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FOREWORDTO THE PRELIMINARY EDITION 

This experimental text has ben produced by the 1963 
Entebbe Matheumatics Workshop for use in training colleges in 
English-speaking Africa. The Entebbe programme is a compre­
hensive one. Its general purpose is to write texts which reflect 
recent thinking about mathematical education and which adapt 
this thinking to African conditions. 

Rapid progress in science and technology and in mathe­
matics itself has stimulated major efforts to improve mathe­
matical education elsewhere. Principal elnphasis has been put 
on understanding the ideas thai have unified and simplified 
modern mathematics. Iii addition, methods have been adopted 
which lead the stzdetii to discover things for himself. New facts 
are established either from first principles or from Facts already 
known, so that indue reliance on rote-learning is eliminated. 
A general discussion of these points vill be Ibund in the intro­
ductory section "W\\hy Change Our Mathematics Teaching?" 

The Lntel)l)e Matheinatics Workshop, comprising mathe­
matici:, us and educators drawn from Africa, the United King­
dora and the United States of America, has produced experi­
mental te'xts ior use in Primary One and Two and in Secondary 
One and Two. These texts are being tried out in East and West 
Africa and will be revised in the light of experience in their use. 
Tests have also been devised by the Workshop to measure the 
efliectiveness ofr the material under actual teaching conditions. 
Further texts are plalmed to follow those so far produced. 

This experimental text is designed flor use in training colleges 
for primary teachers, It aims to give teachers in training the 
kind of background o" understanding which will help prepare 
them to teach the Primary texts produced by the Workshop, (r 
other texts which are written to achieve the same purpese. 

it is honed that 1his text will be of interest to all those who are 
concerned with the new approaches to mathematics teaching. 

This text is written so as to stimulate the discovery of central 
concepts by consideration of concrete examples. Problems are 
provided, both to deepen the understanding of the teacher and 
to assist in classroom teaching. 
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vi Forewordt. the PreliminayEdition 
After the introductory section, the text is planned in twoparts: "Structure of Arithmetic" and "Introduction to Geo­metry". At the 1963 Entebbe Mathematics Workshop the firstfour units out ofa projected seven on "Structure ofArithmetic' 

were written by the Teacher Training Writing Group: basicconcepts and language of sets, the whole nmIbII)ers, the numberline, and fractions. For expositions Of negative ntmlbers, therational numLbers, and tile real nmnbers, which are the subjectsof the t'nits not yet written, appropriate portions of the EntebbeSecondary One and Two Student 'iexts and Teachers' Guides may be consulted. These presentations, however, are not neces­sarily organized in the same way as they may be written laterfor teachers. As for "InitroCluctiol to Geometrv', indications efthe directions the text f"or teacher training may' take are to befound in Part 3: Content Outline for Primary 1-11 and theAkppendix: Projected Contcnt Outline for Primary IV-VJ ofthe Entelbe Mathe'matics eac/ers' Iandbook prepared by thePrimary Vriting Group at the 1963 Ejntebbe Mathematics 
Workshop.

To enable both tutors and teachers in training to pursue thesubject further, a bibliography has been provided at the end ofthe book. Tutors should encourage their students to read widelyin order to further their knowledge of the new approach to 
mathematics. 



FOREWORD TO THE REVISED EDITION 

This edition of Basic Concepts of Mathematics, Volume I, is a 
revised version of the preliminary edition which was prepared 
during the summer of 1963 at Entebbe, Uganda. 'Yhen the 
preliminary edition was published it included a statement 
acknowledging the ?.existence ofleditorial and production defects 
occasioned by the speed with which it was produced. Neverthe­
less, it was felt that this was a small price to pay in return for 
having a much needed text in this subject available for the 
1963- 61 academic year. The intervening years have vindicated 
that decision: the book was warmly received in African Teacher 
Training Colleges, and is in ever-increasing demand today. 

In view of' this success a new edition has been prepared. 
Almost every chapter of the original text has been extensively 
rewritten, and a large number of new figures have been pre­
pared. In particular, the chapters on sets and fi'actions received 
special attention and were substantially changed. Another 
significant change occurs in the treatment of' the number line, 
which is now introduced early in the text (Chapter 5) and is 
used throughout the discussion of arithmetic much as the 
teacher might me it in the classroom. New l)rol)lems have been 
added to most chapters, and old problems have been rewritten. 
A selected list of' answers to prol)lems has also been prepared 
and appeals at the end of the book, together with an updated 
bibliography. 

Of course, books are rarely, if ever, fi'ee fi'om errors, and this 
one lays no claim to being an exception. Thus, in presenting 
this book for use in Africa, the African Education Programme 
can only repeat the hope that those who use the book will be 
tole ant of the imperfections that still remain. 
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INTRO.DUCTION: WHY CHANGE OUR 
MATHEMATICS TEACHING? 

We live in a rapidly changing world. The younger nations,
like the older ones, face chiallengcs whicli call for greater 
knowledge and greater willingness to learn new ways. This is 
why education is more important than ever before. 

Everyone agrees that mathematics is important and that it 
should le taught in our primary and secondary schools. A 
knowledge of arithmetic is necessary for everyoue in the 
modern world. A much greater knowlecdge of mathematics is 
required fbr those who take activean part in such things as 
harnessing water power to the needs ofAfrica or handling the 
financial problems of a nation. So we must teach mathematics 
well in our schools whether our students are to become ordinary 
citizens or leaders of their countries. But do we need to change 
the kind of mathematics we teach or the way that we teach it? 

Most of' those concerned with the teaching of mathematics 
feel dissatisfieci with the job that has been clone in the past. In 
spite of the importance of the subject, very few students have 
thought ofmathematics as alive, exciting and interesting. This is 
not true of' other 5sl)jects. There are many people who read 
history for hia. Flow many read books on nathematics for fuln? 
Not very many! Everyone will agree that mathematics has not 
been a very popular subject. This points to a weakness in the 
way in which it has been taught. In any case, the methods of 
the past do not meet the challenges of' the present and future. 

But something new has happened. It has been found that 
students can actually get excited about mathematics and enjoy
it tremendously. This was a fortunate discovery. If it is impor­
tant to know mathematics, it is surely also important that stu­
dents should find it interesting. The change which has come 
about is the resuit of a big effort to teach mathematics in a new 
way. 

What is this new way? In brief, it is to get the student to 
unde'rstand w1,h things wor:k the way they do to a much greater 
extent than has been customary. More important is the fact that 
to interest the student we must get him to take an active part in 

xv 
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learning. He must be led to discover things foir himself. This is 
true in all subjCcts; it is true in mathematics also. Mathematics 
is not a strange subject in which everything is different-where,
fbir example, it is unnecessary to interest the student; where it is 
sufficient to drill him so that he always gets the right answer. 

It is widely believed that there is only one right way to do a 
problem in mathematics, so that all we need to do is to show the 
student this right way and give him lots of practice in doing it. 
This idea leads the student to think that the only way lie can 
be original is to bewrong. Offcourse, lie is glad to oblige us! But,
seriously, if we try to teach students to act like machines, we 
should not be surprised to find that those with independence 
and originality will rebel. 

In f, ct, there are many ways to solve a mathematical prob­
lem correctly. Some may be shorter than others. Some may be 
longer but more illuminating. One way may seem more natural 
to one student than to another. Not all students are alike. The 
important thing is to fiid ways to solve problems that students 
can think out for themselves. In this case they will have a 
better chance of' remembering them. loreover tile subject will 
make sense '.o them and catch their interest. 

Every teacher imagines, we supl)ose, that lie teaches the 
student to understaind the suhject. In a way this is true. It all 
depends on what yon mean by "understand". \Ve can, if we 
wish, say that a student understands how to divide one fraction 
by another if' lie can always apply the "invert and multiply"
rule when lie is given two fractions to divide. Thus if we ask him 
to divide 2by Ile will invert the ! to *- and mltiply . by - to 
get 1.. In the process he also applies correctly the rule for multi­
plying two Fractions: "Iultiply the numerators and multiply
the denominators." To repeat. we can say that the student 
understands a rule if lie knows how to apply it with confidence 
and success. In the same way, many of'us can truly say that we 
understand how to drive a car. But few of us understand wly
it operates the way it does. 

There is therefore a deeper meaning of "understand". Sup­
pose that the student asks, "Why do we invert and multiply
when we wish to divide one fraction by another?" To answer 
this question it is not enough to -ay, "That is the rule". What 
we have to do is to give a reason fer the iule. We have to lead tile 
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student to see that the rule expresses what ought to be done. We 
have to explain the rule. An explanation always has to be given 
in terms of something else -something which is already known. 

Later we shall return to this example and show what kind of 
an explanation could 1)e given. We are not juite ready for it 
now.The point is that Inatliciatics hangs together. It has a 
plot like a novel. Knowledg ires to be built 11p 1n staes. You 
have to know something about what lapleneCd in the earlier 
chapters. In this respect, mathematics is again like other sub­
jects. You cannot understand modcrn lhysics without first 
learning something about earlier discoveries and ideas, nor 
modern history without some knowledge of its background. 

We have sa, ,that we should teach mathematics so that the 
student can discover things for himself and can understand why 
he does what lie does. This is what makes learning exciting. 

But there is another difference between the newer approach 
to the teaching of mathematics and the older one. The differ­
ence is partictularly important fbr the students who will go on 
to more advanced matliematics. 

Mathematics itself ias changed. It has surprised many 
people to learn this. They know that science and technology do 
not stand still. They expect a man to be sent to tile moon one 
of these days. New discoveries are made and science grows and 
renews itself' like a living thing. New knowledge cannot be 
added to the old like a new room built on to a house. The whole 
subject must be rebuilt from time to time to take account of new 
and better ways of thinking about old facts. New ways of talk­
ing about the older knowledge are invented which help us to 
understand it better and to connect it wi'"h recent discoveries.
 

Few people think of mathematics in the same way. Almost
 
everyone tends to think of it as somehow finished and complete,
 
so that what we know was discovered long, long ago and has not 
been added to since. This is simply not true. Mathematical 
knowledge is growing faster than ever before. New mathe­
matics is constantly being created to answer questions that the 
scientist and engineer need to answer so that they can forge 
ahead in new directions. 

The situation is exactly the same as with all other subjects of 
knowledge. There are many new important things that have to 
be added to existing knowledge if we are to have the tools we 

I1C I- U 
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need to solve our problems. There is only so much time. Some­
thing has to be done to make room for the new. There arc two 
things which can be done: 

(1) 	Rework the older material so that it hangs together
better, is more understandable and tics up with tile new.

(2) 	Leave out some things which no longer scem as important 
as they once did. 

Both these have been done. If we think about it, it seems obvious
that this should be SO. M[athematics is not something apart,unconnected witlh other human concerns. Throughout history
it has been developed to solve problems which mankind needed 
to solve. As human needs lhave changed with changing condi­tions, mathematics has spread out in new directions and set
itself' to new kinds of problems. Like everything alive, it must 
mcct new challenges or die. 

WVe have said that to make room for newer mathematics wehave to look at the older nathematics in a different wNy. We arrange the knowledge in new patterns. It is the same withtechnology. We are continually finding new and more suitable 
ways of doing old things. Aftica is able to take advantage of theexperience of the Vestern nations over the past century or more.
It is unnecessary to go through all the stages over again. We canprofit by the experience of others. In mathematics, too, we have
learned by experience. Quickcr and better ways of doing thingshave been found. The Greeks made wonderful discoveries ingeometry 2,000 years ago but mankind has not 	been idle allthese years: for example, the volume of a sphere can now befound by much simpler methods than the Greeks knew about.
This does not mean that they were wrong. It does mean that agood deal has halpcned since their time. We do make progress.

It is like the opening up of a new territory. A fertile valley
may have been reached by a very roundabout route. Once dis­covered it is possible to get there by a shorter route. In the end 
paved roads are built which help us to get where we want to goquickly and comfortably. We do not have to follow the old 
country roads. Mathematicians have been busy building wide
straight roads so that they cal get to the limits of the knownfairly quickly. Tihey are not worn out by the time tile), reach
the frontier. This is lucky, because there is too much mathe­
matics for any one person to know in detail. 
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The newer programmes of instruction have been worxed out 

with the advice of mathematicians. They have tried to save 
time and labour for the students who are coming on, and so to 
make their paths easier and more comfortable. They have hoped
that the student will reach places where he can look over the 
landscape and enjoy the view without losing himself in the bush. 

What kind of understanding do we hope that the student will 
reach? What sort of views do we expect him to get on this jour­
icy through mathematics? We surely want him to think of 

mathematics as more than a collection of unrelated facts to 
learn by heart. We hope that he will see how the facts fall into 
patterns so that they make sense to him. For one thing, when 
he discovers these patterns lie will not have to remember so 
much. If he should forget something, it is not lost for ever. He 
can work out for himself what he needs to know. He will 
not be like a man lost in a rain forest. 

To take a simple example, suppose that the pupil has for­
gotten how Lo add fractions, say to find - -. This is a matter 
which puzzles many adults. If he multiplies 2 d- .Aby 10, thus 
getting 10 x ( -- ,), he easily gets 10 - + 10 x .-A which 
is 4 -- 15 = 19. If 10 times the required answer is 19, that 
answer must be to,. 

Again if the pupil wishes to multiply 82 by 9E%he can ofcourse 
multiply in the well-known way. If, howevei, he noeices that 
98 = 100 - 2, lie can multiply 82 by 100, Nhich is easy, then 
multiply 82 by 2 which is also easy, and do a simple subtraction. 
This makes arithmetic more fun. It changes it from a dull 
routine into something more like a game. It gives the student 
a chance to use his mind instead of operating like a machine. A 
machine does not notice anything it has not been instructed to 
notice. It does not discover patterns fbr itself. 

It sometimes happens that students who have been encour­
aged to work things out for themselves discover new ways of 
doing things. For example, a class was asked to subtract 28 
from 42. Of course the standard way to do this is to say that 8 
cannot be subtracted from 2. Therefore we must borrow from 

4'2
 
28 

14 
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the next column and subtract 8 from 12 giving 4 in the onesplace and 1 in the tens place. One student Uid this in quite adifferent way. The class had some familiarity with negative
numbers. The boy said that 2 - 8 = -6 and 40 - 20 = 20.He reasoned that the answer must be the sum of 20 - 6, thatis 14. We do not say that this is a better way to do this exercise. 
But it is obvious that to be able to invent this new method is toadd greatly to one's understanding. It also gives the student the 
very pleasant feeling of creating something new. 

42 
28 

-6 

20 

14 
This is an important feeling for the student to have. It giveshim confidence in using his own mind. In a changing world, wemeet new situations. We cannot meet all of our problems byfollowing rules. We ha%,e to invent new ways of doing things.This means that we must look for new ways of thinking. Themost important thing which any teacher can do is to encourageany sign of originality in his students. If one of them has a new way ofdoing a problem, do not tell him that he must do it in thetextbook way. Let him discover for himself that the textbook way is better, ifit is. Meanwhile give him the pleasure of using

his own mind. 



Basic Concepts and Language of Sets UNIT I 

Introduction 

A flock of goats, a herd of cattle, a class of pupils are all 
examples of sets. Each of the words "flock", "herd", "class",
implies that we are thinking about a collection of things.
Every language has a large number of words with this meaning. 
A few more in English are: 

bunch-- a bunch of bananas 
buIndle-a bundle of sticks 
family-a family of leopards, or a family of peopc 
pack--a pack of cards, or a pack of wolves 

In mathematics a single word is used to talk about a collection 
of things. That word is SET. The concept of a set is the basic
idea in mathematics. In .iis unit you will learn some of the 
elementary facts about sets. In the later units these facts will 
be used to study numbers and the arithmetic taught in school. 



Chapter 1 

SETS AND SUBSETS 

1-1 Sets and elements 
Since wc shall be talking about sets constantly from now on, 

we dcfinc the word again: 
A SET is any collection of things


The important point to remember here is that when 
we talkabout a set we are not talking about the particular things whichmake up the set. We are talking about the collection as a whole.
It is easy to give examples of sets. For instance: 

A. The set consisting of the numbers 1, 2, 3, 4, 5
B. The set of letters in tile English alphabet
C. The set of pupils in your school 

You can certainly think of many more such examples.

In describing a set there is only 
one rule that must be fol­lowed. It is this. A set must be described so that there is nodoubt about which objects are in it and which are not. Thus a phrase such as "a set of pupils" does not describe a specificset, because it does not tell us which pupils belong to the setand which do not. On the other hand, the phrase "the set of allpupils in Primary 1 in Uganda" does describe a set. For in this case we can tell whether a particular pupil is in the set or not.Suppose you are given a set. Any set at all. Then each of theobjects in that set is called an ELEMENT or MEMBER of the set.We say that an element 3ELONGS to a set. Thus the number 1is an element of the set in Example A above. It belongs to thatset. So do the numbers 2, 3, 4 and 5. All of them are elements of 

the set. 
Note that to describe a set you must say precisely what are 

its elements. 

EXERcSE 1-1 
1. What are the elements which belong to each of the following 

sets?
 
2
 



Sets and Subsets 	 3 
a. 	The set of days in the week whose English names begin 

with the letter S. 
b. 	The set of the last six letters in the English alphabet. 
c. 	 The set of months in the year whose English names begin 

with the letterJ. 
d. 	The set of letters in your name. 
e. 	The set of persons who live in your home. 

2. 	 Here are several phrases. Some of them describe sets; some 
do not. Decide which do and which do not. 
a. 	The set of i,1 African countries. 
b. 	The set of summer months in the year. 
c. 	The set of all small whole numbers. 
d. 	The set of all books in your school library. 
e. 	The set of all Nigerian citizens. 
f. 	 The set of all numbers less than 100. 
g. 	The set of all mountains in the world more than 10,000 

feet high. 
h. 	The set of all children. 
i. 	 The set of all large islands. 

1-2 Describing sets 

We have seen how sots can be described in words y saying 
such things as "the set of all letters in the English alphabet". In 
fact, we constantly give such descriptions when we talk to one 
another, even though we may not use the word "set". Everyone 
says such things as "my fitmily", "our football team", "the 
population of Africa". And when he does, he has described a 
set. 

However, there is another way of describing sets which each 
oftis also uses almost every (lay. It consists of listing the elements 
in the set. Every teacher does this when he writes out a list of the 
pupils in his class. This list describes the set of pupils in his class. 
A newspaper does the same thing when it lists the names of the 
players in a football match. It is describing the set of people 
who p' .yed in that match. 

In mathematics we also describe sets by listing their elements. 
When this is (lone we always enclose the list in curly brackets. 
The brackets are used to show that we arc thinking about the 



Basic Concepts and Language of Sets 
list as a set. Thus tile set consisting of tie numbers 1,,2, 3, 4, 5 
would be described by writing 

{1, 2, 3, 4, 5} 
We read this as "tile set whose elements are the numbers 
1,2, 3, 4 and 5". The commas are used to separate the elements
in the set. Other examples of sets described by lists are 

{Ghana, Kenya, Nigeria}
{a, b, c,1, 92 

The first of these is the set whose elements are the nations
Ghana, Kenya and Nigeria. The second is the set whose cle­
ments are the letters a, b,c and numbers 1, 2. This last example
shows that the elements of a set do not all have to be of the
 
same type. That is, all of them do not have to be letters, or all

of them numbers, etc. There may be elements of niany diffecrent
 
kinds in the same set.
 

Now consider the lbllowing example. At a 
party two girls
wore green dresses, one wore a white dress and three wore red

dresses. The colours of the dresses form a 
set which we might

write as
 

{grecn, green, white, red, red, red} 
But the only colours which belong to this set are green, white
 

and red. Thus it is enough to write
 

{green, white, red} 
to describe the set. We do not have to repeat any of the colours.
From now on we agree not to repeat elements inside the curly
brackets when describing a set by a list since listing an element
several times does not tell us more than we already know.

In teaching young children about sets it is often helpful todraw pictures. For insLance, you might want to talk about a set
whose elements are a circle, a triangle and a square. One way 
of doing this is to draw a picture such as 

Note that we still use brackets. They tell the children that we 
are thinking about a set, and not about three separate things.
As you draw more and more of these pictures, using brackets 
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each time, your pupils will learn to think about sets and to use 
brackets correctly. 

1-3 Describing sets (continued) 

At times it is unrcasonable or impossible to list all of tie 
elements in a set. This happens whenever the set has a large 
number of elements. However, we may still want to describe 
the set by a list. To do this we leave out part of the list, and put 
three dots in its place. 

For example, suppose we wanted to describe the set of letters 
in the English alphabet. If we wished we could write them all 
down. But the list would be rather long. A much better idea 
would be to write something like tis: 

11a,1,c....Iz} 

The three clots iake the place of the missing letters. We imagine 
that the letters are still there, even though they are not written 
down. In the same way 

{0, 4, 6, 8,..., 20} 

is just an easy way of writing 

k2, 4, 6, 8, 10, 12, 14, 16, 18, 20} 

Both stand for the same set. 
When you replace part of'a list by three dots you must make 

sure that enough of the list is left so tiat everyone knows what 
you want in place of the clots. Thus, if you write 

{2, 4, 6, 8, . . ., 32} 

no one will misunderstand you. However, 

{2, 4,..., 32} 
is not enough, because someone might think you meant 

{2, 4, 8, 16, 32} 
Sometimes in making a list we have no choice. We must 

use three dots. For instance, to describe the set consisting of the 
numbers 1, 2,3, 4, and so on, we write 

{1, 2, 3, 4, ... } 
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Here the three dots stand for the words "and so on". They meanthat the list gocs on and on, without stopping. Of course, we
could also describe this set by writing 

{l, 2, 3,...}
 
or 
 {1, 2, 3, 4, 5,...} 
The important point is to write out enough of the list so that 
everyone will know what you have in mind. 

Other examples of this sort are 

{2, 4, 6, 8,... 
{1, 3,5,7,...) 
-5, 10, 15, . . 

Do these lists tell you enough for you to write the next elementin each of them? The next three? The next one hundred? If
they do not, more elements should be listed. 

EXERCIsE 1-3 
1. 	Describe the following sets in words. 

a. 	 {Thursday, Tuesday) 
b. 	{c, a, b, e, d} 
c. 	 (january, February, March) 
d. 	{2, 4, 6, 8, 10} 
e. 	 {25, 20, 15, 10, 5} 

2. What are the next three elements in the lists for the following 
sets? 
a. 	f10, 20, 30, ... 
b. 	{2, 5, 8, 11, ... } 
c. 	{100, 96, 92, 88,..., 0}
d. 	{1, 10, 100, 1000,.... 
e. (1, 4, 9, 16, 25, ... 
f. 	 {2, 22, 222, ... } 
g. 	 {99, 88, 77, ... 

3. 	 For which of the following sets is it possible to list all of the
elements, provided you had the necessary information? 
a. 	The set of all whole numbers from I to 1,000,000.
b. The set of all whole numbers greater than 10 which end 

in a 3. 
c. The set of all words in the English language. 
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d. 	The set of all living human beings. 
e. 	ThL set. of all whole numbers exactly divisible by four. 

4. Use the three-dot notation to describe the following set,: 
a. 	Thc set of whole numbers between 1 and 1,100 which are 

exactly divisible by 3. 
b. 	The set of whole numbers from 9 to 100. 
c. 	 The set of whole numbers ending in 5. 
d. 	The set of whole numbers greater than 3 which leave 

a remainder of I when divided by 3. 
e. 	 The set of all whole numbers which can L,e written using 

only the digit 7. 
f. 	 The set of all whole numbers ending in 5 or 6. 

1-4 Special sets 

We have given several examples of sets, and you have found 
more in the exercises. In this section we shall describe a number 
of special sets which will be used frequently from now on. 

I. 	 The first of these special sets is the set containing no 
elements at all. It is called the 1,ErMPTY sir. But what do we 
mean by speaking about a collection when no elements belong 
to the collection? Surely this is never done in everyday life. Or 
is it? Let'; take a closer look. 

Suppose you happen to meet a tourist who knows very little 
about Africa, and ouppose he asks you to think about the set 
of all cities in Africa with a population of more than 5 million. 
Has he described -, set? Yes, because we can tell whether any 
particular African city belongs to this set or not. But this set has 
no members at all. It is empty. 

Another example. Consider the set of all people in a certain 
classroom at your school. At iiine o'clock on a schoolday morn­
ing this set will have many elements. But what would you say 
about the set at midnight? Again, the set has no elements since 
no one is in the room. It is the empty set. The empty set is very 
important in mathematics. We shall meet it agin when we 
talk about the nuinher 0. 

We shall represent the empty set by a pair of brackets with 
nothing inside: 

{ } 
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II. Ve ha'e said that in mathematics tile term "set" is usedto refer to a collection of things. Any collection whatever. Thusa collection of things which has only one mcnber is a set. Such

sets are very common. For example, the set 

(31 

is a set whose onl) member is the number 3. Similarly, the set of'all hcadmaste, f'your school, and the set of all children in afhmily with only one child are sets ,!'this type. Try to give more 
such examples.

Our reason fbr calling attention to these sets is to emphasizethat a set containing only one clXnment is something quitedifferent from the element itself'. The first is a collection; the
second is a particular individual.

III. Finally, we introduce two special sets which arise con­stantly in arithmetic. The first of' these is the faniliar set 

{1, 2, 3, 4,. 
Its elements are the numbers 1, 2, 3, 4, and so on, which we usefor counting things. Ior this reason these numbers are all called 
COUNTING NUMBERS, or NATUR AL NUMBERS, and the setitself is klion as the set of' cotLiltiilg nmbers, or the set of
 
natural numbers.
 

In arithmetic we also need 
 the set whose elements are thecounting number's together with the number zero. In order todistinguish this set fi'om the set of counting numbers we callits elements wno LE NUMBE ,S.Thus the set of whole numbers 
is the set. 

{o, 1, 2, 3, ... 
The only differetce between this set and the set of counting 
numbers is that it contains the number 0. 
ExinicrsE ]--t 
1. Use the bracket notation to describe the following sets: 

a. T:ie set of months of the year whose Englili names begin
with the letter N.

b. The set of days of the week whose English names begin
with the letter N. 

c. The set of all counting number's less than I. 
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d. 	The set of all counting numbers less than 100 which are 

exactly divisible by 10 and by 11. 
e. 	 The set of all counting numbers less than 50 which end in 

2 and are exactly divisible by 7. 
2. 	Is the set consisting of just the whole number 0 empty? 

Explain your answer. 

1-5 Equal sets 

When you say that two plus two equals four, and write 

2 + 2 =4 
you mean that 2 + 2 and 4 stand for the same number. In 
other words, what you write on one side of the sign = and what 
you write on the other side are just different names for the same 
number. 

This is the point ofview which we want to adopt. The state­
ment "a = b" means that the thing named "a" and the thing
named "b" are the same. For instance, when we write 
S = f1, 2, 3, 4, 5} we mean that S and {1, 2, 3, 4, 5} stand for 
the 	same set. 

Here are some more examples: 
Africa = the second largest continent 
Tokyo = the capital of Japan 

(3 +3) -4 = 12 
{1, 2, 3} = the set of counting numbers less than 4 

Let us apply this to the following sets: 

A {1, 3,4,5, 2} 
B 	={2, 4, 1,3,51 
C 	= the set containing the first five 

counting numbers 
If you compare set A with set B you will find that they con­
tain exactly the same elements. 

The elements of set A are the numbers 1, 2, 3, 4, 5. 
The elements of set B are the numbers 1, 2, 3, 4, 5. 
The only diflierence between A and B is the order in which 

their elements were listed. But, as you will recall, the definition 
of a set makes no mention of' any order for elements. Order 
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doesn't matter. It follows that A and B are different names for 
the same set, and wc write A = B. 

Now look at set C. It too has the numbers 1, 2, 3, 4, 5 as ele­
ments. Since these are the same elements which belong to A and 
to B, we can say that B C and A C. Altogether we have 
A = B C. 

This example illustrates the principle of equality for sets: 
Two sets are EQUAL when they contain the same elements 

Thus whenever we write A = B for sets we mean that every
element of A is also an element of B, and every element of B is 
also an clement of A. 

EXERCISE 1-5 
1. 	Which of the following pairs of sets are equal? 

a. 	A {a, c, e,.}
 
B = {c,f, a, e}
 

b. 	A {a, c, e,f}
 
B = {a, c,f}
 

c. 	 A the set of different letters in the word "banana" 
B f{a, b, n}

d. A = the set of pupils in a class containing 10 children 
B = {1, 2, 3, ... , 10} 

e. 	A = the set of pupils in a class containing 10 children 
B {I0} 

f. 	 A {0} 
B={ } 

g. 	A = the set of counting numbers which end in 5 and are 
exactly divisible by 4 
B={ }

h. 	A = the set of counting numbers less than 99 which are 
exactly divisible by 9 
B = {10-1, 20-2, 30-3, . . ., 100-10) 

1-6 Subsets 

Consider the following pairs of sets: 

(a) 	 A ={1, 2} B={l, 2, 3, 4}
(b) A = {a, c, i, o, u} B = {a, b, c,.. ., z} 
(c) 	A = {book} B {pin, tree, book) 
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In each case you will find that every element of set A is also an 
element of the corresponding set B. When this happens we say 
that A is a subset of B. Thus in the first pair of sets (a) die ele­
ments of A are the numbers 1, 2, and both of these numbers 
belong to B. Similarly, in (b)A contains the letters a, e, i, o, u, and 
each of these ietters belongs to set B because 1 contains all the 
letters in the English alphabet. Finally, in (c) the only element 
of A is "book", and this element also belongs to B. In each case 
we say that set A is a SU BSET of the corresponding set B. 

In general, the term "subset" is defined as follows: 

If each elei.ient of set A is also an element of set B, then set A 
is called a SUBSET of set B. 

Sets which are subsets of other sets appear continually in 
mathematics. As illustrations we give some examples from 
arithmetic. 

(a) ie set 

A= 10, 2, 4, 6,... 

is called the set of EVEN WHOLE NUMBERS. Every number 
which belongs to this set is said to be an even number. Thus a 
whole number is even if it is exactly divisible by 2. Remember 
that 0 is exactly divisible by 2 since 0 - 2 = 0, with no remain­
der. The set of even whole numbers is a subset of the set of all 
whole numbers. 

(b) The set 

A =1,3, 5, 7,...) 

is called the set of ODD WHOLE NUMBERS. Every number 
which belongs to this set is said to be an odd number. Thus a 
whole number is odd if it is not exactly divisible by 2. The set 
of odd numbers is a subset of the set of all whole nunbers. It is 
also a subset of the set of all counting numbers. 

(c) Another interesting subset of the set of whole numbers is 
the set of prime numbers. A whole number is said to be a 
PRIME NUMBER if it is greater than 1 and is exactly divisible 
only by itself and 1. Thus 2 is a prime number, since it is 
greater than 1 and is exactly divisible only by 2 and 1. The 
number 3 is also prime. However, 4 is not, since it is divisible by 
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2. You should note that I is not a prime number. The first ten
prime numbers are 

2,3,5, 7, 11, 13, 17, 19,23,29 
The set of all prime numbers is a subset of the set of all whole 
numbers. 

It is an interesting pnroblem to determine how many num­bers there are in the set of all prime numbers. What do youthink? Does the( list go on and on, or is there a largest prime
number? This is not an easy qu1lestion to answer. However,
mathematicians have shown tihat die list of prime numbers goes
on and on without stopping,ll1 other words, there are infinitely
many prime numl)ers. Tiis faict was first proved by Euclid in 
about 300 ne. 

EXERCISE i-6 

1.LetX = f1,2,A,6,7,9, 11, 121 
a. Which of the ftllowing sets are sLbsets of X?(i) f4, 7, 11} (ii) {11, '2,6,11,

(iii) f7, 3;, 9 (iv) I1I} 
(v) The set made up of' the first three even counting 

numbers. 
(vi) The set made up of the first two prime numbers.b. What is the subset of X made up cfall the even numbers 
in X? 

c. What is the subset of X made up of all the odd numbers 
in X? 

d. What is the subset of X made up of all the prime numbers 
in X? 

e. What is the subset of X made up of all the elements of X 
such that twice the element is not in X? 

2. Which of the follov ing sets contain only prime numbers? 
a. {2, 19, 59, 71} b. {1, 5, 17} 
c. {47, 89, 101, 103} d. {79, 93, I1}

3. List the members of the set of all prime numbers less than 50. 
4. Use the bracket notation to describe the following sets: 

a. rhe set of even numbers between 35 and 50.
b. The set of whole numbers which end in 1, 3, 5, 7 or 9. 
c. The set of'even prime numbers. 
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d. 	The set of prime numbers exactly divisible by 4. 
e. The set of odd whole numbers exactly divisible by 3. 
f. The set of even whole numbers exactly divisible by 3. 

5. 	Let X, Y and Z be sets. Suppose that X is a subset of Y, and 
that Y is a subset of Z. Is X a subset of Z? Why? 

1-7 More about subsets 

Consider the following three sets: 

A the set of all pupils in your school 
B the set of all boys in your school 
G the set of all girls in your school 

Then B and G are subsets of A, since every member ofB belongs 
to A and every member of G a]so belongs to A. 

Keeping this in mind, suppose your school is a boys' school. 
Then ,, 'ry member of set A will be a boy, and the subset B 
will be the same as A. In other words B = A. This says that B 
isjust another name for the set A. But B is a subset of A. Thus A 
is 	a subset of itself. 

This example illustrates the following general fact about the 
subsets of a set: 

For atey set A, A is a subset of itself 

Now look at the subset G-the girls in your school. If the 
entire school consists of boys, then G will be the empty set. It 
will not have any members at all. Yet it still makes sense to 
speak about the subset of girls in your school. For this reason 
we agree that G is a shbset of A even when G is empty.

This illustrates a second fact about the subsets of a set: 

The emptv set is a subset of every set 

These two facts about subsets may be a little disturbing at 
first. So we shall say more about them. 

Let A be a set, any set at all. Then a set B is a subset of A if 
every element of B belongs to A. Since every element of A 
clearly belongs to A, our definition of the term "subset" forces 
us to conclude that A is a subset of itself. 

Now suppose E is the empty set. Does our definition also 
imply that E is a subset of A? In other words, does every 

BC I-C 
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element of E belong to A? You may be puzzled about the answer 
to this question since E does not contain any elements. To seethat the answer should be yes, it is helpful to turn things around, 
as follows. E will be a subset of A if -;wre are no elements of Ewhich do not belong to A. (If you study the last sentence care­
fully you will see that it says that every element of E belongs toA.) But since E is empty there are no elements of E which do 
not belong to A. Hence E is a subset of A. 

Using what we have just learned, it is easy to find all of thesubsets of a set A, provided A does not have too many elements. 
For instance, let 

A = (l, 2}
 
Then the subsets of A are
 

( 1,{1), (2}, (I, 2;. 
Similar],,, if A = f1, 2, 3} 

the subsets of A are 
{ ), {1}, {2}, {3}, {l, 2}, {1, 3}, '2, 3}, fl, 2, 3) 

Note that we do not list both {1, 2} and {2, 1} as subsets of A. 
Can you tell why? 

EXERCISE 1-7 
1. 	Write down all subsets of the following sets. 

a. 	{x,y} b. {W, c., El} {a}
2. 	 Let A and B be sets. Suppose that A is a subset of B. Under 

what condition is B a subset of A? 
3. 	 Let A = { } be the empty set. Find all the subsets of A. 

How many are there? 
4. 	 Let A = {1}. Show that A has exactly two subsets. Do you

think that every set containing a single element has exactly 
two subsets? Why? 

5. 	 Let A be any set containing two elnients. Show that A has 
exactly four subsets. 

6. 	 Let A be any set containing three elements. Show that A has 
exactly eight subsets. 
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7. 	 If you worked Exercises 3, 4, 5 and 6 you discovered the 
following facts: 

Number of elements .Number ofsubsets 
in set A of set A 

01 

1 2 

2 4 

3 8 

a. 	On the basis of this table, how many subsets would you 
expect to find when A contains four elements? Verify your 
answer by writing down all subsets of the set {1, 2, 3, 4}. 

b. How many subsets would you expect to find when A 
contains five elements? How many when A contains six 
elements? 

1-8 Picturing sets and subsets 

When teaching children about sets, and when studying them 
ourselves, it is often helpful to draw a picture of the set. 

For example, suppose you wanted to talk to your class about a 
set containing three bananas and two oranges. The children 
might find it easier to understand what you say if you draw a 
picture like this: 

You could then illustrate the idea of a subset for them by 
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drawing a curve around the subset of oranges as shown below. 

Then you might get them to use the same method to find sub­sets containing two bananas and one orange, and so forth. Inthis way children rapidly learn what die term 'subset" means.When mathematicians think about sets, they usually do notdraw pictures like those shown above. Instead, they simplydraw a curve such as the one shown below, and imagine thatthe set is represented by the region inside the curve. The shapeof the curve makes no difference. Any curve will do. Sometimesletters or words are attached to the picture so that we can keeptrack of which set is being shown. Thus the picture below showsa set A. Remember, the region inside the curve represents the 
set. 

A 

If A and B are sets, and A is a subset of B, we draw another
picture as follows: 

This shows A lying entirely inside B, and means that everything
in A also belongs to B. 
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Example 
Draw a picture to illustrate the sets A, B, C when 

A = the set of all people in Nigeria
 
B the set of' all males in Nigeria
 
C = the set of all Nigcrian children
 

Here both B and C are subsets ofA. Thus in our picture B and C 
should lie inside A. Moreover, B and C have some members in 
common, since any child who is also a male is a member of B 
and of C. However, neither of' these sets is a subset of the other. 
(W\.hy?) Since our picture shoul zIshow all of these facts it must 
look like this: 

The shaded region shows that,part of A which belongs to both B 
and C. 

As we continue, you will find that pictures like this are very 
helpful in studying sets. 

EXERCISE 1-8 
1. 	Let A ={a, b, c, e,f} 

a. 	Draw a picture of set A. 
b. 	In your picture show a subset B of A. 
c. 	 Show a subset C of B. Is C a subset of A? 

2. 	In the following picture 
I, = the set of all living things 
B = the set of all birds 
I = the set of all insects
 

A = the set of all ants
 

L 
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Use the picture to decide whether the following statements 
are true or false: 
a. All 	ants are insects. 
b. Some insects are birds. 
c. Some insects are ants. 
d. All birds are living things. 
e. Every living thing is a bird or an insect. 
f. No 	ants are birds. 

3. 	a. Draw a picture to show the following sets:
 
U = the set of all people in the world
 
A = the set of all Africans
 
G the set of all Ghanaians
 
W = the set of all women in the world
 

b. Use your picture to decide whether the following 
statements are true or false: 

(i) All Africans are wonen. 
(ii) Some Ghanaians are not women. 

(iii) All Africans are people.
(iv) All Ghanaian wemen are Africans. 
(v) No African women are Ghanaians. 

(vi) Some Ghanaians are not African women. 
4. Draw a picture to show the following sets: 

C = the set of all counting numbers 
E = the set of all even counting numbers 
0 = the set of all odd counting numbers 
F = the set of all counting numbers exactly divisible by 4 
P the set of all prime numbers greater than 2

Q - the set of all prime numbers greater than 100
 
R = the set of all odd numbers greater than 50
 

1-9 Equivalent sets 
Imagine a room of children who cannot count. Suppose there 

are somc chairs in the room, and suppose you ask the children 
to find out wliether there are more chairs in time room than
children, more children than chairs or the same number of 
each. How can the children answer your question? It is easy.
They simply sit on the chairs; one child to one chair. If, when 
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this is done, every child is seatcd and some chairs are still empty,
there are more chairs than children. If every chair is filled and 
some children are still standing, there are more children than 
chairs. If every chair is filled and every child is seated, the num­
ber of chairs and children is the same. When this happens we 
say that the set of chairs and set of children 7natch exactly. 

Moie chairs than children More children than chairs 

Chairs and children match exactly 
This example shows how we can tell when two sets have the 

same number of elements wit/out counting. We simply try to 
match the elements in the sets and watch what happens. If we 
can make the sets match exactly they have the same number of 
elements. Otherwise they do not. Surprising as it may seem, 
this is one of the most important ideas in arithmetic. For this 
reason we have a special word to describe sets whose elements 
match exactly. We say that the sets are equivalent. Thus: 

Two sets are EQ.UIVALENT if their elements match exactly 
We now look at some examples. 

Example 1 

Let 
A {a, b, c} 

These sets are equivalent. To show this we must make the 
elements of A and B match exactly. In other words, for each 
element in set A we must find a partner in set B. Moreover, 
we must do this in such a way that each element in set B also 
has a partner in set A. The following picture shows how this can 
be done. 
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A={a, b, c) 

- fA, IU , 0 1 II 
The double arrows in the picture show howv the elements in the 
two sets can be matched with one another. Notice that every
element in set A is matched with exactly one elcment in set B,
and that every element in set B is matched with exactly one
clement in set A. The two sets mhatch exactly. Thus they are 
equivalent. 

The elements of A and B can also be matched in several other 
ways. Two other vays are shown below. 

a, b, c{a, b, c} 

Each of these pictures shows that A and B are equivalent sets. 
The easiest way to show that two sets are equivalent is to draw 
pictures like these. 

Example 2 
The following pictures show pairs of equivalent sets. In each

picture we have matched elements by drawing double arrows. 

BA 
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1-10 More about equivalent sets 

We have said that two sets are cquivalent if their elements 
can be matched exactly. You must be careful not to confuse 
equivalent sets with equal sets. Sets are equal only when they 
have the same elements. Sets are equiv'alent when their elements 
match exactly. For instance, the sets 

{a, b, c, d} and {c, b, a,dJ 

are equal,while the sets 

{a, b, c, d} and {w, x,.),, z) 

arc equivalent but not equal Thus sets can be equivalent with­
out being equal. However, it is easy to show that equal sets are 
always equivalent. Can you? 

Now let us look at three sets, A, B and C. Suppose that A is 
equivalent to B, and that B is equivalent to C. We can show 
this by drawing a picture of the following type: 

The double arrows from A to B show that the elements ofA and 
(D AB match exactly. Thus A and B are equivalent sets. Similarly 

B and C are equivalent sets. Now suppose set B3 isAremoved from 
the picture. We then have 

A C 
From this we see that A and C are also equivalent sets. Do you 
think that this result is true for any three equivalent sets? 



22 Basic Concepts and Language of Sets 
Pictt.:es such as the ones we have just drawn show that it must 
be true. Thus: 

Given sets A, B, C with A and B equivalent, and B and C
 
equivalent,
 

then
 
A and C are equivalent
 

This is a very important fact about equivalent sets.
The idea of equivalence for sets is just another way of expres­

sing the fact that two sets have the "same number" of elements.
However, it is important to notice that we have introduced this
idea without actually counting anything. Indeed, as we shall 
see later, we must know about equivalence for sets before we can
learn to count. (Think of the example of the children and the 
chahrs given earlier.)

In all of our examples up to now it was easy to see that the
sets involved were equivalent. This was true because we could
tell that they had the same number of elements just by looking
at them. We now give an example where this does not happen.

Let A be the set of counting numbers, and let B be the set of 
even counting numbers. Thus 

A {1,2, 3,4,5, 6,...)
B {2, '4, 6, 8, 10, 12,.... 

Do you think that A and B arc equivalent? The first answer
almost everyone gives is NO. After all, every element of B is

already in A, and there are eleme-nts o'A left over. Nevertheless,

this answer is wrong. Sets A and B ,a equivalent. The following
 
picture shows why.
 

{1, 2, 3,45,6 

{2, 4, 6, 8, 10, 12.. 
As usual the three dlots mean that the picture goes on and on
without stopping. The picture shows how we can match the
elements of these sets exactly. Each number in A is matched
with two times that nunber-. This gives a number in B.Thus the
number 11 in A is matched with 22 in B, the number 50 in Awith 100 in B, and so on. In this way each element in B also has 
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a partner in A. This shows that the clements of A and B match 
exactly. Hence A and B are equivalent sets. 

EXERCISE 1-10 

1. 	Which of the following pairs of sets are equivalent? 
In each case where the sets are equivalent illustrate a match­
ing of the elements. 
a. 	A f{2, 4, 6, 8, 10} 

B = {Gliana, Kenya, Nigeria, Sierra Leone, Uganda} 
b. 	A = the set of even whole numbers less than 20 

B 	 = the set of even whole numbers greater than 40 and 
less than 60 

c. 	 A = {a, b, ,...,i}
 
B {a, c, e, ... , q}
 

d. 	A = the set of prime numbers less than 30 
B 	 the set of whole numbers less than 100 exactly 

divisible by 10 
e. 	 A = the set of all fathers in the vorld
 

B the set of all children in the world
 
2. 	 Let A be the set of all counting numbers. Determine which 

of the following sets are equivalent to A. When the sets are 
equivalent illustrate a matching of the elements. 
a. 	 B = {0, 5, 10, '5,..} 
b. 	C = {3, 6, 9,..., 3000} 
c. 	 D = {0, 1,2,3,...} 
d. 	 E = {1,4,9, 16,.. .} 

3. 	Let A and B be equal sets. Show that A is equivalent to B. 
4. 	 Is it possible to match exactly the set of all counting numbers 

and the set of all counting numbers greater than 200? If 
your answer is "yes", show how this could be done. If your 
answer is "no" explain why it is "no". 
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OPERATIONS ON SETS 

In the last chapter we learned about sets InIand subsets.this chapter we shall study several ways of making new sets outof old ones. As we shall see, these ideas are important in the 
study of arithmetic. 

2-1 Union of sets 
The easiest way to make a new set out of old ones is to com­bine the elements of' the old sets to form one large set. For 

example, if 

A 1,3, 5} 
B {0, 2, 4)
 

we 
can combine the elements of A and B to form the set 

{0, 1, 2,34, 5)
This set is called the union of sct A and set B because it wasformed by "uniting" the elements of A with the elements of B.We write the union ofA and B in symbols as 

A u B
 
(which you should 
 read as 'A union B"). Thus when A

{l, 3, 5} and B = {0, 2, 4)
 

A u B = 0, 1,2,3,4,5) 
It is clear that any two sets can be combined in this way. Wesimply "put the sets together" to make large set. If theone

original sets were A and 13, the new set is called the union of A
and B. Thus: 

The UNION of set A and set B is the set consisting of all theelements in A together with all the elements in B. The union ofA and B is always written A u B. 
The following examples illustrate this definition. 

24 
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Example 1 

B = the set of all boys in your school 
G = the set of all girls in your school 

B u G = the set of all pupils in your school 
Example 2 

A ={2, 3, 6} 
B {0, 3, 6} 

Au B = {O,2,3,61 
Note that the numbers 3 and 6 belong to both A and B, but
appeal- only once in the union of A and B. Can you explain this? 

Example 3 
A ={O,2,4,6,...}
3 f{1, 3,5, 7,. . 

The union of A and B is the set of all whole numbers; 

AuB ={0, 1, 2,3,...} 

Example 4 

A ={a,b, c, d}
B = { ) 

A u B = {a, b, c, dt 
Example 5 

A ={a,b, c, d 
B {b, c} 

A u B f{a, b, c, d 
Did you notice that in the last two examples A u B - A?

This happened because B was a subset of A. Indeed, it is easy to 
see that A u B must equal A when B is a subset of A. For then 
every element of B already belongs to A. So when we put the 
sets together we just get A. 

Here is another flact about the union of two sets: Both A and B 
are subsets ofA u B. Can you explain why this is true? 

EXEcClSE 2-1 
1. Use the bracket notation to write tile union of each of tile 

following pairs of sets: 
a. A = 17,2,9,5} B ={l, 5,3, 2} 
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b. 	A = {a, e, i, o, u} B = the set of letters in the word 

"occan" 
c. 	 A = P2, 4, 6,., 20}I B = f{3, 6, 9,..,91 
d. A = the set of prime numbers less than 20
 

B = the set of odd numbers less than 20
 
e. 	 A = {0, 5, 10, 15, .... , 100}

B 	= the set of all whole numbers less than 100 which are 
exactly divisible by 15 

2. 	Let A and B be sets. Suppose A contains 5 elements, and B 
contains 10 elements. 
a. What is the largest possible number of elements in A U B? 

Explain your answer. 
b. 	What is the smallest possible number of elements in A u B? 

Explain your answer. 
3. 	Let A and B be sets. Is A u B =B u A? Why? 
4. 	 a. Let A be the empty set. Let B be any set. Is A a subset of 

A U B? Why?
b. 	What is A u B wlen both A and B are empty? 

5. 	Explain why A and B are subzets ofA U B. 

2-2 	 Picturing the union of sets 
It is easy to illustrate the union of two sets by pictures. For

instance, let A be a set containing a square, a triangle and astar. Let B be a set containing a banana and an orange. Then 
A and B can bl. r.prescntecd by the pictures 

20 
A B 

To get a picture for A u B we simply combine these pictures as 
follows: 

0 

AUB 
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We could also show the same thing by the picture 

00 
U ) ~ 

In the above example sets A and B had no elements in com­
mon. Thus we did not let the pictures for A and B overlap. The 
following example shows what happens when A and B do have 
elements in common. 

Let A = {a, b, c, d} 
B {b, c, e,fj 

Since the elements named b and c belong to both A and B we 
have 

b 
d 

aB 
A 

This time the picture for A U B is 

d 
e 

AUB 
Notice that these pictures show why elements common to A and 
B appear only once in A U B. 

Pictures like those above arc extremely helpful in teaching
children about the union of sets. There may be times, however,
when you do not want to show individual elements in your
pictures. When that happens you may draw a picture like 
this: 

AUB
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Remember that 	in such a picture set A is 	represented by theregion inside the curve labelled A. It has been shaded . SetB is represented by the region inside the curve label jed B. It hasbeen shaded 11111.When these sets are put together we get theregion inside both curves. Thus A u B is 	the shaded regioninside the heavy outer curve. It is best to draw such pictureswith A and B overlapping unless you know that A and B have no 
elements in common. 

EXERCISE 2-2
 
Draw pictures to illustrate A, B and A 
' B for each of the fol­
lowing pairs of sets. 
1., 
2. 	 A ={0, 2,4,6} B ={0, 3, 6, 9}
3. 	 A {a. 	e, i, o, u} B =-the set of letters in the word 

"'ocean" 
-4. 	 A the set of prime numbers less than 20
 

B = the set of odd numbers less than 10
 
5. 	A = 0, 5, 10,..., 301 

B =10, 10,20,30} 
6. 	A ={2 +3,4 -2, 7 5} 

B = {12, 6, 5) 

2-3 Intersection of sets 
Let A be tle set of letters in the word "bananas". Let B be

the set '_f letters in the word "nail". Then 

A ={a, b, n, s} 
B = {a, i, 1,n}

These sets have the letters a and n in common. Hence if we
wanted to draw a picture of A and B our picture would have 
to look like this: 

b-a 
n

S 
A B

The two sets overlap. The set consisting of the letters a and n is 
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called the intersection of set A and set B. The members of the 
intersection are the elements which belong both to A and to B. 
We write the intersection of A and B in symbols as 

AnB
 
(which you should read "A intersect B"). Thus when
 

A ={a, b,n,s} and B ={a,i,l,n}
 
A n B = "a, n}
 

This example illustrates a second way to make a new set out 
of old ones. W\e simply form the set containing all the elements 
which the old sets have in common. This new set is called the 
intersection of the old sets. Thus: 

The INTERSECTION of set A and set B is the set consisting of 
all the elements which belong both to A and to B. The inter­
section of A and B is always written A n B. 

But can we always form the intersection of two sets? What if 
A and B have no elements in commnon? The answer is easy.
According to the above definition the intersection of A and B 
then has no elements. It is the empty set. For instance, if 

A {a, b, n, s} and B {d, g, b, o}, 

then A r B = f 
This example shows why we really need such a thing as the 

empty set around. For without it we could not talk about the 
intersection of two sets with no elements in common. 

Two sets with no elements in common are said to be DIS-
JOINT. Thus the intersection of two disjoint sets is the empty 
set. 

The following examples illustrate the intersection of sets:, 

Example 1 
A = {2, 6} 
B = 10, 3, 61 

A r B = {3, 6} 
Example 2 

B = the set of all boys in your school
 
G = the set of all girls in your school
 

B nG={ }
 
Thus B and G are disjoint sets.
 

1'C I-D 
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Example 3
 
A {a, c, dft
 
B {c, d}
 

A n B = ( ,d}
 
Example 4
 

A ={1,2,3, 4,...} 
B ={2,4,6, 8,...}An0B ={2, 4, 6,8,.... 

Did you notice that in the last two examples A n B B?This happened because B was a subset of A. It is easy to seethat A n B must equal B when B is a subset of A because theelements which A and B have in common are precisely theelements of B when every element of B belongs to A.
Here is another fact about the intersection of sets: A n B is asubset of A; it is alsn a subset of B. You should be able to explain

why this is true. 

EXERCISE 2-3 
1. Use the bracket notation to write the intersection of each of 

the following pairs of sets. 
a. 	A = (1, 5, 8, 9, 11} =B {0, 3, 4, 5, 8}
b. 	A = the set of letters in the word "Entebbe" 

B 	= the set of letters in the word "African" 
c. 	 A -{4, 8, 12, ... , 40}B 	 ={3, 6, 9, ... , 391 
d. 	A {5, 10, 15,...}
 

B1 {4, 8, 12,...}
e. 	 A - f 1, 4, 9, 16,.... 
B 	='the set of all prime numbers 

2. 	 Let A and B be sets. Suppose A contains 5 elements, and B 
contains 10 elements. 
a. 	What is the largestpossible number of elements in A n) B? 

Explain your answer. 
b. 	What is the smallest possible number of elements in 

A n B? Explain your answer. 
3. 	Let A and B be sets. Is A n B = B 0 A? Why?
4. 	Suppose A n B = A U B. What can you say about A and 

B? Why? 
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5. 	Explain why A n B is a subset of A and a subset of B. 
6. 	Is A n B a subset ofA U B? Why? 

2-4 Picturing the intersection of sets 

It is easy to illustrate the intersection of two sets by pictures. 
For example, if 

A =ra, b, n1,s} 
B i, 1,n}-{a, 

we have the picture 

A b / B 

S -n 

AnB 
The elements in the shaded part of the picture make up
An B. Thus An B {a, n}

As usual, we can draw a picture of Ihe intersection of two 
sets without showing the individual elements in the sets. The 
picture then looks like this: 

AlB 
The shaded part of the picture represents A intersect B. 

Notice that the region representing A n B in this picture lies 
inside set A. This shows that A n B is a subset of A. Do you see 
why A n B is also a subset of B? 

EXERCISE 2-4 
1. 	Draw pictures to illustrate A, B and A n B for each of the 

following pairs of sets: 
a. 	 A ={1,5,9,8,4} B ={3,0,1,6,9} 
b. A ={2, 4, 6,..., 20} B ={3, 6, 9,..., 21}
 
c.A= {A, , ,*1 ={ , ,B}
AJ 
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2-5 

Basic Concepts and Language of Sets 
d. A 	= the set of distinct letters in the word "Entebbe"

B the set of distinct letters in the word "African" 
2. 	 There are 10 clements in set A, 7 elements in set B and 3 

elements in A n B. 
a. 	How many elements are in A u B? 
b. 	Draw a picture to show A and 13. 

3. 	There are 15 elements in A u B, 8 elements in A, and A and
B are disjoint. How many elements arc in 	B? 

4. 	 There are 10 elements in A u B, 5 elements in A n 	B, and 2 
elements in A which are not in B. 
a. 	Draw a picture to show A and B. 
b. 	How many elements are in A? 
c. 	 How many elements are in B? 
d. 	How many elements are in B which are not in A? 

5. 	There are 12 elements in A u, 6 elements in A which are 
not in B, and 3 elements in B which are not in A. 
a. 	Draw a picture to show A and B. 
b. 	How many elements are in A? 
c. 	 How many elements are in B? 
d. 	How many elements are in A rn B? 

6. 	Let A, B and C be sets. Suppose that C is a subset of A and
C is a subset of B3.What is the relaton between C and
A n B? Illustrate your answer with a picture. 

More about unions and intersections 
Now that we know how to form unions and intersections the

study of sets becomes quite interesting. This happens because we can use these two ideas together to make lots of new sets.
For example, suppose we 	are given three sets, A, B and C.We can form 	the union of B and C, and then take the inter­section of set A with this i:jion. Inother words, we can form a 

new set in two steps, as follows: 

Step 	1: Form B u C 
Step 2: Form the intersection of A and (B U C)

We write the result as 

A n (B u C) 
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This symbol tells you to take the intersection of A with the set
inside the brackets. Since the set inside the brackets is B union 
C, you must form the intersection of A and B U C. The fol­
lowing pictures show what happens. 

Step 1. Form B u C 

A B 

BUC shaded 
Step 2: Form ,,i intersect B u C 

AfB(BUC) shaded 
In passing from Step I to Step 2 we simply kept the part of
B u C which lies in A. This is the shaded region in the last 
picture. 

If you look carefully at the picture above you should be 
able to find another way of writing the set A n (B u C). Do 
you see what it is? Locate the part of A which is in B. This 
represents the set A n B. Notice that it is shaded. Similarlv 
the region representing A n C is shaded. Moreover, the entire 
shaded region in our picture can be written as the union of
these two shaded regions. This shows that the set A n (B u C)
is the union of A n B and A n C. in other words these sets are 
equal, and we have 

An(BuC) =(An B)u(AnC) 
The moral here is that pictures can be used to discover 

relations between sets. If you have never done this sort of thing 



34 Basic Concepts and Language of Sets 

before you will probably want to try some of the exercises 
below. 

EXERCISE 2-5 
1. 	Use the following picture to complete each of the statements 

given below. 

B 
v 

d.A nC= 	 b. A u C =­
c. 	 B n C =d. An (B n C) 
e. 	 (AU13) uC: - f. (AnB) nC = 
g. 	An(BuC) - h.(Anl3)u(AnC)=
i. 	Au(13uC) j. (Au13) n(AuC) 

k. 	13. u(AnC) I. Au(BnC) ­
2. 	Which of the sets listed in Question I are equal to one 

another? 
3. 	Let A, B and C be sets. Draw pictures to illustrate the 

sets A u (13 n C) and (A u B) n (A u C). What do you
conclude about these sets? 

4. 	 There are 10 boys in all; 8 boys are playing ball and 6 are 
wearing jackets. How many boys must be punished for 
playing ball in their jackets? 

5. 	True or false? There are 100 people in all. 75 drink coffee. 
50 drink tea. 40 drink both. 10 do not drink either.
 
Draw a picture to explain your answer.
 

6. 	There are 10 elements in set A 
6 elements in set 13 

'lements in set C 
3 elements in both A and B 
2 elements in both A and C 
2 elements in both B and C 
1 element in all three 
How many elements altogether? Draw a picture to explain 
your answer. 
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Chapter 3 

NUMBER 

In the previous unit we studied sets and learned how to work
with them. In this unit we are going to use sets to develop the
idea of number. Once we know what numbers are we shall
consider different ways of representing them. Tlien shallwe
study the numlber line and the relations of ordcr in the set of 
whole numbers. Finally, we slhl study arithmletic, and learn
how addition, subtraction, multiplication and division F e 
defined. 

3-1 Comparison of sets by matching 
It is interesting to consider the way pupils first develop the

idea of number. It goes something like this. 
Consider the set of pawpaws and the set of bananas in the 

following picture. 

In this picture we have matched each pawl)aw with exactly one
bananajust as children might do. In so doing each banana was 
matched with exactly one pawpaw. Recall that the two sets 
are then said to match exactly, or to be equivalent. From this 
we conclude that there are JUST AS MANY bananas as there 
are pawpaws, and JUST AS MANY pawpaws as there are
bananas. Notice that any other matching of' the elements of
these sets will give the same relationship: the sets will match
exactly. Two other matchings of these sets are shown in the
following picture. Each of these natchings shows that the 
two sets are equivalent. 

36 
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(~00 

0lk,00, 

These sets can be matched in other ways as vell. Can you find 
some of them? 

Now look at the following sets: 

Double arrows have been drawn to match each orange with 
exactly one pawpaw. But this time there are some pawpaws
left over. We describe this by saying that the set of pawpaws
has MORE ELEMENTS than the set of oranges. We also say
that the set of oranges has FEWER ELEMENTS than the set of 
pawpaws. 

As in the case of an exact matching, there are other ways of 
matching the oranges and pawpaws in these two sets. But no 
matter what matching is used there will always be some paw­
paws left over. The following picture shows some of these
matchings. Each of them shows that the set of pawpaws has 
more elements than the set of oranges. They also show that the 
set of oranges has fewer elements than the set of pawpaws. 
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From the preceding illustrations we see that when we match 
the elements of a set A with the elements of a set B one of three 
things will happen: 

1. They will match exactly. 
2. There will be some elements of A left over. 
3. There will be some elements of B left over. 

When the elements match exactly we say that set A has just 
as manly elements as set B. When there are elements of A left over 
we say that set A has more elements than set B. When there are 
elemenw.s of B left over we say that set A hasfewer elements than 
set B. 

EXERCisE 3-I 
1. Which of the following sets are equivalent? Illustrate your 

answer by drawing pictures with matching arrows. 

A ={a,} = x} C 
D={1,5,7} E { } F 

G = the set of distinct letters in the word "banana"
 
H = the set of all even prime numbers
 
I - {Ghana, Nigeria, Togo}
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2. 	By drawing pictures with matching arrows show that the 
set {x,y} is equivalent to three differcnt subsets of the set 
{A,M, 0}. 

3. 	 Let A be the set of all whole numbers, and let B be the set 
of all even whole numbers. Consider the following pictures: 

A:{Q,1, 2, 3, 4, .. 

B:{0, 2, 4,...} 

A: fO, 1, 2, 3,4., j

tIlt II..
B: {0, 2, 4,6, 8, .. } 

The first picture scem. to show that A has more elements 
than B. The second picture seems to show that A has as 
many elements as B. Which do you think is correct? What 
are the reasons for your answer? 

4. 	 There is one set v :.ich is equivalent to a subset of every set. 
What is it? 

3-2 Number as a property of sets 
Suppose we start with a set such as the set pictured here: 

Think of sets which are equivalent to this set; that is, sets which 
can be matched exactly with it. Here are pictures of several 
such sets: 

CM* 
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Of coursc, it is possible to form many other sets besides thesewhich are equivalcnt to the original one. As we continue tolbrm these sets we arc led to consider ALL sets which
equivalent to the original set. As we shall see, 

are 
this is the idea

behind the concept of number. 

Exilnc:isir 3-2a 
1. Make up a few !"ts which match { Em I exactly.
2. Make up a few sets which match {A, 13, C exactly. 

Think about all the sets which are equivalent to the set in thefirst exercise above. Some of' them are shovn below. 

01 course, there are many, mce, somany many that it isimpossible to draw all of them. However we can think about
all of them, and as we do we discover that tihre is only oneproperty which they have in common. Do you see what that
property is? Each of these sets has precisely as many elementz asany other since they are all equivalent. IVL describe this 
property by saying that all of these sets have the same NUMBER 
of elements.
 

Thus the word "number" denotes the property shared by
ALL sets equivalent to a given set. It is con ,enient to assign a
 name to the number property possessed by all sets equivalent to a given set. This name refers to the nuriber of elements in thesets. For uxample, the*name "two" tois used describe theproperty of "two-ness" shared by ALL sets equivalent to{, 07 }. We say that there are two elements in {Q, 0).The
number called "two" is also attached to all the other sets in the 
picture above. We speak of two stickmen, two letters, two piecesof fruit. etc. The number two is also attached to every other setthat is equivalent to {Q, [}.ALL these sets have something
in common: it is the property of "two-ness" which we name by
the number two. 
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Similarly, the name "three" is assigned to the number 
property of every set which is equivalent to {O, 13, A). Some 
of these sets are illustrated below; 

@9---- -A-.A . --

As you know, every number has a symbol which is used when 
we write the number. The symbol "2" is used to write the 
number named "two". The symbol "3" is used to write the 
number named "three". A symbol used to write a number is 
called a NUMERAL. 

We have now described several important concepts for pupils
to think about and learn in the classes you will teach. One is 
the concept of a set r f objects. Another is the concept of number 
which tells how D1a1 elements the set contains. Each number 
has a name, and is represented by a symbol which is called a 
numeral. 

EXERCISE 3-2b 
1. 	Let A, B and C be sets. Suppose all three sets have the 

same number of elements. What can you say about these 
sets? 

2. 	 Let A, B and C be sets. Suppose A is equivalent to a subset 
of B, and B is equivalent to a subset of C. What can you say
about the number of elements in A and in C? Illustrate your 
answer with pictures. 

3. 	 Let A and B be sets containing a finite number of elements. 
Suppose that A U B = A but that A is not equal to B. What 
statement can you make about the number of elements in 
the sets A and B? 

4. 	 Let A = {a, b, c} 
a. (i) 	List all the subsets of A containing a single element. 

(ii) List all the subsets of A containing 2 elements. 
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(iii) 	Match each 2-element subset of A with the 1­

element subset containing the third element of A;
that is, {a, b} <-->{c}, and so on.

(iv) 	What can you say :,t the number of 2-element 
subsets of A and the iiimber of I-element subsets of 
A? 

b. Let A ={a, b, c, d}
Use the idea explained in a above to show that the num­
ber of 3-element subsets of A is the same as the number 
of 1-element subsets of A. 

c. Suppose A is a set containing 10 elements. How many
different 9-element subsets does A have? Explain your 
answer. 

d. How many different subsets of 51 cards can be chosen 
from a pack of 52 cards? 
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3-3 Sets in natural order 
Let us now compare the following sets of stickmen and 

boxes: 

If we look at the set of stickmen left over, we see that this 
set has the property of "one-ness". There is one stickman left 
over. We then say that the set of stickmen has one element more 
than the set of boxes. This "one-more-than" relation provides 
the basis for placing sets in NATURAL ORDER. 

Look at the following sets of triangles: 

AAA 

AA AAA A 
AAAAAAAA 

A 

AAAAAAAA A 

[AAAA 

[AAAAAA 
AAAAAA] 
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No set of triangles matches any other set exactly. However, we 
can arrange these sets in a one-more-than relation, starting
with the set that has fewest elements. We note that there is an 
empty set. Because the empty set has the fewest elements of
all, it comes at the beginning of the new arrangement. The set
consisting of a single triangle has one more element than the 
empty set, so it comes next. By continuing to choose the set
which has one more element than the preceding set, we place 
the sets in natural order as shown below: 

A 

A AA 

A AAAAAAAA(AAAAa) A 

AAAAAAAA 
AAAAAA AAA 

EXERcisE 3-3 
1. Let A, B, C, D and E be sets. Suppose that 

(i) A has one more element than E 
(ii) C has one more element than A 
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(iii) D has one more element than B 
1iv) E has one more element than D 
Arrange these sets in natural order. Which set has the most 
elements? Which set has the fewest elements? 

2. 	Set A has on)e more element than set B. Set C is equivalent 
to set B. What can vou say about sets A and C? Why? 

3. 	Suppose that sets A, B, C, 1) can be arranged in natural 
order with A first, B second, C third and D last. Suppose 
set S is equivalent to set A, and that set T is equivalent to set 
D. 	Arrange B, C, S, T in natural order. 

4. 	Set A has one more element than sets B and C. Set B has 
one more element than sets D, E and F. List all possible 
arrangements that are in natural order whicb can be made 
from these sets. 

Ci1-13 
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THE SET OF WHOLE NUMBERS 

4-1 Identifying the whole numbers 
You have seen how to place sets in natural order. Using this

natural order, we give a name to the number of elements in
each set, and we write the numeral which represents the num­
ber. 

Set Ntunbr tmeral 

SZero 0 

two 2 

[AAA three 3 

A. A A A foLr 4 

AAAAAA s 6 

AAAAAAA seven 7 

[AAAAAAA A eight 8[AAAAAAAAA ,,, 
The numbers 0,1, 2, 3, 4, 5 and so on are called WHOLE

NUMBERS. The set {0, 1, 2, 3, 4, 5. .. ., is the set of whole 
numbers. We give these numI11berS a special name because as yott
will see later there are other kinds o1 numbers. 

46 



The Set of Whole Numbers 	 47 
4-2 Order in the set of whole numbers 

When sets are placed in natural order-as above--we also 
say 	that the corresponding whole numbers are then in natural 
order. Thus 0, 1, 2, 3 are in nattuI order. Onl the other hand 
3, 6, 5, 4 are not in natural order; the natural order is 3, 4, 5, 6. 

XVC 	 have already seen how a set of' ol)ects has a whole 
number attached to it. Suppose thatt the numblher of elements in 
set A is in,and the number of elements in set B is n. Then: 

(i) 	 We say that in is EQ UAL to n if set A hasjust as man~y 
elements as set B. 

(ii) 	 We say that in is LEiSS TIA N i if set A hasjfrwerelements 
than set B. 

(iii) 	 We say that M is GoIEATIt' THAN it if set A has more 
elements than set B. 

Since these are the only three possibilities it follows that for any 
two whole numbers ?i and n one and only one of the following 
statements is true: 

(i) 	in is equal to i 
(ii) 	in is less than n 

(iii) 	 in is greater than n 

There are special symbols in mathematics to express each of 
these facts. 

(i) 	 If in is equcl to n we write i - n 
(ii) 	 Ifin is less tMan i we write in it 

(iii) 	 If in is greater than it we write in > a 

Using these symbols we can say that for any two whole numbers 
in and n one and only one of the following statements is true: 

11 :--: n1 7in < it ill > a1 

Before we go on, two things should be made clear. 
First, if n, and a ire whole numbers vith in < i, then we 

also have i >in. Thus since 2 < 5, we also have 5 > 2. 
Similarly, if n > in, then we also have m < i. In short, the 
statements 

i < n and i > m 
say the same thing. If one of them is true, the other is also true. 
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Sczond, to say that the whole number ,i is greater than thewhole number n amounts to the same thing as saying that mcomes after n in the natural order of the whole numbers. Thus,since 3, 4, 5, 6 are in natural order, we can write 

6>5 6>4 6>3 

5>4 5>34>3 

EXERCISE 4-2 
1. Herc are four sets:
 

{A, B, C, DI
 

{ I 
{B, C, E, F}
Find the number of members in each. Now write all thestatements you can, using these numbers and the symbols 

2. Complete each of the following statements by inserting the 
correct symbol: =, <, >. 
a. 5- 7 
b. 12- 0 
c. 2 +2- 4 
d. 2 + 2 3 + 2 
e. 9 + 7 - 8 + 7 
f. 14 - 12- 13 -- 13 
g. 6 - 8 F 10- 5 -- 7 + 9 

3. Use the bracket notation to describe the set of wholenumbers n which make each of the following statements 
true: 
a. n <6 
b. 25 <i 
c. 12 <n and n < 18
d. n < 20 and n is exactly divisible by 3 
e. 10 < ii, n < 30 and n is even 

4. Is there a whole number in such that mn< n for all other
whole numbers n? Explain your answer. 

5. Is there awhole number m such that m > n for all otherwhole 
numbers n? Explain your answer. 
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6. Is it true that a > b and b > c imply that a > c? With sets 

having 4. elements, 3 elements and 2 elements, show this 
icea by matching elements. 

7. Suppose that A is at subset of B but is not equal to B. What 
statement can be made about the numbcr of elements in A 
and the number of elements of B wlien A and B each have a 
finite number of elements. 

4-3 Counting and the counting numbers 
In section 4-1, we shoved sets of triangles in natural order. 

Each set has one more triangle thain the preceding set. just as 
we placed these sets of triangles in natural order, we can also 
ibrm sets of' whole numbers and place them in natural order. 
Thus {I } is the set vhose one element is tie nunber I; {1, 2} 
is the set containing the two iilnuberl's 1 and 2 in their natural 
order; {1, 2, 3} is the set containing the three nunlbers 1, 2 and 3 
in natural order, and so on. We come in this way, for example, 
to the set {1, 2, 3,..., 27,, which is the set containing the 
twenty-seven numbers 1, 2, 3, and so on up to 27, in natural order. 
The last number in the set is 27, and 27 is also tile number of 
elements in the set. Similairly, the set {1, 2, 3, . . ., n} is the 
set of whole nuinbers 1, 2, 3, and so on up to n in natural order. 
The last number in the set is n, and n is also the number of 
elements in tile set. These sets of numbers are called couN'rIxc 
SETS. The number's in each counting set are counting numbers 
in natural orcler starting fiom i 1. The complete set of counting 
numbers is the set {1, 2, 3, 4, 5, . . .}. Counting sets are repre­
sentecd below. 

Counting sets Number of members 
{l} 1 
11,2) 2 
1, 2, 3} 3 

{, 2, 3, 41 ­
1, 2, 3, 4, 5} 5 

{1, 2, 3, 4, 5, 6} 6 
{1, 2, 3, 4, 5, 6, 7} 7 
{1, 2, 3, 4., 5, 6, 7,8} 8 
{1, 2, 3, 4, 5, 6, 7, 8,9} 9 

{1, 2, 3, 4, 5, 6, 7, 8,9, . . .,n} n 
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Corresponding to each counting set is the number of elements 
in that set. The last number in a counting set tells the number of 
elements in that counting set. 

4-4 Finding the number of elements in a set 
When we use the counting sets we follow the natural order 

of numbers; that is, we count: "one, two, three, . . .". Now you 
may ask, "-low do we lind the number of elements in any given
set?" For exampl, take the set of fish shown below. 

i 
{ 1, 2, 3, 4 J 

Match the fish with the numbers in a counting set starting with 
1, proceeding in natural order. The set of fish is exhausted when 
the last fish is matched with the last number in a counting set. 
This number tells us the number of fish. It is the largest number 
in the counting set. 

When we teach children how to count, we teach them to use 
a set which they describe by the spoken words "one", "two", 
"three", "four", and so on. It is important to note that as they 
say "one", they arc matching the number I with an object; 
as they say "two", they are matching the number 2 with another 
object, etc. The last number they name is matched with the 
last object remaining in the set. This last number tells the 
number of objects in the set. 

In counting, it is important to attach just one number to 
each member of a set. In the preceding example of counting
fish, the order in which we take the fish is not important. What 
is iml)Ortant is that each fish is counted just once. When we 
count the elements of a set, no matter how we do the counting, 
we always find the same number of elements. When you count 
the sides of a square, for example, you always get 4. 

4-5 Equivalence using counting sets 
You can use counting sets to tell whether two sets are equiva­
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lent. Recall that earlier in this unit we said that sets A and B 
are equivalent when there is an exact matching of the members of' 
set A with the members of set B. \\e can now restate the idea 
of equivalence of sets using counting sets. 

Let us suppos We have a set A offish and a1set B of oranges. 
In 	order to tell whether the two sets are equivalent find the 
counting set which matches set A exactly. Then see whether set 
B also matches the same counting set exactly. if' it does, set A 
is equivalent to the counting set, and set B is Cq dIivalent to the 
counting set, and we can ColcludC that set A is equivalent to set 
B. 	Can you tell why? 

{ 	 1 , 2, 3, 4 }
I i 1I '1 

B: {O, O,O, O 
In the picture above we see that sets A and B are equivalent to 
the counting set 1, 2, 3, fl. Thus A and B are equivalent to 
one another. 

Ex 	ncisi.; '1-5 
1. 	Find, by counting, whether A and B are equivalent sets. 

a. 	A = {A , 0-, 10, 1* 1r"-10
 
B1 th oct of*fingers on your left hand
 

b. 	A the set of'consonants in the word relation 

13 the set of sides in the figure ] 

2. 	A and B are eqivalent sets. There are 10 elements in A. 
How many e!emcnts are in B? 

3. 	A and B are equivalent sets. There arc 7 elements in B, and 
3 elements in A n B. How many elements are there in A 
which are not in B? 

4. 	 A and B are equivalent sets. A n B is empty, C is equivalent 
to A u B and there are 12 elements in C. How many ele­
ments are there in A? How many in B? 



Chapter 5 

INTRODUCTION TO THE NUMBER LINE 

5-1 Introduction 

There is another good way to introduce children to the 
number concept and counting. It makes use of the number line. 
Each of the different ways of presenting the number concept
has its own advantages. Thus it is a good idea to severaluse 
different approaches. In this section, we illustrate how one 
can introduce the number line. 

In the previous chapter you have seen how to put sets in 
natural order. For example, the following sets are in natural 
order: 

LAA 

AAAA 

AAAAA 

AAAAAAJ
 
(and so on) 

Each of the sets has one more member than the set above it. 
There is, of course, no end to the sets that you can build in this 
way.

In order to introduce the number line we now use sets of 
52 
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matches to illustrate sets in natural order. We take matches 
that are the same size and arrange them in sets as follows: 

{ } 

{ ===. 

{ ===, ,== c} 

{ ==. = = == == = } 

(and so oD) 
As you know, each of these sets can be matched with a 

counting set. Remember that this is just another way of 
describing how we count the elements of a set. The sets pictured 
above are matched with counting sets as follows: 

Set Counling Set ,\ui 

J ) 

{ 1} .2,} 

{ =I== 1,2, 3} 3 
{ ~===}=1,, 34-1 4 
S == 1,2,3,4, 5} 5 

(and so on) 
In this way the sets are given numbers, and we say we have 
counted the sets. 

Thcre is a convenient way of showing how each of these sets 
is matchcd with its corresponding counting set. To do this we 
take one of the sets and arrange the matches in it end-to-end. 
We then lay a strip of paper beside the set of matches as shown 
below: 
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At the left-hand cad of the strip, mark 0 for the number of 
matchcs in the empty set. At the right-hand end of each match,
mark the proper numeral on the strip of paper so that the strip
is a counting set lbr that set of matches. Below you can see the 
cxamplc finished. 

0 1 2 3 4 5 6 7 8 

EXERCISE 5-1 

When you teach this concept to pupils, you will want io get
them to make sulch strips of paper with the couting numbers 
marked on them. Can you think of some sets that you can use 
inistead of sets of matches in teaching this material? What pro­
pertics do the elements of the sets have to have in commor. in 
order to serve this purlose? 

5-2 Using counting sets 

What would you do if you wished to make more sets of 
matches like those you.made above, but had run out of matches? 
One answer would be to use the counting sets marked on the 
strips of paper to help you cut from a stick of wood more pieces
of the same length as the matches. Ifyou had a thin piece of' 
bamboo or a long twig from a tree, you could cut it into pieces
of tle same size as the matches by laying one of your counting 
sets against tiue bamboo or the twig. It your paper counting 
set was long enough, you could tell how many maatch-lclgths 
you would get from any stick. For example, there are 5 match­
lengths in the stick showi below. 

0 1 2 3 4 5 6 7 8 

5-3 Counting sets used to build the number line 

By now you have seen that these numbered strips of paper,
these sets which help yout to count the number of match­
lengths in things, are very much like rulers. You are really 
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using them to "measure" things when you count the number of 
match-lengths. If you have a long enough strip of paper, with 
enough numbers on it, you can use it to measure very many
things. In this way you can tell the number of match-lengths 
that are in any of these things. 

If you had enough paper and enough tine you could make 
such a strip of paper as long as you wish. In your mind you can 
think of a paper counting set which goes on and on without 
stopping. The edge of such a paper counting set illustrates the 
NUMBER LINE. All the whole numbers are on it in their natural 
order. 

EXERCISE 5-3
 

You cannot draw the whole number line, since there is no end
 
to it. But you can draw a piece of it. Make such a piece of the
 
number line on a straight-edged piece of cardboard or flat stick,
 
and use it to count the number of lengths (of the size you chose)
 
in different objects in the classroom.
 

5-4 Size of the unit piece on the number line 
In the preceding exercise you made a part of the number line, 

and used it for counting the number of' lengths of a given size 
in things. In making it, you did one thing which is very im­
portant, and if you did not do it, you must work the exercise 
again. You should have labelled your line in such a way that 
each point labelled by a numeral was the samie distance from the 
next point labelled by a numeral. When you arranged your 
sets of' matches you had to do this, because the matches were all 
the same size. And when you made your counting sets on 
strips of paper you had to number your line in this way, be­
cause these strips were paired with the sets of matches. You 
must ahiva's do this in making a numbeir line, since only in this 
wa/ can you count pieces of a given size. 

To build a number line, you can use any size you wish as 
your unit piece. But you must always keep the same unit size 
fbir as mch of the number line as you build. 

EXERCISE 5-4 

Make two different number lines on pieces of cardboard or 
flat sticks. One should have small unit pieces, and the other 
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should have larger unit pieces. Use the two number lines tocount the number of unit lengths in different objects in the
classroom. Compare the results you get using the two number 
lines on each object. 

5-5 Drawing the number line 
In the last exercise you saw that you can put many numerals 

on a section of the number line when each unit piece is small.
You probably wondered how many numerals can go on
number line. The answer is line can 

a 
easy. The be extended 

further than any part of it you can draw. Someone else can
extend your section of line. Then you can go on adding pieces
to the end of his line. In fact, pieces can be added to either end
of your section of line, so that the line can be extended in either 
direction. 

When you draw a line without any numbers on it, you show
that it can be extended in both directions by putting arrows at
both ends of your line. Your line will look like this: 

To make a number line out of a given straight line, you mark 
some point as the starting point, or 0 pcint.

Choose some length as your unit length, and then keep
putting down succeeding numerals you attach more andas more of these units to each other end-to-end. You could add
unit pieces in either direction from the 0 point, but only the
pieces going to the right fiom the 0 point are numbered. Thus 
you will end up with a line which looks like this: 
- - f I I I I f I0 1 2 3 4 5 6 7 8 9 10 11 12 
You can put your 0 point anywhere, and you can make your
unit length any length you wish. But once you have decidedon 
them you should draw your number line as shown above.

On the number line there is a point for every whole number.
Between the points for one whole number and the next whole 
number, there is one unit of length. 

EXERCISE 5-5 
1. Draw a number line on a piece of paper. Find these numerals 

on it: 7, 3, 0, 12, 1, 10. 
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2. 	 On the number line, what number is four units to the right 
of 9? What number is four units to the left of 9? Make up
other exercises like this that you could use in teaching 
addition and subtraction. 

3. 	On a number line, mark the whole numbers 8 to 14 in red. 
How many whole numbers are marked in red? 

4. 	If a match-stick is taken to represent the unit length on a 
number line, how many match-sticks could be placed end­
to-end between the points marked 81 and I11? 

5. 	A man takes 6 steps east, 3 steps west and then 4 more steps 
east. How many steps is he away from his starting point? 
Show the steps on the number line. 

6. A man takes 3 steps forward, 1 step backward, 5 steps 
forward, another 2 steps forward and then 4 steps back­
ward. How many steps must be take to return to his starting 
point? Mark the steps on a number line. 

7. 	Suppose you start at the point 2 on the number line and in 
each successive step move 3 units to the right. What point 
do you reach 
a. 	after 2 steps? b. after 7 steps? c. after n steps? 



Chapter 6 

ORDER PROPERTIES ON THE NUMBER LINE 

6-1 "Less than" on the number line 
When you put counting sets in natural order, a counting set

with fewer elements comes before a counting set with more
elements. For example, compare the counting sets for 3 and 5, 
as shown below: 

{1,2,31 
{, 2, 3, 4, 5) 

The counting set for 3 has fewer elements than the counting set 
for 5. In this case, you write 

3 is less than 5
 
or, in symbols,
 

3<5
 
Noy: let us look at this on the number line.
 

0 1 2 3 4 5 6
The section of the number line representing the counting set for
5 goes all the way firom 0 to 5. The section of the number line
representing the counting set for 3 goes fiom 0 to 3, and thus 
stops before 5. Xou see one more important fact here. The
numeral 3 is to the left of the numeral 5 
on the number line.
Since the counting set for 3 is completed before the counting 
set for 5, 3 is to the left of 5. 

EXERcIsiE 6-1 
Make a general statement for whole numbers, so that you can
tell from their places on the number line which of two numbers 
is less than the other. 

6-2 "Greater than" on the number line 
Just a, you can see if a whole number is less than another on

the num;ber line, so you can see when a whole number is greater 
58 
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than another by looking at their places on the number line. You 
know that 9 is greater than 4. You write this as follows: 

9 is greater than 4 

or, in symbols,
 

9>4
 

On the number line 9 is to the right of 4. 
If you did the exercise above correctly, you learned that a 

number m is less than another number i. if m is to the left of n oil 
the number line. Likewise, the number p is greater than the 
number q, ifp is to the right ofq on the number line. Look at this 
number line. 

-.	 I I I I I I : 
0 1 2 3 4 5 6 7 8 9 10 11 12 

You can see that 12 is to the right of 10. Thus 12 is greater than 
10. Also 7 is to the left of 10, and so 7 is less than 10. You can 
write these two facts in this way: 

12 > 10 12 is greater than 10 
7 < 10 7 is less than 10 

ExRCISE 6-2 
1. 	Draw a number line and show by a picture which of the 

following statements are true: 
a. 	5 <9 c. 12 < 11 e. 27 <20 
b. 	0 > 1 d. 45 >54 

2. 	 If a > 5 and 5 < c, can you find numbers a and csuch that: 
a. 	a <c? 
b. 	a =c? 
c. 	a > c? 

If your answer is yes, find such numbers. 
3. Arrange the numbers a, b, c aid d on the number line so that 

all of the following relations are satisfied: 

a < b, c <a.b < d 

4. 	 Arrange the numbers d, f, it, p, and r on the number line 
using the following relations: 

n <p,f <r,d<f,p<d,d<r 
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5. 	 a. Arrange the following nurnbcrs on the number line 

using the following relations: 

a :> b, n < b,p < q,p > b, q <a 
b. 	Use the number line you have just drawn above to find 

the relation between the following pairs of numbers: 

p, a b,p q, n 

6-3 "Between" on the number line 
Suppose you are given three whole nunbers a, b, c arianged

in natural order. For example, a might be 7, b might be 10 and c
might be 12. Since these numbers are in natural order we know 
that a is less than b, and b is less than c; in symbols, 

a < b and b < c 
Tius, on the Inumber line a is to the left of b, and bis to the left 
ofc. In otlier words, b is between a and con the number line. The 
following picture shows this for the numbers 7, 10 and 12: 

.- I I j I I I I i 
0 7 10 12 

Whenever three different numbcrs are shown on the number 
line, one of them must be between the other two. If the numbers 
are a, band c, and ifb is between a and c, with a to the left of b,
then we can make the following statements about these numbers 

a<b b<c 
Of course, we could also say the same thing by stating that b is 
greater than a, and c is greater than b. Either way, b is between 
a and c. This shiows that the idea of "betweenness" for points on 
the number line tells us about the order of the numbers repre­
sented by tie points. 

EXERCISE 6-3 

1.Using the number line, put the three nunbers in each of the 
following sets into natural order, and tell whic]h number is 
between the other two: 
a. 1,0,3 b. 5,7,8 
c. 6,2,3 d. 0,1,9 
e. 11, 16, 14 f. 25, 14, 13 
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2. 	How many whole numbers on the number line lie between 
the following? 
a. 	3 and 7 b. 30 and 39 
c. 	 a and b when a and b are whole numbers such that a < b 

nC I-P 



Chapter 7 

REPRESENTATION OF NUMBER 

7-1 Forming the number concept. Abstraction 
Children are not born with the idea of number. It takes them 

some years to learn it. 
We say that a set of objects like 

has three members. But at first a child sees only the objects or 
notices that they are together on a table. Even after he has 
learned the number names one, two, three, four, . . . , he may
not connect the word "three'" with the set shown. Before he 
can do this, he must see many sets of three objects. He must
learn what these sets have in common. He must see them as 
sets of three things. To do this he must, as we say, abstract 
from the nature of the objects. That is, he must learn not to 
pay attention to what the things auc. For example, he must not 
pay attention to the fact that 

0is a set ofpencils 

and 

is a set of bananas. 

62 
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At first these arc the most obvious features he notices about these 
sets. He must try to push them out of his mind so that he sees 
something alike about the two sets even if their elements are so 
different. These sets are alike in a way that the two sets 

and 

arc not alike, even though these two sets have elements of the 
same kind. 

In learning to see the likeness between the set of pencils and 
the set of bananas (in spite of their obvious difference) he is 
learning to abstract. At an earlier age he has already made a
 
beginning in this process of abstraction. He has, for example,

learned to use the word "banana" for any one of a great many
 
objects which look somewhat alike oa not exactly alike. Some 
of these objects may be green and some may be yellow, but lie 
has learned that this does not matter. They arc bananas just 
the same. 

When making the abstraction necessary for the number 
concept, one must ignore even more features of the objects than 
when naming them. Usually a child has to be about six years 
old before he can understand what number words mean in his 
own experience. Teaching this understanding takes great 
patience. As we have seen, it can be done by showing children 
sets of many sorts, by matching them with each other, and by 
learning the proper number words and numerals. 

7-2 The need for symbols 

The number four is an idea which indicates the "fourness" 
r,)perty of sets. Since the number four is an idea, it cannot be 

,:,-,n like a stone or a banana. To discuss and use this idea, we 
must represent it by a word or a symbol. Thus we can use the 
word "four" or the symbol "4", which we call a nu:neral. Just 
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as there are different words for the number four in different 
languages, there are different systems of numerals which have 
been used. The ancient Egyptians would have written 1l11 
instead of 4. The Romans would have written IV\.

While numbers cannot be seen, numerals can. They can be
written on paper or on the blackboard. They seem more like 
real things. This is good. However, there is a danger. Numerals 
can become just marks on the )aper which the student learns to 
write without connecting theni with sets of objects. A little later 
on lie may learn to l)tit down 5 when he sees 2 3 without 
having any idea why lie can (lo this or what 2 + 3 means in 
his experience. Then arithmetic I eCome ;ameaningless game
with symbols. To prevent this fiom haplpening the teacher 
should always try to keep the ideas behind arithmetic clear to
the pupil. He must teach him that the facts ofarithntic do not
depend on the names which we give to numbers. For example 

2 -!-3 is 5
 
says the same thiing as
 

II -:-III is V
 
The first statement is written in Hindu-Arabic numerals. The
 
second is w-" ten in Roman numerals. They both mean the
 
same thing.
 

7-3 Ways of representing numbers (Egyptian, Baby­
lonian)
 

Among t.- earliest symbols used to represent numbers were
 
model matching sets such as stroke (I) for one, the wings of a

bird (- ') for two, three-leafed clover ( c6 ) for three, the four

legs of an animal ( " ) for four, and so on. This principle was
 
adopted by the Egyptians around 3500 n.c., possibly 
as an
 
extension of a system of tallying, as follows:
 

1 2 3 A ... 9
I iI Ill Jili IIIIII 

Clearly such systems are of little use for larger numbers. We 
cannot keep on creating and remembering new symbols and 
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names for numbers. Some kind of grouping becomes necessary 
with special symbols to represent the groups. The early Egypt­
ians built up their system in groups often. Their single numerals 
were the following. 

