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PREFACE

This Teachers’ Guide accompanies the text which was
prepared at a stwly and writing workshop held during the
summer of 1965 at Mombasa, Kenya, in which mathematicians
and teachers from most English-speaking countries of Tropical
Afriea, the United States and the United Kingdom participated.

This material is intended to follow Seccondary Three,
Secondary Two, and Sccondary One of the Entebbe Mathe-
maties Series which were prepared at similar workshops
during the summers of 1964, 1963, and 1962 at Entebbe, Uganda.

[.  Preliminary Nature of This Material

The material must be considered to be preliminary until
it has been tried out in class-rooms and modified in accordance
with the experience gained from this experimentation. The
Student Text and Teachers’ Guide for SECONDARY FouRr
ALGEBRA and GroMETRY of the Fntebbe Mathematies Series
will be subjeet to correction and improvement in the light of
suggestions from the teachers who use them.

This means that the teacher who uses this material has
the responsibility, in addition to helping interpret the new
material to students, of helping identify the arcas where im-
provement is needed. To guide us in future revisions, we hope
that teachers will fill out Secondary Chapter Reports. (See
sample Report on pages ix, x, xi, xii.) In partial reward for this
burden, the teacher will have the satisfaction of knowing thal
he or she is taking part in an experiment which is of great
potential value,

. Emphasis on Mathematical Ideas

In recent years there has been accumulated mueh evi-
dence that young students are rfar more interested in mathe-
matical idcas than they have usually been given credit for,
and that they are far more competent to deal with such ideas
than the current curricula would suggest. A presentation of
mathematies which puts its emphasis on coneepts rather than
the rules of manipulation is likely to lead to far greater satis-
faction on the part of the student, and will also lead to greater
mathematical competence.

II1. Content of the Text

The subjeets of algebra and geometry are treated in two
volumes; one is devoted to algebra and the other to geometry,
as in Sceondary Three, The material is arranged so that there
is considerable flexibility in the order in which the topics ean
be studied, although Chapter 1 of ALGEBRA should be studied
before beginning Chapter 6 of GEOMETRY.,



The treatment of algebra continues the start made in
Seccondary One, Two, and Three to develop algebra as a unified
structure. All five chapters are about functions. Chapter !
treats the general conespt of funetion. In Chapters 2 and 3
the pupil studies some of the most important types of funetions;
the rational functions and the exponential and logarithmic
functions. As a result of having stuwdied the polynomial funetions
in Sceondary Three and the Tunetions in Chapters 2 and 3 of
this volume, the pupil will be familiar with all the basic types
of elementary funetions exeept the trigonometrie funetions
which will be studied in Sceondary Iee. In Chapter 4 the
domain is narrowed to the set of positive integers, with em-
phasis on two of the most important types, arithmetic pro-
gressions which are really just linear funetions with the domain
restricted to the positive integers, and geometric progressions,
which are really just exponential functions with the domain
restricted to the positive integers, Finally the central concept
in Chapter 5 is that of a function whose demain is 4 linite sot.
These funetions are studied in the context of deseriptive
statisties. The finite set is called a populacon and the functions
are called population funetions. Chapter 1 should be done first,
so that the student will sce the other four chapters as the study
of special types of funetions, The remaining four chapters are
independent of cach other and may be studied in any orvder.

As the pupils will have studied formal, deduetive geometry
in Secondary Three, there is now no need to be so formal in
SECONDARY FOUR GroMETRY. Tle will have already been ex-
posed to formal proofs and will by this time have an idea about
rigour in these prools,  Therefore, Chapter 1 of SECONDARY
Foun GroMeETRY indicates how mu-h loosening up from Second-
ary Three occurs in this volume, The pupils however, are now
equipped to be able to take any ol the theorems or examples in
the text and write out as formal a proof as they wish. Chapters
2 to b follow the pattern of Secondary Three exeept that not
so much time is spent on the formal aspeet of deductive
reasoning. Chapter 6 is quite different both in content and
spirit from the other chapters, The treatment of rigid motion
is informal and intuitive. This approach avoids the complica-
tions of establishing a set of axioms from wlich the basic
facts about rigid motion can be dedueed. It should be mentioned
that it is quite pessible to develop all our geometrie ideas by
starting off with rigid motions. Except for Chapter ¢ which
could he studied any time after Chapter 1 of ALGEBRA. the
chapters are best studied in the order in which they appeas.
Teachers who prefer the informal, intuitive treatment of
geometry may wish te spread out the study ol Chapter 6
throughout the school year.



IV. The General Approach

As in previous texts we try to be mathematically sound
but at the same time the development is gradual with an
effort to involve the pupils actively. Instead of just telling
the ideas to the pupils outright, the teacher should use prob-
lems and careful class discussion to help the pupils recognize
the ideas for themselves.

The best edueation is the edueation that the pupil ereates
lrom his own direet efforts. The teacher should resist the
temptation to tell the elass exactly what to do and how to
do it. It is indeed a great temptation, for by such mc ms a
class will appear to ho proceeding at a rapid pace. the
teacher takes the time and effort to lead the pupil to think
through the ideas himsell without telling him outright, there
is considerably more assurance that the idea will be mastered
and retained by the pupil and will become truly his own.

[Tere again the demands on the teacher are greater. The
teacher, like the student, must be thinking at every moment,
for it takes Tar more insight to lead than to tell. This Guide
is intended primarily to assist the teacher in the actual con-
duet of the elass. Methods are suggested which will encourage
student imagination and generate student interest. In addition
the Guide contains mathematieal background and explanatory
materials hevond that given in the Text. Answers to the
problems are provided.

V. Relationship to Other Materials
This Text is based on the assumption that the pupil has
studied from the previous Texts in the ’nlol)bc Mathematies
Series. 11 a pupil has not studied all of the earlier texts it
may be necessary o go back and study p(n'lmns‘ ol Secondary
Tieo and Secondary Three, However, the pupil can make good
progress in the present Text \\'1[11()111 having a complete
mastery of these previous Texts.

This Text is designea to prepare the pupil for further
mathematies in either the conventional school curriculum or
in curricula evolving Irom this and similar experimental pro-
grammes. It is also designed to conform (o the requirements
ol the present examinations,

It should be emphasized that this modified curriculum
represents a great opportunity lor teacher and pupil alike,
In making use of it the school participales in a great experi-
ment to help develop a strong African educational system ()1
which we can be proud. It is a massive joint undertaking, n
which pupils and teachers work side by side with nmthema-
Lietans of international eminence, from their own country and
from 2 dozen others, to ereate within Africa something that
will bhe of major significance for Alrica itself, and in a large
measure for all the world.

vii
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SECONDARY REPORT, CHAPTER

Would you please fill out one of these forms for each chaprer of Secondary material as you
complete the chapter, Send it by air mail o educational Services Incorporated, African Education Pro-
gram, 55 Chapel Strect, Newron, Massachusews 02158, U. 8. A. Your comments will help us to im-

prove and to rewrite the material for further use.

Please respond to «ll parts of this report.

Name of Teacher

Name of School

Schoel Address

Date

Chapter Number in Secondary Book __ Volume

Chapter Title

Number of classes in which you teach the Entebbe Mathematics Workshop Secondary Materials

Number of pupils using material . Number of periods cach class meets per weck .

Length of class period minutes. Class periods used teaching the chapter
The pupils of my class are of the following ability level (tick one of the following):

fast | slow_____ | medium ________ | mixed ability

My pupils have had, on the average, years of schooling before this present year.

To the best of my judgment this chapter is (tick one of the following): excellent

good fair | poor , or extremely poor
Why did you rate the chapter in this way? (If you need more space than is provided here, please use an

additional sheet.) —

If you used any supplementary materials in teaching this unit, please describe them.




STUDENT TEXT

Please indicate the specific sections which need improvement and how you would recommend

improving them.

Questions Comments

1. Should this whale chapter be
omitted? Why?

2. Name specifically any ideas
which you think ought to be
in this chapter but which are
not there. Why should they
be included?

3. Name specifically any topics
in this chapter which you
think should be omitted. Why
should they be omitted?

Give the section and page
number of any pare of this
chapter where you think the
explanation is not clear
enough. What suggestions
do you have on how to make

it more clear?

5. Indicate which sets of prob-
lems need more problems to
give adequate practice. What
kind of problems are needed?

6. Indicate by page and number
any problems which you
think are too difficule and
problems which vou think are

toc ecasy.




STUDENT TEXT

(continued)

Questions

Comments

7.

Indicate any problems or il-
lustrations whic are inef-
fecetive because ey use
words or ideas v nich are un-
familiar to vour students.
For instance, a child whe
had never been o seain a
schooner would not muen ap-
preciate a problem about the
area of the jib and the fore-
sail and the mamnsail, For
the examples which are in-
appropriace for vour children,
can you suggest local situa-
tions which would be more

appropriate in the example.

TEACHERS GUIDE

Questions

Comments

In what parts of the chapter
were the suggestions on how
to teach the material not suf-
ficient to help vou teach it
effectively? Whao sugges-
ttons have you for tmproving

those parts?

In what parts of the chapter
were the suggestions on
teaching the macerial trivial

and unnecessary?




TEACHERS' GUIDE

(continued)

Questions Comments

3. In some places in the Teach-
ers’ Guide there are discus-
sions for the teacher of che
mathematical background,
going mot: deeply into the
ideas than one would with
the studenes. Indicate by

section and page number:

(a) which of these discus-
stors were not clear

enough to be helpful,

(b) which were too brief and

need o be expanded,

(c) which were unnecessary
for you and might be

omitted,

(d) where no such discus-
sion was given where it

was nceeded.

4. Indicate any answers to
problems which were not suf-

ficiently clear or complete.

Would you please write any other comments which you believe might be helpful in rewriting
this chapeer.
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Chapter 1
RELATIONS AND FUNCTIONS

This chapter continues the study of functions begun in Secondary
Three, and introduces the concept of a relation as a natural generalization of
the nction of a function. The elementary theory of relations is developed and
then applied tc the study of functions and their inverses. The unifying idea
throughout is that of an ordered pair, and, without undue exaggeration, this
chapter could be entitled ‘“The Mathematical Theory of Ordered Pairs.”” As
usual, we proceed with the aid of examples and pictures which have been
designed to enable the teacher to guide pupils to the point where they can
discover most of the stated results for themselves.

1-1 REVISION.

This section is a brief revision of the material on functions introduced
in Secondary Three. The amount of time which will have to be devoted to
this revision will of course depend upon the preparation of the pupils. In the
event that your class has not covered the last unit in the Secondary Threc
Algebra Text (Crapters 12 and 13) you may wish to start the year’s work at
that point. If this is done, the present section may be omitted.

We begin by recalling our earlier description of a function as a rule or
correspondence by means of which numbers are paired together in a per-
fectly definite way. Your pupils should understand that the phrase “‘in a
perfectly definite way’’ means that the function associates 4 wunique number
in its range with each number in its domain. (For the moment we restrict
our attention to numerical functions, but, il you wish, you may observe that
functions can also be formed by pairing other types of objects. This point
will be treated explicitly later in the chapter.)



The main purpose of this section—besides recalling the terminology
used in speaking about functions—is to focus attention on the notion of an
ordered pair. Without being excessively formal you should attempt to bring
your pupils to the point where they see that a set of ordered pairs is a pre-
cise and often convenient way of expressing the correspondence determined
by a rule or formula which was their earlier viewpoint of function. To this
end, the example given on p. 5 should be helpful, and your pupils should be
encouraged to work it out for themselves. Once they understand how these
functions are expressed you will be able to point out that functions cannot
always be described by a simple formula such as y = x* Finally, they should
also be made to appreciate that two functjons may be defined by the same
formula and yet be different because their domains are different. This point
should be familiar since it was discussed in Secondary Tlee where exam-
ples were given. It is briefly covered in the third problem in Problems
1-1B, page 4.

