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PREFACE
 

This Teachers' Guide, like the text which it accompanies, was pre
pared at a study and writing workshop held during the summer of 
1964 at Entebbe, Uganda, in which mathematicians and teachers 

from all English-speaking countries of Tropical Africa, the United 
States, and the United Kingdom participated. This material is in
tended to follow Malhematics Secondary Two and Matbematics 
Secondary One which were prepared at similar workshops during 

the summers of 1963 and 1962. 

I. 	 Preliminary Nature of This Material 

Material produced for use in the schools must be considered 

to be preliminary until it has been tried out in classrooms and modi
fied in accordance with such experience. The Student Text and 

this Teachers' Guide for MAVHEMATICS SECONDARY THREE will 

be subject to considerable correction and improvement in the light 
of suggestions from the teachers who us6 them. 

This means that the teacher who uses this material has the 
responsibility, in addition to helping interpret the new material to 

the students, of helping identify the areas where improvement is 

needed. In partial reward for this burden, the teacher will have the 
satisfaction of knowing that he or she is taking part in an experi

ment which is of great potential value. 

II. Emphasis on Mathematical Ideas 

In recent years there has been accumulated much evidence 
that young students are far more interested in mathematical ideas 

than they have usually been given credit for, and that they are far 

more competent to deal with such ideas than the current curricula 
would suggest. A presentation of mathematics which puts its 

emphasis on concepts rather than the rules of manipulation is 
likely 	 to lead to far greater satisfaction on the part of the student, 
anG will also lead to greater mathematical competence. 

III. 	 Content of the Text 

The subjects of geometry and algebra are treated in these 
two volumes; one is devoted to geometry and the other to algebra. 

The material is arranged so that there is considerable flexibility in 

the order in which topics are studied. It is anticipated that any of 
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the following three procedures could be used in a year's course: 
1. SECONDARY THREE GEOMETRY can be studied in its 

entirety, followed by SECONDARY THREE ALGEBRA. (This order 
could be reversed, although Chapter I of GEOMETRY should be 
studied before beginning SECONDARY THREE ALGEBRA.) 

2. The two volumes can be used simultaneously, devoting 
two or three periods a week to one volume and the balance of the 
time to the other. 

3. Unit 1 (Chapters 1 and 2) of GEOMETRY can be com
pleted, followed by Unit I (Chapters 1 to 7) of ALGEBRA, then
 
Unit 2 (Chapters 3 to 7) of GEOMETRY, Unit 2 (Chapters 8 to 11)
 
of ALGEBRA, and so on.
 

If the first arrangement is followed, the time should be
 
watched closely, inasmuch as these volumes may include more
 
material than can be covered in a year's course. It would be better 
to leave part of the GEOMETRY undone and spend approximately 
equal time on ALGEBRA and GEOMETRY than to complete the 
GEOMETRY and find only a few weeks left to devote to the 
ALGEBRA. 

The treatment of geometry is formal, adhering to standards 
of rigour which seem appropriate for students at this level. Many 
of the ideas will be familiar from the informal geometry of Alatbe
matics S'condar'y Two and some will be new. The emphasis in the 
classroom should be on the understanding of the properties -and 
their proofs and on developing the ability to solve riders, i~ot on 
rote memorization. Additional material in geometry will be treated 
in subsequent textbooks in this series. 

The treatment of algebra continues the start made in ,lalhe
matics Secondary One and T o to develop algebra as a unified 
structure. Techniques and concepts are all related to a few basic 
ideas with emphasis on wby the numbers behave as they dL. We 
try to be mathematically sound but at the same time the develop
ment is gradual with an effort to involve the students actively. In
stead of just telling the ideas to the students outright, the teacher 
should use problems and careful class discussion to help the stu
dents recognize the ideas for themselves. 

IV. The General Approach 
The best education is the education that the student creates 

from his own direct efforts. The teacher should resist the tempta
tion to tell the class exactly what to do and how to do it. It is in
deed a great temptation, for by such means a class will appear to 
be proceeding at a rapid pace. If the teacher takes the time and ef
fort to lead the student to think through the idea himself without 
telling him outright, there is considerably more assurance that the 
idea will be mastered and retained by the student and will become 
truly his own. 
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Here again the demands on the teacher are greater. The 
teacher, like the student, must be thinking at every moment, for it 
takes far more insight to lead than to tell. This Guide is intended 
primarily to assist the teacher in the actual conduct of the class,' 
by methods which are chosen to encourage student imagination and 
to generate student interest. In addition the Guide contains mathe
matical background and explanatory material beyond that given in 
the Text. Answers to the problems are provided. 

V. Relationship to Other Materials 

The Text is based on the assumption that the student has 
studied from AIatb eme tics Secondary Two. If a student has not 
studied all of the earlier text it may be necessary to go back and 
study portions of that book. However, the student can make good 
progress in the present Text without having a co:iplete mastery of 
Mathematics Secondary Two. 

T-is Text is designed to prepare the student for further 
mathematics in either the conventional school curriculum or in cur
ricula which will be prepared in the next few years to follow upon 
this text. It is also designed to conform to the requirements of the 
present examinations. 

It should be emphasized that this modified curriculum repre
sents a great opportunity for teacher and student alike. In making 
use of it the school participates in a great experiment to help de
velop a strong African educational system of which we can be 
proud. It is a massive joint undertaking, in which students and 
teachers work side by side with mathematicians of international 
eminence, from their own country and from a dozen others, to create 
within Africa something that will be of major significance for Africa 
itself, and in a large measure for all the world. 
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Would you please fill out one of these forms for each chapter of Secondary material as you
complete the chapter. Send it by air mail to Educational Services Incorporated, African Education Pro
gram, 108 Water Street, Watertown, Massachusetts 02172, U. S. A. Your comments will help us to im
prove and to rewrite the material for further use. 

Please respond to all parts of this report. 

Name of Teacher 

Name of School 

School Address 

Date 

Chapter Number --.--- _---in Secondary Book -Volume .... 

Chapter Title 

Number of classes in which you teach the Entebbe Mathematics Workshop Secondary Materials 

Number of pupils using material Number of periods each class meets per week._ . 

Length of class period minutes. Class periods used teaching the chapter 

The pupils of my class are of the following ability level (tick one of the following): 

fast _ , slow , medium .__._, mixed ability 

My pupils have had, on the average, years of schooling before this present year. 

To the best of my judgment this chapter is (tick one of the following): excellent ., 

good _____, fair , poor---., or extremely poor - . 

Why did you rate the chapter in this way? (If you need more space than is provided here, please use an 

additional sheet.) 

If you used any supplementary materials in teaching this unit, please describe them. 
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STUDENT TEXT
 

Please indicate the specific sections which need improvement and how you would recommend 
improving them. 

Questions Comments 

1. 	Should this whole chapter be
 
omitted? Why?
 

2. 	Name specifically any ideas 
which you think ought to be 
in this chapter but which are 
not there. Why should they 
be included? 

3. 	Name specifically any topics 
in this chapter which you 
think should be omitted. Why 
should they be omitted? 

4. 	 Give the section and page 
number of any part of this 
chapter where you think the 
explanation is not clear 
enough. What suggestions 
do you have on how to make 
it more clear? 

5. 	Indicate which sets of prob
lems need more problems to 
give adequate practice. What 
kind of problems are needed? 

6. 	 Indicate by page and number 
any problems which you 
think are too difficult and 
problems which you think are 
too easy. 
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STUDENT TEXT 

(continued) 

Questions 	 Comments 

7. 	 Indicate any problems or il
lustrations which are inef
fective because they use 
words or ideas which are un
familiar to your students. 

For instance, a child who
 
had never been to sea in a
 
schooner would not much ap
preciate a problem about the
 
area of the jib and the fore
sail and the mainsail. For
 

the examples which are in
appropriate for your children, 
can you suggest local situa
tions which would be more 
appropriate in the example. 

TEACHERS' GUIDE 

Questions 	 Comments 

1. 	in what parts of the chapter 
were the suggestions on how 
to teach the material not suf
ficient to help you teach it 
effectively? What sugges
tions have you for improving 
those parts? 

2. 	 In what parts of the chapter 
were the suggestions on 
teaching the material trivial 
and unnecessary? 

3. 	 In some places in the Teach
ers' Guide there are discus
sions for the teacher of the
 
mathematical background,
 

going more deeply into 'he
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TEACHERS' GUIDE 

(continued) 

Questions 	 Comments 

3. 	 (continued) 

ideas than one would with
 
the students. Indicate by
 
section and page number:
 

(a) 	 which of these discus
sions were not clear
 
enough to be helpful,
 

(b) 	 which were too brief and
 
need to be expanded,
 

(c) 	 which were unnecessary
 
for you and might be
 
omitted,
 

(d) 	where no such discus
sion was given where it
 
was needed.
 

4. 	 Indicate any answers to
 
problems which were not suf
ficiently clear or complete.
 

Would you please write any other comments which you believe might be helpful in rewriting 
this chapter. 

EDUCATIONAL SERVICES INCORPORATED
 
African Education Program
 

108 Water Street
 
Watertown, Massachusetts 02172
 

U.S.A. 
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Deductive Reasoning ° UNIT I
 

Chapter 1 
DEDUCTIVE REASONING 

This chapter aims at giving the students an introductory and in
formal approach to the idea of proof and implication, so that they 
will have some feeling for the developments in ALGEBRA and 
GEOMETRY. Not more than three or four lessons should be spent on 
this chapter now, but the students should be encouraged to refer 
back to it from time to time. For example, when they first consider 
the converse of a theorem or an indirect proof in geometry, they 
should look back a,. this chapter. In ALGEBRA, they will meet the 
Theorem on Factors of Zero. It will help them then to take another 
look at this chapter. Later on, in Chapter 8, they will meet the 
ideas spoken about here, more fully, although strictly speaking there 
will be no formal logic in this year's work. 

1-1 Inductive reasoning 

Much of the work that is done in the first one or two years of 
secondary school appeals to inductive reasoning. Before we formu

lated the postulates for a field we looked at many special cases 
showing, for example, the commutativity and the associativity of ad

dition and multiplication, the distributive property, and so on. At 
this stage, it may be profitable to point out that we have not proved 

the Field Properties for the set of real numbers with the operations 
of addition and multiplication. In fact, the Field Properties are a 
set of postulates for the arithmetic of real numbers in the same way 

that the postulates which will be spoken about in this text are the 

basis for development of geometry. 



Indeed if we look carefully at the way in which we developed 
the arithmetic of integers and later rational numbers, we realise 
that, having defined these numbers, we gave meaning to the opera
tions of addition and multiplication by demanding that the Field 
Properties be satiisfied. 

Mention is made of Goldbach's conjecture to give the student 
some little insight into the way in which mathematics can develop. 
Students who find this interesting might also enjoy reading parts of 
Men of Mathematics by E. J. Bell (Simon and Schuster, New York, 
1961 [also available in paperback]). In particular, the chapter on 
Fermat would be appropriate reading. 

1-2 An example of what we mean by a proof 

This section ahims at bringing out the idea of what is needed to 
make a proof. The proof is not given here, as we would like those 
readers who are interested to discover as much as they can for them
selves. The proof is given in Section 1-4. 

1-3 Definitions 

Already in their earlier work and repeatedly in this year's 
work, the students will meet definitions set out formally. For that 
reason we have tried here to show them the way in which they will 
see definitions set out later. It should be stressed that we do not 
prove definitions. As the text says, a definition gives the meaning
of a new word or symbol in terms of words or symbols they already 
know. There are two examples in the text - many more come to 
mind. For instance, when we understand the word ray we can define 
the word angle. When we have the integers, we can give meaning to 
symbols like 2 3 . When we have the real numbers, we can say what 
we mean by N/2- or \/4-. 
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______________________ Answers to 

PROBLEMS 1-3
 

1. 	 a. A factor of a positive integer is one of two positive integers 

which when multiplied give that integer. 

b. A prime number is a number with exactly two different 

factors.
 

c. 	 A pair of lines are parallel when they are coplanar and do 

not intersect. 
d. 	 An angle is the union of two rays with a common endpoint. 

e. 	 A carnivore is an animal which eats meat. 

f. 	 A quadruped is an animal with four feet. 

g. The 	empty set is the set which has no members. 

h. 	 A circle is a set of coplanar points all the same distance 

from 	a fixed point. 

1-4 	 Deductive reasoning 

In this section, a formal proof is given of the statement that 

the sum of two odd integers is an even integer. The students should 

find the work easy. They should, however, try to understand the 

generality of the statements which they are making and that what 

they 	prove is true for the sum of all pairs of odd integers because 

the definition holds for all odd integers and the Field Properties 

used are valid for the addition of all pairs of numbers. In making 

the 	proof, nothing but the definitions and Field Properties are used. 

Answers to 	 'St _______ 

PROBLEMS 1-4 

These problems are set to show patterns and to encourage their 

discovery as well as to show deductive methods. 

1. 	 This is a simple problem that should offer no difficulty. The 

answer is 9 years, because 9 is the number that has to be 

added to 8 to give 17. 
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2. 	 This problem is set to give those students who were not able 
to make the proof in Section 1-2, a chance to derive a fairly 
straightforward proof for themselves. 

Since p and q are even integers, they may be taken to be 
2m and 2n where m and n are integers. Their sum is then 
2(m + n), which is an even integer. Encourage the students 
to write the reason for the step they have to take so that they 
can understand the generality of what they are doing. Nor
mally, of course, they will do calculations applying to the 
Field Properties mentally. 

3. 	 The hint should guide the pupils to taking the integers n and m 
to be of the form 3r and 3s where r and s stand for integers. 
They should give the reason why 3r + 3s = 3(r + s). The 
general statement is that the sum of two integers which have 3 
as a common factor also has 3 as a factor. 

4. 	 If n is the number Tunde thinks of, when he has added 9 he 
gets n + 9, multiplying by 2 gives 2(n + 9) and adding 6 gives 

2(n + 9) + 6. Now division by 2 gives 2(n + 9) + 6 

(n + 	9) + 3 = n + 12. Thus, taking away n always leaves 12. 
5. 	 Any even integer can be represented as 2m, where m is an
 

integer. Its square is 2m 4m 2
x 2m 	 = and is divisible by 4. 
6. Each of the numbers 32, 52, 72, 92 leaves a remainder 1 when 

divided by 4 or by 8. 

The hint makes the problem of proving that the square of 
any odd number leaves a remainder of 1 when divided by 4 
fairly straightforward. The 	text does not ask about the re
mainder when the divisor is 8. This takes a little more work, 
but if 	any pupil is interested he could try to prove that it is 
always 1. The proof goes like this: 

(2n + 1)(2n + 1) = 4n 2 + 4n + 1 

= 4n(n + 1) + 1 
Of the numbers n, n + 1, one is odd and the other even. Thus 
n(n + 1) is even and so has a factor 2. Then 4n(n + 1) has a 
factor 8. 

4 



7. The numbers (2 x 3) + 1, (2 x 3 x 	 5) + 1, 

(2 x 3 x 5 x 7) + 1 are all prime numbers. It is ciear that 

2, 3, 5, 7, 11 are not factors of (2 x 3 x 5 x 7 x 11) + 1, be

cause each leaves a remainder of 1 when divided into that 

number, 
8. It is clear that 2, 3, 5, 7, ... , p are not factors of 

(2 	 x 3 x 5 x 7 x ... × ") + 1 (= N, say), since each leaves 

cases considered ina remainder 1 when divided into N. in the 

Problem 7, N was prime. For larger values of p, N may not be 

prime. However, it follows that if q is a prime factor of N, q 

must be greater than p, because we defined 12, 3, 5, 7, . .. , p 

to be the set of all prime numbers less than or equal to p. 

Then q may be N itself or it may be a prime number lying be

tween p and N (clearly, N is a number greater than p). 

This argument shows that there is no largest prime num

ber. for if we assumed that p were the largest, we would arrive 

at a contradiction in finding, as above, a prime number, q, 

which is larger. 

In their work this year, bring to the notice of the students from 

time to time instances of their deducing general statements or spe

cial statements from general statements, as well as instances of in

ductive reasoning, to give them some over-all idea of how mathe

matics is structured. 

1-5 Implications 

This section introduces the words implication, hypothesis, 

conclusion in an informal way. The ideas 	will be taken up again in 

Chapter 8. 
In this section when we say assert we mean "state as true". 

The important ideas are that when an implication is valid, then 

in any particular instance in which the hypothesis is true, the con

clusion must be true; and in any particular case in which the conclu

sion is false, we know that the hypothiesis is also false. If in any 

particular case we know only that th hypothesis is false, then we 
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cannot say anything about the conclusion. Likewise, if all knowwe 

is that the conclusion is true, then we 
cannot say anything about the 
hypothesis. 

We have intentionally avoided the terms if and only if, and 
necessary and sufficient, as they may produce language difficulties. 

The students should, however, learn to use the sign -,, al
though they should be warned against using it where *t can have no
meaning. It would be unfortunate if students felt they had to pepper
the page with ==== s..gns, as sometimes happens with .*. signs.


In stating theorems, encourage the students to use the sign
 
===. In cases where they 
meet a theorem and its converse, they 
could be shown the sign <===> . 

For example, they could write: 

In AABC, AC <==AB ABC =_ACB. 
If p and q stand for statements, and we assert p = q, then in any
particular instance p and q are either both true or both false. We
 
say p is equivalent to q.
 

Answers to
 
PROBLEMS 1-5 
 A 

1. Hypothesis Conclusion 

a. I am vaccinated. I will not get smallpox. 

b. The Earth is flat. Water falls off its edge. 

c. The number a is greater (a - b) is a positive 
than the number b. number. 

2. There are a number of suitable conclusions in each case. Here 
are some suggestions. 

a. New Year's Day falls on a Tuesday. 
b. I will not reach home before dark. 
c. I will go on my bicycle. 
d. p + 1 and q + 1 are even numbers. 
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3. 	 Again there are a number of suitable answers in each case. 

Here are some suggestions. 

a. I 	wear my coat. 

b. x 	 is an even number. 

c. 	 In triangles ABC, DEF, AB D-E, B-C -E-F, and
 

ABC - DEF.
 

Answers to 
StdntTe t P.* .esa--

PROBLEMS 1-5 B 

1. 	 a. Valid; this is a property of an ordered field. 

b. 	 Valid 
c. 	 Not valid 

d. 	 Not valid without further information. When r is positive, 

p > q == rp > rq is valid; otherwise, it is not. 

e. 	 (P + 3 = 6) == (p + 5 = 8) is valid. The equations 

p + 3 = 6 and p + 5 = 8 are equivalent equations. For 

+ 	 = 6 p 5 areany particular value of p, p 3 and + = 8 

either both true or both false statements. This is a case in 

3 = 6) === (p + 5 = 8).which we can write (p + 

2. 	 a. (p > -p) ==>P > 0. 

b. 	 (0 < p < p 2) p > 1.
 
= 6).
c. 	 (3x + 1 = 7) === (3x 

1-6 	 Converse 

This 	section points out that the converse of a valid implication 

is not necessarily valid. It will probably help the students best to
 

understand the meaning of converse if they think of examples for
 

As the year proceeds, they will have increasing scope
themselves. 

for producing examples.
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Answers to
 
PROBLEMS 1-6 S I dt

1. a. If pigs fly, then four is six. 
b. 	 If a figure is a triangle, then the figure has three sides. 
c. 	 If the sum is 5, then 2 and 3 are added. 
d. 	 (The lines AB and CD define four rays at P)
 

(the lines A B and CD intersect at P).
 
e. 	 (Jane is younger than John) (John is older than Jane).= 

2. The converse is: 

If 	 m(A) = m(B), then A and B are right angles. The given
implication is valid, but its converse is 	not. 

3. The converse is: 

If the supplement of A is an obtuse angle, then A is 	 acute. 

Both -he implication and its converse are 	valid. 

4. The converse is: 

(AB -B-P) ===> (P is the midpoint of AB) 

The given implication is valid, but its converse is not, since P 
is not necessarily on the line segment A-B. 
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Chapter 2 
AN INTRODUCTION TO 
DEDUCTIVE REASONING IN GEOMETRY 

2-1 Introduction 

The purpose of this chapter is to give the student some ex
perience with deductive reasoning in geometry, done informally, 
before launching into a full-fledged deductive study of geometry. 

There is nothing strange or new about deductive reasoning. 
As the text points out, it is just clear, common-sense thinking. 
However, its simplicity should not suggest that it is unimportant. 
On the other hand, its importance should not suggest that it is dif
ficult to understand. We hope that by doing some informal proofs 
and then analyzing and criticizing them, the student will begin the 
more formal treatment with confidence that he is able to understand 
deductive reasoning. 

The aim of the chapter can probably be met even though many 
students have not mastered all ideas presented. The concepts of 
this chapter will be seen again (and again). The studetrt should be 
encouraged to study this chapter a second time after additional work 
has been done. It would be especially appropriate for him to reread 
this chapter after Chapter 8. 

Some of the problems may be quite difficult for the students. 
In order to keep morale high, it might be best to use some problems 
as class activity; that is, work out the solution with suggestions 
from the class. 

In problems which begin with the words "can you do " 
we suggest that many students should not be satisfied with a simple 
yes or no answer. The better students should consider such a ques
tion to be followed by the instruction, "If so, then do it; if not, 
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state why not". On the other hand, a student who has the correct 
answer, but is not sure why his answer is correct is by no means 
a failure. Intuition, as well as deductive reasoning, must be de
veloped. Thoughtful guesses and conjectures should be encouraged. 

You should not attempt to put the proofs in this chapter into 

the customary form in which "statements" are listed on the left 
with corresponding "reasons" on the right. Such a form is quite 
inappropriate, since we have not listed our postulates carefully, 
and we do not have a backlog of carefully proved theorems available 
for "reasonvs". 

2-2 Some familiar geometric ideas 

The ideas of this section are ones which the student has 
seen in his earlier work. Since he has seen many different geomet
ric ideas, spending a relatively short time on each, some review is 
necessary. 

The student should be urged to A B 

work actively with paper and pencil . 
while he studies the text. He should 
be shown how even the simplest figures D 
will be more meaningful if he draws 
them himself. For example, the figure 
showing two parallel lines cut by a transversal comes naturally as 
a sequence of two pictures. First there are simply the two parallel 

lines, with points A, B, C, D named so lines AB and CD can be 
named. 

Then on this picture, the A \E 

transversal is drawn and points 
E and F are labelled. As he 
draws this, the student should 
think of lines not in the same 

plane with AB and CD (such C \ 

lines will intersect, at most, 
one of the given lines) or lines 

parallel to AB. 
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For more complicated figures, the finished picture may be 
overwhelming at first glance. But if the student has learned to find 
from the text how the picture has been developed, he can draw his 
own picture. His picture should be 
more helpful than the one in the text. P 

The idea in the last part of this 
section, concerning the measure of an 
angle like PQR, will appear again in 
Chapter 6, in connection with Angle 
Measurement Postulate 2. 

R 

Answers to 
CLASS ACTIVITY 

1. 	 AEF and EFD form the other pair of alternate interior angles. 
2,3. To name the pairs of alternate exterior angles, two more 

points on EF must be \G 

named. Referring to the ABE B 

figure, we see that AEG 
and HFD form one pair of 
alternate exterior angles, 
and GEB and CFH form 
the other. AEG and HFD e F 

are called alternate exte
rior angles, because sides 

EA and FD lie on alternate 

sides of the transversal and sides EG and FH are exterior to 
the region bounded by the parallel lines. Similarly for GEB 
and CFH. 

Perhaps you will want to ask Question 3 before Question 
2, since it is easier to explain the name "alternate exterior 
angles" by referring to a particular pair of angles. 

4. 	 From the discussion in the text and from the student's experi
ence with measuring angles, the first figure should clearly sug
gest the equation 40 + 60 = x, or x = 100. 
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From the second figure, We obtain
 
108 = 27 + x, or x = 81;
 

and from the third,
 
85 + 2x = 105, or x = 10.
 

Answers to 

PROBLEMS 2-2 

1. 	 The figure should like either of these.
 
In any case, the meas
ures of A, B and the
 
large angle are about X
 
110. 20 and 130,
 
respectively. B
 

2. 	 x + 2x = 90, so x =30. 
3. 	 The angles are right angles, so x = 90. 

2-3 	 The straight angle 

The concept is a simple one and no elaborate discussion 
should be needed. We will not talk about the interior of a straight 
angle, so some discussions involving angles will have to exclude 
straight angles. 

2-4 	 The first deduction 

The point of this section is not the two geometric properties, 
the alternate interior property and the angle-sum property for tri
angles, but the connection between these two properties, One is 
deduced from the other. These particular properties were chosen 
because they are simple and the deductive argument which relates 
them is simple. 

The alternate interior property is one which appears obvious 
after examining a few well-drawn figures. We derive the angle-sum 
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property for triangles, a property which is not obvious, from inspec
tion of pictures of triangles. 