Numnber Egian Object representedntmrlbv 11w numeral 

One I Stroke or staff 

Ten -eel bone 

One hundred ( Scroll or coiled rope 

One thousand Lotus flower 

Ten thousand ,' Pointing finger 

I lundred thousand Polliwog 

One million I Astonished man 

In the Egyptian system, the order in which tile symbols are 
arranged does not matter. Tits nn I,inn, nIn are all numerals 
fbi 21. Other examples of' Egyptian numerals are as follows: 

7 23 456 1,821 

Egyptian nunerals i11111 nflll @@@@111 
nnnnn iii 

e@QQ@@ 
nnl @@@ 

An entirely different system for representing numbers was 
invented by the Babylonians about 4,000 years ago. (The 
Babylonians lived in what is now the country of Iraq.) Their 
system used only two symbols T and ( . T was used to repre­
sent 1,and ( was used to represent 10. For numbers from I to 
59 the Babylonian system worked just like the Egyptian system 
except that the tens symbol was always written first in any 
numeral. Here are some examples of Babylonian numerals: 

6 21 34 48 
"rTTT
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These symbols are rather difficult for us to draw, and you may
wonder why the Babylonians didn't use something simpler.
The reason is that the Babylonians did their writing on pieces
of soft clay which they later hardened by placing in the sun. 
And for this kind of writing it is much easier to make wedge­
shaped symbols like T and ( with the end of a stick than to 
write symbols of the sort we use. Indeed, all Babylonian
writing used wedge-shaped symbols, alid for this reason it is 
called cuneiform, which means "wedge-shaped writing".

For numbers beyond 59 the Babylonian system is rather 
complicated. For 60 the Babylonians would writeT , using the
symbol for 1 again, but leaving a space after it. 61 would be
writtenT T, with a space, 70 would he writtenT( , and so 
forth, up to 119. 120 would be written TT , with a space after
it. The system keeps going in this way until it reaches 360, 
which one would expect to be written "-,'r . But instead theBabylonians wrote T, using the symbol for 1 again. You can 
see how confusing this is. Learning arithmetic for the Baby­
lonians must have been even harder than it is today. 

EXEitc.is 7-3 
1. Write Egyptian and Babylonian numerals for each of the 

fbllowing: 

12, 26, 52, 113, 201, 349 

7-4 The Ilindu-Arabic system of numeration 

Novadays we use a system of numerals which is called the
Hindu-Arabic system. This system has ten symbols 0, 1, 2, 3, 4,
5, 6, 7, 8, and 9 which are called digits. We are able to represent 
any number, however large, by using these digits together with
anespecially clever idea, that of'place value. As you know, in the
HilindLu-Arablic system we write digits in the ones place, the tens 
place, the hundreds place, the thousands place, and so on. Thevalue of any digit depends both on the digit and on the place it 
occupies in the row of digits. Thus, in the numeral 3,234, the
first 3 represents 3 thousands and the second 3 stands for 3 tens. 

http:EXEitc.is
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This number would be written in 
the Egyptian system as 

o nnn iii 
- where the symbols could be 

arranged in any order. This could 
<'3 be described as an additive 

3 - 3 4- method and it is interesting to 
SL 3. compare it with the Hindu-Arabic 

way of writing numerals. 

You will notice that both systems work with grOLi)ings of ten. 
Ve are told that early man chose this particular grouping

because lie used his ten fingers f'or counting. When counting or 
matching sets of more than ten ol)jectS, his ten fingers would 
soon be used up. He would have to record this in some way or 
another. Perhaps lie put astone inhis pocket or in a sack. Then 
lie could continue using his fingers again. Each stone woull 
then stand fbr ten. If lie got a large number of stones in his 
pocket, lie could rel)lace each ten of' them by a larger stow., 
again using ten Isthe natural group Each larger stone would 
then stand for ten tens, i.e. for one hundred or 10 x 10, often 
written as 102 for short. And so lie could continue. Ten of' these 
larger stones would form a new group of' one thousand, i.e. 
10 x 10 " 10, written 103 The next p wouldfor short. ru,, 
consist of' ten thotsands or 10 " 10 . 10 x 10 104. When 
we Write numerals in this way, the raised nuneral (the 4 in 104,
fbir example) is called an index oi power. We speak of 4 as the 
power to which 10 must be raised to give 10,000, or as the
index of 10. Note that it is exactly equal to the number of 
zeros flollowing the one in the numeral 10,000. 

7-5 Grouping 

The idea of grouping is fundamiental in recording numbers. 
We must see that our pupils understand it thoroughly. They 
must realize the lecessity for grouping. Our position is similar 
to that of'a messenger boy of long ago who had to report to his 
chief how many people tlhire were in a village. For each person
lie put a small stone in his sack. He intended to carry the sack 
to the chief and say, "Behold! There are as many people as 
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stones." This would have been a good method if therc had bCen 
only a few people in the village. But the village was large and 
the sack soon became too heavy to carry. The messenger, there­
fore, used stones of two sizes, with the larger size representing 
ten of the smaller ones but weighing much less. He made the 
sack lighter by taking out ten small stones and putting in one 
large stone. He used ten because lie had ten fingers on his liands. 
He could easily tell whetlier a set of small stones corresponded 
to a large stone by matching them with his fingers. He now 
said to his chief, "Behold! For each large stone there arc as 
many people as fingers on my hands. For each small stone 
there is one person." The messenger needed no more than nine 
small stones. I nstead of' ten small stones, lie could use one large 
stone. 

In the above story the messenger was not counting, but was 
matching. Before people had' developed the idea of counting
and had sy'stems of' numeration, they were able to keep account 
oflarge numbers of people or cattle by tallying. This is a process
of' matching equivalent sets. If the messenger had cut notches 
in a stick to match the number of people, he could have cut a 
deeper notch to represent each group often. Thus lie could have 
simplified his task. Children need to be given much practice in 
this kind of work, putting sticks into bundles of ten, arranging
beans in groups of ten and so on. Some people carry out the 
process by writing nine strokes and a final one which crossesall the others (---1-14---14-) for each ten. So.-ietimes people work 
in fives in this way. It makes the final counting of a large
number of strokes much easier than it wold be otherwise. 
Matching sets of things with sets of strokes or notches is called 
tallying. 

7-6 A symbol for zero 

W'hen you are comparing the Egyptian system with the 
Hindu-Arabic system did you notice that the Egyptian system
had no symbol for zero? Can yoi explain this? Vhy, then, does 
the l-linedu-Arabic system need such a symblol? The reason is 
that the symbol fbr zero is absolutely essential to keep the digits
in their correct position when there are empty places. For 
example, if' there is no group of ten in a pilrticular numeral we 
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must have a symbol to show this. Take the numeral 306. WNith­
out the symbol 0, the 3 or the 6 could easily be written in the 
tens place and the nunmeral would look like 36. This, for 
instance, is just what happened in the Babylonian system. For a 
long time the Babylonians put up with this, but late in their 
history they invented a symbol to show that a place in one of 
their numeriils was empty. The symbol they usually used was 0. 
From them the Hindus developed the symbol 0, to show that a 
place in t 'ou-meral is empty. This is the same symbol we use 
today, and it makes possible our system of numeration. 

7-7 Representing numbers on the abacus 

One way of giving your pupils experience in building num­
bers ancd thei writing them is to usc an abacus.'i'hisis really an aid 
to counting and is simply a set of'sticks on which rings or beads 
are put to stand fbr numbers. The sticks are mounted on a stand 
so that they can be used more easily. There are several ways of 
making an al)acLs. Here are two for you to try. Make one of' 
lhem to use fbr the exercises which follow. 

Method 1 
Use I piece of wood about 9 inches long, 3 inches wide and 
1 inch thick. Mark 4points along the middle of the wood about 
2 inches apart. Knock a very long nail right through the wood 
at each of the marked points until it cannot go any further. File 
the ends of'the nails if they are sharp. Your abacus i,"now made. 

9"37 
Method 2 
You will need 4 ieels or spools such as are used for sewing­
thread. Push a stick or pencil or used ball-point pen into earci 
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hole. Now you need sonic way to keep the 4 reels toglther in 
line. You can put them into a box of suitable size, or glu,.. 'hem 
to a piece of cardboard, or nail a piece of wood on to their 
bases. Your abacus should look like this. 

Now you will need some beads, or rings to slip over the rods 
to show the numbers. These should look like this cE or this 
9 . They can be made from rings of grass stems, or twisted 

grass or bamboo slices, or cardboard from a circular swv-et 
packet like this. 

Cut this along the dotted lines. Your rods must be long enough 
fbr 10 rings to fit on cacli rod. 

To show numbers From I to 9 you put beads on the first rod 
from the right-hand side. This is the ones rod and every bead on 
the ones rod stands for one. 

Ones Ones Ones
This shows 3 This shows 6 This shows 9 

Your pupils can use an abacus for scoring games. Sooner or 
later they will want to show a score of 10. This is where they 
must learn the rule for using an abacus. 
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Rule of Procedure 
Whenever there are 10 beads on a rod you must take them off 
and replace them by I bead on the next rod to the left. 

Since every bead on the second rod from the right represents 
ten, it is called the tens rod. Hcre is 13 shown on the abacus. 

TENS ONES 

13 is 1-ten and 3-ones and so we have 1 bead on the tens rod 
and 3 beads on the oncs rod. 

EXERCISE 7-7A 
Write the numbers which are represented by each of the follow­
ing pictures: 

TENS ONES TENS ONES TENS ONES TENS ONES 

Here is the first one written out for you: There are 5 tens and 
2 ones: this is 50 + 2 which is 52. 

Look at the last picture in this exercise. Suppose we add 
another bead to the tens rod. This will make 10 beads. Accord­
ing to the rule, we must take them off and replace them by 
1 bead on the next rod to the left. This bead will represent 10 
tens which is 100. Thus the beads on the third rod are each 
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worth 100. We call this the hundreds rod. Every bead on the
 

BECOMES _(_5 

hundreds rod is worth 10 times as much as a bead on the tens 
rod. Every bead on the tens rod is worth 10 times as much as a 
bead on the ones rod. In general, every bead oil an, rod is 
worth 10 times as much as a bead on the rod next to the right. 

HUN- TENS ONES 
DREDS
 

This abacus .hows 3 hundreds, 4 tens and 2 ones. This is 300 + 
40 + 2, which is 342. 
Now look at the following picture: 

HUN- TENS ONES

DREDS
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Here there is a bead on the fourth rod fiom the right. What is 
it worth? It is worth 10 beads on the rod to the right of it, which 
means that it is worth 10 hundreds. But you know that 10 
hundreds are 1,000. Hence the fourth rod on the abacus is the 
thousands rod. Every bead on this rod is worth 1,000. Thus the 
above abacus shows I thousand, 2 hundreds, 5 tens and 5 ones 
which is the same as 1,000 + 200 50 + 5, or 1,255. 

EXERCSE 7-7B 
1. 	 Show each of the fbllowing numbers on your abacus and 

make drawings of them. 
a. 	8,324 b. 7,562 c. 6,666 d. 3,427 

2. 	 Write each of the numbers represented on the following 
abaci in (a) Hindu-Arabic numerals and (b) Egyptian 
numerals. 

Wi (ii) 	 (iii) 

3. 	 Ifyou had an abacus with eight rods, what would a bead on 
a. 	 the 5th rod from the right represent? b. the 6th rod? 
c. the 7th rod? d. the 8th rod? 
Draw a large abacus with 8 rods and label each rod. 

4. 	 Draw a picture of an abacus which shows one million. 
5. 	 Draw an abacus with 8 rods and draw some beads on each 

rod. Write the number which your picture represents. 
Represent 4 more numbers in this way, saying each time 
what the number is. 

6. 	 Draw a picture of an abacus representing the following 
number: 2 ten millions, 5 millions, 3 hundred thousands, 
6 ten thousands, 1 thousand, 8 hundreds, 8 tens and 5 ones. 
This is the number: 25,361,885. 
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7. 	 Write the numbers which arc represented on these abaci, 

first the symbols, then in words. 

(a) (b) 

(C) 	 (d) 

7-8 The empty rod on the abacus 

Some kind of abacus has been known for a very long time. It
has been used in some fbrm by most peoples from ancient 
Egyptian times to the present-day. The abacus is first used to 
make a record of a count. Its other use, in calculation, will be 
studied later in this book. 

Suppose that you have counted all the people in a town and 
have made a record of your count on an abacus. Suppose that 
the abacus looks like this: 

We now ask, "How shall we record in writing the number 
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represented above?" What symbols shall we use? In particular, 
how do we record the empty rod? 

Different cultures hay, ;olved this problem in different ways. 
For example, an ancient hgyptian would record this number by 
writing 

O@nnniiii 
He did not need a symbol for the empty rod. An Egyptian
symbol tells us which power often it represents, but it does not 
tell us how many there are. To show 30, that is 3 tens, an 
Egyptian had to write Ann. This is like writing ten ten ten. In 
writing the above n teoiral he could show that the hundreds 
rod was empty just by leaving out the symbol G for one 
hundred. 
The -Hindu-Arabicsystcni does not work this way. It is much 

more efficient. For one thing, it does not need to invent new 
symbols to represent larger and larger numbers. It uses the same 
symbols to represent the number of rings on any rod, and tells 
which rod they fill by the position or place of the sym-bol in the 
nuieral. This is why the Hindu-Arabic system is called a place 
value system. This also explains vhy a special symbol is needed 
to represent an empty rod. 
Inthe Hindu-Arabic system we tell how big a numeral is by 

its place value; that is, by the position of'the digits used to write 
it. For example, since the tens place is the second place fiom the 
right wc show 3 tens by putting the digit 3 in the second place 
in the numeral. But if we just wrote 3, and nothing more, it 
would be impossible to tell that we were talking about 3 lens. 
Thus we use a zero to show that tie ones place is empty, and 
we represent 3 tens by writing 30. In the samcf way the num­
ber represented on the abacus in the last picture is written 
2,034. The 0 s!lows that the hundreds rod is empty. Without 
this symbol we would have to do what the early Babylon­
ians did, and write 234. And then everyone would read this 
incorrectly. 

Finally, you should notice that this use of the symbol 0 fits in 
vith what we said about sets. The set of rings on the empty rod 

is the empty set. The iumber of elements in the empty set is 
zero, and is written 0. 
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EXERCISE 7-8 
1. Draw abaci to shov these numbers: 

a. 3,052 b. 2,308 c. 31,450 
d. 700,103 e. 6,500 f. 5,000 
g. 7,602,019 h. 9,999 

2. Add one to the nmnber in (h), and draw the result. 
3. Write the numbers represented on the abaci problem 2 in 

a. Egy)tian numerals b. Hindu-Arabic ninnerals 

7-9 	 The Roman system of numeration. Comparison 
with Iindu-Arabic systent 

Befbre the tHindu-Arabic system of numeration came into 
use 	 in Europe, Roman numerals were used. Tihe Roman 
system apparently came into use in about 300 n.c. and even 
today we still use Roman numerals on clocks and in many other 
ways. It took several centuries for people to give up the Roman 
system fbr the other. Why (lid the Ronan system persist for so 
long? \'hy do we nowv pr'fe the Hidiiiu-Arabic system? Let us 
take 	a look at the Roman system. 

1 5 10 50 100 500 1,000 

Roman niumer(als I V X I C D M 

With the symbol I, we could write any number simply by
writing I's in succession. For examl)e, we could denote 7 by
IIIIIII. By introducing the symbol V, to denote 5, we ca, 
replace IIIII in this string by V, to give us VII. This is the 
symbol fbr 7 in Roman nu1l(rals. Using VII instead of 1111111 
results in the savig of both space and ellort. 

The numflber 13 could be represented by VVJII. If ve use 
the symbol X for 10, wve can replace VV by X. 'I'his gives XIII 
which is the Roman nllncral for 13. 

The Romans made their system even simpleir by agreeing 
that if a symbol for a smaller number is written to the left of a 
symbol fbr a larger number, the smaller num1ber is to be sub­
tracted fiom the larger Mnber. TIhus IV denotes 4, and IX 
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denotes 9. These are shorter than 1III and VIIII which we 
would have had to write otherwise. In writing Roman numerals 
we never put more than one symbol for a smaller number 
before a symbol for a larger number. Thus 9 is written IX 
whereas 8 is written VIII and not IIX. Similarly XC is the 
symbol for 90, while CX is the symbol for 110. This system is 
simple and easy to learn, which is one reason why it was used so 
long. 

The main reason why people stopped using Roman numerals 
is that calculations with Roman numerals are much more 
cumbersome than witfh Hindu-Arabic numerals. For example, 
to add two numbers written in Roman numerals we first collect 
all of the symbols in the two numerals. Then we simplify by 
combining groups of symbols. Finally, we write the symbols in 
correct order. For example 

MCL CCXI -MCCCLXI 
XXVII LXIV LXXXV(IV)II = LXXXXI 

Multiplication and division are even more complicated in 
Roman numerals. In fact, they arc so complicated that it would 
be a waste of time to describe all of the rules here. Thus we too 
shall do what was done in the past, and devote all of our 
attention from now on to the Hindu-Arabic system. 

EXERCISE 7-9
 
Work out the following problems using Roman numerals.
 
1. CCLXV + DCCLV1II 
2. MDCLX " MCCXLIV 

3. LXXVII - XLIII 
4. CCLXIV - CLXIX 

nc I­
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NUMBER BASES IN THE HINDU-ARABIC 
SYSTEM 

8-1 Numeration in base five 

We saw earlier that because man possesses ten fingcrs, ten 
became his natural counting group. For this reason, he chose to 
work in units, tens (10), hundreds (tens of tens== 10 X 10 =: 102),
thousands (tens of tens of tens 110 x 10 X 10 = 103) and so 
on. Some people in the past chose five, the numbe, of fingers 
on one band, as their counting group. They counted as follows: 
one, two, three, four, 1-five, I-livc and 1, 1-five and 2, 1-five 
and 3, 1-five and 4, 2-lives, 2-fives and 1, and so on, in theas 

following table:
 

Counting numbers in JWnuieralsfor counting 
groups offive numbers in basefive 

one 1 
tWVO 2) 

thrce 3 
four 4 
]-five 10 
1-five and 1 11 
1-five and 2 12
 
1-five and 3 
 13
 
]-five and 4 
 14
2-fives 20 
2-fives and 1 21
 
2-fives and 2 
 22 
2-fives and 3 23 
2-fives and 4 24 
3-fives 30 

4-fives and 3 43 
1-twenty-five (52) 100 (1 x 52 + 0 x 5 +0 x 1)
1-twenty-five and one 101 (1 x 52 + 0 x 5 + 1 x 1) 

Ncice that in base five, 213 means 2-twenty-fives and 1-five 
and 3-ones, which is 58 in the Hindu-Arabic system. In base­
five counting we read the symbol 10 as "one-zero" and not as 

78 
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10. Similarly we read 12 as "one-two" and not as 12. Notice 
that we need only five digits 0, 1, 2, 3 and 4 when counting in 
groups of five. When we are counting in groups of five as in the 
above table, we say we are using thefive-system of enumeration or 
that we are working in basefive. We refer to the numerals as 
base-five numerals. 

EXERCISE 8-1 
1. 	Copy the chart below for counting numbers from 1 to 100. 

Then complete the chart with numerals in base five: 

1 12 3 4 10 11 12 13 14 20 

21 

41 

124 

232 

311
 

2. 	 Use your chart to answer the following question. What are 
the largest numbers in base ten which are represented as 
one-digit, two-digit and three-digit numbers in your chart? 

3. 	In the United Stites ofAmerica and in some other countries 
such as Liberia, the smallest unit of money is 1 cent. 5 
cents make 1 nickel and 5 nickels make I quarter. 
a. 	Express the following amounts in quarters, nickels and 

cents: 
(i) 	6 cents (iii) 26 cents (v) 33 cents 

(ii) 10 cents (iv) 46 cents 
b. 	How many cents are there in: 

(i) 	2 quarters, 1 nickel and 2 cents? 
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(ii) 3 quarters, 4 nickels and 3 cents? 
(iii) 4 nickels and 4 cents? 
(iv) 2 quarters, 2 nickels and 2 cents? 
(v) 4 quarters and 2 nickels? 

Notice that in question 3, we are working with the base-five 
system of enumeration. 

8-2 A base-five abacus 
Just as we used the abacus to represent numbers expressed in

base ten, we can also use an abacus to picture numbers ex­
pressed in base five. The first rod from the right will again
register ones. But this time whenever five beads accumulate 
on the ones rod, we remove them and place 1 bead on the next
rod to the left. Thus the rod to the left of the ones rod is called
the fives rod and each bead on the fives rods represents 5 
ones.
 

ONE TWENTY- FIVES ONES
HUNDRED FIVES 
TWENTY. 
FIVES 

When 5 l)cads accumulate onl the fives rod, we remove them
and place 1 bead on the next rod to the left. Thus each bead on
the third rod represents 5 fives. We call the third rod the
twenty-fives rod, or more briefly, the 52 rod. Each time 5 beads
accumahtte on a roo, we replace them by 1 bead on the next
rod to the left. Thus, the fburth rod is called the one hundred
and twenty-fives rod or, briefly, the 5-1-rod. Each bead on it is 
equivalent to 5 beads on the twenty-fives rod. 
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The number represented by the beads on the abacus below 
can be written in base five very easily: 

I 

ONE TWENTY- FIVES ONES 
HUNDRED FIVES 
TWENTY-
FIVES 

We note that there are 

1 one hundred and twenty-fives or I x 53 
0 twenty-fives or 0 x 52 

3fives or3 x 5 
Q4ones or 	2 x 1 

on 	 the abacus. 'fhus the number is written as 1,032,,. 
We write "five" a little below the numeral to show that we are 
referring to a numeral in the base-five system. 

EXERCISE 8-2 
1. 	What numbeirs are represented by the beads on eacL of the 

following base-five abaci. Express them first in base five 
and then in base tea. 

(a) (b) 	 (c) 

2. 	 Draw pictures of base-five abaci to represent the following 
numbers. 

b. 	2, 00 0a. 	 32'l,, nvo c. twenty-five 
d. 	thirty-five e. thirty-nine 
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8-3 Numeration base seven 

There is an important discovery to be made in the above 
work which I)crhal)s you have already inade for yourself. We 
know now how to represent numbers w;th base-five and base­
ten numerals. Has it. occurred to you that numerals may be 
written in other bases, base two, base three, base fbur,..., 
base twelve, ... , base twenty .... 2 In other words, there is 
nothing spccial about the decimal system. If you have realized 
this, Von have done very well indeed. Yott have made a 
generalization of the kind which m)thematicians freiquently 
have to make and which is fundamental to the growth of 
mathematics. As your studies progress, yot will realize that 
generalization is at tile heatrt of mathematical thinking. 

Check that you have made tile generalizatiou by working the 
following exanples which use base-seven numerals. 

EXERCisL 8-3 
1. 	Complete the f)Ilowing chart for base-seven numerals friom 

1 to 100. 1low many symbols do base-seven numerals re­
quire? 

1 2 	 10
 

100 

2. 	Describe how to use a base-seven abacus to represent 
numbers. 

8-4 Grouping in twelves 

Now that von can work in base seven, base five and base ten, 
you will find it easy to work in any base. The base-twelve system
is worth special mention because we often group in twelves in 
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everyday life. We often work with dozens for instance. We may
buy a dozen eggs and this is grouping in twelves. Your school 
may buy pencils and exercise books by the gross where a 
gros- consists of twelve dozen, or twelve twelves, or 122.
Twelve inches make one foot and twelve months make one 
year. There are twhelve hours marked on the face of the clock
and, in many countries, there are 12 pennies to a shilling. We
shall therefore take a moment to see how we can use twelve as 
a number base. 

In base-ten numeration, we need ten symbols; in bas(- five,
five symbols; in base seven, seven symbols. How many will we
need to write numbers in base twelve? We will need twelve
symbols, which is two more than in the base-ten system. The 
extra ones needed are for ten and eleven, which we may denote 
by I and e respectively. Counting then proceeds:

81, 2, 3, 4, 5, 6, 7 , , 9, t, e, 10, 11, ]2, . . ., 19, It, le, 20, 21,
Here 10tw.v, repiesents 1-twelve and 0-ones, I It,,l, represents 
1-twelve and I-one, and so on. 

EXERCISE 8-4 
Complete the following table for base-twelvr numerals. 

1 2 3 4 5 6 7 8 9 t e 10 

1001
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8-5 Base-two numerals 
Base-two numerals are --specially interesting because they 

use only two symbols, 0 anc. 1. Counting in the base-two system 
proceeds: 

1, 10, 11, 100, 101, 110, 111, 1000, 
The places represent units, twos, fours (22), eights (21) and 
so on. We call such numerals binary numerals. In the base-two, 
binary system, the number 100 is written 1100 10 0t,,o. This 
requires writing many digits, which is an apparent disadvan­
tage of the binary system. The binary system does have a very 
important use, however, in electronic calculating machines. 
These machines calculate at lightning speed. They take only
seconds to work problems which would take a man weeks and 
months to do. Binary arithmetic is used because it needs only 
two symbols, 0 and 1. These can correspond to current switched 
on and current switched off, or to a long and short buzz. 
Binary numerals can also be recorded on tape by means of a 
punched hole for the symbol 1 and no hole for the symbol 0. 

EXERCISE 8-5 
Copy and complete the chart below for base-two numerals 
from 1 to 50. 

1 10 11 100 

1001 

11001 

101010 

1,000,000 
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In this chapter we have learned how to represent numbers iii 
various bases. We shall return to this subject later when we 
study addition and multiplication. We shall then see how to 
use these numerals in calculations. 



Chapter 9 

ADDITION 

9-1 An Example 

Suppose we want to teach a child that 3 + 2 = 5. What do 
we do? We start by showing him a set containing 3 elements, 
and another set containing 2 e!ements, and then we put the 
sets together to get one large set containing 5 elements. At this 
point we say, "Look! Three and two more make five." After
doing this many timcs, and also letting the child try it for 
himself; we begin saying, "three plus two equals five". We then 
show him that this is written 

3 + 2 =5 
Finally, we say that we are adding the numbers 3 and 2, and that 
the answer is 5. We tell him that this is a fact about numbers 
which he must learn. TG make sure that he learns it we keep
asking him, "'A/hat is three plus two?" We expect him to 
answer, "Five." 

This example illustrates the two main points about addition 
of whole numbers: 

First 
Addition is related to forming the union of sets. In fact, when 
we mentioned taking a set containing 3 elements, and another 
set containing 2 elements, and putting them together to get 
one large set, we were forming the union of the two sets. For 
instance, if our sets were 

{A,A,A} and {@, } 

the five-element set obtained by putting these sets together 
would be 

{A, A, A, @,G} 
Remember that we can show this by writing the set equation 

{A,A, A) u {, 0) {A, A, A, e,
86 
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Second 
The sets used in this example were disjoint. That is, they had no 
elements in common. To see why we must use disjoint sets to 
illustrate that 3 + 2 = 5, suppose we had used the sets 

{a, b, c} and {c, d} 

The first of these sets contains 3 elements, and the second con­
tains 2 elements. However, when we form their union we get 

{a, b, c, d} 

because the element cbelongs to bL 2t sets. And this set contains 
only four elements, not five. 

9-2 Addition and the union of sets 

In the last section we saw how to show that 3 '+ 2 = 5 by 
forming the union of two disjoint sets. In this section we shall 
use this idea to describe how any two whole numbers are 
added. 

Suppose A and B are (finite) sets. Also suppose that A and B 
are disjoint. For example, A and B might be the following 
sees: 

A ={IN, N1, NN 
B= {Q,0,0} 

H, A contains 4 elements. Hence it represents the number 
"lur". B contains 3 elements. It represents the number "three". 
Now form the union ofA and B. We get 

A uB ={E0, ], El , D, 0, 1} 

This set also represents a whole number. Since it contains 7 
elements, it represents the number "seven". We express this 
fact by writing 4 -P 3 = 7. We say that 7 is the SUM of 4 and 
3, and we speak Of ADDING 4 and 3 to get 7. 

In short, we have 
ED, El,El, 5} (D{,(D,G/ { , M, , (D,@, @} 

We write: 
4 + 3 7 

We say: 
"four plus three equals seven" 
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We can also show the same facts by drawing the following 
picture: 

4 + 3 -- 7 

This time we have enclosed sets A and B with one large curve 
to show that we are thinking about their union. The statement 
4 + 3 = 7 beneath the picture tells us the number of elements 
in each of the sets in the picture.

There was nothing special about this example. Any two 
(finite) sets A and B would have worked just as well, provided
they had no elements in common. Of course, we would not have 
obtained the same addition equation at the end if our sets had 
numbers of elements different from 4 and 3. The following
pictures provide additional examples. 

3 + 3 6 

5 + 4 9 

Children find such pictures very helpful when learning addition. 
By now we have looked at enough examples to descr;be how 

the sum of an), two whole numbers is defined. It goes as follows: 
Let a and b be whole numbers. Choose a set A which contains 

a elements. Choose a set B which contains b elements. Make 
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sure that A and B are disjoint. Form A u B. We then say that 
the number of elements in A U B is a - b. 

Thus, if a = 3 and b = 2, set A must contain 3 elements, 
and set B 2 elements. Then A u B contains 5 elements and we 
say that 3 + 2 = 5. 

The number a + b is called the sus of a and b. It is obtained 
by ADDING a and b. 

ExERcIsE 9-2 
1.Find the numerals to put into the boxes to make each of the 

following equatioais true. 
a. 	5 +3 =F b. 3"5 =M­
c.2-8=-1 	 d. 5-5=D 

2. 	 Draw a picture to illustrate each of the equations in Question 
I. 

3. 	 When wc studied the union of sets we saw that A u B is 
the same set as B u A. What does this fact tell you about the 
sums a + b and b + a and b arewhen a whole numbers? 

4. 	 Suppose that a, b and c are whole numbers such that 

a+b=c 
a. 	What can you say about b if a = c? 
b. 	What can you say about b if a < c? 

5. 	 Suppose that a, b and c are whole numbers. What can you 
say about a, b and cifa ± b = cand a -:-c = b? 

9-3 Addition using counting sets 

We have seen that the sum of two whole numbers is defined 
by forming the union of disjoint sets. Thus when we make the 
statement 3 --2 = 5 we are saying something about all unions 
of a set of 3 elements and a set of 2 elements when these sets 
are disjoint. Since this statement refers to the number of ele­
ments in these sets we should be able to illustrate it by using 
counting sets. ,\e can. as follows. 

Consider the sets 

f& A,.A} and , 
The first contains 3 elements, the second contains 2 elements, 
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and their union contains 5 elements. The picture below shows 
all of these facts 

{A, 
{1, (,3 {1, 2, 3, 4,1, 21 

In this picturc we have matched the elements in our sets with 
the elements in counting sets. In other words, we have counted 
the elements in each of the sets. Now look at the last number in 
each counting set. These numbers are 3, 2 and 5. They tell 
us 	again that 3 + 2 = . Pictures like these also help children 
to 	learn addition. One more is shown below. 

S, 	 2, 3 . 5, 

4 2=6
 

EXERCISE 9-3
 
1. 	Draw pictures using counting sets to illustrate each of the 

following statements. 

a. 	3 +4 = 7 b. 2+2 =4 
c. 	 2--8=10 d. 5 +5=10 

9-4 Many names for one number 

Notice that the sums in problems (c) and ,a)above are the 
same. 

2 -+8 =10 and 5 +5= 10 

In problem (c) we can say that the sum of the number of 
elements in the two set. is (2-1-8). But, as we know, 2+8=10. 
Thus we have two ways of naming the same number; as 10 
and as 2 + 8. Moreover, problem (d) shows that 5 + 5 gives 
us another name for 10. Thus 2 -1- 8, 10, and 5 + 5 are all 
symbols or numerals which represent the same number. So do 
3 + 7, 7 - 3, 9 -+ 1, and so on. When we write "=" between 
two numerals we mean that these two numerals are names for 
the same number. 
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EXERCISE 9-4 

Write four different symbols which name each of the following 
numbcrs: 6, 13, 22, 8. 

9-5 Mathematical sentences and the use of the box 

in grammar, a sentence or a statement is a group of words 
which conveys a completed thought. In mathematics we also 
express our thoughts by sentences. An example of a number 
sentence or number statement is "3 - 5 8". This expresses
the fact that "3 + 5" and "8" are different names fbr the 
same numbCr. 

The sentence "Pawpaws are green" expresses a true fact 
and we say that it is a tre sentence. On the other hand, the 
sentence "Elephants are green" is clearly false. Number sen­
tences may also be true or false. For example, "3 + 5 =8" is a 
true sentence, whereas "3 -!F 5 -- 7" is a false sentence. 

Consider the sentence "It is green". Here it is impossible to 
say whether this sentence is true or false until we know to what 
the word "it" refers. If "'it" refers to "pawpaws", the sentence 
is true. If "it" refers to "elephants", the sentence is false. We 
shall call such a sentence an open sentence or open statement. An 
open sentence contains a pronoun such as "it", "he", ''they", 
etc., and we cannot tell whether the sentence is true or ialse 
until we know to what the Iroou1n)1I refers. 

In the same way, we can talk about open number sentences. 
You have already seen such open number sentences when you
did Exercise 9-2. You solved the problem "5 + 3 = D-" by
writing "8" in the box. You then had the true sentence, 
"5 ± 3 = 8". Had you written "6" in the box, the sentence 
"5 + 3 - 6" would have been false. Thus the box plays the 
role of a pronoun in an open number sentence. 

The box not ation is a very suggestive way of writing an open
number sentence, and children readily understand its use. The 
teacher can help the child find the numeral which must be put
into the box to make the sentence true by using sets of stones or 
sticks. 

After the pupil learns how to use the box, lie can also use 
different symbols to represent the pronoun in the open number 
sentence. For example, he could write + 2 (""5 Q or 
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"5 -	 2 A" and then fill the circle or triangle with the 
number which makes the sentence true. Eventually, it will 
become more convenient to use a letter of ihe alphabet in­
stead ofa box, or circle, or triangle. We then write"4 -" 3 = N" 
or "5 ± 2 - K", and ask the student to find the number which 
should replace N or K to make these sentences true. Since this 
book is designed to help the teacher prepare for teaching young
)upils these basic concepts, we shall use the box notation more 

than any other. As we continue you will see its advantages 1s a 
teaching device. 

We have seen that an open number sentence becomes true 
or false when a symbol for a number, that is, a numeral, is 
written in the box. This when we state a problem involving an 
open number sentence such as 2 + n = 7 we should say, 
"Find the number whose nmeral should be written in the 
box to make the open sentence 2 -- ] = 7 true." But to 
state the problem this way takes rather long and we shall 
usually shorten tile statement to, "Find the number which 
makes the sentence 2 I- F] -- 7 true". IIn doing thiSawe areftbllow­
ingthecommon practice of using the word "number" in place of
"numeral". This will never cause any difficulty provided you 
remember the difference between these words, and realize that 
when we say "number" we often really mean "numeral". 

EXERCISE 9-5 
1. Give several examples of open sentences containing the 

pronoun "it". In each case give two examples of words that 
make the sentence true, and two examples of words that 
make the sentence false. 

2. 	 a. Give an example of a true number sentence using the 
symbol ".<". 

b. 	Give an example of a Ialse number sentence using the 
symbol "-<'". 

c. 	 Find two numbers which make the sentence FD < 5 
true. 

d. 	Find two numbers which make the sentence D7 > 5 
true. 

9-6 	 Missing numbers in addition equations 
The box may be used in different positions in a number 
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sentence. We can write "4 + [] = 7". The box is to be filled
by a number which makes this sentence true. The number 
which belongs in the box is the number of elements in a Zet 
which must be combined with a set of 4 elements to give a set
of 7 elements. This kind of addition problem is very useful for 
pupils. It helps them understand how one number can be made 
upl)y adding many different pairs ofnumbers. It therefore helps
them to realize that one numnber can have many different 
names. It also prepares them for subtraction. 

Here, for example, are some open number sentences involving
the number fou:: 

L -- 1 -. -- 2 -=-, L- - 4-, 3 -- ] = 

When th missing numbers in these sentences are filled in we 
obtain the ftllowing true sentences: 

F- 4 = 1M 2 = 4 =14 3 +[=4 
EXERcIsE 9-6A 
Find the numbers to put into the boxes to make each of the 
tollowing sentences true: 

. El -- 2- 4 2. 3-- =10 
3. 4 : 1. 0 -1 8 
5. 4.: 3 :i -: 5 6. J -6 =5---5 

At this point you may be wondering how your pupils will
le able to find the missing numbers in problemrs such as these. 
The answer is that they should work them out with sets. For
instance, you may ask them to find the missing number for the 
open sentence - 7 - 9. To solve this problem they can use 
a single-bar abacus with nine beads, or any set of nine objects.
If they use an a )acus they should start with all of the beads on 
one side of'tie aacLs, and move seven of the beads to the other 
side. The nunber of beads which were not moved will be the 
number which makes the sentence true. The number. of course, 
is2. 

- :---- OOC OO-|
DC: 1-31 
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Similarly, if the sentence is 

6+ -=9
 
their solution will look like this:
 

Hence, in this problem the box is holding a place for the number 
3. 

Here is another example. What number should be put in the 
box to make the following sentence true? 

F-1 + 9 = 9 

You know that the answer is 0. However, your pupils may have 
trouble with this. It will help them to solve the problem on an 
abacus, like this: 

--C300,.000 
-oxxCOOO---C--

This time there are no beads on the cxtreme left of the abacus. 
Thus the box must be filled with the numbcr 0 to make the 
sentence true. 

We therefore write o + 9 =9 
Using the abacus in this way it is easy to show that each of the 
following is a true sentence: 

0+9=9 5+4=9 
1 +8 =9 6 +3 =9 
2"-7=9 7+2=9 
3 +6 =9 8 + 1 =9 
4+5=9 9+0=9 

Thus all of the sums 0 + 9, 1 + 8, 2 + 7, etc., are different 
names for the number 9. 

EXERC1n, 9-6B 
1. Plan a lesson for small children in which you would use an 

abacus or other means to find all sums of pairs of numbers 
that givc 5. 
Do the same for 7 and 8. 
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2. 	 I am thinking of a number. This number plus 5 is 11. What 
is the number? 

3. 	a. Each of twelve children in a class is assigned a different 
number from 1 to 12. If the children form pairs so that 
the sum of the numbers assigned to each pair is 13, which 
children are left without partners? 

b. 	Answer the same question when tile sum is 14, and when 
the sum is 16. 

c. 	 Answer the same question when the sum is 20, 23 and 24. 
4. 	 Imagine that you are given two dice. Each dice has six 

sides and each side shows one of the numbers 1, 2, 3, 4, 5 or 
6. 	Throw both dice on a table at the same time. Make a list 
, 'all possible pairs of numbers that could turn up, and list 
their sums. Which sum do you think is most likely to turn up. 
Why? 

5. 	Leta,b and c be whole numbers and suppose that a + b = c. 
How many such equations are there when 
a.c= 5 b.c= 10 
C.c =1,000 	 d. c=0 

6. 	Let a and b be whole numbers such that 

a+a=b 
What 	can you say about b? 

9-7 The property of zero in addition 
If there is a set of 5 boys and 0 girls we can represent the 

union of these sets by the picture 

A U .{ 	} =1 { A 
The addition equation corresponding to this picture is 

5+0=5 
Similarly, if we form the union of any set with the empty set 

we get the original set back again. Thus we have the following 
true sentences, or equations: 

0+0=0 0+0=0 
1 	+0O=1 0+1 =1 
2+0=2 0+2=2 
3+0=3 0+3=3 
4+0 =4 0+4=4 
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These equations show that wohen 
 zero is added to a number the
number is left unchanged. This special property of zero is described
by saying that zero is the IDENTITY for addition. The word
"identity" is used because every number remains the same when 
zero is added to it. We can express this property of zero by
writing the open sentences 

O --] = 7 and [-;1- 7=F 

V"'se sentences are true no matter what number is put in theL . You can choose any number you please so long as the 
sa. s number is used in both boxes of each equation. 

EXERCISE 9-7 
1. 	Use pictures of sets to show that 0 + 0 = 0 is a true state­

ment. 
2. 	Find the numbers which make each of the following state­

ments true. 
a. 	8 -- [] =8 b. 479 +F1 c. n] < I 	 d. [] -- 1357 

=479 
1357 

e. 	 235 El +± 235 f. 	 35 =35-? 

3. 	Suppose that I is a whole number such that 

n -!-I =1 
is a true statei!mnt no matter what number is put in the box. 
Show that I = 0. [Hint: Put 0 in the boxes thisin state­
ment and then use the property of zero.] 

9-8 Addition table 
When your pupils thoroughly understand how to find the 

sum of two numbers by forming the union of disjoint sets, they 
can build an addition table. 

First make a square with 121 small squares in it. That means
that there will be 11 rows with 11 squares in each row. In the 
top left hand square put the sign to show that you are 
adding. Follow this by the symbols 0, 1, 2, . .. , 9, one in each 
square along the top row. Similarly, write the symbols 0, 1, 
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2, ... , 9,in the squares down the left-hand side. You now have 
a square like this: 

+ 0 1 2 3 4 5 6 7 8 9 
0 0 1 2 I 

1 
2 

4r
 
3
 
- - -10 

4I 
8I

5 

6-....... ... .. -.10
 

7 

8 

9 

Begin with the first empty square on the second row. Put into 
this square the number which is the sum of the numbers you
have already shown in the outside spaces at the left end of the 
row and the top of the column. This sum is 0 + 0, so we put G 
into the first empty space. The space next to this on the right
is for the sum of 0 -i- 1. Thus 1 is put into this space. The next 
square along the second row has 0 and 2 at the ends of its row 
ai, d column and so 2 is put here. 

Where do we show the sum 6 + 4 = 10? We find the row 
which begins with 6 and the column which begins with 4. We 
then find the square where this row and column intersect and 
write 10 in this square. 

EXERCISE 9-8 
1. Prepare a table similar to the one described and fill in all 

the sums for pairs of numbers from 0 + 0 to 9 + 9. 
2. 	Use the table to find six pairs of numbers whose sum is 8, 

and write the ddition equations which show these facts. 
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PROPERTIES OF ADDITION 

10-1 	 Commutative property of the iunion of sets 
When you form the union oftwo sets you know that it does not 

matter which set you take first. The union of a set of 3 bananas 
and a set of 2 oranges is the same as the union of the set of 2 
oranges and the set of 3 bananas. The order does not make any
difference to the result. The following picture illustrates this. 

00 	 0 
A 	 B AUB 

00 

B 	 A BUA 
We see that the sets A U B and B U A have the same elements. 
They are equal sets. Therefore A u B and B U A are names 
for the same set, and we write 

AuB =BuA 
The fact that A u B = B U A is called the COMMUTATIVE 

PROPERTY of the union ofsets. 

EXERCISE 10-1 
1. 	a. Write the addition equations suggested by the sets in the 

picture above. 
b. Does this picture show that 3 + 2 = 2 + 3? Explain. 

2. Draw a picture like the one airove to show that 

1 -- 2 = 2 + 1. 
98 
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10-2 Commutative property of addition 

In the last chapter we defined addition for whole numbers by 
counting elements in the union of disjoint sets. For this reason 
the commutative property is also a property of addition of 
whole numbcrs. For instance, when we write the addition 
equations for the union of the set of 3 bananas and the set of 2 
oranges shown above we have 

3 d- 2 5 
2 + 3 =5 

Therefore 3 + 2 2 + 3 

Our experience with the union of sets tells us that a similar 
statement is true for the sum of aiy two whole numbers. This 
special property of addition is known as the COMMUTATIVE 
,R 0 P EORT Y of addition. The following pictures illustrate the 

commutative property for the numbe' pairs 1, 3 and 2, 4. 

1 + 3 = 3 + 1 

@ @@
 

2 + 4 -4 + 2 

Pictures like these help children understand why addition is 
commutative. 

The children you teach will have had lots of experience in 
forming the union of two disjoint sets. This should help them to 
discover the commutative property of addition for themselves. 
Thus when they have found the number which is represented 
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by 3 + 4, they should realize that this number is also repre­
sented by 4 + 3. You can help them understand this by en­
couraging them to find such "twin facts" as 

3+2=5 and 2+3=5 
6 +4 =10 and 4+6 =10 

EXERCISE 10-2 
1. Write addition equations suggested by each of the following 

pairs of pictures. 

a. 

b. 

2. What statements about whole numbers 
pictures suggest? 

do the following 

a. 

@@ 0 0 ,0 0i 

0 
-00 

-0 
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b. 

o0 0
 

3. 	Draw pictures using sets to illustrate the following state­
men ts. 
a. 	2 -l 1 = I - 2 
b. 	3 -5 =5 -- 3 
c. 	 6 +2 =2 +6 

4. 	 Find numbers to put into the boxes which make each of the 
following sentences true. 
a. Dl +3 =5 3 +- =5 
b. 	11 - E =20 n + I I=20 
c. 	 0 + 6 7 - 6 
d. 	F1 4 5 = 5 -!- ­
e. 	 3 + = 10 3 
f. ] -+ 20 =20 

5. 	What number can be put into the boxes to make the fol­
lowing sentences true? 
a. 	 D + 3 = 3 + I 
b. 	7 -!- l = -F 7 

10-3 The general notion of a variable 

Question 5 at the end of the last section was very different 
from Question 4. Do you see why? For how many numbers is it 
true that ] - 3 = 3 -F2? Only for the single number two. 
For how many numbers is it true that 

S-3 3 + [] ? 
Here the answer is "all numbers". Indeed, we have 

0 F3 =3 + 0 
1-3=3+ 
2 -3 3 + 2 

and so on. Of course, whatever number is put in the left-hand 
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box must also be put in the right-hand box. Otherwise we would 
not get a true sentence. 

We speak of a sentence such as 

F1 +3 =3 + FD 
as an IDENTITY. In general, an identity is an equation which is 
true for all things under consideration-here for all whole 
numbers. 

Actually we can go further than this since all of the following 
are also true identities: 

, 2=1 - []D]+3--3+D5 

and so on and on. We can put all of these identities together 
into a single one, as follows: 

E] +A = A+ E 
In writing this it is important to understand that the two boxes 
must be filled with the same number, and that the two triangles 
must be filled with the same number. However, the number in 
the boxes need not be the same as the number in the triangles. 

For example, 3 -1-3 =3 + 3 
is true. So are 7 + 5 = 5 + 7 
and 9-1-8 =8 -9 
In general, ED + A A + El 
iq true for all numbers. This identity expresses what we call the 
connulativeproperty of addition. This property says that the order 
in which two whole numbers are added does not matter. 

It is customary in mathematics to use letters instead of boxes 
and triangles to express identities. When we do this the com­
mutative property of addition of whole numbers reads as 
fbllows: 

a+b=b+a 

for all whole numbers a and b. 
A letter which is used to stand for any one of a set of numbers 
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is called a VARIABLE. Thus in the identity above, a and b are 
variables. We use variables to help us write down and remember 
properties such as the commutative property of addition. 

EXERCISE 10-3 
1. 	Fill the boxes in 6 different ways so that 

E] + A =A +D
 
becomes a true sentence.
 

2. 	What number or numbers can be put in the boxes to make 
the following sentence true? 

] +F1 =18 
Is this statement an identity for ",t whole numbers? Explain. 

3. 	Is E +0 = D
 
an identity for all whole numbers? Explain.
 

4. 	 What does the commutative property of addition tell us if 
a 	 a =3 b =? b.a=5 b =2? 
c. 	 a 0 	 b =4? d. a =27 b =53? 

5. 	Suppose that a and b are whole numbers such that 

a b -- 2 
What is a when 
a. 	b =6? b. b =9? c. b =0? 

10-4 Associative property of the uion of sets 

In Chapter 2 we talked about forming the union of three 
sets A, B, C. We saw that this could be done in two ways. One 
way is to form A u B first, and then take the union of this set 
with C. This gives the set 

(A u B) u C 

Tbe second way is to form B u C first, and then take the union 
of this set with A. This way we get the set 

A u (B u C) 

Note that we put brackets (or parentheses) around the pair of 
sets whose union is being taken first. 
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For example, let A, B and C be the sets shown below. 

A @ 0A 


A B C 

To form (A u B) u C we proceed as follows: 

AA U @ @M 9 MIM 

A B C 

-A@ M =A 91N 

AUB C (AUB)UC 

Now suppose we form A u (B u C). We get 

U A_0 

A C 
A BUC AU(BUC) 

Each time wc get the same set in the end. 
This example illustrates another important property of the 

union of sets. It shows that for any three sets A, B, C the sets 
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(A U B) u C and A u (B u C) contain the same elements. 
Therefore they are equal, and wve can write. 

(A u B) u C: = A u (B u C) 
This equation says that it does not matter how we group sets 
when we form their union. We call this property the ASSOCIA-
T I VE PROER TY of the union of sets. 

10-5 Associative property of addition 

By now you have probably guessed that the associative 
property is also a property of addition. It is. For example, when 
we write the addition equations which go with the pictures in 
the last section we have 

(2 3) 4 5 - 9 
2 .- (3 -.1) -=2 -i-7 = 9 

Thus (2 3) 4 = 2 -- (3 4) 

In general, for any three whole numbers a, b, c we have 

(a b) -c r= a - (b r-c) 
\Ve call this spcCial property the ASSOCIATIVE PRO PEP'r of 
addition. It tells us that in finding the sum of three whole 
numbers it does not matter how we group the numbers in pairs 
to add them. 

The associative property is useful because it sometimes allows 
us to make an addition problem easier. For example, suppose 
Ave were asked to find the sum 

19 -- 6 -? 4 
One way to do this would be to add 19 and 6 first, and then add 
4 to the result. However, the associative property tells us that if 
we wish we can first add 6 4, and then add the result to 19. 
This is easier. Thus we write 

19 - (6 -:-4) = 19 - 10 =29 

Remember that the brackets here tell us which pair of numbers 
we are adding first. 

Together, the associative property and commutative pro­
perty allow us to make many addition problems easier. For 
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instance, suppose we were asked to find the sum of 4, 7 and 6. 
We could write this as 

4 + (7 +6) 

But by the commutative property we can replace 7 + 6 by 
6 + 7 to get 

4 + (6 + 7) 

We now finish the problem like this: 

4 + (6 + 7) 	 = (4 + 6) + 7 (associative property) 
=10+7 
=17 

In this case we changed both the order and the grouping to 
take advantage of the fact that 6 + 4 = 10. 

EXERCISE 10-5 
1. 	What does the associative property r-f addition tell us if 

a. 	a=1 b =2 c=1? 
b. 	a =4 b =3 c =0? 
c. 	a=5 b =5 c =2? 
d. 	a=3 b-7 c=6? 

2. 	 Find the number to put in place of a to make each of the 
following sentences true. 
a. 	 (a + 3) + 4 5 + (3 + 4) 
b. 	 (2 + a) + 1 2 + (4 + 1) 
c. 6 + (3 + 	a) (6 + 3) + 2 
d. 	(a + 2) -. 4 4 + 4 
e. 	 (3 + a) + 2 10 -P 2 

3. 	 Find the number (or numbers) to put in place of a to make 
each of the following sentences true. 
a. 	 (a + 7) +3-= 10 
b. 	(2 + a) + 9 =2 + (a + 9) 
c. 	 (a -+ 1) + (a + 2) =7 + (a + 2) 
d.a +(6-4) = 0+a 
e. 	 (a + 3) + (2 + a) =9 

4. 	 Which of the statements in Question 3 are identities? 
Explain your answer. 
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5. Put brackets (parentheses) in the following to showsums 

how you would group them to make the addition easier. 
Then find the answers. 
a. 9 +7 -3 b. 6 +14 +5
 
c, 8+-9 +21 
 d. 9 + 15 +5 
e. 24- 36 + 18 

10-6 Addition on the number line 

We have seen how to represent numbers on the number line.
First we draw a line with arrows on each end to indicate that 
the line can be extended in both directions. 

Then we mark some point "o" and choose some length as a
unit length. Next we mark off points to the right which are 

0 1 2 3 4 5 6 7 

equally -paced so that the distance between successive points is 
the unit length. These points are labelled 1, 2, 3, 4, . . ., in 
order. We now have the number line. 

The part of the number line from one number to the next is
called a segment. The segment from 0 to I is of unit length. A 
segment of unit length will be called a unit segment. The seg­
ment from 0 to 3 is made up of three unit segments and has a
length of 3 units. What is the length of the segment from 5 to 8?
A look at the number line shows that this segment also contains 

6 1 2 5 6 7 89 

three unit segments and has a length of 3 units. Thus the seg­
ment from 0 to 3 and the segment from 5 to 8 have the same 
length. 
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EXERCISE 10-6A 
1. 	a. Compare the lengths of the segment from 0 to 5 and the 

segment fiom 4 to 9. 
b. 	Compare the lengths of the segment from 2 to 5 and the 

segment fiom 9 to 12. 
2. 	 a. What segment starting at 0 has the same length as the 

segment f'rom 6 to 9? 
b. 	What segment starting from 0 has the same length as the 

segment from 4 to 8? 
c. Does the segment in part (a) or in part (b) have the 

greater lcngth? 
d. 	State how you can decide which of two segments is the 

larger or whether they are of equal length. 

The segment from 0 to 5 is made up of two segments, one 
from 0 to 3, and the other from 3 to 5. Thus the segment con­
sisting of five unit pieces can be broken down into two pieces, 
one of 3 units, and one of 2 units. You can see what we are 
leading up to in this wav-and if you guide children correctly
they vill see it too. We are leading up to addition, shown on the 
number line. The sum 3 + 2 looks like this when shown on the 
number line: 

3 2 

0 .1 2 3 

3 

4 5 

9 =5 

6 7 8 

Any addition problem can be shown in this way, as you can 
plainly see. 

In general we may picture (a - b) on the number line as 
follows: 

ab
 

0 	 a+b 

Remember that when you add on the number line you move 
to the right. 
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EXERCISE 10-6B 
1.Show the following additions on the number line: 

a. 	2+4 b. 3+3 
c. 	4-2 d. 5+l 
e. 	6 0 .12+7 
g. 	 19 --0 h. 6 11 
i. 	11 -- 6 j. 0 6 

2. 	While Bandele sat at his desk looking at the number line in 
his arithmetic book, a cricket jumped on the book, landing 
at 0. First it jumped to 7, and then it jumped on to 11. 
This very smart cricket was really doing an addition prob­
len. What was the problem? 

3. Tell 	how you can use examples of the kind in the exercise 
abovc to help children understand the numbr line. Make 
up gaines and stories to explain each of the addition prob­
lems given above. 

4. 	 If x is a whole ntunber between 3 and 6 and is a whole 
number between 2 and 7, illustrate on the number line the 
set of all possible points corresponding to x 

5. 	Starting from the point 0 on the number line a boy lays 
match-sticks in the following order: I stick, then 2 sticks, 
then 3 sticks and so on. How many sticks would lie have used 
after laying the fifth set of sticks? 

6.A child jumping along a straight track marked in feet made 
jumps of 3 feet, 4 feet, 3 feet, 4 feet, and so on. I hie started 
at the point 0 with a jump of 3 flet, after what jump would 
he land on the point inarkfAd 31 feet? 

10-7 Commutative and associative properties of addi­
tion 

You can see firom tite number line that such sums as 3 2 
and 2 --3 give the same number. 

3 2
 

0 1 3 5 6 7
2 4 


2 3 

0 1 2 3 4 5 6 7 
III: I 	 -I 
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In 	illustrating the operation of addition it does not matter 
which of the moves on the number line is taken first. If we first 
take 3 unit steps followed by 2 unit steps, we come to 5. If we 
had first taken 2 unit steps tbllowecd by 3 unit :;teps, we would 
have again come to 5. 

EXERCISE 10-7 
1. What is the name of the property of addition just described, 

and what is the most general way to state it? If you do not 
remember, refer to the section on properties of addition. 

2. 	 Prepare word problenu which will help children to under­
st:, -J this property by using the number line. 

3. 	 Name another prcperty of addition. Give examples on the 
number line to help children understand the property. 

4. 	 Fill in the missing blanks in the sentence below. 

a. 	The above diagram on the number line shows that 

b. 	The diagram illustrates the -- property and also the 
- property of addition. 

10-8 Generalized properties of addition 

The following exercises will show you that you can add 
numbers in any order and in any grouping that you like. This 
means that if von have to find the suM of several numbers you 
can begin with pairs whose sum is easy to find, and that you 
can re-arrange thle numbers to bring the pairs together. 

EXERCISE 10-8 
1. Name the property ofaddition which makes each sun .,own 

below equal to the following one: 
(4+3) +2 =4-!-(3 -- 2'.I(2 +3) 

(2 + 3) + 4 2 + (3 r-4)
2. 	In adding three numbers tie associative property of addition 

makes it possible tc group the numbers any way you please. 
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If you add four numbers, can you group them in any way 
you please? Explain. Is this also true for more numbers? 

3. How many different combinations of five or fewer different 
numbers from 1 to 10 add up to 15? (Note that 10 and 5 is 
the same combination as 5 and 10 and should only be 
counted once. Also 3 + 3 + 9 uses the number 3 twice and 
this is not allowed.) 

4. 	 The game of"31" is played by two players. The first player 
announces a number from 1 to 5. The players then take 
turns, each adding a number from I to 5 to the previous 
result and announcing the new result. The player who 
announces 31 is the winner. Explain how the player who 
goes first can be sure of winning. 
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SUBTRACTION 

11-1 Finding the missing addend 

Consider the following problem: 
There are 5 children in a room. 3 go away. How many are 

left in the room? 
The answer, as you know, is 2. Why? Well, one way to show 

this is to draw pictures like these: 

5 children in all 

3 children go away 2 children still here 

We can also solve this problem by writing an equation. We 
start with 5 children. Three go away. To find out how many 
are left we must find the number to put in the box to make the 
following sentence true: 

5 =3 -
Since 5 = 3 - 2, the number 2 must be put in the box. 

In a sentence such as 3 + 2 = 5 the numbers 3 and 2 are
called addends. The number 5 is called the sum of these addends. 
In the above problem we knew the sum and one of the addends. 
To solve the problem we had to find the missing addend. 

Here is another problem of the same kind. 
112 
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There are 9 children in class. Each must have a book. There 

are 6 bc, :) in the room. How many more do you need? 
This time ihe addition equation is 

6 + - =9 
To solve the problem we must find the number which when 
added to 6 gives 9. Thib number is the missing addend. It is 
3 because 6 ± 3 = 9. The following pictures show this: 

cDD
 

6 books 3 more books give
in class 9 books in all 

EXERCISE I I-I 

Find the missing addend: 

1. 	7 +] =11 2. ] + 9 =15 
3. 	n 6=18 4.9--n- =14 
5. 	6-! = 6. 21 11=6 	 =F-
7. 	19= 5-1 8. 72 =15 
9. 	 ]- 12 =30 10. 29 = ]--17 

Write an addition equation for each of the following problems. 
Then find the missing addend. 
11. 	 There are 10 birds in a tree. 2 fly away. How many are still 

in the tree? 
12. 	 I have 7 bananas. I eat 2. How many are left? 
13. 	 There are 12 children in all. 5 are girls. How many are boys? 
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14. I need 25 chairs, and have 12. How many more must be 

found? 
15. I have 4 shillings and need 17. How many more must I 7, 

11-2 Subtraction 

When we find the missing addend in an a-ldition equation 
we say that we are doing SUBTRACTION. We call the missing
addend the DIFFERENCE between the sum and the addend 
which is known. Thus, to solve the addition equation 

3+ [5=5 
we must subtract 3 from 5. WVe show this by using a minus 
sign "-" and writing 

] = 5 -3
 
The number which makes 
 this a true sentence is the same 
number which makes 3 + ] = 5 a true sentence. Since this 
number is 2 we write 

2 =5 -3
 
W\e cali 2 the diference between 5 and 3.
 

It is important to notice that the sentences
 

3 +2 =5 and 2 =5 -3 
say exactly the same thing. In other words: 

When you know the answer to this --* 3 + [] = 5 
you also know the answer to this -+ = 5 - 3 

We call the equation []= 5 - 3 
the subtraction equation corresponding to the addition equation 

3+IZ=5 
Similarly, the addition equation 

R+6=9 

can be written as the subtraction equation 

[1 =9 -6 
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To solve the first equation we must find the missing addend. 
To solve the second equation we must subtract 6 from 9. These 
are just different ways of saying the same thing. In each case 3 
must be put in the box to give a true sentence: 

Lai -,- =96 
[39 -6
 

EXERCISE 11-2 
1. 	Write the subtraction equation corresponding to each of the 

following addition equations: 

a. 	5+ F-1 =7 b. 9=[-1 +5 
c. 	 26 17 + F] d. D] + 11 = 20 
e. 	 12=D +12 f. 19=8 + 

2. 	Write an addition equation corresponding to each of the 
following subtraction equations: 

a. 	8-6= - b. =4-4 
c. 	9-2 =[E d. F =8-7 
e. 	 [] = 15-9 f. 31 -14 =] 

3. 	Write addition and subtraction equations for each of the 
following problems, and then solve the problems. 
a. 	8 children are running. 3 fall down. How many are still 

running? 
b. 	15 people are coming. 6 are already here. How many 

more are to come? 
c. 	 12 birds are in a tree. 7 fly away. How many are still in 

the tree? 
d. 	27 children are in class. 9 go outside. How many are still 

in class? 
e. 	32 pencils are needed. 15 are here. How many more are 

needed?
 

11-3 Subtraction facts from addition facts 

Consider the sentence 4 + 2 = 6. What subtraction facts 
does it tell us? Suppose we cover up the 4. We then have the 
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addition equation ] + 2 = 6. The corresponding subtraction 
is [] = 6 ­ 2. We can also cover up tile 2 and get the addition 
equation 4 ] = 6. Here the corresponding subtraction 
equatioii is [ 6 - 4. Thus 

4+2 -6 

gives two subtraction equations: 

E] =6-2 and -=6-4 

Notice thit each of these equations corresponds to one of the 
addends in the original sentence 4 - 2 = 6. 

EXERCISE 11-3 
What subtraction equations can you get from each of the 
following? 

1. 7 -- 6 =13 2. 5 9 =14 
3. 6=6-0 4. 12 -9 '3 
5. 7 7=14 6. 15 0 =15 

11-4 Subtraction as separating a set into subsets 
We have seen that addition is based on the idea of forming

the union of two disjoint sets. For instance, the sentev,.. 
3 + 2 = 5 tells us that the union of a set of 3 elements and a 
set of 2 elements always contains 5 elements whenever the ori­
ginal sets are disjoint. The following picture shcws this: 

JuJ 
3+2=5 

We can also illustrate subtraction by using sets. We do this 
by separating a set into disjoint subsets. For example, suppose 
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we wish to show that 2 = 5 - 3. First we draw a set containing 
5 elements: 

@ 

@G 

Then we divide this set into two subsets, one of which contains 
3 elements. The number of elements in the other subset is 
5 - 3. 

3 element 2 element
subset subset 

The picture shows that 5 - 3 = 2. 
The following picture gives another way of showing this. 

Here we start with a 5-element set and remove a 3-element 
subset. The number of elements left is 5 - 3. 

5-i'll 
Pictures like this are very helpful whcn teaching children sub­
traction. They show how subtraction problems can be solved 
by removing elements fliam a set. They also show why addition 
and subtraction are closely related since they show that 

addition corresponds to forming the union of disjoint sets, 
while subtraction corresponds to separating a set into disjoint 
subsets. 
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EXERCISE 11-4 
1. 	What subtraction facts do the following pictures illustrate? 

(a)--4 t 

(b) a @ 

(c) A AAA 

2. 	Illustrate each of the following problems with a picture, and 
then solve the problem. 
a. 	There are 12 people in a room. 6 are seated and the rest 

are standing. How many are standing?
b. 	Kwame found 8 eggs, but 2 were broken. How many were 

not broken? 
c. 	Esi puts 7 cups on a table. 1 cup is large and the rest are 

small. How many small cups are there? 
3. 	If A and B arc sets we let A - B be the set consisting of the 

elements in A which are iiot in B. 
a. 	Find A - B when A fa, b, c, d, e,f,g}
 

B {b, d,f}
 
Interpret this in terms of the number of elements in each 
set. (Notice that B is a subset of A.) 

b. 	Find A - B when A = {a, b, c, d, el 
B =-{b,f} 

Interpret this in terms of the number of elements in each 
set. Can you explain what happened here? 
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11-5 	 Subtraction problems which cannot be solved with 

whole numbers 

When we talked about addition we saw that we can always
find the sum of two wholc numbers. This is not true of sub­
traction. For instance, if someone tells you to separate a set of 
8 stones into a subset of 9 stones and another unknown subset, 
you cannot do it. The reason of course is that 9 is greater than 
8. Thus the set of 8 stones will be completely used up before 9 
stones have been removed. The addition and subtraction 
equations for this problem are: 

8 =9 	-1-D] and 8--9 

However, there is no whole number which makes these equa­
tions true. In otherwords, we cannot subtract 9 from 8 and get a 
wllole 1i1lnmbcr answer. 

In this example there was nothing special about 8 and 9. 
Indeed, the same thing lappens for any two whole numbers a 
and b when-ver a ;s greater than b. In general, if a is greater 
than b, tlen b - a E] does not have a whole number 
answer. 

EXERCISE 11-5 
Find the whole number which makes each of the following 
equations true whenever it is possible to do so. 

1. 7+7-D 7 	 2.9-2=-­
3. ] 	 = 1-8 4. LI+2=3 
5. 5 =-F-1 8 	 6. =6-6 

11-6 	 Subtraction as the inverse of addition 

Suppose you have 3 books, and put 2 more with them. Now 
remove 2 of the books. How many remain? 3; just the number 
you started with. We can state this as follows: 

(3 + 2) - 2 = 3 

Similarly, suppose you start with 3 coins, and remove 2 of 
them. Now put 2 coins back. How many coins do you have? 
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Once again you have 3. This time we can show what happened 
by writing 

(3-2) +2 =3 
The same thing happcns with other pairs of numbers. Thus 

(10 "-4) -4 = 10 f"(19 I'13) --13 19 
(10 --4) -i4= 10 j[(19 -13) --13 - 19 

These pairs of equations show that subtraction undoes the 
work that addition has dlone, and that addition undoes the 
work that subtraction has clone. We express this in mathenlia­
tical language by saying that addition and subtraction are 
INVERSE operations. Subtraction is the inverse of addition, 
and addition is the inverse ofsubtraction. These two statements 
can be summarized as follows: 

(a b) -- b a 
(a -b) '-b =a 

(Naturally we have to be sure that a -- b is a whole number in 
the second equation.) 

EXERCISE 11-6 
1. What do the above statements become for the tbllowing 

pairs of numbers? 
a. a=12 b =4 b. =5 b =0 
c.a=0 b =0 

2. Let A and B be sets. 
a. When is (A - B) u B = A? 
b. When is (A u B) -- B = A? 

(See Question 3, Exercise 11-4 for the definition of 
A - B.) 

11-7 Subtraction on the number line 

The number line can also be used to illustrate subtraction. 
We have seen that to find 3 + 2 on the number line, we start 
at 0 and first move 3 units to the right. Then we move 2 units 
to the right. This puts us at 5. Thus 3 + 2 5.= 

It is not always necessary to :nove to the right on the number 
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line. Suppose a cricket jumps fiom 0 to 7 on the number line,
and then jumps back 2 units. He will land on 5. You can see 
his moves on the number line below: 

7 

2_ 

0 1 2 3 4 5 6 7 8 9 10 
\Vhat operatio1i 11o you think the cricket is performing when he 
jumps to the left on the number line? From the picture you see 
that the cricket is subtracting when he jumps to the left. He 
has solved the subtraction problem 7 - 2. 

You can also think of subtraction on the number line as 
finding a missing jump to the right. For instance, if the cricket 
v'..nt from 0 to 3 on his first jump, and wanted to land on 8 the 
next time, hov far would lie have to jump to the right? The 
following picture shows that the answer is 5. 

I I- I - I I J I 
0 1 2 3 4 5 6 7 8 9-10 11
 

This time the cricket has solved the problem
 

3+-1 =8 
This explanation shows how you can use the device of a 

cricket jumping cin the number line in teaching subtraction to 
children. It is often possible to make up similar stories and
 
games to make learning arithmetic more enjoyable.
 

EXERCISE 11-7 
1. 	Find the answer to each of the following problems by draw­

ing pictures of the number line:
 

a. 	4-- 2 =F b.8 - [- = 12 
c. 6 -!- =9 d. 7--,4 = F 
e. 	2-0 =- f. 17-- 8 =-] 
g. 11 -- [- 19 h. 10 - 10 

2. 	Suppose that a is a whole number between 8 and 12, and b 
is a whole number between 1 and 7. Show on the number 
line the set of all possible points corresponding to a - b. 
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3. If you begin with 12 and repeatedly subtract 2, after how 
many steps will the process end? Draw a picture of the 
number line to show this. 

4. 	Starting from the point marked 35 on the number line, 
every third point to the left is marked with a cross. What is 
the last point marked with a cross? How many points are 
marked vith a cross? 

5. 	We have seen that addition is commutative. Do you think 
that subtraction is also commutative? (Hint: Find 5 - 3. 
Now try to find 3 - 5.) 

6. 	 Find the points 4 - (3 - 1) and (4 - 3) - 1 on the num­
ber line. What does this show about the associative property 
for subtraction? 

11-8 Order, and addition and subtraction 

Let us locate 1 and 5 on the number line. 

012 3 4 567 8 9 
Now add 2 to each of them. Each point has been replaced by
the point 2 units to the right. Thus since 1 is to the left of 5, 
1 + 2 is to the left of 5 + 2. In terms of inequalities we can 
write 

1<5 
1+2<5-+-2 or 3<7 

from the true sentence 1 < 5 we get the new true sentence 
3 < 7 by adding the number 2 to both sides. 

In general, let a and b be whole numbers with a < b. Add 
the whole number c to a and to b. This gives a + c and b + c. 
But a + c is c units to the right of a on the number line, while 
b -1-c is c units to the right of b. We have moved equal distances 
to the right of a and b. This does not change the order. Thus: 
If a < b is true, then a d- c < b -- c is also true. 

For example, from 4 < 6 

we conclude that 8 < 10 

We did this by adding 4 to both sides of the first inequality. 
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Again let a and b be whole numbers with a < b. Let us 

subtract the whole number cfrom a and from b. This means that 
we move c units to the left on the number line. 

C 	 C 

0 a-c a b-c b 

Again the order does not change. Thus 

a-c <b-c 

whenever a < b. Of course, if c is too large, a - c will not be a
whole number. Can you say what the largest possible value ofc 
can be? 

ExE;RCISE 11-8 
1. We know that 0 < 2. Use this inequality and the numbers 

1, 2, 3, 4, 5 to write five new inequalities. 
2. Starting with the inequality 4 < 9 get a new inequality

with 0 on the left side by subtracting a number from both 
sides. Show what you have done by using arrows on the 
number line. 

3. 	a. Show that if a and b are whole numbers with a < b, then 
0 <b - a. 

b. Also show that if 0 < b - a, then a < b. 
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MULTIPLICATION 

12-1 Repeated addition 
We have seen that addition is based on counting the num­

ber of elements in a union of disjoint sets. We shall now use this 
idea to solve problens in which addition is repeated several 
times. 

Suppose a man earns 5 shillings a clay and works for 4 clays.
We can find how much he earns by taking 4 sets of'5 shillings 
each and putting them together. We get 

o 0 0 0 
o 0 0 0
 
o 0 0 0
 
o 0 0 0
 
o 0 0 0
 

4 sets of 5 elements each 

Each of the circles in this picture ircprescnts a shilling. Each of 
tie~ sets contains 5 circles, and show s howv much the man earns 
in one clav. To find hio~v much the( mian earns altogrether we 
count the number of elements in all four sets. We find that the 
answer is 20. 

We can also solve this problem by writing an adldition 
equation. Thle equat ion is 

53 - 35-5 Fl 

Adding these 4 fives we find that the number 20 should be put
in the box to give a true sentence. This again shows that the 
mnan earns 20 shillings. 

We can describe the answer to this problem in several clif­
ferent ways: 

124 
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The union of 4 disjoint sets of 5 elements has 20 elements 
5 + 5 + 5 + 5 = 20
 

5 added 4 times equals 20
 
4 fives are 20
 

All of these statements say the same thing. 
We can also show this on the number line: 

5 5 5 5 

0. 5 10 15 20 

Here each jump moves 5 units to the right. The jump shows 
what the man earns in one day. From this picture we see that 
at the end of the first day the man has earned 5 shillings, at the 
end of the second day 10 shillings, at the end of the third day
15 shillings, and at the end of the fourth day 20 shillings. This is 
the total amount earned. 

All problems in repeated addition can be solved like this. As 
another example, suppose we are asked to find 8 8 + 8. We 
cani show this sum by drawing 3 disjoint sets each containing 8 
elements: 

foooooooof

(0o o oo oo o1
 

[ooooooooj
 
By counting the elements in the union of these sets we see that 

8 + 8 + 8 = 24. 

We can also solve this problem on the number line: 

8 8 8 
6 0 65 110 i 15 i i; l20 L I20225 i 306 

D C t-K 
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After 3 jumps to the right of 8 units each we are at 24 on the 
number line. Thus 8 -1-8 + 8 = 24. 

This time we describe the result as follows: 
The union of 3 disjoint sets of 8 elements each has 24 elements 

8 + 8 -- 8 = 24 
8 added 3 times equals 24 

3 eights are 24 
When you teach repeated addition to children you should draw 
pictures like those we have drawn here. By using sets of stones 
or 	bottle caps children can work out the answers foi them­
selves. Afterwards you should write the four sentences we have 
written in our examples and explain what they mean to your 
class. 

ExERcIsE 12-1 
1. 	Draw pictures using sets and the number line to illustrate 

each of the following sums. Then write the four sentences 
which describe the answer to each. 

a. 	3 + 3 - 3 + 3 + 3 + 3 =­
b. 	7 + 7 + 7 =F-] 
C. 9 + 9 + 9 ± 9 -9 = 
d. 	4= 

2. 	 Make up word problems which you could use in class to fit 
each of the problems in the above exercise. 

3. 	 Suppose a man earns 4 shillings a day, and works for 5 days. 
How much does he earn in all? Illustrate his earnings by
drawing a picture of sets, with each set of 4 shillings arranged 
in a row like this: 0000 . Compare this picture with the 
picture on page 124. What do you conclude? 

4. 	 Use pictures of sets to show that 3 eights is the same as 
8 threes. Now show the same thing on the number line. 

12-2 Multiplication 

You can see what this is leading to. Moreover, if you do this 
carefully in the classroom your children will see where you are 
leading them. After they have done many problems in repeated
addition they will want to write such problems in an easier way. 
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When they do you should tell them that repeated addition is so 
common that it is given a special name. That name is 
MULTIPLICATION. 

For instance, if we want to say that 5 + 5 + 5 + 5 = 20, 
we write the short and easy sentence: 

4 x 5 =20 
The " x" here is read "times". Thus this sentence is read "4 
times 5 equals 20". It tells us that if we form the union of 4 
disjoint sets of 5 elements each and count the resulting set, we 
will find that the set contains 20 elements. Thus we now have 
five statements, all of which say the same thing:

The union of 4 disjoint sets of 5 elements each has 20 

elements 

5 + 5 + 5 + 5 =20 
5 added 4 times equals 20 

4 fives are 20 
4 x 5 = 20 

When we write the sentence 4 x 5 = 20 we say that 20 is the 
PRODUCT of I and 5. 

ExE1 csE 12-2 
Solve each of the following problems. Illustrate your answers 
by drawing pictures of sets. 

1. 9 x 3=[-] 2. 2 x 5 = F­
3. 5 x 2=LE] 4. 1 x 7 =F-1 
5. 7 x I =DE] 6. 2 x 10=[-1 
7. 3 x 10 =[-] 8. 4 x 10 =[ 

12-3 Multiplication as mixing sets 

Here is another way to look at multiplication.

Suppose you have two boxes with cards in each box. In the
 

first box there are two cards marked 1 and 2. In the second box 
there are three cards uiarkecd a, b and c. How many different 
combinations of cards can you get if you pick one card from 
each box? 
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We solve this problem as follows: Pick a card from the fi,-st
box. Suppose it is card 1. Then when we pick from the second
box we get one of the cards a, b or c. This gives three possible 
combinations: 

(1,a) (1,b) (1,c) 
On the other hand, if we start with card 2 from the first box we 
get three more possible combinations: 

(2, a) (2, b) (2, c) 
Altogether there are 6 combinations. They can be listed in a 
chart as follows: 

a b c 
1 (1,a) (1,b) (1,c) 
2 (2, a) (2, b) (2, c) 

We can also show the same thing with a picture like this: 

The number of lines in this picture is the number of possible 
combinations. 
Every combination is connected by a line. Since there are 6 
lines there are 6 combinations in all. 

What we are doing in a problem like this is mixing one set
with another set. We get a new set whose members are pairs
made up of one element from each of the original sets. In the 
above problem the two sets are sets of cards. The elements of
the new set are all the possible combinations of cards, one from 
each box. We saw that once the first card was chosen there were 
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three choices for the second card. Thus there are 2 sets of 3 
possible choices. The addition equation for this is 

3+3=D 
We can also write this as the mult;plication equation 

2 x3 =[n 

This equation tells us that the number of pairs in the new set 
is found by multiplying the number of elements in the first set 
and the number of elements in the second set. rihus by mixing 
sets we get another way of looking at multiplication. Some­
times it is easier to tljnk of multiplication in terms cf unions 
of sets. At other times it is easier to think of it in terms of mixing 
sets. The two ways give the same result, and so you should 
learn both. Furthermore you can use both in teaching children. 

EXERCISE 12-3 
1. 	Three people are having dinner in a restaurant. They can 

order fish, beef or curry. Find all possible combinations of a 
person and a meal. How many combinations are there? 
Make a chart which shows all of them. 

2. 	Every road from Aras to Cona passes through Buka. There 
are 5 roads from Aras to Buka and 7 roads from Buka to 
Cona. How many roads are there from Aras to Cona? 

3. 	 Illustrate each of the following multiplication equations by 
using the idea of mixing two sets: 
a. 	2 x4=[-] b. 5 x7=F-] 
c. 	 ! x8=UE d. 5 x3 = n 

12-4 Products of the type a x 0 and 0 ax 

Consider the multiplication equation 5 x 0 = -. To solve 
this problem we remember that this equation says the same 
thing as the addition equation 

0 + 0 + 0 + 0 +0 = 

But 0 is the number of elements in the empty set. Thus this 
equation tells us to form the union of five empty sets and then 
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count the elements in that union. How many will there be? 
Zero, because the union of 5 empty sets is still empty. 
Thus 5 x 0 = 0. 

In the same way we see th:,t 

0 X =0 
1 xO=0 
2 xO= O 
3 xO=O 
4 x0 =0 

and so on. In general we have the identity 

0 xO =0 
where any whole number can be put in the box. We can also 
express this result as 

a x0=0
 
where a is any whole number.
 

In much the same way we can show that
 

0 Xa=0 
for any whole number a. Take 0 x 4 for example. To find 
0 x 4 we think of multiplication as repeated addition. The 
product 0 x 4 tells us to add 4 to itself a certain number of 
times. How many times? Zero times. In other words, we Lo not 
add any fours at all. The answer then must be zero. 

We can also see this by thinking about sets. Do you remember
 
how this is done? Think of 2 x 4 and I In the case
x 4. of 
2 x 4-we form the union of 2 disjoint sets with 4 elements in
 
each. In the case of 1 x 4 we form the union 
of I set of 4 
elements. Finally, to find 0 x 4 using sets we form the union of 
0 sets of 4 elements. How many elements do we have? Zero. 
Thus we again sec that 0 x 4- 0. 

In the same way we see that 

0 x 0 = 0 
0 X I=0 
0 x2=0 
0 x3 =0 

and so on. In general we have the identity 

0 xl =0 
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where any whole number can be put in the box. This can also 
be expressed as 

0 xa =0 

where a is any whole number. 

ExEr.wsE 12-4 
1. Make up examples that you could use to show children that 

a x0 =0 and 0 xa =0 

for any whole number a. 

12-5 The multiplication table 

You are now ready to work out the multiplication table for 
yourself. At first take only the numbers from 0 to 9. Later you
will learn how to work with numbers that are greater than 9. 
But this needs special methods which are better learned by
themselves. Although you already know the multiplication
table you may not have thought much about it before. But now 
that you know how to work it out you should do it for yourself.
In the exercise below we have written out a multiplication
table. You should find each product and put it in the proper 
place in the table. Remember that there are several ways of
finding the product of two numbers: repeated union of disjoint 
sets, repeated addition of numbers, mixing sets and the number 
line. Any wa), you do it is correct, so long as you satisfy your­
self that the answers you learned as a child are right. In this 
way you will be getting ready to teach children what multipli­
cation really means. Thus your classes will nevcr have to sing the 
multiplication tables without knowing what the words mean. 

In doing this work set up a table like the one below. One 
4example-to find 6 x -- is already done. The 6 in the column 

at tile left is multiplied by the '1in the top row. The answer, 24, 
has been put in its place in the table. 

ExmzlcisL 12-5 
Complete the following table using the methods given in this 
chapter. 
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0 1 2 3 45 6 17 9 
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6-----------­24 

7 
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12-6 The property of 1 

Look at the multiplication table you completed above. Do 
you see what happens when one of the numbers in the product 
is I?Notice, for instance, that 

1 x3=3 1 x4 4 1 x7=7 
3x1=3 4x1=4 7 x1=7 

Do you think that this will always happen? Why? Using the 
ideas in this chapter you should be able to show that 

1 xa a and b xl =b 

for any whole numbers a and b. 

EXERCISE 12-6 
1. 	Use pictures to show that each of the following products is 

correct: 
a. 	 1 x9=9 b. 9 x 1=9 
c. 	 3 x 1 =3 d. 1 x7 7 

2. 	Show that 1 x a = a and b x 1 = b for any whole numbers, 
a and b. [Hint: Remember that multiplication is repeated 
addition.] 
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PROPERTIES OF MULTIPLICATION 

13-1 Multiplication by 0 and by 1 
In the last chapter we discovercd two special properties of 

nmltiplication. The first was that for any whole number a, 

axO=O and Oxa=O 

We can describe this property in words by saying that the 
product of two whole numbers is zero whenever one of the 
numbers is zero. 

Do you think that the converse of this statement is true? That 
is, do you think that the only time the product of two whole 
numbers is zero is when one of the numbers is zero? Actually 
it is easy to see that this is true. You have been asked to show 
that it is in Question I below. 

When these statements about 0 are combined they give the 
following important property of multiplication: 

The product of two whole numbers is zero wheneverone of the numbers 
zero. Moreover, this is the only time a product ofwhole numbers is zero. 

Here is another way of saying the same thing. 

Let a and b be whole numbers. Then a x b = 0 if and only if 
a = 0,or b =0,or both. 

This property will be very important when we study division 
in the next chapter. 

The second property of multiplication that we discovered in 
the last chapter said that when we multiply a whole number by
I the number remains unchanged. We express this fact by 
writing 

1 xa=a and axl=a 

Each of these statements is true for any whole number a. This 
special property of the number I is often described by saying 
that I is the IDEN'.'ITY for multiplication. 

133
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EXERCISE 13-1 
1. 	Use the description of multiplication as a union of disjoint 

sets each containing the same number of elements to show 
that a x b is different from zero whenever a and b are whole 
numbers different from zero. (This shows that the only time 
a product of two whole numbers is zero is when one of the 
numbers is zero.) 

2. 	 Consider the equation 

2 	 x ([- - 3) =0 
This equation says that the number in brackets is to be 
multiplied by 2. What number makes this equation a true 
sentence? 

3. 	 Solve the equation 

5 x (12--) =0 

4. 	 In this section we said that the number I is the identity for 
multiplication. Earlier we said that zero is the identity for 
addition. Explain why the same word is used both times. 

13-2 T".e commutative property of multiplication 

W1 n you constructed the multiplication table in the last 
chap -r you found, for instance, that 2 x 5 = 5 x 2, that 
3 x 7 = 7 x 3, and so on. In fact ifa and b are any pair of 
whole numbers whose product appears in your table you will 
find that 

a xb=b xa 

Actually this property holds for all pairs of whole numbers 
a and b. It tells us that when we multiply two whole numbers 
the order of multiplication does not matter. We get the same 
answer either way. We call this property the COMMUTATIVE 
PROPERTY of multiplication of whole numbers. We also refer 
to it by saying that multiplication of whole numbers is com­
mutative. We shall now show why this must be true. 

If we consider multiplication as repeated addition, we think 
of 2 x 3 as the number of elements in the union of 2 disjoint 
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sets, each of which has 3 elements. We can picture this as 

On the other hand, we think of 3 x 2 as the number of ele­
ments in the union of 3 disjoint sets, each of which has 2 
elements. This is pictured as 

In the first case the union can be drawn as follows: 

In the second case, the union can be drawn in this way: 

Do you see an easy way to show that these two unions have 
the same number of elements? Simply turn the second one on its 
side. It then looks exactly like the first one. In this way you can 
see immediately that there is a one-to-one matching of thz 
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elements in these two sets. Each element of the second set 

0 A)
 

corresponds to the element of the first into which it rotates 
when we turn the second set on its side. And turning a set on its 
side does not change the number of elements it contains. 

The same idea can be used to illustrate the commutative 
property for any pair of whole numbers. It gives a clear picture 
of why the commutative property must hold. It is also very easy 
to show this to your pupils. For instance, to show that 
2 x 3 = 3 x 2 you merely draw the following picture to 
represent 2 x 3: 

I-@ @
 
Then turn the picture on its side. The picture will now show 3 
rows each having 2 elements. Hence it now represents 3 x 2. 
But the number of elements has not changed. Thus 

2 x3 =3 x2 
and the commutative property has been demonstrated in this 
case. 

EXERCISE 13-2 
1. Illustrate 3 x 5 by drawing 3 rows of 5 dots each on a sheet 

of' paper as yca would to demonstrate the commutative 
property to your pupils. Turn the sheet on its side. How 
many rows does the drawing now have? How many dots are 
in each row? What product does this drawing represent? 

2. Describe th, same procedure when there are a rows with b 
elements in each row, where a and b represent whole 
numbers. What do you conclude? 
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13-3 The commutative property (continued) 

The commutative property of multiplication can also be 
illustrated by mixing sets. For example, suppose we wish to show 
that 2 x 3 = 3 x 2. We mix two sets, as follows. Let A = {1, 2}
and B = {a, b, c}. Then A has 2 elements and B has 3. We 
begin by mixing them as shown in the first picture below. Alto­
gether there are 6 pairs in this picture. The picture therefore 
shows that 2 x 3 =6 

a 
(I,-- a) 

b 
(I,-b-) 

c 
(-I,i c) 

2 (2, a) (2, b) (2, c) 
Now suppose we mix the sets in the opposite order. We then get 
the following picture: 

1 2 

a (a, 1) (a, 2)
b (b, 1) (b, ) 

c (c, 1) (c, 2) 
Notice that the pairs in this picture are the same as the pairs in 
the first picture. The only difference is that the letters now come 
first and the numbers second. The total number of pairs is the 
same both times. This shows that 2 x 3 = 3 x 2. Using this 
idea we can show that a x b = b x a for any two whole 
numbers. 

Another way to teach children the commutative piuierty of 
multiplication is to use objects like blocks. For instance, to 
show that 3 x 5 --5 x 3 arrange 15 blocks on a table like 
this 
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We have 3 sets of 5 blocks, or 3 x 5 blocks. 
Now look at the blocks from the other side. Here is what you 

see: 

There are now 5 sets of 3 blocks each. But the number of blocks 
has not changed. Thus 3 x 5 = 5 x 3. By using this idea you 
can give many illustrations of the commutative principle to 
your pupils. 

EXERCISE 13-3 
1. 	Show that 2 x 4 = 4.x 2 by mixing two sets. Also show the 

same thing by drawing pictures of blocks. 
2. 	Suppose one of your pupils said, "I don't believe ,hat 

3 x 5 = 5 x 3." What would you do to make him change 
his mind? 

13-4 The associative property of multiplication 

In our study of addition we saw that te way numbers are 
grouped makes no difference in finding their sum. In other 
words
 

(a -Lib) +Fc = a + (b +I c) 

for any three whole numbers. We described this property by
saying that addition is associative. In this section we shall see 
that the same property holds for multiplication, that is 

(a xb) xc =a x(b xc) 

When we have shown this we will have shown that multiplica­
tion of whole numbers "sassociative. (The letters in brackets should 
be multiplied first.) 
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Let us start with an example. Suppose a = 2, b = 3, c = 4. 
Then 

(a x b) x c =(2 x 3) x 4 
=6 x4 
= 24 

On the other hand, a x (b xc) =2 x (3 x4) 
=2 x 12 
= 24 

Thus in this case(a xb) xc =a x (b xc).
We now show how this can be illustrated by pictures.

Arrange a set of blocks as shown below. 

/11
 

The shaded part of the picture contains 3 x 2 blocks, and there 
are 4 sets of blocks exactly like the shaded set. Thus the entir­
picture illustrates the product (3 x 2) x 4. 

Now look at the same set of blocks in the following way: 

I 1/
 

This time the shaded part of the picture contains 2 x 4 blocks,
and there are 3 sets of blocks exactly like the shaded set. Thus 
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the picture now illustrates the product 3 x (2 x 4). Since we
have the same set of blocks each time we conclude that 
(3 x 2) x 4 =3 x (2 x 4).

By using sets of blocks in this way we can show that
(a x b) x c = a x (b x c) for any three whole numbers. 
This is valuable because it helps children understand why the 
associative property of multiplication is true. 

EXERCISE 13-4 
1. Use pictures to show that (2 x 2) x 4 =2 x (2 x 4). 
2. Verify that each of the following equations is true: 

a. (1 x 2) x 4 1 x (2 x 4)
b. (3 x 0) x 5 = x (0 x 5) 
c. (4 x 6) x 5 =4 x (6 x 5) 

13-5 The distributive property 

We have seen that multiplication of whole numbers can be
considered as repeated addition. This is one way in which 
multiplication and addition are related. We shall now show 
that they are related in another way.

Consider a class which has 3 girls and 4 boys. Suppose there 
are 2 such classes. How many children are there in both classes
together? We can answer this question in two ways, as follows: 

First 
Find the total number of girls in both classes and the total
number of boys. Add these numbers together to get the total 
number of children. Thus we have computed 

(2 x 3) + (2 x 4) 

Second 
Find the total number of children in one class, and then inul­
tiply by 2 to get the total in both classes. This time we computed 

2 x (3 + 4) 
Since both answers are the same we conciude that 

(2 x 3) + (2 x 4) = 2 x (3 + 4) 
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This equality holds for any three whole numbers, and is 
known as the distributive property. In general the distributive 
property says that 

(a x b) -+ (a x c) = a x (b + c) 

for whole numbers a, b, c. 
The distributive property is easy to illustrate with pictures.