Answers to

PROBLEMS 1-1A Student Text Page 3

The pupil’s tables should include enough values to allow them to draw
the graphs of these functions. The fourth problem is the only one which may
cause difficulty, and you may find it necessary to discuss the absolute value
function before having the pupils attempt the graph. The graphs are as

follows:

1 2.
y

y:x2-2x+l
4 y=2x -1
2..
4 2 0|/ 1 5« 4 > 4 x

RY
-3/




Answers to
PROBLEMS [-1B

4 4
y =lx|
2.- 2..
2 7 0 ) x 4 50 ST x
-H

Student Text Page 3

1. Pupils should answer this problem by reading the required information
from graphs they constructed in PROBLEMS 1-1A. In particular, they

should realize that part d can be answered by counting the number of

points of intersection of the graph of the function with lines parallel to

the x-axis. This point will be important later when we consider one-

to-one functions.

a.
b.

The domain of each function is the set of all real numbers.
The range for y = 2x - 1 is the set of all real numbers. The

range for y = x° 2x+landy = || is the set of all nonnegative
real numbers.

The range for y = 1 - x* is the set of all real numbers =<1,

In every case one y is paired with each x in the domain of the

function. (Remind your pupils that, by definition, this is true of

It

every function.)

For y = 2x - 1 one value in the domain is paired with each value
in the range.

Fory =x* - 2x+ 1 and y = | x| two values in the domain are paired
with each value in the range, except when y = 0 where there is
only one value of x in the domain.

For y = 1 - x® two values in the domain are paired with each value
in the range, except when y = 1 where there is only one value of

x in the domain.



2. a. Domain = {x: x = 0}. Since the symhol /X is understood to he
the posilirze square root, the range is the set of all nonnegative
real numbers, that is, Range = {y: y = 0}.
b.  Domain = {x: x 7 0j. Range = {yi vy #01.
c. Domain = {x: x 770}, Range = {y: y = 0}.
Domain is the set of all real numbers. Range = {y: y > 0},

3. a. Domain = {x: x = 0}
b. Range = {y: y = 0

4

Note that the graph of this function is half of the graph of y = x°
The origin is included in the graph.

d. The function differs from the function defined by the expression
y =x“in *hat its domain is the set of nonnegalive real numbers.

Answers Lo Questions {ollowing the example: Student Text Page 5

Table a has only part of the range . Table b has two different
values in the range for the same value, 0, in the domain. Table ¢ has only
part of the domain A, If the domain and range are not specified, a and c
define functions.

Answers Lo

PROBLEMS 1-1C Student Text Page 5

i. The pairs <1 ¥ %), (m, 7*), (2 V2, 8) belong to the function, the rest
do not.



f(0) = 0% -5(0) +6 =6
f(-1) = (-1)% - 5(-1) + 6 = 12
3)_ (3Y° 3 _3
f(?)‘ <§> - 5(2) +6=7
b. The pairs (3,0), (-2,20), (-1-1, 12-71), (7,20) belong to f, the rest
do not.

o8}

¢. The completed table should read

I 0o |1 |2 |2
f(x) 6 2 0 -

el VT
w

-1 1 -1 1
f1 S
3 4 4 3

There are no such functions.

Tables a, b, d, e define functions, ¢ does not.

a. Domain = {0, 5, 1}. Range = {-1}.

b. Domain = {0. 1, 2, 4}. Range = {0, 2}.

d. Domain = {-2, 7, 1, 2}. Range = {-2, &, 1, 2}.
e {-2, 1, 3}. Range = {0, §, 1}.

)

Domain =



1-2 RELATIONS.

In this section we introduce the mathematical definition of a relation
as a set of ordered pairs. Despite the simplicity of this concept pupils find
it strange at first, and you will have to proceed slowly until they are ready
to think in terms of sets of ordered pairs. Thus, in discussing the relation
of fatherhood, which is eventually defined to be the set of all ordered pairs
(x,¥) where y is the father of x, you should attempt to get your class to
suggest this definition for themselves. Emphasize that we seek a workable,
mathematical definition; that is, one which allows us to determine when two
people x and y are related to one another in such a way that y is the father
of ¥, and which, at the same time, avoids all complications arising from the
vague feelings usually associated with this term. As you proceed you should
stress that regardless of these feelings (where, of course, no two people will
completely agree) we can still give a delinition which allows us to study the
relation of fatherhood in a systematic way. The definition finally chosen
does just this, and hence from a mathematical point of view is entirely
satisfactory.

Once your class has grasped the idea of thinking about relations as
sets of ordered pairs have them go on to the CLASS ACTIVITY (Page 8)
and make their lists. If they have dilficulty you might suggest that they
consider relations such as the set of ordered pai.ss (v, v) of pupils in their
class where y is taller than v or where y is older than x, and the set of all
ordered pairs (v, y) where v is a citizen of country y. To stimulate class
discussion you may find it helpful to list the relations they find on the
chalkboard.

In Question 2 of the CLASS ACTIVITY they should, after some exper-
imentation, hit upon the idea of reversing the entries in the ordered pairs
belonging to the relations found in Question 1. This operation of reversing
the order in the ordered pairs should be emphasized since it will be intro-
duced formally when inverses are studied. For the moment, however, you
need only bring your pupils to the point where they realize that this can be
done with any relation whatever, and that two successive reversals of this
type will take them back to the original relation,



Answers to Questions following the examples: Student Text Page 8

Example 1: The ordered pairs (1,2), (1-1, 1-11), (-5, -3) belong to the
relation, the rest do not.

a. Any number a greater than 3 will do.

b. Any number a greater than -4 will do.

c¢. Any number a between 3 and 4 will do.
(Make sure your pupils understand that a, b, and ¢ have many different
answers, all of them correct.)

Before studying Figure 4 remind the class that we use a broken line
to indicate that the points on that line do 1of belong to the region in question;
a solid line when they do. The correct answer to the first question concern-
ing the figure is Figure 4 (a). Figure 4 (b) represents the relation consisting
of the set of all ordered pairs (v, y) with y <.x, When the line y = v is in-
cluded in the region we must allow the possibility that v = x in both relations.

Example 2: U A is congruent to A, (i.e., if the ordered pair (4,, Ay)
belongs to the relation) then A, is certainly congruent o A., and it follows
that (Az, A1) also belongs to the relation. Since a triangle is always con-
gruent to itself, (A1, A1) belongs to the relation for every A;. Finally, if
Ay, Az, and Az are triangles, no two of which are congruent, none of the
given pairs belongs to the relation. If two of the triangles are congruent to
each other but not to the third, only one of the ordered pairs belongs to the
relation. It is impossible to have evactly two of these pairs in the relation
since all of the triangles would then be congruent and all three ordered pairs
would belong to the relation.

Example 3: The questions here should not cause any difficulty if the
pupils phrase them following the model given above for Example 2.

Example 4: The ordered pairs (1,5) and (3,9) belong to the relation,
the rest do not. Since x = 1 X x, the orde:ed pair (v, x) belongs to the rela-
tion for every natural number x. If y is a multiple of x we have y = iy for
some integer ju > 0. similarly, if z is a multiple of y we have z = iy for
some integer n > 0. Substituting ,x for y in the second equation we get z =
(nan)x, and z is a multiple of xv. Hence (x, z) belongs to the relation.



Answers to

PROBLEMS 1-2 Student Text Page 10

1. In pairs of the form (2,y), y must be even; i.e., y =2,4,6,.... In pairs
of the form (5,y), y must be a multiple of 9; i.e., y =5, 10, 15,....
In pairs of the form (x, 24). v must be one of the numbers 1, 2, 3, 4, 6,
8, 12, 24. In pairs of the form (¥, 17), ¥ must be one of the numbers
1, 17.

2. a. False
b. False; x may be the sister of Y.
c. True.

3. a. False.
b. True
¢. False

4, a. False; v -y =0.
b. False; if v -y =3, theny - x = -3
c. False;jifv-y=8andy-2=3,theny- z=6.

5. a. The pairs (9,3), (3,9), (-1,2), (-4,-7) belong to the relation, the
rest do not.
b.  The pair (v, v) belongs since v -+ =0=3x%x0. If (v, v) belongs,
then v - y = 3% for some integer k. Hence y - v = -3} = 3(-%), and
Yy - v is also an integral multiple of 3, the multiplier now being -/.
If v -y=3kandy -2 =3mfor integers & and i, then
Xo-z=(wv-y) + (v - z)

=3k + 3

= 3(k + ),
Since (% + m) is an integer (by the closure property of addition for
integers), v - z is an integral multiple of 3, and (x, z) belongs to
the relation.

1-3  DOMAIN AND RANGE.

This section will not cause any difficulty if pupils remember the
meanings ol the terms ‘‘domain’ and ““range’’ from their study of functions
since the delinitions here are exactly the same. You may find it necessary,
however, to recall the meaning of the set notation used in the formal definition.



Answers o
CLASS ACTIVITY

Student Text Page 12

1. Here for the first time we use set notation to define a relation. Make

sure your pupils know how to read and interpret such definitions be-

cause they will be used constantly from now on.

a.

-20) | (v, -9),

(V3, 3V3), (-m, -1*). Since every real number has a cube, R con-

The ordered pairs are (0,0), (1,1), (-2,-8), (‘%’

tains an ordered pair of the form (v, y) for every real number x.
This implies that the domain of R is the set of all real numbers,
and since y is uniquely determined by v, R is a function.

The ordered pairs are (0,0), (-1,-1), (-3,-27), (2,8), (%—1715%

(*V3, 3), (*V-3. -3). Since R contains an ordered pair of the form
(x,y) for every real number y, the range of R is the set of all real
numbers. The v appearing in this pair is called the cube root of y.

2. Domain of R = {0,1}. Range of R = {2,4}. R is not a function since 0

is paired with more than one member in the range of R. The remain-

ing relations are

Answers to
PROBLEMS 1- 3'

{(0,2), (0,4), (1,2), (1,4)}
{(0,2), (0,4), (1,4))
{(0,2), (1,2), (1,4))
{0,4), (1,2), (1,4))
{(0,2), (1,4))

{(0,4), (1,2)}

Student Text Page 13

Domain = {x: x has a sister]}.

Range = {y: y is a sister]}.
Domain = {x: x is a pupil in a class}.
Range = {y: y has a class}.

Domain = {x: v =0}

Range:= {y: y = 0}.



d. Domain = the set of all real numbers.
Range = the set of all real numbers.

e. Domain = {x: x is a natural number].
Range = {y: y is a natural number}.

f.  Domain = {x: x is a person living in a town}
Range = {y: y is a town).
V2 .x/_?)
2

2. a. The ordered pairs (0,1), (0,-1), <2 , -—2>, (-—2—,

bJ
<- —"/23—, —%), (%, g) belong to R, the rest do not.
b. Domainof R = {x;: -1 =y =1},
Range of R = {y: -1 =y =1},

1-4 PICTORIAL REPRESENTATIONS.

The objective of this section is to introduce some of the pictorial
methods of representing relations. Two such are given: general pictures
of the type shown in Figure 5 of the Student Text, and graphs. Your pupils
should be reasonably familiar with each from their earlier work with func-
tions, and although the pictures are now a little different from those they
have seen heretofore, they should have no difficulty drawing them. You
should point out that whereas the first type of picture is perfectly general
and can be used to represent any relation whatever, graphs can be used only
to represent numerical relations; that is, relations whose domain and range
are sets of real numbers. Make sure your pupils understand that the graph
of a numerical relation is a set of points in the plane. Often the ¢raph is a
region of the plane, although in special cases it may turn out to be a curve
or collection of curves or even a set of isolated points, They should realize
also that the converse ol this statement is true, and that every (nonempty)
subset of the plane is the graph of a numerical relation, namely, the relation
whose ordered pairs are the pairs of coordinates of the points in the given
subset. In short, (nonempty) subsets of the plane and numerical relations
are two dilferent ways of looking at exactly the same thing.

After your pupils have studied this section they should be encouraged
to draw pictures (and graphs) of relations both as an aid in solving problems
and to illustrate new concepts as they are introduced. A number of the
problems at the end of the section have been designed with this in mind, and

will be quite difficult unless graphs are drawn.

10



Answers to
PROBLEMS 1-4A

Student Text Page 15

The pupils’ pictures should look something like this.
1. 3.

