1,2,4,6,7,9, 11, 12!
a. Which of the following sets are subscts of X?

(i) {4, 7,11} (1) 111, 2,6, 1}

(iii) {7, 3,9} (iv) {11}

(v) The set made up of the first three even counting
numbers,

(vi) The sct made up of the first two prime numbers,

b. What is the subsct of X made up « fall the even numbers
in X?

c. What is the subsct of X made up of all the odd numbers
in X?

d. What s the subset of X made up ol all the prime numbers
in X?

e. What is the subsct of X made up of all the clements of X
such that twice the clement is not in X?

2. Which of the follov ing sets contain onlv prime numbers?
a. {2, 19,59, 71} b. {1,5, 17}
c. {47,89, 101,103} d. (79,93, 111}
3. List the members of the set of all prime numbers less than 50,
4. Usc the bracket notation to describe the following scts:
a, The sct of even numbers between 35 and 50.
b. The sct of whole numbers which end in 1, 3,5 7o0r09.
c. The set of even prime numbers.
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d. The set of prime numbers exactly divisible by 4.
e. The set of odd whole numbers exactly divisible by 3.
f. The set of even whole numbers exactly divisible by 3.

5. Let X, Y and Z be scts. Suppose that X is a subset of Y, and
that Y is a subsct of Z. Is X a subsct of Z? Why?

1.7 More about subsets
Consider the following three sets:

A = the set of all pupils in your school
B = the sct of all boys in your school
G = the set of all girls in your school

Then B and G are subsets of A, since cvery member of B belongs
to A and every member of G also belongs to A.

Keeping this in mind, suppose your school is a boys’ school.
Then v+ ecry member of set A will be a boy, and the subset B
will be the same as A. In other words B = A. This says that B
15 just anothier name for the set A, But B is a subset of A, Thus A
is a subsct of itsclf,

"This example illustrates the following general fact about the
subsets of a set:

For any set A, A is a subset of itsclf

Now look at the subset G—the girls in your scheol. If the
cntire school consists of boys, then G will be the cmpty set. It
will not have any members at all. Yet it still makes sense to
speak about the subsct of girls in your school. For this reason
we agree that G is a subset of A even when G is empty.

This illustrates a sccond fact about the subsets of a set:

The en:pty set is a subset of cvery set

These two facts about subsets may be a litile disturbing at
first. So we shall say more about them.

Let A be a sct, any set at all, Then a set B is a subset of A if
cvery clement of B belongs to A. Since every element of A
clearly belongs to A, our definition of the term “subset” forces
us to conclude that A is a subset of itself,

Now suppose E is the empty sct. Docs our definition also
imply that E is a subsct of A? In other words, docs cvery

nci—C
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element of E belong to A? You may be puzzled about the answer
to this question since E docs not contain any clements. To sce
that the answer should be yes, it is helpful ¢o turn things around,
as follows. E will be a subsct of A if chere are no clements of E
which do nt belong to A. (If you study the last sentence care-
fully you will scc that it says that cvery element of E belongs to
A.) But since E is empty there are no clements of E whicl do
not belong to A. Hence E is a subset of A.

Using what we have just learned, it is casy to find all of the
subscts of a sct A, provided A does not have too many clements,
For instance, lct

A={1,2;
Then the subsets of A are
{51}, @24 (1, 2;
Similarlv, if A=1{,23
the subsets of A are

{51525 8% (1,2, (1,3}, 2,3}, {1, 2, 3)

Notc that we do not list both {1, 2} and {2, 1} as subsets of A,
Can you tell why?

Exercisg 1-7
1. Write down all subsets of the following sets.
a (%)} b{A,Q,E c @
2. Let A and B be sets. Suppose that A is a subset of B. Under
what condition is B a subsect of A?
3. Let A = { } be the empty set. 'ind all the subsets of A,
How many are there?

4. Let A = {1}. Show that A has exactly two subsets. Do you
think that every set containing a single clement has cxactly
two subscts? Why?

5. Let A be any sct containing two clements. Show that A has
exactly four subsets,

6. Lct A be any set containing three clements, Show that A has
exactly cight subsets.
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7. If you worked Exercises 3, 4, 5 and 6 you discovered the
following facts:

Number of elements | Number of subsets

in set A ? of set A
. 4,0 - | . l
- ‘1 B 2
R ) ,4,,“ N
. -3 8_

a. On the basis of this table, how many subscts would you
expect to find when A contains four elements? Verify your
answer by writing down all subsets of the sct {1, 2, 3, 4.

b. How many subsets would you expect to find when A
contains five elements? How many when A contains six
clements?

1-8 Picturing sets and subsets

When tcaching children about scts, and when studying them
ourselves, it is often helpful to draw a picture of the set,

For example, suppose you wanted to talk to your class about a
set containing three bananas and two oranges. The children
might find it easicr to understand what you say if you draw a
picture like this:

You could then illustrate the idea of a subset for them by
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drawing a curve around the subset of oranges as shown below.

Then you might get them to use the same method to find sub-
scts containing two bananas and one orange, and so forth, In
this way children rapidly leara what the term “subset” means,

When mathematicians thiuk about scts, they usually do not
draw pictures like those shown above. Instead, they simply
draw a curve such as the one shown below, and imagine that
the set is represented by the region inside the curve, The shape
of the curve makes no difference. Any curve will do. Sometimes
letters or words are attached to the picture so that we can keep
track of which sct is being shown. Thus the picture below shows
a set A, Remeniber, the region inside the curve represents the
set,

A

If A and B are scts, and A is a subset of B, we draw another
picture as follows:

B

This shows A lying entircly inside B, and means that everything
in A also belongs to B,
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Example

Draw a picture to illustrate the scts A, B, C when

A = the sct of all people in Nigeria
B == the sct of all males in Nigeria
(' = the set of all Nigerian childien

Here both B and C are subsets of A, Thus in our picture B and C
should lic inside A. Morcover, B and C have some members in
common, since any child who is also a male is a member of B
and of C. However, ncither of these sets is a subsct of the other.
(Why?) Since our picture shoul show all of these facts it must
look like this:

The shaded region shows that part of A which belongs to both B
and C.

As we continue, you will find that pictures like this are very
helpful in studying scts.

Exercise 1-8
L. Let A ={a, b, ¢, ¢, f}

a. Draw a picture of sct A,

b. In your picture show a subsct B of A.

c. Show a subsct C of B. Is C a subsct of A?
2. In the following picture

L. = the set of all living things

B = the sct of all hivds

I = the sct of all insccts

A = the sct of all ants

@)
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Use the picture to decide whether the following statcments
are true or false:

a. All ants arc insects.

b. Some insccts are birds.

c. Somc insccts are ants.

d. All birds arc living things.

e. Every living thing is a bird or an insect.
f. No ants arc birds.

3. a, Draw a picture to show the following sets:

U = the sct of all people in the world
A = the sct of all Africans

G =: the sct of all Ghanaians

W = the sct of all women in the world

b. Use your picture to decide whether the following
statcments arc true or falsc:

(i) All Africans are women.
(ii) Some Ghanaians are not women,
(iii) All Africans arc people.
(iv) All Ghanaian wemen are Afiicans.
(v) No African women are Ghanaians.
(vi) Some Ghanaians are not African women,

4. Draw a picture to show the following sets:

(i = the sct of all counting numbers

E = the sct of all even counting numbers

O = the set of all odd counting numbers

" = the set of all counting numbers exactly divisible by 4
P = the sct of all prime numbers greater than 2

Q = the set of all prime numbers greater than 100

R = the set of all odd numbers greater than 50

1-9  Equivalent scts

Imagine a room of children who cannot count. Suppose there
are some chairs in the room, and suppose you ask the children
to find out whether there are more chairs in the room than
children, more children than chairs or the same number of
each. How can the children answer your question? It is casy.
They simply sit on the chairs; one child to onc chair., If, when
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this is done, every child is seated and some chairs are still empty,
there are more chairs than children. If every chair is filled and
some children are still standing, there are more children than
chairs, If every chair is filled and every child is scated, the num-
ber of chairs and children is the same. When this happens we
say that the sct of chairs and set of children match exactly.

AAAAA AAAARA
A A dd : A A AA

Moic chairs than children More children than chairs

AAAA
AAA

Chairs and children match exactly

This example shows how we can tell when two sets have the
same number of clements without counting. We simply try to
match the clements in the sets and watch what happens. If we
can make the sets match exactly they have the same number of
clements. Otherwise they do not. Surprising as it may scem,
this is one of the most important ideas in arithmetic. For this
reason we have a special word to describe sets whose clements
match cxactly. We say that the sets arc equivalent. Thus:

Two scts are EQUIVALENT if their clements match exactly
We now look at some examples.

Example 1

Let

A= {a, b) C}

B ={
These sets are cquivalent. T'o show this we must make the
clements of A and B match exactly, In other words, for cach
clement in set A we must find a partner in st B. Morcover,
we must do this in such a way that cach clement in set B also
has a partner in sct A, The following picture shows how this can
be done.

——
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A={q b ¢}

B —~{A, A @}

The double arrows in the picture show how the elements in the
two sets can be matched with onc another. Notice that cvery
clement in sct A is matched with exactly one element in set B,
and that every clement in set B is matched with exactly one
clement in set A, The two sets match exactly, Thus they are
cquivalent,

"The clements of A and B can also be matched in several other
ways. Two other ways are shown below.,

{(l, b\, 6‘} {”\s bs C}
(A, E,2) N}

Lach of these pictures shows that A and B are cquivalent sets,
"The casiest way to show that two scts are equivalent is to draw
pictures like these.

Example 2

The following pictures show pairs of cquivalent scts. In each
picture we have matched clements by drawing double arrows.

A~ 7 -Q
7~ %
A )

N
\}

A
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1-10 More about equivalent sets

We have said that two scts are cquivalent if their elements
can be matched exactly. You must be careful not to confuse
cquivalent scts with equal sets. Sets are cqual only when they
have the same clements. Sets arc equivalent when their clements
match exactly. For instance, the sets

{a, b,c,d} and {c, b, a,d}
arc cqual,while the sets
{a,b,c,d} and {w,x,, 2}

arc cquivalent but not equal Thus sets can be equivalent with-
out being cqual. However, it is casy to show that equal sets are
always equivalent. Can you?

Now lct us look at three sets, A, B and C. Supposc that A is
equivalent to B, and that B is cquivalent to C. We can show
this by drawing a picture of the following type:

The double arrows from A to B show that the clements of A and
B match cxactly. Thus A and B are cquivalent sets. Similarly
B and C are cquivalent sets. Now suppose set B is removed from
the picture. We then have

From this we sce that A and C arc also equivalent sets, Do you
think that this result is truc for any three equivalent sets?
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Picti:cs such as the ones we have just drawn show that it must
be true, Thus:

Given scts A, B, C with A and B cquivalent, and B and C
cquivalent,
then
A and C are cquivalent

This is a very important fact about cquivalent scts,

The idea of equivalence for sets is just another way of expres-
sing the fact that two sets have the “same number” of clements.
However, it is important to notice that we lave introduced this
idea without actually counting anything. Indced, as we shall
sce later, we must know about equivalence for sets oefore we can
learn to count. (Think of the example of the children and the
chaus given carlicr.,)

In all of our examples up to now it was casy to scc that the
sets involved were equivalent. This was true because we could
tell that they had the same number of clements just by looking
at them, We now give an cxample where this does not happen. .

Let A be the set of counting numbers, and let B be the set of
cven counting numbers, Thus

A=1{1,2,3456,...)
B =:{2,4,6,8, 10,12, ...}

Do you think that A and B arc cquivalent? The first answer
almost cveryone gives is NO. Afer all, every clement of B is
alrcady in A, and there are elements of A left over, Nevertheless,
this answer is wrong, Scts A and B are cquivalent. The following
picture shows why.

{1,21, 545, 6,...}

I

{2,4,6,8,10,12,.. .}

As usual the tiree dots mean that the picture gocs on and on
without stopping. The picture shows how we can match the
clements of these sets exactly. Each number in A is matched
with two times that number. This gives a number in B, Thus the
number 11 in A is matched with 22 in B, the number 50 in A
with 100 in B, and so on. In this way cach clement in B also has
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a partner in A, This shows that the clements of A and B match
cxactly. Hence A and B are equivalent scts.

Exercise 1-10

1'

Which of the following pairs of scts arce equivalent?
In cach casc where the sets are equivalent illustrate a match-
ing of the clements.
a. A ={2,46,8, 10}

B = {Ghana, Kenya, Nigeria, Sicrra Leone, Uganda}
b. A = the sct of cven whole numbers less than 20

B = the sct of cven whole numbers greater than 40 and

less than 6O

c. A ={ab,c ...}
B ={f1,€,6’,---a‘1}
d. A = the sct of prime numbers less than 30
B = the sct of whole numbers less than 100 exactly

divisible by 10
e. A = theset of all fathers in the world
B = the sct of all children in the world

Let A be the sct of all counting numbers. Determine which
of the following scts arc equivalent to A. When the sets are
cquivalent illustrate a matching of the clements,

a. B ={0,5,10, '5,...}

b. C ={3,6,9,...,3000}

c. D=1{0,1,2,3,...}

d. £ ={1,4916,...}

Let A and B be cqual sets. Show that A is equivalent to B,

Is it possible to match exactly the set of all counting numbers
and the set of all counting numbers greater than 200? If
your answer is “‘yes”, show how this could be done. If your
answer is “no” explain why it is “no”,



Chapter 2
OPERATIONS ON SETS

In the last chapter we learned about sets and subsets, In
this chapter we shall study several ways of making new scts out
of old ones. As we shall scc, these ideas arc important in the
study of arithmetic.

2-1 Union of sets

The casiest way to make a new set out of old ones is to com-
bine the clements of the old sets to form one large sct. For
example, if

A ={1,3,5
B = {0, 2, 4)

wc can combine the elements of A and B to form the sct
{Os ]: 2: 3: 4‘3 5}

This sct is called the union of set A and sct B because it was
formed by “uniting” the clements of A with the clements of B.
We write the union of A and B in symbols as

AuB

(which yon should read as “A union B”), Thus when A ==
{1,3,5}and B = 10, 2, 4}

AUB =10,1,23, 4,5

Itis clear that any two sets can be combined in this way, We
simply “put the sets together” to make one large sct. If the
original sets were A and B, the new sct is called the union of A
and B. Thus:

The unroN of set A and set B is the sct consisting of a/l the
clements in A together with all the clements in B, The union of
A and B is always written A U B,

The following examples illustrate this definition,
24
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Example 1
B = the set of all boys in your school
G = the sct of all girls in your school
B U G = the sct of all pupils in your school

Example 2

Note that the numbers 3 and 6 belong to both A and B, but
appear only once in the union of A and B. Can you explain this?

Example 3
A=1{0,2,4,6,...}
B={1,3517...2

The union of A and B is the sct of all whole numbers;
AUuB=1{0,123,...
Example 4

A ={a,b,c, d}
B ={ )
AUB = {q, b, ¢, d!

Example 5
A ={a,b,c, d}
B = {b, ¢}
AUB = {qb,c,d}

Did you notice that in the last two cxamples A UB = A?
‘This happened because B was a subsct of A. Indced, it is casy to
sce that A U B must ecqual A when B is a subset of A. For then
cvery clement of B already belongs to A. So when we put the
sets together we just get A,

Here is another fact about the union of two sets: Both A and B
are subscts of A U B, Can you explain why this is truc?

Exercise 2-1

1. Usec the bracket notation to write the union of cach of the
following pairs of scts:

a. A =1{7,2,9,5) B ={l,53,2)
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b. A ={a, ¢, i, 0, u} B = the set of letters in the word
“occan”
c. A ={2,46,..., 20} B =1{3,6,9,...,21}
d. A = the set of prime numbers less than 20
B = the sct of odd numbers less than 20
e. A ={0,5,10,15,...,100}
B = the sct of all whole numbers less than 100 which are
exactly divisible by 15
2. Let A and B be sets. Supposc A contains 5 clements, and B
contains 10 clements,
a. What is the largest possible number of clements in A U B?
Explain your answer.
b. Whatis the smallest possible number of clements in A U B?
Explain your answer.

3, Let Aand B besets, sAUB = B U A? Why?

4. a. Let A be the empty set. Let B be any set, Is A a subset of
A U B? Why?
b. What is A U B when both A and B arc empty?
5. Explain why A and B arc subzets of A U B,

2-2  Picturing the union of sets

It is casy to illustrate the union of two sets by pictures, For
instance, let A he a set containing a square, a triangle and a
star. Let B be a set containing a hanana and an orange. Then
A and B can be represented by the pictures

A B

To get a picture for A U B we simply combine these pictures as
follows:

AUB
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We could also show the same thing by the picture

C
N
|

In the above exaniple sets A and B had no clements in com-
mon. Thus we did not lct the gictures for A and B overlap, The
following example shows what happens when A and B do have
clements in common.

Let A ={a b, e d}
B ={b,cef}

Since the clements named b and ¢ belong to both A and B we
have

A
This time the picture for A U B is

AUB

Noticc that these pictures show why clements common to A and
B appear only once in A U B,

Pictures like those above are extremely helpful in tcaching
children about the union of sets. There may be times, however,
when you do not want to show individual clements in your
picturcs, When that happens you may draw a picture like
this: —‘ B

A =
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Remember that in such a picture set A is represented by the
region inside the curve labelled A. Tt las been shaded =. Set
B is represented by the region inside the curve labelled B. It has
been shaded [[[||. When these sets are put together we get the
region inside both curves. Thus A U B is the shaded region
inside the heavy outer curve. It is best to draw such pictures
with A and B overlapping unless you know that A and B have no
clements in common.

ExErcisg 2-2

Draw pictures to illustrate A, B and A U B for cach of the fol-
lowing pairs of scts.

I'A:{é:@)%%} B:{,D,@}
2 A=1{0,2,4,6) B=1(,3,6 09

3. A =1{a ciou} B = the set of letters in the word
“occan”
4. A = the sct of prime numbers less than 20
B = the sct of odd numbers less than 10
5. A = {0,5,10,..., 30}
B = {0, 10, 20, 30}
6. ./\ == {2 ’%" 3, 4 "%‘ 2) 7 '—.L' 5}
B = {12, 6, 5)

2-3 Intersection of sets

Let A be the set of letters in the word “bananas”. Let B be
the set of letters in the word “nail”. Then

A ={a, b, n,s}
B = {a,i, ], n}

‘These sets have the letters a and n in common, Hence if we
wanted to draw a picture of A and B our picture would have

to look like this:
b
S

A B

The two scts overlap. The set consisting of the letters a and n is
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called the intersection of set A and set B. The members of the
interscction are the clements which belong both to A and to B.
We write the intersection of A and B in symbols as

AnB
(which you should read “A intersect B”). Thus when
A ={a, b,n,s} »and B = {a, i, n}
ANnB ={a,n}
This example illustrates a seccond way to make a new sct out
of old ones. We simply form the sct containing all the clements

which the old sets have in common. This new set is called the
iniersection of the old sets. Thus:

ThernTersEcTION Of set A and sct B is the st consisting of
all the elements which belong both to A and to B. The inter-
section of A and B is always written A n B,

But can we always form the intersection of two sets? What if
A and B have no clements in com.non? The answer is casy.
According to the above definition the intersection of A and B
then has no elements. It is the empty set. For instance, if

A={a,b,ns} and B={d,gb,ol,
then AnB =1}

This example shows why we really need such a thing as the
empty set around. For without it we could not talk about the
intersection of two sets with no clements in common,

Two sets with no cleinents in common are said to be pis-
JoinT. Thus the intersection of two disjoint sets is the empty
set.

The following examples illustrate the intersection of sets;

Example 1

Example 2
B = the sct of all boys in your school
G = the set of all girls in your school
BAG ={}

Thus B and G are disjoint sets.

bC1—D
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Example 3

A= {(1, [ d;f)‘
B={d
ANB =/{,d
Example 4
A=1{1,2,34..)
B=1{246,8,...)
ANB ={2,4,6,8,...)

Did you notice that in the last two cxamples ANB = B?
This happened because B was a subsct of A, It is casy to sce
that A N B must cqual B when B is a subset of A because the
elements which A and B have in common are precisely the
elements of B when cvery clement of B belongs to A,

Here is another fact about the intersection of sets: ANBisa
subsct of A; it is alsn a subset of B. You should be able to explain
why this is true.

Exercise 2-3

1. Use the bracket notation to write the intersection of each of
the following pairs of sets.
a. A ={1,5,8,9,11) B =1{0,3,4,5,8}
b. A = the sct of letters in the word “Entebbe”
B = the sct of letters in the word “African”

c A ={4,8,12, ... 40}
B ={3,69,...,39)

d. A = {5,10,15,...)
B ={4,8,12,...}

e. A =1{1,4,916,...)

B = the sct of all prime numbers
2. Let A and B be scts. Suppose A contains 5 elements, and B

contains 10 clements,

a. What is the largest possible number of clements in A nB?
Explain your answer.

b. What is the smallest possible number of clements in
A N B? Explain your answer.

3, Let Aand Bbesets. IsANB =B A A? Why?

4, Suppose A N B == A U B, What can you say about A and
B? Why?
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5. Explain why A N B is a subset of A and a subsct of B.
6. Js A N B a subsct of A U B? Why?

2-4 Picturing the interscction of sets
It is casy to illustrate the intersection of two scts by pictures.
For example, if
A ={ab,n,s)
B ={a,il, n}
we have the picture

g N 8
5=

N

ANB

The clements in the shaded part of the picture make up
AnB. Thus AnB = {a, n}

As usual, we can draw a picture of the intersection of two
sets without showing the individual clements in the sets. The
picture then looks like this:

A

ANB
The shaded part of the picture represents A intersect B.
Notice that the region representing A A B in this picture lies
inside set A. This shows that A N B is a subsct of A. Do you sce
why A N B is also a subsct of B?

Exercise 2-4
1. Draw pictures to illustrate A, B and A N B for cach of the
following pairs of sets:
a. A ={1,5,9,8,4} B ={3,0,1,6,9}
b. A ={2,4,6,...,20} B ={3,6,9,...,2l}
B={

,6
C.A:{é,@,,ﬁ’} ,D,m}
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d. A = the sct of distinct letters in the word “Entcbhbe’
B = the sct of distinct letters in the word “African”

2. There arc iQ clements in set A, 7 clements in set B and 3
clements in A N B,

a. How many clements are in A U B?
b. Draw a picture to show A and B.

3. There arc 15 clements in A U B, 8 clements in A, and A and
B are disjoint. How many clements are in B?

4. There arc 10 clements in A U B, 5 clementsin A N B, and 2
clements in A which are ot in B,

a. Draw a picture to show A and B.

b. How many clements arc in A?

c. How many clements arc in B?

d. How many elements are in B which are nof in A?

5. There are 12 clements in A U, 6 clements in A which are
not in B, and 3 clements in B which are not in A.
a. Draw a picture to show A and B,
b. How many clements are in A?
c. How many clements are in B?
d. How many clements arc in A N B?

6. Let A, B and C be sets. Suppose that C is a subsct of A and
C is a subsct of B. What is the relation between C and
A N B? [llustrate your answer with a picture,

2.5 Mose about unions and intersections

Now that we know how to form unions and interscctions the
study of scts becomes quite interesting. "This happens because
we can use these two ideas together to make lots of new scts.

For example, suppose we are given three sets, A, B and C.
We can form the union of B and C, and then take the inter-
section of set A with this 1-aion. In other words, we can form a
new set in two steps, as follows:

Step 1: Form B u G
Step 2: Form the interscction of A and (BuQ)
We write the result as

An@BuUQ)
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This symbol tells you to take the intersection of A with the sct
inside the brackets. Since the set inside the brackets is B union
C, you must form the intersection of A and B U C. The [ol-
lowing pictures show what happens,

Step 1: Form By €

BUC shaded
Step 2: Form :A intersect B C

A B

C

ANB(BUC) shaded

In passing from Step 1 to Step 2 we simply kept the part of
B U C which lies in A. This is the shaded region in the last
picture,

If you look carefully at the picture above you should be
able to find another way of writing the st A N (Bu C). Do
you sce what it is? Locate the part of A which is in B. This
represents the set A n B, Notice that it is shaded, Similarly
the region representing A N C is shaded. Morcover, the entire
shaded region in our picture can be written as the union of
these two shaded regions. This shows that the set A N (Bu Q)
is the union of A N B and A N C. In other words these sets are
equal, and we have

ANnBuUuC) =(AnB)uU(AnCQC)
‘The moral here is that pictures can be used to discover
relations between sets. If you have never done this sort of thing
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before you will probably want to try some of the exerciscs
below.

ExErcise 2-5

1.

2‘

Use the following picture to complete each of the statements
given below.,

4. ANC = b. AuC =

c. BnC = d An(BnC) =

e. AUByuC = L. AnB)nC =

g ANBUC) = h. AnB)U(AnCQC) =
LAUVUBUC) -= JAUuB)n(AuC) =
k.B.UANCQC) = LAUBNCQC) =

Which of the scts listed in Question 1 are cqual to one

another?

Let A, B and C be scts. Draw pictures to illustrate the
sets AU (BN C) and (AUB) N (AuUC). What do you
conclude about these sets?

There are 10 boys in all; 8 boys arc playing ball and 6 arc
wearing jackets. How many boys must be punished for
playing ball in their jackets?

True or false? There are 100 people in all. 75 drink coffce.
50 drink tea. 40 drink both. 10 do not drink cither.

Draw a picture to explain your answer.

There are 10 elements in set A

6 clements in sct B

* clements in set C

3 elements in both A and B

2 clements in both A and C

2 clements in both B and C

1 clement iu all three

How many clements altogether? Draw a picture to explain
your answer,
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Chapter 3

NUMBER

In the previous unit we studied sets and learned how to work
with them. In this unit we are going to usc sets to develop the
idea of number. Once we know what numbers are we shall
consider different ways of representing them. Then we shall
study the number line and the relations of order in the st of
whole numbers. Finally, we shell study arithmetic, and learn
how addition, subtraction, multiplication and division z ¢
defined.

3-1 Comparison of sets by matching

It is interesting to consider the way pupils first develop the
idea of number. It gocs somecthing like this,

Consider the set of pawpaws and the set of bananas in the
following picture.

In this picture we have matched cach pawpaw with exactly onc
banana just as children might do. In so doing cach banana was
matched with exactly one pawpaw. Recall that the two sets
arc then said to match exactly, or to be equivalent. From this
we conclude that there arc jusT As MANY bananas as there
arc pawpaws, and JUST As MANY pawpaws as there are
bananas. Notice that any other matching of the clements of
these sets will give the same relationship: the sets will match
exactly. Two other matchings of these sets are shown in the
following picture. Each of these matchings shows that the

two scts arc cquivalent,
36
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Y

\
L» )A‘) }

g q o0 |
- L\ A4
NN
aen
These sets can be matched in other ways as well, Can you find

some of them?
Now look at the following sets:

.

5
O O
o150
o— s

Double arrows have been drawn to match cach orange with
cxactly one pawpaw. But this time there are some pawpaws
left over. We describe this by saying that the set of pawpaws
has MORE ELEMENTS than the sct of oranges. We also say
that the sct of oranges has FEWER ELeMENTS than the set of
pawpaws.

As in the case of an exact matching, there are other ways ol
matching the oranges and pawpaws in these two scts. But no
matter what maiching is used there will always be some paw-
paws left over. The following picture shows some of these
matchings. Each of them shows that the sct of pawpaws has
more clements than the set of oranges. They also show that the
set of oranges has fewer clements than the sct of pawpaws.
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From the preceding illustrations we scc that when we match
the elements of a set A with the elements of a sct B one of three
things will happen:

1. They will match exactly.
2. There will be some clements of A left over.
3. There will be some elements of B left over.

When the clements match exactly we say that set A has Just
as many elements as sct B. When there arc clements of A left over
we say that set A has more elements than sct B. When there are
elemen's of B left over we say that sct A has Jewer elements than
sct B,

ExErcise 3-1
L. Which of the following sets arc equivalent? Illustrate your
answer by drawing picturcs with matching arrows.

A=l  B=(3 C=(A, @)
D={L57 E={} F={}

G = the set of distinct letters in the word “banana”
H = the sct of all even prime numbers
I = {Ghana, Nigecria, Togo}
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2. By drawing picturcs with matching arrows show that the
set {x, y} is cquivalent to three different subscts of the set

{A, A, 2.

3. Let A be the sct of all whole numbers, and let B be the sct
of all even whole numbers. Consider the following pictures:

A{0,1,2,3,4,...}
B: {O) 2, 4.0}
A:{0,1,2,3,4,..}

B:{0,2,4,6,8,...}
The first picturc scems to show that A has more clements
than B. The second picture scems to show that A has as
many clements as B. Which do you think is correct? What
arc the reasons for your answer?

4. There is one set v ich is equivalent to a subsct of ezery sct,
What is it?

3-2 Number as a property of sets

Supposc we start with a sct such as the set pictured here:

@

Think of sets which are cquivalent to this set; that is, sets which
can be matched exactly with it. Herc arc pictures of several

such scts:
J
2
2
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Of course, it is possible to form many other sets besides these
which are cquivalent to the original one. As we continue to
form these sets we are led to consider ALL sets which are
cquivalent to the original set. As we shall sce, this is the idea
behind the concept of number.

Exercise 3-2a
1. Make up a few 2 >ts which match (@D, ) cxactly,
2. Make up a few sets which match {A, B, Cj exactly,

Think about all the sets which are cquivalent to the set in the
first exercise above. Some of them are shown below.,

Of course, there are many, many mcie, so many that it is
impossible to draw all of them. However we can think abhout
all of them, and as we do we discover that there is only one
property which they have in common. Do vou sce what that
property is? Lach of these sets has precisely as many clements as
any other siuce they are all cquivalent. We describe this
property by saying that all of these sets have the same NUMBER
of clements,

Thus the word “number” denotes the property shared by
ALL sets cquivalent to a given set, It is con'renient to assign a
name to the number property possessed by all sets equivalent to
a given sct. This name refers to the number of elements in the
scts. I'or «xample, the name “two™ is used to describe the
property of “two-ness” shared by ALL sets cquivalent to
{@, )} We say that there are two elements in {0, A). The
number called *“two is also attached to all the other sets in the
picturce above. We speak of two stickmen, fwo letters, two picces
of fruit. etc. The number two is also attached to every other set
that is equivalent to {@, [#). ALL these sets have something
in common: it is the property of “two-ness” which we name by
the number fwo.
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Similarly, the name “three” is assigned to the number
property of cvery set which is equivalent to {@, 3, A}. Some
of these sets are illustrated below:;

o) ) e
¢

R R mat ELH S T S
Af A e R

\ e

]

As you know, cvery number has a symbol which is used when
we write the number. The symbol “2” is used to write the
number named “two”. The symbol “3” is used to write the
number named “three”. A symbol uscd to write a number is
called a NUMERAL,

We have now described several important concepts for pupils
to think about and learn in the classes you will teach. One is
the concept of a set ~f objects. Another is the concept of number
which tells how many clements the set contains, Each number
has a name, and is represented by a symbol which is called a
numeral.,

Exercise 3-2b

L Let A, B and G be sets. Supposc all three sets have the
same number of clements. What can you say about these
sets?

2. Let A, B and C be sets. Suppose A is equivalent to a subset
of B, and B is cquivalent to a subset of C. What can you say
about the number of clements in A and in C? Illustrate your
answer with picturcs,

3. Let A and B be scts containing a finitc number of clements.
Suppose that A U B = A but that A is not equal to B. What
statement can you make about the number of elements in
the sets A and B?

4. Let A = {a, b, ¢}

a. (i) List all the subsets of A containing a singlc clement.
(i1) List all the subsets of A containing 2 clements.
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(i) Match cach 2-clement subset of A with the I-
clement subsct containing the third clement of A;
that is, {a, b} <-- {c}, and so on.

(iv) What can you say = .cut the number of 2-clement
subscts of A and the number of 1-clement subsets of
A?

b, Let A = {a, b, ¢, d}
Use the idea cxplained in ¢ above to show that the num-
ber of 3-element subscts of A is the same as the number
of l-element subscts of A.

¢. Suppose A is a set containing 10 clements. How many
different 9-clement subscts does A have? Explain your
answer,

d. How many different subscts of 51 cards can be chosen
from a pack of 52 cards?
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3-3 Sets in natural order

Let us now compare the following sets of stickmen and
boxes: 2

A A A A A

\ L) \ )Y \\ J
9 9 9 9 |
| 9 J

If we look at the set of stickmen lelt over, we see that this
set has the property of “onc-ness”. There is one stickman left
over. We then say that the set of stickmen has one element more
than the set of boxes. This “one-more-than” relation provides

the basis for placing scts in NATURAL ORDER.,
Look at the following scts of triangles:

(A2 A )
L&A J
(AAAAA )
(AAAAAAAA
J
]

{
| A

(AAALAAAAAA
lAAAA ]
(AAAAAAA ]
(AAAAAA |
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No set of triangles matches any other sct exactly. However, we
can arrange these scts in a one-more-than relation, starting
with the sct that has fewest elements. We note that there is an
empty set. Because the empty sct has the fewest clements of
all, it comes at the beginning of the new arrangement. The sct
consisting of a single triangle has one more element than the
empty sct, so it comes next. By continuing to choose the set
which has one more clement than the preceding set, we place
the sets in natural order as shown below:

r 1
LA J
(&4 T
(A AA B
)
]
J

(aAaAA
(AAAAA
(AaaAaAAA
(AAAAAAA B
(AaAALALAA )
(AaaAhALAAA )

ExErcise 3-3
1. Let A, B, C, D and E he scts. Suppose that

(i) A has one morc clement than E
(ii) G has onc more clement than A
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(ii1) D has onc morc clement than B

(iv) E has onc more element than D

Arrange these scts in natural order. Which set has the most
clements? Which set has the fewest clements?

Sct A has one more clement than set B. Set C is equivalent
to set B, What can you say about sets A and C? Why?
Supposc that sets A, B, C, D can be arranged in natural
order with A first, B sccond, C third and D last, Suppose
set S is equivalent to set A, and that set 'I' is cquivalent to sct
D. Arrange B, C, S, 'T' in natural order.

Sct A has one more element than scts B and C. Sct B has
onc more clement than sets D, E and F. List all possible
arrangements that are in nawral order which can be made
from these scts.

nci1—Eg



Chapter 4
THE SET OF WHOLE NUMBERS

4-1 Identifying the whole numbers

You have seen how to place sets in natural order, Using this
natural order, we give a name to the number of clements in
each sct, and we write the numeral which represents the num-
ber.

Set Number  Numeral
C B
B ) e
(A A ] owe e
é A A j three 3
A AA A ) e
AAaAaaa ) s
AAAAAA ) s

Lé é é é é é é 7 seven 7
(o AAAA ) e
(AAAAAAAAA) i o

"The numbers 0, 1, 2, 3, 4, 5 and so on are called wHOLE
NUMBERs. The set {0,1,2,3,4,5,...)0 is the set of whole
numbers. We give these numbers a special name because as vou
will sce later there are other kinds of numbers,

46
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4-2 Order in the set of whole numbers

When sets are placed in natural order—as above—we also
say that the corresponding whole numbers are then in natural
order. Thus 0, 1, 2, 3 are in natur~l order. On the other hand
3, 6, 5, 4 arc not in natural order; the natural order is 3, 4, 5, 6.

We have already seen how a set of objects has a whole
number attached to it. Suppose that the number of elements in
set A is m, and the number of elements in set B is 2, Then:

(1) We say that m is xQuaL to n if sct A has just as many
clements as set B.
(ii) Wesay that mis LESs TiraN n il sct A has fewer elements
than sct B.
(iif) We say that m is GREATER TiaN 2 i set A has more
clements than sct B.

Since these are the only three possibilitics it follows that for any
two whole numbers m and z one and only one of the following
statements is truc:

(1) mis equal to n
(i) m is less than n
(ii1) m is greater than n

There are special symbols in mathematics to express cach of
these facts.

(1) Ifm is equcl to n we write m = n
(1) Ifm is less than n we write m << n
(iii) Ifm is greater than n we write m > n

Using these symbols we can say that for any two whole numbers
m and 2 onc and only one of the following statements is truc:

moe==noomMn o oMmM>n

Before we go on, two things should be made clear.

First, if m and n are whole numbers with m < n, then we
also have n > m. Thus since 2 < 5, we also have 5 > 2,
Similarly, if » > m, then we also have m < n. In short, the
statements

m<n and n>m

say the same thing. If one of them is true, the other is also true.
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Sczond, to say that the whole number m is greater than the

whole number # amounts to the same thing as saying that m
comes after z in the natural order of the whole numbers, Thus,
since 3, 4, 5, 6 are in natural order, we can write

6>5 6>4 6=>3
5>4 5>3
4 >3

Exercise 4-2

1.

Herce are four sets:
{A,B,C, Iy

{%, A) == }

{ }

{B, G, E, F}

Find the number of members in cach, Now writc all the
statements you can, using these numbers and the symbols
<, =, >.

Complete cach of the following statements by inserting the
correct symbol: =, <, >,

ad——17

b. 12——0

C. 2 +4+2— 4

d.2 +2—3 .9

€9 +7—8+7

£14412— 13 413

g 6--8-+10 5+-7+4+9

Use the bracket notation to describe the set of whole
numbers # which make cach of the following statements
true:

a. n<6

b. 25 <n

¢ 12 <nandn < 18

d. n <20andnis exactly divisible by 3

e. 10 <#n,n < 30and nis even

Is there a whole number m such that m < n for all other
whole numbers n? Explain your answer,

Is there awhole number m suchithat m > » for a/l other whole
numbers #? Explain your answer.,
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6. Is it truc that @ > & and b > ¢ imply that @ > ¢ With sets
having 4 clements, 3 clements and 2 clements, show this
idea by matching elements,

7. Supposc that A is a subset of B but is not cqual to B. What
statement can be made about the number of clements in A
and the number of clements of B when A and B each have a
finite number of ¢lements.

4-3 Counting and the counting numbers

In section 4-1, we showed sets of triangles in natural order.
Each sct has one more triangle than the preceding set. Just as
we placed these sets of triangles in natural order, we can also
form sets of whole numbers and place them in natural order.
Thus {1} is the sct whose ane element is the number 1; o, 23
is the set containing the fzeo numbers 1 and 2 in their natural
order; {1, 2, 3} is the set containing the three numbers 1, 2 and 3
in natural order, and so on. We come in this way, for example,
to the set {1,2,3,..., 27}, which is the sct containing the
twenly-seven numbers 1, 2, 3, and so on up to 27, in natural order.
The last number in the set is 27, and 27 is also the number of
clements in the set. Similarly, the set {1, 2, 3, ..., n} is the
sct of whole numbers 1, 2, 3, and so on up to » in natural order.
The last number in the set is », and 2 is also the number of
clements in the set. These sets of numbers are called counTING
SETS. The numbers in cacli counting sct are counting numbers
in natural order starting from 1. The complete sct of counting
numbers is the set {1,2,3,4,5,,..). Counting sets arc repre-
sented below,

Counting sets Number of members
{3
1,2,
11,2,

OO O O ga OO —

“
-
-
.
.
.
-
=
——
-~
b
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Corresponding to cachi counting set is the number of clements
in that set. The last numberin a counting sct tclls the number of
elements in that counting set.

4-4+ Finding the number of elements in a set

When we use the counting sets we follow the natural order
of numbers; that is, we count: “one, two, three, . . .””. Now you
may ask, “How do we find the number of clements in any given
set?” For example, take the sct of fish shown below.

N

{ o<, <<, o, o}
‘J
1 2 . 3 . 4 }

]

Match the fish with the numbers in a counting sct starting with
1, procceding in natural order. The sct of fish is exhausted when
the last fish is matched with the last number in a counting set.
This number tells us the number of fish, It is the largest number
in the counting sct.

When we teach children how to count, we teach them to use
a set which they describe by the spoken words “one”, “two”,
“three”, “four”, and so on. It is importart to note that as they
say “onc”, they are matching the number 1 with an object;
as they say “two”, they are matching the number 2 with another
object, ctc. ‘The last number they name is matched with the
last object remaining in the sct. This last number tells the
number of objects in the sct.

In counting, it is important to attach just one number to
cach member of a sct. In the preceding example of counting
fish, the order in which we take the fish is not important. What
is important is that cach fish is counted Jjust once. When we
count the clements of a sct, no matter how we do the counting,
we always find the same number of clements, When you count
the sides of a square, for example, you always get 4.

4-5 Equivalence using counting sets
You can usc counting sets to tell whether two sets are equiva-
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lent, Recall that carlier in this unit we said that sets A and B
arc cquivalent whenthere is an exact matching of the members of
set A with the members of set B, We can now restate the idea
of cquivalence of sets using counting scts.

Let us suppose we have a set A of fish and a sct B of oranges.
In order to tell whether the two scts are equivalent find the
counting sct which matches st A exactly. Then see whether set
B also matches the same counting set exactly, If it does, sct A
is cquivalent to the counting set, aud set B is equivalent to the
counting set, and we can conclude that set A is equivalent to set
B. Can you tell why?

5. O O 0O O 1

In the pluunc above we see that sets A and B are cqm\ alent to
the counting set {1, 2,3, 4}, Thus A and B are cquivalent to
one another,

Exercise 4-3
Find, by counting, whether A\ and B are equivalent scts.
a., —'\_ {A O, .1 r::m:‘ﬁ’ ’K}

== the st of fingers on your left hand
b. A == the sct of consonants in the word relation

B = the sct of sides in the figure

2. A and B are cquivalent sets, There are 10 clements in A.
How many clements are in B?

3. A and B are equivalent scts. There arc 7 elements in B, and
3 clements in A N B. How many clements are there in A
whiclt are not in B?

4. A and B are equivalent sets. A N B is empty, C is equivalent
to A U B and there are 12 clements in C, How many cle-
ments are there in A? How many in B?



Chapter 5
INTRODUCTION TO THE NUMBER LINE

5-1 Introduction

‘There is another good way to introduce children to the
number concept and counting, It makes use of the number linc.
Each of the different ways of presenting the number concept
has its own advantages. Thus it is a good idea to usc several
different approaches. In this section, we illustrate how one
can introduce the number line.

In the previous chapter you have scen how to put sets in
natural order. For example, the following sets are in natural
order:

AA

) )
EEEE
P> | lig
D> >

B> | >

[HI»‘—J

)

(AAAAAA)

(and so on)

Each of the sets has one more member than the set above it.
There is, of cowrse, no end to the sets that you can build in this
way.
In order to introduce the number line we now use sets of
52
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matches to illustrate scts in natural order. We take matches
that are the same size and arrange them in sets as follows:

{ }
(=1
{=— }

{ }
{

{

(and so on)

As you know, cach of these sets can be matched with a
counting sct. Remember that this is just another way of
describing how we count the clements of a set. The sets picturcd
above are matched with counting scts as follows:

Set Counting Set Numlber

{ }

{ ==

——
1o =

{——

e et
—_—
~- —
N —— e

{ ——— e ——— ———p } .:'],2, 3’.“1} 4
{ }{]:2:3:4)5} 5

(and so on)

In this way the sets are given numbers, and we say we have
counted the sets.

There is a convenient way of showing how cach of these sets
is matched with its corresponding counting sct. 'To do this we
take one of the scts and arrange the matches in it end-to-end.
We then lay a strip of paper beside the set of matches as shown
below:
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At the left-hand end of the strip, mark 0 for the number of
matches in the empty sct. At the right-hand end of cach match,
mark the proper numeral on the strip of paper so that the strip
is a counting sct for that sct of matches. Below you can see the
example finished.

S
&)
()]
~
o]

—T
0 1 2 3

Excrcise 5-1

When you teach this concept to pupils, you will want io get
them to make such strips of paper with the counting numbers
marked on them. Can you think of some scts that you can use
instcad of sets of matchics in teaching this material? What pro-
pertics do the clements of the sets have to have in commor. in
order to serve this purpose?

5-2 Using counting sets

What would you do if you wished to make more sets of
matches like those you made above, but had run out of matches?
Onc answer would be to use the counting sets marked on the
strips of paper to help you cut from a stick of wood more picces
ol the same length as the matches. If you had a thin picce of
bamboo or a long twig from a tree, you could cut it into picces
of the sume size as the matches by laying onc of your counting
scts agaiust the bamboo or the twig. If your paper counting
sct was long crough, you could tell how many match-lengths
vou would ger from any stick. For example, there are 5 match-
lengths in the stick shown below.,

SN Srarey o e S R v
T
5

T |

o 1 2 3 4

5-3 Counting sets used to build the number line

By now you have scen that these numbered strips of paper,
these scts which help you to count the number of match-
lengths in things, arc very much like rulers. You are really
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using them to “measure” things when you count the number of
match-lengths. If you have a long cnough strip of paper, with
enough numbers on it, you can usc it to measurc very many
things. In this way you can tell the number of match-lengths
that arc in any of thesc things.

If you had enough paper and enough time you could make
such a strip of paper as long as you wish. I your mind you can
think of a paper counting set which goes on and on without
stopping. The edge of such a paper counting set illustrates the
NUMBER LINE, All the whole numbers are on it in their natural
order,

ExERrcisE 5-3

You cannot draw the wholc number line, since there is no end
to it. But you can draw a picce of it. Make such a picce of the
number line on a straight-edged piecc of cardboard or flat stick,
and usc it to count the number of lengths (of the size you chosc)
in different objects in the classroom.

5-4 Size of the unit piecc on the number line

In the preceding exercise you made a part of the number line,
and used it for counting the number of lengths of a given size
in things. In making it, you did onc thing which is very im-
portant, and if you did not do it, you must work the exercise
again. You should have labelled your line in such a way that
cach point lubelled by a numeral was the same distance from the
next point labelled by @ numeral. When you arranged your
sets of matches you fad to do this, because the matches were all
the same size. And when you made your counting sets on
strips of paper you kad to number your line in this way, be-
cause these strips were paired with the sets of matches. You
must always do this in making a number linc, since only in this
way can you count picces of a given size.

'To build a number line, you can use any size you wish as
your unit picce. But you must always keep the same unit size
for as much of the number line as you build.

ExERrcisE 5-4
Make two different number lines on picces of cardboard or
flat sticks. One should have small unit picces, and the other
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should have larger unit picces. Use the two number lines to
count the number of unit lengths in different objects in the
classroom. Compare the results you get using the two number
lines on cach object,

5-5 Drawing the number line

In the last exercise you saw that you can put many numerals
on a scction of the number line when cach unit picce is small,
You probably wondered how many numerals can go on a
number line, The answer is casy. The linc can be extended
further than any part of it you can draw. Somcone else can
extend your section of line, Thien you can go on adding picces
to the end of hiis line. In fact, picces can be added to cither end
of your section of line, so that the line can be extended in cither
dircction.

When you draw a linc without any numbers on it, you show
that it can be extended in both directions by putting arrows at
both ends of your line. Your linc will look like this:

-t -
"T'o make a number line out of a given straight line, you mark
somc point as the starting point, or 0 peint.

Choose some length as your unit length, and then keep
putting down succeeding numerals as you attach more and
more of these units to cach other end-to-end. You could add
unit picces in either direction from the 0 point, but only the
picces going fo the right from the 0 point are numbered. Thus
you will end up with a line which looks like this:

-l " Il ] Il 3 L ] 4 I 3 L
< T T T T T T T T

0 1 2 3 4 5 6 7 8 9 10 11 12
You can put your 0 point anywhere, and you can make your
unit length any length you wish. But once you have decidedon
them you should draw your number line as shown above.

On the number line there is a point for every whole number,
Between the points for one whole number and the next whole
number, there is one unit of Iength.

EXERCISE 5-5

L. Draw a number linc on a picce of paper, Find these numerals
onit: 7,3,0,12, 1, 10.
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On the number line, what number is four units to the right
of 97 What number is four units to the left of 97 Make up
other cxercises like this that you could use in teaching
addition and subtraction.

On a number line, mark the whole numbers 8 to 14 in red.
How many whole numbers are marked in red?

If a match-stick is taken to represent the unit length on a
number line, how many match-sticks could be placed end-
to-end between the points marked 81 and 111?

A man takes 6 steps cast, 3 steps west and then 4 more steps
cast. How many steps is he away from his starting point?
Show the steps on the number line.

A man takes 3 steps forward, 1 step backward, 5 steps
forward, another 2 steps forward and then 4 steps back-
ward. How many steps must he take to return to his starting
point? Mark the steps on a number line.

Suppose you start at the point 2 on the number line and in
cach successive step move 3 units to the right. What point
do you reach

a. after 2 steps? b. after 7 steps? c. after n steps?



Chapter 6
ORDER PROPERTIES ON THE NUMBER LINE

6-1 “Less than” on the number line

When you put counting scts in natural order, a counting sct
with fewer clements comes before a counting sct with more
clements. For example, compare the counting scts for 3 and 5,
as shown below:

{1,2,3)
{1, 2: 3; 4‘: 5}

"The counting sct for 3 has fewer clements than the counting set
for 5. In this case, you write

3 is less than 3
or, in symbols,
3«5

Now: fet us look at this on the number line.

. } Il : Il 1 Il ] e
. 1 T T

0 1 2 3 4 5 6

The section of the number line representing the counting set for
5 goes all the way from 0 to 5. ‘T'he section of the number line
representing the counting sct for 3 gocs from 0 to 3, and thus
stops before 5. You sce one more important fact here. The
numeral 3 is to the left of the numeral 5 on the number line,
Since the counting sct for 3 is completed before the counting
sct for 5, 3 is to the left of 5.

LExercise 6-1

Make a gencral statement for whole numbers, so that you can
tell from their places on the number line which of two numbers
18 less than the other.

6-2 “Greater than” on the number line

Just a2 you can sce if a whole number is less than another on

the number line, so you can see when a whole number is greater
58
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than another by looking at their places on the number line. You
know that 9 is greater than 4. You write this as follows:

9 is greater than 4

or, in symbols,
9 >4

On the number line 9 is to the right of 4,

If you did the exercise above corrcctly, you learned that a
number m is less than another number # if m is to the Zf of n on
the number line. Likewise, the number p is greater than the
number ¢, if p is to the 7ight of ¢ on the number line. Look at this
number line.

-k 1 i 4 1 ] 1 1 1
« T T v T T

0 1 2 3 4 5 6 7 8 9 10 11 12
You can sce that 12 is to the right of 10. Thus 12 is greater than
10. Also 7 is to the left of 10, and so 7 is less than 10. You can
write these two [acts in this way:

-

12 > 10 12 is greater than 10
7 <10 71isless than 10
ExErcise 6-2
1. Draw a number linc and show by a picture which of the
following statements are truc:

a, 5<9 c. 12 <11 e. 27 <20
b. 0 >1 d. 45 > 54

2, Ifa >5and 3 <, can you find numbers a and ¢ such that:
a, a<g¢
b. a = ¢’
c.a>¢
If your answer is yes, find such numbers.

3. Arrange the numbers g, b, ¢ and d on the number line so that
all of the following relations are satisfied:

a<be<ob<d

4. Arrange the numbers d, f, n, p, and r on the number line
using the following relations:

n<pf<nd<fip<dd<r



60 The 1Whole Numbers

5. a. Arrange the following numbers on the number line
using the following relations:

a>bn<bp<qp>bg<a

b. Usc the number line you have just drawn above to find
the relation between the following pairs of numbers:

pa bip qn

6-3 “Between” on the number line

Suppose you are given three whole numbers a, b, ¢ artanged
in natural order., For example, a might be 7, b might be 10 and ¢
might be 12, Since these numbers are in natural order we know
that a is less than b, and 4 is less than ¢; in symbols,

a<b and b <c¢

"Thus, on the number line a is to the left of b, and b is to the left
of ¢. In other words, b is between a and ¢ on the number line, The
following picture shows this for the numbers 7, 10 and 192:

e I L ] { [l [l 1 | 1 [l l 1 | L
) 1 T T 1 T T L) ] ¥ ] T U f »
0 7 10 12

Whenever three different numbers are shown on the number
line, onc of them must be between the other two. If the numbers
arc a, b and ¢, and if b is between @ and ¢, with a to the left of b,

then we can make the following statements about these numbers

a<b b<c

Of course, we could also say the same thing by stating that b is
greater than a, and ¢ is greater than 4. Either way, b is between
a and c. This shows that the idea of “hetweenness’? for points on
the number line tells us about the order of the numbers repre-
sented by the points.

Exercise 6-3

L. Using the number line, put the three numbers in cach of the
following scts into natural order, and tell whick number is
between the other two:

a. 1,0,3 b. 5,7, 8
c. 6,93 d. 0,1,9
e. 11,16, 14 £ 25,14, 13
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2. How many whole numbers on the number line lic between
the following?

a. 3and 7 b. 30 and 39
¢. a and b wlen a and b are whole numbers such that ¢ < &

BC1-—F



Chapter 7
REPRESENTATION OF NUMBER

7-1 Forming the number concept. Abstraction

Children are not born with the idea of number, It takes them
some years to learn it.
We say that a set of objects like

/
Che

has three members. But at first a child sees only the objects or
notices that they are together on a table, Even afier he has
learned the number names one, two, three, four, ..., he may
not connect the word “three’ with the set shown. Before he
can do this, he must sce many sets of three objects. He must
learn what these sets have in common. He must see them as
sets of three things. To do this he must, as we say, abstract
from the nature of the objects. That is, he 1nust learn not to
pay attention to what the things arc. For example, he must not
pay attention to the fact that

7
/ / is a sct of pencils

and

<7 =) is a set of bananas.
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At first these are the most obvious features he notices about these
sets. He must try to push them out of his mind so that he sees
something alike about the two sets even if their elements are so
different. 'Thesc sets are alike in a way that the two scts

and

arc not alike, even though these two sets have clements of the
same kind.

In learning to sce the likeness between the set of pencils and
the sct of bananas (in spite of their obvious difference) he is
learning to abstract. At an carlier age he has already made a
beginning in this process of abstraction, He has, for cxample,
learned to usc the word “banana” for any onc of a great many
objects which look somewhat alike +:1i not exactly alike. Some
of these objects may be green and some may be yellow, but he
has learned that this does not matter. They arc bananas just
the same.

When making the abstraction nccessary for the number
concept, one must ignore cven more features of the objects than
when naming them. Usually a child has to be about six years
old before he can understand what number words mean in his
own cxperience. Teaching this understanding takes great
paticnee. As we have seen, it can be done by showing children
sets of many sorts, by matching them with cach other, and by
learning the proper number words and numerals,

7-2 The need for symbols

The number four is an ideca which indicates the “fourness”
property of sets. Since the number four is an idea, it cannot be
seen like a stone or a banana. To discuss and use this idca, we
must represent it by a word or a symbol. Thus we can use the
word “four” or the symbol “4”, which we call a nureral. Just
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as there are different words for the number four in different
languages, there arc different systems of numerals which have
been used. The ancient Egyptians would have written 1111
instead of 4. The Romans would have written IV,

While numbers cannot be seen, numerals can. They can be
written on paper or on the blackboard. They secem more like
real things. This is good. However, there is a danger. Numerals
can become just marks on the paper which the student learns to
write without connecting them with sets of objects. A little later
on e may learn to put down 5 when he sees 2 -~ 3 without
having any idea why he can do this or what 2 + 3 means in
his experience. Then arithmetic hecomes a meaningless game
with symbols. To prevent this from happening the teacher
should always try to keep the ideas behind arithmetic clear to
the pupil. He must teach him that the facts of arithmetic do not
depend on the names which we give to numbers, For example

23155
says the same thing as
II - JITis V

The first statement is written in Hindu-Arabic numerals, The
sccond is w-"ten in Roman numerals. They both mean the
same thing,

7-3 Ways of representing numbers (Egyptian, Baby-
lonian)

Among th: carliest symbols used to represent numbers were
model matching sets such as stroke (1) for one, the wings of a
bird (~<) for two, three-lcafed clover () for three, the four
legs of an animal ( S ) for four, and so on. This principle was
adopted by the Egyptians around 3500 B.C., possibly as an
extension of a system of tallying, as follows:

2 3 4., 9

FAE T T 1

Clearly such systems are of little use for larger numbers, We
cannot keep on creating and remembering new symbols and
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names for numbers. Some kind of grouping becomes necessary
with spccial symbols to represent the groups, The carly Egypt-
ians built up their system in groups of ten. 'Iheir single numerals
were the following.

Number Lgyptian Object represented
numeral
by the numeral

Onc l Stroke or stafl
T'en n Heecl bone
One hundred @ Seroll or coiled rope
Onec thousand W) Lotus flower
Ten thousand 4 Pointing finger
Hundred thousand @ Polliwog
One million ¥ Astonished man

In the Egyptian system, the order in which the symbols are
arranged doces not matter. Thus 0Ny, 10N, NN are all numerals
for 21. Other examples of Egyptian numerals are as follows:

7 23 456 1,821

Egyptian numerals e | nnil | CRERIN | YPrRRRE
nnnNn 1| NNl @CRE

An cntirely different system for representing numbers was
invented by the Babylonians about 4,000 years ago. (The
Babylonians lived in what is now the country of Iraq.) Their
system used only two symbols T and €. T was used to repre-
sent 1, and € was used to represent 10. For numbers from 1 to
59 the Babylonian system worked just like the Egyptian system
cxcept that the tens symbol was always written first in any
numeral. Here are some examples of Babylonian numerals:

6 21 34 48
v «r «Fr {6222
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These symbols are rather difficult for us to draw, and you may
wonder why the Babylonians didn’t use something simpler,
The reason is that the Babylonians did their writing on pieces
of soft clay which they later hardened by placing in the sun,
And for this kind of writing it is much casicr to make wedge-
shaped symbols like T and < with the end of a stick than to
write symbols of the sort we use. Indeed, all Babylonian
writing used wedge-shaped symbols, and for this reason it is
called cuneiform, which mcans “wedge-shaped writing”,

For numbers beyond 59 the Babylonian system is rather
complicated. For 60 the Babylonians would write T , using the
symbol for 1 again, but leaving a space after it. 61 would be
written T T, with a space, 70 would he written TC |, and so
forth, up to 119. 120 would be written Y'Y , with a space after
it. The system keeps going in this way until it reaches 360,
which one would expect to be written v ¥ 7 . But instead the
Babylonians wrote T, using the symbol for 1 again. You can
sce how confusing this is, Learning arithmetic for the Baby-
lonians must have been even harder than it is today.,

Exercise 7-3
L. Write Egyptian and Babylonian numerals for cach of the
following:

12, 26, 52, 113, 201, 349

7-¢ The Hindu-Arabic system of numeration

Nowadays we use a system of numerals which is called the
Hindu-Arabic system. This system has ten symbols 0, 1, 2, 3, 4,
3, 6, 7, 8, and 9 which are called digits. We are able to represent
any number, however large, by using these digits together with
an especially clever idea, that of place value. As you know, in the
Hindu-Arabic system we write digits in the ones place, the tens
place, the hundreds place, the thousands place, and so on. The
value of any digit depends both on the digit and on the place it
occupies in the row of digits. Thus, in the numeral 3,234, the
first 3 represents 3 thousands and the second 3 stunds for 3 tens,
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This number would be written in

) :

- the Egyptian systcm as

AN QOBEEANNIIII

S 18 where the symbols could be

SIS 8|s « | arranged in any order. This counld

S| s S |5 181]% X o

TR |K % |S|S]| be described as an additive
s 12 13 |4 method and it is interesting to

compare it with the Hindu-Arabic

way of writing numerals,

You will notice that both systems work with groupings of ten.
We are told that carly man chose this particular grouping
because he used his ten fingers for counting., When counting or
matching scts of more than ten objects, his ten fingers would
soon be used up. He would have to record this in some way or
another. Perhaps he put a stone in his pocket or in a sack, Then
he could continue using his fingers again, Each stone would
then stand for ten. If he got a large number of stones in his
pocket, he could replace cach ten of them by a larger stone,
again using ten as the natural group Lach larger stone would
then stand for ten tens, i.c. for one hundred or 10 % 10, often
written as 10* for short. And so he could continue. Ten of these
larger stones would form a new group of one thousand, i.c.
10 % 10 % 10, written 10® for short. The next group would
consist of ten thousands or 10 ¢ 10 x 10 » 10 = 104, When
we write numerals in this way, the raised numeral (the 4 in 104,
for example) is called an index or power. We speak of 4 as the
power to which 10 must be raised to give 10,000, or as the
index of 10. Note that it is exactly equal to the number of
zcros following the one in the numeral 10,000,

7-5 Grouping

The idea of grouping is tundamental in recording numbers.
We must sce that our pupils understand it thoroughly. They
must realize the necessity for grouping. Our position is similar
to that of a messenger boy of long ago who had to report to his
chicf how many people there were in a village. For cach person
he put a small stone in his sack. He intended to carry the sack
to the chicf and say, “Behold! There are as many pcople as
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stones.” This would have been a good method if there had heen
only a few people in the village. But the village was large and
the sack soon hecame too hcavy to carry. ‘I'he messenger, there-
fore, used stones of two sizes, with the larger size representing
ten of the smaller ones but weighing much less. He made the
sack lighter by taking out ten small stones and putting in one
large stone. He used ten because he had ten fingers on his hands,
He could casily tell whether a set of small stones corresponded
to a large stone by matching them with his fngers, He now
said to his chicf, “Behold! For cach large stone there are as
many pcople as fingers on my hands. For cach small stone
there is one person.” I'he messenger needed no more than nine
small stones. Instead of wen small stones, he could use one large
stone.

In the above story the messenger was not counting, but was
matching. Before people had developed the idea of counting
and had systems of numeration, they were able to keep account
of large numbers of people or cattle by tallying, ‘T'his is a process
of matching equivalent sets. If the messenger had cut notches
in a stick to match the number of people, he could have cut a
deeper notch to represent cach group of ten, Thus he could have
simplified his task. Children need to be given much practice in
this kind of work, putting sticks into bundles of ten, arranging
beans in groups of ten and so on. Scme people carry out the
process by writing nine strokes and a final one which crosses
all the others (L) for cach ten. So metimes people work
in fives in this way, It makes the final counting of a large
number of strokes much casier than it wonld be otherwise.
Matching scts of things with scts of strokes or notches is called
tallying,

7-6 A symbol for zero

When you are comparing the Egyptian system with the
Hindu-Arabic system did you notice that the Egvptian system
had no symbol for zero? Can you explain this? Why, then, does
the Hindu-Arabic system need such a symbol? The reason is
that the symbol for zero is absolutely essential to keep the digits
in their correct position when there are cmpty places. For
example, i there is no group of ten in a particular numeral we
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must have a symbol to show this. 'I'ake the numeral 306, With-
out the symbol 0, the 3 or the 6 could casily be written in the
tens place and the numcral would look like 36. 'This, for
instance, is just what happened in the Babylonian system. For a
long time the Babylonians put up with this, but late in their
history they invented a symbol to show that a place in onc of
their numerals was empty. The symbol they usually used was @.
From them the Hindus developed the symbol 0, to show that a
place in a 'mmeral is empty. This is the same symbol we use
today, and it makes possible our system ol numeration.

7-7 Representing numbers on the abacus

One way of giving your pupils experience in building num-
bers ana then writing them is to usc anabacus. Thisisreally an aid
to counting and is simply a set ¢I'sticks on which rings or beads
arc put to stand for numbers. The sticks are mounted on a stand
so that they can be used more casily, There are several ways of
making an abacus. Here are two for you to try. Make onc of
them to use for the exercises which follow.

Method 1

Usc a picce of wood about 9 inches long, 3 inches wide and
I inch thick. Mark 4 points along the middle of the wood about
2 inches apart. Knock a very long nail right through the wood
at cach of the marked points until it cannot go any further. File
the ends of the nails if they are sharp. Your abacus i+ now made.

Method 2

You will nced 4 reels or spools such as are used for sewing-
thread. Push a stick or pencil or used ball-point pen into cach




70 The Whole Numbcrs

hole. Now you need some way to keep the 4 reels together in
line. You can put them into a box of suitable size, or glue ~hem
to a piece of cardboard, or nail a picce of wood on to their
bases. Your abacus should look like this.

Now you will need some beads, or rings to slip over the rods
to show the numbers. These should look like this <> or this
3 . They can be made from rings of grass stems, or twisted
grass or bamboo slices, or cardboard from a circular swret
packet like this.

Cut this along the dotted lines. Your rods must be long enough
for 10 rings to it on cach rod.

To show numbers from 1 to 9 you put heads on the first rod
from the right-hand side. This is the ones rod and every bead on
the ones rod stands for one.

2
Ones Ones Ones
This shows 3 This shows 6 This shows 9

Your pupils can usc an abacus for scoring games. Sooner or
later they will want to show a score of 10, This is where they
must learn the rule for using an abacus.
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Rule of Procedure

Whenever there are 10 beads on a rod you must take them off
and replace them by 1 bead on the next rod to the left.

Since every bead on the sccond rod from the right represents
ten, it is called the tens rod. Here is 13 shown on the abacus.

O

TENS  ONES

13 is I-ten and 3-ones and so we have 1 bead on the tens rod
and 3 beads on: the oncs rod.

Exercise 7-7A
Write the numbers which are represented by cach of the follow-
ing pictures:

—— —

TENS ONES TENS ONES TENS ONES TENS ONES

Here is the first one written out for you: There are 5 tens and
2 oues: this is 50 -+ 2 which is 32,

Look at the last picture in this exercise. Suppose we add
another bead to the tens rod. This will make 10 beads. Accord-
ing to the rule, we must take them off and replace them by
1 bead on the next rod to the left. "Chis bead will represent 10
tens which is 100. Thus the heads on the third rod are each
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worth 100. We call this the Aundreds rod. Every bead on the

e BECOMES
10N
THIS | |THIS THIS %P?lg

hundreds rod is worth 10 times as much as a bead on the tens
rod. Lvery bead on the tens rod is worth 10 times as much as a
bead on the ones rod. In general, cvery bead on any rod is
worth 10 times as much as a head on the rod next to the right.

3 é
HUN- TENS  ONES
DREDS

"This abacus thows 3 hundveds, 4 tens and 2 ones. This is 300 -+
40 + 2, which is 342,
Now look at the following pictuve:

5 8

HUN- ¢ ONES
DREDS NS
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Here there is a bead on the fourth rod from the right, What is
it worth? It is worth 10 beads on the rod to the right of it, whici
means that it is worth 10 hundreds. But you know that 10
hundreds are 1,000. Hence the fourth rod on the abacus is the
thousands rod. Every bead on this rod is worth 1,000. Thus the
above abacus shows 1 thousand, 2 hundreds, 5 tens and 5 ones
which is the same as 1,000 - 200 -+ 50 -- 5, or 1,255.

Exercise 7-7B

1.

Show cach of the following numbers on your abacus and
make drawings of them,

a. 8,324 b. 7,562 c. 6,666 d. 3,427

Write cach of the numbers represented on the following
abaci in (a) Hindu-Arabic numerals and (b) Egyptian
numerals.

(i) (if) (iii)

If you liad an abacus with cight rods, what would a bead on
a, the 5th rod from the right represent? b, the 6th rod?
c. the 7th rod? d. the 8th rod?
Draw a large abacus with 8 rods and label cach rod.,

Draw a picture of an abacus which shows one million.

Draw an abacus with 8 rods and draw some beads on each
rod. Write the number which your picture represents.
Represent 4 more numbers in this way, saying cach time
what the number is.

Draw a picture of an abacus representing the following
number: 2 ten millions, 5 millions, 3 hundred thousands,
6 ten thousands, 1 thousand, 8 hundreds, 8 tens and 5 ones.
This is the number: 25,361,885.
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7. Write the numbers which are represented on these abaci,
first the symbols, then in words.

(a) (b)

(c) (d)

: ;

7-8 The empty rod on the abacus

Some kind of abacus has been known for a very long time. It
has been used in some form by most peoples from ancient
Egyptian times to the present-day. The abacus is first used to
make a record of a count. Its other use, in calculation, will be
studied later in this book.

Suppose that you have counted all the people in a town and
have made a record of your count on an abacus. Suppose that
the abacus looks like this:

3 | &

We now ask, “How shall we record in writing the number
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represented above?” What symbols shall we use? In particular,
how do we record the empty rod?

Different cultures have solved this problem in different ways.
For example, an ancient Lgyptian would record this number by
writing

@nnntin

He did not need a symbol for the empty rod. An Egyptian
symbol tells us which power of ten it represents, but it does not
tell us how many there are. To show 30, that is 3 tens, an
Egyptian had to write NNN. This is like writing ten ten ten. In
writing the above n uneral he could show that the hundreds
rod was empty just by leaving out the symbol @ for one
hundred.

"The Hindu-Arabic syster does not work this way. It is much
more cflicient. I'or one thing, it does not need to invent new
symbols to represent larger and larger numbers. It uses thie same
symbols to represent the number of rings on any rod, and tells
which rod they fill by the position or place of the symbol in the
numeral, This is why the Hindu-Arabic system is called a place
value system. This also explains why a special symbol is needed
to represent an empty rod.

In the Hindu-Arabic system we tell how big a numeral is by
its place value; that is, by the position of the digits used to write
it. For example, since the tens place is the second place from the
right we show 3 tens by putting the digit 3 in the second place
in the numeral. But if we just wrote 3, and nothing more, it
would be impossible to tell that we were talking about 3 fens.
"Thus we use a zero to show that thic ones place is empty, and
we represent 3 tens by writing 30, In the same way the num-
ber represented on the abacus in the last picture is written
2,034. The 0 shows that the hundreds rod is empty. Without
this symbol we would have to do what the carly Babylon-
ians did, and write 234. And then ceveryone would read this
incorrectly.

Finally, you should notice that this usc of the symbol 0 fits in
with what we said about sets. The sct of rings on the empty rod
is the empty set. The aumber of elements in the empty set is
zero, and is written 0,
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ExERrcise 7-8
1. Draw abaci to show these numbers:
a. 3,052 b. 2,308 c. 31,450
d. 700,103 e. 6,500 f. 5,000
g. 7,602,019 h. 9,999
2, Add onc to the number in (%), and draw the result.

3. Write the numbers represented on the abaci problem 2 in
a. Egyptian numerals b, Hindu-Arabic numerals

7-9 The Roman system of numeration. Comparison
with Hindu-Arabic systenu

Before the Hindu-Arabic system of numeration came into
usc in Europe, Roman numerals were used. The Roman
system apparently came into use in about 300 B.c. and even
today we still use¢ Roman numerals on clocks and in many other
ways. [t took several centuries for people to give up the Roman
system for the other, Why did the Roman system persist for so
long? Why do we now prefer the Hinduw-Arabic system? Let us
take a look at the Roman system.

1 5 10 50 100 500 1,000

Roman muneraly I \Y X I. C D M

With the symbol I, we could write any number simply by
writing I’s in succession. For example, we could denote 7 by
IIIIIII. By introducing the symhol V, to denote 5, we cau
replace TIHI in this string by V, to give us VII, This is the
symbol for 7 in Roman numerals, Using VII instcad of ITITITI
results in the saving of heth space and cflort.

The number 13 could be represented by VVIIL If we use
the symbol X for 10, we can replace VV by X, This gives X111
which is the Roman numeral for 13.

The Romans made their system even simpler by agreecing
that if a symbol for a smaller number is written to the left of a
symbol for a larger number, the smaller number is to be sub-
tracted from the farger number. Thus IV denotes 4, and IX
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denotes 9. These arc shorter than IIIT and VIIII which we
would have had to write otherwise., In writing Roman numerals
we never put more than onc symbol for a smaller number
before a symbol for a larger number, Thus 9 is written IX
whercas 8 is written VIIT and not IIX. Similarly XC is the
symbol for 90, while CX is the symbol for 110. This system is
simple and easy to learn, which is one reason why it was used so
long.

‘The main reason why people stopped using Roman numerals
is that calculations with Roman numerals arc much more
cumbersome than with Hindu-Arabic numerals. For example,
to add two numbers written in Roman numerals we first collect
all of the symbols in the two numerals, Then we simplify by
combining groups of symbols. Finally, we write the symbols in
correct order. For example

MCL +- CGCXI = MCCCLXI
XXVIT - LXIV == LXXXV(IV)II = LXXXXI
Multiplication and division are even more complicated in
Roman numerals. In fact, they arc so complicated that it would
be a waste of time to describe all of the rules here. Thus we too

shall do what was done in the past, and devote all of our
attention from now on to the Hindu-Arabic system.

ExErcise 7-9

Work out the following problems using Roman numerals.
1. CCLXYV -- DCCLVIII

2, MDCLX -+ MCCXLIV

3. LXXVII — XLIII

4, CCLXIV — CLXIX

nci—ag



Chapter 8

NUMBER BASES IN THE HINDU-ARABIC
SYSTEM

8-1 Numeration in base five

We saw carlier that because man possesscs ten fingers, ten
became his natural counting group. For this reason, he chose to
work in units, tens (10), hundreds (tens of tens =10 X 10=:102),
thousands (tens of tens of tens = 10 % 10 x 10 = 10%) and so
on. Some people in the past chose five, the number of fingers
on onc hand, as their counting group. They counted as follows:
one, two, three, four, I-five, I-five and 1, I-five and 2, 1-five
and 3, I-five and 4, 2-fives, 2-fives and 1, and so on, as in the
following table:

Counting numbers in Numerals for counting
groups of five numbers in base five
one 1
two 2
thrce 3
four 4
1-five 10
I-five and ! 11
I-five and 2 : 12
I-five and 3 13
I-five and 4 14
2-fives 20
2-fives and 1 21
2-fives and 2 22
2-fives and 3 23
2-fives and + 24
3-fives 30
4-fives and 3 43
I-twenty-five (52) 100 (I x524+0x540x1)
I-twenty-five and one 101 (1 x52+0x5+1x1)

Ncrice that in base five, 213 means 2-twenty-fives and 1-five
and 3-oncs, which is 58 in the Hindu-Arabic system. In base-

five counting we read the symbol 10 as “one-zero” and not as
78
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10. Similarly we read 12 as “one-two” and not as 12. Notice
that we nced only five digits 0, 1, 2, 3 and 4 when counting in
groups of five. When we are counting in groups of five as in thie
above table, we say we arc using the five-spstem of enumeration or
that we are working in base five. We refer to the numerals as
base-five numerals,

Exercise 8-1
1. Copy the chart below for counting numbers from 1 to 100.
Then complete the chart with numerals in base five:

1121314]10{11]12]13|14(20
21
41
124
232
31

2. Use your chart to answer the following question. What are
the largest numbers in base ten which are represented as
onc-digit, two-digit and three-digit numbers in your chart?

3. In the United States of America and in some other countrices
such as Liberia, the smallest unit of money is 1 cent, 5
cents make 1 nickel and 5 nickels inake 1 quarter,

a. Express the following amounts in quarters, nickels and

cents:
(i) 6 cents (ili) 26 cents (v} 33 cents
(if) 10 cents (iv) 46 cents

b. How many cents arc there in:
(i) 2 quarters, 1 nickel and 2 cents?
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ii) 3 quarters, 4 nickels and 3 cents?
(iii) 4 nickels and 4 cents?

(iv) 2 quarters, 2 nickels and 2 cents?
(v) 4 quarters and 2 nickels?

Notice that in question 3, we are working with the basc-five
system of enumcration,

8-2 A base-five abacus

Just as we used the abacus to represent numbers expressed in
base ten, we can also use an abacus to picture numbers ex-
pressed in base five. The first rod from the right will again
register ones. But this time whenever Jive beads accumulate
on the ones rod, we remove them and place 1 bead on the next
rod to the left. Thus the rod to the left of the ones rod s called
the fives rod and cach bead on the fives rods represents 5
ones,

ONE TWENTY- FIVES ONES
HUNDRED  FIVES

TWENTY.

FIVES

When 5 beads accumulate on the fives rod, we remove them
and place 1 head on the next rod to the left. Thus cach bead on
the third rod represents 5 fives. We call the third rod the
twenty-fives rod, or more briefly, the 52 rod. Each time 5 beads
accumulate on a rod, we replace them by 1 bead on the next
red to the left. Thus, the fourth rod is called the once hundred
and twenty-fives red or, briefly, the 53-rod. Each bead on it is
cquivalent to 5 beads on the twenty-fives rod,
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The number represented by the beads on the abacus below
can be written in basc five very casily:

> I

ONE TWENTY-  FIVES ONES
HUNDRED  FIVES

TWENTY-

FIVES

We note that there are

on

1 onc hundred and twenty-fives or 1 x 53

0 twenty-fives or0 x 52
3 fives or3 x5
2 oncs or2 x1

the abacus. Thus the number is written as 1,032,,,.

We write “five” a little below the numeral to show that we are
referring to a numeral in the base-five system.

Exercise 8-2
1. What numbers are represented by the beads on cacl. of the

(a)

following basc-five abaci. Express them first in base five
and then in hase te.

(b) (c)

LS

20

Draw pictures of base-five abaci to represent the following
numbers,

a. 324y, b. 2,000, c. twenty-five

d. thirty-five e, thirty-nine
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8-3 Numeration base seven

There is an important discovery to be made in the above
work which perhaps you have already made for yourself, We
know now low to represent numbers with base-five and base-
ten numerals. Has it occurred to you that numerals may be
written in other bases, base two, base three, base four, . . .,
basc twelve, ..., base twenty, . ..» In other words, there is
nothing special about the decimal system, 11 you have realized
this, you have done very well indeed., You have made a
generalization of the kind which mathematicians frequently
have to make and which is fundamental to the growth of
mathematics. As your studics progress, you will realize that
generalization is at the heart of mathematical thinking,

Check that you have made the generalization by working the
following examples which use base-seven wumerals.

Exzrerse 8-3

1. Complete the following chart for base-seven numerals from
I to 100. How many symbols do base-seven numerals re-
quire?

112 10

100

l

2, Describe how to use a basc-seven abacus to represent
numbers.

8-t Grouping in twelves

Now that you can work in hasc seven, base five and basc ten,
you will find it casy to work in any base. Thebasc-twelve system
is worth special mention because we often group in twelves in
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cveryday life. We often work with dozens for instance. We may
buy a dozen eggs and this is grouping in twelves. Your school
may buy pencils and exercise books by the gross where 2
grose consists of twelve dozen, or twelve twelves, or 122,
Twelve inches make one foot and twelve months make one
vear. There are twelve hours marked on the face of the clock
and, in many countries, there are 12 pennics to a shilling. We
shall thercfore take a moment to sce liow we can use twelve as
a number base.

In basc-ten numeration, we nced ten symbols; in base five,
five symbols; in base seven, seven symbols. How many will we
need to write numbers in base twelve? We will need twelve
symbols, which is two more than in the base-ten system. The
extra ones needed are for ten and cleven, which we may denote
by ¢ and ¢ respectively. Counting then procceds:
1,2,3,4,5,6,7,8,9,4,¢,10,11,12, .. ., 19, ¢, le, 20,21, ...
Here 10,4, represents 1-twelve and 0-ones, 11, represents
I-twelve and 1-one, and so on.

ExERcISE 8-4
Complete the following table for base-twelve numerals,

11213(4(5|6[7|8|9]t]e|10
11

[ 100
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8-5 Base-two numerals

Basc-two numerals are specially interesting because they
use only two symbols, 0 anc. 1. Counting in the base-two system
proceeds:

1, 10, 11, 100, 101, 110, 111, 1000, . . .

The places represent units, twos, fours (22), eights (2%) and
so on. We call such numerals binary numerals. In the base-two,
binary system, the number 100 is written 1100100,,. This
requires writing many digits, which is an apparent disadvan-
tage of the binary system. The binary system doces Liave a very
important use, however, in clectronic calculating machines.
These machines calculate at lightning speed. They take only
seconds to work problems which would take a man wecks and
months to do. Binary arithmetic is used becausc it needs only
two symbols, 0 and 1. These can correspond to current switched
on and current switched off, or to a long and short buzz.
Binary numerals can also be recorded on tape by means of a
punched lole for the symbol 1 und no hole for the symbol 0.

Exercise 8-5
Copy and complete the chart below for base-two numerals
from 1 to 50.

1001

11001

101010

1.000,000
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In this chapter we have learned how to represent numbers i
various hases. We shall return to this subject later when we
study addition and multiplication. We shall then see how to
use these numerals in calculations.



Chapter 9

ADDITION

9-1 An Example

Supposc we want to teach a child that 3 + 2 = 5. What do
we do? We start by showing him a sct containing 3 clements,
and another sct containing 2 clements, and then we put the
sets together to get one large sct containing 5 clements. At this
point we say, “Look! ‘T'hree and two more make five.” After
doing this many times, and also letting the child try it for
himsclf, we begin saying, “three plus two cquals five”. We then
show him that this is written

342=5
Iinally, we say that we are adding the numbers 3 and 2, and that
the answer is 5. We tell him that this is a fact about numbers
which he must learn. Te make sure that he learns it we keep
asking him, ““Vhat is threc plus two?” We cxpect him to
answer, “Iive.”

This example illustrates the two main points about addition
of whole numbers:

First

Addition is related to forming the union of sets. In fact, when
we mentioned taking a set containing 3 clements, and another
sct containing 2 clements, and putting them together to get
onc large ser, we werce forming the union of the two sets. For
instance, if our scts were

{A, A, AY and {@, @}

the five-clement set obtained by putting these sets togcther
would be

{AA A @, 0}

Remember that we can show this by writing the sct equation

{A: é, A} v {@J @%6= {é) A: A, @: @}
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Second

The sets used in this example were digjoint. That is, they had no
elements in common, To sce why we must use disjoint sects to
illustrate that 3 -+ 2 = 5, suppose we had used the sets

{a, byc} and {e, d}

The first of these sets contains 3 elements, and the second con-
tains 2 clements, However, when we form their union we get

{a, b, ¢, d}

because the clement ¢ belongs to be Ui sets. And this set contains
only four clements, not five,

9.2 Addition and the union of sets

In the last scction we saw how to show that 3 4+ 2 =5 by
formirg the vnion of two disjoint sets. In this section we shall
usc this idea to describe how any two whole numbers are
added.

Suppese A and B are (finite) sets. Also suppose that A and B
are digjoint. For example, A and B might be thc following
ses:

A= {3, &, ), (A}

B={®,0, @)}
Hc A contains 4 clements. Hence it represents the number
“four”. B contains 3 clements. It represents the number “three”,
Now form the union of A and B. We get

AvB={1, A0 B @ O, D}
This set also represents a whole number. Since it contains 7
clements, it represents the number “seven”. We express this
fact by writing 4 + 3 = 7. We say that 7 is the sun of 4 and
3, and we speak of ADDING 4 and 3 to get 7,
In short, we have

@68 83vo e o =048 9%49 0,0, 6
We write:
4 + 3
We say:
“four plus threc cquals seven”

2 7

HI
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We can also show the same facts by drawing the following
picture:

N\

7 % @
@

4 + 3 = 7

This time we have enclosed sets A and B with one large curve
to show that we are thinking about their union. The statement
4 4 3 = 7 beneath the picture tells us the number of clements
in cach of the sets in the picture.

There was nothing special about this example. Any two
(finitc) sets A and B would have worked just as well, provided
they had no clements in common. Of course, we would not have
obtained the same addition equation at the end if our sets had
numbers of elements diflerent from 4 and 3. The following
pictures provide additional examples.

N

2 @
%, D

R p—

[ R
B B D @
%

7% D @

L j
5+4=9

Children find such pictures very helpful when learning addition.
By now we have looked at cnough examples to describe how
the sum of any two whole numbers is defined, It gocs as follows:
Letaand b be whole numbers. Choose a set A which contains
a clements. Choose a sct B which contains & elements. Make
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sure that A and B are digjoint. Form A U B. We then say that
the number of elements in A U Bis a -+ .