For instance (4 x 1) + (4 x 2) can be shown as follows: 

@ @@
 

(4 x 1) + (4 x 2) 

To show 4 x (1 + 2) we group the same dots like this 

f@~@ 

L@ @e
 
4 x (1 + 2) 

Since the number of dots has not changed we have 

(4 x 1) + (4 x 2) =4 x (1 d- 2) 

Pictures like this help children to understand the distributive 
property. You can also illustrate the distributive property in 
your class by using blocks as in the following pictures: 

DC I-L 



I 
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y 

(4 x 1) + (4 x 2) 

4x(1 + 2) 

EXERCISE 13-5
 
1. Verify each of the following equalities: 

a. (2 x 2) + (2 x 5) =2 x (2 + 5) 
b. (7 x 6) + (8 x 6) (7 + 8) x 6
 
c. (3 x 4) + (3 x 5) =3 x (4 + 5) 

2. Use a picture to illustrate the following equality: 

(3 x 2) + (3 x 3) =3 x (2 + 3) 
3. Solve the following equations: 

a. (2 x 3) + (2 x E]) =2 x (3 + 4)
b. (6 x E) + (6 x 2) =6 x (4 +2) 
c. (E] x 3) + ([[ x 4) = 6 x 7
 
d. (2 x 5) + (2 x 4) = F- x 9
 
e. (3 x i) + (3 x 2) = 3 x 8
 

4. Use the distributive property twice to write 

(2 + 3) x (6 + 4) 
as a sum of four products of two numbers each. 

5. Geneialize the preceding exercise to the case 

(a + b) x (c + d)
 
when a, b, c, d are any whole numbers.
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13-6 The distributive property on the number line 
The number line can also be used to illustrate the distribu­

tive property. The drawing below shows 3 x (2 + 4) on the 
number line. 

Notice that we have repeated a jump of 2 followed by a jump
of 4 three times. Altogether we took three jumps of 2 and 
three jumps of 4. If we make all three jumps of 2 first and 
follow them by all three jumps of 4 we come to the same 
point on the number line. 

2 2 2 4 4 4 

0 . 10 15 [ O 

But the second drawing represents (3 x 2) + (3 x 4). Thus 

3 x (2 + 4) =(3 x 2) + (3 x 4) 
Using this idea you can easily show that the distributive 
property holds for any three whole numbers. 

EXERcIs. 13-6 
1. 	Illustrate the following sentence on the number line: 

(4 x 3) + (4 x 5) =4 x (3 + 5) 
2. 	 A newspaper boy sold 30 newspapers on a certain day and 

60 on another day. If the cost of a newspaper is 2 pence
which of the following statements can be used to work out 
his total sales on the two days? 
a. 	60 x 4 pence 
b. 	30 x 4 pence 
c. 	 (30 x 2) -+ (60 x 2) pence 
d. 	 (30 + 60) x 4 pence 
e. 	 (30 + 60) x 2 pence 
f. 	 2 x (60 + 30) pence 



144 The Whole Numbers 

3. 	 If a set with 15 elements is separated into 3 disjoint subsets 
so that each successive subset has one more element than the 
preceding subset, what is the number of elements in each 
subset? 

4. 	 A group of children was divided iL1 o 4 teams of 3 children 
each. Each person on each team was assigned one of the 
numbers 1, 2 and 3 so that each of these numbers appeared 
on each team. What was the total sum of all the numbers 
assigned? Can you think of several ways to work this 
problem? 

5. 	Towns A, B and C lie on a straight road with B between the 
other two. The distance from A to B is 5 miles and the dis­
tance from B to C is 4 miles. The distance firom another town 
D to town A is 3 times the distance from town A to town C. 
\Vhat is the distance between town A and D? Illustrate these 
distances by a picture. 

6. 	Find the number ( 2 '-3) x (4 -- 5). Can you think of 
three or more different ways to do this? Jn each case state 
the properties of the operations you use. 

13-7 Why the properties are important 

Now that we have talked abol-t the properties ofaddition and 
multiplication it is time to say wvhy we have paid so much atten­
tion to them. What do you tiink the reason is? If you have never 
thought about this before you may answer as most people do: 
"These properties help to make addition and multiplication
problems easier to solve." This sometimes happens, but it is not 
the real reason at all. The real reason is that these properties
tell us how the arithmetic of whole numbers is put together.

Let us illustrate what we mean by an example firom tile real 
vorld. Suppose at man is about to build a house and has col­

lected everything lie needs to do the job. What will he have? A 
pile of sticks or boards, some bricks possibly, and other things 
as well. But he won't have a house. NOT YET. First lie must do 
the building. He must make at structureout of the pile of things in 
firont of him. Only then does he have a house. 

Arithmetic is very much the same. First come the whole 
numbers which are like the sticks and bricks for the house. But 
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as yet they have no structure. No building has been done. This 
is where arithmetic comes in. It begins by putting the numbers 
in natural order, then introduces addition and multiplication.
The properties ofaddition and multiplication are like the plans
for the house. They tell us how everything fits together. This is 
why they are so important. 

13-8 An illustration 

We have said that the properties of addition and multiplica­
tion tell us how arithmetic is put together. We now give an 
illustration of how this happens. 

Suppose you are at the point in your study of arithmetic 
where you know how to add whole numbers but not how to 
multiply them. Suppose you say, "I now want to define a new 
way of combining whole numbers which I will call multiplica­
tion. I want the property of 0 to hold, and I want I to be the 
identity for this multiplication. I also want the distributive 
property to hold." \Vllat happens? 

Well, you have a x 0 =0 and 0 xa=0 
You also have a x I = a and I x a = a 
And you have the distributive p'operty: 

(a x b) -I (a x I) a x (b -- c) 
But you actually have a great 6eal more.
 

For instance, suppose you wanted to find 2 
 x 2. Remember 
no one has ever told you the answer. Can you do it? The sur­
prising answer is that you can. As follows. First use the distribu­
tive property to write 

2 x 2 2 < (1 -1- 1) 
=(2 x ) +(2 x 1) 

Now use the fact that I is the identity for multiplication to get 

(2 x 1) - (2 x 1) = 2 -- 2 
Finally, since you know how to add you know that 2 + 2 - 4. 
Thus 2 x 2 must equal 4. The properties of multiplication give 
you no choice. 

In much the same way you can use the distributive property 
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to show that all whole number products are just what you teach 
children they are. There is no other possible answer. The 
structure of your arithmetic makes it so. 

We give one more example: Find 2 x 3. 

Here we write 2 x3 =2 x (2 + 1) 
=(2 x 2) + (2 x 1) 

4 + 2 
-6 

Notice how this was done. We first wrote 3 as 2 + I. We then 
used the distributive property. Next we used the fact that 
2 x 2 = 4 and the property of 1 to compute the products 
2 x 2 and 2 x 1. Finally we added 4 and 2 to get the answer 6. 

ExERcIsE 13-8 
1. Use the method of this section to compute the following 

products. You may assume that you know all the products 
up to 5 x 5. 
a. 7x6 b. 9x8 
c. 9x9 d. 8x7 
e. 6 x10 E. 11 xll 
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DIVISION 

In this chapter we introduce division, the last of the four 
basic operations of arithmetic. Since children often have more 
trouble learning division than learning addition, subtraction 
or multiplication we shall discuss several different ways of 
teaching it. All of them are useflul in the classroom and it is a 
good idea to be familiar with each. 

14-1 The meaning of division 

In the last two chapters we learned how multiplication is 
defined and what some of its properties are. We also learned how 
to solve multiplication problcms. Such a problem always in­
volves an equation of the form 

a xb= -­
where a and b are whole numbers. For instance, the problem of 
finding how many oranges are needed if we wish to give 6 
children 2 oranges each can be written as a multiplication 
equation 

6x2=D] 
The solution of this equation-that is, the number which must 
be put in the box to give a true sentence-is 12 since 6 x 2 =12. 
Remember that 12 is said to be the product of 6 and 2, and that 
6 and 2 ar, calledfactors of' 12. Besides 2 and 6, the number 12 
has four other factors. Can you name them? 

In everyday life we often encounter multiplication problems
where the product and one of the fhctors are known, and we are 
asked to find the missing factor. For example, suppose there are 
6 children and 12 oranges, and we are asked to find the number 
of oranges that can be given to each child if the oranges are 
shared equally among the children. In this case the problem 
can be described by the equation 

6 x n = 12 

147 
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Thus to solve this problem we must find the missingfactor in a 
multiplication equation. The missing factor is the number 
which makes the above equation a true sentence. (Can you 
write another equation which also describes this problem? 
Why is your second equation really the same as the one written 
above it?) 

Problems which involve finding a missing factor in a multi­
plication equation are callcd1 DIVISION PROBLEMS. Thus
 
when we find the missing factor in 6 x [ = 12 we say that 
WC DIVIDE 12 by 6. We then write 12 -6 which, as you 
know, is read "twelve divided by six". Hence there are two 
different ways of writing the equation which describes the pro­
blem of sharing 12 oranges amnong 6 children: 

6 >, [- 12 
[ ..12 6
 

Both of these equationssay the same thing. The same number makes
 
each of themn a true sentence. The first equation is written in
 
terms ofr multiplication in which case we say that we must find
 
tile missing factor. ie second equation is written in terms of
 
division inwhich case we say that we must find the quotient.
 
The number 2 makes both o"these equations true. Thus 2 is die
 
missing fhctor in6 [- r= 12, and is the quotient of 12 - 6.
 

ExI.ucisi 1-I 
1.Write each of the following as a division equation and then
 

li l the quotient.
 
a. 	 , x5l45 x3 =275-] 	 b. [ 
c. 	6 x [ =5-1. d. 7 x [7 =-84 
e. 	 9 x [ =36 

2. 	 Is the equation 0 = 0 - [ an identity for all counting 
numbers? Why? 

3. 	 Is the equation [ ] [ --1 an identity for all whole 
numbers? Why? 

4. 	 For what whole numbers is [ 66 - 0 true? Why? 
5. 	 There are two division equations which correspond to tile 

multiplication equation 4 x:7 - 28. What are they? 
6. 	 Find all the fiactors of 24, and write two division equations 

for each pair of factors whose product is 2-4. 
7. 	 Write a multiplication and a division equation for the fol­
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lowing problem and then solve the problem: Three times a 
certain number is 18. What is the number? 

8. 	What number when divided by 5 and then multiplied by 3 
gives 6? Write an equation which describes this problem. 

9. 	What number when divided by 3 three times in succession 
gives 2? 

14-2 Division as separating a set into subsets 
When we solve an equation such as F] = 24 4 we say 

that we divide 24 by 4. But why do we use the word "divide;" 
here? To answer this question we must go back to the definition 
of' multiplication as the union of disjoint sets each containing 
the same number of elements. In particular, for the division 
equation [- = 24 -, 4. 

we must consider the corresponding multiplication equation 

4 x D = 24 
What does this equation say in terms of' sets? Two interpreta­
tions are possible. 

I. We are given 4 disjoint sets each containing the same 
number of elements; i.e. 4 equivalent disjoint sets. How many 
elements must be in each set in order that their union contains 
24 elements? 

This problem can be represented by a picture of the follow­
ing type: 

4 equivalent disjoint sets
 
24 elements in all
 

How many elements in each set?
 
One way to solve this problem is to take a set containing 24 
elemen, say a set of' 24 stones, and then separate or divide 
the set into 4 subsets each containing the same number of 
stones. Vhen this is done the answer can be found by counting 
the number ofstonzs in any one ofthe subsets. As you know, each 
subset will contain 6 stones. Thus our picture will look like this: 
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24 elements in all
 
4 equivalent disjoint subsets
 

6 elements in each subsct
 
Notice how the problem- was solved. We divided the large set
@ @ @ @

into equivalent disjoint subsets. This explains why the word 
"'division" is used when talking about a problem such as@ @ @ @

DI =24 -4 
II. The second method for solving the problem El 24 ±4 

goes as followvs. Start with a set containing 24 elements. Divide@L@ @@
the set into as many 4-c-lement Subsets as possible and count the; 
nlumb~er of subsets obtained. The answrr, of course, is 6, just as@L@ @ J
before, but this time the pecture which showvs the solution looks 
like this:@ 

24 elements in all
 
4 elements in each subset
 

6 equivalent disjoint subsets
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When you teach division to children you should draw pic­

tures like those above and explain what the pictures say. It is 
also a good idea to let children work with sets of stones (or 
similar objects) in the classroom, using both of the above 
methods to solve division problems. As they practise they will 
learn the meaning of division and the way it is related to 
multiplication. 

EXERCISE 14-2 
Write the division equation which is suggested by each of the 
following pictures. Then draw a second picture which also 
describes the equation. 
1. 2. 

A A 
AA 

3. 4. 

[a12 

14-3 Division as repeated subtraction 

We know that multiplication can be viewed as repeated 
addition. Thus 4 x 6 is the same as 6 + 6 + 6 + 6. Since 
the division problem 24 6 = [ is exactly the same as the 
multiplication problem [ x 6 = 24, this problem asks us to 
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find the number of sixes that must be added to give 24. If we did 
not know that 4.sixes added together give 24 we could find the 
answer by adding sixes until we reach 24. Thus 6 + 6 = 12, 
6 d- 6 + 6 = 18, 6 +6 + 6 + 6 =24, and the answer is 4. 

Instead of solving this problem by adding sixes until we reach 
24 we could start with 24 and subtract sixes until we reach 0. 
This time we have 

24 - 6 18 
18 - 6 12 
12-6= 6 
6-6= 0 

4 sixes subtracted from 24 give 0. But since subtraction is the in­
verse of addition this says that the sum of' 4 sixes is 24. In 
other words 4 x 6 = 24, or 24 - 6 = 4. 

The method of repeated subtraction can always be used to 
solve division pioblems. For example, to divide 15 by 3 your 
pupils can write 

15 -- 3 = 12 
12 -3- 9 
9-3= 6 
6-3= 3 
3-3= 0 

It took five subtractions to reach 0. Thus 15 - 3 = 5. 
The method of repeated subtraction can be illustrated very 

clearly on the number line. Thus to show the solution of the 
preceding problem on the number line we start at 15 and move 
3 units to the left each time until we reach 0. 'Weget the fbi­
lowing picture: 

3 3 3 3 3 

0 5 10 15 
The picture shows that the quotient of 15 divided by 3 is 5. 

EXERcIsE 14-3 
1.Use the method of repeated subtraction to solve each of the 

following division problems: 
a. [] =26 13 b. =21 7 
c. [- = 42±6 d.D =64+8 
e. R =5,1 f. [ =0,3 
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2. Illustrate each of the above problems on the number line. 
3. Solve the following problem by the method of repeated

subtraction and illustrate the solution on the number line. 
Kofi had 10 shillings and spent 2 every day. How many 
days did his money last? 

14-4 Remainders 

Suppose we try to divide 14 by 3 using the method ofrepeated 
subtraction. We have 

14-3 = 11 
11 -3 =8 
8 -3 =5 
5 -3 =2 

But this is as far as we can go since we cannot subtract 3 from 
2 and get a whole number. We can only subtract 4 threes from 
14, and when that is dine we still have 2 left. For this reason 
we say that 2 is the remainder when 14 is divided by 3. Some­
times we also say that 14 divided by 3 is 4 plus a remainder of 
2. By this we mean that 14 = (4 x 3) + 2. 

Division problems involving remainders can be presented to 
your pupils in many ways. For instance, you might ask your
pupils to arrange a set of 29 stones in rows of 8. When they try
they will find that they cannot do it. They will be able to form 
3 rows of 8 but there will be 5 stones left over. Thus a set 
containing 29 elements can be divided into 3 subsets of 8 and
 
a subset of 5. We can express this by writing
 

29 = (3 x 8) + 5 

The number 5 is the remainder when 29 is divided by 8. 
In problems of this type we speak of division with a re­

mainder since there is no whole number quotient. In general,
if there is no whole number which will make the equation 
a + b = [ true we have a division problem with a remainder. 
In this case we say that a is not divisible by b. If, on the other hand,
there is such a number, we say that a is divisible by b. In that 
case we also say that b divides into a, or that b is a divisor of a. 
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EXERCISE 14-4 
1. 	If possible, find the whole number solution for the following 

division equations. When the division is not possible find the 
remainder. 
a. 	48 8 = E] b. 65 9 =­
c.	 4 7+6=- d. 63 9 =­
e. 	63+8= f.42 4=F 

2. 	 Find all divisors of each of the following numbers: 
a. 	12 b. 23 c. 28 
d. 36 	 e. 17 f. 100 
g. 	1 h. 0 

3. 	 Bankole has 30 shillings with which to buy petrol. How 
many gallons can he buy if petrol costs 4 shillings a gallon? 
How many shillings will he have left? 

4. 	 A number is divided by 12. The quotient is 6 and the re­
mainder is 3. What is the number? 

5. 	Solve each of the followng equations: 
a. 	14=(3 x4)+[-] b.E] =(4 x8)+2 
c. 	41 =(D x8) --1 d. 54=(12 x --) +6 
e. 	49 =(7 x7)+[] f. 38 = (n x D) +2 

14-5 Pf>vision by zero 

Suppose you were asked to solve the division problem 
2 - 0 = -.What would you do? You would write the cor­
responding multiplication equation 

-]x0 =2 
and try to find a number which makes this equation a true 
sentence. But when we studied multiplication we saw that 

a x0=0 

for every whole number a. Thus there is no whole number which 
will make the equation [] x 0 = 2 true. This shows that the 
division problem 2 + 0 = [ has no solution. In other words 
we cannot divide 2 by zero. 

The same thing happens if we try to solve any division 
equation of the form a - 0 = l where a is a counting number; 
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i.e. a is one of the numbers 1, 2, 3, 4,. Here the corres­
ponding multiplication equation is E] x 0 = a, and since 
LI x 0 is always equal to 0 this equation has no solution if a
is different from 0. Thus we cannot divide any counting number by 
zero. 

Finally, we ask what happens when a = 0. In other words, 
can we solve the division equation 

0+0 =-R?
 
This time the corresponding multiplication equation is
 

[] xo=o 
But this equation is an identity. It is true for all whole numbers. 
Hence we cannot say that the division equation 0 + 0 = L1 
has a solution in the sense that there is a single whole number 
which makes the corresponding multiplication equation true. 
Since we do not want a division problem to have more than 
one answer we are forced to say that 0 - 0 has no meaning.

Putting all of this together we have the following important 
rule: 

DIVISION BY ZERO IS IMPOSSIBLE 

When you teach division you should make certain that your

pupils understand this. For if they do not they will always have
 
trouble with division.
 

14-6 Division as the inverse of multiplication 

We have seen that thc division equation a , b = FI says
the same thing as the multiplication equation a = b x E-. 
By this we mean that if there is a whole number which makes 
one of these equations a true sentence then the wholesame 
number will make the other equation a true sentence. Thus, for 
example, each equation in the following pairs says the same 
thing: 

{26±2=U- 11 =r­{3326 =2 x ] f33 =11 x [ 

In the first pair the number 13 makes both equations true; in 
the second the number 3 makes both true. Pairs of equations 
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such as these show how multiplication and division are related. 
For instance, consider the pair 

26 = 2 x 13 
26 +2 = 13 

The first of these equations tells us that the union of 2 disjoint 
sets of 13 elements each contains 26 elements. The second 
equation tells us that if we divide a set containing 26 elements 
into 2 disjoint subsets each subset will contain 13 elements. 
Together these equations show that if we multiply 13 by 2 and 
then divide the product by 2 we get 13 back again. In other 
words 

(13 x 2) -2 =13 

The same thing happens for any other pair of whole numbers as 
long as the second number is not zero. Thus 11 x 3 =33 and 
33 -- 3 = II together give 

(11 x 3) +3 =11 

Here we multiplied 11 by 3 and then divided by 3. The result 
was the number we started with, 11. In general we have the 
following fact: 

If a and b are u';iole numbers and b is different front zero, then 
(a x b) + 1) a. 

(Why must we say that b is different from zero here?) This 
equation tells us that division undoes the work of multiplica­
tion. Mathematicians express this fact by saying that division 
is the INVERSE of multiplication. 

The same thing happens if we divide first and then multiply. 
For instance, 

63 -- 9 =7 and 7 x 9 =63 
Thus (63 -- 9) x 9 = 63 

Here we began by dividing 63 by 9. We then multiplied the 
quotient by 9 and got 63 back again. In general we can make 
the following statement: 

Let a and b be whole nvInbers and suppose that a is divisible by b. 
Then {a - b) "< b = a. 
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Mathematicians describe this fact by saying that multiplication 
is the INVERSE of division. 

14-7 Factors and prime numbers 

The number 30 is the product of the two factors 5 and 6, i.e. 
5 x 6 = 30. But 6 itself is the product of 3 and 2 so that 

30 = 5 x 3 x 2 

None of the numbers 5, 3 or 2 is the product of two whole 
numbers (other than 1 and itself). You may recall that such 
numbers are said to be prime numbers. Specifically, a whole 
number is said to be prime if it is greater than I and has only I 
and itself as factors. Thus we have displayed 30 as a product of 
prime factors. 

Can we do this with every whole number greater than 1P 
The answer is yes. We just continue to write each factor of the 
number as a product of its factors until we cannot continue any 
further. 

EXERICSE 14-7 

Write each of the following numbers as a product of prime
 
iactors:
 

1. 36 2. 29 3. 8 4. 100 
5. 91 6. 64 7. 60 8. 500 
9. 3,000 10. 102 

14-8 Greatest common factors 

A whole number a is said to be a divisor orfactor of a whole 
number b if b + a is a whole number. Thus, for example, 2 is a 
factor of 6 because 6 - 2 = 3. Similarly, 5 is a factor of 20 
because 20 5 = 4. 

Consider the numbers 6 and 8. Since both of these numbers 
are even, 2 is a factor of each of them. We therefore say that 2 
is a common factor of 6 and 8. Similarly 3 is a common factor of 
12 and 15, since 12 and 15 are both divisible by 3. In general, 
the whole number a is said to be a COMMON FACTOR of the 

IC I-M 
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whole numbers b and c if a divides into b and a divides into c. 
Other examples of common factors are 

1 31-a common factor of 2 anc
4-a common factor of 12 and 16
6 -a common factor of 18 and 42 
7-a common factor of 28 and 98 

Notice that every pair of whole numbers has at least one com­
mon factor. That factor is 1, since every whole number is 
divisible by 1. 

Now consider the numbers 18 and 42. What are their 
common factors? As we have just siid, I is a common factor.
So is 2, because both numbers are even. Moreover, 3 and 6 
arc also common fiactors of 18 and 42. However, no number 
larger than 6 is a common factor. Thus the complete list of 
common factors of 18 and 42 is 1, 2, 3, 6. The largest number on
this list is 6. For this reason 6 is called the greatest common 

factor of 18 and 42. 
In general, if a is the largest common factor of the whole

numbers b and c, a is called the GREATEST COMMON FACTOR 
of b and c. For example: 

1 is the greatest common factor of 5 and 9 
4 is the greatest common factor of 8 and 12 
8 is the greatest common factor of 16 and 24 

14 is the greatest common factor of 28 and 98 
The easiest way to find the greatest common factor of two
whole numbers is to write each number as a product of prime
numbers as you did in the exercises at the end of the last section. 
Then find all of the prime factors which are common to both
numbers. The product of these factors then will be the greatest 
common factor of the two numoers. Can you explain why this 
is true? 

For example, to find the greatest common factor of 28 and
98 we write 28 and 98 as products of prime numbers: 

28 = 2 x 2 x 7 
98 =2 x 7 x 7 

Thus 2, 7 nnd 2 x 7 = 14 are the only common factors of 28 
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and 98 other than I. Therefore the greatest common factor of 
these numbers is 14. 

Similarly, sihcc 

300 = 2 x 2 x 3 x 3 x 5 x 5 
and 924 = 2 x 2 x 3 x 7 x 11 

we see that 1, 2, 3, 2 x2=4,2 x3=6 and 2 x2 ×3=12 are the 
only common factors of 300 and 924. Hence the greatest 
common factor of 300 and 924 is 12. 

EXERCISE 14-8 
Find all common factors of each of the following pairs of 
numbers. 

1. 6, 15 2. 12, 42 
3. 40, 120 4. 0, 12 
5. 99, 126 6. 84, 980 
7. 637, 434 8. 42, 715 
9. 275, 374 10. 60, 540 



Chapter 15 

A SUMMARY OF WHOLE NUMBER
 
ARITHMETIC
 

15-1 The whole numbers; natural order 
Arithmetic begins by constructing the set of whole numbers 

{, 1, 2, 3,...}. The three clots used here indicate that this list 
goes on and on without end and tell us that the set of whole 
numbers is infinite. 

We have seen that the whole nunbers can be put in natural 
order. The first number in this order is 0. Next comes 1, then 2, 3,
4, and so on. This is the order which is Ilmiliar to everyone,
and was used when we wrote {0, 1, 2, 3, ... }. Given two whole 
numbers, such as 7 and 5, the one that appears first in the list 
0, 1, 2, 3, . . ., is said to be less than the one that appears second. 
In the case of 7 and 5, 5 comes first and is therefore less than 7. 
We express this by writing 5 < 7. We also say that 7 is greater
than 5, which we write as 7 > 5. The most important property
of the natural ordering of the set of whole nurmbers is tile 
following one. 

If a and b are an), two whole numbe s then one and only one of the 
following statements is true: 

a < b, a =b, a .---1 

The order properties of the set of whole numbers alsoare 
related to addition and multiplication. These relations are as 
fbllows: 

Let a and b be whole numbers and suppose that a < b. Then for aq), 

w'hole number c, 

a + c <b + c 

Moreover, if c is diferentfrom zero then 

a xc<b xc 
160 
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(Qyestion: What happeiis to the last statement when c = 0?)
 
For example since 5 < 7 we have
 

5 -:-4 7-4 and 5 .:4 < 7 x4 

Similarly since 23 < 36 we have 

23 -!-15 <36 + 15 and 23 x 15 <36 x 15 

Notice however that 23 x 0 = 36 x 0 even though 23 < 36. 
'[his is a consecIuence of the fact that a x 0 = 0 for all whole 
itinbers. 

15-2 Addition and multiplication 

Whole nui.mbers can be added and mitiplied. Thus if wc are 
given any two whole numbers a and b their stum a - b and 
producta - b are again whole numbers. Addition and multiplica­
tion have several special properties which we now list. 

I. The commutative ProPert,.The order in which two (c,more) 
whole numbers are added or multiplied does not affect the 
answer. For instance 

3 +8 =8+3 and 3 ×8=8 x3 

We describe this by saying that addition and multiplication of 
whole numbers are commutative. When put in general form by 
letting a and b stand for any two whole numbers these com­
mutative properties read 

a-b=b+a and a xb=b xa 

II. The associativeproperty. We have seen that when three whole 
numbers are added or multiplied the way in which the numbers 
are grouped does not affect the answer. For instance 

(2 -- 3) +5 =2 -4,.+5) and (2 x3) x5 =2 x (3 x5) 

We describe this by aying that addition and multiplication of 
whole numbers are associative. Using a, b and c to represent any 
three whole numbers these associative properties read 

(a-+b)+c=a-F(b +c) and (aI+b) xc=a x (b xc) 

III.The distributive propert,. Multiplication and addhion of 

http:Sumnmain.of
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whole numbers are related by a property known as the distribut­
iveproperty. In its general form this property states that ifa, b and 
c are whole numbers then 

a x (b + c) - (a x b) + (a x c)
 
For example, when a = 5, b = 4 and c 2 we have
 

5 x (4 -- 2) =(5 x 4.) + (5 x 2) 

Here it is casy to verify that the equation is correct since 

5 x (4 - 2) =5 x 6 30
 
and (5 x 4) + (5 x 2) = 20 - 10 = 30
 

The distributive property is often described more precisely
by saying that multiplicationis distributiveover addition. The reason 
for this is that distributivity does not work the other way around; 
addition is not distributive over multiplication. For if it were we 
would lave 

a + (b x c) =-(a -P b) x (a + c) 

for any three whole numbers a, b and c. But when a = I, b = 2 
and c = 3 we find that 

1 + (2 >'3) =1 +6 =7 
while (1 +2) x - 3) =3 x4= 12 

Hence the above equality fails.
 
However, it is pnssible to show that multiplication is distri­

butive over subtraction; i.e. that
 

a x (b - c) -- (a x b) - (a x c) 

(Of course, we must assume that b is at least as large as c here. 
Otherwise b - c would not be a whole number.) For instance, 
when a = 2, b =5, c =3, we have 

a x (b - c) =2 x (5- 3) = 2 x 2 =4 

and 

(a x b) - (a x c) =(2 x 5) -(2 x 3) = 10 - 6 = 4 

Thus 2 x (5-3) =(2 x5) -(2 x3) 
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Similarly 4 x (6 - 3) =- (4 x 6) - (4 x 3) 

because 4 x (6 -3) =4 x 3 = 12 

and (4 x6) -(4 x3) =24-12 = 12 

EXERCISE 15-2 
1. Is subtraction of whole numbers associative; i.e. is 

(a - b) - c = a - (b - c)
 

true for all whole numbers a, b, c?
 
2. Is subtraction of whole numbers commutative? 
3. Is division of whole numbers associative; i.e. is 

(a + b) . = a + (b + c) 

for all whole numbers a, b, c, for which these quotients are 
defined? [Hint: Try a = 8, b, = 4, c = 2.] 

15-3 The properties of 0 and 1 

The last of the basic properties of arithmetic for whole num­
bers concerns the numbers 0 and 1.They have all been discussed 
in earlier chapters and will just be listed here. 

First, 0 is the identib' for addition, and 1 is the identity for 
multiplication. This is another way of saying that 

a-+-0 =a and a x I =a 

for every whole number a. 
Second, if a is any whole number then 

a x0=0 

In other words the product of any whole nm-ber and 0 is 0. The 
converse of this statement is also true, and is also important. It 
says that if the product of two whole numbers is zero then at 
least one of the numbers must be zero. (Of course both of the 
numbers might be zero. The words "at least" allow for this 
possibility.) We can say this in symbols, as follows: 

Ifa x b = 0 then either a = 0, or b = 0, or both. 
Finally, as a consequence of the fact that a x 0 = 0 for all 

whole numbers a we conclude that division by zero is impossible. 
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PROCEDURES FOR ADDITION 
AND SUBTRACTION 

16-1 Basic addition facts and their consequences 

In our earlier work we considered tie meaning of addition as 
an operation on whole numbers. Two numbers were chosen and 
an operation was perfOrmed on them viicli gave a third whole 
number called thC suI of the tVo numbers. ThesSU II was defined 
in terms of an operation on sets. Do you remelcr what that 
operation was? Could you, 1br example, explain how the sum 
7 4-2 is defined by using sets? 

In our earlier work we also studied the properties of addition. 
For instance, we discovered that addition is commutative and 
associative; that is for all whole numbers a, b, c 

a --- =b -!-L and (a-+-b) -- c a-- (b-Ic) 

We also discovered that 0 is the identity for addition. By this 
we mean that for every whole number a 

a +-0 = a and 0 - a =a 

We shall use these properties throughout this chapter. 
Now that we have explained the meaning of addition and 

know what its basic properties are we shall cunsider how addi­
tion is performed. In other words we want to learn how to 
compute sums of whole numbers. As we shall see the procedures 
for adding whole numbers depend upon an understanding of 
how the number system is used to rename numbers, and also 
on the properties of -addition mentioned above. 

We have alrea.!y dealt with sums of whole numbers less than 
10. These sums are known as the basic additionfacts. Everyone 
must know them thoroughly before going on to sums of larger
numl)ers because thcse basic facts are used to find all other sums. 
For example, starting with the basic addition fact 5 + 3 = 8 

164 
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we find that 15 + 3 = 18. This follows from the associativity 
of addition since 

15 -+ 3 = (10 ± 5) -+ 3 
= 10 + (5 -+ 3) 
= 10 -+ 8 
=18 

Similarly 25 + 3 = 28, 35 -+ 3 = 38, and so on. Thus starting 
with the basic addition fact 5 -1-3 = 8 we obtain 

15 -1-3 18 
25 -1-3 28 
35 -1-3 38 

95 -1-3 = 98 

145 + 3 = 148 

It is important that children understand why we know all these 
sums as soon as we know that 5 - 3 = 8. Otherwise they will 
never learn how to add properly. 

In the same way, as soon as a child has mastered the basic 
fact 8 -1-6 = 14 he should also see that it implies 

18 - 6 = 24. 
28 + 6 = 34 

178 -- 6 = 184 

Here again these results follow from the associativity of addition. 
For instance, 

18 -F 6 = (10 -+ 8) -F 6 
= 10 ± (8 -F 6) 
= 10 ± 14 
- 10 -F (10 + 4) 

=(10 + 10) +4 
=20 +4 
= 24 

Of course, we do not want children to have to go through this 
chain of steps to conclude that 18 + 6 = 24. They should be 
able to say "18 -F 6 = 24" automatically, and need to be given 
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enough practice so that they can do so. However, if asked they 
ought to be able to say why 18 - 6 = 21; in other words they
should know how this result follows from the basic fact 8 + 6 
14 and the associativity of addition. 

These ideas are applied in working problems in column 
addition. For instance, consider the problera of finding the 
sum 

9 
9 

+6 

If a child solves this problem by adding downwards he must 
automatically know that 9 + 9 - 13 and that 18 -- 6 = 24t-. 
When doing the addition lie should think: "9, 18, 24". Although 
we did this example by adding dowvards, the direction is not 
important. The comnmutative and associative properties of 
addition tell us that we will get the same answer no matter 
which direction we use. When teaching column addition it is a 
good idea to get children to learn to add in both directions so 
that they can check their work. Encourage them to do problems 
of this kind twice, once in each direction, until they get the same 
answer both times. When they do, their answer will probably 
be correct. 

EXE.RCISE 16-1 
1. Use th, basic addition fact 7 + 8 = 15 to show that 

a. 37 + 8 = 45 
b. 97 -- 8 105 
c. 497 + 8 = 505 

2. We have seen that in base-five addition 
4 o +21,. = 1I,.
 

Use this basic addition fact to show that
 
a. 24flo + 2 11,.,= 3 l v 
b. 23411,,,- 211,( - 21nt,(, 
c. 4 4 1, 211,- 201nI,,, 
d. "144 fi,*o + 2n,, -= 50,001flv. 

[In solving this problem you may find it helpful to draw 
pictures on a base-five abacus.] 



Proceduresfor Addition and Subtraction 167 
16-2 Addition of multiples of 10 

Once cbildren have learned the basic addition facts and how 
to use them to find sums such as 15 + 3, 28 + 6, and so on, 
they are ready to start adding two-digit numbers. Herc it is 
best to begin with sums involving multiples of 10 such as 20 -+ 30 
70 + 50, etc. In teaching children how to find such sums you
will want to "evise the meaning of two-digit numbers. You 
should also make sure that they can count by tells with under­
standing. Finally they should know that 20 can be represented 
by 2 bundles of sticks with 10 sticks in each bundle, that 30 
can be represented by 3 bundles of sticks with 10 sticks in each 
bundle, and so forth. If they know this they know dhat 20 is 2 
tens, that 30 is 3 tens, etc. Using these ideas children will be 
able to discover for th iselves that 

2 bundles of' 10 -+ 3 bundles of 10 = 5 bundles of 10 
2 tens - 3 tens =5 tens 

20 + 30 = 50 

This problem should also be written in vertical form as 

2 tens 20 
+ 3 tens -P 30 

5 tens 50 

Notice that to solve such problems children must know the 
meaning of the numbers 20, 30, 40,... They must know that 

20 is the same as 2 tens 
30 is the same as 3 tens 
40 is the same as 4 tens 

and so on. 

16-3 Renaming numbers in the decimal system 

The next step in teaching addition is to find the sum of aiy 
two two-digit numbers. Once children have learned how to 
find such sums it is easy for them to go on to sums involving 
larger numbers and sums involving more than two numbers. 
And once they can handle such problems they have completed 
the task of learning how to add whole numbers. 
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In order to find sums of two-digit numbers your pupils will 
have to know how numbers are renamed on our number system.
In our earlier work we have seen that there are many ways of 
naming a whole number. For instance, 46 is also named as 
48 - 2, 4.7 - 1, 36 ± 10, 92 + 2, and so on. When working
addition problems two of these names are more useful than 
others. They are 

40 + 5 and 30 + 16 

In writing each of these names we have expressed 46 as (so
many) tens + (so many) ones. We say that we have renamed or 
regrouped the number 46. 

The same thing can be done for larger numbers. For example, 
376 may be written 

300 ± 70 + 6 

which means 3 hundreds + 7 tens + 6 ones 
But this number can also be written 

300 ± 60 + 16 

3 hundreds + 6 tens + 16 ones 

and 200 + 170 +6 

2 hundreds + 17 tens d- Gones 

Can you think of two other ways of renaming 376 which are 
similar to the ones given above? 

The representations of 46 and 376 given above show that our 
number system uses groupings by tens. In other words the base 
of our number system is ten. This system is called the decimal 
system from the Latin word "decem" meaning ten. 

In addition to representing numbers by bundles of sticks we 
can also use an abacus. The abacus is a particularly valuable 
teaching aid at this point because it shows how we rename the 
numbers on our number system when working addition and 
subtraction problems. As an example, the abacus on the left 
below shows 46 as 4 tens ± 6 ones while the abacus on the right 
shows 46 as 3 tens -1-16 ones. 
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Tens Ones Tens Ones 
Notice that there is a great difference between the represen­

tations of numbers on an abacus and the representations of 
numbers by bundles of sticks. With bundles of sticks we actually 
use 10 sticks tied togethcr to form I ten. Hence 3 bundles con­
taining 10 sticks each represent the number 30. Here it is 
possible for a child to count 1, 2, 3, . . ., 30, and actually see 30 
single sticks in these bundles. On the abacus, however, we do not 
usually have 30 rings. Instead, we just have 3 rings on the tens 
rod. The position of the rods on the abacus shows whether a ring
represents the number 1, or 10, or 10 x 10, and so on. For this 
reason the abacus gives a much better picture of our number 
system and the way it works than do bundles of sticks, 

EXERcISE 16-3 
1. 	Draw pictures which show each of the following numbers 

represented on an abacus in three different ways. 
a. 271 b. 502 c. 3,010 d. 2,000 

2. 	 Draw pictures which show each of the following numbers 
represented on a base-five abacus in three different ways. 

2 4 3 a. ., b. 441f, c. 4,002,1, d. 2 ,0 00fao 

16-4 Addition without regrouping 

in the work which follows we shall show the transition from the 
stage where a child does addition problems by using bundles of 
sticks to the stage where he uses an abacus and the position of 
rings on its rods. 
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Let us take as an example the problem of finding the sum of 
46 and 12. What is 46 -k12? Because you as a teacher have 
skill with the basic cperations of arithmetic you follow the 
systematic procedure we were all taught as children to get the 
answer 58.You know this procedure so well that you follow it 
automatically. Your work is mechanical. It requires very little 
thought. This is an advantage, of course, but when you teach 
children you must realize that the mechanical procecdure you use 
as an adult is the result of a long period ofdevelc)plment. It is the 
final stage in a carefully planned sequence in which the meaning 
of each step should be taught. As teachers we must always try to 
teach in such a way that children discover basic meanings and 
important relationships for themselves. If they do they will 
gain a much greater understanding of mathematics and its 
applications. Thus, in teaching children how to add 46 and 12 a 
particularly bad beginning would be to write 46 -I- 12 on the 
blackboard and then proceed to say: "6 - 2 = 8. Write .2 
under the 6 and 2. 4.+ I - 5. Write 5 under the 4 and 1.Thus 
the answer is 58." This is a poor way to begin teaching addition 
since it tells children wvhat to do but not wl, they do it. As 
teachers we must help children discover why certain procedures 
lead to correct answers. For only then will they be likely to 
remember what they learn. Thus we shall discuss the problem 
of finding 46 - 12 in detail, starting with the method children 
should use when theyfirst try to find such sums. From there we 
go on to an intermediate stage in the learning process, and then 
to the method we use as adults. 

Stage I. (An introduclor) stage in the learningprocess) 
At this stage 46 is represented by 4 bundles of 10 sticks each + 6 
loose sticks. We call the loose sticks ones. Similarly 12 is repre­
sented by 1 bundle of 10 sticks + 2 ones. Thus we have 6 + 2 = 
8 ones and 4 + 1 - 5 bundles of 10 sticks each. Altogether 
there are 50 -+ ' 58 sticks. Hence 46 + 12 =7 58. 

This solution can be recorded more briefly as follows: 

46 is renamed 40 + 6 
12 is renamed 10 - 2 

TOTAL 50 - 8 
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Thus 46 + 12 = 50 + 8, and since 50 + 8 = 58 we have 
46 + 12 = 58. 

Stage II. (An intermediatestage in learning) 
At this stage we use an abacus to find 46 + 12. We begin by
placing rings on the abacus to represent each addend separately 
as shown in the following picture: 

T12
 

46
, t
 

Now show the result of adding the ones, and the result of adding
the tens. The number then represented on the abacus is 5 tens 

+ 8 ones, or 58. Thus 46 + =12 58. 
This time the procedure leading to the solution can be

written down as follows: 

4 tens + 6 ones 
1 ten + 2 ones 

5 tens - 8 ones = 58 

The work described here as Stages I and II provides children 
with the kind of meaningful practice which is essential in learn­
ing addition. Once children have mastered these ideas they are 
ready for the final stage which is nothing more than a short 
form of writing this down. 

Stage III. (A final stage in learning) 
At this stage we write the problem and its solution together 
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without renaming any of the numbers. It looks like this: 

Tcns Ones 

4 6 
1 2 

TOTAL 5 8 

As we do the problem we now think in the following way: 

Ones: 6 d- 2 = 8. Write an 8 in the ones place.
 
Iens: 4 + 1 = 
5. Write a 5 in the tens place. 

Thus the answer is 58. 

Stage I with bundles of sticks is the most important stage in 
learning addition since it is based on the idea of forming unions 
of disjoint sets. And this, after all, is how addition is defined. 
The next two stages ac', just efficient ways of computing sums 
and recording the answcr.. Of course, all three stages are famil­
iar to us as teachers. However it is important that we lead 
children through each of them gradually so that they really 
understand how they arrive at the final stage. 

EXERCISE 16-4 
Write out the solution of each of the following problems in 
Stages I, II and III as in the text. 

2 4 3 d1. 14 +23 =[] 2. 32 -27 =[] 3. 154=[ 
4. 475 + 204 =] 5. 1,036 + 2,003 =r 

16-5 Addition with regrouping 

We now consider addition problems which require regroup­
ing in order to find the answer. The following problem is 
typical: 
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Problem 

Find the sum 35 + 27. 
This time the tlree stages in the solution go as follows: 

Stage I 

Using bundles of sticks we see that 
35 can be represented by 3 bundles of 10 -- 5 ones 
27 can be represented by 2 bundles of 10 -- 7 ones 

Altogether there are 5 bundles of 10 d- 12 loose sticks (ones). 
The 12 loose sticks can be combined to give 1 bundle of 10 + 2 
loose sticks. Thus there are 5 - 1 6 bundles of 10 + 2 loose 
sticks. This collection of sticks represents the number 62. Hence 
35 - 27 =62. 

Stage II 
Here the problem looks like this when recorded on an abacus: 

}27 

35 

From this picture we see that the solution is obtained as follows 

35 = 3 tens + 5 ones
 
27 = 2 tens + 7 ones
 

35 -9- 27 5 tens -+ 12 ones - 5 tens "- (1 ten "- 2 ones) 
-- (5 tens + 1 tcn) + 2 ones 
- 6 tens + 2 ones 
- 62 

Do you see the step where the associative property of addition 
was used? 

a C I-14 
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Stage III 
Again we record the problem and its solution together. We have 

Tens Ones 

3 
+2 

5 
7 

TOTAL 6 2 

When we do the problem this way we think as follows: 

Ones: 5 + 7 = 12. But 12 is 1 ten plus 2 ones. Write a 2 in 
the ones column and remember that 1 ten must be 
added to the tens column. (The best way to avoid 
mistakes is to begin the addition in the tens column 
with the 1 ten.) 

Tens: 1 + 3 -- 2 = 6. Write a 6 in the tens column. 
Thus 35 + 27 = 62. 

In the above example we had to regroup 10 ones 1 ten.as 
As you know it is sometimes necessary to regroup further using 

1 hundred in place of 10 tens 
1 thousand in place of 10 hundreds 

and so on. 

Example 

Solve the following problem: 

848 + 537 d- 192 = E] 

For such a problem Stage I is not worth considering since -,o 
one would go to the trouble of gathering such a large number 
of sticks, let alone counting them. Thus we start with the second 
stage where the problem and its solution can be recorded as 
follows: 
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848 = 8 hundreds + 4 tens + 8 ones 
537 = 5 hundreds + 3 tens + 7 ones 
192 = 1 hundred + 9 tens + 2 ones 

14 hundreds + 16 tens -- 17 ones 
= (10 hundreds d- 4 hundreds) + (10 tens + 6 tens) 

+ (1 ten + 7 ones) 
= 1 thousand ± (4 hundreds d-1 hundred) 

j- (6 tens - 1 ten) -+ 7 ones 
= 1 thousand -+ 5 hundreds + 7 tens + 7 ones 
= 1,577 

A somewhat easier way of writing all this is 

848 =800 	+ 40 + 8 
537 =500 	+30 + 7 
192 = 100 	± 90 + 2 

1,400 + 160 d- 17 = (1,000 + 400) + (100 + 60) 
-- (10 + 7) 

= 1,000 + (400 -F 100) 
+ (60 + 10) + 7 

= 1,000 + 500 + 70 + 7 
= 1,577 

Stage III 

Thous. Hund. Tens Ones 

8 
5 
1 

4 
3 
9 

8 
7 
2 

TOTAI,5 7 7 

As before, we think like this: 

Ones: 	 8 + 7 + 2 = 17. Write a 7 in the ones column 
and add I ten to the tens column. 

Tens: 1-4-4-3 + 9 =17. Write a 7 in the tens 
column and add 1 hundred to the hundreds 
column. 
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Hundreds: I + 8 + 5 + 1 ­ 15. Write a 5 in the hundreds 

column and a 1 in the thousands column.
 
Tie answer is 1,577.
 

EXERCISE 16-5 
Write out the solutions of cach of the following pro')lcms in 
Stages II and III as in the text. 
1. 36--29 - El 2. 65 -87= 
3. 123 -45 + 82 E] 4. 437 26 = 
5. 1,532 + 2,479 [] 6. 135 -9221 2- 644 D 

16-6 Addition in other bases 
To add numbers expressed in other bases we use exactly the 

same principles that are used to add numbers base ten (that
is, the decimal system). The only change is that the basicaddition 
facts are different in different bases. In the present section we
shall illustrate this by discussing addition of numbers expressed 
in base five.
 

For instance, suppose we wish to add 
 tl,.,, and 3n,.,. Using 
a base-five abacus we put four beads on the ones rod to repre­
sent 4.lvo. We then put three more beads on the ones rod to 
represent 3 11,.,. Our abacus then looks like this: 

a- }4five 

But whenever we have a group of five beads on any rod of a 

base-five abacus we remove them and put one bead on the 
next rod. When we do this in the present case we have the 
following situation: 

_ ( f 112fivo 
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Finally, since the number represented on this abacus is 12,,.,, 
we have 

4t,11!,- 31ve = 121,.. 

EXERCISE 16-6A 
Use the method described above to complete the following 
addition table for base five: 

+ 0 1 2 3 4 

00 3 

1 
2 

3 10 

4 12 

The above table gives all the basic additionfacts for numbers 
base five. 

We now use these facts to solve addition problems base five 
involving numbers having several digits. 

Example 
Solve tche following problem: 

321 1, 1221, = __! ,. 

Stage I 
We give the solution as it would appear on a base-five abacus. 
Ifnecessary you should draw a picture to illustrate the problem. 

3211,, = 3 twenty-fives -- 2 fives + I one 
122,,,! 1 twenty-five : 2 fives + 2 ones 

32 lj,, - 12211,, 4- twenty-fives ' fives -1-3 ones -- -14.3,1,., 

This solution can also be written in the fbllowing way: 
321l., = 3 0 011,, -!- I Ili,. 
122n,., = 10011,. -- 201,.o +t2j,.e 

3 2 1fl0v -!- 12 2 1\,, = '10 0fl,. -I-,10 11ve-P 311ve 4 4 3 f,. 
We now consider an example which requires regrouping. 
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Again you may find it helpful to draw a picture of an abacus 
as you work the problem.
Example 

Find the sum 432,1,,, + 4 14,,.,. 
Stage 11 
Hcrc we have 

4 0 04321,.o = nvo + 30l,,, + 2 fiio 
44t14"no = 4 0 0fl,,o + 0fivo + n,.o 

432fl o + 44411, = 1,30011,,, + 4 0fv,,o + I fi,. 
(1,0001H,. + 3 00f,,) + 4011,.o+ {lO, + Inv.) 
1,0 00fl,. + 3 00 ,.o+ (40t11v.+ 1011,!) + lIv. 
1,00011,. -H3001v. + 10011,. + In,. 
S1,000,.o +40011, + 1f,.o

=1401a. 

Finally, we show how the solution of this problem would 
proceed in Stage III. 

Stage III 

One hundred Twenty­
twenty-lives : fives Fives Ones 

4 3 2 
+ 4 1 4 

TOTAL 1 4 0 

Here the solution was obtained as follows: 
Ones: 2 + 4 = 11I,.. Write a 1 in the ones column and 

add 1fiN e to the fives column since IIl,. = Ifl.e + 1. 
Fives: I + 3 + I = 10 ,,,.. Write a 0 in the fives column 

and add 1 twenty-five to Lhe twenty-fives column. 
Twenty-fives: 1 + 4 + 4 = 141,. Write a 4 in the. 

twenty-fives column and a 1 in the one 
hundred and twenty-fives column. 

Thus the answer is 1,401,,,. . 
These examples illustrate how the procedure for finding 

sums is the same in base five as it is in base ten. In fact, it is 
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the same in every base since it only relies on the place value 
system for renaming numbers and the associative property of 
addition. In the following exercises we have given problems in 
base two and base seven to further illustrate this important 
fact. 

EXERCISE 16-6f 
1. Write out the solution of each of the following problems in 

Stages II and III as in the text. 
a. 	134 ,fl.o+ 3 10n,.o = flVO 
b. 	21 31vo 1-4 3411,., -n.ve
 

1 4 0 3 2 14 2
c. , nvo + n,o -nv 
d. 	21 In,, - 32411,, + 12 1nv [In.vo 
e. 	 321v, -- 2,002f,,° + 4 2 1flv.o -',e, 

2. 	 Complete the following table for addition base two. 

+ 011 
0 

3. 	Write out the solution of each of the following problems in 
Stages II and III as in the text. Use the addition table you 
constructed in Question 2 above for the basic addition 
facts. 
a. 	 1,001,wo +V 110tw,,11 -- two 
b. 	 ll,0l0t,.. + ll,0lO0t,, o D-two 
C. 	1,111 two + 1,l llt,o = -]two 

4. 	 Complete the bllowing table for addition base 7. 

+ 0 1 23 45 6 

0 

1 	 10 

2 

3 

4 10 

5 	 12 

6 	 15 
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5. Write out the solution of each of the following problems in 
Stages II and III as in the text. Use the addition table you

constructed in Question 4 above lbr the basic addition 
facts. 
a. 45,,.ve + 21.s,,,, = -D,,. 
b. 5,062... .-1,345,,, = . 
c. 521,,. - 3 64,,,, -F 142,v,,, = a,-,. 
d. 6,001.vw. - 666,.,.,, = -,,.,. 
e. 4,132 ,... - 1,354ev.. -F 2, 6 5 2 bp,.,j ---- - vD. 

16-7 Procedures for subtraction 

We have seen that the operation of subtraction is the inverse 
of addition. This means that a subtraction problem such as 

97 - 34 = ] 

is the same as the addition problem 

34 + R = 97 
The number which makes this last sentence true is called the 
missing addend. 

Since addition and subtraction are so closely related the 
procedure for working subtraction problems is similar to that 
used in addition problems. Again the essential step consists of 
using the place value system when necessary to rename or 
regroup numbers. The following examples illustrate this. As 
before we give solutions at three different stages, and begin
with a problem which does not require regrouping. 

Example 
Solve the subtraction problem 

97 - 34 = 

Stage I 
We begin by reprcsenting 97 by 9 bundles of 10 sticks each -!- 7 
loose sticks (ones). Then to show the result of subtracting 34 
from 97 we remove 4 loose sticks (ones) and 3 bundles of 10. 
This leaves 7 - 4 = 3 ones and 9 - 3 = 6 bundles of 10. 
Altogether there are 60 -- 3 = 63 sticks remaining, and it 
follows that 97 - 34 = 63. 

http:6,001.vw


181 Proceduresfor Addition and Subtaction 

This solution can be recorded more brictiy as follows: 

97 is represented by 9 bundles of 10 -- 7 ones 
34 is represented by 3 buadles of 10 t 4 ones 

97 - 34 is represented by (9 - 3) bundles of 10 .'- (7 - 4) 
ones 

6 bundles of 10 4 3 ones 
--63 

We can also write this result as 

97 90 ± 7 
- 34 =30+4 

97 -34 	 =(90 - 30) + (7 - 4) 
=60+3 
=63 

Stage II 
On -anabacus the problem 97 - 34 = [] is solved as follows. 
First represent 97 by placing 7 beads on the ones rod and 9 
beads on the tens rod as shown on the abacus to the left below. 
Now separate 4 ones from the 7 ones and 3 tens from the 9 
tens to show the result of subtractng 34 from 97. As you can 
see by the figure on the right the number now represented on the 
abacus is 63. Thus 97 - 34 = 63. 

1634 -97
-97 


-63
1 -1 

The solvtion shown here can be rccord,,:d in the following way: 

97 = 9 tens ± 7 ones
 
- 34 = 3 tens + 4 ones
 

97 - 34 	= (9 tens - 3 tens) + (7 ones - 4 ones) 
= 6 tens ± 3 ones 
=60 +3 
= 63 
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Finally. we pass to Stage III and write the solution in the 
standard way. 

Stage III 

Tens 

9! 
-3 

Ones 

7 
4 

TOTAL 6 3 

When we solve the problem this way we think as follows: 
Ones: 7 - 4 = 3. Write a 3 in the ones column. 
Tens: 9 - 3 = 6. Write a 6 in the tens column. 
Thus the answer is 63. 
The above example did not involve any regrouping. We now 

consider one which does. 
Example 

Solve the subtraction problem 

62 - 25 = LI 

Stage I 
If we start by representing 62 with 6 bundles of 10 + 2 ones 
and try to remove 2 bundles of 10 + 5 ones we find that we 
do not have enough loose sticks. Thus we must regroup. We 
do this by separating one bundle of 10 into 10 loose sticks. In 
other words we represent 62 by 5 bundles of 10 + 12 loose 
sticks. Wc now remove 2 bundles of 10 + 5 ones. This leaves 
3 bundle-. Jf 10 7 ones. Hence 62 - 25 = 37. 

Here the solution can be written as follows: 

62 = 50 + 12 
- 25 = 20 + 5 

62 - 25 (50 - 20) + (12 - 5) 
=30+7 
-37
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Stage H 
We begin by representing 62 on an abacus as shown below. 

We then try to remove 5 beads from the ones rod and 2 beads 
from the tens rod to show the result of subtracting 25 from 62. 
But there are not enough beads on the ones rod. Thus we 
regroup by removing one bead from the tens rod and placing
10 more beads on the ones rod. Our abacus now appears as 
shown on the left below, and the problem can be solved. The 
solution is pictured on the abacus to the right. 

}25 

50 + 12 2 
-62 

37 

This time the written solution goes like this: 

62 = 6 tens d- 2 ones 
25 = 2 tens + 5 ones 

Since there are more ones in 25 than in 62 we must regroup. 
Thus we write 

62 = 5 tens + 12 ones 
- 25 = 2 tens + 5 ones 

62 - 25 	= (5 tens - 2 tens) + (12 ones - 5 ones) 
= 3 tens + 7 tens 
=37 
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Strge III 

Tens Ones 

6 2 
-2 5 

TOTAL 	 3 

Here we think as follows: 
Ones: We must rewrite 62 so that we have more ones. Thus 

we mentally rename 62 as 5 tens plus 12 ones. Then 
12 - 5 = 7. Write a 7 in the ones column. 

Tens: 6-2 =3.
 
Thus the answer is 37.
 
Problems involving subtraction of numbers expressed in
 

other bases proceed in the same way. For instance, the 
problem 

23 442l,. - ,.
 
can be solved as follows:
 

421 ,. = 40 0flvo + 20fve + In.o 
= wve 120 j,-30 0 + fl,,0 
= 30 0 ,.0 + I 1011, + 1 n, 

Thus 

42111,. = 30011,.-!- 110 11,.,+ llfv 0 
- 234fiv, = 20 0flo + 3 0 ,, + 4flv 

(421n,. - 234-1,-,) 	 = 10 0 n,. + 3 0 tj,-. 2flvo 
= 13 2 f.o 

EXERCISE 16-7 

Write out the solution of each of the following problems in 
Stages II and III as in the text. 
1. 463 - 258 = 
2. 372 - 173 =[] 
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3. 	2,006 - 948 = []
 
4 3 2 1 1,23 4 ve
4. , n, -- = [nv 

5. 	3,042nvo - 2,144fl,= Eiire 
6. 	 110,1 two - 10lO1Ot = []to 
7. 	 10,0 0 1 to - 1,111 tw, =L two 
8. 	 6,435.e, I - 1,226seen Eleven 
9. 	2,003,.,, - 1,024 ce,.n =-loeven
 

3 00 2
 10. 3,00260,.u - , ,even El-even 



Chapter 17 

PROCEDURES FOR MULTIPLICATION 
AND DIVISION 

17-1 Introduction 

We have seen that multiplication of whole numbers can be 
thought of as repeated addition. Thus to find a product such 
as 4 x 3 we can replace the 4 x 3 by 3 d- 3 d- 3 + 3 and 
add. Since the sum of 4 threes is 12 we write 4 x 3 = 12. 
This method of finding products works well when the numbers 
are small. But when we come to larger numbers such as 
14 x 39 the method of repeated addition is too tedious. Thus 
we look for faster ways of doing multiplication. 

As teachers you know how products such as 14 x 39 are 
found. However, as with anything in mathematics, it is neces­
sary to k9w vwhy the method which you use actually works. 
This is the purpose of the present chapter: we shall show why 
the method which everyone uses for multiplication gives the 
correct answer. Once this has been done we will be able to do 
the same thing for division, since divisioa is the inverse of 
multiplication. 

17-2 Multiplication by multiples of 10 

Consider the following multiplication iproblem: 

8 x 10 =-R 

To solve this problem we think: 8 x 10 = 8 tens. But in our 
number system 8 tens is written as 80. Thus 8 x 10 = 80. 
Similarly 

9 x 10 = 9 tens = 90
 
13 x 10 - 13 tens = 130
 
26 x 10 = 26 tens = 260
 
95 x 10 - 95 tens = 950
 

and so on. Notice that in each case the answer is obtained by 
186 
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writing a single zero after the number which is being multiplied
by 10. This happens because we use the place value system to 
write numerals. 

The same reasoning can be used to find the product of two
whole numbers when one of the numbers is 100, 1,000, and so 
on. For instance. 

8 x 100 = 8 hundreds = 800 
8 x 1,000 = 8 thousands = 8,000 
8 x 10,000 = 8 ten thousands = 80,000 

Hcre too the answers were obtained by writing the correct 
number of zeros after the original number; two when we 
multiplied by 100, three when we multiplied by 1,000, four 
when we multiplied by 10,000. 

Using these results it is easy to compute products when one
of the factors is a multiple of 10 less than 100, oi a multiple of 
100 less than 1,000, etc. The following examples show how this 
is done: 

8 x 20 	=8 x (2 x 10) since 20 =2tens =2 x 10 
= (8 x 2) x 10 since multiplication of 
= 16 x 10 whole numbers is associative 
= 160 

It is important to observe how the associative property of 
multiplication was uscd here to get the answer. In exactly the 
same way we find that 

5 x 300 	 =5 x (3 x 100) 
= (5 x 3) x 100 
= 15 x 100 
= 1,500 

EXERCISE 17-2
 
Solve each of the following equations.
 
1. 235 	 x 10 ] 2. 48 x 480 
3. 100 	 x37 = D 4. [] x 730 =73,000 
5. x 	100 =2,100 6. 1,800 =n x200 
7. 92,000 = 100 x [ 8. 500 x 200 =LI 
9. 80 x 	n = 3,200 10. 8,100 = n x 90 
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11. a. Find cach of the following base-five products. 
x(i) 	4 f,.ol0f,.o 

(ii) 12flvo X 101,. 
(iii) 234,,,.,, x 1 ,,,, 
(iv) 3,,,,x 	100,,.,o

(v) 31,,,, x IO0,,.o 

(vi) 2 ,,,., x 1,000,,,o 
(vii) 1211,v, x 1,000,, 

b. 	Explain why tile same rule of adding zeros applies in 
base five when multiplying 101,, 100,,O, as applies, etc., 
in base ten when multiplying by 10, 100, etc. 

c. Do you think this result will hold in every base? XVhy? 

17-3 The general procedure for multiplication 

At the end of Chapter 13 we showed how tlic properties of 
addition and multiplication can be used to compute products. 
For instance, if we know that 2 x 2 = 4 and that 2 x 1 = 2 
we can find 2 x 3 as follows: 

2 x 3 2 x (2 + 1) 
= (2 x 2) --(2 x 1) 

4 + 2 
=6
 

lhe essential step here was provided by the distributive pro­
perty which allowed us to write 2 x (2-1-1) = (2 x 2) + (2 x 1).
rtis we were able to break the original problem down into 
simpler problems wlose answers were known. This is the 
method we are now going to uje to find products of numbers 
involving several digits. In using this method we shall assume 
that all products up to 9 x 9 are known. These products are 
called the basic multipllcation facts. They are the multiplication 
facts which children must learn thoroughly in order to multiply 
cfficiently. 

We begin with the following problen: 

7 x 56 = D-
To solve this problem we write 

7 x 56 	= 7 x (50 -- 6) 
= (7 x 50) ±-(7 x 6) 
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But since 7 x 5 = 35, we know that 7 x 50 = 350. Thus 

(7 x 50) + (7 x 6) =350 + 42 
= 392 

It now follows from the distributive property that 

7 x 56 = 392 
Notice how this problem was solved: we reduced it to a problem
involving addition, basic multiplication facts and the rule for 
multiplying by a multiple of 10. All 7nultiplication problems are 
solved in this way. Here are some further examples. 

Example 
Find the product 6 x 234 

6 x 234 = 6 x (200 -- 30 14) 
- (6 x 200) + (6 x 30) + (6 x 4) 

- 1,200 " 180 -24 
= 1,404 

You should be able to give reasons for each step in these com­
putations. 

Example 
Solve the equation 14 < 39 

Here both factors in the product have two digits. However,
the method introduced above still works. Indeed, by the dis­
tributive property we have 

14 "--39 14 x (30 -9) 
= (14 , 30) + (141 :: 9) 

To compute 14 :., 30 and 14 x 9 we again use the distributive 
property: 

14 :. 30 (10 -4) x 30 
-- (10 x 30) ± (4 x 30) 
-300 120 

420 
14 x 9 =(10 -4) .9 

(10 x 9) (4. x 9) 
90 - 36 
126 

Thus 14 x 39 -420 -:- 126 .- 5-6 
J11:1-0 
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Example 
Find the 	product 23 x 42 
23 x 42 	= 23 x (40 + 2)
 

= (23 x 40) + (23 x 2)
 
-- [(20 - 3) x 40] + [(20 + 3) x 2] 
= (20 x 49) ± (3 x 40) + (20 x 2) + (3 x 2) 
=-800 -- 120 + 40 + 6 
= 966 

Again you should be able to give reasons for each of the above 
steps. 

EXERCISE 	 17-3 
Use the method of this section to find each of the following 
products. 
1. 8 x 76 2. 59 x 7 3. 83 x6 
4. 26 x 	17 5. 67 x73 6. 45 x38 
7. 	 7 x 425 8. 26 x 308 9. 31 x 527 

10. 	 604 x 195 
11. 	 Here is the basic five multiplication table for all products 

up to 4,,( x 4fl,.o. (These are the basic multiplication facts 
for base-five arithmetic.) 

x 1 	 2 3 4 

1 1 2 3 4 

2 2 4 11 13 
33 11 14 22 
4 4 13 22 31 

Use the above table and the method of this section to find 
each of the following products: 

a. 3 flvo x 4'2fl.o b. 4 .,,, X 3 1ivo 
c. 21f,,, 	 X 30 j,, d. 411v, X 32., 
e. 3 04f o x 13,., 

17-4 The short form for multiplication 
In the last section we learned how to solve niultiplication

problems by using the distributive property and the basic 
multiplication facts. 
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However, as some of the problems at the end of the section 
showed, this method can be long and tedious if every step is 
completely written out. Thus we seek ways of shortening these 
computations. But before we begin we point out that the 
computations themselves will be exactly the same as before. 
The only changes will be in the way they are written out. 

Consider the problem of finding 7 x 56. We solved this 
problem in the last section by writing 

7 x 56 =7 x (50 -P6) 
=(7 x 50) + (7 x 6) 
= 350 ± 42 
= 392 

The first step in shortening these computations is to rewrite 
them in vertical form as follows: 

56 
x7 
42 (7 x 6) 

350 (7 x 50) 
392 

Notice that this arrangement eliminates two of the steps in the 
first computation. This was done by renaming 56 as 50 + 6 
and applying the distributive property automatically. 

We can do the same thing with products where both factors 
involve several digits. For instance, to find 29 x 36 we can 
write 

29 
x36 

54 (6 x 9) 
120 (6 x 20) 
270 (30 x 9) 
600 (30 x 20) 

1,044 

This time we thought of 29 as 20 + 9 and 36 as 30 + 6, and 
applied the distributive pvoperty. 

As you know, we can simplify these computations even 
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further. For example, we can find 7 x 56 in just two steps, as 
follows: 

Step 1. Since 7 x 6 = 42 we record a 2 in the ones column 
and remember 4 tens for the tens column. 

Step 2. Since 7 x 5 = 35, we have 35 + 4 = 39 in the tens 
column. Thus the answer is 392. 

When written out this solution now appears as 
56 
x7 
39-2
 

This method also works in general. For instance, to find 
29 x 36 we proceed as follows: 

Step 1. 6 x 9 = 54. Record a 4 in the ones column and 
remember 5 tens for the tens column. 

Step 2. Since 6 x 2 = 12 we have 12 + 5 = 17 in the tcns 
column. 

With this we have multiplied 29 by 6 and the problem is 
half solved. The computations look like this: 

29 
36 

174 
We now continue, multiplying 29 by 30 in two steps: 

Step 1. Since 3 x 9 = 27 we record a 7 in the tens column 
and remember 2 hundreds for the hundreds column. 

Step 2. Since 3 x 2 = 6 we have 6 + 2 = 8 in the hundreds 
column. Thus 29 x 30 = 870, and we have 

29 
:<36 
147 
87 

Finally we complete the solution by adding. We get 

29 
36 

174 
87 

1,044 
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EXERCISE 17-4 
Find each of the following products in two ways; first by the
method given at the beginning of this section, and second by
the method given at the end of the section. Use the multiplica­
tion table in the preceding set of exercises to solve tie problems 
in base five. 
1. 	46 x 72 2. 	 308 x 56 3. 97 x 201 
4. 	 316 x24 5. 708 x509 6. 199 x512
 

3 4
7. ,v, x 12,,.. 8. 2 14 n,.o x 31i,., 9. 4 02 ,.o x 43,,, 
14 2 10. ,,, x 314,, 

17-5 Division by the method of repeated subtraction 
Since multiplication can be viewed as 	repeated addition its

inverse, division, can be viewed as repeated subtraction. You 
should be sure you understand why this is true because it is the
idea behind the procedures for division which are taught in
school. We now show how these procedures are developed by
considering several examples.

For our first example we take the easy problem 

48 + 2 = F] 
To solve this problem we have to determine how many twos 
must be subtracted from 48 to reach 0. Since it would take a
long time to subtract the twos one at a time we use our know­
ledge of multiplication to 	shorten our work. For instance, we
know that 2 x 10 = 20, so that if we subtract 20 from 48 
we have actually subtracteu two 10 times. After doing this we
have 28 left. Thus we can subtract 10 twos again to get 8.
Finally since 2 x 4 = 8 we subtract 4 more twos to reach 0. 
Our work can be written down like this: 

No. of twos
 
48 subtracted
 

-20 10
 
28 

-20 10 
8
 

-8 4
 
0 24 total number of twos subtracted= 
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To find the quotient 48 2 we now add the number of twos 
that were subtracted from 48. Since this number is 24 we have 

48 + 2 = 24 
The work in solving this problem could have been shortened 

if we had noticed at the beginning that 2 x 20 = 40, and had 
subtracted 40 from 48. This gives 

No. of twos
 
48 subtracted
 

-40 20
 
8 

-8 4 
0 24 = total number of twos subtracted 

When we solve division problems this way we usually try to 
organize our work more efficiently. One way of doing this is as 
follows: 

2)418 

-40 20 
8 

-8 4 
0 4 

Here we wrote the number of twos subtracted to the right of 
each subtraction. We then added these numbers to obtain the 
quotient. Another way of organizing this work is to write the 
number of twos subtracted at each step above the 48. We then 
have 

20}1 
2)48 
-40 

8
-8 

0 

Finally, we can shorten this process one more step by making 
use of the place value system. We agree that the places directly 
above the digits in 48 will have the same place value as they 
have in the number 48. Thus the place above the 4 is the tens 
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place and the place above the 8 is the ones place. Then instead 
of writing 20 above the 48 we just write a 2 in the tens place
above the 4. When we do this we get the familiar pattern 

24 
2)4.8
 

-40
 
8
 

-8
 
0
 

As our second example we consider the problem
 

960 + 30 = [] 
A pupil just learning division might use the fact that 
10 x 30 = 300 to solve this problem in the following way: 

No. of thirties subtracted 
960 10 

-300
 
660 10
 

-300
 
360 10
 

-300
 
60 2
 

- 60
 
0 32 = total number of 

thirties subtracted 
There is absolutely nothing wrong with this solution. Howevur, 
it is longer than it need to be. If the pupil happened to notice 
that since 3 x 3 = 9, 30 x 30 = 900 he could have got the 
answer much faster. For then he could write 

No. of thirties subtracted 
960 30
 

-900
 
60
 

-60 2
 
0 32 = total number of 

thirties subtracted. 
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When you teach division to children you should not expect 
them to begin by solving problems in the fewest steps possible. 
At first they will be cautious and take many steps. This is 
actually good since it helps them to learn that division can be 
considered as repeated subtraction. But as they continue work­
ing problems they will become more confident and get answers 
faster. Only when this happens should they be made to organize 
their work in the short form using the fewest number of steps. 
For instance, the pupil who solves 960 + 30 ED by writing 

960 
-900 30 

60 
-60 2 

0 32 

is ready to put his work in the form 

30} 
30)960 

-900 
60 

-60 
0 

Once he completely understands this method he can go on to 
the final form 

32 
30)960 

-900 
60 

-60 
0 

EXERCISE 17-5 
Solve each of the following division problems by the method of 
repeated subtraction. Then write the solution in the short form 
using the fewest steps possible. 
1. 273 +3 2. 445 -5 3. 644±7 
4. 840 ±20 5. 50,250 + 50 6. 41,200 + 40 
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7. 	 12, 43 0 2 4 2 0 32 3 ,av + 4avo 8. v - 3 0nvo 9. , a,.e + 20n,, 
2 14 200 10. , awv+ 300n, 

17-6 	 Division by the method of repeated subtraction 
(continued) 

In the last section we used the method of repeated subtraction 
to solve easy division problems. We now illustrate how this 
method can be used to solve harder problems as well. 
Example 

Find the quotient 96,369 + 21. 
When solving problems like this a few mental computations 
can often save a great deal of work. Thus, ia the present case, 
if we 	notice that 21 x 4,000 = 84,000 while 21 x 5,000 = 
105,000 we can begin the solution by subtracting 21 x 4,000 
from 96,369. This gives 

21)05,369 
-84 000 4,000 

12,369 
Next we notice that 21 x500=10,500 while 21 x600=12,600. 
Since 12,369 is less than 12,600 but greater than 10,500 we now 
subtract 21 x 500 from 12,369. We then have 

21)96,369 
-84 000 4,000 

12 369 
-10500 500 

1 869 
Continuing in this way we obtain 

21)96,369 
-84000 4,000 

12 369 
-10 500 500 

1869 
-1680 80 

189 
- 189 9 

0 4,589 
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Thus the quotient is 4,589. When these computations are 
written using the short form they appear as follows: 

4 589 
21)96 369 

-84000 
12369 

-10 500 
1 869 

-1 680 
189 

-189 

0 
At tlis point it is a good idea to check the computations by 

multiplication. The above result says that 

96,369 - 21 = 4,589 

But since division is the inverse of multiplication this equality 
will be true if and only if 

96,369 = 4,589 x 21 

Thus to see if the answer is correct we simply multiply 4,589 
by 21. We get 

4 589 
x21 

4589 
91 78 
96,369 

Thus all is well. When you teach division you sho,'ld strongly 
encourage your pupils to check their answers this way. 

ExERcIsE 17-6 
Solve each of the following division problems and check the 
answers by multiplication. 

1. 6,528 +17 2. 60,974 +86 
3. 69,174 + 54 4. 74,672 + 359 
5. 351,203 - 73 
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Chapter 18 

INTRODUCTION TO FRACTIONS 

18-1 Introduction 

Every day each of us uses numbers which are not whole 
numbers. We talk about such things as 

(a) one-halfof a loaf of bread, 
(b) three-quartersof a pound of meat, 
(c) two-thirds of a cup of sugar. 

The words "one-half", "three-quarters", "two-thirds" are 
names of numbers. These numbers are called fractions. In this 
unit we shall learn what fractions are and how they are used in 
arithmetic. 

As you know, many pupils find fractions difficult to under­
stand. Often they can solve problems involving fractions only
by using complicated rules which they have memorized. Actu­
ally there is no need for this since the arithmetic of fractions 
can be explained just as clearly as the arithmetic of whole 
numbers. But to do so it is very important that pupils first 
become really familiar with the idea of a fraction. They must
understand what a fraction is, and what its properties are 
before they begin to add, subtract, multiply and divide fractions. 
Tius we shall spend the next two chapters discussing the ideas 
needed to understand fractions. Once this has been clone the 
arithmetic of fractions becomes quite easy. 

18-2 Names and symbols for fractions 
In English there are special names such as "one-half", "one­

third", and so on to describe parts of objects. Most primary
school children know some of these names. For instance, they
talk about one-half of a piece of sugar cane, or one-half of an 
orange, and know what this means. They realize that the word"one-half" refers to one part of an object that has been divided 
into two EQUAL parts. For them "one-half" means one of two 

200 
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equal parts, or, briefly, one of two. in the same way they may 
use the word "one-third" to speak about one part of an object
that has been divided into three equal parts, or, one of three. 
Before we go on to talk about the number concepts behind these 
names we take a closer look at the names themselves. 

We have said that the name "one-half" stands for the idea of 
choosing one of two equal parts. The following picture illustrates 
this idea: 

One of two 

One-half 

In the picture we have shown a iectangle divided into two 
equal parts, one of which has been chosen. The chosen part has 
been shaded. 

At this point we ask if there is an easy way of putting into 
symbols the idea represented by this picture. As you know, there 
is. We simply write the numerals I and 2, and separate them 
by a stroke. This gives . or 1/2. Both of these symbols are used 
since both make us think of the basic idea: one of two equal parts. 

To summarize:
 
\e think: one of two equal parts
 

We say: one-half 
We write: I. or 1/2 

Now suppose we think of an object divided into three equal 
parts. We then say that each part is one-third e the object, aud 
we write I. This time we have the following picture: 

One of three
 
One-third
 

.1 
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Continuing in this way we think of objects divided into 4 
equal parts, 5 equal parts, and so on. In the case of 

4 equal parts each part is called one-fourth 
5 ,, ,, ,, ,, ,, ,, one-fifth 
6 ,, ,, ,, ,, ,, ,, one-sixth 

We represent these names by the symbols .1,--, -, etc. Finally,
in speaking about one-fourth the special name one-quarter is 
sometimes used. 

We also want to be able to talk about chcosing more than 
one part of an object that has been divided into equal parts. 
For example, suppose a piece of sugar cane had been divided 
into two equal pieces to be shared between two children and 
then one of the children ate both pieces. He ate two-halves of the 
sugar cane. Thus when we choose two parts of an object that has 
been divided into two equal parts, we have chosen two-hahes of 
the object. We write this as -, and represent it by the picture 

Two of two
 
Two-halves
 

By using objects divided into more and more parts we can 
go on like this as long as we please. The following pictures 
show what happens: 

One of three Two of" three Three of three
 
One-third 'iwo-thirdv Three-thirds
 

One offour Two offour Three offour Four offour 
One-fourth Two-fourths Three-fourths Four-fourths 

I .3 4'4 4 4 
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18-3 Pictures that show fractions 

When children first learn about fractions the), should be 
shown many pictures. Here are some that you might use in your 
class. 

A cake is cut into 8 equal pieces and I take 5 of them. I have 
of the cake. 

N 

There are 4 girls and 1 boy. The boy goes away so . of the 
children have gone away. 

There is a set of 6 buffaloes. Some lions chase 2 away so that 
-of the buffaloes have gone away. 

There are 27 children in the class. One child is away so
 
of the class is absent. Yesterday no children were away so 

there were -- absent. 
Children can picture fractions for themselves by folding 

paper. One piece of paper can be folded to show 'Iand .and .-. 

In each picture below the shaded part is being folded along the 



204 Fractions 

dotted line to fit behind the unshaded part. First the whole is 
folded into 2 equal parts. 

Fold 
here 

Then the -! piece is folded again to show - of the whole piece. 

Fold
 
here
 

The piece is folded again to show I of the whole piece. 

Fold
 
here.
 

If you open the paper out again after each folding you can 
show that 

2 halves equal 1 whole 
4 fourths equal 1 whole 
8 eighths equal 1 whole 

In other words, 2 x ,, = z = IIt x =A 
4<-I- =A =1

8 x 8=;=l 

The picture looks like this: 

6,=1,1. 1, Iwhi
-111!8
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Notice how well these pictures illustrate the following general 
rule: 

1 n 
1 x - = 1 or- 1 

for any counting number i. In vords these equations say that 
.1if an object is divided into n equal parts so that each part is ­

of the whole, then all n parts together give us the entire object.
By folding pieces of paper and drawing pictures you can help 
pupils to discover this rule for themselves. It is important and 
will be used later wtvcn we discuss multiplication of fractions. 

It is also helpful i-r children to see that fractions can be 
shown by Lsing many different kinds of pictures. Here are some 
shapes to show various fi'actions. 

Pictures and paper are useful aids to understanding, but 
real objects such as sets of bottle tops, beans or berries are 
better still. Or you can cut up clay cakes or sugar cane to show 
tractions to your pupils. 

EXERCISE 18-3 

1. Shade each shape to show the fraction written by it. 
(a) 
32 

"I J 40 
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2. Draw pictures of sets to show the following fractions: 
a. 4 of 8 cranges b. 2.of 6 chickens c. -A.of 10 buns 

3. What part is shaded in each of these pictures? 

((b) 

h bI 
(e) 

.........
 

18-4 Names of fractions (continued) 

We have seen that the name "one-half" stands for one of two 
equal parts, and is written in symbols as J-. In the following
picture we have divided each of three bananas into two equal 
parts and have shaded one of these parts. Each shaded part is 
one-half of one banana. 

Suppose someone gave you all three shaded pieces. You 
would then have three half bananas, or simply, three-halves. 
Just as we use the symbol to represent one-half, and the symbol 

to represent two-halves, we use the symbol - to represent
three-halves. The number above the line tells how many halves 
you have. It is called the NUMERATOR. The number below 
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the line tells that there are two equal pieces in each whole 
object. It is called the DENOMINATOn, 

We can also represent the idea of choosing three-halves by a 
picture of the sort used in the first section of this chapter. This 
time, however, we start with two rectangles, both of the same 
size. Divide each into two equal parts so that each part is one­
half ofa whole rectangle. Now take three of these parts, as shown 
below, to get three-halves. 

Three-halves 

By using more and more rectangles, and shading more and 
more pieces we can represent four-halves, five-halves, and so on. 

Four-halves 

Fivc-halves 
A 

Fractions such as . , 4-,-w-° whose numerators are less than 
their denominators are called PROPER FRACTIONS because 
they are always less than 1 whole. Fractions such as -, A, .Io 
whose numerators are greater than their denominators are 
called I N1P R o P ER F R A CTIO NS because they are always greater 
than 1 whole. Actually there is nothing "improper" about them 
at all. However, since a single object cannot be divided into 
more than 2 halves, or more than 5 fifths, etc., people originally 
felt that such fractions were a little strange. But we have already 
seen that by dividing two or more objects into parts we can 
show improper fractions just as easily as proper ones. 
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Every improper fraction can be written another way. For in­
stance, the fraction - represents I whole plus one-half; that is, 

= I + . This is shortened by writing 1-1 in place of 1 + 4. 
In this form we speak of the MIXED -NUMBER or MIXED FORM 
of the fraction l- because it consists of a whole number and a 
proper fraction. Similarly -o can be written as the mixed
number I-. since 1 

EXERCISE 18-4 
1. 	Draw pictures that show each of the following fractions: 

a. 	A- L'. R c. 1-1 d. -Ik 

2. 	 Write each of the fractions in Question 1 as a mixed niumber, 

3. 	 Draw pictures that show each of the following mixed number;a,1- b. 2A- c. 1]- d. 3 ;, 

4. 	 Write each of the mixed numbers in Question 3 as an im­
proper fraction. 

18-5 Fractions and division 

In this section we shall show how fractions arise when we 
try to solve division prob)lems. If you think about it, this is not 
surprising. For, as we have seen, the idea behind fractions is 
related to the idea of separating or dividing objects into parts of 
equal size. 

We begin with the simple division problem 

6-2= F--

One way to solve this problem is to rewrite the equation as 

2x n-=6 

and then ask what number must be put in ti - box to get a true 
sentence. We do this so that the pupil who krows only about 
multiplication can find the answer. When Le rays that the 
answer is 3 because 2 x 3 =- 6, we tell him th it in finding this 
answer he has divided 6 by 2. We then writC tile equation 

6-2=3 
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and draw pictures to show the pupil what this means. One of 
the pictures we draw looks like this: 

This picture shows that if we remove elements two at a time from 
a set of 6 elements we will get 3 subsets of 2 elements each. Thus 
6-2-=3. 

In this example the problem had a whole number answer. 
But suppose we change the problem to read 

7+2= F
 
What do 
we do then? If the pupil now tries to solve the cor­
responding multiplication problem 

2 x -- = 7
 
he will quickly find that he cannot give 
 a whole number 
answer. For if he starts with a set containing 7 elements and 
begins removing them 2 at a time he will get the following 
picture: 

There are 3 sets of 2, and 1 element remains at the end. 
Children first learn about problems like this by using remain­

ders. They say 

7 - 2 = 3 remainder 1 
But when they do this they have not really solved the problem.
What they have done is to divide 6 by 2 to get 3 and then stop­
ped. The 1 was left undivided. Although there is nr thing wrong
with this it still does not tell what seven divided by two is. 

To bring the pupil to the point where he can solve this
problem completely we must get him to look at it differently.
As long as he keeps trying to remove whole objects 2 at a time 
from a set of 7 he will never be able to remove them all. Thus 
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he will never finish the problem. To help him change his point
of view it is a good idea to change the problem a little, as follows. 
Ask him to divide 7mangoes equally between himselfand another 
pupil, and tell you how many mangoes he gts. Now he is almost 
certain to produce the answer. He wil 'may, "I get 3 whole man­
goes and one-half a mango". He thinks of cutting the last mango
in half and giving himself one of the pieces. He does this 
because lie knows that mangoes can be cut in half. He didn't do 
it with the original problem 7 + 2 because no one had told him 
that whole numbers can be "cut in half". 

To help him, draw a picture like this: 

2 2 Z 22 2 2 

There ace 7 objects, and he is to get one-half of each. How 
many does he get? Seven halves. 

You can also draw the following picture: 

0 
One sct of 7 7 sets of 2-halves each 

This shows that to divide a set containing 7 elements into 2 
equal subsets we can remove halves two at a time. We get 7 sub­
sets of 2-halves each. Thus 7 , 2 = -. 

We now show this with equations. We begin with the division 
equation 

7+2=[--] 

and the corresponding multiplication equation 

2 xE]=7 
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This equation tells us to put a number in the box so that twice 
that number equals 7. Since we are multiplying by 2 we try to 
'ill the box with a certain number of halves. We can show this by 
writing the equation 

2 x A -halves = 7 
But when 7 objects are divided into halves we get 14 halves. 
Thus we can replace the 7 in this equation by 14-halves. This 
gives 

2 x A -halves 14-halves 

Our problem now looks like 

2 x A=14 
The only difference is that the A and the 14 now refer to halves. 
Since we must put 7 in the A to get a true sentence, we must 
put I in the box to make 2 x M = 7 a true sentence. This 
shows that 

7 +2= 

Notice that now there is no remainder because the division is 
complete. 

We have gone through this problem very slow]-, because you 
will have to go very slowly when you explain it to your pupils. 
You will also have to give many problems like this until you are 
sure the idea is understood. Here are a few more problems of 
this type. 

Problem 
8 pieces of candy are to be shared between 3 children. What 

is each child's share? 
This time the answer must be in thirds because there are 3 

children. The division equation is 

The corresponding multiplication equation is 

3 xD-1 =8 

We now write this equation in thirds as 

3 x A -thirds = 24-thirds. 
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To make this a true sentence we must put 8 in the triangle. 
This shows that [ = .-. Thus 

Each child gets - or 2" pieces of candy. 

Problem 
Kwcse has 12 crayons. How many children can get 5 crayons 

each? 
The equations are 

12+5=E'-M or 5XI-j=12 
5 x A-fifths = 12 

5 xlfififths 12
 
Thus 5 x j- = 12
 

and 12 - 5 = 2-

The question was, how many children can get 5 crayons each? 
The answer is .2-or 2- children. This is not a very realistic 
problem, and here the answer would be better with a remainder. 
Two children can have 5 crayons each and there will be 2 
crayons left over. This shows that it is better to use sharing 
problems to explain fractions when you first introduce them to 
children. You can cut up a cake or a banana but not a child. 

By now you will see the pattern that links the answer with 
the question. Here are some more examples ofdivision equations 

2+7 =A7 

8 5 
8--5=2 

100 - 101 -=00 

aIn general, if a and b are counting numbers, then a + b 

EXERCISE 18-5 
Solve the following division problems giving each answer in 2 
ways, as a fraction and as a mixed number. 

1. 72+7 2. 13+4 3. 96+6 
4. 147 24 5. 2,176 - 322 6. 625 - 10 
7. 83 + 83 8. 1,215 - 100 
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9. 	Give a word problem for 1 and 2 above. Make your 
problems realistic. 

10. 	 Explain why 1 + 3 = 
11. 	 Explain why 8 + 5 = 

Draw a picture to show the meaning of the following problems 
and write tie answer to each in words: 
12. 	 How many oranges will you receive if you share 13 oranges 

among yourself and 3 friends? 
13. 	 Kwese gives out 12 pencils to some children. How many 

children can have 5 pencils each? 

18-6 An Example 

We now consider another type of problen which leads to the 
idea of a fraction. This time the problem involves comparing 
the 	lengths of line segments. 

Suppose we are given the line segments shown below. We 
can imagine that these segments represent two sticks. 

A 

B 

Suppose someone tells us that segment B is I unit long, and then 
asks us to find the length of A. For instance, B could be a ruler 
1foot long, or a ruler I yard long. The unit oflength we use really 
does not matter. 

To solve the problem we must find the number of segments 
of length B that are needed to get A. Thus we start by laying 
13 off along A as many time as possible. The Ibllowving picture 
shows what happens: 

~A 

B B 	 B 

The picture shows that A is three times as long as B. Thus 

A =B -- B +B or A = 3B 
We say that A is 3 B-units long, or that the length of A is 3. 
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All this is simple enough as long as we can measure A exactly 
by laying B along A a certain number of times. But suppose this 
does not happen. Suppose, for instance, that A is the segment 
shown in the following picture: 

A 

B B 

Here A is longer than B, but shorter than 2B. We cannot 
measure A exactly by using units of length B. However, we can 
say that the length of A is between 1 and 2. This suggests that 
we try to measure A by using part of the B segment instead of all 
of it. But what part of B should we use? The first thing to try is 
to cut B into two equal parts, and use one of them to try to 
measure A. In other words we now try to use one-half of B as 
our unit of length. If you try this with the A segment shown 
above you will find that A can be measured exactly by laying 
one-half of B 3 times along A. 

A 

B B B 

Thus A is 3 times as long as 1B. In this case we say that the 
length of A is .. 

It is easy to give examples like this. For instance, in the follow­
ing picture A is shorter than B. R. is also longer than -11B. This 

A 
j I .­

time we cannot measure A exactly by using one-half ofB as our 
unit of length. We must divide B into more pieces-all of equal 
length -to have a smaller piece of B to measure with. We try 
dividing B into three equal pieces. Then each piece is one of' 
three equal parts of B, or one-thirdof B. Using one of these pieces 
A can be measured exactly by laying it two times along A: 

A 

-l -3B
B 
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ThusAis two imes as long as IB. We say that the length of A is . 

EXERCIs 18-6 
Measure each of the following segments in terms of 

B 
1. I 

2. I-. 

3. I 

4. I 

18-7 The Number Line 

Suppose you wanted to describe the location of point P on 
the number line shown below. 

P 
o 1 , 2 3I I I : 

P lies somewhere between 1 and 2. To locate P precisely we 
must measure the segment from 0 to P in terms of the unit 
segment from 0 to 1. But this is the very problem we considered 
a moment ago. To solve it we divide the segment from 0 to I 
into parts of equal length and use one of them to measure with. 
Suppose we take one-half of the segment from 0 tol. The follow­
ing picture shows what happens: 

P
0 1 2 3 

1 1 1 

2 2 2' 

We reach point P in three steps. Thus, exactly as before, we say 
that P is the point "three-halves", which we write -A.This tells 
us precisely where P is found on the number line. 

By using one-half of the unit segment from 0 to 1 this way we 
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can locate and name many new points on the numnber line. The 
following picture shows some of these points: 

0 L , 1 2 I 3! 4 5 I ­, 

:10 1 22 3 .6 	 8 102" 2 	 7 9 112 " 2 "2 " 1 " 

In each of the symbols , A, F .", etc., the number on top, the 
numerator, tells how many units of length one-half must be 
used to get to that point, starting from 0. For instance, -.Qis the 
point zero units of length -:I-from 0. This is just the point 0 again.
Thus Qis another name for 0. Notice that ' :-the samc puia as 
that 4 is the same point as 2, and so forth. Can you explain why 
this happens? 

If we now do the same thing, using one-third of the original
unit of length instead of one-half, we can locate and name still 
more points on the number line. This time our picture is 

0 I 1 [ 2 3 4 	 6<I : 1 III I t I t 5 ,: ' I,
0 36 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
3 	 .J 3 3 3 3 3 3 3 3 33 3 3 	 3 3 3 3' 3 3 3. 