It should be emphasized that the degree of generality which 

was assumed for the alternate interior property is carried over to 

the conclusion. That is, the deduced property states that the angle 
sum for every triangle, no matter what size or shape, is 180. This 

sort of generality cannot come from pictures, even if exact meas
urements were possible, since infinitely many triangles would have 
to be considered. 

Use has been made of the parallel postulate in drawing the 

line through C parallel to AB. The parallel postulate is not men
tioned at this place in the text since we feel that the point of this 
informal deduction would be obscured if the existence or uniqueness 
of this parallel were questioned here. It is discussed in detail in 

Chapter 11. 

Comments on
 
CLASS ACTIVITY
 

One would expect that the angle sum of a triangle, obtained by 
measurement of a figure, would not be exactly 180. It might be in 
error by as much as 5 or 10 degrees, depending on the size of the 
sketch and the skill of the student. This would cast no doubt on 

the derived angle-sum property for triangles, if we still accept the 
alternate interior property. Measurements of figures may be help

ful in discovering what is true, but proofs will not be based on 
measurements. 

Additional
 

CLASS ACTIVITY
 

Ask if it was necessary to choose C as the vertex through 
which the parallel line is drawn. Of course, any of the three ver

tices could have been chosen. For example, drawing the line 

through A parallel to BC would give essentially the same proof of 

the angle-sum property for triangles. 
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Answers to T 

PROBLEMS 2-4 

1. 	 If all angles of A ABC are congruent, then they each have the
 
same measure, say x. Then the angle-sum property implies
 
that x + x + x =180, or x = 60.
 

2. 	 If, for example, A is a right angle, then the measure of A is 
90. Thus, the sum of the measures of B and C must be 90. 
This implies that B and C are acute angles. 

3. 	 It is not possible for a triangle to have two angles, each having 
measure larger than 90. Thus, the congruent angles in this tri
angle must be the two unknown angles. We get the equation 
102 + x + x = 180, or x = 39, the measure of each of the un
known angles. 

Comnments on
 
CLASS ACTIVITY (second part)
 

Although this is a sketch of an indirectproof, that fact need 
not be mentioned now. We feel that an indirect argument is just 
another way of thinking carefully and reasonably. The introduction 
of the term indirectproof may make the students unnecessarily ap
prehensive about it. 

The 	wording used in this problem has been deliberately 
chosen. If the student can actively put to himself the problem of 
convincing a mistaken, but 
reasonable, friend, the argu
ment should be more easily 

understood. 
Referring to the figure, 

we see that the angle sum for u0 z 0 
AABCis u + (x + y) + v, A 	 Dc 

which is 182, by assumption.
 
For A ABD, we have u + x + z = 182 and for A BCD,
 
y + w + v = 182. Thus, (u + x + z) + (y + w + v) = 182 + 182.
 

But the expression on the left is
 
Eu + (x + y) + v] + (z + w) = 182 + 180, 
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since z + w = 180. Hei e, 364 = 362, a conclusion which must be 
accepted by our friend who thinks that the angle sum for every tri
angle is 182. Thus, our friend is forced to discard his erroneous 
assumption. 

Answers to
 
PROBLEMS 2-4 (continued)
 

4. 	 The argument here diffets from the class activity above only 
in numbers. The contradiction comes in the. equality of 
180-1 + 1801 and 1801 + 180. 

2 2 2 
5. 	 Again the argument is esentially the same. The contradiction 

is 179 + 179 = 179 + 180. 
6. 	 The theorem which is being hinted at is a weaker version of 

the angle-sum property for triangles. It should read something 
like this: 

If it 	is true that the angle sum for eveiy triangle is the 
same, then the angle sum for every triangle must be 180. 

This has not been proved in these exercises, but the three 
cases considered should give a clear indication of the general 
argument. 

2-5 	 A second deduction 

The chain of properties, linked by deductive reasoning, is 
lengthened in this and the two following sections. 

The term convex polygon can be defined 
as follows. A polygon is called a convex \ 
polygon in case every line which does not 
contain a side of the polygon meets the poly
gon in at most two points. Thus, if a polygon 
has a vertex "pointing inward", there will be 
a line which meets the polygon in at least four 
points, and the polygon is not convex. 
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Parallelograms (and hence also squares and rectangles) are 
always convex. So is every triangle. The simplest non-convex 
polygons are the non-convex quadrilaterals. (This will answer the 
Class Activity questions.) 

In the informal discussion in the text, we prefer not to explain 
this careful definition to the students. The statement that a convex 
polygon has all vertices "pointing outward" should convey the idea 
adequately. Of course, if a very able and curious student should 
question the definition, there is no reason to withhold the precise 
definition from him. 

The deduction in this section is written in a way which re
quires the student to make his own figures. As we have mentioned 
before, the students should develop the habit of drawing their own 
figures as they study. 

The figure will look something like B 

this. Then the sum of the measures of the 
Afour angles of the quadrilateral is the same 

as the sum of the angle sums for the two 
triangles, A ABC and A ACD. Thus, the 
angle sum for a convex quadrilateral is 360. O 

Answers to
 

PROBLEMS 2-5
 

2. 	 A convex pentagon can be split A 

into three triangles by drawing 
two diagonals. A second way is 
to draw one diagonal, obtaining 
a convex quadrilateral and a 
triangle. Thus, the angle sum 
is 360 + 180, or 540. 

E 	 D 

C 
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3. 	 A convex hexagon can be split into triangles (four of them) 
or into one triangle and a convex pentagon. The angle sum is 
540 + 180, or 720. 

4. 	 If Problems 2 and 3 are done by the second method, it should 
be clear that if the angle sum for all convex (n - 1)-gons is 
known, then the angle sum for convex n-gons is just 180 more. 
There is really a mathematical induction argument here, but 
consideration of a few more cases should make the essence of 
the proof clear. This does not seem like the proper place to 
begin a discussion of proof by mathematical induction. 

5. 	 Regular triangle: each angle has measure 

180 
3 60. 

Regular quadrilateral: each angle has measure 

2 x 180 =90. 
4 

Regular pentagon: each angle has measure 

3 x 180 108.5 = 5 

Regular hexagon: each angle has measure 

4 x 180 =120. 
6 

Regular n-gon: each angle has measure 

(n -	 2) x 180 

n 

2-6 	 Additional deductions 

Throughout this section, all polygons considered will be 
convex polygons. 

A polygon of n sides has 2n exterior angles, illustrated in the 
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figure for the case n = 4. They 
come in pairs of congruent 
angles, so when considering 
measures of exterior angles it 
is immaterial which angle of a 
given pair is examined. 

In the deduction, we 

select, in a systematic way, 

one exterior angle from each 
pair. One selection is illus
trated in the text. Another 
suitable choice is shown on 

such a 
the right. Having made 

selection for an n-gon, we have 
n pairs of adjacent interior and 
exterior angles. 

The angles in each pair are supplementary, so their measures 
total n x 180. Since the sum of interior angles is (n - 2) x 180, 
the exterior angles must add to 

n x 180 - (n - 2) x 180 = 2 x 180 = 360. 

The result can be made intuitively clear by the following phy
sical device. Locate points at the vertices of a convex polygon; a 

pentagon will do nicely. Place a straight-edge along AB as shown. 
First rotate (clockwise) and then slide (to 
the right) the straight-edge, keeping it in A E 

contact with pin B. Soon the straight-edge DO 

rests against pins B and C. The angle c 
through which the straight-edge has turned \ 13 

is measured by the exterior angle at B. 

Continue the process, letting pin C play the 
role previously played by B. The straight- E 

edge then rests on C and D, after turning an A 

amount measured by the exterior angle at C. , 
Doing this, in succession, a total of five 

times will return the straight-edge. to its 
original position. It will have turned through one complete revolution 

(degree measure 360), but it is clear that it has turned through an 

amount equal to the total of the measures of the exterior angles. 
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knswers to Problems 2-6 are included in the general discussion 
of the proof, given at the beginning of this section in the TEACHERS' 

GUIDE. 

2-7 	 Some related properties of parallelograms 

Here 	are the details of the deduction of this section. 
Line CD is a transversal of the parallel lines AD and BC. 

Using the alternate interior hypothesis, CDE BCD. 
m(CDE) + m(CDA) = 180, so 
m(B CD) + m(CDA) = 180. This A - _
 
is the first equation asked for in
 
the text. The same argument,
 
applied to parallel lines
 

AB and CD and transversal AD,
 
a c
gives the second equation, 

m(BAD) + m(CDA) = 180. From the first equation, 
m(BCD) = 180 - m(CDA), and, from the second equation, 
m(BAD) = 180 - m(CbA). Hence, m(BCD) = m(BAD), which says 
that the interior angles at A and C have equal measures. 

At this point you might pose the following question. Is it 
necessary to prove m(ABC) = m(ADC) addition to thein work 
just done? The answer is no, since the pair of interior angles 
at A and C are an arbitrary pair of opposite angles in a parallelo
gram. Or another way of locking at this is that we can reletter the 
figure in such a way that the old labels A, B, C, D are replaced by 
B, C, D, A, respectively. The argument applies to the relettered 
figure, word for word, and we see that the pair of interior angles at 
B and D (old labelling) are congruent. 

Answers to
 
PROBLEMS 2-7
 

1. 	 For most problems of this sort, in which the student is asked 
to write out the details of a proof, the papers should be read 
and corrected very carefully. Th.is is especially important at 
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the beginning, when the students are just beginning to learn 
what a proof is. It may be helpful to return their corrected 

papers and ask that rewritten versions be submitted. 
2. The figure ABCDEF is a 

hexagon with opposite 
sides parallel. As the E 

dashed lines indicate, " 
such a figure can be 
obtained by slicing off F 

opposite corners of a B 

parallelogram (AHDG) by A 

parallel slices. From the 
parallelogram, using the result of this section, A = D. 
Since A and D form an arbitrary pair of opposite angles, we 
have proved that if . hexagon has opposite sides parallel, 

then opposite angles are congruent. 

2-8 A second look at deductive reasoning 

This is a section which may not be fully understood by most 
students on their first exposure to it. It does not seem advisable to 
insist on mastery of this section at this time. In Chapter 8, these 
concepts will be treated more thoroughly, at a time when the stu

dents' experience has made them better prepared for these concepts. 
The aim of this section will have been met if the students start 
thinking about these ideas and if they keep them in mind as they 
study the following chapters. 

The basic terms (point, line and so on) on which definitions are 
based are technically called "undefined terms". This name may 
sound mysterious to the student and should not be used here, lest 

the student feel that undefined terms are completely meaningless. 
We feel that the student should think of lines and points as idealiza
tions of corners of rooms, chalk lnes, dots, and so on. His thinking 

should be based on real things which he can see and understand. 
The insecurity which would probably be created by the expression 
"undefined terms" could easily be disastrous at this stage of the 
students' development. 
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Illustrations of circular definitions abound in any dictionary. It 
might be instructive to use a dictionary of a language other than Eng
lish 	if one is available. 

Answers to 
S.kdn Sx..ae2PROBLEMS 2-8 

1. 	 Starting with "house" one might find a circular chain of 
definitions like this: 
"house: a building for human use or occupation, abode". 
"abode: a dwelling place". 
"dwell: abide as a permanent resident, reside". 
"reside: dwell permanently, or for a considerable time". 

The chain is circular between "dwell" and "reside". 
Other circular chains may arise from the same initial word. 

2. 	 For another circular chain of definitions, it is probably best 
to start with a noun. Words like "sister", "mother", "com
merce" and so on are likely to give easy circular chains. 

3. 	 The student is expected to recognize that if addition and 
natural number are understood, then the other terms have 
definitions based on these. Multiplication may be defined as 
successive addition (since we are concerned only with natural 
numbers in this problem); division in terms of multiplication 
and divisibility in terms of division (or multiplication). Then 
an even number is a natural number which is divisible by 2, 
and all other natural numbers are odd. A prime number is a 
natural number other than 1 which is divisible only by 1 and 
itself. 

2-9 	 Discussion 

In this section, we are trying to set the stage for the beginning 
of the careful deductive study of geometry. Weaknesses in the in
formal arguments are pointed out and hopefully the students will be 
more 	critical of proofs and definitions given in subsequent chapters. 
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2-10 	Another informal deduction (optional) 

Here is still another deduction, based on the angle-sum prop

erty for triangles. If, as developed in the text, there are lines k and 

m, both perpendicular to n, and if these lines intersect, then a tri

angle is formed. The base angles 
of this triangle are both right angles, 
so the angle sum for this triangle 
exceeds 180. This is a contradiction, 

k m 
so two lines perpendicular to the 
same line cannot intersect. n 

It should be understood that the three 

lines lie in a plane. Is it possible for two 
distinct lines to intersect and be perpendicular 

to the same line, if not in the same plane? 
This comment could be phrased as a question 
for class activity. 

Section 2-10 could be omitted without 
loss of continuity. In particular, if the 

class is annious to get on with the careful treatment, it might 

be best to omit this section. 

Answers to
 

PROBLEMS 2-10
 

1. 	 In the sketch in the text, each of the angles marked at C must 

be congruent to A. Thus, these angles are congruent to each 
other, but the figure clearly indicates that one is larger than 

the other. Therefore, there cannot be two lines through C 

parallel to AB. 

22 



The Postulates * UNIT II
 

Chapter 3 
OUR FIRST GEOMETRIC POSTULATES 

3-1 Why study geometry? 

In this section an effort is made to convey an appreciation of 
geometry to the students. Your students know that the study of 
geometry is very practical. What they may not realize is that it is 
also an intellectually exciting experience if only it is approached 
in the proper spirit. A study of geometry can call attention to the 
importance of careful and precise use of words and the beauty of 
correct and logical reasoning. 

3-2 The relation of geometry to the real world 

Many of your students will think that lines and points are only 
the dots and pencil streaks that they mark upon paper. It is not 
easy to go from the world of physical geometry, where straight 
lines are taut strings or rays of light (really not quite straight), to 
the imaginary world of mathematical geometry, where lines are so 
straight that only one line connects each pair of points. 

A man can dream of a perfect geometrical world and his dreams 
of mathematical geometry can transform his knowledge of physical 
geometry. Pure thought is a powerful tool for obtaining practical 
knowledge. Many of the secrets of the universe are revealed to the 
dreamers and thinkers. 

The idea that the world of geometrical objects is a world that 
we can summon into view in our mind's eye may be helpful to stu
dents. You might help them in this visualization by pretending to 
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trace out geometric objects in space with the tip of your finger. 
For example, you might point with your finger at a spot in space 
and say, "Imagin-e a point here". Trace a triangle with your finger 
in the air and ask a student which is the longest side. Ask a stu
dent if he sees a line joining two points in space. 

3-3 	 Deductive reasoning in geometry: the incidence postulates 

If your students realize that geometry is the study of an imag
ined world, then they will have made a long stride toward seeing 
the need for the formulation of postulates. They have had experi
ence with deductive reasoning. They will know that one cannot 
reason in a vacuum empty of all ideas. We must accept some state
ments as true. We must accept some terms without insisting that 
they be defined in simpler terms. 

The Incidence Postulates may seem strange. Students may 
feel that there ought to be "as many points as they need". Soon 
we will postulate all the points in space that they could wish for. 
But we are constructing our geometry little by little. And so for 
the moment we see only three points in a plane. These are not on 
any one line. On each of our lines we see two points only. There 
is not much we can prove about this miniature geometry, but our 
proofs are very simple and easily understood. 

Do not try to amplify the proofs of Theorems 3.1 and 3.2. In 
particular, do not remark that the proof given for Theorem 3.2 is an 
example of indirect proor. 

Answers to
 
PROBLEMS 3-3A
 

1. 	 In order to have a few interesting problems here, we ask our
selves what might be the case if we had more points in our 
plane. Although our postulates only assure us of the existence 
of three points in each plane, they do not prevent us from think
ing about the possibility of more points. If any student com
plains that we have no right to talk as if there are four points, 
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X, Y, Z and T, in a plane, point out that we are not asserting 
that there are four points. We are simply wondering what might 
happen if there were. 

Since line k contains points Y .and Z and line containsm 
Y and Z, these two lines are Writethe same. on the board: 

k = m, 

and remind students that every statement of equality is just an 
assertion that two names are names of the same thing. 

2. Some students may say that the student should not make such 
a drawing because he has not drawn straight lines. Our postu
lates say nothing about "straightness" of line, so we have no 
basis for a discussion of straightness. Remind the students 
that our work is based only on the postulates. The comment 
you want, and surely will get from some student, is that the 
student is thinking of two different lines, both of which con
tain P and Q If he understood our postulates, he would know 
there are not two such lines. 

3. Counting problems like these are interesting to students. For 
the first two questions, answers are, respectively, 4 and 6 
lines. For 5 non-collinear points, if 4 are on one line there 
are 5 lines. If A, B, C are on one line and A, D, E on a dif
ferent line, there are 6 lines. If A, ;B, C are on one line and 
no other line contains 3 of the points, there are 8 lines. If no 
more than 2 of the 5 points lie on any one line, there are 10 
lines. 

4. As an introduction to Problem 4 you might mark a point on the 
board and ask several students to think of names for the point. 
Then ask for these names. Hopefully, you will get names like 
M, A, X so that you can write: 

M=A=X. 

Students must always be conscious of the fact that different 
names can name the same thing. 

The answer to the problem is that P and Q are two names 
for the same point. Be sure to write: 

P=Q. 
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5. 	 The conclusion is: 

k - m. 

Our last four postulates enrich our geometry considerably. 

These postulates lift us off the plane. Now we can see 4 points in 

in space. To make these problems easier, put a good drawing on the 

board for reference, or make some sort of a model to set on your desk. 

C 

-D
 

A -	 B 

Answers to 

PROBLEMS 3-3B 

1. 	 Four planes: plane ABC, plane BCD, plane CDA, plane DAB. 

2. 	 Six lines: line AB, line AC, line AD, line BC, line BD, 

line CD. 
3. 	 Lines AB and CD are skew to each other as are the pair, line 

AD and line BC; and the pair, line AC and line BD. 

If lines AB and CD did lie in one plane, then that plane 

would contain all 4 points and we know that no plane has this 

property. 
4. 	 We can prove that 2 planes contain line AB, namely, plane 

ABC and plane ABD. The easiest way to satisfy oneself that 

this is all that can be proved is just to list all the planes and 
match with each plane the point that is not in it. This is a 

proof by looking at all possibilities. 
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Plane 	 Points not in the plane 

ABC D 
ABD C 
ACD B 

BCD 	 A 

Of course, our answer would be that the number of planes is 
the same for every line. 

5. 	 We can not prove that there is a pair of parallel planes. In the 
discussion of Problem 4, we have listed all the planes that we 
know we have. Examining the 6 pairs of planes, we see that 
each pair intersects in two points. 

6. 	 The discussion of Problems 4 and 5 will make this easy. 
7. 	 Clever students will realize that they can look simply at the 

symbol 
"plane ABC" 

and state that each of the lines AB, AC and BC has two points 
in the plane. 

Our Space Postulate 3 tells us that if one of these lines 
contains any more points, then all those points also lie on 
plane ABC. 

8. 	 The lines are line AD, line BD and line CD. 
9. 	 For example, planes ABC and BDC both contain points B and 

C. Hence, line BC is the intersection of these planes. We 
can prove that the 2 points B and C lie on both planes, but we 
can't prove yet that there are any more, since we have not yet 
postulated that a line contains more than 2 points. 
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Chapter 4 
THE BETWEENNESS POSTULATES 

4-1 Introduction 

The betweenne 5s postulates will start us on the way to filling 
space up with points. The seven postulates that we state in this 
chapter refer to certain simple relationships that seem to be true 
for the pictures we draw. Since we have announced our intention to 
list everything that we shall use in making proofs, honesty demands 
that these postulates be written down. There are many opportunities 
here for students to strengthen their powers of space visualization. 
There is much practice in using the postulates to make simple 
one- and two-step proofs. Without these postulates we would have 
no precise definitions for segments, rays, angles or triangles. 

Make it clear to your pupils that they are not expected to mem
orize these seven betweenness postulates. For years past students 
have used the ideas expressed in these postulates by inspecting 
carefully drawn figures. Your students will be in the stronger posi
tion of being able to relate the information they get from the figures 
they draw to the precise verbal statements that are our postulates. 

4-2 The first betweenness postulates 

In developing the ideas surrounding these first four postulates 
the order of presentation should be: 

1. 	 Examine pictures. 
2. 	 Formulate informally in words the ideas concerning between

ness that the pictures suggest. 
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3. 	 Examine the postulates carefully to see that they are pre
cise statements of the betweenness properties suggested by 
our pictures. 

It may be possible for you to lead your students to their own 
formulations of the postulates. At the blackboard mark these points, 

B 
0 

and ask, "Would you want to say that this shows B between A and 
C ?" When your pupils dissent, erase B and ask someone to go to 
the board and mark B where he feels it should be in order that it be 
between A and C. Then get someone to say that B has been marked 

on the line AC. You yourself might then erase B and mark a new 
point for B superimposed upon A and ask if they wish to say that B 

is between A and C if B and A are the same point. 
For Postulate 2 you might ask a pupil to mark 3 points on a 

line so that no one of them is between the other two. You might 
draw a circle as below and mark 3 points: 

Now it is natural to say that each one of these three points is be

tween the other two. Postulate 3 makes it certain that our lines 
don't behave like circles. We are beginning to get our lines 
"straightened out", using our postulates to do so. 

Postulate 3 brings out clearly how different our imaginary 
mathematical geometry is from the physical geometry of the real 

world. In the real world, if we continue making chalk marks between 
two chalk marks on the blackboard, eventually we cover up all the 
space between our two "points" and our physical "points" begin to 
overlap. Only in our imagination can we have a situation like that 
described in Postulate 3 where we can think -)f infinitely many 
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points between two given points. It might be helpful to mark two 
chalk spots on the board a few inches apart and mark chalk spots 
between, counting them as you do so, until the space between the 
two original spots is completely covered with chalk spots. 

To lead up to Postulate 4, stand 3 pupils in a row and ask the 
class to name them 1, 2, 3, so that pupil 2 is "in the middle". Then 
have four pupils stand up and name them 1, 2, 3, 4. Talk about the 

betweenness relations. Write on the board, 

1, 2, 3 
1, 2, 4 
1, 3, 4 
2, 3, 4, 

to illustrate your discussion. 

Answers to
 
PROBLEMS 4-2
 

1. 	 There are four betweenness relations for four distinct points on 

a line. For 

A B C D 

they are A, B, C; A, B, D; A, C, D; and B, C, D. There are 
ten such relations for five distinct collinear points. 

2. 	 The points are not collinear. We are using Positulate 2. 
3. 	 A = B or A = C or B = C. We are using Postulate 2 again. 
4. 	 T is between R and S. We use Postulate 2 again. 
5. 	 (i) Points X, Y, A, B are on one line (Postulate 1). 

(ii) 	 Points A and B are endpoints for this set of four points. 

There are three possibilities, shown by these figures: 

-p 0 0- w 0 0 0. 	 p040p *0 

A X Y B A Y X B A X=Y B
 

(We are using Postulate 4.) 
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(iii) 	 if Y is between X and B, then X is between A and Y 
(Postulate 4). 

(iv) 	 I/ Y is between A and X, then X is between Y and B 
(Postulate 4). 

6. 	 The points fall on the line in the order U, R, T, S or S, T, R, 
U. Besides the two given betweenness relations we see that 
we also have T between U and S and R between U and S. In 
order to deduce this from the postulates we must use Postulate 
4 which tells us that points U and S are the endpoints so we 
can label the points either as 

U, R, T, S 	 U, R, T, S 

4 ,I I I or I I I I 
A1 A 2 A 3 A 4 	 A 4 A3 A 2 A1 

7. 	 How the student labels these points depends upon how he 
chooses to mark them on the line. 

8. 	 To prove that there are infinitely many points on each line, a 
student might use either figure below in support of his argument. 

A 	 B Al A 2 A3 A 4 A5 

A A3 A 2 Al B 

The 	student should say that he is repeatedly using Postulate 
3. Strictly speaking it is necessary to use Postulate 4 in mak
ing any formal proof that these procedures really lead to in
finitely many points, but this need not be mentioned. The 
second figure above suggests a proof that each segment con
tains infinitely many points. 
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4-3 The separation postulates 

Note the uniformity of language used in discussing the three 
separation situations. The choice of language is deliberate. Lan
guage like this helps pupils to see relationships between ideas. 
Perhaps you should mark a point P on the board and draw several 
lines through P as below: 

Remark that k 1 and k2 are opposite sides of P on line k; m1 and m 2 

are opposite sides of P on line m. Each point determines two sides 
on each line that contains it. 

You could draw the same sort of picture for sides of a plane 
determined by a line contained in the plane. 