2. 4,

Domain Range Domain Range
Answers to
CLASS ACTIVITY Student Text Page 16
1. The set of ordered pairs having 1 as their first entry is represented

by the portion of the vertical line v = 1 below the line y = x, Similarly
the set of ordered pairs having -2 as their second entry is represented
by the portion of the horizontal line y = -2 to the right of the line y = x.

2. The picture should look like this;

Y
A Y /y_x
N
\\\ //,
2.
\\\ ,/
PALA)

% "
t t

2




Once the pupils have sketched this graph they can determine the domain and

range of R by considering the values of < and y which lie in the shaded re-

gion. The correct answers, of course, are that the domain of R is the set

of all real numbers, the range the set of all real numbers less than 1. If

your class has difficulty in deciding which of the four regions to choose you

can point out that the graph of R is the infersection of the graphs of the re-

lations

Ri= {(x,y): x>y} and Rz= {(x,y): v +y <2}
This will allow them to find the graph of R by graphing R\ and Rz and then

taking the region common to the two graphs.

Answers Lo
PROBLEMS 1-4B

/
y o
1 ZL /xy]
/
/
+ + /
-4 2 ol 7 2 4 x
1
/

2. 4
4 x_,y+2
N ///
\
\ 7
\ 2 /
\
T /

Student Text Page 16

Domain of R = {v: v < -1}
Range of R = {y: y < -2}

Do jeo

B

Domainof R = {x: x>

Range of R is the set of all
real numbers.



13

Domain of R is the set of all
real numbers.

Range of R = {y: y > -1}

Domain of R = {x: -2 < x< 2}
Range of R = {y: -1 <y < 3}

Domain of R = {x: -2 < x < 2}

Range of R= {y: 0<y <2}



6. a. R={(x,y): y<-xandy<ux+ 2}
Domain of R is the set of all real numbers.
Range of R = {y: y < 1.
b. R={(x,y): y>landv+y <1}
Domain of R = {x: x < 0}
Range of R = {y: y > 1},

c. R={xy): -1=xy=1land-1=y =1}
Domain of R = {x: -1 =x =1},
Range of R = {y: -1 =y =1},

&

d. R={(xy,y): y=x"andy = 2}
Domainof R = {v: 0~ x =2},
Range of R = {y: 0 =y =4}.

e. R={x,y): y>|lx|landy =x*)
Domain of R is the set of all real numbers.
Range of R = {y: y > 0}.

f. R={(y,v): y=2v,y =x* andy =4}.
Domain of R = {x: -2 =x =2},
Range of R = {y: 0 =y =4},

1-5 THE INVERSE OF A RELATION.

In this section we discuss the important notion of the inverse of a re-
lation. To form R™' once R is given, simply reverse the entries in each of
the ordered pairs belonging to R. This operation was introduced informally
as a class activity in Section 1-2 and your pupils might profit from a revis-
ion of the results they obtained at that time before you introduce the formal
definition,

Before you answer the questions following the definition encourage
your pupils to draw pictures such as the one given in Figure 9 of their text
and attempt to discover the answers for themselves. Those who understand
how inverses are formed will be able to answer them without difficulty.

The questions in the CLASS ACTIVITY on page 18 besides illustrating
the operation of forming inverses, point out that if the operation is per-
formed twice in succession on any relation whatever, the result is necessar-
ily the original relation.

You will notice that we have not discussed the problem of graphing

14



the inverse of a numerical relation in this section. Most pupils find this
difficult at first, and for that reason we have postponed the problem to the
next section where it is treated separately.

Answers to Question: Student Text Page 18

The ordered pairs (0, 0), (4, 2), (4, -2), (8, 2V2), (9, -3) belong to the
square root relation S.

Answers to

PROBLEMS 1-5A Student Text Page 20

1. R™' is the set of all ordered pairs (y, x) of pupils in your class where
x is shorter than y.

2. R~! is the set of all ordered pairs (y, x) where y is a teacher in your
school and x is one of y’s pupils.

3. R™' is the set of all ordered pairs (y, x) of people in Africa where x
is younger than y.

4, R~ is the set of all ordered pairs (y, x) of real numbers where x is
the cube root of y.

5. R™' is the set of all pairs of coordinates of points in the plane.

6. R™' is the set of all pairs of coordinates of points in the plane lying in
the fourth quadrant; that is, points whose first coordinate is positive
and second coordinate negative.

7. R™' is the set of all pairs of coordinates of points in the plane to the
left of the line x = 4.

15



Answers to

CLASS ACTIVITY Student Text Page 21

N -1

— R _(rR-1) ~ ()R

Answers to

PROBLEMS 1-5B Student Text Page 21

1. Domainof R = {x: x<0}.
Range of R™' is the set of all real numbers.
2.  Domainof R™" = {x: x = 0}

Range of R™' is the set of all real numbers.

3. Domain and range of R™' are the set of all real numbers.
4, Domain and range of R™' aro the set of all real numbers.
5.  Domain of R™' is the set of all real numbers.

Range of R™' = {y: y > 0O}.
6. Domain of R™" = {x: 0< x < 4}.

Range of R™' = {y: 0<y < 2].

7. Domain of R™' = {x: -1<x<1}.
Range of R™' = {y: -2 <y < 2}.

16



1-6 GRAPHING THE INVERSE OF A RELATION.

We now turn our attention to the problem of graphing the inverse of a
numerical relation. You will probably {ind that your pupils have more
trouble with this section than with any other in the chapter, and you will
have to proceed slowiy and carefully. In the last analysis the point at issue
can be made only by drawing a large number of figures on the chalkboard,
even though it can be described simply. Indeed, since R~' is formed by re-
versing the entries in the ordered pairs belonging to R, the graph of R™'
consists of the set of points obtained by reversing the x and v coordinates of
the points belonging to the graph of R. To describe the effect of this reversal
observe that points on the line y = x remain fixed since their v and y co-
ordinates are the same; that a point (@,0) on the v-axis goes into the point
(0, @) on the y-axis, and conversely; and that in general a point («a, b) goes
into the point (b, @) located symmetrically across the line y = xv. (A proof of
this fact has been assigned as Challenge Problem 9 at the end of the section.)
Thus the result of interchanging the v and y coordinates of the points in the
plane is to reflect the plane across the line y = v, In the Student Text we
have attempted to lead up to this result in such a way that the pupil can dis-
cover it for himself. However, the success of this effort will depend in large
measure on pictures drawn on the chalkboard in the classroom.

Once your pupils understand this description and realize that it can be
interpreted as a rotation of the plane through an angle of 180° about the line
y = x all should be well, for then they will be able to obtain the graph of R™"
by visualizing what happens to the graph of R under this rotation. Here
again pictures will be necessary, and you may find it helpful to display a
sequence such as the one shown below, encouraging your pupils to draw the
graph of R™' before you construct it for them. In addition, you may wish to
draw a number of graphs on square sheets of thin paper in such a way that
the graph can be seen through the paper when viewed from the opposite side.
Then, by holding the paper so that the graph is facing away from the pupils,
and rotating it about the diagonal running from the upper right to lower left
corners, you will be able to make the graph of R~' appear before them.

17
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(Cl) (cz)
Answers to
CLASS ACTIVITY Student Text Page 24

a. Points on the positive x-axis change places with the correspond-
ing points on the positive y -axis.

18



b. Points on the negative x-axis change places with the correspond-
ing points on the negative y-axis.
c. Points on the line y = ¥ remain unchanged.

Answers to

CLASS ACTIVITY Student Text Page 25

“

In parts ¢ and d the relation is identical with its inverse.

19



Answers to
PROBLEMS 1-6

1.

4 3
/2.
-4

i}

g

20

Student Text Page 26

2
0

7

%

Y

41

\¢

NN IR

\

\\\\\\\

%\\\\ ,




x>0
and
y<x
-4t
8. a '
4 R y
41 4+

R™' is not a function since each x # 0 in its domain is paired with
two distinct y’s in its range.

bl
Y S Y
4 4+
-1
R I, g

(Note: The origin is included in each graph.)

S-' is a function since each x in its domain is paired with exactly
one y in its range.
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9. Challenge Problemn
a. The coordinates of B are (y, y), so the distances BP and BQ are
both |x - y|, that is, BP = BQ.
Of course, BA =BA.
Since lines i}? and 5—)? are parallel, AﬁP = A/(BX.
Similarly ABQ = AOY. But AOX = AOY because OA bisects YOX.
It follows that ABP = ABQ.
We now lnve AABP = AABQ by SAS. Therefore AP = _Q and
BAP BAQ so P@ is perpendicular to the line x = =9,

b. This result shows that points P and @ are mirror images of each
other in the line y = x.

1-7  FUNCTIONS.

In this section we formally define a function as a relation with the
additional property that no two of its ordered pairs have the same [irst entry
and different second entries. After recalling the terminology used in talking
about functions we give two examples which are designed to show that in
certain circumstances describing a function by means of a rule or formula
is neither natural nor convenient. At this point you should encourage your
pupils to appreciate the fact that although most functions in mathematics are
described by formulas, the ordered pair definition has the advantage of being
sufficiently general to include «ll functions which they will ever encounter.
This is precisely the reason for choosing it as our basic definition. At the
same time however, you should insist that they be [lexible in their approach,
and use both points of view interchangeably, as convenient.

The telephone book example furnishes an illustration of a function which
cannot be described by a formula, and you should have your pupils propose
additional examples of this type. To help them you might suggest the set of
ordered pairs consisting of mountain peaks in Africa and their heights in
feet, or the set of ordered pairs consisting of countries and their populations
as given in an atlas. If this last example is used you might point out that
countries take censuses periodically precisely because they cannot deter-
mine their populations by a formula.

In the example involving areas we have a function which can be des-
cribed by two entirely different formulas. Nevertheless, as « set of ovdered
paivs, the function in question is the same regardless of which formula is
used to compute its values.

22



Answers to

PROBLEMS 1-7A Student Text Page 30

1-10. The relations given in 1, 3, 4, 7, and 10 are functions; the rest are not.

11. The pairs of formulas in b, d, g, and h define the same function, the
rest do not.

The problem of graphing functions was discussed in Secondary Three,
and by now your pupils undoubtedly know that a curve in the plane is the graph
of a function if and only if it satisfies the geometric condition stated in the
Student Text. This point should still be emphasized, however, since it will
recur in the next section when we discuss inverse functions.

Answers to

PROBLEMS 1-7B Student Text Page 32

The graphs in 1, 4, 6, and 7 represent functions, the rest do not.

1-8  ONE-TO-ONE FUNCTIONS; INVERSES.

The notion of a one-to-one correspondence was introduced in Section
2-4 of the Secondary Thvee Algebra Text. We now combine this idea with
the notion of the inverse of a relation to show that the inverse of a function
J is again a function if and only if f is one-to-one. By now your pupils will
have had sufficient experience both w'th inverses and with functions to see
the point immediately upon drawing the figures suggested in the text.

The first example following the definition should be perfectly straight-
forward since all of the ideas were discussed in detail in Secondary Three.

Answers Lo

CLASS ACTIVITY Student Text Page 33

I The ordered pairs (-8, -2), (2, VZ), (-3, -1), (0, 0) belong to the in-

Dol

verse function.
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2. See Problem 3 of Problems 1-6, page 26 of Student Text, page 20 of
Teachers’ Guide,

3. The inverse is known as the ‘‘cube root’’ function and is defined by the
formulay = Vx.

The second example is designed to show that if the domain of a func-
tion is changed the resulting function may be one-to-one even though the
original function was not. This will be important in Secondary Five when we
study the inverse trigonometric functions.

After the discussion in Section 1-7 the graphical criterion for deter-
mining when a function is one-to-one should be all but obvious. The same
should be true of the concepts of increasing and decreasing functions, al-
though the terminology may seem strange at first. Have your pupils draw
graphs of a number of functions of each type until they know the meaning of
these terms.

Answers lo

PROBLEMS 1-8 Student Text Page 35

1-8 The functions defined in 1, 4, 5, and 6 are one-to-one; the rest are
not.
9,
From 5.
y
4..
1
2..
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Answers lo

CLASS ACTIVITY Student Text Page 36

The graphs in ¢, e, and [ represent one-to-one functions.