Continuing in this way using one-fourth of the original unit, 
one-fifth, etc., we can locate and name more and more points 
on the number line. 

EXERCISE 18-7 
1. 	Draw the ninber line and mark the points friom 0 to 4. 

Divide your unit of length into fourths, and locate as many 
points as you can on your number line. 

2. 	 Show each of the fbllowing points on the number line you 
drew fbr Question I. 
a. 	 A l -- b. B>3. e. C 9k
d. 	D-I-2 

18-8 The number line (continued) 

We can use the numlber line to show two very important
properties of fractions. Draw a number line about 5 inches long
and let your unit of length be 4 inches. Mark the points 1,1,4 
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Your picture should look like this: 

o 	 1- 1 11
16 8 4 

Now draw another number line of the same length, but this 
time let 4 inches represent the distance fiom 0 to -r.Mark the
points -.)- -- - I. Each of these points is half way between 
0 and the last point marked on your number line. Thus your 
picture is 

( I i 	 I0 	 1 1 111 
-56 	128 64 32 16 

Now suppose you continued doing this. You find that you ca i 
keep on going as long as you wish. Every time you locate a point 
you can go on to locate another point. This new point is always 
half way between 0 and the last point you located. Notice that 
you never reach 0 this way. This shows that THERE ISNO 
SMALLEST FRACTION. Indeed if you are given any fraction 
different fiom zero you can always locate it on the number line 
and then find a smaller fraction by moving halfway to 0. 

Actually, we can say more than this. For suppose we are given 
aty two fractions. Locate them on the number line, and then 
find the point halfway between them. When this point is named 
it 	will give us a firaction between the two fi'actions we started 
with. Thus 

BETWEEN EVERY TWO FRACTIONS THERE IS 

ANOTHER FRACTION. 

In Chapter 20 you will learn how to find such a fraction. 
From this we see that the set of fractions is non-ending. There 

is no last element in the set, and between any two fractions there 
is a non-ending set of intermediate fractions. 

EXERCISE 18-8 

1. 	 Find three fractions smaller than Show these fractions 
on the number line. 

2. 	 Find five firactions which are different from 0 and smaller 
than 1. Show these fiactions on the number line. 

3. 	 Find five firactions between -1and 1.Show these fractions on 
the number line. 



218 	 Fractions 

18-9 Order properties 

When you learned about the number line earlier, you saw 
that it shows the whole numbers in their natural order, starting 
with 0. You saw that the statement 5 < 8 means 5 is to the left 
of 8 on the number line. Another reason why 5 is less than 8 is, 
of course, that a set of 5 things has fewer members than a set of 
8 things. 

You can do the same sort of thing with fractions. Look at the 
number line drawn below, where each unit piece is divided into 
three equal-sized parts, and the fractions are labelled 

0 1 2 
, I I i :o 1 3 4 5 6 7 A 
3 3 3 3 3 3 3 3 

From this you can say that I < ., because -ais to the left of 
on the line. Notice that I < -"can also be pictured in terms of 
sets. If a thing is divided into thirds, the set of I of those thirds 
has fewer members than the set of 2 of those thirds. 

In a similar way you can say that one fraction is greater than 
another. On the number line you can see that I > A, because ­

is to the right of -. Moreover, by looking at the number line, 
you can see that 5 is greater than 4 and less than J1, and thus 5 
lies between 4 and -a!-. 

EXERCISE 18-9 
In Questions 1, 2, 3 draw a number line using 2 inches as the 
unit of distance. 
1. 	Mark the points which represent A and 3, and then saywhich 

of the following statements is true: 

[Hint: Mark the line to show twelfths.] 

2. 	 Mark the points which represent -A-and ., and then say which 
of the following statements is true: 

S - -3- -2 

3. 	 Mark the points which represent ' and -I, and then put the 
correct sign in the box: 

EA 
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4. Which is greater 
a. 
c. 

1 or 3p
f or ?' 

b. Aor 
d. A.or .J­

e. -AV or 1 f. Io q
"1-6O or 1a 7' 

a a5. Let - and - be fractions with a difference from 0 and b < c.
b c 

Which of the following statements is true? 

a a a a a a 
b c b c b>c 

6. Explain how you could make a number line to demonstrate 
fractions in a classroom without a blackboard. 
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PROPERTIES OF FRACTIONS 

19-1 Equivalent fractions 
In the last chapter you probably noticed that there are 

different ways of writing the same fraction. We can show why 
this happens by looking at the number line. 

Consider the point P in the following picture: 

Po ,t1 

22 2 
2 _1 

P is halfway between 0 and 1. Therefore it is the point "one­
half" on the number line, and has been labelled 1. 

But P can be named in many other ways as well. For in­
stance, if we divide the segment from 0 to 1 into four equal parts 
and label the points starting at 0 we have the picture 

P
0 1 
0 1 3 4 
• 4 44 4 

This time P is the point "two-fourths". But P has not changed.
Only its name has changed. Thus "one-half" and "two­
fourths" are different names for the sane point on the number 
line. We describe this bv saying that and equivalent1 2-are 

fiactions. 
Our next picture shows that P can also be labelled 2: 

P
 
0
 
0 1 2 3 4 5 Q3 
6 6 6 U U 

This gives us three names for P: , . We say that theseW, 
three fractions are equivalent. 

If we continue like this, dividing the segment between 0 and 1 
220 
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into more and more pieces all of the same size, we can label 
-as-,- -, -P, and so on. There is no end to the list of fractions 

which name the point P. If we collect all these fractions 
together we get the sct 

2, A, A, 

All of' the fractions in this set name the same point on the 
number line. We therefore say that they are equivalentfractions. 

The folli,,ving -licturcsshow several of these fractions at once. 
Such pictures help children understand the idea behind 
equivalent fractions: 

0 1 

[Fourths ,4 4_4_44 

Eighths 8 8 8 

o 1 
1 2 3 45 (19 

alles 6 1 

TWelfs 1 2 3 4 5. 6 7 8 9 10 11 12 

1
, 

2_ 12 12 12 12 12 1., 12 12 12 12 12 

Two fractions are EQUIVALENT when they name the same 
point on the number line. 

Since I and 2 are at the same point on the number line we 
write .- 2. For the same reason we write 1., , and 
so on. Thus 

.1 _ -2+ =_3. =-4 
- 4 -- W 

Now that we have seen why the point "one-half" on the 
number line has many different names it is easy to show that 
the same thing must happen at every point on the number line. 

BC I-Q 
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For instance, ., ,-u, p.., ... all describe the same point on the 
number line. We therefore write 

- - --2 i .. 4,. -- .. 

We say that all of these fractions are equivalent. Similarly, the 
fractions in the set 

{2, 4 A .I 
V, T T 

are equivalent because they all name the same point on the 
number line. 

0 	 1 

* 	 ;7 

T t"-2 I, 12 12 12 12 12 

0 1 

T-, rds 	 a: 2 '3
 

Ninths 1 92 3 . , 7- 8 .9 

EXERCISE 19-1 
1. Find at least two fia-tions which name the points P and Q 

on each of the following number lines: 
P 0 

( 1 

o 	 PP0( b ) 	 . . . : , , , . . : , ,, , , , , Q 1 

o 	 a 

(c) 	 I I 
10 1!P Q

(d) ' i I l 
255 	 I I I I I I 26 
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2. 	 a. Draw a picture of the number line which shows that the 
following fractions are equivalent: , , 1. 

b. 	Without showing any more points on your number line 
find three more fractions which are equivalent to -. 

3. 	 a. Draw a number li.ie from 0 to 1 and mark it to shoot 
halves, thirds, and sixths. Write down all sets of equiva­
lent fractions you find on this line. 

b. Without showing any more points find a fraction with 
denominator 12 in each set of equivalent fractions on this 
line. 

4. 	 Find five fractions which are equivalent to each of the 
following fractions: 
a. b. "- C. b. 

5. 	We saw above that all of the fractions in the set 

If21 ) 4) . 

are equivalent. What are the next five fractions in this set? 
Which of the following fractions belong to this set? 
a. - b. .91 Co_ (5 . YR 

19-2 	 Equivalent fractions (continued) 
We can also illustrate the idea of equivalent fractions by 

looking at problems from everyday life. Consider the following 
example. 

A 	man had a piece of sugar cane which he cut into 4 equal 
pieces for his children. But only 2 of the children came to get 
some. Thus each child got 2 pieces of sugar cane. We can write 
this as - since each got 2 fourth parts. The following picture 
shows this: 

2 	 2 

4 	 4 

When you look at this picture you see that each child got the 
same amount of sugar cane as lie would if the man had cut the 
piece into two equal parts and had given each child one of them. 
In that case the picture would have bcen 

2 	 1 
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This shows that the fractions *, and X both tell how much sugar 
cane each child was given. They describe the same amount of 
sugar cane. Thus they are equivalent fractions and we write 

Now suppose that the man had 6 children instead of 4. 
Then he would have divided the sugar cane into 6 equal pieces,
and the 2 children who came to get some would have been 
given 3 pieces each. This time the picture is 

3 
 3 
66 

But each child's share of the sugar cane is still the same. 
Therefore -1is also equivalent to I and to :-, and we write 

4 ~6 
Notice that although the total amount of sugar cane given to 

each child was the same both times, in the first case each 
received two pieces while in the second case each received 
three somewhat smaller pieces. In the first case each received 
2 fourth parts; in the second case each received 3 sixth parts.
This is one reason why we say that the fractions . and - are
''equivalent" rather than "equal". 

In exactly the same way we can show that A is equivalent to 
-; that - is equivalent to A; and so on. In other words all of the 

fractions in the set 
{ 3 4 ° 

4), 0 , • 

are equivalent. The following picture shows all of this at once. 

ONE HALF 

2 

~rmzz 
4 

3 
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By dividing objects into parts like this we can show that 
every fraction has many other fractions which are equivalent 
to it. Moreover we can also find a rule for changing a fraction 
into any one of its equivalent fractions. 

Take the fraction I for example. By cutting a circle into 3 
equal pieces and shading 2 of the pieces we get a picture which 
represents . 

~4
3 	 6 

Now suppose each piece of this article is cut into 2 equal
pieces. Then there will be 6 pieces in all, and 4 will be shaded. 
Thus the shaded portion of the circle now represents the 
fraction A.This shows that - and A.are equivalent fractions. 
Notice that in going from - to .- both the numerator and 
denominator in j were multiplied by 2. Hence this pair of 
equivalent fractions can be written 

2 2x2 
3 3x2 

If we do the same thing again, this time cutting each piece
of the original circle into thirds, there will be 9 pieces in all, 6 
of them shaded. Thus A is equivalent to -, and we have 

2 2x3 
33 x3 

As we keep cutting the original pieces further and further we 
get more and more fractions equivalent to '. For instance, 
when each piece is cut into fourths we get 

2 2x4 8 
33= x41= 2 

When each piece is cut into fifths we get 

2 	 2 x5 10 
3 x5 15 
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In general, if t, is any counting number we have
 

2 2 xn 

0 =3xn 

The number n tells us how many pieces we have made out of 
each original piece of the circle. The following picture shows 
what happens: 

23 ­ -
 - 8 

9 12 

EXERCISE 19-2 
1. Draw circles divided into pieces to show that the following 

fractions are equivalent: 

Also show this on the number line. 
2. What equivalences for fractions are shown in the following 

pictures?
 

<9/4,,i ii 

3. What equivalences for firactions arc shown in the following 
pictures? 
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0 00 0 0L9JPILO 0 00 0 
000 0 0 000 
090L 100 0~ 000 

4. 	 \Vhat equi'alences for fractions are shown by the following 
picttures? 

5. 	Consider the following picture. 

a. 	Find all equivalent fractions suggested by this picture 
when you compare the shaded pieces with the entire 
rectange. [flint: There are 4 fractions in all.] 

b. 	If the area of the entire rectangle is 70 square units, what 
is the area of the shaded part? 

c. If the area of the shaded part is 25 square units, what is 
the area of the entire rectangle? 

6. Find five fractions which are equivalent to each of the 
following: 
a. 	A b. 7 C. H d. 5 i e. ­

7. 	 Which of the following fractions are equivalent to 4W, and 
which are not? Explain your answers. 

U ,1 15 , )3D 3.000,000 
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8. 	Suppose you are told that on a certai,, farm one-fourth of 
the trees are orange trees, and the rest are banana trees. 
You could show this by drawing either one of the following 
pictures. 

Picture 1. Picture 2 
Orange trees Q 0 Q 0 C Orange Banana trees 

trees 

0 0o00C 000D 
Banana trees 0 0 0 0 C

Looooc 0 0 00 

looooili~ 
1 

In thle first picture yeu say to yourself: "There are four 
sets of trees wvith the same number of trees in each set. I do 
not know how many trees are in any set, but one set consists 
of orange trees and the other three sets consist of banana 
trees.'' 

In the seconld picture you say to yourself: "'Ido not know 
how many' sets of 4 trees there are, but in each set of 4 one is 
,a orange tree and 3 are banana trees.'' 

a. 	 Supposc there were 100 trees in all. How many arc 
orange trees? How many are b)anlana tre,:s? What fr'action 
of the trees are orange trees? What fraction are banana 
trees? (Express your answers inl hundredths.)

b. 	Answer the questions in (a) when there are 600 trees. 
Express your answers this time in six-hundredths. 

c. 	 Could there be 750 trees on the farm? Why?
d. 	What equivalent fr'actions are shown by this example? 

Explain why these fr'actions are equivalent. 

19-3 The equivalence property of fractions 
In the last section we saw that if the numerator and dleno­

minator of a fraction are both multiplied by the same counting
number we get an equivalent fr'action. For example, . is 
equivalent to at because 

2 1x<2 

6 3 x 2" 
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1 .;3 3 1 x4 4 I -. 5 5
 
Similarly 9 334 - =­

are all equivalent to .
 

This rule works in tile other direction as well;
 

6 6-6 1
 
18 -18 6 3 

9 9-9 1 
27 27-9 3 

and so on. Here we simply divide the numerator and denomi­
nator by a counting number which is a factor of both. 

This property of fiactions is known as the equivalence 
property, and we now write it out in full. 

THE EQUIVALENCEIPROPERTY OF FRACTIONS 

If the numerator and denominatorof afiaction are both multiplied or 
divided by the same counting number Ike result is equivalent to the 
originalfraction. 

This property is useful because it tells us how to find all 

aFractions which are equivalent to a given fraction, This is. 

done in two steps, as follows: 

Step 1. Divide the numerator and denominator of a by their 

greatest common factor. This gives a fraction which is equiva­a 
lent to a but with numerator and denominator as small as

b 
possible. We say that such a fraction is in LrwES 'r tERMS.

Step 2. Starting with the firaction in lowest terms multiply
its numerator and denominator by 2, 3, 4, and so on. This gives 

the entire set of firactions equivalent to b. 

Example 

Let - be . To put this fraction in lowest terms we start by 
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dividing 28 and 42 by 2. This gives the equivalent fraction -2-. 
But the numerator and denominator of--- can both be divided 
by 7. Doing this we get .. This is as far as we can go since 2 and 
3 have no common factor greater than 1. Thus S is the fraction 
iii lowest terms which is equivalent to --. 

We now multiply the numerator and denominator of " by 
2, 3, 4, and so on. This gives 

2 x2 4 2 x 3 6 2 x4 8
 
3 x'2 =69'3 3 3 x4912''"
 

Thus the set of fractions equivalent to is
29 

, . 42) ...- ') "- . .' 

Sometimes it is difficult to tell whether the numerator and 
denominator of a 	fraction have a common factor. When this 
happens you must break each number up into its prime factors. 
Once this has been done it is easy to find the grea-test common 
factor. 

Take -22 for example. We first find the prime factors of 225. 
Since 225 is not even, 2 is not a factor. Thus we begin with 3: 

225 3=75 so 225 =3 x 75 
75 3 =25 so 225 =3 x 3 x 25 
25-5= 5 so 225=3 x3 5x5 

Since all of these factors are prime numbers, we have finished 
with 225. As for 252, we have 

252 +2 =126 	so 252 =2 x 126 
126 +2 = 63 so 252 =2 x2 x63 
63 +3 = 21 so 252 =2 x2 x3 x21 
21 +3 = 7 so 252=2 x2 x3 x3 x7 

Thus...	 225 3 x3 x5 x5 
252 2 x2 x3 x3 x7 

Looking at the numerator and denominator of this last fraction 
we see th".. 3 is the only factor which occurs in both. Since it 
occurs twice, 3 x 3 is the greatest common factor of 225 and 
252. Dividing by it we get 

5 x5 25 
2 x2 x7 28 
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Thus "A is the fraction inlowest terms which is equivalent to 
252"
 

EXERCISE 19-3
 
1 Find the set of fractions equivalent to each of the following:
a. 	{-b. I c. A-d. A e. "-I_ 

2. 	a. Find the fraction in lowest terms which is equivalent to 
each of the following:-7-2 _.1'"(i) 2 - (ii) (iii) i) ,7 v .o 

b. Find the set of fractions equivalent to each of these 
fi'actions. 

3. 	a. Find the fraction in lowest terms which is equivalent to A. 

b. 	Find all fractions equivalcnt to 4. 
c. 	 Show the point on the number line named by these 

fractions. What is another name for this point? 
4. 	 a. Find all fractions equivalent to -. 

b. 	Show the point on the number line named by these 
fiactions. What is another name for this point? 

5. 	Find the number to put in the box to make each of the 
following sentences true: 
a.A ='-P-	 b. - D==r 

8 356. 	Is it possible to find a counting number which makes each of
the following sentences true? If it is, find the number. If it is 
not, explain why.a.a = E 	 b. = 

T-b.-6 T]
I ,=d. zA 	 48 

19-4 Tests for equivalent fractions 
Two fractions are equivalent if they name the same point on

the number line. For instance, -%and .--are equivalent because 
they botl, name the point - on the number line. One way to 
show this is to put both fractions in lowest terms: 

2 2 2 1 
4 4+2 -2 

3 3±3 1 
6 6+3 2 
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Since the result is the same both times, the fiactions are 
equivalent. Similarly and -2,. are quivalent since 

9 9 -3 3 
12~ 12± _3 4 

21 21 7 3 
28 28 + 7 4 

When written in lowcst terms both of these fractions have the 
same point in the number line. Thus they are equivalent. 

This method works fbr any two fractions, and gives us a way 
of testing fractions for equivalence: 

Two fractions are equivalent ifthe), are the same when written in 
lowest terms. If thefifactions are not the same when written in lowest 
terms, then they are not equivalent. 

Although this test can always be used to tell whether or not 
two fractions are equivalent it is difficult to apply when the 
fractions involve large numbers. For instance, the fractions 
"-Az and -J7- are equivalent, but it would be hard to show this 
by the above test. For this reason we look for an easier way to 
test fractions fbr equivalence. 

Consider the pair of equivalent fiactions -2and .--.If we 
multiply the numerator and denominator of -z by 6 we get the 
equivalent firaction -j.If we multiply the numerator and 
denominator of".- by 4 we get the equivalent fraction Thus-

--and 1-are both equivalent to !-. They are therefore equivalent 
to each other. 
Why did we select 6 and 4 as the multipliers here? This was 

dlone to obtain two fractions with the same denominator. For 
once their denominators are equal two fractions will be equiva­
lent only when their numerators are also equal. In this case 
2 x 6 3 × 4, so the fractions . and --are equivalent. This 
gives us a very easy test to determine when two fractions are 
equivalent. We just multiply the numerator of the first fraction 
by the denominator of the second fraction. Then we multiply 
the numerator of' the second fraction by the denominator of 
the first fraction. If these two products are equal the fractions 
are equivalent. For example, 

,>-a:2 x 6 = 12, 3x4= 12 
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Thus the fiactions Zand 2"are equivalent.
 
Suppose we try this on some other fractions in the set
 

{ , .t)6, , 
: I>x6:6, 3x2=6 

"'- :2 x 8 16, 4x 4 = 16 
-e><j :3x30=90, 15x6=90 

Both products are the same every time. 
On the other hand, if we test 3 and 2-this way we get 

->- : 2 x 4 = 8, 3x3=9 
Thus j-is not equivalent to ?.. In fact, . is equivalent to-.s and :­
is equivalent to -19,.But -o is certainly not equivalent to ; . 
Thus is not equivalent to {.2 

We have therefore devised a second method fo testing 
fiactions for equivalence: 

a cTwo fractions - and - are equivalent if a x d = b x c. On the 

other hand, if a >' d is not equal to b x c, the fractions are not 
equivalent. 

EXERCISE 19-4 
1. 	Use both of the tests given above to show that the following 

pairs of fractions are equivalent: 
a .3I 5"k, 	 b. j-4 jA 

c. 	 AAd 

e. 	 " lR 

2. 	'Test the following pairs of fractions for equivalence: 
a. --	 d
b.1, zA 

C. 	 .11 6 k"d. -, 70454)¢ 03 	 -1)10 
e. 	 1A', i O 

33.Show that j-1-- and are equivalent fractions. 
4. Is there a fraction which is equivalent to A and -1? Explain 

your answer. 

19-5 Fractions 

We have seen that every point on the numberline can be given 
many different names and can be represented by many different 
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symbols. For instance, every one of these symbols in the set 

represents the same point on the number line. But every point 
on the number line represents a single number. Thus all of the 
symbols in the above set represent different names for the same 
number. This number is called a FRACTIONAL NUMBER, or 
for short, a FRACTION. Some of the names for this fraction 
are "one-half", "twvo-lburtlis", "thre-sixths". But it also has 
many, many more. 

In the same way "one-third", "two-sixths", "three-ninths", 
etc., all name a single fractional number since they all describe 
the same point on the number line. This number is the fraction 
represented by the symbols 

J. 2 - 4 

It is important to realize that a firaction has many different 
names and that each of these names is represented by a different 
symbol which we call afiactionalnumeral. Thus we have 

ONE FRACTION 

but 
MANY NAMES 

and 
MANY SYMBOLS 

At first it may seem strange to have so many names and 
symbols for a single fraction. But as we have already seen, the 
same thing happens for whole numbers as well. For instance, 
the number 10 can be represented b) any one of the symbols 

1+9 
2 -- 8 
3+7 

and so forth. It can also be represented by the symbols 

11 - 1 
12 - 2 
13 -3 
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Thus here too we find many different names and symbols for a 
single number. 

In talking about fractions we are usually a little careless and 
say such things as "the fraction onc-hailf" when we really
should say "the fraction one of whose names is one-half". This 
causes no difficulty so long as we realize that "the firaction one­
half" has many other names as well. ft is the same as "the
fraction two-fourths", "te firaction four-eight!his", and so tbrth. 
We only get into trouble if we believe that because these 
names arc different the numbers they name are different. This, 
as we have seen, isfldse. In teaching children about fractions 
you must keep them fiom making this mistake. You can let 
them talk about the fraction one-half, and the fraction two­
lburths, etc. But you imust be sure that they realize they are 
talking about the same fraction each time. 

When we talk about the symbols which represent fractions 
we are also a little careless. Thus almost everyone says "Con­
sider the fraction V'instead of "Consider the fraction iel)re­
sented by the symbol P.e difficulty sohere again there is no 
long as you remember that ,(ilferelitsymbols can represent the 
same firaction. Thus I and .- are not difFerent fractions; they are
different symbols for the same fraction. In fact, as we have seen, 
every fraction can be represented by an infinite set of symbols. 

19-6 Whole numbers as fractions 

At the beginning of the last chapter we introduced the names 
for fractions by looking at objects divided into equal parts. For 
instance we said that "one-half" stands for the idea of choosing 
one part ofan object that has been divided into two equal parts.
We illustrated this by the picture 

2 

At the same time we introduced such numbers as j, ., ., etc. 
Here the pictures are as follows: 



236 1,'actions 

2 

These pictures show that 

2 halves are the same as 1 whole 
4 halves are the same as 2 wholes 
6 halves are the same as 3 wholes 

Continuing in this way we find that every whole number can be 
given a fractional name. The following picture shows this on 
the number line: 

0 1 2 3 4 
2[] J]2 -' aU 

It shows that the firactions 0 , , name the whole num­

bers on the number line. 
We have seen that every fraction has many different names. 

For example, consider - . 'The first thing we notice about this 
fraction is that it is not in lowest terms. Both its numerator and 
denominator are divisible by 2. If we do this division we get the 
fraction I. Notice that I,-is in lowest terms. Now suppose we 
multiply the numerator and denominator of- by 2, 3, 4, and so 
on. This gives the set of equivalent fractions 

f 1 2 f, 12, 

All of these fractions name the whole number I on the number 
line. They arefractionalnames for 1, and we writc

1 -1 - 2- __ --. 

The same thing happens for the fractions -, A, and so forth. 
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For instance, if we divide the numerator and denominator of.­
by 2 we get the firaction f which is in lowest terms. Using it we 
build the set of equivalent fractions 

4 JI 

All of these fractions name the whole number 2 on the number 
line. Thus they are simply different names for 2, and we write 

2 - -.', 3-. 

Similarly, 3 =- ... 
4 =-- -V 

and, in general, 

n 2n 3n 
11 3 

for any whole number n. 
Notice that in each of the above lists the fraction in lowest 

terms has a 1 in the denominator. These are the fractions 
1, 1-,11-,1, 1 1 . In writing such fractions we usually omit the 1 in 
the denominator. And when this is done these symbols look 
exactly like the ones we ordinarily use for the whole numbers. 

19-7 The question of zero 

Consider the point 0 on the number line. By what we have 
just said we can write 

0 = = =..
 

In other words, each of the fractions in the set {i, i a 
fractional name for 0. Let us see why this is so. 

Consider the fraction o..Among other things this fraction 
represents the idea of choosing 0 parts of an object divided into 
2 equal parts. How many parts do we have? Zero. The set of 
parts chosen is the empty set. Thus A is just another way of 
naming the number 0. In the same way -A, R, A, . . . all name the 
number 0. 

We can also show this by looking at problems in division. In 
a C II­
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a
 

general, we have seen that the fraction a is the solution of the 
division problem 

a + b =-I
 

It is also the solution of the multiplication problem 

b x]=a
 
Thus - solves the equations 

3- 2=0 and 2 x×--=3
 
A solves the equations
 

4+9=F[] and 9xF<-=4
 
and so on.
 

Now suppose we consider the equation
 

This time the corresponding multiplication equation is 

2 xLE] =0 
Since the only number which can be put into the box to make 
this a true sentence is 0, we see that 

0+2 =0 
Hence we again have .0. 0. Similarly, - 0, - 0, etc. In 
general, if b is any counting number, 

0 
b 

Finally, we ask whether a fraction can ever have 0 in its 
adenominator. Does b make sense for a counting number a? In 

a 

the first place, if we interpret a as meaning "choose a pieces of
0 

an object that has been divided into zero pieces" we see that we 
are talking nonsense. For if you have an object-any object at 
all-and divide it into pieces of equal size you will always have 
at least one piece. Thus the symbol a is meaningless. 
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We can reach the same conclusion if we look at the multi­
plication and division equations wlich would have to go witha 
the symbol a if this symbol has any meaning. The division 

equation is 
a -+0=­

the multiplication equation is 

0 X -=a 

What number can we put in the box to make this a true sen­
tence? Since the number a is a counting number it is different 
from 0. Thus no number will work because 0 times any number 
is O. 



Chapter 20 

ADDITION AND SUBTRACTION OF 
FRACTIONS 

20-1 Addition of fractions 

If fractions are to act like whole numbers we must be able to 
add, subtract, multiply and divide them. The first thing to 
think about is what it means to add fractions. 

Suppose you have a cardboard square which has been cut 
into 5 strips of equal size as shown in the following picture: 

Green Red 

Suppose 3 of the strips are coloured green and I is coloured 
red. Then,'t of the cardboard is green and - is red. Altogether 
-4- of the cardboard is coloured. We express this fact by writing 

-I4- ' 

This equation sa)z that if we add the - of the cardboard which 
is green and the - which is red we get the -..which is coloured. 

We can also show this on the number line, as follows: 

0 5 N 2 3 
This picture shows that if we start with three-fifths and add one 
more fifth we get a total of four-fiftls. In other words, 

I =-

Next let us try to find the sum of - and A.-:
 
240
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3 

Counting the number of thirds which arc shaded in the above 
picture we find that there are 7 in all. This shows that 

3 - .5 . - ' 

The following picture shows the saIme thing on the number 
line: 

3 3 

0 I 2 3 
3 
 3
 

You will recall that addition on the number line is shown by
marking off from 0 the distance corresponding to one of the 
numbers, and then continuing to the ight for a distance 
corresponding to the other number. In the above picture we 
marked the distance from 0 to ,-first. Then, starting at 
we marked additional ''he final point reached isoff an T. 

Thus
 

3 7 

(Do you recall the story of the cricket that did addition 
problems for whole numbers by jumping along the number 
line? The above picture shows that you can use this story to 
illustrate addition of fractions as well as addition of whole 
numbers.) 

Notice that the addition problem 2- -"±.,-= can also be 
written using mixed numbers. It then reads 

Children often find equations like this harl to understand. For 
this reason you should always change mixed numbers to im­
proper fractions before you add. After the addition is com­
pleted you can write the answer as a mixed number if you 
wish. 

2 
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For example, to add 11 and 2-, we first write 1-as -, and 
2A as 1,1i. Thus 

IlA + 2A - + 14 
21 -

Since 2-1 is the same as 4-, we can also write 

1 -t- =2. 4k 

Either answer is correct. 
By now you see what the sum of two fractions should be 

when the fractions have the same denominator. In the general 
case we have 

a C a+c 
b b b 

In other words, to acid two fractions with the same denominator 
we add their numerators and leave the denominator unchanged.

When teaching children how to add fractions according to 
this rule it is a good idea to use word problems as well as 
pictures to help them understand what happens. Here are 
two examples of problems you could use. 

Example 
A child sleeps 9 hours a day and plays for 4 hours. What 

part of the day does he spend sleeping, ,,,hat part playing, and 
what part sleepi~ig and playing? Answer: He sleeps *: of the
day and plays -4-of the day. Since 4. l i he spends 
)-,,
of the day sleeping and playing. 

Example 
A teacher has a set of 15 crayons. One child is using 6 of 

them and another child is using 5 of' them. What part of the 
set is being used by each child, and what part by both together?
Answer: The first child is using - of the crayons; the second 
child is using -. of the crayons. Together they are using 
-e -F - { - of the crayons. Thus -- of the set is being used. 

EXERCISE 20-1 
1. Draw pictures using squares, circles, and the number line 

to show each of the following additions. Then do the prob­
lems and compare your answers with your pictures. 
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a.; + 	 b. = V1 c. 	 -3 - -- d. k + z+ 43- ] 	 { -­
e. IA + 1-1---E-	 f. 21 + 11[ = [-] 

2. 	Make up two word problems which you could use with 
children to illustrate each of the sums in the above exercise. 

20-2 Addition of fractions (continued) 

We have seen that it is easy to add fractions when their 
denominators are the same. However, when the denominators 
are different the problem is harder. For instance, suppose 
we want to find the sum of I and 34.What do we do? 

One thing we can do is look at the number line. The fol­
lowing picture shows what happens: 

1 3 

-
2 4 

fII f 
4. 2 4 4 

Notice that we divided the number line into fourths. We then 
showed I + ! by first marking the point 1 and then going 
beyond that point a distance 4. The second jump ends at the 
point A. Thus 

I + 3 

We now ask if there is any way of finding sums such as 
A+ :1by using what we have already learned about adding
fractions with the same denominator. To do this we must 
write I-and :1as fractions having the same denominator. But, 
as we know, T is equivalent to 1nn. other words, and I are 
different names for the same number, and so we can find the 
sum of - and ] by adding -7and :.Thus 

-1. + 3~=+ 

The problem is easy once the fractions have been written with 
the same denominator. 

All addition problems for fractions with different denomi­
nators are solved this way. For instance, to add I and . we 
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look at the set of equivalent fractions for cach and find re­
placements having the same denominator. The two sets are 

.We see that Xis equivalent to ', and that is equivalent to 
195, 'nius 

-It.,.iThu
 

- 14 

When we replace the fractions in an addition problem by
equivalent fractions having the same denominator we say that 
we have put the original fractions over a COMMON DENOMI-
NATOR. Thus 15 is a common denominator for and and 
4 is a common denominator for I and !. 

We can now describe iow to add fractions with different 
denominators. The method is as follows: 

To add two fractions with di/ferent denominators find equivalent
fractions for each so that the replacements have a comon denominator. 
Then add thesefractions by adding their numerators. 

Thus the real problem in adding fractions with different de­
nominators is to find a common denominator fbr the fractions. 
To see how this can be done we again look at the problem 
3-+ i-. But this time we shall solve the problem by using
pictures. 

Our first picture shows Ifand . as shaded portions of two 
squares of equal size. It represents the original problem of 
finding -1 + . . However, we cannot solve the problem by using 

3 
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this picture since the squares are divided into pieces of different 
size. We have no way of finding the total shaded area. But if 
we could divide the squares into a larger number of pieces 
so that the new pieces were the same size in both squares we 
then could find the total shaded area by counting shaded 
pieces. How can we do this? One way is to divide each square 
ihe wp , the other is already divided. The following picture shows 
what happens: 

3
 

Both squares are now divided into 15 parts or equal size. Each 
part therefore represents -. of the whole square. In the first 
square 5 of these parts are shaded; in the second square 9 are 
shaded. Altogether there are 14. shaded parts, and we can 
write 

*1.+ - !=+L.­

- 14 

Let us look at another example this way. Suppose we wish 
to add - and A. First we show each fraction separately, as 
follows: 

3 

5 
4 

Next we divide the first square into fourths by vertical lines, 
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and divide the last two squares into thirds by horizontal lines. 
Our picture then becomes 

25 

4 

Each square is now divided into 12 equal parts. The shaded 
portion of the first square is ~B*The shaded portion of the 
last two squares is {-,I22. Altogether+ -A, 23 +parts of size Jr are shaded.I J2,1./ 

Thus 

We now ask if there is a shorter way to do these additions. 
Let us look at tie results of the last two examples: 

In the first the answver is in fifteenths. In the sm~ond it is in 
twelfths. Do you see how denominators in these answers are 
related to the denominators of the fractions being added? 
Notice that 15 = 3 x 5, and that 12 =3 x 4. In both ex­
amples the denominator in the answver is the product of the 
denominators of the fractions being added. We shall now 
show that this alwva3s works. 

a cSuppose we wish. to add the fractions - and -. For instane, 

of the form is equivalent to when n is a counting num­

b d 
a 

we might have b 
3 
7 and 

C 
-

9 
.We knowv that every fraction 

3 x n. 3 

ber. In other words 

3 3x n 
7 x 11 
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In particular, when n = 8 we have 

3 3x8 
7 7 x8 

9 x×n s eq i ae t o9 
Similarly, every fraction of the form9 is equivalent to
 

when n is a counting number. Thus, if we let n = 7 we have
 

9 9x7 
8 8x7 

3×8 9x7 
The two fractions and 9 have the same deno­

7x8 8x7 
minator. Moreover, this denominator is the product of the 
denominators of--and -.Thus 

3 9 3 x8 9 x7 
7 +87 x8+8 x 7 

24 63=5-6 + ­

87 

In the general case where we want to find the sum a + c 

we write 

a a xd c c xb
bbxd d d xb 

T fiactiosa
xd c=x b 

The fractions and c have a common denominator.
b xd dx b 

This denominator is the product of the original denominators 
b and d. Thus 

a c a xd c xb 
b db-- d xb 

--- + (c x b)(ax d) 
b x nlos 

This formula is often abbreviated as follows: 
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a c ad + bc 
b d bd 

EXERCISE 20-2 
1. Draw pictures using squares to illustrate each of the fol­

lowing addition problems:a. + 	 .1 74 	 4_ 
c. 	 2, + 1- = -d. -- A = ­

e. - + 110d 
e. 	 A T 

2. 	Illustrate each of the following addition problems on the 
number lines, and then find the sum. 

a. b. 	 2+ ­
c. + A ] d. 1+ = 
e. 	 I I 131 = 

3.~ omua -- (I bd3. 	 Use the~~h formula [c ad + b to find each of the follow­

ing sums: 
a. L A 	 b.7­
c. -	 d. I 
e. 	 -3(f f. 	 1 +3i 
g. 	 51 -3 2 h. 	 2 +4X7i. 	 3 -1-2-1. j. 71- + 5" 

4. 	 One man can plougli a field in 2 days and another can
plough the same field in 3 days. If they work together, what 
part of the field can they plough in 1 day? 

5. 	Two men share a basket of maize. The first takes " of the
maize and the second takes -1 - of it. What part of the 
maize have they taken? 

6. 	Suppose someone told you, "15of a piece of paper is coloured 
red and A is coloured green." Would you believe him? 
Why? 

7. 	A student adds fractions as follows: 

a c a c 
b d b d 

Will hie ever get the right answer? Why? 
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1 1 1 

8. Is I + I = I ever a true statement when p and q are
P q p+q 

counting numbers? Why? 

20-3 The least common denominator 

Consider the problem of adding . and 1. One way to find 
this sum is to use the formula in the last section. This formula 
tells us to replace .A-and ' by equivalent fractions having 6 x 4 

24 as their denominator. The number 24 works because 
the set of fractions equivalent to -- and the set of fractions 
equivalent to 4-both contain a fraction with denominator 24: 

al, 1, ) 20) 24 3* 

But both of these sets also contain a fraction expressed in 
twelfths. Thus we can use 12 as a common denominator for A­

and :. in place of 24. When we do we get 

-~ -,- 5 - 1"= )- + -

In this problem we were able to use a common denominator 
that was smaller than the product of the denominator of the 
given flactions. Notice that 12 is the smallest number which 
can be used as a common denominator in adding - and - . 

For this reason 12 is called the LEAST COMMON DENOMINA-
TOR for the fractions A and . The term "least common dce­
nominator" is often abbreviated to LCD. 

Now let us look at another example. Suppose we are asked 
to find J -- -. If we use 6 x 9 = 54 as a common denominator 
for these fractions we get 

1 5 1 x9 5x6 
6--9 6X9+9 x 6 

9 30 

=54 + T 

39 

54 
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But 54 is not the least common denominator for -* and -A. To 
see this we look at the sets of fractions equivalent to V' and 
9. 

V18 1 . 

Both of these sets contain a fiaction having 18 as a denominator. 
Moreover, 18 is the smallest number with this property. Thus 
18 is the least common denominator for -I and --.Using it we 
can write 

-13
 

Notice that we now have two answers to the problem +-iA: 

- -- P and I--- ={. 

However, the fractions - and 3-1 are equivalent since 

13 13 x 3 39 
18 18 x3 54 

This shows that the two answers are really the same since they 
both name the same number. In most cases the answer to this 
problem Would be Written ~-,not PA, because 1A is in lowest 
terms. In gencral, answers to problems involving fractions 
should be written in lowest terms. 

When adding fractions with different denominators it is 
helpful to put the fractions over their leasc common denomina­
tor. This makes the work easier bccause the numbers in the 
problem are then smaller. 

But how do we find the LCD for a pair of fractions? Consider 
*-and A for example. Ve have seen that the LCD for these 
fractions is 18. But 18 is a multiple of 6 and9. In other words it is 
a common multiple 9f 6 and 9. Moreover, it is the least, or smallest 
common multiple of these numbers. This illustrates the fol­
lowing general fact: 
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The least common denominatorfor two fractions is the least common 
multiple of their denominators. 

We can use this fact together with what we know about 
factoring numbers to find the LCD of any two fractions. Take 
42J. and 3,,y for example. To find the LCD for these fractions 
we must find the least common multiple of 42 and 105. To do 
this we first factor each of these numbers: 

42= 2 x21 105 =3 x35
 
42=2 x3 x7 105=3 x5 x7
 

We now recall that every common multiple of two numbers 
must contain all of the prime factors of each number. Thus every 
common multiple of 42 and 105 must contain the factors 2, 3, 
5, 7. Sinc? the smallest number with these factors is 

2 x 3 x 5 x 7 = 210 
we see that the LCD of --- and A- is 210. (Notice that this 
number is much smaller than the product 42 x 105 = 4,410.) 

Now we have found the LCD of -- and " 1- we can add 
these fractions. We get 

11 31 11 x 5 31 x 2 
+
4-2 + 10-5 42 x5 105 x 2
 

55 + 62
 
210
 

117
 
210
 

The 5 and the 2 used here as multipliers are also found by 
looking at the prime factorization of 42 and 105. For the first 
fraction we must multiply 42 by a number to get 210 as the 
product. Looking at the factorizations for 42 and for 210 we 
have
 

42=2 x3 x7 and 210=2x3 x5x7 
We ask which of the factors of 210 are missing from 42. The 
factor 5 is the only one missing so we multiply the numerator 
and denominator of by 5. In the second fraction we have 
105 =-3 x 5 x 7 in the denominator. Comparing this with 
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210 = 2 x 3 x 5 x 7 we see that the factor 2 is missing. Thus 
we must multiply the numerator and denominator of the 
second fraction by 2. 

In many problems we can find the multipliers just by looking 
at 	 the denominators. But w~th larger numbers the idea of 
finding the missing factors is useful. 

There is one other way in which factorizations are helpful 
in 	the addition of fractions. Look at the answer to the last 
problem, 7 Is this answer in lowest terms or not? We know 
that the prime divisors of the denominator are 2, 3, 5 and 7. 
Thus any prime factor of the numerator and denominator of 
1 17 would have to be one of these numbers. If we try them we.i-F 

find that only the 3 divides into 117. Thus 

117 117 3 29
 

210 210 3 70
 

Since the fraction -- 1isinlowest terms we write 

1 1 .L.3 -

I2or, 70 

EXERCISE 20-3 
1. 	 Find the least common denominator for each of the follow­

ing pairs of fractions and then add the fractions: 
,
a. 	'2 and -3 b. - and " 

c. 	 -7. and -4- d. T, and 
e. 	- and 2"- f. -- and-' 
g. 	 -2,1g" and -0o and--- -13 	 h. TOr' a d k,, 
i. 	 2- and 31 2b j. 1-- and 2-'. 

2. Find the fraction inlowest terms which is equivalent to each 
of the following fractions: 
a. -b. 

32

C.j17d.23	 66 

e. :1 
3. Each of the fractions 7, - }-o- is equivalent to3-, 01 	 a 

fraction with denominator 600. Find these fractions.
 

4. 	 Find all fractions of the form -1which are equivalent to a 
P
fraction with denominator 24. 
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20-4 The commutative property of addition 

When we studied addition of whole numbers we saw that 
a -- b = b + a for any two whole numbers a and b. For in­
stance 2 + 3 = 3 + 2, 5 -- 4 --4 + 5, and so on. This pro­
perty is described b s-,ying that the addition of whole numbers 
is commutative. We snall now show that the same property holds 

a cfor addition of fractions. In other words, if- and are fractions, 

then 

a c c a 
b d + b 

We begin with an example. Consider the fractions - and -. 
Does A + j- = It +- .? In this case it is easy to see that the answer 
is yes, since 

3 1 3+1 4 
5 5 5 

1 3 1-- 3 4 
5 5 5 

The following picture shows this on the number line: 

5 1 

Notice that the real reason why these two answers are the same 
is that 3 -!-1 = 1 + 3. Because of this we have 

3-1 1 +3 
5 5 

Thus we can say that A = -- .+. because addition of 
whole numbers is commutative. 

In exactly the same way we can show that addition of 
fractions is commutative whenever the fractions have the same 

Be I-$ 
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a c
 

denominator. Indeed, suppose the fractions are a and b Then 

a 	 c a~c 

bmb b
~b 

_c+a 

- b (sincea +c =c+a) 

C +a 

This shows that 

a c c a 

Thus, for example, 

and so on. 
Finally, let us consider what happens when the fractions 

have different jenominators. In this case we put the fractions 
over a conimon denominator and then add. But, by what we 
have ji'st said, addition of firactions with a common denomina­
tor ;3 commutative. Thus the addition of the original fractions 
is also commutative. This shows that 

a C C a 

a c 
for any two fractions - and 

EXERcISE 20-4 
1. 	Use squares, properly subdivided, to show that ] + * is the 

same as j + -. 
2. 	 Use the number line to show that the two sums in Question 1 

are the same. 
3. 	 a. Repeat problem 1for the sums I + {- and - + ].

b. 	Sh,)w that I + * = + I on the number line. 
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4. 	 Show, by computing the sums, that each of the following 
statements is true. 
a. T-- +A- = 	 b. I +9a =9? - 17 

a c C ac. 	 3P, ±4 =4 + 3 d. - +­

4 c c 4 
e. + 5 =5 +~ 

20-5 The associative property of addition 
The second important property of addition of whole numbers 

is the associativepropery. This property tells us that when adding
whole numbers we can group the numbers any way we like. 
The answer is always the same. We express the fact that addi­
tion of whole numbers is associative by writing 

(a + b) - c = a -P (b + c) 
Remember that the brackets tell us how the numbers in each 
sum are grouped together as we add them. 

We shall now show that the same property holds for addition 
of fractions. For instance, consider the fractions , and j&.We 
have 

( + i) + 3 (+± ) + . 
- =+ 

Adding the other way we get 
+ U + ) =1 + (R + 1)=+ 

=+t 

Both answers are the same. Thus 
( + 1) +P = + U + i) 

Let us see why this must always happen. As usual we first look 
at fractions having the same denominator. Suppose the fractions 
are aceb' b' b' 
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Then (+ +b = b -L-

_ (a - c) + e 
b 

On the other hand, 

a (c +e) a c + eb b + - b 
But these answers are the same because we know that 

(a I- c) -I e . a -- (c + e). This shows that
 
a
 

+ + ., + 

Finally, when the denominators of the fractions are not the 
same we put the fractions over a common denominator and 
then add. Since we now know that addition of fractions with 
the same denominator is associative, we can say that tile addi­
tion of the original fractions is also associative. Thus in general 
we have 

± d) e ± (bi) 

EXECImsE 20-5 
Show, by computing the sums, that each of the following 
statements is true. 

..+(2a + ) + S+ q2=2. (1 -- ) - 1 -- (I­

3. (1+ -I-)+ = 1, + (+ -74. -;I +I (2 + {-- =( -- q .2-)+ -II 

5. Ja + (b ±_I_ ) (a8 + b) + 1-c 

20-6 The property of zero 

When we studied addition of whole numbers we saw that the 
niumber 0 has the following special property: when zero is 
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added to any whole number the number is left unchanged. 
That is, 

a+0=a and 0+a=a 
for any whole number a. 

We can now show that the same thing happens when we add 
0 to a fraction. Consider the fraction j for example. We have 

1 1 0 

1 0 
.. .I-:- .-


Notice that in adding 0 to j we thought of 0 as a fraction with 
denominator 2. Thus we wrote 0 as Q.The following picture 
shows this addition problem on the number line: 

0 

0 1 

Next, we recall that addition of fractions is commutative. 
This tells us that . 0 0 -+-. Thus since + 0 = !we can 
also write 

0 +,..
 

The picture on the number line now looks like this: 
0 

1 

0 1 

In general, if _ is any fraction at all we have 

a a ab,-0= 0 bi 

You should be able to show this the same way that we showed 
that j + 0 = 0 +1 = 0. 
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The above equations tell us that when 0 is added to any 
fraction the fraction is left unchanged. We describe this pro­
perty of zero by saying that the number zero is the IDENTITYfor 
addition offractions. 

20-7 Subtraction of fractions 

Now that we know how to acid fractions we can also subtract 
them by thinking of subtraction as the inverse of addition. For 
instance, consider the following problem: 

A man wishes to pick three baskets of oranges. After picking 
for a while he finds that he has enough oranges to fill the 
basket I' times. How many more baskets of oranges should 
he pick? 

To solve this problem we must find the number to put in 
the box to make the equation 

2+ ] =3
 
a true sentence. The number which goes in the box is called the 
mnissing addend. To find it we first write 12 as an improper 
fraction: 12 = ,. Next we recall that 3 can be written as ., or 
as A. Thus the above equation is the same as 

+ D = ,-
Everything is now written in thirds. Suppose we write this 
equation without using the word "thirds". It then becomes the 
whole number equation. 

5+A 9 
As you know, this can also be written as a subtraction equation: 

A =9 -5 

In either case the number 4 must be put in the triangle to give 
a true sentence. If we now change back to thirds we get the 
true sentences: 

5-thirds + 4-thirds = 9-thirds 
4-thirds - 9-thirds -- 5-thirds 

In fractions these sentences read 
r- + ­
'S4 =- 93 - 35
S" - S _S 
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They show that the man must pick .- or 1-1 more baskets of 
oranges. 

In the above problem we saw that the addition equation 

can also be written as the subtraction equation 

3 3 

These equations are just two different ways of asking the same 
question. The first asks us to find the missing addend which 
must be added to - to give A. The second asks us to subtract 
-from A. Either way the answer is A. The following pictures 

show this on the number line: 
9 

F1 R 

0 it! 
3 

2 3 0 1 2 3M 

What do we do if a missing adden1 problem has fractions 
with different denominators? The answer is easy. We simply 
put the fractions over a common denominator and. hen proceed 
as in the problem just solved. Here is an example: 

Solve the equation 

We first find the LCD for the fractions A andA. Since 3 is a 
prime number and 4 2 x 2, we see that the LCD is 
3 x 2 x 2. Moreover, 

5 5 x3 15 
;=4 x3 -2 
8 8 x4 32 
3 x 4 1-2 

Thus the above equation can be written 

Since the fractions in this equation are now in twelfths we 
know that the box must be filled with a fraction in twelfths 
to give a true sentence. Suppose we write 
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Then our equation becomes 

This shows that 

15 + 32 
12 12 

But 15 + 17 = 32. Thus A 17, and we have 

We can also solve this problem by vriting everything in 
terms of subtraction. When we do it reads as fbllows: 

3 5
 
8 4
 
32 15 
2 -F 2 

32 - 15 

12 
17 

Again we have -+7 

Notice that ea(. "fep in the second solution of this problem 
has a corresponding stp in the first solution. This becomes very
clear if we write both solutions side-by-side as follows: 

5 8 8 5 

15 32 32 15 
12 12 LI 12 

15 32 32 15 
12 1-2

15 - -PA, 32 17 

17
LI=-F 
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Now suppose we wish to solve the equation 

a C 

We first put these fractions over the common denominator 
b x d, and then proceed as in the examples. We get 

a x d c x b 
b dIx/b 

(a 	 :d) -- (c .:b) 
b ,;d 

Thus 	we have the fbllowing statement: 

a c ad -- bc 
b d bd
 

Notice, however, that this makes sense only if a is greater than 

or equal to i . If you draw a picture on the number line you can 

see why. 

EXERCISE 20-7 
1. 	Draw squares, properly subdivided, to show that 

r , = 17­

2. 	 Illustrate the subtraction equation in Question 1 on the 
number line. 

3. 	Find the miszing addends in each of the following equations. 
Rewrite the equations as subtraction equations. 
a. +- A-	 b. - +7-7 
c. X -""L=---	 d. 19-F+] =2­
e. [] 	-F 4-? =5-­

4. 	 Solve each of the following equations: 
a. A - " 	 b. [j -­

c. - 5 ­
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5. A man has a piece of sugar cane 21 inches long. If lie cuts 
off a piece 2- inches long, how much remains? 

6. 	 A girl had of a cake. She gave a piece equal to of the1 

whole cake to her friend. How much did she have left? 
7. 	 Two girls are baking a cake. They have I1.!- cups ofsugar, and 

they use 3 of a cup in their baking. How much sugar do they 
have left? 

8. 	 A man working alone could pick the fruit friom some trees 
in 5 days. Another man works with him and together they
pick the fruit in 2 days. What part of the total could the 
second man, working alone, pick in one day? 

a c a c9. 	 Let band be fractions. Can tlc problem b d- LI 
always be solved with fractions? Illustrate your answer with 
examples. 

20-8 Subtraction as the inverse of addition 

What do we mean when we say that addition and subtraction 
are inverses of one another? For whole numbers we mean that 
each undoes what the other does. In other words, if we start 
with a whole number, and add any whole number to it, and 
then subtract the same number we get the original number 
back again. The same thing happens if we subtract first and 
then add. 

We can show that tlis also happens for addition and sub­
traction of fractions. For instance, the sentence 

tells us that if j is added to j the sum is J. Suppose that after 
adding we subtract it. We get 

R 	+ k) ­ -

or 	 Q~ + i) -

This shows that if we add J to t and then subtract I from the 
sum we get I again. 

Now suppose we start with a subtraction; for example 
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If we add j to each side of this equality we have 

R- + W= -

Again we are back where we started. 
In general we have the identities 

+ -a= 
ca 

- + a 

These identities tell us that addition and subtractions are in­
verses of one another for fractions as well as for whole numbers. 



Chapter 21 

MULTIPLICATION AND DIVISION OF 
FRACTIONS
 

21-1 Multiplication of fractions 

Now that we have learned how to acid and subtract frr'tions 
we consider what it means to multiply them. We begin by
showing how to multiply a whole number and a fraction. 

Suppose we are asked to find 4 x .Let us try to discover the 
answer by using what we know about multiplication of whole 
numbers. You will recall that multiplication of whole numbers 
means repeated addition. Thus 

4 x3 means 3 -3 +3 +3 
4 x2 means 2 +2--2 ±2 
4 x I means 1 1 - 1 ± 1 

If we wish this pattern to continue when the second factor is , 
we must agree that 

4 ,means +-22 t1- -+-

For this reason we write 
2 2 2 2.-- - -­
3 3 3 3 
2 2 -12 -!2 

3 
8 

" = ... - _-


3
 

We can show this multiplication on the number line in tile 
same way that we showed the multiplication of whole numbers. 
This time we start at 0 and make four jumps to the right each 
of length ,. 

2 2 2 
3 3 3 3 

0 1 2 A 3 4 

264t.
 



265 Multiplication and Division of Fractions 

We can also show the meaning of 4 x , by building squares 
on the number line. We start with a square which has one side 
on the segment of the number line from 0 to 1. We then divide 
the square into three equal parts and shade two of them to 
represent the fraction ]. Our picture looks like this: 

10 

A0 2 

How shall ie show 4 x j. One way is to use this square to 
build a rectangle 4 units high as shown in the following picture. 

01 2 1 A 

33 3 

In each square 2 of the 3 parts are shaded. Altogether there are 
8 shaded parts, each of size . Thus we again see that 

4 x = 

This picture also shows that the product 4 x j can be viewed 
as repeated addition. This time we add, or join together 4 unit 
squares, each shaded to represent the fraction J. (We call such 
squares unit squares because their sides are one unit in length. 
Notice that the area of such a square is 1 x 1 = 1 square unit.) 

We now do exactly the same thing for the product of any 
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whole number and any fraction. Let a be the whole number, 
mand let - be the fraction. Then 
n 

f/l fl flI fl 
nl n n n 

(Here we imagine that the fraction - is written a times.)n 

m in rn m +rn±.+. iii1But -.m++ + - = -
n n n n
 

Since the number of addends in the fraction is a we have
 

m+m+...+m a xn 
n n 

m aXmThus a x-=
 
n n
 

We can describe this result very simply: To multiply a whole 
number and a fraction, multiply the numerator of the fraction 
by the whole number and leave the denominator the same. 

Here are some examples: 

1 3x1 33x 2 2 -2 

9 5 x9 45
5x 4 4 4 

3 27 189
7 x 3 = 7 x .-

EXERCISE 21-1 
1. Show the meaning of 4 x j as repeated addition by using 

squares properly subdivided. 
2. 	 Show the meaning of 4 x j as repeated addition on the 

number line. 
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Solve each of the following multiplication problems. Express 
your answer in lowest terms. 
3. 7 x? 4. 4 x - 5. 9 x31 
6. 5 x4j 7. 83 x1- 8. 32 x 
9. 	 13 x A. 10. 2- x 11 
11. 	 If you need 1 cups of flour to bake one cake, how many 

cups of flour will you need for 5 cakes? 
12. 	 Eight children divide some chocolate bars equally. Each 

gets 2 bars. How many chocolate bars are there? 

21-2 Making multiplication simple 

In doing the problems above you may have noticed that in 
some cf them you could make yourwork easier. Take Question 8 
for example: 32 x J. If we use the formula 

aa x-
n i 

we get 	 5 32 x 5 16032 x-. . . 
8 8 8 

But, by the rules for equivalent fractions we see that 

160 160 8 20 
8 8 01-j--8 


Thus when the answer to this problem is expressed in lowest 
terms we have 32 x i = 20. We can get this answer without 
actually doing this multiplication at all. In fact, we can write 

5 32 x5 (8 x4) x5 4 x5 
8 8 - 8 x1 I 

You should be able to say why each of these steps is correct. 
As another example of the same sort consider the product 

16 x-&.Here we can write 

16 5 16 x5 (4 x4) x5 4 x5 20 
12 12 .... 4 x 3 -3 -3 

Notice that when we proceed this way our answer is in lowest 
terms. Can you explaii why this happens? 
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21-3 Multiplication of fractions (continued) 

We now consider the problem of multiplying one fraction by
another. For instance, what is x I? or I X 3? or 21.x ? In 

general we a C a Cwant to know what b x is when - and d are any 

two fractions.
 
The easiest way to find 
answers for these questions is to use

unit squares on the number line. We have seen how to draw 
pictures which represent such products as 

3 x 1,2 x 1,1 x I 

Thus the picture on the left below represents 3 x I since it
shows 3 unit squares divided into 4 equal parts with ene part of
each square shaded. The shaded portion of this picture goes
from 0 to I along the number line and is 3 units high. The pic­
ture shows why we write 3 x j = -1. Similarly, the picture in
the middle shows that 2 x j =. Here the shaded portion goes
from 0 to - and is 2 units high, Finally, in the third picture the
shaded portion is only 1 unit high. Notice that the height of 
each picture is equal to the multiplier of 4. 

3 

2 

II

I Il 
I I 2/
 
II
 

I I I 

0I I 1 

/ I ,
4 2 4 
 4 2 4 
 2
 

Suppose we try to kee) this pattern when the multiplier of
is a fraction instead of a whole number. Take the multiplier- for instance. Our picture would then have to look like this: 
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I I I 

I I 

I I I 

41 2 [4
Here we have drawn one-halfo "the unit square and shaded the 
portion between 0 and ;I.As you can see from the picture, -gof 
the entire square is now shaded. If we agree that the shaded 
area represents the product x I, we must then write 

Using this idea we can draw pictures which represent products 
such as x× :I and -r x it. For instance, the picture for xx ­
must show one-half of the unit square with the portion from 
o to - shaded. Altogether, ,]of the whole square is now shaded. 
Thus we write 

x 

1 r----------
S I I 

I I I 

I I I 
I i i I 

II I i 

2 

0 1. 1. _3 1 
4 2 1 

To draw a picture which represents the product 3- X -we 
divide the unit square into 4 equal parts along the number line 
and then divide the other side of the square into 5 equal parts. 
As the following picture shows, the square is now divided into 
20 equal parts. Each part therefore represents the fraction .,'-. 
If we shade the portion of the square from 0 to t along the 
number line which lies below the line representing 7we find 

DC I- T 
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that 9 parts of the square are shaded. Thus we write A x -220­

1 

3 

0 1 131 
4 2 4 

Do you now see the general rule for multiplying fractions? Look 
at the results of our examples: 

X 
X 

W X =-6 

In each case the numerator of the product is the product of the 
numerators of the factors, and the denominator of the product
is the product of the denominators. Thus, in general, we write 

Xx x da c aX c 

In all of the above examples the fractions were proper frac­
tions. However, the pictures and rules work equally well if one 
or both of the factors are improper fractions. For example, sup­
pose, we want to find the product .} × -.According to the above 
formula we have 

3 5 3 x5 15 
x 2 x4- 8 

The following picture illustrates this result: 

71 5 

.4 2 4 
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EXERCISE 21-3 
Find each of the following products. Express your answers in 
lowest terms. 

5.x 2. 3 x­3. kxN 4. A x 

4. .-O x 

7. 4 9 x 3- 8. 2j x 6-1 
9. 2 X2R 10. j_ 17 8 

11. Draw pictures using squares to illustrate questions 1-5. 
12. Five children share of a cake equally between them. What 

part of the cake does each get? Illustrate your answer on the 
number line. 

13. Two brothers and a friend ?ick Cough nuts to fill a basket 
3 times. They then share the nuts equally. What is each 
boy's share? Illistr,,, your answer on the number line. 

21-4 The commutative property of multiplication 
For any two whole numbers a and b, a x t = b x a, or as 

we usually write it ab ba. We now= ask if the same thing is 
true for fractions. Does - -xA= A x 4? Does . xT? 

a C C aIn general, does b x d - x b? We shall show that it does. 

To answer these questions we must write equations. For in­
stance, since 

:13 9 

-- X - =. and A x-A 
we see that A x x. The following pictures illustrate 
this result: 

3 

2'­

/,, 

0' 7'7/77 
5 2 2 
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These pictures show the same rectangle ir different positions. 
In each picture the shaded area contains 9 equal parts, each of 
which is -j- of the unit square. Thus both pictures represent the 
fraction -,, and we have 

2 5 r, 2 

In exactly the same way we can show that x 3 = x j. We 
now consider the general case. Here the equations are 

a c a X c C a c xa
X d = xd an d d xb 

But since multiplication of whole numbers is commutative we 
have a x c =c x a and b x d = d x b. Thus 

axc cXa 
b xd d xb 

and it follows that 

a C C a~ x2=-2x-? 

We describe this identity by saying that multiplication of 
fractions is commutative. 

EXERcIsE 21-4 

a C C a1. 	What does the identity b x - - x b become in each of 

the following cases? 
a. 	When a 3, b 5, c 2, d 7 
b. Whena =4,b =3, c =6,d= 11 
c. 	When a 8, b 9, c= 12, d =25 

2. 	 Check the commutative property of multiplication fbr each 
of the pairs of products in Question I above. 

3. 	 Draw pictures which illustrate the following equalities: 
a. x>' . X 
b. x 2j-= 2-1 x 1 
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21-5 The associative property of multiplication 

We have seen that if a, b and c are whole numbers, then 
(a x b) x c = a x (b x c). We now show that this property 
also holds for multiplication of fractions. 

Look at the following example: 
Xx) X 3- X-
x-i-


Grouping the other way we get 

SX (IX,1) = iX=
 

Both answers are the same. Thus 

( X ) x-1 = j,(i x 
The same thing happens in the general case. For them we have 

a~>j)5 e- a x e =(a xc) x e, x)a=bx -dx (b xd)x-f 

>, c~a c e a x (c x e) 
b f b \ xf/ b x (d-xf) 

Using the associativity of multiplication of whole numbers we 
can write 

(a : c) x e --a x (c x e) and (b x d) x f =b x (d x f) 

(cThus 	 (a x c) -x e a x xe) 
(b x d) x f b x (d x f) 

and it follows that 

a ) e a X( c f ) 

We describe this identity by saying that multiplication of 
fractions is associative. It tells us that when we multiply fractions 
we can group the factors any way we please. The answer will 
always be the same. 
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EXERCISE 21-5 
1. 	Check the following products to see that the associative 

property of multiplication holds.a'. 	 (. x B) x :4 -I x (i x--) 
c. 	 2y x (l) x A}- ) = (2 x l) x J,-. 

2. 	 What does the associative property of multiplication say in 
each of the following cases? 

a. 
a 

b 
14 
T3
23 

c 
-
df 

3 
-

e 
-= 

17 

5 

b.a 37 c 9 e 26 
b12 d = 17 f =-5 

21-6 The distributive property 

In our work with whole numbers we saw that addition and 
multiplication are related to one another by the distributive 
property. This property says that 

a x (b + c) = (a x b) + (a x c) 

for any three whole numbers a, b and c. Here again the same 
property holds for fractions. 

As an example, we show that 

I , (I + ) x ) + ( x) 
In the first place 

I 	x (R+±) 1 x (-A +A)
=X 1 
2
 

24 

On the other hand 

(x 	 i) + (~x~)=A+
=+° 

=J.3.
 
24 

Since the two results are the same, the distributive property 
holds in this case. 
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We can also illustrate this result by pictures. We start by 
representing the fractions j and as shown below. 

<0 . 3 0 . 14 3 I 

4 2 4
By putting these pictures together the sumn + -"appears as
follows:'1 '"i 123~ 

7_ / 

0 2 17
 

Finally, to show what happens when we multiply , + j by 
we shade only the lower half of this rectangle. This gives the 
fibllowing picture: 1 

0 0 i1.,,By~~~~~~~~~~~ths4itrstgte tesm~+~apasa2utn 

0 2 17 

Now consider (I-x j) --( x -).This time we must shade the 
lower halves of the rectangles representing I and before we 
add to them. This gives the pictures 

7­
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We now add by putting these pictures side by side. The final 
picture is the same one that we had when we added first and 
then multiplied by . 

3 12 

This again shows that .x × (2± )) --( x ) 

This result is a special case of the following general formula: 

aQx( e) ( C) (a ) 

This identity 	is kiiown as the distribulive propert for Fractions.,
Since the computations required to show this result are somc­
what long we shall omit them. However, it would give you good
practice in working with firactions to try them for yourself. 

ExsLwiSL 21-6 

1. 	Draw a picture which illustrates the following equality: 
2 - = )+ (2x -)(j -1-+-)(2 	x .­

2. 	By computing the sums and products show that the follow­
ing 'qualities are true. 
a. A x ( 	 A±j) =(Ax.) x- A)() 
C.21 x (A,-t+ -5) (2 x .A) + (2 x 57) 

3. 	By computing the sums and products show that the identity
(I, C (e (a 

b td (b d) ( 
is (rute. 
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21-7 The property of 1 

When we studied multiplication of whole numbers we fbund 
that the number 1 has the special property that when we multi­
ply any 	whole number by it we get the original number back 
again. In other words, 

a x.I a=a 

for any whole number a. We described this property by saying 
that 1 is the identity fbr multiplication of whole numbers. We 
now show that the same thing happens when we multiply a 
fraction 	by 1. 

Let us start with an example: Find -xx 1. 
To compute this product we replace I by the equivalent 

firaction 	 I and multiply. This gives 

3 3 4 3 x 4 34-! =;.x', x4 --41 4 

3Thus the 	product of' and I is 3. 

7 7 5 7 ,5 7
Similarly .l 	 x55 

It is easy to show that this must always happen. For let 

abe any 	fraction. Then 

I 	 a b a xb a 
b b ×bb 

Moreover, since multiplication of fi'actions is cornmItativ e we 
a . Thusalso have I 

b bxl =- and 1 -? 

This shows that 1 is the identity for multiplication of' fractions. 

21-8 Division of fractions 
In an earlier Chalter we studied multiplication problems 

such as 
6 '_[] 12 
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where we were asked to find the miszing factor. As you know, 
such problems are called division problems and we write 

F1 =12,6 
Problems like this also occur with fractions. For instance in the 
equation 

• x F--= i 

we must find a missing factor. As before we say that the missing 
factor is found by dividing by I. We write this as 

I =ll+
 
Thus the two equations
 

F-1 =+t 
say the same thing. The same number makes each of them a 
true sentence. 

To learn how to solve such equations let us start with the 
simple problem 

E= -I 
Here the corresponding multiplication equation is 

2 2 a 2xa 

2 xa. 
Thus we must choose a and b so that ais equivalent to 1. 

3 x b 
But this will happen only if 2 x a - 3 x b. One way to make 
this last sentence true is to let a = 3 and b = 2. For then 
2 x a = 2 x 3 =6, and 3 x b =3 x 2 = 6. Thus 

is the solution of 

xLI=l 

Do you notice anything special about the A? It is "upside 
down". We call - the IN VERSE or RECIPROCAL of . Thus 1 
divided by I equals , the inverse of j. The product of 1 and 
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its inverse, -A,is 1. Let us look at another examle of this type. 
If we want to solve I1 + A we can write 

x0 

Is there a fraction that will make this sentence true? Yes there 
is, and again it is the inverse - because 

5 6 	 5 x6 306x5 	 6x5 30 

Does this 	always happen? In other words, is the solution of 

-]-+ 
a 
- always the inverse of -? 

a 
Yes, PROVIDED a is 

DI F ERENT FROM ZERO. (The reason for saying that a must 

be 	different from zero is that-b will not be a fraction if a = 0. In 
a 

fact, as we have seen, the symbol b is meaningless.) To show_ 
0 

that b is the solution of [- = 1 - when a is different from 
a b 

zero we simply write 

a b axb axb 
b a b xa a xb 

Thus we have proved the following important fact: 

Everyfraction differentfrom zero has an INVERSE, and the product 
of anyfraction and its inverse is one. 

EXERCISE 	21-8 
1. 	Write the division equation which corresponds to each of the 

following multiplication equations: 
a. 	-A-x r1 = 1 b. [: x 0 
c. Dx 	1-=2. d.l3. xD1=lI 

2. 	 Write a multiplication equation which corresponds to each 
of the following division equations. 
a. 	 Di = - +b,- . + 

12 o] . - 3:-b---	 It 
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3. 	 What a:.e the inverses of the following fractions? 

a. 	7 b.14- c.1d. Ri.e. 	2t1 f. 5A g. 7J h. 9-f2 
i.5 j.o 

4., 	 Solvc each of the following equations: 
a. f- 1--- b. ] =1+4' 

, ---1d. 6 x -]= Ix 5e, ] x×-11 1 f. F[] =1--37 

g. i +2172= 
5. 	 Explain why the division equation ] = 1 + 0 has no 

solution. b 

6. 	 Will the division equation ] 
a 0 

ever have a solution? 

21-9 Division of fractions (continued) 

Now that we know how to solve division equations of the type 

El a 

when a is different from zero, it is easy to solve all division
problems involving fractions. Again we start with an example. 

Solve the equation 

[I = + 3 
We begin by writing the corresponding multiplication equation 

3xjFj=j 
What number makes this sentence true? To answer this question 
we shall multiply both sides of the equation by the same number. 
'Vhat number shall we use as a multiplier? Let us try -,-, the 

inverse of 3. We then get 

- x (3 x ]) = x 
Using the associative property of multiplication we can write 
this equation as 

(Of x 3) x El x -
Thus I X> = x 

and we have 1= . X I 
This shows that 4 + 3 
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To see that this answer is correct we go back to the equation 
3 X [] and replace the box by 1. This gives 

3 x D] x3 x-

So the answer is correct.
 
Notice how this problem was solved. We started with
 

RI = +-3 

and wrote the corresponding multiplication equation 

3 x -l=j 

We then multiplied both sides of this equation by 1, the inverse 
of 3. The left side of the equation then became 1 x E-, or just 

-i, while the right side became I x . Thus 

It is not hard to see that this method will always work. For 
instance, let us solve 

This time the corresponding multiplication equation is 

W¥e now multiply by A, the inverse of -. We get 
5 X 3 

A-X (-X [-) = X ­
(. - x j.) x I- = - x 

Thus - - ti* (You should be able to give reasons fbr each 
step of this solution.) 

To check that this answer is correct we replace the box in 
-3x = ' by -"-. This gives 

3 10 3 x 10 30 2 x 15 25 -9 -45-

Hence the answer is correct. 
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EXERCISE 21-9 
1. 	Find the missing factors. 

a. 	 5 xEl = a b. 1=- x4 
c. x 	 d.AxM=1 
e. 	 Dx 1 =-3 f. 0 x 5 2= 

2. 	 Solve the following division problems. Check your answers 
by multiplication. 

a. 	7 --Ab. 6+5 
C. j7A 114-	 d. 2-- 141447
 

e. 	 14- + iOj h. +-4g. +8 	 h. 13n52 17 ­
i. 	 71- 41j j. 3@4 12-z 

21-10 Division of fractions- the general rule 

While working the problems at the end of the last section you
probably discovered the general rule for solving division prob­
lems involving fractions. It is as follows: 

a 

Suppose a and t arefiactions with c differentfrom zero. Then the 
solution of 

a c 

is 	 a d 
b c 

In other words, to divide onefraction by anothermultiply thefirst by the 
inverse of the second. This is sometimes described very briefly as 
"invert and multiply". 

How can we show that this rule is true? Wejust carry out the 
method used in the last section in the general case. This time 
we start with 

c a 

d 
and multiply by d. (Notice that c must be different from zero. 
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For otherwise d would be meaningless.) We get 

d /ca ad 
-x (2 b c 

\C ad b xC 

I x-= axd 
a d 

b c 

Thus the rule is true, and we now know how to divide any
fraction by any other fraction provided the second fraction is 
different fromn zero. 

There is one more point to notice about division of fractions. 
Do you see what it is? Remember that when we studied division 
of whole numbers we found that it is not always possible to 
divide one whole number by another and get a whole number 
answer. For instance the equation Ej = 7 + 2 does not have a 
whole number solution. But with fractions this does not happen. 

For we have just seen that when a 
- and c 

- are fractions ab _ c 

is again a fraction provided that c is different from zero. In 
other words the equation 

a c 

can always be solved ifc is differentfrom zero. This is one of the most 
important properties of fractions. 

EXZRCISE 21-10 

a c axd.1. Verify that- Id in each of the following cases. 
1bx c 

a 7 c 8 ba 23 c 5 
a 1-5 d 11 2 5 
a 9 c 21 

c. 16 d T3-8 
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2. 	If a man can plough -AO- of a field in one hour, how long will 
it take him to plough the whole field? 

3. 	Five men can paint , of a house in one day. How long will it 
take them to paint the entire house? 

4. 	 Three boys can pick 21 baskets of nuts in I I hours. How 
much can they pick in one hour? How much in 21 hours? 

5. Suppose that a and Care fractions with cdifferent from zero. 
Show that 

x 
 =
 

How would you describe this fact? 
6. 	 Show that 

d b 

when c is different from zero. How would you describe this 
fact? 



ANSWERS TO SELECTED PROBLEMS 

CHAPTER 1 

EXERCISE 1-1 

1. a. Saturday, Sunday b. u, v, w, x, y, z 
c. January, June, July 

2. a, d, e, f, g describe sets; lie others do not. 

EXERCISE 1-3 
1. a. The set of days in the week whose English names begin with 

the letter T. 
b. The set made up of the first five letters of the English alphabet. 
c. The set made up of the first three months of the year.
d. The set made up of the first five even numbers starting with 2. 
e. The set made up of the first five multiples of 5 starting with 5. 

2. a. 40, 50, 60 b. 14, 17, 20 
c. 84, 80, 76 d. 10,000, 100,000, 1,000,000 
e. 36, 49, 64 f. 2,222, 22,222, 222,222 
g. 66, 55, 44 

3. a, c, d 
4. a. {3, 6, 9, 12,..., 1,098} b. {9, 10, 11, . . . ,99, 100} 

c. {5, 15, 25, 35, ... } d. {4, 7, 10, 13, . . . } 
e. {7, 77,777,...} f. {5, 6, 15, 16, 25,26,...} 

EXERCISE 1-4 
1.a. {November} b. { } c. { }


d.{} e. {42}
 
2. No, it contains the whole number 0 as an elcment. 

EXERCISE 1-5 

1. a, c, g, h 

EXERCISE 1-6 
1a. (i), (ii), (iv), (v) b. (2, 4, 6, 12) 

c. {1, 7, 9, 11} d. {2, 7, 1I} 
e. {4, 7, 9, 11, 12} 

2. a, C 
3. 2, 3, 5, 7,II,13, 17, 19, 23, 29, 31, 37, 41, 43, 47 

nu I-,, 285 
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4. 	a. {36, 38, 40,..., 50} b. {, 3, 5, 7, 9, 11,...} 

c. 	 {2} d. {} 
e. 	 {3, 9, 15, 21,...} f. {6, 12, 18, 24,... } 

5. 	 Yes, because every element of X belongs to Z. 

EXERCISE 1-7 

1. a. 	{ }, {x}, {y}, {x,y}
b. 	 ,{Ab, {0}, fD,{,o,{A } @ } {A, 0, EO) 
c. 	 { }, {a} 

2. 	 Where A = B 
3. 	 There is only one subset of { }. It is { }. 
4. 	 The subsets of A are { } and {1}. This shows that every set con­

taining a single clement has cxactly two subsets. 
5. 	 See la above. 
6. 	See lb above. 
7. 	 a. There are 16 subsets of {l, 2, 3, 4}. They arc 

{ }, {1}, {2}, {3}, {4}, {1, 2}, f 1, 3), {l, 4}, {2, 3}, {2, 4}, {3, 4},
{1, 2, 3}, {1, 2, 4}, {1, 3, 41, {2, 3, 4), {l, 2, 3, 4}.

b. When A contains 5 elements A has 32 subsets.
 
When A contains 6 elements A has 64 subsets.
 

EXERCISE 1-8 
3. 	 a. The picture should look like this: 

(Other pictures arc possible) 
4. 	 The picture should look like this: 

E 0 
EO 

R 
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EXERCISE 1-10 

1.The pairs in a, c and d are equivalent. The others are not. 
2. B, D and E are equivalent to A. Exact matchings are 

A:{1,2, 3, 4, ... } 

B :{O, 5, 10, 15,...} 

A :{1, 2, 3, 4,...}IIIt 
B :{0, 1,2, 3,...} 

A:{!,2,3, 4, ... } 

B.{,4,9,16, ... } 

4. Yes. An exact matching is 

{1$ 2, 3, 4,. .. 

{201, 202, 203, 204,...) 

CHAPTER 2 

EXERCISE 2-1 

1.a. 	A u B ={1, 2, 3, 5, 7, 9} b. A u B ={a, c,e, i, n, o, u} 
c. A u B - {2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21}
d. A 'B = {1,2, 3, 5, 7, 9, 11, 13, 15, 17, 19) 
e. AuB={O,5, 10,15,..., 100) 

2. a. 	 15 elements. This happens when A and B have no elements in 
Common. 

b. 10 	elements. This happens vhcn A is a subset of B. 
3. Yes. They contain the same elements. 
4. a. 	Yes, the empty set is a subset of every set. 

b. AuB={ 
5. 	Every element of A belongs to A U B; every element of B belongs 

to Au B. 
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EXERCISE 2-2 

4. 

2 17 2 7 
11 7 13 3 

11 19 519 5 

AUB 
5. 

1 525: 
15 :

103 0: 2025) 
A AUB 

6.66.6

5 

E:12 
A, B,AUB 

EXERCISE 2-3 
1. a. ArnB={5,8} b. ACoB = {n} 

c. AnB = {12, 24, 36} d. AnB = {20,40,60,... } 
e. An B ={ } 

2. a. 5. This happens when A is a subset of B. 
b. 0. This happens when A and B have no elements in common. 

3. Ycs. They both contain the samc elements. 
4. A=B 
5. Every element of A n B belongs to A and to B. 
6. Yes. Every element of A n B belongs to A U B. 

EXERCISE 2-4 

2. a. 14 

b. 

2 5 1 12 

6 lo1 14 
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3. 7 
4. a. 

2476 10 

b. 7 c. 8 d. 3 

5. a. 

2 7 
3 10 B 
4 1112 9 

b. 9 c. 6 d. 3 

6. C is a subset of A n B 

ExERCISE 2-5 
1. a. A n C ={2, 3, 7} 

b. Au C ={0, 1,2,..., 12} 
c. BnC={2,3, 10, 12} 
d. An (B u C) = {2, 3, 7, 9, 11} 
e. A n (B n C) ={2, 3} 
f. (AnB) nC={2,3} 
g. B u (An C) ={2, 3, 7, 9, 10, 11, 12, 13, 14}
h. (An B) u (An C) = {2, 3, 7,9, 11) 
i. (AuB) uC={0, 1,2,..., 14}
j. (A U B) n (A u C) = {1, 2, 3, 4, 6, 9, 10, 11, 12}
k. A u (B n C) = {1, 2, 3, 4, 6, 9, 10, 11, 12) 
1. Au(BuC) ={0,1,2,..., 141 

3. Thc sets arc equal. 
4. At lcast 4 must be punished. 
5. 

CT 
3510I


1101 r40 10 
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The picture shows 35 + 40 = 75 in set C,
 
40 + 10 = 50 in set T,
 

10 not in T or in C. 
Altogether there are 10 + 35 + 40 + 10 95. Thus the 
statement is false. 

6. 	 B 

There are 14 elements in all. 

CHAPTER 3 

EXERCISE 3-1 
1. 	A and C are equivalent.
 

E and F are equivalent.
 
B and H are equivalent.
 
D, G and I are equivalent.
 

3. 	 The second is correct because it shows that the sets match exactly. 
4. 	 The empty set. 

ExERcIsE 3-2B 
1. 	The three sets are equivalent. 
2. 	 C has at least as many elements as A. 
3. 	 A has more elements than B. 
4. 	a. (iv) They are the same. 

C. 10 
d. 52 

EXERCISE 3-3 
1. 	B, D, E, A, C. C has the most elements; B has the fewest. 
2. 	 A has one more element than C. 
3. 	 S, B, C, T 
4. 	 D, B, A 

D, C, A 
E, B, A 
E, C, A 
F, B, A 
F, C, A 
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CHAPTER 4 

EXERCSE, 4-2 
2. 	 a. 5<7 b. 12>0 c. 2+2=4 

d. 	2-2<3-1-2 e. 9+7>8+7 f. 14+12 13--13 
g. 	6 + 8 + 10 > 5 -- 7 + 9 

3. 	a. {O, 1, 2, 3, 4, 5} b. {26, 27, 28,... } 
c. 	 {13, 14, 15, 16, 17} d. {O, 3, 6, 9, 12, 15, 18} 
e. 	{12, 14, 16, ... , 28} 

4. 	 Yes. The number 0. 
5. 	 No, there is no largest whole number. 
6. 	 Yes. 
7. 	A has fewer elements than B. 

EXERCISE 4-5 
2. 	 10 3. 4 4. 6 in each 

CHAPTER 5 

ExERCIsE 5-5 
2. 	 13 is four units to the right of 9.
 

5 is four units to the left of 9.
 
3.7 4.30 5. 7 6.5 
7. 	 a. 8 b. 24 

c. 	3n -1-2; i.e. three times itplus 2. 

CHAPTER 6 

EXERCISE 6-1 

1. 	The whole number 7f is less than the whole number n if n is to 
the left of n on the number line. 

EXERCISE 6-2 
2. 	 a. Yes. For instance, a = 6 and c = 7. 

b. Yes. 
c. 	 Yes. For instance, a = 7 and c = 6. 

c a b d 
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4. ­

n b p q a 

5 . a. 
n p d- f r 

b. p <a, b <p,i <q 

EXERCISE 6-3 
2. a. 3 b. 8 c. b-a-

CHAPTER 7 

EXERCISE 7-3 

12: nIl, <TT 

26: NNlIIIl, <<4:T 
52: lNNNN Ii, T<<<<<rr 
l3a:@flni, T<0 "­

201: @@I, TTT<<" 
349: 00G~nnnn, -'rTr,,<f<rr 

lllllll 

EXERCISE 7-7A 
2. 30-+-6=36 3. 70--+1 =71 4. 90+-5=95 

EXERCISE 7-7B 
2. (i) 2,134, 00Ginnniml 

(ii) 5,213, 00, 

(iii) 3,048, e0@,nnnnmil 
3. a. ten-thousands b. hundred-thousands 

c. millions d. ten-millions 

7. a. 276,133 b. 7,132,432 
c. 44,444,444 d. 12,345,678 
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EXERCISE 7-8 
3. 000,nnnnnill,3,053 

2,309
 

"?/p? NNn 31,451 

c-,c:c_, c,@ 700,104 

C°( 6,509
 

@@ I,5,001 

C1_
C"_1 C1,, 7,602,020 

oe nn 

/p, 10,000 
EXERCISE 7-9 
1. MCXIII 2. MMCMIV 3. XXXIV 4. XCV 

CHAPTER 8
 
EXERCISE 8-1
 
2. 4 is the largest one-digit number. 

24 is the largest two-digit number.
 
100 is the largest three-digit number.
 

EXERCISE 8-2 
1. a. 3 0 2fl,., 77ten b. 3 ,0 2 flvc, 3 8 6 tn 

c. 1,234,1,,, 194t,,, 

CHAPTER 9 
EXERCISE 9-2 
1. a. 8 b. 8 c. 10 d. 10 
3. They are the same; i.e., a + b = b + a. 
4. a. b-=0 b.b>0 
5. a = G and b = c. 
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EXERCISE 9-6A 
1.2 2.7 3.11 4.8 5.2 6.4 

EXERCISE 9-613 
2. 	 6 
3. 	 a. None. 

b. The children with numbers 1 and 7 are without partners 
when the sum is 14. 
The children with numbers 1, 2, 3 and 8 are without partners
when the sum is 16. 

c. 	 The children with numbers 1, 2, 3, 4, 5, 6, 7 and 10 are 
without partners when the sum is 20. 
All the children except those with numbers 11 and 12 are 
without partners when the sum is 23. 
All the children are without partners when the sum is 24. 

4. 	 The pairs are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1),
(2, 2), (2, 3), (2, 5), (3, 1), (3, 2), (3, 3),(2, 4), (2, 6), (3, 4),
(3, 5), (3, 6), (4, 1), (4, 2), (4, 3), (4,4), (4, 5), (4, 6), (5, 1),
(5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (6, 1), (6, 2), (6, 3), (6, 4),
(6, 5), (6,6)
 
The sums are 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12.
 
Seven is most likely to turn up because more of the sums are 7
 
than any other number.
 

5. 	 a. 6 b. 11 c. 1,001 d. 1 
6. 	 b is an even number. 

EXERCISE 9-7 
2. 	 All answers arc 0. 
3. 	 From the property of 0 we know that 0 + I = I. But, by putting

0 in the bcxes in Ej + I = E] we have 0 + I = 0. Together 
these two statements say that I = 0. 

CHAPTER 10 

EXERCISE 10-2 
1.a. 3+4=4+3 b. 	6+3=3+6 
2. 	 a. 3 + 4 =4 +3 b. 5+4=4+5 
4. 	a. 2 b. 9 c. 7 d. 4 e. 10 f. 0 
5. 	 a. and b. Any whole number. 
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EXERCISE 10-3 
2. 	 9. It is not an identity since it is not true for all whole numbers. 
3. 	Yes, because it is true for all whole numbers. 
4. 	 a. 3d1 =1+3 b. 5+2=2+5 

c. 0- -4=4+0 	 d. 27+52=52+27 
5. 	 a. 8 b. 11 c. 2 

EXERCISE 10-5 
1. 	a. (1 +2) + 1 I + (2 + I) 

b. 	(4+3) + 0 4 d- (3 + 0) 
c. 	 (5 +5) + 2 5 + (5 + 2) 
d. 	(3 d- 7) + 6 =3 + (7 + 6) 

2. 	a. 5 b. 4 c. 2 d. 2 e. 7 
3. 	 a. 0 b. any whole number c. 6 

d. any whole number e. 2 

4. 	 b. and d. arc identities; the others are not. 

EXERCISE 10-6A 
1. 	a. and b. They have the same length. 
2. 	 a. The segment from 0 to 3. 

b. 	The segment from 0 to 4. 
c. 	 The segment in b is larger. 
d. 	The segment from a to b is longer than the segment from 

c to d if b - a is greater than d - c. They are of equal length 
if b - a =d - c. 

EXERCISE 10-6B 
4. 	 The whole numbers starting with 5 and ending with 13. 
5. 1 + 2 + 3 + 4 + 5 =15 
6. 	 9 

EXERCISE 10-7 
4. 	 a. (2 -P3) H-4= (4 - 3) - 2 

b. associative, commutative 

EXERCISE 10-8 
1. 	associative, commutative, commutative, associative 
2. 	 Yes, for both questions. 
3. 	 There are 26, ombinations. They are 

1 +14, 2+ 13, 3+ 12, 1+2+ 12, 4+ 11, 1+3+ 11, 
5 + 10, 1 + 4 + 10, 2 + 3 + 10, 6 + 9, 5 + I + 9, 
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41-2+9, 3-1-2+I 9, 7+8, 64-1+8, 5+2d-8,

4+3 -48,4 + 2 -1- 1 + 8, 7 + 6 + 2, 7 + 5 + 3,

7 +-5 + 2 + 1, 7 + 4 + 3 + 1, 6 -- 5 - 4, 6 + 5 + 3 + 1,

6 + 4- 3 + 2, 5 + 4 + 3 - 2 - I
 

4. The first player announces the number 1, 7, 13, 19, 25, 31. 

CHAPTER 11 

EXERCISE 11-1 
1.4 2... 3. 12 4.5 5. 0 
6. 10 7, 14 8. 8 9. 18 10. 12 

11. 24- [=10, [] =8 12. 2 [-1=7, [n=5 
13. 5 - [1= 12, [=7 14. 12 ±- [1=25, [1=13 
15. 4-1- [] = 17, [ = 13 

EXERCISE 11-2 
1. a. E-1=7-5 b. -=9-5 c. [] =26- 17 

d. [1-=20- 11 e. [= 12- 12 f. [1]= 19-8 
2. a. 6-1- [] =8 or []-f-6=8 

b. 4-- E-1=4 or []-4- 4 
c. 24- [1=9 or [1-P2=9 
d. 7--[]=8 or [1+7=8 
e. 9+ []=15 or [] 9=15 
f. 14+ [] =31 or [1+ 14=31 

3. a. 3 -P [ = 8, [= 8 -3, [] = 5 
b. 6 + []= 15, []= 15 - 6, [1= 9 
c. 7 + [] = 12, [ = 12 - 7, 1 = 5 
d. 9 + [] = 27, [_= 27 - 9, []= 18 
e. 15 + [ = 32, [ =32 .- 15, [ = 17 

EXERCISE 11-3 

1. [= 13 - 6, -1 = 13-- 7 
2. [1 = 14 -- 5, [l = 14 9--9 
3. [= 6 - 0, 1 = 6 - 6 
4. [1 = 12 - 9, [1 = 12 - 3 
5. [1 = 14- 7 
6. [ = 15 - 15, [1 = 15- 0 

EXERCISE 11-4 
1.a. 7-3=4 b. 9-4=5 c.8-4=4 
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3. 	 a. A - B = {a, c, e, g} 
The number of elements in A -- B is equal to the number of 
elements in A minus the number of elements in B. This 
happens when B is a subset of A. 

b. 	A - B = {a, c, d, e} 
The number of elements in A - B is greater than the number 
of elements in A minus the number of elements in B. This 
always happens when B contains elements which do not 
belong to A. 

EXERCISE 11-5 

1. 0 2. 7 	 3. No whole number 
4. 	 1 5. No whole number 6. 0 

EXERCISE I i-6 

1. a. 	 (12 + 4) - 4 = 12, (12 - 4) +-4 = 12 
b. (5 	+ 0) - 0 5, (5 - 0) + 0 = 5 
c. (0 	d- 0)- 0 =0, (0 - 0) + 0 =0 

2. a. 	When B is a subset of A. 
b. 	When A and B are disjoint; that is, when they have no ele­

ments in common. 

EXERCISE 11-7 

2. 	 All whole numbers starting with I and ending with 11. 
3. 	 6 
4. 2. 	Eleven points are marked. 
5. 	 Subtraction is not commutative. 