1 a21
/a Z 

Half-planes a1 and a 2 are opposite sides of line p in plane a; half

planes 0, and I02 are opposite sides of line p in plane P3. Each line 

has two sides on each plane that contains it. 
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Answers to
 

PROBLEMS 4-3
 

1. 	 P is between A and B. 

2. 	 C and A are on opposite sides of P. 

3. 	 S may not be in plane a, but if S is in plane a, then S is on 

line k. 
4. 	 The three sets into which a point A on a line divides the 

line 	are: 
(a) 	 The set containing just point A. 

(b) 	 The set containing all points on one side of A on the line. 

(c) 	 The set containing all points on the other side of A on 

the line. 

Similarly one can describe three sets of points for each line in 

a plane and for each plane in space. 

4-4 	 Using the idea of betweenness to make definitions 

Your pupils will have met many of these definitions before. 

The ideas will not be new. What is new, however, is that we can 

base these precise definitions on our postulates. 

Gften a student may feel that a definition is clumsily stated 

and may believe that he can formulate one which is simpler and 

clearer. Encourage them to try formulating their own definitions. 

Often through such an attempt a pupil comes to a better understand

ing of the concept being defined. 
We give proofs below for Examples 1 and 2 much as we hope a 

pupil 	might give them. Remember that what is important at this stage 

is that the student see clearly the basic idea of the proof and com

municate well enough with his fellow students that they understand 

his 	proof. 

Example 1. If a point is on AB, then either that point is A, or 

it is 	B or it is between A and B. If it is A or B, then it lies on the 

line 	AB. If it is between A and B, it lies on AB because of our first 

betweenness postulate. 
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This problem provides you with an opportunity to point out that 
since we are proving that something is true for every point on A-B, we 
have to think about all of them. A pupil who argued only that points 
between A and B were on line AB would be presenting an incomplete 
proof. 

Example 2. Let AB be any segment on line k. By a between
ness postulate, there is 
 a point C such that B is between A and C.
 
By another betweenness postulate, C is not between A and B. Hence,
 
by the definition of a segment, C is not on segment AB. Moreover,
 
by the first betweenness postulate, C is on line AB 
and so we have
 
shown that if AB is any segment on a line, then there is 
 a point on
 
that line which is not a point of the segment.
 

Answers to 
PROBLEMS 4-4 S t Pag. 4 

1. 	 If AB and CD intersected in two points, then the distinct lines 
AB and CD would intersect in two points, and we have proved 
this false. 

C2. 	 a. 
A 
___ 

B 

Intersection is point B. 

b. See Problem 3. 

3. 	 Students will that if twosee segments intersect in more than 
one point, then their intersection is a segment. Several pic
tures are possible as shown below. 

R 	 T S U R T U S 

Intersection is TS. 	 Intersection is TU. 

4. 	 Suppose two segments have two distinct points P and Q in 
common. Then 	every point between P and Q belongs bothto 
segments, and there are infinitely many such points. Actually 
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the proof that if P and Q are distinct points between A and B, 

then 	every point X between P and Q is also between A and B 

depends upon Betweenness Postulate 4. However, this is 

something that we can let our pictures tell us. 

5. 	 There are several possible types of pictures for a, but for b
 

the only picture is this:
 

__ , (AC and AB intersect 
B A C only at point A.) 

6. 	 The proof that if two rays have two distinct points in common,
 
then they have infinitely many points in common is much like
 
the proof for Problem 4. A student should argue first that if P
 
and Q are two points on a ray, then every point between P and
 

Q is on the ray. Formally, this argument would read:
 

(a) 	 P and Q are on AB. 
(b) 	 X is between P and Q. 

(c) 	 X is on P's side of A on line AB (or, if P = A, then X is 
on Q's side). 

(d) X is on ray A= by the definition of ray. 
In order to prove that statement (c) above is true one needs to 
say that point X is not point A, and if X were not on P's side 

of A, then A would be between P and X, and so by Between
ness Postulate 4, point A would be between P and Q. This is 
clearly false. 

This example shows how meticulously one must argue if 
the betweenness postulates are actually used in making proofs 
without appealing to drawn figures. Do not hold your students 
to such standards. Allow them to present arguments in which 
betweenness properties are obtained from figures. 

7 and 8. Note in part a that the line might not lie in the plane of
 
the triangle. This suggest the answer to 8.
 

9. 	 A and B are on opposite sides of k. A and C are on opposite 

sides of k. Hence B and C are on the same side and k does 

not contain a point of segment BC. 
10. 	 Any point X such that B is between A and X is a point of A 

which is not a point of A ABC. 
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11. 	 Three rays determine 3 angles; four rays, 6 angles; five rays,
10 angles. The answers do not depend upon the rays being 
coplanar. 

12. 	 The answers are the same as for Problem 11. 
13. 	 Ray AB consists of A and all points on B's side of A. If A
 

were between two points X and 
Y of the ray, then X and Y 
would be on opposite sides of A and so would not both be on 
B's side of A. 

4-5 	 Additional definitions 

These definitions are standard. It is not necessary to memorize 
these definitions, but students should appreciate their clarity and 
should be able to give definitions equivalent to these. The concept 
of an exterior angle of a triangle is not carefully defined. You might
ask your students to supply a precise definition. Perhaps the sim
plest such is: 

If for A ABC point C is between points B and
 
D, then DCA is an exterior angle of A ABC.
 

It is intuitively clear that each angle (not a straight angle)

divides its plane into three sets: 
 points of the angle, points in the
 
interior of the angle and points in the exterior of the angle. An
 
actual proof of the theorem that if point P is in the interior of B and
 
R is in the exterior, then a point of B is between P and R is quite

difficult. 
 This is another example of a relationship that seems obvi
ous when we look at pictures, but which cannot be proved without the 
betweenness postulates. 

Answers to
 
PROBLEMS 4-5 Y, I ! '
 

1. 	 If P is in the interior of A ABC and Q in the exterior, then 
there is a point of A ABC between P and Q. 

2. 	 c. No such point exists. 
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3. 	 The interior of A ABC can be defined as the set of all points 

in the interior of any two of its angles. 
4. 	 If a point X is in the interior of A it is on B's side of AC and 

on C's side of AB. If X is in the interior of B, it is on A's 

side of BC and on C's side of AB. Hence, if X is in the inte

rior of both A and B, it is on B's side of AC and on A's side of 

BC. Hence, X is interior to C. 
5. 	 In a and c, ABC is not adjacent to DBC. 
6. 	 In b there are ten pairs of adjacent angles. 

4-6 	 How we choose symbols and definitions 

In mathematics there are infinitely many things for us to think 
about. We must select certain things upon which we focus our atten
tion. Our definitions reflect these selections. 

Often emphasis is misplaced. Students should not expend their 
energies in the memorization of the particular wording of the defini

tions lest their attention be drawn away from the essential concepts 
themselves. 

Our choice of symbolism is arbitrary. This symbolism is never 
essential in itself. It is but an aid in communicating with each other. 
However, a good choice of symbols certainly aids communication. 
Whenever possible, the names and symbols should reflect the basic 
properties of the defined concepts. If you and your pupils decide that 
some symbolism not introduced in this text is helpful in the study of 

geometry, feel free to use it. 
The fact that definitions can be worded in various ways gives 

our postulates added importance. The question as to whether or not 
two differently worded definitions describe the same concept can 
only be answered by turning to our postulates. The example has al
ready been given of defining the interior of a triangle in two ways. 

The alternative definition of ray given in Problems 4-6 is a second 
illustration of these ideas. Consider the two sets of points 

A X 6 Y 
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(1) 	 The set consisting of A and all points on B's side of A 
on AB. 

(2) 	 The set consisting of A, B, all points X between A and 
B, and all points Y such that B is between A and Y. 

Looking at the figure we see intuitively that the two definitions 
agree. Note that in the text we do not ask pupils to prove that the 
sets are identical. We are content if pupils rely upon the figure for 
this information. A formal proof can be made using the betweenness 
postulates, but seems out of place here. 

4-7 Filling space with points 

Here is an excellent chance to re-emphasize the significance 
of the incidence and betweenness postulates. Mark three points on 
the board. Label these points A, B, C as below: 

A 

B. 

eC 

The incidence postulates provide us with these points. The be
tweenness postulates put points between two given points. Have 
pupils go to the board and mark dots for several such points. First 
the sides and then the interior of the triangle begin to "fill up" as 
pictured:
 

A 

" . * . 9 

o
. . . . . ....... ',*.
 

B
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Now use the postulate that if A and B are any points, then there is a 

point Z such that A is between Z and B. This will extend AB to 

AB, AC to AC, and so on, and then the students can "see" the re

gions of the plane filling up with points. 

aAnswers to 


PROBLEMS 4-7
 

1. 	 Let A, B, C, D be four non-coplanar points. Each set of three 

of these points (there are four such sets) determines a triangle. 

The union of these triangles and their interiors is the tetrahe

dron ABCD. 
If X is between two points of the tetrahedron and if X is 

not itself a point of the tetrahedron then X is a point of the 

interior of the tetrahedron. 

All points of space which are neither on the tetrahedron 

nor in the interior of the tetrahedron are points of the exterior 

of the tetrahedron. 

2. 	 Think of three planes intersecting as do ceiling, end wall and 

side wall of a room. These three planes divide space into 

eight regions. Now imagine a fourth plane which does not pass 

of the room and which is parallel to none ofthrough the corner 

the planes already considered. This plane will cut seven of 

the eight regions. Each of these seven regions has become 

two regions, so there are 14 + 1 or 15 regions determined by 

the four planes. 

4-8 	 Another look at the incidence postulates 

These incidence theorems could have been proved earlier, but 

their proofs are just a little more difficult than the first proofs, so 

they were postponed until now. They will provide a review of the 

incidence postulates. 
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Answers to 
PROBLEMS 4-8 

1. If k intersects a in two distinct points, A and B, then 
k = AB and the entire line AB is contained in a. 

2. If there is a point A not on k which is on both a and 3, then, 
by Theorem 4.1, a = 0. 

3. The dihedral angle with sides T1 and T2 is adjacent to the 
dihedral angle with sides T2 and S1 . 

4. For the dihedral angle pictured, any point S 
which is between a point of S and a point k 

of T (and which itself is not a point of S 
or T) is in the interior of the dihedral 
angle. 

T 

40 



Chapter 5 
CONGRUENCE, INEQUALITIES AND 
MEASUREMENT FOR SEGMENTS 

5-1 Introduction 

The notion of congruence of segments and angles is an 
abstraction from the concept of same size in the physical world. 

Note that we develop ideas of congruence, and greater than and less 

than, before speaking of lengths of segments. There is good reason 

for this. The concepts of larger and smaller and same size are more 

basic than concepts of measurement. A young child is aware of dif

ference in size long before he learns to measure lengths. In our 
geometric theorems, we are really not so much concerned with the 

actual lengths of segments and the measures of angles as we are 
with comparing sizes of segments and angles. We can decide which 

of two segments is the greater even if we know nothin'X about the 
measurement process. 

Students should appreciate the remark that although probably 
no two sticks in the physical world are exactly the same size, yet 

we can imagine in our geometry segments which are exact copies of 
each other. This emphasizes again the difference between our imag
inary world of geometry and the real world. 

5-2 C6ngruence of segments 

This first postulate is an existence postulate. Wherever we 

look in space we see segments congruent to any given segment. 
This postulate replaces the traditional language: Cut off from ray 
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AB a 	segment congruent to CD. Such language reaiiy conceals the 

assumption that we make here - namely, that on ray AB there is 
exactly one point X such that AX C-D. 

The old language of geometry - draw, construct, mark, extend, 
cut off - is a language appropriate for the physical world but some
times misleading in mathematics. It tends to obscure the simple 
mathematical concepts. The real questions are questions of exist
ence. Are there geometric configurations with certain properties? 
Our postulates tell us what things exist. We don't construct points
 
and lines, we postulate them into existence.
 

Answers to 
tuet-PROBLEMS 5-2	 O .5% atPage 

These seven problems are designed to stimulate some discus
sion that will make the congruence postulates seem more significant
 
by pointing out that they are idealizations of certain physical
 
situations.
 

1. 	 Itis unlikely that two carpenters would mark exactly the same
 
spot.
 

2. 	 S=T. 
3. 	 Cutting of boards is a clumsy physical operation that gives us 

approximately the size of board we want. "Cutting off" seg
ments congruent to a given segment in geometry is an act of 
thought that is completely precise. 

4. 	 Two careful measurements of the same rod cannot be expected 
to give the same result. A slight change of temperature may 
change the length of a real rod. In geometry, our segments are 
unaffected by the passage of time, changes in temperature, and 
so on. Thus, a segment is always congruent to itself. 

5. 	 Your friend may decide that the sticks have different lengths. 
This points out that part (b) of Postulate 2 has no exact coun
terpart in the physical world. 

6, 7. 	 These examples nicely illustrate the difference between part 
(c) of Postulate 2 and an analogous physical situation. Every 
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carpenter knows that errors would accumulate and he would 
soon be cutting boards differing considerably in size from his 
original one. 

5-3 Inequalities for segments 

Note that the definitions of greater than and less than for 
segments are formulated in terms of congruence and betweenness. 
If you think about these definitions, you will realize in traditional 
geometrical work these definitions are accepted but they are not 
formulated clearly. 

The comment following Theorem 5.2, that without additional 
postulates it is impossible to prove that 

AB > CD CD < AB, 

may surprise students. But before such a proof can be made we 
must state a postulate that tells us something about how segments 
can be "added". If we stated the addition postulate for segments 
given below we could make this proof. 

A B C 

D E F 

POSTULATE. If B is between A and C, and E is between D and 

F, and B= DE and BC EF, then AC =DF. 

Even with this postulate, the proof that 

AB > CD CD < AB 

is not easy. We ayoid the difficulties by postulating instead that 

segments have lengths and that these lengths add in an appropriate 
fashion. 

Our next two measurement postulates make available ideas of 

segmeat length that enable us to give a simple and correct develop

ment of inequalities for segments. 
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Answers to 
PROBLEMS 5-3 

1. 	 a. This 	is true, because every segment is congruent to itself. 
b. This is false, because two different segments can be 

congruent.
 
c. We cannot prove this true or false at the moment, but with 

the measurement postulates to be stated later, it will be 
possible to prove it true. 

d. We will be able to prove this false later. 
e. Later we will be able to prove this true. 
f. We can prove this now. We use the fact that 

EF CD CD EF. Because i-B CD and 
CD EF == AB EF, the desired conclusion follows. 

g. We can prove this false now. The figure shows the proof. 

A B F 

C 	 D 

2. 	 This problem is difficult in the sense that it requires a fine
 
understanding of the definition of greater than. The student
 
must 	reason this way. "To decide whether AB is greater 
than 	AC, I must look at the point X on ray AC such that 
AX - AB. This point X is the point B. C is between A and 
B, so C is between A and X. Hence, AB > AC". 

3. 	 The argument is as in Problem 2. 
4. 	 Here we present a relation between chess players, which we 

call greater than and which does not have the familiar prop
erties of greater than for numbers. This problem emphasizes
that we have no right to assume that a relation has special 
properties merely because we have assigned to it a special 
name.
 

5. 	 By asking pupils to prove these two theorems about number
 
inequalities, we are reminding them of these things: 
 The 
proofs depend upon having available clear definitions of 
greater than and less than for numbers and also having pos
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tulates for addition. Analogous proofs for segments will 

have to be made in a manner determined by our definitions 

of segment inequalities and by our geometric postulates. 

Proofs for a and b are given below: 

a. 	 x > y = x = y + p and p is positive. Therefore, 

y = x + (-p) and (- p) is negative. Hence, y < x. 

b. 	 x > y and y > z === x = y + p and y = z + q, 

where p and q are both positive. Then 

x = (z + q) + p = z + (q + p). But a sum of positive 

numbers is positive, so x > z. 

5-4 Measuring the length of a segment 

The process of measuring lengths described in the first part of 
this section is one which should be intuitively acceptable to the 

students. However, it is not a simple process. In particular, it is 

necessary to have a firm understanding of the idea of a limit (a con

cept usually reserved for a university course in calculus) to under
stand this process completely. By appealing to the decimal repre

sentation of real numbers, the limiting process is made to seem 

reasonable. But the description of this process is not to be regarded 
as a proof of any measurement properties. Indeed, as is mentioned 

in the text, we cannot even prove the existence of the midpoint of a 
segment. There are also other difficulties. 

By 	choosing appropriate postulates we could justify the meas
urement process and prove the existence of the length of each seg

ment. However, we could not do so without making a careful study 

of the rather sophisticated notion of a limit of a sequence of real 
\umbers. We have chosen to avoid this, by making a different 

choice of measurement postulates. Our postulates can be used to 

justify the described measurement process, but they make it unnec
essary to do so. We hope that the students will have some intuitive 

understanding of the process and that it will serve to make the 
measurement postulates acceptable. 

45 



I 

Make sure that pupils understand the description of segment
 
measurements by duplicating much of the text discussion at the
 
board. The picture of the segment Xn Xn+ can be "magnified" to 

show more clearly the successive midpoints: 

Y
-II 	 : III S 

Xn 
 M M M4 1 Xn+l 

For a segment XY whose length is between 3 . 5 and 3 . 75 the 
measurement process would give a figure like this: 

x y
 
II X 	 I I! t X
 

XI X2 X3 MI M2 X4 

The proof presented for Theorem 5.3 points out that our last 
three postulates are definitely needed in order to prove that greater 
than for segments has the expected properties of greater than for 
numbers. Study this proof carefully. Theorem 5.5 will be used, al
though the proof is not given in the text. The proof is not difficult; 
as an example we present a proof of part (ii) here: 

From the definition of the inequality for segments, either
 
B< CD, AB CD or AB > CD. We will show that the last two
 

relations lead to contradictions of the hypothesis AB < CD. Then
 
c will follow that AB < CD. First, if AB = CD, then AB CD,
= 

which contradicts AB < CD. (Remember that AB and CD are 
numbers.) Second, if AB > CD, then by Theorem 5.3, AB > CD 
must hold, and this contradicts the hypothesis. This completes the 
proof of (ii). 

Give the students some problems of the following sort that will 
give them practice in using these last postulates and Theorems 5.3 
and 5.5. 

(1) 	 7 
•- 4
 

A C B
 

How long is AB? 

Prove that AC 	 > CB. 
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9 	 20
 
(2) -t " 	 - # 

A 	 B C D E 

How long is AC? 

Prove that BC < AB. 

A B 7 C D 7 E
(3) * 	 a_ 

Prove that BC = AB. 

Answers to
 
PROBLEMS 5-4
 

1. 	 AB and A'B' have equal lengths since they are congruent. 

Call their lengths a. BC and B'C' also have equal lengths 

for the same reason. Call their lengths b. The length of AC 

is a + b, by Segment Measurement Postulate 2. In the same 

way, AC' - c + b. By the congruence-measurement postulate, 

AC= AC. 

This proof written in statement-reason foim might look 

like this. 
Statements Reasons
 

1. 	 AB has length a. Measurement Postulate 1 

2. 	 BC has length b. Measurement Postulate 1 

3. 	 AC has length a + b. Measurement Postulate 2 

4. 	 A'B' has length a. Measurement Congruence 
Postulate 

5. 	 B'C' has length b. Measurement Congruence 
Postulate 

6. 	 A'C' has length a + b. Measurement Postulate 2 

7. 	 A C A'. Statements 3 and 6 and 

Measurement Congruence 
Postulates 
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2. 	 Call the lengths of AB, fC, A'B' and B'C' the letters r, s, r' 
and s' respectively. Then we know that r > r' and s = s. 
By what we know about inequalities for numbers, 

r+ s > r' + s'. But r + s is the length of AC, andr' + s' 

is the length of A'C'. Thus, by Theorems 5.3 and 5.5, 
A-C > A'C'. 

3. 	 Let x represent the common length of AC and AC', and let y 
represent the common length of AB and AB'. Let the lengths 
of BC and B'C' be respectively r and s. Then 

y+r-x 
and y + s x. 

Therefore y + r y + s, 
which implies r - s. Hence, by the congruence

measurement postulate, BC = BC. 

4. 	 We could define midpoint of segment in two ways, either in 
terms of congruence or in terms of length: 
(1) 	 X is the midpoint of AB if X is between A and B and 

A X = XB. 

(2) 	 X is the midpoint of A B if X is between A and B and 
AX = XB. Our postulates tell us that these definitions 
are equivalent. 

We use our measurement 
has a midpoint. 

Let 	AB be any segment. 

Statements 

1. AB has length x. 

2. 	 There is a point X 

on AB such that 
xAX 	=-_ 
* 
2 

postulates to prove that every segment 

Reasons 

Measurement postulate
 

Measurement postulate
 

3. X is between A and B. AB > AX and X and B are on 

the same side of A on AB. 
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x 	 x 
4. 	 - + XB = x, so XB - . Measurement postulate and 

2 2 algebra 

5. 	 AX - XB. Statements 2, 4 and congru
ence measurement postulate 

6. 	 X is the midpoint of AB. Statements 3 and 5 

5. 	 If AB has two midpoints, X and Y, then 

there are two points on ray AB such that 
1 
-AB = AX2 

contradicts 

6. 

7. 

1 
and 	 -AB = AY. This2 - . 

our postulates. A x V B 

AB = CD
 

AB + BC = BC + CD
 

AC = BD
 

A C BD
 

XZ YT
 

XZ- YT
 

XZ- YZ= YT- YZ
 

XY ZT 

8. 

9. 

The length of AB relative to unit segment EF is 3 x 7 

1 
The length of CD using unit segment EF is - . Thus, 

2 

- 21. 

the 

length of AB using unit segment EF is 7 - 4 

1 
The length of EF in terms of AB is 

3.7 

x -
2 

10 
37 

7. 

10. a. xy; 
1 

b.-
Y 
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Chapter 6 
CONGRUENCE, INEQUALITIES 
AND MEASUREMENT FOR ANGLES 

As you work through this chapter, return again and again to 
Chapter 5 and observe how the ideas are developed in almost exactly 
the same way. We have deliberately used language identical to that 
employed in Chapter 5 wherever possible. Be sure that students 
realize this and so appreciate the symmetry of the development. It 
should be easy for students to remember with understanding the ten 
postulates of Chapters 5 and 6. 

Since this chapter is so much like Chapter 5, our comments will 
be much less detailed than those for Chapter 5. In Section 6-4, we 
discuss the two key differences between angle measurement and seg
ment measurement, but emphasize the even more important similari
ties between the two measurement processes. 

In particular, you will want to think again about the comments 
on Section 5-4 in the TEACHERS' GUIDE as you read Section 6-4 of 
the STUDENT TEXT. 

Answers to
 
PROBLEMS 6-3
 

1. 

/ J 
/ / 

A B 
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2. 	 a. A = C ==A A C. This is true because every angle is 
congruent to itself. Like a, each of the other statements is 
an exact analogue of the statements in Question 1, Problems 
5-3. Likewise, the truth, falsity and provability (and rea
sons) are the same (or analogous). See the answers in Sec
tion 5-3 of the TEACHERS' GUIDE. 

3. 	 This is an exact analogue of Problem 3 of Problems 5-3. 

Answers to
 
PROBLEMS 6-4
 

See the answers to Problems 5-4. Except for Problem 11, the 
problems are numbered in a corresponding way, and the solu
tions fror. 5-4 can be carried over to 6-4, almost word for word. 

11. 	 If X and Y are a pair of verti
cally opposite angles then, 
m(X) +,m(Z) 180 z 

4nd m(Y) + m(Z) = 180,
 
so m(X) Mr(Y).
 
Hence, X - Y.
 

6-5 	 Some definitions 

Proofs of Theorems 6.8, 6.9 and 6.12 are quite easy. At least 
one proof should be written out formally to make it clear what postu
lates and definitions are being used. 

THEOREM 6.8: 

21 

Let 1 be any right angle. 
Let 2 

A 
be 

A 
the adjacent supplementary angle. 

1 =- 2 by definition of right angle, 
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m(l) = m(2) by congruence-measurement postulate, 
m(l) + m(2) = 180 by our choice of degree as the unit 

measurement, 
m(l) = 90 by arithmetic. 

THEOREM 6.9: By Theorem 6.8 any two right angles have the 
same degree measure, namely 90, and so are congruent, 

THEOREM 6.12: By Theorems 6.3 and 6.5 and the definition of 
acute angle and obtuse angle, an acute angle has a degree measure 

less than that of a right angle, that is, less than 90. Similarly, an 
obtuse angle has degree measure more than that of a right angle, that 
is, more than 90. 

Answers to
 
PROBLEMS 6-5
 

1. 	 a. The perimeter might be 12 + 12 + 7 = 31 or 

12 + 7 + 7 =26. 
b. 	 The perimeter is 12 + 12 + 6 = 30. There is no triangle 

of sides 6, 6 and 12, although we are not yet able to prove 
this. 

c. 	 The perimeter is 12 + 12 + 5 = 29. 
2. 	 53. 