Thus, if @ = 3 and & = 2, set A must contain 3 clements,
and sct B 2 clements. Then A U B contains 5 clements and we

say that 3 4 2 =5,
The number a - b is called the suM of @ and 4. It is obtained

by ADDING @ and .

Exercise 9-2

1. Find the numerals to put into the boxes to make cach of the
following cquatio.is true.
a. 5+3=0 b. 3 -5 =[]
c. 2-+8=[] d.5-+5=

2. Draw a picture to illustrate cach of the equations in Question
1.

3. When we studied the union of sets we saw that A UB is

the same set as B U A. What docs this fact tell you about the
sums a -- & and b - ¢ when a and 4 are whole numbers?

4. Supposc that a, b and ¢ are whole numbers such that
a-+b=¢
a. What can you say about b if ¢ = ¢?
b. What can you say about 4 ifa < ¢?

5. Supposc that a, b and ¢ arc whole numbers. What can you
say aboutae, bandcifa - b =canda - ¢ = b?

9-3 Addition using counting sets

We have scen that the sum of two whole numbers is defined
by forming the union of disjoint sets. Thus when we make the
statement 3 +- 2 = 5 we are saying somcthing about a// unions
of a sct of 3 clements and a set of 2 clements when these sets
are disjoint, Since this statement refers (o the number of cle-
ments in these scts we should be uble to illustrate it by using
counting scts. We can. as follows.

Consider the scts

{A, A, A} and (@, @)

The first contains 3 clements, the second contains 2 clements,
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and their union contains 5 elements. The picture beiow shows

all of these facts
yu{ y={ @}
T

u 23}{12} {1, 2, 3,

In this picture we have matched the clements in our sets with
the clements in counting sets. In other words, we have counted
the clements in cach of the sets, Now look at the last nuinber in
each counting set. These numbers are 3, 2 and 5 . They tell
us again that 3 4 2 = 5. Pictures like thase also hclp children
to Icarn addition. One more is shown below.

{ E] l I‘Ul@ .}=‘T 2, ¥, % é?,é?}
5

| 5O

b—
-
C‘—‘
o

:'s .ﬁ

y &/
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Excrcise 9-3

L. Draw pictures using counting sets to illustrate each of the
following statements,

2.3 +4 =7

b. 4
c. 24+8=10 d.

10

I

+2
+5

oo

I

9-4 Many names for one number

Notice that the sums in problems (¢) and «) above are the
same.

2+8=10 and 5 +5=10

In problem (¢) we can say that the sum of the number of
clements in the two sets is (2--8). But, as we kncw, 2-+-8=10.

Thus we have two ways of naming thc same numbcr as 10
and as 2 + 8. Morcover, problem (d) shows that 5 -+ 5 gives
us anotlur name for 10, Thus 2 +- 8, 10, and 5 -+ 5 are all
symbols or numerals which represent thc samc number. So do
8 +7,7 43,9 - 1, and so on. When we write ““ =" between
two numerals we mean that these two numerals are names for
the same number,
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Exercise 9-4
Write four different symbols which name each of the following
numbers: 6, 13, 22, 8,

9-5 Mathematical sentences and the use of the box

In grammar, a sentence or a statement is a group of words
which conveys a completed thought, In mathematics we also
express our thoughts by sentences. An example of a number
sentence or number statement is “3 4- 5 = 8”, This expresses
the fact that “3 4 5” and “8” arc different names for the
same numbcr.

The sentence “Pawpaws arc green™ expresses a true fact
and we say that it is a true sentence. On the cther hand, the
sentence “Elephants are green™ is clearly false. Number sen-
tences may also be true or false. For example, 3 4 5 = 8" isa
true sentence, whercas “3 -- 5 == 77 is a false sentence.

Consider the scntence “It is green”. Here it is impossible to
say whether this sentence is true or false until we know to what
the word “it” refers. I it refers to “pawpaws”, the sentence
is true, If “it” refers to “clephants”, the sentence is false. We
shall call such a sentence an open sentence or open statement. An
open sentence contains a pronoun such as “it”°, “he”, “they”,
ctc., and we cannot tell whether the sentence is true or false
until we know to what the pronoun refers.

In the same way, we can talk about open number sentences.
You have already scen such open number sentences when you
did Exercisc 9-2. You solved the problem “5 - 3 = []” by
writing “8” in the box. You then had the true sentence,
“5 -+ 3 = 8", Had you written “6” in the box, the sentence
“5 4 3 = 6" would have been false. Thus the box plays the
role of a pronoun in an open number sentence.

"The box notation is a very suggestive way of writing an open
number sentence, and children readily understand its use. The
teacher can help the child find the numeral which must be put
into the box to make the sentence true by using sets of stones or
sticks.

After the pupil learns how to use the box, he can also use
different symbols to represent the pronoun in the open number

sentence. For example, he could write “5 2 = O” or
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“5 +2 = A" and then fill the circle or triangle with the
number which makes the sentence true. Eventually, it will
become more convenient to use a letter of the alphabet in-
stead of a box, or circle, or triangle, We thenwrite“4 - 3 = N”
or “5 - 2 == K”, and ask the student to find the number which
should replace N or K to make these sentences true. Since this
book is designed to help the teacher prepare for teaching young
pupils these basic concepts, we shall use the box notation more
than any other. As we continue you will sce its advantages s a
teaching device.

We have scen that an open number sentence becomes irue
or falsc when a symbol for a number, that is, a numecral, is
written in the box. Thus when we state a problem involving an
open number sentence such as 2 + [[] = 7 we should say,
“Find the number whose nameral should be written in the
box to make the open sentence 2 - [[] = 7 true.” But to
state the problem this way takes rather long and we shall
usually shorten the statement to, “Find the number which
makcesthesentence2 - [7] == 7tiue”. Indoing thiswearc follow-
ing thecommon practice of using the word “number” in placc of
“numeral”. This will never cause any difficulty provided you
remember the difference between these words, and realize that
when we say “number” we often really mean “numeral”.

Exercise 9-5
1. Give several examples of open sentences containing the
pronoun “it”, In cach case give two examples of words that
make the sentence true, and two examples of words that
make the sentence falsc,
2, a. Give an example of a true number sentence using the
symbol 27,
b. Give an example of a [alse number sentence using the
symbol -2,
c. Find two numbers which make the sentence [] < 5
truc.
d. Iind two numbers which make the sentence ] > 5
truc.

9-6 Missing numbers in addition equations
The box may be used in different positions in a number
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sentence. We can write “4 4 [] = 7. The box is to be filled
by a number which makes this sentence true. The number
whicli belongs in the box is the number of elements in a sct
which must be combined with a set of 4 clements to give a sct
of 7 clements. "This kind of addition problem is very useful for
pupils. It helps them understand how one number can be made
up by adding many different pairs of numbers. 1t therefore helps
them to realize that one number can have many different
names. It also prepares them for subtraction.

Here, for example, are some open number sentences involving
the number fou::

D SR ‘l’; D -3 2= "1‘, L__] - l = ‘1‘, 3 = D =4

When the missing numbers in these sentences are filled in we
obtain the following true sentences:

O+ 4=1[2]+2=4 B]41=4 3 +[[]=4

Exercise 9-6.:\

Iind the numbers to put into the boxes to make cach of the
following sentences true:

- = 10

3
0
=5 6. []

01
i

<
i
(@]}

1
3
5 )

7

A

At this point you may be wondering how vour pupils will
be able to find the missing numbers in problems such as these.
The answer is that they should work them out with sets. For
instance, you may ask them to find the missing nuinber for the
open sentence [[] +i- 7 = 9. To solve this problem they can use
a single-Lar abacus with nine beads, or any sct of nine objects.
If they use an abacus they should start with all of the beads on
one side of the abacus, and move seven of the beads to the other
side. The number of beads which were not moved will be the
number which makes the sentence true. The number, of course,
is 2,

000000000 ————
~00———CO0CO00-

BCI—H
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Similarly, if the sentence is

6+0]=9
their solution will look like this:

-O00000C0————
-OOO0—————000000-

Hence, in this problem the box is holding a place for the number
3.

Here is another example. What number should be put in the
box to make the following sentence true?

[]-+9=9

You know that the answer is 0. However, your pupils may have
trouble with this, It will help them to solve the problem on an
abacus, like this:

20000060006, s
— 0000000 -
This time therc are no beads on the extreme left of the abacus.

Thus the box must be filled with the number 0 to make the
scntence true,

We thercfore write [0]+9 =9

Using the abacus in this way it is casy to show that cach of the
following is a wruc sentence:

049=9 5+4=9
Il +8 =9 6 +3=9
2-27=9 74+2=9
34+6=9 8+1=9
4 +5=9 94+0=9

Thus all of the sums 0 -9, 1 +8, 2 + 7, ctc., are different

namecs for the number g.

Exercrer 9-6B

L. Plan a lesson for small children in which you would usc an
abacus or other means to find all sums of pairs of numbers
that give 5.

Do the same for 7 and 8.
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2. I am thinking of a number. This number plus 5 is 11. What

is the number?

3. a. Each of twelve children in a class is assigned a different
number from 1 to 12, If the children form pairs so that
the sum of the numbers assigned to cach pair is 13, which
children are left without partners?

b. Answer the same question when the sum is 14, and when
the sum is 16.
c. Answer the same question when the sum is 20, 23 and 24.
4, Imaginc that you arc given two dice. Each dice has six
sides and each side shows one of the numbers 1, 2, 3, 4, 5 or
6. Throw both dicc on a table at the same time. Make a list
r "all possible pairs of numbers that could turn up, and list
their sums. Whicli sum do you think is most likely to turn up.
Why?

5. Leta, b and ¢ be whole numbers and suppose thata -+ § = c.
How many such cquations arc there when

a.c=25 b.¢c =10
c. ¢ = 1,000 d.oc=0
6. Let a and 4 be whole numbers such that
a-ta=>b

What can you say about 4?

9-7 The nroperty of zero in addition

If there is a sct of 5 boys and 0 girls we can represent the
union of these scts by the picture

FAARAAY U () = {AAAAA D

The addition cquation corresponding to this picture is
5+0=5
Similarly, if we form the union of any sct with the empty set
we get the original sct back again, Thus we have the following
true sentences, or cquations:

0+40= 0+0=0
1 40= 0+1=1
2+0=2 04+2=2
340=3 0+3=3
4 4+0=4 0+4=4¢
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These equations show that when zero is added 1o a number the
number is left unchanged. This special property of zero is described
by saying that zcro is the ipENTITY for addition. The word
“identity” is used because every number remains the same when
zero is added to it. We can express this property of zcro by
writing the open sentences

O0+O0=0 and [J-+0 =[]

Th~sc sentences are true no matter what number is put in the
L. You can choose any number you please so long as the
sa. « aumber is used in both boxes of cach equation.

ExErcise 9-7

1. Use pictures of sets to show that 0 4- 0 = 0 is a true state-
ment.

2. Find the numbers which make each of the following state-
ments truc.

a,. 8 4[] =28 b. 479 4[] = 479
c. []1<1 d. [] - 1357 = 1357
e. 235 =[] + 235 f. 35 =35 -]
3. Suppose that I is a whole number such that
0 +1=[]

is a true stateizent no matter what namber is put in the box.
Show that T = 0. [Hint: Put 0 in the boxes in this state-
ment and then use the property of zero. )

9.8 Addition table

When your pupils thoroughly understand how to find the
sum of two numbers by forming the urion of disjoint sets, they
can build an addition table.

First make 2 square with 121 small squares in it, That means
that there will be 11 rows with 11 squares in cach row. In the
top left hand square put the -- sign to show that you are
adding. Follow this by the symbols 0, I, 2,...,9, oncin cach
square along the top row. Similarly, write the symbols 0, 1,
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2,...,9,in the squares down the left-hand side. You now have
a square like this:

+ 112{314|5}617i{81l9
0 1

1 |
2 !
; |
4 |
5
6-ff----4-----110
7

8

9

Begin with the first empty square on the sccond row. Put into
this square the number which is the sum of the numbers you
have alrcady shown in the outside spaces at the left end of the
row and the top of the column. This sum is 0 -+ 0, so we put €
into the first empty space. The space next to this on the right
is for the sum of O -+ 1. Thus 1 is put into this space. The next
square along the second row has 0 and 2 at the ends of its row
and column and so 2 is put hee,

Where do we show the sum 6 4 4 = 10? We find the row
which begins with 6 and the column which begins with 4. We
then find the square where this row and column interscct and
write 10 in this square.

ExERcisE 9-8
1. Preparc a table similar to the one described and fill in all
the sums for pairs of numbers from 0 - 0 to 9 - 9.

2. Usc the table to find six pairs of numbers whose sum is 8,
and write thc .ddition equations which show thesc facts.



Chapter 10
PROPERTIES OF ADDITION

1¢-1 Commutative property of the union of sets

Whenyou form the union of two sets you know that it does not
matter which set you take first. The union of a set of 3 bananas
and a sct of 2 oranges is the same as the union of the set of 2
oranges and the set of 3 bunanas, The order does not make any
difference to the result. The following picture illustrates this.

AUB

2 O 2
PR
B A BUA

We see that the sets A U B and B U A have the same elements,
They are cqual sets. Thercfore A UB and B U A are names
for the same sct, and we write

AUB=BUA

The fact that AUB =B UA is called the COMMUTATIVE
PROPERTY of the union of sets.

Exercise 10-1

1. a. Wri‘e the addition equations suggested by the sets in the
picture above.
b. Does this picture show that 3 4+ 2 =2 4. 3? Explain.

2. Draw a picture like the one ahove to show that

1 4+2=2+41.
98
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10-2 Commutative property of addition

In the last chapter we defined addition for whole numbers by
counting elements in the union of disjoint sets, For this reason
the commutative property is also a property of addition of
whole numbers. For instance, when we write the addition
equations for the union of the set of 3 bananas and the set of 2
orauges shown above we have

342=5
24+3=35
Therefore 34+2=243

Our experience with the union of sets tells us that a similar
statement is truc for the sum of any two whole numbers. This
special property of addition is known as the COMMUTATIVE
PROPERTY of addition. The following pictures illustratc the
commutative property for the numbe pairs 1, 3 and 2, 4.

@ O D D
B @
' 1 + 3 = 3 0+ 1

@@\ 2 @
maoe) |looEm

2 + 4 4 + 2

Pictures like these help children understand why addition is
commutative,

The children you teach will have had lots of experience in
forming the union of two disjoint sets. This should help them to
discover the commutative property of addition for themselves.
‘Thus when they have found the number which is represented
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by 3 - 4, they should realize that this number is also repre-
sented by 4 + 3. You can help them understand this by en-
couraging them to find such “twin facts” as

3+2=5 and 243 =5
6 --4=10 and 4 -6 =10

Exercise 10-2

L. Write addition cquations suggested by cach of the following
pairs of pictures.

(coo)(me B ),
(@ %T[DDDTJ
b.

[éé%é%ﬂ | &

(EE8) (Vavava]

2. What statements about whole numbers do the following
pictures suggest?

a,

Z

O
o5

@
O

-k
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@ﬁ
O O+-p
D
@
@)
3. Draw pictures using scts to illustratc the following state-
ments,

B3

O O

4. Find numbers to put into the boxes which make each of the
following sentences true.

a. []+3=5 3+[]=5
b 11 4[] =20 [] +11 =20

¢ []+6=7-6
d. []+5 =514
e. 34+[] =103
£, [ 420 =20

5. What number can be put into the boxes to make the fol-
lowing sentences truc?
a. [ +3 =3+ ]
b. 70 =[1-+7

10-3 The general notion of a variable

Qucstion 5 at the end of the last section was very different
from Question 4. Do you sec why? For how many numbers is it
true that [} -3 =3 - 9? Only for the single number two.
For how many numbers is it true that

0 +3=5-+0?

Here the answer is “all numbers”, Indeed, we have
0+3=340
1 +-3=3 21
2+-3=3+2

and so on. Of course, whatever number is put in the left-hand
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box must also be put in the right-hand box, Otherwisc we would
not get a true sentence.,
We speak of a sentence such as

O+3=3+01

as an IDENTITY. In general, an identity is an cquation which is
true for all things under consideration—here for all whole
numbers.

Actually we can go further than this since all of the following
are also true identitics:

0+0=0+[]
O+1=14+[]
O +2=2+[]
0+3=3+0

and so on and on. We can put all of these identities together
into a single one, as follows:

O+A=A+0

In writing this it is important to understand that the two boxes
must be filled with the same number, and that the two triangles
must be filled with the same number. However, the number in
the boxes need not be the same as the number in the triangles.

For example, 34-3=93+43
is true. So are 74-5=5 4
and 94-8=819
In general, O+A=A+[]

is true for a/l numbers. This identity expresses what we call the
commutative property of addition. This property says that the order
in which two whole numbers are added does not matter.

It is customary in mathematics to use letters instead of boxes
and triangles to express identities. When we do this the com-
mutative property of addition of whole numbers reads as
follows:

a+b=)+a

for all whole numbers @ and 5.
A letter which is used to stand for any one of a set of numbers
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is called a varIABLE. Thus in the identity above, @ and b are
variables. We usc variables te help us write down and remember
propertics such as the commutative property of addition.

Exercise 10-3
1. Fill the boxes in 6 different ways so that
O+A=A-+0
sécomes a truc sentence,

2. What number or numbers can be put in the boxes to make
the following sentence truc?

O+0 =18
Is this statement an identity for -} whole numbers? Explain,
3. Is O0+0 =[]

an ideatity for all whole numbers? Explain,
4. What docs the commutative property of addition tell us if

a.a=3 b=1? b.a=5 =2
c.a=0 b=4 d.a =27 b =353
5. Suppose that a and 4 are whole numbers such that
a:=4 <2

What is @ when
a. b =067 b. b =9? c. b =07

10-4 Assacciative property of the urion of sets

In Chapter 2 we talked about forming the union of three
sets A, B, C, We saw that this could be done in two ways. One
way is to form A U B first, and then take the union of this set
with C. This gives the set

(AuByucC

The second way is to form B U C first, and then take the union
of this sct with A, This way we get the sct

Au(Bu(C)

Note that we put brackets (or parentheses) around the pair of
sets whose union is being taken first,
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For example, let A, B and C be the scts shown below.

@ o 7
2] Z
B C

To form (A U B) U C we procced as follows:

A %)
EWU@@
A B

_| Aoyl ztg@ 7

= | o4l
A @ A 9%
AUB C (AUBYUC

Now suppose we form A U (B U C). We get

A 29 [
B

A C

A o | A A QO B

A BUC AU(BUC)

Each time we get the same sct in the end.
This example illustrates another important property of the
union of sets. It shows that for any three sets A, B, C the sets
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(AUB)UC and A U (BUC) contain the same clements.
"Therefore they are equal, and we can write.

(AUByUC =AU (BUC)

This cquation says that it does not matter how we group scts
when we form their union. We call this property the Assoc1a-
TIVE PROPERTY of the union of sets,

10-5 Associative property of addition

By now you have probably guessed that the associative
property is also a property of addition. It is, For example, when
we write the addition equations which go with the pictures in
the Iast section we have

(2--3) =35+t =9
208 ) =227 =9
Thus (2+3) =~ =2 (3 -4

In general, for any three whole numbers a, 4, ¢ we have
(@ +b) -c=a-(b-+0)

We call this special property the ASSOCIATIVE PROVER TY of
addition. It tells us that in finding the sum of three whole
numbers it docs not matter how we group the numbers in pairs
to add them.

The associative property is uscful because it sometimes allows
us to make an addition problem casier. For example, suppose
we were asked to find the sum

19 -6 -+ 4

One way to do this would be to add 19 and 6 first, and then add
4 to the result. However, the associative property tells us that if
we wish we can first add 6 =- 4, and then add the result to 19,
This is casicr. Thus we write

19 = (6 - 4) =19 410 =29
Remember that the brackets Iere tell us which pair of numbers
we arce adding first,

Together, the associative property and commutative pro-
perty allow us to make many addition problems casier. For
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instance, suppose we were asked to find the sum of 4, 7 and 6.
We could write this as

4 + (7 +6)

But by the commutative property we can replace 7 - 6 by
6 4 7 to get

446 +7)
We now finish the problen: like this:
4+ (6 +7) =(4-+6) +7 (associative property)
=10 47
=17

In this casc we changed both the order and the grouping to
take advantage of the fact that 6 4 4 = 10.

Exercise 10-5

1. What docs the associative property »f addition tell us if
aa=1 b=2 ¢=1?
bia=4 b =83 ¢c=0
Cca=5 b=5 ¢=2
doa=3 b=7 ¢=6?

2. Find the number to put in place of a to make each of the
following sentences true.

a. (a+3) +4 =5+ (3 +4)
b, 2+a) +1=2+4(4+1)
€. 6+(3+4a)=(6+3)+2

d. (¢ +2) 44 =4 +4
e (3+4+a) +2=10+42

3. Find the number (or numbers) to put in place of a to make
cach of the following scntences true,
a. (a+7)+3=10
b. (24+a) +9=2+4 (a 49)
c (a+1)+ (a+2) =74 (a +2)
doa+(6+4)=10+a
e (a+3)+(2+44a) =9

4. Which of the statcments in Question 3 are identities?
Explain your answer.
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5. Put brackets (parentheses) in the following sums to show
how you would group them to make the addition casicr.
Then find the answers.
a, 9 L7 43 b. 6
¢ 8 +9 421 d. 9
e. 21 -36 + 18

+14 45
+ 15 +5

10-6 Addition on the number line

We have scen how to represent numbers on the number line.
First we draw a line with arrows on each end to indicate that
the line can be extended in both directions.

N

A

Then we mark some point “0” and choose some length as a
unit Iength. Next we mark off points to the right which are

- d 1 ! i
« T T T 1

0 1 2 3 4 5 6 7

cqually cpaced so that the distance between successive points is
the unit length. These points are labelled 1,2,3,4,..., in
order. We now have the number line,

The part of the number line from one number to the next is
called a segment. The segment from 0 to | is of unit length. A
scgment of unit length will be called a unit segment. The scg-
ment from 0 to 3 is made up of three unit segments and has a
length of 3 units. What is the lengtly of the scgment from 5 to 8?
A look at the number line shows that this segment also contains

0 1 2 3 4 5 6 7 8 o

three unit segments and has a length of 3 units. Thus the seg-
ment from 0 to 3 and the segment from 5 to 8 have the same
length.
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ExErcise 10-6A
1. a. Compare the lengths of the segment from 0 to 5 and the
segment from 4 to 9.
b. Compare the lengths of the scgment from 2 to 5 and the
secgment from 9 to 12,

2, a. What scgment starting at 0 has the same length as the

scgment {from 6 to 9?

b. What scgment starting from 0 has the same length as the
scgment from 4 to 87

¢. Docs the scgment in part (a) or in part (4) have the
greater length?

d. State how you can decide which of two segments is the
larger or whether they are of equal length.

The segment from 0 to 5 is made up of two segments, one
from 0 to 3, and the other from 3 to 5. Thus the segment con-
sisting of five unit picces can be broken down into two picccs,
onc of 3 units, and one of 2 units. You can sec what we are
leading up to in this way—and if you guide children correctly
they will sce it too. We are leading up to addition, shown on the
number line. The sum 3 + 2 looks like this when shown on the
number line:

[ ]

3-2=5

Any addition problem can be shown in this way, as you can

plainly sce.
In general we may picture (2 -~ 4) on the number line as

follows:

a b
0 2 at+b

Remember that when you add on the number line you move
to the right.
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Exercise 10-6B

ll

Show the following additions on the number line:

a. 2 +4 b. 33
c. 4+ 2 d. 5+ 1
e. 6 -0 £12 +7
g. 19 40 h. 6 -+ 11
i 11 -6 jo 0+6

While Bandcle sat at his desk looking at the number line in
his arithmetic book, a cricket jumped on the book, landing
at 0. First it jumped to 7, and then it jumped on to 11.
'This very smart cricket was really doing an addition prob-
lem, What was the problem?

‘Lell how you can use examples of the kind in the exercise
above to help children understand the number line. Make
up games and storics to explain cach of the addition prob-
lems given above,

If x is a whole number between 3 and 6 and » is a whole
number between 2 and 7, illustrate on the number line the
sct of all possible points corresponding to x — v,

Starting from the point 0 on the number linc a boy lays
match-sticks in the following order: 1 stick, then 2 sticks,
then 3 sticks and so on. How many sticks would he Liave used
after layiag the fifth sct of sticks?

A child jumping along a straight track marked in feet made
jumps of 3 feet, 4 fect, 3 fect, 4 feet, and so on. If he started
at the point 0 with a jump of 3 feet, after what jump would
he land on the point marked 31 feet?

10-7 Commutative and associative properties of addi-

tion
You can sce from the number line that such sums as 3 -- 2

and 2 - 3 give the same number.

A
L/
Y

‘I

Rer--1
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In illustrating the operation of addition it does not matter
which of the moves on the number line is taken first. If we first
take 3 unit steps followed by 2 unit steps, we come to 5. If we
had first taken 2 unit steps followed by 3 unit steps, we would
have again come to 5,

Exercise 10-7

L. What is the name of the property of addition just described,
and what is the most general way to state it? If you do not
remember, refer to the section on propeitics of addition.

2. Prepare word problems which will help children to under-
sto .d this preperty by using the number line.

3. Namc another preperty of addition. Give cxamples on the
number line to help children understand the property.

4, Till in the missing blanks in the sentence below.

0 :l\zl_é//;l 5 6 7\\8,_/4‘9 10
a, The above diagram on the number line shows that

b. The diagram illustrates the —~ property and also the
— property of addition.

y

10-8 Generalized properties of addition

The following cxercises will show you that you can add
numbers in any order and in any grouping that you like, This
mcans that if you have to find the sum of several numbers you
can begin with pairs whose sum is casy to find, and that you
can re-arrange the numbers to bring the pairs together.,

ExErcisE 10-8
1. Name the property of addition which makes each sum .own
below cqual to the following one:
(4 4+3) +2 =4 +(3-2) =14 (2 +3)
== (24 3) 44 =24 (3 - 4)
2. Inadding three numbers the associative property of addition
makes it possible tc group the numbers any way you please,
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If you add four numbers, can you group them in any way
you please? Ixplain. Is this also true for more numbers?

How many different combinations of five or fewer different
numbers from 1 to 10 add up to 15? (Note that 10 and 5 is
the same combination as 5 and 10 and should only be
counted once, Also 3 -+ 3 -- 9 uses the number 3 twice and
this is not allowed.)

The game of ““31” is played by two players. The first player
announces a number from 1 to 5. The players then take
turns, cach adding a number from 1 to 5 to the previous
result and announcing the new result. The player who
announces 31 is the winner. Explain how the player wlho
gocs first can be surc of winning,
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SUBTRACTION

11-1  Finding the missing addend

Consider the following problem:

There are 5 children in a room. 3 go away., How many are
left in the room?

The answer, as you know, is 2, Why? Well, one way to show
this is to draw pictures like these:

AAA
A A

\ 5 children in al!”
AR A
A A A

2 children still here

3 children go away

We can also solve this problem by writing an equation, We
start with 5 children. Three go away. To find out how many
are left we must find the number to put in the box to make the
following senience true:

5=3 ]

Since 5 == 3 + 2, the number 2 must be put in the box.

In a sentence such as 3 - 2 = 5 the numbers 3 and 2 are
called addends. The number 5 is called the sum of thesc addends,
In the above problem we knew the sum and one of the addends,
To solve the problem we had to find the missing addend.

Herc is another problem of the same kind.,
112
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There are 9 children in class. Each must have a book. There
are 6 bc)s in the room, How many more do you need?
"This time the addition equation is

6+ =9

To solve the problem we must find the number which when
added to 6 gives 9. This number is thc missing addend. It is
3 because 6 + 3 = 9. The following pictures show this:

-
<]
-]
3 books 3 more books give
in class 9 books in all
Exercise 11-]
Find the missing addend:
L74+[=11 2.]14+9=15
3. +6=18 4.9 +[] =14
5.6 -~ =6 6. 21 =[] =11
7.19 =5 4+ [ 8. 7] =15
9. ]+ 12 =30 10, 29 =[] +-17

Write an addition equation for cach of the following problems.
Then find the missing addend.

11, There are 10 birds in a tree. 2 fly away, How many are still
in the tree?

12, I have 7 bananas. I cat 2. How many are lefi?

13. There are 12 children in all. 5 are girls. How many are boys?
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4. I need 25 chairs, and have 12, How many more must be
found?

15. T have 4 shillings and need 17, How many more must I o2

11-2 Subtraction

When we find the missing addend in an addition cquation
we say that we are doing susTrACTION. We call the missing
addend the PIFFERENGE between the sum and the addend
which is known. Thus, to solve the addition cquation

3+[]=5

we must subtract 3 from 5. We show this by using a minus
sign ““—"" and writing

[1=5-—3

The number which makes this a true sentence is the same
number which makes 3 +- [] = 5 a truc scntence. Since this
number is 2 we write

2=5-3

We cali 2 the difference between 5 and 3.
It is important to notice that the sentences

34+2=5 and 2=5-—3
say cxactly the same thing, In other words:
When you know the answer to this — 3 4[] = 5
you also know the answer to this— [] =5 — 3
We call the cquation [1=5-3
the subtraction equation corresponding to the addition equation
340 =5
Similarly, the addition equation
0+6=9
can be written as the subtraction equation

[J]=9-6
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To solve the first equation we must find the missing addend,
To solve the sccond equation we must subtract 6 from 9. These
are just different ways of saying the same thing. In each case 3
must be put in the box to give a true sentence:

3]+ 6 =9
Bl=9—6

Exercise 11-2

1.

Write the subtraction cquation corresponding to each of the
following addition cquations:

a.5+[]=17 b.9=[]+5
c. 26 =217 4-[] d. ] +11 =20
e 12 =[] 412 £.19=8+]

Write an addition cquation corresponding to each of the
following subtraction equations:

a,. 8 -6=[] b.[]=4-4

c 9-2=[] d[]=8-7

e. []=15-9 f. 31 — 14 =[]

Write addition and subtraction cquations for cach of the
following problems, and then solve the problems.

a. 8 children arc running. 3 fall down. How many are still
running?

b. 15 people arc coming. 6 are alrcady here, How many
more are to come?

c. 12 birds arc in a tree. 7 fly away. How many are still in
the tree?

d. 27 children are in class. 9 go outside. How many are still
in class?

e. 32 pencils are needed. 15 are here. How many more are
needed?

11-3 Subtraction facts from addition facts

Consider the sentence 4 + 2 = 6. What subtraction facts

docs it tell us? Suppose we cover up the 4. We then have the



116 The Whole Numvers

addition cquation [7] + 2 = 6. Thc corresponding subtraction
is [] =6 — 2. We can also cover up the 2 and get the addition
equation 4 + [7] = 6. Here the correspanding subtraction
cquation is [] = 6 — 4. Thus

44+2=0
gives two subtraction cquations:
(0=6—-2 and []=6—4

Notice that each of these equations corresponds to onc of the
addends in the original sentence + =- 2 = 6.

Exercise 11-3

What subtraction cquations can vou get from each of the
following?

L7+46 =13 2,5 4+9=14
3. 6 =6 -0 4. 12 =9 -3
5.7 4+7 =14 6. 15 -0 =15

11-4 Subtraction as separating a set into subsets

We have scen that addition is based on the idea of forming
the union of two disjoint scts. For instance, the senten:..
8 + 2 =5 tells us that the union of a set of 3 elements and a
sct of 2 elements always contains 5 elements whenever the ori-
ginal scts are digjoint. The following picture shews this:

|

@ @ 2 @
o| ®
@ 7 @ @
3+2=35

We can also illustrate subtraction by using sets. We do this
by scparating a set into disjoint subsets, For cxample, suppose
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we wish to show that 2 = 5 — 3, First we draw a set containing
5 elements:

Then we divide this set into two subsets, one of which contains
3 elements, The number of clements in the other subset is

5 — 3.
( )
%, %)
3 element @ 2 element
subset subset
%, @
{ )

The picture shows that 5 — 3 = 2.

The following picture gives another way of showing this.
Here we start with a 5-clement set and remove a 3-clement
subsct. The number of elements left is 5 — 3.

) 2
29 o)—
@ 7

5-3=2

Pictures like this are very helpful when teaching children sub-

traction. They show how subtraction problems can be solved

by removing clements from a sct. They also show why addition

and subtraction are closcly related since they show that
addition corresponds to forming the union of disjoint sets,
while subtraction corresponds to separating a set into disjoint
subsets,
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ExERcIsE ]1-4
1. What subtraction facts do the following pictures illustrate?

@00 |

2. Ilustrate each of the following problems with a picture, and

then solve the problem.

a. There are 12 people in a room. 6 are scated and the rest
are standing. How many are standing?

b. Kwame found 8 cggs, but 2 were broken. How many were
not broken?

c. Esi puts 7 cups on a table. 1 cup is large and the rest are
small. How many small cups are there?

3. If A and B arc scts we let A — B be the set consisting of the
clements in A which are not in B.
a. 'ind A —Bwhen A ={q,,¢,d, e, f, g}
B == {b, d’f}
Interpret this in terms of the number of clements in cach
sct. (Notice that B is a subsct of A.)
b. Find A —~ Bwhen A ={q,b,¢, d, ¢}
Interpret this in terms of the number of clements in each
sct. Can you explain what happened here?
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11-5 Subtraction problems which cannot be solved with
whole numbers

When we talked about addition we saw that we can always
find the sum of two whole numbers. This is not true of sub-
traction. I'or instance, if somconc tells you to separate a sct of
8 stones into a subsct of 9 stones and another unknown subset,
you cannot do it. ‘The reason of coursc is that 9 is greater than
8. Thus the sct of 8 stones will be completely used up before 9
stones have been removed. The addition and subtraction
cquations for this problem are:

8 =941 and 8 -9 =[]

However, there is no whole number which makes these equa-
tions truc. In otherwords, we cannot subtract 9 from 8 and get a
whole numibcr answer.

In this exarnple there was nothing special about 8 and 9.
Indced, the same thing happens for any two whole numbers a
and b whenever a is greater than b. In general, if a is greater
than &, then & — a =[] does not have a whole number
answer,

Exercise 11-5
Find the whole number which makes cach of the following
equations true whenever it is possible to do so.

1.7 4] =7 29 -2 =[]
3.1=1-38 4. (1 +2=3
5. 5=10]--8 6. []=6—6

11-6 Subtraction as the inverse of addition

Suppose you have 3 books, and put 2 more with them. Now
remove 2 of the books. How many remain? 3; just the number
you started with, We can state this as follows:

B+2 —2=3

Similarly, supposc you start with 3 coins, and remove 2 of
them. Now put 2 coins back. How many coins do you have?
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Once again you have 3. This time we can show what happened
by writing
(3 —-2)+-2=3
The same thing happens with other pairs of numbers, Thus

(10 - 4) —4 =10 [(19 +13) — 13 =19
(10 —4) -4 =10 1(19 —13) +13 =19

These pairs of equations show that subtraction undocs the
work that addition has done, and that addition undocs the
work that subtraction has done. We express this in mathema-
tical language by saying that addition and subtraction are
INVERSE operations. Subtraction is the inverse of addition,
and addition is the inverse of subtraction. These two statements
can be summarized as follows:

(@ =b) —b=a
(@ —=0b) +-b=a

(Naturally we have to be surc that a -- 4 is a whole number in
the sccond equation.)

Exercise 11-6
1. What do the above statements become for the following
pairs of numbers?
a.a=12 b =4 b. =5 b=0
c.a=0 b=0
2, Let A and B be sets.
a. Whenis (A —B) UB = A?
b. When is (A UB) — B = A?
(See Question 3, Excrcise 11-4 for the definition of
A —B)

11-7 Subtraction on the number line

‘The number line can also be used to illustrate subtraction.
We have seen that to find 3 + 2 on the number line, we start
at 0 and first move 3 units to the right. Then we move 2 units
to the right. This puts us at 5, Thus 3 +- 2 = 5.

It is not always nccessary to ‘nove to the right on the number
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line. Suppose a cricket jumps from 0 to 7 on the number line,
and then jumps back 2 units. He will land on 5. You can sce
his moves on the number line below:

e N

0 1 2 3 4 5 6 7 8 9 10

What operatioi do you think the cricket is performing when he

Jumps to the left on the number line? From the picture you see

that the cricket is subtracting when he jumps to the left. He
has solved the subtraction problem 7 — 2.

You can also think of subtraction on the number line as
finding a missing jump to the right. For instance, if the cricket
vent from 0 to 3 on his first jump, and wanted to land on 8 the
next time, how far would he have to jump to the right? The
following picture shows that the answer is 5.

3 5
e N, T
0 1 2 3 4 5 6 7 8 9 -1 11
This time the cricket has solved the problem
540 =8
This explanation shows how you can use the device of a
cricket jumping cn the number line in teaching subtraction to

children. It is often possible to make up similar stories and
games to make learning arithmetic more enjoyable.

[
e

Exgrcise 11-7
L. Find the answer to cach of the following problems by draw-
ing pictures of the number line:

a 4 -2 =[] b 8+ [] = 12
c. 6 -] = d. 7 -4 =[]

e 2—-0=[] £ 17 -8 =[]
g 11 =[] =19 h. 10 4[] = 10

2. Suppose that a is a whole number between 8 and 12, and &
is a whole number between 1 and 7. Show on the number
line the set of all possible points corresponding to a — .
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3. If you begin with 12 and repcatedly subtract 2, after how
many steps will the process end? Draw a picture of the
number linc to show this.

4. Starting from the point marked 35 on the number line,
cvery third point to the left is marked with a cross. What is
the last point marked with a cross? How many points arc
marked with a cross?

5. We have scen that addition is commutative. Do you think
that subtraction is also commutative? (Hint: Find 5 — 3.
Now try to find 3 — 5.)

6. Find the points 4 — (3 — 1) and (¢ — 3) — 1 on the num-
ber line. What dnes this show about the associative property
for subtraction?

11.8 Order, and addition and subtraction

Lect us locate 1 and 5 on the number line.

—} LN ; /—\k ;

0 1 2 3 4 5 6 7 8 9
Now add 2 to cach of them, Each point has been replaced by
the point 2 units to the right. Thus since 1 is to the left of 5,
1 + 2 is to the left of 5 + 2. In terms of incqualitics we can
write

1 <5
1+2<54+2 or 3 <7

From the true scntence 1 < 5 we get the new true sentence
3 < 7 by adding the number 2 to both sidecs.

In general, let @ and b be whole numbers with a < b, Add
the whole number ¢ to @ and to 4. This givesa +cand b ¢,
But @ -+ ¢ is ¢ units to the right of @ on the number line, while
b - ¢is ¢ units to the right of 4. We have moved cqual distances
to the right of @ and 4. This docs not change the order. Thus:
Ifa < bistrue, thena + ¢ < b 4 ¢ is also true.

For example, from 4 <6
we conclude that 8 <10

We did this by adding 4 to both sides of the first incquality.
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Again let @ and 4 be whole numbers with @ < 4. Let us
subtract the whole number ¢ from ¢ and from &, This means that
we move ¢ units to the left on the number line.

. C [5
v } .‘/\l xf\l ;

0 a-c a b-c b

Again the order does not change. Thus
a—c¢c<b-—c

whenever @ < 5. Of course, if ¢ is too large, a — ¢ will not be a
whole number., Can you say what the largest possible value of ¢
can be?

Exkrcise 11-8

L. We know that 0 < 2. Use this incquality and the numbers
1, 2,3, 4,5 to write five new incqualitics,

2. Starting with the inequality 4 < 9 get a new incquality
with 0 on the left side by subtracting a number from both
sides. Show what you have done by using arrows on the
number line,

3. a. Show that ifa and b are whole numbers with ¢ < b, then
0<b—a
b. Also show that if 0 < b — q, then a < b.
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MULTIPLICATION

12-1 Repeated addition

We have scen that addition is based on counting the num-
ber of elements in a union of disjoint sets. We shall now use this
idea to solve problems in which addition is repeated several
times,

Suppose a man carns 5 shillings a day and works for -+ days.
We can find how much he carns by taking 4 sets of 5 shillings
cach and putting them together. We get

- r 2 r -\ r ~

O O
O O
O
O O

O] L OJ 9]

4 sets of 5 elements each

OO00O0O0

O000OO0
O

\..

Each of the circles in this picture represents a shilling. Each of
the sets contains 5 circles, and shov's how much the man carns
in onc day. To find how much the man carns altogether we
count the number of clements in all four sets. We find that the
answer is 20,

We can also solve this problem by writing an addition
equation. The equation is

5454545 =[]

Adding these 4 fives we find that the number 20 should be put
in the box to give a true sentence. This again shows that the
man carns 20 shillings.
We can describe the answer to this problem in several dif-
ferent ways:
124
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The union of 4 disjoint sets of 5 clements has 20 elements
5+5+5+5=20
5 added 4 times equals 20
4 fives are 20

All of these statements say the same thing.
We can also show this on the number line:
5

5 5 5
0 5 10 15

L  p o

20

Here cach jump moves 5 units to the right. The jump shows
what the man earns in one day. From this picture we scc that
at the end of the first day the man has earned 5 shillings, at the
end of the sccond day 10 shillings, at the end of the third day
15 shillings, and at the end of the fourth day 20 shillings. This is
the total amount carned.

All problems in repeated addition can be solved like this. As
another example, suppose we are asked to find 8 + 8 + 8. We
can show this sum by drawing 3 disjoint sets cach containing 8
elements:

0000000 O0]

(0000000 0]

(O000000 0]

By counting the elements in the union of these sets we sce that
8 48 + 8 =24,

We can also solve this problem on the number line:

8 4{/,,31‘\\\\‘
é ;5 10 15 (

TO [ SRV IO S T K
LN DR S R AN I Y Sum R Dt

8
20 25 30

BCI—X
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After 3 jilmps to the right of 8 units ecach we arc at 24 on the
number line, Thus 8 4- 8§ + 8 = 24,
This time we describe the result as follows:

"The union of 3 disjoint sets of 8 clements cach has 24 clements
8+8 48 =24
8 added 3 times cquals 24
3 eights are 24

When you teach repeated addition to children you should draw
pictures like those we have drawn here. By using scts of stones
or hottle caps children can work out the answers for them-
selves. Afterwards you should write the four sentences we have
written in our examples and explain what they mean to your
class.

Exercise 12-1
1. Draw pictures using sets and the number line to illustrate

cach of the following sums. Then write the four sentences
which describe the answer to each.

2.3 43 +34+3+343 =[]
b7 +7 47 =[]

¢ 9+949+9 49 =[]

d. 4 =[]

2. Make up word problems which you could use in class to St
cach of the problems in the above exercise.

3. Supposc a man carns 4 shillings a day, and works for 5 days.
How much does he carn in all? Ilustrate his carnings by
drawing a picturc of scts, with cach set of 4 shillings arranged
in a row like this: . Compare this picture with the
picturc on page 124. What do you conclude?

4. Use pictures of scts to show that 3 cights is the same as
8 threes. Now show tlie same thing on the number line.

12-2 Multiplication

You can sec what this is leading to. Morcover, if you do this
carcflully in the classroom your children will sce where you are
leading them. After they have done many problems in repcated
addition they will want to write such problems in an casier way.
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When they do you should tcll them that repeated addition is so
commen that it is given a special name. That name is
MULTIPLICATION,

For instance, if we want to say that 5 +5 4-5 4 5 = 20,
we write the short and easy sentence:

4 x5 =20

The “ % here is read “times”. Thus this sentence is read “4
times 5 cquals 207, It tells us that if we form the union of 4
disjoint sets of 5 clements cach and count the resulting set, we
will find that the sct contains 20 elements. Thus we now have
five statements, all of which say the same thing:

The union of 4 disjoint scts of 5 clements cach has 20

clements
545+45+45=20
5 added 4 times equals 20
4 fivesarc 20
4 x5 =20
When we write the sentence 4 x 5 = 20 we say that 20 is the
rropucTt of tand 5,

ExErcise 12-2
Solve cach of the following problems. Illustrate your answers
by drawing pictures of scts.

. 9x 3 =[] 2.2 x 5=[]
3.5 x 2= 4.1 x 7 =[]
5.7x 1=[] 6. 2 x 10 =[]
7.3 x10 =[] 8.4 x10 =[]

12-3 Multiplication as mixing sets

Here is another way to look at multiplication.

Suppose you have two boxes with cards in cach box. In the
first box there are two cards marked 1 and 2. In the second box
there are three cards marked a, b and ¢. How many different
combinations of cards can you get if you pick one card from
cach box?
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We solve this problem as follows: Pick a card from the fisst
box. Suppose it is card 1. Then when we pick from the second
box we get one of the cards a, b or ¢. This gives three possible
combinations:

(L,a) (1,8) (1,0

On the other hand, if we start with card 2 from the first box we
get three more possible combinations:

(2,0) (2,8) (2,0

Altogether there are 6 combinations. They can be listed in a
chart as follows:

a b c

1 (La) (1,5) (1,4
2| (2,0 (28) (2,9

The number of lines in this picture is the number of possible
combinations.

Every combination is connected by a line. Since there are 6
lines there are 6 combinations in all.

What we are doing in a problem like this is mixing one set
with another set. We get a new set whose members are pairs
made up of one clement from each of the original sets, In the
above problem the two sets are sets of cards. The clements of
the new set are all the possible combinations of cards, one from
each box. We saw that once the first card was chosen there were



Multiplication 129

three choices for the second card. Thus there are 2 sets of 3
possible choices. The addition equation for this is

3+3=0
We can also write this as the multiplication equation
2 x3 =[]

This cquation tells us that the number of pairs in the new set
is found by multiplying the number of clements in the first set
and the number of elements in the second set. Thus by mixing
sets we get another way of looking at multiplication. Some-
times it is casicr to thnk of multiplication in terms cf unions
ol'scts. At other times it is easier to think of it in terms of mixing
sets. The two ways give the same result, and so you should
learn both. Furthermore you can use both in teaching children.

ExErcise 12-3

1. Three people are having dinner in a restaurant. They can
order fish, beef or curry. Find all possible combinations of a
person and a meal. How nany combinations arc there?
Make a chart which shows all of them.

2. Every road from Aras to Cona passes through Buka. There
are 5 roads from Aras to Buka and 7 roads from Buka to
Cona. How many roads are there from Aras to Cona?

3. Illustrate cach of the following multiplication equations by
using the idea of mixing two scts:

a. 2 x4 =[] b.5 x7 =[]
c. 1 x8 =[] d. 5 x3 =[]

12-4 Products of the type ¢ x 0 and 0 x «

Consider the multiplication equation 5 x 0 = []. To solve
this problem we remember that this equation says the same
thing as the addition equation

04+0+0+0+0=[]

But 0 is the number of clements in the empty set. Thus this
cquation tells us to form the union of five empty scts and then
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count the clements in that union. How many will there be?
Zero, because the union of 5 empty sets is still cmpty,
Thus 5 x 0 = 0.

In the same way we see thnrt

0 x0=0
l xC=0
2x0=0
3 x0=0
4x0=0

and so on. In general we have the identity
0 x0=0

where any whole number can be put in the box. We can also
express this result as

ax0=0

where ¢ is any whole number.
In much the same way we can show that

0 xa=0

for any whole number a. Take 0 x 4 for cxample. To find
0 X 4 we think of multiplication as repeated addition. The
product 0 x 4 tells us to add 4 to itself a certain number of
times, How many times? Zero times. In other words, we ;o not
add any fours at all. The answer then must be zero.

We can also sce this by thinking about sets. Do you remember
how this is done? Think of 2 x 4 and 1 x 4. In the case of
2 X 4 we form the union of 2 disjoint sets with 4 clements in
cach. In the case of 1 % 4 we form the union of 1 set of 4
clements. Finally, to find 0 % 4 using scts we form the union of
0 scts of 4 clements. How many clements do we have? Zero.
Thus we again scc that 0 x 4 = 0.

In the same way we sce that

0x0=0
0x1=0
0x2=0
0x3=0

and so on, In general we have the identity

O0x[=0
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where any whole number can be put in the box, This can also
be expressed as

0 xa=0
where a is any whole number,

Excresi 12-4
1. Make up examples that you could use to show children that

aX0=0 and 0 xa =20

for any whole number a.

12-5 The multiplication table

You are now ready to work out the multiplication table for
yourscll. At first take only the numbers from 0 to 9. Later you
will learn how to work with numbers that are greater than 9,
But this nceds special methods which are better learned by
themselves. Although you already know the multiplication
table you may not have thought much about it before. But now
that you know how to work it out you should do it for yourself,
In the excrcise below we have written out a multiplication
table. You should find cach product and put it in the proper
place in the table. Remember that there are several ways of
finding the product of two numbers: repeated union of disjoint
sets, repeated addition of numbers, mixing sets and the number
linc. Any wuy you do it is correct, so long as you satisfy your-
sclf that the answers you learned as a child are right. In this
way you will be getting ready to teach children what multipli-
cation readly means. Thus your classes will never have to sing the
multiplication tables without knowing what the words mean.

In doing this work set up a table like the one below. One
example—to find 6 4—is already done. The 6 in the column
at the left is multiplicd by the 4 in the top row, The answer, 24,
lias been put in its place in the table.

Exercise 12-5
Complete the following table using the methods given in this
chapter,
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12-6 The property of 1

Look at the multiplication table you completed above. Do
you sec what happens when one of the numbers in the product
is I? Notice, for instance, that

1 x3 =3 1 x4
3 x1=3 4 x1

Do you think that this will always happen? Why? Using the
idcas in this chapter you should be able to show that

4 l x7 =7
4 7 x1 =7

it

l Xa=a and b x1 =4

for any whole numbers a and 4.

Exercise 12-6

L. Usc pictures to show that cach of the following products is
correct:
a. 1l x9=9 b. 9 x1
€. 3 x1=3 d 1 x7

2, Showthatl xa =aandé X 1 = b for any whole numbers,
a and b. [Hint: Remember that multiplication is repeated
addition.]

9
7

o



Chapter 13
PROPERTIES OF MULTIPLICATION

13-1 Multiplication by 0 and by 1

In the last chapter we discovered two special properties of
multiplication. The first was that for any whole number 4,

ax0=0 and 0 xa =0

We can describe this property in words by saying that the
product of two whole numbers is zero whenever one of the
numbers is zcro.

Do you think that the converse of this statement is true? That
is, do you think that the only time the product of two whole
numbers is zero is when one of the numbers is zero? Actually
it is casy to sce that this is true. You have been asked to show
that it is in Question | below.

When these statements about 0 arc combined they give the
following important property of multiplication:

The product of two whole numbers is zero whenever one of the numbers
.. zero. Moreover, this is the only time a product of whole numbers is zero.

Here is another way of saying the same thing.

Let a and b be whole numbers. Then a x b = 0 if and only if
a=20,0rb =0, or both.

This property will be very important when we study division
in the next chapter.

The sccond property of multiplication that we discovered in
the last chapter said that when we multiply a whole number by
I the number remains unchanged. We cxpress this fact by
writing

l Xa=a and a x1 =a

Each of these statements is truc for any whole number a. This
special property of the number 1 is often described by saying

that 1 is the IDENITY for multiplication,
133
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ExERcIsE 13-1

1. Usc the description of multiplication as a union of disjoint
scts cach containing the same number of clements to show
that a X b is different from zero whencver a and b are whole
numbers different from zero. (This shows that the only time
a product of two whole numbers is zcro is when one of the
numbers is zcro.)

2. Consider the equation
2x(d-3 =0

This equation says that the number in brackets is to be
multiplied by 2. What number makes this equation a true
sentence?

3. Solve the equation

5x(12—[]) =0

4. In this scction we said that the number 1 is the identity for
multiplication. Earlicr we said that zcro is the identity for
addition, Explain why the same word is used both times.

13-2 7" .e commutative property of multiplication

Wk n you coustructed the multiplication table in the last
chap .r you found, for instance, that 2 x 5 =5 x 2, that
3 X7 =7 %3, and so on, In fact if ¢ and b arc any pair of
whole numbers whose product appears in your table you will
find that

axXb=">bxa

Actually this property holds for all pairs of whole numbers
a and b. Tt tlls us that when we multiply two whole numbers
the order of multiplication docs not matter. We get the same
answer cither way. We call this property the cOMMUTATIVE
PROPERTY of multiplication of whole numbers. We also refer
to it by saying that multiplication of whole numbers is com-
mutative. We shall now show why this must be true.

If we consider multiplication as repeated addition, we think
of 2 X 3 as the number of elements in the union of 2 disjoint
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sets, each of which has 3 elements. We can picture this as

EXxxi

(2 @ )

On the other hand, we think of 3 x 2 as the number of cle-
ments in the union of 3 disjoint scts, cach of which has 2
clements. This is pictured as

Q@ @

)

Z

|

@ @

Y

In the first casc the union can be drawn as follows:

2 0 2
2 O @

In the sccond casc, the union can be drawn in this way:

@ @
@ @
D @

Do you sce an casy way to show that these two unions have
the same number of clements? Simply turnthe second one on its
side. It then looks exactly like the first one. In this way you can
scc immediately that there is a one-to-one matching of thiz
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clements in these two sets. Each clement of the sccond set

corresponds to the clement of the first into which it rotates
when we turn the second sct on its side. And turning a set on its
side docs not change the number of clements it contains.

The same idea can be used to illustrate the commutative
property for any pair of whole numbers. It gives a clear picture
of why thc commutative property must hold. It is also very casy
to show this to your pupils. For instance, to show that
2 x3 =3 x2 you merely draw the following picture to
represent 2 x 3:

@ @ @
(@ @ @

‘Then turn the picture on its side. The picture will now show 3
rows cach having 2 clements. Hence it now represents 3 x 2.
But the number of clements has not changed. Thus

2x3=3x2

and the commutative property has been demonstrated in this
casc.

Exercise 13-2

L. Illustrate 3 < 5 by drawing 3 rows of 5 dots each on a sheet
of papur as ycu would to demonstrate the commutative
property to your pupils. Turn the sheet on its side. How
many rows docs the drawing now have? How many dots are
in cach row: What product does this drawing represent?

2. Describe the same procedure when there are a rows with b
clements in cach row, where a and 4 represent whole
numbers, What do you conclude?
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13-3 The commutative property (continued)

The commutative property of muliiplication can also be
illustrated by mixing sets. For example, suppose we wish to show
that2 x 3 =3 x 2. We mix two sets, as follows. Let A = {1, 2}
and B = {4, b, ¢}. Then A has 2 clements and B has 3. We
begin by mixing them as shown in the first picture below. Alto-
gether there are 6 pairs in this picture, The picture therefore
shows that 2 x 3 =6

! a b ¢

ey e

2| 20 () (29
Now suppose we mix the sets in the opposite order. We then get
the following picture:

1 2

al(@1) (a2
b1 (b, N (")

¢l (42
Notice that the pairs in this picture are the same as the pairs in
the first picture. The only difference is that the letters now come
first and the numbers second. The total number of pairs is the
same both times. This shows that 2 x 3 =3 x 2. Using this
idea we can show that @ x b = b x a for any two whole
numbers.

Another way to teach children the commutative pruperty of
multiplication is to use objects like blocks. For instance, to
show that 3 X 5 =5 x 3 arrange 15 blocks on a table like
this-
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We have 3 sets of 5 blocks, or 3 x 5 blocks.
Now look at the blocks {rom the other side. Here is what you

scc:

There are now 5 sets of 3 blocks cach. But the number of blocks
has not changed. Thus 3 x 5 =5 x 3. By using this idea you
can give many illustrations of the cominutative principle to
your pupils.

Exercise 13-3

1. Show that 2 x 4 =4 x 2 by mixing two scts. Also show the
same thing by drawing pictures of blocks.

2. Supposc one of your pupils said, “I don’t belicve hat
3 x5 =3 x3.” What would you do to make him change
his mind?

13-4 The associative property of multiplication

In our study of addition we saw that the way numbers are
grouped makes no difference in finding their sum. In other
words

(a--b) +c=a-+ (b 40
for any three whole numbers. We described this propesty by

saying that addition is associative, In this scction we shall sce
that the same property holds for multiplication, that is

(@ xb) xc=ax (b x)

When we have shown this we will have shown that muliiplica-
tion of whole numbers s associative. (The letters in brackets should
be multiplied first.)
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Let us start with an example. Supposc ¢ =2, b =3, ¢ = 4,
Then

(@ xb) xe=(2x3) x4
=6 X 4
=24

On the other hand, a X (b x¢) =2 x (3 x 4)
=2 x 12
= 24

Thus in this case (¢ x ) X ¢ =a x (b x ).
We now show how this can be illustrated by pictures,
Arrange a set of blocks as shown below.

The shaded part of the picture contains 3 x 2 blocks, and there
are 4 scts of blocks exactly like the shaded sct. Thus the entire
picture illustrates the product (3 x 2) x 4.

Now look at the same sct of blocks in the following way:

This time the shaded part of the picture contains 2 x 4 blocks,
and there are 3 scts of blocks exactly like the shaded set. Thus
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the picture now illustrates the product 3 x (2 x 4). Since we
have the same set of blocks cach time we conclude that
(3 X2) x4=3x(2x4).

By using sets of blocks in this way we can show that
(@ Xb) xc=a x{bxc) for any threec whole numbers.
This is valuable because it helps children understand why the
associative property of multiplication is true.

ExErcise 13-4
L. Use pictures to show that (2 x 2) x 4 =2 x (2 x 4).

2. Verify that cach of the following equations is true:
a. (1 x2) x4=1x(2 x4)
b. (3 x0) x5=3x (0 x5)
c. (4 X6) x5=4x (6 x5)

13-5 The distributive property

We have seen that multiplication of whole numbers can be
considered as rcpeated addition. This is one way in which
multiplication and addition are related. We shall now show
that they arc related in another way,

Consider a class which has 3 girls and 4 boys. Suppose there
are 2 such classes. How many children are there in both classes
together? We can answer this question in two ways, as follows:

First

Find the total number of girls in both classes and the total
nunmber of boys. Add these numbers together to get the total
number of children, Thus we have computed

(2 x3) +(2 x4)
Second

Find the total number of children in one class, and then mul-
tiply by 2 to get the total in both classes. This time we computed

2 x(3+4)
Since both answers are the same we conciude that

(2 X3) +(2 x4) =2 x (3 +4)
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This equality holds for any three whole numbers, and is
known as the distributive property. In general the distributive
property says that

(@ X&) +(axe)=ax (b0

for whole numbers g, b, c. '
The distributive property is casy to illustrate with pictures.
For instance (4 X 1) + (4 X 2) can be shown as follows:

(2 o

SO
N\"A\A\Y

\ J

Y
(4 x 1) + (4 x 2)

To show 4 X (1 + 2) we group the same dots like this
2 o o)
2 @ o)
2 @@
2 o o)

4 x (1 + 2)

Since the number of dots has not changed we have
(4 x1)+(4x2)=4x(1+2)

Pictures like this help children to understand the distributive
property. You can also illustrate the distributive property in
your class by using blocks as in the following pictures:

BCI—L
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~
(4 x 1) + (4 x 2)

4 x (1 + 2)

ExErcisE 13-5 .
1. Verify each of the following equalities:
a. (2 x2) 4+ (2 x5) =2 x(2+5)
b. (7 x6) + (8 x6) =(7+8) x6
¢ (3 x4)+ (38 x5) =3 x(4+5)
2. Use a picture to illustrate the following equality:
(3x2) +(3 x3)=3x(2+3)
3. Solve the following equations:
a (2x3)+@2x0) =2 x(
b. (6 x[) +(6 x2) =6 x
c. (1 %x3)+(Od x4 =6 x
d. (2 x5)+(2x4) =0 x9
e 3 x[)+(Bx%x2 =3x8
4. Use the distributive property twice to write

(2 4+3) x (6 +4)

as a sum of four products of two numbers cach.

3 +4)
4 +9)
7

5. Generalize the preceding exercise to the case
(@ +b) X (c +4d)

when gq, b, ¢, d are any whole numbers,



Properties of Multiplication 143
13-6 The distributive property on the number line

The number line can also be used to illustrate the distribu-
tive property. The drawing below shows 3 x (2 + 4) on the
number line.

4 4

4
0 5 .

' ' 15 izo

1

Notice that we have repeated a jump of 2 followed by a jump
of 4 three times. Altogether we took three jumps of 2 and
three jumps of 4. If we make all three jumps of 2 first and
follow them by all three jumps of 4 we come to the same
point on the number linc.

| BN,
T

ot

4 4 4
DIPZ SN N e N
0 5 10 15 20
18
But the second drawing represents (3 x 2) + (3 x 4). Thus
3x24+4)=03x2+3 x4

Using this idea you can easily show that the distributive
property holds for any three whole numbers,

ExErcise 13-6
1. Illustrate the following sentence on the number line:

(4 X3) +(4 x5) =4 x(3+5)

2. A newspaper boy sold 30 newspapers on a certain day and
60 on another day. If the cost of a newspaper is 2 pence
which of the following statements can be used to work out
his total sales on the two days?

a. 60 x 4 pence

b. 30 X 4 pence

c. (30 x 2) + (60 x 2) pence
d. (30 + 60) x 4 pence

e. (30 + 60) x 2 pence

f. 2 x (60 -+ 30) pence
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3. If a set with 15 clements is scparated into 3 disjoint subsets
so that cach successive subsct has one more element than the
preceding subset, what is the number of clements in cach
subset?

4. A group of children was divided 110 4 teams of 3 children
cach. Each person on cach team was assigned one of the
numbers 1, 2 and 3 so that cach of these numbers appeared
on cach team, What was the total sum of all the numbers
assigned? Can you think of several ways to work this
problem?

5. Towns A, B and C lic on a straight road with B hetween the
other two. The distance from A to B is 5 miles and the dis-
tance from B to C is 4 miles. The distance from another town
D to town A is 3 times the distance from town A to town C.,
What is the distance between town A and D? Iilustrate these
distances by a picture.

6. Tind the number (24 3) x (4 +5). Can you think of
three or more different ways to do this? In cach case state
the properties of the operations you use,

13-7 Why the properties are important

Now that we have talked abort the properties of addition and
multiplication it is time to say why we have paid so much atten-
tion to them. What do you iink the reason is? If you have never
thought about this before you may answer as most people do:
“These propertics help to make addition and multiplication
problems casicr to solve.” This sometimes happens, but it is not
the real reason at all. The real reason is that these propertics
tell us how the arithmetic of whole numbers is put together,

Let us illustrate what we mean by an example from the real
world. Suppose a man is about to huild a house and has col-
lected cverything he needs to do the job. What will he have? A
pile of sticks or boards, some bricks possibly, and other things
as well. But he won’t have a house. NoT YET. First hic must do
the building. He must make a structure out of the pile of things in
front of him. Only then docs he have a house.

Arithmetic is very much the same. First come the whole
numbers which are like the sticks and bricks for the house. But
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as yet they have no structure. No building has been done. This
is where arithmetic comes in. It begins by putting the numbers
in natural order, then introduces addition and multiplication.
"The properties of addition and multiplication are like the plans
for the housc. They tell us how cverything fits together, This is
why they are so important,

13-8 An illustration

We have said that the properties of addition and multiplica-
tion tell us how arithmetic is put together. We now give an
lustration of how this happens.

Supposc you are at the point in your study of arithmetic
where you know how to add whole numbers but not how to
multiply them. Suppose you say, “I now want to define a new
way of combining whole numbers which I will call multiplica-
tion. I want the property of 0 to hold, and I want I to be the
identity for this multiplication. I also want the distributive
property to liold.” What happens?

Well, youhave a x0 =0 and 0 xa =
You also have axl=a and 1 xa=a

And you have the distributive property:
(@ xb) +(a %) =ax b+

But you actually have a great ceal more.

For instance, suppose you wanted to find 2 x 2. Remember
no one has ever told you the answer. Can you do it? The sur-
prising answer is that you can. As follows. First usc the distribu-
tive property to write

2x2=2x(+1
=2 x1)+(@2x1)
Now use the fact that 1 is the identity for multiplication to get
2x1) 42 x1)=2 42

Finally, since you know how to add you know that 2 + 2 = 4,
Thus 2 % 2 must equal 4, The propertics of multiplication give
you no choice.

In much the same way you can usc the distributive property
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to show that all whole number products arc just what you teach
children they are, There is no other possible answer. The
structure of your arithmetic makes it so.

We give onc more example: Find 2 x 3.

Here we write 2 x3 =2 X (2 + 1)
=(2 x2)4+(2 x1)
=4 4 2
=6

Notice how this was done. We first wrote 3 as 2 + 1. We then
used the distributive property. Next we used the fact that
2 X 2 =4 and the property of 1 to compute the products
2 x 2and 2 x 1. Finally we added 4 and 2 to get the answer 6.

Exercist 13-8

L. Use the method of this section to compute the following
products. You may assume that you know all the products

up tod X 5.

a. 7 X6 b.9 x 8
c. 9 x9 d,. 8 x7
e. 6 x10 f. 11 x11



Chapter 14

DIVISION

In this chapter we introduce division, the last of the four
basic opcrations of arithmetic. Since children often have more
trouble lcarning division than learning addition, subtraction
or multiplication we shall discuss several different ways of
teaching it. All of them are uscful in the classroom and it is a
good idea to be familiar with cach.

14-1 The meaning of division

In the last two chapters we learned how multiplication is
defined and what somc of its propertics are. Wealso learned how
to solve multiplication problems. Such a problem always in-
volves an cquation of the form

axb=[]
where a and b are whole numbers. For instance, the problem of
finding how many oranges are nceded if we wish to give 6
children 2 oranges cach can be written as a multiplication
cquation

6 x2=[]

Tlie solution of this equation—that is, the number which must
be put in the box to give a truc sentence—is 12 since 6 x 2 =19,
Remember that 12 s said to be the product of 6 and 2, and that
6 and 2 are called factors of 12. Besides 2 and 6, the number 12
has four other factors. Can you name them?

In everyday life we often encounter multiplication problems
where the product and one of the factors are known, and we are
asked to find the missing factor. F'or example, suppose there are
6 children and 12 oranges, and we arc asked to find the number
of oranges that can be given to cach child if the oranges are
shared equally among the children. In this case the problem
can be described by the cquation

6 x [] =12
147

X
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"Thus to solve this problem we must find the missing factor in a
multiplication cquation. The missing factor is the number
which makes the above equation a true sentence, (Can you
write another cquation which also describes this problem?
Wiy is your second cquation really the same as the one written
above it?)

Problems whicli involve finding a missing factor in a multi-
plication cquation arc called p1vistoN proBLEMs. Thus
when we find the missing factor in 6 x [J = 12 we say that
we pIVIDE 12 by 6. We then write 12 = 6 which, as you
know, is read “twelve divided by six”. Hence there are two
different ways of writing the equation which describes the pro-
blem of sharing 12 oranges among 6 children:

6 [ =12

[ =126
Botl of these equations say the same thing. 'The same number makes
cach of them a true sentence. The first equation is written in
terms of multiplication in which case we say that we must find
the missing factor. The second equation is written in terms of
division in which case we say that we must find the guotient,
‘The number 2 makes both of these equations true. Thus 2 is the
missing factor in 6 < [] == 12, and is the quotient of 12 -= 6,

Exeraise 14-1
L. Write cach of the following as a division equation and then
iimd the quotient,

a. [ ] x5 =45 b. ] x3 =27
c. 6 x[] =54 d. 7 x[] =84
e. 9 x[]1=36

2. Is the cquation 0 = 0 =~ [] an identity for all counting
numbers? Why?

3. Is the cquation [ =[] -1 an identity for all whole
numbers? Why?

4. Tor what whole numbersis [] = 6 = 0 true? Why?

5. There are two division cquations which correspond to the
multiplication equation 4 > 7 = 28. What arc they?

6. Find all the factors of 24, and write two division cquations
for cach pair of factors whose product is 2-4.

7. Write a multiplication and a division equation for the fol-
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lowing problem and then solve the problem: Three times a
certain number is 18. What is the number?
8. What number when divided by 5 and then multiplied by 3
gives 62 Write an equation which describes this problem.
9. What number when divided by 3 three times in succession
gives 27

14-2 Division as separating a set into subsets

When we solve an equation such as [] = 24 - 4 we say
that we divide 24 by 4. But why do we use the word “divide”
here? To answer this question we must go back to the definition
of multiplication as the union of disjoint sets cach containing
the same number of elements. In particular, for the division

cquation 0] =924 = 4
we must consider the corresponding multiplication equation

4 x[]=2¢
What docs this equation say in terms of sets? Two interpreta-
tions are possible.

I. We arce given 4 disjoint scts cach containing the same
number of elements; i.c. 4 equivalent disjoint sets. How many
clements must be in cach set in order that their union contains
24 clements?

This problem can be represented by a picture of the follow-

ing type:

‘4 equivalent disjoint sets
24 clements in all
How many clements in cach set?

One way to solve this problem is to take a sct containing 24
clements, say a sct of 24 stones, and then separate or divide
the set into 4 subscts cach containing the same number of
stones. When this is done the answer can be found by counting
the number of stonzs in any one of the subsets. As you know, cach
subsct will contain 6 stones. Thus our picture will look like this:
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24 clements in all
4 cquivalent disjoint subscts
6 clements in cach subsct
Notice how the problem was solved. We divided the large set
into cquivalent disjoint subscts. This explains why the word
“division” is used when talking about a problem such as
(=24 =4
I1. The second method for solving the problem [] = 24 + 4
gocs as follows. Start with a set containing 24 clements. Divide
the set into as many 4-element subsets as possible and count the
number of subsets obtained. The answer, of course, is 6, just as
before, but this time the picture which shows the solution looks
like this: ( )
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©)
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24 clements in all
4 clements in cach subset
6 cquivalent disjoint subscts
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When you teach division to children you should draw pic-
turcs like those above and explain what the pictures say. It is
also a good idea to let children work with scts of stones (or
similar objects) in the classroom, using both of the above
methods to solve division problems. As they practise they will
learn the meaning of division and the way it is related to
multiplication.

Exercise 14-2
Write the division equation which is suggested by cach of the

following pictures. Then draw a sccond picture which also
describes the equation.
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14-3 Division as repeated subtraction

We know that multiplication can be viewed as repeated
addition. Thus 4 X 6 is the same as 6 - 6 + 6 -+ 6. Since
the division problem 24 + 6 = [ is exactly the same as the
multiplication problem [] X 6 = 24, this problem asks us to
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find the number of sixes that must be added to give 24. If we did
not know that 4 sixes added together give 24 we could find the
answer by adding sixes until we reach 24. Thus 6 - 6 = 12,
64+646=18,6-+6 6 4 6 =24, and the answer is 4.

Instead of solving this problem by adding sixes until we reach
24 we could start with 24 and subtract sixes until we reach 0.
This time we have

24 —-6=18
18 —6 =12
12 —-6= 6
6—-6= 0

4 sixes subtracted from 24 give 0. But since subtraction is the in-
versc of addition this says that the sum of 4 sixes is 24. In
other words 4 x 6 = 24, or 24 = 6 = 4,

The method of repeated subtraction can always he used to
solve division problems, For example, to divide 15 by 3 your
pupils can write

15 --3 =12
12—-3-=9
9-3=26
6 —3= 3
3J3—-3=20

It took five subtractions to reach 0. Thus 15 - 3 = 5.

The method of repeated subtraction can be illustrated very
clearly on the number line. Thus to show the solution of the
preceding problem on the number line we start ot 15 and move
3 units to the left cach time until we reach 0. We get the foi-
lowing picture:

3 3 3 3 3
PR N BN I i N
0 5 10 15
The picture shows that the quotient of 15 divided by 3 is 5.

Exercise 14-3
L. Use the method of repeated subtraction to solve cach of the
following division problems:

a. [] =26 -= 13 b.[] =21 ~7
c. []=42 =6 d. [] =64 =38
e. ] =5=1 £f. ] =0+3
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2. Ilustrate each of the above problems on the number line.

3. Solve the following problem by the method of repcated
subtraction and illustrate the solution on the number Line.
Kofi had 10 shillings and spent 2 cvery day. How many
days did his money last?

14-4 Remainders

Suppose we try to divide 14 by 3 using the method of repeated
subtraction. We have

14 -3 =11
11 —3 =8
8 -3 =5
5—-3=2

But this is as far as we can go since we cannot subtract 3 from
2 and get a whole number. We can only subtract 4 threes from
14, and when that is done we still have 2 left. For this reason
we say that 2 is the remainder vihen 14 is divided by 3. Some-
times we also say that 14 divided by 3 is 4 plus a remainder of
2. By this we mcan that 14 = (4 x 3) 4+ 2.

Division problems involving remainders can be presented to
your pupils in many ways. For instance, you might ask your
pupils to arrange a set of 29 stones in rows of 8. When they try
they will find that they cannot do it. They will be able to form
3 rows of 8 but there will be 5 stones left over. Thus a set
containing 29 clements can be divided into 3 subsets of 8 and
a subset of 5. We can express this by writing

29 =(3 x8) +5

The number 5 is the remainder when 29 is divided by 8.

In problems of this type we speak of division with a re-
mainder since there is no whole number quotient. In general,
if there is no whole number which will make the cquation
a <+ b =[] truc we have a division problem with a remainder.
In this casc we say that a is not divisible by b. I, on the other hand,
there is such a number, we say that a is divisible by b. In that
casc we also say that & divides into a, or that b is a divisor of a.
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ExEercise 14-4

1. If possible, find the whole number solution for the following
division equations. When the division is not possible find the
remainder.

a. 48 -8 =[] b. 65 -9 =[]
c. 47 -6 =] d. 63 -9 =[]
e. 63 -8 =[] f.42 -4 =[]

2. Find all divisors of cach of the following numbers:
a. 12 b. 23 c. 28
d. 36 e. 17 f. 100
g 1 h. 0

3. Bankole has 30 shillings with which to buy petrol. How
many gallons can he buy if petrol costs 4 shillings a gallon?
How many shillings will he have left?

4. A number is divided hy 12. The quotient is 6 and the re-
mainder is 3. What is the number?

5. Solve each of the follow.ng equations:

a. 14 =(3 x4) + b. [ =4 x8) +2
c. 41 = (] x 8) -+ 1 d. 54 =(12 x[]) +6
e. 49 =(7x7) +QJ £38=(Ox) +2

14-5 [ivision by zero

Suppose you were asked to solve the division problem
2 =0 = [J. What would you do? You would write the cor-
responding multiplication equation

[ x0=2

and try to find a nuwaber which makes this equation a true
sentence. But when we studied multiplication we saw that

ax0=0

for every whole number a. Thus there is no whole number which
will make the equation [J x 0 = 2 true. This shows that the
division problem 2 -~ 0 = ] has no solution. In other words
we cannot divide 2 by zero.

The same thing happens if we try to solve any division
equation of the form a <+ 0 = [] where 2 is a counting number;
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i.e. a'is one of the numbers 1, 2, 3, 4, . ... Here the corres-
ponding multiplication equation is [] X 0 =4, and since
[] x 0 is always equal to 0 this equation has no solution if a
is different from 0. Thus we cannot divide any counting number by
zero.

Finally, we ask what happens when a = 0. In other words,
can we solve the division equation

0-+-0=[]?
This time the corresponding multiplication cquation is
[ x0=0

But this equation is an identity. It is true for all whole numbers.
Hence we cannot say that the division equation 0 - 0 = O
has a solution in the sense that there is a single whole number
which makes the corresponding multiplication cquation true,
Since we do not want a division problem to have more than
onc answer we are forced to say that 0 + 0 has no meaning.

Putting all of this together we have the following important
rule:

DIVISION BY ZERO IS IMPOSSIBLE

When you teach division you should make certain that your
pupils understand this. For if they do not they will always have
trouble with division,

14-6 Division as the inverse of multiplication

We have scen that the division ejuation a + b = ] says
the same thing as the multiplication cquation @ = b x [].
By this we mean that if there is a whole numnber which makes
one of thesc equations a true sentence then the same whole
number will make the other equation a true sentence, Thus, for
example, cach equation in the following pairs says the same
thing:

{26+2=D {33+11=D

26 =2 x [ 33=11 x[0O

In the first pair the number 13 makes both equations true; in
the second the number 3 makes both true. Pairs of equations
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such as these show how multiplication and division are rclated,
For instance, consider the pair

26 =2 x 13
26 -2 =13

The first of these equations tells us that the union of 2 disjoint
sets of 13 clements cach contains 26 clements. The second
cquation tells us that if we divide a set containing 26 clements
into 2 disjoint subsets cach subset will contain 13 clements.
Together these equations show that if we multiply 13 by 2 and
then divide the product by 2 we get 13 back again. In other
words

(13 x2) =2 =13

The same thing happens for any other pair of whole numbers as
long as the second number is not zero. Thus 11 x 3 =33 and
33 + 3 =11 together give

(Il x3) +3 =11

Here we multiplied 11 by 3 and then divided by 3. The result
was the number we startect with, 11. In general we have the
following fact:

If a and b are waole numbers and b is different from zero, then
(a xb) ~b=a,

(Why must we say that & is diffcrent from zero here?) This
cquation tells us that division undoes the work of multiplica-
tion. Mathematicians express this fact by saying that division
is the INVERSE of multiplication.

The same thing happens if we divide first anv then multiply,

For instance,
63 -9 =7 and 7 x9 =63
Thus (63 =-9) x9 =063

Here we began by dividing 63 by 9. We then multipliced the
quotient by 9 and got 63 back again. In gencral we can make
the following statement:

Let a and b be whole nm.mbers and suppose that a is divisible by b.
Then {a - b) x b =a,
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Mathematicians describe this fact by saying that multiplication
is the INVERSE of division.

14-7 Factors and prime numbers

'The number 30 is the product of the two factors 5 and 6, i.c.
5 x 6 = 30. But 6 itself is the product of 3 and 2 so that

30 =5 x3 x2

None of the numbers 5, 3 or 2 is the product of two whole
numbers (other than 1 and itself). You may recall that such
numbers arc said to be prime numbers. Specifically, a whole
number is said to be prime if it is greater than 1 and has only 1
and itscif as factors. Thus we have displayed 30 as a product of
prime factors.

Can we do this with every whole number greater than 12
‘The answer is yes. We just continue to write cach factor of the
number as a product of its factors until we cannot continuc any

further.

ExERcISE 14-7
Write cach of the following numbers as a product of prime
factors:

1. 36 2. 29 3. 8 4. 100
5. 91 6. 64 7. 60 8. 500
9. 3,000 10. 102

14-8 Greatest common factors

A whole number « is said to be a divisor or factor of a whole
number 4 if b + a is a whole number. Thus, for example, 2 is a
factor of 6 because 6 - 2 = 3. Similarly, 5 is a factor of 20
because 20 - 5 = 4.

Consider the numbers 6 and 8. Since both of these numbers
are cven, 2 is a factor of cach of them, We therefore say that 2
is a common factor of 6 and 8. Similarly 3 is a common factor of
12 and 15, since 12 and 15 are both divisible by 3. In general,
the whole number 4 is said to bc a coMMON FACTOR of the

nC1—M
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whole numbers 4 and ¢ if a divides into b and 2 divides into .
Other examples of common factors are

I—a common factor of 2 and 3

4—a common factor of 12 and 16
6—a common factor of 18 and 42
7—a common factor of 28 and 98

Notice that every pair of whole numbers has at Ieast one com-
mon factor. That factor is I, since cvery whole number is
divisible by 1,

Now consider the numbers 18 and 42. What are their
common factors? As we have just said, 1 is a common factor.,
So is 2, because both numbers are even. Morcover, 3 and 6
arc also common factors of 18 and 49, However, no number
larger than 6 is a common fuctor. Thus the complete list of
common [actors of 18 and 42is 1, 2, 3, 6. The largest number on
this list is 6. TFor this rcason 6 is called the greatest common
Jactor of 18 and 42.

In general, if a is the largest common factor of the whole
numbers b and ¢, ¢ is called the GREATEST COMMON FACTOR
of b and ¢. For example:

1 is the greatest common factor of 5 and 9

4 is the greatest common factor of 8 and 12
8 is the greatest common factor of 16 and 24
14 is the greatest common factor of 28 and 98

The casiest way to find the greatest common factor of two
whole numbers is to write cach number as a product of prime
numbers as you did in the exercises at the end of the last section,
Then find all of the prime [uctors which are common to both
numbers. The product of these factors then will be the greatest
common factor of the two numbers., Can you cxplain why this
is true?

For example, to find the greatest common factor of 28 and
98 we write 28 and 28 as products of prime numbers:

28 =2 x92 x7
98 =2 x7x7

Thus 2, 7 and 2 % 7 = 14 are the only common factors of 28
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and 98 other than 1. Therelore the greatest common factor of
these numbers is 14.
Similarly, since

300 =2 »2 x3 %3 x5 x5
and 924 =2 x 2 x3 x7 x11

we sce that 1, 2, 3,2 %2==4, 2 x3=6 and 2 x2 x3 =12 are the
only common factors of 300 and 924. Hence the greatest
common factor of 300 and 924 is 12,

Exercise 14-8
Find all common factors of cach of the following pairs of
numbers.

1. 6, 15 2. 12, 42
3. 40, 120 4. 0, 12

5. 99, 126 6. 84, 980
7. 637, 434 8. 42, 715

9. 275, 374 10. 60, 540



Chapter 15

A SUMMARY OF WHOLE NUMBER
ARITHMETIC

15-1 The whole numbers; natural order

Arithmetic begins by constructing the set of whole numbers
{0, 1,2,3,...). The three dots used here indicate that this list
gocs on and on without end and tell us that the sct of whole
numbers is infinite.

We have scen that the whole numbers can he put in natural
order. The first number in this order is 0. Next comes 1, then 2, 3,
4, and so on. This is the order which is familiar to cveryone,
and was used when we wrote {0, 1, 2, 3, . . .}. Given two whole
numbers, such as 7 and 5, the one that appears first in the list
0, 1,2,3,..., issaid to be less than the one that appears sccond.
In the casc of 7 and 5, 5 comes first and is therefore less than 7.
We express this by writing 5 < 7. We also say that 7 is greater
than 5, which we write as 7 > 5. The most important property
of the natural ordering of the set of whole numbers is the
following one.