Answers to

CLASS ACTIVITY Student Text Page 38

1. The functions represented in ¢ and e are increasing and the one in f
is decreasing.

2. Yes. Yes.
3. No.

4, The pupils may be able to invent other examples.

b
N

5, Yes.

1-9 FUNCTIONS OF TWO VARIABLES.

This is an optional section devoted to a brief introduction to functions
of two real variables. Rather than start with a formal definition, we proceed
by means of examples chosen with an eye to illustrating that such functions
are perfectly natural and must inevitably be encountered. After discussing
these examples you should ask your pupils to produce further illustrations
of the same type, particularly from elementary geometry. You might
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suggest that they consider the formulas for the area of a rectangle and a
parallelogram, and those for the volume of a cylinder and a right circular
cone. Each, of course, is a function of two real variables. Finally. as the
first three examples in the student text suggest, all of the elementary oper-
ations of arithmetic—addition, subtraction, multiplication, and division—can
also be viewed as functions of this type.

We have deliberately avoided discussing graphs in this setting since
this is a complicated subject which requires a knowledge of three-dimen-
sional geometry. U any of your pupils are curious about this point you
should tell them that such graphs are studied in more advanced courses, but
encourage them to do some experimenting on their own.

Student Text Page 38

Answers to Questions following the examples:

Excample 1. a. f(-3,2) = -5, f(l, —%) =%, f(3,4) = -1, f (—%, é-) = —%.

b. f(x,y) = f(y, x) whenever v - y = y - x; hence whenever 2y = 2y, or

) =%
J(-m, -m) = 7%,
b. f(x, ) = f(y,x) whenever xy = yv, a condition which is satisfied for

)

Excaomple 2. a. f(0,0) =0, f (—%, %) = -

S|
o
(o o} [IV)

 J(2,-1) = -2, (-

all ordered pairs (v, y) of real numbers.

“H.

0}. (The restrictiony # 0 is
0.)

Example 3. Domain of J = {(x, y): v

N

X ,
necessary because 7 1S not defined when y

Range of /: the sct of all real numbers. (Mo prove this it suffices to
observe that if » is any real number whatever, then f(#,1) = 7.)

Answers lo

PROBLEMS 1-9 Student Text Page 40

1. Domain: the set of all ordered pairs of real numbers.
Range: the set of all real numbers.

F(L2) = -3, 0.0 =0 (-5, 1) =-3, f(§,-3) = -5, f(-3, -9 = -1,
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Domain: the set of all ordered pairs (v, y) of real numbers with y # 0.
Range: the set of all real numbers.

F(-3,2) = -5, f(0,-3) =1, £ (-5, %) =0. 7 (3,2) =3 . f-3, -1 = 4.

Domain: the set of all ordered pairs of real numbers.
Range: the set of all nonnegative real numbers.

f(0,0) = 0, f('ly ) l f }} "_%) = 0, f(-2, —2) = 16’ f(4’0) == 16'
[Note that f(v, V) =(x +y)

u‘,

]

Domain: the set of all ordered pairs of real numbers.
Range: the set of all nonnegative real numbers.

£0,00=0, f(-1,-3) =3, (%, -3) = 1, f(2.9) = 8, /(-3.3) =%

Domain: the set of all ordered pairs of real numbeus.

Range: the set of all nonnegative real numbers.

70,3) = 3, F(-3,4) =5, S(-12, -5) = 13, /(1,1) = VZ, f (3

_ 3_) _ v10

2 .
Domain: the set of all ordered pairs (v, v) of real numbers with v = 0
andy =0, orx =0andy = 0.
Range: the set of all nonnegative real numbers.

f-2,-2) =2, f(0,00 =0, 5 (2, %) = 2‘/—, J(-5. -4) = 25, f(-1, -1) = 1.

Given f(x,v) = xv.
Then
S, =y) = x(-p) = = (wp) = =f(x, »).
fl=x,p) = (=x)y = - (vy) = -/ (v, »).
Sl=x,-p) = ( V) (- )— vy = [, ).
) =

Given f(v,v

Then
flex,v) = (=x)? = 2= x% - y% = flv, y).
flo, =p) = x2 = (=p)® = x® =% = f(x, ).

Y 2 .2 2 _ rf.
S, =p) = (-x)" = (=9)" = v7 = ¥" = f(x, p).
f is a numerical function of two real variables if f is a set of ordered
pairs each of whose first entries is an ordered pair of real numbers,
whose second entries are real numbers, and which has the additional
property that no two ordered pairs have the same {irst entry and dif-

ferent second entries.
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Chapter 2
RATIONAL FUNCTIONS

2-1 RATIONAL FUNCTIONS.

Before defining rational functions we recall the fact that some functions

can be classified into types according to the nature of the rule which defines

them.

Answers to
PROBLEMS 2-1A

f—
.

— e

o o o 5 B

Q - 0 2 0 T

All real numbers;
All real numbers;
All real numbers;
All real numbers;
All real numbers;
{x:x =0}, square
All real numbers;
All real numbers;
All real numbers;
All real numbers;
{x:x # 0}; none.

All real numbers;
{x:x# -15}; none
All real numbers;
{x:x# 0}; none

Student Text Page 42

polynomial, quadratic.
polynomial, linear.
polynomial.

constant, polynomial.
constant, polynomial, zero.
root.

polynomial, linear.
constant, polynomial.
polynomial, quadratic.

exponential.

absolute value.

constant, polynomial.

x:x > 0}; logarithmic.

{
{X:ix# ——‘%}; none.
{

xx% 0}; none
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s. All real numbers; polynomial, quadratic.
t. {x:x#4}; none
u. All real numbers; polynomial.
v. All real numbers; constant, polynomial.
w. All real numbers; polynomial, quadratic.
X. {xix# -%5- }; none.
y. {x:x =0}; square root.
z. All real numbers; absolule value.
2. a. All real numbers; polynomial, linear.
b. Not a function.
c. All real numbers; polynomial, quadratic.
d. Not a function.
e. {x:x#0}; none.
f.  All real numbers; polynomial, linear.
g. Not a function.
h. Not a function.
i.  {x:ix # -2}; none.
i+ {7 # -2}, none.
k. All real numbers; polynomial, quadratic.
1. All real numbers; constant, polynomial.

m. All real numbers; polynomial, linear.

We show a need for rational functions by setting up equations for some
problems which lead to the use of rational expressions. Do not attempt to
solve the equations now. A little later after the pupils have developed some
understanding of rational expressions we shall return to these problems and
complete their solution.

Ansivers lo

PROBLEMS 2-1B Student Text Page 44

1. If there are x boys, then there are (v - 4) girls.

3 ° ® (x is an integer greater than 4)
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2. If there are x red pencils, then there are x + 28 black pencils and the
total number of pencils is x + (x + 28) or 2x + 28.

x .1
2x+ 28 9

(x is a positive integer)

3. The time for the journey originally is —Z{Q hours. At the faster rate of

25
X+ 5

(x + 5)miles per hour the time is hours.

25 25 _1 N
Y 7.5 4 (x > 0)

4, At x shillings each the man bought % books. At 2x shillings each he
bought %% books.
=8 (x is positive and a multiple of the smallest
legal unit of money)

+

u=
miq
= 1D

5. The rectangle is 1—{2 yds. in height and the perimeter is

(x + X + 1—3 + 15‘) yds. or Z(x + —1;2-> yds.

2(x+—1f)=49 (x > 0)

In the definition of rational function help the pupils to understand the

need for restricting the domain. The notation ‘{(x, f(x)) (f(x) = %ﬁ—:—é}

merely gives the set of ordered pairs of numbers which is the function as
we saw in the preceding chapter. The pupils should be aware of the differ-
ence in meaning of ralional function, ralional expression, and value of the
Junclion.

Answers to

PROBLEMS 2-1C Student Text Page 46

1. Rational functions: «a, b, ¢, d, h, i, 7, k, m, n

a. {x:x#-2) b. {a;a#%}

31



c¢. All real numbers j.  All real numbers
d. {a:a#0)} k. {a:a#0}

e. {x:x> 0} l. {x:ix=2o0rx<-2}

f. All real numbers m. All real numbers

g. {x:ix>0andx #1)}.

h. All real numbers.

L {yiy# -3}

All except Problem 1, parts f, j, 1, p, r, y, z, and Problem 2, parts b,
d, g, h.

n. {a:a #%}

a. Yes, because a polynomial P(x) can be written Eg—\—l and since 1

P(x)

is a polynomial, 1 defines a rational function.

X+17

b. No, because for example, defines a rational function but not

a polynomial function.

a, 22 c. undefined
b. -3 d. -2
11 1 3 *+ 8
(6,22),(1,—3),(0,-2),<—5,-—§>, (L, -3, (7, ==2) and many
others.
- v )
6=+ (v #1)
6x -6 =ux
5y=6
._6 X
.\ - 5 ('\' # 1)

This problem anticipates some of the work later in this chapter on
solution of equations involving rational expressions. If the pupils have
difficulty with it now, omit it until they are more nearly ready for it,
The same remark applies to Problems 7 and 8.

-1

a=-91

= _2

b=-3

(2.5;_(1__5& \’azz
. is equivalent to

| 1-2erd [b=-3
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80 340
10. a. X d. p
b. Width: 10 - x e. Vx
Area: x(10 - x) or 10x - x?
1 1
¢ Y x+2

f. All of the expressions in parts a to e define functions.
All but part e define rational functions.

Domains: a. x> 0 d. x>0
b. 0<x<10 e. x>0
c. x>0

2-2 OPERATIONS WITH RATIONAL FUNCTIONS.

We observe that addition and multiplication of rational functions look
very much like addition and multiplication of rational numbers and we have
the same properties to guide us in manipulating them.

There are three different things involved in what we are doing.

1. The rational funclion A set of ordered pairs of numbers.
2. The rational expression Marks c¢n the paper.
3.  Numbers represented by Values of the function, numbers
the expression for var- in the range.
ious values of x in the
domain.
Actually what happens in practice is that we manipulate the polynomials and
rational expressions which appear on the paper (2 above). We hope that the
pupils are thinking of the properties of /inbers (3 above) as they manipulate
the symbols. The function (1 above) is defined by the expression and the

domain.

Answers to

FROBLEMS 2-24 Student Text Page 49

1. 516—5; (x # 0) 3. % (x # 0)
2. L (x # 0) . 2 (x # 0)
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8x2

6 1 (x #0)
X
x% - x

7. 3

8. &= (x # 0)

2

3+ x
9. 8x
9 - 642
10. g
11. 2x
3
12. T

(x #0)

(x#0)
(x # 2)

(x#0, v #-1)

In the next problem set the purpose of having the pupils write down the
properties they are using is not that we expect them always to write the
properties but we hope that they will, by writing them a few times, become
more aware of how much we depend on these properties continuously and

perhaps will think of them more frequently and more clearly as they work.

Answers lo
PROBLEMS 2-2B

Domainis {y:y # 0}.

Student Text Page 50

<Associative and commutative>

pbroperties of multiplication.

(AC_a ¢
\BD "B D
§:>

(B L

B, .C

<DX1‘D>

The properties for Problems 2 to 7 should be shown in a similar

manner.
3

2. 0 (@#0,a#-9)
I ,

3. 3 (m#0

4, 1

2y - 6
5. e
2x +1

3x + 2
6(x + 1)
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N(x)  P(x) _ N¥) x Q) + P(x) x D(x)
+ = (D(x) #0, Q) #0)

D(x) Q) D(x) X Q(x) (=) 7

Since the set of polynomials is closed under addition and multiplica-

tion, the numerator and the denominator of this fraction are both

polynomials. The [raction therefore defines a rational function.

8. Yes.

b. Yes, by similar reasoning.
¢. Yes, by similar reasoning.
d. No. For example (x + 3) defines a rational function and 0 defines

a rational function, but 2 6 3 does not.

e. The rational functions have the property of closure for addition,
subtraction, and multiplication.

9. a. Yes.