3. 	 3 and 4 are right angles since they arc congruent and supple

mentary. 3 and 2 are supplementary, so
 
m(2) = 180 - m(3) 90. Similarly m(l) = 180 - m(4) = 90.
 

4. 	 m(1) = m(2) and m(3) = m(4). Hence, 2m( ) + 2m(3) = 180, or 

m(2) + m(3) = 90. Therefore, k I m. 
5. 19; 	109. 
6. 	 If their measures are denoted by x and y, we have x + y = 90 

and x = y + 32. Solving these equations, we find x = 61 and 
y = 29. 

7. 	 If x is the measure of the angles, we have 

1 
x = 20 + - (90 - x), or
 

3
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a. 	 x = 37.5.
 
3
 

b. x 	 = -(180 - x) - 10, so x = 61.25. 
5 

8. 	 The sum of their degree measures is 180, so their non-common 
sides form a straight angle. 

9. 	 Consider just one side of C 
line k (the upper side in the 
figure). Choose a second 
point B on k. Then there is A B 

exactly one ray AC on the
 
chosen side of k such that
 
CAB is a right angle. This
 
unique ray determines a unique line in plane a
 
which is perpendicular to k and contains A.
 

6-6 	 Dihedral Angles 

If you wish you may expand briefly upon this material. We 
feel that ideas of angle measurement should be casually extended 
to the measurement of dihedral angles. An informal description of 
perpendicularity for planes is given. The diagram showing a line 
piercing a plane but not perpendicular to the plane could be used 
to convince students that in such a situation there is one and only 
one line in the plane perpendicular to the line. 

The figure shows a dihedral anglek 
formed by half-planes S and T with the kT 

line k as common edge. Plane a is ,.] - 

perpendicular to k. a intersects S in 
ray s and a intersects T in ray t. 

The degree measure of the dihedral 
angle is defined to be the degree meas- t 

ure of the angle formed by rays s and t. 
Give students some practise esti

mating degree measures of dihedral 
angles. Let them do a little drawing to 
represent 3-dimensional figures. 
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Chapter 7 
CONGRUENCE OF TRIANGLES 

7-1 Introduction 

A statement of congruence of triangles, like A ABC =A DEF, 
is a very concise way of writing six simpler congruence relations. 
This is done by giving significance to the order in which *he ver
tices are named. Because of this, the pupils must use great care in 
writing such congruence statements. Many of the problems in this 
section are designed just for this purpose. For instance, when you 
discuss Problem 3 of this section, you could write the six Jifferent 
congruence relations and have the pupils decide why only one seems 
to be true. 

There are six ways of writing each congruence relation. For 
example, 

AABC ADEF 

can also be written as 

A BCA - A EFD, A CAB A FDE,andso on. 

The essential thing is that these relations give the same corres
pondence between vertices, A *-* D, B - E and C F. To* 

write the six different congruence statements, it is easiest to leave 
vertices A, B, C in the same order and permute D, E and F. We 
obtain 

AABC ADEF, AABC = A DFE, 
AABC A EFD, A ABC = A EDF, 
AABC AFDE, AABC E A FED. 
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Answers to 
PROBLEMS 7-1 

1. 	 A ABC - A FED is true, but the other five congruence state

ments are false. For example, A ABC - A DEF is false, 

since A"B FE and FE DE, so AB DE. 

2. 	 The statements A RST A LMN and A TRS A NLM are 
abbreviations for the same set of six statements. 

3. 	 The statement A ABC = A DBC asserts that ABC - DB3C. 
The picture shows that this is false. It appears that 
A ABC ADCB. 

4. 	 A ABC A EDC asserts that AC = EC. The picture shows 

this to be false. A ABC _=A DEC seems to be true. 

5. 	 From the first relation, RT = UW, and from the second, 

ST UW. Thus, ST =_ RT and A RST is isosceles, and of 
course so is A UVW. We can also observe that R =_U and 
S =U) so R = S. 

6. 	 Both triangles are equilateral and equiangular. For example, A 

from the first congruence statement, A^- D, C FF and B _= E. 
From the second, D = C F B and E A. Thus, 

A 	 D A F B A. 

Similarly, the six sides are congruent. 

7. 	 This follows from the postulates of congruence of segments 
and congruence of angles which say that each segment (or 
angle) is congruent to itself. 

8. 	 This is false, since XY = XZ is false. 

9. 	 A ABC is isosceles with A-C - BC and B _ . Compare this
 

with Problem 5.
 

10. 	 A DEF is equilateral and equiangular. Compare this with 
Problem 6. 
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7-2 Proving triangles congruent 

Answers to 
Stud'n P S 

PROBLEMS 7-2 
- A* A A 

1. D I E <==> H, F J==I, IH7, DF ==IJ,DE 


2. a. A<=== B B<==>, C = C, AB <== BA, A C <==> BC, 
BC <===AC. 

b and c are worked out in the same way. 

Do not confuse the idea of setting up a correspondence with
 
that of a congruence. Draw two triangles, clearly not congruent,
 
as below.
 

D 

A 

B CE 

Point out that matching the vertices, sides and angles one to one 
has nothing to do with the congruence of sides and angles. Of 
course we are especially interested in correspondences which are 
also congruences. 

7-3 The SAS postulate 

This postulate and the ASA postulate are the most intuitively 
obvious of our congruence postulates. In the physical world there is 
no question but that two such triangles are copies of each other. In 
Secondary Two, work of the following sort was done, and it may help 
to do just a little of it now. Give the students measurements for 
side-angle-side, such as 2 . 5 inches, 58', 3 . 2 inches. Tell the stu
dents to construct independently a triangle using this information 
and then compare their triangles. Except for inaccuracies in con
struction, the triangles drawn will match. 
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C 

You should emphasize by drawings that the 6 points A, B, C, 
D, E, F need not all be different from one another. Figures like 
these will help. F 

A=A: D 
B 


A:D 
B:E 

C 

BE C=F
 

Answers to
 
PROBLEMS 7-3
 

1. /ABC ADFE. 
2. No SAS congruence. 
3. No SAS congruence. 
4. ATRS AMNL. 
5. AACB ADCB. 
6. /MXZ - MXY. 
7. /ACB _ ACD. 
8. /FEG AHEG and also FEG AGEH. 
9. AAEB - CED. 

10. A FJG A HJI. 
11. A BAC A DAE. 
12. The statements are listed above in 8. We can deduce that 

F EGH-=EGF -=H. 

7-4 ASA and SSS 

We postpone the proofs of ASA and SSS until the end of the 
chapter. Both proofs are fairly difficult and it seems best to give 
students more experience proving simple theorems dealing with con
gruences of triangles before exposing them to these two proofs. 
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We choose not to use the AAS theorem for the following reasons. 
It is not at all intuitively obvious that two triangles which agree in 
AAS are congruent. There are two ways to prove the AAS theorem. 
The easiest way is to wait until one has stated the parallel postulate 
and has proved'that the angle sum for every triangle is 1800. It fol
lows that the third angles of the two triangles are congruent and one 
has the ASA condition satisfied. We will give a proof of AAS con
gruence, which will depend upon the exterior angle theorem for tri
angles in Chapter 9. Although we could prove this theorem now 
and then establish the AAS theorem, we have chosen to postpone 
the treatment of the exterior angle theorem and related inequalities 
for triangles to Chapter 9. 

Answers to
 
PROBLEMS 7-4
 

1. 	 A RTS - A BAC by ASA. A picture should be drawn by each 
student. 

2. 	 A LMN AFSR by SSS. 
3. 	 ARST ARSV by ASA. s 

T 	 V 

R 

4. 	 A CAB A FAB by SSS. 
A 

FC 

B 
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5. AZXY ATYX by SSS.
 

z 

6. /ABD ABAC by ASA. A 

D 

C 

7. 

8. 

B 

A ABC A ABC is true for any triangle by the second con
gruence postulates for segments and angles. The second 
statement is true by SAS, since BA- C-A, A A and 

-C AB. We deduce that C _ B. This is a proof that the 
base angles of an isosceles triangle are congruent. 

We deduce that A BCA =_ A CBA by ASA. Therefore, 
AC AB. This is the converse of Problem 7. 

9. 

10. 
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7-5 Using SAS, ASA, and SSS in proofs 

It is in this section that many students should begin to develop 
the ability to follow a fairly long proof. It is becoming more impor
tant now to organize proofs in such a way that it is easier to keep 
track of the essential ideas. Regardless of what we have said in 
the STUDENT TEXT, the chief responsibility for helping your stu
dents learn how to present lucid proofs falls to the teacher. You 
can teach them much by the example you set as you write out spe
cial proofs at the blackboard. Encourage students to express them
selves clearly, but do not insist that pruofs be too complete. 

When writing a statement of congruence for triangles that is 
justified by SAS, it helps to write so that the three given congru
ences can be read off from left to right. That is, arrange the order 
of your vertices so that 

A PQT AMFR by SAS 

follows from the facts 

PQ= MF Q2 F;QT = FR. 

This notation seems preferable to the notation 

A PTQ - A MRF by SAS. 

An analogous symbolism for ASA would be to write 

A ABC ADEF by ASA 

when one has 

A = D;AB =-DE;B =E. 

This device is a convenient one. 

Emphasize throughout the year that there is no single correct 
form for making proofs. Present some proofs in paragraph style and 
some proofs written in the statement-reason columnar style. The 
latter looks more formal, but this is only superficial. A proof written 
out in conversational language can satisfy the demands of mathemat
ical rigour fully as well as a proof written in the other style. Most 
of our proofs will be incomplete in the sense that as we move along 
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step 	by step through our arguments, we will not give all the reasons 
that justify each of our conclusions. 

You have one great advantage in your teaching that is not avail
able to textbook writers. In your teaching, you can develop ideas at 

the board. Pupils will see the figures as you draw them, presenting 
the information given in a problem. As you deduce new facts, you 
can record these facts by suitable markings on the figures, you can 
draw in new lines, and you can mark new points. Thus, the student 
sees the flow of ideas. He sees which step in the reasoning comes 
first, which second, which third and so on. Make the most of this 
advantage. 

With the careful preparation that has been laid in the text, 
pupils should easily understand the proofs given for Theorems 7. 2 
and 7.3. We have illustrated in many problems the fact that in a 
statement of congruence it is not necessary that there be two dis

tinct triangles. 

Answers to
 
PROBLEMS 7-5
 

1. Accept an informal argument like: 

Because AC =BC, Theorem 7.2 tells us that B A. 

Since B-C =_A'-B AA C. Thus, A = _B -C. 

2. 	 This is just like Problem 1, except Theorem 7.3 is used. 

3. 	 A XYM A XZM by SSS, so Y _ Z. We know by our measure

ment postulates that YZ has a midpoint. 

4. 	 ARTS AKTS by SAS,so R K. We know T has abisec

tor because of our measurement postulates. 

5. 	 XMY =_XMZ, so by definition, XM i YZ. 

6. 	 This is similar to Problem 5. 
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7. In case a, A, B and D are on a line. Since ABC and DBC are 
congruent by construction they must be right angles. In case 
b, the triangles are congruent by SAS. Then AEB and DEB 
are congruent and AD i k. The difference between this prob
lem and Problem 9 of Problems 6-5 is that in the earlier prob
lem the given point is on the given line. In that case, both the 
existence and uniqueness of the perpendicular follow from 
angle congruence postulates. We have established the exist
ence of a perpendicular through a given point not on the given 
line; the uniqueness of this perpendicular will be proved in 
Chapter 9 (Corollary 9.3). 

8. The reasons are: 
a. 	 SAS b. Step a c. Step a 
d. 	 SSS (Remember that BD - CE by the figure.) 
e. 	 Step d 

f. 	 Steps b and e and angle subtraction 
9. a. By two applications of Theorem 7.2, we have 

PAB =-PBA and CAB - CBA. 

The figure tells us that P is in the interior of both CAB 
and CBA and so we can subtract angles, getting 

CAP - CBP. 

b. 	 To prove AX = XB, one needs to look at A CAP and 
A CBP, deducing that they are congruent (SAS). So 
ACX - BCX. Then A ACX - A BCX (SAS) and the result 
follows. In presenting this proof at the board students 
should sketch in line segment CP, noting that it contains 
point X. This segment might be sketched in as a dotted 
line to identify it as something added to the original figure. 
Of course, segment CP exists, whether or not we draw a 
picture of it. 

10. a. Theorem 7.3 in A RST. 
b. 	 Theorem 7.3 in A XST. 
c. 	 A XSR AXTR by SAS. 
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11. 	 a. SAS b. SSS c. ASA d. Step c 

12. 	 Theorem 7.2 and angle subtraction 
13. 	 a. SSS 

b. 	 Theorem 7.3 for A CKF 
c. 	 Segment subtraction 

14. 	 a. A BAD A BCD by SSS. Thus, A ABE A CBE by SAS. 

b. BEA 	 a BEC from part a. 

15. 	 SSS tells us that A ABC A DBC. Hence, ABC - DBC so 

BA = BD by an angle congruence postulate. 

16. 	 B - E by Theorem 7.2 in A ABE. 

Then A ABC A AED.
 

Hence A - AD and Theorem 7.3 applies to A ACD.
 

17. 	 M is equidistant from A and B by definition of the midpoint. 
For any other point P, as sketched, A PMA A PMB by SAS. 

Hence PA PB. 

18. 	 a. ADBC AECB bySAS. 

Then DCB EDC and Theorem 7.3 applies to A BOC. 

b. 	 Since BE DC and BO CO, segment subtraction gives 

the result. 
c. 	 SSS gives A DOB A FOC. 

19. 	 The two triangles are congruent in the obvious way by SSS. 

20. 	 a. SAS b. SAS c. Steps a and b 
21. 	 a. ASA b. ASA c. Steps a and b 

22. 	 As the figure shows here, we have the relationships 

DBC <ABC and - <AG. 

In order to prove that each of the six given statements of con
gruence 	 is false, we must show that each one implies a state.

ment 	that contradicts one of the above inequalities. Many of 

these 	six parts of Problem 22 are very easily proved, but others 
require 	that the student give a short chain of reasoning. This 
problem 	provides an excellent opportunity for pupils to organize 
an 	argument systematically. We are not sure that all proofs 
presented below are the shortest possible. Some pupils may 

improve 	upon some of them. 
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a. 	 A ABC = DBC implies that ABC - DBC, a contradiction. 
b. 	 This triangle congruence asserts that AC - CD, and this is 

false. 

c. 	 This congruence implies that 
AB 2 BC and BC - CD. Hence, triangle BCD is isosceles 
and CDB - CBD. But the congruence also tells us that 
BCA - CDB, and since BCA - CBD, we get the result thatA DBC is equiangular with all three angles congruent to 

C. Then A ABC is also equiangular with all angles congru
ent to C, and we have 	deduced the false statement that 

ABC- DBC. 

d. 	 The congruence says that 

AC = BC and BC = DC.
 

Hence, we conclude that AC 
 - DC, but this is false. 

e. 	 The congruence asserts 

ABC - C and C = CBD.
 

Hence, ABC -= 
CBD, and this is false. 

f. 	 A ABC ACDB ==> A -C C =- DBC and AC - BC. 
ButA C AB M BC. Hence,AB _ AC, so ABC - C. 
Now, ABC = C and C - DBC = ABC - DBC, and this 
last statement is false. 

23. 	 a., b., c. A ABD A CDB by ASA. 
d., e. AABC ACDA byASA. 

f., g. AOAD AOCB byASA. 

24. 	 a. ASRK = A URK by SAS. 

b. 	 Then SK UK. 
c. 	 SKT - UKV by congruence of vertical angles. 
d. 	 RSK R UK by a. 
e. 	 KST = KUV by d and angle subtraction. 

f. 	 A SKT AUKV by ASA. 
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7-6 Making use of figures in proofs 

This small section is written to emphasize and clarify the role 
that our figures play in our proofs. We can use a figure naturally 
and easily to designate relations of betweenness and incidence. 
There is no reason why we cannot allow a figure to tell us which 
one of three points on a line is between the other two. A figure can 
tell us when three or more points are collinear or three or more lines 
are concurrent, that is, have a common point of intersection. 

It is important that students realize exactly what information 
they are taking from a figure. Again and again we permit our figures 
to "think" for us with reference to betweenness and incidence re
lations. For example, a student may refer to the figure below where 
P is in the interior of A ABC. 

A 

B C 

The student may say: 

Let ray AP intersect BC in point M. The picture tells him 

that if point P is in the interior of A, then AP does contain a point 

between B and C. 
Without our betweenness postulates, we could not deduce this 

conclusion, which is suggested by our figure. Even with our be
tweenness postulates the proof is difficult, and we feel that it has 
no place in the text. 

Answ ers to ' T ext g 
PROBLEMS 7-6 

The main task here is one of drawing figures to fit the verbal 
statements of the problems. 
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A RSV - A RTV by SSS, 
and the result follows. 

BI S
2. Use SAS. c B

H 
V 

HT 

3. 

A D 

-- A 

XR _=YR===x Y. 
Then use SAS on A RXT and 
A RYZ. 

x T Z 

R 

4. AF = CF from the ASA congruence. 
A AFB A CFB. From the same 
congruence DAF =_ECF. Hence, 
A DFA - A EFC by ASA. 

B 

D E 

7-7 Congruent triangles in different planes 

Answers to 

PROBLEMS 7-7 

These problems are not very difficult. Give much attention to 
the careful drawing of figures that accurately show the rela
tionships. Show hidden lines as dotted lines. 
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1. 	 Use ASA. 

2. 	 Use SAS. 
3. 	 A APR A BPR by SAS. Then ARP BRP. Similarly, 

ATP - BTP, and ASA gives the desired result. 

4. 	 In the figure, think of A ABD in the plane of the paper, with 

point 	C in front of the paper. Then AC intersects the paper 
in point A only. 

a. Use SSS. b. Step a. c. Use SAS. 

5. 	 a. Use SAS. 

b. RA TA, so use SSS. 

c. RSA TSA. 

d. Duplicate steps b and c with A replaced by B. 

6. 	 A XYT - A XYZ by SAS. Hence, XT =_XZ and A XTZ is 
isosceles and has congruent base angles. 

7. 	 A DBA =_A DBC by ASA. 

7-8 	 Proofs of ASA and SSS 

One could fashion a direct proof for ASA, but the indirect.ne 
seems more natural. It is possible that you might decide not to 
consider these two proofs in detail at this time. 

The proof presented for SSS is a little clumsy in that it deals 
with only one of several cases and other cases must be examined in 
subsequent problems to complete the discussion. However, the 
ideas of this proof are the simple ideas related to addition and sub
traction of angles and the fact that base angles of an isosceles tri
angle are congruent. In Problem 10 of this section another proof is 
presented. 
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1. 

Answers to 

PROBLEMS 7-8 

A 

I 0 

IE 

I 
F 

H 
G 

2.D 

The argument is unchanged, except step 8. 
step 8 becomes angle subtraction. 

A 
HH 

The reason for 

CII 

E IlF 

Omit steps 7 and 8. 

G 

3. A D 

B E 

The reason 

H G 

for step 8 becomes angle subtraction. 
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4. 	 A 

0 

E 
H t 

IG 

Omit 	steps 6 and 8. 

5. 	 a. Every segment has a midpoint by segment measurement 

postulates. 

b. 	 A PMA PMB by SSS. 

c. 	 PMA - PMB by step b. 

d. Definition of perpendicularity and step c. 

e. Definition 

6. 	 There is a perpendicular bisector of AP in each plane which 

contains AB., 

7. 	 Each is the converse of the other. 
c 

8. 	 Apply Theorem 7.7. 

9. 	 By Problem 8 the perpendicular bisector
 

of AB contains C. Now prove
 
A AMC - BMC and the result
 
follows. AM
 

10. 	 This proof is indirect, but the essentialdifference between 

this proof and the one in the text is that ray BG is on A's side 

of BC. 

Reasons 

a. Angle congruence post.ulates. 

b. 	 Assumption that ABC X E. 

c. Segment congruence postulate. 

d. Step 	b. e. SAS f. Step b. 
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g. 	 G = DF by e, and AC D-F by hypothesis, so HC = AC. 
If C, H and A were collinear then step d would contradict a 
segment congruence postulate. 

h. 	 AB = HB and A-C - HC by the hypothesis and step e. 
Note that steps f and g are used here to insure that H, B, C 
and C, H, A are vertices of triangles. 

i .	 Problem 8, this section, and step h. 
j. 	 Step i is a contradiction. It tells us that a point of HA, the 

midpoint, is collinear with B and C. But H was chosen on 
A's side of BC. 

k. 	 Our assumption that ABC / E has 1.den shown to be impos
sible, so SAS applies. 

Answers to 

REVIEW PROBLEMS 7-9 

1. 	 By SAS congruence, F - A and AC =_DF. Hence, m(F) 42= 
and DF = 7.2. 

2. 	 Angle addition results tell us that 
m(BEC) = 44 - 12 = 48 -- 15, so 12 =13.
 

3,4. Measure Measure of
 

Angle of Complement Supplement 

ADB 48 138 
ADC 4 94 
BDC 46 136 

5. 	 AC = BC = 5.21. 

6. 	 x + 25 = 90,x = 75. 
7. 	 P-E A -_ so 

PE =12. A p E 

8. 	 True: a, b, e. 
False: c, d. 

9. 	 d is the best completion. 
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10. 	 b and c. 

11. 	 False, they may not be collinear. 

12. 	 False, their sides may have different lengths. 

13. 	 True, a separation postulate. 

14. 	 False, a plane separates space. 

15. 	 True, incidence postulate. 

16. 	 False, a triangle is a union of segments joining three
 

non-collinear points.
 

17. 	 False, B is not on either side of k. 

18. 	 False, the points may be collinear. 

19. 	 H and E are in the interior of X. 

A, B and F are in the exterior of X.
 

D and G are on X.
 

20. 

.21. 	 A and B are on the same side 

of m and AB is not parallel to 

m. B is between A and a point
 

of M.
 

22. 	 A and B are on the same side 

of m. EitherAB m orA is
 

between B and a point of m.
 

A 

23. 	 Ignoring the intersection point P,
 

there are four triangles. Con

sidering P as a possible vertex,
 

there are four more.
 
D 	 C 

24. 	 Four triangles are formed, the faces of a tetrahedron. 
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25.
 

26. 

wO 

27. Ifx +x = 90, then x = 45. 
28. If x = 12 + (180 - x), then x 96. 
29. AB has length r, a pos'tive number. Then sr is positive and 

our measurement postulates tell us that P can be found on
AB such that AP = sr. Since sr < r we must have P between 
A and B. 

30. Set s - t and apply the preceding problem. Note that 
l+t 

o < SK 1. 

If AQ If 1AQ-
t 

t xAB -
t

1+ t x (AQ + QB), 
then ( i t + 

then (1 t - 1 x AQ = QB, or 
t 

AQ =txQB. 

31. A ABC A BAC === A =- B, which is impossible.
 
A ABC A CBA is possible.
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32. 	 The angles at D are right angles. Also, 

AB - BC and the triangle is isosceles. 

B 

C D A 

33. We can have either AC = 6 and BC = 7 or AC == 7 and 

BC 6. For each choice we can choose C on either side of 
AB. For each of these four possibilities the SSS theorem tells 

that C is unique. 

Ci C2 

6 	 6 

7 7 

A B 
5 

7 7 

66 

C3 C4 
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Logic and Inequalities • UNIT II1 

Chapter 8 
LOGIC-A STUDY OF CAREFUL REASONING 

8-1 Introduction 

In this chapter we consider some concepts which are part of 
the subject of logic. We do this for two reasons: First, these con
cepts are of interest and importance in their own right, and they are 
useful in everyday thinking, and second, these concepts must be 
understood, at least intuitively, by anyone who would understand a 
deductive study of geometry. It is this second reason which is of 
principal importance to us. We feel that many of the difficulties 
which students have in a course such as this are because of an in
adequate understanding of the logical concepts of this chapter. 
Thus, we feel that a study of these concepts will pay dividends in 
the form of a better understanding, not only of the deductive study 
of geometry in this course but in all subsequent mathematical 
studies. 

The principal content of this chapter is in Section 8-2 in 
which the logical use of the words and, or, if ... then and not is 
explained. In the last two sections, the concepts of converse and 
contrapositiveare discussed. 

The examples in this first section should motivate the work of the 
rest of the chapter, principally Section 8-2. They are chosen as ex
amples of logical difficulties which are like some which do frequently 
arise in the study of geometry. You should devote a generous amount 
of class time to the discussion of these examples before assigning 
work in Section 8-2. You should not feel that you have to explain 
the problems raised by these examples at this time. The explana
tions depend on an understanding of Section 8-2. The examples 
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will be explained in that section. At this time, you should encour
age open discussion of these examples so that the problems they 
present will be understood by the students. Some students will be 
able to see how to resolve these problems using their intuitive 
knowledge of logic, but certainly a large number of students will be 
puzzled by some of the examples. We discuss the examples here. 
Remember that you should not resolve the difficulties in the first 
classroom discussion. Leave them as questions to be answered as 
the class progresses through the rest of the chapter. 