If a and b are any two whole mumbers then one and only one of the
Jollowing statements is true:

a<b, a=0Db, azx=h

The order propertics of the set of whole numbers are also
related to addition and multiplication, These relations are as
lollows:

Let a and b be whole numbers and suppose that 2 < 1. Then Jor any
whole number c,

a+4c<b4c
Moreover, if c is different from zero then

axc<bxc
160
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(Question: What happeus to the last statement when ¢ = 0?)
For example since 5 < 7 we have

S5-44d <7 4+4 and 5 w4 <7 x4
Similarly since 23 < 36 we have
23 15 <36 +15 and 23 x 15 <36 x 15

Notice however that 23 x 0 = 36 X 0 cven though 23 < 36.
"This is a consequence of the fact that @ % 0 = 0 for all whole
numbers,

15-2  Addition and multiplication

Whole numbers can be added and multiplied. Thus if we are
given any two whole numbers a and & their sum a + b and
producta < bare again whole numbers. Addition and multiplica-
tion have several special properties which we now list,

L. The commutative property. The order in which two (¢ more)
whole numbers are added or multiplied does not affect the
answer. For instance

3+8=84+3 and 3 x8 =8 x3

We describe this by saying that addition and multiplication of
wholc numbers are commutative. When put in general form by
letting @ and & stand for any two whole numbers these com-
mutative propertics read

a-t+b=b+a and a xXb=0b xa

I1. The associative property. We have scen that when three whole
numbers are added or multiplied the way in which the numbers
arc grouped doces not affect the answer. For instance

(243) +5=2+(145) and (2 x3) x5 =2 x (3 »5)

We describe this by saying that addition and multiplication of
wholc numbers are associative. Using a, b and ¢ to represent any
three whole numbers these associative properties read

(@-+b) +c=a-+(b+¢) and (a+b) xc=a x (b xo)

II1.The distributive property., Multiplication and addivion of
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whole numbers are related by a property known as the distribut-
ive property. In its gencral form this property states that ifa, b and
¢ are whole numbers then

a X (b+4e)=(axb)+ (a xc)
For example, when @ = 5,5 = 4 and ¢ = 2 we have
I X (442) =05 x4) 4+ (5 x2)
Here it is casy to verify that the cquation is correct since

S X (1 42)=5x6=230
and (O x4) 4+ (5 x2) =204 10 =30

The distributive property is often described more precisely
by saying that mulliplication is distributive over addition. The reason
for this is that distributivity docs not work the other way around;
addition is not distributive over multiplication. For if it were we
would l.ave

a+ (b xec)={(a-+b) x(a+¢)

for any three whole numbers a, 4 and ¢, But whena =1, 5 = 2
and ¢ = 3 we find that

1 4+(@2¥3) =1-+6=7
while (1 4+2) x. =3) =3 x4=12

Hence the above equality fails.
However, it is possible to show that multiplication is distri-
butive over subtraction; i.c. that

aX(b-c —(axb)—(axc

(Of coursc, we must assume that b is at lcast as large as ¢ here.
Otherwise b — ¢ would not be a whole number.) For instance,
when a =2,b =5, ¢ =3, we have

aX(b—-¢)=2x(5-3)=2x2=4
and
(@ xb) —(axe)=(2x5 —(2x3) =10—-6=4
Thus 2x(5—=3)=(2x5 —(2x23)
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Similarly 4 X (6 —3) == (4 x 6) — (4 x 3)
because 4 <6 =3)=4x3 =12
and (4 X6) —(+ x3) =2+ ~12 =12

Exercise 15-2
L. Is subtraction of whole numbers associative; i.c. is
(@—b) —c=a—(b—c)

truc for all whole numbers a, b, ¢?
2. Is subtraction of whole numbers commutative?
3. Is division of whole numbers associative; i.c. is

(@+b) ~c=a-=+(b+0

for all whole numbers a, b, ¢, for which these quotients arc
defined? [Ifint: Try a == 8,4, =4, ¢ = 2.]

15-3 The propertics of 0 and 1

The last of the hasic propertics of arithmetic for whole num-
bers concerns the numbers 0 and 1. They have all been discussed
in carlier chapters and will just be listed here.

First, 0 is the identity for addition, and 1 is the identity for
multiplication. This is another way of saying that

a-+0=g and a X1 =a

for every whole number a.
Second, if a is any whole number then

a x0=0

In other words the product of any whole number and 0 is 0, The
converse of this statement is also true, and is also important, It
says that if the product of two whole numbers is zcro then at
least one of the numbers must be zero. (Of course both of the
numbers might be zero, The words “at least” allow for this
possibility.) We can say this in symbols, as follows:

Ifa x b = 0 then cither a = 0, or b = 0, or both,

Finally, as a consequence of the fact that @ x 0 = 0 for all
whole numbers @ we conclude that division by zero is impossible.
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PROCEDURES FOR ADDITION
AND SUBTRACTION

16-1 Basic addition facts and their consequences

In our carlier work we considered the meaning of addition as
an operation on whole numbers, T'wo numbers were chosen and
an operation was performed on them which gave a third whole
number called the sun of the two numbers., ‘The suar was defined
in terms of an operation on scts. Do you remember what that
opceration was? Could you, lor example, explain how the sum
7 4- 2 1s defined by using scts?

In our carlier work we also studicd the propertics of addition,
For instance, we discovered that addition is commutative and
associative; that is for all whole numbers a, b, ¢

atb=>b-tu and (a--b) +c=a- (b0

We also discovered that 0 is the identity for addition. By this
wce mcan that for every whole number «

a +0=qa and 0t a=a

We shall use these properties throughout this chapter,

Now that we have explained the meaning of addition and
know what its basic propertics arc we shall consider how addi-
tion is performed. In other words we want to learn how to
compute sums of whole numbers. As we shall see the procedures
for adding wholc numbers depend upon an understanding of
how the number system is used to rename numbers, and also
on the properties of addition mentioned above.

We have alrealy dealt with sums of whole numbers less than
10. These sums arc known as the basic addition facts. Everyonc
must know them thoroughly before going on to sums of larger
numbers because these basic facts are used to find all other sums,
For example, starting with the basic addition fact 5 - 3 = 8

164
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we find that 15 4 3 = 18. This follcws from the associativity
of addition since

15 +3 = (10 -+ 5) + 3
=10 - (5 + 3)
=10 -+ 8
=18

Similarly 25 4 3 = 28, 35 -- 3 = 38, and so on. Thus starting
with the basic addition fact 5 - 3 = 8 we obtain

15 4-3 =18
25 4-3 =128
35 43 =38
95 43 =08
145 +3 =148

It is important that children understand why we know all these
sums as soon as we know that 5 -- 3 = 8. Otherwise they will
never learn how to add properly.

In the same way, as soon as a child has mastered the basic
fact 8 -1- 6 = 14 he should also sce that it implics

18 +-06 =24
28 46 = 34
178 4- 6 = 184

Herc again these results follow from the associativity of addition,
For instance,

18 + 6 = (10 - 8) -+

=10 + (8 + 6)
=10 4 14
=10 +- (10 + 4)
= (10 -- 10) + 4
=20 + 4

= 24

Of course, we do not want children to have to go through this
chain of steps to conclude that 18 4 6 = 24, They should be
ablc to say “18 - 6 = 24” automatically, and need to be given
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enough practice so that they can do so. However, if asked they
ought to be able to say why 18 + 6 = 24; in other words they
should know how this result follows fram the basic fact 8 + 6 =
14 and the associativity of addition.

These ideas are applied in working problems in column
addition. For instance, consider the problera of finding the
sum

9

9

+ 6
If a child solves this problem by adding downwards he must
automatically know that 9 4- 9 = 13 and that 18 4 6 = 24,

When doing the addition lie should think: ©9, 18, 247, Although
we did this example by adding downwards, the direction is not
important. The commutative and associative propertics of
addition tell us that we will get the same answer no matter
which dircction we use. When teaching column addition it is a
good idea to get children to learn to add in both directions so
that they can check their work. Encourage them to do problems
of this kind twice, once in each direction, until they get the same
answer both times, When they do, their answer will probably
be correct.

Exercise 16-1
1. Use the basic addition fact 7 -+ 8 = 15 to show that
a, 37 -8 =45
b. 97 -8 = 105
c. 497 4- 8 = 505
2. We have scen that in base-five addition
‘J'ﬂ\'u + 211\'0 = “n\'u
Use this basic addition {act to show that
a. 24(\\'0 - Qllm = 31!\\'0
b. 234y - 2yge = 2y,
C. l‘l'll’ll\'u T 2!l\'o = 201"\'1)
d. 44—11‘4‘[\\'0 -1 2“‘-0 = 50,001{1\.0
[In solving this problem you may find it helpful to draw
pictures on a basc-five abacus.]
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16-2 Addition of multiples of 10

Once children have learned the basic addition facts and how
to usc them to find sums such as 15 - 3, 28 + 6, and so on,
they arc ready to start adding two-digit numbers. Here it is
best to begin with sums involving multiples of 10 such as 20-- 30
70 +- 50, cte. In teaching children how to find such sums you
will want to vevise the meaning of two-digit numbers. You
should also make sure that they can count by tens with under-
standing. Finally they should know that 20 can be represented
by 2 bundles of sticks with 10 sticks in cach bundle, that 30
can be represented by 3 bundles of sticks with 10 sticks in cach
bundle, and so forth. If they know this they know that 20 is 2
tens, that 30 is 3 tens, ctc. Using these ideas children will be
able to discover for the msclves that

2 bundles of 10 -}- 3 bundles of 10 = 5 bundles of 10

2 tens - 3 tens == H tens

20 430 =50
This problem should also be written in vertical form as
2 tens 20

+ 3tens -+ 30

5 tens 50

Notice that to solve such problems children must know the
meaning of the numbers 20, 30, 40, . .. They must know that

20 is the same as 2 tens
30 is the same as 3 tens
490 is the same as 4 tens

and so on.

16-3 Renaming numbers in the decimal system

The next step in tcaching addition is to find the sum of any
two two-digit numbers. Once children have lcarned how to
find such sums it is casy for them to go on to sums involving
larger numbers and sums involving more than two numbers.
And once they can handle such problems they have completed
the task of learning Liow to add whole numbers.
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In order to find sums of two-digit numbers your pupils will
have to know how numbers arc renamed on our number system,
In our carlier work we have scen that there are many ways of
naming a wholc number. For instance, 46 is also named as
48 — 2,47 — 1, 36 + 10, 92 = 2, and so on. When working
addition problems two of thesc names are more useful than
others. They are

40 +-5 and 30 -+ 16

In writing cach of these names we have expressed 46 as (so
many) tens 4 (so many) ones. We say that we have renamed or
regrouped the number 46,

The same thing can be done for larger numbers. For example,
376 may be written

300 4- 70 + 6

which means 3 hundreds + 7 tens - 6 onecs
But this number can also be written

300 4- 60 4- 16
3 hundreds + 6 tens + 16 ones
and 200 4- 170 - 6

2 hundreds + 17 tens + C onecs

Can you think of two other ways of renaming 376 which are
similar to the ones given above?

"The representations of 46 and 376 given above show that our
number system uses groupings by tens. In other words the base
of our number system is ten. This system is called the decimal
gystem from the Latin word “‘decem” meaning ten.

In addition to representing numbers by bundles of sticks we
can also usc an abacus. The abacus is a particularly valuable
teaching aid at this point because it shows how we rename the
numbers on our number systern when working addition and
subtraction problems. As an example, the abacus on the left
below shows 46 as 4 tens - 6 ones while the abacus on the right
shows 46 as 3 tens 4 16 oncs.
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Tens Ones Tens Ones

Notice that there is a great difference between the represen-
tations of numbers on an abacus and the representations of
numbers by bundles of sticks. With bundles of sticks we actually
usc 10 sticks tied together to form 1 ten. Hence 3 bundles con-
taining 10 sticks cach represent the number 30. Here it is
possible for a child to count 1, 2, 3, . . ., 30, and actually see 30
single sticks in these bundles. On the abacus, however, we do not
usually have 30 rings. Instzad, we just have 3 rings on the tens
rod. The position of the rods on the abacus shows whether a ring
represents the number 1, or 10, or 10 x 10, and so on. For this
reason the abacus gives a much better picture of our number
system and the way it works than do bundles of sticks.

Exercise 16-3
L. Draw pictures which show cach of the following numbers
represented en an abacus in three different ways,

a. 271 b. 502 c. 3,010 d. 2,000

2. Draw pictures which show cach of the following numbers
represented on a base-five abacus in three different ways.

a. 243, h. 441, c. 4,002,  d. 2,000,

16-4 Addition without regrouping

in the work which follows we shall show the transition from the
stage where a child docs addition problems by using bundles of
sticks to the stage where he uses an abacus and the position of
rings on its rods.
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Let us take as an example the problem of finding the sum of
46 and 12. What is 46 - 12? Because you as a tcacher have
skill with the basic cperations of arithmetic you follow the
systematic procedurc we were all taught as children to get the
answer 58. You know this procedure so well that you follow it
automatically. Your work is mcchanical. It requires very little
thought. This is an advantage, of course, but when you teach
children you must realize that the mechanical procedurs you use
as an adult is the result of a long period of development. Itis the
Jinal stage in a carcfully planned scquence in which the meaning
of cach step should be taught. As teacliers we must always try to
tcach in such a way that children discover basic meanings and
important relationships for themsclves, If they do they will
gain a much greater understanding of mathematics and its
applications. Thus, in teaching children how to add 46 and 12 a
particularly bad beginning would be to write 46 4 12 on the
blackboard and then proceed to say: 6 -- 2 == 8. Write 8
under the 6 and 2. 4 - 1 = 5. Write 5 under the 4 and 1. ‘Thus
the answer is 58.” This is a poor way to begin teaching addition
since it tells children what to do but not why they do it. As
teachers we must lielp children discover why certain procedures
lead to corrcet answers, Ior only then will they be likely to
remember what they learn. Thus we shall discuss the problem
of finding 46 + 12 in detail, starting with the method children
should usc when they first try to find such sums. Frora there we
go on to an intermediate stage in the learning process, and then
to the method we use as adults.

Stage I. (An introductory stage in the learning process)
At this stage 46 is represented by 4 bundles of 10 sticks cach -+ 6
loosc sticks. We call the loosc sticks oncs. Similarly 12 is repre-
sented by I bundle of 10 sticks -+ 2 oncs. Thus we have 6 + 2 =
8 ones and 4 + 1 = 5 bundles of 10 sticks cach. Altogcther
there are 50 - 8 = 58 sticks. Hence 46 4 12 =- 58,

This solution can be recorded more briefly as follows:

46 is renamed 40 - 6
12 is renamed 10 - 2

TOTAL Y5O -+ 8
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Thus 46 - 12 = 50 + 8, and since 50 + 8 = 58 we have
46 + 12 = 58,

Stage I1. (An intermediate stage in learning)

At this stage we use an abacus to find 46 4 12, We begin by
placing rings on the abacus to represent cach addend scparately
as shown in the following picture:

33 he

Now show the result of adding the ones, and the result of adding
the tens. The number then represented on the abacus is 5 tens
<+ 8 oncs, or 58, Thus 46 + 12 = 58,

This time the procedure leading to the solution can be
written down as follows:

4 tens 4 6 ones
Iten 4 2 ones

S tens - 8 ones =v"58

The work described here as Stages I and IT provides children
with the kind of meaningful practice which is essential in learn-
ing addition, Once children have mastered these ideas they are
ready for the final stage which is nothing more than a short
form of writing this down,

Stage I11. (A final stage in learning)
At this stage we write the problem and its solution together
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without renaming any of the numbers, It looks like this:

Tens Ones
4 6
+1 2
TOTAL 5 8

As we do the problem we now think in the following way:
Ones: 6 + 2 = 8. Write an 8 in the ones place.

Jens: 4 4 1 =5, Writc a 5 in the tens place.

Thus the answer is 58.

Stage I with bundles of sticks is the most important stage in
learning addition sincc it is based on the idea of forming unions
of disjoint scts. And this, after all, is how addition is dcfined.
The next two stages are just efficient ways of computing sums
and recording the answers, Of coursc, all three stages arc famil-
iar to us as tcachers. However it is important that we lcad
children through cach of them gradually so that they really
understand how they arrive at the final stage.

Exercise 16-4
Write out the solution of cach of the following problems in
Stages I, IT and IIT as in the text.

L1442 =[] 2 32--27=[] 3. 243 + 154 =[]
4. 475 -- 204 =[] 5. 1,036 - 2,003 = []

16-5 Addition with regrouping

We now consider addition preblems which require regroup-
ing in order to find the answer, The following problem is

typical:
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Problem

Find the sum 35 + 27,
This time the three stages in the solution go as follows:

Stage 1

Using bundles of sticks we sce that
35 can be represented by 3 bundles of 10 - 5 ones
27 can be represented by 2 bundles of 10 -+ 7 ones

Altogether there are 5 bundles of 10 - 12 loosc sticks (oncs).
The 12 loose sticks can be combined to give 1 bundle of 10 + 2
loose sticks. Thus there arc 5 - 1 = 6 bundles of 10 + 2 loose
sticks. This collection of sticks represents the number 62, Hence
35 -+ 27 = 62.

Stage 11
Here the problem looks like this when recorded on an abacus:

27

s

From this picturc we sce that the solution is obtained as follows

35 = 3 tens - 9 oncs
27 = 2 tens -- 7 oncs

35 - 27 = 5 tens -+ 12 ones = 5 tens - (I ten +- 2 ones)
= (5 tens + 1 ten) - 2 ones

6 tens - 2 oncs
= 62

(I

1

Do you scc the step where the associative property of addition

was used?
nciI—N
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Stage 111
Again we record the problem and its solution together. We have

Tens Oncs
3 5
+2 17
TOTAL 6 2

When we do the problem this way we think as follows:

Ones: 5 + 7 =12, But 12 is | ten plus 2 ones. Write a 2 in
the ones column and remember that 1 ten must be
added to the tens column. (The best way to avoid
mistakes is to begin the addition in the tens column
with the 1 ten,)

Tens: 1 4+ 3 -+ 2 = 6, Write a 6 in the tens column,
Thus 35 + 27 = 62,

In the above example we had to regroup 10 ones as 1 ten.
As you know it is sometimes necessary to regroup further using

1 hundred in place of 10 tens
1 thousand in place of 10 hundreds

and so on,

Example
Solve the following problem:

848 -+ 537 +- 192 = ]

For such a problem Stage I is not worth considering since :0
one would go to the trouble of gathering such a large number
of sticks, let alonc counting them. Thus we start with the sccond
stage where the problem and its solution can be recorded as
follows:
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848 = 8 hundreds 4 4 tens + 8 oncs
537 = 5 hundreds + 3 tens - 7 oncs
192 = 1 hundred + 9 tens + 2 oncs

14 hundreds +- 16 tens - 17 ones

= (10 hundreds -+ 4 hundreds) -+ (10 tens -+ 6 tens)
+ (1 ten +- 7 oncs)

= 1 thousand - (4 hundreds - 1 hundred)

+ (6 tens - 1 ten) - 7 oncs

thousand -f- 5 hundreds + 7 tens + 7 ones

,077

A somewhat casicr way of writing all this is

848 =800 - 40 + 8
537 =500 - 30 + 7
192 =100 - 90 + 2

1,400 -+ 160 + 17 = (1,000 + 400) -+ (100 + 60)

=1
=1

+ (10 + 7)
= 1,000 -+ (400 - 100)
+ (60 + 10) + 7
= 1,000 -+ 500 4 70 + 7
= 1,577
Stage 111
Thous. i Hund. Tens Ones
8 4 8
5 3 7
_a 1 9 2
TOTAL 1 5 7 7

As before, we think like this:

Ones: 8 +7 42 =17. Writc a 7 in the onecs column
and add 1 ten to the tens column.

Tens: 1 +44+34+9=17. Writc a 7 in the tens
column and add 1 hundred to the hundreds
column,
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Hundreds: 1 -8 -5 4+ 1 = 15. Write a 5 in the hundreds
column and a I in the thousands column,
The answer is 1,577.
ExXERcISE 16-5
Write out the solutions of cach of the following problems in
Stages IT and I as in the text.

1. 36 - 29 =[] 2. 65 - 87 =[]
3. 123 + 45 4+ 82 =[] 4. 437 - 263 =[]
5. 1,532 + 2,479 = [] 6. 135 - 221 -+ 644 = []

16-6 Addition in other bases

To add numbers expressed in other bases we use exactly the
same principles that are used to add numbers base ten (that
is, the decimal system). The only change is that the basic addition
Jacts are different in different bases. In the present section we
shall illustrate this by discussing addition of numbers expressed
in base five,

For instance, suppose we wish to add dpve and 3y, Using
a base-five abacus we put four heads on the oncs rod to repre-
sent 44y, We then put three more beads on the ones rod to
represent 3. Our abacus then looks like this:

}3ﬁvo
}‘“ive

But whenever we have a group of five beads on any rod of a
base-five abacus we remove them and put one bead on the
next rod. When we do this in the present case we have the
following situation:

}12ﬁvo
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Finally, since the number represented on this abacus is 12,
we have

4'11\':9 -+ 311\'0 = 1211\'0
EXErcise 16-6A

Use the method described above to complete the following
addition table for base five:

+10(11213]|4
oy O 3

! )
2

3 10

4 12

The above table gives all the basic addition facts for numbers
basc five.
We now use these facts to solve addition problems base five
involving numbers having several digits.

Example
Solve the following problem:

321y, -+ 122y, = Oave
Stage [
We give the solution as it would appear on a base-five abacus,
If necessary you should draw a picture to illustrate the problem,

321, = 3 twenty-fives |- 2 fives -+ 1 one
122, = I twenty-five -~ 2 fives - 2 ones
321y, 4 122y, == 4 twenty-fives -i- 4 fives - 3 ones = 443,
"This solution can also be written in the following way:
321(\\'0 = 3001\\'0 -+ 20"\'0 -+ lﬂ\'(x
12211\':: = 1004y, -I- 2011\'0 + 2pve
32](“.0 ‘;‘ ]22‘]‘.0 == ‘1001\‘.0 '{‘ ‘I'Oﬂvc '%‘ 3[1‘.0 = 4’4‘3(“-0
We now consider an example which requires regrouping.
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Again you may find it helpful to draw a picture of an abacus
as you work the problem,

Example
Find the sum 432, -+ 4144,,.
Stage 11
Here we have
4321\\'0 = 4'001\\'0 + 30"\'4\ + 2ﬂ\'o
414qe, = 4004, + 1046 + 4pee

4320 + HMdyvo = 1,300, -+ 40pve + 110
(.lsOOOﬂ\'o '{" 3001\\'(:) + 4011\'0 + {louvu + lﬂvo)
laOOOﬂvo -+ 300(\\'0 + (4'011\'0 + loﬂvc) -+ 1ﬂvo

= 1,0004,, -+ 300y, - 1004y, + Lo
= 1,000, - 400y, -+ Lo
== 1,401,
Finally, we show how the solution of this probleni would
proceed in Stage III,

Stage 111
One hundred Twenty-
twenty-fives fives Fives Ones
4 3 2
-+ 4 1 4
TOTAL 1 4 0 1

Here the solution was obtained as follows:

Ones: 2 -+ 4 = 11g,,. Write a 1 in the ones column and
add 1 five to the fives column since 11, = 1y, + 1.
Fives: 1 -+ 3 - 1 = 10,,.. Write a 0 in the fives column
and add I twenty-five to the twenty-fives column.
Twenty-fives: 1 -4 -4 = 14,,. Write a 4 in the
twenty-fives column and a 1 in the one

hundred and twenty-fives column.

Thus the answer is 1,401 ,,,.

These examples illustrate how the procedure for finding
sums is the same in base five as it is in base ten, In fact, it is
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the same in every basc since it only relies on the place value
system for renaming numbers and the associative property of
addition. In the following excrcises we have given problems in
basc two and basce seven to further illustrate this important
fact.

Exercise 16-68

1.

4.

Write out the solution of cach of the following problems in
Stages IT and III as in the text.

a. 134'(1\'0 -+ 310!\\'0 = [:]ﬂvu

b. 213(]\'0 - 434!\\'(& = Dﬂ\'c

C. ])4'03(1\'0 + 214'211\'0 = [:]ﬂ\'c

d. 211(\\'0 -+ 324'11\'0 + 121ﬂvo = Dﬂ\'o

e. 321\\'0 -+ 2:00211\'43 + 421[1\'0 = Dﬂ\'e

Complete the following table for addition base two.
+101]1
0
1

Write out the solution of cach of the following problems in
Stages IT and IIT as in the text. Use the addition table you
constructed in Question 2 above for the basic addition
facts.

a. I)UOILWO -1 llotwo = Dt\m

b. 1]’0101\\'0 -+ llaOIOhvo = [Jiwo

c. 1,11 liwo + 1,11 Hwo = Oewo

Complete the following table for addition base 7.

+10(1]12[3[4]|5(6

10

10

12

0701-500]\)_\0

15
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5. Write out the solution of cach of the following problems in
Stages IT and IIT as in the text. Use the addition table you
constructed in Question 4 above for the basic addition
facts.

a, 45n1e\'cn + 215‘-\'1‘11 = Dsuvvn

b. 3306230\‘0," -+ 1)34‘550\'011 = Dscwn

G 321y + 364 00n -+ 142, en = Leeven

d‘l G’OOIHCVCH .;_ 666HC\'U" == DH(‘\'P"

€. 4':132513\'1:" -+ 1,35450\'0n -+ 2:65250\'011 = D.-ievcu

16-7 Procedures for subtraction

We have scen that the operation of subtraction is the inverse
of addition. 'This means that a subtraction problem such as

97 — 34 =[]
1s the same as the addition problem
44+ =97

The number which makes this last sentence true is called the
missing addend.

Since addition and subtraction arc so closely related the
procedure for working subtraction problems is similar to that
used in addition problems. Again the cssential step consists of
using the place value system when necessary to rename or
regroup numbers. The following examples illustrate this, As
before we give solutions at three different stages, and begin
with a problem which does not require regrouping.

Example
Solve the subtraction problem
97 — 34 =[]
Stage I

We begin by representing 97 by 9 bundles of 10 sticks cach -~ 7
loose sticks (ones). Then to show the result of subtracting 3+
from 97 we remove 4 loose sticks (ones) and 3 bundles of 10,
This leaves 7 — 4 =3 ones and 9 — 3 = 6 bundles of 10.
Altogether there are 60 - 3 = 63 sticks remaining, and it
follows that 97 — 34 = 63,


http:6,001.vw
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"This solution can be recorded more brictiy as follows:

97 is represented by 9 bundles of 10 -- 7 ones
34 15 reprosented by 3 bundlcs of 10 + 4 ones

97 — 34 is represented by (9 —3) bundles of 10 - (7. - 4)

ones
= 6 bundles of 10 -+ 3 ones

= 63
We can also write this result as
97 ==90 -7
— 34 =30 +4
97 —34=(90—30) + (7 —4)
=60 } 3

63

Stage 11

On an abacus the problem 97 — 34 = [] is solved as follows.
First represent 97 by placing 7 beads on the ones rod and 9
beads on the tens rod as shown on the abacus to the left below.
Now scparatc 4 oncs from the 7 ones and 3 tens from the 9
tens to show the result of subtract'ng 34 from 97. As you can
sce by the figure on the right the number now represented on the
abacus is 63. Thus 97 — 34 = 63.

I2

63

-97

J

The solvtion shown here can be recorded in the following way:

97 = 9 tens -+ 7 ones
— 34 = 3 tens + 4 oncs

97 — 34 = (9 tens — 3 tens) + (7 ones — 4 ones)
=6 tens + 3 ones
=60 + 3
= 63
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Finally. we pass to Stage III and write the solution in the
standard wav.,

Stage 11T
Tens Ones
9 7
-3 4
TOTAL 6 3

When we solve the problem this way we think as follows:
Ones: 7 — 4 = 3. Writc a 3 in the ones column.
Tens: 9 — 3 = 6. Write a 6 in the tens column.
Thus the answer is 63.
"The above example did not invelve any regrouping. We now
consider one which does.

Example
Solve the subtraction problem
62 — 25 =[]
Stage T

If we start by representing 62 with 6 bundles of 10 + 2 ones
and try to remove 2 bundles of 10 4 5 ones we find that we
do not have cnough loosc sticks. Thus we must regroup. We
do this by separating onc bundle of 10 into 10 loose sticks. In
other words we represent 62 by 5 bundles of 10 + 12 loose
sticks. We now remove 2 bundles of 10 + 5 ones, This leaves
3 bundies of [0 -~ 7 ones. Hence 62 — 25 = 37.
Here the solution can be written as follows:

62 = 50 - 12
— 25=20+5
62 — 25 = (50 — 20) -+ (12 — 5)
=30 + 7

= 37
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Stage 11
We begin by representing 62 on an abacus as shown below.

3

We then try to remove 5 beads from the ones rod and 2 beads
from the tens rod to show the result of subtracting 25 from 62.
But therc are not cnough beads on the ones rod. Thus we
regroup by removing one bead from the tens rod and placing
10 more beads on the ones rod. Our abacus now appears as
shewn on the left below, and the problem can be solved. The
solution is pictured on the abacus to the right.

= Qﬁ 57
k{ J (

This time the written solution goes like this:

62 = 6 tens 4 2 oncs
25 = 2 tens -+ 5 ones

Since there are more oncs in 25 than in 62 we must regroup,
Thus we writc

62 = 5 tens 4 12 oncs
— 25 == 2 tens -+ 5 oncs

6;‘2‘ —-25;_(5tcns — 2 tens) + (12 on::s — 3 ones)
= 3 tens - 7 tens
= 37
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Stege 111
Tens Ones
6 2
-2 5
TOTAL 3 7

Here we think as follows:
Ones: We must rewrite 62 so that we have more ones. Thus
we mentally rename 62 as 5 tens plus 12 ones. Then
12 — 5 = 7. Write a 7 in the ones column.
Tens: 6 — 2 = 3,
Thus the answer is 37.
Problems involving subtraction of numbers cxpressed in
other bases proceed in the same way. For instance, the
problem

42) oo — 2340.e
can be solved as follows:

421“\'0 = 4OOﬂVG + 20“\'0 "1" ]ﬂ.'o
= 3Ooﬂve -+ 120!\\'0 -+ lﬂ\'o
== 300“\‘0 JT_ ]loﬂve ",L‘ llﬂ\'e

Thus

4‘2111\1: = 30011\'0 -A- ”Oﬂm + llﬂvo
- 2340\'0 = 200ﬂve +- 30"\'0 - 4'[1\'9

(421!1\'0 * é34’ﬂ\'e) = looﬂ\'o + 30!1\0 - 2!1\'0
= 132,1‘.0
ExERcisE 16-7

Write out the solution of cach of the following problems in
Stages IT and IIT as in the text.

1. 463 — 258 =[]
2. 372 — 173 = [
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2,006 — 948 =[]

4,321y — 1,234, = [Jpee
3,042p¢0 — 2,144 = [ave
110,110, — 101,010,0 = [Jiwe
10,0016 — 1,111 = [Jiwo
6,435,ven — 1,226,010 = [aeven
2,003,0en — 1,024,000 = Jaoven
3,002,0ven — 3,002,010 = [Taeven

185



Chapter 17

PROCEDURES FOR MULTIPLICATION
AND DIVISION

17-1 Introduction

We have scen that multiplication of whole numbers can be
thought of as repeated addition. Thus to find a product such
as 4 x 3 we can replace the 4 X3 by 3 +-3 + 3 + 3 and
add. Since the sum ol 4 threes is 12 we write 4 x 3 = 12,
This method of finding products works well when the numbers
arc small. But when we come to larger numbers such as
14 x 39 the method of repeated addition is too tedious. Thus
we look for faster ways of doing multiplication.

As teachers you know how products such as 14 x 39 arc
found. However, as with anything in mathematics, it is neces-
sary to kpow why the method which you use actually works.
This is the purposc of the present chapter: we shall show why
the mcthod which everyone uses for multiplication gives the
correct answer. Once this has been done we will be able to do
the same thing for division, since division is the inverse of
multiplication.

17-2  Multiplication by multiples of 10
Consider the following multiplication problem:
8 x10 =]

To solve this problem we think: 8 x 10 = 8 tens. But in our
number systein 8 teus is written as 80. Thus 8 x 10 = 80,
Similarly

9 x 10 =9 tens = 90
13 x 10 =13 tens = 130
26 x 10 = 26 tcns = 260

95 x 10 = 95 tens = 950

and so on, Notice that in cach case the answer is obtained by
186
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writing a single zcro after the number which is being multiplied
by 10. This happens because we use the place value system to
write numecrals.

The same reasoning can be used to find the product of two
whole numbers when one of the numbers is 100, 1,000, and so
on. For instance.

8 %X 100 = 8 hundreds = 800
8 x 1,000 = 8 thousands -= 8,000
8 x 10,000 = 8 ten thousands = 80,000

Here too the answers were obtained by writing the correct
number of zeros after the original number; two when we
multiplied by 100, three when we multiplicd by 1,000, four
when we multiplied by 10,000.

Using these results it is casy to compute products when one
of the factors is a multiple of 10 less than 100, 0. a multiple of
100 Iess than 1,000, etc. The following examples show how this
is done:

8 x20 =8 x (2 x 10) since 20 = 2 tens = 2 x 10
= (8 x2) x10 since multiplication of
16 % 10 whole numbers is associative

= 160

It is important to observe how the associative property of
multiplication was uscd here to get the answer. In cxactly the
samc way we find that

5 > 300

[ (I

w

(3 x 100)
3) x 100
x 100

P

I
55
Sx x X

EXERrcisE 17-2
Solve cach of the following cquations.

1. 235 x 10 =[] 2. 48 x [] = 480
3. 100 % 37 =[] 4. [ x 730 = 73,000
5. [ x 100 = 2,100 6. 1,800 =[] x 200
7. 92,000 = 100 x [] 8, 500 x 200 = []

9. 80 x [] = 3,200 10. 8,100 = [] x 90
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11. a. Find cach of the following base-five products,
(l) 4'ﬂ\'o X loﬂ\'n
(il) 12[1\'0 X 1011\'0
(iii) 2344, X 104,
(iv) 3pve X 1004,
(V) 3111\'«: x 100!1\'0
(Vl) 211:0 A 1,00011\’0
(Vll) 1211]\'1‘. X I:OOOﬂ\'u
b. Explain why the same rule of adding zeros applies in
basc five when multiplying 10y, 100y, ctc., as applies
in base ten when multiplying by 10, 100, etc.
c. Do you think this result will hold in every base? Why?

17-3 The generzl procedure for multiplication

At the end of Chapter 13 we showed how tiic propertics of
addition and multiplication can be used to compute products.
For instance, if we know that 2 x 2 =4 and that 2 x 1 =2
we can find 2 < 3 as follows:

2x3=2x2+1
=(2 x2)+(2x1)
=4 -2
=0

The essential step here was provided by the distributive pro-
perty which allowed us to write 2 x(2--1) = (2 x2) +(2 x1).
‘Thus we were able to break the original problem down into
simpler problems whose answers were known. This is the
mcthod we are now going to use to find products of numbers
involving scveral digits. In using this method we shall assume
that all products up to 9 x 9 arc known. These products arc
called the basic multiplication facts. They are the multiplication
facts which children must learn thoroughly in order to multiply
cfliciently,
We begin with the following problem:

7 x 56 =[]
"T'o solve this problem we write

7 %56 =7 x (50 - 6)
= (7 % 50) 4 (7 x 6)
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But since 7 < 5 = 35, we know that 7 x 50 = 350. Thus

(7 % 50) - (7 x 6) =350 - 42
= 392

It now follows from the distributive property that
7 x 56 = 392

Notice how this problem was solved: we reduced it to a problem
involving addition, basic multiplication facts and the rule for
multiplying by a multiple of 10. All multiplication problems are
solved in this way. Here are some further examples.

Example
Find the product 6 x 234

6 X234 =6 x (200 + 30 - 4)

(6 X 200) + (6 > 30) - (6 < 4)
1,200 -- 180 - 24
1,404

You should be able to give reasons for cach step in these com-
putations.

Example
Solve the equation 14 X 39 = []
Here both factors in the product have two digits. However,
the method introduced above still works. Indeed, by the dis-
tributive property we have
It 339 =14 (30 +9)
= (I >0 30) - (14 20 9)

To compute 14 < 30 and 14 X 9 we again use the distributive
property:

I |

It 3030 == (10 - 4) 30
= (10 » 30) = (4 x 30)
== 300 -- 120
== 420
14 9 = (10 +-4) 9
== (10 < 9) = (4 2 9)

=90 - 36
= 126
Thus 14 % 39 =420 -- 196 - 546

BCi—o
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Example
Find the product 23 x 42

23 x 42 =23 x (40 +2)

= (23 x 40) + (23 x 2)
= [(20 -+ 3) x 40] + [(20 + 3) x 2]
= (20 X 49) 4 (3 % 40) + (20 x 2) + (3 x 2)
=800 + 120 + 40 + 6
= 966

Again you should be able to give reasons for each of the above
steps.

Exercise 17-3
Usc the method of this scction to find cach of the following

products,

1. 8 x 76 2, 39 %7 3. 83 x6

4. 26 x 17 5, 67 x 73 6. 45 % 38
7. 7 x 425 8. 26 x 308 9. 31 x 527

10. 604 x 195

1. Here is the basic five multiplication table for all products
up to 4y, X 4gye. (These are the basic multiplication facts
for base-five arithmetic.)

x 1 2 3 ¢

111 2 3 4
2 2 4 11 13
1

313 Il 14 922

414 13 2 3
Use the above table and the metliod of this section to find
each of the following products:
a. 3ﬂvo X 4‘2(“.0 bc 411\\'0 X 311"0
C. 21(“'0 X 30ﬂ‘-° do ‘“ﬂve X 321]‘-0
e. 3044, X 134,

17-4 The short form for multiplication

In the last scction we learned how to solve multiplication
problems by using the distributive property and the basic
multiplication facts,
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However, as some of the problems at the end of the section
showed, this method can be long and tedious if cvery step is
completely written out. Thus we seck ways of shortening these
computations. But before we begin we point out that the
computations themselves will be exactly the same as before.
‘The only changes will be in the way they are written out.

Consider the problem of finding 7 x 56. We solved this
problem in the last scction by writing

7 x56 =7 x (50 -+ 6)
= (7 x 50) 4 (7 x 6)
= 350 -} 42
= 392

The first step in shortening these computations is to rewrite
them in vertical form as follows:

56
X7
42 (7 x 6)
350 (7 x 50)
392

Notice that this arrangement climinates two of the steps in the
first computation. This was done by renaming 56 as 5) - 6
and applying the distributive property automatically.

We can do the same thing with products where both factors
involve several digits. For instance, to find 29 x 36 we can
write

29
X306
54 (
120 (6
270 (30
600 (30
1,044

This time we thought of 29 as 20 4 9 and 36 as 30 + 6, and
applicd the distributive property.
As you know, we can simplify these computations even
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further. For example, we can find 7 X 56 in just two steps, as

follows:
Step 1. Since 7 X 6 = 42 we record a 2 in the ones column

and remember 4 tens for the tens column,
Step 2. Since 7 x 5 = 35, we have 35 + 4 = 39 in the tens
column. Thus the answer is 392.
When written out this solution now appears as
56
x7
392
This method also works in general. For instance, to find
29 x 36 we proceed as follows:
Step 1. 6 X 9 = 54. Record a 4 in the ones column and
remember 5 tens for the tens column,
Step 2. Since 6 X 2 = 12 we have 12 -+ 5 = 17 in the tens
column,
With this we have multiplied 29 by 6 and the problem is
half solved. The computations look like this:

29
<36
174
We now continue, multiplying 29 by 30 in two steps:
Step 1. Since 3 x 9 = 27 we record a 7 in the tens column
and remember 2 hundreds for the hundreds column,
Step 2. Since 3 x 2 = 6 we have 6 + 2 = 8 in the hundreds
column, Thus 29 x 30 = 870, and we have

29

<36

147
87

Finally we complete the solution by adding. We get
29
~< 36
174
87
1,044
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ExEercise 17-4

Find each of the following products in two ways; first by the
mcthod given at the beginning of this scction, and sccond by
the method given at the end of the section. Use the multiplica-
tion table in the preceding set of exercises to solve the problems
in base five,

1. 46 x 72 2, 308 x 56 3. 97 x 201

4. 316 x 24 5. 708 x 509 6. 199 x 512

70 34yye X 124, 8. 214y, % Bl 9 402y, X 4344,
10. 142, X 314y,

17-5 Division by the method of repeated subtraction

Since multiplication can be viewed as repeated addition its
inverse, division, can be viewed as repeated subtraction. You
should be sure you understand why this is true because it is the
idea behind the procedures for division which are taught in
school. We now show how these procedures are developed by
considcring scveral examples.

For our first example we take the casy problem

48 -2 =[]

To solve this problem we have to determine how many twos
must be subtracted from 48 to reach 0. Since it would take a
long time to subtract the twos onc at a time we use our know-
ledge of multiplication to shorten our work. For instance, we
know that 2 x 10 = 20, so that if we subtract 20 from 48
we have actually subtracteu two 10 times. After doing this we
have 28 left. Thus we can subtract 10 twos again to get 8.
Finally since 2 x 4 = 8 we subtract 4 more twos to reach 0.
Our work can be written down like this:

No. of twos
48  subtracted

—20 10
28 "
—20 10
8
—8 4

0 24 = total number of twos subtracted
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To find the quotient 48 - 2 we now add the number of twos
that were subtracted from 48. Since this number is 24 we have
48 +~2 =24

The work in solving this problem could have been shortened
if we had noticed at the beginning that 2 x 20 = 40, and had
subtracted 40 from 48. This gives

No. of twos
48  subtracted

—40 20

8

— 8 4

) 94 = total number of twos subtracted

When we solve division problems this way we usually try to
organizc our work more cfficiently, One way of doing this is as
foilows:

9)48
—40 20
8

-8 4
0 24

Here we wrote the number of twos subtracted to the right of
each subtraction. We then added these numbers to obtain the
quoticnt. Another way of organizing this work is to write the
number of twos subtracted at cach step above the 48, We then

have
4
20}24

2)48
—~40
T8
—8
"0

Finally, we can shorten this process one more step by making
usc of the place value system, We agree that the places directly
above the digits in 48 will have the same place value as they
have in the number 48. Thus the place above the 4 is the tens




Procedures for Multiplication and Division 195

place and the place above the 8 is the ones place. Then instead
of writing 20 above the 48 we just write a 2 in the tens place
above the 4, When we do this we get the familiar pattern

24

2)48

~—

1 |'
olocoo SI

As our second example we consider the problem
960 + 30 =[]

A pupil just learning division might use the fact that
10 % 30 = 300 to solve this problem in the following way:

No. of thirties subtracted

960 10
~300
660 10
—300
360 10
—300
~ 60 2
— 60
o0 32 = total number of

thirties subtracted
There is absolutely nothing wrong with this solution, However,
it is longer than it need to be. If the pupil happencd to notice
that since 3 x 3 =9, 30 x 30 =900 he could have got the
answer much faster, For then he could write

No. of thirties subtracted

960 30
—900
© 60
—60 2
0 39 = total number of

thirties subtracted.
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When you teach division to children you should not expect
them to begin by solving problems in the fewest steps possible.
At first they will be cautious and take many steps. This is
actually good since it helps them to learn that division can be
considered as repeated subtraction. But as they continue work-
ing problems they will become more confident and get answers
faster, Only when this happens should they be made to organize
their work in the short form using the fewest number of steps.
For instance, the pupil who solves 960 — 30 = [] by writing

960
-900 30
60
—60 2
0 32
is recady to put his work in the form
2
032
30)960
—900
60
-60
0

Once he completely understands this method he can go on to
the final form

32
30)960
—900
60
—60
)
ExERrcise 17-5
Solve each of the following division problems by the method of
repeated subtraction. Then write the solution in the short form
using the fewest steps possible.

1. 273 =3 2. 445 =5 3. 644 + 7
4. 840 = 20 5. 50,250 = 50 6. 41,200 = 40
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7. 3235y, + 4y 80 12,4304, =+ 305, 9. 2,420, = 204y,
10, 214,200y, - 3004,

17-6 Division by the method of repeated subtraction
(continued)

In the last section we used the method of repeated subtraction
to solve easy division problems. We now illustrate how this
mecthod can be used to solve harder problems as well,

Example

Find the quotient 96,369 = 21,
When solving problems like this a few mental computations
can often save a great deal of work. Thus, in the present case,
if we notice that 21 x 4,000 = 84,000 while 21 x 5,000 ==
105,000 we can begin the solution by subtracting 21 x 4,000
from 96,369. This gives

21195,369
—84 000 4,000
12,369
Next we notice that 21 x500=10,500 while 21 x600=12,600.
Since 12,369 is less than 12,600 but greater than 10,500 we now
subtract 21 x 500 from 12,369. We then have

21)96,369

—84000 4,000
12 369

—10500 500
1869

Continuing in this way we obtain

21)96,369

84000 4,000
12 369

—10500 500
1869

—1680 80
189

— 189 9

0 4,589
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Thus the quotient is 4,589. When these computations are
written using the short form they appear as follows:

4 589

21)96 369
—84 000
12369
—10 500

1 869
—1680
189
—189
)

At tLis point it is a good idea to check the computations by
multiplication. The above result says that

96,369 = 21 = 4,589

But since division is the inverse of multiplication this equality
will be true if and only if

96,369 = 4,589 x 21

Thus to sce if the answer is correct we simply multiply 4,589
by 21. We get

4 589
x21

4589
9178
96,369
Thus all is well. When you teach division you shonld strongly
encourage your pupils to check their answers this way.

Exercise 17-6

Solve each of the following division problems and check the
answers by multiplication,

1. 6,528 17 2. 60,974 = 86
3. 69,174 = 5¢ 4. 74,672 = 359
5. 351,203 = 73
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Chapter 18
INTRODUCTION TO FRACTIONS

18-1 Introduction

Every day cach of us uses numbers which are not whole
numbers. We talk about such things as

(a) one-half of a loaf of bread,
(b) three-quarters of a pound of meat,
(c) two-thirds of a cup of sugar.

The words ““one-half”, “threc-quarters”, “two-thirds” are
names of numbers. These numbers are called fractions, In this
unit we shall learn what fractions are and how they arc used in
arithmetic,

As you know, many pupils find fractions difficult to under-
stand. Often they can solve problems involving fractions only
by using complicated rules which they have memorized. Actu-
ally there is no need for this since the arithmetic of fractions
can be explained just as clearly as the arithmetic of whole
numbers. But to do so it is very important that pupiis first
become really familiar with the idea of a fraction., They must
understand what a fraction is, and what its propertics are
before they begin to add, subtract, multiply and divide fractions.
Thus we shall spend the next two chapters discussing the ideas
nceded to understand fractions. Once this has been done the
arithmetic of fractions hecomes quite casy.

18-2 Names and symbols for fractions

In English there are special names such as “onc-half”, “onc-
third”, and so on to describe parts of objccts. Most primary
school children know some of these names. For instance, they
talk about onc-half of a picce of sugar cance, or onc-half of an
orange, and know what this means. T'hey realize that the word
“one-half” refers to one part of an object that has been divided

into fwe EQUAL parts. For them “onc-half” means one of fwo -
200
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equal parts, or, briclly, one of fwo. In the same way they may
use the word “one-third” to speak about one part of an object
that has been divided into three cqual parts, or, one of three.
Before we go on to talk about the number concepts behind these
names we take a closer look at the names themsclves.

We have said that the name “one-half” stands for the idea of
choosing one of fwwo cqual parts. The following picture illustrates

One of two
One-half

In the picture we have shown a 1cctangle divided into two
equal parts, onc of which has been chosen. The chosen part has
been shaded.

At this point we ask if there is an casy way of putting into
symbols the idea represented by this picture. As you know, there
is. We simply write the numerals 1 and 2, and separate them
by a stroke. T'his gives § or 1/2. Both of these symbols are used
since both make us think of the basic idea: one of fwo cqual parts.

To summarize:

We think: one of two cqual parts
We say:  one-half
We write: § or 1/2
Now suppose we think of an object divided into three equal

parts. We then say that each part is one-third of the object, and
we write §. This time we have the following picture:

One of three

One-third

.,}
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Continuing in this way we think of objects divided into 4
equal parts, 5 cqual parts, and so on. In the casc of

4 cqual parts cach part is called one-fourth

bE) bR) » bR L3 3 one:ﬁﬂh

6 ”» I} ’ ” » one-sixth

We represent these names by the symbols 1, 4, 4, etc. Finally,
in speaking about onc-fourth the special name one-quarter is
somctimes used.

We also want to be able to talk about chcosing more than
onc part of an object that has been divided into equal parts.
For example, suppose a piece of sugar canc had been divided
into two equal picces to be shared between two children and
then onc of the children ate both pieces. He ate fwo-halves of the
sugar canc. Thus when we choose fwo parts of an object that has
becen divided into fwo cqual parts, we have chosen fwo-halves of
the object. We write this as £, and represent it by the picture

Two of two
Two-halves

By using objects divided into more and more parts we can
go on like this as long as we please. The following pictures
show what happens:

One of three Tieo of three Three of three
One-third Trwo-thirds Three-thirds

1 2 i
) ) E]

H0 B ENE R

N 7N DN

One of four Two of four Three of four Four of four
One-fourth Tiweo-fourths Three-fourths Four-fourths
L 1 A A

t q { q
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18-3 Pictures that show fractions

When children first learn about fractions they should be
shown many pictures. Here are some that you might use in your
class,

A cake is cut into 8 equal picces and I take 5 of them. I have
% of the cake,

There arc + girls and 1 boy. The boy goes away so 1 of the
children have gone away.

k/&
R

7\
»

There is a sct of 6 buffalocs. Some lions chase 2 away so that
% of the buffaloes have gone away,

= I
=T

There arc 27 children in the class. One child is away so
#7 of the class is absent. Yesterday no children were away so
there were 5% absent.

Children can picture fractions for themsclves by folding
paper. One piece of paper can be folded to show § and 4 and &.
In cach picture below the shaded part is being folded along the
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dotted line to fit behind the unshaded part. First the whole is
folded into 2 cqual parts.

EY

N

The § picce is folded again to show § of the whole picce.

-0 —C

Fold
here.

If you open the paper out again after each folding you can
show that

2 halves equal 1 whole
4 fourths cqual 1 wholc
8 cighths equal 1 whole

In other words, 2 x:=%=1
8 Xt =58=1]

The picture looks like this:

-
-

N =2
&
B
I
PN

-
-
-
Y

[=-Ted
o

[}
[s=X
o=
0©'—
-]
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Notice how well thesc pictures illustrate the following general
rule:

nX—-—=1]lor-=1
n n

for any counting number 2. In words thesc cquations say that
if an object is divided into » equal parts so that cach part is h

of the whole, then all n parts together give us the cntire object.
By folding picces of paper and drawing pictures you can help
pupils to discover this rule for themselves. It is important and
will be used later wken we discuss multiplication of fractions.

It is also helpful i5r children to sce that fractions can be
shown by using many different kinds of picturcs. Here arc some
shapes to show various fractions.

o

Pictures and paper arc uscful aids to understanding, but
real objects such as sets ol bottle tops, beans or berries are
better still. Or you can cut up clay cakes or sugar canc to show
fractions to your pupils.

Exercise 18-3
1. Shade cach shape to show the fraction written by it.

() (b)
_—
(c) (d)
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2. Draw pictures of scts to show the following fractions:
a. ¢ of 8 cranges b, 2 of 6 chickens ¢. 2 of 10 buns

3. What part is shaded in each of these pictures?

w

k NN
AXNAN

18-4 Names of fractions (continued)

We have scen that the name “one-half” stands for one of two
cqual parts, and is written in symbols as . In the following
picture we have divided cach of three bananas into two cqual
parts and have shaded onc of these parts. Each shaded part is
one-half of onc banana.

:
-

<%z
<z =
g

Suppose someone gave you all three shaded picces. You
would then have three half bananas, or simply, three-halves.
Just as we use the symbol } to represent one-half, and the symbol
% to represent {wo-halves, we use the symbol 2 to represent
three-halves. The number above the line tells iow many halves

you have. It is called the NuMERATOR. The number below

Ni=  Nla
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the line tells that there are two equal picces in each whole
object. It is called the pENOMINATOR,

We can also represent the idea of choosing three-halves by a
picture of the sort used in the first section of this chapter, This
time, however, we start with fwo rectangles, both of the same
size. Divide cach into two equal parts so that cach part is onc-
half of a whole rectangle. Now take three of these parts, as shown

below, to get three-halves.

Three-halves

[

By using morc and more rectangles, and shading more and
more picces we can represent four-halves, five-halves, and so on.

Iour-halves
4

B

Five-halves

2

Fractions such as 1, 4, 13 whose numerators are /ess than
their denominators arc called PROPER FRACTIONS because
they arc always less than 1 whole. Fractions such as 3, 4, 22
whose numerators are grealer than their denominators are
called IMPROPER FRACTIONS because they are always greater
than 1 whole. Actually there is nothing “improper’ about them
at all. However, since a single object cannot be divided into
more than 2 halves, or more than 5 fifths, ctc., pcople originally
felt that such fractions were a little strange. But we have alrcady
seen that by dividing two or more objects into parts we can

show improper {ractions just as casily as proper oncs.
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Every improper fraction can be written another way. For in-
stance, the fraction ¢ represents 1 wholc plus onc-half; that s,
% =1 + 4. This is shortencd by writing 1} in place of 1 4- 1,
In this form we speak of the MIXED NUMBER or MIXED FORM
of the fraction 1} because it consists of a whole number and a
proper fraction. Similarly & can be written as the mixed
number 1} since 1 = 2,
Exercise 18-4
1. Draw pictures that show cach of the following fractions:

a4 k2 ot doat

2. Write cach of the fractions in Question 1 as a mixed number,

3. Draw pictures that show each of the following mixed numbers
a, 1} b. 24 ¢ 1% d. 33

4, Write cach of the mixed numbers in Question 3 as an im-
proper fraction,

18-5 Fractions and division

In this scction we shall show how fractions arise when we
try to solve division pro®lems. If you think about it, this is not
surprising. TFor, as we lLave scen, the idea behind fractions is
related to the idea of separating or dividing objects into parts of
equal size.

We begin with the simple division problem

6 ~-2=[]
Onc way to solve this problem is to rewrite the equation as
2x[J=6

and then ask what number must be put in th = box to get a true
sentence. We do this so that the pupil who krows only about
multiplication can find the answer. When Le rays that the
answer is 3 because 2 < 3 =: 6, we tell him tli 1t in finding this
answer he has divided 6 by 2. We then wrue the equation

6+-2=3
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and draw pictures to show the pupil what this means. One of
the pictures we draw looks like this:

@ @ | 2| |e
Q @ @ @ D) @

This picture shows that if we remove clements two at a time from
a sct of 6 clements we will get 3 subsets of 2 elements cach. Thus
6 +2=3.

In this example the problem had a whole number answer.
But suppose we change the problem to read

7+2 =[]

What do we do then? If the pupil now tries to solve the cor-
responding multiplication problem

2 x[d=7

he will quickly find that he cannot give a whole number
answer. For if he starts with a set containing 7 elements and
begins removing them 2 at a time he will get the following
picture:

Y

2| o) @) o
2| @ o

There are 3 scts of 2, and 1 clement remains at the end,
Children first learn about problems like this by using remain-
ders. They say

7 - 2 = 3 remainder 1]

But when they do this they have not really solved the problem.
What they have done is to divide 6 by 2 to get 3 and then stop-
ped. The 1 was left undivided. Although there is nr thing wrong
with this it still does not tell what seven divided by two is,

To bring the pupil to the point where he can solve this
problem completely we must get him to look at it differently.
As long as he keeps trying to remove whole objects 2 at a time
from a set of 7 he will never be able to remove them all, Thus
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he will never finish the problem. To help him change his point
of view it is a good idca to change the problem a little, as follows.
Ask him todivide 7mangocscqually between himselfand another
pupil,and tcll you how many mangocs hegets. Now he is almost
certain to produce the answer. He wil! say, “I get 3 whole man-
goesandonc-half amango”, He thinks of cutting the last mango
in half and giving himself one of the pieces. He does this
because hic knows that mangoes can be cut in half, He didn’t do
it with the original problem 7 + 2 because no one had told him
that whole numbers can be “‘cut in half”,
To help him, draw a picture like this:

&
=

There ace 7 objects, and he is to get one-half of each. How
many docs he get? Seven halves.
You can also draw the following picture:

ooo| [gaE
© 00 slg)e)
O S|

Onc srt of 7 7 sets of 2-halves cachi

‘T'his shows that to divide a sct containing 7 clements into 2
cqual subscts we can remove halves two at a time. We get 7 sub-
sets of 2-halves cach. Thus 7 + 2 = 1.

We now show this with equations. We begin with the division
cquation

7+2=[]
and the corresponding multiplication equation

2x[0=7
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"This equation tells us to put a number in the box so that twice
that number cquals 7. Since we are multiplying by 2 we try to
‘ill the box with a certain number of kalves. We can show this by
writing the equation

2 XA -halves = 7

But when 7 objects are divided into halves we get 14 halves.
Thus we can replace the 7 in this equation by 14-halves. This
gives
2 X A -halves = 14-halves
Our problem now looks like
2 XA =14

"The only difference is that the A and the 14 now refer to halves.
Since we must put 7 in the A to get a true sentence, we must
put % in the box to make 2 x [] = 7 a true sentence. This
shows that

7+2=1

Notice that now there is no remainder because the division is
complete.

We have gonc through this problem very slowl* because you
will have to go very slowly when you explain it to your pupils.
You will also have to give many problems like this until you are
surc the idea is understood. Here arc a few more problems of
this typec.

Problem

8 picces of candy are to be shared between 3 children, What
is cach child’s share?

This time the answer must be in thirds because there are 3
children. The division cquation is

8+3=0]
The corresponding multiplication equation is
3 x[]=8

We now write this equation in thirds as
3 x A -thirds = 24-thirds,
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"To make this a true sentence we must put 8 in the triangle.
This shows that [] = &, Thus

8 -3=2%§
Each child gets & or 2§ picces of candy.

Problem

Kwesce has 12 crayons, How many children can get 5 crayons
cach?

The equations are

12+-5=[7] or 53x[]=12
5 x A-fifths = 12
5 x A\fifths = 12
Thus O 5x2—12
and 12 -5 =12

The question was, how many children can get 5 crayons cach?
‘The answer is 42 or 22 children. This is not a very realistic
problem, and here the answer would be better with a remainder.
‘Two children can have 5 crayons cach and there will be 2
crayons left over. This shows that it is better to usc sharing
problems to explain fractions when you first introduce them to
children. You can cut up a cake or a banana but not a child.

By now you will sce the pattern that links the answer with
the question. Here are some more cxamples of division equations

2 +-7=32
2-8=12
8 -5=4¢

100 = 101 = 189

In general, if @ and b arc counting numbers, then a + b =

R

Exercise 18-5

Solve the following division problems giving cach answer in 2
ways, as a fraction and as a mixed number.

172 = 7 2. 13 =4 3. 96 =6
4, 147 = 24 5. 2,176 = 322 6. 625 = 10
7. 83 = 83 8. 1,215 - 100
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9. Give a word problem for 1 and 2 above. Make vour
problems realistic,

10. Explain why 1 = 3 =

S

11, Explain why 8 -5 =

Draw a picture to show the meaning of the following problems
and write the answer to each in words:

12. How many oranges will you reccive if you share 13 oranges
among yourself and 3 {riends?

13. Kwese gives out 12 pencils to some children. How many
children can have 5 pencils cach?

18-6 An Example

We now consider another type of problem which leads to the
idea of a fraction. This time the problem involves comparing
the lengths of line segments.

Suppose we are given the line segments shown below. We
can imagine that these scgments represent two sticks.

. A
I -
B

1 !
¢ 3

Suppose someonc tells us that segment B is 1 unit long, and then
asks us to find the Iength of A. For instance, B could be a ruler
lfootlong, oraruler1 yard long. The unit of length we use really
does not matter.

To solve the problem we must find the number of segments
of length B that are nceded to get A. Thus we start by laying
B off along A as many times as possible. The following picture
shows what happens:

— : i ' {
—— Y A Y L Y *—J‘
B . B B -
The picture shows that A is three times as long as B. Thus
A=B+B-+B or A=3B

We say that A is 3 B-units long, or that the length of A is 3,
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All this is simple enough as long as we can mecasure A exactly
by laying B along A a certain number of times. But supposc this
does not happen. Suppose, for instance, that A is the segment
shown in the following picture:

A

!
L]

B B ,

1 i
¥

[ -
'

Here A is longer than B, but shorter than 2B. We cannot
measure A exactly by using units of length B. However, we can
say that the length of A is between 1 and 2. This suggests that
we try to measurc A by using part of the B segmeant instead of all
of it, But what part of B should we use? The first thing to try is
to cut B into two cqual parts, and use one of them to try to
mcasurc A. In other words we now try to vse onc-half of B as
our unit of length. If you try this with the A scgment shown
above you will find that A can be measured exactly by laying
one-half of B 3 times along A.

A

3B 3B iB
Thus A is 3 times as long as £B. In this case we say that the
length of A is 2.
It is casy to give examples like this. For instance, in the follow-
ing picturc A is shorter than B. It is also longer than 3B, This

—
time we cannot measure A exactly by using onc-half of B as our
unit of length., We must divide B into more picces—all of cqual
length—to have a smaller picce of B to measure with. We try
dividing B into three equal picces. Then each piece is one of
three cqual parts of B, or one-third of B. Using one of these picces
A can be mcasured exactly by laying it two times along A:
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‘Thus Ais two iimes as long as $B. Wesay that the length of A is 3.

ExercisE 18-6
Measure cach of the following segments in terms of

—2
I. 1} }
2, b—
3. 4
4. | —

18-7 The Number Line

Suppose you wanted to describe the location of point P on
the number line shown below.

T =<

2 3

0 1

P lics somewhere between 1 and 2. To locate P precisely we
must mcasure the segment from 0 to P in terms of the unit
scgment from O to 1. But this is the very problem we considered
a moment ago. To solve it we divide the segment from 0 to 1
into parts of cqual length and use onc of them to measure with.
Suppose we take one-half of the segment from 0 tol. The follow-
ing picturc shows what happens:

o

-
»-(-'U

N

w

A
‘/

1 1 1
2 2 2

We reach point P in three steps. Thus, exactly as before, we say
that P is the point “‘three-halves”, which we write 2. This tells
us precisely where P is found on the number line.

By using onc-half of the unit segment from 0 to 1 this way we
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can locate and name many new points on the number line. The
following picture shows some of these points:

-0 1 2 3 a 5
-~
0 2 2 3 R} % 6 7 8 9 10 11
2 2 2 2 2 2 2 2 2 2 2 2

In cach of the symbols 2, 1, 2, 2, etc., the number on top, the
numerator, tells how many units of length onc-half must be
used to get to that point, starting from 0. For instance, ¢ is the
point zero units of Iength 1 from 0. This is just the point 0 again,
Thus ¢ is another name for 0. Notice that 3 i3 the same puiniasl,
that 4 is the same point as 2, and so forth, Can you explain why
this happens?

If we now do the same thing, using one-third of the original
unit of length instead of one-half, we can locate and name still
more points on the number line. This time our picture is

0 1 2 3 4 5 6
| 1 " 1 5 I} 1 ; i | } i 1 3 1 1 1 1 I ‘ -
| T ¥ T T ¥ T T T T T 4 T T T T T Y T T T
0 i 2 3 4 b 67 8B 4 10 4112 13 14 15 16 17 18 19 20
3 3 3 3 3 38 3 3 3 3 3 33 3333 33T os 3

Continuing in this way using one-fourth of the original unit,
one-fifth, ctc., we can locate and name more and more points
on the number line.

Exercise 18-7

L. Draw the number line and mark the points from 0 to <.
Divide your unit of length into fourths, and locate as many
points as you can on your number line.

Z. Show cach of the following points on the number line you
drew for Questioun 1,
a. A =13 b. B == 31 c. C =21
d.D =1

—

e

18-8 The number line (continued)

We can usc the number line to show two very important
propertics of fractions. Draw a number line about 5 inches long
and letyourunit of Iength he 4 inches, Mark the points 3,1, 1, Ta
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Your picture should look like this:

- ¢
0o 2

16

L
el

te.=4
-—

i

T

1.
4

o -3

Now draw another number line of the same length, but this
time let 4 inches represent the distance from 0 to 4. Mark the
points i)z, ¥, 1%, +i5. Each of these points is half way between
0 and the last point marked on your number line. Thus your
picture is

L.
r

A

L
T
A

2 16

s ohe
W, 1

ey
O 2% 125 o4
Now supposc you continued doing this. You find that you caa
keep on going as long as you wish. Every time you locate a point
you can go on to locate another point. This new point is always
half way between 0 and the last point you located. Notice that
you nmever reach O this way. This shows that THERE 1s NO
SMALLEST FRACTION. Indecd if you are given any fraction
different from zero you can always locate it on the number line
and then find a smaller fraction by moving half way to 0.

Actually, we can say more than this. For suppose we arc given
any two fractions. Locate them on the number line, and then
find the point half way between them. When this point is named
it will give us a fraction befween the two fractions we staried
with. Thus

BETWEEN EVERY TWO FRACTIONS THERE IS
ANOTHER FRACTION.

In Chapter 20 you will learn how to find such a fraction.

From this we sce that the sct of fractions is non-cnding. There
is no Jast clement in the set, and between any two fractions there
is a non-ending sct of intermediate fractions.

Exercise 18-8

1. Find three fractions smaller than ;1. Show these fractions
on the number line,

2. Find five fractions which are different from 0 and smaller
than §. Show these fractions on the number line.

3. Find five fractions between 1 and 1. Show these fractions on
the number line.
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18-9 Order properties

When you lcarned about the number line carlier, you saw
that it shows the whole numbers in their natural order, starting
with 0. You saw that the statecment 5 < 8 means 5 is to the left
of 8 on the number line. Another rcason why 5 is less than 8 is,
of course, that a set of 5 things has fewer members than a set of
8 things.

You can do the same sort of thing with fractions. Look at the
number line drawn below, where cach unit piccc is divided into
three cqual-sized parts, and the {ractions are labelled

0 1 2
_—s 4 I3 1 i L L L L L S
€t } } } $ } t : >
0 1 2 3 4 5 G 1 8
3 3 3 3 3 3 3 3 3

Irom this you can say that 4 < 3, because 4 is to the left of 3
on the line. Notice that § < % can also be pictured in terms of
sets. If a thing is divided into thirds, the set of 1 of those thirds
has fewer members than the sct of 2 of those thirds.

In a similar way you can say that one fraction is greater than
another, On the number line you can sce that > 4, because %
is to the right of 4. Morcover, by looking at the number line,
you can see that 5 is greater than 4 and less than 42, and thus 5
lics betwceen 4 and 18,

Exercise 18-9

In Questions 1, 2, 3 draw a number linc using 2 inches as the
unit of distance.

1. Mark the points which represent & and {, and then say which
of the following statements is truc:

i<i §=1 &>1
[{fint: Mark the line to show twelfths.]

2, Mark the points which represent & and &, and then say which
of the following statements is truc:

|,]
p<t 2=8 1>

3. Mark the points which represent § and f;, and then put the
correct sign in the box:
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4. Which is greater

a. ori? b. & or 3?

c. torfl? d. %or#?

e. iy or s? f. 258 or 3907
a

a ) X .
5. Let 7 and - be fractions with a difference from 0 and b < ¢,
¢

Which of the following statements is truc?

a a a a a _ a

P Al Al

6. Explain how you could make a number line to demonstrate
fractions in a classroom without a blackboard.



Chapter 19

PROPERTIES OF FRACTIONS

19-1 Egquivalent fractions

In the last chapter you probably noticed that therc are
different ways of writing the same fraction. We can show why
this happens by looking at the number line.

Consider the point P in the following picture:

-l
-~

S
>

e+ QO
P o)

IEFNE Y

P is halfivay between 0 and 1. Therefore it is the point “onc-
half” on the number line, and has been labelled 1.

But P can be named in many other ways as well. For in-
stance, il we divide the segment from 0 to 1 into four equal parts
and label the points starting at 0 we have the picture

A

-
o
3
4

o
E X --<—-U

PN N
Hiad o

.
]
[¢]
4

This time P is the point “two-fourths”. But P has not changed.
Only its name has changed. Thus “onc-half” and “two-
fourths™ are different names for the same point on the number

linc. We describe this by saying that § and 2 are equivalent

Jractions.
Our next picture shows that P can also be labelled 2:
P

0 ' 1
—a i il | ] L ] 4 —
) T T T 1 T T T Cl

0 1 2 3 1 5 6

6 6 6 6 6 6 6

This gives us three names for P: 1, 2,3, We say that these
three fractions are cquivalent.

If we continuc like this, dividing the segment between 0 and 1
220
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into more and more picces all of the same size, we can label
P as 4, 4%, 4%, and so on. There is no end to the list of fractions
which name the point P. If we collect all these fractions
together we get the sct

{{') ':"": 3) ':ia .. '}

All of the [ractions in this sct name the same point on the

number line. We therefore say that they arc equivalent fractions.
The following pictures show several of these fractions at once.

Such pictures help children understand the idea bchind

cquivalent fractions:

1
_AQ 1 " L d 3 ; : 1;
+ t ‘ ‘ }
-t —C
ST ‘(i T ’ o B 2

[ﬁalves P ) 2

Fourthe 0 T 1 2 3 g

[Fourlhs f 4 L %

. I R S S 1 5 e 7 8

lElghlhs” & & &5 8l a 8 g g

0 1
<t ———————>
e ) B -

l Halves o 3 :
P O 3| 4 s 6
T N S S S O O R A Y T PR

rTWBIfth 12 a2 12 qa a2 a3 || o1z 12 o a2 g3 13

‘T'wo fractions arc EQUIVALENT when they name the same
point on the number linc.

Since {4 and 2 arc at the samc point on the number linc we
write § = 2. For the same reason we write § = 2, 1 = 4, and
so on. Thus

-

)
elw
@l

Now that we have scen why the point “one-half” on the
number line has many different names it is casy to show that

the same thing must happen at every point on the number line.
BOI—Q
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For instance, 4, %, 3, ¢, . . . all describe the same point on the
number line. We thercfore write

We say that all of these fractions are equivalent. Similarly, the
fractions in the sct

{57 ’;‘i’ 'un‘) TR;:') L }
are cquivalent because they all name the same point on the
number line,

0 1
—————— e
AN \
. 0 1 2 3
'Th»rds 3 3 3 3

<
>
=

I o G 6 b 6 6 G

o T2 a3 alTs 6 7 |8 9 0 i
lTwthhs LR ENS AN VI 000 BN r R IS R L

0 1
.—L‘ll 4 + 1 ] 1. 1 i L
- \ ~ P ool
: 0 1 2 3
IThnds 3 3 3
: Q 1 2 3 ] 6 [} 7
, Ninths ) ] 5 Y y ) 9 9 s 9

Exercisk 19-1
L. Find at lcast two frasticns which name the points P and Q
on cach of the following number lincs:

P Q
(@) et s
0 p a 1
(b)—*(:)::::!:::%::::::.,‘::::':f‘:%‘
R
(c) - —p 1 bt ' >
10 p a 1
Y v
d) <— e S S macos mneey a2
() 25 26
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2, a. Draw a picture of the number line which shows that the
following fractions are cquivalent: 2, {;, 1%.
b. Without showing any more points on your number line
find three more fractions which are equivalent to 2.

3. a. Draw a number liiie from 0 to I and mark it to show
halves, thirds, and sixths, Write down all sets of equiva-
lent fraciions you find on this line,

b. Without showing any more points find a fraction with
denominator 12 in cach set of equivalent fractions on this
line.

4. Find five fractions which are cquivalent to cach of the
following fractions:
a3 b} c¢i b

5. We saw above that all of the fractions in the set

1 2 98 4 }
L2y 4o YrEy v

are cquivalent. What are the next five fractions in this sct?

Which of the following fractions belong to this set?

25 201 JRULE N anno
A 3y b' 4270 c. 103¢ d' ¢U00

19-2 Equivalent fractions (continued)

We can also illustrate the idea of equivalent fractions by
looking at problems from everyday life. Consider the following
examnple.

A man had a picce of sugar canc which he cut into 4 equal
pieces for his children. But only 2 of the children came to get
some. Thus cach child got 2 picces of sugar cane. We can write
this as % since cach got 2 fourth parts. The following picture
shows this:

| - D C ) ( D
. J

LY

BN =
(N}

When you look at this picture you sec that cach child got the
same amount of sugar cane as he would if the man had cut the
picce into two equal parts and had given each child onc of them.
In that case the picture would have bren

C D C —D
\ o | — )

N}
N~
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This shows that the fractions } and 2 both tell how much sugar
canc cach child was given. They describe the same amount of
sugar canc, Thus they are cquivalent fractions and we write
T T4

Now suppose that the man had 6 children instcad of 4.
Then he would have divided the sugar cane into 6 cqual pieccs,
and the 2 children who came to get some would have heen
given 3 picces cach. This time the picture is

D ( D C_—_—_—O C— D C_—1n
- o

C
W [

Y
3
6

<

But each child’s share of the sugar canc is still the same.
Therefore 2 is also cquivalent to } and to 2, and we write

— 2 - 3
b=3-=1

Notice that although the total amount of sugar cance given to
cach child was the same both times, in the first case each
reccived two picces while in the second case each received
three somewhat smaller picces. In the first case each received
2 fourth parts; in the second case each received 3 sixth parts,
This is one reason why we say that the fractions & and 2 are
“equivalent” rather than “cqual”.

In exactly the same way we can show that 4 is equivalent to
%; that % is equivalent to §; and so on. In other words all of the
fractions in the set

{_l_ 2 0 4 1
234> Er By ¢ 0 o

arc cquivalent. The following picture shows all of this at once.

| ONEHALF ]

V2222222207 11
24/ N N\ l 13
V2% I
7>)\%%\ 1 I
AN T T T T 1
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By dividing ohjects into parts like this we can show that
every fraction has many other fractions which are equivalent
to it. Morcover we can also find a rule for changing a fraction
into any one of its equivalent fractions.

Take the fraction % for cxample. By cutting a circle into 3
equal pieces and shading 2 of the pieces we get a picture which
represents £,

Now suppose cach piece of this article is cut into 2 cqual
picces. Then there will be 6 picces in all, and 4 will be shaded.
Thus the shaded portion of the circle now represents the
fraction 4. This shows that § and 4 are equivalent fractions.
Notice that in going from # to 4 both the numerator and
denominator in § were multiplied by 2. Hence this pair of
cquivalent fractions can be written

2 2x2
3 3x2
If we do the same thing again, this time cutting each piece
of the original circle into thirds, there will be 9 picces in all, 6
of them shaded. Thus £ is equivalent to £, and we have

2_2><3
3 3 x3

As we keep cutting the original picces further and further we
get more and more fractions cquivalent to %, For instance,
when each picce is cut into fourths we get

2_2x4_38

3 3x4 12
When cach picce is cut into fifths we get

2 _2x5 10

3 3x5 15
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In general, i # is any counting number we have

2 2xn

3 3 xn

The number » tells us how many picces we have made out of

cach original picce of the circle. The following picture shows
what happens:

ExErcist 19-2
1. Draw circles divided into picces to show that the following
fractions arc equivalent:
?1" 'Qﬂ" 'f"-.?
Also show this on the number line,

2. What cquivalences for fractions are shown in the following
pictures?

3. What equivalences for fractions arc shown in the following
pictures?
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DRERI r@?fﬂf“ 0 00 O]
o|jollollo 0Jlo)lo 0O0O0O0
ollojjo]|o ol[o)[! E O 00O

lolojlollo) LQJQJQJ o |0oo0o0 o0

4. What L(Illl\ alences for fractions are shown by the [ollowing
pictures?

a. Find all equivalent fractions suggcstcd by this picture
when you compare the shaded plCCCS with the entire
rectangic. [Hinl: There arc 4 fractions in all.]

b. If the arca of the entire rectangle is 70 square units, what
is the arca of the shaded part?

c. If the arca of the shaded part is 25 squarc units, what is
the arca of the entire rectangle?

6. Find five fractions which are equivalent to ecach of the
following:

az bt cl} d 5} a1

7. Which of the following fractions are cquwalcnt to 4, and
which are not? Explain your answers,
812 34 28 44 £.000.000

12
676 15 YT 393 3,000,000
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8. Supposc you are told that on a certaiu farm onc-fourth of
the trees arc orange trees, and the rest are banana trecs,
You could show this by drawing cither onc of the following

pictures,
Picture 1, Picture 2
Orange trees Orange Banana trees
Bet [O © 0O C treegs ——
(00 0O0C (O O O @)
Banana trees @ OO0 0CcC [O OO Cﬂ

(0000 (0 0 O O]

[~~~ A

In the first picture ycu say to yourself: “There are four
sets of trees with the same number of trees in cach set. I do
not know how many trees arc in any set, but one sct consists
of orange trees and the other three scts consist of banana
trees.”’

In the sccond picture you say to yourself: “I do not know
how many scts of 4 trees there are, but in cach set of 4 one is
an orange trec and 3 arc banana trees,”

a. Supposc there were 100 trees in all. How many arc
orangc trees? How many are banana tre.:s? What fraction
of the trees are orange trees? What fraction are banana
trees? (Express your answers in hundredths.)

b. Answer the questions in (a) when there are 600 trees.
Express your answers this time in six-lnindredths.

c. Could there be 750 trees on the farm? Why?

d. What cquivalent fractions are shown by this example?
Explain why these fractions are equivalent.

19-3 The equivalence property of fractions

In the last section we saw that if the numerator and deno-
minator of a fraction are both multiplied by the same counting
number we get an equivalent fraction. For cxample, 2 is
cquivalent to } because
142
3 %2

[o2R I N]
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. 1 x3 3
Similarly — " = . _Z=
T 33 9 3
arc all equivalent to J.
This rule works in the other direction as well;
6 6 =6 ]

616563

9 9+9 1

27 27 +9 3
and so on. Here we simply divide the numerator and denomi-
nator by a counting number which is a factor of both.

This property of fractions is known as the equivalence
property, and we now write it out in full.

THE EQUIVALENCE PROPERTY OF FRACTIONS

If the numerator and denominator of a fraction are both multiplied or
divided by the same counting number the result is equivalent lo the
original fraction.

This property is useful because it tells us how to find all
a

fractions which arc cquivalent to a given fraction, 3 This is

donc in two steps, as follows:
, o . . a .
Step 1, Divide the numerator and denominator of—[; by their

greatest common factor. This gives a fraction which is equiva-
a
b
possible. We say that such a fraction is in LOWEST TERMs.

Step 2. Starting with the fraction in lowest terms multiply
its numerator and denominator by 2, 3, <}, and so on. This gives
a

b

lent to - but with numerator and denominator as small as

the entire set of fractions equivalent to

Lxample

4

Lctz be $8. To put this fraction in lowest terms we start by
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dividing 28 and 42 by 2. This gives the equivalent fraction 14.
But the numerator and denominator of 14 can both be divided
by 7. Doing this we get 3. This is as far as we can go since 2 and
3 have no common factor greater than 1. Thus § is the fraction
in lowest terms which is equivalent to 28,

We now multiply the numerator and denominator of § by

2, 3, 4, and so on. This gives
2x2 4 2x3
3 %2 6 3x3 9 3x4

Thus the sct of fractions cquivalent to 28 is

6 2x4 8

TIRRR

—

Sometimes it is difficult to tell whether the numerator and
denominator of a fraction have a common factor. When this
happens you must break each number up into its prime factors.
Once this has been done it is casy to find the greatest common

factor.
Take £2% for example. We first find the prime factors of 225,

Since 225 is not cven, 2 is not a factor, Thus we begin with 3:
225 -3 =175 so 225 =3 %75
75 -3 =25 so 220 =3 x3 x25
25 +5= 5 so 225 =3 x3 x5 x5
Since all of thesc factors are prime numbers, we have finished
with 225. As for 252, we have
252 -2 =:126 so 252 =2 x 126
126 -2 = 63 so 252 =2 x2 x 63
63 -3 = 2] so 252 =2 x2 x3 x21
21 =3 = 7 so 252 =2 x2x%x3 x3 x7
225 3 X3 X3 x5
252 2 X2 X3 x3 x7
Looking at the numerator and denominator of this last fraction
we sce tha. 3 is the only factor which occurs in both. Since it
occurs twice, 3 x 3 is the greatest common factor of 225 and
252. Dividing by it we get

535 _§
2x2x7 28

Thus
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Thus £§ is the fraction in lowest terms which is cquivalent to

n

228
202°

Exercise 19-3

1.

2,

Find the set of fractions cquivalent to cach of the following:

a. ¢ b.? et dot e a)

a. I'ind the fraction in lowest terms which is cquivalent to
cach of the following:
() 55 () $3 (i) 343 (iv) &4 (v) 2808

b. Find the set of fractions cquivalent to cach of these
fractions,

a. Find the fraction in lowest terms which is cquivalent to 4.

b. Find all fractions cquivalent to 4.

c¢. Show the point on the number line named by these
fractions. What is another name for this point?

a. I'ind all fractions cquivalent to £,

b. Show the point ou the number line named by these
fractions. What is another name for this point?

Find the number to put in the box to make cach of the
following sentences true:

a i =4 b. iy =&

C Py =170 d. it =5

e gy =§ £ 4 =F5

Is it possible to find a counting number which makes cach of

the following sentences true? If it is, find the number. If it is
not, cxplain why,

8 _. O — .7
A 77 = g b. 5 =1z

15 . 656 18 __ 4
c 1% =174 d it =1

19-4 Tests for equivalent fractions

Two fractions are equivalent if they name the same point on

the number line. For instance, % and 2 are cquivalent because
they both name the point § on the number line. One way to
show this is to put both fractions in lowest terms:

g_2+2_1
4 4292 2
3 3=+3 1
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Since the result is the same both times, the fractions are
equivalent. Similarly % and $} arc cquivalent since
9 +3 3

9
12123 4
21 21 +7 3

28 28 +7 4
When written in lowest terms both of these fractions have the
same point in the number line. Thus they arc equivalent,
This method works for any two fractions, and gives us a way
of testing fractions for equivalence:

Two fractions are equivalent if they are the same when written in
lowest terms. If the fractions are not the same when written in lowest
terms, then they are not equivalent.

Although this test can always be used to tell whether or not
two fractions arc cquivalent it is difficult to apply when the
fractions involve large numbers. For instance, the fractions
143 and 555 are cquivalent, but it would be hard to show this
by the above test. For this reason we look for an casier way to
test fractions for cquivalence.

Consider the pair of cquivalent fractions & and 2. If we
multiply the numerator and denominator of 2 by 6 we get the
cquivalent fraction 3% If we multiply the numerator and
denominator of } by 4 we get the equivalent fraction 12. Thus
4 and § arc both equivalent to 3. They are thercfore equivalent
to cach other.

Why did we sclect 6 and 4 as the multipliers here? This was
done to obtain two fractions with the same denominator. For
once their denominators are equal two fractions will be equiva-
lent only when their numerators are also equal. In this casc
2 X 6 =3 x4, sothefractions 3 and { are cquivalent. This
gives us a very casy test to determine when two fractions are
cquivalent, We just multiply the numerator of the first fraction
by the denominator of the sccond fraction. Then we multiply
the numerator of the second fraction by the denominator of
the first fraction. If these two products are equal the fractions
are cquivalent. For example,

232212 x 6 =12, 3 x4 =12
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Thus the fractions 3 and # are equivalent.
Suppose we try this on somc other fractions in the sct
{%) ':’l" 3’ '§'> .. '}°
I><3:1X6=6, 3x2=6
ot 2Xx8=16, 4x4=16
=<35:3%x30=90, 15%x 6 =90
Both products are the same every time.
On the other hand, if we test £ and 2 this way we get

2><1:2%x4=8 3x3=9

‘Thus § is not cquivalent to . In fact, § is cquivalent to -#; and #
is equivalent to . But 4% is certainly not equivalent to ..
Thus £ is not equivalent to 3.

We have therefore devised a seccond method for testing
fractions for equivalence:
a c
= and -
b d

other hand, if «w » d is not equal to b X c, the fractions are not
equivalent.