X+ 3 X X X+ 3
b. = v Y-2  x
v+ 3)(x-2) AP __ Xt N (x - 2)(x +3)
x(x -2 Tx(x-2) x(x-2) x(x - 2)
C(xf 4+ x - 6) +a*® a0+ x - 6)
- x(x - 2) x(x - 2)
P+ X -6 ) ] 2"+ x-6 ) )
R ST (x#0, x #2) =S -y (x#0, x #2)

c. Similarly by using properties of polynomial functions we see that
for rational functions f and g, f(v) + g(v) = g(x) + f(x).
d. Commutative property of addition.

10. a. g(v) =0 b, g(x)=1

In problems 8, 9, and 10 we have mentioned some properties which you
recognize as properties of a field. While it is of interest and instructive to
observe these properties for rational functions, we do nof want to pursue
them very far here because we would run into a complication which is prob-
ably too difficult and too subtle to be presented to the pupils at this time,
The discussion below is [or the benefit of the teacher and not to be given to
the pupils unless you have one or two particularly able pupils who ask ques-
tions and could understand it.

First,let us list the properties of a field which can be proved for
rational functions by using the corresponding properties for the polynomial
functions in terms of which the rational functions are defined.

If f, £, and I are rational functions, then
f + & is a rational function (

243
f¢ is a rational function j Closure properties
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frg=g+f)

fg = of j Commutative properties
(f+&) +h=f +(g+)| o .
L h = fgh) 5 Associative properties
flg+h)=fg+ fh Distributive property
f+0=1]
Identity properties
fx1=f )

f+(-f)=0 Inverse property

The remaining field property, the inverse property of multiplication, strictly
speaking is not true for rational functions. Fully stated this property says:
Corresponding to each rational function f (except f = 0)

. . . . . 1
there is a unique rational iunctlon}; such that

fX%=%xf=1
It is understood in this statement that the function 1 is the wnique identity
function for multiplication, which has as its domain the set of all real num-
bers. Consider, however, the following examples.

(v - 3)x (Ti_ﬁ') =1 (v #3)

—=1 (v #-8)

Since the domains are different, the 1 in the first case does not define the
same function as the 1 in the second case, and neither of them is the same

(v + 8) x

function as the wnigie identity function 1 which has as its domain the set of
all real numbers. Since there is not a unique identity function which will
serve to determine all multiplicative inverses, this inverse property is not
strictly true.

While this prevents the set of rational functions from being a field. it
does not hamper our use of the multiplicative inverse idea because in ordi-
nary circumstances we do not insist on there being a unique function for 1.

2-3 FACTORIZATION IN SIMPLIFYING RATIONAL EXPRESSIONS.

Use your judgment about whether to use PROBLEMS 2-3A on revision
of factorization. If the class has retained its proficiency in factorization,
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these problems can be omitted. If they do need help, you should recall for
them the types they have studied.

Quadyatic lrinomial: 3a*® - 14a + 8

We look for two numbers whose product is 3 X 8 or 24 and whose sum
is -14. We can test factors of 24 systematically.

1x24 (-1)x(-24)

2x12 (-2) x(~ 12)2 -2 and -12

3 X8 (-3) x (-8) will work,

4X6 (-4x(-6) S

3a® - 2a - 12a+ 8 =a(3a - 2) - 4(3a - 2)
= (a - 4)(3a - 2)

Common monomial: 6y* + 10y = 2y(3y + 5)

Difference of two squares: 9y* - 25 = (3y + 5)(3y - 5)

Perfect square trinomial: y® + 10y + 25 = (y + 5)2
Combinations of these: 3a® - 12a = 3a(a® - 4) = 3ala + 2)(a - 2)

Answers to

PROBLEMS 2-3A Student Text Page 52

L. y(6y+ 17 8. 3ala® - 5a - 4)

2. 2v(3y + 5) 9. (a-6)a+ 2)

3.  (y+8)(y+2) 10. (a - 4)(a - 3)

4. (v + 5)° 11.  (a - 4)(3a - 2)

5. (y+25)(y - 1) 12.  (7a - 6)(a + 1)

6. (v +5)(y - 5) 13.  3ala + 2)(a - 2)

1. (3y +5)(3y - 5) 14, (@®+ 4)(a + 2)(a - 2)

We must continue to emphasize awareness of the domain. It is parti-
cularly important here because in some of the final simplified expressions
the domain is not evident just from the expression.
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Answers to
PROBLEMS 2-3B Student Text Page 53
L 22T (i#0,) 5. X% (x#0,7,5)
1 x® -9y + 12
2. 7+ 6 (a # 0, 6, -6) 6. _T_LL-_+75_ (x#0,7)
3. 2 (y#0,2, -2) s SRCT TN
641 + 5

4. (m + 5)(m + 1) (m #-5,-1) 8. L—a%’z@ (x # -3)

Answers to

PROBLEMS 2-3C Student Text Page 54

L (v + 1\)3(\- -:Z'LI‘)?,\?+ 5) (x #1, -1, -5)
2. 7026(-1((118-0 T2 (@#0,6)
3 (y . 2_)2?\\, - g) (v #2,5)
* 5(1((7: - 41(9- 12) (@ # 0, 6, -2)
0. '5%%5'5')_ (a # 2,5, -5)
3. 1o
6 oy @r0. Bz -B vy
TR 4g3,0)

2-4 RATIONAL FUNCTIONS OF TWO OR MORE VARIABLES.

For functions of two variables the main thing to bear in mind is that
the elements of the domain are ordered pairs of numbers, one for the first

variable and one for the second variable.
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Answers to

PROBLEMS 2-4 Student Text Page 56

b fy) =g (# By, xF -3)

c. (3, 1) is not in the domain because it makes the original denomi-
nator zero.
d. {(x,y):x#3yandx # -3y}

2 a -~ 20

- L
2. a5 WAy, vF ) d. =— (@#0,b 40,a#bd)
2a” + 2b° -x+ Ty ]
b. Tgopr (@Ebaf-b) e = (v #0)

(]

b-a L ba + 3b + 2¢
T a (a#0,0#0,a#-b) I 6 60 60 (@+ b+ c #0)

3. All except b, ¢, i, and [, which define rational functions of one
variable.

2-5 EQUATIONS INVOLVING RATIONAL EXPRESSIONS.

We use two slightly different methods of simplifying equations involv-
ing rational expressions. In both we use the least common multiple (L.C.M.)
of all the denominators.

In the first method we use the properties of one repeatedly on the
various terms until all the terms in the equation have the same denominator.
Then multiplying both sides of the equation by this same denominator gives
a simpler and equivalent equation with no denominators.

After using this basic method {or a while we observe that we can ob-
tain the same result with fewer steps if we multiply by the L.C.M. of the
denominators at once. Simplification by the properties of one produces the
same equation with no denominators which we had by the first method.

An advantage of doing the longer method for a while first is that it may
help the pupils to see more clearly what they are doing, so when they come
to the shorter method, it is more meaningful than it might be otherwise.

Whatever method we use, it is important not to forget the restrictions
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on the domaiin. We do not bother to write them at every step, but they are
constantly present and should always be written clearly by the last equation
in the chain of equivalent equations.

On page 57 be sure that the pupils can {ill in the following details when

they multiply by 4x(v + 1).

. 120 + 12 201 g T2+ Tx
(v + 1) [4,\‘(,\‘ T 1) T oy + 1)] = 4v(y + 1) [4.\‘i.\' + 1) ]

g 12x + 12 g 20, X+ Ty
dx(x + 1)7——)—4'\‘ Tt 4x(x + 1)-——4'\7(’\, T 4x(x + l)_—4x(.\' D

(by the distributive property)
;};((; : 3-(12,\' +12) + ——(H:(t : }) (200) = 2: :: i (747 + 7v)

¢ _ SV 1 _A
(AxD—AxLAD—AxDxC—DxC)

126 + 12 + 200 = 742 + Tx
T.
(by 2 =1and 1 XA = A)
T B

Do not ask the pupils to write out all of this, but now and then in class dis-
cussion ask them some questions about how this works to be sure that they
are doing it with understanding and not just manipulating mechanically.

In problems such as the one about the running boys be sure that the
vupils clearly answer the question, as it is shown in the text. Do not let
them stop at v = 4. A check in the words of the problem should also be done
both to verify correctness and to bring out the full meaning.

Again, use your judgment about how much of PRORLEMS 2-5A on
quadratic equations needs to be done by your class. If they are proficient,
the set of problems may be omitted e~tirely. Possibly some pupils in the
class will need more practice than others to recall what they knew about
solving quadratic equations.

Ansiwwers lo

PROBLEMS 2-54 Student Text Page 58

1. For all real numbers ¢ and b, @b = 0 if and only if « = O or b = 0.
12 ol

2. 19 2” 4, {0, 9}

3. {0, -4} 5. {3, -3}
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{11, -1} 17. {6+ V5, 6 - V5}
7. {12, 2} 18. 9, {3+ VI3, 3 - V13
8. {-1, -4 19. {5 + V30, 5 - V30)
2 <l 20. {-2+ V3, -2 - V3}
9. 15, _5} /— 4 /_2—
10. {6} 21. {6+4\2,6"' V }
(31 $/—3+\/—'2§ -3 - V29 91
11. 1_2’ 22. ' 5 ) J
12. {% - 23. {1+2VZ, 1-2V3)
13.  {-3, 5} 24, {10, 8}
4. 13,3 25. [ )
15. {11, -11} 26. {-4 + 2V5, -4 - 25}
16. By the definition of square 97 =6+ V26 -6 - V26 1
root, if x* = 13, then v = VI3 L2 i ’
or x = - /T3, 28, |1+ /5L 7o L1
Answers lo
PROBLEMS 2-5B Student Text Page 60
1. a, {24} b. 24 boys and 20 girls.
2. a. {4} b. 4 red pencils and 32 black pencils.
3. a. {20} b. 20 miles per hour
4, a. {12} b. 12 shillings and 24 shillings.
1
5. a. 24, %" c. 24 yds. by 3 yd.

Notice that in Problem 3 the negative solution,

-25, of the quadratic equation

is eliminated because it is not in the domain.

In Problem 5 both solutions are in the domain, but if v = 24, the height, —1‘\2

1

whichever value we choose for the base.

131

f o
6- {5} 7. 'Z, = 2 ‘

{
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is 5 and if v = %, the height is 24. Thus we obtain the same two dimensions
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In Problems 10 and 11 the method depends heavily on the order property:
I a <bd and ¢ > 0, then ac < be.
If a <b and ¢ <0, then ac > be.
We take the two cases, one where the multiplier is positive and the other
where the multiplier is negative.
Using the number line may help the pupils to see that, for example,
there is no number which is both greater than 0 and less thon -4. Have a
pupil try to put his finger on the number line to the right of C and at the
same time to the left of -4. Similarly the number line will help the pupils
to see that the statement ‘“x > 0 and v > 3”’ can be replaced with the simpler
statement ‘v > 3’ because if a number is greater than 3, it will necessar-
ily alsc be greater than 0. This is just a use of the transitivity property:
If v >3 and3 > 0, then x > 0.
These two problems are marked ‘“Challenge Problems’’ and are
optional, but if the class is reasonably able and has time it would be a profit-

able experience to do these.

10.  Challenge Problein
a. -5, -4, -3, -2, -1, 4, 5
b. x-3>0; Since x > 0 and x > 3, the truth set is {x:x > 3},
c. x-3<0; Sincex < 0and.x <3, the truth set is {x:x < 0).

11.  Challenge Problen
a, X +4

X <0
x>0andxy +4<0 or x<Q0andiy+4>0
x> 0and x < -4 ry<0and x> -4
There is no number for This can be written
which this is true. -4 < <0

The truth set 1s {v:-4 < x < 0}
b, {x:-1 <ux <0}
c. {x:x>0ora <-1}
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d. Cont.
x-1>0andx <3x -3 or x-1<0andx>3x-3

x> 1and 3 <2x x<1land 3> 2x
x>1andx>23- x<1and.v<—g:
This is equivalent to This is equivalent to
N ] )
x> 5 r <1
The truth set is {x:x <lorx> %}

. {x:-2< x < %}

In the example on page 62 if the pupils do not immediately see that
4x(x + 1)(%) = 4(x + 1)3, give them a little practice for a few times on the
intervening steps.