EXERCISE 11-8 

2. 	 Subtract 4 fironi both sides of 4 < 9. This gives 0 < 5. 
3. a. 	Subtract a from both sides of a < b. This gives 0 < b - a. 

b. Add a to both sides of 0 < b - a. This gives a < b. 

CHAPTER 12 

EXERCISE 12-2 

1. 	27 2. 10 3. 10 4. 7 
5. 	 7 6. 20 7. 30 8. 40 
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EXERCISE 12-3 
1. Let the people be A, B, C. The chart is 

fish beef curry 

A (A, fish) (A,beef) (A,curry) 
B (B,fish) (B,beef) (B,curry) 
C (C, fish) (C, bccf) (C, curry) 

There are 9 combinations. 

2. 	 35 

EXERCISE 12-6 

2. 	 1 x ameansaadded toitselfI time. Thus 1 x a =a.
 
b x I means 1 added to itself b times. Thus
 

b x =1+1+...-+-1 
Since there are bones 	in the sum the total is b. Thus b X 1 = b. 

CHAPTER 13 

EXERCISE 13-1 
2.3 3.12 
4. 	 When a whole number is multiplied by I the number does not 

change. When 0 is added to awhole number the number does not 
change. Thus we call I the identity for multiplication and 0 the 
identity for addition. 

EXERCISE 13-5 
1. a. (2 x 2) + (2 x 5) 4 + 10 = 14
 

2 x (2 -5) - 2 x 7 = 14
 
b. 	(7 x 6) + (8 x 6) = 42 + 48 = 90
 

(7 + 8) x 6 15 x 6 = 90
 
c. 	 (3 x 4) + (3 x 5) = 12 + 15 = 27
 

3 x (4 + 5) = 3 x 9 =27
 
3. 	 a. 4 b. 4 c. 6 d. 2 e. 6 
4. 	 (2 - 3) ,<(6 ±4 ) = (2 + 3) x 6 + (2 d- 3) x 4 

= (2 x 6) -- (3 x 6) + (2 x 4) ± (3 x 4)
5. 	(a -b) x (c-d)=(a +b) x c+ (a +b) xd 

= (a x c) + 'b X c) + (a x d) + (b x d) 
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EXERCISE 13-6 
1. 	Statements (c), (e) and (f) are correct. The others are not 

correct. 
3. 	 4, 5, 6 
4. 	 (1 +2+-3) x4=6 x4=24
 

Also (I x 4) + (2 x 4) + (3 x 4) = 4 + 8 + 12 =24
 

EXERCISE 13-8 
l. 	 a. 7 x 6 =7 x (5 + IN
 

=(7 x 5) + (7 x 1)
 
= (5 + 2) X 5 + (7 X 1)
 
= (5 X 5) + (2 X 5) + (7 X 1) 

25 + 10 + 7 
42 

The problem can be worked in other ways as vell. 
f. 	 11 x 11 (5 + 5 + 1) x 11 

= (5 x 11) + (5 x 11) + (1 x 11) 
= 5 x (5 - 5+ 1) --. 5 x (5 + 5 + 1)d- (1 x 11)

(5 x 5) + (5 x 5) -- (5 x 1) + (5 x 5) 
-P (5 x 5) d- (5 x 1) + (1 x 11)

=25 - 25 - 5- 25 - 25 -F 5 + 11 
= 121 

CHAPTER 	 14 

EXERCISE 14-1 
1. a. El-=45 5 b. E=27-3 c. E=54+6 

n-= 9 El = 9 I-=9
d. 	 n-=84-7 e. E=36+9
 

E=12 -]=4
 
2. 	 Yes, because 0 x EJ = 0 for all whole numbers. 
3. 	 Yes, because I x E E] for all whole numbers. 
4. 	None, because 0 x fl -P-0 for all whole numbers. 
5. 	 4 28 - 7 and 7 28 -4 
6. 	 The factors are 1, 2, 3, 4, 6, 8, 12, 24. 
7. 	3 x 0 = 18, [] = 18 -- 3. The number is 6. 
8. 	 ( -+5) x3=6 

El 5=6--3 
EJ-5 =2
 
El=2x5
 
El 	= 10 
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9. The number is 54. To find it compute £he product 

2 x3 x3 x3
 
EXERCISE 14-2
 
1. 63=2 2. 12-4=3 
3. 20±4=5 4. 5-5=1 

EXERCISE 14-3 
1. a. 26 - 13 = 13 b. 21 - 7 = 14
 

13- 13 =0 
 14-7=7 
7-7=0 

Thus 26- Thus 21 7=313 =2 	 -­
c. 7 d. 8 e. 5 f.O 

EXERCISE 14-4 
1. a. 6 	 b. 7, remainder 2 c. 7, remaindcr 5

d. 7 	 e. 7, remainder 7 f. 10, remainder 2 
2. a. 1, 2, 3,4, 12 b. 	1, 23 

c. 1, 2, 4, 7, 14, 28 d. 1, 2, 3, 4, 6, 9, 12, 18, 36 
e. 1, 17 	 f. 1,2,4,5, 10, 20, 25, 50, 100 
g. 1 	 h. all counting numbers 

3. 7 gallons, 2 shillings lcft 
4. 75 
5. a. 2 	 b. 34 c. 5 

d. 4 	 e.0 f.6 

EXERCISE 14-7 
1. 36 = 2 x 2 x 3 x 3 2. 2 9 is a prime number. 

3 . 8=2 x2 x2 4. 100=2 x2 x5 x5 
5. 91 =7 x 13 	 6 . 6 4 =2 x2 x2 x2 x2 x2 
7 . 60=2 X 2 x3 x5 8. 500=2 x2 x5 x5 x5 
9. 3,000 = 2 x 2 x 2 x 3 x 5 x 5 	 x 5 

10. 102 = 2 x 3 x 17 

EXERCISE 14-8 
1. 1,3 2. 1,2,3,6 
3. 1, 2, 4., 5, 8, 10, 20, 40 4. 	 1, 2, 3, 4, 6, 12 
5. 1, 3,9 6. 1, 2, 4, 7, 14, 28 
7.1,7 8.1 
9. 	 1, 11 10. 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 

30, 60 
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CHAPTER 15 

EXERCISE 15-2
 
1, 2, 3. No for all three.
 

CHAPTER 17 

ExERCIsE 17.2 

1. 2,350 2. 10 3. 3,700 4. 100 5. 21 
6. 9 7. 920 8. 100,000 9. 40 10. 90 

11. a. (i),'0,,. (ii) 12011,, (iii) 2,340l,., (iv) 300,1, 
(v) 3,1001, (vi) 2,000t, , (vii) 121,000O 

c. Yes 

Ex LcRsr 17-3 
The products arc as follows. 
1. 608 2. 413 3. 498 4. 442 5. 4,891 
6. 1,710 7. 2,975 8. 8,008 9. 16,337 10. 	 117,780 

11. a. 231 b. 224j,,, c. 1,13011, 
d. 2,412,1,, c. 10,012f, 

Exl.nacis, 17-4 

The products arc as lollows. 
1. 3,312 2. 17,248 3. 19,497 
4. 7,584 5. 360,372 6. 101,888 
7. 1,013t,, 8. 12,23411,o 9. 33,341 fl,, 

10. 111,24t3,1, 

EXERCISE 17-5 
The quotients arc as tbllows. 
1. 	91 2. 89 3. 92 4. 42 5. 1,005
 

3 4 4
6. 1,030 7. 42f,, 8. 23111. 9. 1211, 10. n 

ExERCISE 17-6 
1. 384. 2. 709 3. 1,281 4. 208 
5. 4,811 

CHAPTER 18 

EXERCIsE 18-4 
2

.42. P 1 1 
­

4. ­
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EXERCISE 18-5 
1. 	-7-or 10- 2.)- or3j 3. kq or 164. 7 	 -*-2. J-4-or3 64 -:1Zor 6-L) 5. 2(22--7 n4 -4 or 6,f,, 6 or 62-?1­
7. 	 -- or 1 8. 12'j,- or 2T 

12. 3j oranges 	 13. 2 

EXERCISE 18-6 
1. 	A-=!B 2. A= 2B 
3. A--B 4. 	 A A-B 

EXERCISE 	 18-9
 

. > , is true. 2 > A
 
3. 	 3 = 8 

4. 	 a. is greater b. --is greater
C. is greater 	 d. .4 is greater
e. 	 - - is greater f* isig greater100 	 f-o A2--

5,> is true 
-c 

CHAPTER 19 

EXERCISE 19-11.a. P _1 -	 13,. P : - , 
T-C-3Q.2 	 72 V.2Q:"4 8 

c. 	 P :l-n, 11", 111 d. P 25
Q : 1 , k	 Q :25'-", 25A, 

5. 7,-,7. The fractions a, c and d belong to the set. 

EXERCISE 19-2 

2. = v. T 

44.4. '2 = =g12 
5. 	a. - -2,l 

24' 	 1 2) 8 
b. 	!(I c. 100 
37 1 l 	 33 3.000.000 

8. 	 a. 25 orange trees, 75 banana trees 
125
oo , Toor

b. 	150 orange trees, 450 banana trees 
1 50 4 50 
c.No, uo ioc. 	 No, because 1-0 is not a whole number. 
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EXERCISE 19-3 
.a. (I, 3% •4. 
b.	 { 2 , __ A 21 • . •} 
c. 	 {A, 10 15 20 

,d.f 2-,1'', 16(' 
4.a.- ) (ii)() TWO 

e.{- .3 8 A! 761 

(iv) 12 18J- (v) 
3. a. i V3 

Tg'-c-}

{.a 4 .128 

{i) l -iF7 :.4 .a. 4 1.. - 4. 0f 	 7 1o 2 1-_'2 

'YB -7 •7 .t•
 
4zjY5. ;-, 25 84
a. b04... 

d. 	96 e. 6 f. 15 
6. 	 a. There is no such number. 

b. 10 	 c. 91 
d. There is no such number. 

EXERCISE 19-4 
2. 	 The fractions in d and e are equivalent. The others are not. 
4. 	 No, because one fraction cannot be equivalent to two different 

fractions in lowest terms. 

CHAPTER 20 

EXERCISE 20-1 
1. 	The sums are as follows. 

a. 	 c. S-b.or 11 d. .1 or 21 
e. 	 2A or3 f. 3 or3kor 

EXERCISE 20-2 
.1a-x 	 b. '@c. - oryd. -8 e. 2- or - ­

8 8 8
3. 	 a. -4 4 or 7 b. -' or 6A17 

1"C. -	 d. 
12 -or 1T 

e. - or l--" f - or 41
 
g" - or 8r1% h. - or 6;­

2 -6i. 	 -V -zor 5 -1 j. o 0--
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4. 	A+A­
5. + - 4- or 

6. 	 No, because A + A =-aG, 7, which is greater than I. 
7. 	 Yes, he would get the right answer when a = 0 and c 0, but 

no other time. To see this suppose that 

(a x d) (d x ,) a c 
bxd b+d 

Then we would have b x d b + d. But this can happen only
when b = 2 and d = 2. In that case (a x d) + (bx c) is equal 
to 2 x (a + c.'Thuswe would have to have 2 x (a - c)= a + c. 
This can only happen when a + c = 0. Thus a = 0 and c = 0. 

8. 	 No, because I -1I P never equal to Nwhen p and 
p q Pq P -- q
 

q are counting numbers.
 

EXERCISE 20-3 
1. a. 10,-c b. 24, c. 75,d. ~ b 24, 2 	 '-1:
d .60j ) e. 105," 1 f. 120, 1i2o
 

;xo~,
g. 630, hh. 1,386, -A 8'' i.2,0 3 -.100i. 	 2,-100, or 5..­1 31 

j. 	 60, 2-2) or 3:b. 7
2. 	a. -I".d.e 

3 	 _500 1 7 5 211_43 2 0 .1 ),4_ 
-
(100 -6, o'uu, 60U-,"0o 

4. 	, -1,1, 1, 1 1
 
4 (1, 8; 12) 2
 

EXERCISE 20-4 
4. 	The sums are as follows: 

a. 	-1.-or 'I b. 2-,.7_
 
.UL d. 3a + 2c
 

24 6
 

20 	-- bc 

EXERCISE 	20-5 

The sums arc as follows: 
4- 2. 2-¥6 or L:' 3. Al 

4 .	 .
2 77 .6a . + .. 4b - . 3c5 

48 

EXERCISE. 20-7 

3. 	 a. or I b. 2C. j' 
d. 	 2-2fi e. ,'4. 
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4. a. 1-:1 b. "r" . "4 

5. , inches, or 191 inches 

6. 2. 

7. 7--12 
8. -11. 

9. No. For example - 4 cannot be solved with fractions. 

CHAPTER 21 

EXERCISE 21-1 
12 4. 3 5.-33 6. or 23­

7. ",2'-I or 5601 8. 20 9. 65 or 10r 
10.3 or 26 2 11. 62 12. 20 

EXERCISE 21-31. .8,- 2. 3. -4 . .. Af6. 7. 2. )!!: 8 122 ffk 1 1o. jj..1 
12. -- 13. Each gets . of a basket 

EXERCISE 21-5 
1. The products are as follows: 

a. AAA- b. - C. L1, 8-U or 15 5 

EXERCISE 21-6 
2. The sums and products are as follows: 

2 7
a. "'t b. 40---J9,. c. 3­

d. f b d xf.../ 

b xdxf 

- (a= < Xf)( (ax d x) _ 
d)bbdf-b xfbbxx
 

-(a x c x) -f (a x d X e) 
b x d xf 

Since both expressions are the same we have 

a x (c:, e _-(a ; -X 
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EXERCISE 21-8 
1. a. E'l --- b. ["]= 7. - [ 2 -1­

d. 1=-+ E)= IA 

2. a. I- ,--
 b.Elx A c. E x =-1.,­
d. E] - x c a 

3. a. b.-Ui c. .12 e -

Sh. no inverse
4. a. :-A-, b. -L C. 1- d. e. 

3. 7 g.day 

5. EXRCSo= 1-21-9I ohas no solution because 0 x F11= 0. e.A 
g. Ii. 17 1 * (1 

6. in s- never has asolution because X0 ion. 

EXlRCISE21-9 
Ia. , b. -7- c.A- d. 1 0 e. -1 f.3 

2. a. 2j b. 10 c. 12 d. 7 7 f.1511. 3093 -5717. 1 
g. Ts 'N- TY',-J T , T-S 6 

EXrRCISr 21-10 
2. 3),f hours 
3. 11 days
4. 27 rI- noehor a 

S,I o i one our;--5'- )r 4-,L in 21hours. 
5. Division is the inverse of multiplication. 
6. Multiplication is the inverse of division. 
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FOREWORD 

In this volume of Basic Concepts of Mathematics, the Teacher 
Training Writing Group at the 1964 Entebbe Mathematics 
Workshop has completed "Structure of Arithmetic", the first 
part of an experimental text to be used by primary teachers in 
Training Colleges. The text was planned at the 1963 Entebbe 
Mathematics \Vorkshop, and four units were written then and 
pulblished in a preliminary edition. The units now added treat 
integers, rational numbers, real lumbers and approximations. 
In these units, the number system of arithmetic is further en­
larged. The operations of arithmetic are studied with particular
attention to problens arising in everyday situations and to the 
systematic underlying properties of the operations. 

As in the earlier units, the exercises have two purposes: to 
develop and extend the understanding of the mathematical 
content presented in the text, and to suggest I)y example kinds of 
exercises the trainee could create for use in his own classes when 
lie becomes a teacher. Answers for the moreCdifficult exercises 
ill this volume will be fbund at the end of this book. 

The preliminary edition has been produced under pressure of 
time, and there is still much to be done by way of improving 
exposition and organization as well as adding to the stock of 
exercises. To all users, therefbre, the Teacher Training Writing
Group directs an earlnest request for comments and suggestions 
which can contribute to the work of preparing a more finished 
text. Reports from experi'imental use of' the preliminary edition 
are a source ot'ideas which will make the next edition of greater 
value to mathematics education. 

The succeeding volume of' Basic Conceils ()f M! /hemaliw , also 
prepared by the Teacher Training Writing Group at the 1964 
Entebbe Mathematics Workshop, is devoted to "Inttroduction 
to Geometry", the second part of tie text planned in 1963. 
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Fractions UNIT IV
 



Chapter 22 

ORDER PROPERTIES OF FRACTIONS 

22-1 R2',-sion of order 

When you learned about fractions on the number line, youfound how to decide whether one fraction was less than another
fraction. For example, if you draw a number line showing 
and lj--, 

0 I I I I 

3 6 

you see that the point marked ' is to the left of the point
marked 1-1, Therefore j is less than I--, and we write '- l .Since the point marked l- is to the right of the point marked ,
it is also correct to say that l- is greater than ,. In symbols, 
1- > . 

EXERCISE 22-IA 
1. Draw a number line and locate each pair of fractions on it. 

Which fraction in each pair is greater? 
a. 21 andA b. . and A 
c. 1I and -. d. A and 1­

2. Write fractions less than each of the following fractions: 
S, 6, 7 

Do you remember that if you have three different numbers
shown on a number line, one will be between the other two? 
For example, of the three numbers , 1 and 1 , 1 is between 
4 and 14. 

0 2 2
 
In symbols, you can write I < 1 < 
 I . This means the same 

thing as writing 

j < 1 and 1 < 1I 

2 



3 Order Propertiesof Fractions 

What do you see about and 1 , the two outside points? You 
see that I < 1 because is to the left of 1 . 

EXERCISF 22-lB 
1. Locate the three fractions in each of the following sets on a 

number line, and say which one is between the other two. 
Also say which of the outside two fractions is the greater. 
a. I,?t b. 3 , 2 , 1U C. 	 d. , 

2. 	Make up three sets, each containing three different fractions, 
and show each set on a number line. 

22-2 Order and addition and subtraction 

Some properties of order which we already know for whole 
numbers are alio true for fractions. Let us start by locating 1 
and y-on a number line. We see that is to the left of -. That is, 

<-. If we add the same fraction A to both j and 1, we move 
each to the right a distance of -. 

1 1 ? 2 3 - 4 - 5 
2 2 2 2 2 

The sums are 2 and 5, and we notice that 2 < 5 because 2 is 
to the left of 5. The sums are in the same order as the original 
numbers I and -7..We have 

<-I-.. 
j +A <- + 

2<5 
a C a C 

Now think of a and Cas any two fraction, with a < -. Then 

will be to the left of- on a number line. If we add the fraction 
oananalsotoathtpoin 

and also to c, the point for a is replaced by a point P-units q 	 fo q 
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to the right of a, and the point for is replaced by a point P 
q 

units to the right of- The point + Pqis still to the left of. d 
Thus: 

a c 

then a p < + _ 
+q -


Do you recognize this as one of the properties of order which 
we knew before only for whole numbers?


Again, let a and b be whole numbers with a < b. We have

already seen that if c is any whole number which can be sub­
tracted from a to make a 
- c a whole number, then 

a -c<b -c 
The same property is true for fractions. 

5 55 15 2. 

For example, from both sides of the inequality 

4 < l3 

we can subtract A to obtain 

< 

that is, < 1 
We still have to be careful that the number we subtract isnot too large. For example, we cannot yet subtract l-L from 1.The subtraction property can be stated as follows: 

if < and ifqtqbis not greater than 
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p pthen 	 a < c 
b q d q 

EXERCISE; 22-2A 
1. 	Is it true that ]-< A? 

2. 	By adding 1, ,J, 1 to both sides of A <-, find four more 
true inequalities. 

3. 	 By subtracting , j, -f-A,from both sides of t < A, find four 
more true inequalities. 

4. 	 Can you subtract Afrom both sides of the inequality A < P.1 

22-3 Generalized addition property 

Let us start once again from the true inequality I < -. In 
the last section, we added ;1 to both sides to obtain 2 < 5. What 
will happen if we ald a larger number to the right side -- than 
to the on the left? For example, since -A < A, let us add -A to 
the on the left and the larger number .kto the -7on the right. 
Then we obtain the inequality 2 < 6, which is also true. That 
is, we start with 

<- and A.<.. 

After adding, we see that the sum of the right-hand sides is 
greater than the sum of the left-hand sides: 

+ -!k,- +
<, 


or 2 <6 

Will this always be the case? Let us start with 

< and 

Is the following true? 

+ <- + 
Yes, because -+ 21 and-A. + .'± = U! and 

2 	 51 V0 t 2 



6 Fractions 
The generalized property that these examples illustrate is the

generalizedadditionproperty: 

If a C P r-<- and -<­
bd q s 

Men a p 
d
c 

s 
r qq- < t + -

To see that this is really so, we first add P to both sides of 
q 

a cb<d 

and obtain + < C q 
dq 

We can get another true inequality by adding c to both sides 

of-p <r 
q s 

This gives us p + c r c 
q d<-S+ 

or, by using the commutative property of addition, 

C p c r 

d -q +-
Looking at the second and fourth inequalities in this paragraph, 
we see that the order ofb + ,C p c r 

ber line must be as shown here. 

b d q d s 

Of course, you see straightaway that 

a p <c r
S-r q d+s 
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EXERCISE 22-3A 
What true inequality do you obtain by using the generalized 
addition property with each of the following pairs of in­
equalities? 
1.1 < and 11 < 11 2. A < and - <. 

3.A < and < 3 4.-A <-A and I< I 

1 
22-4 Order and multiplication by n 

You know that J_< 2. What can you say about -I x I and 
x Which is greater? To find the answer, let us use rect­, 


angles to show the original fractions. 

The set of one of three equal parts is smnaller than it Fet of two 
>,t , qua pats.So 

aby lines running firont side to side. We can picture -1x. ill 
the sarne way. 

ofth thee < ".To picture x we divide 

D C I_ 

Each rectangle is now cut into 12 equal parts. How mnany 
twelfth parts is x -,? How many twelfth parts is I x j? You 
see that fromn 
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you can conclude that 

I x 3 <-I x 

We can also show this conclusion on a number line. 

1U\ .' 1 11" 5. 17 "25 1'
 

Since TI is less than -,it follows from the picture that 

This illustrates the gen(rral rule: Let n be a counting number. 
a c 1 Ia I cIf < - and both sides are multiplied by n, then n x < X ' 

It is not difficult to see that this general rule must be true. If 
a is less than - and we divide both a and ­ into n equal parts, oneb d b d quprton
of the parts ofa will be smaller than one of the parts of d . That 

is to say, 

1 a 1 c 
-x < --X 

EXERCISE 22-4A 

From the inequality I < L by drawing rectangles and number 
lines show that the following inequalities are true.

2.<
-18 2.< 3. _1< ,_13 

22-5 Order and multiplication by in 

What can we say about multiplying both sides of the in­
equality J < I by 5? Ifwe locate and J on the number line, 
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we see that the jump from 0 to -fis greater than the jump from 
0 to . 

Then five jumps of tile size from 0 to - vill carry you farther 
to the right onlthe number line than five jumps of thc size 0 
to . So 5 x < 5 x -1.From the true inequality 

we can conclude that 5 x 1-< 5 x .
 
You can guess what the general statement must be.
 

a c
 

If we know that 
 -

b <d
 
and m is a counting number, then we can conchde that
 

S- a < x-nCin x b n d 

Let us see if this guess is true. Imaginejumps of distances aand C 

on the number line. The jump for - is longer than the jump 

for ab. Then m jumps of distance -/will certainly be longer than 

aInjumps of distance . That is, 

a c m X <m x d 

The general statement is true. 

ExERcIsE 22-5A 
1.What new im-tlualities do you get if you multiply both sides 

of the inequality 3 < A-by the following whole numbers? 

2, 3, 4, 5, 6, 12 
2. Explain how you can show that 2 x < 2 x A by using 

rectangles. 
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22-6 Order and multiplication by T7 
n 

Suppose we multiply both sides of the inequality - < Aby 1?
What new inequality do you think will be true? Of course, youthink -z x "-< -z x A.might be true. But how can you see that
it is true? One way, of course, is to multiply the fractions and 
compare the two sides of the inequality. You will get A < -P,­
which is true. 

There is another way if we use our previous results. Suppose 
you begin by writing 4 = 2 x -. Since it is true that - < ., 

you can conclude that 

4 x - <.- x -4
 
After further multiplying by the whole number 2, 
 you can 
conclude that 

2 x (4- x -) <2 x (k x ) 

or (2 x -) x 4<(2 x 4) x -

Then .2 x 2 <- X A 

(What property of multiplication did you use to go from the
first inequality above to the second inequality?) 

The result about order and multiplication that you should 
now suspect to be true is the following: 

if a <_c 

then we can conclude that 

in a In c 
- X T <- X 

To see this we write down the following list of inequalities: 

a c 
b (I 

1 a I c x <- x 
n b n d 

n X X a < In X X 
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(inx n b-< inx n ,:
1n a c I) 
III a In C-X < - -

T b n d 

EXERCISE 22-6A 

1. 	Obtain new inequalities by multiplying both sides of the 
inequality A < Aby Z-, j., 1, 2. 

2. 	From the inequality 3-<-, how can you conclude that 
1 < 1_? Can you conclude that 9 < 10? 

3. 	 Give the properties of fractions that you use to go from one 
inequality to the next one in showing the general property 
in this section that inlx a < 711 x cc 

a C. 

4. 	 Say how you might convince pupils that if" < is true,
b d

then 

a ii C In 
b n d't 

is also true (unless n 0). 

22-7 Generalized multiplication property 

In the last section, we started with the inequality -< -.Let 
us do so again, but this time multiply the larger number - by a 
greater number than the one we use to multiply J. Let us 
multiply - by .-, but multiply Aby A, which is greater than -. 

From 	 < 

and .}< .. 
we get -X Z< A -..or <-<Is-

which is a true inequality. The product of the left-hand sides 
is less than the product of the right-hand sides. 
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We can do this problem in another way to see that the con­

clusion must follow. Since A < A,we conclude that 
A.x-t < x 4.
 

That is 
 - 'IT 
From the true inequality ,- < A, we can conclude that 

That is '1 < 25 

The last inequality tells us that -!- is to the right of- 1 on thenumber line. The inequality 12 < _16 tells Us that 111 is to theright of z. Therefore mi ,t be to the right of-A, and A- < 1, 

6 1Z 16 
IS 5 

Thus, i<x 3X . 

The general property that we would like to establish is this
generalizedmultiplication property:
 

a C 
 I P 
-<- and ­ <­
b d 71 q
 

a In c
 
then 
 x < d x 

We will follow the plan we havejust used in the example. Since 

- < -, we can conclude that 
n q 

C InI C 
- x -< x 
d' n d q 

From the inequality < , we can conclude that 

II a II c a cin in
X b x or x x x 

(Where did we use the commutative property ofmuiLiplication?) 
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a m c 7n 	 c nilFrom x -n < 
-n' we know that × -n is to the right of 

a fla I C illin
-) x - on the nubrline. Also - x d 

- <- P- tells us that 
c p. c rn c p 

- is to the right of - x i-"Then - x - must also be to the 
X 

a M 

right of X -. 
b n 

< 	 I I 
h n d n d 	 q 

a Xm c rnII c XP 

a m c pThat is, 	 x- < 2 x q 

EXERCISE 22-7A 
1. Using the same plan as the example, show that . < i by

starting from the inequalities A< j and A < 2. 

2. 	Using the generalized multiplication property, what in­
equality do you get from each of the following pairs of 
inequalities? 

<-3 and j <A
 
K and <
 
5 <A and j<,
 



Chapter 23 

DECIMAL FRACTIONS 

23-1 Revision of decimal numeration 

You will remember that at school you learned another way
of writing fractions, that is as decimal fractions. These are the 
same kind of numbers as the fractions that you have just been 
studying, but they are written in a different way. Just as whole
numbers may be written as Hindu-Arabic numerals, or as
Roman numerals or in the way the ancient Egyptians wrote
them, so the parts of a whole may be written in two ways. You 
have already studied ways ot introducing your pupils to frac­
tions which are written with '1 numerator and a denominator,
such as .1.We will, in fiture, rel'er to fiactions written this way
as fractions in common I rm or conmonfractions. We do this to
distinguish them friom fractions which are written as an exten­
sion of the decimal notation for whole nunbers, such as *25. We
will refler to fractions written this way as fractions in decimal 
ibrm or decimalf'actions. Each common fraction has its decimal
fraction equivalent but not every decimal fraction has an
equivalent common fraction, as you will see in Unit VII. 

You know already that the notation Ibr decimal fractions was
invented as an extension of the way we Xv_;te whole numbers. It 
uses the ideas of base and place value which are the basis of the
Hindu-Arabic notation system. If you will always remember
 
this fact, it will be no harder to understand decimal fiactions
 
than it is to understand the decimal notation for whole numbers.
 

The idea of a base 
We will begin by recalling what you know about the decimal

notation for whole numbers. You will remember that the nota­
tion for whole numbers is based on counting. When large
numbers of objects have to be counted it is simpler to group
them into equivalent sets, that is, into sets with the same num­
ber of members. They can be grouped into sets of 2 or 3 or 4
members, or any number of members you choose. If you group 

14 



15 Decimal Fractions 

the objects in thrces, then you are using base three, If you group 
them in sixes, then you are using base six. Traditionally, we 
group our numbers in tens; that is, we use base ten. This is why 
our system of notation is called the decimal system, from the 
Latin word lecem which means "ten'". When the number of 
the set to I)e counted is large, it is necessary to put groups 
together to make larger groups, still using the samei base num­
I)er. If'5 ones are grouped together, then 5 fives will make the 
next larger group. This grouping of groups to make larger 
groups is continued as fair as is nccessary. In the decillial 
system the groups tave special names. Tihey are ones, tells, 
hundreds, thousands, ten-thousands, hundred-thousands, miil­
lions and so on. 

You will rememher that you can help your pupils to under­
stand the idea of grouping by letting them practise grouping a 
set of sticks, using scveral different bases. Here is an example 
yon could use with them. 

Put out a long row of sticks. Choose a base. Ve will use base 
three. First group the sticks in,. tIr'es, beginniig from the lef. 

Then group the threes into larger groups each of 3 threes. 

Continue in this way mitil you have no more than 2 gro ips of 
any kind of grou . h-ere is the last picture. You will see that 
there is I group ()f 3 groiup; of 3 threes. 

I group of 3 groups of 3 threes :- I group of 3 threes + 2 
groups of three -- 1. 

Now you ask your pupils which is the biggest group they 
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have made? It is 1 group of 3 groups of 3 threes. It can be 
written as 3 x 3 x 3. 

Then ask about the next largest group, the group of 3 threes.
There is only 1 of this group also. Then there are 2 groups of
three and I one. Put these together and you have 1 group of
3 	 x 3 x 3, 1 group of 3 x 3, and 2 groups of three and 1 one.
Do you remember the short way of writing this? You use the
index notation and show 3 x 	3 x 3 as 33. It is 

I x33 + 1 x 3-+ 2 x 3 + 1 x 1. 

EXERCISE 23-IA 
1. Set out 43 sticks or draw 43 strokes. Group them in base six

and write the result, using index notation showing powers 
of 6. 

2. 	 Using an equivalent set of sticks, group them in base ten and 
write the result, using index notation. 

3. 	 A set of sticks has been grouped in fours and the result 
written as
 

1 x 43 - 2 x 42 + 3 x 4 +0 x 1
 
Draw a picture to show this grouping. 

Place value 
3
What does the numeral , 243t,, mean? Hnw As it different 

from 3,24 3 ,,(? It is helpful to your pupils to make a number
chart to show the value of each of the digits in a numeral. Here 
are two number charts, one for base ten and one for base five. 

i 13 

3 2 4 3 3 	 12 43 

The numeral 3,243tn can be read from this number chart as
three thousand, two hundred arnd forty-three. Without the
number chart, how do you know how to read the number? You 
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know the value of a digit by its position in the row. The place 
value of the 4 is ten because the 4 is in the tens place. The place 
value of the 3 on the left is thousand because it is in the fourth 
place from the right, the thousands place. Your pupils should 
be familiar with the value of thesc places in the decimal system
and should be able to read a number easily. 

You will remember from your earlier work how to read a 
3 2 43 number in another base, such as , ,,, You will remember 

that we read this as "three two four three base five" and do not 
attempt to give names to the places. (Why not?) 

Ciange of base 
You should remember also how to change a numeral from 

one base to another. If you have difficulty with the following 
exercise, look back to Chapter 6. 

EXERcIsE 23-lB 

1. Write 	the following numerals in the expanded form, using 
the index notation. 

a. 	 1,213rou b. 23,751iht c. 121,304,v 

2. 	Rewrite each of the numbers in Question 1 in the decimal
 
notation.
 

3. 	Write the following numbers in base seven. 
a. 	 65,e b. 77,on c. 36,490, n 

4. 	 Make a number chart for base six and show on it the follow­
ing numbers. 
a. 	35,002,i. b. 2,020,i c. 13,452g. 

5. What is the value in decimal notation of each 2 in the 
numerals in the last question? 

6. 	Tell in what base each of the following equations is written. 
a. 	2+1 =10 b. 13 -4=4 
c. 	 14 x4=104 d. 26-4= 5 

7. 	 Write the following numbers in the decimal notation. 
a. 	Five hundred thousand, eight hundred and seventeen. 
b. 	Six million, ninety-two thousand and twenty-three. 
c. 	 Nineteen thousand, nine hundred and nine. 
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Relationship between the digits in a numeral in the decimal system 
Before we introduce the notation for decimal fractions, it is 

useful to think again about the relationship between one, ten, 
hundred and so on. Pictures can help your pupils to understand 
and remember what they learn. One and ten are easy numbers 
to understand. Ten ones make ten and we can see a set of 10 
members by looking at our fingers o." toes. One hundred is 
harder. Where do you see a hundred? A thousand is a big num­
ber. Do you ever see a thousand? And so you can think also of a 
million. How many thousands do you need to make a million? 
Here is one way to help your pupils to gain some idea of the 
relative sizes of numbers. If you have graph paper with small 
squares whose sides are, for example, each -- inch, use it. If 
you have not, then use, or make, paper with small squares on it. 
If you use graph paper, then you will be able to show easily
how a thousand is built up from 10 hundreds, how a hundred 
is built up firom 10 tens and how a ten is built up from 10 ones. 
You are about to make pictures of one, of ten, of a hundred and 
of a thousand. 

Shade 1 small square. This is 1 one. 
Shade 10 small squares. This is a ten-strip. 
So 1 ten = 10 ones. 

10 

Next, shade 10 ten-strips. 
This is a hundred-square. 
So 1 hundred = 10 tens 

= 100 ones. 1 

100
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Now your pupils can build up a thousand-strip by shading ten 
of these hundred-squares. What can they write about this new 
strip? It is a thousand-strip. 

So 1 thousand = 10 hundreds 
= 100 tens = 1,000 ones. 

You could continue further and build up a ten-thousand­
square, a hundred-thousand-strip and even a million-square.
How many thousand-strips would be needed for a million­
square?
 

A ten-thousand-square needs 10 thousand-strips.
 
A hundred-thousand-strip needs 100 thousand-strips.
 
So a million-square needs 1,000 thousand-strips.
 

Can you write a set of equalities for a million as we did for a 
thousand? Here it is. Were you right? 

1 million 	= 10 hundred thousands 
= 100 ten thousands 
= 1,000 thousands 
= 10,000 hundreds 
= 100,000 tens 
= 1,000,000 ones 

If you let your pupils draw pictures like those above, it helps
them to see the relationships between digits in a numeral. 
Think of the number 11,111. Each 1 has ten times the value of 
the digit to the right of it, or 100 times the value of the digit 
two places to the right of it. You can think of the 3 in 3,641 as 

3 thousands or 
3C hundreds or 
300 tens or 
3,000 ones 

EXERCISE 23-1C 
1. TTing squares and the method shown above, draw pictures 

to show the value of 1,111,,. 
2. 	 Give the value of each of the digits underlined in three 

different ways. 
a. 	32,541 b. 5,678 c. 10,327 

3. 	 a. How many tens are there in 362? 
b. 	How many tens are there in 5,362? 
c. 	 How many hundreds are there in 37,140? 
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23-2 Decimal fractions 
Do you remember how to represent numbers on an abacus? 

Here is an abacus with four rods. We label the rods as we label 
the places in a numeral. 

Thousands Hundreds Tens Ones 

The bead on the tens rod is worth 10 of the beads on the ones 
rod. The bead on the hundreds rod is worth 10 of the beads on 
the tens rod or 100 of the beads on the ones rod. 

Thus each bead is worth 10 of the beads on the rod next to it 
on the right. 

(a) (b) (c)
 

101 102 10 1 101 102 10 1 103 102 10 1 

Shown above arc three numbers, represented on the abacus.
Can you write them down? Use the index notation first, and 
then write them in the usual way. Here they are: 

(a) 3 x l03 -P5 X 102 + 6 x 10 + 3 x 1 =3,563
(b) 2 X 103 + 0 X 102 + 4 x 10 + 5 x 1 =2,045
(c) 5 X 103+ 2 x 102 + 4 x 10 + 3 x 1 = 5,243 
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It will be useful to us now to think of the relationship between 
the beads the other way round. To make it easier to write, we 
will call the rods A, B, C and D. 

A R C D E F 

10: 10: 10 1 

Ten beads on rod B are worth 1 bead on rod A. So a bead on 
rod B is worth -1 of a bead on rod A. The same relationship, 

1'-0 of", will be true for each bead and a bead on the rod 
immediately to the left of it. 

A bead on rod C is worth of a bead on rod B.-0 

A bead on rod D is worth of a bead on rod C. 
Ifwe place another rod, E, to the right of rod D, we can say

that a bead on rod E'is worth -,i-of a bead on rod D. But a bead 
on rod D is worth one, and so a bead on rod E is worth I of 
one, that is, 1 tenth. So we can name rod E the "tenths rod" just 
as rod D is named the "ones rod" and rod B is named the 
"hundreds rod". You will note that a space has been left 
between rod D and rod E. This is to remind us that the whole 
numbers end with rod D. After rod D we have tenths, which 
are fractions, decimalfractions. 

We will now place a rod F to the right of rod E. A bead on 
rod F must be worth .1i of a bead on rod E. But a bead on 
rod E is worth i of one. So a bead on rod F is worth T16of 1 16 
of one. In the chapter on multiplication of fractions, you
learned how to find that this is -4. But you can help your 
pupils to understand this better by working it out on the 
abacus. 

How many beads on rod F :make I bead on rod E? 10. 
How many beads on rod E make I bead on rod D? 10. 
So how many F beads made a D bead? 100. So an F bead is 

-061 of a D bead. But a D bead is worth one, so an F bead is 
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worth T-&-Oof I = .vo. So now you can name the F rod the 
"hundredths rod". 

Place valte of decimalfractions 
You know that the value of a digit in a numeral is shown by

its position in the row of' digits. Each position has a value of-I 
of the position next to it ol the left. Using the placc-value 
system, we can write the number shown on the abacus a;'e as 
1111 I11. The last I represents 1 hundredtlh and the 1 to the left 
of it represents I tenth. You can see that you could easily mis­
take this number for 111,111, which has no fractional part.
You need some way of telling which digits represent whole 
numbers and which digits represent fiactions. That is why we 
use a clot called the decimal point. The number shown on the 
abacus is then written ],I11I 1. This, you remember, is spoken 
as "one thousand, one hundred and eleven point one one". 
\Ve do not usually say the value of the decimal Fraction when 
we read it. For another example, we will read 362.54. It is read 
as "three hundred and sixty-two point five bur". 

It will be helpful to your pupils to make a number chart 
VhiclI iIcluCes decimal firactions. Here is one. 

Decimal
 
Point 

i 

(b) 1 2 2 . I 

77 0 00 
(1) !_ 7 1 9 3 8 4 0 

(e) 0 4) 1 0 0 0 0 

(f) 5 4 5 j =, 4 

3 
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You will notice that the columns have been extended farther 
to the right to include thousandths, ten-thousandths, hundred­
thousandths and millionths. The place value of each column is 
.1 of the value of the column next to it on the left. The column 
on the right of the hundredths column is worth -I of -1--, and 
this is T- or 1 thousandth. Can you show the value of each 
of the remaining three columns in the same way? 

EXERCISE 23-2A 

1. Write 	in full, as was done above for 362.54, the numbers 
shown on the chart oi page 22. 

2. 	Write as common fiactions or as whole numbers the digits 
underlined on the chart. 

3. 	 Write each of the numbers (a), (b), (c) and (d) shown above 

in 	 the expanded form. (For example, 23.67 would be 

2 	x 10 + 3 x -'6 x + 7 x .) 

Pictures of decimalfractions 

You can show decimal fractions in pictures, using squares as 
you used them to show whole numbers. Last time you used one 
small square for I one. This time you will need one largesquare 
to represent I one. Make a large square with each side 2 inches. 
Now divide it into strips each I inch wide and 21 inches long. 
There will be ten of these strips, so each one represents -V or •. 
How many strips will represent "2? .6? 

10 strips, each -)u of 1 
I one = 10 tenths 

LC - C 
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Now you want to show "01. This is ' and is 9, ofSo each strip must be divided into 10 small squares. One smallsquare represents "0l, or -,o-j, as there are 100 small squares. 

'01 

1 one 	 10 tenths 
100 hundredths 

If you now divide each small square into 10 small strips, eachsmall strip will be -,'j of or I thousandth. Analternative way of writing a decimal ftaction which is less thanI is to put a 0 in the ones place; for example, 0'2 or 0.35. It isthought that the 0 helps to draw attention to the decimal point. 
Regrouping of decimalfractions 

Pictures 	like those opposite can help you to see how manytenths or hundredths there are in a ntmber. You can think of430 as 43 tens and in the same way you can think of .43 as 43hundredths. If you look at picture (b), you can 	see that this isso; 4 is 	4 strips and each strip has 10 hundredths in it. Soaltogether there are [(4 x 10) + 3] hundredths.
 
So .43 = 43 hundredths.

You can also think of this number in tenths. There 4aretenths and 3 hundredths. One hundredth is T. of I tenth, soyou can 	write '43 as [4 + (3 x .- )] tenths.
 
So "43 = 4.3 tenths.

In the same way, 430 can be written as 43 tens or as 4.3hundreds or as 4,300 tenths.You will have found this way of writing numbers in news­papers. Instead of 3,650,000, you will see 3.65 millions. It is 
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shorter and easier to read. Or you may see 6.5 thousands. This, 
in fill, would be 6,500. You will read more about this way of 
writing numbers when you come to the unit on approximations. 

EXERCISE 23-213 
1. 	Draw pictures to show these decimal fractions. 

a. "3 b. 7 c. "02 d. 07 e. *72 f. *88 
2. 	 What decimal firactions are represented by the shaded parts 

of these pictures if thc big square represents I one? 

(a Z FI : " (b) -7' 7'-­

(c) 	 (d) 

1K 
3. Write each of the numbers in Question 2 as tenths and then 

as hundredths. 
4. 	 Write each of these numbers as a decimal fraction of the 

unit mentioned. 
a. 	 325 as tens b. 325 as tenths 
c. 	 27.56 as tenths d. 394-61 as hundredtls 
e. 	 3,620,000 as millions f. 7,200 as thousands 
g. 037 as thousandths h. 2.37 as tens 



26 Fractions 
5. 	Make a number chart stretching from hundreds to thou­

sandths. Then write these numbers as decimal fractions on 
your chart. a. 	"i-b. "- c. o d. jA 

-e..-- f .2 no g" h. "r 

i. 	 Forty-two tenths j. 2.9 hundreds 
k. 	327 thousandths 
I. 	 Twenty-five, five tenths and three thousandths 

No imlroper decimalfractions 
There are proper fractions, such as *36, and also mixed 

numbers, such as 2"3, in decimal fractions, but there are no 
improper fractions. Try to write an improper fraction such as 
-15 as a decimal fraction and you find that you get a mixed 
)lmber 1.5. This is because the principle of place value makes 
it 	impossible to write more than one digit in one column. 

Commonfractions as dcimalfractions 
You already know how to write some fractions as decimal 

fractions. A fraction whose denominator is 10 or 100 or some 
power of 10 is easily written as a decimal fraction. Examples 
are -12l- = .23, R = 5718. Some other fractions have 
denominators which are easily converted into powers of 10 by
using the procedure you learned fbr finding fractions equal to 
a given fraction. 

Do you remember how to rewrite 3 in sixths? \Vhy is it true 
that = Look back to Chapter 20 if you have forgotten,
because you will need this procedure in the next paragraph.

Here are some fractions which have been rewritten with 
denominators a- powers of 10. What can you say about all the 
denominators cl the first fractions of all the sets? 

-=;=.8; :I - .25; =.125= . 

The description is very simple. The denominators are 5, 4 
and 8, and these numbers are all products of powers of 2 or 5. 
Numbers which ar products of powers of 2 or 5 are factors of 
a power of 10 and so can be multiplied by a whole number to 
give a power of 10. 
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EXERCISE 23-2C 

1. 	Write each of these fractions as an equal fraction with its 
denominator a power of 10. Then write the corresponding 
decimal fraction. a. b. A- C. : d. e. A- f".- 3 
g. 	 h.- 1 . 7 j. . 7 

-. *j A ;7 1.Pg. 3n 

There is another way to find the decimal fraction equivalent 
of a common fraction. This is by division. Think of . You first 
met I as the missing factor in the multiplication equation 

2 x F1-I 
This equation corresponds to the division equation 

1+2=[--] 

So we can divide 1 by 2 and know that the quotient will be 
one-half. Let us divide 1 by 2 and see what quotient we can 
find. You will remember how to set this down as a division 
exercise. 

To find 	1 *-2: 
Ones: 	 There is no whole-number
 

answer to 1 + 2, so we rc­
group I as 10 tcnth. This
 
we do by simply putting a .5
 
decimal point after the 1 2)1,0
 
and adding a 0 in the tenths
 
column.
 

Tenths: 10 -:--2 = 5. We write 5 in the tenths column. 

So we have shown that A =- .5 

It is useful also to work this division in common fractions. 

1 + 2 =(10 x A) +2 
--- 92 - - .5 

Let us next see how we can write .1as a decimal fraction. We 
know that I = 1 - 4. 
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Sortfori

To find 1 4: 

Ones: 1 -4 is not a whole numbcr 
Regroup 1 one as 10 tenths. 0 . 

Tenths: 10 + 4 = (8 + 2) .25
+4
 
4)10(2 )2+ 4 

The numbersRegroup the second 2 tenths written above the 
as 20 hundredths, digits show how the 

Then 1 --4 = 2 tenths -F 5 hundredths, regrouping is doneat each step, begin-
So " 0"25 nling with regroup­

ing one as 10 tenths. 
Using common fractions, this same problem can be worked as 
follows: t= 1 +4I + V-o- 4-4 (-'L+ °)± 4z­

=( + 4) + ( +4) 
-r9-F ( - 0 + 4) 

-*'S-+ (Qo+ 4) 
=0 + -i *.25 

This method with common fractions can be used to explain the 
short form written above on the right.

Below is another example using only the short form. 
We know -- = 7 + 8. But 7 + 8 can be found as follows: 

0 l-f 

.8 75 
70 6004
 

8)7.0 00 
So-_ - 7 +8 875 

Now try . Since = 1 + 3, the short form is as follows: 

r 
C H~ 

.3333 ... 
) 1i f 1010I) 0000 ... 
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At each step, regrouping and division gives a quotient of 3 and 
a remainder of 1, which indicates that the process can go on 
forever. There is no whole number which equals in, since.=.+ =3 + I. 

We cannot write all these 3's, so we agree for the present to 
write only digits to the place value of thousandths and put three 
dots after this thousandths digit to show that the decimal 
fraction is unending. That is, we write - = 0.333., the 
three dots showing that there are other digits which have not 
been written down. 

Decimal fractions which are found this way from common 
fractions often have a pattern of recurring or repeating digits 
after the decimal point. You will meet several of these in this 
chapter. They are called recurring decimalfiactions. There is an 
alternative way of writing a recurring decimal. Place a (lot over 
the digits which recur, but if more than two digits recur, the 
clots are placed over the first and last recurring digits only. 
Thus I = j, and .J,9 --. 3,183183,148 .... 
Here is another example. WVc kiow . 2 _9 

.2 22... 

9)2 000... 
So .=.222 ... 

ExEicmsL 23-2D 

1. 	Find the decimal fraction equivalent of these common 
fractions by division. 
a. -1 b. :I c. d. r, e. " f. - g" -" 

2. 	These common firactions that follow all have recurring 
decimal fraction equivalents. Work each division far enough 
to be sure yoti have foind the pattern of recurring digits. 
Put (lots over the digits tc show the recurring digits. 

a. b. c. -I d. -'I e. f. g. _T_ 
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You will often need to change a common fraction to a decimal

fraction and vice versa. It is a good thing to remember these
equivalent forms in pairs. Your pupils should also remember
them, but be sure that they understand first how to work themout and why they are equivalent. It will help your pupils todraw pictures using the big square of a hundred small squaresso that they can see that the number represented by a commonfraction and by its dccimal equivalent is the same number. 

EXERCISE 23-2E 
1. Fill in the gaps in this table. Do not use more than three

places in decimal fiactions. 

fraction 

Decinal .25 .2 .07 
fiaction 

2. Draw pictures to show that each of the pairs of numerals 
above represents the same number. 

3. Give three common fraction names and three decimal
fraction names for each of thcse numbers. 
a. , b. 31 tens c. 31 tenths d. 5.7 e. -- f.­

23-3 Fractions in other bases 
You know how to write whole numbers in bases other than

ten, and you know how to write fractions in base ten. Inexactly the same way, you can write fractions in bases other
than ten. For example, the base-six notations can be extended 
to include fractions formed as a result of dividing by 6. 

243.12t,, = [(2 X 102) + (4 x 10) + (3 x 1) 
+(I X(2~- + (2 X 

And so: 243.12,,, - [(2 x 62) + (4 x 6) + (3 x 1) 
+ (1 x )') + (2 x ')],on 

EXERCISE 23-3A 
1. Write each of the following numbers in the expanded form 

in base ten: 
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a. 162*5,,,,, b. 325.321 ,, C. ll0.111,wo 

2. 	 Write each of these numbers as a common fraction (base ten) 
with the lowest possible numerator and the lowest denomina­
tor. 
a. 	"3 75ten b. "4 cight c. "02,j. d. •ltwo 
e. 1 2 2 thr e fE 2 "4AwClVe g. 3 "2fio h. 10 2 ro,,r 

3. Find the numeral equivalent to - in each of the following 
bases. Use three decimal places only. Use three dots to show 
a recurring decimal fraction. 
a. 	 base two b.base three c. base four 
d. 	base five e. base six f. base seven 
g. 	base eight 

4. 	Make a third row to the table in Exercise 23-2E, Question 1. 
Fill this row with the base-six numerals for these fractions. 

5. 	Can a recurring decimal in base ten be an ending numeral
 
in a different base? Give six examples to explain your
 
answer to this question, using the results of previous exer­
cises. 

Now that you have worked through this chiapter on decimal 
fractions and fractions in other bases, you will see that there is 
notliing mysterious about them. They are simply other names 
for the common fractions. You have seen, too, that the fraction 
shown shaded in the picture can be called by many different 
names. Here are some of them. 

1 	- 10 .5 -111 . two,1,r 

'4.h, "2 ,, "22 . . .n,, ":, 

One-half may be written either as an ending numeral (bases 
2, 4, 6, 8, ... ) or as a non-ending numeral (bases 3, 5, 7, 9, ...). 
So there is nothing difficult about a non-ending or recurring 
decimal fraction. It is the notation which makes it appear more 
complicated. What could be simpler than the idea of one-half? 
Yet in base three it is - 111 .... While one-third in base ten is 
the recui ring numeral .333 ... , in base three it is •1. 
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OPERATIONS IN DECIMAL NOTATION 

24-1 Addition and subtraction 
When your pupils thoroughly understand decimal fractions 

they should be able to do problems in addition and subtraction
with very little difliculty. The methods are exactly the same as
for addition and subtraction of whole numbers. 

Addition 
You will remember that when you add two whole numbers 

you take each column in turn and acid first the ones, then the 
tens, then the hundreds and so on. If any total is greater than
nine, it has to be regrouped. In exactly the same way, you re­
group 10 hundredths to give 1 tenth or 10 tenths to give 1 one.
Here are two examples of addition; one is addition of whole
numbers, and the other is addition of decimal fractions. 

167 
298 
465 

Ones: 7 + 8 =15 = ten + 5 ones. 
Write 5 ones. 

Tens: 6 + 9 + 1 = 16 = I hundred 6 tens. 
Write 6 tens. 

Hundreds: 1 + 2 + 1 = 4. 
Write 4 hundreds. 

1 6.76 

21.89 
38.65 

32 
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Hundredths: 	6 -- 9 = 15 = 1 tenth + 5 hundredths. 
Write 5 hundredths. 

Tenths: 	 7 + 8 + 1 = 16 = 1 one + 6 tenths. 
Write 6 tenths. 

Ones: 	 6 + 1 + 1 = 8. Write 8 ones. 

Tens: 	 1 -- 2 = 3. Write 3 tens. 

If your pupils are to work a problem in which the addends 
are written horizontally, you will need to remind them to think 
of the value of each digit and then rearrange the addends 
vertically. For example, suppose you give them this problem:
•3 + 1"4 + '0016 + 29 = n-. The numbers should be re­
arranged with the decimal points vertically in line. The first 
number is 3 tenths and so must be written in the tenths column. 
Here is the setting out of this calculation and the thinking 
which should go with it. 

(.3) 3 tenths 	 .3 
(1.4) 1 one and 4 tenths 	 1.4 

(,0016) 	 0 tenths, 0 hundredths, 
1 thousandth, 6 ten-thousandths .0 0 1 6 

(29) 2 tens and 9 ones 	 29. 
30.70 16 

Pupils who have practised writing decimal fractions on a 
number chart should not have any difficuity in doing this kind 
of problem correctly. 

EXERcIsE 24-IA 
1. Find the sums of these sets of numbers, setting out the 

explanation at the side as you would do for your pupils. 
a. 	294 b. 21.7 c. 29"87 d. 1.815
 

519 13.5 96.75 12'504
 
9.6 	 9.139 
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2. 	 Make up four examples of addition written horizontally and 
show how you would expect your pupils to work these 
problems. 

Subtraction 
Subtraction without regrouping is very simple. Here are two 

examples. One is using whole numbers and the other is using 
decimal fractions. 

A 

365 3-29 
221 1,07
144 	 2.22 

Ones: 5 - I = 4 Hundredths: 9 -- 7 = 2 
Tens: 6 - 2 = 4 Tenths: 2- 0 = 2 
Hundreds: 3 - 2 = 1 Ones: 3- 1 = 2 

If you have the problem 86 - 18 = [J, you see that there 
are not enough ones in the ones place of 86 in order to subtract 
8. 	So you have to regroup 86 as 7 tens and 16 ones. Then 

86 = 70-j- 16 
18 = 10 8 

60 + 8 so 86 -18 =68 
The procedure is similar for decimal fractions. Suppose you 

have to find 3"21 - "08. Here is the thinking. 
Hundredths: There are not enough ones in the hun­

dredths place of 3.21 to subtract 8. Re­
group 3.21 as 3 
11 hundredths. 

ones plus 1 tenh plus 
Then 11 hundredths -

- 8 hundredths = 3 hundredths. o z 

Tenths: 1 tenth - 0 tentls 1 tenth. 3.2 1 
.08 

Ones 3 ones -0 ones = 3 ones. 3.13 
So 3'21 - '08 = 3.13 

Here is another example. Find 6.5 - 3.77. 

Hundredths: The hundredths digit does not appear 
in 6.5. So regroup 5 tenths as 4 tenths 
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plus 10 hundredths. Then 10 - 7 - 3 
hundredths. r 

Tenths: There 
tenths 

are not enough 
place of 64 to 

tenths in the 
subtract 7, so 

a4 
0 :4 

regroup 6.4 as 5 ones and 14 tenths. 6.5 
Then 14 - 7 = 7 tenths. 3.7 7 

Ones: 5 - 3 =2 ones. 2.7 
So 6.5 - 377 = 2.73 

EXERCISE 24-lB 
1. Explain how to work these problems as you would explain 

them to your pupils. 
a. 	 231 -98 b. 87.65 - 64.2)2 
c. 	 2.35 - 1.79 d. 76.84 - 18.92 

2. 	 Which number in each of the following pairs of numbers is 
the greater and by how much is it greater? 
a. 	2.3 and 1.59 b. 87.32 and 24.118 
c. 	 '0017 and .12 d. 3 and .168 

3. 	Tihe rainfall in Freetown on a certain ,Aeek was recorded in 
inches as follows: Sunday, 1.40 inches; Monday, 3.20 inches;
Tuesday, 3.70 inches; Wednesday, 3.21 inches; Thursday, 
0.80 inches; Friday, 0.10 inches; Saturday, 0.01 inches. 
a. How many inches of rain fell in Freetown that week? 
b. 	How many more inches of rainfill were there on Wednes­

day than on Thursday? 
4. 	 Decimal fractions are used in many ways but chiefly to show 

the results of measurement. Look at a daily newspaper and 
make a list of the ways in which decimal fractions are used 
there. Use this list to make up some story problems for your
pupils in addition and subtraction. Question 3 shows two 
kinds of questions you can ask them. 

24-2 Multiplication and division by powers of 10 

WhV/tole numbers 
Perhaps you remember that multiplication of a number by

10 or 100 is quite easy. For example, 
23 	 x 10 = 230 and 375 x 100 = 37,500 
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The first of these products can be pictured as follows: 

r 
r 

23 x 10 230 
The digits of the number 23 have each moved one place to theleft, so that each digit has a value 10 times as great as it had.A similar diagram for the second product is as follows: 

375 × 100 =37,500
Each digit in 375 has moved two places to the left. It then has a
value 100 times as great as it had originally.

What task is performed by the zeros in these products? Theyshow zero ones or zero tens. Tihey arc needed so that the otherdigits are shown in their correct platces and get their correct 
values.

Now think about division b~y 10, as in 50 -10 or 560 - 10.You know already that division is the opposite or inverse pro­
cess to multiplication. Multiplication by 10 moves each digitone place to the left. Division by 10 moves each digit one placeto the right. Each digit then becomes -'- as large in value as it was originally. What happens if we divide by 100? H/ere are
chart: showing this for several examples. 

50 + 10 -= 5 
560-- 10 ==56
500 x 100 35 

EXERCISE. 24-2AMake number charts and use. them to show what happens 
in these problems. 
a. 7 x 10 
d. 70-i0 

b. 56 100 
e. 700 +100 

c. 
f. 

30 × 10 
560--10 
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2. Make up six more examples like those above and show them 
on a pair of number charts. 

Dechnalfractions 
Now that you think of multiplication by a power of 10moving digits asto the left, you will very quickly see how tomultiply decimal fractions by powers of 10. It works exactlythe same way, because decimal fractions are written insame way theas the whole numbers. Each place infraction is worth 10 times as much as 

a decimal 
the place immediately tothe right. Here are some cxamples written on number charts. 

•5 X 10 - 5. 
7.5 x 10 - 75. 
.06 x 10 0.6 

63.17 x 10 631.7You can also work these out by using the expanded form of adecimal fraction. For example, 
•5 x 10 (5 x -,1')10 =5x x 1 =5

63.17 x 10 [(6 x 10) + (3 x 1) + (1 x 
+ (7 x ) x 10-[(6 x 10) x 10 ± (3 x 1)x 10 
+ (1 x x 10 + (7 x -- ) x 10]
(Note use of distributive property.)

=(6 x 102) + (3 x 10) + (1 x 1) + (7 x 
- 631.7 

Did you notice on the last line how every digit in the number63.17 became worth 10 times as much and so was moved oneplace to the left?If you multiply by 100, the digits are moved two places tothe left, and so 2"3 x 100 = 230. You can show this in two 
stages. 

2.3 x 100 = 2.3 x (10 x 10) = (2.3 x 10) x 10 
= 23 x 10 =230

Now you will see that division by a power of 10 presents no 
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difficulty whatever. Just move the digits one place to the right 
for every 10 by which you divide. 

73 +10 =(7 x 10 + 3 x 1) + 10 
= (7 x 10) - 10 + (3 x 1) - 10=7 +(3 x =7.3 

73 - 100 = 73 - (10 x 10) - (73 + 10) -- 10 
= 73 10 
-.73 

You can do the last problem in one step by moving each 
digit two places to the right straightaway. 

73 -- 100 =.73 
Your pupils should work these problems in two stages at first 

and should use a pair of number charts until they rcally under­
stand what they are doing. Here are some division problems. 

r 72 

7 3. 10 -7.3 
98. - 100 .98 
16.5 +10 1.65 

237.71 + 100 = 2.377 1 

EXERcISE 24-2B 
1. Find the following by moving the digits: 

a. .7x 10 b..09 x 10 c. '32 x 10 
d. 5'72 x 10 e. .7 + 10 f. 3.09 10 
g. 97.32 + 10 h. 105.72 + 10 

2. Find the following by moving the digits: 
c. '012L. 32 x 100 b. 7.5 100 c x 1000 

(1. 19-401 x 100 e. 763 + 100 f. 76.2 + 100 
g. 79,321 * 1000 h. 1 + 100 

3. Choose four different types of problems from Questions 1 
and 2 and tell how you would help pupils to understand how 
to find the answer to them. 

You will of course have noticed that instead of moving the 
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digits of a number one place to the left when multiplying by 10, 
you can instead move the decimal point one place to the right. 
You can see this in this equation: 

24-81 "..10 - 248.1 
The point has "jumped" over one digit, the 8. Similarly, when 
you divide by 100, you can move the decimal point two places 
to the left instead of nmving the digits of the number two places 
to the 	right. In the equation 

52.C13 I G = .5264-3 

you see that the poii.t has jumped over two digits, the 2 and 
the 5. This is sometimes thought to be a quicker method. 

24-3 	 Multiplication and division by whole numbers 
less than 10 

Alultipication 

You will remember that multiplication is very similar to 
addition. Whenever you have more than 9 in any column, you 
regroup to make I or more for the next column. You multiply 
17 x 	8 as follows: 

Ones- 7 x 8 =56 =5, and6ones. 
Write 6 ones. 

Tens: 1 x8=8,8 +5 13 1 7 
II hundred and 3 tens. × 8 

Write 3 tens and 1 hundred. 1 3 6 

You will see that tenths may be multiplied in a similar way. 

.7 = -I­
-7 x 	 8 = . , = (5 x1) + (6 x 

=5-6 
You need not think this out in this long way, because in the 

last chapter you practised writing fractions such as AA as 
decimal fractions. You can say that - 5.6 straightaway. 
Your pupils, however, will need to think about what they are 
doing more carefully and will need to write their multiplica­
tions in a chart at first. Here is .76 : 4 worked out. 

JIC 2--D 
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Hundredths: 	6 x 4 = 24. Regroup as 2 tenths 
and 4 hundredths. 
Write 4 hundredths. o 

Tenths: 	 7 x 4 =28, 28 -+ 2 =30. Re- .76 
group as 3 ones and 0 tenths. x 4 
Write 0 tenths and 3 ones. 3.04 
So '76 x 4 = 304. 

Division 
Division by 	 a whole number may give a whole-number 

answer or it may give a fractional answer. If the answer is not 
a whole number, then it is often very useful to write the frac­
tional part as a decimal fraction. Decimal fractions can be 
compared for size more easily than 	common fractions can be
compared and so are more often used in a practical situation 
such as measuring. 

You remember how to do division to obtain a decimal 
fraction firom a common fraction. You worked many examples
in Chapter First, will work two23. we examples without 
remainders. 

First example: 357 3)
 
Regroup 357 as 3 hundreds -, 3 tens -27 ones.
 

Then 357 +3 	 =(300 -- 30 + 27) +3
 
= (300 3) + (30 +3) +(27 +3)
 
= 100 + 10 -F 9
 
= 119
 

Shortform 
100 -F 10 -- 9 119 

3)357 
300 (100 "x3 = 300)
57
 

30 (10 : 3 30') 
27
 

27 (9 "3=27) 
Second example: 27.95 + 5 

The regrouping is described in steps.
 
Tens: 2 
 * 5 is not a whole number. Regroup 2 tens 

as 20 ones. 20 + 7 = 27 ones. 
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Ones: 	 27 = (5 x 5) -P 2. Write 5 in the ones place. 
Regroup the 2 as 20 tenths. 20 d- 9 = 29 
tenths. 

Tenths: 	 29 =(5 x 5) +4. Write 5 in the tenths 
place. Regroup the 4 as 40 hundredths. 
40 -+ 5 = ,15 hundredths. 

Hundredths: 45 = 9 x 5. Write 9 in the hundredths place. 
So 27.95 - 5 = 5.59 

Shortform 
5.59 

5)2 	7.95 
25 (5 x 5 25) 
2.9
 
2.5 	 ('5 x 5 2"5) 

.45 

.1.5 ('09 x5 . 45) 

Notice that fhe result comes from regrouping 27.95 as 25 
ones - 25 tenths + 45 hundredths. Division by 5 gives 
5 ones -P5 tenths + 9 hundredths = 5.59. 

In each example there was no remainder, but in the second 
example there were decimal fractions involved. The method 
there was really no dilferent, but the regrouping was a bit 
harder to write down. So the step-by-step procedure was easier 
to use. This is often the case. 

EXERCISE 24-3A 

1. 	Work these problems. 
a. 	7.4 x 6 b. 91.23 x 8 c. 1.005 x 2 
d. 11.642 x 	5 e. 1'274 x 10 f. .125 x 8 

2. 	Find the numbers to put into the boxes to make thesc. tate­
ments true. 
a. .5 x LFl- 1.5 b. -I x [- -I 
c. .1 x [I =.8 d. 7 x n =7 
e. .5 x F] =25. f. .3 x =2.4
 
g..8 x D-1=0 h. 1.2 x n-3.6
 
i. 	 1.1 x F]=44. 
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3. 	 Work these problems. 
a. 336 + 8 b. 26.35 +5 c. 2900 +100 
d. 39.83 + 7 e. 1"01208 + 4 f. 20"712 +3 

4. 	 Explain how you would help your pupils understand how to 
find the answer to Question 3(b), 26.35 -, 5. 

5. 	 Make up four division problems which have no remainders. 

The two division problems which were workcd before the 
last exercise were shown with the subtraction set down. Many
pupils will, of course, be able to find these differences without
writing them down, and this shorter method of working is 
shown in the division problems which follow. 

Division with remainders 
In 	 a problem such as 25 - 2 [, there is no whole nmm­

ber answer, but there is a fraction which will make the equation
true. It is 2 or 12k. I-Icre is another way to work the problem.
Since 25 = (12 x 2) + 1, regroup the I as 10 tenths. Divi'ion 
by 2 gives 25 -- 2 = 12.5. 

Let us look at another example, say 67 -- 5 = F-. 
Tens, Ones: 67 50 -i- 15 + 2
 

=(10 x 5) + (3 x 5) + 2
 
=(13 x 5) +2 
 13.4 

Tenths: Regroup 2 as 20 tenths. 5)6
\ 

7.0
21 

Then 67 - 5 = 134. 

If there are decimal fractions in the number to be divided,
there is no difference in the method. The regrouping is carried 
out in the same way as in our previous examples. Here is 
another example, 27.1 -- 4 = n. 

Tens: 2 	 + 4 is not a whole number. 
Regroup 2 tens as 20 ones. 
20 	- 7 27 ones. 

Ones: 	 27 =(6 x 4)- ,3
 
Write 6 in the ones place. Re­
group 3 ones as 30 tenths.
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6-7 75 

Tenths: 30 - 1 = 31 tentis. 6. 7 
31 -­(7 x 4) -r-3. \rite 7 in 4)27.100 
tile tenths place. Regroup 3 
tcnths as 30 hundredths. 

Hundredths: 30 -=(7x 4) - 9. Write 7 in 
the hundredths place. Regroup 
2 hundredths as 20 thousandths. 

Thousandths: 20 = 5 " 4. Write 5 in the 
thousandths place. 

So 27.1 - 4 --6.775. 
Sometimes you vill find that the regrouping procedure does 

not end. This neans that the quotient is a non-ending decimal. 
You have met these non-ending decimals earlier. Ina case such 
as this we could agree to stop after one decimal place or we 
could work to any numbcr of' decimal places. There is no 
special reason to choose any particular decimal place as the 
stopping point. When vou]- pupils meet non-ending lecimals as 
quotients in division problems, you should always tell them 
how many decimal places to use. 

For example, let us find 3 -+ 7, working to three decimal 
places. Using only the short fbrin, we get 

.42 8... 

7)3.0 0 0... 
So we writc 3 - 7 0.428 ..., the three dots showing that 

the procedure continues and there are other digits that have 
not been calculated. 
We note that the remainder from the thousandths place is 

4 thousandths. This means that 
3 7 = 0.428 -1--*4- (why?) 

The fraction V-,04 is the difference between 0.428 and the 
exact answer to 3 -:- 7. It is the error introduced by cutting off 
the di'ision procedure. In a later chapter we will. discuss such 
errors in detail. 

ExERCIsI. 24-3B 
1. 	Make up three problems of division of a decimal fraction by 

a whole number less than 10 and describe how you would 
hell) your pupils to think out the working of each problem. 
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2. Work each problem given below to three decimal places. 

a. 	34.621 + 4 b. 5.317 3 c. 6 7 
3. 	 Work each problem to the number of places given after it. 

a. 	5.276 +8 (to four decimal places)
b. 	37-01 ±3 (to three decimal places) 
c. 	-1 (to two decimal places) 

4. 	 In each problem in Question 3, what i, the fraction omitted 
from the quotient? 

24-4 Multiplication in decimal notation 
You know that 2 x 3 = 6, but what is 2 x .3? You can work 

this out in two ways. 
1. Sinuc fractions have the commutative property of multiplica­

tion, 2 x -3 =.3 x 	2, and you already know that this is 
•6. 	 (3 tenths x 2 = 6 tenths.) 

2. 	 Rewrite .3 in the expanded form as 3 x -11.Then: 
2 x .3 = 2 x (3 x-,,-) (2 x 3) x -1 

(Note use of associative property) 
=6 x =-.6 

This second method is more useful, because it can be used to
show how to multiply any two decimal fractions. Let us see
whether we can find a rule which works for any two decimal
fractions we choose. Here are some examples. Can you see what 
is happening each time? 

1. ~.3x .2 P( x T-)x (2 x ­
- (3 x 2) x (-lij x -i,-)

(Note use of commutative property.) 
--6 X1- = .06 .3 x .2 =06 

2. .5 x .7 =(5 x . x (7 x 
(5 x 7) x (, x 0-) 
35 x - =.35 .5 x .7 .35 

3. .5 x .02 = (5 x -,1) x (2 x 1 ) 
= (5 x 2) x (-l,,. x 1)
=10 x .010 .5 x '02 =.010 
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4. *02 x 00 =(2 x -,) x (3 x -- )

=(2 x 3) x x -,L) 
6 x-, = .00006 

•02 X •003 = .00006 
Did you notice that in every problem you separated the 

digits in the two numbers from the powers of 10 which show 
their value? 

•02 x .003 = (2 x 3) x (jil x i$) (omitting one step) 
Then you found the products of each pair of factors.

-i-­
10'

This gave you the product of the digits in the original num­
lers divided by a power of 10 which tells you the place value 
of the 6. = -00006 

To find wlhere to write the 6, you can think of 6 x -I as 
6 - 105 and you will remember that this can be worked out 
with a number cliari. It means that 6 is moved five places to the 
right and becomes .00006. Now where does this five come from? 
It is the power of 10 which comes from multiplying together the 
- - and -l.But -o tells you that the first number has two 
places of decimals and the T!1'j tells you that the second number 
has three places of decimals. So you can add the number of 
places in the two factors, that is, in the two numbers you 
multiplied. 

This is a very important result and you can help your pupils 
see this pattern by making a table of numbers and their pro­
ducts. Your pupils can first work out such numbers as .3x 7 
and I. 2 x 3, which they already know how to compute. Thus, 
they call work out by using fractions such numbers as .3x .4,
5 x .01, .13 x .04. They then tabulate these results as follows: 

ANumber of Numnber of Number of 
Equation decimal places decimal places decimalplaces 

in first nutmber in second nmbcr in product 

•3 x 7=2.1 1 0 1 

1.42 x 3 =4.26 02 2 

•13 x.04 =.0052 2 2 4 
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When your pupils have looked at a table like this and thought
about the way they find a 	product using fractions, they will 
understand the rule. Here it is. 

To multiply two decimal fractions: First multiply them without the
decimal points. Then make as mang, decimal places in your product as
the sum of the number of decimal places in the two decimalfractions. 
Here is an example. 

27.312 x 1.25 
27312 	 Number of decimal places in the two decimal

125 fractions is 3 + 2 -- 5. Therefore th, number 
136560 of'decimal places in the produC must be five. 
546240 27.312 >. 1.25 = 34-14000 

2731200 = 34.14 
3414000
 

You will notice that it is very important to keep any zeros in
the product until the value of the product is decided. Once the
decimal point has been put in, the zeros which are not needed 
can be omitted. 

EXERCISE 24-4A 

1. Find the product of each pair of numbers. 
a. 	2 x.3 b. .7 x 8 c .3 x'l d..1 x.1 
e. 2 x .1 f. 9 x 1.1 g. 7.9 x 10 h. 1.2 x 1.2
i. 	 .Ix.05 j..6 x'25 k. 1.02 x .7 1. 	 12.5 x.8 

2. 	Find the product of each pair of numbers. 
a. 	 1.142 x 7.3 b. 	23.121 x .005 
c. 	23.54 x 21.5 d. 	.087 x *0014 

3. 	 A pupil writes that .1 x .1 = .1. Explain how you would 
help him to see his error. 

4. 	 Show by working in fractions why 
•13 x .04 = "0052 

5. 	 Make a table like the one on page 45 and show on it six
equations such as you could use with your pupils to help
them discover the rule for multiplication with decimal 
fractions. How would you make sure that they understood 
why the rule works? 
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24-5 Division in decimal notation 

We have alrcady discussed division of decimal fractions by 
whole numbers less than 10. Division by whole numbers 
greater than 10 is similar. Here is an example, 256 - 16 = E-]. 

Regroup 256 as 160 ± 80 + 16 

Then
 
256 16 = (160 =-80-± 16) -16
 

-(160 + 16) + (80 + 16)
 
+ (16 + 16)
 

10 + 5 -1-1
 
16
 

10 -5 1 =16 

16)256 
160 (10 x 16 160) 
96 
80 (5 >. 16 80) 
16
 
16 (1 x 16 -=16)
 

Next think about the problem 25.6 + 16 =F 

Since 25.6 = 256 -- 10, we expect the answer 1.6 
to our problem to be 16 + 10 = 1.6. The short 16)2 5.6 
form is shown oil the right. 1 6 

9.6 
9.6 

Division of a decimal fraction by a whole number is quite 
straightforward, as we have seen. It is possible to turn all 
division by a decimal fraction into division by a whole number. 
How is this done? Suppose you want to find 24 -3. We would 
like to work with 3 instead of 0.3. Observe that .3 x 10 = 3. 
If we multiply .3 by 10 we will divide the answer to our prob­
lem by 10. So we must also multiply 24 by 10. In other words, 
the problem 24 + .3 is the same as th', problem 240 -- 3. 
So 24 + .3 =80. 

Another way to make the divisor a whole mmber is to think 
of 24 + .3 as a fraction. 
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•.3
24 - 3 24 (Compare 1 2= and1 +-3 = 
24 x JO
 
.3 x 
10 

240 
3 -80 (To make an equal fraction) 

So 24 + 3 = 80 
Here is another example. Find 72 + 09 

7"2 + "09 7"2 7"2 x 100 720 
.09 .09 x 100 9
 

So 72 - 09 = 80
 
Your pupils will probably need 
 some practice in decidingwhat they must do to a decimal fraction to make it a wholenumber. They vill need problems such as these: 

.31 x 31 
•002 x L= 2 

734-6 x fj 7,346
And these:
 

What must you do to -7 to make it a whole number?
What must you do to 1.32 to make it a whole number?
This can be a game in which pupils make up questions suchas these and ask each other for answers.
 

EXERCISE 24-5A
 
1. Make up problems like those above to ask your pupils.
2. Find these quotients: 

a. 16 +4 b. 21 +.3 c. 30 .05d. 5.6 +.7 e. 64 +"08 f. .032 + .4 g. 55- 1.1 h. 121 +.11 L 1"32 -.04
3. Find these quotients. Do not work more than two decimal 
places.
 
a 33.79 +23 
 b. '17 +8 
c. 31.012 + .56 d. 3'653 + 3.7 

24-6 Percentage 
There is another way of writing a decimal fractio-i and thatis as a percentage. 230, read 23 per cent, means 23 things out 
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of every 100 things. If there are 100 boys in a school, then 23% 
of the boys of the school is 23 boys: 23 out of 100. You will 
remember when you learned to think of fractions in terms of 
sets you said that if a set had 5 members, then the fraction of 
this set represented by 3 of its members is -. One member is j­
and three members are -. If the set has 100 members, then 1 
member is -I-of the total number of the set and 23 members 
are -1 of the number of the set. and -- are bothSo 23% "5 

names for the same number. What decimal fraction car also be
 
used to name the number? .- is 23 x 1iu--, which is written as
 
*23. So we have the relationships
 

23% = 20 = *23100 

37
 
aud 37% = 100 = .37
 

9
 
and 9%= =.09 

Percentages are frequently used in everyday affairs, in shops,
in factories and in government. A 10% discount may be 
allowed off the pricc2 of articles bought in a certain shop . 
Money may be invested and earn interest of 2%. A firm of 
building contractors may decide that it must make a profit of 
50% i,order to pay its workers. The final profit will be much 
less. These are some of the uses of percentages, and you should 
look for more examples and use them to make problems for 
your pupils. 

The percentages mentioned above are ones which can be 
written as very simple fractions. What fractions name the same 
numbers as 10%, 2% and 50%? It is easy to find out. 

10 110= 10010% 


2 1
2% = -=100 50 

150550% 
3~ 7 

31 13..= 100 =200 (31"out of 100 = 7out of 200)
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Percentages must be written as common or decimal fractions 
before they can be used in calculations. The common fraction 
is generally more convenient for this purpose, but you should 
always consider whether using the decimal fraction might re­
duce the amount of work. Here is an example worked in both 
ways. 

Amodu buys some books and his bill is 40 shillings. If he is 
allowed 10% discount off his bill, how much must he pay? 

By conlonfiactions By decimalfiractions 
10% of 40 shillings 10% of140 shillings 

---ix 40 shillings -1 x 40 shillings 
= 4 shillings 4 shillings 

So Amodu must pay 40 shillings - 4 shillings = 36 shillings. 
Your pupils should be able to work simple problems like this 

in their heads. For this, they should have a sound under­
standing of percentages and thCir equivalent fractions. 

EXERCISE 24-6A 
1. Fill in the gaps in this table.
 

Pcrcentge 50! 25 12.1 75 20 I0 5 21 331 60 35
 

Common-- I 
fraction I 

Decimal 
fraction I I I 

2. Work out each of the following percentages in two ways.
(-""" denotes "pounds" and S "dollars".) 
a. 5 % of£75 b. 31% of ,120 
c. 7% of 720 shillings d. 4% of $312.00 

In all the problems so far, you were given a percentage and 
asked to find the corresponding fraction. Often we need to 
know what percentage of a total is represcnted by a certain 
amount. For example, what percentage of the whole class of 
40 is a group of 35? Now that you know that a percentage is a 
fraction, you can see that the first step will be to find what 
fraction the group is of the whole class. The group is 35 out of' 
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40, so this is AA- of the whole class. We want this as a fraction 
with a denominator of 100; that is, we want it in hundredths. 
How can we do this? First we can make it simpler. :1 -11 
Now we want to know how many hundredths there are in . 
So we find the quotient 7 + 8, and this is 875. This is 87.5 
hundredths. Can you explain why .875 is 875 hundredths? If 
you have forgotten, you call make a number chart and write 
*875 on it aid you will see that you have 

8 tenths -i 7 hundredths + 5 thousandths 
87 hundredths -- 5 thousandths 
87 lndredthis + 5 hundredths 
875 hundredths 

Do you see what we have Cdone? 

875 is 875 x 100 and 875 is [. 
So 875 is .7.x 100. So instead of dividing by 8 and then reading 
this as hundredths, we can straightaway multiply our fraction 
by 100. We necd not simplify the fraction first. Here is the 
working to find what percentage of 40 is represented by 35. 

35 is 3 of '10 

35- x 500 . 175 .. 87.5 
402 

2 
So 35 is 87.5% of 40 

Here is a problem. 
In an examination there were 70 problems. A boy had 55 

right. All problems had equal marks. What percentage did the 
boy have right? Work to one decimal place only. 

Fraction right 
7O
 

55 550Percentage right = ,x100 = 78.5% 

Another kind of problem is one where we know the percentage 
and what it represents but we do not know the total. 

In a certain town, 78% of'the electorate voted in an election. 
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There were 5,600 ballot 	papers. How many people were en­
titled to vote? (That is, how many people were in the elector­
ate?) We can make an equation. The number of the electorate 
is to be put into the box. 

78% of jj 5,600 

78 
] 5,600T-00 x 

This is an equation with a missing factor and you know what 
this means. It means division. It can be rewritten as 

5,600 8F78 
100-

This is division by a fraction and to divide by a fraction we 
multiply by its reciprocal. (Why?) The reciprocal of 78 is 

100 
78 100
78 -.WhVly? Because -1-0 X _'001 	 = 1
 

So the equation becomes 
100 560,000 
78 78 

= 7,179 
We did not work this problem further than the ones. (Why not?)
So the total electorate is 7,179. 
We
can fit most problems about percentages to one equation.

Son-etimes we have to find one part of the equation and some­
times another part. Let us think about an equation 	where we 
know everything. 

25%of4.4 11 
This is written as 

25 

100_ of 44 11 

The three problems that 	can be asked about the situation are: 
I. 	 What is 25 % of 44? 

25 o-of44 =
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2. 	What percentage of 44 is 11? 

10of44.=11 or - x44=11 
100 	 100 

which can be written as division as 

E] =1 -44 
100
 
11
 

This we saw was [] = I x 100
 

3. 	 11 is 25% of what number? 
25 
10-0 of I 

which can be written as division as 

11 25 [100 -

As long as you understand the meaning of percentage, you can 
work out any problem by using this equation. 

Ex RcIsE 24-6B 

1. 	Write each of these percentages as a common fraction. 
a. b. 333% c. 65% 
d. 	5.5% e. 17% f. 161 % 

2. 	 Write each of these fi,:. dons as a percentage. 

a. I b..4 c. 4 d. 
e. 	 *32 f. .01 g. --7 h.A 

3. 	 Find each percentage. 
a. 	5% of 1 hour, in minutes 
b. 	25 % of a year, in clays 
c. 	16% of 200 shillings 

4. 	 Find what percentage the first of each pair is of the second 
of each pair. Work to two decimal places only. 
a. 	33, 300 b. 100,200 
c. 	300, 10, d. 4,5 
e. 45 shillin.gs, 500 shillings f. 55 marks out of 80 marks 

http:shillin.gs
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5. Find the total amount in cach case. Do not work to more 
than one place of decimals. 
a. 4 is 25% of what number? 
b. 36 is 200 of what mnmbcr? 
c. 1,500 is 65%1/ of what number? 
d. £565 is 32%, of how many pounds? 
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Chapter 25 

INTRODUCTION TO INTEGERS 

25-1 A reminder of subtraction 

Think about each of the following examples. 

Exanple 1 
Kwame and his sister Araba have 6 bananas. Kwame cats 

4 bananas. I-low many are left for Araba? 

Example 2 
One classroom has desks for 35 children. A second classroom 

has desks for 27 children. How many more desks are in the first 
classroom? 

Exanple 3 
Kofe is 40 inches tall, and Kwame is 40 inches tall. Who is 

taller? By how many inches? 

Example 4 
Mary has saved 5 shillings and wants to buy some sandals 

that cost 9 shillings. How many more shillings must she save? 
Example 5 

Below is a number line on which the numnber. 5 and 8 are
shown. How many units to the right must one move to go from 
5 to 8? 

0 5 8 

What do the examples have in common? First, the answer to 
each is given by a subtraction problem. Tlie answers are: 

Example 1: 6- 4 E 

Example 2: 35 -27 -

Example 3:' 40 -40 

Example4. 5 +E41=9 or 9-5=4 

Example 5: 8-5 = "t 

56 
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Notice that the answer in Example 3 is 0, and that in Example 4 
subtraction is thought of as finding a missing addend. (Each 
example can be thought ofin this way.) 

There is a second thing vhici the examples have in common. 
In each case, the answer is a whole number. Is it always possible 
to subtract two whole numbers and get an answer which is 
again a whole number? Unlortuinately, it is not. Tiink about 
3 - 5 =DP, 7 1-0 = [j, and so on. If one addend is larger 
than the sum, you are not yet able to handle the problem. 

You will remember that you had a similar" situttion Viti 
division. At first you had no ansvwer to a problem such as 
8 5 F]. By using fractions, you 1. ter gave the answer --. 
In this unit, you will learn about another kind of number which 
will make it possible to write an answer to 3 -- 5 -. 

Ex,tclSi.s 25-lA 

Work the following problems if it is possible to find a whole 
number answer. \Vhichi problems have no whole number 
answer? 
1. 7 L]-10 2. 3+ F-i=1 
3. I1,1 4...[ 4. n-+ 2 =9 

5. 4-8 LI 6.2-11 = [] 
7. 13 -:- ] 13 

25-2 Physical models 

You have learned in geography how the positions of places 
on the earth are described using latitude and longitude. Latitude 
is measured in degrees (") north and south of the equator and 
longitude in degres east and vest of the meridian of longitude 
which pases throug1 Greenwich. On a map of the vorld you 
will see, along the edges of the page, lines which arc marked to 
show latitude and longitude. 

Latitude is marked onIa line segment clown each side of the 
map. On tie folloVing page is part of one such line segment. 
You can tell which side is north and which side is south of 
the equator by tie letter N or S marked before the number 
of degrees. 
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N 30* 

N 20" 

N 10° 

Latitude 0 at equator 

-S1O ° 

° S 20 

S30' 

Longitude is marked on line segments along the top and bottom 
of the map. Here is part of one of them. 

Longitude, 

W 40 W 30' W 0' W 1 Ei 0" E20' E30" 

Again, you can tell which is east and which is west by the 
letters E or W written before the number of degrees.

You will have noticed that in each case we measure in two 
opposite directions from central point which is called zero. 
Zero degree latitude is on the equator and zero degree longitude
is on the meridian through Greenwich. 

There are many other things which are measured in two 
opposite directions. Here are some of them: the height of land
above sea level and the depth of the ocean below sea level; the
number of'years A.D. (AnnoDomini), and the number of years B.c. 
(Before Clirist); time before the hour and past the hour. On the 
opposite page is a clock-face on which are marked the times 
before the hour and after the hour. These are the times which 
are shown by the minute hand. 

You will see that these times are measured in opposite
directions from the hour. There are the times past the hour and 
the times to the hour. Both sets of times are measured from the 
hour. We will draw a line picture for these times. What time
shall we choose as zero time? This mnst be the hour, because 
the times are measured from the hour. At the hour there are
0 minutes past or 0 minutes before the hour. On one side of 0 
we will mark the times past the hour. On the other side of 0, 
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HOUR 

0nspast5min5 


-120 mins.past10 ains.to 


25 minspast 
minsto 


t 	past 
30 mins.past 

we will mark the times before the hour, backward (to the lefl) 
fru.n 0. To show which side is past tie hour and which side is 

< i [ 7 I I I I I-......... I I1 
25t 20t 15t lot 5t 0 5p lOp 15p 2 0p 25p 

HOUR 

to the hour we have marked each number either p (for past) 
or t (for to). Can you see that our line is like the line around the 
edge of the clock-face? Ifyou cut the line around the edge of the 
clock-face and straighten it out, where would you make the 
cut? You want it to look like the number line we have just 
drawn. You will have to cut the line at half-past. 

When the time is 20 past the hour, where will the minute 
hand be on the number line? At 20p. What will the time be at 
10t? 10 to the hour. 

The seconds before and after firing off a iocket are also 
measured in this way. This is called "countdown" and is 
spoken, "Ten, nine, eight, seven, six, five, four, three, two, one, 
zero". At zero the rocket is fired. The count goes on after the 
rocket is fired, "One, two, three" and so on. 

You can think of gains and losses in a similar way. If you 
win 6 shillings at a game of'cards, this is not the same thing as 
losing 6 shillings. If you win 6 shillings, 2 shillings, 3 shillings 
and 1 shilling, your wins can be shown by dots on a line as 



60 Integers 
shown in the picture. You must first decide where to put thedot for a result when you neither win nor lose. This will be the zero point. Then you decide on which side of 0 you will mark
the line for wins. We usually use the right-hand side for this.
Then we canl mark losses in the opposite direction. 

L5 L4 L2L3 Li 0 W1 W2 W3 W4 W5 W6 

Wins and Losses 
The dots show the wins I shilling, 2 shillings, 3 shillings and6 shillings. What losses are shown? 1 shilling, 2 shillings, 4 shil­
lings and 5 shillings.

In each of these cases you will see that you can make picturesof the measurements by representing them as points on a line. 
This is how you do it. 
1. 	Draw a line. 
2. 	 Mark a point with 0. Call this the zero point.
3. 	 Decide what the zero point represents.
4. 	 Mark the scale for the measurements in one direction.
5. 	 Mark the scale fbr the measurements in the opposite direction.
6. 	 Give the points on each side of 0 a letter or symbol to enable 

you to distinguish between them. 
EXERCiSE 25-2A 
Each of the sets of measurements described below can be shown 
on a line. For each one (a) draw the line, (b) mark the zero
point and say what it represents, and (c) mark in the measure­
ments.
 
1. 	Longitude east and west of the Greenwich meridian. Mark
 

two points on 
 this line to show the longitude of the mosteasterly and must westerly parts of the African coast line.
Find the longitude of six African towns and mark them also. 

2. 	A oi - has been (lug in the ground for a mine shaft 100 feet
deep. Above it has been built a tower 60 feet high. The 
tower has platforms at 20 feet and 50 feet. Mark these on theline. Mark also a platform in the mine which L as Iar below 
gruund as the first platform is above grour.d. 

3. 	 A Centigrade thermometer measures the temperature from
40' below zero to 70' above zero. Mark on the line a tem­
perature of 300 above zero. 
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4. 	 A shopkeeper has debts of 20 shillings, 50 shillings, 65 shil­

lings and 25 shillings. He has credits of 15 shillings, 25 
shillings, 50 shillings, 70 shillings and 35 shillings. Show 
these amounts on a line. 

5. 	Some boys are to run a race. As some of thcm are taller and 
older and some of them are shortcr and youngcr, they are 
to start from diffcrent places behind or ahcad of the starting
point. Four young boys stand 3 feet, 5 feet, 2 feet and 7 feet 
in front of the line. Seven boys stand at the starting point 
and three big boys stand behind the starting point at distances 
of 3 feet, 6 fiec and 8 feet. Show these boys as dots waiting to 
start their race, (You will need fourteen lines, side by side, 
fbr the fourteen boys to stand on.) 