Two fractions are equivalent if a <X d =b x c. On the

ExEercise 19-4

1. Use both of the tests given above to show that the following
pairs of fractions are cquivalent:

O PR b. 43, 4%
C. '3‘, ?g d. ?“g‘x '1711'7'
€. gu" "u‘_x'
2. Test the following pairs of fractions for equivalence:
a. ‘g" ‘182‘ b. %: g'}
c. b i} d. 34, &5
36 1

3. Show that 142 and 22% arc cquivalent fractions.

4. Is there a fraction which is equivalent to & and 4? Explain
your answer.

19-5 Fractions

We have seen that every point on the numberline can be given
many different names and can be represented by many different
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symbols. For instance, every onc of these symbols in the set
{'].", %’ ’3‘: 'ﬁ‘, o -}

represents the same point on the number line. But every point
on the number line represents a single number. Thus all of the
symbols in the above set represent different names for the same
number, This number is called a FRACTIONAL NUMBER, or
for short, 2 ¥racTION. Some of the names for this fraction
are ‘“onc-half”, “two-fourths”, “three-sixths”. But it also has
many, many meore.

In the same way “onc-third”, “two-sixths”, “threc-ninths”,
etc., all name a single fractional number since they all describe
the same point on the number line, This number is the fraction
represented by the symbols

4.
YTy e

1]

e
LK)

1
KB

It is important to realize that a fraction has many different
namecs and that cach of these names is represented by a different
symbol which we call a fractional numeral. Thus we have

ONE FRACTION
but
MANY NAMES
and
MANY SYMBOLS

At first it may scem strange to have so many names and
symbols for a single fraction. But as we have alrcady scen, the
same thing happens for whole numbers as well. For instance,
the number 10 can be represented by any one of the symbols

1 +9
2-+8
3+7

and so forth. It can also be represented by the symbols

11 -1
12 -2
13 -3
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‘Thus here too we find many different names and symbols for a
single number,

In talking about fractions we arc usually a little carcless and
say such things as “the fraction onc-half” when we really
should say “the fraction ore of whose names is onc-half”. This
causes no difliculty so long as we realize that “the fraction one-
half” has many other names as well. It is the same as “the
fraction two-fourths”, “the fraction four-cighths”, and so forth,
We only get into trouble if we believe that hecause these
names are different the numbers they name are different. This,
as we have seen, is fulse. In teaching children about fractions
you must keep them from making this mistake. You can let
them tulk about the fraction onc-half] and the fraction two-
fourths, cte. But you must be sure that they realize they are
talking about the same fraction cach time.

When we talk about the symbols which represent fractions
we are also a little carcless. Thus almost everyone says ““Con-
sider the fraction 4 instead of “Consider the fraction repre-
sented by the symbol 3. Here again there is no diflienlty so
long as you remember that ciflerent symbols can represent the
same fraction. Thus } and 2 are not different fractions; they arc
different symbols for the same fiaction. In fact, as we have scen,
cvery fraction can be represented by an infinite set of symbols.

19-6 Whole numbers as fractions

At the beginning of the last chapter we introduced the names
for fractions by looking at objects divided into cqual parts. For
instance we said that “onc-half” stands for the idca of choosing
onc part of an object that has been divided into two cqual parts,
We illustrated this by the picture

77/

-

At the same time we introduced such numbers as %4, 4, ete.
Here the pictures are as follows:
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7\

o
)

[

Thesc pictures show that

2 halves are the same as | whole
4 halves arc the same as 2 wholes
6 halves are the same as 3 wholes

Continuing in this way we find that every whole number can be
given a fractional name. The following picture shows this on

the number line:

e

1 3 4
-< : P S

It shows that the fractions 9, 2, 4, %, . . ., name the whole num-
bers on the number line.

We have scen that every fraction has many different names,
For example, consider 2. The first thing wc notice about this
fraction is that it is not in lowest terms. Both its numerator and
denominator are divisible by 2. If we do this division we get the
fraction }. Notice that - is in lowest terms. Now suppose we
multiply the numerator and denominator of - by 2, 3, 4, and so
on. This gives the sct of cquivalent fractions

W
RN

1 2 1

{’1‘) Wy '}) L] }
All of these fractions name the whole number 1 on the number
linc. ‘They arc fractional names for 1, and we write

The same thing happens for the fractions 4, £, and so forth,



Properties of Fractions 237

For instance, if we divide the numerator and denominator of 4
by 2 we get the fraction 2 which is in lowest terms. Using it we
build the set of equivalent fractions

y oo}

All of these fractions name the whole number 2 on the number
line. Thus they are simply different names for 2, and we write

{J‘v_ 4 8
TR Y

aio

Similarly,

3 8

J=3=8=3=...
— 4 — 8 12 __
d=4=5=21=.,.
and, in general,

n 2n 3n
N= - = — = — = -

1 2 3

for any whole number ».

Notice that in cach of the above lists the fraction in lowest
terms has a ' in the denominator, These are the fractions
b+ 4 4 ... In writing such fractions we usually omit the | in
the denominator. And when this is donc these symbols look
cxactly like the ones we ordinarily use for the whole numbers,

19-7 The question of zero

Consider the point 0 on the number line. By what we have
just said we can write

0=

o
wlo
wlo

In other words, cach of the fractionsin the set {8, 2,8, ... }isa
fractional name for 0. Let us sce why this is so.

Consider the fraction ¢, Among other things this fraction
represents the idea of choosing 0 parts of an object divided into
2 equal parts. How many parts do we have? Zero. The set of
parts chosen is the empty set. Thus £ is just another way of
naming the number 0. In the same way £, 8,2, . . . all name the
number 0.

We can also show this by looking at problems in division. In
BCI—R
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. a, .
general, we have seen that the fraction < is the solution of the

b
division problem
a-+b=[]
It is also the solution of the multiplication problem
bx[] =a

Thus 2 solves the equations

3+2=[] and 2 x[] =3
4 solves the equations

4+9=[] and 9 x[]=¢

and so on,
Now suppose we consider the equation

0+2=0
This time the corresponding multiplication equation is
2x[=0

Since the only number which can be put into the box to make
this a true sentence is 0, we see that

0+-2=0

Hence we again have & = 0. Similarly, § =0, % =0, etc. In
general, if b is any counting number,

0
3 =0

Finally, we ask whether a fraction can ever have 0 in its

. a .
denominator. Does 5 make sensc for a counting number 2? In

. . a C .
the first place, if we interpret g s meaning choose a piceces of

an object that has been divided into zero pieces” we see that we
are talking nonsense. For if you have an object—any object at
all—and divide it into pieces of equal sizc you will always have

. a. .
at least one picce. Thus the symbol G is mcaningless.
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We can reach the same conclusion if we look at the multi-
plication and division equations which would have to go with

the symbol -g if this symbol has any meaning. The division
equation is

a+-0=[]
the multiplication equation is

0 x[O=a

What number can we put in the box to make this a truc sen-
tence? Since the number « is a counting number it is different
from 0. Thus no number will work because 0 times any number
is 0.



Chapter 20

ADDITION AND SUBTRACTION OFT
FRACTIONS

20-1 Addition of fractions

If fractions are to act like whole numbers we must be able to
add, subtract, multiply and divide them. The first thing to
think about is what it mecans to add fractions.

Suppose you have a cardboard square which has been cut
into 5 strips of cqual sizc as shown in the following picturc:

Green Red

Supposc 3 of the strips arc coloured green and 1 is coloured
red. Then ¢ of the cardboard is green and 1 is red. Altogcether
# of the cardboard is coloured. We express this fact by writing

I S R §
'r»"{ 5 T

This cquation say: that if we add the 2 of the cardboard which
is green and the } which is red we get the 4 which is coloured.
We can also show this on the number line, as follows:

S
T y * + T t

0 % & 2 3

This picture shows that if we start with three-fifths and add one
morec fifth we get a total of four-fifths. In other words,

3 Ll =4
Ty T3

Next let us try to find the sum of £ and &:
240
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-

Counting the number of thirds which arce shaded in the above
picture we find that there arc 7 in all, This shows that

The following picture shows the same thing on the number
line:

2

3
e DN S
0 5 1 2 7 3
You will recall that addition on the number linc is shown by
marking off from 0 the distance corresponding to one of the
numbers, and then continuing to the .ight for a distance
corresponding to the other number. In the above picture we
marked the distance from 0 to 3 first. Then, starting at 3
we marked off an additional £. The final point reached is 7.

Thus

o n o 1

!
Ty Ty

(Do you recall the story of the cricket that did addition
problems for whole numbere by jumping along the number
line? The above picture shows that you can use this story to
illustrate addition of fractions as well as addition of whole
numbers.)

Notice that the addition problem § 4% = 2 can also be
written using mixed numbers, It then reads

d 15 =24

Children often find equations like this hard to understand. For
this reason you should always change mixed numbers to im-
proper fractions before you add. After the addition is com-
pleted you can write the answer as a mixed number if you
wish,
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For example, to add 1% and 24, we first write 12 as 1, and
p y [ ) [} [
2% as 14, Thus
13 +2¢ =7 + 18

L)

l-
[

Since 22 is the same as 41 we can also write
b b3

Either answer is correct,

By now you sce what the sum of two fractions should be
when the fractions have the same denominator. In the general
casc we have
a-c¢
b

In other words, to add two fractions with the same denominator
we add their numerators and leave the denominator unchanged.

When teaching children how to add fractions according to
this rule it is a good idea to usc word problems as well as
picturcs to help them understand what happens. Here are
two cxamples of problems you could usc.

a., ¢t _
Pty

Example

A child slecps 9 hours a day and plays for 4 hours. What
part of the day does he spend sleeping, what part playing, and
what part sleepiug and playing? Answer: He sleeps 2% of the
day and plays 3% of the day. Since of; -+ 4 = 13, he spends
47 of the day sleeping and playing.

Example
A teacher has a set of 15 crayons, One child is using 6 of
them and another child is using 5 of them. What part of the
set is being used by cach child, and what part by both together?
Answer: The first child is using 1% of the crayons; the sccond
child is using % of the crayons. Together they are using
15 "+ +'s = 14 of the crayons. Thus J1 of the sct is being used.
Exercise 20-1
L. Draw pictures using squares, circles, and the number line
to show cach of the following additions. Then do the prob-
lems and compare your answers with your pictures,



a. ¢ +4 =[] b. % + % =
¢ i+4=0 d 3 +3i=0
e. 13 + 12 = [] £ 21+ 13 =[]

2. Make up two word problems which you could use with
children to illustrate cach of the sums in the above exercise.

20-2 Addition of fractions (continued)

We have seen that it is casy to add fractions when their
denominators are the same. However, when the denominators
arc different the problem is harder. TFor instance, suppose
we want to {ind the sum of } and }. What do we do?

One thing we can do is look at the number line, The fol-
lowing picture shows what happens:

1 3
2 4
— e TS
) 1 2 1 3 5 ('i 7 ! -
0 4. 4 2 4 1 4 4 ry 2

Notice that we divided the number line into fourths. We then
showed § +- § by first marking the point 4 and then going
beyond that point a distance . The sccond jump ends at the
point £, Thus

b=

We now ask if there is any way of finding sums such as
+ + & by using what we have already learned about adding
fractions with the same dcnominator. To do this we must
writc } and # as fractions having the same denominator. But,
as we know, } is cquivalent to £. In other words, § and % are

different names for the same number, and so we can find the

n

sum of 4 and { by adding ¢ and 2, Thus

P+ i=%+1

SRS

»}

‘The problem is casy once the fractions have been written with
the same denominator,

All addition problems for fractions with different denomi-
nators arc solved this way. For instance, to add % and & we
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look at the set of cequivalent fractions for cach and find re-
placements having the same denominator. The two sets are

154046

We sce that § is cquivalent to 4%, and that 3 is equivalent to
+". Thus

When we replace the fractions in an addition problem by
cquivalent fractions having the same denominator we say that
we have put the original fractions over 2 cOMMON DENOMI-
NATOR. Thus 15 is a common denominator for 2 and }, and
4 is a common denominator for } and 3,

We can now describe how to add fractions with different
denominators, The method is as follows:

To add two fractions with different denominators Jind equivalent
Jractions for each so that the replacements have a common denominator.
Then add these fractions by adding their mumerators.

Thus the real problem in adding fractions with different de-
nominators is to find a common denominator for the fractions.
"To scc how this can be done we again look at the problem
5 + 3. But this time we shall solve the problem by using
pictures,

Our first picture shows } and 3 as shaded portions of two
squares of cqual size. It represents the original problem of
finding 4 + 2. However, we cannot solve the problem by using

27

2
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this picture since the squares are divided into picces of different
size, We have no way of finding the total shaded arca. But if
we could divide the squares into a larger number of picccs
so that the new pieces were the same size in both squares we
then could find the total shaded arca by counting shaded
picces. How can we do this? One way is to divide each square
ihe way the other is already divided. The following picture shows
what happens:

72
7

%77
7//%///
%%

1
3

Both squares are now divided into 15 parts of equal size, Each
part therefore represents 4 of the whole square, In the first
square 3 of these parts are shaded; in the sccond square 9 are
shaded. Altogether there ure 14 sln(lcd parts, and we can
write

LA
g Ty

) 0
_*__ Ty

18
14
)

Let us look at another example this way. Suppose we wish
to add § and §. First we show cach fraction separately, as
follows:

Next we divide the first square into fourths by vertical lines,
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and divide the last two squarcs into thirds by horizontal lines.
Our picturc then becomes

_

N\

7

N

7

A

Each square is now divided into 12 cqual parts. The shaded
portion of the first squarc is -f;, The shaded portion of the
last two squarcs is 15, Altogether 23 parts of sizc 45 arc shaded.
Thus

+

AEREY

(O
®lx

Ihon
ade

We now ask if there is a shorter way to do these additions.
Let us look at the results of the last two examples:

:
bH3=H, F+i=8

In the first the answer is in fiftcenths. In the szcond it is in
twelfths. Do you scc how denominators in these answers arc
rclated to the denominators of the fractions being added?
Notice that 15 =3 x 5, and that 12 =3 x 4. In both cx-
amples the denominator in the answer is the product of the
denominators of the fractions being added. We shall now
show that this always works.

. . a € .. .
Suppose we wish to add the fractions i and 7 For instance,
. a 3 c 9 .
we might have ek and panlt We know that every fraction

of the form 3 xn
7 xXn

ber. In other words

. . 3 . .
1s cquivalent to 7 wlien z is a counting num-

38
X

~1| O
I

~

X
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In particular, when n = 8 we have

3 3 x8
7 7x8
(

Similarly, every fraction of the formg i: : is equivalent toé
when nis a counting number, Thus, if we let # = 7 we have

9 _9x7

8 8x7

8
The two fractions 5 X and X7 have the same deno-

7 x8 8 x7

minator. Morcover, this denominator is the product of the
denominators of  and £. Thus
3,9 3x8 9x7
778 78 TEx7
24 63
=56 56
87

a6

a ¢
In the general case where we want to find the sum 3 +E’

we write

a ax d c c_><_l_1
b b xd d dxb
The {ractions a xd and cxb have a common denominator.
b xd d xXb

This denominator is the product of the original denominators
b and d. Thus

a ><(l+c X b

b xd  dxb

(a x d)j .(CM?(_,I_’)
b xd

This formula is often abbreviated as follows:

Ll
d

ol
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Exercise 20-2

1. Draw pictures using squares to illustrate cach of the fol-
lowing addition problems:

a Y+ §=1 b. 1§ +4 =31
c 2} + 14 =47 d $-+2 =2
e & f ) =21

2. Ilustrate cach of the following addition problems on the

number lines, and then find the sum.

a. 43 =0] b3 +3=0]

¢ }+4i=0 d§+i=0

e. 1} + 13 =[]
, + b

3. Use the formula [Zl -} —; = ad b:l L to find cach of the follow-

a

ing sums:

a. 5 L3 b. § +4

c 5§+ d. § 44

e o + £ 13 +3)

g 5% + 32 h. 2 + 42

i 31+ 23 3o 73454

4. One man can plough a ficld in 2 days and another can
plough the same ficld in 3 days. If they work together, what
part of the field can they plough in 1 day?

5. 'Two men share a basket of maize. The first takes 3 of the
maize and the sccond takes % of it. What part of the
maize have they taken?

6. Supposc someone told you, “§ of a piece of paper is coloured
red and 4 is coloured green.” Would you believe him?
Why?

7. A student adds fractions as follows:

a ¢ a--c

R
Will he ever get the right answer? Why?
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11
8 Is - + - = —
b g pTa
counting numbers? Why?

ever a true statement when p and ¢ are

20-3 The least common denominator

Consider the problem of adding # and §. One way to find
this sum is to use the formula in the last section. This formula
tells us to replace 4 and § by equivalent fractions having 6 x 4
== 24 as their denominator., The number 24 works because
the sct of fractions cquivalent to & and the set of fractions
cquivalent to § both contain a fraction with denominator 24:

5
’ '}"&'s

But both of these scts also contain a fraction expressed in
twelfths. Thus we can use 12 as a common denominator for &
and § in place of 24, When we do we get
bbd =124y
— 19
1
In this problem we were able to use a common denominator
that was smaller than the product of the denominator of the
given fractions, Notice that 12 is the smallest number which
can be used as a common denominator in adding & and 3.
For this rcason 12 is called the LEAST COMMON DENOMINA-
TOR for the fractions & and $. The term “least common de-
nominator” is often abbreviated to LCD.
Now let us look at another example. Suppose we are asked
tofind % -+ & Ifweuse 6 X 9 = 54 as a common denominator
for these fractions we get

1 5 1x9 5x%6
<9 "9

X
(=]
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But 54 is not the least common denominator for 1 and £. To
see this we look at the scts of fractions equivalent to L and

Do
[

{'u“': ’1‘3’: .1:'7! L] '}

Both of these scts contain a fraction having 18 as a denominator.
Morcover, 18 is the smallest number with this property. Thus
18 is the least common denominator for 4 and £, Using it we
can write

I

nli -+4- i} ]

1
+ 43

it !
w x;

1
i

Notice that we now have two answers to the problem L -- 3:

I

Pt

1 5 — 30
T o=3% and

.}..

<hx
0
@

[

However, the fractions 22 and 13 are equivalent since

13 13 x3 39

18 18 x3 54

This shows that the two answers are really the same since they
both name the same number. In most cases the answer to this
problem would be written 12, not 32, because 12 is in lowest
terms. In gencral, answers to problems involving fractions
should be written in lowest terms.

When adding fractions with different denominators it is
helpful to put the fractions over their leasc common denomina-
tor. This makes the work casicr because the numbers in the
problem are then smaller.,

But how do we find the LCD for a pair of fractions? Consider
% and § for example. We have scen that the LCD for these
fractions is 18, But 18 is a multiple of 6 and 9. In other words it is
a common multiple of 6 and 9. Morcover, it is the Icast, or smallest
common multiple of these numbers, This illustrates the fol-

lowing general fact:
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The least common denominalor for two fractions is the least common
multiple of their denominators.

We can use this fact together with what we know about
factoring numbers to find the LCD of any two fractions. Take
4+ and &) for example. To find the LCD for these fractions
we must find the least common multiple of 42 and 105. To do
this we first factor cach of these numbers:

42 =2 x 21 105 =3 x 35
42 =2 x3 x7 105=3 x5 x7

We now recall that every common multiple of two numbers
must contain all of the prime factors of each number. Thus every
common multiple of 42 and 105 must contain the factors 2, 3,
5, 7. Sinc2 the smallest number with these factors is

2 x3 x5 x7=210

we see that the LCD of 1} and 3% 1s 210. (Notice that this
number is much smaller than the product 42 x 105 = 4,410.)

Now we have found the LCD of 1} and %} we can add
these fractions. We get

11 31 11 x5 31 x2

B Y15 " xs 15 x2

_ P +e

210

117

210
The 5 and the 2 used here as multipliers are also found by
looking at the prime factorization of 42 and 105. For the first
fraction we must multiply 42 by a number to get 210 as the

product. Lookiig at the factorizations for 42 and for 210 we
have

42 =2 x3x7 and 210 =2 X3 x5 %7

We ask which of the factors of 210 are missing from 42. The
factor 5 is the only onc missing so we multiply the numerator
and denominator of 1} by 5. In the sccond fraction we have
105 =3 x5 x 7 in the denominator. Comparing this with
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210 =2 x 3 x5 x 7 we sec that the factor 2 is missing, Thus
we must multiply the numerator and denominator of the
second fraction by 2,

In many problems we can find the multipliers just by looking
at the denominators. But with larger numbers the idea of
finding the missing factors is useful,

There is one other way in which factorizations are helpful
in the addition of fractions. Look at the answer to the last
problem, M7, Is this answer in lowest terms or not? We know
that the prime divisors of the denominator arc 2, 3, 5 and 7.
Thus any prime factor of the numerator and denominator of
1 would have to be one of these numbers. If we try them we

10

find that only the 3 divides into 117. Thus

117 117 +3 29
210 210 =3 70

Since the fraction 22 is in lowcst terms we write

AL 31 . 29
42 1056 T 70

Exercist 20-3

1. Find the least common denominator for each of the follow-
ing pairs of fractions and then add the fractions:

a. ¢ and %; b. § and }

C. ]7.-7 and '._,4.-; d- '135 and -_]“1,

e. - and 3% f. 1Iand 1L
N 32 n nHo

g- 5 and 3% h. i3 and 57

i, 2% and 3% J- 145 and 2

1
2. Find the fraction in lowest terms which is equivalent to each

24 21
a. 4 b, 21

1117 231
Co -yg- d. Woy
e, N el

THO

7

3. Each of the fractions &, v, %, &%, 124 is equivalent to a
fraction with denominator 600. Find these fractions.

. . 1 . .
4. Tind all fractions of the form - which are equivalent to a

fraction with denominator 24.
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20-4 The cormmmutative property of addition

When we studied addition of whole numbers we saw that
a4 b =b - a for any two whole numbers a and 4. For in-
stance 2 4-3 =3 42,5 -} 4 =4 + 5, and so on. This pro-
perty is described by saving that the addition of whole numbers
is commutative. We saall now show that the same property holds

for addition of fractions. In other words, ifl—; and garc fractions,
then

a | ¢ < | a

b d d b

We begin with an example. Consider the fractions 2 and 1.
Does ¢ + 3 =L - 3? In this case it is easy to see that the answer
is yes, since

3. 1 341 4
5T5="%5 =5
1.8 143 _4
55 5 5

The following picture shows this on the number line:

A
"""'C>
m{) o
Y

Notice that the real reason why these two answers are the same
isthat 3 - 1 = 1 -+ 3. Because of this we have

Thus we can say that 2 41 =1 -3 because addition of
whole numbers is commutative.
In exactly thc same way we can show that addition of

fractions is commutative whenever the fractions have the same
BG1—8
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denominator. Indeed, suppose the fractions are - 2 and <. Then

b b
a ¢ a-te¢
5YE= s
=c—;—a (sincea +¢ =c¢ + a)
.
b b
This shows that
a ¢ ¢  a
55Tt

Thus, for example,
P+i=%+% 3+ =41+

ol

and so on.

Finally, let us consider what happens when the fractions
have different denominators. In this case we put the fractions
over a comamon denominator and then add. But, by what we
have just said, addition of {ractions with a common denomina-
tor i5 commutative. Thus the addition of the original fractions
is also commutative. This shows that

-+

l

ala

-+

L ZT IR

[S2) IRY
Aala

. a ¢
for any two fractions 3 and 7

Exercise 20-4
1. Use squares, properly subd1v1dcd to show that § + & is the

same as & + 1.
2. Use the number line to show that the two sums in Question 1
arc the same.

3. a. Repeat problem 1 for the sums % + 4 and 4 4 %
b. Snow that § + 4 =4 + % on the number line.



Addition and Subtraction of Fractions 255

4. Show, by computing the sums, that each of the following
statements is true.

a. o +Ei=4 45 b, 1§ +93% =92 4 1%
a (A (A a

e o ¢ ¢

b "5 5T}

20-5 The associative property of addition

The second important property of addition of whole numbers
is the associative property. This property tells us that when adding
whole numbers we can group the numbers any way we like.
The answer is always the same. We express the fact that addi-
tion of whols numbers is associative by writing .

(@4b) +c=a-+ (b +¢)

Remember that the brackets tell us how the numbers in cach
sum are grouped together as we add them.

We shall now show that the same property holds for addition
of fractions, For instance, consider the fractions 4, } and . We
have

G+D+E=0G+1 +3
—1+3
=8 43
=2
8
Adding the other way we get
P+ @+ =2+E+d
=1 +4
=t +4§
=2
8

Both answers are the same. Thus

G+ +r=3+E+3d

Let us see why this must always happen. As usual we first look
at fractions having the same denominator. Suppose the fractions

are 2 £ £
“PrE
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a ¢ e a-lc e
then G+3)+i =55+
_(@-+o) +e

b
On the other hand,

a {_(c I e)__a l c +e
b b b)) b b
But these answers are the same because we know that

(@ 1-¢) -t e = a -4 (¢ + ¢). This shows that

<a_i f) _}_f__a }_(f f)
Y A S A VA

Finally, when the denominators of the fractions are not the
same we put the fractions over a common denominator and
then add. Since we now know that addition of fractions with
the same denominator is associative, we can say that the addi-
tion of the original fractions is also associative. Thus in gencral
we have

Exercise 20-5
Show, by computing the sums, that cach of the following
statements is true.

20 (13- 1) -+ =14 4 (14 d)
S+ +i=dF @)
LR =0 ) R

{,-
5a+<_[)_4__c_)_<a+b) ¢
"8\ T\8 i) tie
20-6 The property of zero

When we studied addition of whole numbers we saw that the
mtinber 0 has the following special property: when zero is
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added to any whole number the number is left unchanged.
That is,

a+0=a4 and 0+ a=a
for any whole number a,

We can now show that the same thing happens when we add
0 to a fraction. Consider the fraction } for example. We have

1 1 0

g t0=g13
140
]
=3

Notice that in adding 0 to 4 we thought of 0 as a fraction with
denominator 2. Thus we wrote 0 as $. The following picture
shows this addition problem on the number line:

1
2 0
NP e
0 !

1 Ll
2 1
Next, we recall that addition of fractions is commutative,

This tellsus that 3 - 0 = 0 - . Thus since  + 0 = } we can
also write

0. =1
The picture on the number line now looks like this:
0o 3
N .
-~ l =

You should be able to show this the same way that we showed
that $ +0 =0 4 4 = 0.
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The above cquations tell us that when 0 is added to any
fraction the fraction is left unchanged. We describe this pro-
perty of zcro by saying that the number zero is the IDENTITY for
addition of fractions.

20-7 Subtraction of fractions

Now that we know how to add fractions we can also subtract
them by thinking of subtraction as the inverse of addition. For
instance, consider the following problem:

A man wishes to pick three baskets of oranges. After picking

for a while he finds that he has enough oranges to fill the

basket !# times. How many more baskets of oranges should

he pick?

To solve this problem we must find the number to put in
the box to make the cquation

15+ 0 =3
a truc sentence. The number which goes in the box is called the
missing addend. "To find it we first write 1% as an improper
fraction: 1§ = £, Next we recall that 3 can be written as 2, or
as &. Thus the above equation is the same as

P =2
Everything is now written in thirds. Suppose we write this

cquation without using the word “thirds”, It then becomes the
whole number equation.

S+A =9
As you know, this can also be written as a subtraction equation:
A =9-=5

In cither case the number 4 must be put in the triangle to give
a true sentence. If we now change back to thirds we get the
true sentences:

5-thirds -+ 4-thirds = 9-thirds

4-thirds = 9-thirds -~ 5-thirds

In fractions thesc sentences read

_i_

cla e
i elo

Clo whe
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They show that the man must pick 4 or 1} more baskets of
orangcs.
In the above problem we saw that the addition equation
$+0=%
can also be written as the subtraction equation
O=%-%

These cquations are just two different ways of asking the same
question. The first asks us to find the missing addend which
must be added to & to give 4. The second asks us to subtract
% from §. Either way the answer is 4. The following pictures
show this on the number line:

2 :
/ i ] :
- Dt M\ Y . 3\-/:/;—1\5; -
1 2 3

]
Cal = M

]
0 1.+ 2 3 0

E

What do we do if a missing adden.! problem has fractions
with different denominators? The answer is easy. We simply
put the fractions over a common denominator and. chen proceed
as in the problem just solved. Here is an example:

Solve the equation

r+0 =12
We first find the LCD for the fractions £ and £. Since 3 is a

primc number and 4 =2 X 2, we scc that the LCD is
3 x 2 x 2. Morcover,

3 9 x3 15

4 4x3 12

8 8x4 32

3 3x4 12

Thus the above equation can be written
B+O=-%

Since the fractions in this equation are now in twelfths we
know that the box must be filled with a fraction in twelths
to give a truc sentence. Suppose we write

O =%
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‘Then our equation becomes

1s .1 LAY ¥ ]
e 12 A
This shows that
B+A_ 32
12 12
But 15 - 17 =32, Thus A = 17, and we have
[ -1

We can also solve this problem by writing everything in
terms of subtraction, When we do it reads as follows:

3 5
O=5-%
32 15
12712
3215
12
17
12
Again we have "7} = 17

Notice that eac. ‘fcp- in the second solution of this problem
has a corresponding swp in the first solution, This becomes very
clear if we write both solutions side-by-side as follows:

5 8 ’ 8 5
gtl=3  O=3—3
15 32 32 15
i hO =13 =19 712
154+ A 32 32 — 15

o 1| U=y
15 AN _52 | 4 _17

12 12 12

17
=1
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Now suppose we wish to solve the equation

c

a
Li=g 2

We first put these fractions over the common denominator
b % d, and then proceed as in the examples. We get

- axd ¢ xb
R R
(e d) - (e h)
) )

Thus we have the following statement:

i
{

¢ _(zd——l)c

a
b d bd

{

'

. . o,
Notice, however, that this makes sense only 1f; 1s greater than

¢ . .
or cqual to i If you draw a picture on the number line you can
4

sce why.

Exercise 20-7
1. Draw squares, properly subdivided, to show that

R 7

A5 =17
i

R} E)
2. Illustrate the subtraction cquation in Question 1 on the
number line.

3. Find the miszing addends in cach of the following equations.
Rewrite the equations as subtraction cquations.

a3 =14 o[ 4+7 =42
c. [J ~32r =41 d. 1§ + [0 = 27
e. []--4% =5

4. Solve cach of the following equations:

a. []=4—3% b. (] =14 — &
e. 0 —35 —2¢
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5. A man has a picce of sugar canc 21} inches long. If he cuts
off a picce 2§ inches long, how much remains?

6. A girl had § of a cake. She gave a picce equal to 8 of the
whole cake to her friend. How much did she have left?

7. Two girls are baking a cake. They have 12 cups of sugar, and
they usc § of a cup in their baking. How much sugar do they
have left?

8. A man working alone could pick the fruit from some trees
in 5 days. Another man works with him and together they
pick the fruit in 2 days. What part of the total could the
seccond man, working alone, pick in one day?

a ¢ : a ¢
9. Lctz and:i be fractions. Can tl.c problem i |

always be solved with fractions? Ilustrate your answer with
cxamples.

20-8 Subtraction as the inverse of addition

What do we mean when we say that addition and subtraction
arc inversas of one another? For whole numbers we mean that
cach undoes what the other does. In other words, if we start
with a whole number, and add any whole number to it, and
then subtract the same number we get the original number
back again. The same thing happens if we subtract first and
then add.

We can show that this also happens for addition and sub-

traction of fractions, For instance, the sentence
p+i=1
tells us that if % is added to # the sum is §. Suppose that after
adding we subtract it. We get
@+ —t=%1-1%

o R+ —4=1
This shows that if we add % to § and then subtract 4 from the

sum we get § again,
Now suppose we start with a subtraction; for cxample

b—t=1
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If we add % to cach side of this equality we have

F-H+t=1-4%
=5

Again we are back where we started.
In gencral we have the identities

These identities tell us that addition and subtractions are in-
verses of one another for fractions as well as for whole numbers.



Chapter 21

MULTIPLICATION AND DIVISION OF
FRACTIONS

21-1 Multiplication of fractions

Now that we have learned how to add and subtract fre~tions
we consider what it means to multiply them. We begin by
showing how to multiply a whole number and a fraction.

Supposc we are asked to find 4 x %. Let us try to discover the
answer by using what we know about multiplication of whole
numbers. You will recall that multiplication of whole numbers
means repeated addition, Thus

4 %3 means 3 -3 43 +3

4 X2 means 2 -2 -2 4-2

4 %1 means 1 4-1 -1 41
If we wish this pattern to continue when the second factor is %,
we must agree that

0

X 3 2 3 2 2
4 < § means § 4§ -3 2

For this reason we write

4 3 =%1§ l?g)‘g-
2424212
= P
8
3

We can show this multiplication on the number line in the
same way that we showed the multiplication of whole nuinbers.
This time we start at 0 and make four jumps to the right cach
of length 3.

2 2 2
3

2
3 3 3
e NN NN
0

y H
A

1 2 @3' 4

264



Multiplication and Division of Fractions 265

We can also show the meaning of 4 x % by building squares
on the number line. We start with a square which has one side
cn the segment of the number line from 0 to 1. We then divide
the square into threc equal parts and shade two of them to
represent the fraction 4. Our picture looks like this:

Y

PRI N

How shall -7e show 4 x §? Onc way is to use this square to
build a rectangle 4 units high as shown in the following picture.

7.

In each square 2 of the 3 parts are shaded. Altogether there are
8 shaded parts, cach of'sizc 4. Thus we again sce that

o

4 X §=24
This picture also shows that the product4 x % can be viewed
as repeated addition. This time wc add, or join together 4 unit
squares, cach shaded to rcpresent the fraction . (We call such
squarcs unit squarcs because their sides are one unit in length.
Notice that the arca of such a squarecis 1 X 1 = 1 square unit.)
We now do exactly the same thing for the product of any
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whole number and any fraction. Let a be the whole number,

and let ;_n be the fraction. Then

(Here we imagine that the fraction — is written 4 times.)
n

LU U e o SR .
n n n

But

SR

Since the number of addends in the fraction is 4 we have

T-{—m—{—...—{—m_a X m

n n

axXm
n

I

m
Thus a X —n'

We can describe this result very simply: To multiply a whole

number and a fraction, multiply the numcrator of the fraction

by the whole number and leave the denominator the same.
Here are some examples:

3x1_3x1_§
2 2 2
5><9—5X9—if-)
4 4 T4
3 27 189
7X3§=7X?=—8-

ExEercise 21-1

1. Show the meaning of 4 x % as repeated addition by using
squarces properly subdivided.

2. Show the meaning of 4 X % as repeated addition on the
number line.



Multiplication and Division of Fractions 267
Solve each of the following multiplication problems. Express
your answer in lowest terms.
3. 7 X5 4, 4 x § 5. 9 x 3%
6. 5 x 4% 7, 83 x 2L 8 32 x %
9. 13 x & 10. 22 x 11

11. 1f you nced 14 cups of flour to bake one cake, how many
cups of flour will you need for 5 cakes?

12. Eight children divide some chocolate bars cqually, Each
gets 2} bars. How many chocolate bars are there?

21-2 Making multiplication simple

In doing the problems above you may have noticed that in
some cf them you could make your work casier. Take Question 8
for example: 32 x . If we use the formula

m a Xm
a X — =
n n
we get 32><§~—32X5 1—69
& 8 8 8

But, by the rules for equivalent fractions we see that

§ "8 "8 1
Thus when the answer to this problem is expressed in lowest

terms we have 32 X § = 20. We can get this answer without
actually doing this multiplication at all. In fact, we can write

5 32 x5 (8x4) x5 4x5
e VS R
You should be able to say why cach of these steps is correct.
As another example of the same sort consider the product
16 x {%. Here we can write

5 16 x5 (4 x4) x5 4 x5 0

16

T T T i ks T3 3

Notice that when we proceed this way our answer is in lowest
terms. Can you explaiu why this happens?
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21-3 Multiplication of fractions (continued)

We now consider the problem of multiplying one fraction by
another. For instance, what is P X Pord xPorg x#In

c. a ¢
general we want to know what - x 5 is when i and 5arc any

=1

two fractions,

The casicst way to find answers for these quecstions is to use
unit squarcs on the number line, We have scen how to draw
pictures which represent such products as

3 x4 2x41 x1}

Thus the picture on the left below represents 3 > } since it
shows 3 unit squares divided into 4 cqual parts with cne part of
each squarc shaded. The shaded portion of this picture goes
from 0 to } along the number line and is 3 units kigh. The pic-
ture shows why we write 3 x } = #. Similarly, the picture in
the middle shows that2 x } = 3. Here the shaded portion goes
from 0 to { and is 2 units high. Finally, in the third picture the
shaded portion is only 1 unit high. Notice that the height of
cach picture is cqual tc the multiplier of }.

Y
Y

-
(]

L e D T T A SR

LI S ——

!
1
1
i
i
]
1
1
[
3
|
3
a

¥

Suppose we try to keep this pattern when the multiplier of
} is a fraction instead of a whole number., Take the multiplier
# for instance. Our picture would then have to look like this:



Multiplication and Division of Fractions 269

.
Lol

3
a

Here we have drawn one-half of the unit square and shaded the
portion between 0 and }. As you can sce from the picture, § of
the entire square is now shaded. If we agree that the shaded
arca represents the product 4 x 1, we must then write

P xt=1%

Using thisidca we can draw pictures which represent products
such as 4 X # and ¢ x 4. For instance, the picture for § x 3
must show onc-half of the unit square with the portion from
0 to # shaded. Altogether, § of the whole squars is now shaded.
‘Thus we write

31

To draw a picture which represents the product 3 x 3§ we
divide the unit square into 4 cqual parts along the number line
and then divide the other side of the square into 5 cqual parts,
As the following picture shows, the square is now divided into
20 equal parts. Each part thercfore represents the fraction .
If we shade the portion of the square from 0 to # along the

number line which lies below the line representing ; we find
BCI-T
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that 9 parts of the square are shaded. Thus we write 2 x § = <%

1
Ay
///?/%//7/’ 7
A 577
v

0 L 1 38 71>

4 2 4
Do you now scc the general rule for multiplying fractions? Look
at the results of our examples:

i xi=1}
P xi=4}
P XE=

In cach case the numerator of the product is the product of the
numerators of the factors, and the denominator of the product
is the product of the denominators. Thus, in general, we write

a c a X

b d bxd

(31

In all of the above examples the fractions were proper frac-
tions, However, the pictures and rules work equally well if one
or both of the factors are improper fractions. For example, sup-
pose, we want to find the product § x %. According to the above

formula we have
3 5 3 x5 15

274 2x4 8
The following picture illustrates this result:
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Exercise 21-3
Find each of the following products. Express your answers in
lowest terms.

1. & X 3 2, 5 x3
3. 1 x2% 4. & x ¢
5.3 x4 6. 3% X 5
7. 48 x 355 8. 2% x 64
% 55 x5 10. 337 X &%

11. Draw pictures using squares to illustrate questions 1-5,

12. Five children sharc § of a cake cqually between them. What
part of the cake does cach get? Ilustrate your answer on the
number line.

13. T'wo brothers and a friend wick enough nuts to fill a basket
3} times. They then share the nuts cqually. What is cach
boy’s share? 1llustrate your answer on the number line.

21-4 The commutative property of multiplication

For any two whole numbers @ and b, ¢ x § = b x a, or as
we usually writc it ab = ba. We now ask if the same thing is
true for fractions. Does 3 % 4 =32 x 82 Does § X # == 3 x #?
a ¢ ¢ _a
b a7 1%

To answer these questions we must write equations. For in-
stance, since

In general, does ? We shall show that it docs.

PXE=% and } xI=0

we see that § x 2 =2 x 3. The following pictures illustrate

this result;
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These pictures show the same rectangle i different positions,
In each picture the shaded area contains 9 equal parts, each of
which is %5 of the unit square. Thus both pictures represent the
fraction %, and we have

X X

[5)
[}
oo
S

In cxactly the same way we can show that § x 3 = 2 x 4. We
now consider the general case. Here the equations are

ax ¢ ¢ a ¢ Xa
== and—xz=————

«
d b xd d d xb

a
b
But since multiplication of whole numbers is commutative we
havea X ¢ =¢ Xaandb xd =d x bh. Thus

axe_¢xa

b xd dxb
and it follows that

a c_cya

b a7 a%%

We describe this identity by saying that multiplication of
fractions is commutative.

Exercise 21-4

X - become in each of

Al
S

1. What does the identity ;—: b 5
the following cases?
a. Whena =3,b =5,c=2,d =17
b. Whena =4,0 =3,¢c=6,d = 1!
c. Whena =8,0 =9,¢=12,d =25

2. Check the commutative property of multiplication for cach
of the pairs of products in Question 1 ahove.

3. Draw pictures which illustrate the following equalities:
a.§ xf=%x3
b, 1§ x 2L =21 x 1%
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21-5 The associative property of multiplication

We have seen that if 4, 4 and ¢ arc whole numbers, then
(@ X b) Xc=a x (b xc). We now show that this property
also holds for multiplication of fractions,

Look at the following example:

(3 x§) x§i=%xi=1}
(irouping the other way we get
PxExd =t xt=4%
Both answers are the same. Thus
(3 x§) xP=4x(Ex]
‘I'he same thing happens in the general case. For them we have

Lt _(axc xe

(fyf)xf axe
b7d) T f  bxd T (b xd) xf

a (f Xe) _a ><<C ><e> _a X (cxe)

b N\d " f) b d xf] b x(d xf)
Using the associativity of multiplication of whole numbers we

can write

(@ xc) xe=ax(cxeyand (b xd) xf=b x (d xf)

(@ X¢) xe ax(cxe)
(b xd) xf b x(dxf)

and it follows that

Gx3) #5=5( +5)

Thus

We describe this identity by saying that multiplication of
fractions is associative. It tells us that when we multiply fractions
we can group the factors any way we please. The answer will
always be the same,
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ExErcise 21-5

L. Check the following products to sce that the associative
property of multiplication holds.
2. (1 X H) X240 =3 x (1§ x49)
b (f X 8) X 3% =1 X (§ X )
c. 28 x (14 ><3 1) = (28 x 14) x 341

2. What docs the associative property of multiplication say in
cach of the following cases?

a folb e 3 e 17
b 23 411 f 5
h O3 e _ 9 e 26
b12 417 FTI5

21-6 The distributive property

In our work with whole numbers we saw that addition and
multiplication are related to one another by the distributive
property. This property says that

aX (b+ec)=(axb)+(axc
for any thrce whole numbers g, 4 and ¢, Here again the same

property holds for fractions.
As an example, we show that

P4+ =G xEH+ExE
In the first place

FX (D =1 X (s + o)
=1 x}}
=i

On the other hand
(Fx8+(3xD

Since the two results are the same, the distributive property
holds in this case.
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We can also illustrate this result by pictures. We start by
representing the fractions £ and § as shown below.
1

y
A

1 01;1
4 2 4

By puttmg these plcturcs together the sum § -+ § appecars as

o

i | R
0

2 17 7
3 12

Finally, to show what happens when we multiply § -+ # by }
we shade only the lower halfl of this rectangle. Tlus gives the
following picture: 1,

o=

S
7 /Q\\\\

0 17 7
12

Now consider (4 X 3) -i- (4 x ). This time we must shade the
lower halves of the rectangles representing § and § before we
add to them. This gives the pictures

1

—

wre

N

NN

Blea
N
P

.

%
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We now add by putting these pictures side by side. The final
picture is the same onc that we had when we added first and
then multiplied by 3.

R RN

This identity is known as the distributive property for fractions.
Since the computations required to show this result are some-
what long we shall omit them. However, it would give you good
practicc in working with fractions to try them for yourself.

Exercise 21-6
1. Draw a picture which illustrates the following cquality:
25 (49 = (2 %5 +(2x9)
2. By computing the sums and products show that the lollow-
ing equalities are true,
B d A3 ) = () 4 (k)
bo p X (48 = <8) 4 (4 x9)
¢ 23 x (13 -+ 50) = (2§ x 14) + (2% x 5))

3. By computing the sus and products show that the identity

a.. <L , ) . (" . f) . (:' e>
boNe TS N Td) TNE T

is truc.
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21-7 The property of 1

When we studied multiplication of whole numbers we found
that the number 1 has the special property that when we multi-
ply any whole number by it we get the original number back
again. In other words,

a == (l

for any whole number a. We described this property by saying
that 1 is the identity for multiplication of whole numbers. We
now show that the same thing happens when we multiply a
fraction by 1.

Let us start with an example: Find § x 1.

To compute this product we replace 1 by the cquivalent
fraction 4 and multiply. This gives

3 I 34 3 x4 3
A A A !
Thus the product of § and 1 is #.
7. 7 .5 7x5 7
Similarly 5 1 R

It is casy to show that this must always happen, For let
a

b

be any fraction, Then
O B =
b b b bxb b
Morcover, since multiplication of fractions is commutative we

a a ..
also have 1 % - ==, Thus

b b

a «a a a
- X!l == and 1 ><[~)=—

b b b

"This shows that 1 is the identity for multiplication of fractions.

21-8 Division of fractions

In an carlier chapter we studied multiplication problems
such as

6 <[] =12
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where we were asked to find the missing factor, As you know,
such problems are called division problems and we write

[(]=12+6
Problems like this also occur with fractions. For instance in the
cquation

fxd=1%

we must {ind a missing factor, As before we say that the missing
factor is found by dividing % by . We write this as

O=t+4%
Thus the two cquations
Fx0=1%
=%+%
say the same thing. The same number makes cach of them a

truc scntence.
To learn how to solve such equations let us start with the

simple problem
O=1=%
Here the corresponding multiplication equation is

2 2 a 2 %a
g xU=3x3=577

Thus we must choose a and b so that § z Z

But this will happen only if2 % a = 3 x b. One way to make
this last sentence truc is to let @ =3 and b = 2. TFor then
2Xa=2x3=6and3 xb =3 x2 =6. Thus

0=t

is equivalent to 1.

is the solution of
Fxd=1

Do you notice anything spccial about the 3? It is 2 upside
down”. We call 3 the INVERSE or RECIPROCAL of 3. Thus 1
divided by % cquals 3, the inverse of §. The product of § and
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its inverse, 4, is 1. Let us look at anothier example of this type.
If we want to solve [] = 1 < & we can write

g xO =t

Is there a fraction that will make this sentence truc? Yes there
is, and again it is the inverse £ because

5x§ 5%6 _30__1
675 6x5 30

Docs this always happen? In other words, is the solution of

a . a
O =1+ B always the inverse of Z? Ycs, PROVIDED ¢ 18
DIFFERENT FROM ZERO. (The rcason for saying that @ must

. . b, ..
be different from zero is that - will not e a fraction ifz = 0. In
a

b . .
fact, as we have seen, the symbol 5 s mecaningless.) To show

b : a -
that pRt the solution of [] =1 + Zwllcn a is different from

zero we simply write

Thus we have proved the following important fact:

Euvery fraction different from zero has an INVERSE, and the product
of any fraction and its Tnverse is one.

ExErcise 21-8
1. Write the division equation which corresponds to each of the
following multiplication equations:

a. + x[] =% b[:]x
c. [ x 12 = 23 lej_.lg

2. Write a multiplication cquation which corresponds to cach
of the following division equations.

a. [ =
c 0=

~1=, o
:L: .
£
O
I
!
<5
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3. What a:e the inverses of the following fractions?

a. $ b. # c. &L d. 21
e. 2§ £ 5% g 7% h. 9
i 5 j-o
4. Solvc cach of the following equations:
a. []=1+5% b. ] =1-+4%
S [ X5=1 d 6 x[] =1
e [] x22 = £ J=1=37
g =1=+2p
5. Explain why the division equation [] =1 0 has no
solution, b
6. Will the division equation [] = 2—1 - ever have a solution?

21-9 Division of fractions (continued)

Now that we know how to solve division equations of the type
a
= l = -
a b
when a is different from zero, it is casy to solve all division

problems involving fractions, Again we start with an example.
Solve the equation

O=4%+3
We begin by writing the corresponding multiplication equation
3xO=4%

What number makes thissentence true? To answer this question
we shall multiply otk sides of the equation by the same number.
What number shall we use as a multiplier? Let us try 1, the
inverse of 3. We then get

FX@xO)=3%x1% _
Using the associative property of multiplication we can write
this cquation as

X
Thus 1
and we have [] =1 x1
This shows that § - 3 =1,
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To sce that this answer is correct we go back to the equation
3 x (O = % and replace the box by 1. This gives

3IXxO=383xLi=2=1%

So the answer is correct.
Notice how this problem was solved. We started with

(0=1%-=3
and wrote the corresponding multiplication equation
3x[d=4%

We then multiplied both sides of this equation by 4, the inverse
of 3. The left side of the equation then became 1 X [, or just
(], while the right side became } x }. Thus

O=3%x#

It is not hard to sec that this method will always work. For
instance, let us solve

O=%+32
"This time the corresponding multiplication equation is
2 x[]=%
We now multiply by £, the inverse of 2. We get
X3 x[)=4%x%
B ng) xO=4%x%
I x[O=4%x3
[ =20

Thus § + 2 = % (You should be able to give reasons for each
step of this solution.)

To check that this answer is correct we replace the box in
# X [0 = & by 22, This gives
10 3 x10 30 2x15 2

N == i —C S ——

3
579 5%x9 45 3%x15 3

Hence the answer is correct.
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ExEercise 21-9
1. Find the missing factors.

a. b x[] =12 b. 7 =[] x4
c §g=%x[] d. &% x[] =4
e. [ x 14 =:3} f. [0 x5§ =2%

2. Solve the following division problems. Check your answers
by multiplication.

a. 73 2 b. 6 -2

c. 1p = .3 d. 23 = 14
e 3 = 20 £ 300+ #0
g AL+ 12 h. 152 - 182
i 71+ 48 jo 3% - 12

21-10 Division of fractions— the general rule

While working the problems at the end of the last section you
probably discovered the general rule for solving division prob-
lems involving fractions. It is as follows:

a ¢ . . .
Suppose P and 5 are Jractions with ¢ different from zero. Then the
)

solution of

is

In other words, to divide one fraction by another multiply the first by the
inverse of the second. This is sometimes described very briefly as
“invert and multiply”.

How can we show that this rule is true? We just carry out the
method used in the last section in the general case. This time
we start with

and multiply by g (Notice that ¢ must be different from zero.
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For otherwise gwould be meaningless.) We get

d ¢ a d
zX(JXD)~zXz
d ¢ a d
(zxz)xD=z><;
a d
1XD=ZXZ_
_a. 4

—bxc

Thus the rule is true, and we now know how to divide any
fraction by any other fraction provided the second fraction is
different froin zero.

There is one more point to notice about division of fractions.
Do you see what it is> Remember that when we studied division
of whole numbers we found that it is not always possible to
divide one whole number by another and get a whole number
answer. For instance the equation [] = 7 =+ 2 does not have a
whole number solution. But with fractions this does not happen.
For we have just scen that when ;—j and (—; arc fractions g + (—j
is again a fraction provided that ¢ is different from zero. In
other words the equation

a, ¢
U=3+3

can always be solved if ¢ is different from zero, This is one of the most
important propertics of fractions,

Exzrcise 21-10

. a ¢ axd, .
1. Verify thatz T I .l each of the following cases.
a7 ¢ _8 B2 35
TITI3 2TT P 4T
a9 ¢ 2
“3716 2738
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2. If a man can plough -3 of a field in onc hour, how long will
it take him to plough the whole field?

3. Five men can paint § of a house in one day. How long will it
take them to paint the entire house?

4. Three boys can pick 2} baskets of nuts in 14 hours. How
much can they pick in one hour? How much in 24 hours?

a ¢ . . .
5. Supposc that — and - are fractions with ¢ different from zero.

b
(fx—c> L _a
b"d) T d b

How would you describe this fact?

6. Show that
(f.f> L
b~ d) " d )

when ¢ is different from zero. How would you describe this
fact?

Show that

I



ANSWERS TO SELECTED PROBLEMS

CHAPTER 1

Exercise 1-1

1, a.

Saturday, Sunday b.u,v,w,xy,2

c. January, June, July
2. a, d, e, f, g describe scts; ihe others do not.

Exercise 1-3

1. a.

The sct of days in the week whose English names begin with
the letter T.

b. The sct made up of the first five letters of the English alphabet.
c. The sct made up of ihe first three months of the year.
d. The st made up of the first five even numbers starting with 2.
e. The set made up of the first five multiples of 5 starting with 5,
2. a. 40, 50, 60 b. 14,17, 20
c. 84, 80, 76 d. 10,000, 100,000, 1,000,000
e. 36, 49, 64 f. 2,222, 22,222, 222,222
g. 66, 55, 44
3. a,c,d
4. a.{3,6,9,12,..., 1,098} b. {9, 10, I1, ..., 99, 100}
c. {5, 15,25,35, ...} d. 4,7,10,13,...}
e. {7,77,777,...} f. {5,615, 16,25, 26, ...}

Exercise 1-4

1, a.
d.

{November} b. {} c. {}
{} e. {42}

2. No, it contains the whole number 0 as an clement.

Exercise 1-5

l.a,c,g h

Exercise 1-6

L. a. (i), (ii), (iv), (v) b. {2, 4, 6, 12}
c. {1,7,9, 11} d. {2,7, 11}
e. {4,7,9, 11,12}

2. a,c

3.2,3,57,11,13,17, 19, 23, 29, 31, 37, 41, 43, 47

aci—u 285
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4. a. (36,38, 40, . . . , 50} b. {1,3,57,9,11,...}
C. {2} d' { }
e. {3,9,15,21,...} £ {6,12,18, 24, ...}

5. Yes, because cvery clement of X belongs to Z.

Exercise 1-7

Loa. {}, {x}, b} {x 2}
b. { L, {AL {e}, (&), {A, @} {A B, (e, g} {A, ©, B
c { }{a}

2, Where A =B

3. There is only onc subsct of { ). Itis { }.

4. The subscts of A arc { } and {1}. This shows that cvery set con-
taining a single clement has exactly two subsets.

5. Sec 1a above.
6. Sce 1b abovec.
7. a. There arc 16 subscts of {1, 2, 3, 4}. They are

{1 {142}, (3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4},
{1,2,3}, {1,2, 4}, {1, 3, 4}, {2, 3,4}, {1, 2,3, 4.

b. When A contains 5 clements A has 32 subsets.
When A contains 6 clements A has 64 subsets.

Exercise 1-8
3. a. The picturc should look like this:

A

)

(Other pictures arc possible)
4. The picture should look like this:

E 0

- P
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Exercise 1-10

1. The pairs in a, ¢ and d are equivalent. The others are not.
2. B, D and E arc cquivalent to .\. Exact matchings are

A:{1,2,3 4,..}
EERE
B:{0,5,10,15,. }
A{,25,4.. )
L
;{O, 1,2,3,.. .}
A:{I’2,3’4’a"}
-
B:{1,4,9,16,...}

4. Yes. An cxact matching is

{4, 2 3 4..}

{201, 202, 203, 204, . . .}

CHAPTER 2
ExEercisE 2-1

1. 7,9} b. AUB={a,ce,i,n,o, u}
8,9, 10, 12, 14, 15, 16, 18, 20, 21}
» 7,9, 11,13, 15, 17, 19}
, 15, ..., 100}
. 15 clements. This happens when A and B have no clements in
common.

« 10 clements. This happens when A is a subset of B.
3. Yes. They contain the same clements.

4. a. Yes, the empty sct is a subsct of every sct.
b. AUB={}

5. Every clement of A belongs to A U B; every clement of B belongs
to AUB,

PO RO
>
¢
=
i

-
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ExEercise 2-2

4.
A ! B
5.
15
5 0 20 25

AUB

6'
A, B, AUB
Exercise 2-3
lo a. AﬂB={5,8} bo AnB={”}
c. AnB = {12, 24, 36} d. AnB = {20, 40,60, ...}

e.Af\B={}

2. a. 5. This happens when A is a subset of B,
b. 0. This happens when A and B have no elements in common.

3. Yes. They both contain the same clements.

4. A=B

5. Every clement of A N B belongs to A and to B.
6. Yes. Every element of A N B belongs to A U B,

ExErcISE 2-4
2, a. 14
b.
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3.7
4. a.

b. 7 c 8 d. 3

5. a.

b. 9 c. b d 3
6. Cis asubsetof ANB

Exkercise 2-5

La AnC={23,7
AUGC={0,1,2,...,12}

. BNnC={2 3,10, 12}
cAN(BUCQC) =1{2,3,7,9,11}
AN (BN C) ={23}
(ANnB)NnC={2, 3}

. (ANBUANGC) =1{2,3,7,9, 11}
(AUB)UC=1{0,1,2,..., 14}

e e o

AUuBUC) ={0,1,2,..., 14}
3. The sets arc equal.

4. At lcast 4 must be punished.
5.

.BU(ANC)=1{2,3,7,9,10,11, 12, 13, 14}

(AUB)N(AUC) ={1,2,3,4,6,09,10, 11, 12}
AU(BNC) ={1,2,3,4,6,9 10, 11, 12)

289
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The picture shows 35 + 40 = 75 in set C,
40 4 10 = 50 in set T,
10 not in T or in C.

Altogether there are 10 4 35 4 40 + 10 = 95. Thus the
statcment is false,

6. B

QE> 4
A
There are 14 clements in all,

CHAPTER 3

ExErcisE 3-1
1. A and C arc equivalent.
E and F arce equivalent.
B and H are equivalent.
D, G and I are equivalent.
3. The sccond is correct because it shows that the sets match exactly.

4. The empty sct.
Exercise 3-2B
1. The three sets are equivalent,
2. C has at lcast as many clements as A.
3. A has more clements than B.
4. a. (iv) They are the same,
c. 10
d. 52
ExErcise 3-3
1. B, D, E, A, C. C has the most clements; B has the fewest,
2. A has one more clement than C.
3. 5,B,C T
4,

&
ol SN

) 2

jwhw]

2 3

=2:
vavo‘pd ®)

(%

=
-

»
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CHAPTER 4

ExERrcrisE 4-2

2,a.5<7 b. 12 >0 C 2-4+2=4
d242<34+2 e9-}-7>847 £ 144412=13413
g 6-4-8410>5-+-7-49

3. a. {0, 1,2, 3,4,5) b. {26,27,28, ...}
c. {13, 14, 15, 16, 17} d. {0, 3, 6,9, 12, 15, 18}

e. {12, 14,16,...,28}
4. Yes. The number 0.
5. No, there is no largest whole number.
6. Yes.
7. A has fewer clements than B,

Extrcrse 4-5
2, 10 3. 4 4. 6 in cach

CHAPTER 5

LExercist 5-5
2. 13 is four units to the right of' 9,
5 is four units to thc left of 9.
3.7 4. 30 5. 7 6. 5
7. a. 8 b. 24
¢ 3n - 2;i.c. three times # plus 2,

CHAPTER 6

ExEercise 6-1

1. The whole number m is less than the whole number # if m is to
the left of # on the number line,

ExEercise 6-2

2, a. Yes. For instance, 2 = 6 and ¢ = 7.
b. Ycs.
¢. Yes. For instance, 2 = 7 and ¢ = 6.

- L.
< + ¢

3 c c']' b d
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4. ‘bbpqa

*

& >

5. a. n p d f r

b.p<ab<pa<yg

ExErcise 6-3
2, a. 3 b. 8 Cb—a—1

CHAPTER 7
ExEercise 7-3

12: NI, T

26: NN1IINIL, «FF¥
52:0NNNNH - T
113:@nil, T(TTr
201: @], TTTKT

349: @RE@NNNN, FFT(H(FF
i

ExErciseE 7-7A
2. 30 4- 6 = 36 3.70 -1 =171 4, 90 4- 5 =95

Exercise 7-7B

2. (i) 2,134, QB Ennni
(ii) 5,213, %«D@@ eI

(iii) 3,048, R TaTaTaTaHTRTTH

3. a. ten-thousands b. hundred-thousands
¢. millions d. ten-millions
7. a. 276,133 b. 7,132,432

c. 44,444,444 d. 12,345,678



Exercise 7-8

ExErcise 7-9
1. MCXIII

CHAPTER 8
EXERrcise 8-1

2, 4 is the largest one-digit number.
24 is the largest two-digit number.
100 is the largest three-digit number.

ExEercise 8-2

l. a. 3020\'(" 77ton

Answers lo Selected Problems

W Q@ »nnnnnill, 3,053

PBERE, 2,309
T

722 NN 31.45]
REeE:n’ ¥

ST C) , 700,
oo 00,104

&ME&D@@@ 6,509
WRLNC

é{}b@@@@ 1, 5,001

XYY & v e, 7,602,020

QY NN

7, 10,000

2. MMCMIV 3. XXXIV

c. 1,234, 194,

CHAPTER 9
Exercise 9-2

1, a. 8

b. 8

c. 10 d. 10

3. They arc the same;ie.,a +b = b + a.

4.8-1):

b.b>0

S5.a=0and b =c.

b. 3,021, 386,
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ExErcise 9-6A

1. 2 2.7 3. 11 4. 8 5. 6. 4

N

ExEercise 9-6B
2. 6

3. a. None.

b. The children with numbers 1 and 7 are without partners
when the sum is 14,
The children with numbers 1, 2, 3 and 8 are without partners
when the sum is 16.

c. The children with numbers 1, 2, 3, 4, 5, 6, 7 and 10 are
without partners when the sum is 20,
All the children except those with numbers 11 and 12 are
without partners when the sum is 23.
All the children are without partners when the sum is 24.

4. The pairs are (1, 1), (1,2), (1,3), (1,4), (1, 5), (1,6), (2, 1),
(2,2), (2,3), (2,4), (2,5), (2,6), (3, 1), (3,2), (3,3), (3,4),
(3,9, (3,6), (4, 1), (4,2), (4,3), (4,4), (4,5), (4,6), (5,1),
(5,2), (5,3), (5,4), (5,5), (5,6), (6, 1), (6,2), (6,3), (6,4),
(6,5), (6,6)

The sums are 1, 2, 3,4, 5,6, 7, 8, 9, 10, 11 and 12.
Seven is most likely to turn up because more of the sums are 7
than any other number,

5. a. 6 b. 11 c. 1,001 d. 1

6. b is an even number.

ExErcisg 9-7

2. All answers are 0,

3. From the property of 0 we know that 0 + I = I, But, by putting
0 in the bexes in [J 41 = [] we have 0 - I = 0. Together
these two statcments say that I = 0.

CHAPTER 10

Exercise 10-2

La 3+4=4+3 b.6+3=3+6
2.a.344=443 b.5+4=4+5
4. a. 2 b. 9 c 7 d. 4 e. 10 .0
5. a. and b. Any whole number.
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Exercise 10-3
2. 9. It is not an identity since it is not true for all whole numbers.
3. Yes, because it is true for all whole numbers, '

4a.341=1+43 b.5+4+2=245
c. 04+-4=4+40 d. 27 + 52 =52 4 27
5. a. 8 b. 11 c 2
Exercise 10-5
La (142)4+1=1+2+1)
b.(44+3)4+0=4+4(340)
c. 545 4+2=5+(14+2)
d (3+7)+6=3-+(7+6)
2.a.5 b. 4 c. 2 d. 2 e. 7
3.a. 0 b. any whole number c. 6
d. any whole number e 2
4. b. and d. are identities; the others are not.

ExercisE 10-6A
1. a. and b. They have the same length.

2, a. The segment from 0 to 3.

« The segment from 0 to 4.

. The scgment in b is larger.

. The segment from a to b is longer than the segment from
¢todif b — ais greater than d — ¢. They are of cqual length
ifb—a=d-—c.

Exercise 10-6B

4. The wholc numbers starting with 5 and cnding with 13,
5 14+24+34+445=15

6. 9

paoT R

Exercise 10-7
4. a. 2+3)+4=4+43) 2
b. associative, commutative
Exercise 10-8
1. associative, commutative, commutative, associative
2, Yecs, for both questions.
3. There are 26 « vombinations. They are

1414, 2413, 3412, 1 4+2 412, 44+ 11, 143 + 11,
54-10,1 +44+10,2 +3+10,6 49,5 + 1 4 9,
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9, 3+24+1-49, 748, 64 1+8 5428,

8,4+2+1+487+6+2,74+5+3,

241, 7+44+3+1, 64544, 6+5+3+1,
6+44-342,54+4+3 4241

4. The first player announces the number 1, 7, 13, 19, 25, 31.

4424
443+
745+

CHAPTER 11

Exercise 11-1

1. 4 2.4 3.12 4.5 5.0
6. 10 7,14 8.8 9. 18 10, 12

1.2+ =10, []=8 - 12224 Q=7 =5
B.540O=12, Q=7 4. 124+ O0=25 =13

15. 4 4+ O =17, O = 13

Exercise 11-2

l.a. (=7-5 b. [1=9—-5 c [ =26--17
d. [J=20-—11 e J=12—-12 £ OQ=19-8
2.a.64 =8 or [J-+6=28

b.44-0=4 or [N+4=4

24+ 0d=9 or OJ+2=09

d74+0=8 oo Q-+7=8

e 9+ =15 or OJ+9=15

fL. 144+ O0=31 or [+ i4 =3l

a3+ 0d=80d=8-3 OJ=5

b.6+ O=150=15—6, =29

¢ 74+ 0=12,0=12—-7, Q=5

d94+ =27, 1=27—-9, =18

e 154+ O0=32,0=32—15 Q=17

Exercise 11-3

. O0=13—-6,Q=13-—-7
2. 0=14-5 Q=14 -9
3. 0=6—0,0J=6—6
4. O0=12-9,O0=12-3
5. =14 -7

6. (1=15—15O0=15—~0

ExEercise |1-4
1l.a.7—3=4 b.9—-4=5 c.8—-4=4
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3.a. A—B ={a,c,e, 8}
The number of elements in A — B is equal to the number of
clements in A minus the number of elements in B, This
happens when B is a subsct of A.

b. A—B={a,cdc}

The number of elements in A — B is greater than the number
of clements in A minus the number of elements in B, This
always happens when B contains elements which do not
belong to A.

LExeracise 11-5
1. 0 2, 7 3. No whole number
4, | 5. No whole number 6. 0

EXERCISE |:-6
Loa (1244) —4=12,112—-4) -4 =12
b. (5+40)—-0=5(5—-040=5
¢ (040 —0=0,0—04+0=<0
2. a. When B is a subset of A.
b. When A and B are disjoint; that is, when they have no ele-
ments in common.

Exercise 11-7

2. All whole numbers starting with | and ending, with 11,
3.6

4. 2. Eleven points are marked,

5. Subtraction is not commutative,

LExercise 11-8

2. Subtract 4 from both sides of 4 < 9. This gives 0 < 5.
3. a. Subtract a from both sides of a < . This gives 0 < b — a.
b. Add a to both sides of 0 < & — a. This gives a < b.

CHAPTER 12

Exercise 12-2
1. 27 2. 10 3. 10 4, 7
5.7 6. 20 7. 30 8. 40
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Answers to Selected Problems

1. Let the people be A, B, C. The chart is

; fish
A | (A, fish
B f (B, fish)
C | (G, fish)

There are 9 combinations.

2, 35

EXERcISE 12-6

beef curry
(A, beef) (A curry)
(B, beef) (B, curry)
(G, beef) (G, curry)

2, | X a means a added to itself | time. Thus 1 X ¢ = a.
b X 1 means | added to itself b times. Thus

bx1l=1+14...

+ 1

Since there are b ones in the sum the total is 4. Thus  x 1 = b.

CHAPTER 13

Exercise 13-1
2.3
4,

3. 12

When a whole number is multiplied by 1 the number does not

change. When C is added to 2 whole number the number does not
change. Thus we call 1 the identity for multiplication and 0 the

identity for addition.

ExEercise 13-5

La (2x2)+(2x5) =4+-10=14
2X(245=2x7=14
b. (7 X 6) 4+ (8 % 6) =42 4- 48 = 90
(748) x6=15%x6=90
c. 3x4)+ (3 xX5) =124 15=27
3XM@+5 =3 x9=27
3. a. 4 b. 4 c. 6 d. 2 e 6
4 (243) «(6+4)=@243) X6+ (2+3) x4
=2 x6)+(3x6)+(2x4) + (3 x4
5. (a4b6) X (c+4d) =(a+b) Xxc+ (a+b) xd
=(axc)+ b Xxc)+ (axd)+ (b Xd)
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Exercise 13-6

1. Statements (¢), (¢) and (f) are correct. The others are not
correct,

3.4,5,6

4 (14+243) x4=6x4=24
Ao (1 x4) +(2x4) + (3 x4 =4+8+12=24

ExEercise 13-8

La.7X6=7x(6+D
=7 x5+ (7Tx1)
=0+2) x5+ (7Tx1)
=0 X5+ 2x%x5+7x1
=25+10-+7
= 42

The problem can be worked in other ways as well.
£ 1l x1l=0G4+5+1) x 11

= (5 x 1) + (5 x 11) + (1 x 11)
=5><(5+5 1) -5 X (B45+1)4-(1 x 11)
= x5 +(5x5)+4(5x1)+(5x5)
+ G X5+ G x4+ xID
=25 425 -}-5425 425 + 54 11
= 121
CHAPTER 14
ExercisE 14-1
l.a. (J=45-=-5 b. =273 c. =546
O=9 O0=9 a=
d. J=84 =7 e. ]=36-=-9
0=12 O=4
2. Yes, because 0 X [] = 0 for all whole numbers.
3. Yes, because 1 X [ == [ for all whole numbers.
4. Nonc, because 0 % [ == 0 for all whole numbers.
5.4 =28 --7and 7 =928 =~ 4
6. The factors are 1, 2, 3, 4, 6, 8, 12, 24,
7.3 X (=18, =18 -= 3. The number is 6.
8 (O+35)x3=6
0+5=6-+-3
d+5=2
O=2x5

Il

O=10
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9. The number is 54. To find it compute the product

2Xx3 x3x%x3
Exercise 14-2
.6+-3=2 2,12+4=3
LxEercise 14-3
1. a. 26— 13 =13 b. 21 -7=14
13—-13=0 4—-7=7
7—7=0
Thus 26 + 13 =2 Thus 21 -7 =3
c. 7 d. 8 e 5 £f.0
LEXERCISE 14-4
1. a. 6 b. 7, remainder 2 ¢, 7, remainder 5
d. 7 e. 7, rcmainder 7 f. 10, remainder 2
2.a.1,2 3,4, 12 b. 1, 23
c. 1,2,4,7, 14,28 d 1,2,3,4,6,9, 12, 18, 36
e. 1,17 f. 1,2,4,5, 10, 20, 25, 50, 100
g ! h. all counting numbers
3. 7 gallons, 2 shillings lelt
4, 75
5 a. 2 b. 34 c. 5
d. 4 e. 0 f. 6
ExErcise 14-7 |
L36=2x2x3 x3 2. 29 is a prime number,
3.8=2x2x2 4. 100=2 x2x5x%x5
5,91 =7 x 13 6. 64 =2 X2 x2x2x2x2
7.60=2 <2 x3 x5 8,000 =2 x2x5%x5x%x5
9. 3000 =2 x2x2x3%x5x5x%x5
10. 102 =2 x 3 x 17
Exercise 14-8
. 1,3 2.1,2,3,6
3. 1, 2,4, 5, 8, 10, 20, 40 4. 1,2,3,4,6, 12
5. 1,309 6. 1,2, 4,7, 14, 28
7. 1,7 8 1
9 1,11 10. 1,2,3,4,5,6, 10, 12, 15, 20,

30, 60
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CHAPTER 15
Exercise 15-2
1, 2, 3. No for all three.
CHAPTER 17

LExercise 17.2 .
1. 2,350 2. 10 3. 3,700 4. 100 5, 21

6. 9 7. 920 8. 100,000 9. 40 10. 90
1. a. (i) 404 (i1) 1204, (iit) 2,3404,, (iv) 3004,
(v) 3,100y, (vi) 2,0004,, (vii) 121,0004,
c. Yes

Exercise 17-3

The products are as follows,

1. 608 2. 413 3. 498 4, 442 5. 4,891
6. 1,710 7.2,975 8 8008 9. 16,337 10. 117,780
11, a. 231, b. 224, c. 1,130,

d. 2,412, e. 10,0124,

Exercise 17-4

The products arc as [ollows,

1. 3,312 2. 17,248 3. 19,497
4. 7,584 5. 360,372 6. 101,888
7. 1,013, 8. 12,234, 9. 33,3414,

10, 111,243,

Exercise 17-5

The quotients are as follows,

1. 91 2. 89 3.92 4. 42 5. 1,005
6. 1,030 7. 42400 8, 231he 9 121y 10 344y,
Exercisz 17-6

1. 384 2, 709 3. 1,281 4, 208

5. 4,811

CHAPTER 18
Exercise 18-4
2. ]:]l’ l'?.’ 1’1'1'6! 4‘:':'
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ExErcise 18-5

L 7% or 102 3. 2 or 16
4. 2T or 65 6. 5" or 6247

7. 83 orl
12, 3} oranges

Exercise 18-6

1. A= 4B 2. A=4B

3. A=3B 4. A=1B

Exercise 18-9

L £ > %is true. 2. 5>8

3.5 =% )

4. a. { is greater b. § is greater
c. } is greater d. 4 is greater
e. 15 Is greater f. 339 is greater
a_a.

5, - > - istrue
b~ ¢

CHAPTER 19

Excrcise 19-1

4 2 .« D 3
L a. I 7‘16: 1 b. P: EXER) 3
. 2 ¢ 3 24 8
Q: T b f . Q: )
Jd . 1] : . 3
c. P:oIl%, 113,113 d. P:25.%, 252
. 8 4 1.0 ]
Q: 114, 114 Q:2512, 258
5. 1% 15 1. The fractions a, ¢ and d belong to the set.
Exercise 19-2
- 2 =9 _ 4 __ 5
2. 5 = 15 = 1% = v = o
_— 2 . 4
dt=%=1%
d__6 __90 __ 12
b y=g=1 =%
[ 32
5 a. 4 4% §
b, 32 c. 100
7, R 2R 44 4,000,000
*E DY B T,000,000
. a. 25 orange trees, 75 banana trees
PR,
100> Too
b. 150 orange trees, 450 banana trees
150 450
G00Y 800

¢. No, because 282 js not a whole number.
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ExErcisE 19-4

2. The fractions in d and e are equivalent. The others are not.

Answers to Selected Problems

'2:‘6'3-'°}
‘IﬂF:-'-}
?—‘gl,...}
'5"(—")--.}
a%’- }
(i) 2
(v) 31
yee e}
o)

(

)

[S{T]

28,
5 Fod - o )
b. {%:’%s%a%x*"} C. 2
...} b.O
b. 25 c 84
e. 6 f. 15
such number.
c. 91

such number.

303

4. No, because one fraction cannot be equivalent to two different

fractions in lov

CHAPTER 20

Exercise 20-1

vest terms.,

1. The sums are as follows.

3
a. ¥

e. 2L or3

ExEercise 20-2

2, a. -1
d. AL

3. a. Ltorl
C 13
e. {2 or 14}
g §2 or 8%
i. 2 or 542

b. 10 C, g or la'
f. 32or3tor
b. 12 c.
e. 27 or 22
b. 22 or 6%
d. Hor I
f. Flor4ld
h. 4% or 6%
Jo 4 or 123

ofa
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3 5 .__ 16 10
5 % + 4% =45 ori}

6. No, because & + # = {7, which is greater than 1.
7. Yes, he would get the right answer when a = 0 and ¢ = 0, but
no other time. To sce this suppose that

(@ xd)+(dxe) a-+c¢

b xd bt d

‘Then we would have b X d = b + d. But this can happen only
when b = 2 and d == 2. In that case (¢ X d) + (b X ¢) is equal
to2 X (a + ¢\. Thus we would have to have 2 X (a +¢) = a +¢.

‘This can only happen when @ + ¢ = 0. Thus a =

| l -+ q.
8. No, because — - - == by 1s never cqual to

when p and

p g Pq pq

q are counting numbers.

Exercise 20-3

0and ¢ = 0.

1. a. 10,7, b. 24, 22 c. 75, 47
d. 60, ! e. 105, 114 £ 120, 282
337 2hy : Lo,780 239
g. 630, 43j h. 1,386, v5%% 4. 2,100, 44750 or 5,280,
223 13
Jo 60, &3t or 313
2, a. § b. % c M d. e 2
3, 000 175 216 620 404
¢ B0 GO0 TO0Y BOUY WO
) N N | 1
4. %’ "}: .Jf) ) W TE TT

ExEercise 20-4

4. The sums arc as follows:

a. | or g b. 227
3a + 2¢
c, AL d, e T
24 G
20 - be
56
ExErcise 20-5
The sums arc as follows:
L4 2. 24 or 4 3. 4
. 6a + 4b 4 3¢
4. 54 5. . g .
Exercise 20-7
3. a. -;':-'m' 1 b. .}27. c. 108
d. :f% €. ."n'::
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4, a. 7’]: b, & c a4
5. 133 inches, or 19} inches

6. -r

8.

305

9. No. For examplc 4 — $ cannot be solved with fractions.

CHAPTER 2]

Exercise 21-1

3. 45 4, 3 5. 33 6. & or 232
7. 2,221 or 560} 8. 20 9. %% or 10%
10, 132 or 263 11, 6% 12, 20
Exercise 21-3
1, A 2. & 3.4 4. & 5. %
6. [ 7. B0 8. 13041 g s 10, }i1
12, -3 13. Each gets % of a basket
Exercise 21-5
1. The products are as follows:
a. 249 b. s e Ly or 1584
Exercise 21-6
2. The sums and products arc as follows:
a, 458 b. 35 c. L7

¢, e\ _a ¢ Xf+dXxe
B 2’*'17)“1’))(( dxf )
(@

e X f) - -(a>\d><r)
bAlZXf

(_zch,_izxc __(i_,\’c}a\c
b7d) T\ T F) T i xa i xS

::(a>\c><f)—r—(a><d><e)

bxdxf

Since both expressions are the same we have

a f¢ e\ fa ¢ (%t
o) ()
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Exercise 21-8

1. a. D:{f'{—'g— b. D=T73"—'% C. [:]=2})—]3-
d. O =1% + 3}

2.a.DX“:*——-T7-g b-DX—;’}=-1‘3 C. DX}-?'
d. [ xte=23z

3. a. ',.7; b. _lT‘_L C. -2~6T d. %%— €. 55
f. 13 g 1 h. } i % j

4, a. 32 b. % c } d. 1 e. %
L3 B H

.0 . 0
5 0 =1= 3 has no solution because 3 % O=0o.
a 0 . 0
6. =375 never has a solution because 7 X O=0

Exercise 21-9
n

7 5 0 13
1. a. 50 b. Ty C. o d. 5= €. -5~ f.
] 1681
2, a. I b. }(7) c. }’2“0 d. e e o &
5 3 3 AR7
B 13 h. 33 L oytr I T340

Exercrse 21-10

2. 3} hours

3. 1} days

4, 2% or 11} in one hour; 434" or 45% in 2} hours.
5. Division is the inverse of multiplication,

6. Multiplication is the inverse of division,

— eaf
]
0 &

o
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FOREWORD

In this volume of Basic Concepts of Mathematics, the Teacher
Training Writing Group at the 1964 Entebbe Mathematics
Workshop has completed “Structure of Arithmetic”, the first
part of an experimental text to be used by primary teachers in
Training Colleges. The text was planned at the 1963 Entebbe
Mathematics Workshop, and four units were written then and
published in a preliminary edition. ‘The units now added treat
integers, rational numbers, real numbers and approximations,
In these units, the number system of arithmetic is further en-
farged. The operations of arithmetic are studicd with particular
attention to problems arising in cveryday situations and to the
systematic underlying propertics of the operations,

As in the carlier units, the exercises have two purposes: to
develop and extend the understanding of the mathematical
content presented in the text, and to suggest by example kinds of
exercises the trainee could create for use in his own classes when
he becomes a teacher. Answers for the more diflicult exercises
in this volume will be found at the end of this hook.

"The preliminary edition has been produced under pressure of
time, and there is still much to be done by way of improving
exposition and organization as well as adding to the stock of
exercises. To all users, therefore, the Teacher Training Writing
Group direets an carnest request for comments and suggestions
which can contribute to the work of preparing a more finished
text. Reports from experimental use of the preliminary edition
arc a source of ideas which will make the next edition of greater
value to mathematics education,

‘The succeeding volume ol Basic Concepts of Mathemaiics, ulso
prepared by the Teacher Training Writing Group at the 1964
Entcbbe Mathematics Workshop, is devoted to “Introduction
to Geometry”, the sccond part of the text planned in 1963.
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Chapter 22

ORDER PROPERTIES OF FRACTIONS

22-1 Revision of order

When you learned about fractions on the number line, you
found how to decide whether onc fraction was less than another
fraction. For example, if you draw a number line showing 3
and 11,

-« 4

}

you see that the point marked 2 is to the left of the point
marked 1}, Therefore £ is less than 1%, and we write § < 14.
Since the point marked 14 is to the right of the point marked %,

it is also correct to say that 1% is greater than 2. In symbols,
1L > 3

4 PN s Il ] s
y v t T T $

LR PR P A I I

.
T

0

o=t
W=
wrd

Cunde

Exercise 22-1A

1. Draw a number line and locate each pair of fractions on it.
Which fraction in cach pair is greater?
a, 2} and & b. 2 and }

c. l{and & d. & and 1}

2. Write fractions less than cach of the following fractions:
5: %3 '(1'1': ?

Do you remember that if you have three different numbers
shown on a number line, one will be between the other two?
For example, of the three numbers 3, Tand 14, 1 is between
% and 14,

e 4 S ]
t \ y T -

0 i 1 2

In symbols, you can write } < 1 < 14. This mcans the same
thing as writing

-

-
i~

t<landl <1}
2
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What do you sec about } and 14, the two outside points? You
sec that } < 14 becausc 4 is to the left of 1}.

Exercise 22-1B

1. Locate the three fractions in cach of the following sets on a
number line, and say which one is between the other two.
Also say which of thic outside two fractions is the greater.

a. %’ 2) i’ b' 3%: 2%) 1‘}

5,

o
C. i G 1 d' ’Z‘) %7 '3'

2. Make up three sets, cach containing tiirce different fractions,
and show cach set on a number line.

22-2 Order and addition and subtraction

Some propertics of order which we already know for whole
numbers are also true for fractions. Let us start by locating
and 7 on a number line. We sce that } is to the left of 7. That is,
$ < I. If we add the same fraction 2 to both % and I, we move
cach to the right a distance of 2.

, ../.'_\

S0 3 13 2

o]

[
w

[NIE
E-Y

».
[32]

The sums are 2 and 5, and we notice that 2 < 5 because 2 is
to the left of 5. The sums arc in the same order as the original
numbers % and Z. We have

i+

N 12l popm
ANA
I...

(&, PO RN

a

Now think of P

¢ . .. a2 ¢
and - as any two fractions with + < -, Then

b " d
¢

d

gwill be to the left of -~ on a number line. If we add the fraction

4

a ¢ .
}to 3 and also to e the point for

a

A is replaced by a points units



4 Fractions

to the right of g, and the point for (—; is replaced by a pointg

units to the right of(—;. The point ;—j + Iéis still to the left ofs + ‘g

Thus:

a ¢
¥ 5 <37
then g—+g<—+/—)
q q
< //_\\ =/_\ .~

L

T 1
@ p [y -]
b+q d+7

2R
Qn

Do you recognize this as one of the properties of order which
we knew before only for whole numbers?