4x(x + 1)(%) =4x(x + 1) (3 X %) = (;v X %)4(;\‘ + 1)3 =4(x + 1)3

4x(x + 1)(1,—2—1) =4x(x + 1) (5 X xi 1) = ,:(x +1) x xi 1]4):(5) = 4x(5)
4x(x + 1) G) =4x(x + 1) <7 X %) = <4 X %)x(x + D)7 =x(x+ 1)7

Answers to
PROBLEMS 2-5C Student Text Page 62
Lo A 6. {x:-9< x< 0}

2. {7, -3) . {x:0<x <3}

3. {5, -4} 8. {4} (First simplify the left
4 _;_2 .@1 . X

: | 4 expression to Yo 1)

5.  {-1+ V13, -1 - VI3} 9. Is _Q}.

R A

Problems 10 to 13 are intended to emphasize the need for care in
distinguishing between equations and expressions.
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In solving equations the truth set must remain unchanged as we go from
equation to equation. This permits multiplying both sides of the equation by
a non-zero number.

In simplifving expressions the value of the expression must remain
unchanged. This does not permit multiplying by any number other than 1.
11 ox - |
o 3x
¢.  Yes. Since the domain is {x:x # 0}, 3x is not 0 and multiplying

b.

10. a. ‘.

both sides of the equation by 3. will give an equivalent equation
(same truth set).

d. No. Since 3x might not be 1, multiplying the expression by 3.x
would, for most values of x, change the value of the expression.
We want the value of the expression to remain unchanged.

e. Inanequalion we are interested in the truth set. It will remain
unchanged if we multiply both sides by a non-zero real number.
In an expression we are interested in finding another expression
for the same number for every value of v in the domain. This
does not permit multiplying the expression by any number other

than 1.
-2x - 6
1. a. {—3} b, m
-5x” + 151 - 60 ¢
ta. a. W2y - 5) e
-+ 5
(3. a. {5] b 3(a - 3)a + 2)

14. -3 and 2 satisfy (a).
-3 and 2 and 1 satisfy (b).
The equations are not cquivalent because they do not have the same
truth set. The number 1 is not in the domain of \a), but it is a solution
of (b).

" o1
15. The positive number is v

1 _ )
,\'+_\'+2_1 (x> 0)

The truth set of this is {V2}
1. V2

The positive number T is R

16, 2. T2

= - >
. X+ 2 3 (x> 0)
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16.

17.

17.

19.

20.

Cont.
The truth set is {6}.
The smaller lorry can carry 6 tons.

X+3 _x+6 i
2x+4  3x+ 6 (x> -2)

The truth set is {3}.

AC =6,AB =9, DF =10, DE = 15.

If the building is v ft. high, the top of the flagpole is (x + 8) ft. above
the ground. By similar triangles

X _40
X+ 8 50

The truth set is {32}.
The building is 32 ft. high.

(x>0

The first boy does % of the job in 1 hour, % of the job in 6 hours.

The second boy does of the job in 1 hour of the job in 6

X+ 4 'y + 4
hours.

6 6 _ o~

,\‘+.v+4_1 (x> 0)

The truth set is {4 + 2V/10). (Notice that 4 - 2V10 is not in the
domain.)

4 +2V10 =4 + 2(3-16) = 10- 32
The first boy would need about 10 hours and 20 minutes to do it zione.

Challenge Pyoblen

This problem can be set up in a variety of ways. Encourage the more
able pupils to try to do it in more than one way.

If the boy can pick p pounds per hour, the man can pick 2 pounds per

hour. If the boy rests for x minutes, he works for (60 - x) minutes or

606-0 X hours.

2p = ;131 (2p + &6'0—"4 b)

The boy rests for 20 minutes.
(There are two unknown quantities involved, but one of the variables
drops out leaving an equation with only one variable.)
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2-6 GRAPHS OF RATIONAL FUNCTIONS.

The development at the beginning of this section (pages 65-67) should

be done in class with much discussion and participation by the pupils. Do it

for another simple expression such as% or 3. Or

1 1
x-1°

Have them help

to compute the table of values, not just read it from the book.

For working with graphs the pupils should be trained right from the

start to do the following:

1.

In making tables of values, arrange the numbers selected in an orderly
way.

Use judgment in how far the table of values is carried. Stop if the
graph seems to be going way off the paper but continue far enough to
show the main characteristics. Take points closer together at turning

points or near peculiar points of interest.

Use good judgment about selecting the unit on the two axes. The re-
sulting graph should be as large as possible consistent with keeping
the interesting part on the paper.

Occasionally it is desirable to use a larger unit on the x-axis than on
the y-axis, for instance, in order to show clearly the parts of interest.
Since this distorts the shape of the graph, it is better not to do so un-
iess it is really needed.

Use judgment in placing the axes on the page so that there is enough
room alove and below, to the right and to the left, for the particular
graph you are drawing. This means not drawing the axes until after at
least some of the information about the graph has been obtained.

Show the units clearly on the axes by writing numerals on the axes at
least part way out.

$¢,,9)

Write the labels “x”" and ““y”’ (or whatever letters are being used for
the variables) on the pousitive ends of their respective axes.

Preferably use pencil instead of ink so that errors in plotting points

and drawing the graph may be more easily corrected.
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Answers lo

PROBLEMS 2-6A

Student Text Page 68

1\ (1 2
Lo (43), (0,-3), 0, (1, -3), (4 -2), (1, -0, (V5, 5+ 2)
1\ /1 4\ /3
2. (0,-3), 039, (25), (3.-5), 3, 0)
3. Lobx L5 -al-3]-2]-1] o] 1]2]3]4a]s5]6
Sy NN VS VS RS T T Y RN
4 717675 3172 2|33
. 1] 43]ol sl
. X 12 14 24 2.2
YoV
y -2 | -4 14 2
! ‘ \I’ i
; 1 ! ‘
. N
_ o
!
|
- P
IV N
i i
Lo
.
- R
] Pl
R
— S I S i
R
4. { |lx ] 22 )50/ 88| 102 | 1002 | 10,002 | 1,000,002
y ==
x-2 Ll T | 1 1
Y || 10 | 48 | 86 | T00 | T000 | 10,000 | T,000,000
L llv | -12 | -50 | -88 | -98 | -998 | -9998 I-999,998
Y=Y
: S T T ! 1
Y\ 714 | 752 | "90 | “T00 | 1000 | “10,000 | ~T,000,000




Points of the graph very far to the right will be above and very near

the x-axis.
Points of the graph very far to the left will be below and very near the

X -axis.

[ X 1-5 19 1-99 1-999 1:99990
Y=3¥ ‘
Ry -2 -10 -100 -1000 -100,000
L x 25 2.1 2:01 2001 2-00001
)

Y 2 10 100 1000 100,000

For x very near to 2 on the left, points of the graph will be ““far down’’,
way off the paper in the negative y direction.
Ior x very near to 2 on the right, points cf the graph will be “‘far up”’

way off the paper in the positive v direction.
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20 1 s a0

15| 20 x

The idea of symmetry was studied earlier in Secondary Two. Since
the value of x*, X", and any even power of x is the same for x = ¢ that it is
for x = -a, we see that the graph of an expression involving only even powers
of x has its points in pairs symmetrically placed with respect to the y-axis.
For every point of the graph to the right of the y-axis there is a correspond-
ing point of the graph the same distance away on the left.

The value of v, x*, and any odd power of x when x = « is the opposite
of its value when v = -¢. Thus 2° = 8 and (-2)% = -8. If ¢/l the terms of a
polynomial P(x) are of odd power, then P(«¢) = -P(-a), that is, using the
opposite value of the variable gives the opposite value of the polynomial. In
a rational function we are concerned with the quotient of two polynomials. If
the value of one of these polynomials changes to its opposite a~... the other
stays the same, the value of the quotient changes to its oppo .«te. This ex-
plains why the two cases stated in the text will give pairs »f points on the
graph of the form («,b) and (-«, -b). Observation of such points on the graph
quickly shows that they are symmetrical with respect to the origin.

Remember that a constant term is of degree zero and is therefore an
even power of v, not an odd power.
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Answers to

PROBLEMS 2-6B Student Text Page 70

1. Symmetrical with respect to the y-axis: b, c, f.
Symmetrical with respect to the origin: a, d.

2. a. A function defined by y = 0 is symmetrical with respect to the x-
axis. All its points are on the x-axis and each one is symmetrical
to itsell with respect to the x-axis. Points such as (5,3) and
(5, -3), however, cannot both be on the graph of a function (for any
value ol v there must be only one value of y). There are no other
functions with symmetry with respect to the x-axis.

b. Yes.

3. Challenge Pyoblemn
a. Symmetry with respect to the y-axis.
b. Symmetry with respect to the origin.
c. If all terms are of even degree, the polynomial defines an even
function.
If all terms are of odd degree, the polynomial defines an odd
function.
Even. Symmetry with respect to the y-axis.
Odd. Symmetry with respect to the origin.
Odd. Symmetry with respect to the origin.

(TQv-ﬁfDQ_

Even. Symmetry with respect to the y-axis.

Answers lo
PROBLEMS 2-6C Student Text Page 72
1. (8,0), (0, -4) 5. (9,0, (-2, 0), (0,1)
2. (0,0) 6. (0, 0), (-4, 0)
5 7. (0,4)

3 -5, 0}, 10, = ’
4. (5,0 9. (4,0), (-4, 0), (0,1)

. 37 b b ] b 1
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10.

The solution set of 0 = —5— and of 0 = 2-+38 jg { } because
X+ 2 2x -1 '

there is no real number for which 8 = 0 or x* + 8 = 0.

Hence there is no x-intercept.
6x -8 . . . .
s xZ - 3x 1S undefined because the denominator is 0.

Hence there is no y-intercept.

When x = 0

2-T ASYMPTOTES.

The word ‘‘asymptote’” comes from Greek words meaning ‘‘does not

touch’. Actually it is possible for a graph of a rational function to cross a

horizontal asymptote at some _ /| y l,,,,’l, 0
other part of the graph, as is . 20 e
shown here. but where the / |
graph is ‘‘approaching’’ its // /}
asymptote for verv large val- -1 "
ues of |x| it will never quite
reach it. ;

Try to stimulate an S R ‘ //
active class discussion in RES 710 o
introducing this idea. Use . | /
an example similar to that on ' R

page 72. In that example EEEEE / o
the peculiarity at v = 9 is that '
the graph is discontinuous
because the denominator of

7
r¥-9

becomes zero. The

|

—_t— L L e

10
| k_\j]\

-20

graph could not touch the line v = 9 because, as we have said, there is no

point of the graph when x = 9,

To show what happens for values of v a /ittle less than 9, take numbers

such as 8-8, 8-9, 8:999 and have the pupils compute the corresponding values
of y. They have just been doing this sort of thing and should see rather

quickly that y will then be negative and 'yl very large, which we can de-
scribe informally as ‘“far down’’. A similar treatment gives ‘“far up’’ for

values of x a [illle grealeyr than 9.
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As you observe, we draw asymptotes with dashed lines to indicate that
they are not part of the graph.

Answers lo

PROBLEMS 2-74A Student Text Page 73

1. a. x=17

v-?_’?’ becomes very large.

&

(¢]

Negative, negative.

e

Positive, positive.