Example 1: The point of this example is the equivalence of 
the statements "a = 0 or b = 0" and "if a / 0 then b = 0". To 
clear-thinking students this equivalence will be obvious. They 
might reason (correctly) that in order for "a = 0 or b = 0" to be 
true we can either have a = 0, or if a 0, then we must have 
b = 0. Some students may suggest that the commutative property 
of multiplication is involved. Actually it is not, and it should not 
be mentioned unless it is proposed by the students. As we explain 
later, the statement "p or q" is entirely equivalent to the statement 
"if not p then q" for any statements p and q. See the discussion of 
"if ...then" in Section 8-2. 

Another example of this sort is the equivalence of the state
ments "three points are collinear or they lie in a unique plane" and 
"if three points are not collinear, then they lie in a unique plane". 

Example 2: Statement (3) is the only one which has the same 
meaning as "It is not true that all men are honest". Statement (2) 
says the same thing as (1), but both of them make a stronger state
ment about the dishonesty of men. Statement (4) says that there 
definitely are some honest men, while the given statement merely 
says that there are some dishonest men; perhaps all men are dis
honest, perhaps only some. See the discussion of "not" in the next 
section. 

7xample 3: Statements (3) and (4) have the same meaning as 
the given statement; (1) and (2) do not. Statement (4) is just another 
way of phrasing the given "if .. . then" statement. This is dis
cussed in Section 8-4. Statement (3) is the contrapositive of the 
given implication and is also discussed in 8-4. Statement (2) is the 

75 



converse (see Section 8-3) of the given implication. Statement (2) 
can also be stated as "if a triangle is isosceles, then two angles 
(called the base angles) are congruent". Although it is true, it has 
different meaning from the given statement. Statement (1) is the 
contrapositive of (2) and, therefore, has the same meaning as (2), 
and, therefore, different meaning from the given statement. 

The distinction between an implication, its contrapositive, its 
converse and the contrapositive of the converse is clearer if one 
begins with an implication whose converse is false. Examples of 
this sort are given in 8-3; another is the following: "If it is raining, 
then the sky is cloudy". Statements analogous to (1) through (4) 
are listed here: 

(1) If it is not raining, then the sky is not cloudy. 
(2) If the sky is cloudy, then it is raining. 
(3) If the sky is not cloudy, then it is not raining. 
(4) In order that it be raining, it must be true that the sky 

is cloudy. 

Example 4: The argument outlined is a valid proof of the fact 
that there is no rational number wbos: square is 2. It is a good ex
am-le of an indirect proof. The students have seen several exam
ples of indirect proofs, so this may be clear to most students. Of 
course, the idea of an indirect proof is of paramount importance, so 
all students should eventually understand it. In Section 8-4, this 
will be discussed. 

The proof of the ASA congruence theorem (Section 7-8) is 
another example of an indirect proof. 

Example 5: The student who showed how to construct a line 
from P perpendicular to k has probably proved that there is at least 
one line perpendicular to k and containing P. To prove that there 
is at most one such line he should probably use an indirect proof. 
That is, begin by assuming there are two such lines and then show 
that a contradiction must follow. This is just what is done in 
Section 9-2, where this is proved. 

Segun has confused an "existence theorem" with a "unique
ness theorem". See Section 10-1 where this is discussed in con
nection with the parallel postulate. 
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8-2 Agreeing upon the use of words 

The title of this section is a good indication of the essence 
of many logical difficulties. If we all understand exactly the mean
ings of the words we use, then the capacity for clear, common
sense thinking which most people have will lead us to consistent 
conclusions. 

Of the four ternis discussed in this section and, or, if... 
then, and not, the first three are called logical connectives, because 
they are used to connect two (or more) simple statements to form a 
third statement. The last, not, is applied to a single statement, 
which may itself contain some simpler statements, logical connec
tives and "'not". These four terms are discussed in detail, one at 
a time. 

And 

The connective, "and" is quite simple. The discussion need 
not be too lengthy. By carefully chosen simple questions, you can 
discover when the students understand its use. For example, all 
students should give correct answers to the following: 

Which of these statements are true and which are false? 

(a) 3 + 5 = 7and6- 2 = 1. (False) 

(b) 3 + 5 = 8and6 - 2 = 1. (False) 
(c) 3 + 5 = 12 and6 2 = 4. (False) 
(d) 3 + 5 = 8and6 - 2 = 4. (True) 

Letters p and q (and later also r and s) are used as statement 
variables in much the same way that x, y, z and so on are used as 
number variables in algebra. The statement "x + 3y = 7" is an 
open statement. Some of the statements that are obtained from 
"x + 3y = 7" for certain particular numbers x and y are true and 
others are false. Similarly, the statement "p and q" is a statement 
which gives rise to true statements when certain particular state

ments p and q are substituted and which gives rise to false state
ments for other substitutions. An essential difference is that to 

know whether "p and q" is true or false, we need only know the 
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truth 	or falsity of the statements p and q. It is not necessary to 
know the particular statements p and q. Of course, if particular 
statements are given to be substituted for p and q, then we can de
cide the truth or falsity of "p and q" by deciding the truth or 
falsity of the particular statements p and q. 

Give the students some practice forming particular statements 
out of ones like "p and q", "(not p) and q", "if p then not q" and 
so on by replacing p and q by particular statements. For example, 
p might be replaced by "John is four years old" and q might be 
replaced by "John is in the third form". 

Answers to
 
PROBLEMS 8-2A
 

1. 	 The number 2 is the only number which is both even and prime. 
All other prime numbers are odd and all other even numbers are 
composite (that is, non-prime). The statement in quotation 
marks is false for x = 10 since 10 io rot a prime number, and 
it is false for x = 23 because 23 is odd. It is also false for 
x = 	 27 since 27 is neither prime nor even. 

2. 	 "x is odd and x 2 is odd" is true for all odd natural numbers, 
since the square of an odd number is odd. (See Problem 6 of 
Section 1-4.) You might also raise related questions, such 
as these: 
For what natural numbers x is each of the following true? 

a. 	 x is odd and x 2 is even". (True for no natural numbers) 
b. 	 "x is even and x 2 is even". (True for all even natural 

numbers) 

c. 	 "x is even and x 2 is odd". (True for no natural numbers) 
-3. 	 A ABC A ABC is true for any triangle ABC, by definition of 

triangle congruence and by the postulates which say that each 
segment is congruent to itself and each angle is congruent to 
itself. Thus, the quoted conjunction is true for just those tri
angles for which "A ABC - A ACB" is true. These are the 
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triangles in which A-B a AC and B - C, that is, the isosceles 

triangles ABC with congruent sides AB and AC. 

4. When asked to solve the system 

x+2y= 3
{+ 2y2x+ y= = 33 

you are being asked, "For what ordered pairs of real numbers 
(x,y) isittrue thatx + 2 y = 3and2x + y = 3 ?" When 
solving you argue as follows: 

(x + 2y =3 and 2x + y 3)= 

=3 -2y and x 3 y 

3(xand 

2y
2y and3 2y

(x=3 

(x = 3 - 2 y and 3y = 3) == 

(y = 1 and x = 1) 

Thus the ordered pair (1, 1) is the only possible solution. 
The easiest way to see that (1, 1) is a solution is to 
"substitute". That is, verify that if x = 1 and y = 1, then 
x + 2y = 3and2x + y =3. 

Or 

The point about the use of "or" which will need emphasizing 
is that "or" is always used in a non-exclusive way in mathematics. 
That is, in everyday life, if you say "I will go swimming or I will 
go fishing", you generally imply that you will not do both. The 
"or" is often used in the sense which excludes the possibility that 
both of the statements linked by "or" are true. In mathematics this 
is not the case. Always for us "p or q" is true when one or both of 
p, q are true. 
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Not 

The negation of a simple statement is easy to understand. The 
negation of a more complicated statement, which itself may involve 
several simple statements with logical connectives, will often in
volve some very careful reasoning. This result of this reasoning 
can be displayed clearly by a device called a truth table. The truth 
table relating a statement p to its negation, "not p", is as follows: 

Negation: p not p 

T F 

F T 

The first row of the table tells us that when p is true (T) then 
(not p) is false (F). The second row tells us that when p is false 
then (not p) is true. 

We can write truth tables for the conjunction and the 
disjunction: 

Conjunction: P q p and q 

T 

T 

F 

F 

17 

F 

T 

F 

T 

F 

F 

F 

Disjunction: P q p or q
 

T T T
 

T F T
 

F T T
 

F F F
 

In these tables, four rows are needed since there are four 
possible combinations of truth and falsity for statements p and q. 
The first row of the truth table for the conjunction tells us that (p 
and q) is true when both of p and q are true. The other three rows 
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say that (p and q) is false in all other cases. For the disjunction, 
the truth table tells us that (p or q) is false when both of p and q 
are false, and in all other cases (p or q) is true. 

These two truth tables can be combined: 

p q p and q p or q 

T T T T 

T F F T 

F T F T 

F F F F 

Now we can write truth tables for things like [not (p and q)] 
and [(not p) or (noL q)]. 

p q pandq not(pandq) notp not q (not p) or(notq) 

T T T F F F F 

T F F T F T T 

F T F T T F T 

F F F T T T T 

In writing the fourth column, for [not (p and q)] in this table we 

made use of the third column and the truth table for the negation. 
The latter tells us that if r is any statement, then (not r) is true 
when r is false and false when r is true. Letting r represent (p and 
q) we see that the column for [not (p and q)] should be just the op
posite of the column for (p and q). In the same way, the column for 
(not p) is the opposite of the column for p. Likewise for (not q). 

To obtain the column for [(not p) or (not q)] we used the col
umns (not p) and (not q) and the truth table for disjunction. The 

latter tells us that if r and s are any statements, then (r or s) is 
false when both r and s are false and true in all other cases. 
Letting r be (not p) and s be (not q) we can, in a more or less me

chanical fashion, make the entries in the column for [(not p) or 
(not q)]. Thus, when an F appears in both of the columns (not p) 

and (not q), we enter an F. Otherwise, we enter a T. This column 
tells us that [(not p) or (not q)] is false when both p and q are true, 
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and true in all other cases. Of course, the fourth column teils us 
the same about the statement [not (p and q)]. This shows that the 
negation of (p and q) has exactly the same meaning as the disjunc
tion [(not p) or (not q)]. 

For example, the statement [not (2 + 3 = 7 and John is my 
brother)] has the same meaning as [(not 2 + 3 = 7) or (not John is 
my brother)]. We would ordinarily write this last statement as 
(2 + 3 , 7 or John is not my brother). 

You may wish to test your understanding of truth tables by 
filling in the entries in the following: 

p q porq not(porq) not p notq (notp) and(notq) 

T T F 
T F F 
F T F 
F F T 

YoL should find that the 4th and 7th colunnas are identical, 
thus showing that the negation of (p or q) has the same meaning as 
the conjunction of (not p) and (not q). 

Although truth tables, if fully understood, provide an easy way 
of finding the meanings of rather complex statements, we suggest 
that if you use them, you use them as a supplement to (not as a sub
stitute for) careful common-sense thinking. That is, you should be 
able to see intuitively that the statements 

[not (p and q)] 

and 

[(not p) or (not q)] 

have identical meanings. This is the sort of reasoning tLe students 
are asked to do in several exercises. 

It would undoubtedly be unwise to introduce all students to the 
use of truth tables, as it would require at least 6 or 8 lessons 
in order that they acquire facility in their use. A very able student 
might be interested in studying them on his own. For such a student 
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(or for your use, as time and energy permit) we suggest either of the 
following references: 

Principleso/Mathematics, Second Edition, by C. Allendoerfer 
and C. Oakley, McGraw-Hill, New York, 1963. 

Finite MathematicalStructures, by J. Kemeny, H. Mirkil, J. 
Snell and G. Thompson, Prentice-Hall, Englewood Cliffs, New 
Jersey, 1959. 

We will return to the use of truth tables in connection with 
implications and for certain exercises. 

Answers 	to 
TB. - PBgt. 1,7- 01PROBLEMS 8-2B 

1. 	 a. [x 2 - 2x + 15 = 0] 

[(x - 5) (x + 3) = 0] == 

[(x - 5 = 0) or(x + 3 = 0)] === 

[(x = 5) or (x = -3)], 

so there are two roots, namely 5 and -3. The property we use 
to justify the second " === " is that for real numbers a and b. 

[ab = 01== 0 = 0)],[(a 0)or (b 

the 	theorem on factors of zero in algebra. 

b. 	 [3x2+ x - 2 = 0]=[(3x - 2)(x + 1)= 0] = 

[(3x - 2 0) or (x + 1 = 0)] 

X)or (x = -1 Solutions: -, -1. 

c. 	 [x4 + lOx + 25 o][===>(x + 5) (x + 5) 0 
[(x + 5 = 0) or (x + 5 = 0)] ===
 

L(x = -5) or (x = -5)].
 

Only one solution, namely -5. Notice that it is essential that 
the "or" be used in the non-exclusive (mathematical) sense 
here. The truth of [(x = -5) or (x = -5)] does not preclude 
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the possibility that both of the sttements in parentheses may 

be true. 

2. 	 "Not p" would be "It is false that yesterday was Saturday" or 
"Yesterday was not Saturday". The statement "Yesterday was 

Friday" is false on Monday, Tuesday, Wednesday, Thursday 

and Friday. On each of these days the statement "Yesterday 

was not Saturday" is true. 

3. 	 a. It is cold and you are wet. 

b. It 	is cold and you are not wet. 

c. It 	is not cold and you are not wet. 

4. 	 You would usually say, "It is false that it is not cold and you 

are 	not wet". However, this is ambiguous. It could mean 

is false that it is not cold) and you are not wet" instead"(It 
of the intended meaning, "It is false (that you are not cold and 

you are not wet)". "It is cold or you are wet" is a simpler 

statement which has the desired meaning without ambigaity. 

The students are expected to arrive at this formulation by 

careful thinking. It is, of course, obtainable as an application 

of the work done above with truth tables. We showed that 

[not (r and s)] has the same meaning as [(not r) or (not s)]. If 

r represents "it is not cold" and if s represeits "it is not 

wet" [that is, if r is (not p) and s is (not q)], then [(not r) or 

(not s)] is "it is cold or you are wet". 

5. 	 a. Tuesday, Wednesday 
b. 	 Sun., Mon., Thurs., Fri., Sat. 

c. 	 Every day except Tuesday 
d. 	 Every day 

e. 	 "p and q" is never true. 

6. 	 a, c, f are true; the others are false. 

e. 	 can be written as [(not p) or q], which is false. 

f. 	 can be written as [p and (not q)], which is true. 

g. 	 is false since [p and q] is false and so is [(not p) and 

(not q)]. 
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If... then 

It will probably be helpful to give the students practice in 

converting statements from the "if p then q" form to the "(not p) or 
q" form. Use examples they are familiar with from everyday life, 
from algebra or from geometry. Possible examples are: 

"If I study then I will learn the lesson". 

"If x = y then 7 + x - y = 7". 

"If AB < CD then CD > AB". 

Careful thinking about examples like these should help the 
students to see the meaning of "p == q" and to see that an equiva

lent statement is "(not p) or q". 

Let us find the truth table for "p ==== q" by using the equiva
lent statement "(not p) or q". 

p q not p (not p) or q P=== q 

T T F T T 

T F F F F 

F T T T T 

F F T T T 

We obtained the second and third columns by using the truth tables 
for negation and disjunction. We obtained the fifth column by dupli
cating the fourth column, since we have agreed that [(not p) or q] 

and [p == q] have identical meanings. 

We see that the only case in which "p = q" is false is the 

case p true and q false. That is, "p ===> q" clearly says that if p 
is true then q must be true. Since if p is false, "p === q" says 
nothing about the truth or falsity of q, we want "p ==> q" to be true 

in the cases (1) p false, q false and (2) p false, q true. 

In the text we point out how to settle the question raised in 
Example 1, Section 8-1. 
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Answers to 
PROBLEMS 8-2C 

1. 	 a. "(Not p) or q" is "Today is not Wednesday or tomorrow is 
Thursday". This is true every day. 

b. 	 "If p, then q" is "If today is Wednesday, then tomorrow is 
Thursday". Of course this is a valid (that is, true) impl.
cation, true every day of the week. 

2. a. 	 "4 + 4 96 8" or "4 + 5 = 10". False. 
b. 	 "If 4 + 4 = 8" then "4 + 5 = 10". False. 

3. a. 	 Yes 
b. 	 Yes. This part is hard to think of in the "if ... , then" 

form. The equivalent disjunction in part a. settles the 
question easily. 

4. 	 This is easy to prove. x + y 9 implies that 
(x + y) + 1 = 9 + 1 which implies that x + (y + 1) = 10. 

Summary 

This part should be clear if the rest of Section 8-2 was under
stood. In Example 4, part (2), let p represent "I go to school" and 
let q represent "I will pass the test". Then the two statements are 
"(not p or q)" and "if p then q". For part (3) let p represent "Ruth 
does not wash the dishes" and let q stand for "Ruth will not go to 
the party". 

Answers to
 

PROBLEMS 8-2D
 

1. b. 	 Not 2x + 3 = 11, or it is false that 2x + 3 = 11; 

2x + 3 # 11. Henceforth, we list only the form of the 
negation which would ordinarily be used. 

c. 	 There was at least one day this past week when it was 
not hot. 

d. 	 Everyone in this room is telling the truth. 
e. It is 	not hot or I am not tired. 
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f. You will not go with me and I will go. 
g. Not all the potatoes are small; or alternately, some of the 

potatoes are not small. 

2. a. p.is false. 
b. q is true. 
c. p is false. 
d. p is false. Convert to (not p or q) is true. Hence if q is 

false, (not p) must be true. 
e. [(Not p) or q)] is false; I not [(not p) or q] Iis true; [p and 

(not q)] is true. Hence p is true and q is false. 
f. Convert to [(not p) or q] is true. Hence if p is true, q is 

true. 
g. q is true. 

h. p is false. Convert to [(not p) or q] is true. 
i. No conclusion can be reached. 
j. Convert to [(not p) or q] is true; [(not q) or p] is false. The 

last can be changed to [q and (not p)] is true. Thus, the 
conclusion is that q is true and p is false. 

Truth tables could be used as follows: 

p q p=== q q ==p not (q ==p) 

T T T T F 

T F F T F 

F T T F T 

F F T T F 

Comparing the third and fifth columns (remember that we 
are told that [p ===> q] is true and that [not (q === P)] is 
true) we see that they both have the entry T only in the 
third row. Hence p is false and q is true. 

k. We know that if p is true then q is true and if q is true then 
p is true. Thus, if either is true, so is the other, and hence 
also if either is false, so is the other. That is 
{[p and q] or [(not p) and (not q)]I is true. 

87 



Alternately, we compare the third and fourth columns of 
the truth table constructed for part j. Both have entries 

T in row 1 and in row 4. Thus, either p and q are both true 

(row 1) or p and q are both false (row 4). 

3. 	 a. [p and q] is false, or simply [not (p and q)]. 
b. 	 [p and (not q)] 'is false, or simply {not [p and (not q)]} 

or [(not p) or q]. 
c. 	 [(not p)= q] is false, or -[p or q] is false, or
 

[(not p) and (not q)].
 

4. 	 c. and b. imply that (not q) must be true. But (not q) and 

(p === q) imply that p is false, that is, (not p) is true. 

5. 	 We conclude (p ===> r). This should be clear from the state

ments given. 

8-3 	 The converse of an implication 

The idea of the converse of an implication is fairly simple, 
and the students have seen it several times before. The "if" and 
"only if" language is new. Let us agree to write "if p, then q" as 

either "p ==> q" (as we have done already) or "q-== p". You can 

read "q = p" as "q is implied by p". Then we can write 

"p if q" as "p <- q" and we can write "p only if q" as "p ===> q". 
Thus, "p if and only if q" can be written "p == q". You can read 
"p== q" also as "p implies and is implied by q". The version 

"p if and only if q" is shorter and more frequently used. 

The student should realize that if he is asked to prove an 

"if and only if" theorem he must make two proofs - one for the 

"if" and another for zhe "c -ily if". 

Answers to 
0o: T taes 3 3 

PROBLEMS 8-3 

1. 	 First example: Let prepresent "x = 3" and let q represent 
"x' = 9". Then (p ===> q) is true but (q === p) is false. 

Second example: Let p represent "x + 7 = 0" and let q 
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represent "x 2 + 7x = 0". Since x 2 + 7x = (x + 7)x,
 
(p ===q) is true and (q ===> p) is false.
 

These two examples represent common errors in reasoning.
 

In solving x 2 = 9, students frequently forget the negative solu

tion, and in solving x 2 + 7x = 0, sometimes the common factor
 
x is "cancelled out", and the solution x = 0 is lost.
 

2. a. 	 p: "A ABC is equilaeral". 
q: "A ABC is isosceles". 

b. p: "B is between A and C". 
q: "A, B and C are collinear". 

3. a. 	 p: "Today is Monday". 
q: "Tomorrow is not Friday". 

b. p: "John is buying some cloth". 
q: "John has some money". 

4. Let 	p represent "For A ABC and A DEF, AB - D-E, B-C - EF 

and CA =_ FD". Let q represent "A ABC = A DEF". Then 
(p == q) is the SSS congruence theorem. The converse, 

(q === p), is true by definition of triangle congruence. 

5. A ABC E A DEF i/A-B - DE, BC EF and CA - FD. 

In A ABC and A DEF,AB - DE, BC - EF and CA -FD 
only if A ABC =_A DEF. 
The converse is true, as we noted in Problem 4, so an 
"if and only if" statement can be made which includes the SSS 
congruence theorem. It can be either "p if and only if q" or 
"q if and only if p", where p and q are as in Problem 4. 

6. 	 a. "B is between A and C AB < AC'. This is true. The 
converse would be "AB < AC = B is between A and C", 
or "AB f AC or B is between A and C". The converse is 
false as the figure shows. 

A 

B 	 C 

8-4 The contrapositive of an implication 

The word contrapositive looks more complicated than the con
cept it names. The text explains the idea quite clearly and compares 
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"p ===> q" and its contrapositive, "not q ===>not p", when both are 
written as disjunctions. This, together with numerous examples, 
should convince the students that "p ===> q" and its contrapositive 
have identical meanings. 

It is good to illustrate this concept with a true implication
"p ===> q" for which the converse "q = p" is false. This will 
help the students see the distinction between the converse and the 
contrapositive. The answers to Problems 1, 2 and 3 of the last sec

tion are good examples to use. Thus "(x = 3) === (x2 = 9)" and 

(X 9) ==== (x 3)" are both true, and both have the same 
meaning. Likewise "(B is between A and C)====> (A, B and C are 
collinear)" and "(A, B and C are not collinear) (B is not be
tween A and C)" say the same thing about the betweenness 
relation. 

Answers to
 
PROBLEMS 8-4
 

1. (x + y + 4 A 11)= (x + y A 7). 

2. a. If the sky is cloudy, then it is raining. 
b. If the sky is not clcudy, then it is not raining. 
c. If it is not raining, then the sky is not cloudy. 

The original implication and its contrapositive, b., seem to 
be true. 

3. AC > DF implies that AC 5 DF. Thus, using the contra
positive of the given implication, we conclude that 
A ABC i A DEF. You might 
ask if it is possible for the two 
triangles to be congruent. Of A'- 7 C E - F 

course it is, since we have not 
shown that all of the possible B D 

congruences are false. The 
figure shows A ABC / A DEF 

(because AC > DF) but A ABC = A EDF. 
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4. 	 Problem 2d asks for a conclusion from "(p === q) is true and q 

is false". Thus (not q == not p), the contrapositive, is true. 

Hence knowing that (not q) is true we conclude that (not p) is 

true, that is, p is false. Problem 2h is the same. 

25. 	 (a = 5)===(a = 25) is true. 

The contrapositive, (a 2 L 25)=== (a 4 5), is true. 

The converse, (a 2 = 25) (a = 5), is false. 
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Chapter 9 
EXTERIOR ANGLE THEOREM 
AND INEQUALITIES IN TRIANGLES 

9-1 Introduction 

This chapter treats the conventional subject matter of inequal
ities of angles and of segments as related to triangles. Through 
questions and answers the students should review the work on an
gles and segment inequaiities before embarking on this chapter. 

Numerical questions and exercises motivating some of the 
theorems have been omitted in some cases. In Secondary One and 
Two much drawing and measuring of triangles was done, and the 
students may find it boring to repeat much of this activity. However, 
in some cases it may be necessary to do some exploratory measuring 
before proving the theorems. Such exercises are given in this GUIDE. 
The usefulness and appropriateness of such exercises must be 
judged by you. 

At this stage of their course, students should recognize that 
theorems can be proved in a number of ways. They should be en
coutaged to discover alternative proofs wherever possible, and some 
of the exercises after the formal proofs of the theorems lead toward 
such discovery. 