Again, let ¢ and 4 be whole numbers with 2 < 5. We have
already scen that if ¢ is any whole number which can be sub-
tracted from a to make a — ¢ a whole numbcr, then

a—c<b—c¢

The same property is true for fractions,

For example, from both sides of the inequality

t<lp
we can subtract 2 to obtain
t-3<lp-p
that is, 1<l

We still have to be careful that the number we subtract is
not too large. For exarple, we cannot yet subtract 11 from $.
The subtraction property can be stated as follows:

a ¢
_<--

Ifb 7

b a
and if qu 1s not greater than B
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then - < —

a ¢
b ¢ d ¢
IxERCISE 22-2A

1. Is it truc that & < 2?

2. By adding 1, }, %, 1 to both sides of § < £, find four more
truc incqualities.

3. By subtracting %, 1, %, & from both sides of ¢ < 2, find four
more truc incqualitics,

4. Can you subtract & from both sides of the inequality & < 92

22-3 Generalized addition property

Let us start once again from the truc incquality 3 < Z. In
the last section, we added 3 to both sides to obtain 2 < 5. What
will happen if we add a larger number to the right side 7 than
to the } on the left? For example, since 4 < 4, let us add 2 to
the § on the left and the larger number & to the 7 on the right.
‘Then we obtain the inequality 2 < 6, which is also true, That
is, we start with

1<% and 3 <t

After adding, we sce that the sum of the right-hand sides is
greater than the sum of the left-hand sides:

bH2<i+d

or 2<6
Will this always be the casc? Let us start with
<4 and 2z <}

Is the following truc?

Yes, because § + 2 =23 and 4 + } =13 = 28 and



6 Iractions

The gencralized property that these examples illustrate is the
generalized addition property:

a c §4 r
¥} - <= Lol
If ;< p and p <
then Z. -+ /q_) (_; + 4
To sce that this is really so, we first add {—]) to both sides of -
a_c
b d
and obtain 2 +/_) < £ -+ P
b g "d g

. . . ¢ .
We can get another true inequality by adding 5 to both sides

of‘£)<f

q s

This gives us ]3+f<f+f
g d s d

or, by using the commutative property of addition,

Looking at the second and fourth incqualitics in this paragraph,
a hc P
ber line must be as shown here.

c 1
we scc that the order of and p + ; along the num-

+ =+

A
b

"
- -
an
am
+ 4
s

[
q
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Exercise 22-3A

What truc incquality do you obtain by using the generalized
addition property with cach of the following pairs of in-
cqualitics?

L i<? and 1} <1} 2. 4
A 3<h oand 1 <3 4, 4

L]
o

e

F <
2 and <

1
22-4 Order and multiplication by 5

You know that 1 < 5. What can you say about } x % and
§ % 32 Which is greater? To find the answer, let us usc rect-
angles to show the original fractions.

{
i
|
|
|
;
|
]
§

1

3
'The set of one of three equal parts is smaller than a sct of two
of the three equal parts. So < §. To picture } > }, we divide
4 by lines running from side to side. We can picture } X § in
the same way.

Each rectangle is now cut into 12 equal parts. How many
twelfth partsis § x §? How many twelfth partsis } x §? You
sce that from

BC2--B &<§
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you can conclude that
Ixi<ixt

We can also show this conclusion on a number line.

R XE

Nt

R
—

Since 1 is less than 1, it follows from the picture that
Pxi<ixi

This illustrates the general rule: Let n be a counting number.
I ¢

a ¢ . - 1 I a
i < (—iand both sides are multiplied by = thcn;Z X 3 < " X 7

It is not difficult to sce that this eencral rule must be true. If
g

If

a, ¢ . a ¢.
35 less than . and we divide both 3 and 4inton equal parts, onc

of the parts ofg will be smaller than one of the parts of'-;. That
is to say,

1 < ° 1 «

270 <% d

ExzercisE 22-4A

From the incquality § < , by drawing rectangles and number
lines show that the following inequalitics are truc.

1L }<i 2.2 <} L <%

225 Order and multiplication by m

What can we say about multiplying both sides of the in-
cquality } < 7 by 52 If we locate 1 and { on the number linc,
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we sce that the jump from 0 to § is greater than the jump from
0 to .

3 1 1 N
AR LB S TN NN
- ,\l/v\l_/l\l/l\'/‘ L R B T ——

Then five jumps of the size from 0 to # will carry you farther
to the right on the number line than five jumps of the size 0
to 4. S0 5 x § <5 x {. From the truc incquality

i<}

we can conclude that 5 x § <5 x 2,
You can guess what the genceral statement must be.

If we know that g < (—j

and m is a counting number, then we can conclude that

nXa<IXC
mX-<mX -
b d

- . . . a ¢
Letus s if this guess is true. Imagine jumps of distances - and -

b d
on the number line. The jump for 5 is longer than the jump

a

for i

. Then m jumps of distance —(; will certainly be longer than

. . a .
m jumps of distance b That is,

Xa< XC
mX-<mx-
b d

The general statement is true.
ExErcise 22-5A

1. What new incqualities do you get if you multiply both sides
of the incquality § < 4 by thie following whole numbers?

2,3,4,5,6,12

2. Explain low you can show that 2 x § <2 x & by using
rectangles,
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22-6 Order and multiplication by e
n

Suppose we multiply both sides of the incquality § < 4 by 2?
What riew incquality do you think will be true? Of course, you
think 2 x # <2 x # might be true. But how can you scc that
it is true? One way, of course, is to multiply the fractions and
compare the two sides of the inequality. You will get 54 <8
which is true.

There is another way if we use our previous results. Suppose
you begin by writing ¢ = 2 x 1. Since it is true that <4
you can conclude that

1 s 2 L v 4
PxE<axd

After further multiplying by the whole number 2, you can
conclude that

2X(FxE)<2x (¢ x9
or (2x4) xE<(2x1) x4
Then i X F<E X4

(What property of multiplication did you usc to go from the
first incquality above to the sccond inequality?)

The result about order and multiplication that you should
now suspect to be truc is the following:

a
b 5 <2

then we can conclude that

m a m c
— .

n b d
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(o d) 8 (o))

m a m
- X5 < =X

¢

X5 < X -

no b nd

Exercise 22-6A

1. Obtain ncw incqualitics by multiplying both sides of the
incquality & < 2 by 2, 1 1 4 2,

2. From the incquality # <&, how can you conclude that
1 < 42 Can you conclude that 9 < 10?

3. Give the propertics of fractions that you usc to go from one
incquality to the next one in showing the gencral property

a _m ¢

. ] ) m
in this section that — X - <— x -.
n b " n d

. . . .oa _C,
4. Say how you might convince pupils that |f[—) <l true,

then

DT I~
=
Al e
=

n

. 7
is also true <unlcss - = O>.
n

22-7 Generalized multiplication property

In the last section, we started with the inequality § < 4, Let
us do so again, but this time multiply the larger number 4 by a
greater number than the one we use to multiply %. Let us
multiply § by 2, but multiply # by 4, which is greater than 2,

: 24
From F< 4
3 4
and <4

3 2 4 v 4 a 16

we get X F<§FX{ or <4t

which is 2 truc inequality. The product of the left-hand sides
is less than the product of the right-hand sides.
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We can do this problem in another way to sece that the con-
clusion must follow. Since # < 4, we conclude that

7 X "g- < -;- X -;—.

That is <l

From the true incquality < 4, we can conclude that
PXEi<ixs

That is g <12

The last inequality tells us that % 1s to the right of 8 on the
number line, The incquality 1% < {if tells us that 18 is to the
right of 12, Therefore 15 mu st be to the right of 14, and &% < 1L

] ~

12
25

-l

o1
-l
wo T

Thus, FXE<E X4

The general property that we would like 1o establish is this
generalized multiplication Droperty:

a ¢ m _p

[f 'b' < :1 and '7—1- <§
a m ¢ {)
then ZX;<2>\Q

We will follow the plan we have Jjust used in the example, Since

m
— <=, we can conclude that
n

n
n

-

X <5 X

Ul

/Ul
Wi~

c

. . a
From the incquality j < ;p We can conclude that

m a m c
= X<~ X~ or
n

b7 % X

X

I a
®|F
|/l
ER S

(Where did we use the commutative property of muuiplication?)
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¢
d
m ) c m ¢
X - on the number line. Also 5 X > <- X 4 tells us that
q

d
X 72. Thcnf X ¢ must also be to the
n d "¢

=)
o]
@]
5

m<c
b n o d

X
!

m m, .
X~ we know that - x S isto the right of

c

d

Rl o1y

X éq)is to the right of

right of; X %

X =d=

s

x 4
23
amn

X -
33
an

ER
I

o>~
] o
RS

That is,

Exercise 22-7A

L. Using the same plan as the example, show that & < 3 by
starting from the incqualitics 2 < § and & < 2,

2

Using the generalized multiplication property, what in-
cquality do you get from ecach of the following pairs of
inequalities?

}<} and <&
2<8 and } < %
5<% and <}



Chapter 23

DECIMAL FRACTIONS

23-1 Revision of decimal numeration

You will remember that at school you learned another way
of writing fractions, that is as decimal fractions. These are the
same kind of numbers as the fracrions that you have just been
studying, but they are written in a different way. Just as whole
numbers may be written as Hindu-Arabic numerals, or as
Roman numerals or in the way the ancient Egyptians wrote
them, so the parts of a whole may be written in two ways. You
have already studied ways of introducing your pupils to frac-
tions which are written with » numerator and a denominator,
such as }. We will, in future, refer to fractions written this way
as fractions in common | rm or common Jractions. We do this to
distinguish them from fractions which are written as an exten-
sion of the decimal notation for whole numbers, such as -25. We
will refer to fractions written this way as fractions in decimal
form or decimal fractions. Each common [raction has its decimal
fraction cquivalent but not every decimal fraction has an
equivalent common fraction, as you will see in Unit VII.

You know already that the notation for decimal fractions was
invented as an extension of the way we wite whole numbers, 1t
uses the ideas of base and place value which are the basis of the
Hindu-Arabic notation system. If you will always remember
this fact, it will be no harder to understand decimal fractions
than it is to understand the decimal notation for whole numbers,

The idea of a base

We will begin by recalling what you know about the decimal
notation for whole numbers. You will remember that the nota-
tion for whole numbers is based on counting. When large
numbers ol objects have to be counted it is simpler to group
them into cquivalent sets, that is, into sets with the same num-
ber of members. They can be grouped into sets of 2 or 3 or 4
mcembers, or any number of members you choose, If you group

14
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the objects in threes, then you arc using base three. 1f you group
them in sixes, then you are using base siv. Traditionally, we
group our numbers in tens; that is, we use base ten. T'his is why
our system of notation is called the decimal system, from the
Latin word decem which means “ten”, When the number of
the set to be counted is large, it is necessary to put groups
together to make larger groups, still using the same base num-
ber. IS ones are grouped together, then 5 fives will make the
next larger group. This grouping of groups to make larger
groups is continued as far as is necessary. In the decimal
system the groups have special names. They are ones, teus,
hundreds, thousands, ten-thousands, hundred-thousands, mil-
lions and so on,

You will remember that you can help vour pupils to under-
stand the idea of grouping by letting them practise grouping a
sct of sticks, using scveral different bases. Here is an example
vou could use with them,

Put out a long row of sticks. Choose a base. We will use base
three. First group the sticks in threes, beginning from the lefi.

OGO

Then group the threes into larger groups cach of 3 threes.

OOOOOOOODDOTDO!

Continue in this way until you have no more than 2 groips of
any kind of grour . Here is the last picture, You will see that
there is I group of 3 groups of 3 threes.

(00TETT00TaT

I group of 3 groups of 3 threes - T group of 3 threes + 2
groups of three - 1,
Now you ask your pupils which is the biggest group they
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have made? It is 1 group of 3 groups of 3 threes. It can be
written as 3 X 3 x 3.

Then ask about the next largest group, the group of 3 threes.
There is only 1 of this group also. Then there arc 2 groups of
three and 1 one. Put these together and you have 1 group of
3 X3 x3 1groupof3 x 3, and 2 groups of three and 1 one.
Do you remember the short way of writing this? You usc the
index notation and show 3 x 3 x 3 as 33, It is

I X33 41%x324+2x34+1x1.

Exereise 23-1A

1. Sct out 43 sticks or draw 43 strokes. Group them in base six
and write the result, using index notation showing powers
of 6.

2. Using an cquivalent sct of sticks, group them in base ten and
write the result, using index notation.

3. A sct of sticks has been grouped in fours and the result
written as

I X4% 12 x4 43 x4 40x1

Draw a picture to show this grouping.

Place value

What does the numeral 3,243, mean? How s it different
from 3,243.,2 It is helpful to your pupils to make a number
chart to show the value of cach of the digits in a numeral, Here
are two number charts, onc for base ten and one for base five,

o g
Lo g 8
| | 8 &
I 33
S8 el T8 5 isly
RI= &S T[S
10% | 102] 10 | 1 5 15051
302043 302 |43

The numeral 3,243, can be rcad from this number chart as
three thousand, two hundred and forty-thrce. Without the
number chart, how do you know how to read the number? You
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know the value of a digit by its position in the row. The place
value of the 4 is ten because the 4 is in the tens place. The place
value of the 3 on the left is thousand because it is in the fourth
place from the right, the thousands place. Your pupils should
be familiar with the value of thesc places in the decimal system
and sliould be able to read a number casily.

You will remember from your earlier work how to rcad a
number in another base, such as 3,243,,. You will remember
that we read this as “threc two four three base five” and do not
attempt to give names to the places. (Why not?)

Change of base
You should remember also how to change a numeral from

one base to another. If you have difliculty with the following
excrcise, look back to Chapter 6.

Exercise 23-1B

1. Write the following numerals in the expanded form, using
the index notation.
a. 1,213, b, 23,751 ., c. 121,304,

2. Rewrite cach of the numbers in Question 1 in the decimal
notation.

3. Write the following numbers in base seven.
a. 65, b. 77 c. 36,490,

4, Make a number chart for base six and show on it the follow-
ing numbers.
a. 35,0025ix bo 2,020‘;,‘ C. 13’4.52&:

5. What is the value in decimal notation of each 2 in the
numerals in the last question?

6. Tell in what base each of the following equations is written.
a. 24+ 1=10 b. 13 -4 =4
c. 14 x4 =104 d. 26 -4 =5

7. Write the following nuinbers in the decimal notation.

a. Five hundred thousand, cight hundred and seventeen,
b. Six million, ninety-two thousand and twenty-three,
c. Ninecteen thousand, nine hundred and nine,
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Relationship between the digils in a numeral in the decimal system

Before we introduce the notation for decimal fractions, it is
uscful to think again about the rclationship between one, ten,
hundred and so on. Picturcs can help your pupils to understand
and remember what they learn. One and ten are casy numbers
to understand. Ten ones make ten and we can sce a sct of 10
members by looking at our fingers or toes. Onc hundred is
harder. Where do you sce a hundred? A thousand is a big num-
ber. Do you ever sce a thousand? And so you can think also of a
million. How many thousands do you nced to make a million?
Here is onc way to help your pupils to gain some idca of the
relative sizes of numbers. If you have graph paper with small
squares whosc sides are, for example, cach % inch, usc it, If
you have not, then usc, or make, paper with small squares on it.
If you use graph paper, then you will be able to show casily
how a thousand is built up from 10 hundreds, how a hundred
is buiit up from 10 tens and how a ten is built np from 10 oncs.
You are about to make pictures of one, of ten, of a hundred and
of a thousand.

Shade 1 small square. This is 1 one.

Shade 10 small squares. This is a ten-strip.

So 1 ten = 10 ones.

Next, shade 10 ten-strips.

"This is a hundred-square.

So | hundred = 10 tens
= 100 ones.

100
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Now your pupils can build up a thousand-strip by shading ten
of these hundred-squares. What can they write about this new
strip? It is a thousand-strip.

So 1 thousand = 10 hundreds
= 100 tens = 1,000 ones.

You could continuc further and build up a ten-thousand-
square, a hundred-thousand-strip and even a million-square.
How many thousand-strips would be needed for a million-
square?

A ten-thousand-square nceds 10 thousand-strips,

A hundred-thousand-strip nceds 100 thousand-strips.

So a million-square needs 1,000 thousand-strips.
Can you write a set of equalitics for a million as we did for a
thousand? Here it is. Were you right?

1 million = 10 hundred thousands
= 100 ten thousands
= 1,000 thousands
10,000 hundreds
100,000 tens
= 1,000,000 oncs
If you let your pupils draw pictures like those above, it helps
them to sce the rclationships between digits in a numeral.
Think of the number 11,111, Each 1 has ten times the value of
the digit to the right of it, or 100 times the value of the digit
two places to the right of it. You can think of the 3 in 3,641 as
3 thousands or
3C hundreds or
300 tens or
3,000 oncs

i

ExercisE 23-1C

J. Using squares and the method shown above, draw pictures
to show the value of 1,111,

2. Give the value of cach of the digits underlined in three
different ways.

a. 32,541 b. 5,678 c. 10,327
3. a. How many tens are there in 362?

b. How many tens are there in 5,362?

c. How many hundreds are there in 37,1407
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23-2 Decimal fractions

Do you remember how to represent numbers on an abacus?
Here is an abacus with four rods. We label the rods as we label
the places in a numeral.

* s o o

Thousands  Hundreds Tens Ones

The bead on the tens rod is worth 10 of the beads on the ones
rod. The bead on the hundreds rod is worth 10 of the beads on
the tens rod or 100 of the beads on the ones rod.

‘Thus cach bead is worth 10 of the beads on the rod next to it
on the right,

(a) (b) ' (c)

10° 102 10 1 10* 102 10 1 10° 10?2 10 1

Shown above are three numbers, represented on the abacus.
Can you write them down? Use the index notation first, and
then write them in the usual way, Here they are:

(a)3><10“+5><102+6><10+3><1=3,563
(b)2x10“+0><102+4><10+5><l=2,045
(¢) 5><10“+2x102+4><10+3><1=5,243
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It will be uscful to us now to think of the relationship between
the beads the other way round. 'To make it casier to write, we
will call the rods A, B, C and D,

A R ! (o D E F

10° 10° 10 1

"L'en beads on rod B are worth 1 bead on rod A. So a bead on
rod B is worth ;'; of a bead on rod A. The same rclationship,
“i% of”, will he true for cach bead and a bead on the rod
immediately to the left of it.

A bead on rod C is worth % of a bead on rod B,

A bead on rod D is worth 4% of a bead on rod C.

If we place another rod, I, to the right of rod D, we can say
that a bead on rod E is worth 4; of a bead on rod D, But a bead
on rod D is worth one, and so a head on rod E is worth {4 of
onc, that is, 1 tenth. Se we can name rod F the *“tenths rod” just
as rod D is named the “ones rod” and rod B is named the
“hundreds rod”. You will note that a space has been left
between rod D and rod E. This is to remind us that the whole
numbers end with rod D, After rod D we have tenths, which
arc [ractions, decimal fractions.

We will now place a rod F to the right of rod E. A bead on
rod I must be worth %5 of a bead on rod E. But a bead on
rod I is worth 1z of onc. So a bead on rod T is worth {4 of Y5
of one. In the chapter on multiplication of fractions, you
Icarned how to find that this is +}5. But you can help your
pupils to understand this better by working it out on the
abacus,

How many beads on rod I' make 1 bead on rod E? 10.

How many beads on rod I make 1 bead on rod D? 10.

So how many F beads made a D bead? 100. So an T bead is
1o of @ D bead. But a D bead is worth one, so an F bead is
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worth tls of 1 = !5 So now you can name the F rod the
“hundredths rod”.

Place value of decimal fractions

You know that the value of a digit in a numeral is shown by
its position in the row of digits. Each position has a value of 5
of the position next to it on the left. Using the place-value
system, we can write the number shown on the abacus above as
HTLIL The last 1 represents 1 hundredth and the 1 to the left
of it represents 1 tenth, You can sce that you could casily mis-
take this number for 111,111, which has no fractional part.
You nced some way of telling which digits represent whole
numbers and which digits represent fractions. That is why we
use a dot called the decimal point. The number shown on the
abacus is then written 1,111-11, This, you remember, is spoken
as “one thousand, onc hundred and cleven point one onc”.
We do not usually say the value of the decimal fraction when
we read it. For another example, we will read 362-54. Tt is read
as “three hundred and sixty-two point five four”,

It will be helpful to your pupils to make « number chart
wluch includes decimal [ractions, Here is one.

Decimal
Point
T T T T o
2l 8 H} . 3| 5| £
g | § sl g SI¥ ) 5les(S
(23] 5/ i8 2 |2 8] g(S3]E
SISl ST e et |3 esEdE
SRR TR RN ISR RRTIETE
T 1 : !
(a) i 31619 ¢ 1
!
1
(6) 5 BEERERE !
() | bolofolo [o |1 ]
(d) 1l slodsis]elo |
@1 ol ojolojo/tsolol1]|o]o}s
) b 2] 9765244853 |24
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You will notice that the columns have been extended farther
to the right to include thousandths, ten-thousandths, hundred-
thousandths and millionths. The place value of cach column is
1% of the value of the column next to it on the left. The column
on the right of the hundredths column is worth % of +15, and
this is 13%¢ or 1 thousandth. Can you show the valuc of cach
of the remaining three columns in the same way?

ExErcise 23-2A

1. Write in full; as was done above for 362-54, the numbers
shown on the chart on page 22.

2. Write as common fractions or as wholc numbers the digits
underlined on the chart.

3. Write cach of the numbers (a), (§), (¢) and (d) shown above

in the expanded form. (For example, 2367 would be

I I
) L6 ¥ — g
2%104+3 X146 x5 +7 1,_,)

Pictures of decimal fractions

You can show decimal fractions in pictures, using squares as
you used them to show whole numbers, Last time you used one
small square for 1 onc. This time you will need one large square
to represent 1 one. Make a large square with cach side 24 inches.
Now divide it into strips cach } inch wide and 2} inches long.
There will be ten of these strips, so cach one represents 3 or -1,
How many strips will represent -2? -6?

10 strips, cach J}; of 1;
1 one = 10 tenths

BC2-C
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Now you want to show -01. This i 15, and pi; is 5 of ;.
So cach strip must be divided into 10 small squares, One small
Square represents 01, or 1y, as there are 100 small squares,

r I

I one = 10 tenths
= 100 hundredths

NN

If you now divide cach small square into 10 small strips, each
small strip will be %, of 9% = Toss or | thousandth, Anp
alternative way of writing a decimal fraction which i less than
lis to put a 0 in the ones place; for cxample, 0-2 or 0-35, It is

thought that the 0 helps to draw attention to the decimal point,

Regrouping of decimal Jractions

Pictures like those opposite can help you to sce how many
tenths or hundredths there are in a number. You can think of
430 as 43 tens and in the same way you can think of 43 as 43
hundredths. If you look at picture (b), you can sce that this is
$0; 4 is 4 strips and cach strip has 10 hundredths in it So
altogether there arc [(4 x 10) + 3] hundredths.

So +43 = 43 hundredths,

You can also think of this number in tenths. There are 4
tenths and 3 hundredths. One hundredth is & of 1 tenth, so
you can write 43 as [4 +- (3 x +5)] tenths,

So 43 = 4-3 tenths.

In the same way, 430 can be written as 43 tens or as 4-3
hundreds or as 4,300 tenths,

You will have found this way of writing numbers in news-
papers. Instead of 3,650,000, you will seec 365 millions, It is
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shorter and easier to rcad. Or you may sce 6-5 thousands. This,
in full, would be 6,500. You will read morc about this way of
writing numbers when you come to the unit on approximations.

Exercise 23-2B
1. Draw pictures to show these decimal fractions.
a. 3 b7 c. 02 d.-07 e 72 £ -88

2. What decimal fractions are represented by the shaded parts
of these pictures if the big square represents 1 one?

(©) | TTTTTTT (d)

3. Write cach of the numbers in Question 2 as tenths and then
as hundredths,

4. Write cach of these numbers as a decimal fraction of the
unit mentioned.

a, 325 as tens b. 325 as tenths
c. 27-56 as tenths d. 394:61 as hundredths
e. 3,620,000 as millions f. 7,200 as thousands

g. ‘037 as thousandths h. 2-37 as tens
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5. Make a number chart strctching from hundreds to thou-
sandths, Then write these numbers as decimal fractions on
your chart.

3 3 1h 18
2. 1§ b. 135 Ce o0 d. 15

2090 269 7 29
e. ’T—O‘O‘ f' 100 g' T600 h. T‘()VU—O
i. Forty-two tenths Jo 2:9 hundreds

k. 327 thousandths
L Twenty-five, five tenths and three thousandths

No improper decimal fractions

There are proper fractions, such as -36, and also mixed
numbers, such as 2-3, in decimal fractions, but there are no
improper fractions. Try to write an improper fraction such as
1& as a decimal fraction and you find that you get a mixed
number 1-5. This is because the principle of place value makes
it impossible to write more than one digit in one column,

Common fractions as decimal fractions

You alrcady know how to write some fractions as decimal
fractions. A fraction whose denominator is 10 or 100 or some
power of 10 is casily written as a decimal fraction. Examples
are 3% =23, £118 = 5.718. Some other fractions have
denominators which arc casily converted into powers of 10 by
using the procedure you learned for finding fractions cqual to
a given fraction,

Do you remeniber how to rewrite # in sixths? Why is it true
that § = 4? Look back to Chapter 20 if you have forgotten,
because you will need this procedure in the next paragraph.

Here are some fractions which have been rewritten with
denominators as powers of 10. What can you say about all the
denominators ¢l the first fractions of all the sets?

= =8 1 = .25 - .95. 1 _ 15 __ .,
':‘_’1“6—‘ 8’ } "1,0"0"‘ 2‘)’ é“'l‘noo'_ 125

The description is very simple. The denominators are 5, 4
and 8, and thesc numbers are all products of powers of 2 or 5.
Numbers which arc products of powers of 2 or 5 are factors of
a power of 10 and so can be multiplied by a whole number to
give a power of 10.
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Exercise 23-2C

1. Write cach of these fractions as an equal fraction with its
denominator a power of 10. Then write the corresponding
decimal fraction.

a. ? .l 3 d& e & £ 2
31 31 s 11 05 217 9

& v h. g i 4t 50 & k.st L g
45 201 pul 117

m. 5y . <5~ 0. G ) M

There is another way to find the decimal fraction cquivalent
of a common fraction. This is by division. Think of . You first
met  as the missing factor in the multiplication equation

2 x[]=1
This equation corresponds to the division equation
1 -2 =[]

So we can divide 1 by 2 and know that the quotient will be
one-half. Let us divide 1 by 2 and sec what quotient we can
find. You will remember how to set this down as a division
exercise,
To find 1 + 2:
Onecs:  There is no whole-number
answer to 1 = 2, so we re-
group 1 as 10 tenths. This S
we do by simply putding a
decimal point after the 1
and adding a 0 in the tenths
column,
Tenths: 10 -- 2 = 5. We write 5 in the tenths column,

So we have shown that § = -5

O Tenths

N
~—
—
o

It is useful also to work this division in common {ractions.
1 +2 = (10 x %) =2
5

—. 10 _-_ JR—— —_
=10 20 = =5

Let us next sec how we can write } as a decimal fraction, We
know that $ =1 - 4, :
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Short form
To find 1 = 4: 2
Ones: 1 - 4 is not a whole numbecr : I
5§ 3
Regroup 1 one as 10 tenths. o 5 g
Tenths: 10 +4 = (8 4-2) + 4 N oW
=24 (2 +4) 4)1.00
The numbers
Regroup the second 2 tenths written above the
as 20 hundredths. digits show how the

Then 1 =4 = 2 tenths + 5 hundredths, Te8rouping is done
at cach step, begin-

So } =025 ning with regroup-

ing onc as 10 tenths,

Using common fractions, this same problem can be worked as
follows:

=l +d =00 +d=(5%+3) -4
=% +4 + (& +4)
=75 + (% X 13 +4)

This method with common fractions can be used to cxplain the
short form written above on the right.

Below is another example using only the short form.
We know § = 7 = 8. But 7 - 8 can be found as follows:

2 &
=

T %

o
s 898
g 8528
O RIE
875

-t
<
@
=
-
s

8)7.
Sof=7+8=-875
Now try }. Since 3 = 1 = 3, the short form is as follows:

Ohnes
c.ao Tenths
* 09 Hundredths
O 5’ O3 Thousandths

—
.
=

S OJ Ten-Thousandths

31
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At cach step, regrouping and division gives a quotient of 3 and
a remainder of 1, which indicates that the process can go on
forever. There is no whole number which equals 2.2, since
10 =20 1 =3 4 1

We cannot write all these 3, so we agree for the present to
write only digits to the place valuce of thousandths and put three
dots after this thousandths digit to show that the decimal
fraction is unending. That is, we write } = 0:333 ..., the
three dots showing that there are other digits which have not
been written down,

Decimal fractions which are found this way from common
fractions often have a pattern of recurring or repeating digits
after the decimal point. You will meet several of these in this
chapter, They arc called recurring decimal fractions. "I'here is an
alternative way of writing a recurring deciinal. Place a dot over
the digits which recur, but if more than two digits recur, the
dots are placed over the tirst and last recurring digits only,
Thus § = -3, and ‘348 = 348348348 . . ..

Here is another example. We kuow 2 == 2 -9

Oncs
NS Hundredths

Ko Tenths
. NO Thousandths

'

|
i
I

(5
<
15}
.-
<

9)2.

So & =:222..,, =2
Exercise 23-2D

I. Find the decimal fraction equivalent of these common
fractions by division.
a. b, ] ¢} d. } e y; £33 g %

2. These common fractious that follow all have recurring
decimal fraction equivalents. Work cach division far enough
to be sure you have fonnd the pattern of recurring digits,
Put dots over the digits te show the recurring digits.

1 1 1 2 b T
a. b. 1 c. d. 5 e 2 . & g s

G



30 Fractions

You will often need to change a common fraction to a decimal
fraction and vice versa. It is a good thing to remember these
equivalent forms in pairs. Your pupils should also remember
them, but be sure that they understand first how to work them
out and why they are equivalent. It will help your pupils to
draw pictures using the big squarc of a hundred small squares
so that they can sce that the number represented by a common
fraction and by its decimal equivalent is the same number,

ExErcise 23-2F

L Fill in the gaps in this table. Do not use more than three
places in decimal fractions.

oy ' o o i ! ' :
Commor.z . R T o
JSraction | ‘ ' ‘i
1 ! ’
Decimal 25 2 L
JSraction L ! [ f

2. Draw pictures to show that cach of the pairs of numerals
above represents the same number.,

3. Give three common fraction names and three decimal
fraction namecs for cach of these numbers,

a. § b, 3ltens ¢ 3ltenths d. 57 e, T

[SE

23-3 Fractions in other bases
You know lLow to write whole numbers in bases other than
ten, and you know how to write fractions in base ten. In
exactly the same way, you can write fractions in bascs other
than ten. For example, the base-six notations can be extended
to include fractions formed as a result of dividing by 6.
24312y, = [(2 % 10%) + (4 x 10) + (3 x 1)

A (1 X 4%) + (2 X %) ea
Andso: 243-12,; = [(2 x6%) - (4 x 6) + (3 x 1)

(X)) + (2 X 39)]ien
ExXErcisE 23-3A

L. Write cach of the following numbers in the expanded form
in basc ten:
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a. 1625, b. 325-321 . c. 110:111,,,

2. Write each of these numbers as a common fraction (base ten)
with the lowest possible numerator and the lowest denomina-
tor.

a. '375tcn b. '4_cight c. '02:ix d. 'ltwo
¢, 1'221hrcc f. 24 8. 3.2ﬂvc h. 1.02fuur

3, Find the numeral cquivalent to } in cach of the following
bases. Use three decimal places only. Use three dots to show
a recurring decimal fraction.

twelve

a. basc two b. base three c. base four
d. basc five e. basc six f. base seven

g. basc cight
4. Make a third row to the table in Excrcise 23-2E, Question 1.
Fill this row with the base-six numerals for thesc fractions.

5. Can a recurring decimal in base ten be an ending numeral
in a different base? Give six examples to explain your
answer to this question, using the results of previous exer-
ciscs.

Now that you have worked through this chapter on decimal
fractions and fractions in other bases, you will see that there is
nothing mysterious about them. They are simply other names
for the common fractions. You have seen, too, that the fraction
shown shaded in the picture can be called by many different
names, Here arc some of them.

1.2 10 .5 11 ..

2y 2o teny *threes ]lwo)
. .99 .9,
cichty 2ﬂlur) “"2 0 cfive 3511’

sixteen®

Onc-half may be written cither as an ending numeral (bases
2,4,6,8,...) orasanon-ending numeral (bases 3, 5, 7,9, .. .).
So there is nothing difficult about a non-ending or recurring
decimal fraction. It is the notation which makes it appcar more
complicated. What could be simpler than the idea of one-half?
Yet in base three it is -111 .. .. While one-third in basc ten is
the recmring numeral -333 . . ., in base three it is -1.



Chapter 24
OPERATIONS IN DECIMAL NOTATION

24-1 Addition and subtraction

When your pupils thoroughly understand decimal fractions,
they should be able to do problems in addition and subtraction
with very little difficulty. The methods arc exactly the same as
for addition and subtraction of whole numbers.

Addition

You will remember that when you add two whole numbers
you take cach column in turn and add first the ones, then the
tens, then the hundreds and so on. If any total is greater than
nine, it has to be regrouped. In cxactly the same way, you re-
group 10 hundredths to give 1 tenth or 10 tenths to give 1 onec.
Hcre are two examples of addition; onc is addition of whole
numbers, and the other is addition of decimal fractions.

L= O
167
298
465

Ones:; 74+8=15=1ten + 5 onecs,
Write 5 ones.

Tens: 6 +9+1 =16 = 1 hundred + 6 tens.
Write 6 tens.

Hundreds: 1 + 2 + 1 = 4,
Write 4 hundreds,

KO »~ Tens

— & Ones

63 ;l Tenths

O ) Hundredths

[E~]
=<}
(=)
(&}

o
N
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Hundredths: 6 4- 9 = 15 = 1 tenth + 5 hundredths.
Write 5 hundredths.

Tenths: 74841 =16 =1 one + 6 tenths.
Write 6 tenths.

Ones: 6 +1 41 = 8. Write 8 ones.
Tens: 1 -2 = 3. Write 3 tens.

If your pupils arc to work a problem in which the addends
arc written horizontally, you will need to remind them to think
of the value of cach digit and then rearrange the addends
vertically. For example, suppose you give them this problem:
3 + 14 4 0016 + 29 = []. The numbers should be re-
arranged with the decimal points vertically in line. The first
number is 3 tenths and so must be written in the tenths column,
Here is the setting out of this calculation and the thinking
which should go witlh it.

2

224

g ‘Eé 55

S HERL
(-3) 3 tenths -3
(1-4) 1 one and 4 tenths 1.4

(‘0016) O tenths, 0 hundredths,
1 thousandth, 6 ten-thousandths 0016
(29) 2 tens and 9 oncs 29.

30-7016

Pupils who have practised writing dccinal fractions on a
number chart should not have any difficuity in doing this kind
of problem correctly.

Exzrcise 24-1A

1. Find the sums of these scts of numbers, sctting out the
cxplanation at the side as you would do for your pupils.

a. 294 b, 21-7 c. 29-87 d. 1815
519 13:5 96-75 12:504
T 9 9-139

—_—
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2. Make up four cxamples of addition written horizontally and
show how you would expect your pupils to work these
problems.

Subtraction

Subtraction without regrouping is very simple. Here are two
examples. Onc is using whole numbers and the other is using
decimal fractions,

3 2

T

T ap g 3%

EROE-] g5

28O 5 &%

365 3.29

221 1.07

144 2.22
Ones: 5—-1=4 Hundredths: 9 — 7 = 2
Tens: 6 —2 =4 Tenths: 2—-0=2
Hundreds: 3 — 2 =1 Ones: 3 —-1=2

If you have the problem 86 — 18 = [T, you sce that there
arc not cnough onecs in the ones place of 86 in order to subtract
8. So you have to regroup 86 as 7 tens and 16 oncs. Then

86 =70 + 16
18 =10 4 8
60 + 8 so 86 — 18 =68
The procedure is similar for decimal fractions. Suppose you
have to find 3-21 — -08. Here is the thinking.

Hundredths: There arc not enough ones in the hun-
dredths place of 3-21 to subtract 8. Re-

group 3-21 as 3 oncs plus 1 tench plus 2
11 hundredths. Then 11 hundredths " é’é
— 8 hundredths = 3 hundredths. 582
Tenths: 1 tenth — O tenths == 1 tenth. B(Q)é
Ones 3 ones — 0 ones = 3 ones. 3.13

So 3-21 — 08 = 3-13
Here is another example. Find 6-5 — 3-77,

Hundredths: The hundredths digit does not appear
in 6-5. So regroup 5 tenths as 4 tenths
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plus 10 hundredths. Then 10 — 7 := 3 P
hundredths. LT
Tenths: There are not cnough tenths in the OEEE
tenths place of 6-4 to subtract 7, so
regroup 6:4 as 5 ones and 14 tenths. 6.5
Then 14 — 7 = 7 tenths, 3.77
Onecs: 5 — 3 =2 ones. 2.73

So 65 — 377 = 273

Exercise 24-1B

l.

Explain how to work these problems as you would explain
them to your pupils,

a. 231 — 98 b. 8765 — 64-32

c. 2:35 —1.79 d. 76-84 — 18-92

Which number in cach of the following pairs of numbers is
the greater and by how much is it greater?

a. 2-3 and 1-59 b. 87:32 and 24-118
c. ‘0017 and -12 d. ‘3 and -168

The rainfall in Freetown on a certain weck was recorded in

inches as follows: Sunday, 140 inches; Monday, 3-20 inches;

Tuesday, 3-70 inches; Wednesday, 3-21 inches; Thursday,

0-80 inches; Friday, 0-10 inches; Saturday, 0-01 inches.

a. How many inches of rain fell in Freetown that week?

b. How many more inches of rainfall were there on Wednes-
day than on Thursday?

« Decimal fractions are used in many ways but chicfly to show

the results of measurement. Look at a daily newspaper and
make a list of the ways in which decimal fractions are used
there. Use this list to make up some story problems for your
pupils in addition and subtraction. Question 3 shows two
kinds of questions you can ask them.

242 Multiplication and division by powers of 10
Wihole numbers

Perhaps you remember that multiplication of a number by

10 or 100 is quite easy. For example,

23 x 10 =230 and 375 x 100 = 37,500
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The first of these products can be pictured as follows:

3 3
£z £28
L HO L HO
23 x 10 = 92390

The digits of the number 23 have cach moved one place to the
Ieft, so that cach digit has a value 10 times as great as it had,
A similar diagram for the second product is as follows:

L) »
o el

5 §

"

94 . 44 n
05};’ sS40
$4835, ., F95
o8 20 o c 208
§256 ¢ €835z
HEIHRO FEZERO

375 x 100 = 37500

Each digit in 375 has moved fwo places to the left. It then has a
value 100 times as great as it had originally,

What task is performed by the zeros in these products? They
show zero ones or zero tens. ‘They are needed so that the other
digits are shown in their correct plices and get their correct
values,

Now think about division by 10, as in 50 = 10 or 560 = 10.
You know already that division is the opposite or inverse pro-
cess to multiplication. Multiplication by 10 moves cach digit
one place to the left. Division by 10 moves cach digit one place
to the right. Each digit then becomes ¢ @8 large in value as it
was originally. What happens if we divide by 100? Here are
chart: showing this for scveral examples.

50 = 10 = 5
560 +~ 10 =56
500 = 100 = 5

Exercise 24-2A
1. Make number charts and use them to show what happens

in these problems,

a. 7 x 10 h. 56 x 100 c. 30 x 10
d. 70 =10 e. 700 + 100 f. 560 =10
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2. Make up six more cxamples like those above and show them
on a pair of number charts,

Decimal fractions

Now that you think of multiplication by a power of 10 as
moving digits to the left, you will very quickly sce how to
multiply decimal fractions by powers of 10. It works exactly
the same way, because decimal fractions are written in the
same way as the whole numbers, Eacly place in a decimal
fraction is worth 10 times as much as the place immediately to
the right. Here are some ¢xamples written on number charts,

]

] g =% g z:---é-u

288 k2 358 33
%) X 10 = S
75 x 10 = 75.
06 x 10 = 0.
6317 x 10 = 631.7

You can also work these out by using the cxpanded form of a
decimal fraction. For cxample,

BX 10 =(5 %) x 10 =5 X1=35
6317 x 10 = [(6 x 10) + (3 x 1) + (1 x 5)
+ (7 % 771 x 10
=[(6 x 10) x I0+(3 x1) x10
+ (1 x %) x 10 + (7 x 25) x 10]
(Note usc of distributive property.)
= (6 x 10%) + (3 x 10) 4 (1 x 1) + (7 x &)
= 6317

Did you notice ou the last line how every digit in the number
63-17 became worth 10 times as much and so was moved one
place to the left?

If you multiply by 100, the digits arc moved two places to
the left, and so 2:3 x 100 = 230. You can show this in two
stages,

23 X 100 =23 x (10 x 10) = (23 x 10) x 10
=23 x 10 =230

Now you will sce that division by a power of 10 presents no
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difficulty whatever. Just move the digits one place to the right
for cvery 10 by which you divide.
73+-10=(7%x10+3x1)=10
= (7 x10) =10 +(3 x1) =10
=74+ 8 x4 =73
73 =100 =73 - (10 x 10) = (73 + 10) =10
=73+ 10
=73
You can do the last problem in one step by moving cach
digit two places to the right straightaway.
73 + 100 = -73
Your pupils should work these problems in two stages at first
and should use a pair of number charts until they rcally under-
stand what they are doing. Here are some division problems.

286 &2 S SR
73. =~ 10 = 7.3
98. +— 100 = .98
165 =10 = 1.65
237.71 + 100 = 2.3771
Exercise 24-2B
1. Find the following by moving the digits:
a. -7 x 10 b. -09 x 10 c. 32 x 10
d. 572 x 10 e. 7 +10 f. 3:09 =10

g. 97:32 - 10 h. 105:72 = 10

2. Find the following by moving the digits:
. 32 x 100 b. 7-5 x 100 c. 012 x 1000
1. 194401 x 100 e. 763 = 100 f. 762 = 100
g 79,321 - 1000 h. 1 =100

3. Choosc four different types of problems from Questions 1
and 2 and tell how you would help pupils to understand how
to find the answer to them,

You will of course have noticed that instead of moving the
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digits of a number one place to the left when multiplying by 10,
you can instead move the decimal point one place to the right.
You can see this in this equation:
2181 10 == 248:1

"The point has “jumped” over one digit, the 8. Similarly, when
vou divide by 100, you can move the decimal point two places
1o the left instead of moving the digits of the number two places
to the right. In the equation

92:C13 -~ 100 == 32643

vou scc that the point has jumped over two digits, the 2 and
the 5. This is sometimes thought to be a quicker method.

24-3 Multiplication and division by whole numbers
less than 10

Multipiication

You will remember that multiplication is very similar to
addition. Whenever you have more than 9 in any column, you
regroup to make 1 or more for the next cclumn, You multiply
17 % 8 as follows:

Ones 7 x 8 =56 =5 . ~<and 6 ones, E .
Write 6 ones. 3 E §

Tens: 1 X8 =8,8+5 =13 17
== 1 hundred and 3 tens. X __§

Write 3 tens and 1 hundred. 136

You will sce that tenths may be multiplied in a similar way.
7 =
&% X8

T

S g
[ 0
—

I

|
Qe ~

1% = (5 x 1) + (6 x %)

You nced not think this out in this long way, becausc in the
last chapter you practised writing [ractions such as £8& as
decimal fractions. You can say that £ = 5-6 straightaway.
Your pupils, however, will need to think about what they are
doing more carcfully and will need to write their multiplica-
tions in a chart at first. Here is -76 > 4 worked out.

BC2-D
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Hundredths: 6 x 4 = 24, Regroup as 2 tenths ,?8.
and 4 hundredths. 2 5%
Write 4 hundredths. s &2
Tenths: 7 x4 =928, 28 42 =30. Re- 176
group as 3 oncs and 0 tenths, x_ 4
Write 0 tenths and 3 oncs. ﬂ‘_}

S0 76 x 4 = 3-04.
Division

Division by a whole number may give a whole-number
answer or it may give a fractional answer. If the answer is not
a wholc number, then it is often very uscful to write the frac-
tional part as a decimal fraction. Decimal fractions can be
compared for size more casily than common fractions can be
compared and so are more often used in a practical situation
such as measuring,

You remember how to do division to obtain a decimal
fraction from a common fraction. You worked many examples
in Chapter 23. First, we will work two examples without
remainders,

First example: 357 = 3
Regroup 357 as 3 hundreds -+ 3 tens - 27 ones.
Then 357 = 3 = (300 -+ 30 +- 27) = 3
= (300 = 3) + (30 = 3) - (27 +3)

= 100 4 10 + 9
=119
Short form
100 +10 -9 =119
3)357
300 (100 x 3 = 300
57
30 (10 :: 3 = 30,
27

27 (9 % 3 =27)
Second example: 27-95 ~ §
The regrouping is described in steps.

Tens: 2 + 5 is not a whole number. Regroup 2 tens
as 20 ones. 20 +- 7 = 27 ones.
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Ones: 27 = (5 x 5) -+ 2. Write 5 in the ones place.
Regroup the 2 as 20 tenths. 20 4 9 = 29
tenths.

Tenths: 29 = (5 x5) +4. Writc 5 in the tenths
place. Regroup the 4 as 40 hundredths,
40 -} 5 = 45 hundredths.

Hundr cdths 45

S =
=9 X 5. Write 9 in the hundredths place.
S0 27:95 <+ 5 = 559

Short form
559
5)27.95
25 (5 x5 =25)
2.9
2:5 (5 x5 =125)
.45
15 (09 x5 = 15)

Notice that the result comes from regrouping 27-95 as 25
ones +- 25 tenths +- 45 hundredths, Division by 5 gives
5 oncs -+ 5 tenths -+ 9 hundredths = 5-59,

In cach example there was no remainder, but in the second
example there were decimal fractions involved. The method
there was really no ditferent, but the regrouping was a bit
harder to write down. So the step-by-step procedure was casier
to use. This is often the case.

Ixircise 24-3A

1. Work these problems.

a. 74 X 6 h. 9123 x 8 c. 1:005 x 2
d. 11-642 x 5 e. 12274 x 10 f. 1125 x 8

2. Tind the numbers to put into the boxes to make these state-
ments true.

a. dx[]=15 b, ‘(1 x[]=-1

c. ‘1 x[]=-8 d ITx =7

e. O X []=25 f. 3 x[=24
g. 8 x[J=0 h. 12 x [] =36
i 1’1l x [ =44
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3. Work these problems.
a, 336 -8 b. 26-35 =5 c. 2900 = 100
d. 3983 = 7 e. 1:01208 -4 £ 20712 =3

4. Explain how you would help your pupils understand how to
find the answer to Question 3(b), 2635 -- 5,

5. Make up four division problems which have no remainders,

The two division problems which were worked before the
last exercise were shown with the subtraction set down., Many
pupils will, of coursc, be able to find these differences without
writing them down, and this shorter metlod of working is
shown in the division problems which follow.

Division with remainders

In a problem such as 25 + 2 = [T, there is no whole num-
ber answer, but there is a fraction which will make the cquation
truc. It is 2% or 124, Here is another way to work the problem.
Since 25 = (12 X 2) 4- 1, regroup the 1 as 10 tenths. Divition
by 2 gives 25 -~ 2 = 12:5,

Let us look at another example, say 67 -~ 5 = [,

Tens, Ones: 67 =50 4 15 - 2
= (10 x 5) + (3 x 5) + 2

= (13 x 5) + 2 13-4
Tenths: Regroup 2 as 20 tenths. 5)6 7-6

Then 67 = 5 = 134,

If there are decimal fractions in the number to be divided,
there is no difference in the method, The regrouping is carried
out in the same way as in our previous cxamples, Here is
another example, 27-1 =4 = [7].

Tens: 2 + 4 is not a whole number.
Regroup 2 tens as 20 oncs.
20 5- 7 = 27 ones.

Onecs: 27 = (6 x 4) 43
Write 6 in the ones place. Re-
group 3 oncs as 30 tenths.
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Tenths: 30 4 1 =31 tenths. 0 50 30 2
31 = (7 x4) +3 Write 7in 4)27.100
the tenths place. Regroup 3
tenths as 30 hundredths.

Hundredths: 30 = (7 < 4) - 2. Write 7 in
the hundredths place. Regroup
2 hundredths as 20 thousandths.

Thousandths: 20 = 5 > . Write 5 in the
thousandths place.

So 27-1 =+ 4 == 6:775.

Sometimes you will find that the regrouping procedure doces
not end. This means that the quoticent is a non-ending decimal.
You have met these non-ending decimals carlier. In a case such
as this we could agree to stop after one decimal place or we
could work to any number of dectmal places. There is no
special reason to choose any particular decimal place as the
stopping point, When your pupils meet non-ending decimals as
quotients in division problems, vou should always tell them
how many decimal places to use.

For example, let us find 3 -~ 7, working to three decimal
places. Using only the short form, we get

428, ..

7)3.000. . .

Sowewrite 3 -+ 7 = 0428 . . ., the three dots showing that
the procedure continues and there are other digits that have
not heen calculated,

We note that the remainder from the thousandths place is
4 thousandths. This means that

3 -7 =0428 + 584 (why?)
The fraction -4 is the difference between 0-428 and the
exact answer to 3 -- 7. It is the error introduced by cutting ofl
the division procedure. In a later chapter we will discuss such
crrors in detail.
Exercise 24-3B
1. Make up three problems of division of a decimal fraction by

a whole mumber less than 10 and describe how you would
help your pupils to think out the working of cach problem.
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2. Work cach problem given below to three decimal places.
a. 34621 +— 4 b. 5317 =3 c. 67

3. Work cach problemn to the number of places given after it,
a. 5276 + 8 (to four decimal places)
b. 37-01 = 3 (to three decimal places)
c. § (to two decimal places)

4. In cach problem in Question 3, what is the fraction omitted
from the quotient?

24-4 Multiplication in decimal notation

Youknow that2 x 3 = 6, but whatis2 x -3? You can work
this out in two ways,

L. Since fractions have the commutative property of multiplica-
tion, 2 x -3 =-3 x 2, and you alrcady know that this is
‘6. (3 tenths x 2 = 6 tenths.)

2. Rewrite -3 in the cxpanded form as 3 x 15+ Then:

2X:3=2x(3x) =2 x3) X
(Note use of associative property)
=0 X 45 =0

"This second method is more usclul, because it can be used to
show how to multiply any two decimal fractions. Let us scc
whether we can find a rule which works for auny two decimal
fractions we choose, Here are some cxamples. Can you see what
is happening cach time?

l. '3 X ‘2 == (3 X ’1_16) X (2 X 'ilG)
= (3 % 2) X (4% x %)
(Note use of commutative property.)

=0 X Tlo"' = 00 '3 X 2 =-06

2, DX T =(5 X%) X (7 x4%)

=0 X7) x ({5 X %)

=35 x 1l =35 5 x .7 =35
3. O X 02 =(5 x4 % (2 x:)

= (5 X 2) x (45 X 1)
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02 x -003 = *00006

Did you nctice that in every problem you scparated the
digits in the two numbers from the powers of 10 which show
their value?

02 x -003 = (2 x 3) x (3% x %) (omitting one step)

"Then you found the products of cach pair of factors.

=0 X '1—101

This gave you the product of the digits in the original num-
bers divided by a power of 10 which tclls you the place value
of the 6. = -00006

To find where to write the 6, you can think of 6 x 15 as
6 = 10% and you will remenber that tlis can be worked out
with a number chart, It means that 6 is moved five places to the
right and becomes -00006. Now where does this five come from?
It is the power of 10 which comes from multiplying together the
1o and 1h. But £ tells you that the first number has two
places of decimals and the 45 tells you that the second number
has three places of decimals. So you can add the number of
places in the two factors, that is, in the two numbers you
multiplied.

T'his is a very important result and you can help your pupils
sce this pattern by making a table of numbers and their pro-
clucts. Your pupils can first work out such numbers as -3 x 7
and 142 x 3, which they alrcady know how to compute. Thus,
they can work out by using fractions such numbers as -3 x 4,
5 x +01,-13 x -04. They then tabulate these results as follows:

i

. 1
Number of Number of 1 Number of

Equation decimal places * decimal places © decimal places
in first number . in second number;  in froduct
3 x 7 =21 1 0 ‘ 1
1442 % 3 =426 2 ; 0 ? 2

to
12
KN

13 % 04 = 0052
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When your pupils have looked at a table like this and thought
about the way they find a product using fractions, they will
understand the rule. Here it is.

To multiply two decimal fractions: First multiply them without the
decimal points. Then make as many decimal Places in_your product as
the sum of the number of decimal Places in the two decimal fractions.
Here is an example.

27-312 x 125
27312 Number of decimal places in the two decimal
125 fractions is 3 + 2 == 5. Therclore the number
136560 of decimal places in the product must be five,
546240 27-312 » 125 = 34-14000
2731200 = 3414
3414000

You will notice that it is very important to keep any zeros in
the product until the value of the product is decided. Once the
decimal point has been put in, the zeros which are not needed
can be omitted.

ExErcisE 24-4A

L. Find the product of cach pair of numbers.
a.2x3 b7 x8 c. 3 x-1 d. -1 x -1
e. 2 x -] £.9%x11 g 79%x10 h 12 x 19
i I x05 jo6x2 k102x:7 1 125 % -8

2. Find the product of cach pair of numbers,

a. 1-142 x 73 b. 23-121 » 005
c. 2354 % 215 d. -087 x 0014

3. A pupil writes that <1 x -1 = -], Explain how you would
help him to see his error.,

4. Show by working in fractions why
‘13 x 04 = -0052

5. Make a table like the one on page 45 and show on it six
cquations such as yea could use with your pupils to help
them discover the rule for multiplication with decimal
fractions. How would you make sure that they understood
why the rule works?
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24-5 Division in decimal notation

We have already discussed division of decimal fractions by
whole numbers less than 10. Division by whole numbers
greater than 10 is similar. Here is an example, 256 = 16 = [7].

Regroup 256 as 160 +- 80 - 16

Then
256 =+ 16 = (160 = 80 -+ 16) = 16
= (160 - 16) -+ (80 = 16)

+ (16 = 16)
=10 5 -1
= 16
10 +5+1=16
16)256
160 (10 x 16 = 160)
96
80 (5 > 16 == 80)
16

16 (1 % 16 == 16)

Next think about the problem 256 + 16 = []

—
(=}

Since 256 = 256 -~ 10, we expect the answer
to our problem to be 16 + 10 = 1:6. The short 16)2
form is shown on the right. 1

o

ocwlav

I :

O

Division of a decimal fraction by a whole number is quite
straightforward, as we have seen. It is possible to turn all
division by a decimal fraction into division by a wholc number.
How is this done? Suppose you want to find 24 -+ -3. We would
like to work with 3 instead of 0-3. Observe that -3 x 10 = 3.
If we multiply -3 by 1€ we will divide the answer to our prob-
lem by 10. So we must also multiply 24 by 10. In other words,
the problem 24 = -3 is the same as the problem 240 - 3.
So 24 + -3 = 80.

Another way to make the divisor a whole number is to think
of 24 + -3 as a fraction.
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2% = .3 — 24 (Compare 1 + 9 = t and
T3 1+3=1)
24 x 10
3 X 10
= 3;1_0 = 80 (To make an cqual fraction)
So 24 + -3 = 80

Here is anotlier example. Find 7-2 + .09
72 72 x 100 720
‘09~ -09 x 100 T 9
50 72 + 09 = 80
Your pupils will probably nced some practice in deciding

what they must do to a decimal fraction to make it a whole
number, They will need problems such as these:

31 % [] =31
002 x [J=2
7346 x [] = 7,346

= 80

And these:
What must you do to -7 to make it a whole number?
What must you do to 1-32 to make it a2 whole number?
This can be a game in which pupils make up questions such
as these and ask cach other for answers,

ExErcise 24-5A
1. Make up problems like those ahove to ask your pupils.
2. Find these quoticnts:

a. 16 =4 b. 21 = .3 c. 30 - -05
d. 56 = .7 e. 64 - -08 f. 032 = 4
g 55 =~ 1-1 h. 121 = .11 i 1-32 - .04
3. Find these quotients. Do not work more than two decimal
placcs.

& 3379 = 23 b, 17 = .8
c. 31012 + .56  d. 3-654 = 3.7

24-6 Percentage

There is another way of writing a decimal fraction and that
is as a percentage. 23%. read 23 per cent, means 23 things out
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of every 100 things. If there are 100 boys in a school, then 239,
of the boys of the school is 23 boys: 23 out of 100. You will
remember when you learned to think of fractions in terms of
scts you said that if a sct had 5 members, then the fraction of
this sct represented by 3 of its members is #. One member is
and thrcc members are 2. If the sct has 100 members, then 1
member is 15 of the total number of the set and 23 members
arc %% of the number of the set. So 239, and 33 are both
names for the same number. What decimal fraction car also be
used to name the number? 225518 23 x Tlo’-" which is written as
*23. So we have the relationships

‘)Q
239, =2" _ .o
TR

37
aud 37% =155 = 37

9
and 9% = 100 = 09

Percentages are frequently used in everyday affairs, in shops,
in factorics and in government. A 109, discount may be
allowed off the prices of articles bought in a certain shop.
Moncy may be invested and earn interest of 29, A firm of
huilding contractors may decide that it must make a profit of
30% in order to pay its workers. The final profit will be much
less. Tliese are some of the uses of percentages, and you should
look for more examples and use them to make problems for
your pupils.

The percentages mentioned above are ones which can be
written as very simple fractions. What fractions name the same
numbers as 10%, 2%, and 509,? It is casy io find out.

10 1
of — T
10% 100 10
gop =2 L
7100 50
50 1
of - __
0% = 100 2
3% _ 3 . (3% out of 100 = 7 out of 200)
7977100 20 -
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Percentages must be written as common or decimal fractions
before they can be used in calculations. The common fractior:
is gencrally more convenient for this purpose, but you should
always consider whether using the decimal fraction might re-
duce the amount of work. Here is an example worked in both
ways.

Amodu buys some books and his bill is 40 shillings. If he is
allowed 109 discount ofT his bill, how much must he pay?

By common fractions By decimal fractions

109, of 40 shillings 109, of 40 shillings
= 4% X 40 shillings == -1 X 40 shillings
= 4 shillings == 4 shillings

So Amodu must pay 40 shillings — 4 shillings = 36 shillings.

Your pupils should he able to work simple problems like this
in their heads. For this, they should have a sound under-
standing of percentages and ieir eguivalent fractions.

ExERrcISE 24-6A
L. Till in the gaps in this table,

5:4[33};60]35

o

j,_.

Coninon

. j
Sraction

|
)

Pereentage 150125 12 175 |20 |10 5
) | T s

|

{

1 i

I

2. Work out cach of the following percentages in two ways.
(“£” denotes “pounds” and $ “clolars™.)

a. 539 of £75 b. 339 of £120

¢ 79, of 720 shillings d. 49, of §312:00

Decimal ' | E
Sraction ' ;
| |

i

|

|
i i

1

In all the problems so far, you were given a percentage and
asked to find the corresponding fraction. Often we need to
know what percentage of a total is represented by a certain
amount. For example, what percentage of the whole class of
40 is a group of 35? Now that you know that a percentage is a
[raction, you can sce that the first step will be to find what
fraction the group is of the whole class. The group is 35 out of
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40, so this is 35 of the whole class. We want this as a fraction
with a denominator of 100; that is, we want it in hundredths.
How can we do this? First we can make it simpler, 28 = 7.
Now we want to know how many hundredths there are in 7.
So we find the quotient 7 = 8, and this is -875. Tlis is 875
hundredths, Can you explain why -875 is 87-5 hundredths? If
you have forgotten, you can make a number chart and write
-875 on it and you will see that you have

8 tenths -1 7 hundredths -1- 5 thousandths
= 87 hundredths -- 5 thousandths

87 hundredths - -5 hundredths
= 87-5 hundredths

i

Do you sce what we have done?

87-5is -875 x 100 and -875 is .
So87-5is § x 100. So instead of dividing by 8 and then reading
this as hundredths, we can straightaway multiply our fraction

by 100. We nced not simplify the fraction first. Here is the
working to find what percentage of 40 is represented by 35.

. 35
351is 0 of 40

5100 = gy
o X1 =y =

2

So 35 is 87-59, of 40

Herc is a problem,
In an examination there were 70 problems. A hoy had 55
right. All problems had cqual marks. What percentage did the
boy have right? Work to one decimal place only.
Fraction rial 55
raction rignt = 70
.

Percentage right = 3;9; x 109 = —5-3—9 = 7859,

Another kind of problem is one where we know the percentage
and what it represents but we do not know the total,
In a certain town, 789, of the clectorate voted in an clection.
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There were 5,600 ballot papers. How many people were en-
titled to vote? (That is, how many pcople were in the clector-
ate?) We can make an equation. The number of the clectorate
is to be put into the box.
78% of [[] = 5,600
78
= X [} = 5,600
100 L) ’
This is an equation with a missing factor and you know what
this means, It means division. It can be rewritten as
78

5,600 —:—1—0—6 = []

This is division by a fraction and to divide by a fraction we

multiply by its reciprocal. (Why?) The reciprocal of 1—7(% is

78" 100 = 78
So the equation becomes

100 <Why? Because 78 X 100 = l.)

1060 560,000
5,600 X '78— = _78—
— 7,179

We did not work this problem furthier than the ones. (Why not?)
So the total clectorate is 7,179,

We can fit most problems about percentages to one cquation,
Som.ctimes we have to find one part of the equation and some-
times another part. Let us think about an cquation where we
know cverything,

259, of 44 =11
This is written as

25

The three problems that can be asked about the situation are:

1. What is 259, of 44?

25 {44
100 =



2,

3.
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What percentage of 44 is 11?
[ _ (] _
mof‘M =11 or 100 x 44 =11
which can be written as division as
O .4
100 = 11 = 44
. 11
This we saw was [] = iRe 100
11 is 25%, of what number?
25
—_ =11
70 °f U
which can be written as division as
25

As long as you understand the meaning of percentage, you can
work out any problem by using this equation.

Exercist 24-6B

1.

Write cach of these percentages as a common fraction.
a. 31% b. 3319% c. 659

d. 5:59% e. 179, f. 16}1%

Writc cach of thesc ficidons as a percentage.

a. § b. 4 c. 4 d. ¢
e. -32 f. -0l g 1 h. &
Iind cach percentage.

a. 9% of 1 hour, in minutcs
b. 25%, of a ycar, in days
c. 169, of 200 shillings

Find what percentage the first of cach pair is of the sccond
of cach pair. Work to two decimal places only.

a. 33, 300 b. 100, 200

c. 300, L d. 4,5
e. 45 shillings, 500 shillings f. 55 marks out of 80 marks
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5. Find the total amount in cach case. Do not work to more
than one place of decimals.
a. 4 is 259, of what number?
b. 36 is 209, of what ni:mber?
c. 1,500 is 659%, of what number?
d. £565 is 32° of how many pounds?
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Chapter 25
INTRODUCTION TO INTEGERS

25-1 A reminder of subtraction
Think about cach of the following examples.

Example 1

Kwame and his sistcr Araba lave 6 bananas. Kwame cats
4 bananas. How many arc left for Araha?
Example 2

One classroom has desks for 35 children. A sccond classroom
has desks for 27 children. How many more desks are in the first
classroom?
Example 3

Kofe is 40 inches tall, and Kwame is 40 inches tall, Who is
taller? By how many inches?
Example 4

Mary has saved 5 shillings and wants to buy some sandals
that cost 9 shillings. How many more shillings must she save?
Example 5

Below is a number line on which the nmnbers 5 and 8 arc
shown. How many units to the right must one move to go from
5to @

- 1 L 14 i ] 1 4 ! . b
¥ T i 1 T T T T ! G

0 5 8

What do the examples have in common? First, the answer to
cach is given by a subtraction problem. Tle answers are:

Example I: 6 — 4 = @

Example 2: 35 — 97 = [F_(

Example 3:" 40 — 40 =

Example 4* 5 +[4]=9 or 9 —5 = [q]
~ Example 5: 8—-5= E

36
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Notice that the answer in Example 3 is 0, and that in Example 4
subtraction is thought of as finding a missing addend. (Each
cxample can be thought of in this way.)

‘There is a sccond thing which the examples have in common.
In cach case, the answer is a whole number. Is it always possible
to subtract two whole numbers and get an answer which is
again a whole number? Unfortunately, it is not, ‘Think about
3 =35 =[1]7 10 = [, and so on. If onc addend is largee
than the sum, you are not yet able to handle the problem.,

You will remember that you had a similar situation with
division. At first you had no answer to a problem such as
8 <5 = []. By using fractions, you L.ter gave the answer £,
In this unit, you will Icarn about another kind of number which
will make it possible to write an answer to 3 -- 5 = [].

Exrreise 25-1A

Work the following problems if it is possible to find a wholc
number answer. Whiclhi problems have no whole number
answer?

L7+ [O=10 23+ =1
311 —4 =[] L. O42=9
5. 4 — 8 == [] 6. 2 — 11 =3

7. 13 + [ == 13

25-2 Physical models

You have learned in geography how the positions of places
on the carth are described using latitude and longitude. Latitude
is measured in degrees (*) north and south of the equator and
longitude in degrees cast and west of the meridian of longitude
which passes through Greenwich, On a map of the world you
will see, along the edges of the page, lines which are marked to
show latitude and longitude,

Latitude is marked on a line segment down cach side of the
map. On the following page is part of onc such line segment.
You can tell which side is north and which side is south of
the cquator by the letter N or S marked before the number
ol degrees.
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LN 30
-N 20°
- N 10°
Latitude 0O at equator
-5 10°
- S 20°

- S 30°

Longitude is marked on line segments along the top and bottom
of the map. Here is part of onc of them.

Longitude .

L i T .l T LS L) L] ¥
Waor W30 w20 Wi | o Elo | Eso B30

Again, you can tell which is east and which is west by the
letters E or W written before the number of degrecs.

You will have noticed that in cach case we measure in two
opposite dircections from .. central point which is called zero.
Zero degree latitude is on the equator and zero degree longitude
is on the meridian through Greenwich.

There arc many other things which are measured in two
opposite dircctions. Here are some of them: the height of land
above sca level and the depth of the occan below sea level; the
number of years A.p. (Anno Domini), and the number of yearss.c.
(Before Christ); time before the hour and past the hour. On the
opposite page is a clock-face on which are marked the times
before the hour and after the hour. These arc the times which
arc shown by the minute hand.

You will sce that these times are measured in opposite
dircctions from the hour. There are the times past the hour and
the times # the hour. Both scts of times arc measured from the
hour. We will draw a line picture for these times. What time
shall we choose as zero time? This must be the hour, because
the times are measured from the hour. At the hour there are
0 minutes past or 0 minutes before the hour. On one side of 0
we will mark the times past the hour. On the other side of 0,
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HOUR

5 mins.to 5 mins. past

-10 mins. past

10 mins.to
1 past =
e = 4 pas!
14"'» mins.fo .15 mins. past
20 mins.to 20 mins.past
25 mins.to 25 mins. past
1 past
= 30 mins.past

we will mark the times before the hour, backward (to the lelt)
frema 0. To show which side is past the hour and which side is

i ! 1 I ] l ! 1 b i Ly,
1 T T T T T T L T v T

25t 20t 15t 10t 5t 0 5p 10p 15p 20p 25p
HOUR

to the hour we have marked cach number cither p (for past)
or t (for ). Can you sec that our line is like the line around the
edge of the clock-face? If you cut the line around the edge of the
clock-face and straighten it out, where would you make the
cut? You want it to look like the number line we have just
drawn. You will have to cut the line at half-past.

When the time is 20 past the hour, where will the minute
hand be on the number line? At 20p, What will the time be at
10t? 10 to the hour.

The scconds before and after firing off a rocket are also
mecasured in this way. This is called “countdown” and is
spoken, “Ten, nine, eight, seven, six, five, four, three, two, one,
zero”. At zcro the rocket is fired. The count gocs on after the
rocket is fired, “One, two, three” and so on.

You can think of gains and losses in a similar way. If you
win 6 shillings at a game of cards, this is not the same thing as
losing 6 shillings. If you win 6 shillings, 2 shillings, 3 shillings
and 1 shilling, your wins can be shown by cots on a line as
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shown in the picture. You must first decide where to put the
dot for a result when you neither win nor lose. This will be the
zero point, Then you decide on which side of 0 you will mark
the line for wins. We usually usc the right-hand side for this.
"Then we can mark losses in the opposite direction.

- 1 Fy 4
- — 4 } 4 4 ¢

Py A 1 } .Yl
£5 L4 13 (2 (1 0 Wi w2z w3 W4 w5 wé
Wins and Losses

The dots show the wins 1 shilling, 2 shillings, 3 shillings and
6 shillings. What losses arc shown? 1 shilling, 2 shillings, 4 shil-
lings and 5 shillings.

In cach of thesc cases you will sce that you can make pictures
of the measurcments by representing them as points on a line.
This is how you do it.

Draw a line.

Mark a point with 0. Call this the zero point.

Decide what the zero point represcrts,

Mark the scale for the measurements in one direction,

Mark thescalc for the measurements in the opposite direction.

. Give the points on cach side of 0 a letter or symbol to enable
you to distinguish between them.

ExErcise 25-2A

Lach of the scts of measurements described below can be shown
on a line. For cach onc (a) draw the line, (4) mark the zcro
point and say what it represents, and (¢) mark in the measure-
ments,

SOV e O 1D

1. Longitude cast and west of the Greenwich meridian, Mark
two points on this line to show the longitude of the most
casterly and most westerly parts of the Aliican coast line.
Iind the longitude of six African towns and mark them also,

2. A Loiz has been dug in the ground for a minc shaft 100 fect
deep. Above it has been built a tower 60 fect high. The
. tower has platforms at 20 feet and 50 feet, Mark these on the
line. Mark also a platform in the mine which %, as far below
ground as the first platform is above grourd,

3. A Centigrade thermometer measures the temperature from
40° below zero to 70° above zero. Mark on the line a tem-
perature of 30° above zero.
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A shopkeeper has debts of 20 shillings, 50 shillings, 65 shil-
lings and 25 shillings. He has credits of 15 shillings, 25
shillings, 50 shillings, 70 shillings and 35 shillings. Show
these amounts on a linc,

Some boys arc to run a race. As sonic of them are taller and
older and some of them are shorter and younger, they arc
to start from different places behind or ahead of the starting
point. Four yonng boys stand 3 feet, 5 fect, 2 feet and 7 feet
in front of the line. Seven boys stand at the starting point
and three big boys stand behind the starting point at distances
of 3 feet, 6 feet and 8 feet. Show these boys as dots waiting to
start their race. (You will need fourteen lines, side by side,
for the fourteer: boys to stand on.)
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THE NUMBER LINE AS A PICTURE
FOR INTEGERS

26-1 Naming the new numbers

You will have realized while making the lines in the last
exercise that it was very like making a number line. Wien you
madec a number line before, in Chapter 16, you first chose a
point to be zero and marxed it 0, and then measured out cqual
steps to the right. You then used the counting numbers to name
the points at the ends of these steps. But when you made the
line picture for longitude cast and west, you used the counting
numbers twice. You used them to the right and to the left of 0.
When you made ¢ line picture for the mine shaft and it
tower, you drew the line going upwards instead of across the
page. But you still used the counting numbers twice, once on
each side of the zero point. So you will sce that we want a new
kind of number line as a picture of aiy of these things which
arc measured in two directions.

Look at the number line below.

e i ] L ! i . [l i |
T T T t t T T T 1

4 3 2 1 0 1 2 3 4

You can sce that we must have some way to distinguish between
the number 3 to the right of 0 and the number 3 to the left of 0.
We want names for the two sets of numbers. We want to make
a number line which we can use to show all these situations:
right and left, north and south of the cquator, cast and west
of the meridian through Greenwich, ahead of and behind the
starting point, above and below sea level, gain and loss, credit
and dcbit, surplus and shortage, after and before and many
more. What we need is a way to tell apart numbers on opposite
sides of zero. In many of these cascs, descriptions such as ahead,
above, gain and credit scem to suggest “having something”,
while their opposites below, behind, loss anit debit may scem
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to suggest “lacking somcthing”. So we distinguish the first as
being positive and the second as being negative. On the new
number line, we label positive numbers on one side of 0 and
label negative numbers on the other side of 0. The number 0 at
the starting point is neither positive nor negative. 'The positive
numbers are conventionally shown to the right of 0 and negative
numbers to the left of 0, but we could put the positive mimbers
above 0 and the negative numbers below 0. T'his whole set of
numbers—positive, negative and zero —we call the seT oF
INTEGERS.

The numbers to the left of zero are negative integers and so
we will call the 3 on this side neg 3 for short. The numbers to the
right of zero arc the positive integers and so we will call thr
3 on this side pos 3 for short.

Here is a picture of the number line showing some of the
negative integers, zero, and some of the positive integers.

< ; ; i ; ; ' ;
neg 3 neg 2 neg 1 0 pos 1 pos 2 pos 3
26-2 Zero

The number zero has a special position betweer these two
sets of numbers. You will remember that you first heard of zero,
in Chapter 1, as the number of the empty set. You used 0 then
to show an empty sct. For example, in 202, the number which
iscqualto2 < 102 4- 0 x 10 4 2 x 1, the setof tens is empty,
and in the number whiclhiisequal to 3 x 10% -7 x 10 -- 0x 1,
370, the set of ones is empty. You also used 0 to mark the point
on the number line from which you started to nicasure out unit
lengths. So in this way you can once agaiu think of zero as the
number of the empty set, the empty set of unit lengths. This is
the way we think of zero with the integers. When we think about
latitude, 0 is at the cquator. For minutes past and to the hour
we chose 0 to be the hour and in the problem about the mine,
(v was at ground level. Zero has a very important part to play
on this number line. It separates the positive integers from the
negative integers and later on we shall sce how it helps us in
doing addition and subtraction.
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26-3 Opposites
//"—I"—-—‘—\\
— e

i 3 l 1
neg3 neg2 neg i 0 pos1 pos2 pos3 pos4d

—

You will sec on the number line that the integers can be
matched in pairs. We can match any integer and its oppOSsITE.
Here are some pairs. They are shown on the line also.

neg 3 and pos 3
pos 2 and neg 2
neg 2 aud pos 2

Such pairs arc called “opposites”. You will sce that the two
members of a pair are the same distance from 0, but they are
on opposite sides of it. To find the opposite of an integer, we
look for the integer which is on the opposite side of 0 and at the
same clistance from 0. We can write this in another way.

"The opposite of neg 3 is pos 3.

The opposite of pos 2 is neg 2.

"The opposite of pos 15 is neg 15.

"Thie opposite of neg 52 is pos 52.
The opposite of 0 is itsclf, because 0 is neither positive nor
negative. What is the opposite of the opposite of an integer?
We can work th'; out in three stagcs.

"The opp. of the opp. of pos 6 = the opp. of (the opp. of pos 6)
= the opp. of neg 6
_ == pos 6.

So the opposite of the opposite of pos 6 is pos 6 itsclf. Is this truc
if we begin with a negative number? You can sce that it must
be so. Can you scc this for yourself? Begin with the opposite
of the apposite of neg 3 and work it out in the same way. You
will find that the opposite of the opposite of neg 3 is neg 3 itsclf.
You can sce that whether you begin with a positive number or
a negative number or 0, the opposite of the opposite will be
the number itsclf, the number you began with.,

You can prove this for yourself on the number line also. If
vou want to find the opposite of any number you begin with
that number, you jump to 0 and then vou make another jump
of the same size and land on the opposite. To find the opposite



The Number Line as a Picture for Integers 65

of this sccond number, you simply jump back again the way
you came. So to find the opposite of the opposite you jump
there and back again. So you need not jump at all; you are at
the answer already.

Exercise 26-3A
1. What arc the opposites of the following measurcments?

a. Latitude N 30° b. Longitude W 45°
¢. Temperature 15° above zero  d. 10 minutes past the hour
e. A win of 7 shillings f. A debt of 50 shillings

N

What are the following?

a. the opposite of neg 1

b. the opposite of pos 11

c. the opposite of pos 17

. the opposite of neg 73

the opposite of pos 129

the opp. of the opp. of pos 8

The opp. ol the opp. of neg 42

. the opp. of the opp. of ncg 9
the opp. of the opp. of the opp. of pos 23
the opp. of the opp. of pos 14

. the opp. of the opp. of 0

=7

™

B e R

26-4 Order properties

We now have to decide how to compare two integers. You
know alrcady that any whole numh-r is less than any other
whole number to the right of it on the number line. You will
remember that this shows how to decide the order of two whole
numbers: the greater is to the right on the number line. Using
the same rule for positive integers, here are sonie cxamples of
incqualitics. Recall that the sign “ = means greafer than and the
sign < incans less than, '

.

pos 3 < pos 6 pos 35

> pos 29
pos 100 < pos 200 poslt >

-0
You will sce that O must be less than any positive integer, be-
causc all the posilive integers are to the right of 0.

«neg3 neg2 negl 0 pos 1 pos 2 po§3
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Now we want to decide the order of any two integers. Which
is greater: neg 2 or neg 3? Let us use the same rule for ncgative
integers that we use for positive integers. Neg 1 is to the left
of 0, so by this rule neg 1 is less than 0: neg 1 < 0. Similarly,
neg 2 is to the left of neg 1, and so neg 2 < neg 1; neg 3 is to
the left of neg 2, and so neg 3 < neg 2, and so on. Any negative
integer is therefore less than 0.

So we usc the same scheme throughout: on the number line
any intcger is less than any integer to the right of it. More
formally, If a and 1y are any two integers, then a < b means that a is
to the left of b on the number line.

ExErcise 26-4A

L. Put in the inequality sign, < or >, to make cach of the
following into true statements:

a. pos 6 pos 10 b. neg6  neg 10
c. posld negls d. neg 15 pos 15
e. ncg 200 neg 1,000 £. 0 neg 3
g 0 pos 8 h. ncg1l 0
2, Putin an integer to make each of these incqualities true:
a, posl > [] b. pos1 < []
c. negd > [ d. negs << [
e. pos 100 <« ] f. neg 100 < [
g. 0> [] h. 0 < [

Can you attach a meaning to the order of numbers in the
physical models of integers?

Can you say that one measurcment is greater than another?
Will this statement always have meaning? There must be such
an order because the number line can be used for all such
physical models, but arc the words “greater than” and “less
than” the best ones to use? How would you compare the
latitude of a place A at W 27° with the latitude of a place B
at £ 19%? You would make one of two statements

A Is to the west of B
B is to the cast of A

You notice that there is no mention ol greater than or less than.
Here are some more comparisons.
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The top of a mountain 1,000 fect high is higher than the top
of a housc 10 fect high. The top of a house 10 feet high is higher
than the bottom of a lake by which it stands.

The Great Pyramid was built about 1800 p.c. and the ancient
kingdom of Ghana flourished about a.p. 900. How would you
compare these two events? You would say the Great Pyramid
was built before ancient Ghana flourished, or that ancient Ghana
flourished after the Great Pyramid was built,

Exeraise 26-4B
1. Make two comparative statements about cach of the follow-
ing pairs,

a. Longitude N 29° and longitude S 50°.

b. The time 10 past 3 p.m. by your watch and the time
5 to 3 p.m. by your friend’s watch.

c. A man on a platform in the mine shaft 53 feet under-
ground and a man who is on the ground.

d. The temperature at noon today, which is 95° Fahrenheit,
and the temperature yesterday, which was 102° Fahren-
heit.

e. A boy Kofi who starts the race 5 feet ahead of the starting
point and a boy Kwesi who starts the race 5 feet behind
the starting point.

Now we must think about the order of the opposites of
integers. You kuow that pos 8 > pos 3. What is the order of the
opposites of pos 8 and pos 37 We can rewrite the opposites as
neg 8 and neg 3 and sce that neg 8 < neg 3. You can check this
on the number line. So the order relation between two positive
integers is reversed between their opposites. You can sce this is
true for other integers also by working through the next
cxercisc.

Exercise 26-4C

Write down the order relationship between cach of these pairs
followed by the order relationship between their opposites. The
first one is done for you.

1. neg3 < pos 2, pos3 > neg?2 2, ncgd ncg8
3. pos 2 pos 11 4, pos 2 ncgll
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5. pos 7 0 6. 0 neg2
7.ncg6 negl 8. pos 10 0

26-5 “Between”

What do we mecan when we say that a wholec number is
between two other whole numbers? For cxample, suppose I say
that I am thinking of a whole number between 3 and 7. You
know that this whole number must be a member of the set of
numbers which are greater than 3 and less than 7. It must be
a member of the sct {4, 5, 6}. You can see that this way of
finding the sct of numbers befween two numbers will work for
the integers also. An integer between pos 3 and pos 7 must be
greater than pos 3 and less than pos 7. It must be a member of
the sct {pos 4, pos 5, pos 6}. Can you write the members of the
sct of integers between neg 3 and pos 17 Each of these integers
must be greater than neg 3 and less than pos 1. The sct is
{ncg 2, neg 1, 0}. You can check cach of these examples by look-
ing at the number line,

i between neg 3 and pos 1 ! between pos 3 and pos 7
; {neg 2, neg 1, o} {pos4. pos 5, posGr

" . } i } : } . . —
neg 3 neg2 neg1 0 pos1 pos2 pos3 posd pasb pos 6 pos 7

LXERCISE 26-5A

L. Write the sct of integers hetween these pairs.

a. pos 20 and pos 25 b. pos 2 and neg 2
c. neg3and 0 d. ncg5 and neg 7
e. pos 8 and pos 9 f. ncg3 and neg 4

g. pos 2 and 0

2. Write a description of the following scts using the idea of
“between”:
a. {neg?2, ncg 1} b, {pus 19, pos 20, pos21, pos 22}
c. {pos 1,0, ncg 1} d. {0} e. { }

3. Find how many integers there are in the following scts:

a. {integers between neg 6 and pos 6)
b. {integers between pos 5 and neg 11}
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4. Namc a sct of points which is between cach of the pairs of
points identificd in Excrcisc 26-4B.

26-6 Summary

You have been introduced to a new sct of numbers, the
integers. This sct is made up of the negutive integers, zero and
the positive integers. Integers can be represented on a number
linc and can be given an order of greatness. You will have
noticed that the least integer on any number line section you
have drawn is always the integer on the extreme left. After this,
the iutegers become greater as you move along the number line
from left to right. ‘The greatest intcger on any scction of the
number line you have drawn is always the integer on the ex-
treme right. You arc also able to find the sct of integers between
any two intcgers by using what you know about order on the
line. You have also scen how to find the opposite of an integer
and have discovered that to find the opposite of the opposite of
a number is to leave the number unchanged.

You will now be wondering whether you can find ways to
add, subtract, multiply and divide using these new numbers,
and in the next chapters you will scc that you can, in fact, do
this,



Chapter 27
OPERATIONS ON INTEGERS

27-1 Addition

The positive integers pictured on a number line are so like
the whole numbers pictured on a number line that you will
wonder whether you can add integers in the same way as you
added whole numbers on the number line, Before answering
this question, we shall first have to think again about what we
mean by these integers. In every case, you measured from 0 a
number of units along the line.

To find latitude N 23° you measured 23° from 0° upward,

To find longitude W 19° you measured 19° to the left of 0°.