Chapter 26 

THE NUMBER LINE AS A PICTURE
 
FOR INTEGERS
 

26-1 Naming the new numbers 
You will have realized while making the lines in the last

exercise that it was very like making a number line. When you
made a number line before, in Chapter 16, you first chose apoint to be zero and marzed it 0, and then measured out equal
steps to the right. You then used the counting numbers to name
the points at the ends of these steps. But when you made theline picture for longitude east and west, you used the counting
numbers twice. You used them to the right and to the left of 0.
When you made e line picture for the mine shaft and its
tower, you drev the line going upwards instead of across the 
page. But you still used the counting numbers twice, once oneach side of the zero point. So you will see that we want a newkind of number line as a picture of aiLy of these things which 
are measured in two directions. 

Look at the number line below. 

I I I I ' I i i ; 
4 3 2 1. 0 1 2 3 4 

You can see that we must have some way to distinguish between
the number 3 to the right of 0 and the number 3 to the left of 0.W\Te want names for the two sets of numbers. We want to make 
a number line which we can use to show all these situations:
right and left, north and south of the equator, east and west
of the meridian through Greenwich, ahead of and behind thestarting point, above and below sea level, gain and loss, creditand debit, surplus and shortage, after and before and many
more. What we need is a way to tell apart numbers on opposite
sides of zero. In many of these cases, descriptions such as ahead,
above, gain and credit seem to suggest "ha'ing something",
while their opposites below, behind, loss an,.t debit may seem 
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to suggest "lacking something". So we distinguish the first as 
being positive and the second as being negative. On the new 
number line, we label positive numbers on one side of 0 and 
label negative numbers on the other side of 0. Tile number 0 at 
the starting point is neither positive nor negative. The positive 
numbers are conventionally shown to tile right ofo and negative 
numbers to the left of 0, but we could put the positive numbers 
above 0 and the negative numbers below 0. '[his vhole set of 
numbers-positive, negative and zero---we call the SET OF 
INTEGERS. 

The numbers to the left of zero are negative integers and so 
we will call the 3 on this side neg 3 for short. The numbers to the 
right of zero are the positive integers and so we will call th.r 
3 on this side pos 3 tbr short. 

Here is a picture of the number line showing some of the 
negative integers, zero, and some of the positive integers. 

neg 3 neg 2 neg 1 0 pos 1 pos 2 pos 3 

26-2 Zero 

The number zero has a special position between these two 
sets of numbers. You will remember that you first heard of zero, 
in Chapter 1, as the number of the empty set. You used 0 then 
to show an empty set. For example, in 202, the number which 
is equal to 2 x 0 10 2 1, tle set of tens is empty, 10' -:- x - x 
and in the numlber which is equal to 3 x 10" - 7 x 10 + 0 x 1, 
370, the set of ones is empty. You also used 0 to mark the point 
on the number line from which you started to ,measure out uinit 
lengths. So in this way you can once again think ol' ;zero as th(, 
number of the empty set, tile empty set of unit lengths This is 
the way we think of zero with the integers. \When we think about 
latitude, 0, is at the equator. For minutes past and to the hour 
we chose 0 to be the hour and in the problem about the mine, 
0 was at ground level. Zero has a very imlportant part to play 
on this number line. It separates the positive integers from tie 
negative integers and later on we shall see how it helps us in 
doing addition and subtraction. 
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26-3 Opposites 

neg 3 nog 2 nea1 30 pos 1 pos 2 pos pos 4 

You will see oil the numbcr line that the integers can be 
matched in pairs. We can match any integer and its OPPOSITE. 
Here are some pairs. They are shown on the line also. 

neg 3 and pos 3 
pos 2 and neg 2 
neg 2 and pos 2 

Such pairs are called 'opposites'. You will see that the two
members of a pair are the same distance friom 0, but they are 
on opposite sides of it. To find the opposite of an integer, we
look for the integer which is on the opposite ,idce of 0 and at the 
same distance from 0. \Ve can write this in another way. 

The opposite of neg 3 is pos 3. 
The opposite of pos 2 is neg 2. 
The opposite of pos 15 is neg 15. 
The opposite of neg 52 is pos 52. 

The opposite of 0 is itself, because 0 is neither positive nor
negative. What is the opposite of the opposite of an integer?

We can work th'; out in three stages.
 
The opp. of the opp. of pos 6 the opp. of (the opp. of pos 6)
 

the opp. of neg 6 
- pos 6. 

So the opposite of the opposite ofpos 6 is pos 6 itself. Is this true
if we begin with a negative number? You can see that it must 
be so. Can you see this for yourself? Begin with the opposite
of the opposite of neg 3 and work it out in the same way. You
will find that the opposite of the opposite of neg 3 is neg 3 itself.
You can see that whether you begin with a positive number or 
a negative num)er or 0, the Opposite of the opposite will be 
the number itself, the number you began with. 

You can prove this for yoursclf on the number line also. If 
you want to find the opposite of aiy number you begin with
that number, you jump to 0 and then you make another jump
of the same size and land on the opposite. To find the opposite 
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of this second number, you simply jump back again the way 
you came. So to find the opposite of the opposite you jump
there and back again. So you need not jump at all; you are at 
the answer already. 

EXERCISE 26-3A 
1. What are the opposites of the following measurements? 

a. Latitude N 30' b. Longitude W 450 
c. Temperature 15' above zero d. 10 minutes past thehour 
e. A win of 7 shillings f. A debt of 50 shillings 

2. What are the following? 
a. the opposite of neg 1 
b. the opposite of pos 11 
c. the opposite of pos 17 
d. the opposite of neg 73 
e. the opposite of pos 129 
f. the opp. of the opp. of pos 8 
g. The opp. of the opp. of neg 42 
h. the opp. of the opp. of neg 9 
i. the opp. of the opp. of the opp. of pos 23 
j. the opp. of the opp. of pos 14 
l. the opp. of the opp. of 0 

26-4 Order properties 

We now have to decide how to compare two integers. You 
know already that any whole numb- is less than any other 
whole number to the right of it on the number line. You will 
remember that thi., shovs how to decide the order of two whole 
numbers: the greater is to the right on the number line. Using 
the same rule for positive integers, here are some examples of 
inequalities. Recall that the sign ">" means greaterthian and the 
siga " 1m as less lhait.i"' 

pos 3 < pos 6 pos 35 > pos 29 
op s 100 < pos 200 pos 1 . 0 

You will see that 0 must be less than any positive integer, be­
cause all the positive integers are to the right of 0. 

3neg3 neg2 neg1 0 pos 1 pos2 pos 
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Now we want to decide the order of any two integers. Which 

is greater: neg 2 or ncg 3? Let us use the same rule for negativ'e
integers that we use for positive integers. Neg 1 is to the left 
of 0, so by this rule neg 1 is less than 0: neg 1 < 0. Similarly, 
neg 2 is to the left of neg 1, and so ncg 2 < neg 1; neg 3 is to 
the left of neg 2, and so neg 3 < neg 2, and so on. Any negative
integer is therefbre less than 0. 

So we use the same scheme throughout: on the number line 
any integer is less than any integer to the right of it. More 
fbrnally, If a and b are any two integerf, then a < b means that a is 
to the left of b on the number line. 

EXERCISE 26-4A 

1. Put in the inequality sign, < ->, to make eachor of' the 
following into true statements: 
a. pos 6 pos 10 b. neg 6 neg 10 
c. pos 15 neg 15 d. neg 15 pos 15 
e. neg 200 neg 1,000 f. 0 neg 3 
g. 0 pos8 h. neg 1] 0 

2. Put in an integer to make each of these inequalities true: 
a. pos I > [ b. posl <_ 
c. neg5 > [ d. neg 5 < 
e. pos 100 ] ' <f neg 100 E­
g. 0 >Dnh. 0< ] 

Can you attach a meaning to the order of numbers in the 
physical models of integers?

Can you say that one measurement is greater than another? 
Will this statement always have neaning? There must be such 
an order because the number line canl be used for all such 
physical models, but are the words "greater than" and "less 
than" the best onus to use? How would you compare the 
latitude of a place A at NV 270 with the latitude of a place B 
at E 19 '? You would make one of two statements 

A is to the west of B 
B is to the east of A 

You notice that there is no mention of greater than or less than. 
Here are some more comparisons. 
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The top of a mountain 1,000 feet high is higher than tile top
of a house 10 feet high. The top of a house 10 feet high is higher 
than the bottom of a lake by which it stands. 

The Great Pyramid was built about 1800 B.C. and the ancient 
kingdom of Ghana flourished about A.D. 900. How would you 
compare these two events? You would say the Great Pyramid 
was built before ancient Ghana flourished, or that ancient Ghana 
flourished after the Great Pyramid was built. 

EXERCISE 26-4B 
1. 	Make two comparative statements about each of the follow­

ing pairs. 
a. 	Longitude N 29' and longitude S 50'. 
b. 	The time 10 past 3 p.m. by your watch and the time 

5 to 3 p.m. by your friend's watch. 
c. 	A man on a platform in the mine shaft 53 feet under­

ground and a man who is on the ground. 
d. The temperature at noon today, which is 950 Fahrenheit, 

and the temperature yesterday, which was 102' Fahren­
lieit. 

e. A boy Kofi who starts the race 5 feet ahead of the starting 
point and a boy Kwesi who starts the race 5 feet behind 
the starting point. 

Now we must think about the order of the opposites of 
integers. You know that pos 8 > pos 3. What is the order of the 
opposites of pos 8 and pos 3? We can rewrite the opposites as 
neg 8 and neg 3 and see that neg 8 < neg 3. You can check this 
on the number line. So the order relation between two positive 
integers is reversed between their opposites. You can see this is 
true fin- other integers also by working through the next 
cxerc ise. 

ExvaRcisil 26-IC 
Write down the order relationship between each of these pairs
followed by the order relationship between their opposites. The 
first one is done for you. 
1. 	neg 3 < pos 2, pos 3 > neg 2 2. neg 5 neg 8 
3. 	 pos 2 pos 11 4. pos 2 neg II 



68 Integers 
5. pos 7 0 6. 0 neg 2 
7. ncg 6 neg 1 8. pos 10 0 

26-5 "Between" 

What do we mean when we say that a whole number is
between two other whole numbers? For example, suppose I saythat I am thinking of a whole number between 3 and 7. You 
know that this whole umuber must be a member of the set of
numbers which are greater than 3 and less than 7. It must be 
a member of the set {4, 5, 6}. You can see that this way
finding the set of numbers between two numbers will work for

of 

the integers also. An integer between pos 3 and pos 7 must be 
greater than pos 3 and less than pos 7. It must be a member of
the set {pos 4, pos 5, pos 6}. Can you write the members of the 
set of integers be'wecn neg 3 and pos 1? Each of these integers
must be greater than neg 3 and less than pos 1. The set is
{neg 2, ncg 1,0}. You can check cach of these examples by look­
ing at the number line. 

between neg 3 and pos I between pos 3 and po 7
{neg 2, neg 1, O {pos 4 pos 5,pos 6J 

neg3 ng2 neg1 0 pos 1 pos2 pos3 pos4 pos5 pos6 pos7 

EXERCISE 26-5A 
1. Write the set of integers between these pairs. 

a. pos 20 and pos 25 b. pos 2 and neg 2 
c. neg 3 and 0 d. neg 5 and neg 7 
e. pos 8 and pos 9 f. neg 3 and neg 4 
g. pos 2 and 0 

2. Write a description of the following sets using the idea of 
"between": 
a. {neg 2, neg 1} b. {ps 19,pos 20, pos 21,pos 22} 
c. {pos 1, 0, nIeg 1} d. {0} e. { } 

3. Find how many integers there are in the following sets: 
a. {integers between: neg 6 and pos 6)
b. {integers between pos 5 and neg II } 
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4. 	 Name a set of points which is between cach of the pairs of 
points identified in Exercise 26-4B. 

26-6 Summary 

You have been introduced to a new set of numbers, the 
integers. This set is made up of the negative integers, zero and 
the positive integers. Integers can be represented on a number 
line and can be given an order of greatness. You will have 
noticed that the least integer on any number line section you 
have drawn is always the integer on the extreme left. After this, 
the itegers become greater as you move along the number line 
from left to right. The greatest integer on any section of the 
number line you have drawn is always the integer on the cx­
treme right. You are also able to find tile set of'integers between 
any two integers by using what you know about order on the 
line. You have also seen how to find the opposite of an integer 
and have discovered that to find the opposite of the opposite of 
a number is to leave the number unchanged. 

You will now be wondering whether you can find ways to 
add, subtract, multiply and divide using these new numbers, 
and in the next chapters you will see that you can, in fact, do 
this. 
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OPERATIONS ON INTEGERS 

27-1 Addition 

The positive integers pictured on a number line arc so like 
the whole numbers pictured on a number line that you will 
wonder whether you can add integers in the same way as you
added whole numbers on the number line. Before answering
this question, we shall first have to think again about what we 
mean by these integers. In every case, you measured from 0 a 
number of units along the line. 

To find latitude N 230 you measured 230 fiom 00 upward.
To find longitude W 19' you measured 19' to the left of 0'. 
To find 100 feet below sea level you would measure 100 feet 

downward. 
To find pos 3 you measured 3 steps of 1 unit each to the right 

of 0. 
To find neg 3 you measured 3 steps of 1 unit each to the left 

of 0. 

So you think of the sum of two integers as the result of moving
twice along the number line. You can find pos 3 -P pos 5 by
taking 3 steps from 0 to the right followed by 5 steps from pos 3 
to the right. This will bring you to pos 8. You can write 

pos 3 - pos 5 = pos 8 
Now yo, have fbund the sum of two positive integers. You can 
see that it was found in just the same way that you found 3 -+ 5,
the sum of two whole numbers, on the number line. 

You can check the answer by thinking of gains and losses. 
A gain of'3 shillings flblowcd by a gain of5 shillings gives a gain
of 8 shillings. As gains may be thought of as positive integers 
you will see that this is another way of thinking of pos 3 d- pos 5 
and that this is the same as pos 8. 

You can also work out the result of addition and subtraction 
of integers by using a slide rule. This is how to make it. 

70 
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You need two strips of ruled paper. Fold each strip into a 
long strip with the ruled lines across the width like this:

I I F 
Along the lower edge of the first strip mark the integers as if 

the edge were a number line. 
Now mark, in the same way, the upper edge of the second 

strip. The picture shows you how your two strips should look. 

<eg5 neg4 ne 3 neg2 negi 1 P , 2 pos4 pos5 

g e g 3 n e n e g 0 p1o s p s pos 3 p os 4 p os 5j 

This is a slide rule, but yours should have many more num­
bers than there are in the picture. The more integers you write, 
the more use you will find for your slide rule. 

Now you are ready to find pos 2 -!- pos 3 on your slide rule. 
Find pos 2 on the lower strip. Now slide the upper strip along 
to the right until the zero point of' the tippet- strip is exactly 
abo\e the point pos 2. Your slide rule should look like this: 

neg2 nel 0' poS 1 pos 2 pos 3 po 4 
_ I I ( 

3
.'ne63 neg2 neg1 6 Po'l pos2 pos Pos4 pos5 P° 6 

From the lower zero point, you have nioved to the lower pos 2 
point. Now you want to add pos 3 to the pos 2. To do this, you 
move 3 more units to the right from pos 2 and you do this with 
the upperstrip. The upper zero point is at pos 2 and to add pos 3 
you move along the upper strip 3 units to the right, that is, to 
the pos 3 point. Now you have added pos 3 to pos 2 and the 
answer will be on the lower strip below the pos 3. What is the 

I) C 2- F 
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answer? You see that it is pos 5. So you have found by using 
your slide rule that 

pos 2 + pos 3 = pos5 

EXERCISE 27-lA 
1. Without meving your slide rule from the position shown 

above, fink! the answers to these problems: 
a. pos 2 + pos4. b. pos 2 + pos 5 
c. pos2 +pos2 d. pos2 +pos 1 
e. pos2 + 0 f. pos2 pos6 

2. Now use your slide rule to find the answers to these problems: 
a. pos 3 + posI b. pos 1 + pos3 
c. pos 4 + 0 d. pos 4 + pos 2 
e. 0 +pos6 f. 0 +0 

3. Make up eight addition problems like these but use greater
integers. Check that your slide rule gives you the correct 
answers. 

You know a way to add two positive integers. Can you addtwo negative integers in the same way? First think of the
question in terms of losses and then use your slide rule to see if
it gives the same answer. If you have a loss of3 shillings followed
by a loss of 2 shillings, you have lost the same amount as ifyou
had one loss of 5 shillings. Thinking of losses as negative integers, 
you can write this as neg 3 + neg 2 = neg 5.

What do we mean by addition of negative integers) If it isto have the same meaning as addition of positive integers, it

must mean one movement followed by another movement. You
 
can find the sum neg 3 ­ neg 2 by using your slide rule. Where
will you put the 0 of the upper strip? Above the first number,
that is, above neg 3. You have now moved 3 steps, from 0 to neg 3. Look along the upper strip from 0 until you find neg 2.You now have added neg 2. What number is in the answer place
below neg 2? It will be neg 5. So with the slide rule, also, you
have found that 

neg 3 + neg 2 =neg 5 
You found this sum by moving 3 steps to the left and then 
another 2 steps farther to the left. 

You now know how to add two positive integers or two nega­
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tive integers. Can you work out how to add one negative 
integer and one positive integer? You should be able to work 
this out for yourself in the next exercise. 

EXERCISE 27-1B 
For each of these problems make up a story about gains and 
losses and then check your answer by using the slide rule. 
1. neg2 + pos5 2. neg5 + pos3 
3. neg3 -+0 4. pos2 +neg5 
5. pos5 +neg2 6. 0 +neg4 
7. pos3 + neg3 8. neg3 +pos3 
9. opposite of neg 3 + neg 3 10. pos 3 + opposite of pos 3 

Did you need to use a slide rule all the time? Did you discover 
that to add a positive integer you move your finger on the 
number line to the right, and to add a negative integer you 
move your finger to the left? So that instead of moving your 
slide rule, you can use one strip only as a number line and count 
along it. Here is an example. To find neg 3 + pos 2, you will 
first move to neg 3 on the line and then move 2 steps to the right 
to add pos 2. This will bing you to neg 1. Here is a picture to 
show what you have done. 

neg 4 neg 3 neg 2 neg 1 0 pos 1 pos 2 

Work the next exercise using a number line only. 

EXERCISE 27-IC 
1. Make a picture tc show how you find each of these sums: 

a. pos2 +pos4 b. pos3 +negl 
c. pos5 +neg8 d. posI + neg 1 
e. 1 os4 +0 f. 0 +pos 2 

g. neg2 +neg6 h. neg3 +pos2 
i. neg4 +pos5 j. neg4 + pos4 
k. negl +0 1. 0 +negl 

2. Use a number line to find the following: 
a. (pos 3 + neg 5) + pos4 
b. (pos 4 + neg 4) + neg 4 
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c. 	neg5 + (ncg 1 + neg2)
d. 	(neg 3 + neg 3) + pos 4 
e. 	neg 3 + (neg 3 + pos4) 
What do you notice about the answers to d. and e.? Ofwhat 
property of whole numbers does this remind you? 

3. 	 An aeroplane is flying across Africa. The pilot finds that he 
is at a position whose longitude is E 180. He then flies 250 
to the west. Draw a number line and mark his positions on 
it. Then make an addition equation to show what he did 
and where he was finally. 

On another day the pilot starts from a place W 5' and 
flies east fbr 140 of longitude. Mark his journey on the num­
ber line. Write an addition equation to show what he did. 
Make up two more problems about the pilot and his aero­
plane. 

Addition of opposites 
When you worked these problems, did you notice something

about the result when you added a pair of opposites? What is 
neg 3 + pos 3? pos 2 + neg 2? pos 100 + neg 100? In each case 
the answer is 0. You can see that this must be so by looking at 
a 	picture of the addition of a pair of opposites. Think of 
neg 2 + pos 2. 

•<I 	
-t: 

neg 3 oeg 2 neg1 0 pos 1 pos 2 

Neg 2 is 2 steps to the left from 0. Pos 2 is 2 steps to the right.
2 steps to the left followed by 2 steps to the right brings you 
back to where you started. So neg 2 + pos 2 = 0. 

You will find this property of opposites very useful later on. 
It is very important and so we wilt write it here. 

The sum of an integer and its oppoiI; is zero 
OR 

An integer added to its opposite is zero 

EXERCISE 27-ID 
For each question, draw the number line and show the addition 
on it. Write also the addition equation. 
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1. Arua in Uganda has a latitude of N 30. Lubushi in Zambia 
is 10' of latitude due south of Arua. (Due south means that 
the two towns are on the same meridian of longitude-they 
both have longitude E 31'.) What is the latitude of Labushi? 

1 of latitude measures a distance of 70 miles on the surface 
of the earth. How ilar is it from Arua to Lubushi? 

2. 	 Make up some problems like this about your country and 
places north and south of it. 

3. An aeroplane flying at a height of 3,000 feet above the sea 
drops a heavy weight v,nfich falls through 3,300 feet to the 
bottom of the sea. How deep is the sea at that point? 

4. 	 The minute hand of the clock points to 23 minutes to the 
hour (4 p.m.). What time will it be in 35 minutes? 

5. 	Kwasi and Kofe were playing a game in which 10 seeds were 
worth I cent and 10 cents were worth 1 shilling. Their wins 
and losses are given below. How much had each of them 
won at the end of the game? 

Kwasi: Win 12, Win 15, Lose 13, Lose 6, Win 7. 
Kofe: Win 8, Lose 7, Win 23, Win 2, Lose 15. 

6. 	Make up an addition problem, suitable for your pupils, about 
each of the situations described in Exercise 25-2A. 

27-2 Subtraction 

Now you must think about subtraction of integers. You will 
remember that you have learned to think about subtraction of 
numbers as finding the missing addend in an addition equation. 
For example, to find 11 - 5 you would find the missing addend 
in the equation 

11=5+[-
So once you can add two integers, you should also be able 

to subtract one from the other. If you have the problem 
pos 11 - pos 5 E], you can rewrite the equation as 

posII =pos5 + F] 
You will probably know at once that the missing addend is 
pos 6, and so you can write 

posll - pos5 = 
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For harder problems, the slide rule is very usefhl so let us see 
how to use it first on the easy problem we have just done. Can 
you do it yourself? Try first and then read what follows here. 

Find the addend you know, pos 5, on the lower strip and 
move the upper strip so that the zero point is above pos 5. 
Your slide rule will look like the next picture. 

" l I I 

5 6L n3 n,2 n, 0 p p2 p3 p4 p p
8t" ne 

I 
0 

[ 
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II 
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p5 p6 p7 p

I 1)9 plOI p1lI I 

-.~ _.---,------,-

Now you want to know what you must add (on the upper
strip) to pos 5 to get pos 11 on the lower strip. So find pos 11 on 
the lower strip. What number is above it? pos 6. So pos 6 is 
added to pos 5 to give pos 11. 

What is the answer to pos 3 - pos 3? You will know that 
this is 0 and can check that your slide rule also gives this 
answer. Can you write the equation showing this problem as 
finding the missing addend? It will be 

pos 3 + ] = pos 3 
You know that 0 is the only number which will make the 

equation true. 
Now we will do subtraction with two negative integers.

Think of neg 5 - neg 2. You probably know that neg 5 can be 
fbund by taking a step of neg 2 followed by a step of neg 3. 

Can you write this as a missing addend problem? What must 
be added to neg 2 to give neg 5? 

Can yon work this out with your slide rule? Here is the 
picture to hclp you. 

n3 n2 nl 0 p1 

nI I 
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The zero point of the upper strip is above neg 2 on the lower 

strip. What number on the upper strip will give you neg 5 on 
the lower strip? You see that it is neg 3. 

neg5 =neg2 + neg3 
or neg5 - neg 2 = Feg 3 

You can see that these answers are reasonable by thinking of 
some real problems. Suppose you have a credit of 5 shillings at 
;ashop a1d Vo want to buy a pair of sandals which cost 
11 shillings. how much more money do you need? This is a 
missing addend problem. W\e can use positive integers for credit 
and write 

pos 1 po 55--] 
You know that \ou need another 6 shillings and so pos 6 will 

be put into the box: 

pos 11 =pos 5 --

The corresponding subtraction equation is
 

pos 11 - pos 5 = p----61 
Nov supp)osc instead of'a credlit of5 shillings you have a debt 

of 16 shillings at the shop. The shopkeeper will not allow you 
to have so large a (cll)t any louger. He says you mst reduce it 
to 6 shillings only. What must you give him? 

You can write negati'.x integers fiodebts and so the missing
adidnc equation will be 

ncg 16 - 7 --neg 6 
To reduce your debt from 16 shillings to 6 shillings, you 

must give the shopkeeper 10 shillings. That is, you add a credit 
of 10 shillings to your account at the shop. Therefore, we have 

neg 16 -- Fos = neg 6
 

Thec corresponding stIbtraction equation is
 

neg 6 - neg 16 = pos_101] 
When you studied how to helpl your pupils understand sub­

traction, you found that there vere several different types of 
problems which subtraction could solve. 
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One problem wvas to separate a set into two subsets, to remove 
one subset, and then to find how many members there were in 
the remaining subset. You "took away" one subset from the 
whole set. This way of looking at subtr-action is useful to help 
young children understand what they are doing, but it is not 
very v-fiil for problems about integers. For instance, it is 
awkward n-en to think about a positive subset of a negative 
set. So we will not use this idea of' subtraction. We will think 
instead of' subtraction as comparing two sets or two measure­
ments. Think of the two p)roblels about credits and debits. You 
found the answer by thinking of tiese as missing addend prob­
lems, but they ;ire also comparison problhems. III a comparison 
problem, you find tle di f'ronce )etweeii two nmibers. 

In the first CXamleh, VOu mnd tile diflference between two 
successivec credits at the shop: 

pos 11 -pos5 -- s= 

In the second exa!-)le, von found tile difference between 
two successive debits at the shop: 

neg 6 - neg 16 = os 10 

InI each case you wrote the missing addend equation and then 
used your slide rule to find tihe required difference. This is one 
way to find the dilrcrence between two integers. Later you will 
find a quicker way. 

ExERncIsE 27-2A 
1. 	Rewrite each of the following suItraction equations as a 

missing addend equation ad find tihe missing integer. 
a. 	pos7 -pos5 =5 b. 	:,os3 -pos1 =I ]

3c. 	 pos -pos3 F] d. pos2 --- F] 
e. 	 neg7 - neg7 =] f. neg --- neg2 - ] 
g. 	neg3 - neg3 - h. neg2 -0 = F1 
i. 	 neg 3 - negl -= ] 

2. 	 A mine shaft 100 1t'et deep has above it on tlme ground a 
tower 60 i'et high. A ladder goes from tile bottom of' the 
shaft to the top of the tower. Write equations in positive or 
negativc intg(ers which you can use to find the answers to the 
following problens: 
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a. 	A man climbs from the ground to a platform 20 feet high 
and then climbs another 15 feet. How high is he now? 

b. Above his head there is another platform 50 feet from 
the ground. How much higher is this platform than the 
first platform? 

c. 	 Another man is 25 feet down the mine. How much 
farther has lie to go to reach the bottom? 

3. 	Make up some problems about gains and losses to fit these 
equations. 
a. 	pos2 +pos4 -- pos6 b. pos4-pos 3 =lpos 1 
c. 	 neg4 - neg = neg3 d. neg2 - neg2 = 0 

Now wc come to harder problems. How can we subtract a 
positive integer from a negative integer, and vice versa? Think 
of the equation 

pos 2 - neg 1 D 
If you think of this as comparing pos 2 and neg 1 then you can 
see that you are asking the question "I-Iowv much greater is 
pos 2 than neg 1?" This is a missing addend problem again and 
you can write it 

pos 2 = neg 1 -+Dj 
How will you find the answer? You may see at once, by thinking 
of the position ofpos 2 and the position of neg 1 on the number 
line, that the missing addend is pos 3. (Your pupils will need 
to vork it out with their slide rules and should not be urged 
to use only the number line just yet. Let them see why pos 3 is 
the only number which will make the equation true.) Here are 
the equations. 

pos2 =negl + pos 3 

and so pos 2 -neg I pos 3 

You have now subtracted a negative integer from a positive 
integer. You could equally well use the ame method to subtract 
a positive integer from a negative integer. Suppose you have 

neg 5 -pos3 = 

This can be written as 
Deg 5 pos 3 + F 
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By using your slide rule, you will discover that neg 8 is ,,ccded 
to make this equation true. 

neg5 =pos3 + ng8 

so neg5-pos3 ncg8 

You can check these answers by thinking about debits and 
credits. If you have a credit ofr-2 at the shop and your friend
has a debt of-l1 at the same shop, then you can compare your
credit of L2 with your friend's debt of f.l and say that in that
shop you are -r3 richer than your friend. You can use positive
integers for credits and negative integers for debts and write 

pos 2 -neg 1 -- pos 3
 
Perhaps oil another occasion you have a debt of.C3 
at the shop
and your Iriencd has a credit of f3 in the same shop. You can 
compare your debt of.f5 with your friend's credit of £C3 and 
write 

neg 5 - pos 3 -neg 8 
The result tells you that in that shop you are £8 poorer than 
'our fiiend. 

You will be realizing now that it seems as though subtraction 
is always possible with positive and negative integers. From
'our knowledge of tie order of integers, you will have noticed 

that you can subtract a greater integer from a smaller integer
and have an answer. You will remember 

neg 5 - pos 3 =neg 8 
Ner 5 is less than pos 3 because it is to the left on the number

line. Again, you cannot find a whole-number answer to 3 - 5,

but what about pos 3 - pos 5? Try it.
 

pos 3 -pos 5 -1 

pos 3 pos 5 Dn 
What must be added to pos 5 to get pos 3? It must be neg 2. 

pos3 =pos5 + ng2 

so pos 3 - pos5 =neg 2 
It looks as If these new numbers will be very usefi to us. We 
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can do any subtraction problem with them. \Ve can find an 
answer when we 	 subtract a larger number fiom a smaller 
number and also when we subtract a positive number fiom a 
negative number. 	You know something important now about 
the operation of subtraction in the set of integers. No matter 
what two integer' a and b )II select, it is always true that there 
is an integer which is the dihlcrence a - b.We say that the set 
of intege rs is :,0 S.I) under Sn 6traction. 

\Vhiat set of nnlnl)ers is closed tnder addition? The set of 
whole numbers is, because there is always a whole number 
which is the sum a - b, whichever whole nmibers a and b we 
select. But the set 	of integCrs is also closed under addition be­
cause we can always find a - b, no matter what integers a and b 
we select.
 

(Which set of numbers is closed trnder division? Is there 
always a quotient in the set of fractions? Ifwe choose any two 

a c a .c.,emstb 
t'ractions - and ,is there always a fraction - _ Ws 

careful here, because we cannot divide by zero. 

a c ad 
b d bc 

ad
 

This quotient y- can alVays be foundprovicd that neither b nor c 

is 0. With this condition, the set of fiactions is closed tinder 
division.) 

EIXECsE 27.211 
1. 	Use your slide rule to find these differences: 

2a. pos5 -pos	 b. pos - pos 6 
c. pos 2 - pos 2 d. pos 5 --neg I 
e. 0-neg3 	 f. 0-pos2 
g. neg 5 -pos 3 h. neg 1 - neg 7 
i. neg 3 -- ne3 j. negr3 -pos3 

2. Explain ho." you could use a slide rule to find pos 1 - neg 4. 
3. Make up a story problem about wins and losses in a game 

in which the following equation occurs: 

pos 3 - pos 7 = neg 4 
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Let us think again about comparing two integers. Think about 

debits and credits. If you have a debt of£3 in a shop and your
friend has a credit of C2, then you can compare your financial 
standing in that shop in two ways. You vill be C5 poorer in that 
shop than your friend, and your friend will be C5 richer than 
you. Can you write the two equations? 

neg 3 - pos 2 - ncg 5
 
and pos 2 - neg 3 = pos 5
 
These two equations are very closely related. The numerical 
parts of the differences are the same, but one difference is neg 5
and the other difference is pos 5. Here pos 5 represents "richer 
by C5" and neg 5 represents "poorer by C5". 

These results fit in with the vay we usually compare two 
measurements A and B. We either say that one, A, is greater
than the other, B, or that B is less than A. Instead of greater
than, we may have sevcal different comparisons, such as
higher than, later than, richer than, to the north of and in front 
of. For less than, the corresponding comparatives are lower 
than, earlier than, poorer than, to the south of and behind. 

In any particular situation, there is no ambiguity. You always
know which town of two is to the east by looking at their 
latitudes. You know which of two wins is greater by comparing
the two amounts on a number line. There is a convention-an 
agreement-about the operation offinding the difference between 
two numbers. The number which is mentioned second is the
number which must be subtracted. Find the difference between 
neg 1 and pos 2 means find neg 1 - pos 2. Find the difference 
between pos 2 and neg I means find pos 2 - neg 1. 

We can write this convention as a general rule using a and b 
to stand for any integers we select. 

The difference between a and b is a - b 
In comparing the two integers we will, of course, say that 

a is greater than b if the difference is positive 
or a is less than b if the difference is negative 
You will notice that the first integer in the difference a - b is 
written first in the sentence making the comparison. 
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Here is an example. Find the difference betwcen pos 3 and 
pos 11. The difference is pos 3 - pos 11. 

pos3 =posll + FD 
What must be added to pos 11 to make pos 3? It must be a 
negative integer, so it will be neg 8. 

pos 3 = pos 11 - _g_.fj 
So we say that pos 3 - pos 11 -= neg 8, or the difference be­
tween pos 3 and pos 11 is neg 8. Now you know that pos 3 is 
less than pos 11. Il we had asked for the difference between 
pos 11 and pos 3, wC would have 

pos 11 -- pos3 =pos 8 
You know that pos 11 is greater than pos 3. 

So if the first integer is greater than the second integer, the 
difference is a positive integer, and if the first integer is less than 
the second integer, the difference is a negative integer. 

This property of the difference of two integers gives you a 
new way to work out the answer to a subtraction problem. Here 
it is. 

Find the distance on the number line between the two points 
which correspond to the integers. Then if the first integer is 
greater than the second, make the answer a positive integer. If 
the first integer is less than the second, make the answer a 
negative integer. 

For example, suppose you want to find the difference between 
neg 4 and neg 7, that is, neg 4 - neg 7. The distance between 
the points on the number line which correspond to these in­
tegers is 3 steps. So the answer will be either pos 3, or neg 3. 
Look at the numbers. Which is the greater? Which number is 
to the right on the number line? Ncg 4 is to the right and so 
neg 4 is greater than neg 7. So now you can write 

neg 4 - neg 7 =pos 3 
Check this by writing it as a missing addend problem: 

neg7 -- pos3=neg4 

Similarly, the difference between neg 7 and neg 4, that is, 
neg 7 - neg 4, would be neg 3: 

ileg7-neg4= neg3 



84 Integers 
It is useful at first for your pupils to work subtraction prob­
lems in this way also, because it helps them to understand
subtraction of integers and the meaning of a negative integer
result. 

EXERCISE 27-2C 
1. Use the missing addend method to find the answers to the 

following l-roblems: 
a. 	pos3 - pos8 b. 	neg3 -neg8
C. pos I -negI d. pos4 -neg2 
e. 	 neg3 -pos5 f. 0 -neg4 
g. 	 pos2 -pos 1 h. neg4 - negI 

Write a sentence to describe and explain each result. 
2. 	 Find the difference between the numbers in each of the

tbllowing pairs by using a number line, first finding the
distance between the points corresponding to the numbers,
and then writing pos or neg to show whether the first number
is greater than or less than the second number. Write your
result first in an equation and secondly in a sentence. 
a. 	pos 2, pos 1 b. 	pos 3, neg5 
c. 	 0, neg 4 d. 	neg 1, neg 5 
e. 	 pos3,0 f. pos 1, pos7 
g. 	neg 3, pos 3 h. 	neg 11, neg 2 

3. 	Look at the questions in Exercise 26-4B. You were asked to 
compare pairs of measurements by saying which position was
higher than, or to the east of, the other and so on. Now find
the difference between each of the numbers in these pairs.
Show the subtraction equation and the corresponding addi­
tion equation. Write each answer in a sentence comparing
the two measurements. 

27-3 Relation between addition and subtraction 
Now that you know how to do addition and subtraction

with these new numbers, the integers, you see how they are 
more useful than the whole numbers alone. With the wholenumbers, you can find an answer to 5 + 3, and 5 - 3, but 
not to 3 - 5. With the integers, you can find the sum of anytwo integers, and you can also find the difference between any 
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two integers. For example, you can find pos 5 pos 3 and, also-
pos 3 - pos 5. With whole numbers you can always do addition,
and sometimes subtraction. But with the ntcgers you can always
do addition and clvays do subtraction. 

Do you recmber the mathematical way of writing these 
properties of the set of"whole numbers and the wt of integers?
The set oJfwhole numberis is closed uoder addition, because whatever 
whole numbers a and b we select, a whole number can always 
Iefould which is the sum a + b. The set of integers is closed under 
a(tditiou and subtractio,,. 

•'RCISE 27-3A 

1.Write a sentence similr to the above about: 
a. the set of integers and addition 
b. 	the set of integers and subtraction 

2. 	What set of numbers is closed under division? Howwould you 
explain this to your pupils? 

There is another very useful property of addition and sub­
traction of integ,r. Exercise 27-3C will help you to discover 
this property, but first work the short Exercise 27-3B to remind 
yourself about some very useful nairs of integers. 

EXERCISE 27-3B 
1. 	Put an integer into each of these boxes to make the equation 

true. 
a. 	pos 3 - =0 b. neg3 + ±] =0 
c. 	 [] +pos 1 =0 d. ] +neg5 =0 
e. E-+ -- f. R +0 =0A 	=0 
Now answer these questions. 
g. 	What are these pairs of integers called? 
h. 	Draw a number line to shom the pair in Question lb. 
i. 	 What is the special property of these pairs of irnegers? 
j. 	 Write three more pairs. 

Now that you arc sure that you remember oJ)poz'e.: and their 
properties, do the next exercise and see what you can discover 
about their use in addition and subtraction. 
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EXERCISE 27-3C 
1. Put an integer into each box to make the equations true 

a. 	pos 3 -pos 1 =
 
pos 3 + neg 1 =
 
pos 3 - pos 1 - pos 3 + [
 

b. neg3 +negl D
 
neg3 -posI I = 

neg3 + neg 1 = neg3­

c. 	 pos 2 pos 6 =
 
pos 2 neg 6 =
 
pos 2 -pos 6 = pos 2 + ]


d. 	0 - pos 7 = F
 
0 + neg 7 = n
 
0 - pos 7 =0 + L
 

e. 	 0 - neg7 = FI 
0 + F] = pos 7
 
0 -neg7 =0 +]
 

Do you see here a connection between addition and sub­
traction? Describe it in a sentence. 

What did you discover in the last exercise? Did you find these 
two properties of addition and subtraction of integers? 

Discovery 1 
To subtract an integer from another integer you can add its 

opposite. This is shown in the equations below. 
pos 3 - pos 5 -- neg 2 
pos 3 ± (opp. of pos 5) = pos 3 -± neg 5 

= neg 2 
Therefore, 

3pos - pos5 = pos 3 + (opp. ofpos 5) 

Discovery 2 
To 	add an caninteger to another integer yov subtract its 

opposite. 
neg 3 + pos 4 = pos 1 
neg 3 - (opp. of pos 4) = neg 3 - neg 4 

= pos1 
Therefore, 

neg 3 + pos 4 = neg 3 - (opp. of pos 4) 
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These two properties, linking addition and subtraction of 
integers, are really only one property: To add an integer to 
another integer you subtract its opposite, and to subtract an 
integer from another integer you add its opposit,. Y'ou will see 
in the next chapter how this property is used t- mke addition 
and subtraction of negative integc:'s much easier. 

Now let us think about subtraction on the number line. We 
have not yet found what movement on the number line cor­
responds to subtraction. We already have movements for addi­
tion on the number line: 
'Io add a positive integer to another integer, move to the 

right. 
To add a negative integer to another integer, move to the 

left. 
Can you draw the pictures for the two additions neg 1 + neg 4 

and ncg 2 + pos 3? 
-lere they are. 

+jeg4 neg 1
 

n5 n4 n3 n2 n1, 0 p1
 

neg 5
 

neg I + neg4 neg5 
+ pos 3
 

n2 nI O -4 i p2
 
pos 1
 

neg 2 + pos 3 = pos 1 
Each of these equations can be rewritten showing subtrac­

tion of the opposite. Take the first equation. 

neg 1 + neg 4 = neg 5 
becomes neg I (opposite of neg 4) - neg 5 

or negI -pos4 =neg5 

So the movement to the left which represents +neg 4 also 
represents -pos 4. So we have found a meaning for subtraction 
of a positive integer in terms of a movement on the number line. 

To subtract a positive integer move to the left. Here is a 
picture. 

L C2­
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- p(s 4 no3g 

nln n3 n2 nI -­ p 

neg 5 

negl -pos4 =ncg5
You will see that this is the same as the first picture o1 pagc 87except that -pos 4 has replaced +neg 4.
 

Now consider the second equation,
 

neg 2 + pos 3 =pos 1which becomes 

neg 2 - (opp. of pos 3' = pos I
 
or neg 2 - neg 3 pos I
 
So the movement to 
the right which represents -pos 3 alsorepresents -neg 3. Now we have a movement for subtraction 
of a negative integer.

To subtract a negative integer move to the right. Here is a 
picture. 

- neg 3 
.-I.. neg2 

n2 n0 p p2 
pos I 

neg 2 - neg 3 =pos 1
 
You will see that tins is the same as 
the second picture on page87 except that -neg 3 has replaced +pos 3.

Put these two discoveries together and you have the move­
ments for subtraction on the number line.

To subtract a positive integer from another integer, move to 
the left. 

To subtract a negative integer friom another integer, move to 
the right.

To summarize what we now know about addition and sub­traction as movements we will write: 
A move to the right is caused by the 
1. addition of a positive integer,
2. subtraction of a negative integer. 



89 Operationson Integers 

A 	move to the left is caused by the 
1. 	addition of a negative integer, 
2. 	 subtraction of a positive integer. 
You now have three ways of finding the difference between 

two integers a and b: 
a-b=[--

Method 1 
Rewrite the subtraction equation as an addition equation 

and find the missing addend c by using a slide rule or the 
number line: 

Method 2 
Find the distance d in units on the number line between the 

two points. Decide where a > b or b > a. 
11'a > b, the difference will be positive: 

a -b =d>0
 

If a < b, the difference will be negative:
 
a -b =d<0
 

Method 3 
Add the opposite of the second integer in the equation 

a-b= [-:
 
a -P (opp. of b) = LI 

EXERCISE 27-3D 
1. 	Work the following problems in subtraction of integers by 

adding their opposites in each case. 
a. 	pos 3 -pos 8 b. pos 12 - pos 7 
c. 	neg5 -neg9 d. neg4 - neg I 
e. 	 neg3 -pos 7 f. neg5 - pos2 
g. 	pos 3 -pos 3 h. neg5 - pos 5 
i. 	 pos 7 -- neg 10 



Chapter 28 

RELATION OF INTEGERS
 
TO WHOLE NUMBERS
 

In the last three chapters you have learned much about the 
integers. You know how they are used to show measurement in 
opposite directions; you know how to find which of two integers
is the greater and how to do addition and subtraction with 
integers. Now you will want to know how they fit in with what 
you have learned before that. How are the integers .-elated to 
the whole numbers? 

28-1 The positive integers 

Think first about the set of positive integers and the set of
counting numbers. You will remember that the counting
numbers do not include zero. Each set has a least riember, 
pos 1 or 1, and each of these can be matched with the other. 
All numbers greater than these can be matched in pairs in 
order of size beginning with pos 2 and 2. Here is a picture of 
this matching. 

Counting 1 3 5
 
numbers 1 6.
4 . 

Positive$ 
integers pos 1 pos2 pos3 pos4 pos5 pos. 

The difference between any two successive counting numbers 
and the difference between any two successive positive integers
is the same, one unit. Each umnber in either set is one unit 
greater than the number to the left of it and one unit less than 
the number to the right of it. If we now consider the set consist­
ing of the counting numbers and zero-that is, the set of whole 
numbers-and compare it with the set consisting of the positive
integers and zero, we can take the comparison further. The 
number one unit less than pos I is 0, and the number one unit 

90 
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less than 1 is 0. So you can see that there is a very close resem­
blance between the set of whole numbers and the set made up 
of zero and the positive integers. It is such a close resemblance 
that you can show them both on the same number line. 

Whole numbers 0 1 2 3 4 5 
SI I I I . 

Zero and pos. 

integers 0 pos 1 pos 2 pos 3 pos4 pos 5 

Now we must ask, "Do the numbers of both sets behave in
 
the same way when you add or subtract with them?" Do they
 
give corresponding results? Is the answer to 2 -+ 4 the whole
 
number which corresponds to the positive integer which is the
 
answer to pos 2 d- pos 4? The answers are 6 and pos 6 and these
 
are corresponding numbers. You can see that this relationship
 
will always be true fbr addition, but will it be true for sub­
traction? Work through the next exercise and make a note of
 
any cases where there is not a correspondence between the
 
answer in whole numbers and the answer in positive integers
 
with zero.
 

EXERCISE 28-1A 

1. Find the answers to these problems. 
a. 23 -- 65 EI pos 23 + pos65 [] 
b. 203 -- 129 = )pos203 -- pos 129 
c. 24 -79 - pos 24 .pos 79 - ] 
d. 17 -25 = ] pos17 - pos 25  D 
e. 94 -37 = n pos 94 -pos 37 = 

Have you found that the whole numbers and the positive 
integers with zero give corresponding results for subtraction as 
long as the first number in the subtraction equation is not less 
tai the second numl)er? 25 - 17 has a rcsult 8, and pos 25 --­
pos 17 has a result pos 8. If you have a subtraction equation 
where the first number is less than the second number, then 
there is a restlt when you vork with integers but this result 
is a negative integer. For example, poS 17 --- pos 25 - neg 8. 
There is no corresponding answer to the whole-number equa­
tion. That is, 17 -- 25 has no whole-numiber answer. So if you 
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work with the positive integers and zero only, you can see that
they behave in exactly the same way as the whole numbers. Be­
cause of this resemblance, we will not continue to give thepositive integers their special label "pos". We say that pos 3
behaves exactly like 3, and so we will write 3 for pos 3. 

Instead of pos 1, we write 1.
 
Instead of pos 2, we write 2.
 
Instead of pos 3, we write 3.
 
Instead of pos 100, we write 
 100. 

Here are some equations. They are written first in the old
notation and second in the new notation for positive integers. 

pos 3 + pos 2 =pos 5 becomes 3 + 2 =5
 
pos5 ± neg3 pos 2 becomes 5 + neg 3 = 2
 
pos5 - pos 2 =P:'s 3 becomes 5 -2 3
 
pos 3 -F 0 pos 3 becomes 3 -1-0 =3

0 +posl =pos I becomes0 +1 = 1
 
pos 3 - pos 5 neg 2 becomes 3 -5 - neg 2
 

EXERCiSr 28-1B 
1. Find the answers to the following problems. Then rewrite 

them, putting whole numbers in place of the corresponding 
positive integers. 
a. pos 15 pos 1- b. 0 - pos 3 
c. pos I -- pos 3 d. pos 23 -- pos 7 
e. pos 17 -7 neg 9 f. ­pos 3 neg 2 

2. Make ill) four problems like tile ones you have just clone. 

28-2 The negative integers 
Draw a nIuIber line for the integers and write tile counting

numbers where you formerly wrote the positive integers. 

neg 5 neq4 rc 3 neg 2 heg 1 0 1 2 3 4 

"You have a number line along which you have measured in 
two opposite directions. You can still know which 3 is on the
right of 0 and which 3 is on the left of 0, because the one on 
the right is written 3 and the one on the left is written neg 3. 

5 
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You will ask vhether there is a simpler way of writing neg 3.
What do you know about neg 3? You know that neg 3 names
the point you reach by taking three steps to the left from 0.
You can also think of this movement as adding neg 3 to 0. 
The equation is 

0 - neg 3 = neg 3 
You have also learned that you can replace -I-neg 3 by -pos 3,
and in the new notation -pos 3 will be -3. Instead of adding 
neg 3, you call subtract the opposite of iieg 3; that is, you can 
subtract 3. So we can n~w havc t cweqiVIo 

0--ncg 3 = neg 3
 
and 0 -3 = neg 3
 
The difterence '0 -- 3) and the sum 
(0 -- nig 3) are the same 
number, ng 3: 

0 -- neg 3 0 - neg 3 
Because of this equality, we agree to write "- 3"for "neg3".

The minuI3 sign now has two meanings instead of only one. 
From aow on, every minus sign you meet can have two pos­
sible In",nings and you should know which one is meant. In 
0 - 3 the milus sign means tile operation ofsubtraction. In -3 
(for neg 3) it niums negative. It must mean negative here be­
cause no other integer is in front of it from which you can sub­
tract it. It is uselu]l to write - 3, when it is a negative integer,
with brackets enclosing it as ( - 3) to remind pupils thatit does 
not mean subtract 3 but the integer nieg 3. 

Instead of Ineg I we now write (- 1) 
ncg 2 becomes (- 2)
 
neg 3 becomes (- 3)
 

neg 251 becomes (- 251)
 
Each integer except 0 has a new 
namane ill the new notation,

but the set of integers is tile same as before: It consists of the 
positive integers, zcro and tile negative integers. The old count­ing numbers are included in the set Uf intcgCrs as tile positive
iltegers. The o1(1 whole munbcms are now the set of' positive
integers with zero. Here is tile number line labelled with tile 
new notation. 

4) (-3) (2) (-1) 0 1 2 3 54 
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Now you can rewrite equations in the new notation. Here 
are some examples. 
pos3 +neg I =pos 2 becomes 3 + (-1) =2 
neg5 + neg 8 =neg 13 becomes (-5) +(-8) =(-13)
neg5 - neg 7 = pos 2 becomes (-5) - (-7) 2 
pos 3 - pos 12 =neg 9 becomes 3 - 12 = (-9)
pos5 -pos 2 -pos 3 becomes 5 -2 =3 

0 5 neg 5 becomes 0 + (-5) = (-5)-neg 

0-pos 2 =neg 2 becomes 0 -2 = (-2) 
Each time the minus sign appears in thc second column of

equations above, it means either subtract or negative. Can you 
say which it is in every case? Here are three equations. In the 
first equation the minus means negative: 

3 + (-1) = 2 
In the second equation the minus means subtract: 

5 -2 =3 
In the third equation there are two minus signs. The first 
means subtract and the second means negative: 

4 - (-3) = 7 
EXERCISE 28-2A 
1.Find the answer to each of these problems and then write 

the complete equation in the new notation. 
a. neg 13 + neg 71 b. neg 21 - pos I1 
c. neg3 -0 d. neg21 -neg15 
e. pos 13 -- neg 20 f. 0 + neg 4 
g. pos 14 - pos 32 h. pos 3 - neg 7 
i. 0 - neg 17 

2. In each of the following equations, decide which of the two 
possible meanings for the minus sign is meant and write the
 
equation in words. Here is an example:

(-7) - 1 = (--8) in words is "neg 7 subtract I equals
 
neg 8".
 
a. (-3) + 2 =E b. (-3) ---2 
c.4--( - 5) E] d. 4-5= 
e. (-4) -0 = f. (-3) + (-5) =[ 
g. (-3) (-5) = n h. 0-2 = n 
i. 0-(-2) = El j. (- 4 ) +2 =uz 
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3. 	 Draw a number line showing the integers written in the new 
notation. Mark on it the points represented by each of the 
following integers and its opposite. For each pair, make an 
equation; for example, opp. of 3 =-. 
a. 	3 b. -2 c. 7 
d. 	pos 9 e. (opposite of 10) f. -5 
g. 	0 h. [opposite of (-6)] i. neg 4 

28-3 Opposites 

What can we discover about an integer and its opposite in 
the new notation? Look at these equations. 

opp. of 3 = neg3 becomes opp, of 3 =(-3). 
opp. of neg 5 =pos 5 becomes opp. of (-5) = 5. 

In 	each pair of opposites, one integer is positive and the other 
integer is negative. Can you see that here the minus sign can be 
thought of in a third way, as saying "the opposite of"? 

(-3) is the opposite of 3 
-- (neg 4) is the opposite of neg 4 

-(-4) is the opposite of (-4) 

EXERCISE 28-3A 
1. For each of the following, first find the integer to make the 

equation true, then rewrite the equation in the new notation 
"negative" and for "the opposite of".
 
Example:
 

opp. of neg 3 = E­
opp. of neg 3 = Os3 

.- (-3) =3 

a. 	opp ofpos 2 ] b. opp. ofneg5 - E] 
c. 	 opp. of 0 = d. opp. ofopp. ofpos 1 = E] 
e. 	 opp. of opp. of neg 3 = Fl 
f. 	 opp. of opp. of 0 = 

2. 	 Find the integer which is the simplest way of writing each 
of the fbllowing. 

a. 	 (-4) b. [-(-2)] 
c. 	 (-0) d. -[-(-6)] 
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28-4 Addition and subtraction in the new notation 
You vill be vondcring howv to perform addition and sul)­

traction in the new notation. Per)aps you already know some 
rules for adding and subhtracting integers, but do you under­
stand how they work? Can you explain them to your pupils?

It will help to think of addition and subtraction on the 
number line. Think about adding or subtracting a positive
integer. Tlie prohlens are given first in the old notation and 
then in the new notation. 

pos 6 + pos 2 = 6 + 2 steps to right = 8 
neg 2 + pos 4 (-2) + 4 steps to right = 2 
pos 6 - pos 4 6 + 4 steps to left 2 
neg2 - pos 4 (-2) + 4 steps to left (-6) 

EXLRcisF 28-4A 
1. Draw a number line to show each of the following and then 

write the complete equation. 
a. 2-3 b. 2-3 
c. 0-2 	 d. (-2)-+ I 
e. (-3) +5 	 f. (-4) + 6 

You see that the addition and the subtraction of positive
integers from other integers present no difficulty at all. And in 
the last chapter we learned that to add an integer we can sub­
tract its opposite, and to subtract integer we canan 	 acid its 
opposite. Here are two examlples showing these procedures in 
the new notation. 
In the old notation we have 

pos 3 + neg 5 pos 3 - (opp. of neg 5) 
pos 3 - pos5 neg 2 

In the newv notation we have 

3 + (-5) 3 - opp. of(-5) 
=3 -5 

3 + (-5) = (-2) 
Now we will vork another problem, first in the old notation: 

neg 2 - neg 3 	= neg 2 + (opp. of neg 3) 
=neg 2 + pos 3 
= pos I 
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In the new notation this becomes 
(-2) - (-3) = (-2) + [opp. of (-3)] 

(-2) -(-3) = 

ExERcisE 28-4B 
1. 	Work these problems in the way shown above, first in the 

old notation and then in the new notation. 
a. 	pos3 +neg4 b. neg3 +neg3 
c. 	 0 +negl d. 0 -neg4 
e. 	 pos 3 - neg2 f. neg5 - neg2 
g. 	neg2 - neg 2 h. neg 7 + neg 3 

2. 	 Work these problems using any method you choose, but 
explain your method as you would explain it to your pupils. 
a. 	neg 2 d- pos 1 b. neg 6 + neg 3 
c. 	 pos 1 -pos7 d. pos 3- neg3 

3. 	Think of the physical models of the integers and make up 
some problems about them which need addition and sub­
traction of integcrs. 

28-5 Some properties of integers 

Do you remember that when you studied addition of whole 
numbers and of fractions you found that zero played a parti­
cular role in addition? It is an identity element. If 0 is added to 
a number, that number is unchanged. For example, 9 d- 0 = 9 
and 0 + 9 - 9. When you tested to see if zero was an identity 
element for subtraction also, you found that it only "half' 
worked". 3 - 0 3, but 0 -- 3 had no answer. Now you know 
the answer to 0 - 3: it is (-3), neg 3. Try the question again
beginning with (-3): (- 3) - 0 = (-3), and 0 - (-3) = 3. 
So zero does not act as an identity element for subtraction. Do 
you know why not? It is because of another property which 
addition possesses and which subtraction does not. 

You know that 3 -- 5 = 8 and 5 + 3 = 8 and also that 
5 -- 3 = 2 but 3 - 5 # 2. This shows the commutative pro­
perty of addition and it shows that subtraction does not possess 
this property. 

In general you know that, for all integers a and b, a d- b 
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= b + a but that a - b # b - a unless a =b. The commu­
tative property is not a property of subtraction. 

There is, however, a special relationship between a - b and 
b - a. Can you see what it is? Look at these results. 

5 -3 =2 3 -5 =(-2) 
12-4=8 4- .2=(-8)

16 -1.9 (--3) 19 -16= 3 
In each pair of equations the differences are opposites, 2 and 
(-2), 8 and (-8) and (-3) and 3. 

So (a - b) and (b - a) are opposites.
 
So (a - b) =opp. (b - a)
 

(a-b) =-(b-a).
 
This is a very useful relationship. If you have, for example, 
8 - (3 - 4) in an equation, you can replace it by 

8 + (4 - 3) 
which is easier to find. 

EXERCISE 28-5A 
1. 	Work these problems: 

a. 	 (pos 6 + pos 2) - neg 3 
b. 	neg 3 -+ (neg 2 - pos 1) 
c. 	[7 -P (-2)] - 8 
d. 	(-4) + [(-2) ± (-1)]e,. 	 [(-3) -(-5)] - (-3) 
f. 	 (-8) - [(-4) + (-2)] 

2. 	 Work these problems in subtraction by "adding the oppo­
site". 
a. 	 (-2) -(3 -8) b. 6- (2 -1) 
c. 	 (-4) -[(-2) - 6] d. 8 -[5 - (-4)] 
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OPERATIONS ON INTEGERS 

(continued) 

29-1 Addition, using the new notation 

You have learned about new numbers, called the integers. 
You know that they include the counting numbers, zero and 
the negatives, which are the opposites of the counting numbers. 
You have learned what it means to add and subtract these 
numbers, and you have seen that these operations act in the 
same way as addition and subtraction of counting numbers. 

You have also learned an easy way to write these numbers. 
Instead of writing pos 3, for example, you learned that you 
could simply write 3. The familiar counting numbers are, in 
fact, the positive numbers. But wlicii you use them, you must 
remember, of course, that they are positive, and that they 
blehave as opposites of the negative numbers. And you learned 
also that instead of neg 3, for example, you could simply write 
(-3). The symbol (-3) seems to ask you to subtract 3-and 
there is a very good reason for that, namely, that subtraction of' 
3 is equivalent to addition of(--3). But the number (-3) is as 
good a number in its ow'n right as 3. Both are equally impor­
tant as numbers and de.erve your equal respect.It is useful now to recall some of' the ways integers act when 
vou add them, and to use the new way of writing integers in 
doing so. Tls, you learned to write, for example, 

pos 3 + pos,4 pos 7 

But now you can write simply 

3 + 4 -=7
 
This new eCquation means the same thing as the one before it,
 
but it is easier to write. It hides the fact that the numbers are
 
really positive integers, but you should be able to keep that
 
fact in mind by now. You can think of this addition exercise
 
in terms of two successive jumps to the right on the number
 

99
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line, starting at the zero point. This is shown in the following 
picture. 

3 + 4 
I I I 


-2 -1 1 3
0 2 4 5 6 7 8 9 

You also saw the same pattern for negative integers. Instead 
of 

neg3 +neg4 =neg7 
you can now write 

(-3) + (-4) = (-7)
where the brackets around (-4) remind you that the minus
sign, "-", in not(-4) is a subtraction sign but rather a
marker showing that the number is the opposite of whatever 
follows the sign. Thus, in this case the " -" changes positive 4to its opposite, neg 4. You can also write this as in the previous
chapter 

(-3) - 4 = (-7)
since addition of( -4) is the same as subtraction of 4. In prac­
tice, whenever you add a negative number you do it by sub­
tracting its opposite, which is positive. We will write it both 
ways.

The sum of two negative integers can be represented as the
result of two jumps to the left on the number line, starting at
the zero point. This is shown in the following picture. 

-4 + -3 

9 -7 -- 6 -5 -4-3 -2-1 0 1 2 3 

Recall how to add two integers of opposite sign. Addition
of a positive integer is represented by a movement to the right
and addition of a negative integer by a movement to the left 
on the number line. Thus the following equations are correct: 

neg3 + pos4 -posl 
and pos 3 - neg4 = ncg I 
which can be written more simply as 

(-3) + 4 = 1 
and 3 + (-4) = (-I) 
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which can be written also as 

3 -4 = (-1) 

These can be pictured as follows: 

(-3­

-4 -3 -2 -1 0 1 2 3 4 

3 

(4) 

-4 -3 -2 -1 0 1 2 3 4 

EXERCISE 29-A 
Illustrate the following addition problems using the number 
line: 

1. 	5 + (-8) 
2. 	 (-2) + 7 

3. 	 [3 + (-2)] -4 
4. 	(-7) + {[(-2) + (-4)] + 8} 
5. 	 (pos2 + neg4) + [(-1) +pos 1] 
6. 	[(pos 3 + neg 2) + pos 5] + (-6)
 

Remember to required inside
do what is the innermost
 
brackets first and then move 
to the outer brackets. 

EXERCISE 29-IA 
A pupil complains to you, his teacher, that he does not believe 
you can add negative integers to anything, because adding
makes a number bigger. What would you tel1 this pupil? 

29-2 Subtraction, using the new notation 

You saw that subtraction of integers is closely related to 
subtraction of the counting numbers. Thus the problem 

pos 5 - pos 2 = pos 3 
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can be rewritten more 
simply, using counting numbers, as 
5 -2 =3 

You learned also how to solve the problem, which in a previous
section of this book remained unsolved, of subtracting a larger
counting number from a smaller counting number, as in this 
example: 

5 -7 
This problem can also be considered as a missing addend 
problem: 

It is impossible to solve this problem using only positive integers,
but, using both positive and negative integers, you can say 

pos 5 -pos 7 =neg 2 
which can be rewritten 

5 - 7 (-2) 
Such a problem can be pictured on the number line as follows: 

5 

-4 -3 -2 --1 0 1 2 3 4 5 

In the same way, it is easy to see that 

neg 3 - pos 5 = neg 8
 
which can be rewritten
 

(-3) - 5 = (--8) 
and which can be shown, using your slide rule made from two 
rulers sliding one on the other, as in the following picture. 

1- 1-910-9 -8 6-7 - -5 -5 -- 21 2 

/ / 

It is harder to see how to subtract a negative number. This 
problem can best be understood by looking for a missing 
addend. Thus, you can write 

pos 3 -neg 6 = F] 
so that pos 3 =neg 6 + [] 
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Clearly, the result you want to put in the box is pos 9, because 

pos3 =neg6 + pos 9 

and, thus, pos 3 - neg 6 = pos 9 

Using the new notation, you can write 

3 - (-6) = 9 
3 =(-6) + 9 

The approach remains the same in the case where both 
numbers in the subtraction problem are negative integers, as 
in the following example: 

(-4) - (-7) = 3 

which is a simplification of the expression 

neg 4 - neg 7 = pos 3 

You learned, moreover, that subtraction of one integer from 
another simply means addition of the opposite integer. This 
fact made life much easier for you, so that you could write 

neg 4 - neg 7 = neg 4 + pos 7 =pos 3 

which could be written more simply as 

(-4) - (-7) = (-4) + 7 = 3 

This equation can be illustrated as follows, using your slide rule: 

-3-2-1 0 1 2 3 4 5 6 7 8 9 
.. 6-5-4-3 -2-I 0 1I 4 5 6,,

3 T7 

Because subtraction and addition are iiverse operations, it is
 
possible to subtract any number by adding its opposite, and to
 
add any number by subtracting its opposite.
 

ExERcIsE 29-2A
 

Simplify each of the following expressions and find the result:
 

1. 4- (-7) 

2. (-5) - (-2) 

3. (-3)- {4 + [(-3) - (--4)]) 

4. pos 6 + (neg 3 - neg2) 
II C 2-11 
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5. 	[- (neg 6) + pos 6] - [(-2) + 3] 

6. 	neg '[(- 2 ) -± (-3)] - [(-2) - negi]} 

EXERCISE 29-2B 
1. A pupil tells you his father li.s less than nothing in the bank,

because the bank put on his account a service charge which 
was greater than his bank balance. Can you explain this 
situation for the class? 

2. 	Two men argue as to who is better off: the one who received 
two gifts of [10 each or the one who had two debts of£C0 
each cancelled. Each started with the same amount of 
money. What do you think? 

3. 	Make up similar word problems for the use of your primary 
school class. 

29-3 Multiplication of integers 

When you studied the addition of counting numbers, Von 
met problems where the same number was added to itself 
several times. You found that such addition problems could be 
solved easily by using a new operation, called multiplication. 
Thus, you learned to replace 

3 -3 -1-3 1-3+ 3 = 15 
by the multiplication equation 

5 x 3 - 15 
You saw that such an equation could bC pictured by an array 
ofobjects or by repeated motions on the number line, as follows: 

addition of positive integers is the same 

.. . K. ..-- .-- --. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

You can do much the same thing vith the integers. Repeated 
as the problem given 

above. Thus, 

pos 3 + pps 3 +- os 3 +- -- lPUS --pos 15 
can be written 5 x pos 3 - pos 15 
In the same way you can do repeated addition of negative 
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integers. In the following series of equations, the reasons for 
the successive steps should be clear to you. 

neg 4 + ncg 4 + neg 4 = neg 12 
3 x neg4=neg 12 
'3 x (-4) = (- 12) 

This problem can be pictured on the number line as follows: 

i i j-, ";-I I I 

-13 -- 12- 11 10 9 8 7 6 - 5 --4 -3 -2 -1 0 1 

In this way, you can see that if you mu iply successive integers 
by a positive integer, the answers form a pattern. Look at the 
following examples: 

4 x 3 12 
41X 2 =8 

4 x 1 4 
4 x 0=04tx 1--)(-4) 

4lx (-2) (-8) 
4 x (-3) (-12) 

One factor (4) is the same in each equation. The other factor 
is decreased by 1 each time. Each product is 4 less than that in 
the equation above it. It is therefore reasonable to wirite 

4 x (- 1) = (-1), 4 x (-2) =(-8) and 4 x (-9) = (- 12) 

as was done. Again each of these equations can be pictured on 
the number line as in the problem 3 x (- 4) (-- 12) above. 

Now look at the following examples: 

4 x 3 12 
3 x 3 =9 

2 ;,3 6 
1 x3= 3 
0 x3 =0 

(-1) x 3 = -3) 
(-2) x 3 = (-6) 

Why are the last two products given as (- 3) and (-6) respec­
tively? One factor (3) is the same ineach equation. The other 
factor is decreased by 1 each time. Each product is 3 less than 
in the equation above it. So again it is reasonable to write 
(- 1) x 3 r= (- 3) and (- 2) x 3 = (-6). However, it does 
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not make much scnse to show these equations on the number 
line. For example, what would it mean to make (- 2) jumps of 
3 units each? 

With these examples in mind, see if you can find a general
rule for multiplying a positive integer by a negative integer.
One point of view is the following. You know how to multiply
two positive integers or counting numbers. The product is 
always a positive integer. This operation has certain properties.
 
It is commutative (a x b = b x a)
 
associative (a x (b x c) = (a x b) x c)
 
and distributive over addition 

(a x (b -)-- (a x b) + (a x c)). 
Also, I x a = a for any positive integer a. Assume that these 
propertiescontinue to hold when you use the set of integers. What then 
will le the product of' two integers if at least one of the factors 
is a negative integer? 

Result 1 
The product of' O and any integer is 0. That is, 0 a = 0x 

for any integer a. 

Example 
Find 0 x (-2). 

0 + 0 = 0 (Property of 0 in 
addition.)

(0 +0 ) x (- 2) = 0 x (-2) (Multiply by (- 2))
[0 x (- 2)] - [0 x (- 2)] [0 x (- 2)] (Distributive Law) 

0 x (-2) 0 (Subtract 0 x (-2)) 
A similar argument works for any integer in place of (-2). 

Result 2 
(-1) x a = opposite of a = -a, for any integer a. 
This can be shown as follows: 

-1) H-I = (The sun of an integer and 
its opposite is zero)

[(-1) - 1] ×ax 0 :a (Multiply by a)
[(-1) x a] -- (I x a) = 0 (Distributive property and 

Result 1)
[(-1) x a] - a = 0 (Property of l) 
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Therefore (-1) x a - opposite of a -a 
In particular, if a is (--1), you see that 

(-1) x (-1) = opposite of (-1) = 1 

Result 3 
(-a) x b = -(a x b) for any two integers a and b. 
This follows directly fiom Result 2, for 
(-a) x b =[(-1) x.a] x b (Result 2) 

(-1) x (a x b) (Associative property) 
= opposite of (a x b) (Result 2) 

-(a x b) 
For example, (-2) x' ,t - (2 x 4) --8 

(-3) x 2 = -(3 x 2) -6, and so on. 
In particular, if a and b are positive integers, then (-a) is a 
negative integer, as is - (x x b). You then see that the product 
of a negative integer and a positive integer must be a negative 
integer. The commutative property allows you to change the 
order of the factors without changing the product, so this last 
statement can be given as a general rule. 

The product of two integers of opposite sign is a negative integer 
You already know that the product of two positive integers 

is a positive integer. What is the product of two negative inte­
gers? Look at these examples: 

4 x (-2) = -8 
3 x (-2) = -6 
2 x (-2) -4 
1 x (-2) = -2 
0 x (-2) = 0 

(-1) x (-2) =? 

(-2) x (-2) =? 

One factor (-2) is the same in each equation. The other factor 
is decreased by ,-eeach time. Here each product is 2 more 
than that in the equation above it. It is therefore reasonable to 
expect that 

(-1) x (-2) =2 and (-2) x (-2) =4 

Result 4 
(- a) x (- b) = a x b) for any two integers a and b. 



108 Integers 

This follows directly from Result 2, for
 
(-a) x (-b) 
 x(-1)a x (-1) xb (Result 2) 

(-1) x (-1) xa x b (Why?)
1 x a x b (Why?) 
a x b (Why?)

For example, (-2) x (-2) = 2 x 2 =4 
(-3) x (-4) = 3 x 4 = 12, and so on.
 

In particular, if a and b are 
positive integers, both (-a) and
(-b) are negative integers, while (a x b) is a positive integer.
So you get the following general rule. 

The product of two integers of the same sign is a positive integer 

EXERCISE 29-3A 
1. Perform the indicated operations in each of the following.

Remember to do the work inside the innermost brackets first. 
a. (--5) x 2 b. (-6) x (-4) c. 3 x (-7)
d. (-4) x {3 - [4.- (-3)]} - {(-1) x [4 + (-2)]} 
e. 	 {(-2) + [(-3) x (4 - 1)]} x (2 + {(-5) 

+t [(-3) X (-4)]J)
f. (8 - {4 x [(-2) + 6]}) x ((-5) + {(-3) 

x [(-4) + 8]})
2. Write an argument for Result 1 using an arbitrary integer a. 

29-4 Division of integers 

You remember from a previous chapter that division of a
whole number by a counting number can be considered in 
many different ways. You thought of it as sharing a collection
of objects among several persons; as finding the number of sets
of a given size that can be taken from a given set; as finding a
missing factor in a multiplication equation; and so on. In dis­
cussing division of integers, you will find the idea of a missing
factor most helpful. 

It is easy to see how to divide any integer by a positive 
integer.
 
For example, 

4±2--2 because 2 x2 =4 
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Similarly, 
(-4) + 2 = (-2) because (-2) ,., 2 = (-4) 

(-12) - 4 = (-3) because (-3) x 4 = (-12) 
and so on. 

Division by a negative integer is handled in the same way. 
For example, 

4+ (-2) (-2) because (-2) < (-2) =4
 
Similarly, (-4) -- (-2) = []
 
is the same as (-2) x El = (-4)
 
The answer is 2; that is (-4) - -2) = 2. 

Here are more examples:
 
(-16) + (-4) = 4 because (-4) x 4 = (-16)
 
(-16) +4 = (-4) because 4 x (-4) = (-16)
 

16 + (-4) = (-4) because (-4) x (-4) = 16
 
16 +4 4 because 4 x 4 = 16
 

From these examples and the fact that division and multipli­
cation are inverse operations, you can see that the rules for 
sig.ns in division of integers are similar to those for multiplica­

.n of integers. 
The quotient of two integers of the same sign is positive

The quotient of two integers of opposite sign is negative
 

Finally you see that 0 + a = 0 for any n;wn-zero integer a, 
because 0 x a = 0. For example, 0 + (-2) = 0 because 
0 x (-2) = 0. 
As before for whole numbers, division by 0 is not allowed, since 
it has no meaning. For example, 

(-2) +0= 
is the same as 0 x = (-2) 
But there is no integer which when multiplied by 0 gives a 
product of (-2). 

ExERCISE 29-4A 
1. Perform the indicated operations to get answers for the fol­
lowing problems: 

a. (-6) 3 b. 12 +(-2) 
c. (-15) + (-5) d. 6 + (-1) 
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e. {[(-3) -+5] x [2 + (-8)]} ± {[(-2) + [(-2)f. {[4 +[(-1) + 3]) × ([(-3) ×2] +[4 + -] x 2)} 
g, {(-3) + [(--2) × (-6)11 --{[(-4 x ( -1)] --(3 +4)) 

EXERCISE 29-4B 
1. A pupil tells you that in a multiplication or division problem

the easiest way to do it is to forget about the signs and do the
problem as he learned it fbr wholc numbers, and then count
the number of negative signs in the problem. If the number 
is odd the answer is negative, and otherwise the answer is
positive. Is the pupil correct? What if there were addition 
and subtraction in the problem also? 

EXERCISE 29-4C 
1. Do these problems, and see what pattern appears in the 

answers. Remember what you learned before about inverse 
operations. 
a. [4 x (-2)] - (-2) b. [(-2) x 3] ±3 
c. [(-2) x (-5)] - (-5) d. [8 x (-1)] - (-1) 
e. [(-8) .4] x 4 f. [15 - (-3)] x (-3)g. [(-12)--(-2)] × (-2) h. [I x -1(-1) 

It is not necessary to write so many brackets in our equations.
For example, if it will not be confusing, we will write -2
instead of(-2), - 4 instead of (--4), -259 instead of (-259)
and so on. 

JVith brackets Without brackets 
(-4) - 2 =(-2) -4 2- -- 2 
4 - (-2) - (-2) 4 - (-2) --2= 

(-5) x 2 - (-10 -5 x 2 = 
 -10 
2 x (-5) = (-10) 2 x (-5) -10 
(-4) - (-7) = 3 -4 - (-7) - 3 
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Chapter 30 

NEGATIVE FRACTIONS 

30-1 Division of integers 
The problems we did in the last chapter when we divided 

one integer by another were easy in one sense. We only worked 
problems wherc the answers were also integers. What about 
problems like the following? 

(-7) +3= [] 
Wc have not done such problems bcfore, and now we must try
to find a way of solving them. We know what (-6) 3 
means, and we can rivc -2 as the answer. What about 
(-7) +3? 

It is always a go- Aidea in doing mathematical problems to 
look back to easier and somewhat similar problems which you
have solved before. In this case, you should think back to prob­
lems of this kind which came up in the discussion of the counting
numbers. There we faced the difficulty that the problem 

7+3 = M 
has no answer among the counting numbers. And you remem­
ber that we had to find a new kind of number to solve this 
problem. That number was callec a fraction, and was used to 
name parts of a whole. We found that these new numbers gave 
us answers to all such otherwise unsolvable division problems.

We will find in the following sections of this chapter that no 
really new problems arise in dividing one integer by another. 
If we use what we have already learned about fractions and 
about integers, we will find that the answer is right in front of 
us. This is what mathematicians always do when they try to 
solve a new problem. They look at similar problems they have 
done before to see ifa solution is suggested there. 

EXERCISE 30-lA 
Which of the following problems can be solved using only
integers, and which re-uire new numbers? 
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1. 18 - (-3) 2. 16 ± (-5) 
3. (-9) (-- 4. 2(3) (-2) 
5. 17+ (--3- 5) 
6. [-8 - (-2) %.3] -- [3 x (-3) - (-2)] 

7. [(-8) + (-2 -4)] - 3 + (-3) x 2] 
8. [(-7) x (--5) - 35] -- {(-16) -[4 x (-2)]l 

EIW7,ISEN 30-1 B 

When von tell your class that there are some numbers they 
Can't yet divide, a pupil tells you that vith a sharp enough 
knlie can divide anything. What do you think you should 
say to this pupil? 

30-2 Division as multiplication with a missing factor 

Wlien you tried to solhe such problems as 7 - 3, you found 
that it helped to change them into multiplication equations 
with missing lactors. Tuts, you wrote 

3 x =7 

and you found the firaction -- to be the answer. '1his fiaction is, 
of course, still the answer when you think of the counting num­
bers as positive integers. But the problem is not so easy when 
voU have negative integers. For example, take the division 
)ro1)leflm 

(-7) -3W 

wiich gives rise to the multiplication equation vith missing 
factor 

3 x -- 7 

You can guess what the answer to this I)roblemn ought to look 
like if you reniember how you solved the two problems 

3x FI=6 
and 3 x D=-6 

In the one case you can put 6 + 3 - .- = 2 in the box, because 

3x (30 6
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and in the other case you would want to put 
(-.6) - 3 =(-6) __ 

3
 
in the box, because you would feel that
 

3 x F-6)3-6 

Thus, if the answer to the problem 7 + 3 = [ is
 
7+3-v
 

7 33
then the answer to the problem (-7) 3 = [ ought to appear in the form 

(-7) + 3 (-7) 
3 

so that 3 F -I7)] _7
 

In the same way you can think of the other two cases which 
might come up, as in these examples: 

(-3) x 11= 7 
(-3) x [] =-7 

As in the previous case, we can solve the equations 

(-3) x Li= 6 
and (-3) x n =-6 

and obtain 6+ (-3) = -2 

(-6) + (-3) (-6) =2 
(-3)

Thus, the answer to our new problems ought to be given in 
the same way, as 

77 +(-3) 
(-3) 

and (-7) + (-3) (-7) 
(-3)

We have used the phrases "ought to be" and "ought to 
appear". You might ask what kind of mathematics that is.
Mathematics, you might say, should tell you what is, not what 
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ought to be. But there is a reason for what we have done. All 
you have seen so far is a juggling of numerals. We showed you 
some problems you have already done, and then showed you 
some more problems you have not done. And we asked you to 
guess only what the answer might look like. In the next section 
of this chapter, however, you will see that what has been done 
here does have a real meaning after all, and that these numbers, 

like do give the solutions to the problems posed. 

EXERCisE 30-2A 
Look back at those questions in Exercise 30-lA which did not 
have integers as answers, and tell what the answers "ought 
to be". 

ExEIizcisi 30-2B 

Make up questions like those in Exercise 30-lA which "ought 
to give" the following answers.

15 

1. 	- 2. (-7) 3. (-8)
8 	 2 (-4) 

4. 	 12 5. 6. (-5) 
(--9) (-1) 5 

30-3 Interpreting our new numbers on the number line 

The problem that faces us now is to decide what a number 

like -7) might mean. We know what -7 is, and we know
3 

how to interpret it. For example, we can place it on the number 
line as follows: 

< 	 II I 

-8 -7 -6 -5 -4 -3 -2-1 0 1 2. 3 4 571 

But if we remember that 7 is I of the way from 0 to 7, then per­
33, 

haps we can think of - as I of the way from 0 to -7. Is 
3 3 

1there a point which is - of the way from 0 to -7? Of course 
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there is. We just have to take that segment of the number line 
and break it into three equal parts, and mark the first such 

1point to the left of 0 as of the way from 0 to -7. On the 
number line it looks like this: 

(-7) 

< I i I I I I I > 
-8 -7 -6 -5 -4 -3 -2 -1 0 1 23 4 5 

It is just as good a point as 7,and thus (-7)-deserves its place 
in our collection of numbers. 

Clearly this number (-7 is opposite to 7, which is a point
33to the right of 0 on the number line. In fact, every point to the 

right of 0 has an opposite point to the left of 0. There is no 
reason why we should have opposites only for the integers. We 

7 7can write this opposite as - , and we can thus see that 

and should mean the same thing. The numbers 7 and -7
3 

are opposites, and thus the numbers 7 and ,which show 1 
3part of that which is represented by 7 and

3'5 
-7 respectively,must be opposites. But the opposite of any number x is written 

-x. Thus the opposite ofis- , and (3 and - are two 
names for the same number. Thus, we can begin to fill in the 
number line in the following way: 

<I I I I I > 
-3 -8 -7 -2 _ -4 - I 2 _ 1' 10 2 1 4 s 

a 3 3 3 3 3 3 3 3 3 

This picture shows that each fraction to the right of 0 has its
opposite to the left of 0, and thus we want to call these new 
numbers negativefiact"(. 

The only remaining problems concern T and -3) 
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Before trying to give an answer, we should think where these 
symbols, which "ought to" represent numbers, came from. The 

problem (-3) x LI 7 gave rise to the possible answer (73) 

and thus we should think what the problem (-3) x LI 7 

means. This problem is similar to the problem 

(-3) x n = 6 
Ve know the answer to this problem, namely, (-2). To 

check this, recall that 

(-3) x (-2) = (-1) x 3 x (-1) x 2 
=(-1) x (-1) x 3 x 2 
=3 x2 =6 

In the problem (-3) x [[=7, we get the answer (- ) 
since 

(-3)x D 7 

Thus, the result which was suggested by the equation, namely 

7 7 
(-3), must have the same meaning as - 3. We therefore think 

7 7of as another name for -- 3, which we understand to be 
(-3)3 7 1 

the fraction opposite to 7, or I part of -7. 

Finally, we have to think about (7) Again we should look 

at the multiplication equation 

(-3) x LI -7 

You already know how to do the very similar problem 

(-3) x LI = -6 

which has as its answer 

2 = (-6) + (-3) 
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Thus, in the original problem we see that 

(-3) x = -7 

so that (-7) - (-3) (-7) 7­
((-7) 

Thus, we can see that the answer suggested, namely (-7)S (-3)' 
7 (-7)has the same meaning as 3. Once again we think of (-) as 

another name for 3, with which we are already familiar. 

To summarize,
 
(-7) 7 (-7) 7 7
 
'I- = and _- _ _ = ­3) 3 3 (-3) 3
 

EXERCISE 30-3A 
In this section, you found three ways cf writing a given negative
fraction and two ways of writing a given positive fraction. 
Locate each of the fractions given in Exercise 30-2B on the 
number line. Then write these fractions in each of the ways
possible for it. What do you notice in Question of that5 

exercise?
 

EXERCISE 30-3B 
In Chapter 25, some situations were given in which numbers 
on both sides of 0 were given physical meanings. Read that 
chapter over again, and state for each of those situations what 
negative fractions mean. 

EXERCISE 30-3C 
Draw up a series of test questions designed to find out whether 
your pupils understand positive and negative fractions and the 
relations between them. 

EXERCISE 30-3D 
Find the opposite of each of the following fractions. Put your 
answer in "simplest" terms. 
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7 5 3. (-5) 4. (-5) 

5. (-2) 
3 

6. 2 
(-3) 

1 
(-4) 

8. (-6) 
(-5) 

Sc2-1 



Chapter 31 

THE SET OF RATIONAL NUMBERS 

31-1 Fractions, positive and negative 
We should stop briefly now, and look at what we have done.

You learned about fractions in an earlier chapter, and now 
you have found that these fractions have opposites. And if you
look at the number line, you can see now that it is, or at least 
seems to be, as crowded as you call make it. Actually, you willfind later that there are more numbers to be put on the number 
line. But let us be content fir now with what we have, and try
to understand these nuflbers fully.

We call the firactions we originally had pasitivefiactions,and we call our new numbers negszlive jiactions. There are many
ways of writing any given fraction, of"course, just as there are 
many ways of writing every number. Take the positive fraction 
•and its opposite, the negative iraction - for example. Here 
are some other ways of writing each of these fractions: 

3 6 150 (-3) -72,
 
- 10 "- -5 2-1)
 

3 (-3) 3 
 '- 90 3:3 3000 
5 5 (--5) 150 --55) 5000 

Do you remember how you could prove that all these fiactions 
arc names for the same number? If not, check back to the chap­
ter on fractions and revise. And remember dalso
that one minus
sign in the fraction makes the whole fraction a negative fraction,
and two make it a positive fiaction. In every case, the simplest 
way to write a fraction is the first way given in each of the
series of equal fractions above. Write it as a positive fraction,
without minus signs, or as the opposite of such a positive
f'raction. We will call this the slandardform; fbr example, 2 and 
- j. Of course, the fraction may arise in a problem in one of
the other forms. If that happens, it is useful to reduce numerator
and denominator to the smallest whole numbers possible, 
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using results obtained earlier. Then put the minus sign, if there 
remains one, in front. 

If you write a fraction in standard form, it is easy to see 
where it belongs on the number line. All positive fractions arc, 
of course, to the right of 0. Negative fractions, on the other 
hand, are to the left of 0. Every fraction thus has a place on the 
number line, and although not every point on the number line 
indicates a fraction (We will say more about that later!), there 
is always a fraction as close as you would like to every point on 
the number line. 

You may be thinking at this stage that there are points on 
the number line which are not fractions, points you already 
know about. You may say that we have not mentioned the 
counting numbers and their opposites and 0. After a whole 
series of chapters in which you studied those numbers, which 
you learned to call the integers, we seem to have forgotten 
them again. That is a good question-but if you think about it, 
you will see that tile integers arc still here and that they can 
be written as fractions also. If you look back to Chapter 20, 
you will see that the counting numbers were written as special 
fractions, as in the following example: 

T = 2 
The fraction which has 1 as its denominator or whose numera­
tor is equal to the product of the denominator with some 
counting number was shown to be simply another name for 
one of the counting numbers. (That is true, of course, because 
to divide a thing into one part or into some number of equal 
parts, each of which contains a whole number of members, is 
the same as division of whole numbers where there is no re­
mainder.) 

The same fact is true for negative fractions as well. It is easy 
to see, for instance, that 

(-6) 6=- - = _-23 3 

If -6 is broken into 3 equal parts, each will contain -2. For 
a practical example, think of a debt of r6 shared among 3 
people. Clearly, each will pay C2. More complicated examples 
can be worked in the same way, always remembering first to 



122 The Rational Nuimbers 
put the fraction in standard form. Thus, we have 

(-10) 10 
(-2) 

So the fractions, positive and negative, include all the num­
bers we have used up to this point and can even be extended to 
include 0, which can be written, for instance, as 

0=-0 
These numbers are an interesting 

-7 
set, and we will think much 

more about their properties in the following sections of this 
chapter, as well as in the next few chapters. 

EXERCISE 31-lA 
Find each fraction in standard form, and four other fractions 
equal to each of the following. Locate each on the number 
line. 

1. 	(-32) (-20)14 2. r., 	 17 

4. 13 5. 0 6. -153 

Remember to do the work within brackets first. Thus, for 
example, 

(-13) (-13' 2613 (-26) 
[-(-17)] 17 17 34 (-34) 

EXERCISE 31-lB 
1. 	Outline a classroom procedure for teaching that it is often 

important to reduce liactions to standard form and lowest 
terms when working with them. Your procedure should 
show them how to make this reduction. 

2. Prepare word problems which require students to make use 
of the fact that a given fraction can be named in several 
ways. Include both positive and negative fractions. 

3. 	Prepare a classroom demonstration designed to show that 
some fractions, for example, Aor -A, are simply other names 
for positive or negative integers. 
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31-2 Definition of the rational numbers 

Tile set of nunbers whiicl is made up of tie positive fractions, 
zero and the negative fiactions has a special namc. It is called 
thc set of RATIONAL NUMIEIS. It can bc picturied as follows: 

({'%.,NEGAIVE FRACTIONallY' 0 ) PO SITIVE FRACTINS&\ \" 

The two subsets of fractions-tue positive fractions and the 
negative fractions-- contain as subsets the p)ositive integers and 
lh(e nevative integers, respectively. Tile lictirc is as follows: 

NEGATIVEx POSITIVE 

NGTVINEESPOSITIVE INTEGERS 

S FRACTIONS§ 

To summarize, the rational n nml)crs contain tile positive 
fractions, zero and the negative fractions. The positive and 
negative fractions and zero, together, contain the integers. And 
the integers contain the counting numbers, which is where we 
l)egan this course in basic concepts of mathematics. 

Tihe rational num1llIbers aruC not only a. set of numbers-they 
are an ordered set. The most obvious fct about their order is 
shown in the diagrams above. The negative fiactions are all 
less than the positive fractions, and the rational numbers to the 
left of' any number on the number line are all less than that 
number. In a later chapter, you will study the idea of order 
more closely, just as von will study all the other properties of 
the rational numbers. For now it is enough simply to state that 
it is possible to determine of any two fi'actions which is greater 
and which is lesser. 

For example, consider the two fractions -2 and . This case 
is obvious. The first fraction is less than 0 and the second is 
greater than 0. In fact, any negative number x is less than 



124 The Rational inumbers 
0, not only because it is to tile left of 0 on tie number line, butbecause the difference 0 - x is positive. Look at this example 
on the number line. 

-2 , . . 0Q 1 6 7 2 

" .4 4 4 4 4 

Take another examnple, j and j-. Which is lesser and which isgreater? Here is one wvay in which you can tell. You can drawthe number line, place both fractions there and compare them, 
as follows: 

'11 
 12 13 1.1 

124
 

Obviously, j. is to the right of'.1and is,thus, the greater of
the two.
 
Take a final example: -A and -. 
You can show these onthe number line as follows. Rememher that you can locate anyiaction on the number line easily by changing it into a mixednumber,if you need to; thus --- -P , which is located 1

units to the left of 0. 

-2 -1 ­ 0
 

Obviously -A. isto the left of -2, and, thus, 
4
 

You remember, of course, the meaning of the two symbols Cc<"and ">".The first means "less than" and the second means
 
'greater than'.
 

ExERAcisE 31-2A 
Put the fbllowing set of fractions in order, from least to greatest,and show their positions on tile number line. First simplifyeach and put it in standard form. Then compare them by
pairs, and place each, on the number line.
 

4 (-3) 
 (-20) [-(-3)] 0---13 , - 27, 6, -2' (-4) (-4) 
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EXERCISE 31-2B 
Draw a large poster useful for picturing the set of rational num­
bers and all the subsets which we have discussed, as on the 
previous page. 