The decision as to how detailed a proof should be is a matter 
between you and the students. In writing our proofs, frequently we 
have omitted some steps which you and the students will be able to 
supply. Such omitted steps should be filled in by the students with 
your help. However, it is important that the students understand and 
appreciate all the details of the proofs; and the telescoping of sev
eral statements into one must be accompanied by this understanding. 
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SAnswers to 
PROBLEMS 9-1 

1. a. DAB, EBC, FCA 

b. CB 

c. FCADABEBC 

2. a. Four; A ABC, A AFD, A CDE and ABEF 

b. ADE,FECBED 

c. Three; ABE, BED, CEF 

d. A ABC B 

e. CDF of A AFD 

3. Yes; A A'BCAA"BC X 
C A' A All 

9-2 The exterior angle theorem 

If the students cannot recall what they did in Secondary One, 

it may be appropriate to give them the following exercise as a lead 

to the theorem. 

Draw A ABC and let D be a point such that B is between A and 

D. Measure the exterior angle CBD of the triangle and its remote in

terior angles A and C and tabulate the result as follows: 

Exterior angle Remote interior angles 

m(CBD) m(A) m(C) 

Repeat the process by drawing triangles of different sizes and 

shapes. Compare the exterior angle with its remote interior angles 

in each case. What general statement is indicated by your results? 
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Here is an alternative exercise which could be done as class 
activity, preceding the exterior angle theorem. Draw A ABC using 
the following data. 

AB e(t) Measure of exterior 

angle at vertex B 

2 in. 40 60 
2 in. 40 50 
2 in. 40 42 
2 in. 40 40 
2 in. 40 30 

Has it been possible to obtain a triangle in each case? How do the 
measures of A and of the exterior angle at vertex B compare in the 
cases in which the data determine a triangle? What about the cases 
in which the data fail to determine a triangle? Can you draw any 
conclusions? 

In step 4 of the proof of the exterior angle theorem we have 
used the fact that F is in the interior of CBD. This can be justified 
as follows. The problem is equivalent to showing that (1) F and D 
are on the same side of BC and that (2) F and C are on the same 
side of BD. Refer to the figure in the text. 

(1) B is between A and D, so A and D are on opposite sides 
of BC. E, a point of BC, is between A and F, so A and F are on 
opposite sides of BC. Hence, F and D are on the same side of BC. 

(2) Since CE contains no points of BD, C and E are on the 
same side of BD. Likewise, EF intersects BD in point A only; A is 
not a point of EF, so E and F are on the same side of BD. Thus, C, 
E and F (and in particular, C and F) are on the same side of BD. 

This argument has used some properties of betweenness. 
Probably most students will not notice the betweenness problem in
volved in step 4 of the proof, since it is quite easy to see from the 
diagram that F lies in the interior of CBD. Unless the students 
discover the problem themselves, it should not be called to their 
attention and the formal justification of it may be presented only at 
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their request and even then perhaps only the more able students 

should attempt to understand it. 
It is not strictly necessary to repeat the proof of Theorem 9.2 

for case (b). Instead, we can argue as follows: If the exterior angle 

theorem is false, then there is some triangle which has an exterior 

angle not greater than one of its remote interio angles. Label the 

vertex of this exterior angle B, and label the vertex of the remote 

interior angle C. Label the third vertex A. Because the two exte

rior angles at B are congruent, we can examine either of them. But 

the proof for case (a) shows that CBD > C, and the theorem cannot 

be false. 
Here are the details of the proof of Corollary 9.3. Suppose 

there are two perpendiculars AB and AC through A to the line k. 

Let D be a point of k such that B is between D and C. Then ABD 

is an exterior angle of A ABC, and ACB is one of its remote interior 

angles. But ABD and ACB are right angles, so the exterior angle 

theorem provides a contradiction. 

Answers to 
PROBLEMS 9-2 

1. a. DAB > B d. CBE >A 

b. B < ACF e. ACF > 

c. C < DAB f. m(CBE) + m(B) = 180 

The results a - e follow from the exterior angle theorem, and 

f follows from the fact that CBE and B are supplementary 
angles. 

2. a. a > 50; c > 50 d. c > 60 

b. b > 60; c > 60 e. x < 130; z < 130 

c. b > 60 f. y < 120 

3. a. m(ADF) > 30; m(CBF) > 30 

b. m(CBF) > 60 

c. m(C) < 150; m(A) < m(CDF) < m(E), so m(A) < 150. 

4. b< <c< a 
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C
 

5. 	 In A ABC, CAB is a right angle. _ _ _ 

D A B 

Statements 	 Reasons 

a. m(DAC) = 90. 	 DAC- CAB 
b. m(B) < m(CAD). 	 Exterior angle theorem 

c. m(B) < 90. Statements a and b 

Similarly, m(C) < 90. 

C6. 	 Given: The figure with the 

angles as marked. 
y

+ y 	 < 180 zoTo prove: x 
A 

Proof: 

Statements 	 Reasons 

a. x < p. 	 Exterior angle theorem 

b. 	 x + y < p + y. Statement a and properties of 
real numbers 

c. p + y = 	 180. Supplementary angles 

d. x + y < 	 180. Statements b and c 

7. 	 Suppose in A ABC, AC BC. Then A B. By Problem 6, 

re(A) + m(B) < 180, so 2 x m(A) < 180 or m(A) < 90. 

8. 	 a. From Problem 7, m(x) < 90. But m(x) + m(y) = 180, 
m(G) = 180 - m(). Hence -m(x) > -90 so 
e(y) > 180 - 90 = 90. We ha-,e m(x) < 90 < m(y). 

b. Applying the exterior angle theorem to A BDC, z < X^. 
Thus, from a, < x < y; so < Y.-
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A
 

9. Let BP intersect AC in D.
 

P, 

CB 

Statements 	 Reasons 

a. 	 BPC > PDC. Exterior angle theorem in 
A BPC 

b. 	 PDbC > A. Exterior angle theorem in 
AABD 

c. BPC > A. 	 Statements a and b 

9-3 Hypotenuse-side congruence theorem 

This section contains a fairly important triangle congruence 

theorem whose proof depends on the exterior angle theorem. The 

proof is a good example of an indirect proof. 

Answers to 
9-3

PROBLEMS 
B 

1. In A ABC and A ABC', 

A= A-B - AB and 

BC BC', but the trian

gles are not congruent. A cc 

However, if the congruent 

angles (A in the figure above) are right angles, then the 

figure would look like the figure below. In this case the 

two triangles are congruent, B 

as we know from Theorem 

9.4.
 

Cl A 	 C 
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2. 	 In A ABC, AB - AC and AD i BC. Then ADC and ADB are 
right angles, so by the hypotenuse-side A 
congruence theorem, A ABD - A ACD. 

Thus, D DC (D is the midpoint of the 
base) and BAD CAD (AD bisects the 
vertex angle). 

C
B 	 D 


Answers to
 
PROBLEMS 9-4
 

1. 	 By the hypothesis, the lengths of two sides of the triangle are 
unequal and, therefore, one side is longer than the other. Since 
the lettering of the triangle is immaterial, we can label the 
longer side as AC and the shorter side as BC. 

2. 	 In the construction which leads to CD CA with B between C 
and D. 

3. 	 The construction enabled us to apply two results already known 
to us, namely the base angle property forisosceles triangles 
and the exterior angle theorem. Then the transitive property of 
"<" 	 enables us to make the desired comparison. 

4. 	 Given: In the figure, CE - CB. C 

To prove: CBA > A 

First proof:' 

Statements 

a. CBE - BEC. 

b. BEC > 

c. CBE > 

d. CBA > 

e. CBA > 

A. 

A. 


CBE. 

A. 


- -" 

Reasons E 

Base angles of 

isosceles triangle A 

Exterior angle 

theorem 

Statements a and b 

E lies in the interior of CBA. 

Statements c and d 
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Our construction is justified by the fact that, by the definition 
of inequalities between segments, BC < AC implies that there 

is a point E on AC such that CE CB. 
CSecond proof: Let X be the 


point between A and C such
 
Xthat CX CB. Let the 

bisector of C intersect AB A B 
at Y. 

Statements Reasons 

a. A CXY ACBY. SAS 

b. CXY =_B. Statement a 

c. CXY > A. Exterior angle theorem 

d. B > A. Statements b and c 

9-5 Side comparison theorem for a triangle 

One proof of Theorem 9.6 presented here is an indirect proof. 

The method consists of listing all the possible relations between 

sides AC and BC and then showing that all but one of these contra

dict the hypothesis. Then it follows that the one remaining relation 

must hold. 
Notice that Theorems 9.5 and 9.6 are converses of each other. 

We can restate them as follows: 
THEOREM 9.5: For any AABC, AC > BC >A. 

THEOREM 9.6: For any A ABC, B > A A C > CB. 

These can be combined into one statement: 

For any A ABC, AT > ===> B > A. 

Answers to
 

PROBLEMS 9-5
 

1. B is the largest angle; C is the smallest angle. 

2. EF is the longest side; DE is the shortest side. 

3. APQS: PS < Q< ;ARQS: QS< R< S; 
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A PQR: PR <PQ <QR. 

4. C >B. 

5. a. FG < GH, 	 b. 

c. 	 FG < GH < HF, d. 

6. a. Z>X, 	 b. 
c. 	 Z > X > Y, d. 

7. 	 Statements 

a. m(ACB) > m(ABC). 

7 >b. 	 1m(AGB) -1m(ABG).2 

c. 	 m(BCD) > m(CBD). 

d. 	 BD > CD. 

8. Statements 

a. 	 BA > BCA. 

b. AD > ACD. 

c. 	 m(BAC) + m(CAD) > 
m(BCA) + m(ACD) 

d. 	 BAD > BCD. 

e. 	 BAD > BCD. 

9. Statements 

a. 	 EDG - DEG. 

b. 	 EDF > EDG. 

c. 	 ED F > DEF. 

d. 	 EF > FD. 

FH < GF,
 

HF < GF andGF > GH.
 

Y < ,
 
X < ZandZ > Y. 

Reasons 

Greater angle opposite greater 
side theorem 

Step a 

Step b and hypothesis 

Greater angle opposite greater 

side theorem 

Reasons 

Greater angle opposite greater 
side theorem 

Greater angle opposite greater 
side theorem 

Steps a and b and properties of 
real numbers 

Angle addition postulate and
 
statement c
 

Step d 

Reasons 

Base angles of isosceles triangle 

G lies in the interior of EDF. 

Steps a and b 

Greater angle opposite greater 
side theorem 
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10. Statements 	 Reasons 

a. CAP - PAB. 	 Right angles are congruent. 

b. ABP < CAP. 	 Exterior angle theorem 

c. ABP < PAB. 	 Steps a and b 

d. 	 PA < PB. Greater angle opposite greater 
side theorem 

11. 	 By Problem 5 of Problems 9-2, the other angles in the triangle 

are acute. Since the largest side is the one opposite the largest 

angle, the result is established. 

9-6 	 The triangle inequality 

Cases (b), (c), (e) and (f) of the construction exercise do not 

determine triangles because in each of these cases the sum of two 

sides is not greater than the third side of the triangle. 
In the proof of the triangle inequality in the text we proved that 

(i) AB + BC > AC. There are two other cases, namely: 

(ii) 	 B C + CA > A B 
(iii) CA + AB > BC. 

Cases (ii) and (iii) do not need separate proof since they follow from 

(i) by simply re-labelling the 	triangle. 

Answers to
 

PROBLEMS 9-6
 

1. 	 The construction enables us to obtain a segment equal in 

length to AB + BC and since that segment and A C are two 

sides of a triangle in which we can compare CAD and ADC we 

can apply the side comparison theorem. 

2. 	 Given: In the figure, BC - CD c 

and D is between A and C. D 

To prove: AB > AC - BC, that is,
 

AB > AD. A B
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Proof:
 

a. DBC 

b. CDB 

c. BDA 

d. BDA 

e. BDA 

Statements 

- CDB. 

> ABD, 

> DBC. 

> CDB. 

> ABD. 

f. TB > A-D. 


Reasons 

Base 	angles of isosceles triangle 

Exterior angle theorem 

Exterior angle theorem 

Steps 	a and c 

Steps 	b and d 

Greater angle opposite greater 
side 	theorem 

3. 	 Let x be the length of the third side. Then by the triangle 
inequality we have the following: 

a. 	 x + 4 > 9, so
 
x > 5.
 

b. 	 x + 9 > 4, or 
x > -5, 

which is trival since x must be positive. D 

c. 4 	 + 9 > x, or 

x< 13. A 

Hence, 5 < x < 13. 

4. 	 Consider quadrilateral ABCD/ 
with diagonals AC and BD. 

Statements 

a. BD < 

b. BD < 

c. AC < 

d. AC < 

e. 2(AC 

AB + AD. 

BC + CD. 

AB + BC. 

AD + DC. 

+ BD) < 
2(AC 	+ BC + CD + DA). 

f. 	 AC + BD < AB + BC + 
CD +DA. 

B 	 C 

Reasons 

Triangle inequality 

Triangle inequality 

Triangle inequality 

Triangle inequality 

Statements a, b, c, and d and 
properties of real numbers 

Properties of real numbers 
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5S. When we say that A' is the mirror image of A in k, we mean 

that A' is chosen so that k is the perpendicular bisector of 

AA'. The figure is like this: 

Al
 

A 

We are to prove that AP + PB < AQ + QB. 
=_ /A A'RQ (byWe see that A. ARP = A A'RP and A ARQ 

SAS) so it is enough to prove that A'P + PB < A'Q + QB. 

But A'P + PB -- AB, and AB < A'Q + QB by the triangle 

inequality. 
This problem has an important application in optics, the 

branch of physics treating properties of light. Imagine a mirror, 
k. Supposeperpendicular to the paper, with its edge along 

there is a source of light (for example, a candle) at point A. 

Some of the light leaving A will reach point B after being re

flected in the mirror. The question is, "What is the path of 

A physical principle (called D'Alembert'ssuch a light ray?" 

principle) states that the light will be reflected at the point 

which makes the path travelled by the light as short as pos

sible. (D'Alembert's principle is a sort of "principle of 

The result of this problem says that the shortesteconomy".) 


path is from A to P and from P to B.
 

9-7 Comparison theorems for two triangles 

The proofs of Theorem 9.8 and its converse are rather difficult. 

If time is running short, then this section could be omitted, or given 

as an extra assignment for the more able pupils. Problem 11 of 

Section 9-9 depends on these theorems, so it shou.ld not be assigned 

to students who omit thlis section. 
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A drawing and measuring exercise which leads to Theorem 9.8 
is the following. Draw A ABC and A A'B'C' using the following 
data and measure the lengths of BC and B'C'. 

AB AC 
A'B' A'C' m(A) m(A') BC BC 

2 3 60 20
 

2 3 60 40
 

2 3 60 60
 

2 3 60 80
 

2 3 60 100
 

Compare the lengths of BC and B'C' for each pair of triangles. How 
does the measure of A? affect the length of B'C'? 

The same exercise suggests that the converse theorem is also 
true. 

Two cases in the proof of THEOREM 9.8 have been left as an 
exercise for the pupil. 

Case (ii): D is on BC. 

Statements Reasons 

1. B-D - B'C'. Statement 2 of the proof for case (i) 

2. BC > BD. D is between B and C. 

3. BC > B'C'. Statements 1 and 2 

Case (iii): D is in the exterior of A ABC. 

Statements Reasons 

1. BD = B . Statement 2 of the proof in the text 

2. ACD = CDA. Base angles of isosceles triangle 

3. CDB > CDA. A lies in the interior of CDB. 

4. ACD > BCD. B lies in the interior of ACD. 

5. CDB > BCD. Statements 2, 3 and 4 
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6. 	 BC > BD. Greater angle opposite greater side 

theorem 

7. BC > B'C'. 	 Statements 1 and 6 

The proof of Theorem 9.9 follows from Theorem 9.8 in the same 

way that the proof of Theorem 9.6 follows from Theorem 9.5. 

- , 
C - A'C' andGiven: 	 A ABC and A A'B'C' with A- A'

B-C > B'C'. 

To prove: A > A' c 

CI 

A BA 	 13 

Proof: 	There are three possibilities: 
(i) A4 A' (ii) ,A 	A' (iii) A >,' 

If A 	 A', then 

A ABC A A'B'C' (by 	SAS) and hence 

BC BC'.
 

This contradicts the hypothesis that BC > B'C'. Hence statement 

(i) is false. 

If A < A', then by the preceding theorem BC < B'C'; which 

again contradicts the hypothesis. Hence statement (ii) is false. 

Therefore (iii) is the only remaining possibility and so 

Answers to
 

PROBLEMS 9-7
 

1. Given: A ABC with AB AC, BD > DC. 
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A 

ATo prove: BAD >CAD 

Proof: 


Statements 

a. A-B A C. 

b. AD AD. 

c. BD > DC. 

d. BAD > CAD. 

0 

Reasons
 

Hypothesis 

Identify 

Hypothesis 

Angle comparison theorem 

2. 	 In the figure, EDG < FDG. o 
If we apply the side comparison 
theorem to A DEG and A DFG, 
the result follows. 

EF 
GF 

3. 	 In the figure, BDC > ADC. 
To prove that AC < BC,apply 
the side comparison theorem to 
A ADC and A BDC. 

4. 	 In the figure, X' < YZ. To prove 
that m(XVY) < 90 we reason as 

follows:
 

By the ankle comparison theorem,
 
ZVY > XVY. But m(ZVY) + m(XVY) 180
 
and it follows that m(XVY) < 90 (and
 
m(ZVY) > 90).
 

5. 	 There are only three possible relationships between DE and 
EF: namely, (i) DE < EF; (ii) DE = EF; (iii) DE > EF. 

If DE < EF, then 

DHE < FHE, while 
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if DE > EF, then 

DHE > FHE. 

Thus 	both statements (i) and (iii) lead to contradictions of the 

hypothesis. Therefore statement (ii) holds and DE E-F. 

Note that this is another proof of the theorem which states that 

every point on a perpendicular bisector of a segment is equi

distant from the ends of the segment. See Problem 17, Section 

7-5. 

6. 	 EGF > GEH. 

9-8 	 Some properties of angle bisectors 

The results included in this section do not add to the list of 

comparison theorems, which are the principal business of this 

chapter. However, consequences of the comparison theorems are 

used 	in the proof of the result on angle bisectors. 

The proofs given in the text are written in prose style. It 

might be a good exercise to have the students rewrite these proofs 

in the "state ment-reason" form. 

Answers to
 
PROBLEMS 9-8
 

1. 	 Corollary 9.3 tells us that there is just one segment satisfying 

the conditions specified in Definition 9.10. If there were more 

than one such segment, then the definition might give two dif

ferent numbers as the distance from P to k. 

2. 	 The set of points equidistant from A and B is the plane which 

is perpendicular to AB and which zontains the midpoint of AB. 

It would be reasonable to call this plane the perpendicular bi

sector of AB. 
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Answers to 
ADDITIONAL PROBLEMS 9-8 A 

1. Statements 

a. B C. 

b. ACB 

c. CDA 

d. AD > 

e; AD > 


> CDA. 

< 	 B. 

AB. 

AC. 

C 

Reasons 

Base angles of isosceles triangle 

Exterior angle theorem 

Steps a andb 

Greater angle opposite greater side 
theorem 

Step d and hypothesis 

2. 	 Suppose AF and BE intersect in a point P. Then by the exte
rior angle theorem applied to A ABP, Y > X or x > y depending 
on which side of AB P is on. This contradicts the hypothesis 
and hence the supposition is false. Therefore, AF and BE do 
not intersect. 

3. 	 Let ABCD be the quadrilateral. D 

Consider the diagonal AC. A 
Then 	by the triangle inequality, 

AB + BC > AC and 

AC + CD > AD. ca 

Therefore, 
AB + BC + CD + AC > AC + AD, which implies that 

AB + BC + CD > AD. 

4. 	 If A, B and C are not collinear then AC < AB + BC by the 
triangle inequality. If B is between A and C, then 
AC = AB + BC. IfB = A orB = C, thenAC = AB + BC 
since one of the numbers on the right is zero. If A is between 
B and C, then BC > AC, so certainly AC < AB + BC. If C 
is between A and B, then AB > AC and AC < AB + BC. 
Thus, 	in any case, AC is less than or equal to AB + BC. 
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5. 	 Suppose that A, B and C are not collinear. Then the triangle 

inequality gives AC < AB + BC. Applying Problem 4 to A, 

C and D, we have AD < AC + CD < (AB + BC) + CD. 

Applying Problem 4 to A, D and E, AE < AD + DE 

< (AB + BC + CD) + DE which gives the desired result. 

6. 	 Let ABCD be the quadrilateral 
and let CBE be one of its ex- D 
terior angles. Join AC. All 
that can be said about the size 
of CBE is that CBE > BAC and 

CBE > ACB. It is impossible A --- - . 

to assert that an exterior angle 
of any convex quadrilateral is 
greater than each of its remote 

One 	typicalinterior angles. case 

in which it does not hold is the case of a rectangle where 

the exterior angle is congruent to each of the remote interior 

angles. 
This solution is a good example of a disproof by counter

example. The proposed theorem makes a statement about all 

convex quadrilaterals. Since we have found one example (the 

quadrilateral sketched or a rectangle or square) for which the 

proposed property does not hold, then the theorem is false. 

7. 	 Suppose there are two lines through P perpendicular to 77. Let 

these lines be PA and PB where A and B are in 7r. Then AB 

is in r, so from the definition, PA i AB and PB i AB. This 

is a contradiction of the uniqueness of the line through P per

pendicular to a given line AB, Corollary 9.3. 

A 

8. 	 In the figure, points B and C are -, 

in 7r and AB i BC. We must show 
that AC > AB. We can appeal to 

Problem 10, Section 9-5, or we can c B 0 

repeat the proof of that problem. 

C 
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9. 

a. 

Statements 

CE > AE. 

b. ED > EB. 

10. 

c. CE + ED > AE 

d. CD > AB. 

Proof: 

+ EB. 

A 

Statements 

a. AC + CE > AE. 

b. DE + EB > BD. 

c. AC + CE + EB + DE > 
AE + BD. 

d. AD + DE = AE and 
CE + EB CB. 

e. AC + CB + DE > 
AD + DE + BD. 

f. AC + BC > AD + BD. 

11. 

Reasons 

Greater angle opposite greater 
side theorem 

Greater angle opposite greater 
side theorem 

Statements a and b
 

Statement c
 

C 

E 

s 

Reasons 

Triangle inequality
 

Triangle inequality
 

Statements a and b 

Measurement postulate 

Statements c and d 

Statement f and real number 

Aproperties 

ID
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Statements 

a. B C. 

b. BDA > C. 

c. BDA > B. 

d. AB > AD. 

e. Let F be on AD such 
thatF - AB. Join 
BF and FE. 

f. BOA > AED. 

g. A ADB - A AEC. 

h. AD M AE. 

i. A DE - AED. 

j. BDA > ADE. 

k. BDA - EDF. 

1. ADE > DFE. 

m. EDF > DFE. 

n. EF > DE. 

o. EF > BD. 

p. FAE > BAD. 

q. DAE BAD. 

Reasons
 

Base angles of isosceles 
triangle 

Exterior angle theorem 

Statements a and b 

Greater angle opposite greater 
side theorem 

Segment congruence postulate 

Exterior angle theorem 

Step a, hypothesis, SAS 

Step 	g 

Step g 

Steps f, i 

Vertically opposite angles 

Exterior angle theorem 

Steps j, k, 1 

Greater angle opposite greater 

side theorem 

BD - DE and statement n 

Angle comparison theorem for two 
triangles A FAE and A BAD 

Statement p 

12. 	 If C 1 is chosen on AC so that AC 1 = A then 

AA'B'C' - A ABC 1 by SAS. 

Case (i): If C1 is between A and C, then the exterior 

angle theorem implies that AC 1B > ACB, or using the known 

triangle congruence, A'C'B' > ACB, which contradicts the 
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hypothesis C- C'. Thus, C 1 cannot be between A and C. 

Case (ii): If C is between A and C1, the exterior angle 

theorem gives ACB > AC 1B or ACB > A'C'B', again a contra

diction. 

The only remaining possibility, C = C 1 , must hold. This 

gives A-C - AC A'C' and A ABC A A'B'C' by SAS. 
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Parallel Lines @UNIT IV 

Chapter 10 
ELEMENTARY PROPERTIES OF PARALLEL LINES 

10-1 Existence of parallel lines 

This chapter contains some theorems about parallel lines 

whose proofs do not depend on the parallel postulate. In Chapter 

11, the parallel postulate will be introduced and further properties 

of parallel lines will be deduced. For example, the fact that if two 

parallel lines are cut by a transversal then the alternate interior 

angles are congruent depends on the parallel postulate for its proof. 