(%)
|

T
I
P-S

x
+
(9,
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Try to stimulate a good class discussion in introducing horizontal
asymptotes. We examine expressions which approach zero as |x| becomes

1 8—,5, 127 all approach

very large. We usc the idea that expressions such as Ty

zero as | x| increases to large values. Have the pupils demonstrate this fact
with specific values of x such as 100,000 and -1,000,000,000. Every expres-

sion —; (where a # 0 and » is a positive integer) has this property of ap-

xll
proaching zero as |x| becomes large.
1

-3
When we multiply byil— in the example on page 76 our purpose is to

xS
put all but one of the terms into the form ;a; As you see, one term in the

denominator does not approach zero and all the other terms in the numer-
ator and denominator do approach zero as | x| becomes large. As long as
the degree of the denominator is greater than the degree of the numerator,
this result can always be obtained.
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Answers to

PROBLEMS 2-7B Student Text Page 771

10

-

1. a. ;_6_8_ b. y approaches zero.
TxtaT

c. There is a horizontal asymptote at y = 0 because y approaches
zero as |x| becomes large.
Positive, negative.

e. x=-4, x=-2

f. Left of x = -4; far down.
Right of ¥ = -4; far up.
Left of x = -2; far up.
Right of x = -2; far down.

g. (0,0
hu I Yy J
L _ jo . A S N AR G S
| N
_ ' -30 i T — 4
| 1 ;
A -
! b ’ ‘ i i e L
l 2, —— ; l ;. i S USRS U S N
_ ,,j,, . l_ ,,,,, 20.% . ‘ J - -
! - 3 : ‘ |
_1 e . ‘ J T S -
‘ N ; L
" ‘ ‘f - -
o
0. - |
. ] |
‘ o [ |
T ' y = 10x ; -
B x2+ 6x + 8 - B St
S T T U S S N SO S
.20 0 —— x
P 10 ! 20
- - | 1 | - b e
e
,]o . .J| - - S [ SR S
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1 L L 1 1
x3 x2 x2 X X
x3 %2 x2 X x*

N(x
Once the pupils have seen why —D_% has a horizontal asymptote at y = 0

when the degree of N(x) is less than the degree ¢ D(x), let them use this
fact to recognize immediately when such an asymptote occurs.

The other cases where the degree of N(x) is grealer than or equal to
the degree of D(x) can be studied by using long division and observing what
happens in the resulting form for large | x|. Again encourage active partici-
pation by the pupils in the introductory discussion of these ideas. Help them
to see how the given expression is rewritten as a sum of two parts. The first
part is a simple polynomial (constant or linear in the examples we consider)
whose behaviour we can quickly recognize. The second part is a fraction
whose value approaches zero as |x| becomes large. Therefore far out to the
right and left the graph is almost like the graph of the polynomial.

Use your judgment about how far you take your class in this section.

If the pupils are finding this difficult or if you are pressed for time, the dis-
cussion 2nd problems on oblique asymptotes (Problems 3 and 4 in 2-7C,
Example 3 before 2-73, and Problem 7 in 2-7D) can be omitted entirely.

On the other hand, if you have some pupils who are able and eager,
they may enjoy and profit from working on some more complicated graphs.
Here are two examples.

) PR PY 5 x*-5x*+8
x?-3x -4 ' xX-5

in 1., the graph crosses its own oblique asymptote.

In 2. the result of the long division, x* + ;8_-—5, shows that for large | x| the

graph approaches the parabola y = x*, so we have a curve instead of a straight
line acting as an asymptote.
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Some pupils may have forgotten how to do long division of polynomials.
Here are a few problems for them to practice on if you need them.

I 8x - 2 8 9x% + 4x - 2
: X+ 6 ) 1-3x
9 154 + 7 9 x3 - 5x% + 8x - 2
: 5x - 1 ) X -3
x? - 8x + 2 3xt + &% - Tx + 19
3. X+ T 10. X+ 2
Bx° - x -4 6x3 + 5x% - 9x - 11
4. Ty TEe 11. 9% - 1
5 x4+ x -9 12 5x% + 8x - |
) X2 -8x+ 1 X%+ 5x+ 2
5 10x° + 3x - 4 13 10x° - x* + 13x - 5
: 2x2 + 3 ) 2x2 - x + 3
3x -1 12x° - 8x% - 28x + 3
7. o x 14. 42 -9

Answers to

PROBLEMS 2-7C Student Text Page 79

25
2x -6

¢. Graph above on far right, below on far left.

1. a. 4+ b, y=4

x =3 Left of x = 3, far down; right of x = 3, far up.

o (). o)

f.  No symmetry with respect to the y-axis or the origin.
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{20

-10

Observe the symmetry with respect to the y -axis.

-8

-9

-10
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d. Challenge Problem

SRR IR IR |
‘ | _2x2-]8x+36 1

‘ x2_-9g+14

&

|

=
[=]

See remarks above about possibility of omitting oblique asymptotes.

[
|
|

i

a. Yes, because the degree of the numerator is less than the degree

of the denominator.

b. v is close to 2.} no; no.
c. The oblique asymptote v = 2x is a straight line through the origin
with slope 2.
d. Graph above y = 2x on far right; below on far left.
€. Yes,atx=-4and.x =4,
Left of v = -4, far down.
Right of x = -4, far up.
Left of x = 4, far down.
Right of x = 4, far up.
f. (0,0)
g. Symmetry with respect to the origin,
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Student Text Page 89
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A rational function will have at most one horizontal asymptote but it
may have many vertical asymptotes.

2-8 EQUATIONS AND INEQUALITIES BY GRAPHS.

Try to help the pupils to see the difference between the equation
2x° - 3x* - 12x+ 10 =0
which is true for some values of v and false for others, and the equation
vo=2x° - 3x% - 1210+ 10
which defines a function by pairing values of y with values of x. Of the
ordered pairs in this function we are interested in those of the form («,0)
because the number « in such a pair makes the first equation true. Those
pairs («,0), however, all lie on the x-axis, so we can use the graph of the
function to help find, at least approximately, the numbers « which make the
first equation true.
If the first equation involves rational expressions, not just polynomials,
we could still find approximate solutions from the graph of the corresponding

12



rationa function. It is usually easier, though, to work with an equivalent
polynomial equation as is shown in the example. We do have t9 be careful to
watch the domain which may not be evident in the polynomial by itself.

Answers to

¢
PROBLEMS 2-84 LStudent Text Page 91

iscontinuous

The truth set is approximately {-6-1}
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L Discontinuou

|
1204 -

1608 - | -

-.2004 - |-

The truth set is approximately {-1-7, 0:2, 105}

Sometimes a complicated expression can be broken into two or more
simpler expressions which are easier to graph and we can consider whether
there is a simple relation between the simpler graphs which will serve our

purpose. In the case of C f 1= % we want a value of x for which the two

. X = 2 .
simple graphs of y = — and y = oy have the same y-value. This means

that we are interested in the point or points of intersection of the two graphs.
This device is a convenient one to know about. There are problems
which would be very difficult to solve without it.
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Answers to
PROBLEMS 2-8B Student Text Page 91

Truth set: {1 +2m , 1 '2‘/-1_‘3-} or approximately {-1-3, 2-3}
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Truth set approximately {-1-8}
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Truth set approximately {3-

To solve inequalities of the form f(x) > 0, we can use the function de-
fined by y = f{x). In this function we are interested in ordered pairs (x,v)
for which the second number, y, is greater than zero. This just means that
we are interested in points of the graph which are above the y-axis. Similar-
ly for f(x) < 0 we are interested in points below the x-axis.

Lead the class carefully through the Class Activity and at the end ac-
cumulate your results in a table similar to that on page 94,

Answers to
CLASS ACTIVITY Student Text Page 93

1. The graph crosses the x-axis.
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7, 8, 9.

There is a vertical asymptote.

No.

. Except at a vertical asymptote the graph of a rational function is
continuous and y cannot change from positive to negative or from
negative to positive without going through the value zero. Therefore a
change of sign of y can occur only at a vertical asymptote or an x-
intercept, in this case at x = 0 and x = 3. It follows that within each of
the intervals x < 0, 0 <x < 3, and x > 3, the value of y does not change
sign, that is, the graph stays on one side of the x-axis.

It is sufficient to test one value of y in each interval. If y is posi-
tive for that value of x, it is positive for every value of x in that inter-
val. In this case, for example, when x = -1 (which is in the interval

x < 0), then y is 4, a positive number. Hence y is positive throughout
the interval v < 0.

Another way to determine the positiveness and negativeness of y in the

intervals is merely to observe the positiveness and negativeness of the fac-

tors of the numerator and denominator of the expression. A table such as

the following helps.

X x<90 0 0<x<3 3 x>3
x -3 neg. neg. neg. 0 pos.
X neg. 0 pos. pos. pos.
y = r; 3 pos. undefined neg. 0 pos.
Answers lo
PROBLEMS 2-SC Student Text Page 95
{x:-4 <x <0} 6. {x:x=-3andx # -4}
{x:-3<x<1lorx>3} . {}
{x:1<x<50rx>T} 8. {x:ix#17,x#0}
{x:-3<x <0} 9. {x:-5<x=-20r1=x<86}

{x:x <8}
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Chapter 3

EXPONENTIAL AND LOGARITHMIC
FUNCTIONS

3-1 INTRODUCTION.

In this section we help the pupils recall the meaning and some of the
properties of exponents. The CLASS ACTIVITY (page 96) gives practice
material to stimulate discussion of the basic laws of exponents which are
then stated. As you go through these, try to help the pupils see that the laws
are plausible. Illustrate with the cases having positive integral exponents
(Problems 1, 4, 8, 10 and others like them) with emphasis on how the expo-
nents are counting the factors. Then remind them how the other kinds of
exponents were defined in such a way that the laws continue to be true.

Answers to

CLASS ACTIVITY Student Text Page 96

(We refer to the laws by number here, but in class continue to speak
of them in terms of variables, as, for example, ‘‘the law that
a.\‘ b.\' - (ab).\‘.)})

1. 2" Law 1. 8. 20° Law 4. 15. 8 Law 3.
2. 2° Law 1. 9. 6° Law 4. 16. 3% Law 3.
3. 297 paw 1. 10. 7° Law 5. 17. 372 Law 5.
4, 3° Law 2. 11, 8% Law 5. 18. 2° Law 1.
5. 5 Law 2. 12. 4° Law 3. 19. 3* Law 2.
6. 6 Law 3. 13. 57° Law 1. 20. 1%% Law 4.
7. 5% Law 3. 14. 775 Law 2.
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Many of these can, of course, be further simplified, but the point to be
made js the law used to change to the form shown above.

Answers to

MORE CLASS ACTIVITY Student Text Page 97

1. Examples for the other four laws might be:
3 _3x3Xx3x3x3_3x3 _ Q3 _ o5-2
7T = T3 —3X3><3><3><3—3 =3

(3 = (5 % 3)(3 x 3)(3 x 3)(3 x 3)(3 x 3) = 310 = 32x5
3% 2" =(3x3x3x3)(2x2x2x2)
(3 x 2)(3x2)(3x2)(3x2) =(3x2)
P _3X3K3IKIXI_(3\(3\(3\(3)\/3\ _ (3V
P TaXKIX2X2XZ (2)(2)(2)(2)(2) B (2)
Emphasize the way the exponents are counting the factors and discuss

the properties of multiplic=iion and of fractions which are used along
the way. (For example, the associative and commutative properties of

axb _ b [
multiplication and cxd-¢C L x 5 an d ==1.)
2 a” = 1. The definition was chosen so that ¢ as =a°~° will be true.
5
a ’= ;—(1; The definition was chosen so that %8— =" "% will be true.

t

1
' =%ea. The delinition was chosen so that (a ) = ' will be true.

I
)

3 ¥ ! >3 3
“Vas = (&) . The delinition was chosen so that (a?) = (a =qa’

a =
will be true.
a®® = a%.
" N (a% « l)% >3 = (a% X b% )(a xp® )(a X b° ) Definition of exponent 3.

1 L v/ 12 1 1
= (a“ X xa“)(lﬂ XxDIxb® ) Associative and com-
mutative properties of

multiplication.

=qa X Definition of exponent %
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1 ERNK! 1
b. By the definition of cube root, since(a3 X bs) =axbthena® xb®

must be ¥a xXp .

4, We showed that V3 is squeezed between the increasing sequence

1 <17<1-73<1-732 < 1-7321< ...
and the decreasing sequence

2>18>1-714> 1733 > 17322 > . ..
We showed that as x increases, a* increases. We saw that powers
with rational exponents are defined and that the sequence

21 21T 2T IR < 9T g increasing and the
sequence

2% > 2170 > gl > pltud » gl7822 | is decreasing and their
values are squeezing down on some number. Since the values of x are
squeezing down on V3, we give the name 2V3 to the number which the
corresponding values of 2% are squeezing down on.

3-2 THE EXPONENTIAL FUNCTION DEFINED BY 2".

We use what we have learnt about exponents to help define an exponen-
tial function and we explore its properties.