To find 100 feet below sca level you would measure 100 fect
downward.

To find pos 3 you measured 3 steps of 1 unit cach to the right
of 0.

To find neg 3 you measured 3 steps of 1 unit cach to the left
of 0.

So you think of the sum of two integers as the result of moving
twicc along the number line. You can find pos 3 - pos 5 by
taking 3 steps from 0 to the right followed by 5 steps from pos 3
to the right. This will bring you to pos 8. You can write

pos 3 -I- pos 5 = nos 8§

Now you have found the sum of two positive integers. You can
sce that it was found in just the same way that you found 3 +- 5,
the sum of two whole numbers, on the number line.

You can check the answer by thinking of gains and losscs.
A gain of 3 shillings followed by a gain of 5 shillings gives a gain
of 8 shillings. As gains may be thought of as positive integers
you will sce that this is another way of thinking of pos 3 + pos 5
and that this is the same as pos 8.

You can also work out the result of addition and subtraction

of integers by using a slide rule. This is how to make it.
70
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You need two strips of ruled paper. Fold cach strip into a
long strip with the ruled lines across the width like this:

Along the lower edge of the first strip mark the integers as if
the edge were a number line.

Now mark, in the same way, the upper edge of the sccond
strip. "The picture shows you how your two strips should look,

%els neg4 ncgl;3 negZ neg!ﬂ 0 po 1 pos2 pos3 pos 4 poéé

;)9';1 pos2 pos3 pos4d posbd

g'red 5 ned 4 nezi) 3 neg'; 2 ncg'; 1

—_

This is a slide rule, but yours should have many more num-
bers than there are in the picture. The more integers you write,
the more use you will find for your slide rule,

Now you arc ready to find pos 2 -i- pos 3 on your slide rule.
Find pos 2 on the lower strip. Now slide the upper strip along
to the right until the zero point of the upper strip is exactly
above the point pos 2. Your slide rule should look like this:

rl,

e o —— —

5 negZ neg 1 pos1 pos2 pos3 pos4d }

1

3.ne63 ne§2 neg1 0 pos 1 pos2 pos'.3 pos4 pos5 pos6 g

From the lower zero point, you have moved to the lower pos 2
point. Now you want to add pos 3 to the pos 2. To do this, you
move 3 more units to the right from pos 2 and you do this with
the upper strip, ‘The upper zero point is at pos 2 and to add pos 3
you move along the upper strip 3 units to the right, that is, to
the pos 3 point. Now you have added pos 3 to pos 2 and the
answer will be on the lower strip below tlie pos 3. What is the

BC2-F
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answer? You see that it is pos 5. So you have found by using
your slide rule that
pos 2 4 pos 3 = pos 5

Exercise 27-1A
L. Without meving your slide rule from the position shown
above, find the answers to these problems:

a. pos 2 -+ pos 4 b. pos?2 -t pos 5
€. pos 2 + pos 2 d. pos 2 - pos 1
e pos2 + 0 f. pos2 - pos 6
2. Now usc your slide rule to find the answers to these problems:
a. pos 3 + pos 1 b. pos1 - pos 3
¢ pos4d + 0 d. pos 4 -- pos 2
e 0 -+ pos6 f. 040

3. Make up eight addition problems like these but use greater
integers, Check that your slide rule gives vou the correct
answers.

You know a way to add two positive integers. Can you add
two negative integers in the same way? TFirst think of the
question in terms of losses and then use your slide rule to sce it
it gives the same answer. If you have a loss of 3 shillings followed
by a loss of 2 shillings, you have lost the same amount as if you
had onc loss of 5 shillings, Thinking of losses as negative intcgers,
you can write this as neg 3 + neg 2 = neg 9.

What do we mean by addition of negative integers® If it is
to have the same meaning as addition of positive integers, it
must mean one movement followed by another movement., You
can find the sum neg 3 -- neg 2 by using your slide rule. Where
will you put the 0 of the upper strip? Above the first number,
that is, above neg 3. You have now moved 3 steps, from 0 to
neg 3. Look along the upper strip from 0 until you find neg 2.
You now have added neg 2. What number is in the answer place
below neg 2? It will be neg 5. So with the slide rule, also, vou
have found that

neg 3 4 neg 2 = neg 3
You found this sum by moving 3 steps to the left and then
another 2 steps farther to the left.

You now know how to add two positive integers or two nega-
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tive intcgers. Can you work out how to add one negative
integer and onc positive integer? You should be able to work
this out for yourself in the next cxercise.

Exercise 27-18

For cach of these problems make up a story about gains and
losses and then check your answer by using the slide rule.

1. neg 2 4 pos 5 2. negd 4 pos 3
3. ncg3 -+ 0 4. pos 2 4 neg 5
5. pos 5 -+ neg 2 6. 0 4+ neg 4

7. pos 3 4 neg 3 8. neg 3 -+ pos 3

9. oppositcofneg 3 + neg3  10. pos 3 + opposite of pos 3

Did you need to usc a slide rule all the time? Did you discover
that to add a positive integer you move your finger on the
number line to the right, and to add a ncgative integer you
move your finger to the left? So that instead of moving your
slide rule, you can usc one strip only as a number line and count
along it. Here is an example. To find neg 3 + pos 2, you will
first move to neg 3 on the line and then move 2 steps to the right
to add pos 2. This will bring you to neg 1. Here is a picture to
show what yon have done.

Ll r\\. i

1 ! 1
ne'g 4 neg 3 neé 2 neg 1 o} pols 1 po's 2

-

Work the next excrcise using a number line only,

Exercise 27-1C
1. Make a picture tc show how you find each of these sums:

a. pos 2 4 pos 4 b. pos 3 <- neg 1
€. posd - neg8 d. pos1 + neg 1
e. pos4d 40 f. 0 + pos2
g. ncg2 4-negb6 h. neg 3 + pos 2
i. neg4 + pos 5 j- neg4 + pos4
k. negl 40 I. 0+ negl

2. Usc a number line to find the following:

a. (pos 3 + neg 5) -+ pos 4
b. (pos4 -+ neg4) -+ neg 4
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c. negb + (neg 1l 4- neg 2)

d. (neg 3 - neg 3) 4+ pos 4

e. neg 3 4- (neg 3 + pos 4)

What do you notice about the answers to d. and e.? Of what
property of whole numbers does this remind you?

3. An acroplanc is flying across Africa. The pilot finds that he
is at a position whose longitude is E 18°, He then flies 25°
to the west. Draw a number line and mark his positions on
it. Then make an addition equation to show what he did
and where he was finally.

On another day the pilot starts from a place W 5° and
ilies cast for 14° of longitude. Mark his journey on the num-
ber line. Write an addition equation to show what he did.
Make up two more problems about the pilot and his acro-
planec.

Addition of opposites

When you worked these problems, did you notice somcthing
about the result when you added a pair of opposites? What is
neg 3 - pos 3? pos 2 + neg 2? pos 100 -+ neg 100? In each case
the answer is 0. You can sce that this must be so by looking at
a picture of the addition of a pair of opposites. Think of
neg 2 - pos 2.

neé 3 .1e§ 2 neg'; 1 0 po’s 1 pc;s 2

Neg 2 is 2 steps to the left from 0. Pos 2 is 2 steps to the right,
2 steps to the left followed by 2 steps to the right brings you
back to where you started. So neg 2 -+ pos 2 = (.
You will find this property of opposites very useful later on.
It is very important and so we wili write it here.
The sum of an integer and its oppo.itc is zero
OR
An integer added o its opposite is zero

Exercise 27-1D

For cach question, draw the number line and show the addition
on it. Write also the addition equation.
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1, Arua in Uganda has a latitude of N 3°, Lubushi in Zambia
is 103° of latitude duc south of Arua. (Duc south means that
the two towns arc on the same meridian of longitude—they
both have longitude E 31°.) What is the latitude of Labushi?

1° of latitude measures a distance of 70 miles on the surface
of the carth. How far is it from Arua to Lubushi?

2. Make up some problems like this about your country and
places north and south of it.

3. An acroplanc flying at a height of 3,000 feet above the sea
drops a heavy weight v.aich falls through 3,300 fect to the
bottom of the sca, How deep is the sca at that point?

4, The minute hand of the clock points to 23 minutes to the
hour (4 p.m.). What time will it be in 35 minutes?

5. Kwasi and Kofe were playing a game in which 10 seeds were
worth 1 cent and 10 cents were worth 1 shilling, Their wins
and losses are given below. How much had cach of them
won at the end of the game?

Kwasi: Win 12, Win 15, Losc 13, Lose 6, Win 7.
Kofe: Win 8, Losec 7, Win 23, Win 2, Losc 15.

6. Make up an addition problem, suitable for your pupils, about

cach of the situations described in Exercise 25-2A.

27-2 Subtraction

Now you must think about subtraction of integers. You will
remember that you have learned to think about subtraction of
numbers as finding the missing addend in an addition equation.
For example, to find 11 — 5 you would find the missing addend
in the equation

11 =5 + [

So once you can add two integers, you should also be able
to subtract onc {rom the other. If you have the problem
pos 11 — pos 5 = [, you can rewrite the equation as

pos 1l =pos5 + []

You will probably know at once that the missing addend is
pos 6, and so you can write

pos 11 — posH =
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For harder problems, the slide rule is very uselul so let us see
how to use it first on the casy problem we have just done., Can
you do it yoursel(? Try first and then read what follows here.

Find the addend you know, pos 5, on the lower strip and
move the upper strip so that the zero point is above pos 5.
Your slide rule will look like the next picture.

T T
. | i | [ T™ i 1 1 T T
. n n2 n1 0 pl p2 p3 pd  p5  pb i

L

{nelén (;) pl  p2 b3 ;i4 p;s p6 p7 p8 p9 plo plh {
1 ! 1 A

1 ! | t

]
e —

Now you want to know what you must acd (on the upper
strip) to pos 5 to get pos 11 on the lower strip. So find pos 11 on
the lower strip. What number is above it? pos 6. So pos 6 is
added to pos 5 to give pos 11,

What is the answer to pos 3 — pos 3? You will know that
this is 0 and can check that your slide rule also gives this
answer. Gan you write the cquation showing this problem as
finding the missing addend? It will be

pos 3 4+ [J = pos 3

You know that 0 is the only number which will make the
cquation truc,

Now we will do subtraction with two negative integers,
Think of neg 5 — neg 2. You probably know that neg 5 can be
found by taking a step of neg 2 followed by a step of neg 3.

Can you write this as a missing addend problem? What must
be added to neg 2 to give neg 5?

Can you work this out with your slide rule? Here is the
picture to help you.
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The zero point of the upper strip is above neg 2 on the lower
strip. What number on the upper strip will give you ncg 5 on
the lower strip? You sce that it is neg 3.

neg 5 =neg 2 +- lncg 3 [

or neg5 —neg 2 = |neg 3

You can see that these answers are reasonable by thinking of
some real problems. Suppose you have a credit of 5 shillings at
a shop and you want to buy a pair of sandals which cost
11 shillings. How much more money do vou neced? This is a
missing addend problem. We can use positive integers for credit
and write

pos 11 = pos 5 4 []

You know that you need another 6 shillings and so pos 6 will

be put into the hox:

pos 11 =pos 5 -

The corresponding subtraction equation is
pos 11 — pos 5 = [ pos b

Now supposc instead of a credit of 3 shillings you have a debt
of 16 shillings at the shop. The shopkecper will not allow you
to lrave so large a debt any louger. He says you must reduce it
to 6 shillings only. What must you give him?

You can write negative integers for debts and so the missing
addend equation will be

neg 16 — [ =neg 6

1o reduce your debt from 16 shillings to 6 shillings, you
must give the shiopkeeper 10 shillings, ‘That is, you add a credit
ol 10 shillings to your account at the shop. Therefore, we have

neg 16 - Ipos 10[ = neg 6

"The corresponding subtraction cquation is

neg 6 — neg 16 = lpos IQ-]

Wlien you studied how to help your pupils understand sub-
traction, you found that there were several different types of
problems which subtraction could solve,
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One problem was to separate a set into two subsets, o remove
one subsct, and then to find how many members there were in
the remaining subset. You “took away” onc subset from the
whole sct. This way of looking at subtraction is useful to hielp
young children understand what they are doing, but it is not
very veeful for problems about integers. For instance, it is
awkward cven to think about a positive subset of a negative
sct. So we will not use this idea of subtraction. We will think
instead of subtraction as comparing two sets or two measure-
ments. Think of the two problems about credits and debits. You
found the answer by thinking of these as missing addend prob-
lems, but they are also comparison problems. In a comparison
problem, vou find the difference hetween two numbers.

In the first example, you found the difference between two
successive credits at the shop:

pos 11 — pos 5 = [pos 6

In the sccond example, you found the difference hetween
two successive debits at the shop:

neg 6 — neg 16 = lpos 10|

In cach case you wrote the missing addend cquation and then
used your slide rule to find the required difference. This is one
way to find the difference between two integers. Later vou will
find a quicker way,

Exercise 27-2A

L Rewrite cach of the following subtraction cquations as a
missing addend equation and find the missing integer.

a. pos7 —posd =[] b. -0s3 —pos 1 = ]
€ pos3 —pos 3 =[] d. pos2 — 0 = []
e. neg7 —neg7 =[] f. negt —neg2 = J
g. negd —negl3 - [ h. neg?2 —0 - [

i neg3 —negl - []

2. A mine shaft 100 feet deep has above it on the ground a
tower 60 feet high. A ladder goes from the bottom of the
shaft to the top of the tower. Write equations in positive or
negative integers which you can use to find the answers to the
[ollowing problems:
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a. A man climbs from the ground to a platform 20 fect high
and then climbs another 15 fect. How high is he now?

b. Above his head there is another platform 50 feet from
the ground. How much higher is this platform than the
first platform?

¢. Another man is 25 feet down the mine. How much
farther has he to go to reach the bottom?

3. Make up some problems about gains and losses to fit these
cquations.
a. pos 2 + pos 4 = pos 6 b. pos4 — pos 3 = pos 1
c. ncg4 —negl =neg3 d. neg2 —neg2 =0

Now we come to harder problems. How can we subtract a
positive integer from a negative integer, and vice versa? Think
of the equation

pos2 —negl = []
If you think of this as comparing pos 2 and neg 1 then you can
sec that you arc asking the question “How much greater is
pos 2 than neg 17 This 1s a missing addend problem again and
you can write it

pos2 =mneg 1 + ]
How will you find the answer? You may see at once, by thinking
of the position of pos 2 and the position of neg 1 on the number
line, that the missing addend is pos 3. (Your pupils will need
to work it out with their slide rules and should not be urged
to usc only the number line just yet. Let them see why pos 3 is
the only number which will make the cquation true.) Here are

the cquations.
pos2 =negl +
and so pos2 —negl =

You have now subtracted a negative integer from a positive
integer. You could equally well use the same method to subtract
a positive integer from a negative integer. Suppose you have

negd — pos3 = []
This can be written as
negd =pos3 - ]
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By using your slide rule, you will discover that neg 8 is ~ceded
to make this equation truc,

neg 5 = pos 3 4 @I
so neg 5 — pos 3 = [neg 8]

You can check these answers by thinking about debits and
credits. If you have a credit of £2 at the shop and your friend
has a debt of £1 at the same shop, then you can compare your
credit of £2 with your friend’s debt of L1 and say that in that
shop you are £3 richer than your friend. You can use positive
integers for credits and negative integers for debts and write

pos 2 — neg 1 = pos 3
Perhaps on another occasion you have a debt of £5 at the shop
and your friend has a credit of £3 in the same shop. You can
compare your debt of £35 with your [riend’s credit of £3 and
write

neg S5 — pos 3 == ncg 8
‘The result tells you that in that shop you are £8 poorer than
vour friend.

You will be realizing now that it seems as though subtraction
is always possible with positive and ncgative integers. From
vour knowledge of the order of integers, you will have noticed
that you can subtract a greater integer from a smaller integer
and have an answer, You will remember

negd — pos 3 = ncg 8
Neg 5 is less than pos 3 because it is to the left on the number
linc. Again, you cannot find a whole-number answer to 3 -5,
but what about pos 3 — pos 5? Try it.
pos3 — pos5 = []
pos 3 = pos 5 4 []
What must be added to pos 5 to get pos 32 It must be neg 2,

pos 3 = pos 5 +

s0 Pos 3 — pos 5 = ncg 2

It looks as il these new numbers will be very useful to us, We



Operations on Integers 8l

can do any subtraction problem with them. We can find an
answer when we subtract a larger number from a smaller
number and also when we subtract a positive number from a
negative number. You know something important now about
the operation of subtraction in the set of integers. No matter
what two integers ¢ and § you select, it is always true that there
is an integer which is the difference @ — 4. We say that the set
of integers is ¢rosep under subtraction,

What set of numbers is closed under addition? Vhe sct of
whole numbers is; because there is always a whole number
which is the sum @ -i- b, whichever whole numbers ¢ and b we
sclect, But the set of integers is also closed under addition be-
cause we caadways find @ - b, no matter what integers @ and b
we select.

(Which set of numbers is closed under division? Is there
always a quoticnt in the set of fractions? If we choose any two
Yeerett a l ¢
Il.muons[—) anc 7

carcful here, because we cannot divide by zero.

. - . a C.
1s there always a [raction J - —l? We must be
(

¢ ad

a
b d e
- . ad ) )
I'his quotient 7 can always be found provided that neither b nor ¢
¢

is 0. With this condition, the set of fractions is closed under
division.)

Exercise 27 2B
1. Usc your slide rule to find these differences:

a. pos H — pos 2 b. pos 5 — pos 6
¢. pos2 — pos 2 d. pos 5 — negl
e. 0 —neg3 f. 0 — pos2

g. ncgd — pos 3 h. negl — neg7
i. negd — neg3 J- neg3 — pos3

2. Explain ho.v you could usc a slide rule to find pos 1 — neg 4.

3. Make up a story problem about wins and losscs in a game
in which the following equation occurs:

pos3 — pos 7 = neg t
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Let us think again about comparing two integers. Think about
debits and credits. If you have a debt o' £3 in a shop and your
friend has a credit of £2, then you can compare your financial
standingin thatshop in twoways. You will be £5 poorer in that
shop than your fricnd, and your friend will be £ richer than
you. Can you write the two cquations?

neg3 — pos 2 = neg 5
and Pos 2 —neg 3 = pos 5

These two cquations are very closely related. The numerical
parts of the differences arc the same, but one difference is ney 5
and the other difference is pos 5. Here pos 5 represents ““richer
by £5” and neg 5 represents “poorer by £5.

These results fit in with the way we usually compare two
mcasurements A and B. We cither say that one, A, is greater
than the other, B, or that B is less than A. Instead of greater
than, we may have several different comparisons, such as
higher than, later than, richer than, to the north of and in front
of. For less than, the corresponding comparatives are lower
than, carlier than, poerer than, to the south of and behind.,

In any particular situation, there is no ambiguity. You always
know which town of two is to the cast by looking at their
latitudes. You know which of two wins is greater by comparing
the two amounts on a number linc. There is a convention—an
agrcement—about the operation of finding the difference between
two numbers. The number which is mentioned second is the
number which must be subtracted. Find the difference between
neg 1 and pos 2 means find neg 1 — pos 2. Find the difference
between pos 2 and neg 1 means find pos2 —mneg 1.

We can write this convention as a general rule using @ and b
to stand for any integers we sclect.

The difference between a and b is a — b
In comparing the two integers we will, of course, say that
a is greater than b if the difference is positive
or a is less than  if the difference is negative

You will notice that the first integer in the difference @ — b is
written first in the sentence making the comparison,
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Here is an example. Find the difference between pos 3 and
pos 11. The difference is pos 3 — pos 11.

pos 3 = pos 11 -+ []
What must be added to pos 11 to make pos 3? It must be a
negative integer, so it will be neg 8.

pos 3 =pos 1l 4 |neg 8|

So we say that pos 3 — pos 11 = neg 8, or the difference be-
tween pos 3 and pos 11 is neg 8. Now you know that pos 3 is
less than pos 11. If we had asked for the difference between
pos 11 and pos 3, we would have

pos 11 -- pos 3 = pos 8
You know that pos 11 is greater than pos 3.

So if the first integer is greater than the sccond integer, the
difference is a positive integer, and if the first integer is less than
the second integer, the difference is a negative integer.

This property of the difference of two integers gives you a
new way to work out the answer to a subtraction problem. Here
itis.

Find the distance on the number line between the two points
which correspond to the integers. ‘I'hen if the first integer is
greater than the second, make the answer a positive integer, If
the first integer is less than the sccond, make the answer a
negalive intcger.

For example, supposc you want to find the difference between
neg 4 and neg 7, that is, neg 4 — neg 7. The distance between
the points on the number line which correspond to these in-
tegers is 3 steps. So the answer will be cither pos 3, or neg 3.
Look at the numbers. Which is the greater? Which number is
to the right on the number line? Neg 4 is to the right and so
neg 4 is greater than neg 7. So now you can write

ncg 4 — neg 7 == pos 3
Check this by writing it as a missing addend problem:

neg 7 -k = neg 4

Similarly, the difference between neg 7 and neg 4, that is,
ncg 7 — neg 4, would be neg 3:

neg 7 — neg 4 =
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It is uscful at first for your pupils e work subtraction prob-
lems in this way also, because it helps them to understand
subtraction of integers and the meaning of a negative integer
result,

ExEercisE 27-2C

L. Usc the missing addend method to find the ansivers to the
following problems:

a. pos 3 — pos 8 b. ncg3 — ncg 8
€. pos 1 —negl d. pos4 — neg?2
€. neg3 — pos 5 f. 0 —ncg4

g. pos 2 — pos 1 h. ncg4 — negl

Write a sentence to describe and cxplain cach result,

2. Vind the difference between the numbers in cach of the
following pairs by using a number line, first finding the
distance between the points corresponding to the numbers,
and then writing pos or neg to show whether the first number
is greater than or less than the second number, Write your
result first in an equation and sccondly in a sentence,

a. pos 2, pos 1 b. pos 3, neg5
c. 0, neg4 d. negl, negh
e. pos 3, 0 f. pos 1, pos 7
g. neg 3, pos 3 h. ncgll, neg 2

3. Look at the questions in Excrcise 26-4B. You were asked to
comparc pairs of measurements by saying which position was
higher than, or to the cast of, the other and so on. Now find
the difference between each of the numbers in these pairs.
Show the subtraction equation and the corresponding addi-
tion cquation. Write cach answer in a sentence comparing
the two measurcments,

27-3 Relation between addition and subtraciion

Now that you know how to do addition and subtraction
with these new numbers, the integers, you sce how they are
morc uscful than the whole numbers alone. With the whole
numbers, you can find an answer to 5 + 3, and 5 — 3, but
not to 3 — 5. With the integers, you can find the sum of any
two integers, and you can also find the difference between any
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two integers. For example, you can find pos 5 — pos 3 and, also
pos 3 — pos 5. With whole numbers you can always do addition,
and sometimes subtracidon, But with the ‘ntegers you can always
do addition and clways do subtraction.

Do you remember the mathematical way of writing these
propertics of the set of whole numbers and the set of integers?
The set of whole numbers is closed under addition, because whatever
whole numbers a and b we select, a whole number can always
be found which is the sum « - b, The set of integers is closed under
addition and subtraction,

¥ ARCISE 27-3A
1. Write a sentence similar to the above about:

a. the sct of integers and addition
b. the sct of integers and subtraction

2. What sct of numbers is closed under division? How would you
explain this to your pupils?

There is another very useful property of addition and sub-
traction of integers. Exercise 27-3C will help you to discover
this property, but first work the short Exercise 27-3B to remind
yourself about some very uscful nairs of integers.

Exercise 27-3B

1. Put an integer into each of these boxcs to make the cquation
true.

a.pos3 - []=0 b. neg3 4[] =0
c. [J+posl = d. [J+4ncgb =0
e. [J-+ A =0 £ O+0=0

Now answer these questions,

g. What arc these pairs of integers called?

h. Draw a number line to show the pair in Question 1b.
i, What is the special property of these pairs of integers?
J» Write three more pairs,

Now that you are surc that you remember oppozite: and their
propertics, do the next exercise and sce what you can discover
about their use in addition and subtraction.
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Exercise 27-3C
1. Put an integer into cach box to make the equations true

a. pos 3 —pos 1 = []

pos 3 4 negl = []

pos 3 —pos 1 =pos 3 + [
b. neg3 + negl = [

neg3 — pos | = []

neg3 +~negl =neg3 — [
C. pos2 —pos6 = []

pos 2 4 neg 6 = []
Pos 2 — pos 6 = pos 2 4 []
d. 0 —pos 7 = []
0+4+neg7=1[]
O—pos7=0+|:]
e. 0 —neg7 =[]
0+ [ =rypos7
0 —mneg7=0-[]

Do you sce here a connection between addition and sub-
traction? Describe it in a sentence,

What did you discover in the last exercise? Did vou find these
two propertics of addition and subtraction of integers?

Discovery 1
To subtract an integer from another integer you can add its
opposite. This is shown in the equations below.
pos 3 — pos 5 == neg 2
pos 3 -+ (opp. of pos 5) = pos 3 - neg 5

= neg 2
Therefore,
pos 3 —pos5 = pos 3 + (opp. of pos 5)
Discovery 2
To add an integer to another integer yov can subtract its
opposite.

neg 3 + pos4 = pos 1
neg 3 — (opp. of pos 4) = neg3 — neg 4
= pos 1
Therefore,
neg 3 + pos4 = neg 3 — (opp. of pos 4)
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These two properties, linking addition and subtraction of
integers, are really only one property: To add an integer to
another integer you subtract its opposite, and to subtract an
integer from another integer you add its opposite. 3'ou will see
in the next chapter how this property is used t¢ muke addition
and subtraction of negative integers much casier.

Now let us think about subtraction on the number line, We
have not yet found what movement on the number line cor-
responds to subtraction. We already have movements for addi-
tion on the number line:

To add a positive integer to another integer, move to the
right.

To add a negative integer to another integer, move to the
left.

Can you draw the pictures for the two additionsneg 1 + neg 4
and ncg 2 4+ pos 3?

Here they are.

et neg 4 neg 1
e T —— = :
nS_  nd n3 n2 M0 p1
neg5

neg I - neg4 =negd

+ pos 3
< - s ; ;
n2 ni 0 D1 p2

pos 1

neg 2 + pos 3 = pos 1

Each of these equations can be rewritten showing subtrac-
tion of the opposite. Take the first equation.

neg 1 + neg 4 =neg 5

becomes neg 1 (opposite of neg 4) = neg 5

or negl — pos4 = negd
So the movement to the left which represents -+neg4 also
represents —pos 4. So we have found a meaning for subtraction
of a positive integer in terms of a movement on the number line.
To subtract a positive integer move to the left. Here is a

picturc.
BC2—i
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—pos d
T neg 1
= e : . = T TN . .
o~ x ¥ T T T s N
nS,\\ n4 n3 n2 21/// 0 pl
\ 7 __/_//
negs

negl — pos4 =neg s
You will sce that this is the same as the first picture on page 87
except that —pos 4 has replaced -+neg 4.
Now consider the second cquation,
neg 2 + pos 3 = pos |
which becomes
neg 2 — (opp. of pos 3 = pos 1
or neg 2 — neg 3 = pos |
So the movement to the right which represents -+~pos 3 also
represents —neg 3. Now we have a movement for subtraction
of a ncgative integer.,
To subtract a negative Integer move to the right, Here is a
picture,

~ neg 3
T R
e N
- —E— ! 4 5 :
n2 ni 0 \_/p] p2

pos 1
neg 2 — neg 3 = pos |

You will sce that this is the samc as the sccond picture on page
87 cxcept that —nceg 3 has replaced -pos 3.

Put these two discoveries together and vou have the move-
ments for subtraction on the number line,

To subtract a positive integer from another integer, move to
the left.

To subtract a negative integer from another integer, move to
the right.

To summarize what we now know about addition and suls-
traction as movements we will write:

A move to the right is caused by the

1. addition of a positive integer,

2. subtraction of a negative irteger,
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A move to the left is caused by the
1. addition of a negative integer,
2. subtraction of a positive integer.
You now have three ways of finding the difference between
two integers @ and b:
a—b=_[]

Method 1

Rewrite the subtraction equation as an addition equation
and find the missing addend ¢ by using a slide rule or the
number line:

a=b—i-

Method 2

Find the distance d in units on the number line between the
two points. Decide wherc e > bor b > a.

1t a > b, the difference will be positive:

a—~b=d>0
If a < b, the difference will be negative:
a—b=d<0

Method 3
Add the opposite of the sccond integer in the equation

a—b=1[1
a -+ (opp. of b) = []
Exercise 27-3D

1. Work the following problems in subtraction of integers by
adding their opposites in each case.

a. pos 3 — pos 8 b. pos 12 — pos 7
c. negd —neg9 d. ncg4 — negl

e. ncg3 — pos 7 f. negd — pos 2

g. pos 3 — pos 3 h. negb — pos 5

i. pos 7 — neg 10



Chapter 28

RELATION OF INTEGERS
TO WHOLE NUMBERS

In the last three chapters you have learned much about the
integers. You know how they arc used to show measurement in
opposite dircctions; you know how to find which of two integers
is the greater and how to do addition and subtraction with
integers. Now you will want to know how they fit in with what
you have learned before that. How are the integers cclated to
the whole numbers?

28-1 The positive integers

Think first about the sct of positive integers and the set of
counting numbers. You will remember that the counting
numbers do not include zero. Each set has a least riember,
pos 1 or 1, and cach of these can be matched with the other,
All numbers greater than these can be matched in pairs in
order of size beginning with pos 2 and 2. Here is a picture of
this matching,.

Counting

numbers Il }2 3 t 3 6.ie
Positive I I l

integers P08 1 pos2 pos3 pos 4 posd posb6 ..,

The difference between any two successive counting numbers
and the difference between any two successive positive integers
is the same, onc unit. Each number in cither set is onc unit
greater than the number to the left of it and one unit less than
the number to the right of it. If we now consider the set consist-
ing of the counting nunbers and zero—that is, the sct of whole
numbers—and compare it with the set cousisting of the positive
integers and zero, we can take the comparison further, The

number once unit less than pos 1 is 0, and the number one unit
90
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less than 1 is 0. So you can sce that there is a very close resem-
blance between the set of whole numbers and the set made up
of zero and the positive integers, It is such a close resemblance
that you can show them both on the same number line.

Whole numbers 0 1 2 3 4 5
Zero and pos. < : : f : >
integers 0 posl pos2 pos3 pos4 posH

Now we must ask, “Do the numbers of both sets behave in
the same way when you add or subtract with them?” Do they
give corresponding resulis? Is the answer to 2 - 4 the whole
number which corresponds to the positive integer which is the
answer to pos 2 - pos 4? The answers are 6 and pos 6 and these
are corresponding numbers. You can sce that this relationship
will always be true for addition, but will it be true for sub-
traction? Work through the next exercise and make a note of
any cases where there is not a correspondence between the
answer in whole numbers and the answer in positive integers
with zcro.

ExErcise 28-1A
1. Find the answers to these problems.

a, 23 465 = [] pos 23 4 pos 65 = []
b. 203 — 129 = [] pos 203 -- pos 129 = [}
c. 24 —-79 =[] pos 24 - pas 79 = []
d. 17 —25 =[] pos 17 — pos 25 = []
e. 94 — 37 = [] pos 9t — pos 37 == []

Have you found that the whole numbers and the positive
mtegers with zero give corresponding results for subtraction as
long as the first number in the subtraction equation is not less
than the second number? 25 — 17 has a result 8, and pos 25 --
pos 17 has a result pos 8. If you have a subtraction equation
where the first number is less than the second number, then
there s a result whien you work with integers but this result
Is a negalive integer. For example, pos 17 -~ pos 25 = neg 8.
There is no corresponding answer to the whole-number cqua-
tion, That is, 17 - 25 has no whole-number answer. So if you
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work with the positive integers and zero only, you can sce that
they behave in exactly the same way as the whole numbers, Be-
causc of this resemblance, we will not continue to give the
positive integers their special label “pos”. We say that pos 3
behaves exactly like 3, and so we will write 3 for pos 3.

Instead of pos 1, we write 1.

Instead of pos 2, we write 2.

Instead of pos 3, we write 3.

Instcad of pos 100, we write 100,

Here are some cquations, They are written first in the old
notation and second in the new notation for positive integers.

pos 3 +- pos 2 = pos 5 becomes 3 - 2 = 5

Posd - neg 3 = pos 2 becomes 5 4 neg 3 =2

pos3 — pos 2 = pos 3 becomes 5 — 2 = 3

pos 3 -0 = pos 3 hecomes 3 4 0 ==

0 + pos 1 =pos 1 becomes 0 4- 1 == 1

Pos 3 —pos3 = neg 2 becomes 3 — 5 = neg 2

Exercise 28-1B

L. Tind the answers to the following problems. Then rewrite
them, putting whole numbers in place of the corresponding
positive integers,

a. pos 15 -- pos 14 b. 0 — pos 3
c. posl — pos3 d. pos 23 - pos 7
e posl7 --neg9 f. pos3 —neg?2

2, Make up four problems like the ones you have just done.

28-2 The negative integers

Draw a number line for the integers and write the counting
numbers where you forinerly wrote the positive integers,

< 1 i 1
< T T

t T : t t t f }
neg s negd neg3 neg 2 neg 0 1 2 3 4 5

You have a number line along which you have measured in
two opposite directions. You can still know which 3 is on the
right of 0 and which 3 is on the left of 0, hecause the one on
the right is written 3 and the onc on the left is written neg 3.
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You will ask whether there is a simpler way of writing neg 3.
What do you know about neg 3? You know that ncg 3 names
the point you reach by taking three steps to the lelt from 0.
You can also think of this movement as adding neg 3 to 0.
‘The equation is
0 --neg3 =neg3
You have also learned that you can replace +- neg 3 by —pos 3,
and in the new notation —pos 3 will be —3. Instead of adding
neg 3, you can subtract the opposite of neg 3; that is, you can
subtract 3. So we can new have two canatinge
0 -+ neg3 =neg 3
and 0—3 =neg 3
The difference {0 - 8) and the sum (0 -+ neg 3) arc the same
number, neg 3:
0 +mneg3 =0 — neg 3
Because of this equality, we agree to write ““ — 37 for “neg3”,
‘The minus sign now has two meanings instcad of only onc.
I'ront aow on, every minus sign you meet can have two pos-
sible 1 onings and you should know which one is mcant, In
0 — 3 the minus sign means the operation of subtraction. In —3
(for neg 3) it means negative. It must meun negative here be-
cause no other integer is in front of it from which you can sub-
tract it, It is usclul to write — 3, when it is a negative integer,
with brackets enclosing it as (— 3) to remind pupils thatit does
not mean subtract 3 but the integer neg 3,
Instead of neg 1 we now write (— 1)
neg 2 becomes (=2
neg 3 becomes (=3
neg 251 becomes  (— 251)
Lach integer except 0 has a new name in the new notation,
but the set of integers is the same as before: It consists of the
positive integers, zero and the negative integers. The old count-
mg numbers are included in the set ol integers as the positive
integers. The old whole numbers are now the set of positive
integers with zero. Here is the numiber line lahelled with the

b |

new uotatioir.

| : 1

4y (<3) (-2) (-1) 0 1

-
el
-y
3
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Now you can rewrite cquations in the new notation. Here
are some examples.

pos 3 4-neg 1 =pos 2 becomes 3+(—-1) =2
negd + neg 8 = neg 13 becomes (=5) + (—8) = (=13)
negd —neg 7 =pos 2 becomes (=5) —(=7) =2
pos 3 — pos 12 = neg 9 hecomes 3 — 12 = (—9)
pos 3 —pos 2 ==pos 3 Decomes 3 —2=3
0 +4neg 5 =neg 5 becomes 0+ (=5) =(-5)
0 —pos 2 =neg 2 becomes 0—-2=(-2

Each time the minus sign appears in the sccond column of
equations above, it means cither subtract or negative, Can you
say wlhich it is in every case? Here are three cquations. In the
first equation the minus meaus negative:

34+ (-1) =2
In the second equation the minus means subtract:
5—-2=3

In the third cquation there are two minus signs, The first
means subtract and the sccond means negative:

4 —(-3) =7
ExERrcisE 28-2A

1. TFind the answer to caclt of these problems and then write
the complete equation in the new notation.

a. neg 13 -4 neg 71 b. neg 21 — pos 11
c. ncg3 —0 d. neg 21 —neg 15
e. pos 13 - neg 20 f. 04 neg 4

g. pos 14 — pos 32 h. pos3 — ncg 7

i. 0 —negl7

2. In cach of the followiug cquations, decide which of the two
possible meanings for the minus sign is meant and write the
cquation in words. Here is an example:
(=7) =1 =(-8) in words is “neg 7 subtract 1 cquals
neg 8”.

a. (—3) -2 =[] b. (—3) -2 = []
c. 4 —(=5) =[] d. 4 —5 =[]

e (—4) —0 =[] £ (~3) +(=5) = [
g (—3) —(~5) =[] h0-2=[]

i 0—(-2) = [ i (=H+2=1
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3. Draw a number linc showing the integers written in the new
notation. Mark on it the points represented by cach of the
following integers and its opposite. For each pair, make an
cquation; for example, opp. of 3 = [7].

a. 3 b, -2 c 7
d. pos 9 e. (opposite of 10) f. -5
g 0 h. [opposite of (—6)] i. neg 4

28-3 Opposites

What can we discover about an integer and its opposite in
the new notation? Look at these equations,
opp. of 3 =neg3 becomes opp. of 3 = (—3).
opp. of neg 5 = pos5 becomes opp. of (—5) = 5.
In each pair of opposites, one integer is positive and the other
integer is negative, Can you sce that here the minus sign can be
thought of in a third way, as saying “the opposite of?
(—3) is the opposite of 3
--(neg 4) is the opposite of neg 4
—(—4) is the opposite of (—4)

Exercise 28-3A
1. Tor cach of the following, first find the integer to make the

equation true, then rewrite the equation in the new notation
“negative’” and for “the opposite of”’.

Examplec:
opp. of neg 3 = []
opp. of neg 3 =
7 —(-3) =3
a. opp of pos 2 = [] b. opp. of neg 5 = []
c. opp. of 0 = [] d. opp. of opp. of pos 1 =[]

e. opp. of opp. of neg 3 = [
f. opp. of opp. of 0 = []
2. Find the integer which is the simplest way of writing cach
of the following,
a. (—4) b. [—(—2)]
c. (—0) d. —~[—(-6)]
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28-4 Addition and subtraction in the new notation

You will be wondering how to perform addition and sul-
traction in the new notation. Perhaps you alrcady know some
rules for adding and subtracting integers, but do you under-
stand how they work? Can you explain them to your pupils?

It will help to think of addition and subtraction on the
number line. Think about adding or subtracting a positive
teger. ‘The problems are given first in the old notation and
then in the new notation.

Pos 6 + pos 2 = 6 -- 2 steps to right =8
neg 2 - pos -+ = (—2) + 4 steps to right = 2
pos 6 — pos 4 == 6 + 4 steps to lelt =2
neg2 — pos4 = (—2) 4 4 steps to left (

I

—6)

Extrecise 28-4A
1. Draw a number line to show each of the following and then
write the complete equation,

a. 2 —!‘ 3 b- 2 - 3
c 0—2 d. (=2) 1
e (—3) 43 £, (—4) +6

You sce that the addition and the subtraction of positive
integers from other integers present no difliculty at all. And in
the last chapter we learned that to add an integer we can sub-
tract its opposite, and to subtract an integer we can add ifs
opposite. Here are two examples showing these procedures in
the new notation.

In the old notation we have
pos 3 +neg 5 = pos 3 — (opp. of neg 5)
= pos 3 — pos 5 = neg 2
In the new notation we have
3 4 (=5) =3 — opp. of (—5)
=3 =5
34+ (=5) =(-2)
Now we will work another problem, first in the old notation:
neg 2 —neg 3 =neg 2 + (opp. of neg 3)
=ncg 2 4- pos 3
= pos |
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In the new notation this becomes
(=2) — (=3) = (=2) + [opp. of (—3)]
(=2) =(=3) =1
ExERrRCISE 28-4B

1. Work these problems in the way shown above, first in the
old notation and then in the new notation.

a. pos3 + neg4 b. neg 3 + neg3
c. 0 +negl d. 0 —neg4

e. pos3 — neg?2 f. negb — neg?2
g. ncg 2 — neg 2 h. neg 7 + neg 3

2. Work these problems using any method you choose, but
explain your method as you would explain it to your pupils.
a. ncg 2 - pos 1 b. neg 6 + neg 3
c. pos1 — pos 7 d. pos 3 — neg3

3. Think of the physical models of the integers and make up
some problems about them which need addition and sub-
traction of integers.

28-5 Some properties of integers

Do you remember that when you studicd addition of whole
numbers and of fractions you found that zero played a parti-
cular role in addition? It is an identity clement. I 0 is added to
a number, that number is unchanged. For example, 9 4- 0 = 9
and 0 + 9 = 9. Wilien you tested to sce if zero was an identity
clement for subtraction also, you found that it only “half
worked”. 3 — 0 = 83, but 0 — 3 had no answer. Now you know
the answer to 0 — 3: it is (—3), neg 3. Try the question again
beginning with (~3): (= 3) — 0 = (=3),and 0 — (—3) =3.
So zero does not act as an identity element for subtraction, Do
you know why not? It is because of another property which
addition possesses and which subtraction does not.

You know that 3 -5 =8 and 5 + 3 = 8 and also that
9 =3 =2Dbut3 —5 72 This shows the commutative pro-
perty of addition and it shows that subtraction docs not possess
this property.

In general you know that, for all integers @ and b, a + b
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=) 4 a but that ¢ — b = b — a unless ¢ = b. The commu-
tative property is not a property of subtraction,

There is, however, a special relationship between ¢ — b and
b — a. Can you scc what it is? Look at these results,

5—-3=2 3 -5 =(-2
12 —4 =8 4- 19 = (-8)
16 — 19 == (—-3) 19 — 16 = 3

In each pair of equations the differences are opposites, 2 and
(—2), 8 and (—8) and (—3) and 3.

So (a — b) and (b — a) are opposites.

So (@ — b) =opp. (b — a)

(a—=8) = —(b — a).
This is a very usclul lCld.llOl]Sl]lp If you have, for example,
8 — (3 — 4) in an cquation, you can replace it by
84-(4—-3)

which is casier to find.

Exercise 28-5A
1. Work these problems:
a. (pos6 + pos2) — neg 3
b. neg 3 4 (neg 2 - pos 1)
c [7+(—2)]+8
d. (—4) +[(=2) + (=1)]
e [(=3) — (=5)] — (=3)
£ (=8) - [(—4) + (-2)]
2. Work these problems in subtraction by “adding the oppo-
site”
a. (—— ) —

(3 — 8) b.6— (2 —1)
c. (—4) —[

3-8
(=2) — 6] d. 8 —[5 - (—4)]



Chapter 29
OPERATIONS ON INTEGERS

(continued )

29-1 Addition, using the new notation

You have learned about new numbers, called the integers.
You know that they include the counting numbers, zero and
the negatives, which arc the opposites of the counting numbers.
You have learned what it means to add and subtract these
numbers, and you have seen that these operations act in the
same way as addition and subtraction of counting numbers,

You have also learned an easy way to write these numbers.
Instead of writing pos 3, for example, you learned that you
could simply write 3. The familiar counting numbers are, in
fact, the positive numbers. Hut when you use them, you must
remember, of course, that they arc positive, and that they
hehave as opposites of the negative numbers. And you learned
also that instcad of neg 3, for example, you could simply write
(—3). The symbol (—3) seems to ask you to subtract 3—and
there is a very good reason for that, namely, that subtraction of
3 is cquivalent to addition of (—3). But the number (—3) is as
good a number in its ovn right as 3. Both are equally impor-
tant as numbers and deierve your equal respect.

It is useful now to recall some of the ways integers act when
you add them, and to use the new way of writing integers in
doing so. Thus, you learned to write, for example,

pos 3 -f- pos 4+ = pos 7

But now you can write simply
34 1=7

‘This new cquation means the same thing as the one before it,
but it is casier to write. It Lides the fact that the numbers arc
rcally positive integers, but you should be able to keep that
fact in mind by now. You can think of this addition cxercise

in terms of two successive jumps to the right on the number
99
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line, starting at the zero point. This is shown in the following
Ficture.,

3 + 4
= #:\ﬂ/:/:—:\\; ———
-2 =1 0 1 2 3 4 & & 3

8 9

You also saw the same pattern for ncgative integers. Instcad
of
neg 3 4+ neg4 =neg 7
you can now write
(=8) + (—4) = (-7
where the brackets around (—4) remind you that the minus
sign, “—”, in (—4) is not a subtraction sign but rather a
marker showing that the number is the opposite of whatever
follows the sign. Thus, in this case the ©— changes positive 4
to its opposite, neg 4. You can also write this as in the previous
chapter
(=3) —4=(-7)
since addition of ( —4) is the same as subtraction of 4, In prac-
tice, whenever you add a negative number you do it by sub-
tracting its opposite, which is positive. We will write it both
ways,
The sum of two ncgative integers can be represented as the
result of two jumps to the left on the number line, starting at
the zero point, This is shown in the following picture.

-4 + -3

T
P
, P ) ) I/_'—\' , R
T

T ¥ T

~9 -8 -7 - -5 -4 -5 5 -1 0 1 2 3

S~
Ca

Recall how to add two integers of opposite sign. Addition
of a positive integer is represented by a movement to the right
and addition of a ncgative integer by a movement to the left
on the number line. Thus the following cquations arc correct:

neg 3 4 pos 4 —= pos 1
and pos 3 - neg4 = ncg 1
which can be written more simply as
(=3) +4 =1
and 34+ (—4) =(=-1)
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which can be written also as
3—4=(-1

These can be pictured as follows:

(-3¢
~
, 4 \
; e N, ; : SR
-4 -3 -2 -1 0 1 2 3 4
3
2 (-4)

- } '/7;\\ }

-4 -3 -2 -1 0 1 2 3 4

Exercise 29-A
Ilustrate the following addition problems using the number
linc:
1. 5 4 (—8)
2 (-2) +7
3[3+(—2)] —4
4 (=7) +{[(~2) + (—9] +8)
5. (pos2 + neg4) + [(—1) + pos 1]
6. [(pos 3 + neg 2) + pos 5] 4 (—6)
Remember to do what is required inside the innermost
brackets first and then move to the outer brackets.

Exercise 29-1A

A pupil complains to you, his teacher, that he does not believe
you can add negative intcgers to anything, because adding
makes a number bigger. What would you tel! this pupil?

29-2 Subtraction, using the new notation

You saw that subtraction of integers is closely related to
subtraction of the counting numbers. Thus the problem

pos 5 — pos 2 = pos 3
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can be rewritten more simply, using counting numbers, as
5—-2=3

You learned also how to solve the problem, which in a previous

section of this book remained unsolved, of subtracting a larger

counting number from a smaller counting number, as in this

example:
5 -7=0

This problem can also be considered as a missing addend
problem:
74+ =5

It is impossible to solve this problem using only positive integers,
but, using both positive and negative integers, you can say

pos 3 — pos 7 = neg 2
which can be rewritten

3—7=(-2)
Such a problem can be pictured on the number line as follows:
5
=7

! \ 4 L —~
T T T T T ¥ T -

-4 -3 -2 -1 o0 1 2 3 4 &

»

In the same way, it is casy to see that
neg 3 — posb5 = neg 8
which can be rewritten
(=3) =5 =(-8)
and which can be shown, using your slide rule made from two
rulers sliding one on the other, as in the following picture,

Lﬂ—w—g—a -7 -6-5-4-3-2 ~1 0 1 1}
o T rom yElL R (A L 2 U
f~11—1o—f—'a -7 -6 -5 4773 -2-1 0

i /

7 7

It is harder to sce how to subtract a negative number, This
problem can best be understood by looking for a missing
addend. Thus, you can write

pos3 —neg 6 = [
so that pos3 =neg6 -+ [

Lo
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Clearly, the result you want to put in the box is pos 9, because
pos 3 = neg 6 + pos 9

and, thus, pos 3 — neg 6 = pos 9
Using the new notation, you can write

3 —(—6) =9

3 =(—6) +9

The approach remains the same in the case where both
numbers in the subtraction problem are negative integers, as
in the following example:

(—4) = (=7) =3
which is a simplification of the expression
neg 4 —neg 7 = pos 3
You learned, morcover, that subtraction of one integer from

another simply means addition of the opposite integer. This
fact made life much ecasier for you, so that you could write

neg 4 — neg 7 = neg 4 + pos 7 = pos 3
which could be written more simply as
(—4) = (=7) = (—4) +7 =3
This equation can be illustrated as follows, using your slide rule:

3

1)
{ -3-2-10 1 2 3
1 i | ' | ' ‘

%—‘6 —V'a -3 -2 -1
/

Because subtraction and addition are irverse opcrations, it is
possible to subtract any number by addmg its opposite, and to
add any number by subtracting its opposite.

e N
[+

X

Wit
st
ot

o-t-»

1
7

Exercise 29-2A

Simplify cach of the following expressions and find the result:
L 4—(—7)

2. (—5)— (—2)

3. (=3) — {4 +[(—3) — (9]

4, pos 6 + (neg 3 — ncg 2)

B C2—H
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5. [~ (neg 6) + pos 6] — [(—2) + 3]
6. ncg[(—2) 4 (—3)] + [(—2) — negv]}

Exercise 29-2B

1. A pupil tells you his father hes Iess than nothing in the bank,
because the bank put on his account a service charge which
was greater than Lis bank balance. Can you explain this
situation for the class?

2. Two men arguc as to who is better off: the one who received
two gifts of £/10 cach or the one who had two debts of £10
each cancelled. Lach started with the samc amount of
moncy. What do vou think?

3. Make up similar word problems for the use of your primary
school class,

29-3 Multiplication of integers

When you studied the addition of counting numbers, you
met problems where the same number was added to itself
several times. You found that such addition problems could be
solved casily by using a new operation, called multiplication.
"Thus, you learned to replace

3+3-4343+3 =15
by the multiplicition equation
53 =15
You saw that such an cquation could be pictured by an array
of objects or by repeated motions on the number line, as follows:

LT e JTE LT ey -
: : . A ! 1 A ' LAy . t Ay '
T +

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

You can do much the same thing with the integers. Repeated
addition of positive integers is the same as the problem given
above. Thus,

pos 3 + pos 3 -- pos 3 - pos 3 4- pos 3 == pos 15
can be written 5 X pos 3 =pos 15

In the same way you can do repeated addition of negative
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integers. In the following serics of cquations, the rcasons for
the successive steps should be clear to you.
neg 4 + neg 4 4 neg 4 = neg 12
3 X neg4 =neg 12
A X (—4) =(—12)
This problem can be pictured on the number line as follows:

T L B N T
- ; A 4 i ; v Il Il 1\1

»” 3
} } 3 + 4 x t t b T

T 13-12-11 910 9 8 7 6 -5 <4 -3 -2-1 0 1

In this way, you can scc that if you muitiply successive integers
by a positive integer, the answers form a pattern. Look at the

following examples:

4 x3=12

+x2=38

4 x1=4

4 x0=0
43 (—1) = (—4)
1% (~2) = (-8)
4 x (=3) =(—12)

One factor (4) is the same in cach equation. The other factor
is decreased by 1 each time. Lach product is 4 less than that in
the equation above it. It is thercfore reasonable to write

4 x(=1)=(—-4),4 x (=2) =(=8) and 4 x (—2) =(—12)
as was done. Again cach of these equations can be pictured on

the number line as in the problem 3 x (—4) = (--12) above,
Now look at the following examples:

4 <3 =12
3x3=9
2%x3=0
1 x3=3
0x3=0
(—1) x3 = —3)

(—2) x3 =(-6)
Why are the last two products given as (— 3) and (—6) respec-
tively? One factor (3) is the same in each equation. The other
factor is decreased by 1 each time. Each product is 3 less than
in the equation above it. So again it is reasonable to write
(—1) x 3 =(=3) and (—=?) X 3 = (—6). However, it docs
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not make much sense to show these equations on the number
line. For example, what would it mean to make (—2) jumps of
3 units cach?

With these examples in mind, see if you can find a general
rule for multiplying a positive integer by a negative integer.
One point of view is the following. You know how to multiply
two positive integers or counting numbers. The product is
always a positive integer. This operation has certain properties.
It is commutative (axb=0bxa)
associative (@ x (b xc)={(axb) x
and distributive over addition

(@ X (b+¢) =(a xb) -+ (a xc)).
Also, 1 % a = a for any positive integer a. Assume that these
properties continue to hold when you use the set of integers., What then
will be the product of two integers if at least onc of the factors
is a negative inicger?

Result 1
The product of 0 and any integer is 0. That is, 0 x @ = 0
for any integer a.

Lxample
Find 0 x (—2).
040=0 (Property of 0 in
addition.)
(0+0) % (=2) =0 x (~2)  (Multiply by (~2))
[0 X (=2)] +[0 x (=2)] =[0 x (—~2)] (Distributive Law)

0
0 (Subtract 0 x (—2))

0 x(—2) =
A similar argument works for any integer in place of (—2).
Result 2
(—1) X @ = opposite of @ = —a, for any integer a.

This can be shown as follows:

(=1) +1 =0 (The sum of an integer and
its opposite is zero)
[((=1) +1] xa =0 xa (Multiply by a)
[(—1) xa] - (1 xa) =0 (Distributive property and
Result 1)
[(—1) xa] +-a=0 (Property of 1)
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Therefore (—1) X a = oppositcof ¢ = —a
In particular, if a is (--1), you sce that
(=1) x (=1) = opposite of (—1) =1
Result 3
(—a) x b = —(a x b) for any two integers a and b,
‘This follows directly from Result 2, for
(—a) xb=[(-1) xa] xb (Result 2)

=(—=1) % (a x b) (Associative property)
= oppositc of (¢ x b) (Result 2)
= —(a X b)

For example, (—2) x4 = —(2 x4) = --8

(=3) x 2= —(3 x2) = —6, and so on.
In particular, if @ and & arc positive integers, then (—a) is a
negative integer, asis —(x x 4). You then see that the product
of a negative integer and a positive integer must be a negative
integer. The commutative property allows you to change the
order of the factors without changing the product, so this last
statement can be given as a general rule.,

The product of two integers of opposite sign is a negative integer

You alrcady know that the product of two positive integers
is a positive integer. What is the product of two negative inte-
gers? Look at these examples:

4 x(—2) =-8
3 X (—2)=—6
2xX(—-2)=—4
1 x (—2) = =2
0x(=2)=0
(—=1) x (=2) =?
(—2) x (—2) =7

One factor ( —2) is the same in cach equation. The other factor
is decrcased by ore cach time. Here cach product is 2 more
than that in the cquation above it. It is therefore reasonable to
expect that

(=1) x (=2) =2 and (-2) x (-2) =4

Result 4
(—a) x (—b) =a x b) for any two integers a and b.
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This follows dircctly from Result 2, for

(=a) X (=b) =(=1) xa x (=1) xb (Result 2)
=(=1) x (=1) xaxb (Why?)
=1xaxb (Why?)
=a xb (Why?)

For example, (—2) x (=2) =2 x
(=3) x (—4) =3 x
In particular, if @ and b arc positive integers, both (—a) and
(—0) are negative integers, while (¢ x b) is a positive integer.
So you get the following general rule.
The product of two integers of the same sign is a positive integer

2, and so on.

Exercise 29-3A
L. Perform the indicated operations in cach of the following,
Remember to do the work inside the innermost brackets first.
a. (-3) x 2 b, (=6) X (—1) e 3 x (=7)
do (=) X 8 — [+ — (=3)]} — {(=1) x [4 + (=2)]}
e {(=2) +[(=3) x (4 = 1)]} x (2 + {(—5)
+[(=3) x (=91}
£(8 = {4 x[(=2) +6]}) x ((=5) + {(—3)
x [(—4) +8]})

2. Write an argumient for Result 1 using an arbitrary integer a.

29-4 Division of integers

You remember from a previous chapter that division of a
whole number by a counting number can be considered in
many different ways. You thought of it as sharing a collection
of objects among scveral persons; as finding the number of scts
of a given size that can be taken from a given sct; as finding a
missing factor in a multiplication cquation; and so on. In dis-
cussing division of integers, you will find the idea of a missing
factor most helpful,

It is casy to sce how to divide any integer by a positive
integer.,
For example,
4+2=2 because 2 x 2 =4
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Similarly,
(—4) +2 =(-2) because (—2) %2 = (—4)
(—12) =4 = (—3) Dbecause (—3) x 4 = (—12)

and so oxn.
Division by a negative integer is handled in the same way.
For example,
4 = (=2j = (=2) because (—2) x (=2) =4

Similarly, (—4) = (—-2) =[]
is the same as (=2) x = (—4)
The answer is 2; that is (—4) = (=2) =2.

Here are more examples:

(—=16) =~ (—4) =4 because (—4) x 4 = (—16)

(—16) + 4 = (—4) Dbecause 4 x (—4) = (—16)
16 = (—4) = (—4) Dbecausc (—4) x (—4) =16
16 +4 = 4 because 4 X 4 =16

From thesc examples and the fact that division and multipli-
cation are inverse operations, you can see that the rules for
signs in division of integers arc similar to those for multiplica-
*.n of integers.

The quotient of two integers of the same sign is posilive
The quotient of two inlegers of opfiosile sign is negative
Finally you scc that 0 < a =0 for any aon-zero integer a,
because 0 x @ =0. For cxample, 0 = (—2) =0 Dbecause
0 x (-2) =0.
As Dbefore for whole numbers, division by 0 is not allowed, since
it has no meaning. For example,
(-2) +0 =]

is the same as 0x O=(-2
But therc is no integer which when multiplied by 0 gives a
product of (—2),

ExERrcisE 29-4A
1. Perform the indicatcd operations to get answers for the fol-
lowing problems:

a, (—6) =3 b. 12 + (-2)

c. (—15) + (-5) d. 6 =~ (—1)
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e {[(=3) 4 5] x [2 + (=8)]} +{[(—2) + [(—2) x 2)}
£AE - [(=1) 430} x {[(=3) x 2] + [4 + (— )]}
g {(=3) +[(=2) x (=6)]} +{[(—4 x (—1)] — (3" 4)}

ExEercise 29-4B

1. A pupil tells you that in a multiplication or division problem
the casiest way to do it is to forget about the signs and do the
problem as he learned it for whole numbers, and then count
the number of negative signs in the problem. If the number
is odd the answer is negative, and otherwisc the answer is
positive. Is the pupil correct? What if there were addition
and subtraction in the problem also?

Exercise 29-4C

L. Do these problems, and sce what pattern appears in the
answers. Remember what you learned before about inverse
opcrations.

a. [+ x (=2)] - (=2) b. [(—2) x 3] =3

¢ [(=2) % (=5)] + (=5) d. [8 x (~1)] + (1)
e. [(—8) -4] x4 £ [15 = (—3)] x (-3)
& [(—12) = (=2)] x (=2) h [1 + (=1)] x (=1)

It is not necessary to write so many brackets in our cquations,
For example, if it will not he confusing, we will write —9
instcad of ( —2), — 4 instcad of (—4), —259 instead of (—259)
and so on.

With brackets Without brackets
(—4) —2 =(-2) —4 — 2 = -9
4 —(-2) =(-2) 4 —(-2) = -2
(=5) x 2= (=10 -5 X2 =—-10
2 x (—=5) =(-10) 2 X (=5) = —-10
(—4) = (=7) = —4 —~(-7) =3
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Chapter 30

NEGATIVE FRACTIONS

30-1 Division of integers

The problems we did in the last chapter when we divided
onc integer by another were casy in one sense. We only worked
problems where the answers were also integers. What about
problems like the following?

(=7 +3=00
We have not done such problems before, and now we must try
to find a way of solving them. We know what (—6) = 3
means, and we can sive —2 as the answer. What about
(—7) =3

It is always a go.J idea in doing mathematical problems to
look hack to casier and somewhat similar problems which you
have solved before. In this case, you should think back to prob-
lems of this kind which came up in the discussion of the counting
numbers. There we faced the difficulty that the problem

7+3 =[]

has no answer among the counting numbers. And you remem-
ber that we had to find a new kind of number to solve this
probleni. That number was callea 2 {raction, and was used to
name parts of a whole. We found that these new numbers gave
us answers to all such otherwise unsolvable division problems.

We will find in the following sections of this chapter that no
rcally new problems arise in dividing onc integer Ly another.
If we use what we have already learned about fractions and
about integers, we will find that the answer is right in front of
us. ‘This is what mathematicians always do when they try to
solve a new problem. They look at similar problems they have
done before to sce if a solution is suggested there.

Exercise 30-1A

Which of the following problems can be solved using only
integers, and which re~uire new numbers?
112
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1. 18 = (-3) 2. 16 -~ (-5)
(-9 = (-3 4, 2 - (-2)
5. 172 (-3 — 5)
6. [—8 --(—2) %3] =[3 x(=3) —(—2)]
7o [(=8) + (=2 =] =3 + (=3) x 2]
8 [(=7) x {—9) = 35] = {(—16) — [+ x (=21}

LExerast 30-18
When you tell your class that there are some numbers they
can’t yet divide, a pupil tells you that with a sharp cnough
knife he can divide anything, What do you think you should
say to this pupil?

30-2 Division as multiplication with a missing factor

When you tried to solve such problems as 7 <+ 3, you found
that it helped to change them into multiplication equations
with missing factors. "Thus, you wrote

IxO=7

and you found the fraction 3 to be the answer., This fraction is,
ol course, still the answer when you think of the counting num-
bers as positive integers, But the problem is not so casy when
vou have negative integers. For example, take the division
problem

(-7) =3 =0
which gives rise to the multiplication cquation with missing
factor

I x = -7
You can guess what the answer to this problem ought to look
like il you remember how you solved the two problems

3 x Q=6
and I x[O=-6

In the onc case you can put 6 =+ 3 == & = 2 in the box, because

s () s
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and in the other case you would want to put
(—6) -3 = 3 2
in the box, because you would fecl that

PE

Thus, if the answer to the problem 7 — 3 = Ois

7+3=1%
then the answer to the problem (=7) +3 =[] ought to
appear in the form

: (=7)

so that 3 x [(—_3—7)] = —7

In the same way you can think of the other two cases which
might come up, as in these examples:

(=3) xO=7
(=3) x O =-7
As in the previous case, we can solve the equations
(=3) x[OQ=6
and (=3) x Q= —6
6
and obtain 6 +(—3) =+— _ _
(=3) =125y = 2
(=6)
—6) +(=3) =—~ =2

Thus, the answer to our new problems ought to be given in
the same way, as

7+ (=8) = L

(—3)
and (=7) = (=3) =§%g

We have used the phrases “ought to be” and “ought to
appecar”, You might ask what kind of mathematics that is,
Mathematics, you might say, should tell you what is, not what
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ought to be. But there is a reason for what we have done. All
you have scen so far is a juggling of numerals. We showed you
some problems you have already done, and then showed you
some more problems you have not done. And we asked you to
guess only what the answer might look like. In the next section
of this chapter, however, you will sce that what has been done
here does have a real meaning after all, and that these nurabers,

like (;7), do give thic solutions to the problems posed.

Exeraise 30-2A

Look back at those questions in Excrcise 30-1A which did not
have integers as answers, and tell what the answers “ought
to be’’.

Exercise 30-2B
Make up questions like those in Exercise 30-1A which “ought
to give” the following answers,

15 (—7) (—8)
.3 25 Sl g
12 0 (=5)

4! ’(—.:‘——9_) 5' W 6. 5

30-3 Interpreting our new numbers on the number line
The problem that faces us now is to decide what a number

like (;7) might mecan. We know what —7 is, and we know

how to interpret it. For example, we can place it on the number
linc as follows:

{

| H 1 1 1 ] : I [ |
T L]

_'8 —.17 __l6 —l5 —-14 _l T T T

o

3-2-1 0 1 2 3 4 5
1

But if we remember that ; is 3 of the way from 0 to 7, then per-

(=7)

3

1
haps we can think of as z of the way from 0 to —7. Is

there a point which is -;; of the way from 0 to —7? Of course
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therc is. We just have to take that segment of the number line
and break it into three equal parts, and mark the first such

point to the left of 0 as 31- of the way from 0 to —7. On the
number line it looks like this:

{2)
"Vl"J3:i"i:!!:

-8 -7 -6 -5 -4 -3 -2-1 0 1 2 3 4 &

(=7)
3

. . . 7 .
It is just as good a point as 3 and thus deserves its place

in our collection of numbers.
(—7)
3

to the right of 0 on the number line. In fact, cvery point to the
right of 0 has an opposite point to the left of 0. There is no
reason why we should have opposites only for the integers. We

Clearly this number is opposite to ;, which is a point

. . . 7
can write this opposite as — L and we can thus sce that —3

(=7)

3 should mean the same thing, The numbers 7 and —7

(=7
3

and

, which show %

. 7
are opposites, and thus the numbers 3 and

part of that which is represented by 7 and —7 respectively,
must be opposites. But the opposite of any number x is written
—x. Thus the opposite of%is - 37-, and (;7)
names for the same number, Thus, we can begin to fill in the
number line in the following way:

7
and — 3 are two

e
—_ -8 _71 _ 5 _4 _ 2 1 1 2 4 5
3 3 3 2 373 ! 3 3 0 3 3 1 3 3

This picture shows that each fraction to the right of 0 has its
opposite to the left of 0, and thus we want to call these new
numbers negative fract’ .

The only remaining problems concern (=3 and (=3
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Before trying to give an answer, we should think where these
symbols, which “ought to” represent numbers, came from. The

7
problem (—3) x [ = 7 gave rise to the possible answer =3
and thus we should think what the problem (—3) x [] =7
means. Tnis problem is similar to the problem

(-3) x [J]=6

We know the answer to this problem, namely, (—2). To
check this, recall that

(=3) x (-2

[
QI 7~
I

In the problem (—3) x [] = 7, we get the answer (—- ;)

ox(-]-

Thus, the result which was suggested by the equation, namely

since

7 . 7 .
=5 must have the same meaning as — 3 We therefore think

7 7 .
of ——— as another name for — 3 which we understand to be

(=3)

. . 7 1
the fraction opposite to =, or - part of —7,

33
Finally, we have to think about EE;—; Again we should look
at the multiplication equation
(=3) xO =-7
You alrcady know how to do the very similar problem
(=3) x[O = -6

which has as its answer

2 = (—6) = (—3)
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Thus, in the original problem we see that

so that (=7) (-3
(=7
(=3)
(=7)
(—3)

7 . . e
another name for 3 with which we are alrcady familiar.

Thus, we can scc that the answer suggested, namely

. 7 . .
has the same meaning as 3 Once again we think of as

'To summarize,
(-7
—3)

and (_'"L)=__7_=__

3 T (=3

~—

|

W~

Py
Wl ~3

Exercise 30-3A

In this section, you found three ways cf writing a given negative
fraction and two ways of writing a given positive fraction.
Locate cach of the fractions given in Excrcise 30-2B on the
number line. Then write these fractions in each of the ways
possible for it. What do you notice in Question 5 of that
exercise?

Exercise 30-3B

In Chapter 25, some situations were given in which numbers
on both sides of 0 were given physical mcanings. Read that
chapter over again, and state for cach of those situations what
ncgative {ractions mean.

Exercise 30-3C

Draw up a serics of test questions designed to find out whether
your pupils understand positive and negative fractions and the
relations between them.

Exercise 30-3D

Find the opposite of cach of the following fractions. Put your
answer in “‘simplest” terms,
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7 5 (~5) (=5)
3 S 77 * 4
(=2 2 _ b _ (=8

BCa-—1



Chapter 31

THE SET OF RATIONAL NUMBERS

31-1 Fractions, positive and negative

We should stop bricfly now, and look at what we have done.
You learned about fractions in an ecarlicr chapter, and now
you have found that these fractions have opposites. And if you
look at the number line, you can see now that it is, or at least
scems to be, as crowded as you cau make it. Actually, you will
find later that there are more numbers to be put on the number
line. But Iet us he content for now with what we have, and try
to understand these numbers fully.

We call the fractions we originally had positive fractions, and
we call our new numbers negative fractions. ‘There are many
ways of writing any given fraction, of course, Jjust as there arce
many ways of writing cvery number. ‘T'ake the positive fraction
¢ and its opposite, the negative fraction —4, for example, Here
arc some otlier ways of writing cach of these fractions:

3 6 150 (=3 -7
5710 " 23¢ T (a0 i<

3 (=8 3 oo 33 3000
5 5 (=5 T o T \—33) 5000

Do you remember how you could prove that all these fractions
arc names for the same nuniber? If not, check back to the chap-
ter on fractions and revise. And remember also that one minus
signin the fraction makes the whole fraction a negative fraction,
and two make it a positive fraction. In every case, the simplest
way to write a [raction is the first wiay given in cach of the
serics of equal fractions above. Write it as a positive fraction,
without minus signs, or as the opposite of such a positive
fraction. We will call this the standard form; for example, # and
—3. Of course, the fraction may arise in a problem in onc of
the other forms, If that happens, it is uscful to reduce numerator
and denominator to the smallest whole numbers possible,
120
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using results obtained carlier. Then put the minus sign, if there
remains onc, in {ront.

If you write a fraction in standard form, it is casy to scc
where it belongs on the number line. All positive fractions are,
of course, to the right of 0. Negative fractions, on the other
liand, are to the Ieft of 0. Every fraction thus has a place on the
number line, and although not cvery point on the number line
indicates a fraction (We will say more about that later!), there
is always a fraction as close as you would like to every point on
the number line,

You may be thinking at this stage that there arc points on
the number line which are not {ractions, points you already
know about. You may say that we have not mentioned the
counting numbers and their opposites and 0. After a whole
series of chapters in which you studied those numbers, which
you lcarned to call the integers, we scem to have forgotten
them again. ‘That is a good question—but if you think about it,
you will see that the integers are still here and that they can
be written as fractions also. If you look back to Chapter 20,
you will sce that the counting numbers were written as special
fractions, as in the following example:

.:‘}:::%;::2

"The fraction which has 1 as its denominator or whose numera-
tor is cqual to the product of the denominator with some
counting number was shown to be simply another name for
onc of the counting numbers. (That is true, of course, because
to divide a thing into one part or into some number of cqual
parts, cach of which contains a wholc number of members, is
the same as division of whole numbers where there is no re-
mainder.)

‘I'he same fact is true for negative fractions as well, It is casy
to sce, for instance, that

If —6 is broken into 3 equal parts, each will contain —2. For
a practical example, think of a debt of £6 shared among 3
people. Clearly, cach will pay £2. More complicated examples
can be worked in the same way, always remembering first to
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put the fraction in standard form. Thus, we have

_(“10) __19__5
(=2) 2
So the fractions, positive and negative, include all the num-
bers we have used up to this point and can even be extended to

include 0, which can be written, for instance, as
0=2¢
These numbers arc an interesting set, and we will think much

more about their properties in the following sections of this
chapter, as well as in the next few chapters.

Exercisk 31-1A

Tind cach fraction in standard form, and four other fractions
cqual to cach of the following. Locate each on the number
line,

(—32) . (—20)
lu 1—4.—— 2; 7'5‘ 3| 1"7—‘

13 0
_[_(_—Ti)] 5. [_(_“)] 6., —15:3

Remember to do the work within brackets first, T hus, for
example,

(—13) (=13, 13 26 (—26)
S I VAR ik Vi (—34)

Exxrcise 31-1B

1. Outline a classroom procedure for tecaching that it is often
important to reduce fractions to standard form and lowest
terms when working with them. Your proccdure should
show them how to make this reduction.

2. Prepare word problems which require students to make use
of the faci that a given fraction can be named in several
ways. Include both positive and negative fractions.

3. Prepare a classroom demonstration designed to show that
some fractions, for example, 4 or —$, are simply other names
for positive or negative integers.
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31-2 Definition of the rational numbers

The set of numbers which is made up of the positive [ractions,
zero and the negative fractions has a special name. It is called
the set of RATIONAL NUMBERS, It can be pictured as follows:

@&\\\\\‘\Q\\‘i\\\\\\k\\\\ \&‘\\W\\ \WN
MR \\\@\\\\\ \“\\\\\\\\\\\\X\X\\ \

The two subscts of fractions—the positive fractions and the
negative fractions— contain as subscts the positive integers and
the negative integers; respectively. The picture is as follows:

EGAT\/ \ e )

\\\\F{Q\‘E\Il\(?“‘g\\

e

To summarize, the rational numbers contain the positive
fractions, zcro and the negative fractions. 'The positive and
negative {ractions and zcro, together, contain the integers. And
the integers contain the counting numbers, which is where we
began this course in basic concepts of mathematics.,

‘The rational numbers are not only a set of numbers—they
arc an ordered sct. 'The most obvious fact about their order is
shown in the diagrams above. The negative fractions arc all
less than the positive fractions, and the rational numbers to the
left of any number on the number line are all less than that
number. In a later chapter, you will study the idea of order
more closcly, just as vou will study all the other propertics of
the rational numbers. For now it is enough simply to statc that
it is possible to determine of any two fractions which is greater
and which is lesser.

For example, cousider the two fractions — and Z, This casc
is obvious. The first fraction is less than 0 and the sccond is
greater than 0. In fact, any negative number x is less than
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0, not only because it is to the left of 0 on the number line, but
because the difference 0 — x is positive. Look at this cxample
on the number line.

! !
ad 1] . : ‘. ! ! 1 I ] 4 1 L ! Y 1 M
* T T 1 T t T T T t T T ; =
" ) 3 R 1 d 3 [ 6
2 ! d 1 $ 3 0 4 4 4 1 4 4 4 2

Take another example, 22 and 22, Which is lesser and whicly is
greater? Here is one way in which you can tell. You can draw
the number line, place both fractions there and compare them,
as follows:

" N 17 14

Obviously, 17 is to the right of 42 and is, thus, the greater of
the two.

Take a final example: —i and —3. You can show these on
the number line as follows. Remember that you can locate any
fraction on the number Iine casily by changing it into a mixed
number, if you need to; thus —& = —11, which is located 1
units to the left of 0,

Obviously —4 is to the left of —3, and, thus,
__‘g < —5
You remember, of course, the meaning of the two symbols ¢ <’

and “>. The first means “less than” and the second means
“greater than”,

Exrrcrse 31-2A

Put the following set of fractions in order, from lcast to greatest,
and show their positions on the number line. First simplify
cach and put it in standard form. Then comparc them by
pairs, and place cacl on the number line,

P8 s g (220 [—(=3)] 0

)T: = 7y Vg (_2) 5 (_4) ’ (_4)

~1}
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Exercise 31-2B

Draw a large poster uscful for picturing the set of rational num-
bers and all the subsets which we have discussed, as on the
previous page.

NoTE. We have used the word fiaction to denote sometimes a
number and somciimes the numeral which is its name. Perhaps,
strictly speaking, we should not do this. However, it is hard to
maintain the distinction in a consistent way, and it scems better
not to insist on distinctions which we cannot keep up in prac-
tice. It should be clear from the context whether the word
Jraction means a number or a numeral,

The term rational number, of course, always denotes a number
and not a numeral,



Chapter 32
OPERATIONS ON RATIONAL NUMBERS

32-1 Addition

It is not reaily nccessary at this point to say anything new
about the meanings of the operations. You should be quite
familiar not only with their meanings but with how to teach
them to young children. Very briefly, addition can be thought
of in at least two ways: successive motions on the number line,
to the right for positive numbers and o the left for negative
numbers; and successive changes of the number of objects in a
set, increasing it for addition of positive numbers and decreas-
ing it for addition of negative numbers. You have carried out a
thorough and detailed study of this operation for counting
numbers, for fractions and for integers. It clearly does not
change the picture to include the whole set of rational numbers
in this discussion. The only difficult thing at this point—Dboth
for you and for the pupils you teach—is to become quick at
finding the correct answer when you are faced with a problem.

Let us look at an example, using only positive fractions, to
remind ourselves of the methods we learned before. Take the
problem

The way you did such a problem before was to draw a picture
showing parts of rectangles for cach of the fractions, as follows:

277
o

K i J
: S

3
Then you divided each part into smaller picces sc that the
resulting small picces were of the same size. By counting the
number of small picces for cach fraction, you could rename both

fractions so that they had the same denominator. This was
126
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shown by dividing up cach rectangle in the second dircction.,
using the denominator of the other fraction to tell the number
of picces, For the example given above, the picture becomes as
follows:

15

You count the number of small picces and find the answer:

5

0. 1 ar
1

—i-

T

You learned in the study of fractions that there is a short way
to carry through this process that saves you having to draw
pictures and cat up rectangles. You discovered a rule which
a ¢
— and -,

b d

a4
15

=
f

did the same thing for the general pan of fractions

The rule was stated as follows:

a ¢ (ad - be)

b d bd
The question now is whether this rule works for all rational
numbers, including negative fractions, et us look at a couple
of examples and then come back to the 1ule. But, as you think
about the examples, keep the rule in mind. First take this

problem:
4 2y 4 (-2)
i+ (-3) -5+

‘This addition can be shown on the number line as follows:

y

wry Tywe

! 1 ' 3 i v /—l\ ! y { J 1 [
L n ) - i : T 4 N - 7 4 n 10
3 1 K B Y 3 3 1 3 3 2 3 3 3 5

Clearly the answer is 3. If you think back to the problem of
cutting bananas into parts, this problem speaks of 4 one-third
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picces and tells you that 2 of them are removed, leaving 2
one-third picces, or # of a banana,
This was an easy problem. Take a somewhat more diflicult
one; for example,
3.3 (-3

—rs =ty

5 2 5
You can look at it on your slide rule in this way:

N o

You set your 0 mark on the upper strip to the —32 mark on the
lower. And you read your answer on the lower strip below the
# mark on the upper strip, That answer is, of course, 2.

You can also think of this problem in terms of rectangles,
The fraction 2 can be drawn ag follows:

To add —32 means to remove i of a rectangle. Thus, you can
redivide cach rectangle into 5 parts in the usual way, and re-
move 3 of those parts. You then count the remaining picces,
You can picture it as follows:

W
MM
N

AN

7
.

A

3
5

You can sce that 9 onc-tenth picces remain, so that the answer
is %.
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Where the answer is likely to be a negative fraction, it is not
useful to think of dividing rectangles, but you can show such a
problem on the number line or the slide rule. Think of the

cxample
3 5) _(=3) (=5
gt (‘ §> =Tyt

Look at it on the number line.

/—\'\/‘,\ ;

-1
—2 -3 2

N
1 el

1

N~

You can sce that the rcsult is —12 by counting to the left of 0,

so that
3 3\ (—3) (—3) B 19
s +(-3) - P+ 5 -5

Let us look for the pattern shown by these examples. In the

4 -2) 2 . o .
first casc, §+ (——) =3 the denominator 3 remained the
same, and the resulting numerator was the sum of the two
. 3 9
original numerators. In the second casc, (=3) -{— 5 =15 the

— ' (—3)

denominator of the result was 10. If you rewrite cach of R

and E with denominator 10, you get ( 106) and %:-8 Their sum is,

of course, 1% But —6 = (—3) x 2 and 15 =35 x 3. Thus,

you gct
(—3) +§__ [(—=3) x 2] 4[5 x 3] _9
5 2 5% 2 10

In the same way, you get

(=3) (=5 _(=9) L (=10)

2 T 3 6 6
_U=3) x 3]+ [2 x (—5)]
2 %3
—19)

6
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But these are obviously examples of the rule for adding positive
fractions which is extended to include negative fractions as
well, If you think about it, you will see that tliis must always be
a ¢ ad + be
true, so that the rule } -4 5= ( :{; ) must be true for all
rational numbers.
"Thus, the same rule you used for positive fractions works for

all fractions, both positive and negative.

Exercise 32-1A

Find the sums of the following pairs of fractions, illustrating at
least one of them by using the number line, the slide rule and
rectangles.

4|(——3 2 (—6) 8, .
l-g‘r‘——s—- 2.(—:—?)"*—'(——.—9—)- 3. "‘5‘1‘13

(=7) 0 3 6 (-8) 2l
R N e R

Exercise 32-1B

What fractions suggest the use of money as cxamples in addition
problems? What about fractions like 42 What about fractions
like 1?

Exrncise 32-1C

In Exercise 32-1A, Question 2 presents an important special
case. You should, of course, have found the answer 0. This
means that the two numbers are opposites, and they cancel
cach other out. Such pairs of numbers, which have the sum 0,
arc called additive inverses. Outline a procedure for teaching
the meaning of additive inverses to your pupils.

ExErcise 32-1D

In Exercise 32-1A, Question 4 presents another important
special case. The answer is —3, the same as the first number in
the sum. When you add 0 to any number, you do not change
that number. The number 0 is called the additive identity
clement. Outline a procedure for teaching the meaning of the
additive identity to your pupils.
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32-2 Subtraction

You remember that subtraction is simply the inverse of
addition, To subtract a positive number from some other num-
her, you move to the left on the number line; and to subtract
a negative number from some other number, you move to the
right. Subtracting a positive number decreases the total, while
subtracting a negative number increases your total, You can
think of subtraction in terms of finding the missing addend in
an addition equation. And you can finally think of subtraction
as addition of the opposite. You have done many exercises and
rcad many pages on these interpretations of subtraction. Here
you nced only see that you can understand subtraction of any
rational number from any rational number in the same way.

Not only can we understand the meaning of subtraction of
rational numbers in terms of the fractions and the integers, but
also we can see how to perform such subtraction problems by
remembering what we did with integers. There we learned
that subtraction of integers meant the addition of the opposite.
‘Thus when you subtract —5 from 3, it is the same as adding
5 to 3. You write this as follows:

3 —(-5) =3+45=8
Ca you think of rational numbers in the same way? Look at

this problem:
3 7
s-(-3)-0

The answer is the missing addend in this equation:

7 3
O+(~3) =3
. . 3 7. . .
Clearly, if you put 5 -4+ zin the box, the equation will be true.

Thus, you get

§_<_Z)_§ 7
5 3/ =513
(

_9+35 44
T 15 15
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For another example, take the problem

4 6

375=U

[ZUHE

~

[S11 N>

The answer must be the solution to the cquation[] 4

which is clearly
4 6 4  (—6)
3+ (‘ 5) =3t
x5+ 3 x (~6)]
3 x5
20—-18 2
IS GRS T
Once again you added the opposite to find the result, and you
used the rule for addition of rational numbers to do so.
The procedure is always the same. Reduce the rational num-

bers to the simplest form, change the second of the pair into its
opposite, and add.

Exercise 32-2A

Perform the following subtractions, and for one of the problems
show the meaning with the number line and the slide rule.

3 5 (—6) 2
‘°<‘—7>—(“’3'> Sl
0 (—4) 47

3. § — (:—6—)— 4. 1‘83 - 5(—)'

Exercise 32-2B
A pupil tells you that 0 is the identity clement for subtraction
too. Is he correct? Why? How would you explain it to your class?

32-3 Multiplication

You should have no difficulty at this point understanding
multiplication of rational numbers, since it follows the same
pattern as did the other operations. You remember both how
to multiply integers and how to multiply fractions, And if you
put this knowledge together, you will see how to multiply
rational numbers,
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In the first place, if you multiply two numbers of the same
sign, your result will be positive, and if you multiply two num-
bers of opposite sign, your result will be ncgative. This is as
true for fractions as it is for integers.