It will appear in Chapter 11. 
The figure shown here should 

be kept in mind while reading the 

first paragraph of the text. N is 

not on the line determined by P and 

M, for if it were, line PN, which is 

n, would coincide with line m. 

Thus, there is a unique plane a containing M, P and N. If M and P 

are in a, so is the entire line MP. In the same way, line NP is 

contained in a. 
It is important to emphasize that two lines are parallel if they 

are coplanarand non-intersecting. The reason for introduCing the 

term "skew lines" at this point is to emphasize that two lines which 

are not coplanar cannot be parallel. 

DC, HG andReferring to the box pictured in the text, lines AB, 

aEF are mutually parallel; that is, any two of these four lines form 

pair of parallel lines. Similarly, AE, BF, CG and DH are mutually 

parallel, as are AD, EH, FG and BC. The following is a partial list 
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of pairs of skew lines sketched: AB and any of CG, DH, EH and 
FG; DC and any of AE, BF, EH and FG; and so on. In all, there are 
24 pairs of skew lines sketched. The vertices of the box determine 
some pairs of parallel lines (and pairs of skew lines) which are not 
sketched. For example, A F ard DG are parallel, while DE and HC 
are skew. 

The proofs in the text are written much as one might explain 
the proof in an oral discussion. This is a less rigid style than the 
listing of statements and reasons. A proof written one way is no 
more, nor less, rigorous than the same proof written the other way. 
The students should learn to understand proofs in both styles. 

If it seems appropriate, the students can be given the exercise 
of rewriting some of these proofs in the "statement-reason" style 
used in other parts of the text. 

Here are some comments on the proof of Theorem 10.3. Refer 
to the student text as you read these. 

If m and n are not parallel, then they must intersect since, by 
hypothesis, they are coplanar. Then in A PQR shown in the student 
text, the exterior angle theorem is contradicted. This shows that m 
and n cannot intersect at a point 
not in k. In the second case, the 
assumption that m and n intersect A 

at a point of k says that rays B 

PA and PB each form a right angle 

with PC. The second angle meas
urement postulate implies that, 

a half-there is only one such ray in k 

plane with edge k, so if we choose 
A and B on the same side of k, as 

shown, we conclude that PA = PB. 
Thus, In = n, a contradiction of the 
hypothesis that m and n are distinct lines. 

As class activity, the pupils should construct parallels by the 
two procedures described, both of which involve drawing perpendi
culars. In Chapter 8 of Secondary Two, construction of perpendicu
lars was explained. The construction can be done using a protractor 
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or a set square. Of course, if their drawings are accurate, the indi

cation will be that there is only one line through a given point and 

parallel to a given line. Thus, it seems that the question of unique

ness of parallels ought to have an affirmative answer, so the parallel 

postulate of Chapter 11 is motivated. 
In the student text, it is stated that in the nineteenth century it 

was finally shown that the question of uniqueness of parallels could 

not be answered on the basis of the postulates we have assumed. 

This was first established independently by J. Bolyai (a Hungarian), 

N. I. Lobachevsky (a Russian) and K. F. Gauss (a German), and 

later in another way by B. Riemann (a German). These mathemati

cians showed that there are consistent geometries much like ours, 

except that one assumes that through a point there is no line paral

lel to a given line, or that through a point there are many lines par

allel to a given line. Such geometries are called non-Euclidean 

geometries. Their discovery is an exciting and significant even 

in the history of mathematics. Some books where this achievement 

is discussed are: 
Basic Concepts of Geometry by W. Prenowitz and M. Jordan 

(Chapters 2 and 3), Ginn & Company, Boston, 1965; 

A Survey of Geometry, Vol. I, (Chapter VII) by Howard Eves, 

Allyn and Bacon, Boston, 1963; 

Elementary Geometry from an Advanced Standpoint by Edwin 

Moise (Chapter 9), Addison-Wesley Publishing Co., Reading, Massa

chusetts, 1963; 

Non-Euclidean Geometries by Lilian R. Lieber, Galois Institute 

of Mathematics and Art, Brooklyn, N.Y., 1940. 

In order to realize that non-Euclidean geometries are possible, 

you must think of geometry as an abstract branch of mathematics. 

That is, although the ideas of geometry have come from considera

tion of real things, geometry is a study of certain ideas. Thus, when 

a mathematician decides what postulates he wishes to assume, he is 

not bound to the behavior of real things. He certainly may be influ

enced by the way real pictures or real things seem to behave, but his 

only real concern is that he should not make mutually contradictory 

assumptions and that his postulates should lead to an interesting 

body of theorems. 
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Of course, Euclidean geometry is very useful when applied to 
real situations by carpenters, surveyors, physicists and others. It 
is very interesting to know that non-Euclidean geometries are also 
useful in physics. For example, the work in physics done by Albert 
Einstein in the first part of this century depends heavily on the non-
Euclidean geometry discovered in the middle of the nineteenth cen
tury by B. Riemann. 

You may or may not want to talk about the subject of non-
Euclidean geometries in the classroom. It is certainly not necessary 
that you do so. However, we do hope that you (and perhaps a few of 
your students) w-11 be interested in reading more aboit this in some 

of the books we mentioned earlier. 

Answers to 
PROBLEMS 10-1 

1. Following the first method 
of proof, the constructions 
would be as follows: 
First, draw line k through 
A and perpendicular to m. n 
Second, draw line n through 
A and perpendicular to k. 

Then n II m, by Theorem 10.3, 

k 

Following the second method, 
Through B draw k' perpen
dicular to m. Then draw n' 

we would construct as follows: 

through A and perpendicular 
to k'. Then n' II m. 

m 

2. 	 Let the parallel lines be m and n; since m and n are parallel, 
they lie in at least one plane. Let A and B be distinct points 
on m and let C be any point on n. Then A, B and C are not 
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collinear, for if so, C would
 

have to be on AB. But AB = m
 
and m and n have no points in
 

B and C are
common. Hence A, Ac
 

exactly one plane a. But any
 
plane which contains m and n
 
must contain A, B and C, so a
 
is the only plane which could
 
contain m and n.
 

3. 	 If the bisector of B is the ray BQ, with point P as marked, 
then we reason as follows: BD = BE by hypothesis. 
BP - BP and, by construction, B 

PBD - PBE. By SAS, 
A PBD A PBE. Hence, BPE 

and BPD are congruent. Since
 
these angles are also supplemen

tary, each is a right angle. That is,
 

is, BP i DE. on . 

The same argument made 

A BQA and A BQC shows that 
0A 	 c
 

BQ i AC. Thus, AC and DE are C 

perpendicular to the same line (and they are coplanar, since 

they are in the plane of A ABC). So by Theorem 10.3, AC II DE. 

If it is necessary to give a hint in addition to the one in 

the text, you might suggest proving that BP i DE by congruent 
triangles. 

10-2 	 Transversals of two parallel lines 

Definition 10.5 tells you that a transversal of two coplanar 
lines must intersect these lines in two distinct points. Thus, in the 

figure in the text, p' is not a transversal of m' and n'. We can regard 

m as a transversal of p and n, and n can be thought of as a transver
sal of m and p. 
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In identifying alternate 
interior angles, it is important to 
know which line is the transversal. 4 

If p is a transversal of m and n, 
then 1 and 2 are alternate interior 
angles. If n is regarded as a trans

versal of p and m, then 1 and 3 are 2 

alternate interior angles. In this m 

case, 4 and 3 are corresponding 
angles. These distinctions could be 

brought out in some class activity. 
To answer the questions following Definition 10.6, the students 

will have to name more points. We can name a point N2 such that N 

is between N 1 and N2 , and M2 

such that M is between Mi P 

and M2. Regarding p as a P 

transversal, the other pair of
 

alternate interior angles is N
 

MNN 2 and NMM 2. If n is
 

thought of as the transversal,
 
then points P and M3 need to M3 M
 

Mbe named as in the figure. 

n
PNN 2 and N2AM1 are a pair of M2 

alternate interior angles, and so
 
are MNN 2 and N2 AM 3,
 

In the proof of Theorem 10.7, the essential point is that xI 

and y1 are supplementary angles, and so are x 2 and y2 . Thus,
 
MG 180 - m(x 1) and m 180 - m(x 2 ). But 1
-j ( m(2 ( m;) =m ̂  ) 
sincex 1 x2, so m y) = my 2 ), and therefore Y 2 " 

In the proof of Theorem 10.8, we know that the angles in either 

pair of alternate interior angles are congruent, by Theorem 10.7.
 

Hence, we can consider either pair of alternate interior angles to
 

obtain a contradiction with the exterior angle theorem.
 
You might ask the class why we did not consider the possibil

ity that m and n intersect at a point of p. The answer is that if that 

happened, then p would not be a transversal of m and n. 
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Answers toPROBLEMS 10-2 

1. 	 In this figure, regard p 
as 	a transversal of lines
 

One pair of
 
m and n. 


alternate interior angles
 
is marked x and y. and
 
z are vertically opposite
 

so X and z are aangles, 
pair of corresponding 
angles. Without changing 
m, n or p, there are four possible ways to mark 
the angles according to the definition. They are tabulated 
here, with reference to the numbered figure. 

Alternate Corre
interior sponding
 
angles angles,
 
A___y -~ad 	 2z 	 x and y 

44 

The students should be able to name the pairs of corre
sponding angles when m (or n) is regarded as a transversal of 
the other two lines.- .." 

2. 	 Let the transversal p N 

intersect coplanar lines 
m and n in points M and 
N respectively. Let I 
and N be points of m 

and n on the same side
 
ofp. IfPis apointof
 
p which is not on segment N, 	 then PMM1 
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and PNN1 are a pair of corresponding angles. 

Again, there are four possibilities for the figure. P 

could have been chosen on the ray opposite to NM as well as 

on the ray opposite MN which is shown. For each choice of P, 

we can choose M1, N1 on either of the two sides of p. 

3. THEOREM. If the angles in one pair of corresponding angles 

formed by a transversal to two coplanar lines are congruent, 

then the same is true for the other three pairs of corresponding 

angles. 

Proof: The proof is based on Theorem 10.7, together with 

the fact that vertically opposite angles are congruent. Specifi

cally, if X and Z âre the 
congruent pair of corre-

Psponding angles, then 


letting y be the angle
 
vertically opposite to z,
 
we see thaty - . Then
 

by Theorem 10.7,x' y
 

Then because of the con
gruence of vertically 

opposite angles, we see 
that the angles in each of the 

remaining three pairs of corresponding angles are congruent. 

This theorem can also be proved without using Theorem 

10.7, by basing the proof on consideration of pairs of supple
mentary angles. Thus, 
if 1 2 then 3 -4 3 

because 1 and 3 are 
supplementary and so 
are 2 and 4. Following 
the same reasoning, 4 2 

5 6 and then 7 = 8.n 

4. THEOREM. Let m and n be coplanar lines with a transversal 
p. If the angles in one pair of corresponding angles are con
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gruent, then m and n are parallel. 

First Proof. In the first proof given for Problem 3, we 
concluded that the angles in a pair of alternate interior angles 
must be congruent. Thus, by Theorem 10.8, m II n. 

Second Proof: Suppose
 
m and n intersect in a point P
 

P. The hypothesis is that , N
 

the angles in one pair of
 
corresponding angles are
 
congruent. By Problem 3,
 
the same is true of every ,M
 

pair of corresponding angles. 
Thus, x" _ . Referring to 
the figure, x = MNP. Buty 
is an exterior angle of A MNP, and MNP is one of its remote 
interior angles. Therefore, the exterior angle theorem is con
tradicted, so m and n cannot intersect. 

5. 	 (See figure on next page.) The first step in the solution is to 
determine the measures of all angles with vertices at C, E, F, 
G, L and M. Congruence of vertical angles and the definition 

of supplementary angles will suffice for this. Regarding m2 
as a transversal of n 1 and n 3 , we see that alternate interior 
angles (and also corresponding angles) are congruent. There

fore, ni11 n3. Regarding n3 as a transversal of m1 and m3, we 
again find congruence of alternate interior angles and conclude 

that 	mll m3. 
If we had proved the converse of Theorem 10.8, then from 

the fact that n i n3 we could find the measures of the angles at 
A (the same as those at C) and at J (same as those at L). 

Likewise knowing that m1 II m3 , we would know that measures 

of angles at D were the same as those at M. This would leave 
only the angles at B and K unknown. If we also knew the 
angle-sum theorem for quadrilaterals (which states that the 
sum of the measures of the interior angles of a convex quadri
lateral is 360), then we could find the measures of the angles 
at B and K. However, the proofs of both of these two theorems 
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89a C 

8 18
.9 89E 8 

(the converse of Theorem 10.8 and the angle-sum theorem) de

pend upon the uniqueness of parallel lines. Thus, they cannot 
be proved until the parallel postulate has been added to our 

list 'of assumptions. 
In Problem 8 of Section 11-3, the students will be referred 

back to this problem to complete the determination of these 

angles. 
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Chapter 11 
THE PARALLEL POSTULATE 
AND SOME CONSEQUENCES 

11-1 Introduction 

A good introduction could be a discussion on the following 

lines: We reconsider Theorem 10.4 which states that there is at 

least one line parallel to a given line and containing a given point 
not on a given line. The fact that this theorem does not establish 
uniqueness must be emphasized. It is likely that some pupils may 
feel that the theorem actually includes uniqueness. 

We may also revise Theorem 10.8 which states that if two 
coplanar lines are cut by a transversal, and if a pair of alternate 
interior angles are congruent then the lines are parallel. It seems 
reasonable that the converse of this theorem is true. We then ex
amine what happens when. we 
assume that the parallel 
through a point not on a given 
line is not unique. Consider A 

this diagram. Suppose A B 

AB and A'B' are distinct 

lines through P parallel to 

CD. Then, if the converse of 
Theorem 10.8 were true, we Q D 

would have A'PQ PQD,

and APQ PQD; 

that is, A'PQ APQ. 
However this is impossible by the angle congruence postulates, so 

it seems that we cannot at the same time have the converse of 
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Theorem 10.8 and the existence of more than one parallel through
 
the external point P.
 

11-2 	 The parallel postulate 

With 	the parallel postulate it is now possible to prove Theorem 
11.1. Point out in the proof how the uniqueness of parallels plays a 
crucial role. 

The proofs given in the theorems or in the solutions are not 
the only ones acceptable. It is quite likely that some students will 
be able to produce different proofs from the ones given in the text. 
They should indeed be encouraged to do so provided their proofs are 
logically correct. 

Answers to 	 * 

PROBLEMS 11-2 	 S 

1. 	 If k does not intersect n then k n, since they are coplanar. 
But k and m intersect in a point P,and m II n. Thus, through 
P there are two lines parallel to n, a contradiction of the par
allel postulate. 

2. 	 Theorem 10.7 states that if angles in one pair of alternate in
terior angles are congruent the same is true of the other pair.
 

3. 	 We use the diagram which appears beside Theorem 11.1 in the 
text.
 

Corollary 11.2.
 

To Prove: XPB - PQD.
 

APQ - XPB since they are vertically opposite angles.
 

But from Theorem 11.1, APQ =-PQOD. Therefore, XPB POD.
 

Corollary 11.3. 

To Prove: m(QPB) + m(PQD) = 180. 

m(APQ) + m(QPB) = m(APB)= 180. But APQ - PQB, so 
m(QPB) + in(PQB) = 180. 
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Corollary 11.4. 

If AB, CD are the two parallel lines, the coplanar line XY 

will intersect them at P, Q respectively. (Here we are using 
xthe result of Problem 1.) If XY is 

A0 P B
perpendicular to AB, then the 


interior angles at P are right angles. L
 

By Theorem 11.1 the interior angles
 

at Q are also right angles, and
 
Dc Q

XYICD. 

4. 	 1 3 5 so7,each of these has measure 120. 

2 4 6 E8, and each of these has measure 60. 

5. 	 We assume m and n not 

parallel and so they will 
intersect at some point P. 

Then through P we have 

two lines, m and n, each 

parallel to k. This is - k 

impossible, so m II n. 

A second solution: 
Consider the accompany

ing diagram. XY is a c
 

transversal to the three
 

lines intersecting them at E n
 

P, Q and R, respectively.
 

CPR PRB, ABk/R
 

EQR PRB,
 

EQR PQF.
 

Thus, CPQ PQF,
 

so m is parallel to n by the alternate interior angle theorem.
 

This result is true if the three lines are not coplanar, but the
 

proof in this case is not simple since it involves results con

nected with intersections-:0f planes.
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6. 	 We conclude that m = n, for otherwise the parallel postulate is 
contradicted. A B 

7. 	 BAX XDC and
 

ABX DCX.
 
A DXC 	by ASA,So A AXB 

and it follows that
 
AX 	 - DX and BX = CX. C D 

8. 	 We want to show that if we 
accept the alternate interior C 
angle theorem, then we can 
prove the uniqueness of E 

parallels. 

Given: 	Line AB and point P A
 

not on A B.
 
Q 

To prove that there is at
 
most one line through P
 

parallel to AB.
 

We make-an indirect proof. 

We assume that there are two lines CD, EF through P, both 
parallel to AB. Then CPQ = PQB and EPQ - PQB by our 
assumed alternate interior angle property. Hence CPQ - EPQ 
which, by an angle congruence postulate, implies that 
PC = PE. This proves that CD = EF. 

9. 	 We must have (3x - 10) + (4x -20) = 180, so 7x = 210 or 
x = 30. Thus, m(PQD) = 100 and m(APQ) = 100. 
Hence A-B j[ CD. 

10. 	 We have 1 = 5, 1 = 9, and 5 = 13. By considering supple
ments and vertically opposite angles at the points of inter
section we get
 

r(l) = m(3) = m(5) = m(7) = m(9) = m(l1) = m(13) = m(15) = 80, 
and 

m(2) 	= m(4) = m(6) = m(8) = m(10) = mn(1) = m(14) = m(l ) ='100. 

126 



11. 	 The four triangles are congruent. Consider A ADF and A FEC. 

We see that DAF - EFC, AFD - FCE, and AF = FC. 

Hence, A ADF - A FEC by ASA. Consider A DFE and 

A DBE. We see that BDE - FED and BED =_E DE. Thus, 

A DBE A EFD, again by ASA. By similar reasoning, 

A EFD -A FEC. Hence, A ADF - A DBE - A EDF = A FEC. 

12. 	 m(1) + m(2) = m(3) by the second angle measurement postulate, 
which appears in Section 6-4. This problem and the next prob

lem should serve as a revision of ideas needed in the proof of 
the angle-sum property for triangles. 

13. 	 m(1) + q(2) = rn(APC) 
and m(APC) + m(3) = m(4). A
 

Hence,
 

m(f) 	 + m(2) + m(3) = m(4). 

We need a result like this in
 
the proof of the angle-sum
 

property for triangles.
 

11-3 	 Angle-sum for triangles 

The proof given here for Theorem 11.5 is essentially the same 
as given informally in Section 2-4. The priacipal difference is that 
now we have carefully stated postulates and- carefully proved theo
rems which serve as a firm basis for the proof. It might be well at 
this point for the students to reread Sections 2-4, 2-8 and 2-9. By 
now they should have some appreciation for the logical structure of 
geometry and how this careful development makes many complicated 

properties depend upon a few simple ones. 

Answers to
 

PROBLEMS 11-3
 

1. 	 B DCE and A - ACD because AB 11 CD. Thus, 

m(A) + rn(B) + m(ACB) = m(ACD) + m(DCE) + m(ACB) = 180. 
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We also have shown that 

m(A) + m(B) = m(ACD) + m(DCE) = M(ACE). This proves 
Corollary 11.6. 

2. 	 Corollary 11.7 can be proved in 
the same way this property was B 

proved in Chapter 2. For the 
convex quadrilateral ABCD, A 

draw diagonal AC. The sum of
 
the measures of the angles of
 
ABCD is the sum of measures D
 

of the angles in A ABC plus
 
the angle-sum for A A CD.
 

The students could be referred back to Section 2-5. 

3. 	 2 x + 3x + x = 180, so x = 30. Thus, m(B) = 60 and 

m(C) = 30. 

4. 	 (2x) + (4x - 18) + (6x - 37) + (3x - 20) = 36 0 or 
15x = 435, so x = 29. Hence, 2x = 58; (4x - 18) = 98; 
(3x - 20) = 67; and (6x - 37) = 137. 

5, 	 m(ACD) = 180 - Ix + (3x - 21)] = 201 - 4x. 

AB II CD provided BAC ACD, that is (2x - 9) = 201 - 4x. 

Hence, x = 35. 

6. 	 If m(B) = a then m(C) = a 
and m(CAX) = 2a. 

If A Y is the bisector of CAX 

then m(XA Y) = a. So A Y is 

parallel to BC because 

corresponding angles are 

congruent. 

X 

A 	 *Y 

0a

1 	 C 
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7. 	 Since AD =-BD,BAD M DBA. If the common measure of 

these angles is a then m(BDC), an exterior angle of A ABD, is 

2a. Let m(DBC) = xandm(C) = y. Thenx + y + 2a = 180 
anda + x =90. Hence x = 90 - aor(90 -a) y + 2a 

= 180, ory = 90 - a. Now we know thatDBC = C, so 

A BDC is isosceles. 
Let us use this problem as a means of illustrating again 

how a figure, drawn by the student, can help immensely in the 

solution of a geometric problem. 

The figure in the text
 

contains all the given in- A
 

formation: ABC is a right
 
aangle and D= BD. Then 


mark DAC as congruent D
 

to ABD and label measures a00
 

a, x and y as specified a 0o 

above. Now mark BDC as B c 

(2a) ° . Then the two equa
tions are apparent: 
x + y + 2a = 180 is the angle-sum for A BDC and a + x =90 

is the relation shown at vertex B. After we solve the equations 

to find x = 90 - a = y we can mark DBC and C as congruent, 
and then we know that BD - DC. 

8. 	 Referring to the sketch and solution shown for Problem 5, Sec

tion 10-2 of the TEACHERS' GUIDE, we know that n 1 1 n 3 by 

the alternate interior angle theorem. Thus, the angles at A are 

congruent to the corresponding angles at C and the angles at J 
are congruent to the corresponding angles at L. Similarly, m1 

is now known to be parallel to m3, so the angles at D are con

gruent to those at M. 
By considering quadrilateral -- \ 

BCGE we find m(CBF) = 90 since 

the angle-sum for a convex quadri

lateral is 360. Thus, all four angles 

at B are right angles, and since 0 92,0 

m 1 Im 3 thc same is true for the F 	 G 

four angles at K. 

C C 
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9. 	 In the figure, the angles A
 

labelled 1 and 3 come from 2
 

DF BC.- From either
 
DFF BC or FE II AB we
 
get angles labelled 5.
 
From FE II AB we get
 
angles labelled 2 and 4.
 

We have no way of 
showing that DE I A C, 
and, in fact, the figure \s F 

shown here makes it clear 4 

that they are not parallel t 5 
B 	 E C 

10. 	 The argument given above shows that A - EF-C, B DFE 
and C - AFD. But clearly the sum of the measures of the 
three angles marked at F is 180. A 

11. 	 Three possible figures Q 
are shown. In Figure 1, 
m(P) + 90 + m(B) + 90 = 360, P 
because of the angle-sum 
property for quadrilateral 
QPRB. Hence, B and P are FIG. 1 R C 

supplementary angles. A 

In Figure 2, 
m(P) + m(PSR) = 90, P 
PSR - BSQ and 101 
m(SBQ) + m(BSQ) = 90. R11 R 

Hence, SBQ =PP. But 
ABC and SBQ are supple- Q FIG .2 

mentary, so ABC and P 
are supplementary. A 

In Figure 3, 	 P 
m(P) + m(PBR) = 90, so
 
m(P) + m(ABC) = 180 and
 
P and ABC are again seen
 
to be 	supplementary. FIG. 3 
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12. 	 In Figure 1, use the angle- A 

sum for BQPR to find that 

m(P) + m(RBQ)= 180.
 
But RBQ =-,,RABC, so P and \ 8 
 C
 

=
ABC 	are supplementary. ° [_T \ 

For the case indi- I 	 I 

cated by Figure 2, I Q
 

m(P) + m(RBQ) = 180 and t
 
m(ABC) + m(RBQ) = 180. A
 

Hence, in this case, 

P ABC. r
 
In Figure 3, P _ RBA
 

since both are complements 

of RBP. But, RBA and R FIG. 2 

ABC are supplementary, A 

are supple-	
A
 

so P 	and ABC 

mentary. Thus, the
 

relation between P and 

ABC depends on where P R :Q 

islocated inthe exterior FIG. 3 

of ABC. 	 P 

AB' and A =AA' and
13. 	 InA ABC and A A'B'C', we have AB 

C C'. Then m(B) = 180 - [m(A)+ r(C)]= 

180 - [m(A') + m(C')] = m(B'). Thus, B B' and the de

sired congruence follows from the ASA congruence theorem. 