NOTE. We have used the wordfiaction to denote sometimes a 
number and sorncimcs the numeral which is its name. Perhaps, 
strictly speaking, we should not do this. However, it is hard to 
maintain the distinction in a consistent way, and it seems better 
not to insist on distinctions which we cannot keep up in prac­
tice. It should be clear from the context whether the word 

fraction means a number or a numeral. 
The term rationalnumber, of course, always denotes a number 

and not a numeral. 
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OPERATIONS ON RATIONAL NUMBERS 

32-1 Addition 

It is not really necessary at this point to say anything new 
about the meanings of the operations. You should be quite
familiar not only with their meanings but with how to teach 
them to young children. Very briefly, addition can be thought
of in at least two ways: successive motioiJs on the number line, 
to the right for positive numbers and to the left for negative
numbers; and successive changes of the number of objects in a 
set, increasing it for addition of positive numbers and decreas­
ing it fbir addition of negative numbers. You have carried out a 
thorough and detailed study of this operation for counting
numbers, for fractions and for integers. It clearly does not 
change the picture to include the whole set of rational numl)ers
in this discussion. The only difficult thing at this point-both
for you and for the pupils you teach-is to become quick at 
finding the correct answer when you are faced with a problem.

Let us look at an example, usig only positive fractions, to 
remind ourselves of the methods we learned before. Take the 
problem 

S+ ~ 
The way you did such a problem before was to draw a picture 
showing parts of rectangles for each of the fractions, as follows: 

Then you divided each part into smaller pieces sc that the 
resulting small pieces were of the same size. By counting the 
number ofsmall pieces fbr each fraction, you could rename both 
fractions so that they had the same denominator. This was 

126 
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shown by dividing up each rectangle in the second directiol., 
using the denominator of the other Fraction to tell the number 
of pieces. For the example given above, the picture becomes as 
lollows: 

You count the number of small pieces and find the answer: 
1. 1, 5 -- .I , 

You learned in the study of'fractions that there is a short way 
to carry through this 1)rocess that saves you having to draw 
pictures and cut up rectangles. You discovered a rule which 

did the same thing for the general p. o of fractions a 
- and r . 
b d 

The rule was stated as follows: 

a c (ad - bc) 
b d bd 

The question now is whether this rule works for all rational 
numbers, including negative firactions. Let us look at a couple 
of examples and then come back to the I,.le. But, as "¢ou think 
about the examples, keep the rule in mind. First take this 
problem: 

3 + 

'Ihis addition can be shown on the number lie is follows: 

4 

-- 1 ' l 0 1 1 4 2 3t l3
3 A j 3 3 3 3 3 

Clearly the answer is j. If you think back to the problem of 
cutting bananas into parts, this problem speaks of 4 one-third 
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pieces and tells you that 2 of thern are removed, leaving 2one-third pieces, or j of a banana.

This was an easy problem. 'Take a somewhat more difficult 
one; for example, 

3 + 3 (-3) 3
 
5 2 5 +5


You can look at it on your slide rule in this way:
 

I,-., 0 21' 
2 
/

/ 

2 1-10 

,-

'You set your 0 mark on the upper strip to the ---mark on thelower. And you read your answer on 
-43 

the lower strip below themark on the upper strip. That answer is, of course, 1.You can also think of this problem in terms of rectangles.The fraction ­ can be drawn as follows: 

To add -- means to remove 2 of a rectangle. Thus, you canredivide each rectangle into 5 parts in the usual way, and re­move 3 of those parts. You then count the remaining pieces.
You can picture it as follows: 

3 4 

You can see that 9 one-tenth pieces remain, so that the answer 
is %. 

2 
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Where the answer is likely to be a negative fraction, it is not 
useful to think of dividing rectangles, but you can show such a 
problem on the number line or the slide rule. Think of the 
example 3 -5)

- + - -3 2 3-g 

Look at it on the number line. 

5 +32 

7 -3 -' -2 -2 -1 _ 0 1 12 2 2 2 2 

You can see that the result is --- by counting to the left of 0, 
so that 

3 5(-) (-3) (-5) 19-') - 3 - 2 3 -6-

Let us look for the pattern shown by these examples. In the
4 (-2) 2 

first case, 4 + =-2,the denominator 3 remained the
3 3 3' 

same, and the resulting numerator was the sum of the two 

original numerators. In the second case, -3) 3 9 the
5- 2 10' 

denominator of the result was 10. If you rewrite each of (3)5 
3 (-6) 15

and with denominator 10, you get 10 and --0" Their sum is, 
9of course, - But -6 = (-3) x 2 and 15 = 5 x 3. Thus, 

you get 
(-3) 3 [(-3) x 2] + [5 x 3] 9 

5 2 5x2 10 
In the same way, you get

(-3) (-5) (-9) + --10) 

2 3 6 6 
[(-3) x 3] + [2 x (-5)] 

2 x3 
(-19) 

6 
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But these are obviously examples of the rule for adding positive
fractions which is extended to include negative fractions as
well. If you think about it, you will see that this must always be 
true, so that the rule a _ (ad + bc) must be true for all 

rational numbers. 
Thus, the same rule you used for positive fractions works for 

all fractions, both positive and negative. 

EXERCISE 32-lA 
Find the sums of the following pairs of fractions, illustrating at
least one of them by using the number line, the slide rule and 
rectangles.

4 (--)9 (-6) 8 
1.+(-3) 2.2 + 61)3
3 5 (--3) -9) 5
 

(-7) 0 .3
+ 6 (-8) 214. "6 ( +5. - 6. +6(-7) 

EXERCISE 32-lB 
What fractions suggest the use of money as examples in addition
problems? What about fractions like A? What about fractions 
like -? 

Ex.TrcisE 32-1C
 
In Exercise 
32-1A, Question 2 presents an important special
 
case. You should, of course, the
have found answer 0. This 
means that the two numbers are opposites, and they cancel 
each other out. Such pairs of numbers, which have the sum 0, 
are called additive inverses. Outline a procedure for teaching
the meaning of additive inverses to your pupils. 

ExER ISE 32-ID 
In Exercise 32-1A, Question 4 presents another important
special case. The answer is -- , the same as the first number in
the sum. When you add 0 to any number, you do not change
that number. The number 0 is called the additive identity
element. Outline a procedure for teaching the meaning of the 
additive identity to your pupils. 
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32-2 Subtraction 

You remember that subtraction is simply the inverse of 
addition. To subtract a positive number from some other num­
ber, you move to the left on the number line; and to subtract 
a negative number from some other number, you move to the 
right. Subtracting a positive number decreases the total, while 
subtracting a negative number increases your total. You can 
think of subtraction in terms of finding the missing addend in 
an addition equation. And you can finally think of subtraction 
as addition of the opposite. You have done many exercises and 
read many pages on these interpretations of subtraction. Here 
you need only see that you can understand subtraction of any 
rational number from any rational number in the same way. 

Not only can we understand the meaning of subtraction of 
rational numbers in terms of the fractions and the integers, but 
also we can see how to perform such subtraction problems by 
remembering what we did with integers. There we learned 
that subtraction of integers meant the addition of the opposite. 
Thus when you subtract -5 from 3, it is the same as adding 
5 to 3. Youi write this as follows: 

3 - (-5) =3 + 5 =8 
Ca:L you think of rational numbers in the same way? Look at 
this problem: 

3 7) 

The answer is the missing addend in this eqution: 

Clearly, if you put + 3-in the box, the equation will be true. 

[+ (_7 = 3 
33 5l 

3 7 

Thus, you get 

_ (3 x 3) + (5 x 7)5 x3(Why?) 
5 x 3 

9 + 35 44 
15 15 
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For another example, take the problem 

4 6 
3 5~
 

The answer must be the solution to the equation [] + 6 

which is clearly 

g+ 5 _g-5 

[4 x 5] + [3 x (-6)] 
3 x5 

20 - 18 2 
15 15 

Once again you added the opposite to find the result, and you
used the rule for addition of rational numbers to do so. 

The procedure is always the same. Reduce the rational num­
bers to the simplest form, change the second of the pair into its 
opposite, and add. 

EXERCISE 32-2A 
Perform the following subtractions, and for one of the problems
show the meaning with the number line and the slide rule. 

( -- -) 	 -- - - 27 ) 2 . 

(-7) (-3) ( -3)3. 	 0 (-4) 4. 1-83 - 47 
9 (-6) 50 

EXERcisE 32-2B 
A pupil tells you that 0 is the identity element for subtraction 
too. Is he correct? Why? How would you explain it to your class? 

32-3 Multiplication 
You should have no difficulty at this point understanding

multiplication of rational numbers, since it follows the same 
pattern as did the other operations. You remember both how 
to multiply integers and how to multiply fractions. And if you
put this knowledge together, you will see how to multiply 
rational numbers. 
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In the first place, if you multiply two numbers of the same 

sign, your result will be positive, and if you multiply two num­
bers of opposite sign, your result will be negative. This is as 
true for fractions as it is for integers. 

Think back to our previous work. The rules for signs depended 
on the result that (-1) x a = -a for any integer a. Following
exactly the same argument as was used there, you can show 
that 

a a1) x for any fraction bb)b b 
So you get the same rules for signs in working with fractions. 

The actual result obtained for any proditul, of rational num­
bers can be found by using the procedure you previously
learned for fractions, and then using the rule about signs to 
find the correct sign for your answer. Take the two problems 

x-A and (--j) 
The results are clearly 

and A 

These two results can be pictured on the number line as follows: 

4- 1 4 
23
 

-2 3 3 3 0 3 3 

In the same way, it is possible to obtain answers for the two 
problems which use the opposites to these fractions. 

(- X: = - A= - 1 

(- ) x (- 4,) 6 3=*= 

There are several important and interesting facts worth 
noting about multiplication of' rational numbers. The first is 
that the rule for multiplication of fractions is applied in exactly
the same form to rational numbers. You remember that rule: 

a c ac 
b d bd 
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If you will look at the examples just given, you will see that 
each one of them fits this rule perfectly, both in terms of the 
sign and in terms of the numbers. Thus, for example, take the 
last case and apply the rule: 

2 -3' 

[(-1) x (-4)] 
2 x3 

4 2 

You need to change each of the rational numbers into an 
equivalent form and then perform the multiplication, but you 
get the same answer. 

The second important fact concerns the number 0. You 
learned before that if you multiply any fraction by 0 the result 
is again 0. The same thing is true for rational numbers, as you 
can easily see. You know already that you can write 0 as a 

0
rational number, for instance, - Thus, you can write 

(-3) 0 (-3) 

2 -- 2 

o x (-3) 0 
- 1 x2 2 

The number 0 has the property that its product with any 
rational number is 0. 

The third important fact concerns the number 1. Again re­
call what you learned before. If you multiply any fraction by 1,
the numbcr remains the same. Clearly you can get the same 

result for rational numbers, since you can write I = ]-. 
1 

Thus, 
for example, 

2(-3) 1 (-3)
1-X- X - -

I 	x (-3) (-3\ 
Ix 2 23 
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A fourth important fact concerns the product of a number 
with itself. This product is called the square of that number, and 
can be written as follows: 

( -2) (-E2) __F--2 

3 3 ­
with a 2 as a right-hand superscript indicating that the num­
her is multiplied by itself. The square of any number a is 
a x a and can be written a2 . In the example, the result is 
clcarh, 

(-2__ 4 

which is positive. In fact, the square of any non-zero rational 
number is positive. (Why?) 

The fifth important point concerns what was previously
called the reciprocal of a fiaction. If you don't remember what 
a reciprocal is, look back to Section 21-19 in the chapter on 
fractions. Thus the reciprocal of the fraction j is the fraction -,
where the numerator of the first becomes the denominator of 
the second and vice versa. (Question: Does the fraction A.have 
a reciprocal? Further question: Is there such a fraction as A? 
The first question should be enough if you remember your
earlier work, but the second question is put in to help your
memory!) Consider once again a fraction and its reciprocal and 
look at their product. For example, for a and - you have 

S x --= = 1 
You found earlier that it is always true that the product of a 
fraction and its reciprocal is the number 1. Is it always true for 
any rational number also (except, of course, 0)? Look at this 
example: 

(-2) 3 (-6) 
3 (-2) (-6) 

In general, you can write, where neither a nor b is 0, 
a b ab 
b
_-

a ba 
- =- =1I 

Thus, it is always true that the product of a non-zero fraction 
and its reciprocal is the number I. This should remind you of 
addition, where the sum of a number and its opposite is the 
number 0. 

DChM2-K 
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EXERCISE 32-3A 
Find the following products of rational numbers and show at 
least one of them using the number line. 
1. × -	 2. 2z_x 1.6 

3)(23)2 	 3)6 

3. - +_8]__7 -) 

5 	 4___ 

6. (-6) (-5) 
(-8) 5 5 6 

EXERCISE 32-3B 
Give three examples of each of the following: 
1. 	A number and its reciprocal 
2. 	 A rational number and its square 
3. 	 A number and its opposite 

EXERCISE 32-3C 
Find the squares of the following numbers, and verify that 
these squares are positive. 

1. 3 	 2. - 4 3. (-1) 4. 3
 
5 9 (-2)
 

32-4 Division 

The final topic of this chapter is division, which you remem­
ber is the inverse of multiplication. If you think of division in
f iese terms, you should have no difficulty understanding how 
to divide numbers. In the first place, you learned that the same 
rule of signs applies as for multiplication, since division can be
understood in terms of muliplication problems with missing
factors. Thus, if you divide two rational numbers of the same
sign, the result is positive, and if you divide two rational num­
bers of opposite sign, the result is negative.

In the second place, you learned to divide fractions by multi­
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plying the first number by the reciprocal of the second, assuming 
of course, that the second is not 0. This same rule also applies 
to rational numbers. Thus, for example, to divide J by I is to 
solve the problem 

-l.= R1 X 
and the result is clearly

+ =- x .2=- -

Do you see that - - x ? 
The same reasoning applies to the other possible variations 

in sign. 
3 (-1) 

4 ]X 2 
(-3)- -= [:] x 1­

4 2(-3) (-1) 
4 x-2 

The results are clearly obtained in the same way: 
3 (-1) 3 2 6 3 
4 2 4 (-1) (-4) 2 
(-3) (-3) X2 (-6) 3 

4 2 4 1 4 2 
(-3)

4 
(-1)

9 
(-3) x 

4 
2 

(-1) 
(-6)
(-4) 

3 
2 

Only in the case where the second rational number is 0 is this 
procedure impossible. 

EXERCISE 32-4A 
Work out the following division problems: 
. (-3) + ( -) 2. 54 3- 10 1 - 23. [1-2] - [3 + ] 4.1.8_3)
 
5.24 + (5- 2) 

6. ['~5 X< ]-[ - 2 
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EXERCISE 32-4B 
Prepare a set of revision exercises which will test your pupils'
understanding of the material in this chapter. Include both 
word problemn and strictly numerical problems. 

EXERZCISE 32-4C 
Prepare an examination which covers the material in this unit 
on the rational nunmbers and which Would enable you to see 
how much time you should spend on revision. 

ExErclsi. 32-4D 
If one of 'our 1llow students told you that this chapter didn't 
really teach him anything new but that he had learned it all 
before in earlier parts of the book, Would you agree with him? 
Why? 

EXERCISE 32-4E 

Find answers to the following problems, and discuss the relation 
between nunltiplication and division which these answers show. 

2. (--) ...... 

2. --5 (-5) 

3. [1.7( x()3 ) ] 
4. [(3 - 5) x 1-1] ± 1 



Chapter 33 

REVISION OF NUMBERS 

33-1 Introduction 

During this course, we have studied numbers. We have 
learned about many different kinds of numbers. And we are 
not finished yet. Let us look back iver the path we have 
travelled, and see what the important milestones we have 
passed have been. 

33-2 Sets and counting numbers 

We started our study by talking about sets of things. We 
observed fat sometimes the members of two sets could be 
placed in one-to-one correspondence with each other. We 
called such sets equivalent. Sometimes it was not possible to 
place the members of one set in one-to-one correspondence 
with the members of another set. Such sets are not equivalent. 
We agreed to say that any two sets which were equivalent to 
each other had the same number of members, and that any two 
sets which were not equivalent had different numbers of mem­
bers. We agreed that if a set A was a subset of a set B and not 
equivalent to B, then A had a smaller number of members than 
B and B had a larger number of members than A. So every set 
has a number of' members which is equal to the number of' 
members of every set equivalent to the given set. 

These numbers associated with sets were called the counting 
numbers. Because they were ordered, we were able to picture 
them on a line by marking equally spaced points, and we 
agreed that if a number a was less than a number b, the point 
marked a was to the left of the point marked b. 

We learned to add numbers by forming the union of two dis­
joint sets, whose members we had previously counted, and 
counting the members of this union. 

139 



140 The Rational Numbers 

0 00 
3 + 4 7 

And we saw that our picture of the number line could be
useful in this addition, since we could get the sum of two num­
bcrs by stepping along to the right on the number line. 

33-3 The empty set and zero 
The counting numbers were sufficient to take care of our

number needs as long as the answers to our problems could be
represented by sets of things. But if a man has a set of 3 shillings
and pays 3 shillings for a basket, the money he has left
hardly be described 

can 
as a set of shillings. We found it convenient 

to describe the money he has left as the empty set. And then 
we invented the number 0 to describe the number of -,aembers
of the empty set. We then had two sets of numbers: the set of 
counting numbers, and the set whose only member is zero. The
union of these two sets we gave the name of whole numbers. 

On the number line, the point labelled 0 was our starting
point and was to the left of all the points for the counting num­
bers. And we found that we could still get the sum of two
numbers by stepping to the right on the number line, with the
understanding that if we were adding 0, we would step 0 units 
to the right; that is, we would not take a step.

The set of counting numbers is a subset of the set of whole
numbers, and we found that all the problens involving count­
ing numbers could still be done by working with the set of
whole numbers; also, we could work problems involving the 
empty set. The extension from counting numbers to whole 
numbcrs wa. not a large one-the whole numbers include only 
one new member-but it is an important one. 

33-4 Fractions 
We learned to multiply two whole numbers, and interpreted

multiplication as repeated addition. We then defined division 
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in terms of multiplication. We said that if 3 x [ 6, 

= 6 3 = 2, and more generally, if a x El b, 
= b a. But sometimes there is no whole-number answer.

For example, in the problen 3 x El = 7, there is no whole­
number solution. In such cases, we agrced to invent new num­
bers,called fractions, which would have the required properties.
In the example 3 tox ] = 7, [] 7 --3,and we agreed
call this answer the fraction -.. So 3 x -} 7.b More generally,b 
ifa x ] =b, = b -a b=-,and a x- =b.These new 

a (numbers, the fractions, included the whole numbers. For if a isa 
a whole number, 1 x E] a has the solution fl - It also 

a 

has the solution a. So = a, and every whole number is a 
fraction. The set of whole numbers is thus a subset of the set of
fractions. Since some fractions are not whole numbers, the set
 
of fractions is an extension of the set of whole numbers.
 
We 
saw that we could not assign a meaning to division by 0,

and so we were not able to assign a meaning to tle fraction 
a 

b i b -0. frcton ,a can represent11th any member of
the set of whole numbers and b any member of the set of 
counting numbers. 

But we have also seen that not all such fractions are different. 
a ka

In fact, b -bfor any counting number k. 
We learned to add any two fractions, obtaining 

a c ad bc ad -- be 
+ t1 d -bd 
 b1
 

We were able to assign an order to the fractions, and we were 
able to picture the firactions on the number line, with points
between the whole numbers along with the whole numbers 

(1 c a cthemselves. Again,-f < if ­v is to the left of .
d 

We learned to multiply any two fractions, and saw that 
a C ac \d a C a d

1 bd we lcaied b ×
d d b d 
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33-5 Integers 

Just as the process of division led to the extension of the whole 
numbers to the fractions, so the process of subtraction also led 
to an extension of the whole numbers to the integers. If a 
represents a whole number, we defined a new number, called 
neg a, and later introduced the notr'ion -a to represent it, 
which had the property that a -- (-a) = 0. Since a - = 0 
has, by the definition of subtraction, the solution F1 = 0 - a, 
-a is the number obtained by subtracting a from 0. 

These new numbers were called the negative integers. The 
counting numbers werc relalwlled the positive integers. The 
complete set of integers is the union of the negative integers, the 
po,*iive integers and zero. 

W\e were able to establish an order for the integers. We were 
able to picture the integers on the number line by extending 
the number line to the left of 0. On the extended line, the 
smaller of two numbers was still pictured to the left of the 
larger. We were able to use the line flor adding positive integers, 
as before, by stepping to the right. But we found that stepping 
to the left on the number line was required for adding negative 
integers. Since this was the same as subtracting positive integers, 
we concluded that 

a (-b) =a-b 
Since negative integers may be added on the number line 

by stepping to the left of 0 in the same manner that positive 
integers may be added on the right of 0, we concluded that 

(-a) -1-(-b) = -- (a -'- b) 

We saw that the opposite of a negative integer was a positive 
integer. 

The statement a - (-b) = a - b assures us that every sub­
traction problem of the form a -- b can be changed to an 
addition problem of the form a -- (-b). 

We learned to multiply two integers and discovered that 
(-I) x a = -a, (-a) x b = -(a x b) and (-a) x (-b) 

(a x b), for a and b any two integers. 

33-6 Rational numbers 

Just as the fractions permitted the naming of some of the 



Revision of Numbers 143 

points between the whole numbers to the right of 0 on the num­
ber line, so we needed to name points between the negative 
integers to the left of 0. These new numbers, the opposites of 
the non-zero fractions, we called the negative fractions, and, 
together with the fractions, they make the set of rational 
numbers. 

33-7 Summary 

We now have a very large set of numbers to work with-the 
set of rational numbers. In the next chapter, we shall revise 
the properties of operations on these numbers. We have seen 
that the set of rational numbers is composed of several import­
ant subsets. Sometimes we do not need this huge set of numbers 
when we are solving our problems-sometimes one of the sub­
sets is big enough to take care of what we need to do. But it is 
comforting to knv.' that with this large set of rational numbers, 
we can now perform any of the four basic operations on any 
numbers vith just one exception: we are not permitted to 
divide by 0. 

In Unit VII we are going to expand our number system 
again and for the last time in this course. But we shall still be 
unable to give meaning to division by 0. 

EXERCISE 33-7A 
List as many subsets of the set of iational numbers which we 
have studied and named as you can. 



Chapter 34 

REVISION OF PROPERTIES
 
OF OPERATIONS
 

In Chapter 13 we gave a summary of the properties ofopera­
tions when the operations were performed with whole numbers. 
Since that chapter, we have studied operations on numbers 
other than whole numbers; for instance, on integers and 
rational numbers. We are now, therefore, in a position to ex­
pand our summary to include properties of operations on 
integers and rational numbers. 

34-1 Closure under addition and multiplication 
A set of numbers is closed under addition if the sum of any

two of the members is also a member of the set. It is closed 
under multiplication if the product of any two of the members 
is a member of the set. 

1. Since a + b is a whole number if a and b are whole 
numbers, the set of whole numbers is closed under addition. 
This we know already. 

Since a + b is an integer if a and b are integers, the set of 
integers is closed under addition. For example, (-8) + 12 is 
an integer. Are the rational numbers closed under addition? Is 

t + - a rational number whenever P-and are rational num­fq n ­

q n 
bers? You see this is so, because 

p +m _ pn + qm = aii integerq n qn another integer a rational number 

(Of course, we must bc sure that the denominator qn cannot 
be zero. How do we know that q 0 and n - 0? Could qn 
be 0?) 

2. Since a x b Is a whole number whenever a and b are
whole numbers, the set of whole numbers is closed under 
multiplication. 

144 
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Since a x b is an integer whenever a and b are integers, 
the set of integers is closed under multiplication. 

For example, (-8) x 12 = -96, which is an integer. 
Is the set of rational numbers closed under multiplication? Is 

x - a rational number if t and n arc? Yes, because 
q n q n
 

p m =pm _ an integer a rational number
 
q n qn another integer
 

since qn - 0. 
3. The set of whole numbers is not closed under subtraction, 

since, for example, 2 - 7 is not a whole number. 
The set of integers is closed under subtraction. So is the s, t 

of rational numbers. Can you give examples illustrating this? 
4. The set of whole numbers is not closed under division. 

For example, 2 + 7 is not a whole number. 
Is the set of integers closed under division? Is (-2) 7 an 

integer, for example? 

If we divide any rationla number t by any non-zero rational 
q 

nubenumber - , will we always get a rational number? Let us see. 

p in pn an integer
 
q n qm an integer
 

Could qm = 0? Only if q =0 or n =0. But q =0 is not
 

allowed and if - 0, in "annot be 0 either. We conclude, then, 
n 

that the set of al rational numbers except zero is closed under 
division. 

EXERCISE 34-lA 
1. State under which operations (addition, subtraction, multi­

plication, division), if any, each of the following sets is closed. 
a. {2, 4, 6, 8} 
b. The set of all rational numbers 
c. {12, 14, 16, 18,....
d. {j, f",3 , I 

e. The set of all integers 
f. The set of all odd numbers 
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34-2 	 Commutative property of addition and
 
multiplication
 

1. The order in which two whole numbers are added will not 
affect their sum. That is, a + b = b + a is true when a and b 
are whole numbers. Is it true when a and b are integers? Yes,
it is. For example, (-8) - 3 = 3 + (-8), each side being
equal to -5. This is not new. Is this true for rational numbers? 
Is it true that 

p i Mn p 
q n n q 

that is, that in 	 + q _=niq + np
 
qn nq
 

Remember that p, q, nz and n are integers. (Which of them can 
not be 0?) Then qn = nq. Why? And pn + qm = niq + np. 
Why? 

So we see that the commutative property of addition holds 
for rational numbers. 

2. The order in which two whole numbers are multiplied
does not affect the product. That is, a x b = b x a when a 
and b are whole numbers. It is true also for integers, as it is for 
rational numbers. For example, (-8) x 3 = 3 x (-8) since 
each side is equal to -24, and (-- -A-)x 1 = x (-j)
since 	 ach side is equal to -' Can you show that- . 

f'm in 

- XP- - x 
q n n q 

in all cases? 
We found that subtraction and division do not have the 

commutative property. Check these statements of subtraction 
and division to see that neither operation has this property. 

Is (-2) = - -)? 

34-3 	 Associative property of addition and 
multiplcation 

1. (a 	+ b) -,-- = a + (b + c) is true for ohole numbers. 
Is it true for integers? Suppose you want to add -8, 7 and -6. 
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How would you proceed? You could add -8 and 7 and then 
add -6 to the sum; or you could add to -8 the sum of 7 and 
-6. But you know you would get the same sum for each: 
(-8 + 7) + (-6) - -8 - [7 + -6)]. Of course, you 
would do the same if the given numbers had been rational 
numbers. So (a + b) -F c = a - (b-P c) if a, b and c are 
rational numbers. 

2. a x (b x c) = (a x b) x c is true for whole numbers. 
Is it true for integers? Is 

(-8) x (5 x 11) = [(-8) x 5] x 11? 

Yes, since each side is equ, to -440. 
Is it true for rational numbers? Is - x (,Ax 2) the same as 

(2 x -) x ?Yes, for each is equal to A
 
It is not difficult to show that for rational numbers,
 

1) in)xr x(m )s) p
r 

In fact, each is equal to -m­
qns 

Subtraction and division do not have this property as you 
can see by answering the questions below: 

Is (-8) - [3 - :-2)] = [(-8) -3] - (-2)? 

IsI - (3 - 1) = (I - 3) -1? 

Is2 [(-AS ) + ] =[2 -- - ] 4]? 

34-4 Distributive property 

1. a x (b + c) -(a x b)+ (a x c) ;s true when a, band c 
are whole numbers. Is this same distributive property true for 
integers and rational numbers? Check these statements, which 
illustrate the di4,ilitive property of multiplication over 
addition: 

(-8) x [5 - (-2)] = [(-8) x 5] + [(-8) x (-2]
Fx 8.-1( ) x .8- [ x ( ) 

In the first, each side equals -24, so the statement is true. In 
the second, each side equals ,so the statement is true. 

2. a x (b - c) = (a x b)-(a x c) is known to be true for 
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whole numbers. Is it true for integers and rational numbers? 
Check these statements: 

(-8) x [5 - (-2)] [(-8) X 5] - [(-8) x (-2)] 

Xeahsd ea - so the s Xrst, is tu] 
In the first, each side equals -56, so the statement is true. Inthe second, each side equlMs .3,so this statement is also true. 

Suppose the statement about multiplication and subtraction 
had been written in general form. We would like to show thatP i ) Xm (1)
 

q \ns/\q n/qs/) 
If we work out both sides, we find that the left-hand and right­
hand sides are, respectively, 

fins - pnr and pmqs - qnfr 
qns qnqs 

Do you see that these expressions represent the same rational 
number? Thus the statement is true. In a quile similar way, we 
could prove that the statement of the distributive property is 
true. 

34-5 Propertier-of zero and one 

We have learned that 0 has the property that 
0 + a - a + 0 

when a is any whole number, and that I has the property that 
1 x a = a x I = a, when a is any whole number. 

Do 0 and I have these properties when a is any integer or any
rational number? Yes, they do. We have ,iet these operations 
when working on integers and rational numbers. For example, 

0 ± (-8) (-8) + 0 = -8 
0 + .+ 0 = 

1 x (-8) (-8) x =-8 
1x = x 1--

In general, 

,+0 =0 0 +p (0 q) + (I xp)_=Pqq q 1 xq q 
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and Px1=1 xt=- 1x 1 xp P q q 1 q 1xq q 

So 0 is called the identity elementfor addition, and 1 is called the 
identity elementfor multiplication. (Recall that we have seen that 0 
is not an identity element for subtraction, nor is 1 an identity 
element for division.) 

There is another important property of 0. We know that the 
product of any whole number and 0 is 0. Is this true when the 
other factor is an integer or a rational number? Are 

0 x(-8) =0 and 0-+(-J) =0 
true? From our study of integers and raticnal numbers, this 
statement is true: Any number multiplied by 0 will give 0 as 
answer. 

This property of 0 may be written as follows: If a is any 
rational number, then 

a x 0 = 0 x a =0 

34-6 Opposites and reciprocals 

Much work has been done with integers and rational num­
bers on the number line, and you should by now be familiar 
with such pairs of numbers on the number line as -3 and 3, 
- and , -a and a. One number in each pair is to the right 
and the other to the left of the zero point-unless they are both 
0-and both are at equal distances from it. The sum of the 
numbers in each pair is zero. We have called the numbers in 
such a pair opposites. 

Given a rational number which is not 0, we can find its 
reciprocal. For example, the reciprocal of 7 is 3-, (f - . is ­

of-- is 9. The most important property which we discovered 
about a number and its reciprocal is that the product of the 
two is always 1. Alway: keep in mind that the number 0 has no 
reciprocal. 

34-7 Inverse operations 

In Chapters 9 and 12 it was mentioned that addition and 
subtraction are inverses of each other and that multiplication 
and division have a similar relation to each other. This can be 
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shown to be true for integers and rational numbers as it was 
found to be true for whole numbers. Here are the statements 
expressing these relations: 

(a-b) +b=a and (a + b) - b = a 
if a and b are any rational numbers, and 

(a x b) -b=a and (a -b) x b=a 
if a and b are any rational numbers (with b - 0). 

34-8 Properties summarized 

In this summary, the letters a, b and c represent any rational 
numbers. Since an integer is a particular kind of rational num­
ber, the properties listed will also apply to integers. 

(a) 	 Closure properties 

a + b is a rational nur;,ber.
 
a x b is a rational number.
 

(b) 	Commutative propertiesof addition and multiplication 

a -b b + a
 
a xb b xa
 

(c) 	Associativeproperties of addition and multiplication 
a + (b + c) --(a+ b) + c
 
a " (b x c) (a x b) x c
 

(d) 	Distributiveproperties 
a x (b + c) = (a x b) + (a x c) 
a x (b -- c) (a x b) - (a x c) 

(e) 	Propertiesof zero 

a + 0 =a
 
a xO0=O0
 

(f) 	 Property of one 
a xl =a 

(g) 	Opposites and reciprocals 

a + (-a) = 0
1 

a X - = I (if a.#0)
a 
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(h) 	 Inverse operations 

(a - b) + b = a 
(a + b) - b = a 
(a x b) b =a (ifQb 0)
 

(a -- b) x b =a (ifb O)
 

BCNI2-L 



Chapter 35 

ORDER FOR RATIONAL NUMBERS 

35-1 	 Order on the number line for positive rational 
nurmbers 

Do you remember how we described "order" for the set ofwhole numbers in Chapter 17 and "order" for fractions in 
Chapter 22? Let us see. Here is a number line. 

0 	 1 2 3 4 516 1 8 9 10 

You will remember that we said that anumber ais"greater
than" a number b ifa is to the right of b on the number line. Forexample, 5 is greater than 3 and we see on the number line that
5 is to the right of 3. Similarly, J ILis to the right of 4 and so -.­
is greater than 4. In symbols, we write 

a
b, 5 > 3, "-L->4 
In a similar way we described the idea of "less than" by
saying that a number b is less than a
number a,ifb is to the leftof a on the number line. Thus 3 is less than 5, because it is to theleft of 5 on the number line. Similarly 4 is to the left of- -on the

number line and so 4 is less than I1. In symbols, we write 
b < a, 3 < 5, 4 <"!,' 

You see that a > b and b < a really mean exactly the samething. Both inequalities say that a is to the right of b on thenumber line, and this is the same as saying that b is to the left 
of a on the number line. 

EXERCISE 35-IA 
1. Draw a number line and locate on it by dots the following: 

a. six consecutive whole numbers greater than 8
b. four even whole numbers less than 16 
c. the three smallest firactions greater than 3 and having 3 

for a denominator 
152 



153 Orderfor Ralional ]AVimbers 

2. 	a. Find the smallest whole number greater than 6 
b. 	Find the greatest whole number less than 10 
c. 	Find the three largest and the three smallest whole num­

bers less than -"-2,J--

In Chapters 19 and 22, you learned to compare two fractions 
by putting them on the number line. It is not always easy to 
locate two fractions accurately on the number line when they 
are very close together. We therefore have to learn another 
way of finding out which of two fractions is the greater. Suppose 
we wish to find out which of j and 3 is the greater fraction 
without locating them on the number line. How shall we do it? 
One way would be to draw a diagram to represent each frac­
tion and then compare the two diagrams. The two fractions 
. and -are shown in the diagrams below. Clearly the second 
picture represents the larger fraction, and so we say that - is 
greater than j; that is, : > ,* 

3 12 	 4 --1 

Another method of comparing two fractions is to express 
both of thei with the same denominator and then compare 
their numerators. Consider the above example where we con­
pared 2 and -.We may write S" -,-and 1- Hence, by
comparing the numerators we see that 9 > 8 and, therefore, 
that -> '..Of course we could also have arrived at the same 
result by taking the difference between and j. That is 
f 1 - 1; .- '., which is positive. 

EXERCIsE 35-1B 

1. 	For each pair of rational numbers, determine their order by 
(i) 	locating them on the number line 

(ii) writing each pair with the same denominat r 
(iii) subtracting one from the other
 
In each case, say which is larger.
 
a. 	 Aand" b. : and c. and 5 d. A..and, 
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2. 	 Arrangc the following rational numbers in order, starting
 
with the least and ending with the greatest in each case.
 
a. , , ., -, ­
b. A, a, 2 4, 3, , 4 

c. 	 3, -2 ;2, + 3 ; 1 + 4; 5,3 ± 

Orderfor decimalfractions 

When we wanted to find out which of two fractions was 
greater, we expressed both fractions as new fractions with the
 
same denominator and then compared their numerators. 
 A
 
similar method is found useful with decimals. For example, 0.5
 

5 5 5
may be written as i6 and 0.05 as - In order to write j- as a 
fraction with 100 as a denominator, we have to multiply both
 
numerator and denominator by 1C. This gives
 

S 5 x 10 50 
10 10 x 10 100 

50 5 
This means that 50 > 5-; that is, 0.5 > 0.05. 

Here is another example. Which is grcater, 0.6 or 0.55? We
 
6 55 6
write 0.6 =- and 0.55 as -1 0. Since has 10 for denomina­

6 6 x 10 60 60 55tor, we write - - 10 - Hence, I > j-; that
10 x 'o 0 thato'FOis 	0.6 > 0.55. 

EXERCISE 35-IC 

1. Arrange the following numbers in order, starting with the 
least and ending with the greatest: 

0.35, 1.35, 3.5, 1'035, 10.35, 0.035, 17.5, 2"25, 2 
2. 	Insert the correct inequality sign in each box below. 

a. []3.5 b. 1.7 [: 175 c. 0 []2.5
d. 	3.8 [] 0.38 e. 0.75 [] 0.7 f. 0.75 nj 0.7 
g. 	 2.5 L 4 h. 5 [--Z4.8 i. -- --]4,2 
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35-2 	 Order on the number line for the set of rational 
numbers 

Just as we did for whole numbers and for positive fractions, 
wve use the term is greater than with rational nmbers to mean 
"isto 	the right of'' on the number line. Ira and b are rational 
numbers, "a is greater tian b, written a > b, is interpreted to 
mean 	that a is "to the right of"' b on tile nunbcr line. 

In a similar way, we use is less than for the set of all the 
rational nlum1bers to nealn "isto the left of" on the number 
line. If a ad b are rational numbers, "b is css than a" is 
written b < a. 

\Ve may restate the above point I)y saying that ifra b, tlhen 
ol the numl)er line we have to move to the right from the 
point which represents b to get to the point which represents a. 
This represents the addition of a positive number p to b to get a. 
We may write, 

if' a ->b then a -=b+p and a-b =p 

where 	p is a positive number. 
In a similar way, ira < b, then we have to move to the left 

from the point which represents b to get to the point which 
represents a. 'Ihat is, 

if a < b then a = b+ q and a - b = q 

where q is a negative number. 
Here is a number line with some rational numbers repre­

sentci on it. 

i i 4 1 1 1-7 - 6 -5 -4 1-3 -2 -1 0 1 2. 3 7 4 5 6 7
 
- 3.5 2 2
 

We easily see that 3 is to the right of' -- 1I; 3 >- I and 
3 = -- + 4. Similarly, --3.5 - 5 and -3.5 = -5 -1-1.5, 
buit < ancl ,-__(- -- 2). 

On a numler line, all negative rational numbers are to the 
left of 0, and so fbr any negative niiumber k we mty write 
k-< 0. Also, all positive rational numbers are to the right of'0, 
and so for any positive number in we may write m > 0. 
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EXERCISE 35-2A 
1. Determine which of the following statements are true andwhich are false. For the true statements of the form a >find a positive rational number p such that a 

b, 
= b + p. Forthe true statements of the form a < b, find a negative

rational number q such that a = b x q.
a. 16 < -32 b. -16 < 32 
c. -1 < -3 d. 1.6 < -3.2 
e. -1.6 > 3.2 f. 0 > 1 
g. 25 < -26 h. -25 < 26
i. 36 >0 j. -36 >0
k. -3 > -6 . 0 <-
M.-. <0 n. -4. (-2) <-2 +2 
o. -5 1 > 2 ++ 1 
Insert the correct inequality sign in the following statements: 
a. 4 + (-3) [] -4 + 8 
b. 4 -;- 8 [] -4 + (-8) 
c. 6 + (-1) Ej6 + 2
d. -. } + (- A) [L -. 3. + A 
e. -6 + (-1) LI-6 + 2 
f. - 3 .5 + 3 .5 3.5 + ? 
g. -k 1L(- )

2. For each pair of numbers, determine their order. Write astatement involving the sign > for each pair. Then foreach statement a > b, find a positive rational number pwhich makes the statement a = b + p true,3. a. and -- b. 2"5 and -5.5 c. - and (- )d. - and -A e. - -Aand -5 f. 2.25 and 3.75 
4. Locate on diffej ent number lines 

a. four negative integers greater than -6 
b. five negative integers less than -5,
c. die six greatest integers less than 4,
d. four negative integers less than 0. 

5. From each of the following statements about equality,deduce the corresponding statements about order, usingfirst the sign < and then the sign >. For example, from 
-3 = + 2,-5 we see first that -5 < -3, and then that
-3 > -5. 
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a. 	6 =-3 +9 b. -2 =-8+6 
c. 	 0 =-4 +4 d. 12 =9 -3 
e. 	 3.25= -3+G.25 f. -i± + 
g. -9= -12 +3 h. 2 =-8 + 10 

35-3 "Bvttween" for rational numbers 

In Chaptcr 17 we saw that given any three whole numbers 
a, b and c, we can say which one lies "between" the other two 
numbers. For example, on a number line we see that 4 is to the 
left of 7 and so 4 < 7; also, 10 is to the right of 7 and so 10 > 7. 
\We can write 4 < 7 < 10. 

What do we mean by "between" for rational numbers? A 
number line will help us. This number line shows that 

-7 -6 - 5-- -2--' 0 1 213 4 5 617 
-3'5 -1'5 2 2 

-6 < -4 and -4 < - 2. We therefore say that -4 is 
between -6 and -2, and we write -6 < -4 < -2. In a 
similar way, we see from the number line that A is between 0 
and 5, and we write 0 <4 <5. 

EXERCISE 35-3A 
1. 	Arrange the rational numbers a, b, c and d on the number 

line, on the assumption that a is between b and c, and b is 
between a and d. Note that there are two possible arrange­
ments. 

2. 	Wiite the set whose members are 
a. 	the integers between -5 and 5, 
b. 	the negative integers greater than -4, 
c. 	 the positive integers less than 7, 
d. 	the integers between 0 and -4, 
e. 	 all the fractions between 1 and 3 with a denominator of 5. 

3. Find a rational number between each of +he following pairs 
of rational numbers: 
a. 	j and 1 b. - I and -1 c. and -7 
d. 	 -- and - A e. 5 and51 f. -and ­
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From your answers to Question 3, it will be clear to you that 
you can find more than one rational number between any pair 
of rational numbers. For example, what was the rational num­
ber you found between '- and 1? One possibility is -. What 
about 3 or . or -V Can you find any more rational numbers 
beftween Xand 1? 

We have seen that given any integer we can always tell which 
integer precedes it or comes after it. Given any three integers 
we can always tell which is between the other two. The ex­
ample above seems to suggest that we cannot talk of the rational 
number between Aand 1, because there are many such rational 
numbers. 

Can we talk of the rational number which follows a rational 
number? For example, can we find the next rational number 
after A? Suppose we take A, one of the answers we suggested 
above. We represent both these points on the number line. 

0 it a 1 

We observe that = "- and A- = - so that --L, -7- -B- are all 
closer to Asthan - . If we choose - as the next rational number
after A,we note that 1Aand .1'- -

" and so t xis nearer 
to Athan - we observe that A o and -1 =­. Once more Q 

.so-2- is nearer Athan We may continue this process as long 
as we wish, so that there is no rational number "next" after a 
given rational number. A similar argument would show that 
we cannot identify the rational number "just before" a given 
rational number. All this suggests to us that between any two 
rational numbers, no matter how close together they are, there 
is always a third rational number. 

EXERCr,A 35-3B 
Find four rational numbers between each pair of rational num­
bers in Question 3 of Exercise 35-3A. 
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35-4 	 Two basic properties of order for
 
rational numbers
 

1. The Comparison (or Trichotomy) Property 
If a and b are any two rational numbers, then one and only 

one of the following is true: 

a>b a=b a<b 

To see this, find (a - b). The rational number (a - b) is 
either positive, negative or zero. If (a - b) is positive, then 
a > b. If (a - b) is negative, then a < b. If (a - b) is zero, 
then a = b. In the case a = b, a and b name the same number. 

EXERCISE 35-4A 
Put the correct inequality or equality sign into the boxes to 
make each statement true. 

1. --AFZ ~ 2. 300(H9)10 2 3 
3.5+ F154. - at + 

5.-7 	 6. 0 -1 

7. 8 nD2 - (-6) 8. -6 D 9­

2. The Tra;zsitive Property 
Let us look again at the relation 4 < 7 and 7 < 10, which we 

discussed earlier. What conclusion can we draw as to the rela­
tion between 4 and 10? Do you sze that 4 is less than 10? You 
can verify easily that 4 < 10 by looking at the number line. 

Here is another example. We know that -6 < 2 and 2 < 6. 
Of course, you see straight away that -6 < 6, and again you 
can check the conclusion by looking at the number line. 

As another example, we have - < 34 and I < . We thus 
see that - < 1. 

Now let a, b and c be any three rational numbers such that 
a < b and b < c. What can be said about the relation between 
a and c? You can see that a < c. This property is called the 
transitive property. A proof of it is sketched following Exercise 
35-4C, Question 2. Formally, it says, if a, b and c are any three 
rational numbers and if a < b and b < c, then a < c. 
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EXERCISE 35-4B 
1. In each of the following groups of rational numbers, deter­

mine their order. 
a. 	2.5, -5.2, 0 b. -, - , -
C. ,1, 	 d. 25, 205, 225e. 	 5, - 6,4. f. 	 A_ _ .I,3 
g. 	 ­ , -2,-


The transitive property often makes it easy for us to compare
some pairs of fractions. Suppose we wish to find out which of
dlc twu fractions -7 and P-7 is the greater. By the method 
described earlier in this chapter, we first write the fractions 
with the same denominator and thecompare lumerators. 
Thu,9 ="-
 , 	,7 = I4. By comparing the numerators
1649 and 1501 we see that A- > -. You of course know how 
we arrived at this result. It has involved the finding of the three
products 19 x ]7, 97 x 17 and 79 x 19, and you will agree
that this is a lot of work. 

Can the transitive property help us? If we can find a rational 
number which is between -7jand A-7 then we can easily com­
pare the two fractions. We note that :Uk < -OA; that is, !- < 5.
Also A-7- > P-k; that is, .P- >' 9 	 1 5. If in the transitive property we1 " take a =; b 5 and c =--, we see that a < c; that is, 
7 9 P97 

EXERCISE 35-4C 
1. 	Determine the order of the following fractions.7and-
a. 	 - b.-_.-- n -

3"C b. - 1A and -99-7 
d. 	II I 1and 190° 19C.1 ,and 19g 

2. 	 Sometimes it is not so easy to find the order of two fractions 
by using the transitive property. Try to find the order of ­
and A by using the transitive property. 

We shall now sketch a proof of the transitive property, if a,
b and c arc rational numbers and if a < b and b < c, then 
a <c. 

It was shown in Section 35-2 that 
a < b means a = b + q, where q, < 0; 

also, b < cmeans b = 	c + q., where q,< 0. 
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Hence, a = b + q, 
= (c + q2) + q, by writingb =c + q2 
- c + (q2 + q,) by the associative law of addition 

-c 4-q whereq =q2 +q, 
But we know that the sum of two negative numbers is another 
negative number, so q is a negative number. 
Hence, a = c -- q where q is a negative number
 
which means that
 

a <c 

EXERCISE 35-4D 
If a, b and c are rational numbers and if a > b and b > c, then 
a > c. Prove this property as above, giving a reason for each 
step in your proof. 

35-5 Addition property of order 
We have already considered the addition property of order

for whole numbers and for fractions in Chapters 17 and 22.
Let us now see whether the property is true for the set of all 
rational numbers. 

It will help us to picture addition and order on the number
line. Let us first choose two rational numbers a and b on the
number line with a < b. We remember that the addition of a 

a b 

positive rational number to both a and b means moving to the
right, while the addition of a negative rational number means 
moving to the left. 

If we now add the same positive rational number c to a and to
b, we see that the point for a + c is c units to the right of the
point for a and the point for b + c is also c units to the right of
the point for b. The number line indicates that a + c < b + c
(see Fig. I on p. 162). Ifwe add a negative rational number c to a
and to b, the points for a + c and b + c will each be the same
distance to the left of the points a and b respectively. The num­
ber line still suggests that a + c < b + c (Fig. 2). 
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C C 

a a+c b b+c 

Fig. I 

C C 

a-+-c a b-c 

Fig. 2 

Let us see if we can prove the addition property of order. 
Starting from a < b, we know that a = b + q, where q is some 
negative -ational number. We add c to both sides of the equality
obtaining a -c = (b + q) -c, or a -c = (b -c) -- q.
(Why?) But the last equality tells us that 

a + c < b + c 
The order relation between the numbers is preserved. Hence, 
we have the addition property of order: 

If a, b andcare rationalnumbers and ifa < b, then a + c < b + c 

EXERCISE 35-5A 
1.Formulate an addition property of order for the relation 

">" and write out a proof of it. 
2. Illustrate the trtth of the addition property of order by

taking b==- , a A-,and with c having successively 
the values - .. 6, 0, - ., -4. 

35-6 Generalized addition property of order 

in the addition property of order considered above, we saw 
that the addition of the same rational number to both sides of 
an inequality preserves the order relation. Naturally we may
want to know whether an order relation is stili preserved when 
the two rational numbers added to both sides are not equal but 
have the same order relation between them that the original 
rationa.l numbers have. 

Let us illustrate this with an example on the number line. 
We know that 2 < 6 and that -- 3 < -2. What relation holds 
between 2 + ( -3) and 6 + (-2)? Add 2 to (-3); this gives 

. 1.The addition of 6 to -- 2 gives 4. 
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-3 -2 
<Ii I 1A 7I 

-7 -6 -5 -4 -3 -2-1 0 1 2 3 4 5 6 7 8 
2+(-3) 6+(-2) 

What relation exists between -1 and 4? We see that 
-1 < 4. From this we may write, 
if 2 <6 and -3 < -2 
then 2 + (-3) < 6 + (-2) 

That is, -1 <4
 
which is true.
 

Now choose any four rational numbers a, b, c and d with 
a < b and c < d. Add a to cand b to d. Do this with two or more 
sets of rational numbers. Write in each case the relation which 
exists between a + c and b -- d. Your answers will lead you to 
the gencralized addition property of order which states, 

If a, b, c and d are rational numbers such that a < b and c < d, 
then a + c < b ± d 
Let us now give a proof of this property.
 
If a < b, then a + c < b + c (by the addition property of
 

order). 
Ifc <d,then b + c < b + d. (Why?) 
Hence, using the transitive property of order, we have 

a + c <b d- d 

EXERCISE 35-6A 
Write the generalized addition property of order for the rela­
tion ">". Try to mal.e a proof for it. 

35-7 Numbers and their opposites 

The addition property of order often helps us to see the truth 
of some properties of numbers which are not at once apparent. 
One such property is the relation between two rational num­
bers and their opposites. 

By considering a few numerical examples we can easily 
see that if a and b are rational numbers and if a < b, then 
- b < -a. Try to convince yourself of the truth of this property 
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by drawing a number line and by locating several pairs of 
rational numbers and their opposites on it. 

Let us see now whether the addition property of order can 
help us to give a proof of the relation which exists between the 
opposites of a pair of rational numbers. Let a and b be rational
numbers with a < b. Then adding -a to both sides of the 
inequality, we have 
a + (-a) < b + (-a) (by the addition property of order) 

That is, 0 < b + (-a) (by the property of opposites) 
Again, by adding -b to both sides of the inequality, we get 

0 +(-b) <b +(-a) +(-b) (Why?) 
So -b < -a (Why?) 
Thus, the relation is proved. 

35-8 Multiplication property of order 
You will remember from your earlier study of the rational 

numbers that if a and b are positive rational numbers, then 
a x b is a positive rational number and a x (-b) is a negative
rational number. (In fact, it is the opposite of a x b.) That is,
the product of two positive rational numbers is always a positive
rational number, while the product of a xiegative rational num­
ber and a positive rational number is always a negative rational 
number. 

Consider the set of rational numbers {-.., -4, 3, A, 6}
represented on the number line below. Now multiply each 
element of the set by 2, a positive number. We obtain the set 

number line below. On the 

-7 -6 -5 -4 -3 2 -1 0 1 2 1 3 4 5. 6 7 
3
2 5

2 

{-3, -8, 6, 5, 12}. These numbers are represented on the 
new number line the points which 

-12-11-10-9-8-7-6-5-4-3-2-1 0 1 2 3 4 5 6 7 8 9 101112 

correspond to -4 and -A- are -8 and -3. The relation 
between -4 and ­ -.-is -4 < -4-1, while the relation between 
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-8 and -3 is also -8 < -3. That is, the order relation is 
preserved. 

Similarly, 
since . < 3, then 2 x A- 2 x 3 
since 3 <6, then 2 x 3 <2 x 6 
since - q-<3, then 2 x (- -') <2 x 3 

These examples suggest that if a and b are rational numbers 
with a < b, then if c is a counting number, a x c < b x c. 

Now let c = . Multiplying the set of rational numbers 
{-A-, -4, 3, -, 6} by -1,which is a positive rational number, 
we get the set {-I f, -, -2,4-, 3}. From the number line we see 
that -4 < - :-and that -2 < - -. Thatis, since -4 < ­
then x (-4) < x (-q). 

Similarly, since -4 < 6, then ; x (-4) < . x 6. This all 
suggests the multiplication property of order: 

If a, b and c are rational numbers and if a < b and c is positive, 
then a x c < b x c 
A proof of this property will be given in the next section. 

EXERCISE 35-8A 
1. 	Complete the following statements using one of the symbols 

> or <: 
a. 	If9 > 7, then 9 x 3 D 7 x 3 
b. 	If -5 < -3, then -5 x 3 R -3 x 3 
c. 	 Ifa > b and c > 0, tnen a x c R b x c 
d. 	if7 > -9, then 7 x 4 R -9 x 4 
e. 	 If3 >0, then3 x6 -O0 x 6 
f. 	 Ifa <bandc >0, thena x c Fb x c 
g. 	If -5 <5, then -5 x 4 R 5 x 4 
h. 	If0 <8, then 0 x 2 R 8 x 2 

35-9 Proof of the multiplication property of order 

The property states that if a, b and c are rational numbers 
and ifa <b and 0 <c, then axc <b xc. Ifa <b, then 
a = b + q where q < 0. Multiplying by c we get 

a x c =(b + q) x c 
= (b x c) + (q x c) 
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Now q x c is a negative rational number, because it is the pro­
duct of a negative nunber and a positive number. Therefore 
a 	x c < b x c. 

EXERCISE 35-9A 
1. 	Prove that ifa > b and c > 0, then a x c > b x c. 
2. Choose any three rational numbers a, b and c with a < b 

and c negative. Find the products d x c and b x c. What is 
the relation between a x c and b x c? 

3. Repeat Question 2 with three different sets of numbers a, b 
and c: (i) choose a and b to be positive and c negative,
(ii) choose b to be positive and a and c negative, (iii) choose 
all three numbers negative. Write down the product a x 	c 
and b x c in each case and state the order relation between 
them. 

4. 	 Can you deduce a new multiplication property of order 
from the answers to Questions 2 and 3? 

Your answers to Questions 2 and 3 will have shown you that 
if a, b and c are rational numbers and if a < b and c < 0, then 
a x c > b x c. 

35-10 Generalized multiplication property of order 
It was established in Chapter 22 for positive fractions that if 

a C Y11 p-<l -and - <­

then 	 a n c p
then X- < ­

b n d q 

This was proved by using the number line. This property is not
 
true for rational numbers if we allow some of the four numbers
 
to 	be negative. However, we do have the following property: 

If a, b, c and d are rationalnumbers, with a < b and c < d, and 
a, b, c and d are positive, then a ."c < b x d. 
We shall give a proof Nhich uses the multiplication property 
of order. 
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If O<a<b and O<c<d 
then axc<b ×c and b xc<b ×d (Why?) 
Hence, a x c <b x d 

EXERCISE 35-10A 
1. Find three sets, each consisting of four positive rational 

numbers a, b, c and d satisfying a < b and c < d. Verify in 
each case that the generalized multiplication property of 
order is satisfied. 

2. 	 Rewrite the generalized multiplication property of order 
given above using a > b and c > d. What is the relation 
between a x c and b x d? 

35-11 Summary of properties of order 

In the properties of order given below the sign > may replace 
the sign < as appropriate. 

1. 	Comparison Propertyof Order 
For any rational numbers a and b, one and only one of the 

following is true: a < b, a = b, a > b. 

2. 	 TransitiveProperty of Order 
For any rational numbers a, b and c, if a < b and b < c, 

then a < c. 

3. 	 Addition Propertyof Order 
For any rational numbers a, b and c, if a < b, then 

a + c < b + C.(NOTE: Cmay be positive, negative or zero.) 

4. 	 Order Propertyof Opposites 
For any rational numbers a and b, if a < b, then -b < -a. 

5. 	 MultiplicationProperty of Order 
a. 	For any rational numbers a, b and c, if a < b and c is 

positive, then a x c < b x c. 
b. 	Ifa < b and c is negative, then a x c > b x c. 
c. 	 For any positive rational numbers a, b, c and d, if a < b 

and c <d,then a x c <b x d. 
BCM 2-M 
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Chapter 36 

REAL NUMBERS 

36-1 Introduction 

We have used the decimal fraction .3as a different way of
writing -,. In the same way, *2 is equal to --.We can write an
equal fraction with smallestthe possible numerator and
denominator. We then mty that the fraction is written in lowest 
terms. In lowest terms, "- = -, so that 2 = 

These are examples of one-place decimal fractions. The same
idea applies if there are two, three or even more decimal places.
Thus, 

•25 2.. - : 
-I(16 -­

•05= . I 

•125 -=-I0.,-­9 2 J 

In each case, we have written the fraction in lowest terms.
If we begin with fractions like -, 7, -and , it is easy to go

in the other direction and express them in decimal form. For 
these examples, we write 

1 2
 
5 10
 

1 25 x 1 25 
4- 25x 4-100-2 

7 5x7 35 
20 5 x 20 -00 

3 =125 x 3 375 
81 25 x 8 -0 3 7 

36-2 Recurring decimal fractions 
Can we find a finite decimal form for any given fraction? It

is not hard to see that the answer is "No". 
170 



171 Real Numbers 

If a fraction a is to be written in finite decimal form, it must 

be possible to "fatten it up" so that b becomes 10 or 100 or 1,000 
or some higher power of 10. 

Except for 1, the only numbers which divide into 10 are 10, 
5 and 2. Any fraction which is equal to a one-place decimal 
must, therefore, have u denominator which is 10 or 5 or 2. In 
fact: 

*4= 2- = 3 =-A­

102 5 
•7 = -18 = -9 = -a-

Any fraction which is equal to a two-place decimal fraction 
must have a denominator which divides into 100. What are 
the possibilities? The only ones are 100, 50, 25, 20, 10, 5, 4 and 
2. What are the possible denominators for fractions that are 
equal to a three-place decimal fraction? 

Suppose that we have a fraction whose denominator does not 
divide into any power of 10. The fraction I is the simplest 
example. Clearly 3 does not divide into 10 or 100 or 1,000 or 
any other power of 10. What can we do? 

If we tly to write Aas a one-place decimal fraction, we find 
that .3 is too small and .4 too large, because 3(.3) = .9 and 
3(.4) = 1.2. We say that 3 is between .3 and .4 and write 

3 < -< .4 

If we try to write -, as a two-place decimal fraction, we 
soon find that .33 is too small and "34 is too large. In fact, 
3(.33) = .99 and 3(.34) = 1.02. So 

•33 < I < .34 

In the same way, it turns out that 
•333 < A < .334 

•3333 < A < .3334 

and so on forever. The best that we can do is to write 

A = '333 ... 

where the three dots are meant to show that the 3's go on 
without end. We call the right side of the equal sign a recurring 
decimalfraction. 
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2Let us take another example, -- . Since II does not divide

into any power of 10, we know that - cannot be written as a
decimal fraction. We expect to find that it can be written as a 
recurring decimal fraction. In fact, 

q =*181818... 

where the digits 1 and 8 recur endlessly.
Let us verify this by doing a long division. 

•1818... 

112 1 
11 V-6-1 0o0o 

90 

88 

11 

9 

We actually went further with the work than we needed to.
When we got the remainder 2 after two divisions (shown by a
circle), we were in the same situation as we were when we
started. So we know that the later results of division will repeat
the earlier ones. 

Let us look at one more example. What decimal fraction is -
equal to? Does 6 divide into any power of 10? Since it does not, 
we must get a recurring decimal fraction. Let us see what it is: 

•83...
 

48 

18 

Do you see that because the remainders in the two circles are
the same, the 3's in the answer must go on endlessly? We write 

- .8333... 
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EXERCISE 36-2A 

1. 	Find recurring decimal fractions for each of the following 
fractions: a. 	. - b. j - c. - d. "-k­
e. 2 g. * 

36-3 	 Changing unending decimals to common
 
fractions
 

You see from our work that some fractions are equal tc 
decimal fractions which end and others to decimal fractions 
which 	do not end. How did you learn to tell without dividing 
out whether a fraction is of the first kind or the second? 

We discovered something else. When the decimal is unending, 
the digits repeat, at least after a while. For example, 

2-f 	 = .18!8 ... (repeating 18) 
= 833 . . . (repeating 3 after passing the 8) 

It 	is fairly easy to see why the digits must repeat. When 
dividing by 6, for example, there can be no more than 5 re­
mainders different from 0. (What would happen if the re­
mainder were 0?) Then if we keep on dividing, we must 
eventually get a remainder that appeared before, and then the 
digits in the answer start repeating.

Can we go the other way? That is, if we hav an unending 
decimal fraction that repeats, can we find the fraction that it is 
equal to? Let us see. 

What is a common fraction which is equal to 3939... ? 
Let us write 

] = .3939... 
Notice that two digits repeat. Now if we multiply by 100, we 
must move the decimal point two places to the right. This gives 

100 x 0 = 100 x (.3939 ... ) = 39.3939 ...
 
The unending digits on the right of the decimal point are
 
exactly the same in both cases. (Remember that the 39's go on
 
forever!) So if we subtract these digits from both sides, we get 

99 x 0 = 39 (exactly) 
and therefore the fraction which goes in the box is 

A l 13 
99 33 
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You can easily verify that 13 - 33 = "3939 
Let us take another example. We would like to know a 

common fraction for "027027 ... We write 

D] = "027027 ... 
Multiply by 1000 (why not 100?). We get 

1000 x F- = 27'027027... 
999 x r] = 27

l = - 7 = - I 

where the fraction on the right has been written in lowest 
terms. Again, you should check that -027027... 

As a final example, let us take an unending decimal for which 
the digits do not repeat from the beginning. 

If E] .1333 ... (repeating 3's), what fraction goes into
the box? We multirl, by 10. Then 

10 x _] = 1.333 ... 
and subtracting 

9 x F-1 = []j 1.2 
=A-2, = -2 

10 90 12 
EXERCISE 36-3A 

1. Write each of the following unending decimal fractions as a 
common fraction: 
a. "222 ... b. "2323 ... 
c. -234234... d. 1111... 
e. 0101 ... f. .001001... 
g. 1666... h. 11010101 ...
 

2. Show how you can use the results of parts d, e and f of 
Question 1 to find the answers to parts a, b and Cwithout 
working with the box L-. 

36-4 Irrationalnumbers and real numbers 
We have learned that common firactions can be written as 

decimal fractions which either end or repeat. We also learned 
that any decimal fraction which ends or repeats is another 
name for a common fraction. We can show this in a diagram: 

common I__ decimal fractions whichfractions =" endorrepeat 
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Have we left out any possibilities? Could we have a decimal 
fraction that is unending but not repeating? Yes, we could. 

An example is 
.101001000' 

where each time we move along from a 1 we put in an extra 0 
before the next 1. In this example, there is no block of digits 
which repeats. 

Another example is 
.1234567891011 ...
 

where the scheme of writing digits should be clear. Again there 
is no repetition in the unending digits. 

These decimal fractions cannot represent common fractions. 
They must correspond to a new kind of number, which is 
called an IRRATIONAL NUMBER. 

So far we have talked only about positive decimals. For 
every positive decimal, ending or unending, there is an opposite 
written with a minus sign in front of it. Thus, the opposite of 
•101001 . . . is -. 101001 .... The numbers that we represent 
in this way are called negative numbers. When we include 
them and the number 0 we have the following scheme: 

decimal fractions that end 
rational numbers =' or repeat (whether positive, 

negative or 0) 

decimal fractions that do 
irrational numbers not end and do not repeat 

(whether positive or negative) 

If we put the rational numbers and the irrational numbers 
together, we get the numbers which correspond to all decimal 
fractions. These numbers are called REAL NUMBERS. 

L .rationalnumbersreal number's 

rational n tumbers! 

ExERCIsE 36-4A 
Invent some more unending, non-repeating decimal fractions. 



Chapter 37 

A GEOMETRY PROBLEM 

37-1 Introduction 

Let ABCD be a square 2 inches on a side. Suppose that E,
F, G and H are the midpoints of its sides. If E is joined to Gand F to H, ABCD is divided into four squares, all alike, each
1 inch on a side. We therefore see that the area of ABCD is 
4 square inches. 

We notice that 4 = 2 X 2. In general, the number of square
inches in a square will be the number of inches on its side
multiplied by itself. Show that this is true for squares having
3, 4 and 5 inches 1br their sides. 

D 'G C D G C 

H F HO 

A E B A E B 

Let us now join E, F, 0 and H1. Each of the one-inch squares
is cut into two congruent triangles. We see that EFGH is a 
square consisting of four of these triangles. The area of EFGH 
is therefore 2 square inches. 

How long is a side of EFGH, for example E-F? If S is the 
length of side EF-, it must be true that S times S is 2.

Could S be a whole .iumber? Certainly not, because
1 x 1 = 1 is too small and 2 x 2 = 4 is too large. Is S equal
to some fraction? If so, the fraction must be between I and 2. 
Remember that we want 

S x S=2 
176 
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A good guess is 
s =-( =~) 

Now I x I
 
Because 2 = ,we see that -- is a little too small.
 

Can we do better? Let us divide 2 by -. We get
 

2 +- =--
From the meaning of division, this means that 

7 x 0 =2 
Remember that .- was too small. 
How about -7-s-?Of course 

-7-o. X I - - = Inn 
- 7 -7 49 

We want S x S = 2 =P
 

so ­1_9is too large. Could Ave have seen this without multiplying
-by -71V-0 ? Clearly we could. We know that 

7- x -I- =2 
If :E is too small, -IQmust be too large. 

What do we know? We know that S is between -- and 7" 

How can we do better? We can average these fractions; that is 
aJd them and divide by 2. In this way we get a new fraction, 
which is between -- and _v-. 

7 10 4-9 + 50
5 -7 _ 35 9 

709This fraction is 5- 2 2 --70 

Let us see if S could be 990. 

99 X 9 ,~
 

W\e want S x S = 2 = o 
We haven't quite succeeded, but we are close. Aok is too large
but not much too large. Suppose that we divide 2 by - Will 
the result be too large or too small? Can you say without doing 
the arithmetic? 

Let us do the arithmetic anyway. 
2 +t" __= ~ 
14 740 = 1V0 

Ift0V3 had been the required value of S, we should have got
-Lk- when we multiplied o by itself. We got a number a 
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trifle smaller. So now we know that S must be between -1Q 
and R 

We could average these two results. You should do this andfind out whether we have finally succeeded in finding a frac­
tional value for S. You will discover that the answer is "No".

A new question comes to mind. Suppose that we kept on in 
this way, would we ecer get an absolutely correct answer? It is 
very surprising that the answcr is "No". We shall show this in 
the next section. 

Meanwhile it will be interesting to change our fractions 
decimals. In this way, we 

to 
can see how close we are getting to 

the desired result. 
First we found S between 

-
.7.= 1.4 and j-0 = = 1428571 

Next we located S between
 
= 1414141 ... and A- = 1.4142857
 

What better result were you able to find?
 

EXERCISE 37-1A 
Suppose that S is the side of a square with an area 3 square
inches so that S x S = 3. Use the scheme of this section to get

better fractions which approximate S.
 

37-2 S x S = 2 has no solution in common fractions 

We have tried some fractions a to see if we could find the 
side of a square with area 2 square 

b 
inches. We did not succeed.

Were we unlucky? Or were we lacking in patience? The 
answer to both questions is "No". There is no fraction - which 

b
makes 

aS a 2! 

This is one of the most famous discoveries in mathematics. The
discovery was made by a Greek, a follower of Pythagoras, who
lived approximately 600 beforeyears Christ. It produced acrisis in the history of mathematics. Later we shall explain why
this discovery was true. 
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But first let us prove this very surprising result. Suppose that 
a a athere is a fraction - for which - x - = 9, so that
b b b ' 

S xS==2 

with S -_a 

Now ifS x S = 2
 
2
 

a a aThis means that ifS k then b =2 _ a 

a 2b or 

Wc must show that this is impossible 72o matter how we choose 
the whole numbers a and b. 

We may surely assume that the fraction which solves our 
Froblem (if there is one) is written in lowest terms, because if 
it were not in lowest terms we could replace it by a fraction 
that was. For example, if3A- were an answer (it isn't, of course), 
then -. would have to be an answer also. 

a 2b a 2bNow we suppose that - with a in the lowest terms. ­
b a ba 

a
is supposed to be equal to b. When are two fractions equal? 

Take a definite fraction in lowest terms, say .,0. What frac­
tions are equal to -Y-? The possibilities are 

10 2 x 10 20 3 x 10 30 
7' 2 x 7 14' 3 x 7 21 

and so on. It is enough to look at the possible denominators. 
They are 7, 14, 21 and so on. 

a 
Now if, is aq), fraction written in lowest terms, the fractions 

which are equal to it must have one of the denominators b, 2b, 

2b a3b, that if- a,3b) 4b and so on.4baaThir means = a must be one of 
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the numbers b, 2b, 3b, 4b and so on; so that a is one of the num­

abers 1, 2, 3, 4 and so on. That is, amust be a whole number. 
But S X S = 2 has no whole-number solution. So no matter 

what fraction a we choose, a x - can 
b~a X b canot be equal to 2. 

EXERCISE 37-2A 

Show that it is not )ossiblc to find a fraction a 
so that 

a a 
b = 3 

37-3 More about the number 1Lu: irrational numbers 
We know how to locate fractions on the number line. For

example, we can easily find points to show }, . kand . Can we
locate the number S, the side of a square of area 2? We can
certainly do this geometrically. We showed at the beginning of
this chapter that S is the length of the diagonal of a squa.re cf
side 1. Let a number line be drawn along the base of the square
with 0 at the left end and 1 at the right end. You can take 0 to 
be the centre of a circle of radius S. The circlc will intersect
the number line at a point P between 1 and 2. So we know on
the picture how to locate the point P which corresponds to the 
number S. 

0 1 P 2 

But we know that S is not a rational number. Of course S is
between .} and -'7-. We can locate both of these numbers by
points on tl. " number line, and P will lie between these points. 

P 
0 1 2 

75 1Q7 



181 

7 

A Geometry Problem 
We can do better. P must lie between the points which show

Ij40 and- P.70""-' 


P 

A~ 

.140 997 
99 70 

These points are much closer together than the previous pair.
The interval between them is shorter. Also _(.Loto the rightis 
of - and AQ to the left of J Q.So our new interval is inside the 
earlier one. 

The important thing to notice is this. If we continue to get 
new fractions by the same scheme, we can locate P within 
intervals as short as we please but we never reach P itself. 
There are points like P on the number line which do not corre­
spond to common fractions. We may call them irrationalpoints 
because they show irrational numbers. 

Let us say this in a different way.
Between 1 and 2 there is a point which divides the interval 

in 2 equal pieces. There are 2 points which separate it into 3 
equal pieces, 4 points that separate it into 5 equal pieces and 
so on. There are 99 points which divide the interval into 100 
equal pieces, 999 points which divide it into 1,000 equal pieces.
But no matter what measuring stick we choose that divides the 
interval from 1 to 2 into a number of equal pieces, we cannot 
Use this measuring stick to measure exactly the number whose 
square is 2. We can say that S and 1 are incommensurable. This 
means that S and 1 have no common measure. This was a dis­
covery that shocked the Greeks when it was first discovered. It 
showed that the number line as we have met it up to now is 
fill of holes. To say it another way, it shows the need of new 
kinds of numbers, which we call irrational numbers. 

Let us talk about these numbers in terms of decimal fractions. 
As we learned, rational numbers correspond to decimal frac­
tions which either end or repeat, while irrational numbers 
correspond to decimal fractions which neither end nor repeat.
We saw an example of a decimal of this second sort, 

•I010010001 ...
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Our number S must be of this non-ending, non-repeating kind. 
We found that S was between 

1.414141 ... and 1.4142857 ... 

We can write 1.4.141 < S < 1.4143. 
We have located S within .0002. Of course with patience wc 

could do still better. 1Ve know that S must be represented by 
an unending decimal that never endlessly repeats.

Can these unending, non-repeating decimals be treated like 
the rational numbers? Can they be ordered? Can they be 
added, subtracted, multiplied and divided? If so, do addition,
subtraction, multiplication and division have the properties
with which we are fhiniliar? The answers to all of these ques­
tioils are "Yes". 

It would take a long discussion to prove in detail that this is 
true. For our purposes it is sufficient to give some idea of how 
it could be done. 

Which of the decimal fractions .13275 . . . or .13268 . . . 
represents the larger number? The decimal firactions agree in 
the first three digits 1, 3 and 2. They differ in the next decimal 
place. Since 7 is greater than 6, the first number is greater than 
the second. Do you see that .13275 . . . locates a point on the 
number line to the right of that for .13268 . . . ? Is it also clear 
to you that if a and b are any' real numbers, there are just three 
possibilities: a = b, a < b and a > b? Could you explain why 
this must be true? 

Do you think that a + b = b + a is true for all real numbers 
a and b? Suppose not. Then for some a and b, it must be true 
that 

a-+b >b+a orelse a +b <b +a 
Each of these possibilities will now be shown to lead to a 
contradiction. 

If a + b > b + a is true, then a + b = (b - a) + p where 
p is a positive number. Now p itself must be representable as a 
decimal fraction, maybe a small one, say .0000012 . . . Let us 
imagine that a and b are written as unending decimal fractions. 
Let us break off each of them after it decimal places. Suppose
that we add the corresponding rational numbers. The result 
does not depend on the order in which we add. Why? It is 
because the commutative property holds for rational numbers. 
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Now look at the equation 

a -" b - (b -, a) -p 
The first n decimal places ofa + b agree with the first n decimal 
places of b + a. Then the first n decimal places ofp must be 0. 
Since this must be true no matter how large n is-that is, for as 
many decimal places as we like-all of the decimal places ofp 
must be 0. This contradicts the assumption that p is positive. 
So it is impossible that a + b > b - a be true. 

In the same way, it can be seen that it is impossible for 
a :-b < b -i- a to be true. Consequently we know that 
a -b =b + a is true. 

In a quite similar manner we could show that all the pro­
perties of addition and multiplication fbr rational numbers 
hold ibr real numbers as well. Also, the order properties of the 
rational numbers are properties of the real numbers. 

n CM 2-N 
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THE VIEW FROM THE TOP 

38-1 Looking backward 
We have come a long way from our starting point. We began

with numbers which could be used to count a set of objects like 
a herd of cattle. These numbers were known to early man. They 
appear in the oldest records. Since then man has travelled 'I
long, long road. The idea of number has grown and grown. It
is one of the most important ideas that mankind has ever had 
and one of the most successful. In this book we have tried toshow how new kinds of numbers have been invented. We 
learned about the importance of zero, about the uses of, fiac­
tions so that numbers could be used not merely to count but to 
measure. We learned about negative numbers, wlich help us 
to include not merely the idea of how many or how much but
also tile idea of direction, right or left, up or (own. We have
just extended the idea of' number once again to include un­
ending decimals which do 'lot repeat. We have seen that if we 
want to measure the diagonal of a square of side 1 we need a
number of this newv kind. Here we have reached the end of our 
journey. (If you go further in mathematics, yoU vill find that
this is not really the end but that there are still new kinds of
numbers which man has invented later.) The time has come to
look back over the road which we have followed. 

We have travelled slowly and patiently. Tile road has some­
times been dusty and the journey may have been tiring. But 
we have come to the top of a mountain. We should stop and 
enjoy the view. 

At each stage of our journey we have learned ,o arrange the
numbers in order of lesser or greater. And we hr e learned to
add them, to subtract them, to multiply them a.c. divide them.
Let us forget for the moment just how we did '!,is at each stage.
These are details-important details but still details. Let us ask
ourselves what has been accomplished by bringing in new kinds
of numbers and learning to work with them. Man has invented 

184 
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zero, the fractions, the negative numbers, and the irrational 
numbers. What for? 

At each stage, mal has found himself stopped by a difficulty.
Hc wanted to be able to do something which he could not do 
with the numbers that he already had. There was a roadblock 
which stood in the way of going ahead. When old ideas fail or 
do not help, we seek to invent something new. "Necessity is 
the mother of invention". 

For example, we cannot divide 4 by 5 if we have only count­
ing numbers to work with. After fractions were invented, we 
could divide 4 by 5. We cannot subtract 5 from 3 if we have only
counting numbers to work with. Negative numbers allow us to 
do so. After the new kinds of nunbers have been invented, we 
have more freedom. We can remove restrictions. 

But a very remarkable thing happens. It could be true that 
the new numbers bdhave in quite a different way from the old 
ones. If this were true we should always be having to remember 
what kinds of numbers we were working with, so that we could 
know what properties of addition, subtraction, multiplication
and division to apply. By good luck it t,'"ns out that the pro­
perties are the same for counting numbers, for integers, for
rational numbers or for real numbers. W%1edo not have to keep

learning new principles. This makes things much easier.
 

At this point it vill be useful to reread the introduction, in 
particular the latter part about the patterns which it was hoped
would be discovered. It will be remembered that we thought
of the whole numbers as belonging to a club with certain rules. 
The new kinds of numbers could be admitted to this club 
because they were able to obey the rules. 

38-2 The "club rules" for addition and multiplication 

What are the club rules that all of our members are required 
to obey? First there are the properties of addition and multi­
plication. These properties were summarized very brieaiy at the 
end of Chapter 13, where a, b and c stood for any whoL numbers. 
These same properties appeared in Chapter 34 for rational 
numbers. Now we slall use a, b and c to stand for any numbers 
at all, that is, for any realnumbers whether rational or irrational. 
Remember that set numbers allthe of real includes the 
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numbers that we have talked about. Here then are the club 
rules. First are three for addition: 

The Commutative Property of Addition (CA) 
a+b.-b+a 

The Associative Propertyof Addition (AA) 
a + (b + c) = (a +b) + c 

The Addition Property of Zero (AO) 
a+O=a 

Then there are three corresponding rules for multiplication: 

The Commutative Property of Muitiplicatiun (CM)
 
ax b =b Xa
 

The Associative Property of Multiplication (AM)
 
a x (b x c) = (a x b) x c
 

The Multiplication Property of One (Ml)
 
a xl =a
 

Notice that these three rules can be found from those for addi­
tion simply by changing + to x and 0 to 1. Can you see that I 
behaves as a factor the same way that 0 does as an addend? 

There is another rule that connects multiplication and 
addition: 

The Distributive Property (D) 
a x (b +-c) = (a x b) -- (a xc) 

Finally, we had 

The MultiplicationProperty of Zero (MO)
 
a x0=0
 

In all, we have eight properties which we can think of as 
club rules for numbers. 

Let us look at these rules as requirements that any proposed 
new members of the number club must obey. For example, 
suppose we propose the negative integers for membership in the 
club consisting of 0, 1, 2, 3..... How must -I behave if we 
are going to admit it? 

What must (-I) x 1 be equal to? Rule Ml says that 
a xl =a 
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if -1 is to be a good club member, it must therefore be true 
that 

(-1) x 1 = -1 
That is, we must be able to use -1 as a particular value of a. 

What must 1 x (-1) be equal to? CM says that any mem­
bers a and b must obey the rule 

a xb =b xa 
Then 1 x (-1) must be equal to 

(-1) x 1 
which we know is -1. So we must require that 

1 x (-I) = -1 
A harder question is to find what (-1) x (-1) must be. 

When we introduced -1, we thought of it as the opposite of 1, 
so that 

1 + (-I) = 0 
So 1 + (--1) and 0 are two names for the same number. Then 

(-) x [1 + (-1)] = (-1) x 0 
Rule D says that the left side is 

[U-1) x 1] + [U-1) x(-] 

and rule MO says that the right side (-1) x 0 is 0. So we must 
require that 

[U-1) x 1] + [(-1) × (-I)] = 0 

But we know that (-1) x 1 = -1, so it must be true that 
-1 + [(-1) x (-1)] = 0 

Then (-1) x (-1) must be the opposite of -1, that is 1. So 
finally we have the requirement 

(-1) x (-1) = I 
if -1 is to be allowed in the club. 

We know of course that -1 does indeed pass all these tests. 
In fact, 

I x (-1) = ­
(-1) x 1 =-1 

and (-]) x (-1) = 1 
as we saw earlier in the book. 
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EXERCISE 38-2A 
1. Show from the rules that 

(-3) x a = -(3 x a)

must be true. (IIINT: Write [(-3) + 3] 
 x a in two ways.)

7 
2. Show that if we follow the rules, 	 7 must be equal to 

-3)
(-7) (nI T: " 

3-. (I-N-: If -3) 7 = (-3) x ] by definition 

of division. Now use Question 1 and conclude that 
3 x nI -7.) 

3. 	 Show from AO that
 
0 + 0 = 0
 

38-3 Simplifying the rules 
We have listed some rules 	that we require numbers to obey

to become members of the number club. Can we perhaps
simplify these rules? For example, can we make a shorter list
that would really say the same thing? The answer is "Ycs". Infact, we have already shortened the list from the one that was
given in Chapter 13. 

There we included 0 -a 	 = a, 1 x a = a and 0 x a = 0.Can you see why it is not necessary to include them in ourpresent list? Can you see for example that 0 + a = a follows
ftom a + 0 = a by using CA? 

We shall now show that we can also leave out MO,which 
reads 

a x0 =0 
We show that this rule must hold if the other seven rules hold. 

According to rule D 

a x (b + c) = (a x b) + (a x c) 
If b = 0 and c = 0, we have 

a X (0 -P0) =(a x 0) -P (a x 0) 
0 0, 

a x 0 = (a x 0) + (a x 0) 

But we know that 0 -,- = so we require that 
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To simplify the writing, let us call a x 0 by the new name b. 
Then we must have 

b=b+b
 
We hope to show that b must be 0.
 

Rule AA tells us that
 
(-, -- b) + b = -b + (b x b) 

Now -b + b = 0, since -b and b are opposites. Also 
b -+ b = b. Tlierefore, we have 

0 + b = -b +b 
We know that 0 -- b b and that -b + b = 0. So finally
 

b=0
 
That is, a x 0 =0
 
vhich is rule MO. 

So in applying tests for new members, it is not necessary to 
require MO if we have already satisfied ourselves about the 
other rules. 

38-4 The rules of order 
We first met also some properties of order for the counting 

numbers: 

01 	 if a and b are counting numbers, there are only three 
possibilities: 

a=b a<b a>b 

Again, if a, b and c are any counting numbers: 

02 ifa <bandb <c,thena <c 
03 ifa < b, then a + c < b + c, and 
04 ifa <b, thena x c <b x c 
These same rules now apply if a, b and c are any real numbers, 
except that in 04 we must require that c > 0 (which is auto­
matically true when c is a counting number). Again, the real 
numbers are good club members. 

We have learned that 04 can be supplemented by: 

05 	 ifa <bandc <0, thcna xc>b x c 

There is of course no occasion for this rule with counting
numbers, because a counting number is never less than 0. 
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These rules too can be simplified. If we say that 

a<b 
means that b - a -+p where p is a positive number-that is, 
p > 0-we can replace all the rules of order by a new list. 

New Order Rules 
0,1 Ifa >0andb >0, thena -b >0 
0'2 Ifa >0 and b >0, then a < b >0 
0'3 For any real number a, there are exactly three possibilities: 

a-=0, a >0, a <0 
For example, let us show that 03 follows from our new rules. 

03 says that if a < b, then a " c < b - c. If a < b, we can 
write 

b =a jp (p >0) 
Then b -c (a -p) - c
 

= a + (p c) (Why?)
 
= a + (c p) (Why?)
 
= (a +c) -p (Why?)
 

But then finally a c < b - c.
 

EXERCISE 38-4A 
1. Prove 04 from 0'l, 0'2 and 0'3. 
2. Prove 02 from 0'l, 0'2 and 0'3. 
3. Prove 01 from 0'1, 0'2 and 0'3. 

38-5 Summing up 

What we have done in the last two sections is not easy. It is 
harder than the rest of the book. We have given some examples
of the way in which mathematical proofs are constructe 1. The 
elementary teacher will not use proofs like this in lis own 
classes. But the teacher should have an idea of what lies ahead 
for some of his pupils---those who go on in mathematics. 

When we continue the study of mathematics we find that 
more and more simplifications occur. The facts that we know 
about nunl)ers are connected with each other in surprising 
ways. The simplifications make mathematics more beautiful 
and more powerful. But we have to pay a price. The price is 
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that we have to be prepared to think deeply about our ex­
perience. We must not be satisfied with knowing how to get 
answers in routine ways. We must be willing to ask ourselves 
"Wiy?" again and again. 

The knowledge that is power is the fruit of our unceasing 
effort to understand more clearly, more fully and more deeply. 
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Chapter 39 

APPROXIMATIONS AS RESULTS 
OF COUNTING 

39-1 Introduction 
Once our pupils held a party and we tried to find out how 

many attended the party. This was very difficult because when 
we were counting, several pupils had already left the party,
others came after we counted, while many of the people present 
were movin~g around. After counting, we got the result 13 
pupils. Do you think that this was the exact number of pupils
who attended the party? Is counting really always easy and 
simple? 

if you are asked to measure the length of your classroom with 
a foot ruler and you get the answer 30 feet, can you be sure that 
this is the exact length? Cr could it be 29 fect and some inches, 
or even 30 feet and some inches? Does measuring give the 
exact number? 

Suppose a tailor needs 3 yards of fabric to make a dress. How 
many dresses can he make from a piece of 40 yards of fabric? 
Dividing 40 by 3, you obtain 13-1. It is clear that your answer 
would not be 131 dresses. You will say that the tailor can make 
13 dresses. Such rounding off is often used in everyday life. 

These three examples have something in common. What is 
it? We are now going to consider in detail the use of numbers 
in instances such as given above. We shall discuss what are 
commonly called "approximate numbers" or "approxima­
tions". 

39-2 Approximations in counting 
We have all learned how to count and how to make use of the 

set of counting numbers. We also know the set of whole num­
bers, which is the set of counting numbers and zero. 

Suppose you ask one of your pupils to count the number of 
pupils in your class or the shillings in his pocket. No doubt his 
answer will be correct, and he will give you the exact number. 

194 
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He will count the pupils or shillings one by one or in groups.
This will be easy if the number of pupils is rather small. If you
asked him to count the number of windows in a very big 
building, then he can get the exact number if he counts care­
fully. You could be quite sure about the answer if some other 
pupils counted the windows and got the same number. But 
counting the number of members in a set becomes harder as 
the set becomes larger. Even so, it is possible in many instances 
to obtain accurate counts of large sets. Sometimes it is quite 
necessary to obtain accurate counts. For example, banka 
teller must count the exact amount of money at the end of the 
clay. There are, howCver, instances when counting the number 
of members in a set is extremely hard or even impossible.

Would it be easy or even possible for the government to 
count the exact number of people in your country? The num­
ber of people in your country does not stay the same even for 
one day. For many purposes, however, the government has to 
know how many people live in various regions and in the whole 
country. Of course, it is practically impossible to count all of' 
these people. Besides, does the government really need to know 
the exact number of pcople? 

There is another example in which it is very difficult to 
count the number of members in a certain set. Suppose you ask 
a pupil to find the number of trees in a certain park or piece
of land. Iflhe counts and gives the answer 563, do you think his 
answer is exact? It probably is not exact fbir the following 
reasons. First, it was rather inconvenient and hard to count 
such a large number of'trees scattered about without recounting 
some and without missing others. Next, it was probably difficult 
For the pupil to decide whether the dead trees or some larger
bushes should be counted or not. In other words, it was difficult 
for him to determine exactly what things were members of the 
set of' trees. If some other pupils count the number of trees in 
the park, they will probably obtain different answers, perhaps
559, or 550 or 571. In fact, it would be interesting to see 
whether the pupil who first counted would get his original 
answer if he counted again. In situations like these we are 
usually quite satisfied with approximate, rather than precise,
results. The numbers in the statements below are certainly not 
exact. We will call them approximate numbers. 
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The population of Uganda is 6,780,000. 
There were two thousand people present at the lecture. 
Our college library contains 6,700 books. 
Ali has 300 chickens at home. 

EXERCISE 39-2A 

1. Ask your pupils to try to count how many people are in your
school in one clay. What makes it hard to obtain an exact
number? Do you think that the number they count would 
change from time to time during the day? Suppose instead 
you asked them to count how many different people in all 
were in your school on a certain day. Would they still have 
difficulties? 

2. Ask your pupils to count some of the sets in the examples 
we have given. 

3. Find other situations you can use with your pupils to 
show that the results of counting are not always exact. 

39-3 Averzges 

By using many examples, you can convince your pupils that 
we can often obtain only approximate numbers in counting
certain large sets. Of course, you will want them to obtain the 
most accurate approximations that they can. We will now see 
how to make sure that the approximate answers are rather 
accurate. 

If four pupils tried to find out how many chickens Ali has at 
home, each pupil would probably get a different result by
counting. Why is it so? Suppose the first pupil counts 295, the 
second 305, the third 304 and the fourth 297. Which answer 
do you think would be the best? You might think that a good 
answer would be one betw.-en 295 and 305. In order to find a 
good answer between 295 and 305 for the number of chickens, 
we can proceed as follows: we find what we call the arithmetic 
mean or average of all results of counting. We first find the sum 
of all the results. Then we divide the sum by the number of 
terns in the sum. The quotient obtained is called the arithmetic 
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mean or average of the numbers that we started with. For 
example, the average of the numbers 17 and 25 is 

(17 + 25) +2 = 21 
Going back to Ali's chickens, the sum of the counting results 

is 
295 -1 305 + 304 + 297 = 1,201 

After dividing 1,201 by 4 (the number of counts), we get the 
average 300.25. Taking into account the objects we are dealing
with, we may say 300 chickens is the final result. Remember 
that this result is only approximate. We do not claim that it is pre­
cise, but it is certainly more precise and reliable than any one 
of the four individual counts. Finding the average is a good way
of obtaining an approximate answer when repeated counting 
gives different numbers as results. 

EXERCISE 39-3A 
1. Find the average (arithmetic mean) of each of the following 

sets of numbers. If the quotient is an unending decimal, 
write the answer to one decimal place and then write three 
dots, . . . , to show that the answer is unending. 
a. 18, 22, 23 b. 22, 23, 26, 29 
c. 101, 102, 105, 108 d. 248, 251,252, 267 
e. 61, 63, 64 f. 248, 251, 257, 267 

2. Using fractions, write the averages that were decimals in 
Question 1. 

3. Make up examples to use with your class of situations in 
which you would want to find averages. 

39-4 Deviation 

We have said that the average of several counts of a large set 
can be taken as a good answer for the number of members in 
the set. However, this number may look somewhat artificial to 
your pupils, and they may raise questions such as: How does 
this number correspond to the reality? How reliable is it as a 
solution to our problem? 