Think back to our previous work. The rules for signs depended
on the result that (—1) x @ = —afor any integer a. Following
exactly the same argument as was used there, you can show
that

(-1) x 2= ~? for any I'mction%)z

b b

So you get the same rules for signs in working with fractions.
The actual result obtained for any product of rational num-
bers can be found by using the procedure you previously
learned for fractions, and then using the rule about signs to
find the correct siga for your answer. Take the two problems

Px4 and 1 x (-4
The results are clearly

and %X(——;}-)=—-}=—§

These two results can be pictured on the number line as follows:

! 4
2% (-3) ;x;
: 5 1 ) 2 K d ] 1 4 5 2
2 T3 "3 1 3 T3 0 3 3 3 k] -

In the same way, it is possible to obtain answers for the two
problems which usc the opposites to these fractions.

(_%) X 5= '—1‘1‘= —

(=9 % (=9 =¢ =13
There are several important and interesting facts worth
noting about multiplication of rational numbers. The first is

that the rule for multiplication of fractions is applied in exactly
the same form to rational numbers, You remember that rule:

ac

* 1= b

[SW LY

a
b
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If you will look at the examples just given, you will sce that
cach onc of them fits this rule perfectly, both in terms of the
sign and in terms of the numbers, Thus, for cxample, take the
last case and apply the rule:

(=3) (=5) = 2 5

_I(- )]

x (—
X 3

)
2
2
3

(2B

You nced to change each of the rational numbers into an
cquivalent form and then perform the multiplication, but you
get the same answer,

The sccond important fact concerns the number 0. You
learned before that if you multiply any fraction by 0 the result
is again 0. The same thing is truc for rational numbers, as you
can casily sce. You know already that you can write 0 as a

. . 0 .
rational number, for instance, T Thus, you can write

(=3) _0_ (=3
0 x 9 =j'/< 5
0 x(=3) 0
= 1xg X3=0

The number 0 has the property that its product with any
rational number is 0.

The third important fact concerns the number 1. Again re-
call what you learned before. If you multiply any fraction by 1,
the number remains the same. Clearly you can get the same

. . . 1
result for rational numbers, since you can write 1 = T Thus,

for example,

-1 -E)
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A fourth important fact concerns the product of a number
with itselll This product is called the square of that number, and
can be written as follows:

(~2)  (=2) _ [(—-2)]2
3 "3 T L3

with a 2 as a right-hand superscript indicating that the num-

ber is multiplicd by itsell. The square of any number a is

a % a and can be written a2 In the example, the result s

clearly
[< 2)] =3
3 9

which is positive. In fact, the square of any non-zero rational
number is positive. (Why?)

The fifth important point concerns what was previously
called the reciprocal of a fraction. If you don’t remember what
a reciprocal is, look back to Section 21-19 in the chapter on
fractions. Thus the reciprocal of the fraction § is the fraction 3,
where the numerator of the first becomes the denominator of
the second and vice versa. (Question: Does the fraction 2 have
a reciprocal? Further question: Is there such a fraction as ¥
The first question should be cuough if you remember your
carlicr work, but the second question is put in to help your
memory!) Consider once again a fraction and its reciprocal and
look at their product. Ior example, for # and 2 you have

fxi—g=1
You found carlier that it is always true that the product of a
fraction and its reciprocal is the number 1. Is it always true for

any rational number also (except, of course, 0)? Look at this
cxample:

(=2) 3 _(-6) _
3 (=2)  (-0)
In general, you can write, where neither @ nor b is 0,
a_ b ab

b a ba

Thus, it is always true that the product of a non-zero fraction
and its reciprocal is the number 1. This should remind you of
addition, where the sum of a number and its opposite is the
number 0,

BCM2—K

1
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ExEercise 32-3A

Find the following products of rational numbers and show at
least one of them using the number line.

l.gx( ;) 2.—2—x1-6

27\ 4 (-3)
RN

2 (-
3. _5 3

[(~5) 3 4 1
43ﬂ1"¢ﬂxﬁ+¢5

3 (=6)] _ 2 (=6) _ (=5)
il il ¥ b 5 x5

Exercise 32-3B

Give three examples of each of the following:
1. A number and its reciprocal

2. A rational number and its squarec

3. A number and its opposite

Exercise 32-3C
Find the squares of the following numbers, and verify that
these squares are positive,

3 4 (—1)
L 2- —_ = .
1 5 3 3

40—‘

3
2 (—2)

32-4 Division

The final topic of this chapter is division, which you remem-
ber is the inverse of multiplication. If you think of division in
these terms, you should have no difficulty understanding how
to divide numbers, In the first place, you learncd that the same
rule of signs applics as for multiplication, since division can be
understood in terms of multiplication problems with missing
factors. Thus, if you divide two rational numbers of the same
sign, the result is positive, and if you divide two rational num-
bers of opposite sign, the result is negative,

In the second place, you learned to divide fractions by multi-
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plying the first number by the reciprocal of the seccond, assuming
of coursc, that the sccond is not 0. This same rule also applics
to rational numbers. Thus, for example, to divide § by } is to
solve the problem

=[]x#%

and the result is clearly

FSEY
[3XX)

bri=ixi-
Do you sce that 3 = 3 x §?
The same reasouing applies to the other possible variations
in sign,

3 (=1
Z=DXTT
(—3)
4 Dx§
( ) (=0
The results are clcarly obtamcd in the same way:
IC I IV I S
I T (=1) (-4 2
. 2 (63
4 2 4 1 2
(=3) . (=) _(=9) 2 (=6 _3
S 4 (=) (-4 2

Only in the case where the second rational number is 0 is this
procedure impossible.

ExErcise 32-4A
Work out the following division problems:

EORL ] a9

NIRRT e
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Exeracise 32-4B

Prepare a sct of revision exercises which will test your pupils’
understanding of the material in this chapter. Include both
word problem: and strictly numerical problems.

Exercise 32-4C

Preparc an examination which covers the material in this unit
on the rational nurabers and which would cnable you to see
how much time you should spend on revision,

LExercise 32-4D

If one of your fellow students told you that this chapter didn’t
really teach him anything new but that he had learned it all
before in carlier parts of the book, would you agree with him?
Why?

Exercise 32-4E
Find answers to the following problems, and discuss the relation
between multiplication and division which these answers show.

L[%+£%ﬂ}x§%ﬁ

= [(-5) +5)
[ ()] < [-6)

1
4qw—mxyu+%




Chapter 33

REVISION OF NUMBERS

33-1 Introduction

During this course, we have studied numbers., We have
learned about many diflerent kinds of numbers. And we are
not finished yet. Let us look back over the path we have
travelled, and sec what the important milestones we have
passed have been.

33-2 Sets and counting numbers

We started our study by talking about sets of things. We
obscrved (hat sometimes the members of two scts could be
placed in one-to-onc correspondence with cach other, We
called such scts cquivalent. Sometimes it was not possible to
place the members of one set in one-to-one correspondence
with the members of another sct. Such sets are not cquivalent,
We agreed to say that any two scts which were equivalent to
cach other had the same number of members, and that any two
sets which were not cquivalent had different numbers of mem-
bers. We agreed that if a set A was a subsct of a set B and not
cquivalent to B, then A had a smaller numher of members than
B and B had a larger number of members than A. So every sct
has a number of members which is equal to the number of
members of every set equivalent to the given sct.

These numbers associated with sets were called the counting
numbers. Because they were ordered, we were able to picture
them on a line by marking cqually spaced points, and we
agreed that if a number @ was less than a number J, the point
marked a was to the left of the point marked &.

We learned to add numbers by forming the union of two dis-
Jjoint sets, whose members we had previously counted, and

counting the members of this union,
139
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[] ou
u (0.0 = Q-
] QO
3 + 4 = 7
And we saw that our picture of the number line could be

uscful in this addition, since we could get the sum of two num-
bers by stepping along to the right on the number line.

33-3 The empty set and zero

The counting numbers were sufficient to take care of our
number needs as long as the answers to our problems could be
represented by sets of things. But if a man has a sct of 3 shillings
and pays 3 shillings for a basket, the moncey he has left can
hardly be described as a st of shillings. We found it convenient
to describe the money he has lelt as the cmpty sct. And then
we invented the number 0 to describe the number of ;aembers
of the empty sct. We then had two sets of numbers: the set of
counting numbers, and the sct whose only member is zcro. The
union of these two sets we gave the name of whole numbers,

On the number line, the point labelled 0 was our starting
point and was to the left of all the points for the counting num-
bers. And we found that we could still get the sum of two
numbers by stepping to the right on the number line, with the
understanding that if we were adding 0, we would step O units
to the right; that is, we would not take a step.

The sct of counting numbers is a subset of the sct of whole
numbers, and we found that all the problems involving count-
ing numbers could still be done by working withi the sct of
whole numbers; also, we could work problems involving the
cmpty sct. The extension from counting numbers to whole
numbcrs was not a large one—the whole numbers include only
onc new member—but it is an important one.

33-4 Fractions

We learned to multiply two whole numbers, and interpreted
multiplication as repeated addition. We then defined division
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in terms of multiplication. We said that if 3 x [ =6,
[1=6+3=2and morc generally, if a x [] =,
[] = 4 =+ a. But sometimes there is no whole-number answecr,
For cxample, in the problem 3 x [ = 7, there is no wholc-
number solution. In such cases, we agreed to invent new num-
bers, called fractions, which would have the required propertics.
In the example 3 % [J =7, [7=7 =3, and we agreed to
call this answer the fraction 7. So 3 x § = 7. More generally,

. b b .

fax [J=b J=0b+a=-, and a ><—z=b. These new
a [¢

numbers, the fractions, included the whole numbers. For ifais

. a
a whole number, 1 X [] = a has the solution = i It also

. . a .
has the solution a. So 1=% and every whole number is a

fraction. The sct of whole numbers is thus a subset of the sct of
fractions. Since some fractions are not wiiole numbers, the set
of [ractions is an extension of the set of whole numbers,

We saw that we could not assien a nieaning to division by 0,
and so we were not able to assign a meaning to the fraction
a
b
the set of whole numbers and & any member of the set of
counting numbers,

But we have also scen that not all such fractions are different,
a fa .

7 = 77 for any counting number £,
b kb
We learned to add any two fractions, obtaining

. . a
if b = 0. In the fraction j» @ can represent any member of

In fact,

a n ¢ ad | be  ad 4 be
b d T bd b b
We were able w assign an order to the fractions, and we were
able to picture the fractions on the number line, with points
between the whole numbers along with the whole numbers
. a _c..a, ¢
themselves, Again, - = < if 5 is to the left of &,
cd b d
We learned to multiply any two fractions, and saw that

a_ ¢ ac a . ¢ a _d
i X 0= And we learned tll.llz; R Rl -
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33-5 Integers

Just as the process of division led to the extension of the whole
numbers to the fractions, so the process of subtraction also led
to an extension of the whole numbers to the inwgers. If a
represents a whole number, we defined a new number, called
neg a, and later introduced the nota‘ion —a to represent it,
which had the property that a 4 (—a) = 0. Sincea 4 [] =0
has, by the definition of subtraction, ihe solution [] =0 — q,
—a is the number obtained by subtracting @ from 0.

These new numbers were called the negative integers. The
counting numbers were relalielled the positive integers. The
complete sct of integers is the union of the negative integers, the
po.'tive integers and zero.

We were able to establish an order for the integers. We were
able to picture the integers on the number line by extending
the number line to the left of 0. On the extended line, the
smaller of two numbers was still pictured to the left of the
larger. We were able to usc the line for adding positive integers,
as before, by stepping to the right. But we found that stepping
to the left on the number line was required for adding negative
integers. Since this was the same as subtracting positive integers,
we concluded that

a-(=b)=a—1»b

Since negative integers may be added on the number line
by stepping to the left of 0 in the same manner that positive
integers may be added on the right of 0, we concluded that

(—0) + () = ~(a + )

We saw that the opposite of a negative integer was a positive
integer.

The statement @ - (—6) = a — b assurcs us that every sub-
traction problem of the form a — b can be changed to an
addition problem of the form a +- (—5).

. We learned to multiply two integers and discovered that
(=1) xa=—a, (—a) xb = —(a xb) and (—a) x (=)
= (a x b), for a and b any two integers.

33-6 Rational numbers

Just as the fractions permitted the naming of some of the
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points between the whole numbers to the right of 0 on the num-
ber line, so we needed to name points between the negative
integers to the left of 0. These new numbers, the opposites of
the non-zero fractions, we called the negative fractions, and,
together with the fractions, they make the sct of rational
numbers.

33-7 Summary

We now have a very large set of numbers to work with—the
sct of rational numbers. In the next chapter, we shall revise
the propertics of operations on these numbers. We have seen
that the set of rational numbers is composed of several import-
ant subscts. Sometimes we do not need this iuge set of numbers
when we are solving our problems—sometimes one of the sub-
scts is big enough to take carc of what we nced to do. But it is
comforting to know that with this Jarge sct of rational numbers,
we can now perform any of the four hasic operations on any
numbers with just onc exception: we are not permitted to
divide by 0.

In Unit VII we are going to cxpand our number system
again and for the last time in this course, But we shall still be
unable to give meaning to division by 0.

Exercise 33-7A

List as many subsets of the set of 1ational numbers which we
have studied and named as you can.



Chapter 34

REVISION OF PROPERTIES
OF OPERATIONS

In Chapter 13 we gave a summary of the properties of opera-
tions when the operations were performed with whole numbers,
Since that chapter, we have studied operations on numbers
other than whole numbers; for instance, on integers and
rational numbers. We are now, thercfore, in a position to ex-
pand our summary to include propertics of opcrations on
integers and rational numbers,

34-1 Closure under addition and multiplication

A sct of numbers is closed under addition if the sum of any
two of the members is also 2 member of the set. It is closed
under multiplication if the product of any two of the members
is a member of the sct.

l. Since a + b is a whole number if ¢ and 5 are whole
numbers, the sct of whole numbers is closed under addition,
This we know alrcady.

Since @ + b is an integer if a and b are integers, the sct of
integers is closed under addition. For example, (—8) + 12 is
an intcger. Are the rational numbers closed under addition? Ts

p

p m . m .
- + — a rational number whenever £ and — are rational num-
g n q n

bers? You sce this is so, because

p ,m pn-+gm _ auinteger

¢ n  gu  another integer
(Of course, we must be sure that the denominator gn cannot
be zero. How do we know that ¢ 5= 0 and n 5= 0? Could qn
be 0?)

2. Since @ x b is a whole number whenever ¢ and § are
whole numbers, the sct of whole numbers is closed under
multiplication,

= a rational number

144
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Since @ X b is an integer whenever a and b are integers,
the sct of integers is closed under multiplication.

For example, (—8) x 12 = —96, which is an integer.

Is the sct of rational numbers closed under multiplication? Is

?

m
= and — arc? Yes, because
q n

?

m . .
-~ X — arational number if
q n

= = a rational number

m
X —
n

Qe

pm an integer
gn  another integer
since gn 52 0.

3. 'T'he set of whole numbers is nof closed under subtraction,
since, for example, 2 — 7 is not a whole number.

The sct of integers is closed under subtraction. So is the sat
of rational numbers. Can you give cxamples illustrating this?

4. The sct of whole numbers is not closed under division.
I'or example, 2 = 7 is not a whole number.

Is the sct of integers closed under division? Is (—2) + 7 an
integer, for example?

?

If we divide any rationla number = by any non-zero rational
q

m . .
number —, will we always get a rational number? Let us sce.
n

p . m  pn  anintcger

g n gm an integer
Could gm = 0? Only if ¢ =0 or m =0. But ¢ =0 is not

oo M .
allowedandif — 7 0, m <annot be 0 cither. We conclude, then,
n

that the sct of @i rational numbers except zero is closed under
division.

Exercise 34-1A

1. State under which operations (addition, subtraction, multi-
plication, division), if any, cach of the following sets is closed.
a. {2, 4,6, 8}
b. The sct of all rational numbers
c. {12, 14,16, 18, ...}
d' {’1’1 fl?" Z, '45‘: .. '}
e. The sct of all integers
f. The sct of all odd numbers
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34-2 Commutative property of addition and
multiplication

1. The order in which two whole numbers are added will not
affect their sum. That is, @ + b = b -+ a is true when a and b
arc whole numbers. Is it true when a and b are integers? Yes,
it is. For example, (~8) 43 =3 + (—8), cach side being
cqual to —5. This is not new. Is this true for rational numbers?
Is it truc that

p  m _m /_;
q + n n + q

that is, that pn At gm_mg + np
qn ng

Remember that p, g, m and n arc integers. (Which of them can
not be O?) Then gn = ng. Why? And pn + gm = mq - np,
Why?

So we sce that the commutative property of addition holds
for rational numbers.

2. The order in which two whole numbers are multiplied
docs not affect the product. That is, « X b = b X a when a
and b are whole numbers, It is truc also for integers, as it is for
rational numbers. For cxample, (—8) x 3 =3 x (—8) since
cach side is equal to —24, and (—3}) x § =} x (— %)
since zach side is equal to — -';. Can you show that

j_)xg mxp
q n

== p
in all cases?

We found that subtraction and division do not have the
commutative property. Check these statements of subtraction
and division to sce that ncither operation has this property.

Is (—4) ~3 = — (— 4)?

Is (—4) +3 =4+ (- 4)?

oty ol

34-3 Associative property of addition and
multiplication

L(a+0b) +~¢=ua+ (b+c) is truc for whole numbers,
Is it true for integers? Suppose you want to add —8, 7 and —6.
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How would you proceed? You could add —8 and 7 and then
add —6 to the sum; or you could add to —8 the sum of 7 and
—6. But you know you would get the same sum for cach:
(=8 +7) + (—=6) —= =8 +[7 + (—6)]. Of course, you
would do the same if the given numbers had been rational
numbers. So (a ) +¢c=a 4 (b +¢) if a, b and ¢ are
rational numbers.

2. a x (b x¢c)=(axb) xcis truc for whole numbers.
Is it truc for intcgers? Is

(—8) x (5 x11) =[(—8) x 5] x 11?

Yes, since cach side is equ..l to —440,

Is it truc for rational numbers? Is & x (4 x %) the same as
(2 X 4) x £ Yes, for cach is cqual to £.

[} 3
It is not difficult to show that for rational numbers,

(ﬂx?j)x::fzx(ﬁxt)
q n s q nog

. hmr
In fact, cach is equal to ]———
qns
Subtraction and division do not have this property as you

can sce by answering the questions below:
Is (=8) = [3 = (-2)] =[(-8) —3] —(-2)?
Ii-8-4)=0-3-%
I [y + (= )] =4 =3+ [(— ) +4]
L2+[(=3) +H=R2+(-8]+¥

34-4 Distributive property

l.a x (b+c¢c) = (a xb) 4+ (a X c)istruc when a, b and ¢
arc whole numbess. Is this same distributive property true for
integers and rational numbers? Check these statements, which
illustrate the distsilmtive property of multiplication over
addition:

(=8) x [5 + (=2)] = [(~8) x 5] +[(-8) x (2]
Ex 4 (= D)= (3 x4 + 1 x (— 1]
In the first, cach side equals —24, so the statement is true, In

the second, ecach side equals ', so the statement is true.
2.a X (b —¢c) =(a xb) — (a xc)isknown to be truc for
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whole numbers. Is it true for integers and rational numbers?
Check these statcments:
(—8) X [5 = (=2)] =[(~8) x 5] — [(—8) x (~2)]
EXE—(=D=GxH—[5x(-3]
In the first, cach side equals —56, so the statement is true, In
the second, cach side cquals 3, so this statement is also true,

Supposc the statement about multiplication and subtraction
had been written in general form, We would like to show that

ﬁx@LJ>=GXE)_@XQ
q noos q n q

If we work out both sides, we find that the left-hand and right-
hand sides are, respectively,

ms — pnr hmqs — qnpr

fms —pur - pmgs — g

qns qnqs

Do you sce that these expressions represent the same rational
number? Thus the statement is true. In a qui‘e similar way, we
could prove that the statement of the distributive property is
truc,

34-5 Properties of zero and one

We have learned that 0 has the property that
O+ta=a+40
when a is any whole number, and that 1 has the property that
1 X a=a X1 =a,when aisany whole number.

Do 0 and I have these propertics when a is any integer or any
rational number? Yes, they do. We have wact these opcrations
when working on integers and rational nunibers. For cxample,

0+ (-8) =(-8)4+0= -8
04 =4+0=1}
1 X (=8) =(-8) x1=-8

I x§=5x1=13

In general,

el ]

P ooyt o
q q
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andgxl=l x‘9=1><8=1 xp_#
q ¢ 1 ¢ 1xgqg ¢

So 0 is called the identity element for addition, and 1 is called the

identity element for multiplication. (Recall that we have scen that 0

is not an identity clement for subtraction, nor is 1 an identity

clement for division.)

There is another important property of 0. Wc know that the
product of any whole number and 0 is 0. Is this truec when the
other factor is an integer or a rational nuinber? Are

0x(—8)=0 and 0+ (—~} =0
truc? From our study of integers and raticnal numbers, this
statement is truc: Any number multiplied by 0 will give 0 as
answcr.

This property of 0 may be written as follows: If a is any
rational number, then

ax0=0xa=:0

34-6 Opposites and reciprocals

Much work has been donc with integers and rational num-
bers on the number line, and you should by now be familiar
with sucli pairs of numbers on the number line as —3 and 3,
— }and 4, —a and a. One number in cach pair is to the right
and the other to the left of the zero point—unless they are both
0—and both arc at cqual distances from it. The sum of the
numbers in cach pair is zero. We have called the numbers in
such a pair opposites.

Given a rational number which is not 0, we can find its
reciprocal. For example, the reciprocal of 7 is 4, «f — &is — 2,
of & is 9. The most important property which we discovered
about a number and its reciprocal is that the product of the
two is always 1. Always keep in mind that the number 0 has no
reciprocal.

34-7 Inverse operations

In Chapters 9 and 12 it was mentioned that addition and
subtraction are inverses of each other and that multiplication
and division have a similar relation to each other. This can be
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shown to be truc for integers and rational numbers as it was
found to be true for whole numbers. Here are the statements
cxpressing these relations:

(@—0b)+b=a and (@a+b) —b=a

if @ and b are any rational numbers, and
(@xb)~b=a and (a+b) xb=a
if 2 and 4 arc any rational numbers (with b 5 0),

34-8 Properties summarized

In this summary, the letters a, b and ¢ represent any rational
numbecrs, Since an integer is a particular kind of rational num-
ber, the propertics listed will also apply to integers.

(a) Closure propertics
a -- b is a rational nurn.ber.
a X b is a rational number.

(6) Commutative properties of addition and multiplication
a-t-b=0b+4a
axb=1>bxa

fc) dssociative properties of addition and multiplication
a4+ (b+c)=(a+b) +¢
ax(bxe=(axb) xec

(d) Distributive properties _
ax(b+4c)=(axb)+(axc)
axX(b—¢)=(axb)—(axec)

(€) Properties of zcro

a-t+0=a
ax0=0

(f) Property of one
a X ] = qa

(g) Opposites and reciprocals
a-+t(—a)=0

1
~=1 (ifa=0
ax- (ifa 5 0)




Revision of Properties of Operations 151

(k) Inverse operations
(@—0) +b=a
(@a+b) —b=a
(@ xb)+b=a (ifdb=0)
(@ +b) xb=a (ifb0)

BCM2—L



Chapter 35

ORDER FOR RATIONAL NUMBERS

35-1 Order on the number line for positive rational
nurabers

Do you remember how we described “order” for the set of
whole numbers in Chapter 17 and “order” for fractions in
Chapter 22? Let us sce. Here is a number line,

| ] !
-< f t {

1 1
0 1 2 33 4 5146 1 8 9 10

You will remember that we said that a number g js “greater
than” a number 4 if a is to the right of b on the number line, For
example, 5 is greater than 3 and we sec on the number line that
5 is to the right of 3. Similarly, Ll is to the right of 4 and so L
is greater than 4. In symbols, we write

a>b, 5>3 1l>4

In a similar way we described the idea of “less than” by
saying that a number b is less than a numnber a, if b is to the left
of a on the number line. Thus 3 is less than 3, because it is to the
left of 5 on the number line. Similarly 4 is to the left of Ll on the
number line and so 4 is less than LL In symbols, we write

b<a 3<5, 4 <L

You sce that @ > b and b < 4 rcally mean cxactly the same
thing. Both incqualitics say that a is to the right of b on the
number line, and this is the same as saying that b is to the left
of @ on the number line.

Exercise 35-1A

1. Draw a number line and locate on it by dots the following:
a. six consecutive whole numbers greater than 8
b. four even whole numbers less than 16
c. the three smallest fractions greater than 3 and having 3
for a denominator
152
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2. a. Find the smallest whole number greater than 6
b. Find the greatest whole number less than 10
c. Tind the three largest and the three smallest whole hum-
bers less than 23

In Chapters 19 and 22, you learned to compare two fractions
by putting them on the number line. It is not always casy to
locate two fractions accurately on the number line when they
arc very close together, We therefore have to learn annther
way of finding out which of two fractions is the greater, Suppose
we wish to find out which of % and $ is the greater fraction
without locating them on the number line. How shall we do it?
Onc way would be to draw a diagram to represent cach frac-
tion and then compare the two diagrams. The two fractions
§ and  arc shown in the diagrams below. Clearly the sccond
picture represents the larger fraction, and so we say that § is
greater than £; that is, } > §.

Another method of comparing two fractions is to express
both of them with the same denominator and then compare
their numerators, Consider the above example where we com-
pared § and §. We may write § =% and } = 2. Hence, by
comparing the numerators we see that 9 > 8 and, thercfore,
that § > £. Of course we could also have arrived at the same
result by taking the difference between # and §. That is
3§ — 4§ =% — % =44 which is positive.

Exercise 35-1B

1. For cach pair of rational numbers, determine their order by
(1) locating them on the number line
(it} writing cach pair with the same denominator

(iii) subtracting one from the other

In cach case, say which is larger.

a. fand £ b. ?and } c. fand 5 d. 3 and ¢
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2. Arrange the following rational numbers in order, starting
with the least and ending with the greatest in cach case.

a. ga %: '2') ’ga :
b. ':’ ":.'l) 2.13: 3: "4"
C. 3} -+ 2324 4- 38 1) - 44; 58 + )

Order for decimal fractions

When we wanted to find out which of two fractions was
greater, we expressed both fractions as new fractions with the
same denominator and then compared their numerators. A

similar method is found uscful with decimals. For example, 0-5
=4

, . J 05 e . 9 o : 9
may be written as i and 0-03 as 106" In order to write Tk

fraction with 100 as a denominator, we have to multiply both
numerator and denominator by IC. This gives

5 5%x10 50
10 710 % 10 100

. 50 5 .
This mcans that 160 > 106° that is, 0:5 > 0-05.

Here is another example. Which is greater, 06 or 0-55? We
55 N

ite 0-6 = = . 55 as 22 Since 2. hac ina-
write 0-6 = 0 and 0-55 as 100" Since io has 10 for denomina

tor, we write S — 010 _ 60
O,\CWllC]O—IOXIO-—]OO. cncece

15 06 > 0-55.

0 >55-1l t
* 100 ~ To0° @

Exercise 35-1C
1. Arrange the following numbers in order, starting with the
least and ending with the greatest:
0-35, 1-35, 3-5, 1-035, 10-35, 0-035, 17-5, 2:25, 2
2. Inscrt the correct inequality sign in cach box below.
a. $ [35 b. 1.7 []1-75 c. 025
d. 3-8 []0-38 e. 075 []0-7 f. 075 [J07
g 25 [J4 h. 5 []48 i 2242
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35-2 Order on the number line for the set of rational
numbers

Just as we did for whole numbers and for positive [ractions,
we usc the term is grealer than with rational numbers to mean
“is to the right of” on the number line. If @ and b are rational
numbers, “a is greater than 67, written a > b, is interpreted to
mean that a is “to the right of” b on the number line.

In a similar way, we use s less than for the set of all the
rational numbers to mean “‘is to the left of” on the number
line. If @ and b arc rational numbers, ‘b is less than @7 is
written b << a.

We may restate the above point by saying that if« - b, then
on the number line we have to move to the right from the
point which represents 4 to get to the point whicl represents a.
'T'his represents the addition of a positive munber pto b to get a.
We may write,

if azb then a=0b6-+p and a—b =

where p is a positive number.

In a similar way, if @ << b, then we have to move to the left
from the point which represents b to get to the point which
represents a. That is,
if a<b then a=b+4¢ and a—-b =94

where ¢ is a negative number.
Here 1s & number line with some rational numbers repre-
sented on 1t.

<_= : e b Al 1 e 1 I3 i ! S S 1

T 'TV 1 g 1 1 T v T LA | )

-7-6-5-4{-3-2~-1 0 1 2 3]4 5]6 7
-35 2 2

We casily see that 3 is to the right of —1; 3 > —1 and
3 = —1I -, Stmilarly, —35 = - 5 and —-35 = =5 - |5,
but 7 <Arand 7 ==% 1 (-2),

On a number line, all negative rational numbers are te the
left of 0, and so lor any negative number £ we may write
k < 0. Also, all positive rational numbers are to the right of 0,
and so for any positive number m we may write m > 0.
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ExEercise 35-2A

l.

3‘

4,

Determine w/hich of the following statements are true and
which are fzlse. For the true statements of the form a > b,
find a positive rational number psuch that a = b + p, For
the truc statements of the form g < b, find a negative
rational number ¢ such that ¢ = 4 x q.

a. 16 <« —32 b, —16 < 32

c. -] < —3 d. 1.6 < —3.2

e. —1:6>32 f. 0>1

g 25 < —926 h, —-25 <26

i. 36 >0 J» —=36>0

k. -3 > —6 LO0<-—2

m,—3 <0 n —4 4(—2) < —2 +2

O —5+1>2+41

Insert the correct inequality sign in the following statements:
a. 44 (-3)[]—-4+8

b. 4 5-8 [ —4 + (-8)

c. 64 (—=1)[]6 +2

d —34+ (-9 Od-—3+=

e —64 (=[] —-6+2

f. -35 435735 +25

g —+0(—~13)

For each pair of numbers, determine thejr order. Write a
statement involving the sign > for each pair. Then for
cach statement a > 4, find a positive rational number p
which makes the statement ¢ = § = p true.

a. #and - 8 b. 2-5 and —-55 ¢ — $and (— §)
d. —%and — 4 e — fand -5 £ 225 and 3-75

Locate on diffes ent number lines

a. four negative integers greater than —6
b. five negative integers less than -5,

¢. ihe six greatest integers less than 4,

d. four ncgative integers less than 0.

From cach of the following statements about equality,
deduce the corresponding statements about order, using
first the sign < and then the sign >, For example, from
—3 = —5 + 2, we see first that —5 < —3, and then that
-3 > —5.
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a. 6=—3+9 b, —2=—8+46
c 0= —4 44 d. 12 =9 +3
e 325 = —3 + 6:25 £ 3=%+
g —9 =12 4+3 h. 2 =—8 + 10

35-3 “Between” for rational numbers

In Chapter 17 we saw that given any three whole numbers
a, b and ¢, we can say which one lics “between” the other two
numbers. For example, on a number line we sce that 4 is to the
left of 7 and s0 4 < 7; also, 10 is to the right of 7 and so 10 > 7.
We can write 4 < 7 < 10.

What do we mean by “between” for rational numbers? A
number line will help us. This number line shows that

3 e Il

YRR G —
-2 |—1 o 1 2
-15

R T S
3456[17

> 2

S TE

>

S 4

3
5

N —&
ol

-3
—6 < —4 and —4 < -2. Wec therefore say that —¢ is
between —6 and —2, and we write —6 < —4 < —2, In a
similar way, we sec from the number line that & is between 0
and 5, and we write 0 < & < 5.

Exkrcise 35-3A

1. Arrange the rational numbers 4, 4, ¢ and 4 on the number
line, on the assumption that a is between b and ¢, and 5 is
between a and d. Note that there are two possible arrange-
meuts.

2. Wiite the sct whose members are
a. the integers between —5 and 5,
b. the negative integers greater than —4,
c. the positive integers less than 7,
d. the integers between 0 and —4,
e. all the fractions between 1 and 3 with a denominator of 5.

3. Tind a rational number between cach of the following pairs
of rational numbers:
a. 3and 1 b, —}and -1 ¢ land —1
d. —Zand — 1 e. 5}and 5} f. —%and — &
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From your answers to Question 3, it will be clear to you that
you can find more than onc rational number between any pair
of rational numbers. For example, what was the rational num-
ber you found between } and 1? One possibility is 2. What
about # or } or #? Can you find any morc rational numbers
between 4 and 17

We have scen that given any integer we can always tell which
integer precedes it or comes after it. Given any three integers
we can always tell which is between the other two. The ex-
ample above scems to suggest that we cannot talk of the rational
number between § and 1, because there are many such rational
numbers,

Can we talk of the rational number which follows a rational
number? For example, can we find the next rational number
alter 3? Suppose we take 2, onc of the answers we suggested
above. We represent both these points on the number line.

Ht ;
A0 ‘\_ 3

0 FARER] 3 1
‘:’l 60 30 1%

Il
} t

We observe that § = % and 3 = % so that &, %, & arc all
closer to 4 than 2. If we choose - as the next rational number
after §, we note that 4 = 1% and % = 12 and so 41 is ncarer
to } than 5. Oncc morc we observe that § = 28 and =23
so 4§ is necarer 4 than ). We may continuc thls process as long
as wc wish, so that there is no rational number “next’ after a
given rational number. A similar argument would show that
we cannot identify the rational number “just before” a given
rational number. All this suggests to us that between any two
rational numbers, no matter how close together they are, there

is always a third rational number.

Exercr.: 35-3B
Find four rational numbers between cach pair of rational num-
bers in Question 3 of Exercisc 35-3A.
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35-4 Two basic properties of order for
rational numbers

1. The Comparison (or Trichotomy) Property

If @ and b are any two rational numbers, then one and only
one of the following is truc:

a>b a=5b a<<bh

To sec this, find (e — ). The rational number (a — b) is
cither positive, negative or zero. If (@ — &) is positive, then
a > b. If (a — b) is ncgative, then a < b. If (a — b) is zero,
then a = 4. In the case ¢ = b, @ and b name the same number.

ExERrcisE 35-4A
Put the correct inequality or cquality sign into the boxes to
make cach statement truc.

0 1 30 _ (—9)
1. -8 2~ 05
5.5+105—14 3 —3 0% +13
5, —7[]— 2 6.0[1}1
7. 8 (]2 - (—6) 8, —6[]— 22

2. The Traasitive Property

Let us look again at the relation 4 < 7 and 7 < 10, which we
discussed carlier. What conclusion can we draw as to the recla-
tion between 4 and 10? Do you s:c that 4 is less than 10? You
can verify casily that 4 <2 10 by looking at the number line.

Herc is another example. We know that —6 < 2 and 2 < 6.
Of course, you sce straight away that —6 < 6, and again you
can check the conclusion by looking at the number line.

As another example, we have — 4 < } and } < 4. We thus
sce that — 1 < 1.

Now let a, & und ¢ be any three rational numbers such that
a < band b << c. What can be said about the relation between
a and ¢? You can sec that a < ¢, This property is called the
transitive property. A proof of it is sketched following Exercise
35-4C, Question 2. Formally, it says, if @, b and ¢ arc any three
rational numbers and if e < b and b < ¢, then a < ¢,
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ExEercise 35-4B

L In cach of the following groups of rational numbers, deter-
mine their order.

a. 25, —52,0 b, —} — 1 — 1
c 143 d. 25, 2:05, 2-25
e. 9, —6,4 f. 4 —3 3

g — '2‘: —2> - ‘151

The transitive property often makes it casy for us to compare
some pairs of fractions, Suppose we wish to find out which of
iie: two fractions 72 and 23 is the greater. By the metiiod
described earlicr in this chapter, we first write the fractions
with the same denominator and compare the aumecrators.
Thus, 75 =301 27 — 1640 By comparing the numerators
1649 and 1501 we sec that 1% > 1% You of course know how
we arrived at this result, It has involved the finding of the three
products 19 x 17, 97 x 17 and 79 x 19, and you will agree
that this is a lot of work.

Can the trausitive property help us? If we can find a rational
number which is between 22 and 22, then we can casily com-
pare the two fractions. We note that TF <3$4: thatis, 79 < 5,
Also 97 > 28; that is, 22 > 5. If in the transitive property we
take @ =34, b =5 and ¢ = 27, we sce that a < ¢; that is,
¥ < 3%

ExErcist 35-4C
1. Dectermine the order of the following fractions.

a. 287 and 342 b, — 1% and — 27
18 19 111 100
. 5 and =5 d- B and 1"

2. Sometimes it is not so casy to find the order of two fractions
by using the transitive property. Try to find the order of 2
and ; by using the transitive property.

We shall now sketch a proof of the transitive property, if g,

b and ¢ are rational numbers and if ¢ < & and & < ¢, then

a <e.

It was shown in Section 35-2 that
a < bmeansa = b 4 ¢, where g, <0;

also, b < ¢means b = ¢ 4 q,, where g, < 0.
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Hence, a = b + ¢,
= (¢ + q) + ¢, by writing b =¢ + ¢,
=¢ + (2 + ;) Dy the associative law of addition
=¢ {+q whercqg =g, +¢q
But we know that the sum of two negative numbers is another
negative number, so ¢ is a negative number.

Hence, a=c¢ -+ ¢ wheregisa necgative number

which means that
a<¢

ExEercise 35-4D

If a, b and ¢ arc rational numbers and ifa > 5 and 5 > ¢, then
a > c. Prove this property as above, giving a reason for each
step in your proof,

35-5 Addition property of order

We have alrcady considered the addition property of order
for whole numbers and for fractions in Chapters 17 and 29.
Let us now see whether the property is truc for the set of all
rational numbers.

It will help us to picture addition and order on the number
line. Let us first choose two rational numbers @ and & on the
number line with @ < b. We remember that the addition of a

1
~— Il ~t

a b

positive rational number to both @ and b means moving to the
right, while the addition of a negative rational number means
moving to the left.

If we now add the same positive rational number ¢ to  and to
b, we see that the point for a -4 ¢ is ¢ units to the right of the
point for a and the point for 4 + ¢ is alsc ¢ units to the right of
the point for b. The number line indicates that a + ¢ < & +¢
(scc Fig. 1 on p. 162). If we add a negative rational number ¢ to a
and to 6, the points for a + ¢ and -+ ¢ will each be the same
distance to the left of the points a and b respectively, The num-
ber line still suggests that a + ¢ < b + ¢ (Fig. 2).
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c c
Il | }/‘—\I Sy
< a atce b b+c
Fig. |
[ 4
N a+c a btc b
Fig. 2

Let us sce if we can prove the addition property of order,
Starting from a < b, we know thata = b + g, where ¢ is some
negative vational number, We add ¢ to both sides of the cquality
obtaining a +¢ = (b +¢q) ¢, or a-F¢ = (b +¢) +q.
(Why?) But the last cquality tells us that

a-tc<b+c
The order relation between the numbers is preserved. Hence,
we have the addition property of order:

If a, b and ¢ are rational numbers and if a < b, thena + ¢ < b +¢

ExErcise 35-5A

1. Formulate an addition property of order for the relation
“>" and writc out a proof of it.
2, Illustrate the trth of the addition property of order by

taking b = — §, @ = — %, and with ¢ having successively
the values — 32, 6,0, — %, —4,

35-6 Generalized addition property of order

In the addition property of order considered above, we saw
that the addition of the same rational number to both sides of
an inequality preserves the order relation. Naturally we may
want to know whether an order relation is stili preserved when
the two rational numbers added to both sides are not cqual but
have the same order relation between them that the original
rationa! numbers have,

Let us illustrate this with an example on the number line,
We know that 2 < 6 and that -3 < —2, What relation holds
between 2 -+ (—3) and 6 - (—2)? Add 2 to (—3); this gives

‘1. The addition of 6 to —2 gives 4.
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-3 -2
TN S M S W S S SR SRS S
-7 6-5 -4-3-2-1 0 1 2 3 4 5 6 7 8
2+ (-3) 6+(-2)

What relation cxists between —1 and 4?7 We sec that
—1 < 4. From this we may write,

if 2<6 and -3 < -2
then 2+ (=3) <6+ (-2)
That is, -1 <4

which is true.

Now choose any four rational numbers a, b, ¢ and d with
a < bandc¢ < d. Add a tocand b to d. Do this with two or more
sets of rational numbers. Write in cach case the relation which
exists between a + ¢ and b 4- d. Your answers will lead you to
the generalized addition property of order which states,

If a, b, ¢ and d are rational numbers such thata < b and ¢ < d,
thena ¢ <b 4 d

Let us now give a proof of this property.

If a < b, then a + ¢ < b + ¢ (by the addition property of
order).

Ifc <d, thend 4+ ¢ < b 4- d. (Why?)

Hence, using the transitive property of order, we have

a+c<b4d

ExERrcIsE 35-6A

Write the generalized addition property of order for the rela-
tion *“>", Try to make a proof for it,

35-7 Numbers and their opposites

The addition property of order often helps us to see the truth
of some propertics of numbers which arc not at once apparent.
One such property is the relation between two rational num-
bers and their opposites.

By considering a few numerical examples we can casily
sec that if @ and b are rational numbers and if ¢ < b, then
— & < —a. Try to convince yourself of the truth of this property
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by drawing a number linc and by locating several pairs of
rational numbers and their opposites on it.

Let us sec now whether the addition property of order can
help us to give a proof of the relation which exists between the
opposites of a pair of rational numbers. Let a and 4 be rational
numbers with @ < b, Then adding —a to both sides of the
incquality, we have

a+ (—a) <b + (—a) (by the addition property of order)

That is, 0 <b + (—a) (by the property of opposites)

Again, by adding —# to both sides of the inequality, we get
0+ (—b6) <b+ (—a) + (=b) (Why?)

So —~b < —a (Why?)

Thus, the relation is proved.

35-8 Multiplication property of order

You will remember from your carlicr study of the rational
numbers that if 2 and b arc positive rational numbers, then
a X b is a positive rational number and a x (—b) is a negative
rational number. (In fact, it is the opposite of a X b.) That is,
the product of two positive rational numbers is always a positive
rational number, while the product of a ucgative rational num-
ber and a positive rational number is always a necgative rational
number.,

Consider the sct of rational nun.bers {—3 —4, 3,2 6}
represented on the number line below. Now multiply cach
clement of the set by 2, a positive number. We obtain the set

<y
=7 =6 -5 -4 -3 -2

1 1 4
T ¥ T

L
10 1 2

1 Y
T -

—
3 4 5 6 7

NIy — @

{—3, —8, 6, 5, 12}. These numbers are represented on the
number line below. On the new number line the points which

4
6 78 9101112

1 1 b ) §
~12-11-10-9-8-7 6 -5-4-3-2-1 0 1 2 3 4 5§

~
-

correspond to —4 and — 2 are —8 and —3. The relation
between —4 and — 3is —4 < — 2, while the relation between
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—8 and —3 is also —8 < —3, That is, the order relation is
prescrved.
Similarly,
sincc £ < 3,then2 x & <2 x 3
since3 <6,then2 x3 <2 x6
sincc — 3 <3,then2 X (—3) <2 %3

These examples suggest that if @ and 4 are rational numbers
with @ < b, then if ¢ is a counting number, @ X ¢ < b X ¢.

Now let ¢ = 1. Multiplying the sct of rational numbers
{— 2 —4, 3, %, 6} by %, which is a positive rational number,
we get the set {— ¢, —2, 2, £ 3}, From the number line we sec
that —¢ < — Zandthat —2 < — 32, Thatis, since —4 < — 4,
then § X (—4) <1 x (—3).

Similarly, since —4 < 6, then } x (—4) < 1 x 6. This all
suggests the multiplication property of order:

If a, b and ¢ are rational numbers and if a < b and ¢ is posiltive,
thena X ¢ < b x¢

A proof of this property will be given in the next section,

Exercise 35-8A

1. Complete the following statenients using onc of the symbols
> or <:
a. If9 >7,then9 x3[]7 x3
b. If -5 < —3,then -5 x 3 []—3 x 3
c. lfa>bande¢>0,thena x¢c[]b x¢
d. If7 > —9,then7 x4 []—-9 x4
e. If3>0,then3 x6[J0 x 6
f. Ifa <bande¢ >0, thena x¢[]b x¢
g. If =5 <5, then —5 x 4 []5 x 4
h, If0 <8,then 0 x 2 []8 x 2

359 Proof of the multiplication property of order

The property states that if a, 4 and ¢ are rational numbers
and if e <b and 0 <¢, then a x ¢ < b x ¢ If a < b, then
a = b + g where ¢ < 0. Multiplying by ¢ we get

axe=(0b+4+4q) xc
= (b x¢) + (g x0)
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Now ¢ x ¢ is a negative rational number, becausc it is the pro-
duct of a negative number and a positive number. Thercfore
axe<bxe

Exercise 35-9A
L Prove thatife > bande¢ > 0,thena X ¢ > b X c.

2. Choosc any three rational numbers a, b and ¢ with a < b
and ¢ negative. Find the products d % ¢ and b X ¢. What is
the relation between 2 x cand b x ¢?

3. Repeat Question 2 with three different sets of numbers a, b
and ¢: (i) choosc a and b to be positive and ¢ negative,
(ii) choose & to be positive and a and ¢ negative, (iii) choose
all threc numbers negative. Write down the product a x ¢
and b X ¢ in cach case and state the order relation between

them.

4. Can you deduce a new multiplication property of order
from the answers to Questions 2 and 3?

Your answers to Questions 2 and 3 will have shown you that
ifa, b and ¢ are rational numbers and ifa < b and ¢ < 0, then
axec>bxe.

35-10 Generalized multiplication property of order

It was established in Chapter 22 for positive fractions that if

a ¢ m_p
- <- and — <l
b~ d nooq

a m c _p

then 1;><77<d><§

"This was proved by using the number line. This property is not

true for rational numbers if we allow some of the four numbers

to be negative. However, we do have the [ollowing property:
If a, b, c and d are rational numbers, with a < b and ¢ < d, and

a, by ¢ and d are positive, then a < ¢ < b X d.

We shall give a proof which uses the multiplication property

of order.
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If 0<a<db and O0<cec<d
then aXxe<bxe and b xec<bxd (Why?)
Hence, axc<bhbxd

Exercise 35-10A

1. Find three scts, each consisting of four positive rational
numbers a, b, ¢ and d satisfying @ < b and ¢ < d. Verily in
cach case that the gencralized multiplication property of
order is satisfied.

2. Rewrite the gencralized multiplication property of order
given above using @ > b and ¢ > 4. What is the relation
between a X ¢ and b x d?

35-11 Summary of properties of order

In the propertics of order given below the sign > may replace
the sign < as appropriate.

1. Comparison Property of Order

For any rational numbers @ and 4, onc and only one of the
following is true: a < b, a = b, a >> b.

2. Transitive Property of Order
For any rational numbers @, b and ¢, if @ < b and b <,
then a <e.

3. Addition Property of Order

For any rational numbers ¢, b and ¢, if a <&, then
a +¢ < b+ c. (NoTE: ¢ may be positive, negative or zero.)

4. Order Property of Opposites
For any rational numbers @ and b, if @ < b, then —b < —a.

5. Multiplication Property of Order

a, For any rational numbers a, b and ¢, if ¢ < b and ¢ is
positive, thena X ¢ < b X .

b. If a < b and ¢ is negative, thena X ¢ > b X c.

¢. For any positive rational numbers a, b, ¢ and d, if a < b
and ¢ <<d,thena x¢c <b x d.

BCM2—-M
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Chapter 36

REAL NUMBERS

36-1 Introduction

We have used the decimal fraction -3 as a different way of
writing -%. In the same way, -2 is cqual to 3. We can write an
cqual fraction with the smallest possible numerator and
denominator. We then suy that the fraction is written in lowest
terms. In lowest terms, -3 = 1, so that -2 = 4.

These are examples of one-place decimal fractions. The same
idca applies if there are two, three or even more decimal places.

Thus,

OF  en L
25 100 },
. | S|
05 = Tov = wa
. 5 o— 125 _ 1
125 = 1000 = 8

In cach case, we have written the fraction in lowest terms.

If we begin with fractions like 1, }, s and §, it is easy to go
n the other direction and express them in decimal form, For
these examples, we write

1 2
= = .9

5 10
1 25 x 1 25 -
- = =-——=23
4 25 x 4 100

7 5x7 35

30 "5 %20 " 100 = 3®
3 125 x3 375 .
8 =195 %8 1000 = 37

36-2 Recurring decimal fractions

Can we find a finite decimal form for any given fraction? It
is not hard to sce that the answer is “No”,
170
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a
b
be possible to “fatten it up” so that b becomes 10 or 100 or 1,000
or some higher power of 10.
Except for 1, the only numbers which divide into 10 are 10,
5 and z. Any fraction which is cqual to a onc-place decimal
must, therefore, have o denominator which is 10 or 5 or 2. In
fact:

If a fraction - is to be written in finite decimal form, it must

=1 O 2. — 1 — .3
1 — 10 2 — 10 T 10
go— 2 — .0 — 3
4 5 9 — 16 % 6 %
Ry . 8 — 4 —

7_'1'76 8”“'5‘ — 10

Any fraction which is equal to a two-place decimal fraction
must liave a denominator which divides into 100. What are
the possibilities? The only ones are 100, 50, 25, 20, 10, 5, 4 and
2. What arc the possible denominators for fractions that are
cqual to a three-place decimal fraction?

Suppose that we have a fraction whose denominator docs not
divide into any power of 10. The fraction 1 is the simplest
cxample. Clearly 3 does not divide into 10 or 100 or 1,000 or
any other power of 10. What can we do?

If we try to write 4 as a onc-place decimal fraction, we find
that -3 is too small and -4 too large, because 3(-3) = -9 and
3(-4) = 1:2. We say that } is between -3 and -4 and write

J<ic 4
If we try to write § as a two-place decimal fraction, we
soon find that -33 is too small and -34 is too large. In fact,
3(-33) = -99 and 3(-34) = 1-02. So .
33 <) <34
In the same way, it turns out that
333 < § <334
-3333 < } < -3334
and so on forever. The best that we can do is to write
}=-333"...
where the three dots arc mecant to show that the 3’s go on

without end. We call the right side of the equal sign a recurring
decimal fraction.
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Let us take another example, *. Since 11 does not divide
into any power of 10, we know that 1 cannot be written as a
decimal fraction. We expect to find that it can be written as a
recurring decimal fraction. In fact,

P =-181818. .,

where the digits 1 and 8 recur endlessly.
Let us verify this by doing a long division,

.1818. ..
2 [P
7= 11 @-0000
11
90
88
0
11
9

We actually went further with the work than we needed to.
When we got the remainder 2 after two divisions (shown by a
circle), we were in the same situation as we were when we
started. So we know that the later results of division will repeat
the carlier ones,

Let us look at one more example, What decimal fraction is s
equal to? Docs 6 divide into any power of 10? Since it does not,
we must get a recurring decimal fraction. Let us see what it is:

83, ..
6]5-00
48
@0
18

@

Do you sce that because the remainders in the two circles are
the same, the 3’s in the answer must go on endlessly? We write

5 =-8333 ...
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Exercise 36-2A

1. Find rccurring decimal fractions for each of the following
fractions:

al 'll" b' 3’6 cl

e. f. 2 g

d.

T

!
5

=]
~

X )
V)
el
~3y

36-3 Changing unending decimals to common
fractions

You sce from our work that some fractions are cqual tc
decimal fractions which end and others to decimal fractions
which do not end. How did you lcarn to tell without dividing
out whether a fraction is of the first kind or the second?

We discovered something clse. When the decimal is unending,
the digils repeat, at least after a while, For example,
+#r =+1818 ... (repecating 18)

=833 ... (rcpecating 3 after passing the 8)

It is fairly casy to sce why the digits must repeat. When
dividing by 6, for example, there can be no more than 5 re-
mainders diffevent from 0. (What would happen if the re-
mainder were 0?) Then if we keep on dividing, we must
cventually get a remainder that appeared before, and then the
digits in the answer start repeating.

Can we go the other way? That is, if we have an unending
decimal fraction that repeats, can we find the fraction that it is
equal to? Let us sce.

What is a common fraction which is ecqual to -3939 ... ?
Let us write

el

[1=-3939...
Notice that two digits repeat. Now if we multiply by 100, we
must move the decimal point two places to the right. This gives
100 x [] =100 x (-3939...) = 39:3939...

The unending digits on the right of the decimal point are
cxactly the same in both cases. (Remember that the 39’s go on
forever!) So if we subtract thesc digits from both sides, we get

99 X [J=39 (exactly)
and thercfore the fraction which goes in the box is
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You can casily verify that 13 + 33 = -3939 , , .
Let us take another example. We would like to know a
common fraction for -027027 ... We write

] =-027027 ...
Multiply by 1000 (why not 100?). We get
1000 x [J = 27-027027 ...
999 x [] =27

where the fraction on the right has been written in lowest
terms. Again, you should check that .} = -027027 . ..
As a final example, let us take an unending decimal for which
the digits do not repeat from the beginning.
If [ =-1333... (repcating 3’s), what fraction goes into
the box? We multir!, by 10, Then
10 x [J]=1333...

and subtracting

Exercise 36-3A

1. Write cach of the following unending decimal fractions as a
common fraction:

a, -222... b. 2323 ...

c. -234234 ... d. -1111..,

e. -0101... f. -001001...
g. *1666. .. h. -11010101 ...

2. Show how you can use the results of parts d, e and £ of
Question 1 to find the answers to parts a, b and ¢ without
working with the box [].

36-4 Irrational numbers and real numbers

We have Icarned that common fractions can be written as
decimal fractions which cither end or repeat. We also learned
that any decimal fraction which ends or repeats is another
name for a common fraction. We can show this in a diagram:

decimal fractions which
end or repeat

]iommon fractioﬁ[ &
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Have we left out any possibilitics? Could we have a decimal
fraction that is unending but not repeating? Yes, we could.

An cxample is
-101001000" . . .

where cach time we move along from a 1 we put in an extra 0
before the next 1. In this example, there is no block of digits
which repeats.
Another example is
1234567891011 . . .

where the scheme of writing digits should be clear, Again there
is no repetition in the unending digits.

These decimal fractions cannot represent common fractions.
They must correspond to a new kind of number, which is
called an IRRATIONAL NUMBER.

So far we have talked only about positive decimals, For
cvery positive decimal, ending or unending, there is an opposite
written with a minus sign in front of it. Thus, the opposite of
101001 . . .is —-101001 .. .. The numbers that we represent
in this way are called negative numbers. When we include
them and the number 0 we have the following scheme:

decimal fractions that end

| rational numbers | &&==> |or repeat (whether positive,
negative or 0)

decimal fractions that do

{irrational numbers | &= | not end and do not repeat
(whether positive or negative)

If we put the rational numbers and the irrational numbers
together, we get the numbers which correspond to all decimal
fractions. These numbers are called REAL NUMBERS.

real numbers ]

EXERrcisE 36-4A
Invent some more unending, non-repeating decimal fractions.

E‘_guional numbers |

Lirrational numbers|




Chapter 37
A GEOMETRY PROBLEM

37-1 Introduction

Let ABCD be a square 2 inches on a side. Suppose that E,
F, G and H are the midpoints of its sides. If E is Jjoined to G
and F to H, ABCD is divided into four squares, all alike, each
1 inch on a side. We therefore sce that the arca of ABCD is
4 square inches. -

We notice that ¢ = 2 x 2. In general, the number of square
inches in a square will be the number of inches on its side
multiplied by itsclf. Show that this is true for squares having
3, 4 and 5 inches for their sidecs.

D ‘G C D G c

A E 8 A E B

Let us now join E, F, G and H. Fach of the one-inch squarcs
is cut into two congruent triangles. We sce that EFGH is a
square consisting of four of these triangles. The area of EFGH
is therefore 2 square inches.

How long is a side of EFGH, for example ET? If S is the
length of side EF, it must be true that S times S is 2.

Could S be a whole .wumber? Certainly not, because
1 x 1 =11is too small and 2 x 2 = 4 is too large. Is S equal
to some fraction? If so, the fraction must be between 1 and 2.
Remember that we want

Sx8=2
176
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A good guess is

[
Now IxXI=4

Because 2 = $9, wc see that Z is a little too small.
Can we do better? Let us divide 2 by . We get

= 7 1o

2+-F =20

From the meaning of division, this means that
7 10
I X3P =2

Remember that 2 was too small.
How about 22?2 Of course

10 % 1o =100

7 7
We want S X8 =2=28
50 32 is too large. Could we have scen this without multiplying
22 by 12 ? Clearly we could. We know that
,?. X _1.70. == 2
If 1 is too small, 12 must be too large.

What do we know? We know that § is between % and e,
How can we do hetter? We can average these [ractions; that is
add them and divide by 2. In this way we get a new fraction,
which is between Z and 22,

7,10 49 450

S Mt
. . 7 35 99
This fraction is 5 = 5 =5
Let us sce if S could be 22,
29 x 829 -— 9RO
7 70 4000

[}
WewantS X S =2 = 2800,
We haven’t quite succeeded, but we are close. 22 is too large
but not much too large. Suppose that we divide 2 by 28, Will
the result be too large or too small? Can you say without doing
the arithmetic?
Let us do the arithmetic anyway.

2 -89 — 140
70 [
140 140 _ 19q0n
oo X 1] [

1]
If 14 had been the required value of S, we should have got
99 C req ! 8
% when we multiplied 142 by itsclf. We got a number a
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trifle smaller. So now we know that S must be between e
and 3,

We could average these two results. You should do this and
find out whether we have finally succeeded in finding a frac-
tional value for S. You will discover that the answer is “No”,

A new question comes to mind. Supposc that we kept on in
this way, would we ecer get an absolutely correct answer? It is
very surprising that the answer is “No”. We shall show this in
the next section,

Meanwhile it will be interesting to change our fractions to
decimals. In this way, we can sce how close we are getting to
the desired result.

First we found S between

7 =14 and 28 =12 = 1428571 ...
Next we located S between
A4 = 1414141 ... and 92 = 1.4149857. ..

70
What better result were you able to find?

Exkrcise 37-1A
Suppose that S is the side of a squarc with an area 3 squarc
inches so that S x S = 3, Usc the scheme of this section to get
better fractions which approximate S.

37-2 S X S = 2 has no solution in common fractions

. . a .
We have tried some fractions i to see if we could find the

side of a squarc with arca 2 square inches. We did not succeed.
Were we unlucky? Or were we lacking in patience? The
. . Loa .,

answer to both questions is “No”, There is no JSraction i which
makes

Tx% o

b b
This is onc of the most famous discoveries in mathematics, The
discovery was made by a Greek, a follower of Pythagoras, who
lived approximately 600 years before Christ. It produced a
crisis in the history of mathematics. Later we shall cxplain why
this discovery was true.
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But first let us prove this very surprising result. Suppose that

. . a . a a
there is a fraction B for which + x - = 2, so that

b b
Sx8§ =2
. a
w1thS-—Z).
Now ifS xS =2
2
S=§
: . a a_, . a
This means that if S =7 thcnz—z o
or a_2
b a

We must show that this is impossible no matter how we choose
the whole numbers a and b.

We may surely assume that the fraction which solves our
Froblem (if there is onc) is written in lowest terms, because if
it were not in Jowest terms we could replace it by a fraction
that was. For example, if 14 were an answer (it isn’t, of course),
then  would have to be an answer also.

a 2 . a. 2b
Now we suppose that = with - in the lowest terms. —

b
is supposed to he cqual to g When are two fractions equal?

Take a definite fraction in lowest terms, say 42, What frac-
tions arc equal to 42? The possibilitics are

10 2x10 20 3x10 3

7 97 1 3%7 2

and so on. It is cnough to look at the possible denominators,
They arc 7, 14, 21 and so on.

L0 . . . .
Now if ) s aw fraction written in lowest terms, the fractions
which are cqual to it must have one of the denominators b, 28,

36, 4b and so on. Thic means that if2a—b = g, a must be one of



180 Real Numbers
a

P is one of the num-

the numbers b, 24, 35, 46 and so on; so that

. a
bers 1, 2, 3, 4 and so on. That 1s, i must be a whole number,
ButS x S = 2 has no whole-number solution. So no matter

. a a a
what {raction 3 we choose, j X j cannot be equal to 2.

ExEercise 37-2A

- . . a
Show that it is not possible to find a fraction j s° that

X - =3,

>l Q
o>t Q

37-3 More about the number Liia: irrational numbers

We know how to locate fractions on the number line, Tor
example, we can casily find points to show 4, § and 2 Can we
locate the number S, the side of a square of area 22 We can
certainly do this geometrically. We showed at the beginning of
this chapter that S is the length of the diagonal of a squure of
side 1. Let a number line be drawn along thce basc of the square
with 0 at the left end and 1 at the right end. You can take 0 to
be the centre of a circle of radius S. The circle will interscct
the number line at a point P between 1 and 2. So we know on
the picture how to locate the point P which corresponds to the
number S,

0 1 P 2

But we know that S is not a rational number. Of course S is
between 7 and 42, We can locate both of these numbers by
points on tl.z number line, and P will lic between these points,

P

L s
t 2
[

7

I !
T

0 !
7
5
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We can do better. P must lic between the points which show
342 and 33,

P
v

i
T I}
1
140 99
99 70

oy -
|
~ig

These points arc much closer together than the previous pair.
The interval between them is shorter. Also 242 is to the right
of 7 and £3 to the Icft of 2. So our new interval is inside the
carlicr onc,

The important thing to notice is this. If we continue to get
new fractions by the same scheme, we can locate P within
intervals as short as we please but we never reach P itself,
There are points likc P on the number line which do not corre-
spond to common fractions. We may call them irrational points
because they show irrational numbers.

Let us say this in a different way.

Between 1 and 2 there is a point which divides the interval
in 2 equal pieces. There arc 2 points which scparate it into 3
cqual picces, 4 points that separate it into 5 equal picces and
so on. There arc 99 points which divide the interval into 100
cqual picces, 999 points which divide it into 1,000 equal picces,
But no matter what measuring stick we choose that divides the
interval from 1 to 2 into a number of cqual pieces, we cannot
use this measuring stick to measure exactly the number whose
square is 2, We can say that S and 1 are incommensurable. This
means that S and 1 have no common measure. This was a dis-
covery that shocked the Greeks when it was first discovered, It
showed that the number line as we have met it up to now is
full of holes. To say it another way, it shows the need of new
kinds of numbers, whichi we call irrational numbers.

Let us talk about these numbers in terms of decimal fractions.
As we learned, rational numbers correspond to decimal frac-
tions which cither end or repeat, while irrational numbers
correspond to decimal fractions which neither end nor repeat.
We saw an example of a decimal of this second sort,

-1010010001 . . .
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Our number S must be of this non-ending, non-repeating kind.
We found that S was between

1-414141 ... and 1-4142857..,

We can write 144141 < S < 1-4143,

We have located S within -0002. Of course with paticnce we
could do still better. We know that S must be represented by
an unending decimal that never endlessly repeats,

Can these unending, non-repeating decimals be treated like
the rational numbers? Can they be ordered? Can they be
added, subtracted, multiplied and divided? If so, do addition,
subtraction, multiplication and division have the properties
with which we are familiar? The answers to all of these ques-
tions are “Yes”,

It would take a long discussion to prove in detail that this is
true. Tor our purposcs it is suflicient to give some idea of how
it could be done.

Which of the decimal fractions -13275 ... or -13268 . ..
represents the larger number? The decimal fractions agree in
the first three digits 1, 3 and 2. They differ in the next decimal
place. Since 7 is greater than 6, the first number is greater than
the sccond. Do you sce that -13275 . . . locates a point on the
number line to the right of that for -13268 . . . ? Is it also clear
to you that if a and 4 arc any rcal numbers, there are just three
possibilitics: « = b, « < b and a > §? Could you cxplain why
this must be truc?

Do you think that @ 4- b = b + a is true for all real numbers
a and 6? Supposc not. Then for some @ and 4, it must be true
that

a-tb>b+4+a orelse a-+b<b-ta

Each of these possibilities will now be shown to lead to a
contradiction.

Ifa+b>0b+ais true, then a -+ b = (b + a) + p where
 is a positive number. Now p itself must be representable as a
decimal fraction, maybe a small one, say -0000012 . . . Let us
imagine that @ and b are written as unending decimal fractions.
Let us break off cach of them after 7 decimal places. Suppose
that we aded the corresponding rational numbers. The result
does not depend on the order in which we add. Why? It is
because the commutative property holds for rational numbers.
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Now look at the equation
a+b=(>0b-+a)+p
"The first 2 decimal places of a - b agree with the first i decimal
places of b - a. Then the first » decimal places of p must be 0.
Since this must be true no matter how large n is—that is, for as
many decimal places as we like—all of the decimal places of'p
must be 0. This contradicts the assumption that p is positive.
So it is impossible that a - & > b <+ a be true.

In the same way, it can be seen that it is impossible for
a--b<h+a to be true. Consecquently we know that
a - b =1b - ais true,

In a quite similar manner we could show that all the pro-
perties of addition and multiplication for rational numbers
hold for real numbers as well. Also, the order propertics of the
rational numbers are propertics of the real numbers.

nCAM2—N



Chapter 33

THE VIEW FROM THE TOP

38-1 Looking backward

We have come a long way from our starting point. We began
with numbers which could be used to count a set of objects like
a herd of cattle. Thesc numbers were known to carly man. They
appear in the oldest records. Since then man has travelled a
long, long road. Thc idea of number has grown and grown, It
is onc of the most important ideas that mankind has ever had
and onc of the most successful. In this hook we have tried to
show how new kinds of numbers have been invented, We
learncd about the importance of zero, about the uses of fruc-
tions so that numbers could be used not merely to count but to
measure. We learned about negative numbers, which hielp us
to include not merely the idea of how many or how much but
also the idea of direction, right or left, up or down. We have
Just extended the idea of number once again to include un-
ending decimals which do not repeat. We have scen that if we
want to measure the diagonal of a square of side 1 we need 2
number of this new kind. Here we have reached the end of our
journcy. (If you go further in mathematics, you will find that
this is not really the end but that there are still new kinds of
numbers which man has invented later.) The time has come to
look back over the road which we have followed.,

We have travelled slowly and patiently. The road has some-
times been dusty and the journcy may have been tiring. But
we have come to the top of a mountain. We should stop and
enjoy the view.,

At cacli stage of our journey we have learned (o arrange the
numbers in order of lesser or greater. And we heve learned to
add them, to subtract them, to multiply them anc. divide them.
Let us forget for the moment just how we dic .. at cach stage.
These are details—important details but still details. Let us ask
oursclves what has been accomplished by bringing in new kinds
of numbers and Iearning to work with them. Man has invented

184
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zcro, the fractions, the negative numbers, and the irrational
numbers. What for?

At cach stage, man has found himself stopped by a difficulty.
Hc wanted to be able to do something which he could not do
with the numbers that he already had, There was a roadblock
which stood in the way of going ahcad. When old ideas fail or
do not help, we seck to invent something new. “Necessity is
the mother of invention”,

For example, we cannot divide 4 by 5 if we have only count-
ing numbers to work with. After fractions were invented, we
could divide 4 by 5. We cannot subtract 5 from 3 if we have only
counting numbers to work with, Negative numbers allow us to
do so. After the new kinds of nunbers have been invented, we
have more freedom. We can remove restrictions.

But a very remarkable thing happens. It could be true that
the new numbers behave in quite a different way from the old
oncs. If this were true we should always be having to remember
what kinds of numbers we were working with, so that we could
know what propertics of addition, subtraction, multiplication
and division to apply. By good luck it t=ns out that the pro-
pertics are the same for counting numbers, for integers, for
rational numbers or for real numbers. We do not have to keep
learning new principles. This makes things much casicr.

At this point it will be uscful to reread the introduction, in
particular the latter part about the patterns which it was hoped
would be discovered. It will be remembered that we thought
of the whole numbers as belonging to a club with certain rules.
The new kinds of numbers could be admitted to this club
because they were able to obey the rules.

38-2 The “club rules” for addition and multiplication

What are the club rules that all of our members are required
to obey? Tirst there are the propertics of addition and multi-
plication. These propertics were summarized very brieiiy at the
cnd of Chapter 13, where a, & and ¢ stood for any whol: numbers.
These same propertics appeared in Chapter 34 for rational
numbers. Now we shall use a, b and ¢ to stand for any numbers
at all, that is, for any real numbers whether rational or irrational.

emember that the set of recal numbers includes all the
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numbers that we have talked about. Here then are the club
rules. First are three for addition:

The Commutative Property of Addition (CA)
a+b==05b4a
The Associative Property of Addition (AA)
a+(b+c¢)=(a+b) +¢
The Addition Property of Zero (AO)
a—+0=a

Then there are three corresponding rules for multiplication:

The Commutative Property of Muitiplication (CM)
axb=0bxa

The Associative Property of Multiplication (AM)
a X (bxe)=(axb) xc
The Multiplication Property of One (M1)
axl=a

Notice that these three rules can be found from those for addi-
tion simply by changing + to x and 0 to 1. Can you sce that 1
behaves as a factor the same way that 0 does as an addend?

There is another rule that connccts multiplication and
addition:

The Distributive Property (D)
a X (b+c)=(axb) - (axec

Finally, we had

The Multiplication Property of Zero (MO)
ax0=0

In all, we have cight propertics which we can think of as
club rules for numbers.

Let us look at thesc rules as requirements that any proposed
new members of the number club must obey. For cxample,
supposc we proposc the negative integers for membership in the
club consisting of 0, 1, 2, 3, . . .. How must —1 behave if we
arc going to admit it?

What must (—1) X 1 be equal to? Rule Ml says that

axX1l=a
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If —1is to be a good club member, it must therefore be true
that
(-=1) x1=-1

That is, we must be able to use —1 as a particular value of a.
What must 1 X (—1) be equal to? CM says that any mem-
bers a and & must obey the rule

axb=>5bxa
Then 1 x (—1) must be cqual to

(-1) x1
which we know is —1. So we must require that
1 x (=1) =1

A harder question is to find what (—1) x (—1) must he.
When we introduced —1, we thought of it as the oppositc of 1,
so that

1 +(-1)=0

So 1 4 (1) and 0 are two names for the same number. Then

(=) x [I+(=D]=(-1) x0
Rule D says that the left side is

[(=1) x 1]+ [(=1) x (—1)]

and rule MO says that the right side (—1) x 0is 0. So we must
require that

[(=1) x 1]+ [(=1) x (=1)] =0
But we know that (—1) x 1 = —1, so it must be truc that

=1+ [(=1) x (-] =0
Then (—1) x (—1) must be the opposite of —1, that is 1. So
finally we have the requircment
(=) x (1) =1

if —1 is to be allowed in the club.,

We know of course that —1 does indeed pass all these tests.
In [act,

I X (—1) = —1
(=1) x1 =-1
and (=) x (=1) =1

as we saw earlier in the book.
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Exercise 38-2A
1. Show from the rules that
(=3) xa=—(3 xa)
must be true, (minT: Write [(—3) - 3] X ain two ways.)

2. Show that if we follow the rules, (__73) must be equal to
(-7) 7 "
5 (mINT: If(ng = [1,7 = (—3) x [ by definition

of division. Now usec Question 1 and conclude that
3x = -7)

3. Show from A0 that
04+0=0

38-3  Simplifying the rules

We have listed some rules that we requirec numbers to obey
to become members of the number club. Can we perhaps
simplify these rules? For example, can we make a shorter list
that would really say the same thing? The answer is “Y¢s”. In
fact, we have already shortened the list from the onc that was
given in Chapter 13.

There we included 0 - g = a1 Xa=aand 0 x a = 0.
Can you scc why it is not necessary to include them in our
present list? Can you sec for cxample that 0 + ¢ = a follows
from a +- 0 = a by using CA?

We shall now show that we can also leave out MO, which
reads
ax0=0

We show that this rule must hold if the other seven rules hold.
According to rule D

@ X (b+e)=(axb)+ (axcd)
Ifb =0 and ¢ = 0, we have
a x(0-0) =(a x0) + (a x 0)
But we know that 0 - 0 = 0, so we require that
ax0=(ax0)+(a x0)
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To simplify the writing, let us call 2 x 0 by the new name b.
Then we must have
b=0>0+0b
We hope to show that 4 must be 0.
Rule AA tells us that
(=0 +b) +b=—b + (b x b)
Now —b --b =0, since —b and b are opposites. Also
b -- b = b. Thercfore, we have

0-+b=—b+b
We know that 0 +- b = b and that —b - b = 0. So finally
b=0
That is, ax0=0

which is rule MO.

So in applying tests for new members, it is not nccessary to
require MO if we have alrcady satisficd oursclves about the
other rules.

38-4 The rules of order

We first met also some propertics of order for the counting
numbers:

01 if @ and b are counting numbers, there are only three
possibilitics:
a=b a<b a>b

Again, if 4, b and ¢ are any counting numbers:

02 ifa<bandb <¢ thena < ¢
03 ifa <b, thena 4 ¢ <b +¢ and
04 ifa<bthena xc<b xe

These same rules now apply if 4, b and ¢ arc any real numbers,
except that in 0+ we must require that ¢ > 0 (which is auto-
matically true when ¢ is a counting number). Again, the real
numbers arc good club members.

We have learned that 04 can be supplemented by:

05 ifa<bande <0,thecna xXe>b % ¢

There is of coursec no occasion for this rule with counting
numbers, because a counting number is never less than 0.
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These rules too can be simplificd. If we say that
a<b
means that b = a -~ p where p is a positive number—that is,
p > O—we can replace all the rules of order by a new list.

New Order Rules

0'1 Ifa>0andd >0, thena -6 >0
02 Ifa>0and b >0,thena x b >0
0’3 Forany real number a, there are exactly three possibilitics:

a—=0, a>0, a<0

For example, let us show that 03 follows from our new rules.
03 says that if @ < b, then a +-¢c < b ¢ If a < b, we can
write

Then b+¢ (a+4p) +c

I
—_

a
_{_
=
=

4
=
—~
=
-,
=

=
O
N

ExERcise 38-4A

1, Prove 04 from 0’1, 0’2 and 0’3,
2, Prove 02 from 0’1, 0’2 and 0’3.
3. Prove 01 from 0’1, 0’2 and 0'3.

38-5 Summing up

What we have done in the last two sections is not casy. It is
harder than the rest of the book. We have given some cxamples
of the way in which mathematical proofs are constructe 1, The
clementary tcacher will not use proofs itke this in I'is own
classes. But the teacher should have an idea of what lies ahead
for some of his pupils-—those who go on in mathematics.

When we continue the study of mathematics we find that
more and more simplifications occur, The facts that we know
about numbers are connccted with cach other in surprising
ways. The simplifications make mathematics more beautiful
and more powerful. But we have to pay a price. The price is
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that we have to be prepared to think decply about our ex-
perience. We must not be satisfied with knowing how to get
answers in routine ways. We must be willing to ask oursclves
“Why?”’ again and again.

The knowledge that is power is the fruit of our unceasing
cffort to understand more clearly, more fully and more deeply.
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Chapter 39

APPROXIMATIONS AS RESULTS
OF COUNTING

39-1 Introduction

Once our pupils held a party and we tried to find out how
many attended the party. This was very difficult because when
we were counting, scveral pupils had alrcady left the party,
others came after we counted, while many of the people present
were moving around, After counting, we got the result 137
pupils. Do you think that this was the exact number of pupils
who attended the party? Is counting really always casy and
simple?

If'you are asked to measure the length of your classroont with
a foot ruler and you get the answer 30 feet, can you be sure that
this is the exact length? Cr could it be 29 feet and some inches,
or even 30 feet and some inches? Does measuring give the
exact number?

Supposc a tailor needs 3 yards of fabric to make a dress. How
many dresses can he make from a picce of 40 yards of fabric?
Dividing 40 by 3, you obtain 134, It is clear that your answer
would not be 13} dresses. You will say that the tailor can make
13 dresses. Such rounding oft is often used in cveryday life,

These three examples have something in common. What is
it? We are now going to consider in detail the use of numbers
in instances such as given above, We shall discuss what are
commonly called “approximate numbers” or “approxima-
tions”,

39-2  Approximations in counting

We have all Iearned how to count and how to make use of the
set of counting numbers. We also know the sct of whole num-
bers, which is the set of counting nuinbers and zero.

Suppose you ask onc of your pupils to count the number of
pupils in your class or the shillings in his pocket. No doubt his
answer will be correct, and he will give you the exact number.

194
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He will count the pupils or shillings onc by one or in groups.
This will be casy if the number of pupils is rather small. If yon
asked him to count the number of windows in a very big
building, then lic can get the exact number if he counts care-
fully. You could be quite sure about the answer if some other
pupils counted the windows and got the same number. But
counting the number of members in a set becomes harder as
the set becomes larger. Even so, it is possible in many instances
to obtain accurate counts of large sets. Soinctimes it is quite
necessary to obtain accurate counts. For example, a bank
teller must count the exact amount of money at the end of the
day. There are, however, instances when counting the number
of members in a set is extremely hard or even impossible.

Would it be casy or even possible for the government to
count the exact number of people in your country? The num-
ber ol people in your country does not stay the same cven for
one day. For many purposcs, however, the government has to
know how many people live in various regions and in the whole
country. Of course, it is practically iinpossible to count all of
these people. Besides, does the government really need to know
the exact number of people?

‘There is another example in which it is very difficult to
count the number of members in a certain set. Suppose you ask
a pupil to find the number of trees in a certain park or picce
of land. If he counts and gives the answer 563, do you think his
answer is cexact? It probably is not exact for the following
rcasons, I'irst, it was rather inconvenient and hard to count
such a large number of trees scattered about without recounting
some and without missing others. Next, it was probably difficult
for the pupil to decide whether the dead trees or some larger
bushes should be counted or not. In other words, it was difficult
for him to determine exactly what things were members of the
sct of trees. If some other pupils count the number of trees in
the park, they will probably obtain different answers, perhaps
339, or 550 or 571, In fact, it would be interesting to see
whether the pupil who first counted would get his original
answer if he counted again. In situations like these we are
usually quite satisficd with approximate, rather than precise,
results. The numbers in the statements below are certainly not
cxact, We will call them approximate numbers.
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The population of Uganda is 6,780,000.

There were two thousand people present at the lecture.
Our college library contains 6,700 books.

Ali has 300 chickens at home.

Exercise 39-2A

1. Ask your pupils to try to count how many people are in your
school in onc day. What makes it hard to obtain an exact
number? Do you think that the number tlicy count would
change from time to time during the day? Supposc instcad
you asked them to count how many different people in all
were in your school on a certain day, Would they still have
diflicultics?

2. Ask your pupils to count some of the sets in the examples
we have given.

3. Tind other situations you can use with your pupils to
show that the results of counting are not always cxact.

39-3 Averuges

By using many examples, you can convince your pupils that
we can olten obtain only approximate numbers in counting
certain large sets. Of course, you will want them to obtain the
most accurate approximations that they can. We will now sce
how to make surc that the approximate answers arc rather
accurate.

If four pupils tried to find out how many chickens Ali has at
home, cach pupil would probably get a different result by
counting. Why is it so? Suppose the first pupil counts 295, the
second 303, the third 304 and the fourth 297. Which answer
do you think would be the best? You might think that a good
answer would be one betwzen 295 and 305. In order to find a
good answer between 295 and 305 for the number of chickens,
we can proceed as follows: we find what we call the arithmetic
mean or average of all results of counting. We first find the sum
of all the results. Then we divide the sum by the number of
ternis in the sum, The quotient obtained is called the arithmetic
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mean or average of the numbers that we started with. For
example, the average of the numbers 17 and 25 is
(17 +25) -2 =21

Going back to Ali’s chickens, the sum of the courniting results

is
295 4- 305 + 304 -- 297 = 1,201

After dividing 1,201 by 4 (the number of counts), we get the
average 300-25. Taking into account the objects we arc dcaling
with, we may say 300 chickens is the final result. Remember
thatthis resultis only approximate. We do not claim thatitis pre-
cise, but it is certainly more precise and reliable than any onc
of the four individual counts. Finding the average is a good way
of obtaining an approximate answer when repeated counting
gives different numbers as results.

Exeraise 39-3A

1. Tind the average (arithmetic mean) of cach of the following
scts of numbers. If the quotient is an unending decimal,
write the answer to one decimal place and then write three
dots, . . ., to show that the answer is unending.

a. 18, 22, 93 b. 22, 23, 26, 29
c. 101, 102, 105, 108 d. 248, 951, 259, 267
e. 61, 63, G+ £. 248, 951, 257, 267

2. Using fractions, write the averages that were decimals in
Question 1.,

3. Make up examples to use with your class of situations in
which you would want to find averages.

39-4 Deviation

We liave said that the average of several counts of a large sct
can be taken as a good answer for the number of members in
the sct. However, this number may look somewhat artificial to
your pupils, and they may raisc questions such as: How docs
this number correspond to the reality? How reliable is it as a
solution to our problem?

Let us use the following example to try to sec how to answer
these questions. Suppose you ask your class to determine the
number of grains of rice in one ounce of rice. Let five pupils
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weigh five scparate heaps of one ounce of rice each, and count
the number of grains in cach heap. Suppose they got the
following numbers:

308, 332, 328, 342, 307

The average of these numbers is 1,617 = 5 = 323-4. The
digit “3” for the hundreds appears in cach of the five counts,
and therefore we mav conclude that we can rely on the number
of hundveds, ‘Thus, we say that the digit 3 is reliable. The digit
“2” for the tens in the average is questionable, because in the
five countings we got various digits in the tens place, namely

0,3,2,40
The digit ““3” in the ones piace in the average is clearly not
reliable at all and, thus, worthless. 'Therefore, that digit as well
as the digit in the tenths place (-4) ought to be rejected in the
final result,

Since the right-hand two digits (3+4) in the average are
worthless, the answer 320 would be just as good an answer.
Therefore, we will say that the number of grains of rice in a
heap of one ounce is approximately 320. We can be quite sure
about the first digit of this number, which indicates the hun-
dreds of grains. In the second digit (2), which cxpresses the
number of tens, there may be a small inaccuracy, About the
remaining digits, we just cannot say anything.

We may summarize our procedure as follows:

Find the average.

Compare the average with cach separate count,

The digits which arc the same in every count are reliable

and are to be kept in the final result,

4. Take the next digit in the average even though it is question-
able.

5. Replace all remaining digits by zeros, since they are worth-

less. (More definite instructions about replacing rejected

digits by zcros will be given in Chapter 40.)

0 IS —

Exercise 39-4A
L. Suppose five pupils in a class counted the number of books
in the school library. The results of their five counts were

275, 274, 278, 279, 271
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Find the average of the five counts,

2, Which digits in the average are reliable, which are question-
able and which are worthless?

3. What would you say is the final number of books?

We have used the words reliable, questionable and worthless.
You may feel that they have not been explained sufficiently;
perhaps there are still questions in your mind about the pro-
cedure. Let us now discuss more carcfully how we can tell
whether a given digit is reliable enough to keep.

We have seen that the numbers obtained in the separate
counts of grains of rice are different: 308, 332, 328, 342, 307.
Each of these numbers is different also from the calculated
average 323-4. Suppose we find now how much cach count
differs from the average. We will call these differences the
deviations from the average. In our example of rice, they are:

3234 — 308 = 154
332 — 3234 = 86
328 — 3234 = 46
342 — 323-4 =186
3234 — 307 = 164

(NoTE: To find the deviation from the average we subtract the
smaller number from the larger.)