14. 	Since GF i A C and 
eG-fl KL, we know that 


KT I AC. Then KLC is
 

a right angle. Hence,
 

from A KLC, LKC and
 

C are complementary.
 

From A ABC,A and C Ac
 

are complementary. 
 A 

Therefore, LKC - A. 
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11-4 Polygons
 

The definition of "polygon" depends on the simple concept 
"line segment". It might be well to point out that our definition of 
"line segment" depends on the betweenness properties postulated 
in Chapter 4. Those postulates are the logical basis which makes 
this definition more precise than the informal definitions given in 
Secondary One and Secondary Two. 

Notice that the order in which the vertices appear in the name 
of a polygon is important. Thus, if points A, B and C are collinear 
(as in the figure), ABCDE is not the 
name of a polygon, since three con- A 
secutive points are collinear. ABDCE 
is a poiygon (a pentagon). If the oc 
vertices are re-arranged in such a way D 
that the cyclic order is maintained, we E 

obtain a new name for the same polygon. 
Thus ABDCE, BDCEA, DCEAB, CEABD and EABDC are names 
for the same pentagon. Also, if the order is reversed, the same 
polygon is named. That is, there are five additional names for 
pentagon ABDCE. They are ECDBA, CDBAE, DBAEC, BAECD 
and AECDB. The names ABCDE, CDEAB and EDCBA are also 
equivalent. None of these three is the name for a polygon since 
points A, B, C are collinear. The students should be given plenty 
of practise with this idea in the form of board work or other class 
activity. 

Mark fo'ir points on the board, named A, B, C and D. Ask for 
different quadrilaterals having those vertices to be drawn and 
named in all possible ways. If no three of the points are collinear, 
there will be three different quadrilaterals and each of these can be 
named in eight ways. 

A B A 6 As 

D C D C D C 

ABCD ABDC ACBD 
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If three of the four points are collinear, then there is no quadrilateral 

having those four points as vertices. 

For five points, no three of which are collinear, there will be 

twelve different pentagons, each of which can be named in ten dif

ferent ways. If the students seem to be interested in such counting 

some time to these with considerableproblems, they can devote 
onprofit. A general analysis of these counting problems depends 

come knowledge of combinations and permutations, but for cases to 

at most six points, some students may be able to find the answers by 

common-sense reasoning. 
It should always be kept in mind that a polygon is a plane 

figure; that is, the vertices are points lying in the same plane. 

The concepts of simpleness and convexity for polygons can be 

clarified by class activity. Roughly speaking, a non-simple polygon 

is one which crosses itself. Some examples: E 

A D 

C
 

ABCD is not simple. ABCDE is not simple. 

There are several equivalent ways of defining convexity for 

It is not always easy to prove that these different definipolygons. 
tions are equivalent, so only one is given in the text. We list alter

nate definitions which you may wish to use in- A 

formally in the classroom as an aid to clarify-
Uing the idea of convexity. E 

A polygon is convex if for any side XY 

there are vertices of the polygon in only one of C 

Considering D 
the half-planes determined by XY. 


side BC we see that all vertices of the penta- /
 

gon are in only one of the half-planes with edge P /
 

BC. The same is true for the other four sides.
 
RLine QR determines two half-planes, and / 

vertex S is in one half-plane and vertices P and _ 


T are in the other. This pentagon PQRST is T 

_ 

/ 
_ 

s
 

not convex.
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A polygon is convex if no segment whose endpoints are on 
distinct sides of the polygon contains a third point of the polygon. 

Pentagon ABCDE is convex. Two B 

segments XY and WZ are shown. Of X Y 
course, infinitely many segments of this Z 
sort would have to be considered to prove A -. ¢ 
that the pentagon is convex. However, r 
it is clear from the figure that all such 
segments will have the desired property. E 

0 

Segment XY which contains
 
three points of the pentagon shows
 
that the pentagon PQRST is not P 
 Q 
convex. Consideration of this one /
 
segment XY is enough to prove R
 

that PQRST is not convex.
 

The adjectives, adjacent and I
 
opposite, applied to quadrilaterals T 
 s
 
are self-explanatory. 
 The pictures drawn on the board to illustrate 
these concepts should include some non-convex quadrilaterals. 

For quadrilateral ABDC, vertices A B 
A and D are opposite, as are B and C.
 
Pairs of adjacent vertices are A and B,
 
B and D, D and C, C and A. Pairs of
 
opposite sides are AB and DC, AC and 
BD. Pairs of adjacent sides are AB
 
and AC, AB and BD, BD and DC, DC D C
 

and CA.
 

Answers to
 
PROBLEMS 11-4
 

A C B 
1. 	 If A, B and C are collinear, .
 

then we must not let A, 
 B 9F 

and C be consecutive vertices. 
ACDBEF will do. 
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2. 	 Convex and simple: 

Non-convex and simple: 

Non-convex and non-simple: 

It can be proved that every convex polygon is simple, but the 

proof is by no means simple! 

3. 	 Pairs of opposite sides: P-C and XM, PX and MC. 

Pairs of adjacent sides: 	 PC aid CM, CM and MX,
 

M9X and XP, XP and PC.
 

The diagonals join opposite vertices. They are PM and XC. 

More problems like Problem 3 should be given as class 

activity. 

4. 	 ;uppose k intersects AB in P and 8 

BC in Q where P and Q are not 
vertices. Then P is between A 

A and B are on opposite kand B, so 	 o 
/
and C are

sides 	of k. Similarly B 

on opposite sides of k since Q is
 

between B and C. Thus, A and C Ac
 

must be on the same side of k,
 

and this means that there is no point of k between A and C. 

Since k does not contain A or C, k does not intersect AC. 

This argument applies (with appropriate changes in letters) 

to any line which intersects two of the sides in points which 

are not vertices. Hence A ABC is convex. 

A student who attempts this problem should be advised 

to review the separation postulates, Section 4-3. 

5. 	 There are eight names for quadrilateral ABCD. There are two 

other different quadrilaterals (ACDB and ABDC) with the given 

points as vertices. Each of these has eight names. 
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11-5 Parallelograms 

The agreement that polygon used henceforth is to mean
 
"simple, convex polygon" 
 is one of convenience. Occasionally 
you should propose non-convex or non-simple polygons as a reminder 
of this agreement. 

The proofs of the three parts of Theorem 11.12 could be worked 
out as class activity, with one or two students recording the steps 
and drawing the figure on the board while the rest of the class make 
suggestions. Here are the details: 

(a) 	 By the alternate interior A B 

angle theorem the angles 
marked are congruent in 
pairs. Thus, A ABD =A CDB 
by ASA. Hence AB - CD D c 

and AD - CB. 

(b) 	 Also from the congruence of A ABD and A CDB, A = C. 
By the angle measurement postulates, ABC ADC. 

(c) 	 Let P be the intersection of
 
the diagonals. A-B - DC
 
from part (a), and the angles
 
marked are congruent by pairs.
 
Hence, A ABP ACDP so
 
D-P - BP and P is the mid- D,,
 

point of DB. Similarly, P is
 
the midpoint of AC.
 

Answers to
 

PROBLEMS 11-5
 

1. See the discussion above. 

2. The point of this problem is that the definition of parallelogram 
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could have been stated without the agreement that quadrilateral 

means "convex and simple quadrilateral". 
Let m and n be parallel lines containing two of the sides. 

Let k be a line containing a third side. Then k must intersect 
one of m and n, and hence it intersects both. These points of 
intersection must be vertices, call 
them A and B. The fourth side is n k 

r. 	 M
in a line parallel to k, call it 

It is intersected by n. (We are
 
using the fact that if n intersects
 

cone of two parallel lines it also 

intersects the other.) By the same D 

reasoning, m intersects r. Call 
these points C and D. Since the 
sides are contained in the four lines m, n, k and r, the quadri
lateral must be ABCD. Non-adjacent sides cannot intersect 

since they lie in parallel lines. 

3 Given: 	AB IJ CD and 
5 C / 1 

.Since the quadrilateral is / 	 // /
 
simple it must be ABDC. / /
 

To Prove: A-C IIBD. .	 f 
C ' t D 

Consider diagonal BC. 

Statements 	 Reasons 

a. ABC -	 BCD. Alternate interior angle theorem 

b. A ABC A DCB. SAS postulate 

c. ACB -	 DBC. Step b 

d. AC Ij BD. 	 Alternate interior angle theorem 

The quadrilateral ABCD is non-simple, but it has a pair 
of sides (AB and CD) parallel and congruent. Thus, the agree
ment concerning simpleness is necessary here. 
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4. 	 Given: AB - CD and A B
 
AD aBC.7
 

To Prove: AB- CD andAiT-5E. 	 ,,/Ol
 

Consider diagonal BD. D 	 c 

Statements 	 Reasons 

a. A ABD - A CDB. SSS 

b. ABD CDB. 	 Step a 

c. AB H CD. 	 Alternate interior angle theorem. 

d. ADB CBD. 	 Step a 

e. AT I I BC. 	 Alternate interior angle theorem. 

11-6 Some special parallelograms 

If in parallelogram ABCD we have AB B-C, then all sides are 
congruent (and we have a rhombus) since AB CD and BC =-AD 
for all parallelograms ABCD. Likewise, if A B, then all angles. 
are congruent since for all parallelograms ABCD, A - C and B D. 
Since the angle sum for a quadrilateral is 360, each of the angles 
has measure 90, and the figure is a rectangle. 

Answers to
 
PROBLEMS 11-6
 

1. 	 a. Since the diagonals of any A B 

parallelogram bisect each other, 
we need only prove that the 
diagonals of a rhombus are 
perpendicular. We have 
A ABP A 	ADP by SSS. C 

Hence APB 	- APD. But APB 
and APD are 	supplementary, so AC i DB. 
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b. 	 From the triangle congruence above, ABP - ADP. But 
DBC - ADP by the alternate interior angle theorem so 
ABD a DBC and ABC is bise "ted by BD. 

2. 	 a. True, because of Problem 1 and the fact that a square is a 
rhombus 

b. 	 True, for the same reason 

3. a. 	 Yes, by definition 

b. 	 No. Consider the figure: 

c. 	 All sides of a rhombus are congruent. 
d. 	 All angles of a rectangle are right angles. 
e. 	 No 
f. 	 Yes 
g. 	 Yes 
h. 	 No 
i. 	 Yes 
j. 	 Yes 
k. 	 No 
1. 	 No 

m. 	 No 
n. 	 Yes, a square is an example. 

o. 	 Congruent angles 
p. 	 Congruent sides 

4. 	 A rhombus is a quadrilateral with all sides congruent. A rec
tangle is a quadrilateral with all angles congruent. 

5. 	 AC i BD and BP = PD. 
Also, AC bisects BAD and BCD. 

AProo/: Since A is equidistant from B 

and D, A is on the perpendicular 
bisector of BD. The same is true for C. B D 

- -PD.Thus, AC i BD and BP 

ABP = ADP since A ABD is
 

isosceles, so by SAS A ABP - A ADP. 

Thus, DAP - BAP and AC bisects BAD. C 

Similarly, one can show BCP - DCP. 
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6. 	 Since DC and YX are each parallel to 
AB they are parallel to each other, D 

unless, of course, C, D, X and Y are 
collinear. Also, DC - AB =- YX, so A1 

if DCXY is a quadrilateral it has a 
pair of opposite sides congruent and / 

parallel, and therefore, it is a x 
parallelogram. 

7. 	 ACBX is a quadrilateral whose 
diagonals bisect each other; B 

therefore, it is a parallelogram. C 
Thus AX II BC and AY 1 BC. 
But through A there isonly 
one line parallel to BC, so X, A 

Y and A must be collinear. 

8. 	 Let R be the intersection 
of AXand BY. Then 
m(RAB) + m(RBA)= A B 

- [m(DAB) + m(CBA)] = 90, 

since DAB and CBA are ) f.%C 

supplementary. Thus, ARB / 
must be a right angle, since / 
the sum of the measures of 
the other two angles in A ABR 
is 90. Thus all angles at R 
are right angles. Since AR bisects YAB, we see that 
A BAR - A YAR by ASA. Thus, A-Y - AB. Similarly 
BX A-B, so ABXY has the sides in one pair of opposite 
sides congruent and parallei. Thus, ABXY is a parallelogram. 
Since a pair of adjacent sides are congruent it is also a 
rhombus. 

140 



9. PBQD is a parallelogram since 

FBandDQareboth congruent 
and parallel. Now let M be the 
midpoint of DB. M is also the / 
midpoint of PQ (since the diag
onals of parallelogram PBQD 
bisect each other). For a similar D Q C 

reason, M is the midpoint of AC. 

10. First, since the diagonals bisect A 

each other the quadrilateral is a 
parallelogram ABCD. A-C 1 B5 byN 
hypothesis. Thus, A ARB __A ARD R 

by SAS. This proves that AB - AD, /)( 
which means that all four sides are / 

congruent. D 
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Chapter 12 
TRANSVERSAL TO MANY PARALLEL LINES 

12-1 Parallel lines in a triangle 

The chapter opens with midpoint theorems relating to the 
triangle. 

The suggested Class Activity brings out the theorem and its 
related theorem as clearly as possible before giving the formal proof 
of the main theorem and a series of leading questions suggesting the 
proof of the related theorem. 

The details of the proof of Theorem 12.2 are as follows: 

1. BDFC is a parallelogram, since opposite sides are parallel. 

2. CF BD from step 1. 

3. BD DA since D is the midpoint of AB. 

4. DA CF from steps 2 and 3. 

5. A ADE = CFE by AAS. We have ADE CFE by the 

alternate interior angle theorem, and AED CEF since 
they are vertically opposite. 

6. iAE C-E from step 5. 

There are other ways of looking at Theorem 12.2. We can make 
direct use of the parallel postulate to obtain another proof. 

D is the midpoint of A3 in triangle A 

ABC. The line through D drawn parallel 

to BC cuts AC at E. We suppose E is 
not the midpoint of AC and also suppose D E 

F is the midpoint of AC. From Theorem 
12.1, DF II BC. By hypothesis, 
D-E II B5. By the parallel postulate, 8 
DE = DF so E = F. Thus E is the midpoint. 
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If the students are urged to look for their own proof of 
Theorem 12.2 before reading the questions in the text, some of 
them may discover this easier proof. 

12-2 	 Parallel lines in a trapezium 

Here 	are details for the proof of Theorem 12.3: 

1, 2, 	 3. Applying Theorem 12.1 to A ADB we see that 

PK = - AB and P-K AB. 
2 

4, 5. The same heorem used with A BCD tells us that 

KQ = 1CD and K-Q I C-D. 

6, 7. KQ II DC and DC II AB. Since KQ is distinct from AB, 
KQ IAB. Also PK A-B from step 3. 

8, 9. Since there is at most one line through K parallel to AB, 
it must be that P, K and Q are collinear. 

If four parallel lines intercept three congruent segments on 
some transversal, then they do so on any transversal. This can be 
proved by two applications of Theorem 12.5. 

Answers to
 

PROBLEMS 12-2
 

1. 	 This is a simple problem which A 

can be solved by constructing 
one line. If any students have D 

difficulty with it, it may help 
them in doing other problems x-- ----
if they are directed into find
ing the construction so that 
they have in the figure a 
situation that will enable them 
to use the theorems just B 	 C 
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learned. The construction is to join the midpoints X, Y of 
AD, AC, respectively. Then apply the midpoint theorem first 
to triangle ABC and then to triangle AXY. We have 

1 1 1XY =.BC and DE -XY, so DE -(XY) BC, 

that is,DE -BC. Also XY iffC and DEI XY. Since DE
4 

is distinct from BC, it follows that DE I BC. 

2. This problem is quite interesting. It is possible to make quite 
a number of diagrams that will apply. The points A and D may 
lie on the same side of BC, as in the first figure. The vertices, 

A 

A 

D Xy 

- K I
5 C 

i I/
 
B C H 

D 

A and D, may also lie on opposite sides of BC as in the second 
figure. In either case the proof is the same. We apply the mid
point theorem to triangle ABC and triangle DBC to get 

XY = -1 BC and XY II RC, 

and HK = -BC and 11 BC, 

so that XY = HK and XY IK. 
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A D
 

It follows th itX YKH is a parallelogram. 

If AD is parallel to BC, then
 

ABCD is a trapezium. In this case the
 

points X, Y, H, K will be collinear and XK
 

we do not get a parallelogram. In fact,
 

the four points X, Y, H, K lie on the
 

median of the trapezium.
 
B 	 C 

3 	 There is no construction necessary A 

for this. We apply the midpoint 

theorem at once to the triangle 
ABC to get R-S 11 BC. The related R S 

theorem isthen applied to the 	 K 

triangle ABP to show that K is
 

the midpoint of AP; that is, RS
 
CB Pbisects AP. 

A 

4. 	 We apply the midpoint theorem 
to triangle ABQ to find R 

AR M RQ. And so from the 
data given, Q1 
QC= -AQ =AR. 

CB 

5. 	 In this problem we are going 
to apply the midpoint theorem P 

and the theorems relating to 
parallel lines cut by a trans
versal with its associated 0 
angles: alternate intcrior'and 
corresponding angles. We 
have for the triangle ABC, Z e 

D RPQ 	 I ATC and 

1 1ACPQ 	= -AC. In the triangle DAC, SR jj AC and SR -AC. 

So SR I PQ and SR =PQ. It follows that PQRS is a paralelo

gram. Now AOK OKR, since AC SR. Thus, OKR is a-	 TI 
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right angle and ORS OKR. By the midpoint theorem, 
<Q 1 B-D, so SKB M SRQ. Thus, PQRS is a parallelogram in 

which one angle is a right angle. Therefore, it is a rectangle. 

6. Referring to the figure for Problem 5, we see that the midpoint 
theorem (used in A ABC and in A A CD) gives PQ II SR. 
Similarly, PS I I R. 

7. Problem 7 is very much like A 

Problem 2, for X, P, Y, Q
 
would be collinear if the
 
quadrilateral ABCD were a
 
trapezium. Treating the 
 x
 
general case, we find from
 
AADC, that 
 p Y 

XQ = -CD and Q 5-C. 

In A BDC, D C 

PY -DC and PY DC.2 

So XQ = PY and XQ PY. Thus, XPYQ is a parallelogram. 

8. In this problem we apply the A 

theorem related to the mid
point theorem. The con
struction done here x 

enables to use the theorem 
we know. In A ABC, Z 
BD DC, DXIII C7,so 13 D C 
BX XA. We now prove 
A DXA - A DXB in order 
to get DA' a DB. These triangles are congruent by the SAS 
postulate, for DX -DX DXA = DXB, and XA - XB. Having 
proved the triangles congruent, we know that DA DB = DC. 
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9. 	 The students may need some Y 
explanation of the term locus. 

The question could be re- A
 

phrased as follows: Describe
 
the collection of points M such
 
that M is the midpoint of a
 
segment of fixed length, with
 

one endpoint on OY and the
 
other on OX.
 

X 
0 BFrom 	Problem 8, we see 

1that OM = -YAB; that is, OM is 

the same for all positions of the ladder. Thus, M is always 
1 

on a 	circle of radius -AB with its centre at 0. 

A 

10. 	 Three cases have to be 
considered. 

(i) K within A ABC. 	 AK 

(ii) K outside A ABC. 

(iii) 	K on AC. 

Case 	(i)Case (iii) is easy by 

ASA congruence of A 
A APB and A CPB. 

Cases (i) and (ii) P K 
can be treated by 
the same argument. . 

Case 	(ii) e 
In these cases, 
A A KB - A X KB by ASA. A 

Thus, 2K KX. Since 
FKI I CX, we can apply 
the theorem related to 

the midpoint theorerm to 
A ACX, to find that 

P C. Case 	(iii) 
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11. 	 This is a case of direct appli
cation of the midpoint theorem. 
Clearly, because A and 0 are 
fixed points, the midpoint of A C 0 

AO is fixed. In A AOP, 

1CR = -OP and OP is a fixed 

real number. So R moves as P moves, but its distance from 
C is constant. So its locus is a circle with centre C and 

1radius - OP. 

12. 	 This problem relates to the equal intercept theorem. 
From AD 11 E_ 1C and A-B - BC, it follows that DE EF. 
And because D-X EY FZ and DE _ EF,we have X Y- YZ. 
AC, 	DF and XZ need not be coplanar. 

13. 	 This problem is solved by applying both the equal intercept 
theorem and the midpoint theorem. The construction introduced 
makes this possible. From the equal intercept theorem, 

CK a KD andAX - XT. InAABD, we obtain HX -BD. 
2 

InADAC,KX =-AC. HK =HX - KX BD - AC=
22 	 2 

(BD - AC).
2 

14. 	 The diagram clearly 
suggests the median A
 

theorem for a trape- N
 
zium, for we have so
 
many trapeziums in
 
it. Furthermore,
 
OK is the median of
 
trapezium BQSD and 
 0 
also the median of i
 
trapezium A CRP. s
 
So, applying the
 
median theorem, we
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have 2 OK = AP + CR and 2 OK = BQ + DS. Therefore, 
AP + CR =BQ + DS. 

15. Here the equal intercept 
theorem is used to make some 
clasical constructions. 

a. If AB is the segment to be 

bisected, lay off AC _CD 

A 

on another ray AD. The 
line through C parallel to 
DB bisects AB. 

I 

BB 

b. If AB is to be trisected, 
lay off AC - CD - DE 
as in the figure. Lines 
through C and D parallel 
to EB cut off three con- D 

c 

A 

gruent segments, each 
1 

having length - AB. 

3 

. . 

c. By a construction like 
part b, divide AB into 
nine congruent segments1 

AA 1' A 1A 2) and so on. 

If AA 1 =a,then AA 4 =4a 

and A4 B = 5a. Thus, 

5 x AA4 = 20a and 

C? 

C3 
_ 

C4 

2 

A 

Al 
A 

4 

4 x A 4 B = 20a, and A 4 is C,_ 

the desired point P. 

The remaining problems are Challenge Problems. Probably a good 

number of stuents may never try them, but for the few who venture 

that far, the problems will prove rewarding. They should be assigned 
sparingly, if at all, to avoid discouraging the students. 
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16. 	 Again the construction A 

introduced brings out to 
the bright students what 
to do. From Problem 
10, the line through K 
parallel to BC bisects 1B 

A C, and hence also bi
sects AB. Also from Problem 10, the line through H parallel 
to BC bisects both AC and AB. Thus, these two lines are 
identical, and H-K II BC. 

17. 	 Here we prove 
A APB - A APM 	 A 

by ASA. Therefore,
 
B P PM and
 
A =AM. In
 
ABCM, BD = DC 

a"d BP - PM, 
1N 

so PD = -CM 

1I2	 ' 
- -- (AM -AC) 

1 	 B-----------

-(AB -AC). 	 p 
-

For the second part
 
AAQC - AAQNasbefore. Thus CQ - QNandAC AN.
 

In ACNB, CD - DB and CQ - QN. Hence, DQ= BN
21 	 1 

- (AB - AN) - -'(AB - AC) = PD, and L PDQ is 

isosceles. 
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18. 	 This is similar to Problem 
17, so either can be 
tackled first. Only the 
outline is given., 
A AXB AAXN by ASA. P 

Hence, AB AN and I 

9- NX. In A BCN, x
 
BD -DC and BX= XN, fll%
 

=cC
so DX -CN

= (CA + 
2 

AN) 	 ",./- - C 

1 
- 2 (CA + AB). 

Also 	A AYC - A AYM, so CY MY and AC AM. 

In A 	CBM, CD - DB and CY YM, so XY = .BM
1 	 1 

7 (BA + AM) = -1(BA + AC). Thus, DX = DY and 

A DXY is isosceles. 

,D_

19. 	 Go over Problem 13 E 

again before trying // 

this problem, because \ /
 

the result obtained there \ \
 

will be needed here. By \ P
 
what was shown there, / A
 

we can say that because /
 

CA, 	 PH and ER are par- "
 
H \
 = PC,allel 	and EP 

ER - AC = 2PH. We 

call this equation .a. B C
 

We now want to show
 
that ER is equal to AB.
 

To do this, we prove A ABC A REB. BAC ERB,
 

BC = EB, and ACB - RBE, since they are complements
 

of ABC. Thus, A ABC A REB by ASA. Then, ER - BA
 

so a. becomes AB - AC = 2PH.
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20. 	 This problem is similar to Problem 19. Let M be the foot of 
the perpendicular from G to AB. Then in A ABC and A MGB 

A 

K 

Bc 

G 	 F 

BAC - GMB, MBG - ACB, and BC - GB. Thus, 
A ABC - A MGB, so AB - MG. We now use the median 
theorem for the trapezium ACGM, giving 2KQ = AC + GM 
-AC +AB. 

21. 	 As a challenge problem this presents relatively little difficulty, 
for clearly A OMP - A OMQ. Hence PM - MQ. By the equal 
intercept theorem HM - MK. Therefore, HM - PM = MK - MQ, 
so HP = KQ. 
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