Let us use the following example to try to see how to answer 
these questions. Suppose you ask your class to determine the 
number of grains of rice in one ounce of rice. Let five pupils 
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weigh five separate heaps of one ounce of rice each, and count 
the number of grains in each heap. Suppose they got the 
following numbers: 

308, 332, 328, 342, 307 
The average of these numbers is 1,617 5 = 323.4. The 

digit "3' for the hundreds appears in e:ach of the five counts,
and therefore wewemay conclude that we can rely on the number 
of hundtcds. Thus,we say that the digit 3 is reliable. The digit
"2' for the tens in the average isquestionable, because in the 
five countings we got various digits in the tens place, namely 

0, 3, 2, 4, 0 
The digit "3' in the ones place in the average is clearly not 
reliable at all and, thus, worthess. Therefore, that digit as well 
as the digit in the tenths place (') ought to be rejected in the 
final result. 

Since the right-hand two digits (3.4.) in the average are
 
worthless, the answer 320 would be just as good an 	answer. 
Therefore, we will say that the number of grains of rice in a 
heap of one ounce is approximately 320. We can be quite sure 
about the first digit of this number, which indicates the hun­
dlreds of' grains. In the second digit (2), which expresses the 
number of' tens, there may be a small inaccuracy. About the 
remaining digits, we just cannot say anything. 

We may smamarize our procedure as follows: 

1. 	Find the average. 
2. 	 Compare the average with each separate count. 
3. 	The digits which are the same in every count are reliable 

and are to be kept in the final result. 
4. 	 Take the next digit in the average even though it is question­

able. 
5. 	 Replace all remaining digits by zeros, since they are worth­

less. (More definite instructions about rerDlacing rejected
digits by zeros will be given in Chapter 4.0.) 

ExERCIs 39-4A 
1. 	Suppose five pupils in a class counted the number of books 

in the school library. The results of their five counts were 

275, 274, 278, 279, 271 
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Find the average of the five counts. 

2. 	 Which digits in the average are reliable, which are question­
able and which are worthless? 

3. 	What would you say is the final number of books? 

\Ve have used the words reliable, questionable and worthless. 
You may feel that they have not been explained sufficiently; 
perhaps there are still questions in your mind about the pro­
cedure. Let us now discuss more carefully how we can tell 
whether a given digit is reliable enough to keep. 
We have seen that the numbers obtained in the separate 

counts of' grains of rice are different: 308, 332, 328, 342, 307. 
Each oi" these numbers is different also from the calculated 
average 323.4. Suppose we find now how much each count 
differs from the average. \Ve will call these differences tile 
deviationsfiom the average. In our example of rice, they are: 

323.4 - 308 15.4 
332 - 323- = 86 
328 - 323.4 = 4.6 
342 - 3234 = 18.6 
323.4 - 307 = 16.4 

(NOTE: To find the deviation firom tihe average we subtract the 
smaller number from the larger )

Now we find the average ofthcse deviations by adding them 
and dividing their sum by 5. 636 --5 = 12.72. This quotient, 
12.72, is called the average (eviation. 

In our exam!ple the left-most digit (1) in the average devia­
tion 12.72 is in the tens place. Therefbre, the digit in the tens 
place (2) in the average 323.4 we will call questionable. \V(, 
keep the digit "2' for tens in the average 323.4 as the first 
questionable digit. We replace all the digits to the right of' the 
tens place by zeros. As the final result, we get 320. In order to 
avoid misunderstandings, it is sometimes convenient to under­
line the "2' as the questionable digit in the final result 
320. 

This method can be used in any problem, not keeping any 
digits beyond the left-most place in the average deviation. 

110M -0 



200 Approximations 

We can set out the whole problem as follows: 

One ounce each Numiber ofgrains Deviationfrom the average 
First counting 308 15.4 
Second counting 332 8.6 
Third counting 328 4.6 
Fourth counting 342 18.6 
Fifth counting 307 16.4 

Sum 1,617 Average 63.--6 
Average 323.4 12.72deviation 

The number of grains in one ounce is approximately 320. 

EXERCISE 39-4B 
1. Indicate whether the number appearing in each of the 

following statements is exact, or approximate: 
a. 	According to the class registers, the school has 387 pupils.
b. 	The town has 14,700 inhabitants. 
c. 	John received 125 shillings for the work done. 
d. 	During the month, Ali worked 6 days overtime. 
e. 	 The train had been on its way for 31 days.
f. 	 The sum of the ages of father, mother and son is 112 

years. 
g. 	The store sold 463 pairs of shoes in a week. 
h. 	6,200 people visited the museum in a month. 
i. 	 The theatre sold 527 tickets yesterday.
j. 	 The dairy farm produces 430 quarts of milk a day.
k. 	The machine weighs 1,325 pounds. 
1. 	The room is 12 yards, 5 inches long. 

m. The flight lasted 1 hour and 17 minutes. 
2. 	 You have probably noticed that the average is always be­

tween the smallest and the largest of the numbers that you
start with. Explain how you might convince a class that this 
is always so. 

3. 	 On five different walks, a pupil counted the number of steps
he made in 100 metres, and obtained the following numbers: 

132, 150, 138, 147, 143
 
What is his average number of steps in 100 metres?
 

4. 	 Suppose you count the number of people watching a foot­
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ball match. You count six times and get a different result 
each time. Your counts were 

574, 562, 573, 567, 580, 571 
a. 	Why do you think you got different results? 
b. 	Find the average of your six counts. Also find the devia­

tions from the average and the average deviation. Indi­
cate in the average of your counts the reliable, question­
able and worthless digits. 

c. 	What answer will you finally give for the number of 
people watching the football match? 

5. 	Make up more problems of this type for your pupils to work 
out. 
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APPROXIMATIONS IN MEASURING 

40-1 Approximate measurements 
You saw in the previous chapter that the results of counting

the number of members in sets are sometimes exact but often
they are only approximate numbers. Let us now consider what 
happens when we measure lengths and weights of objects or 
periods of time. 

What do you think will be the standard unit for measuring
lengths of main roads and railways? If a chart indicates that
the distance from Dar es Salaam to Nairobi is 498 miles, does
it mean that this is an exact number or perhaps that it may
be 498.5 or even 497.5 miles? When measuring such great dis­
tances, we usually disregard a difference amounting to less than 
a mile in the final results. This means that for our purpose we 
are quite satisfied if we find the approximate number of miles,
with a precision to one mile. Parts of a mile are in practice 
neglected.

However, when measuring material for dresses or curtains, 
we do realize that a difference of even one inch or half an inch
is important and has to be taken into account. In such cases,
tenths of an inch only can be neglected.

What would you as a teacher say if a pupil was told to drawin his notebook a line segment 2"3 inches long, and his seg­
ment was only 2'1 inches long? Would you say that the pupil
has done it correctly, because a few tenths of an inch do not
matter? In such cases it does matter, because you required
him to be precise to the nearest tenth of an inch-the pupil'ssegment 2.1 inches long is n-,t correct. There are even in­
stances where more precision is important. For example, those
who design precision instruments, Such as wrist watches, re­
quire precision to lengths so small that we cannot observe them 
with our eyes.

From the several examples above, the following conclusion 
i3 easily reached: when we consider measuring lengths in 

202 
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practical life, we see that in each case there is some desired unit 
of length used, while smaller units are ignored. Measurement of 
length always gives us an approximate number. 

Measurement of time also has different degrees of precision. 
When an adult is asked to give his age, he will do it in terms 
of wholc ycars. A mother expresses the age of her small child 
in terms of years and months, neglecting days. The length 
of a class lesson or of a fbotball match is usually given in 
hours and minutes, ignoring seconds. However, in such sports 
as running or swimming, seconds and even tenths of seconds 
are counted. 

EXERCISE -10-IA 

1. 	In a way similar to our discussion of measuring length and 
time, explain how approximate numbers are obtained when 
weighing various objects. 

2. 	 What unit of weight is usually used in each of the following 
cases? What units can be neglected in each case? 
a. 	A shopkeeper weighing sugar 
b. 	A postman weighing letters 
c. 	A nurse weighing a new-born baby 
d. 	A doctor weighing an adult 

3. 	What is the degree of' precision used in railway and airline 
time-tables? 

We have shown how approximate numbers are obtained 
when we measure quantities-lengths, weights and periods of' 
time-and how in each case the appropriate unit of measure­
ment is chosen according to the need. (I this unit, we will use 
the term "quantity" rather informally to denote things that 
can be measured.) 

On the other hand, it is also very inipurtant to undcrstand 
that we can never get an exact numberfron any of these measurements 
of quantities. Among the essential reasons I'or this impossibility 
are 

(a) 	 the inaccuracy of measuring instruments, and 

(b) the inaccuracy of human senses. 

In 	 some cases, repeated measurements of the same quantity 
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could not give even the same approximate number because 
of 

(c) the changing conditions under which the successive 
measurements are made. 

You should discuss reasons (a) and (',), and give examples. To 
discuss (c), think, for example, of the influence of the tempera­
ture ol the length of an object, o of the evaporation of a liquid 
whose weight is to be fbund. 

Conclusions 
Everr measurement gives only an approximate value of what 

is measured, and it is carried out with a certain definite preci­
sion. When we record the result of mreasuring, we show which 
units 	have been considered and which ignored. 

(REMINDER: The results of measuring are always approxi­
mate numbers. As we have seen in the previous chapter, the 
numbers obtained as results of counting are sometimes exact 
numbers and sometimes approximate numbers.) 

EXERCISE 40-lB 

1. What definite standard unit is used in each of the following,
in order to get reasonable measurements? What units can 
be neglected in each case? 
a. An architect designing a house 
b. A surveyor inapping a city 
c. A shoemaker taking the size for a pair of shoes 

40-2 	 Basic agreement for recording approximate 
numbers 

There is a method of recording the results of counting and 
measuring, showing clearly the precision of these results. This 
method will be applied in the following example. 

Problem 
To measure with a foot ruler, having marks of tenths of an 

inch, the length of the diagonal of a square whose side is 
4 inches. We use the symbol < for "is less than", and the 
symbol ; "is approximately equal to", to write the result as 
follows. 
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4 inches 

4 inches X1 : 

llI I Ii lll l i i i ii I I ji j lIIij 

1 2 3 4 5
 
Ruler
 

1. 5 in. x < 6 in. 
2. x : 6 in. 
3. 	 5'6 in. < x < 5.7 in. 
4. x ; 5.65 in. 

Explanations 
I. 	 x, the length to be found, is between 5 and 6 inches to the 

nearest inch. 
2. 	 Measured to the nearest inch, x appears to be nearer to the 

6-inch mark than to the 5-inch mark. 
3. 	 Measuring to the nearest tenth of an inch, we see from 

the figure that x lies between 5.6 inches and 5.7 inches. 
4. 	 From the figure, we are unable to decide whether x is 

ncarer to 56 inches or 5.7 inch, and so we may conclude 
that x : 5.65 inches, taking the average of 5'6 and 5"7. 

In our final result, we have two reliable digits: namely, 
the digit for ones (5) and the digit for tenths (6). The third 
digit (5) for hundredths is questionable. The final result of our 
measurement does not allow us to say that length x contains 
exactly 5 hundredths of an inch beyond 5.6 inches. 
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(Actually, if we had made a very precise drawing and had 
used a more accurate and precise riler, we might have fotund 
that the length x, with a precision to the nearest thousandth of 
an inch, is equal to 5.657 inchcs. Therefor,, taking a precision 
to one hundredth of an inch, it is correct to write x - 5.66 
inches.) 

Let us consider next an example of measuring and recording 
temjperatutre. What does the recording '"1 : 37' C" mean? 
It says that we measured with a precision to one degree. On 
the other hand, if with a more precise thermometer we record 
"I' - 37.0 C", the "0" indicates that we measured with a 
precision to one tenth of a degree. 

The examples ai)ove of recording approximate numbers are 
based on the following agreement. 

BASIC AGREE, E.NT 

An approximate result should be recorded in such a way that its last 
digit to the right indicates its precriosi. All dgits, except the last, 
ought to be reliable. Only the last digit is questionable and 7na' be 
slightly inaccurate. 

40-3 Repeated measurements 

As ve have mentioned before, it often halppens that when we 
measuxre the same quantity again we get a somewhat different
 
result, even though we use the salme instrument each tilme. This
 
happens firequently in 1Measuring long distances. In such situa­
tions, we ol)tain the lost precise result lby finding the average of
 
all the results of' the repeated measurements. (This we do in
 
the salme way as whet'n dealing with several counts ofi large set.)
 
The av'erage is then rewritteni, preserving all reliable digits and 
only one questiomalble digit. Ill ordcr to kinow whicli digits in the 
average are to be kept, it is usefti I to find the ave'age deviation. 
In the previous chaplter, wc stuid ied how this is dlone. Let us ill­
tustrate the metihod by an example, imieasu rinig length in metres. 

Example 
We are to measure the Ilengtl x of'a building, using a metric 

ruler marked fbir centimetres. The results of six successive 
measurements are as follows. 
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Measuring Result in Deviationfroni 
length x metres average in 

metres 

No. 1 51.63 0.352 
No. 2 52.12 0.1313 
No. 3 52.20 0.218 
No. 4 51.87 0.112 51'9 m.< x < 52.0 m. 
No. 5 51.91 0.072 x , 52.0 m. 
No. 6 52.16 0.178 
Sum 3.189 1-070 

Average 311.89 6 - 51.982 0.178 

The highest ordcr digit of the average deviation is the tenths 
plIce. \Vc thus concludc that the tenths digit in tile number 
51.982 is questionable, and therefore the digits of hundredths 
and of thousandths are to be rejected as worthless. Moreover, 

51.9 < x < 	52.0 

Of these twVo numbers, 52.0 is closer to the average that we 
calculated, so we accept it as the final result: 

x - 52"0 m 

EXERICSE 40-3A 

1.Indicate the reliable, questionable and worthless digits in 
each of the following approximate numbers. Write down 
each of these numbers according to the basic agreement. 
a. 	 25.43 with a precision to the nearest one 
b. 	 2502 with a precision to the nearest hundredth 
c. 	52.03 with a precision to the nearest tenth 

2. 	Five weighings of the same object gave the fbllowing results 
in 	(pounds): 

2.834, 2.832, 2.837, 2.833, 2.835 
a. 	Find the al'"-age weight. 
b. 	Indicate in the average the reliable, questionable and 

worthless digits. 
c. 	Write the final result according to the basic agreement. 

3. 	Four measurements of the same distance have given the 
following results (in yards): 

2,648, 2,656, 2,663, 2,678 
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a. Find the average of the four numbers.
b. Find the deviations from the average and the average

deviation. 
c. Indicate in the average the reliable, questionable andworthless digits, and write the final result according to 

the basic agreement. 
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ROUNDING OFF 

41-1 Introduction 
We have previously discussed two situations in which we 

obtain approximate numbers: counting and measuring. We will 
consider now a third way of getting such numbers. 

You have already done some problems in arithmetic in which 
you had to record the resulting answer "to the nearest ten" or 
"to the nearest unit". What you actually had to do was to re­
place your answer (a natural number, decimal fraction or un­
ending decimal) with a simpler number close to it. The simpler 
number was to have fewer non-zero digits. Such replacement 
is called rounding off. 

The following examples illustrate the process of rounding off. 

Example 1 
The census shows that a certain city has 246,143 inhabitants. 

Suppose a friend of yours asks you how many peoplc live in 
that city. If you know that he does not need a very precise 
answer, would you say to him 246,143 people? Of course not. 
You would probably simply answer 246 thousand. 

Example 2 
There are certainly cases when results ought to be expressed 

to the highest degree of precision possible. For example, the 
assets of a bank must be recorded in the yearly report to the 
nearest pound. For general information, however, it is suffi­
cient to know that the assets of a bank are 57 million pounds 
rather than 56,967,146 pounds. 

In the two examples, certain numbers were rounded off. 
The results of rounding off are clearly approximate numbers. 

41-2 Rounding up and rounding down 
Rounding off can be done in two ways: we can "round off 

upwards" (Example 2) or "round off downwards" (Exanple 1). 
209 
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To avoid long phrases, we shall call these two ways "rounding 
up" and "rounding down", respectively.

Rounding off numbers is easy. To round down a number to a
digit in a certain place, we replace all the digits of the number 
written to the right of that place by zeros. For cxample, 274
rounded down to tens is 270, 27-4 rounded down to ones is 27, 
27.4 rounded down to tens is 20. 

To round up a number to a certain place, we add one to the
digit in that place and replace all digits to the right of it by 
zeros. For example, 

274 rounded up to tens is 280 
27.4 rour 'led up to ones is 28 
27.4 rou.dCd up to tens is 30 

Consider this complete example of rounding off the number 
217'5073:
 

217.5073 rounded down to hundreds is 
 200 
rounded up to hundreds is 300 
rounded down to tens is 210 
rounded up to tens is 220 
rounded down to ones is 217 
rounded up to ones is 218 
rounded down to tenths is 217.5 
rounded up to tenths is 217.6 
rounded down to hundredths is 217.50 
rounded up to hundredths is 217.51 
rounded down to thousandths is 217'507 
rounded up to thousandths is 217.508 

It is clear that in all these cases the original number is
increased by rounding Up and decreased by rounding down. 

You may ask when we apply rounding up, or rounding down. 
The answer to this question is often suggested by the situation 
we are deal;ng with or by the conditions of the problem. 

Example 3 
We want to d.vide 50 shillings equally among 6 people. How 

much will each get?
To get the answer, you must divide 50 by 6. But the quotient

of 50 - 6 results in the unending decimal 8.333... . Rounding
down to the order of ones gives us 8 shillings and rounding 
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down to the order of hundredths givcs us 8.33 shillings. If 
everyone gets 8 shillings, we remain with 2 shillings. If every­
one gets 8.33 shillings, there will be 2 cents left over because 
8.33 x 6 = 49.98 shillings. The latter is no doubt the best we 
can do, because a cent is the smallest coin. Rounding down is 
certainly the only appropriate procedure here, because if we 
round up 8.333 ... to hundredths we get 8.34 shillings. WVe can­
not give everyone 8.34 shillings, because 8.34 x 6 = 50.04 
shillings and there are only 50 shillings to be shared. 

Example -1 
A group of 14 pupils decided to collect 100 pounds of oranges 

for the children of an orphanage. How many pounds should 
each pupil collect? 

100 , 14 = 7.14285714. . .. Rounding down is not applic­
able here because less would be collected than aimed for. In 
this case, it is necessary to round up to get at least 100 pounds 
of oranges. Rounding up to ones, we get 8. So if each pupil 
collects 8 pounds, together they get 8 x 12 = 112 pounds, 
which is substantially more than wanted. Rounding up to 
tenths gives 7.2 pounds for each pupil, and in all they collect 
7"2 x 14 = 100.8 pounds, which is quite close to the desired 
100 pounds and reasonable from the point of view of weighing 
oranges. A practical answer to our problem is that each pupil 
should collect at least 7.2 pounds of oranges. If 100 shillings 
(and not 100 pounds of oranges) were to be collected by the 
students, it would have been proper to round up to hundredths 
to obtain 7.15 shillings for each student. Altogether they would 
then collect 7.15 x. 14 = 100.10 shillings. 

41-3 Fundamental rules for rounding off 

The examples in the last section illustrate two cases when the 
conditions of the problem actually show whether a given num­
ber is to be rounded down or rounded up. It was also clear to 
what place the rounding off should be made. The question 
naturally arises: What kind of rounding off is to be applied 
when there is no indication what to do? 

As you have seen, rounding down replaces the given number 
by a second number which is smaller than the given number, 
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while rounding up replaces the given number by a number which 
is larger. When a given number is to be rounded oil"and there 
is no special indication whether it should be up or down, it is 
reasonable to round off so that the number obtained differs as 
little as possible from the original number. For example, the 
number 17.384 rounded down to ones is 17, which is .384 less 
than the given number. On the other hand, 17.381. rounded upI) 
to ones gives 18, which is .616 greater than the original number. 
Certainly 17 is closer than 18 to the original number. So here it 
is better to round down. 

Suppose now we want to round off to tenths instead of ones. 
You see that 17.384 rounded down to tenths is 17.3, which is 
.084 less than the given number. But rounding up to tenths 
gives 174, which is only .016 greater than the given number. 
Therefore, the better result il rounding off to tenths is obtained 
by rounding up. 

We see that if it is permisi,,e either to round up or to round 
down a given number, - is better to round down when the 
first rejected digit is less than 5 and to round up if the first 
rejected digit is greater than 5. In each of these cases, we will 
obtain a closer approximation; that is, the icunded-off number 
is closer to the original number. 

Suppose you want to round off .2604 to tenths. It is better 
to round up to .3, because that differs from '2604 by .0396. 
Rounding down results in '2, which differs by .0604 from "2604. 
If, however, we have to round off the same number .2604 to 
hundredths, we should round down since 

•2604 - .26 = .0004 
and '27 - .260.4. -0096 

You may notice that we have not said how to round off 
numbers in which the first rejected digit is 5. We consider here 
the following two cases. 

1. The first rejected digit is 5 and it is followed by digits 
some of which are non-zero digits. For example, 

round off 43,503 to thousands 
and round off .257 to tenths 

It is easy to see that here we get a closer approximation by 
rounding up. Show that thi- is so. Thus, to round off 43,503 
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to thousands, we round up and obtain 44,000. To round off 
*257 to tenths, we round up and get .3. Therefore, if the first 
rejected digit is 5 and is fbllowed by digits, some of which are 
non-zero digits, then we round up. 

2. The first rejected digit is 5 which is followed by zeros 
only, or the first rejected digit is 5 and it is the last digit in our 
number. For example, 

round off 4.3,500 to thousands
 
round off 45 to tens
 

and round off 7.5 to ones
 

If we round down 43,500 to thousands, we obtain '13,000; if 
we round up, we get ,14,000. Each of these rounded-off numbers 
liffcrs from the original number by 500. We may say that they 

are "equally close" approximations. The same remark applies 
to rounding off the other two numbers. In cases like these, we 
simply agree to round up. Therefore, 

43,500 rounded off to thousands is 44,000 
45 rounded off to tens is 50 
7.5 rounded off to ones is 8 

(In some treatments of approximate numbers, the followir-g 
agreement is made, which we will not use in this text. 

If the first rejected digit is 5 which is followed by zeros only, 
or if the first rejected digit is 5 and it is the last digit, then we 
round down if the digit befbre 5 is even, and round up if the digit 
before 5 is odd.)

Here is our tindamnental rule for rounding of numbers. We will 
always apply it if there are no special reasons to either iound 
down or round up 

If it is permissible eit/er to round up or to round down c given
number, wz'round it down when the first rejected digit is 0, 1, 2, 3 or 1, 
and round it t if the first rejected digit is 5, 6, 7, 8 or 9. 

You should have already seen that the result of rounding off 
is always a number which represents an approximate value of 
the given number. It is an approxiniate number. The difference 
between the given number and the rounded-off number de­
pends entirely on the way the rounding off is done. If a given
number is to be rounded off to a certain place and if it is known 
that we have to round down or have to round up, then the 
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difference between the result and the given number does not 
exceed but may come close to one unit in the last place preserved. 
If, however, the problem does not show us which way to round 
off, we will use the fundamental rule. Then the difference 
between the given number and the result will never be more 
than one-half of the unit in the last place kept. If an approxi­
mate value of a quantity differs from its exact value by not 
more than one-half of a unit in the last place kept, then we say
that all di'its of the approximation are accurate. Therefore, if we 
obtain an approximation by applying the findamental rule 
for rounding off, then all the digits in the approximation are 
accurate. For example: if we rounded off the number 

2A= 2.7142. . . to hundredths, we would get the approximate 
number 2.71 with all digits accurate. 

EXERCISE. 41-3A 
1. Round down to tens each of the following numbers and find 

the error of rounding down (the difference between the 
number and the rounded-down number).
 

503, 817, 4,305, 21,658, 12,814, 17,715
 
2. 	Round off to tens each of the numbers in Question 1 and 

find the error of rounding off (from the larger number, 
subtract the smaller number). 

3. 	 Round tip to thousands each of the following numbers and 
find the error of rounding up. 
23,458, 17,501, 13,709, 60,500, 100,998, 365,651, 1,349,673 

4. 	 Round off to thousands each of the numbers in Question 3 
and find the error of rounding off. 

5. Round off to ones each of the following numbers and find 
the error of rounding off. 

•8, 2.55, 3.7, 15.5, 4.1.4, .379, .49, 1.813 
6. Round off to tenths each of the following numbers. 

8.512, 11.395, .403, 6.15, 4.08, 6.17, 10.0098 
7. 	 Round off to hundredths each of the following numbers. 

9.647, 12.784, .231, 1.054, 19.6723, .455 
8. 	 a. Indicate the reliable, questionable and worthless digits

in each of the following approximate numbers. 
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b. 	Round off each number to the place of its questionable 
digit. 

c. 	 Write down each nuriber according to the basic agree­
ment 	of Chapter 40. 
343 with a precision to the nearest ten 
6750 with a precision to the nearest hundred 
47.0983 with a precision to the nearest hundredth 
9.0015 with a precision to the nearest thousandth. 

9. 	 Three experiments to find the weight in grams of 1 cubic 
centimetre of the same piece of iron gave the following re­
sults: 7.62, 7.80, 7.64. Find the average. Indicate in it the 
reliable, questionable and worthless digits. Round off the 
average to the place of the questionable digit. Write down 
the final result according to the basic agreement. 

B CM 2-P 



Chapter 42 

MAXIMUM ERROR AND 
RELATIVE ERROR 

42-1 Maximum error-precision 

We have seen that every measurement of length, weight,
time and so on can be made only approximately and the re­
sult is an approximate number. Even when it is possible tofind an exact number (in counting the members of a set, for
example), it is sometimes sufficient to know only its approxi­
mate value. 

Here is an example. A pupil worked after school and saved 
money for a holiday. The exact amount wa- 101.30 shillings.
When asked how much money he had saved, he answered "about
100 shillings." It is clear that the exact number representing
his savings and the approximate number he gave are different.
The pupil got the approximate number by rounding off. Simi­larly, the exact value of a measured quantity and the result of 
measuring are different. 

The difference between the exact value of a measured or counted
quantity and its approximate value is called the miaxiimum or absolute 
error. In the quoted example, the maximum error is equal to 
1'30 shillings. 

You know already that exact values are known only very
rarely, for example, in some cases of counting. This means, of 
course, that the actual value of the maximum error can very
seldom be found exactly. However, in carrying our various 
measurements we can us"-lly give the bounds or limits of themaximum error. In other words, we can expect to find out
that the maximum error does not exceed a definite number.

For example, if you weigh an object on a shop scale, themaximum error will usually not be more than one ounce. But 
on laboratory scales, you can weigh an object so that the maxi­mum error is no more than one-half of one hundredth of an 
ounce (that is, - of an ounce). 

216 
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42-2 Relative error-accuracy 
We must, however, realize that the maximum error does not 

give us an idea of the quality or accuracy of the measurement. In 
other words, the maximum error does not indicate how ac­
curately the measuring has been done. The maximun error tells 
us on!- about the precision of the measurement. For example, if the 
maximum error in a measurement is Ayard, then the measure­
ment is made with a precision to the nearest yard. Conversely, if 
a weighing is made with a precision to the nearest pound, then 
the maximum error in the weighing is Apound. 

Suppose we made two measurements with a maximum errorof 
inch: the first was of the length of a bridge, and we obtained 

20 yards; the second was of the length of a book, and we 
obtained 12 inches. We say that each measurement was made 
with a precision to the nearest inch. 

It is clear tL:.t the first measurement was done very carefully 
and is of high quality, but the second measurement is quite 
rough and unsatisfactory. 

The same can be said about weighing. An error of one ounce 
in 50 pounds is usually not important. But an error of one 
ounce in Apound can seldom be allowed. You can now see 
that to evaluate the quality of a measurement, it is not the 
maximum error that is important. Instead, it is how the maxi­
mum error compares with the measured value itself. In other 
words, we would like to know what part of the measured quan­
tity the maximum error represents. Let us go back to the 
measurements of the !'engths of the bridge and the book. 

In measuring 20 yards, an error of Ainch is only - part 
of the length. However, in measuring the length of the book 
an error of A inch is - part of the measured quantity. The 

fraction obtained by dividing the maximum error by the measured value 
is called the relative error. As we have seen before, we do not know 
how good or accurate a measurement is by knowing the maxi­
mum error alone. It is the relative error that tells how accurate 
the measurement is. For example, we can compare the relative 
errors when measuring the bridge and the length of the book. 
These are the numbers I and -- , respectively. The first 
fraction is one-sixtieth (QJ-) of the second fraction, so the 
accuracy of the first measurement is much higher than the ac­
curacy of the second. 
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It is usual to express the relative errors as percentages. Then 

it is easy to compare the accuracy of two different measure­
ments. The relative error in measuring the length of the bridge 
is 14140 x 100 = .0695% and the relative error in measuring
the lengtlh of the book is .,I-x 100 = 4.17%. Certainly, a 
measurement with a relative error of 0695% is much more 
accurate than a measurement with a relative error of 4.170/

A special notation is often used to show the precision of a 
measurement. Suppose we measure a certain length d with a 
precision to the nearest inch, and obtain the result 132 inches. 
This result is then written in the form 

d -' 132 (± .5) inches, 

since .5 inch is the maximum error here. 

EXERCISE 42-2A 
1. Find the maximum error of the approximate number *66, if 

its exact value is 2. 
2. 	Find the maximum error for each of the fractions 

2 5 4 
-, -13, -" 

expressed by the approximations 
•28, .384, "2105
 

respectively.
 
3. Find the relative error (in percentage) of the approximate
 

number 5.47, if its maximum error is .005.
 
4. 	Express the number 51 by an approximate decimal fraction 

with a precision to the nearest hmndredth. Find the maxi­
mum error and the relative error (as a percentage) of the 
approximate number. 

5. 	The width of a narrow street measured with a precision to 
the nearest ten centijnetres is 7.6 metres. The length of the 
street measured with a precision to the nearest metre is
76 metres. Which of these measurements is more precise?
Is one of the measurements more accurate than the other? 

6. 	Measuring a segment of length 8.75 centimctres, we made 
an error of "25 centimetrcs. Measuring another segment of 
length 10.5 metres, we made an error of 25 centimetres. 
Which of the two measurements is more accurate? 
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7. Measuring a segment 25 inches long, a student obtained 
25.2 inches. Find the relative error of the measurement. 

8. The volume of a containe is 25 cubic inches. A pupil, 
however, computed the volume as 24.6 cubic inches. Find 
his maximum and relative errors. 

9. Using the formula on the relationship between an approxi­
mate number, the maximum error and the relative error, 
complete the table. 

Approx'imate Maximum Relative 
number error error 

4.1 .05 
•654 .001 

48.4 ./ 
•348 

260 5 
3.40 
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DECIMAL PLACES AND
 
SIGNIFICANT DIGITS
 

43-1 Decimal places 
Ve have learned how approximate numbers are obtained 

from counting, neasuring and rounding off. haveWe seen that 
counting sometimes gives exact values, while measuring and 
rounding off always give approximate numbers. 

In order to be able to discuss and understand operations such 
as addition and multiplication of approximate numbers, we 
have to study in more detail the notion of the precision of an 
approximate number. From one point of view this was done in 
Chapter 42. We will now consider two new ideas which are 
also closely related to the notion of precision: decimalplaces and 
significant digits.

Do you remember what the decimal places of a number are? 
You studied thein in Chapter 23. All digits of a number written 
to the right of the decimal point are called the decinal places of the
number. For example, the numbers 7.2, 6.03, .417 have one, 
two and three decimal places, respectively. The number 46 has 
no (or zero) decimal places. 

43-2 Significant digits 

The concept ofrsignificant digits is a harder one, and we will 
have to develop it in several successive stages. In dealing with 
exact numbers, you may have heard the term significant digit.
First of all, any digits from 1 to 9 appearing in a number are
significant, because each of these digits shows a definite number 
of units in the place where that digit appears. For example, in 
the number 56.71, there are four significant digits: 5, 6, 7 and 1.
To see this, 56.71 =5 x x 7 x10 +6 1 -- + 1 x10,
because the 5 shows that the number contains 5 tens, the 6
shows that the number contains 6 ones, and similarly the 7 and 
the I show 7 tenths and 1 hundredth. 

220 
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In the same way each digit zero that is between digitsfrom 1 to 9 
is also called significant. In the number 603, the digit 0 is a 
significant digit because it indicates that there are no, or zero, 
tens in the number which has 6 hundreds and 3 ones. 

On the other hand, the number .023 has only two significant
digits, 2 and 3. You see that this nuniber has 2 hundredths and 
3 thousandths, and this completely describes it. The digit 0 
here is not a significant digit, because it is only used to locate 
the decimal point. It perlbrms the role of a place (position)
holder only, and we w;li not regard it as a significant digit.
In a decimal firaction, all 0 digits to the left of the first non-zero digit 
are not si.qnijicant digits. The nuinbcrs .001, *25, -0305 have one, 
two and thirec significant digits, respectively. 

Let us now consider the digit 0 and its meaning when it is 
written at the end of a decimal firaction. Here it is important to 
know whether the decimal fraction is an exact number, or an 
approximate number. 

If the decimal fiaction is an exact number, the digits 0 writ­
ten at the end do not have any significance. The decimal frac­
tions 3.1, 3.80, 3.8000 represent the same number. Therefore, 
a digit 0 when written at the end of an exact decimalfraction is not 
significant, and it does not make any difference whether we omit 
the zero or write it. 

The situation is completely diflIerent when the digit 0 is 
written at the end of a decimal fraction which represents an 
approximate number. We will show that the 0 has in this case a 
definite meaning. Consider, for example, the two approximate
numbers 3.8 and 3.80, differing only by the digit 0 at the end. 
These two decimal fractions represent two different approxi­
mate numbers for the following reason. 

The approximate number 3.8 could have been obtained 
from rounding off to tenths such numbers as 3.81, 3.82, 3.83,
3.84, or 3.75, 3.76, 3.77, 3.78, 3.79. This means that originally
in our number there might have been lundredths or thou­
sandths, but the number was rounded off to tenths. Suppose
the approximate number 3.8 was obtained by measuring. Then 
the digit on the right (8) is in the tenths place and shows that 
the measurement was made with a precision to the nearest 
tenth. 

If, however, an approximate number is written as 3.80, it 



222 Approximations 

means that the ones (3), the tenths (8) and the hundredths (0) 
are known to us. If 3.80 were obtained by rounding off to 
hundredths, the original number might have had thousandths. 
Suppose 3.80 is obtained by measuring. Then the digit on the 
right (0) is in the hundredths place and shows that the measur­
ment was made with a precision to the nearest hundredth. 

We see that the di(git 0 appearing at the end of an approximate
decimal.fraction has a deinite meaning, and is therefore to be con­
sidered as a significant digit.

W¥e vill now give special attention to approximate values 
written as whole numbers. An approximate whole number may
contain zeros at the right-hand end. Such a zero is a significant
digit if it shows the absence of units in its place. But often a zero 
at the end replaces a worlhIless or unknown digit. Then the 
zero is not a significant digit.

Let us look at an example. Suppose the approximate value 
of a weight is 117 kilograms. This number has three significant
digits. If we express this approximate value in grams, we get
the number 14,700 because there are 1,000 grams in a kilogram.
This number also has only three significant digits, because the 
two 0 digits at the end replace unknown digits.

If however the approximate number 14,700 grams was ob­
tained by using a more precise scale, which weighs with a pre­
cision to the nearest gram, then this approximate number 14,700 
has five significant digits. To expresr this approximate number 
in kilograms, we would have to write it as 14.700 kilograms.
The last zero at the end is written in the thousandths place.
This says that the measurement was nade with a precision to 
the nearest thousandth of a kilogram; that is, to the nearest 
gram. 

Thus, there is a difficulty in reading an approximate whole 
number ending in zeros. We know that the number of signi­
ficant digits in an approximate whole number with digits 0 at 
the end depends on the precision of that number. For example,
if we look at the approximate number 2,400, as it is written 
down, we cannot decide in which of' the following three ways 
it was obtained. 

1. The number 2,400 may be the result of rounding off to 
the nearest hundred or of measuring with a maximnum 
error of 50. Then neither zero is a significant digit. 
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2. 	 It may be the result of rounding off to the nearest ten or
of measuring with a maximum error of 5. This makes the
first zero a significant digit, and the second zero not a 
significant digit.

3. 	It may be the result of rounding off to the nearest one or 
of measuring with a maximum error of . Then both 
zeros are significant digits.

We summarize our discussion in the following detailed 
statement of the meaning ofa significant digit in an approximate 
number.
 

If an approximate number is written according to the basic agreement
in Chapter 10 then: 

1. 	Any of the digits 1, 2, . . . , 9 are significant.
2. 	 AiO , digit 0 at the right-hand end of an approximate decimal 

fraction is siqnifcant.
3. 	Any digit 0 at the right-hand end of an approximate whole

number in the place showing the precision of the approximate
number (or of the measurement) is significant.

4. 	 A,j digit 0 between significant digits is significant., 

43-3 Examples 
The approximate decimal fractions 8.2, 7.06, •1230, .061 have 

two, three, four and two significant digits, respectively.
250 precise to the nearest one has three significant digits,

because the 0 is in the ones place showing the precision.
2,500 precise to the nearest ten has three significant digits.
The first zero from the left is a significant digit, since it is in
the place showing the precision. The last zero (in the ones place)


is 	not significant.
 
2,500 precise 
to 	tile nearest one has four significant digits,because the last zero on the right is in the place showing the 

precision; and the zero in the tens place is significant, becauseit is between two significant digits, the 5 and the 0 at the end.
2,050 precise to tile nearest one has four significant digits.
Let us look at some other examples of rounded-off numbers.

If we round off the number 2,803 to tens, we obtain the ap­
proximate number 2,800 with three significant digits. If 2,803
is rounded off to hundreds, we also obtain the approximate
number 2,800, however with only two significant digits. 
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Consider a rod measured to be 124 millimetres long with a 
precision to the nearest millimetre (10 millimetres make a
centimetre). The number 124 has three significant digits. If 
we round it off to tens, we obtain the approximate number 120,
containing only two significant digits.

In order to avoid any misunderstanding concerning the digits
0 at the end of approxinlatc whole numbers, it is better to
leave out the 0 digits which replace worthless or rejected digits
(that is, which are not significant) and to change to larger
units. For example, when rounding off the number 83,542 to
hundreds, it is better to write 83.5 thousands rather than
83,500. If the three zeros at the end of 3,569,000 square metres 
are not significant, it would be better to write 3.569 square
kilometres (1 square kilometre equals 1,000,000 square metres).

Sometimes it is not convenient to write an approximate
number in larger units and drop the non-significant 0 digits.
Then it would be important to say which of the zeros are 
worthless. One way of doing this is to underline the question­
able digit, as we have clone in Chapter 39. For example, 

if x 36 kilometrcs, then x , 36,000 metres 
(two significant digits); 

if,' 84, theny - 8,0 centimetres 
(two significant digits) 

or), 8400 millimetres 
(two significant digits). 

We would be allowed to write 36 kilometres - 36,000 metres
only if we measured the distance with a precision to the nearest 
metre. 

For a final review of the notions of decimal places and sig­
nificant digits, look at this list of approximate numbers. 

7, one significant dig:t, no decin.al places
.7,one significant digit, one decimal place
•07, one significant digit, two decimal places
*070, two significant digits, three decimal places
•37, two significant digits, two decimal places 
2.037, four sigiiificant digits, three decimal places
.307, three significant digits, three decimal places
2"0370, five significant digits, four decimal places. 

http:decin.al
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43-4 Comparison of approximate numbers 

We should now point out that in order to give an idea of the 
precision and accuracy of an approximate number, we can tell 
the number of its decimal places or the number of its significantdigit:. 

The method of counting the number of decimal places is 
recommended, when we compare approximate values of' tile 
same quantity. For example, the first weighing of an object is 
14.7 grams, and the second weighing, using a more precise 
scale is, 14684 grains. The second approximate value is clearly 
more accurate and more precise than the first, because it has 
three decimal places, while the first has only one decimal place. 

In changing from one unit of' measurenent to another in 
the metric system, the number of decimal places changes. 
But the number of significant digits remains unchanged. For 
example 254 centimetres - 2.54 metres. The number of sig­
nificant digits in each number is three. But the first number 
has no decimal places, while the other has two. For this 
reason, it is a good idea to compare the accuracy of various 
approximate numbers by counting the number of their sig­
nificant digits. For example, if measuring a segment resulted 
in tile number 6.3 centimetrcs, and measuring the length of a 
field gave the mnumber 254 metres, we must admit that the 
second approximate number is more accurate than the first, 
since the second has three significa,'t digits and the first only 
two. 

43-5 Exact whole numbers 
The major part of the discussion in this chapter was devoted 

to the meaning of significant digits in approximate numbers. 
For the sake of completeness, we give now a rather simple 
statement on the meaning of significant digits in exact numbers. 

In exact whole numbers, all the digits are significant. 
By the significant digits of an exact decimalfraction, we mean all its 

digits except zeros written to the lIft of itsfirst non-zero digit and zeros 
written at the right-handend. 

The exact whole numbers 45, 305, 27,108, 560, _J0 have two, 
three, five and six significant digits, respectively. 

The exact decimal fractions 8.2, 7.06, .1230, .61 have two, 
three, three and two significant digits, respectively. 
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EXERCISE 43-5A 
1. How many significant digits has each of the following ap­

proximate numbers given with precisiona to the nearest 
ten? 

230, 480, 2,080, 81,050, 70,190, 13,700, 12,000, 201,000 
2. 	 How many significant digits has each of the following exact 

numbers? 
230, 480, 2,080, 81,050, 70,190, 13,700, 12,000, 201,000 

3. 	 How many significant digits has each of the following ap­
proximate numbers, given with a precision to the nearest 
hundred? 

32,400, 70,300, 190,100, 11-9,000, 10,050,000 
4. 	 How many decimal places and how many significant digits

has each of the following approximate decimal fractions?
8.5, 4.2, .703, 6.05, 1.003, 201.03, .03, .004, .005, 2.60,
8.240, 8.040, .070, "2080, .300, 2.500, 603.100, 2004.50 

5. 	How many decimal places and how many significant digits
has each of the numbers listed in Question 4, if they are 
given as exact decimal fractions? 

6. 	Explain the difference between the two recordings: "the 
length of the segment is 12 inches" and "the length of the 
segment is 12.0 inches". 

7. 	 Recalling that there are 1,000 grains in a kilogram, express
each of the following in kilograms if the 0 digits at the end 
are significant. 

2,860 grans, 8,700 grams, 250 grams, 23,400 grams
8. Express in kilograms each of the numbers in Question 7 if 

the 0 digits at the end are non-significant. 



Chapter 44 

ADDITION AND SUBTRACTION 
OF APPROXIMATE NUMBERS 

44-1 Introduction 

Let us look at a simple problem from everyday life. Find the 
length of a fence around a rectangular field. To solve this 
problem, we must first measure the length and the width of 
the rectangle. Suppose we obtain the approximate numbers 225 
yards and 112 yards. To find the answer to our problem, the 
perimeter of the rectangle, we must add the lengths of the foul. 
sides, which arc these approximate numbers: 

225 +225 -- 112 -1-112 =674 

In this way we are led to perform the operation of addition 
on approximate numbers. NV( clearly obtain the approximate 
numl)er 674 yards. 

It we had to find the area of the same field, we would get it 
by multiplying the two approximate numbcrs: 

225 >, 112 = 25,200 

Thus, in the second case we must perforw the operation of 
multiplication on approximate numbers. The result of 25,200 
square yards is clearly also an approximate number. 

The question naturally arises, what kind of approximate 
number is this area? In other words, which digits of the ap­
proximate number 25,200 are reliable and which e'e not? We 
ask the same qluestion about the length we fbund for the fence. 

We must thus discuss computations with approximate nuni­
bers. The results of such operations are also approximate 
numbers. 

As we have seen bef(,in, approximate numbers are obtained 
from counting, measuring and rounding q/. We see now that besides 
these three sources, there is still a fburth source for obtaining 
approximate numbers, namely from computations or operations. 
Whenever we calculate with numbers, one or more of which is 
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approximate, the result of the calculation is an approximate 
number. 

We will discover some rules which tell us which digits of such a sum or product are reliable, and how to record the answer 
according to our basic agreement.

We will study addition and subtraction ofapproximate num­
bers in two stages: 

1. Addition and subtraction of approximate whole numbers. 
2. Addition and subtraction of approximate decimal frac­

tions. 

44-2 	 Addition and subtraction of approximate
 
whole numbers
 

In the previous example of the rectangular field whose lengthand width are 225 and 112 yards respectively, we saw that the
fence all round had to be 674 yards long. However, we needto find out how reliable the digits of 674 are. We note that the
length 225 yards and the width 112 yards are approximate
numbers with a precision to the nearest yard. Thus, the ones
digits 5, 5, 2, 2 of the terms in the sum 

225 -- 225 + 112 + 112
 
are questionable, which leads 
us to 	believe that certainly the 
ones digit 4 in the answer 674 is questionable.


Let us now consider a slightly harder problem. In a certain

region there is a 
 town with 720 people (counted with a pre­
cision to the nearest ten), two villaTes with 234 and 88 people
and farm land with a population of 4,300 people (counted with 
a precision to the nearest hundred). Find the total population
of the region.


Addii±g the four numbers in the usual way, we obtain
 
4,300 

720 
234 

88 
5,342
 

Since the terms are approximate numbers obtained by counting

various large sets, the number 5,342 is clearly also an approxi­
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mate number. The question is which digits of this sum are to 
be kept in the final answer. 

In the first number, 4,300, precise to the nearest hundred, 
the tens digit and the ones digit are unknown to us. We do 
know the tens digit and the ones digit in the number 88. How­
ever, when we add these to unknown digits in the number 
4,300, the tens digit and the ones digit in the sum 5,342 remain 
unknown. We simply have to disregard them in the final result. 
When we first add the terms, we will take into account the tens 
digits and the ones digits in those terms in which they are 
known. But then we will round off the sum obtained to get the 
final result. 

Let us write down the problem as follows. In place of digits
unknown to us we will write the letter "U" for "unknown". 

43UU 
72U 
234 

88 
52UU 

Rounding off the sum 5,342 (obtained in the usual way), we 
reject the worthless digits of tens and of ones and obtain 

5,342 - 5,300 for the final answer. 
We see that in the final result we rejected-that is, replaced

by zeros-the digits in those places in the sum for which the 
digits in even one of the addends are unknown. 

We car write down what we have discussed as the following
 
rule:
 

In adding approxinmate whole numbers, we reject in the final result 
(according to the Jundamental rule for rounding off) digits in those 
places in the sum for which the digits are unknown even in one of the 
approximate terms. (This rule will be included in a more general 
rule later.) 

We use this rule even if there are one or more exact numbers 
among the terms. (In the example above, 88 was an exact 
number.) 

Consider now the following simple problem. From a stock 
of 480 pounds of sugar, 117 pounds were sold in one day. How 
much sugar remained? 
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Here we have to subtract approximate numbers. 
(a) ,180 (b) 48U 

-117 -­ 117 
363 37U 

Taking into consideration the difference 363 obtained in the 
usual way (a), and the unknown digit in the ones place (b), we 
round off 363 to tens to obtain the final result, 360 pounds.

It is not hard to see that our rule for adding approximate
whole numbers will also apply to subtraction. 

44-3 	 Addition and subtraction of approximate 
decimal fractions 

Suppose two or more approximate numbers, written accord­
ing to our basic agreement, have the same number of decimal 
places. Then all but the last digit of each number is reliable, the 
last digit of each being questionable. We will see that if we 
simply add the numbers, then all digits in the sum except the 
last are reliable and the last is questionable. The sum obtained 
is thus automatically recorded according to our basic agreement. 
For example: 

18.6
 

-- 23.9
42.5
 

We will verify that this procedure gives the correct results by
using some rather extensive reasoning based on the meaning of 
approximate numbers and on properties of inequalities.

From our work on order properties, we know the following 
statement to be always true: 

If a, b, c, d, ef are any numbers such that 

c <a <d 
and e < b <f 
then 	 c+e<a+b<d+f 

You may read, "Ifa is between cand d, and b is between eandf,
then a + b is between c + e and d +f." In other words, if two 
double inequalities hold, then the double inequality obtained 
by adding the corresponding terms also holds. 
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Return now to our example. Let a and b be the approximate 
numbers that we arc representing by 18.6 and 23.9, respectively. 

18.55 < a < 18.65 
and, similarly, 23.85 < b < 23.95 
We add and obtain 4.2.40 < a -P b < 42.60 

Therefore, a + b = 18.6 - 23.9 ; 42.5 

We move now to the case when the approximate terms to be 
added have different numbers of decimal places. We have to be 
careful here, because the sum obtained in the usual way will 
contain worthless digits and will have to be rounded off. Con­
sider the following example. 

Let a machine weigh 3.507 kilograms, and let a wooden box, 
in which the machine is placed, weigh 2"8 kilograms. What is 
the lotal weight of the box with the machine inside? 

To find the answer we proceed as follows. 

(a) 3.507 (b) '-5 0 7 (c) -P3.507 
+ 28 + 2.8UU + 2.8 

6.307 6.3UU 6.307 
6.3
 

We will now explain what we have done. In (a) we added 
the decimal fractions in the usual way, treating the terms as if 
they were exact, and not approximate, numbers. In (b) we 
show that such simplified addition of approximate numbers 
with different numbers of decimal places is inappropriate. In 
the sum in (a) there are worthless digits. Therefore, the answer 
must not be written according to our basic agreement. Actually, 
in the first term we know the ones, tenths, hundredths and 
thousandths. In the second term we know only ones and tenths, 
and nothing about the further decimal places. It is, therefore, 
clear that in the sum the hundredths digit (0) and the thou­
sandths digit (7) do not deserve any confidence at all. They are 
worthless and ought to be rejected. The addition of the ap­
proximate numbers should be done as shown in (c). 

Using double inequalities as we did before, we can verify that 
method (c) gives the con-ct restult. Let a and b be the approxi­
mate numbers that we are representing by 3"507 and 2"8, 
respectively. 

11CM2 - Q 
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3"5065 < a < 3'5075 
2'75 <b <2.85 
6'2565 < a + b < 6"3575 
6"2 <a+b<6.4 

a + b = 3"507 + 2.8 6.3 
Notice that the left-hand sum, 6"2565, is not rounded offaccording to the fundamental rule, but is rounded down. The reason is this. If 6.2 < 6.2565 and 6.2565 < a + b, then it tbl­lows, by transitivity of "less than", that 6"2 < a + b. But itdoes not follow that 6.3 < a - b. Similarly, the right-hand 

sum is rounded up.
Subtraction can be treated in exactly the same way. Forexample, let us subtract the approximate number 14"2714 from

the approximate number 42"7. 

42.7 
-14.2714 

42'7UUU 
-14.2 7 1 4 

42.7 
-14.2714 

28 "4286 28"5UUU 28"4286 

28.4 
Again the correct way of recording the subtraction is the 

third one. 
We will verify that this procedure for subtracting approxi­mate numbers is correct by again using the meaning of ap­

proximate numbers and properties of inequalities. To do it, wefirst have to obtain some more facts about inequalities.
We saw that if c < a < d and e < b <fare true statements,then c + e < a - b < d +f. Do you think the correspondingsubtraction inequalities are true? Is c - e < a ­ b < d -f? Infact, this is not true. To show that the statement is false, it isenough to give one instance when it is false. Suppose a and b 

are such that 

2<a<3 
and I < b < 3 
Then the subtraction inequalities would be 

1 <a -b <0 
But the difference a - b cannot at the same time be greater
than 1 and less than 0. So our statement is false. 
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Is there not another way we can use inequalities in subtrac­

tion? It is not hard to see that the following statement does hold: 
If c <a 

and e > b 
then c - e < a - b 

The proof is very simple. c < a and e > mean the same 
thing as c < a and -e < -b. We can add the last two in­
equalities and obtain 

c + (-e) < a + (-b) 
that is, c-e <a-b 
Check this statement by substituting any numbers for a, b, c, e. 
When the last statement is extended to double inequalities, we 
obtain the following true statement. 

If a, b, c, d, e,f; are any numbers such that 
c < a < d 

and e > b >f 
then c-e <a--b <d-f 
On the left, from a number On the right, from a number 
less than a, we subtract greater than a, we subtract a 
a number greater than b. number less than b. 

With the help of our new double subtraction inequality, we 
can see that our method of subtracting approximate numbers is 
correct. Here is the previous problem. 

42.65 < a < 42.75 
14.27145 > b > 14.27135 
28-37855 <-a - b < 28.5 

a - b P 28.4 
From the discussion of the examples on addition and sub­

traction of approximate numbers it is clear that even one un­
known digit in any place makes the digit in that place in the 
answer worthless. Therefore, in addition and subtraction of 
approximate decimal fractions we will use the following rule. 

ADDITION AND SUBTRACTION RULE 

When adding or subtractingapproximate decimalfractions, we pre­
serve only as many decimal places in the result as there are in the 
approximate term with the least number of decimalplaces. 
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We clearly see that our addition and subtraction rule is 

based on the idea of decimal places.
The addition rule for approximate whole numbers that we 

have already discovered is really contained here. To see this,
let us return to the problem in Section 44-2 about the popula­
tion of a region. This time let us use a larger unit, say hundreds, 
to represent the counts. We then have: 

The population of the farm land 43 hundreds 
The population of the town 7"2 hundreds 
The population of the first village 2"34 hundreds 
The population of the second village "88 hundreds 

The problem is now reduced to adding approximate decimal 
fractions, and we apply our addition and subtraction rule. 

(a) 43 (b) 43.UU (c) 43 
7.2 7.2 U 7.2 
2'34 2 	 3 4 2.34 

•88 *88 "88 
53.42 52. JUU 53.42 

53 hundreds 
We round off the sum in (c) to ones because the term 43 has 
no decimal places. 

Thus, we see that to apply our addition and subtraction rule 
to 	approximate whole numbers, only have to avoidwe zeros
 
which replace unknown or rejected digits and express the
 
approximate terms in larger units.
 

EXERCISE 44-3A 
1. 	Find the sum of the approximate numbers. 

a. 	-53 b. 2130 c. 2"725 
•038 420 	 6482 

3520o 	 .01686
 

2. 	 For Question la, carry out the complete analysis using 
double inequalities. 

3. 	 Find the differences of the approximate numbers. 
a. 1430 b. 	 C.5.10 8.53 

- 275 - -282 - "0065 
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4. 	 For Qucstion 3b, carry out the complete analysis using 
double inequalities. 

5. 	A rectangular field has length 1,240 yards and width 136 
yards. Find the perimeter of the ficld. 

6. 	A park had 7,300 trees. In one year 860 trces were cut down. 
How many trees remained in the park? 

7. 	A wire was cut up into four parts of Icngths 3.54 yards, 
•756 yards, 8.49 yards, [.138 yards. Find the original length 
of*the wire. 

8. 	A bottle of milk weighs 2.4.2 pounds. The weight of the 
bottle is .543 pounds. What is the weight of the milk? 



Chapter 45 

MULTIPLICATION AND DIVISION
 
OF APPROXIMATE NUMBERS
 

45-1 Introduction 

In this chapter we will discuss the remaining two operations 
on approximate numbers-multiplication and division. In 
Chapter 44 we developed a procedure for adding and sub­
tracting approximate numbers in two stages-first for approxi­
mate whole numbers, then for approximate decimal fractions. 
At the end of the chapter, however, we showed that addition 
and subtraction of approximate whole numbers can easily be 
reduced to the same operations on approximate decimal 
fractions. We will find the same situat. i in multiplication and 
division. As a matter of fact, we will not even find it important 
to distinguish between the two types of approximate numbers. 
Instead, we will simply discuss a single procedure for multiply­
ing and dividing approximate numbers. 

45-2 Multiplication 

Consider a very simple problem of the same kind as at the 
beginning of Chapter 44. Suppose the sides of a rectangular
field are 254 yards and 194 yards long, measured with a pre­
cision to the nearest yard. To find the area of the field, we
multiply 254 and 194 and obtain 4.9,276 square yards. Since 
the measures of the sides are approximate numbers, it is clear 
that ieir product only approximately gives the area and prob­
abl.v has to be rounded off. Again, we must ask which digits of 
this product should be retained in the final result. 

Because of the precision of the measurement, we know that 
the unknown exact values of the length and of the width of the 
field are greater than or equal to 253.5 yards and 193.5 yards,
respectively. And we know they are less than 254.5 yards and
194.5 yards, respecti~ely. Therefore, the rectangular area is 
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greater than 49,052.25 square yards (253.5 x 193.5), but less 
than 49,500.25 square yards (254.5 x 194.5). 

As you can see, we have just used the following true state­
ment about inequalities: 

If a, b, c, d, e, are any non-negative numbers such that 

c<a <d 
and e < b <f 
then c xe <a x b <d xf 

The assumption that all the numbers involved are non­
negative is essential. Can you give an example that shows that 
the statement is not necessarily true if you allow some of the 
numbers to be negative? 

We can now set down the solution to our problem as follows: 

253.5 < 	a < 254.5 
193.5 < b < 194.5 

Therefore, 49,052.25 < a x b < 49,500.25 
49,000 	 < a x b < 49,500 

a x b r 49,300 

This longer procedare shows us that the first two digits of 
our original product 49."' 6 for the area are reliable (4 and 9), 
and the third digit (2) is "estionable. According to our basic 
agreement, only these first ti,.digits ought to be preserved.e 
This means that we have to round off the product 49,276 to 
hundreds to obtain the final result of 49,300 square yards. 

This problem showcd us that ifwe multiply two approximate 
numbers, each having three significant digits, their product is 
an approximate number also containing three significant 
digits. 

The use of"U" in place of unknown digits leads to the same 
result: 

(a) 254 (b) 2 5 4 U (c) 254 
194 1 9 4 U 194 

1016 UUUU 1016 
2286 10 16 U 2286 
254 2286U 254 
49276 254U 49276 

492UUUU 49300 

http:49,500.25
http:49,052.25
http:49,500.25
http:49,052.25
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Rounding off the product 49,276 to three significant digits 

as required by (b), we obtain the final answer 49,300 (c).
In a similar way we can show that if we multiply two

approximate numbers, one with three significant digits and the
other with two significant digits, the product is an approximate
number with two significant digits. In general, the product of 
two approximate numbers will bc an approximate number 
with as many significant digits as the number of significant
digits in the factor with the lesser number of significant digits.
As we will illustrate latcr, exactly the same can be said about 
division. 

MULTIPLICATION AND DIVISION RULE 

J'V/,en mullipl),ing or dividing approximate nmmbers, hi the result we 
preserve as many signiicant digits as there are in the original approxi­mate number with the lesser number of sificantdigits.

We see now clearly that our multiplication and division rule
is based on the idea of sidficant digits. On the other hand, our
rule for addition and subtraction is based on the idea of 
decimal places.

Here is an additional illustration of the satisfactory results
obtained using our multiplication and division rule. We will
consider a problem using comnmon fractions rep, .sented by
decimal fractions. 

Find the product of l-1-- and l,', following the instructions 
below: 

a. 	Represent the common fractions as decimal fractions. 
b. 	Round off the decimal representing 1.-0 tofour significant 

digits. 
c. Round off the decimal representing 1- to three significant 

digits. 

- 1.9090... . 1.909 
6IA= 18333 .. . 183 

1"909 x 1.83 = 3.49347 - 3.49 

The result is rounded off to three significant digits, as many 
as there are in the factor with the lesser number of significant 
digits. 
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Let us now compare the approximate result with the exact 
value of the product of the two fractions.
 

1IA- x 1. -. xL .- _ 3.50
 

Our approximate result 3.49 differs from the exact product 
3.50 by only one unit in the third significant digit. In fact, we 
expect the last significant digit of an approximate number to 
be questionable. Therefore, the result we obtained by rounding 
off the product to three significant digits, according to our rule 
for multiplication and division, is satisfactory. 

45-3 Division 

We now consider a problem leading to division of approxi­
mate numbers. Measurements show that the weight of a piece 
of iron is 491 grams and that its volume is 63 cubic centimetres. 
Find the weight of one cubic centimetre of this iron. 

491 -- 63 =779.... 7.8 
Here the dividend is an approximate number with three 

significant digits, the divisor an approximate number with only 
two significant digits. Our rule says that wc should preserve 
two significant digits in the quotient. 

Let us verify our solution by assuming that the unknown 
exact weight of the piece of iron is greater than or equal to 
490.5 grams and less than 491.5 grams, and that its unknown 
exact volume is greater than or equal to 62.5 cubic centimetres 
and less than 63.5 cubic centimetres. 

We know that any quotient of positive numbers decreases if 
we decrease the dividend or increase the divisor. Also, a 
quotient of' positive numbers increases if we increase the 
dividend or decrease the divisor. 

It follows that: 
490.5 - 63.5 = 7.724 ... is less than the quotient 
491.5 + 62.5 = 7.864... is greater than the quotient 

Let us make a general statement about the division of double 
inequalities. 

If a, b, c, d, e,fare any positive numbers such that 

c<a <d 
and f > b > e 
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then c 
 f<a+b <d+e
 

A number less than a 
 A number greaterthan a
is divided by a number is divided by a number 
greaterthan b. less than b. 

Do you see a similarity between this statement and the
statement involving subtraction of double inequalities?

Can you illustrate by an example that this is not necessarily
true if any of the numbers involved are negative?

Here is a solution of our problem using the statement about 
division of double inequalities. 

490.5 	< a < 491-5 
63.5 > b > 62.5


Therefore 490.5 + 
 63.5 <a + b < 491.5 : 62'5
 
that is, 7'724 ... <a +b < 7.864...
 

7.7 	<a +b < 7.9 
a-b 7.8 

We see that in the quotient 491 63 = 7.79 ... , obtainedat the beginning of our problem, the first digit is reliable, tilesecond digit is questionable and the remaining digits are worth­
less. We conclude therefore that our rounding off to twosignificant digits (7.8) is correct, and in accord with our basic 
agreement for recording approximate numbers.

We obtain the same result, if wt write "U" instead of the
unknown digits in the division. 

7'8 U 
63'U)491.UU 

441 U 
50 UU 
504U 

UU 

45-4 Operations with one approximate number and 
one exact number 

Our multiplication and division) rule can also be applied inmultiplication or division when one number is an approximate
number and the other is an exact number. For example, multiply
an exact number. A satisfactory answer is obtained by preser­

http:63'U)491.UU
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ing in the product four significant digits, the same number of 
significant digits as in the approximate factor. The number of 
significant digits in the exact number is simply not taken into 
account. 

Multiply the approximate number 24'3 by the exact number 
34. In the product 826.2 we keep three significant digits, 
because the approximate factor 24.3 has three significant 
digits. Therefore, the answer is 

24.3 x 34 -- 826 

We conclude with the following rule: 
When applying our multiplication and division rule to multiplication 

or division of an approximate number by an exact number, we keep in the 
final answer as nany significant digils as in the approximate number 
(and disregardthe number of significant digits of the exact number). 

EXERCISE 45-4A 
1. Find the products of the approximate numbers. 

a. 	 .53 b. 4.800 c. 1928 
•06 	 523 "00552 

2. 	For Question la, carry out the complete analysis using 
double inequalities. 

3. Find the product of the approximate number .431 and the 
exact number 54. 

4. A shop received 183 boxes. Each box contained 24 rpounds 
of oranges. Find the weight of the oranges received. 

5. Find the quotients of the approximate numbers. 
a. 06 - 2"3 b. 800 - 35 c..385 + 27 

6. 	Find the quotient of the approximate number 2,600 divided 
by the exact number 165. 

7. 	 Find the product .,x. in two ways. 
a. 	Represent the common fractions as decimal fractions and 

take each of them with a precision to the nearest thou­
sandth. 

b. 	Multiply the common firactions and represent the result 
as a decimal firaction. Then take it with a precision to the 
nearest thousandth. 
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8. 	 Find the quotient -+ with a precision to the nearest 

hundredth in two ways. 
a. 	Represent each common fraction as a decimal fraction 

with two decimal places. Divide the decimal fractions. 
b. Divide the common fractions and represent the quotient 

as a decimal fraction with two decimal places. 
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COMBINED OPERATIONS ON 
APPROXIMATE NUMBERS 

46-1 Introduction 

In the previous two chapters we learned how to add, sub­
tract, multiply and divide approximate numbers. Many simple 
problems, however, require a combination of these operations. 

For example, suppose measurement of the length, width 
and height of a parallelepiped gives the following approximate 
numbers: 

length, I = 34.7 'm. 
width, w = 26.8 cm. 
height, h =42.1 cm. 

To find the volume, V, of the parallelepiped we use the known 
formula. 

V = 1 x w x h = 34.7 x 26.8 x 42.1 cubic cm. 
We have to perform two multiplications using our rule for 

multiplying or dividing approximate numbers. First we find 
34.7 x 26.8. Then we multiply the product, an intermediate 
result, by 42.1 to get the final result. Note the distinction we 
make between the final result, obtained after the last operation 
is performed, and the intermediate results obtained at earlier 
stages. 

If we are asked to find the total surface area of the same solid 
we have 

S = (lxw)+(lxw) +(lxh)+(lxh)+ (w xl)+(wxh) 
= (2 x/xw)+±(2 xl xh)--(2 xwxh) 
= (2 x34.7 x26.8) +(2 x34.7 x42.1) +(2 x26.8 x42.1) 

Here we have to multiply six times and add twice. 
The rules concerning the order of performing combined 

operations on exact numbers are also valid for approximate 
numbers. Thus to find the surface area, S, we proceed in the 
following order. First we perform all multiplications, and then 

243 
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add the three terms of the sum. How many intermediate 
results will we have? 

Could we solve problems involving more than one operation 
on approximate numbers by rounding off the intermediate 
results by our rules? If we did this wouldwe increase the 
errors of our approximate numbers even more by rounding off. 
The accumulation of rounding-off errors could substantially
influence the final result. It turns out that in many cases of 
combined operations, this influence is greatly reduced in the 
final result if in each of the intermediate results we preserve 
one more digit than our rules for operations on approximate
numbers tell us to preserve. Let us underline these extra digits.
In the final result, however, we will reject the extra digit. 
Here is the rule we will use. 

INTERMEDIATE RESULT RULE 

In solving problems which involve more than one operation on 
approximate numbers, we preserve in the intermediate results one more 
digit than recommended by our rules for operations on approximate
numbers. li determining the number of significant digits in an inter­
mediate result, t.e extra digit is not counted, according to our basic 
agreementfor rounding off approximatenumbers. 

46-2 An example 

We will now illustrate this procedure for combined opera­
tions. Compute the value of the quotient 

2i- 1x 7 
" 6 1 8 

Let us first represent the given common fractions as decimal 
fractions and then round them ol to hundredths. We have 

2- = 2.8125 ... 2.81 
I --=-1"3888 ... , 1.39 

7= "2857... ;, "29 

Now we must compute 
2.8l x 1.39 

(281 - 1.39) x "29 
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(1) Intermediate result: (2) Intermediate result: 
2"81 2"81 
1.39 -- 39 

843
 
281
 
39059 
3.906 

(3) Intermediate result: (4) Final result: 
1"42 	 3 "90x + 4 1x

*29 9.48 9'5 
12 78 

4118 

.412 Final answer 9.5As the first operation, we multiplied two approximate num­bers with three significant digits each. But we rounded off theproduct to four significant digits, underlining the last digit (6)as the extra digit.
The second operation gave as a difference an approximatenumber having two decimal places and three significant digits.Note that there was no extra digit to preserve.As the third operation, we multiplied approximate numberswith three and two significant digits. The product was rounded
off to three significant dig-ts, the third digit (2) being marked
 

as an extra digit.

The fourth operation consisted in dividing 
an approximatenumber with three significant digits by an approximate num­ber with two significant digits (the extra digits do not enterinto this count). This gives the final result and therefore we
reject the extra digit, preserving only two significant digits.
Let us check our approximate answer by calculating theexact answer using the original common fractions. We obtain 

9- - = 9.603...We see, therefore, that in the approximate value 9.5 only thelast digit was questionable. This is in accordance with our basicagreement for recording approximate numbers. 
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EXERCISE 46-2A 
1. Perform the operations on the approximate numbers. 

a. 2"98 - (1.4 + '387) 
b. 23,000 - (2,645 + 15,300 - 1,639) 
c. (562 + 87) x 7 
d. 2.75 + (1.2 - .30103) 
e. 36,408 - (236 x 28) 
f. 5,325 x [(832,860 + 211) x 37] 
g. [4.5 - (.03 x 1.5)] + 7.8 

2. Find the volume, V, of the parallelepiped with length,
1= 34.7 cm., width, w = 26.8 cm., and height, h = 42.1 
cm. 

3. Find the total surface area of the parallelepiped in Ques­
tion 2. 



ANSWERS TO SELECTED PROBLEMS 

CHAPTER 22 

EXERCISE 22-2A 
4. 	 You cannot subtract § from both sides of . < 9, because ­

is not yet defined.
 

EXERCISE 22-6A 
4. 	 A somewhat formal way you could use would be this. Since 

a m a n 	 r c iti'f- Oland - - - X­0n b m\ n d n d m 
the equality 

a m c m 
b n 

is the same as the inequality 

a n C n
b m d m 

CHAPTER 23 

EXERCV'. 23-lB 
2. 	 a. 103 b. 10217 c. 4579 
3. 	 a. 122seven b. 140,en c. 211246seven 
6. 	 a. base three b. base five c. base six d. base seven 

EXERCISE 23-2C 
1. 	a..6 b. .5 c. .75 d. .625 

e..15 f. .84 g..62 h. "062 
i. 	 3"4 j. 2.5 k. 6'75 1. 1"125 
m. 2'25 n. 8.04 o. 18.42 p. 1'0625 

EXERCISE 23-2D 

1. 	a..5 b..25 c..75 d..6 
e. 	"7 f. '625 g. "3125 

2. 	 a.. 16 b. .142851 c. .i d. .0 

e.. f. .8 g.2-3846 
BCM2-R 	 247 
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EXERCISE 23-3A2. a. 3 . d 

3. a..1 b..-111 ... 

e. 3 f. 333... 

CHAPTER 24 

EXERCISE 24-1A 
1. a. 813 b. 44.8 

EXERCISE 24-IB 
2. a. 2.3 is greater by 0.71 

c. 0"12 is greater by 0.1183 
3. a. 12.42 inches 

EXERCISE 24-2B 
1. a. b.7 0.9 

e. 0.07 f. 0.309 
2. a. 3200 b. 750 

e. 7.63 f. 0'762 

EXERCISE 24-3A 
1. a. 44.4 b. 729.84 c. 2.01 
2 . a. 3 b. 1 c. 8 

g.O h. 3 . 40 
3. a. 42 b. 5.27 c. 29 

EXERCISE 24-3B 
2. a. 8'655 b. 1772 
3. a. 0"6595 b. 12.336 

EXERCISE 24-4A 
1. a. 0.6 b. 5.6 c. 0.03 

g. 79 h. 1.44 i. 0.005 
2. a. 8"3366 b. 0'115605 c. 

EXERCISE 24-5A 
2 . a. 40 b. 70 c. 600 

g. 50 h. 1100 i. 33 
3. a. 1'46 b. 0.21 c. 55.37 

.JJ1.7 .3 g. 17 h. L) 

c. "2 d. '222 ... 

g. 4 

c. 126.62 d. 23.458 

b. 87.32 is greater by 63.202 
d. 0"3 is greater by 0132 
b. 2.41 inches 

c. 3.2 d. 57.2 
g. 9'732 h. 10.572 
c. 12 d. 1940.1 
g. 79'321 h. 0.01 

d. 58.21 e. 12,74 f. I 
d. 10 e. 50 f.8 

d. 5.69 e. 0.25302 f. 6.904 

c. 0"857 
c. 0.77 

d. 0.01 e. 0'2 f. 9.9 
j. 0.15 k. 0"714 1. 10 

506.11 d. 0'0001218 

d. 8 e. 800 f. 0'08 

d. 0.98 
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EXERCISE 24-6A 

.Percentage 50 25 12 1 75 20 10 

Common fraction 1 9 1 T A 

Decimal fraction 0-5 0-25 0-125 0-75 0-2 0-1 

Percentage 5 21 33A 60 35 
Common fraction -., 0 4 1 2 ) 

Dec.mal fraction 0.05 10025 0.3 06 035 

2. a. C4-1 b. ;,4. c. 502 shillings d. $12-48 

EXERCISE 24-61B 

2. a. 665 0, b. 40%0, c. 400% d. 80% e. 32% f. I1% 
g. 7% h. 53A-/(' 

3. a. 3 minutes b. 91 days c. 32 shillings 
4. a. 11 % b. 50%/, c. 300% d. 80% e. 9% f. 68J-marks 
5. a. 16 b. 180 c. 2,3076 d. £1765.6 

CHAPTER 25 

EXERCISE 25-lA 
1. 3 2. No whole-number answer 
3. 7 4.7 
5. No whoic-number answer 6. No wholc-numbcr answer 
7. 0 

CHAPTER 26 

EXERCISE 26-3A 
1. a. Latitude S 30' b. Longitude E 450 

c. Temperature 150 below zero d. o minutsbefore thehour 
e. A loss of 7 shillings f. A gain of 50 shillings 

2. a. posI b. neg ll c. neg 17 d. pos 73 
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e. 	 neg 129 f. pos 8 g. neg 42 h. neg 9 
i. 	 neg 23 pos 14 k.j. 	 zero 

EXERCISE 26-4A 
1. 	a. pos 6 < pos 10 b. neg 6 > neg 10 

c. 	 pos 15 > neg 15 d. neg 15 < pos 15 
e. 	 neg200>neg 1000 f. 	 0 >neg3 
g. 	0-<pos8 h. 	negll <0 

EXERCISE 26-4B 
1. 	a. The first place is north of the second place.

The second place is south of the first place.
b. 	My watch is ahead of my friend's watch.
 

My friend's watch is behind my watch.
 
c. 	 The man on the platform is below the man on the ground.

The man on the ground is above the man on the platform.
d. 	Noon today is colder than noon yesterday.
 

Noon yesterday was hc.f',er than noon 
today. 
e. 	Kofi starts ahead of Kwesi.
 

Kwesi starts behind Kofi.
 

EXERCISE 26-4C 
2. 	 neg 5 > neg 8; pos 5 -< pos 8 
3 .	 pos 2 <posll; neg2 >negll 
4. 	 pos2 >neg 11; neg2 <posll 
5. 	 pos 7 > 0; neg 7 < 0 
6. 	 0 > neg 2; 0 <pos 2 
7. 	 negG < neg 1; pos6 > pos 1 
8. 	pos 10 > 0; neg 10 .< 0 

EXERCISE 26-5A 
1. 	a. {pos 21, pos 22, pos 23, pos 24} b. 	{pos 1, 0, neg 1)

c. 	 {neg2, negl} d. {neg 6} e. { } !F.{ } g. {posl) 
2. 	 a. Set of integers between neg 3 and 0 

b. 	Set of integers between pos 18 and pos 23 
c. 	 Set of integers between pos 2 and neg 2 
d. 	 Set of integers between neg 1 and pos I 
e. 	 Set of integers between pos 101 and pos 102 

CHAPTER 27 

EXERCISE 27-1A 
I. 	 a. pos6 b. pos7 c. pos4 d. pos3 e. pos2 f. pos8
2. 	 a. pos4 b. pos4 c. pos4 d. pos6 e. pos6 f. 0 
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EXERCISE 27-2B 

1. a. 	pos 3 b. negI c. 0 d. pos 6 
e. 	 pos 3 f. neg 2 g. neg 8 h. pos 6 
i. 	 0 j. neg6 

EXERCISE 27-2C 
2. a. 	pos 2 -pos 1 =-0; pos 2 - pos I pos I 

b. pos 3 - neg 5 = [l; neg 5 -1-pos 8 = pos 3 
c. 	0- neg4 E]; neg4 -- pos4 =0 
d. neg 1 - neg5= i]; neg 5 -neg 4 = neg I 
e. 	 pos 3 - 0 = : 0 + pos 3 =pos 3 
f. 	pos I -pos7 E;pos7 - pos6== posI 
g. 	neg 3 - pos 3 = E; pos 3 -- pos 6 =neg 3 
h. 	neg 11 - neg 2 E]-;neg 2 + neg 9 = neg 11 

3. 	 a. N 29 - S 500 [l; S 50' ± = N 290; 
S 50 + N 790 - N 290 

b. 	3.10 p.m. - 2.55 p.m. = El 
2.55 p.m. + E1l- 3.10 p.m. 
2.55 p.m. + 15 min. = 3.10 p.m. 

c. 	 -53 ft. - 0 = E]; 0 + E] = -53 ft.;
 
0 -- 3 ft. = -53 ft.
 

d. 95' - 1020 - El; 1020 + E] 950;
 
1020 - 70 = 950
 

e. 	 5 ft. ahead - 5 ft. behind El
 
5 ft. behind -- El 5 ft. ahead
 
5 ft. behind + 10 ft. = 5 ft. ahead
 

EXERCISE 27-3A 

1. a. 	The set of integers is closed under addition. 
b. The set of integers is closed under subtraction. 

2. 	 The set of fractions, excepting 0, is closed under division. 

EXERCISE 27-3B 

i. a. 	pos 3-- E-I =0 b. neg3 - Fos =0 

c. 	Fneg -- posl =0 d. o -'neg5-=0 

e. -1- 9 = 0 f. [-- 0 = 0 g. opposites 

hI 
neg3 neg2 neg 1 0 posl pos2 pos3 

. Their sum is 0. 
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EXERCISE 27-3C 

I.a. pos3 -- posI po7 

pos 3 -F neg I -= 2 

pos3 -pos I pos 3 q- jn 
b. 	neg 3 -!ncg I ig4 

neg 3 - pos I 
neg 3 neg I =neg 3-­

c. 	 poS 2 pos 6 11g 

pos 2 neg 6 Eiji 

pos'2 pos 6 pos 2 -- [E0 
d. 	0 -pos 7 = cg7 

0 -- ieg 7 g 

0 -pos 7 - +I g 7, 
e. 	 0 -neg 7 pos7 

0+ Epos-7 =pos7 
0 - -- +­-neg 7=0 

CHAPTER 28 

EXERCISE 28-3A 
2. 	 a. -4 b. 2 c. 0 d. 	(-6) 

EXERCISE 28-4B 
1. 	a. pos 3 + neg4 pos 3 - (opp. ofneg4) 

= pos 3 - pos 4 
= neg I 

or 3 -F (- -4) = 3 - [opp. of(--.4)]
 
3- 4 (--1)


b. neg 3 + neg 3 neg 3 - (opp. of neg 3)
 
neg 3 - pos 3
 
neg 6
 

or (-3) + (-3)= (-3) - [opp. of (-3)] 
= (-3) -3 
= (-6) 
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c. 	 0 + neg 1 0 - [opp. ofneg 1] 
= 0 - [pos 1] 

neg 1 
orO + (-1) 0 - [opp. of (-1)]

=0-I 
= (-1) 

d. 	 0 - neg 4 = 0 + [opp. of neg 4] 
= 0 + [pos 4] 
= pos 4 

or 0 - (-4) = 0 + [opp. of (--4)] 
=0+4 
=4 

e. 	pos 3 - neg 2 = 
= 
= 

or 3 - (-2) = 

pos 3 - [opp. of neg 2]
 
pos 3 -- [pos 2]
 
pos 5
 
3 - [opp. of (-2)]
 

-3+2
 
=5 

f. neg 5 - neg 2 = neg 5 + [opp. of neg 2] 

or 	-5 - (--2) 

g. neg 2 - neg 2 

or (-2) - (--2) 

h. 	neg 7 - neg 3 

or (-7) + (-3) 

EXERCISE 28-5A 

1. 	a. pos 8- neg3 

= neg 5 + pos 2 
= neg 3 
= (-5) - [opp. of (-2)] 
= (-5) d- 2 
- (-3) 

neg 2 - [opp. of neg 2] 
= neg 2 - pos 2 
=0 
= (-2) -![opp. of (-2)] 
= (--2) + 2 
=0 
= 	 neg 7 - [opp. of neg 3] 

neg 7 - rpos 3] 
-neg 7-- pos 3 
-=neg 10 
= (-7) - [opp. of (-3)] 

(-7) -- 3 
-	 -10 

-8- (-3) = 8-+ 3 = 11 
b. 	neg 3 -- (neg 2 4 pos 1) - neg 3 -+ neg 1 = neg 4 = (--4) 
c. 	[7 + (-2)] +8 = [7 - 2] - 8 =5- 8 = 13 
d. 	(-4) - [(-2) - (-1)] 7= (--4) + [(--2) -- 1] 

--(-4) - (-3) = (--7) 
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e. [(-3)- (-5)] - (-3) = [(-3) + 5] + 3= 2 + 3f. (-8)--[(-4)+ (-2)] = (-8) [(-4)- 2]
=(-8)- (-6)
= (-8)+ 6=(-2)
2.a. (-2)- (3 - 8)= (-2)+ 8 - 3) = (-2)+ 5 = 3
b. 6 - (2- 1) = 6 + (I - 2) 6 - I = 5c. (-4) -[(-2) - 6]= (-4)+ [6 - (-2)
 
d. 8 - [5 - (-4)] = 8 =+ (-4)[(-4)+-[6+2]5] - (-4) +8 =4= 8 +}(-9) =--(-1) 

CHAPTER 29
 

EXERCISE 29-2A 
1. 11 2. (-3) 3. (-8) 4. 5 5. 11 6. 1 

EXERCISE 29-3A 
a. (-10) b. 24 c. (-21) d. 18 e. (-99) f. 136 

EXERCISE 29-4A 
a. (-2) b. (-6) c. 3 d. (-6) e. 2 f. (-6) g. -3 

CHAPTER 30 

EXERCISE 30-IA
 
Those using integers: 1, 3, 4, 6, 8.

Those needing new numbers: 2, 5, 7.
 

CHAPTER 
 31 

EXERCISE 31-IA1. - -17 - 2 . 38- 3 . 2 02- 4. -1 5. 0 6. 

EXERCISE 31-2A 
-"'27"o -- J, -- 3, 0, 4A, i 

T-6' , TU 7, - 10 

CHAPTER 32 

EXERCISE 32-IA 
1. -L- 2. 0 3..T 4. 5.0 6. -1 

EXERCISE 32-2A 
71 2. 3. - ~ 4. _j 



Answers to Selected Problems 255 

EXERCISE 32-3A 
1. - - 2. 3.. 7 4. 3 5. 0 6. 1d 1 8 3 i . 6 

EXERCISE 32-3C 
" 1. -9-. 2. In 3"t4 

115 - 3. 4 

EXERCISE 32-4A 

. -- 2. -: 3. - 4. -- 5. -24 6. 1 

EXERCISE 32-4E 
1. 1] 2. -' 3. 1"7 4. -2 

CHAPTER 34 

EXERCISE 34-IA 
1. a. Not closed under any 

b. Under addition, subtraction and multiplication 
c. Under addition and multiplication 
d. Not closed under any 
e. Under addition, subtraction and multiplication 
f. Closed under multiplication 

CHAPTER 35 

EXERCISE 35-lB 
1. (ii) a. -A and -!, same number 

b. _L.2 and I is larger 

c. t and -- ,Q,5 is larger.
d. A and A, A, is larger. 

(iii) a. b. e.0 C. d. 
2. 

2 

. 
. 

;91; L; 3 

c. -1-+ 4 5-; - , 1. -- 32; 31 + 2 

EXERCISE 35-1 C 
1. 0.035, 0.35, 1.035, 1.35, 2, 2.25, 3.5, 10.35, 17.5 

EXERCISE 35-2A 
1. a. False b. True -16 = 32 -P (-48) c. False 

d. False e. False f. False g. False 
h. True -25 = 26 + (-51) i. True 36 = 0 - 36 
j. False k. True -3 =-6 -P-3 1. False 

IDCM :-i-R 
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m. True - 0 + 
n. True [-4+ (-2)] [-2+2] + (-6) o. False 

3. a. > --N 4 

b. 2.5 > -5.5; 2.5 -5 	+ 8 
d .C. - >.--:.- :1 3. 
d. 
e. > -5; -5 
f. 3.75 > 2"25; 3.75 - 2"25 	- 1.5 

5.a. 6 >-3; -3 < 6 
 b. -2 > -8; 	 -8 < -2c. 0 >4; -4 	<0 d. 12 >9;9 < 12 
e. 3.25 > 3-3 <.3 . f. ;< 
g. -9 >--12; -12 < -9 h. 	2 >-8;-8< 2 

EXERCISE 35-4A. 
1. < 2. = 3. > 	 4.> 5. < 6. < 7.= 8.> 

EXERCISE 35-4B 
1.a. -5.2 < 	0 < 2.5 b. - I < 

c. I< A< d. 2"05<2.25<25 
e. -6<4<5 f. -- < A3 g. - -2< 1 

EXERCISE 35-4C 
%<-!J!! b. - >--Ta. c. - > 	 d ­ -


EXERCISE 35-8A 
1.a. > b. 	< c. > d. > e. > f.< 	 g. < h. < 

CHAPTER 36 

EXERCISE 36-2A 
l.a. "11111... 
 b. .010101... 
 c. "001001... 

d. "4545... 
 c. 142857142857...
 
f. '285714285714... 
 g. "027027...
 

EXERCISE 36-3A 
,-b.
1. .- -" 34 = -20
' T
U-u.' T Tf d. 

h. -o
2. a. 222 ... 2x (.111. ) 

=2 X 2­

b. 	 2323 ... 23 x (.0101 ...)
 
-
= 23 x (U-) 	­

c. 	 .234234.... 234 x (.001001 ... )
 
="234x = " = 2n
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EXERCISE 36-4A
 

Some possible answers are:
 
a. .2020020002... 
b. 01011011101111...
 
c. .030330333... 
d. •100100001000000100...
 

(ones at 1st, 4th, 9th, 16th places and so on) 
e. The same as d. with l's replaced by 2, 3, 4....or 9. 
f. .234567891011 ... g..34567891011 ...
 

CHAPTER 37
 

EXERCISE 37-lA 

Successive trials might be 
"
-, -7 + 4 -7 168 

' 2 

EXERCISE 37-2A 
a a a= 3b Alo a <if × =3,then/ = a /As, 2. 
b a b a b' 

Let a be in lowest terms. Then a, the denominator on the right,
E 

must be one of b,2b, 3b, 4b and so on. a 

That is, a must equal one of 1,2,3,4, This isimpossible 
a 

since a must lie between I and 2. 

CHAPTER 38 

EXERCIsr. 38-2A 

1. [(-3) + 3] x a= [(-3) X a] + (3 x a)
0 x a [(-3) x a] + (3 x a)
 

0= [(-3) x a] + (3x a)

Hence (-3)x aisthe opposite of 3 x a,that is,
 

(-3) X a-= -(3 x a)
 
2. By Question 1, 

7 = (-3) x (3) -(= 3 X
 
7
 

Hence, 3 x ( 7
 

7 _ (--7)
and 7 3 

(-3) 3 
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3. 	 a + 0 = a (AO)

This holds for all values of a, in particular for a 0. Hence, 
0+0=0 

EXERCISE 38-4A
 
. Ifa<b 
 b=a+p wherep >0


Then bXc=axc+pxc

sincep >0 and c >0, p x c >0 [0'2] 

[D]
 

Then by definition, a x c < b x c 

2. 	 Ifa<b b=a+p,p>0
 
Ifb <c 
 c = b +p',p' > 0
Then c = (a +p) +p' 

= a + (p +p')
Since p > 0 andp' > 0 

P+p'>0 [0']

Hence, by definition, a < c, as required.
 

3. 	 Given a and b, any two real numbers, consider the real number 
c = a ­ b. By [0'3], there are three possibilities: 

c = 0 
c >0 

or c< 0
 
That is, 
 (1) a - b = 0 

(2) a - b > 0
 or (3) a - b < 0
 
Nowa= (a - b) + b.
 

(1) 	Ifa - b = 0, a = b
(2) 	 If a - b > 0, a - b is a positive number p so that a = > bp + b. This means by definition that a
(3) 	 Ifa - b < 0, b - a >0
 

Since (b-a) +a= b
 
b = a + a positive number.
 
By definition then, a < b
 



259 Answers to Selected Problems 

CHAPTER 39 

EXERCISE 39-3A 
1. a. 21 b. 25 c. 104 d. 254.5 e. 62.6... f. 255.7... 
2. d. 254 e. 621 f. 255j 

EXERCISE 39-4A 

1. 275"4 
2. The (2) and (7) are reliable. The (5) is questionable, and the 

(4) is worthless. 
3.275 books
 

EXERCISE 39-4B
 
E means exact, A means approximate.
 

1. a. E b.A c. E d.A e.A f.A g.E
h.A i. E 	 j. A k.A 1. A m. A 

3. 140 steps 
4. 	 b. Counts Deviationfrom average
 

574 
 2.8 
562 9.2 
573 1.8 
567 4.2 
580 8.8 
571 
 "-2
 

Average 571.2 Average deviation 4.5
 
Reliable digit: 5 Questionablc: 7 Worthless: 1.2
 

CHAPTER 40 

EXERCISE 40-3A 
1. a. 254 b. "25 c. 52.0 
2. a. 2"8342 c. 2.834 pounds 
3. a. 2661.25 c. 2660 

CHAPTER 41 

EXERCISE 41-3A 
8. c. 340, 6800, 47"10, 9'002 9. 7"7 
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CHAPTER 42 

EXERCISE 42-2A 
1. *007 2. "006, "0007, 00003 *1%3. 4. 5'29, -005, "09%5. The same 6. The second 7. .8% 8. 1.6% 

CHAPTER 43 

EXERCISE 43-5A 
1. 2, 2, 3, 4, 4, 4, 4,5 2. 3,3, 4, 5, 5, 5, 5,6 3. 3, 3, 4, 4,6
4. Decimal places 1, 2, 3, 2, 3, 2, 2, 3, 4, 2, 3, 3

Significant digits 2, 2, 3, 3, 4, 5, 1, 1, 1, 3, 4, 4

Decimal places 
 3, 4, 3, 3, 3, 2
 
Significant digits 
 2, 4, 3, 4, 6, 6 

5. Decimal places 1, 2, 3, 2, 3, ) 2, 3, 4, 1, 2, 2
Significant digits 2, 2, 3, 3, 4, 5, 1, 1, 1, 2, 3, 3

Decimal places 
 2, 3, 1, 1, 1, 1
 
Significant digits 
 1, 3, 1, 2, 4, 5 

CHAPTER 44 

EXERCISE 44-3A 
1. a. *56 b. 37800 . 3590 
3. a. 1160 b. 4'82 c. 8.52 
5. 2,750 yards 6. 6,400 7. 13.92 yards 8. 1.88 pounds 

CHAPTER 45 

EXERCISE 45-4A 
1. a. b.'03 2,500,000 c. 10.6 
3. 23.3 4. 4,400 pounds 
5. a. .03 b. 20 c. "014 
6. 16 7. 1.848 8. "47 

CHAPTER 46 

EXERCISE 46-2A 
1. a. 1.2 b. 7,000 c. 50 d. 3"6 

e. 5.5 f. 150,000 g. -57 
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