Now we find the average of these deviations by adding them
and dividing their sum by 5. 63:6 - 3 == 12:72. This quotient,
12:72, is called the average deviation,

In our example the left-most digit (1) in the average devia-
tion 12:72 is in the tens place. Therefore, the digit in the tens
place (2) in the average 323-4 we will call questionable, We
keep the digit “2” for tens in the average 3234 as the first
questionable digit. We replace all the digits to the right of the
tens place by zeros. As the final result, we get 320. In order to
avoid misunderstandings, it is sometimes convenient to under-
line the “2” as the questionable digit in the final result
320.

This method can be used in any problem, not keeping any
digits beyond the left-most place in the average deviation.

ncM2—0
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We can sct out the whole problem as follows:

One ounce each Number of grains  Deviation _from the average

First counting 308 154
Sccond eounting 332 86
Third counting 328 46
Fourth counting 342 186
Fifth counting 307 164

Sum 1,617 Average 636

Average 3234 deviation 12.72

‘The number of grains in one ounce is approximately 320,

Exercise 39-4B

1. Indicate whether the number appearing in each of the
following statements is exact, or approximate:
a. According to the class registers, the school has 387 pupils.
b. The town has 14,700 inhabitants,
c. John reccived 125 shillings for the work done.
d. During the month, Ali worked 6 days overtime.
e. The train had been on its way for 31 days.
f. The sum of the ages of father, mother and son is 112

vears.
g. The store sold 463 pairs of shoes in a week.
h. 6,200 people visited the muscum in a month.
i. The theatre sold 527 tickets yesterday.
J» The dairy farm produces 430 quarts of milk a day.
k. The machine weighs 1,325 pounds.
L. The room is 12 yards, 5 inches long.
m, The flight lasted 1 hour and 17 minutes.

2. You have probably noticed that the average is always be-
tween the smallest and the largest of the numbers that you
start with, Explain how you might convince a class that this
1s always so.

3. On five different walks, a pupil counted the number of steps
he made in 100 metres, and obtained the following numbers:

132, 150, 138, 147, 143
What is his average number of steps in 100 metres?
4. Suppose you count the number of people watching a foot-
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ball match. You count six times and get a different result
each time. Your counts were

574, 562, 573, 567, 580, 571

a. Why do you think you got difterent results?

b. Find the average of your six counts. Also find the devia-
tions from the average and the average deviation. Indi-
cate in the average of your counts the reliable, question-
able and worthless digits.

c. What answer will you finally give for the number of
people watching the football match?

- Make up more problems of this type for your pupils to work
out,



Chapter 40

APPROXIMATIONS IN MEASURING

40-1 Approximate measurements

You saw in the previous chapter that the results of counting
the number of members in scts are sometimes exact but often
they are only approximate numbers. Let us now consider what
happens when we measure lengths and weights of objects or
periods of time.

What do you think will be the standard unit for mcasuring
lengths of main roads and railways? If a chart indicates that
the distance from Dar es Salaam to Nairobi is 498 miles, does
it mean that this is an exact number or perhaps that it may
be 4985 or cven 497-5 miles? When mecasuring such great dis-
tances, we usually disregard a difference amounting to less than
a mile in the final results. This means that for our purpose we
are quite satisficd if we find the approximate number of milcs,
with a precision to one mile. Parts of a mile are in practice
ncglected.

However, when measuring material for dresses or curtains,
we do realize that a difference of even one inch or half an inch
is important and has to be taken into account, In such cascs,
tenths of an inch only can be neglected.

What would you as a teacher say if a pupil was told to draw
in his notebook a line segment 2-3 inches long, and his scg-
ment was only 2:1 inches long? Would you say that the pupil
has donc it correctly, because a few tenths of an inch do not
matter? In such cases it docs matter, because you required
him to be precise to the ncarest tenth of an inch—the pupil’s
segment 2-1 inches long is nut correct. There are even jn-
stances where more precision is important. For cxample, those
who design precision instruments, such as wrist watches, re-
quire precision to lengths so small that we cannot ohscrve them
with our eyes.

From the several cxamples above, the following conclusion

is casily reached: when we consider mecasuring lengths in
200 g g
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practical life, we sce that in cach case there is some desired unit
of length used, while smaller units are ignored. Mcasurcment of
length always gives us an approximate number.

Mecasurement of time also has different degrees of precision.
When an adult is asked to give his age, he will do it in terms
of whole years. A mother expresses the age of her small child
in terms of years and months, neglecting days, The length
of a class lesson or of a foothall match is usually given in
hours and minutes, ignoring scconds. However, in such sports
as running or swimming, scconds and even tenths of seconds
arc counted,

Exercise 40-1A

L. In a way similar to our discussion of measuring length and
time, explain how approximate numbers are obtained when
weighing various objects.

2. What unit of weight is usually used in cach of the following
cases? What units can be neglected in cach case?

a. A shopkecper weighing sugar

b. A postman weighing letters

¢. A nurse weighing a new-born baby
d. A doctor weighing an adult

3. What is the degree of precision used in railway and airline
time-tables?

We have shown how approximate numbers arc obtained
when we measure quantitics—lengths, weights and periods of
time—and how in cach case the appropriate unit of measure-
ment is chosen according to the need. (In this unit, we will use
the term “quantity” rather informally to denote things that
can be measured.)

On the othicr hand, it is also very important to understand
that we can never gel an exact number from any of these measurements
of quantities. Among the essential reasons for this impossibility
are

(a) the inaccuracy of measuring instruments, and
(6) the mmaccuracy of human scnses.

In some cascs, repeated measurements of the same quantity
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could not give cven the same approximate number because
of
(¢) the changing conditions under which the successive
mcasurcments arc made,

You should discuss reasons () and (%), and give cxamples, To
discuss (¢}, think, for cxample, of the influence of the tempcra-
ture on the length of an object, o1 of the evaporation of a liquid
whose weight is to be found,

Conclusions

Ever~measurement gives only an approximate value of what
is measured, and it is carried out with a certain definite preci-
sion. When we record the result of mxasuring, we show which
units have been considered and which ignored.

(REMINDER: The results of measuring arc always approxi-
mate numbers. As we have scen in the previous chapter, the
numbers obtained as results of counting are sometimes exact
numbers and sometines approximate numbers.)

Exercise 40-1B

1. What definite standard unit is used in cach of the following,
in order to get reasonable measurements? What units can
be neglected in cach case?
a, An architect designing a house
b. A surveyor mapping a city
¢. A shoemaker taking the size for a pair of shocs

40-2 Basic agreement for recording approximate
numbers

There is a method of recording the results of counting and
mcasuring, showing clearly the precision of these results, This
method will be applied in the following cxample,

Problem

To measure with a foot ruler, having marks of tentlis of an
inch, the length of the diagonal of a square whose side is
4 inches. We use the symbol < for ““is less than”, and the
symbol ~ *is approximately cqual to”, to write the result as
follows.
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4 inches

4 inches A

Illﬂlll:l;III]iin'lHiH]IHIIIIH]HH,HH]IIII]HHIIHT‘}
3 4 5 6

1 2
Ruler ;
I. 5m. 2N <6,
2, X~ 06in.
3. 56 1n. < x < 571n.
4, X &~ 565 in.
Explanations

1. x, the Iength to be found, is between 5 and 6 inches to the
ncarest incli.

2. Mecasured to the nearest inch, x appcars to be nearer to the
G-inch mark than to the 5-inch mark.

3. Mecasuring to the nearest tenth of an inch, we sce from
the figure that v lies between 5-6 inches and 5:7 inches.

4. From the figure, we arc unable to decide whether x is
nearer to 5-6 inches or 5-7 inch and so we may conclude
that x &~ 5-65 inches, taking the average of 5:6 and 5-7,

In our final result, we have two reliable digits: namely,
the digit for ones (5) and the digit for tenths (6). The third
digit (5) for hundredths is questionable. The final result of our
measurcment does not allow us to say that length x contains
exactly 5 hundredths of an inch beyond 5+6 inches,
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(Actually, if we had made a very precise drawing and had
used a more accurate and precise ruler, we might have found
that the length x, with a precision to the nearest thousandth of
an inch, is cqual to 5:657 inches. Therefore, taking a precision
to onc hundredth of an inch, it is correct to write x ~ 566
inches.)

Let us consider next an example of measuring and recording
temperature. What does the recording “T" 20 37° € mean?
It says that we measured with a precision to one degree. On
the other hand, i with a more precise thermometer we record
“T' '~ 37:0° G the “0” indicates that we measured with a
precision to one teath of a degree,

The examples above of recording approximate numbers are
based on the following agreement.

BASIC AGREEMENT

An approximaie resull should be recorded in such a way that its last
digit to the right indicates ils precision. All digits, except the lasi,
ought to be reliable. Only the last digit is questionable and may be
slightly inaccurale.

40-3 Repeated measurements

As we have mentioned before, it often happens that when we
measure the same quantity again we get a somewhat different
result, even though we use the same instrument cach time. This
happens frequently in measuring long distances. In such situa-
tions, we obtain the most precise result by finding the average of
all the results of the repeated measurements, (This we do in
the same way as when dealing with several cownts of a large set.)
The average is then rewritten, preserving all reliable digits and
only one questionable digit. In order to know which digits in the
average are to be kept, it is useful to find the average deviation,
In the previous chapter, we studied how this is done. Let us ill-
ustrate the method by an example, measuring length in metres,
Example

We are to measure the iength x of a building, using a metric
ruler marked for centimetres. The results of six successive
measurcments are as follows,
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Measuring Result in  Deviation from
length x melres average in
melres
No. 1 3163 0-352
No. 2 52-12 0138
No. 3 52:20 0218
No. 4 51-87 0112 51'9m, < x < 52:0 m,
No. 5 5191 0-072 X~ 52:0m,
No. b 32-16 0-178
Sum 311-89 1-070
Average 31189 - 6 = 51982 0-178

‘The highest order digit of the average deviation is the tenths

place. We thus conclude that the tenths digit in the number
51:982 is questionable, and therefore the digits of hundredths
and of thousandths are to be rejected as worthless, Morcover,

519 < & < 520

Of these two numbers, 52:0 is closer to the average that we
calculated, so we accept it as the final result:

X~ 520m

Exercise 40-3A

1.

Indicate the reliable, questionable and worthless digits in
cach of the following approximate numbers, Write down
cach of these numbers according to the basic agreement,
a, 2543 with a precision to the nearest one
b. -2502 with a precision to the nearest hundredth
c. 5203 with a precision to the nearest tenth
Five weighings of the same object gave the following results
in (pounds):

2-834, 2-832, 2-837, 2-833, 2-835
a, I'ind the average weight.
b. Indicate in the average the reliable, questionable and

worthless digits.
c. Write the final result according to the basic agreement.
Four measurements of the same distance have given the
following results (in yards):
2,648, 2,656, 2,663, 2,678
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a. Find the average of the four numbers,

b. Find the deviations from the average and the average
deviation,

¢. Indicate in the average the reliable, questionable and
worthless digits, and write the final result according to
the basic agreement,



Chapter 41

ROUNDING OFF

41-1 Introduction

We have previously discussed two situations in which we
obtain approximate numbers: counting and measuring. We will
consider now a third way of getting such numbers.

You have alrecady done some problems in arithmetic in which
vou had to record the resulting answer “to the nearest ten” or
“to the nearest unit”. What you actually had to do was to re-
place your answer (a natural number, decimal fraction or un-
ending decimal) with a simpler number close to it, The simpler
number was to have fewer non-zero digits. Such replacement
is called rounding off.

"The following examples illustrate the process of rounding off.

Example 1

‘The census shows that a certain city has 246,143 inhabitants.
Supposc a friend of yours asks you how many peoplc live in
that city. I you know that he docs not nced a very precise
answer, would you say to him 246,143 pcople? Of course not.
You would probably simply answer 246 thousand.

Example 2

‘There are certainly cases when results ought to be expressed
to the highest degree of precision possible. For example, the
asscts of a bank must be recorded in the yearly report to the
ncarest pound. For geuceral information, however, it is suffi-
cient to know that the assets of a bank are 57 million pounds
rather than 56,967,146 pounds.

In the two cxamples, certain numbers were rounded off,
The results of rounding off are clearly approximate numbers.

41-2 Rounding up and rounding down

Rounding off can be done in two ways: we can “round off
upwards” (Example 2) or “‘round off downwards” (Example 1).
209
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To avoid long phrases, we shall call these two ways “rounding
up” and “rounding down”, respectively.,

Rounding off numbers is casy. To round down a number to a
digit in a certain place, we replace all the digits of the number
written to the right of that place by zeros. For example, 274
rounded down to tens is 270, 27-4 rounded down to ones is 27,
274 rounded down to tens is 20,

To round up a number to a certain place, we add one to the
digit in that place and replace all digits to the right of it hy
zeros. Ior example,

274 rounded up to tens is 280
27-4 roured up to ones is 28
274 rouaded up to tens is 30

Consider this complete example of rounding off the number
217-5073:
217:5073 rounded down to hundreds is 200

rounded up to hundreds is 300
rounded down to tens is 210
rounded up to tens is 220
rounded down to ones is 217
rounded up to ones is 218
rounded down to tenths is 2175
rounded up to tenths is 2176
rounded down to lundredths is 217-50
rounded up to hundredths is 217:51

rounded down to thousandths is 217-507
rounded up to thousandthsis  217-508

It is clear that in all these cases the original number is
increased by rounding up and decreased by rounding down,

You may ask when we apply rounding up, or roundiug down,
The answer to this question is often suggested by the situation
we are dealing with or by the conditions of the problem.

Example 3

We want to d.vide 50 shillings cqually among 6 pcople. How
much will cach get?

To get the answer, you must divide 50 by 6. But the quoticnt
of 50 = 6 results in the unending decimal 8:333. . . . Rounding
down to the order of ones gives us 8 shillings and rounding
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down to the order of hundredths gives us 8:33 shillings, If
everyone gets 8 shillings, we remain with 2 shillings, If every-
onc gets 8-33 shillings, there will be 2 cents left over because
8:33 x 6 = 49-98 shillings. The latter is no doubt the best we
can do, because a cent is the smallest coin. Rounding down is
certainly the only appropriate procedure here, because if we
round up 8:333 .. . to hundredths we get 8-34 shillings. We can-
not give cveryone 8-34 shillings, because 8:34 x 6 = 50-04
shillings and there are only 50 shillings to be shared.

Lxample 4

A group of 14 pupils decided to collect 100 pounds of oranges
for the children of an orphanage. How many pounds should
cach pupil collect?

100 + 14 = 7-14285714 ... . Rounding down is not applic-
able here because less would be collected than aimed for, In
this case, it is necessary to round up to get at least 100 pounds
of oranges. Rounding up to ones, we get 8. So if cach pupil
collects 8 pounds, together they get 8 < 12 = 112 pounds,
which is substantially more than wanted. Rounding up to
tenths gives 7-2 pounds for cach pupil, and in all they collect
72 % 14 = 100-8 pounds, which is quite closc to the desired
100 pounds and rcasonable from the point of view of weighing
oranges. A practical answer to our problem is that cach pupil
should collect at least 7-2 pounds of oranges. If 100 shillings
(and not 100 pounds of oranges) were to be collected by the
students, it would have been proper to round up to hundredths
to obtain 7-15 shillings for cach student. Altogether they would
then collect 7-15 ¢ 14 == 100-10 shillings.

41-3 Fundamental rules for rounding off

The examples in the last scetion illustrate two cases when the
conditions of the problem actually show whether a given num-
ber is to be rounded down or rounded up. It was also clear to
what place the rounding off should be made. The question
naturally arises: What kind of rounding off is to be applied
when there is no indication what to do?

As you have scen, rounding down replaces the given number
by a sccond number which is smaller than the given number,
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while rounding upreplacesthe given number by a number which
is larger, When a given number is to be rounded off and there
is no special indication whether it should be up or down, it is
reasonable to round off so that the number obtained differs as
little as possible [rom the original number. For example, the
number 17-384 rounded down to ones is 17, which is -384 less
than the given number. On the other hand, 17-38:4 rounded up
to ones gives 18, which is -616 greater than the original number.
Certainly 17 is closer than 18 to the original number. So here it
is better to round down.

Suppose now we want to round off to tenths instead of oncs.
You sce that 17-384 rounded down to tenths is 17-3, which is
‘084 less than the given number. But rounding up to fenths
gives 17-4, which is only -016 greater than the given number.
Therefore, the better result in rounding oft to tenths is obtained
by rounding up.

We sce thatif it is permissivic cither to round up or to round
down a given number, * is better to round down when the
first rejected digit is less than 5 and to round up if the first
rejected digit is greater than 5. In each of these cascs, we will
obtain a closer approximation; that is, the rcunded-off number
is closer to the original number,

Suppose you want to round off -2604 to tenths. It is better
to round up to -3, because that differs from 2604 by -0396.
Rounding down results in -2, which differs by -0604 from -2604.
If, however, we have to round off the same number 2604 to
hundredths, we should round down since

2604 —  -26 = -0004
and 27 — 260} = -0096
You may notice that we have not said how to round off
numbers in which the first rejected digit is 5. We consider here
the following two cases.

1. The first rejected digit is 5 and it is followed by digits
some of which are non-zcro digits. For example,

round off 43,503 to thousands
and round off -257 to tenths

It is casy to scc that here we get a closer approximation by
rounding up. Show that thi- is so. Thus, to round off 43,503
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to thousands, we round up and obtain 44,000. To round off
‘257 to tenths, we round up and get -3, Therefore, if the first
r¢jected digit is 5 and is followed by digits, some of which are
non-zcro digits, then we round up.

2. The first rejected digit is 5 which is followed by zeros
only, or the first rejected digit is 5 and it is the last digit in our
number. For example,

round off 43,500 to thousands
round off 45 to tens
and round off 7-5 to oncs

If we round down 43,500 to thousands, we obtain 43,000; if
we round up, we get 44,000. Each of these rounded-off numbers
differs from the original number by 500. We may say that they
arc “cqually close” approximations, The same remark applies
to rounding off the other two numbers. In cases like these, we
simply agree to round up. Therefore,

42,500 rounded off to thousands is 4-+,000

45 rounded off to tens is 50

7-5 rounded off to oncs is 8

(In some treatments of approximate numbers, the following
agreement is made, which we will not use in this text,

If the first rejected digit is 5 which is followed by zeros only,
or if the first rejected digit is 5 and it is the last digit, then we
round down if the digit before 5 is even, and round up if the digit
before 5 is odd.)

Here is our jundamental rule for rounding off numbers. We will
always apply it if there are no special reasons to cither 1ound
down or round up

If it is permissible cither to round up or to round down ¢ given
number, wwe round it down when the first rejected digitis 0, 1,2, 3 or 4,
and round it up if the first rejected digit is 5, 6, 7, 8 or 9.

You should have already seen that the result of rounding off
is always a number which represents an approximate value of
the given number. It is an approximate number, The difference
between the given number and the rounded-off number de-
pends entirely on the way the rounding off is done. If a given
number is to be rounded off to a certain place and if it is known
that we have to round down or have to round up, then the



214 Approximations

difference between the result and the given number does not
exceed but may come close to one unit in the last place preserved.
If, however, the problem does not show us which way to round
off, we will use the fundamental rule. Then the difference
between the given number and the result will never be more
than one-half of the unit in the last place kept. If an approxi-
mate value of a quantity differs from its exact valuc by not
more than one-half of a unit in the last place kept, then we say
that all digits of the approximation are accurate. Thercfore, if we
obtain an approximation by applying the fundamental rule
for rounding off, then all the digits in the approximation are
accurate. For example: if we rounded off the number
24 = 2-7142. . . to hundredths, we would get the approximate
number 2-71 with all digits accurate.

Lxercise 41-3A

1. Round down to tens each of the following numbers and find
the error of rounding down (the difference between the
number and the rounded-down number),

503, 817, 4,305, 21,658, 12,814, 17,715

2. Round off to tens each of the numbers in Question 1 and
find the crror of rounding off (from the larger number,
subtract the smaller number).

3, Round up to thousands cach of the following numbers and
find the error of rounding up.
23,458, 17,591, 13,709, 60,500, 100,998, 365,651, 1,349,673

4. Round off to thousands cach of the numbers in Question 3
aad find the crror ol rounding of.

5. Round ofl to ones cach of the following numbers and find
the crror of rounding off.

-8, 2:55, 3-7, 15°5, 414, -379, -49, 1-813
6. Round off to tenths cach of the foliowing numbers.
8:512, 11-395, -403, 6-15, 4-08, 6-17, 10-0098
7. Round off to hundredths cach of the following numbers,
9-647, 12784, -231, 1-054, 19-6723, -455
8. a. Indicate the reliable, questionable and worthless digits
in each of the following approximate numbers.
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b. Round off cach number to the place of its questionable
digit.

c. Write down cach nuviber according to the basic agree-
ment of Chapter 40.
343 with a precision to the ncarest ten
6750 with a precision to the nearest liundred
47-0983 with a precision to the ncarest hundredth
9:0015 with a precision to the nearest thousandth,

Threce experiments to find the weight in grams of 1 cubic
centimetre of the same picce of iron gave the following re-
sults: 7-62, 7-80, 7-64. Find the average. Indicate in it the
reliable, questionable and worthless digits. Round off the
average to the place of the questionable digit. Write down
the final result according to the basic agreement.

BCMa2—-P



Chapter 42

MAXIMUM ERROR AND
RELATIVE ERROR

42-1 Maximum error—precision

We have seen that cvery measurement of length, weight,
time and so on can be made only approximately and the re-
sult is an approximate number. Even when it is possible to
find an exact number (in counting the members of a set, for
cxample), it is sometimes sufficient to know only its approxi-
mate value,

Here is an example. A pupil worked after school and saved
money for a holiday. The exact amount was 101-30 shillings,
Whenasked how much moneyhe had saved, heanswered “about
100 shillings.” It is clear that the exact number representing
his savings and the approximate number he gave arc different,
The pupil got the approximate number by rounding off. Simi-
larly, the exact value of a measured quantity and the result of
measuring are different,

The difference between the exact value of a measured or counted
quantily and its approximate value is called the maximum or absolute
error, In the quoted example, the maximum error is cqual to
1-30 shillings.

You know already that exact values are known only very
rarcly, for example, in some cases of counting. This means, of
course, that the actual value of the maximum error can very
seldom be found exactly, However, in carrying our various
mceasurements we can ustnlly give the bounds or limits of the
maximum crror. In other words, we can expect to find out
that the maximum error does not exceed a definite number,

For example, if you weigh an object on a shop scale, the
maximum error will usually not be more than one ounce, But
on laboratory scales, you can weigh an object so that the maxi-
mum error is no more than onc-half of one hundredth of an
ounce (that is, ;15 of an ounce).

216



Maximum Error and Relative Error 217

422 Relative error—accuracy

We must, however, realize that the maximum error does not
give us an idea of the quality or accuracy of the measurement, In
other words, the maximum error doecs not indicate how ac-
curately the measuring has been done. The maximum error tells
us onl; about the precision of the measurement, For example, if the
maximum crror in a measurcment is } yard, then the measure-
ment is made with a precision to the ncarest yard. Conversely, if
a weighing is made with a precision to the nearest pound, then
the maximum crror in the weighing is 4 pound.

Supposc we made two measurcments with a maximum error of
% inch: the first was of the length of a bridge, and we obtained
20 yards; the sccond was of the length of a book, and we
obtained 12 inches. We say that cach measurement was made
with a precision to the nearest inch.

It is clear ti:at the first measurement was done very carefully
and is of high quality, but the sccond measurement is quite
rough and unsatisfactory,

The same can be said about weighing. An error of one ounce
in 50 pounds is usually not important. But an error of onc
ounce in } pound can seldom be allowed. You can now see
that to cvaluate the quality of a measurcment, it is not the
maximum crror that is important. Instead, it is how the maxi-
mum crror compares with the measured value itself, In other
words, we would like to know what part of the measured quan-
tity the maximum error represents. Let us go back to the
mecasurcments of the lengths of the bridge and the book.

In measuring 20 yards, an crror of } inch is only s part
of the length. However, in measuring the length of the book
an crror of % inch is 4y part of the mcasured quantity. The
Jraction obtained by dividing the maximum error by the measured value
is called the relative error. As we have seen before, we do not know
how good or accurate a measurement is by knowing the maxi-
mum crror alone. It is the relative crror that tells how accurate
the measurement is. For example, we can compare the relative
errors when measuring the bridge and the length of the book.
These are the numbers % and 4, respectively. The first
fraction is one-sixticth (¢;) of the sccond fraction, so the
accuracy of the first measurement is much higher than the ac-
curacy of the second.
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It is usual to express the relative errors as percentages, Then
it is casy to compare the accuracy of two different measure-
ments. The relative error in measuring the length of the bridge
is 4% X 100 = -0695% and the relative crror in mceasuring
the length of the book is % % 100 = 4-17%. Certainly, a
measurcment with a relative crror of -0695% is much more
accurate than a measurement with a relative error of 4:179.

A spccial notation is often used to show the precision of a
mcasurement, Suppose we measure a certain length d with a
precision to the necarest inch, and obtain the result 132 inches,
This result is then written in the form

d ~ 132 (4 +5) inches,

since -5 inch is the maximum error here.

ExErcise 42-2A
L. Find the maximum crror of the approximate number 66, if
its exact valuc is 3.

2, Tind the maximum ecrror for cach of the fractions

.
Y13 17

expressed by the approximations
-28, -384, -2105

(L]

3

respectively,
3. Find the relative error (in percentage) of the approximate
number 547, if its maximum error is -005.

4. Express the number 52 by an approximate decimal fraction
with a precision to the nearest hundredth. Find the maxi-
mum crror and the relative error (as a percentage) of the
approximate number.

5. The width of a narrow street measured with a precision to
the nearest ten centimetres is 7-6 metres. The length of the
strect mcasured with a precision to the nearest metre is
76 metres. Which of these measurements is more precise?
Is onc of the measurements more accurate than the other?

6. Mcasuring a segment of length 8-75 centimetres, we made
an error of -25 centimetres. Mcasuring another scgment of
length 10-5 metres, we made an error of 25 centimetres,
Which of the two measurements is more accurate?
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7. Mecasuring a segment 25 inches long, a student obtained
25-2 inches. Find the relative error of the measurement.

8, The volume of a containe: is 25 cubic inches. A pupil,
however, computed the volume as 246 cubic inches. Find
his maximum and relative errors,

9. Using the formula on the relationship between an approxi-
mate number, the maximum error and the relative error,
complete the table.

Approximate  Maximum  Relative

number error error
41 05
654 001
484 -194
-348 5%,
260 5

340 59,



Chapter 43

DECIMAL PLACES AND
SIGNIFICANT DIGITS

43-1 Decimal places

We have learned how approximate numbers are obtained
from counting, measuring and rounding off. We have scen that
counting sometimes gives exact values, while measuring and
rounding off always give approximate numbers.

In order to be able to discuss and understand opcrations such
as addition and multiplication of approximate numbers, we
have to study in more detail the notion of the precision of an
approximate number. From one point of view this was done in
Chapter 42, We will now consider two new ideas which are
also closcly related to the notion of precision: decimal places and
significant digits.

Do you remember what the decimal places of a number arc?
You studicd them in Chapter 23. All digits of a number written
to the right of the decimal point are called the decimal Places of the
number. Ior example, the numbers 7-2, 6:03, -417 have onc,
two and three decimal places, respectively. The number 46 has
no (or zero) decimal places.

43-2 Significant digits

The concept of significant digits is a harder one, and we will
have to develop it in several successive stages. In dealing with
cxact numbers, you may have heard the term significant digit,
First of all, any digits from 1 to 9 appearing in a number are
significant, because cach of these digits shows a definite number
of units in the place where that digit appcars. For cxample, in
the number 56-71, there are four significant digits: 5, 6, 7 and 1,
To sce this, 56:71 =5 x 10 +6 x 1 4 7 X +1 X1,
because the 5 shows that the number contains 5 tens, the 6
shows that the number contains 6 oncs, and similarly the 7 and

the 1 show 7 tenths and 1 hundredth,
220
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In the same way cach digit zero that is between digits from 1 to 9
is also called significant. In the number 603, the digit 0 is a
significant digit because it indicates that there are no, or zcro,
tens in the number which has 6 hundreds and 3 ones.

On the other hand, the number 023 has only two significant
digits, 2 and 3. You sec that this number has 2 hundredths and
3 thousandths, and this completely describes it. The digit 0
here is not a significant digit, because it is only used to locate
the decimal point. It performs the role of a place (position)
holder only, and we will not regard it as a significant digit.
In a decimal fraction, all 0 digits to the left of the Jirst non-zero digit
are not significant digits. ‘I'he numbers 001, -25, <0305 have one,
two and three significant digits, respectively,

Let us now consider the digit 0 and its meaning when it is
written at the end of a decimal fraction. Herve it is important to
know whether the decimal fraction is an exact number, or an
approximate number,

If the decimal fraction is an exact number, the digits 0 writ-
ten at the end do not have any significance. The decimal frac-
tions 3-6, 3-80, 3-8000 represent the same number. Therefore,
a digit 0 when written at the end of an exact decimal fraction is not
significant, and it docs not make any difference whether we omit
the zero or write it,

The situation is completely different when the digit 0 is
written at the end of a decimal fraction which represents an
approximate number. We will show that the 0 has in this casc a
definite meaning. Consider, for example, the two approximate
nurnbers 3-8 and 3-80, differing only by the digit 0 at the end.
These two decimal fractions represent two diflerent approxi-
mate numbers for the following reason.

The approximate number 3-8 could have been obtained
from rounding ofl to tenthis such numbers as 3-81, 3-82, 3.83,
3-84, or 3:75, 3-76, 3-77, 3-78, 3-79. This mcans that originally
in our number there might have been hundredths or thou-
sandths, but the number was rounded off to tenths. Suppose
the approximate number 3-8 was obtained by measuring. Then
the digit on the right (8) is in the tenths place and shows that
the measurement was made with a precision to the nearest
tenth,

If, however, an approximate number is written as 3-80, it
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means that the oncs (3), the tenths (8) and the hundredths (0)
are known to us. If 3-80 were obtained by rounding off to
hundredths, the original number might have had thousandths.
Supposc 3-80 is obtained by measuring, ‘Then the digit on the
right (0) is in the hundredths place and shows that the measur-
ment was made with a precision to the nearest hundredth.

We sce that the digit 0 appearing at the end of an approximate
decimal fraction has a definite meaning, and is therefore o be con-
sidered as a significant digit,

We will now give special attention to approximate values
written as whole numbers. An approximate whole number may
contain zeros at the right-hand end. Such a zerois a significant
digit if it shows the absence of units in its place. But often a zero
at the end replaces a worthless or unknown digit. Then the
zero 1s not a significant digit.

Let us look at an example. Suppose the approximate value
ol a weight is 1-7 kilograms. 'This number has three significant
digits. If we express this approximate value in grams, we get
the number 14,700 hecause there are 1,000 grams in a kilogram,
"This number also has only three significant digits, because the
two 0 digits at the end replace unknown digits,

If however the approximate number 14,700 grams was ob-
tained by using a more precise scale, which weighs with a pre-
cision to the nearest gram, then this approximate number 14,700
has five significant digits. T'o expresr this approximate number
in kilograms, we would have to write it as 14700 kilograms.
The last zero at the end is written in the thousandths place.
This says that the measurement was n:ade with a precision to
the ncarest thousandth of a kilogram; that is, to the ncarest
gram.

Thus, there is a difficulty in reading an approximate whole
number ending in zeros. We know that the number of signi-
ficant digits in an approximate whole number with digits 0 at
the end depends on the precision of that number. For example,
if we look at the approximate number 2,400, as it is written
down, we cannot decide in which of the following three ways
it was obtainced.

1. The number 2,400 may be the result of rounding off to

the nearest hundred or of measuring with a maximum
crror of 50. Then ncither zero is a significant digit.
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2. It may be the result of rounding off to the necarest ten or
of measuring with a maximum crror of 5. This makes the
first zero a significant digit, and the sccond zero not a
significant digit.

3. It may be the result of rounding off to the ncarest one or
of measuring with a maximum error of 1. Then both
zeros are significant digits,

We summarize our discussion in the following detailed
statement of the meaning of a significant digitin an approximate
number,

If an approximate number is written according to the basic agreement
in Chapter 40 then:

L. Anyof the digits 1,2, ..., 9 are significant.

2. Any digit 0 at the right-hand end of an approximate decimal
Sraction is significant.

3. Any digit 0 at the right-hand end of an approximate whole
number in the place showing the precision of the approximate
number (or of the measurement) is significant.

4. Any digit 0 between significant digits is significant,

43-3 Examples

The approximate decimal fractions 8-2, 7:06, -1230, -06{ have
two, three, four and two significant digits, respectively,

250 precise to the ncarest one has three significant digits,
because the 0 is in the ones place showing the precision.

2,500 precise to the nearest ten has three significant digits.
The first zero from the left is a significant digit, since it is in
the place showing the precision. The last zero (in the ones place)
is not significant,

2,500 precise to the nearest one has four significant digits,
because the last zero on the right is in the place showing the
precision; and the zero in the tens place is significant, because
itis between two significant digits, the 5 and the 0 at the end,

2,050 precise to the nearest one has four significant digits,

Let us look at some other examples of roundcd-off numbers,
If we round off the number 2,803 to tens, we obtain the ap-
proximate number 2,800 with three significant digits. If 2,803
is rounded off to hundreds, we also obtain the approximate
number 2,800, however with only two significant digits,
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Consider a rod mcasured to be 124 millimetres long with a
precision to the ncarest millimetre (10 millimetres make a
centimetre). The number 124 has three significant digits. If
we round it ofT'to tens, we obtain the approximate number 120,
containing only two significant digits.

Inorder to avoid any misunderstanding concerning the digits
0 at the end of approximute whole numbers, it is better to
leave out the 0 digits which replace worthless or rejected digits
(that is, which are not significant) and to change to larger
units. For example, when rounding off the number 83,542 1o
hundreds, it is better to write 83-5 thousands rather than
83,500. If the three zeros at the end of 3,569,000 squarc metres
are not significant, it would be better to write 3-569 square
kilometres (1 square kilometre equals 1,000,000 square metres),

Somctimes it is not convenient to write an approximate
number in larger units and drop the non-significant 0 digits.
Then it would be important to say which of the zeros are
worthless, One way of doing this is to underline the question-
able digit, as we have donc in Chapter 39. For example,

if x &~ 36 kilometres, then ¥ & 36,000 metres
(two significant digits);

il y ~ 84, then y ~ 840 centimetres
(two significant digits)

or_y ~ 8400 millimetres
(two significant digits).

We would be allowed to write 36 kilometres as 36,000 metres
only if we measured the distance with a precision to the nearest
mectre.

For a final review of the notions of decimal places and sig-
nificant digits, look at this list of approximate numbers.

7, one significant digit, no decineal places

*7, one significant digit, one decimal place

‘07, onc significant digit, two decimal places
*070, two significant digits, three decimal places
37, two significant digits, two decimal places
2:037, four siguificant digits, three decimal places
-307, three significant digits, three decimal places
2-:0370, five significant digits, four decimal places.
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43-4 Comparison of approximate numbers

We should now point out that in order to give an idea of the
precision and accuracy of an approximate number, we can tell
the number of ils decimal places or the number of ils significant digil:.

‘The method of counting the number of decimal places is
rccommended, when we compare approximnate values of the
same quantity. For example, the first weighing of an object is
147 grams, and the second weighing, using a more precise
scale is, 14:68+ grams. The second approximate value is clearly
more accurate and more precise than the first, because it has
three decimal places, while the first has only one decimal place.,

In changing from onc unit of measurement to another in
the metric system, the number of decimal places changes.
But the number of significant digits remains unchanged. For
example 254 centimetres = 2:34 metres. The number of sig-
nificant digits in cach number is three. But the first number
has no decimal places, while the other has two. For this
reason, it is a good idea to compare the accuracy of various
approximate numbers by counting the number of their sig-
nificant digits. For example, if’ measusing a segment resulted
m the number 6-3 centimetres, and measuring the length of a
field gave the number 254 metres, we must admit that the
sccond approximate number is more accurate than the first,
since the second has three significant digits and the first only
two.

43-5 Exact whole numbers

"The major part of the discussion in this chapter was devoted
to the meaning of significant digits in approximate numbers.
For the sake of completeness, we give now a rather simple
statement on the meaning of significant digits iu exact numbers,

In exact whole numbers, all the digits are significant.

By the significant digits of an exact decimal fraction, we mean all its
digils except zeros written to the left of its first non-zero digit and zeros
written at the right-hand end.

The exact whole numbers 45, 305, 27,108, 560,.J0 have two,
three, five and six significant digits, respectively.

The exact decimal fractions 8:2, 7-06, -1230, ‘61 have two,
three, three and two significant digits, respectively.
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ExErcise 43-5A

1. How many significant digits has cach of the following ap-
proximatc numbers given with a precision to the nearest
ten?

230, 480, 2,080, 81,050, 70,190, 13,700, 12,000, 201,000

2. How many significant digits has cach of the following cxact
numbers?

230, 480, 2,080, 81,050, 70,190, 13,700, 12,000, 201,000

3. How many significant digits has cach of the following ap-

proximate numbers, given with a precision to the ncarest
hundred?

32,400, 70,300, 190,100, 1-£9,000, 10,050,000

4. How many decimal places and how many significant digits
has cach of the following approximate decimal fractions?
8-5, 42, -703, 605, 1-003, 20103, -03, -004, -005, 2-60,
8-240, 8-040, -070, -2080, -300, 2500, 603-100, 2004-50

5. How many decimal places and how many significant digits
has cach of the numbers listed in Question 4, if they are
given as exact decimal fractions?

6. Explain the difference between the two recordings: ““the
length of the segment is 12 inches” and “the length of the
segment is 120 inches”.

7. Recalling that there are 1,000 grams in a kilogram, express
cach of the following in kilograms if the 0 digits at the end
arc significant.

2,860 grams, 8,700 grams, 250 grams, 23,400 grams

8, Express in kilograms cach of the numbers in Question 7 if

the 0 digits at the end are non-significant.



Chapter 44

ADDITION AND SUBTRACTION
OF APPROXIMATE NUMBERS

44-1 Introduction

Let us look at a simple problem from everyday life, Find the
length of a fence around a rectangular field, To solve this
problem, we must first measure the length and the width of
the rectangle. Suppose we obtain the approximate numbers 225
yards and 112 yards. To find the answer to our problem, the
perimeter of the rectangle, we must add the lengths of the four
sides, which are these approximate numbers:

295 - 225 4 112 - 112 == 674

In this way we are led to perform the cperation of addition
on approximate numbers. W clearly obtain the approximate
number 674 yards,

It we had to find the arca of the same field, we would get it
by multiplying the two approximate numbers:

225 112 = 25,200

Thus, in the sccond case we must perforta the operation off
multiplication on approximate numbers. The result of 25,200
square yards 1s clearly also an approximate number.,

The question naturally arises, what kind ol approximate
number is this arca? In other words, which digits of the ap-
proximate number 25,200 arc reliable and which v not? We
ask the same question about the length we found for the fence.

We must thus discuss computations with approximate num-
bers. "I'he results of such operations are also approximate
numbers.

As we have seen before, approximate numbers are obtained
from counting, measuring and rounding off. We sce now that besides
these three sources, there is still a fourth source for obtaining
approximate numbers, namely from computations or operations.

Whenever we calculate with numbers, one or more of which is
227
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approximate, the result of the calculation is an approximate
number.

We will discover some rules which tell us which digits of such
a sum or product are reliable, and how to record the answer
according to our basic agrecment.

We will study addition and subtraction of approximate num-
bers in two stages:

1. Addition and subtraction of approximate whole numbers.
2. Addition and subtraction of approximate decimal frac-
tions.

44-2 Addition and subtraction of approximate
whole numbers

In the previous example of the rectangular field whose length
and width are 225 and 112 yards respectively, we saw that the
fence all round had to be 674 yards long. However, we need
to find out how reliable the digits of 674 arc. We note that the
length 225 yards and the width 112 yards arc approximate
numbers with a precision to the nearest yard. Thus, the ones
digits 5, 5, 2, 2 of the terms in the sum

225 ++ 225 + 112 + 112

arc questionable, which leads us to believe that certainly the
ones digit 4 in the answer 674 is questionable,

Let us now consider a slightly harder problem. In a certain
region there is a town with 720 people (counted with a pre-
cision to the nearest ten), two villaees with 234 and 88 people
and farm land with a population of 4,300 people (counted with
a precision to the ncarest hundred). Find the total population
of the region.

Adding the four numbers in the usual way, we obtain

4,300

5,342

Since the terms are approximate numbers obtained by counting
various large sets, the number 5,34 is clearly also an approxi-
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mate number. The question is which digits of this sum are to
be kept in the final answer.

In the first number, 4,300, precise to the nearest hundred,
the tens digit and the ones digit arc unknown to us. We do
know the tens digit and the ones digit in the number 88, How-
cever, when we add these to unknown digits in the number
4,300, the tens digit and the ones digit in the sum 5,342 remain
unknown. We simply have to disregard them in the final result.
When we first add the terms, we will take into account the tens
digits and the ones digits in those terms in which they are
known. But then we will round off the sum obtained to get the
final result.

Let us writc down the problem as follows. In place of digits
unknown to us we will write the letter “U” for “unknown”.

430U
720
234
88
520U

Rounding off the sum 5,342 (obtained in the usual way), we
rcject the worthless digits of tens and of ones and obtain

5,342 ~ 5,300 for the final answer.

We sce that in the final result we rejected—that is, replaced
by zcros—the digits in those places in the sum for which the
digits in even one of the addends are unknown.

We car write down what we have discussed as the following
rule:

In adding approximate whole numbers, we reject in the final result
(according to the fundamental rule for rounding off) digits in those
Places in the sum for which the digits are unknown even in one of the
approximate terms. (This rule will be included in a more general
rule later.)

We use this rule even if there are one or more exact numbers
among the terms. (In the cxample above, 88 was an exact
number,)

Consider now the following simple problem. From a stock
of 480 pounds of sugar, 117 pounds were sold in one day. How
much sugar remained?
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Here we have to subtract approximate numbers.

(a) 480 (b)) 48U
~117 117
363 370

Taking into consideration the difference 363 obtained in the
usual way (a), and the unknown digit in the ones place (4), we
round off 363 to tens to obtain the final result, 360 pounds.

It is not hard to sce that our rule for adding approximate
wholc numbers will also apply to subtraction,

44-3 Addition and subtraction of approximate
decimal fractions

Suppose two or more approximate numbers, written accord-
ing to our basic agreement, have the same number of decimal
places. Then all but the last digit of cach number is rcliable, the
last digit of cach being questionable. We will see that if we
simply add the numbers, then all digits in the sum cxcept the
last are reliable and the last is questionable. The sum obtained
is thusautomatically recorded according to our basic agrcement,
For example:

186
-+ 239
42-5

We will verify that this procedure gives the correct results by
using some rather extensive reasoning based on the mecaning of
approximate numbers and on propertics of incqualities.

From our work on order propertics, we know the following
statement to be always true:

If g, b, ¢, d, ¢, f are any numbers such that

c<a<d
and e<b<f
then ct+e<a+b<d-f

You may read, “If ¢ is between ¢ and 4, and 4 is between ¢ and f;
then a 4 ) is between ¢ + e and d -+ f.”” In other words, if two
double incqualities hold, then the double inequality obtained
by adding the corresponding terms also holds.



Addition and Subtraction of Approximate Numbers 231

Return now to our cxample. Let @ and 4 be the approximate
numbers that we arc representing by 18:6 and 23-9, respectively.

1855 < a < 1865

and, similarly, 2385 < b < 2395
We add and obtain 4240 < a - 6 < 42:60
Therefore, a b =186 4 239 ~ 42:5

We move now to the casc when the approximate terms to be
added have different numbers of decimal places. We have to be
careful here, because the sum obtained in the usual way will
contain worthless digits and will have to be rounded off. Con-
sider the following example.

Let a machine weigh 3-507 kilograms, and let a wooden box,
in which the machine is placed, weigh 2-8 kilograms. What is
the total weight of the box with the machine inside?

To find the answer we proceed as follows,

(@)  3-507 (b) %507 () + 3507
+2:8 +92-8UU +9:8

6-307 6-3UU 6-:307

539/ e

We will now cxplain what we have done. In (a) we added
the decimal fractions in the usual way, treating the terms as if
they were cxact, and not approximate, numbers. In (b) we
show that such simplified addition of approximate numbers
with different numbers of decimal places is inappropriate. In
the sum in (@) there are worthless digits, Thercfore, the answer
must not be written according to our basic agreement. Actually,
in the first term we know the ones, tenths, hundredths and
thousandths. In the second term we know cnly oncs and tenths,
and nothing about the further decimal places. It is, therefore,
clear that in the sum the hundredths digit (0) and the thou-
sandths digit (7) do not descrve any confidence at all. They are
worthless and ought to be rejected. The addition of the ap-
proximate numbers should be done as shown in (¢).

Using double incqualities as we did before, we can verify that
method (c¢) gives the cori~ct result. Let @ and b be the approxi-
mate numbers that we arce representing by 3-507 and 2-8,

respectively.
BCM2-Q
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3:5065 < a < 35075

275 < b <285

6:2565 < a + b < 6-3575

6:2 <a+4 b <64
a+b=23507 4+ 2.8 ~ 63

Notice that the left-hand sum, 6-2565, is not rounded off
according to the fundamental rule, but is rounded down. The
reason is this. If 6-2 < 6-2565 and 6-2565 < a + b, then it fol-
lows, by transitivity of “less than”, that 6-2 < a + 4. But jt
does not follow that 6-3 < g +- b, Similarly, the right-hand
sum is rounded up.

Subtraction can be treated in exactly the same way. For
cxample, let us subtract the approximate number 14-2714 from
the approximate number 42.7,

42.7 42.70UU 49.7

~14-2714 —142714 —14-2714
28-4286 28-5UUU 28-4286
) 284

Again the correct way of recording the subtraction is the
third onc.

We will verify that this procedure for subtracting approxi-
mate numbers is correct by again using the meaning of ap-
proximate numbers and propertics of incqualitics. To do it, we
first have to obtain some more facts about incqualities,

Wesaw thatifc <a <dande < b < fare truc statcments,
thene +e <a -+ b <d+f Do you think the corresponding
subtraction incqualitics are truc? Is ¢ — ¢ < ¢ — 4 <d —f?In
fact, this is not true. To show that the statement is false, it is
cnough to give one instance when it is false, Suppose a and 4
arc such that

2<a<3
and l<b<3
‘Then the subtraction incqualities would be
l<a—-b<0

But the difference @ — 4 cannot at the same time be greater
than 1 and less than 0, So our statement is false,
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Is there not another way we can usc inequalities in subtrac-
tion? It is not hard to sce that the following statement does hold:

If c<a
and e>b
then c—e<a—b

The proof is very simple. ¢ < a and ¢ > % mcan the same
thing as ¢ <<a and —e¢ < —b. We can add the last two in-
cqualities and obtain

¢+ (—e€) <a+ (=0)

that is, c—e<<a-—b
Check this statement by substituting any numbers for a, b, ¢, e.
When the last statement is extended to double incqualitics, we
obtain the following true statement,

Ifa, b, ¢, d, e, f; arc any numbers such that

c<a<d

and e>b>f

then c—e<a—b<d~f

On the left, from a number On the right, from a number
less than a, we subtract greater than a, we subtract a
a number greater than 4. number less than 4,

With the help of our new double subtraction incquality, we
can see that our method of subtracting approximate numbers is
correct. Here is the previous problem.

4265 <a <4275
1427145 > b > 1427135
2837855 <a — b < 285

a—bn~284

From the discussion of the examples on addition and sub-
traction of approximate numbers_ it is clear that even onc un-
known digit in any place makes the digit in that place in the
answer worthless. Therefore, in addition and subtraction of
approximate decimal fractions we will use the following rule.

ADDITION AND SUBTRACTION RULE

When adding or subtracting approximate decimal Jractions, we pre-
serve only as many decimal places in the result as there are in the
approximate term with the least number of decimal places,
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We clearly sec that our addition and subtraction rule is
based on the idca of decimal places.

The addition rule for approximate whole numbers that we
have already discovered is really contained here, To sce this,
let us return to the problem in Section 44-2 about the popula-
tion of a region. This time et us usc a larger unit, say hundreds,
to represent the counts. We then have:

The population of the farm land 43 hundreds
‘The population of the town 72 hundreds
The population of the first village 2:34 hundreds
The population of the sccond village -88 hundreds

The problem is now reduced to adding approximate decimal
fractions, and we apply our addition and subtraction rule.

(a) 43 (b) 43-UU (c) 43
7-2 7-2U 7-2

2.34 234 2.34

88 .88 88

5342 520U 5342

53 hundreds

We round off the sum in (¢) to ones because the term 43 has
no decimal places.

Thus, we sce that to apply our addition and subtraction rule
to approximate whole numbers, we only have to avoid zeros
which replace unknown or rejected digits and express the
approximate terms in larger units.

Exercise 44-3A
L. Find the sum of the approximate numbers.

a. 53 b. 2130 c. 2725
-038 420 -6482
35200 -01686

2. For Question la, carry out the complete analysis using
double inequalitics.

3. Find the differences of the approximate numbers.

a. 1430 b. 510 c. 8353
— 275 — -282 — +0065
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4. For Question 3b, carry out the complete analysis using
double incqualities.

5. A rectangular field has length 1,240 yards and width 136
yards. Find the perimeter of the field.

6. A park had 7,300 trees. In one year 860 trees were cut down,
How many trees remained in the park?

7. A wire was cut up into four parts of lengths 3-54 yards,
+756 yards, 8-49 yards, 1-138 yards. Find the original length
of the wire.

8. A bottle of milk weighs 2.42 pounds. The weight of the
bottle is -543 pounds. What is the weight of the milk?



Chapter 45

MULTIPLICATION AND DIVISION
OF APPROXIMATE NUMBERS

45-1 Introduction

In this chapter we will discuss tlic remaining two opcrations
on approximate numbers—multiplication and division. In
Chapter 44 we developed a procedure for adding and sub-
tracting approximate numbers in twe stages—first for approxi-
mate wholc numbers, then for approximate decimal fractions.
At the end of the chapter, however, we showed that addition
and subtraction of approximate whole numbers can casily be
reduced to the same operations on approximate decimal
fractions. We will find the same situat, 1 in multiplication and
division, As a matter of fact, we will not even find it important
to distinguish between the two types of approximzte numbers.
Instcad, we will simply discuss a single procedure for multiply-
ing and dividing approximate numbers,

45-2 Multiplication

Consider a very simple problem of the same kind as at the
beginning of Chapter 44, Suppose the sides of a rectangular
ficld are 2534 yards and 194 yards long, measured with a pre-
cision to the nearest yard. To find the area of the field, we
multiply 25¢ and 194 and obtain 49,276 square yards. Since
the measures of the sides are approximate numbers, it is clear
that their product only approximately gives the arca and prob-
abl\ has to be rounded off. Again, we must ask which digits of
this product should be retained in the final result.

Because of the precision of the measurement, we know that
the unknown exact values of the length and of the width of the
ficld are greater than or equal to 253-5 yards and 193:5 yards,
respectively. And we know they are less than 9254-5 yards and

194-5 yards, respectively. Therefore, the rectangular area is
236
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greater than 49,052-25 square yards (253-5 x 193:5), but less
than 49,500-25 square yards (2545 x 194-5).

As you can sce, we have just used the following true state-
ment about inequalities:

If a, b, ¢, d, e, f arc any non-negative numbers such that

c<a<d
and e<b<f
then cXe<aXxb<dxf

The assumption that all the numbers involved are non-
ncgative is essential, Can you give an example that shows that
the statement is not necessarily true if you allow some of the
numbers to be negative?

We can now set down the solution to our problem as follows:

2535 <a < 2545
1935 < b < 1945
Theretore, 49,052:25 < a X b < 49,500-25
49,000 < a x b < 49,500
a x b~ 49,300

This longer procedure shows us that the first two digits of
our original product 49, 6 for the arca are reliable (4 and 9),
and the third digit (2) is ._-estionable. According to our basic
agrecement, only these first tu. e digits ought to be preserved.
This means that we have to round off the product 49,276 to
hundreds to obtain the final result of 49,300 square yards.

This problem showcd us that if we multiply two approximate
numbers, cach having three significant digits, their product is
an approximate number also containing three significant
digits.

The use of “U” in place of unknown digits leads to the same
result:

(@) 254 () 254U (€) 254
194 194U 194
1016 UuUuU 1016
2286 1016 U 2286
254 2286U 254
49276 254U 49276

4920UUU 49300


http:49,500.25
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Rounding off the product 49,276 to three significant digits
as required by (4), we obtain the final answer 49,300 (¢).

In a similar way we can show that if we multiply two
approximate numbers, one with three significant digits and the
other with two significant digits, the product is an approximate
number with two significant digits. In gencral, the product of
two approximatc numbers will he an approximate number
with as many significant digits as the number of significant
digits in the factor with the lesser number of significant digits,
As we will illustrate later, exactly the same can be said about
division.

MULTIPLICATION AND DIVISION RULE

When multiplying or dividing approximate numbers, in the result we
preserve as many significant digits as there are in the original approxi-
mate number with the lesser number of significant digils,

We sce now clearly that our multiplication and division rule
is based on the idea of significant digits. On the other hand, our
rule for addition and subtraction is based on the jdea of
decimal places.

Here is an additional illustration of the satisfactory results
obtained using our multiplication and division rule. We will
consider a problem using common fractions repacsented by
decimal fractions.

Find the product of 1}2 and 1%, following the instructions
below:

a. Represent the common fractions as decimal fractions,

b. Round off the decimal representing 11¢ to four significant

digits.

¢. Round off thie decimal representing 13 to three significant

digits.
19 =1.9090. . . ~ 1-909

11

1% =1.8333 ... ~ 183

[}

1909 x 183 = 349347 =~ 3.49

The result is rounded off to three significant digits, as many
as there arc in the factor with the lesser number of significant
digits.
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Let us now compare the approximate result with the cxact
value of the product of the two fractions.
110 x 18 =21 x 21l =21 =7 = 3.50

11 [} ¢
Our approximate result 3-49 differs from the exact product
3-50 by only onc unit in the third significant digit. In fact, we
expect the last significant digit of an approximate number to
be questionable. Thercfore, the result we obtained by rounding
off the product to three significant digits, according to our rule
for multiplication and division, is satisfactory.

45-3 Division

We now consider a problem leading to division of approxi-
matc numbers. Mcasurements show that the weight of a piece
of iron is 491 grams and that its volume is 63 cubic centimetres.
Find the weight of one cubic centimetre of this iron,

491 -63=779...~78

Here the dividend is an approximate number with three
significant digits, the divisor an approximate number with only
two significant digits. Our rule says that wc should preserve
two significant digits in the quotient,

Let us verify our solution by assuming that the unknown
exact weight of the picce of iron is greater than or cqual to
490-5 grams and less than 491-5 grams, and that its unknown
exact volume is greater than or equal to 62-5 cubic centimetres
and less than 63-5 cubic centimetres.

We know that any quotient of positive numbers decreases if
we decrease the dividend or increase the divisor. Also, a
quoticnt of positive numbers increases if we increase the
dividend or decrease the divisor.

It follows that:

490:5 - 63:5 = 7-724 . . . is less than the quoticnt
491-5 - 62:5 = 7-864 . .. is greater than the quotient

Lect us make a general statement about the division of double
incqualities, :
If a, b, ¢, d, ¢, f arc any positive numbers such that

c<a<d
and fF>b>e
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then tr-f<a+b<d=e
A number less than a A number greater than a

is divided by a number s divided by a number
grealer than b, less than b,

Do you scc a similarity between this statcment and the
statement involving subtraction of double incqualitics?
Can you illustrate by an cxample that this is not necessarily
true if any of the numbers involved are negative?
Here is a solution of our problem using the statement about
division of double incqualitics,
4905 <a <4915
635 >b > 625
Thercfore 4905 - 635 <a = b < 4915 - 62-5

that is, 17724, <a+b< 7864...
77<ax-b< 79
a-ba 78

We sce that in the quotient 491 = 63 = 7.79 | . . , obtained
at the beginning of our problem, the first digit is reliable, the
second digit is questionable and the remaining digits are worth-
less. We conclude therefore that our rounding off to two
significant digits (7-8) is correct, and in accord with our basic
agreement for recording approximate numbers,

We obtain the same result, if we write “U” instead of the
unknown digits in the division.

7.8 U

63-U)491-UU
410

50 UU

504 U

uu

45-4 Operations with one approximate number and
one exact number

Our multiplication and division rule can also be applied in
multiplication or division when one number is an approximate
number and the other is an exact number. For cxample, multiply
an exact number. A satisfactory answer is obtained by presery-
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ing in the product four significant digits, the same number of
significant digits as in the approximate factor. The number of
significant digits in the exact number is simply not taken into
account,

Multiply the approximate number 24-3 by the exact number
34, In the product 826-2 we keep three significant digits,
because the approximate factor 24-3 has three significant
digits. ‘Therefore, the answer is

24-3 x 34 ~ 826

We conclude with the following rule:
When applying our multiplication and division rule to mulliplication
or division of an approximate number by an exact number, we keep in the

Jinal answer as many significant digils as in the approximate number
(and disregard the number of significant digits of the exact number).

Exercise 45-4A
L. Find the products of the approximate numbers.

a, -53 b. 4800 c. 1928
-06 523 -00552

2. For Question la, carry out the complete analysis using
double inequalities.

3. Find the product of the approximatec number +431 and the
exact number 54.

4. A shop reccived 183 Loxes. Each box contained 24 pounds
of oranges. I'ind the weight of the oranges received.

5. I'ind the quoticnts of the approximate numbers,
a. ‘06 = 2-3 b. 800 - 35 c. -385 + 27

6. Tind the quotient of the approximate number 2,600 divided
by the exact number 165.

7. Find the product 4% x -5 in two ways.

a. Represent the common fractions as decimal fractions and
take cach of them with a precision to the nearest thou-
sandth,

b, Multiply the common fractions and represent the result
as a decimal fraction. Then take it with a precision to the
necarest thousandtl,
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8. Find the quoticnt 4% = 42 with a precision to the nearest
hundredth in two ways,
a. Represent each common fraction as a decimal fraction
with two decimal places. Divide the decimal fractions.
b. Divide the common fractions and represent the quotient
as a decimal fraction with two decimal places.



Chapter 46

COMEINED OPERATIONS ON
APPROXIMATE NUMBERS

46-1 Introduction

In the previous two chapters we lcarned how to add, sub-
tract, multiply and divide approximate numbers. Many simple
problems, however, require a combination of these opcrations.

For cxample, suppose measurement of the length, width
and height of a parallelepiped gives the following approximate
numbers:

length, | = 347 om,
width, w = 268 cm.
height, & =42-1 cm,

To find the volume, ¥, of the parallelepiped we use the known
formula
V=1Ixwxh=347 x 26:8 x 42:1 cubic cm.

We have to perform two multiplications using our rule for
multiplying or dividing approximate numbers, First we find
347 x 26-8. Then we multiply the product, an intermediate
result, by 42-1 to get the final result. Note the distinction we
make between the final result, obtained after the last operation
is performed, and the intermediate results obtained at carlier
stages.

If we are asked to find the total surface arca of the same solid
we have

S = (I xw) +(I xw) -+ <h) 4+ (I x k) + (10 x k) +(w x k)
= (2xIxw)4-(2 xIxh) +(2 xw xh)
= (2 X347 x26-8) +(2 x34:7 x42-1) 4 (2 x 26-8 x42-1)

Here we have to multiply six times and add twice,

The rules concerning the order of performing combined
operations on cxact numbers are also valid for approximate
numbers. Thus to find the surface arca, S, we proceed in the
following order. First we perform all multiplications, and then

243
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add the three terms of the sum. How many intermediate
results will we have?

Could we solve problems involving more than one opcration
on approximate numbers by rounding off the intermediate
results by our rules? If we did this we would increase the
errors of our approximate numbers even more by rounding off.
The accumulation of rounding-off crrors could substantially
influence the final result. It turns out that in many cases of
combined operations, this influence is greatly reduced in the
final result if in cach of the intermediate results we preserve
onc more digit than our rules for operations on approximate
numbers tell us to preserve. Let us underline these extra digits.
In the final result, however, we will reject the extra digit,
Here is the rule we will use.

INTERMEDIATE RESULT RULE

In solving problems which involve more than one operation on
approximate numbers, we preserve in the intermediate resulls one more
digit than recommended by our rules for operations on approximate
numbers. In determining the number of significant digits in an inter-
mediale resull, the extra digit is not counted, according to our basic
agreement for rounding off approximate numbers.

46-2 An example

We will now illustrate this procedure for combined opera-
tions. Compute the value of the quotient

248 x 175

(23 — 1) x

~ha

Let us first represent the given common fractions as decimal
fractions and then round them off to hundredths. We have

213 = 28125 . .. ~ 2.8l
17; = 13888 . . , ~ 139
= 2857...~ -29

oy

k2

Now we must compute
- 281 X 1-39
(2-81 — 1-39) x -29
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(1) Intermediate result: (2) Intermediate result:
2-81 2:81
1-39 —1-39
2529 142
843
281
39059
3-906
(3) Intermediate result: (4) Tinal result:
1-42 390x - 41x
-29 =948 ~ 95

12 78

No

|

N

8
11

RS

|

N
(=]

RS
—
iN

Final answer = 9.5

As the first opcration, we multiplied two approximate num-
bers with three significant digits cach. But we rounded off the
product to four significant digits, underlining the last digit (6)
as the extra digit,

The second operation gave as a difference an approximate
number having two decimal Places and three significant digits,
Note that there was no cxtra digit to preserve,

As the third operation, we multiplicd approximate numbers
with three and two significant digits. The product was rounded
off to three significant digts, the third digit (2) being marked
as an extra digit,

The fourth operation consisted in dividing an approximate
nuinber with three significant digits by an approximate num-
ber with two significant digits (the extra digits do not enter
into this count). This gives the final result and therefore we
reject the extra digit, preserving only two significant digits.

«Ct us check our approximate answer by calculating the
cxact answer using the original common fractions. We obtain

94% =9603. ..
We sce, therefore, that in the approximate value 9-5 only the

last digit was questionable. This is in accordance with our basic
agreement for recording approximate numbers,
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EXERcISE 46-2A

1.

Perform the operations on the approximate numbers.

a. 2:98 — (1-4 + -387)

b. 23,000 — (2,645 + 15,300 — 1,639)

c. (562 +87) x 7

d. 2.75 4 (1-2 — -30103)

e. 36,408 = (236 x 28)

f. 5,325 x [(832,860 = 211) x 37]

g [45 — (03 x 1-5)] - 7-8

Find the volume, T, of the parallelepiped with length,
[ =347 cm., width, w = 26-8 cm., and height, & = 42:1
cm.

Find the total surface arca of the parallelepiped in Ques-
tion 2,



ANSWERS TO SELECTED PROBLEMS

CHAPTER 22

ExErcise 22-2A

4. You cannot subtract § from both sides of § < 2, because § — 2
is not yet defined.

ExERrcisE 22-6A
4. A somewhat formal way you could use would be this. Since

Gl M”20 and E- S M
b n b m\ n

a. m _¢ . m
A
is the same as the inequality
a_n _c_n
PR
CHAPTER 23
ExEercirw 23-1B
2, a. 103 b, 10217 c. 4579
3. a. 122|cvcn b. l4’0uvcn C. 2112463cvcn
6. a. base three b. base five c. base six d. base seven
Exercise 23-2C
1, a. ‘6 b. -5 c. 75 d. 625
e. '15 f. -84 g. 62 h, 062
i. 34 jo 25 k. 6:75 1. 1-125
m. 2:25 n. 804 o. 1842 p. 10625
Exercise 23-2D
1. a. 5 b. 25 c. 75 d. ‘6
e. 7 £, 625 g. 3125
2. a. 16 b. -142857 c. - d. -09
e. 6 f. 83 g 5-38461

BCM2—R 247
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Exercise 23-3A

2.a. 3 b} c s d. }

3. a, -l b. -111...
e 3 f. -333...

CHAPTER 24

ExErcise 24-1A
1, a. 813

Exercise 24-1B
2. a. 2:3 is greater by 0-71

c. 0-12is greater by 0-1183
3. a. 12:42 inches

b. 44-8

ExErcise 24-2B

1. a. 7 b. 09
e. 0-07 f. 0309
2. a. 3200 b. 750
e. 7-63 f. 0762
FxErcisE 24-3A
1. a. 44-4 b. 729-84 ¢. 2-01
2, a. 3 b. 1 c. 8
g 0 h. 3 i. 40
3. a. 42 b, 527 c. 29
LExercise 24-3B
2. a. 8:655 b. 1.772
3. a. 0:6595 b. 12:336
Exercise 24-4A
1. a, 06 b. 56 c. 0-03
g 79 h. I-44 i 0-005
2. a. 8:3366 b. 0-115605 c.
ExErcise 24-5A
2, a. 40 b. 70 c. 600
g. 50 h. 1100 1. 33
3. a. 146 b. 021 «¢. 5537

Answers to Selected Problems

el £1 g2l hQ
c 2 d. 222, ..
g 4 '

c. 126-62 d. 23-458

b. 27:32 is greater by 63-202
d. 0-3 is greater by 0-132
b. 2-4] inches

c. 32 d. 572
g. 9732 h. 10-572

c. 12 d. 1940-1

g. 79:321 h. 001

d. 5821 e, 1274 f, |
d. 10 e. 50 £ 8

d. 569 e. 025302 £ 6.904

c. 0857
c. 077
d. 001 e. 02 f. 9.9
Jjo 015 k. 0714 1 ]0
50611 d. 0:0001218
d. 8 e. 800 f. 0-08
d. 098
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ExErcisE 24-6A
L i -

1. Percentage 50 , 25 | 12} |75 ‘ 20 ' 10
Common fraction L x ! 1 | 1 ’ o
Decimal fraction 05 | 025 : 0-125 ‘ 075 © 02 ’ 0-1

Percentage 5 ' 21 ) 334 60 | 35
S S S A
! |
Common_fraction R 3 o
Decimal fraction 0-05 j 0:025 ‘ 0-33 ‘ 06 | 035

2. a. [4) b. 4} c. 50% shillings d. 312-48

Exereise 24-6B

L a. 335 b. } c iy d. &5 e 45y £

2. a. 6658% b. 40%,  c. 400% d. 80% e, 329% £ 1%

g 7% h. 5319,

3. a. 3 minutes b. 91 days c. 32 shillings

4. a. 11% b, 509, «c. 3009 d. 80% e. 9% f£. 683 marks

5. a. 16 b. 180 ¢ 2,3076 d. £1765:6

CHAPTER 25

EXERCISE 25-1A

1. 3 2. No whole-number answer
3. 7 4, 7

5. No whole-number answer 6. No whole-number answer
7. 0

CHAPTER 26

ExERrcisE 26-3A

1. a. Latitude S 30° b. Longitude E 45°
c. Temperature 15° below zero  d. 10 minutes before the hour
e. A loss of 7 shillings f. A gain of 50 shillings

2. a. pos ] b. neg 11 c. neg 17 d. pos 73
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e. neg 129 f. pos8 g. ncg 42 h. neg9
i. neg 23 j- pos 14 k. zero
ExercisE 26-4A
I. a. pos 6 < pos 10 b. neg 6 > neg 10
¢. pos 15 > neg 15 d. neg 15 < pos 15
e. ncg 200 > neg 1000 f. 0>necg3
g 0 < pos8 h. neg Il <0

Exercise 26-4B
L. a. The first place is north of the second place.
The sccond place is south of the first place.
My watch is ahead of my fricnd’s watch,
My friend’s watch is behind my watch.
¢. The man on the platform is below the man on the ground.
The man on the ground is above the man on the platform,
d. Noon today is colder than noon yesterday.,
Noon yesterday was hetier than noon today.
e. Kofi starts ahcad of Kwesi,
Kwesi starts behind Kofi.

ExerciseE 26-4C

neg 5 > neg 8; pos 5 < pos 8

+ pos2 < pos 11; neg 2 > neg 11
pos2 >neg 11; neg 2 < pos 11
pos7 >0; neg7 <0

0 >neg2; 0 < pos?2

neg b < neg 1 pos 6 > pos |

+ pos 10 >0; neg 10 < 0

b

»

g @

® N e

ExErcisE 26-5A
1. a. {pos 21, pos 22, pos 23, pos 24} b. {pos I, 0, neg 1}

c. {neg2, neg 1} d. {ncg6} e {} £{} g {pos 1}
2. a. Sct of integers between neg 3 and 0

b. Set of integers between pos 18 and pos 23

¢. Sct of integers between pos 2 and neg 2

d. Sct of integers between neg 1 and pos 1

e. Sct of integers between pos 101 and pos 102

CHAPTER 27

ExEeRrcisE 27-1A
I.a. pos6 b, pos7 ¢ pos4 d. pos3 e. pos2 f. pos8
2. a. pos4 b, pos4 ¢ pos4d d. pos6 e. pos6 f. 0
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Exercise 27-2B

1. a. pos 3 b. neg 1 c. 0 d. pos 6
e. pos 3 f. neg2 g. neg8  h.posb
i. 0 Jo negb

Exercise 27-2C

2. a. pos2 —pos 1 = [J; pos2 — pos | = pos |
b. pos3 — neg b = [J; neg 5 - pos 8 = pos 3
¢. 0 —neg4 = [J;neg4 4 pos4 =20
d. negl —neg5 = [J;negd — neg4 = neg |
e. pos3 — 0= :0 -+ pos 3 = pos 3
f. pos | — pos 7 = [J; pos 7 — pos 6 = pos |
g. neg3 —pos 3 = [J; pos 3 — pos 6 = neg 3
h. neg 11 — neg?2 = [J; neg2 + neg 9 = neg 11

3. a. N29° — §50°= [J; S50° + J = N 29°

S50 -+ N 79° = N 29°
b. 3.10 p.m. — 2.55 p.m. = []

2.55 p.m. 4 [ = 3.10 p.m.,
2.55 p.m. + 15 min. = 3.10 p.m.
c —53ft. —0=;04+ 0= —53ft;

0 — 53 ft. = —33 ft.
d, 95° — 102° = [J; 102° + [ = 95°;
102° — 7° = 95°

e. 5 ft. ahead — 5 ft. bchind = J
5 ft. behind -}- [ = 5 ft. ahead
5 ft. behind + 10 ft. = 5 ft. ahead

Exercise 27-3A

1. a. The set of integers is closed under addition.
b, The set of integers is closed under subtraction.

2. The set of fractions, excepting 0, is closed under division.
ExErcise 27-3B

i, a. pos3 | [neg3] =0 b. neg3 + [pos3] =0
¢ Incg l] +posl =0 d. [pos5| -Fnegb =0

e, ‘pos 9 - [neg9| =0 f. [0]+-0=0 g opposites

4.~ — ] ]
hl ' i { { | $

neg3 aeg 2 nc;; 1 0 po's 1 po's 2 poYS 3

i. Their suin is 0,
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Exercise 27-3C
1. a, pus 3 - pos | = @
pos3 -i-neg 1 = @
pos 3 — pos | == pos 3 ;- @
b. neg 3 - neg 1 = f_@
neg3 - pos | = neg +

neg 3 - neg | = neg 3 — pos 1

€ pos2 - posh == |neg+
posZ - neg 6 —= mg X3

Pos 2 — pos 6 == pos 2 - @
d. 0 — pos 7 == @
0»§-ncg7-—- m
0 —pos7 =0 - @
e 0—neg7 =
0+ @ = pos 7
0 —neg7 =0- @

CHAPTER 28

EXERcISE 28-3A
2. a. —¢ b. 2 c. 0 d. (—6

s

ExercisE 28-4B
1. a. pos 3 + neg 4 == pos 3 — (opp. of neg 4)
= pos 3 — pos 4
= neg |
or 3 -+ (~-4) = 3 — [opp. of (-—-BD]

= —_ 4 = ~-]

b. neg 3 4 neg 3 = neg 3 — (opp. of neg 3)
=neg 3 — pos 3
= neg 6
or (=3) 4 (=3) = (~3) — [opp. of (—3)]

(—6)

1o
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¢. 0 4 negl =0 — [opp. of neg 1]

= 0 — [pos 1]
=: neg 1
or 0 + (—1) =0- [opp of (—1)]
=0 —
= (—
d. 0 —neg4 =0+ [opp of neg 4]
= 0 - [pos 4]
= pos 4
or 0 — (—4) = 0 + [opp. of (—4)]
=044
=4
e. pos 3 — neg 2 = pos 3 - [opp. of neg 2]
po 53 -+ [pos 2]
pos
or 3 — (—2) = 5+ Lopp. of (~2)]
3+2
5

f. neg 5 — neg 2 = neg 5 + [opp. of neg 2]
neg 5 + pos 2

neg 3

(—3) + [opp. of (—2)]
= (—5) 4- 2

(—3)

g. neg 2 — neg 2 = neg 2 -+ [opp. of neg 2]
neg 2 -- pos 2

1 A 1 O

=5~ (-2)

I

i

or (—2) — (—2) = (—2) -+ [opp. of (—2)]
(()—-2) )

h. neg 7 + neg 3 = neg 7 — [opp. of neg 3]

neg 7 — [pos 3]

N A [ | 1

neg 7 — pos 3
neg 10
or (=7) + (=3) = (=7) — [opp. of (—3)]
= (~—7) -3
== —10

ExErcise 28-5A
1, a. pos8 —neg3 =8 — (—3) =8 + 3 =11
b. neg 3 -+ (neg 2 4 pos 1) = neg 3 - neg 1 = neg 4 = (--4)
c. 7+ (—2)]4+8=[7T—2]+8=5-+8=13
d. (—4) -+ [(=2) + (*I)J = (--4) + [(--2) - 1]
= (=4 + (=3) = (-7)
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€ [(=3) = (—5)] — (~3) = [(~3) + 5] +3 =243 =5
£ (=8) - [(—=4) + (-2)] = (—8) — [(=4) —2]
= (=8) — (=6) = (—8) + 6 = (—2)

2a (=)~ (3-8 =(—2) +8—3) = (-2 + 53
b6 —(2—1)=64+(1-2=6-1=5
€ (~4) = [(=2) — 6] = (—4) + [6 — (—2)]

= (=) +[642] = (—4) + 84
48—~ (—] =8+ [(—4) — 5] = § 1 (—9) = (1)
CHAPTER 29
ExEercise 29-2A
1. 11 2. (=3) s, (—8) 4.5 5. 11 6. 1

ExErcise 29-3A
a. (—10) b.2¢ . (—21) d.18 e, (—99) £ 136

ExercisE 29-4A
a. (—2) b (—6) ¢ 3 d. (—6) e 2 f (—6) g —3

CHAPTER 30

Exeraise 30-1A
Those using integers: 1, 3, 4, 6, 8.
"Those needing new numbers: 2,5, 7.

CHAPTER 3]
ExErcisE 31-1A

L= 2% 3 130 4 1 50 o —183

Exercise 31-9A

27 : 3 4 85
T —gx =713 0, 7 g5 10

CHAPTER 32

Exercise 32-1A
1 11 2.0 3. & 4, —1 5.0 6. —1
ExEererse 32-2A

1. 73-?- 2. % 3- -5 4. Too
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Exercise 32-3A

1L -3 2, —1¢ 3, -1 4. — 8% 5. 0 6., 1
Exercise 32-3C
1. ‘.')J 2, ,‘r‘ll 3. :} 4, i“-

ExercisE 32-4A
1, —458 2, —1 3. —}% 4, —12 5, —24 6.1

ExERrcisE 32-4E
1. % 2. —1 3. 1.7 4, =2

CHAPTER 34

ExercisE 34-1A

1. a. Not closed under any
b. Under addition, subtraction and multiplication
c. Under addition and multiplication
d. Not closed under any
e. Under addition, subtraction and multiplication
f. Closed under multiplication

CHAPTER 35
ExercisE 35-1B

1. (i) a. % and %, same number
2 15
b. 1% and %, } is larger
c. _f and 12, 5 is larger.
d. & and 4, % is larger.
(iii) a. O b. c 3 d. }
2 LI P
2oa. 5 BB
“eh. 0l 1.
b. 5383 2‘}’ IT’ 3
0 0.
C. lils -+ 4.’:; )«.l; i 'l: 2.]: -+ 35: 3.12 -+ 2%

Exercise 35-1C
1. 0-035, 0-35, 1-035, 1:35, 2, 2.25, 3.5, 10-35, 17:5

ExERrcISE 35-2A

1. a. Talsc b. True —16 =32 -+ (—48) c. TFalse
d. False e. lalse f. Talse g. Talse
h. True —25=264- (—51) i True 36 =0 -+ 36
jo Talse k. True —3=—-6-+3 1. Talse

DCcMa—R®
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y =0 _'3)
n. True [—4 (—2)] =[—2 + 2] + (—6) o. False
o ;_ bl ,“‘,

395 = 55 4 g
C. _f: >~ —_f}‘; -—_: = —i; .{< ,::)0_
S B T R R
e, —) = —5; —y= =0}
f. 375 > 2:95; 3.75 == 2.95 -+ 15
5.a.6> —3;, -3 <6 b. -2> -8, -8« —9
c 0>4; —4 <0 d. 12>9;9 <12
e, 325 > —3; —3 < 395 f§>§;§<§}
B —9>—12; ~12 « —9 h.2 > -8 —8<2

Exercise 35-4A.
.< 2= 3 > 4, = 5. < 6.< 7.= 8. >

Exekrcise 35-4B

1. a. =52 <0 <25 b. _"'}<—’:]i<‘“i‘
e i<i<i d. 2:05 < 2:25 < 25
e 6<4<S f—F<ics g —4 <2< 2

Exercise 35-4C

2

L a. 2f1 < 340 p, —12 > -0 ., > d 1 ¢ 0
ExErcise 35-8A

lea. > b. < > d > e > f.< g.< h <
CHAPTER 36

Exercise 36-2A

1. a. -11111... b. -010101... c. -001001...
d. 4545, . e. 142357149857 . . .
f. 285714285714 . .. g. 027027 ...
ExEercisE 36-3A
Loa g b. 22 cif=gr 4}
e gy f. 5iy g ¢ h. 393
2. a.-222...=2 x (111 )
= 2 X -54 = —5«
b. -2323 .., =23 x (olor...)
=23 X (55) = {2
c. 234234 ,., =244 x (001001 .. )
=234 X gy = §34 = A%
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ExERrcisE 36-4A

Some possible answers are:
a. +2020020002...
b. -01011011101111.,.,
c. -030330333. ..
d. -100100001000000100 . . .
(ones at 1st, 4th, 9th, 16th places and so on)
€. The same as d. with 1’s replaced by 2, 3, 4,...0r 9.
f. -234567891011 ... g. -34567891011 ...

CHAPTER 37
Exercise 37-1A

Successive trials might be Z, 12,

ExErcisE 37-2A
3b

If(-zxg=3, then —
a

a
b b b

< Also, | < Z < 2.

a, . . . .
Let 3 be in lowest terms. Lhen g, the denominator on the right,

must be one of b, 25, 3b, 45 and so on.

That is,g must equal one of 1, 2, 3, 4, .... This is impossible

. a .
since 7 must lic between 1 and 2.

CHAPTER 38
Exercise 38-2A

1 [(=3) +3] X a=[(—3) x a] + (3 X a)
0><a=[( 3) Xxal+ (3 xa)
=[(=3) xa] + (3 X q)

Hence (—3) >< a is the opposite of 3 X g, that is,
(=3) Xa=—(3 X a)
2. By Question 1,

7=(——3)><(—_%)=_<3x(—~7_3))

Hence, IX — = -7

and L-:'__

(._

Rt
w
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3. a+0=a(A0)
This holds for all values of a, in particular for g = 0. Hence,
04+0=0

Exercise 38-4A

L Ifa<b b=a-+p wherep >0
Then bXc=aXc+pxc [D]
since p >0ande¢ >0,p x ¢>07[072]
Then by definition, axec<bc

2. Ifa<b b=a+pp>0
Ifb <¢ c=b+pp >0
Then c=(a+p)+p

=a-+ (p+)
Since p > 0 and p' >0
p+p >0 [0]]

Hence, by definition, ¢ < ¢, as required.

3. Given a and b, any two real numbers, cousider the real number
¢ = a — b. By [0'3], there are three possibilities:

c=20

c>0

or c<<0
That is, MNa—-b=0
2 a—b>0
or B)a—-tb<o0

Now a = (a — b) + b.

(1) Ifa—b=0,a=14

@ Ifa—b>0,a—bis a positive number p so that
a = p -+ b. This means by definition that ¢ > 4

@) Ifa—b<0,b—-a>0
Since (0 — a) +-a =5
b = a + a positive number.
By definition then, a < 5



Answers to Selected Problems 259
CHAPTER 39

Exkrcise 39-3A
1, a. 21 b. 25 ¢ 104 d. 2545 e.626... £ 92557...
2. d. 254} e. 62% f. 2553

ExErcisE 39-4A
1. 2754

2. The (2) and (7} are reliable. The (5) is questionable, and the
(4) is worthless.

3. 275 books

Exercise 39-4B
E means exact, A means approximate.

1, a. E b.A ¢ E dA eA f. A g E
hhA i E jJA kA LA mA

3. 140 steps

4. b. Counts Deviation from average
574 2-8
562 9-2
573 1-8
567 42
580 88

571 2
Average 5712 Average deviation 4-5
Reliable digit: 5  Questionable: 7 Worthless: 1.2

CHAPTER 40

ExEercise 40-3A

1. a. 254 b, 25 c. 52:0
2. a. 2-8342 c. 2-834 pounds

3. a. 2661-25 c. 2660

CHAPTER 41

Exercise 41-3A
8. c. 340, 6800, 47-10, 9-002 9, 7.7
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CHAPTER 42

Exancxsm 42-2A

007 2, -006, -0007, -00003 3. 1% 4. 529, -005, -099,
5 The same 6. The second 7. 8% 8.169

CHAPTER 43
EXERrcisE 43-5A

1. 2,2,3,4,4,4,4,5 2.3,34,5,55,5,6 3.3,3,4,4,6

4. Decimal places 1,2,3,2,3 2,2 3, 4,2,3,3
Significant digits 2, 2, 3,3,4,5,1,1,1,3, 4,4
Decimal places 3,4,3,3,3 2
Significant digits 2,4,3,4,6,6

5. Decimal places 1,2,32,3 2 2 3 4,1,2 2
Significant digits 2, 2,3,3451,1,1,2,3,3
Decimal places 2,3 1,1, 11
Significant digits 1,3, 1,2,4,5

CHAPTER 44

ExERcisE 44-3A

1. a, ‘56 b. 37800 <. 3-390

3. a. 1160 b, 4-82 c. 852

5. 2,750 yards 6. 6,400 7. 13-92 yards 8. 1-88 pounds

CHAPTER 45
EXERCISE 45-4A

1. a. ‘03 b. 2,500,000 c. 106
3. 233 4. 4,400 pounds
5. a. 03 b. 20 c. ‘014
6. 16 7. 1.848 8. 47
CHAPTER 46
EXERrcIsE 46-2A
a. 12 b. 7,000 c. 50 d. 36

e. 55 f. 150,000 g. 57
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