Answers lo
CLASS ACTIVITY Student Text Page 98

1. a. No b. No <c¢. Yes

2. a. No b. No ¢ No d. No &e. No
3. Yes

4, Range = {y: y > 0}

5. a. If x<o0, {y:0<y<1}.
If x>0, {y:y>1}
I x>1, {y:y>2}.
If \c>2 {y y > 4}.

b, If flx)<1, {x: x<0}.
If f(x)>1, {x:x>0}.
If f(x)>2, {x:x>1}.
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Pcint out what we are doing. We have observed informally the domain
and range of the function and the fact that it is continuous. We next explore
how the graph of 2% behaves for extreme values of x.

Answers to
Student Text Page 100

CLASS ACTIVITY

1. The graph approaches the x-axis as an asymptote.
2. y = 0.

3. The graph rises to the right without limit.

Finally we prove that the function defined by 2% is increasing.

Answers to
CLASS ACTIVITY Student Text Page 100

1. Yes in all cases.

2. a. Addition property of order. (Added -2v3 to both sides.)
b. If x> 0, then 2% > 1. (See Problem 5a in CLASS ACTIVITY, page
98)
=2
2/)

d. Multiplication property of order.

. -
c. A law of exponents. 27"

3. See Problem 2 above.
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3-3 THE EXPONENTIAL FUNCTION DEFINED BY 2°°,

Answers to

CLASS ACTIVITY Student Text Page 101
‘i - 1 _1

1. By definition, 27! = 5T=7%

2. 27"V =2%=g

3. When v is positive, (-x)is negative, so 27" has a negative exponent
and is therefore less than 1, as we saw in Section 3-2.

4, When v is negative, (-x) is positive, so 2™ has a positive exponent
and is therefore greater than 1.

5. Decreases.
6. 27" approaches zero.

7. 27" increases without limit.

9. 4, -4, -1, 1; -2, 2; 2, -2; 0, O.

The fact that the graphs of y = 2¥ and y = 27¥ are symmetrical to each
other with respect to the y-axis is observed. For example, the point (5, 32)
is on the graph of y¥ and (-5, 32) is on the graph of y~V,

Encourage the pupils to draw the graph of y=2"" making use of the
various properties which have been developed in this section, before he looks
at the graph on page 104.

3-4 THE EXPONENTIAL FUNCTION DEFINED BY a* FOR ANY
POSITIVE NUMBER a.

The discussion in the preceding sections has been limited to exponential
functions with the base 2. Exponential functions with other bases can be de-
veloped from our base two functions and this is what we shall do now.
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Answers to
Student Text Fage 102

CLASS ACTIVITY
. 4% =(2%) = 2%
2.
1 1 | K 3
v | -3 -2-1]-3(-3]-2]0}4% 5% |t{z]2]3
ox || -6 | -4 | -2 -3 |-1]-3|01})3 |13 [215'4]6
22* 110-02|0-06|0-25|0-35|0-5{0-7|1-0}1-4|2-0|2-8|4| 8| 16|64
<< |l0-02|0-06|0-25(0-35/0-5/0-7{1-0{1-4|2.:0{2-8|4|8| 16|64
Y
- 1 l 112 i ;
| % Bk
3. Rt -
4, | L9 :
8. * : :
) i

5. Alike: The graphs are both increasing, both go through the point (0,1),
both are continuous, both have for domain the set of all real numbers
and for range the set of positive real numbers, both have the v-axis as
an asymptote to the left and increase without limit to the right.
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10.

Answers to

Different: The graph of y = 4* is above the graph of y = 2% to the right
and below to the left. On the right the graph of y = 4* rises mecre
rapidly than the graph of y = 2%,

If 2'"°~ 3, then (2'°)" = 3%, A law of exponents tells us that (2'¢)* =
2''%". Therefore 3" ~ 2!"°* and we can find information about 3 from
what we know about the base-two exponential function.

nales

-1 |-

[T
o]
83—
—
najes
[
Nen

x l|-2 |-2 |-

1-6x || -4-0(-3.2|-2-4|-1-6|-0-8| 0 0-811-6}2-4(3-2(4-0

2% 110-06|0-11[0-19|0-33{0-57|1-00|1-74|3-0{5-3]9.2] 16

3% 110-06]0-11{0-19{0-33|0-57|1-00(1.74

See graph above.

See Problem 5. The likenesses are the same. To the right and to the
left of x = 0 the graph of y = 3% is befween the graphs of y = 2% and
y =47, ) '

Yes.

PROBLEMS 3-4A Student Text que 105
1. If 2% = 0.75, then x = -0-4 If 2% =15, then x = 0:6
If 3¥ = 0:75, then x = -0-3 If 3 = 1.5, then x = 0-4
If 4% = 0-75, then x = -0-2 If 4% = 1.5, then x = 0.3
If 2¥ = 2.5, then x = 1.3
If 3% = 2.5, then x = 08
If 4% = 2.5, then x = 0.7
2. If a* = b*, then g—:— =1 and (-g—)\ = 1. Hence the truth set is {0}.
3. If y = 1%, then vy = 1 for all values of x and the graph is the straight

line y = 1. The function is a constant function and is neither increasing
nor decreasing.
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4.

Answers to

CHALLENGE PROBLEM
Ifa>b>1and x> 0, then

%> 1 Multiplication property of order.
(%)x > 1 Property 6 on page 103.

ax

¥ > 1 A property of exponents.

a* > ph* Muitiplication property of order.

Similarly, when x < 0, we obtain by Property 6 that a* < b*.

CLASS ACTIVITY Student Text Page 105

~v o 1 10 (1Y

. 27 =gr=ges (2)

-y _ oLy _ (g-13r _ (1}
or 27 = 20 = (27" = (3)
1V _[/1 2].\' (1 2N

2. (3) ‘[(2) = (3)

(4 - () - -

3. Corresponding to any real number x, we can find the value of 272*
from the graph of y = 27¥. (For example if x = 0:8, we could iind the
value of 272'%® by looking for 27*® on the graph of y = 27%.) Since
9-2v = (L " we then have a value of (1) corresponding to the given

4 4
number x.
4'

x| -3] -2|-1f-2 -t {2 o] il 1| 2] 3
2¢ || -6 | -4|-2|-3 |-1|-5 | o | i | 1| % | 2 4 | 6
vl 6l a2 2| 1] Lo |-t |-2 -2 | -4]-6
27 64|16 | 4|2:8|2-0|14|1:0(07]0:5]0:35] 0-25 | 0-06 | 0-02
(}) 64 |16 | 4|28 |20|14|1-0]07|05|035] 025|006 | 002
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1. For any real number x we can find -0°42x and from that can find
272" from the graph of y = 2-~,

8.  The graph of y = (%>\ will be below the graphs of y = <?12>\ and y = (

e

on the left and above them on the right.
The graph of y = (-117)) will be above all three previous graphs on the
left and below them on the right.

The graph of y = (0-6)* will be between the graphs of y = (-51,:) " and

- )

Answers to

PROBLEMS 3-4B Student Text Page 107

1l

0-66 = 0-18

u

0-44 =~ 0-03
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2. 2!t = 2.6 2-%6 = 0.66 272% = 0.18
4"t = 7.0 4-9% ~ 0.44 472% ~ 0.03

3. CHALI.ENGE PROBLEM
H0<a<b<1and

a, x <0, then

g- <1 Multiplication property of order.
(%1)\ >1 Property 6 on page 106,
g: > 1 A property of exponents.
a* > b* Multiplication property of order.

b. Similarly, when x > 0, we obtain by Property 6 that a* < b*,

4, CHALLENGE PROBLEM
An exponential function is not a polynomial function.
If f(x)=a*, then f(x)x f(x)=f(2x) since a¥ x a* =a*" by a law of
exponents (Law 1, page 97).
If, for example, f(x) were the polynomial 5x% + 3x® + ..., then

f(x) x f(x)=25:° +304° +... (of degree 6), whereas
fl2x) = 5(2x)°% +3(2v)° + ...
= 4083 + 120 + ... (of degree 3).

Therefore f(x) x f(x) could not be equal to f(2x) (their degrees are
diffe.ent), so our assumption that f(x) is a polynomial is false.

3-5 APPLICATIONS OF EXPONENTIAL FUNCTIONS.

We discuss briefly two of the many real life situations in which an ex-
ponential function is a mathematical model which gives man the ability to
analyse and predict in such situations.

The bacteria colony is an example of population growth in general;

compound interest is heavily used in business.
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Answers I

PROBLEWMS 3-5 Student Text Page 110

1. If there are A, shillings in the investment at the end of ¢ half-yearly

; - LY
periods, then A, = 100 (1 + 100) .

At the end of 2 years ¢ =4, A4 = 105(1-01)* = 10406
At the end of 2;- years £ = 5. A; = 100(1-01)° = 105-10

2. At the end of 1 year the population will be about 600 <1 + ig_0>
At the end of 2 years it will be about

2
_9_ 0 V(5 )._ 2
600(1 + 100) + 600 (1 + 100) (100) = 600(1 + 100) .
If the population at the end of ¢ years is N,, then

5 !
N, = 600(1 +m>

At the end of 5 years,

: A L .276) = 765-
Ns - 600 <1 + 100) 600(1-276) = 7656

The population is about 760 or 770 at the end of 5 years. This popula-
tion increase behaves as compound interest does, except that in com-
pound interest the total amount changes only at regular intervals, once
a year or hall year or quarter year, when the interest is added to the
investment. In the population, changes in the total occur irregularly
and more frequently as p2ople are born or die or move into or out of
the village.

3-6 LOGARITHMIC FUNCTIONS.

In Secondary Thvee we learned about logarithms. In Chapter 1 of
Secondary Four we learned about inverse functions. We now combine these
ideas to bring out the fact that exponential functions and logarithmic functions
are inverses of each other. We emphasize the idea that the ordered pairs
defined by y = @* and those defined by y = log, x are the same except that the
order has been reversed. The domain and range have changed places. This
means that we can draw a great deal of information about the logarithmic
functions from what we have already learned about the exponential functions.
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Answers to

CLASS ACTIVITY Student Text Page 110
1 a. 5 c. 3 e. 4
- ; .2
b. 2 d. 3 f. 3
2
2. a. 2’ =64, log,64=6 d. 77=%49 =17"
-1 - 2
b. 37 = 27 loga-‘.g‘,f =-3 log, Va9 = 3
- - 1y _ 1 1
cC. IOV - 10, ].OgmlO = 1 e, (-‘—?‘-)) = R’ log%Té- = 4
Answers to
CLASS ACTIVITY Student Text Page 111

l ‘ Lo
9 -8 -7 -6 -5 -4 -3 -2 1] 2 3 4 5 6 7 8 9 10 1 12 13 14
} H ' t ! .
o o :
R T RN . BRI -
| : P ‘ 3 |
1 ! R ‘ l |
| ! i ! ‘ : : : : :
e I ; P !
i L 1 S R
% P S L
! L : P l Do
[N SN SRR PO i ; . . H 1 .y . -
e L
_____ — - t ; i ! O S -
j oo | ’ ’ i | 'I j ‘
- | . A -
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{x:x>1}
. {x: 0<x<1}

No. The function is continuous.

B DD e

log, @ > log, b whenever a > 0. The function is increasing,.
5. The y-axis is an asymptote of the graph of y = log, x.

6. The graph of y = log, ¥ can be obtained by reflecting the graph of y = 3*
in the line y = x. The functions defined by log, x and log, x and log, x
have many common properties.

1. See the summary on page 112 of the student text.

Answers lo

PROBLEMS 3-6A Student Text Page 112

1. a. 2°=32 2'=16,5>4.
4
b, 3'=813%2=(/3), 4a>4

2
c. 3=k 3=l .3<2
d. 57%=5c,5%=125, -2<3
e. 9%=%3T, 9‘%=;\%§—,%<-l
f. 107 =555, 10° = 1000, -3 < 3

2. CHALLENGE PROBLEM
Let log, x = pand log, vy = q.

Then a” = x and «? =y,
Since log, v > log, vy, p > q.
Since a* is increasing when a > 1, a? > a4,

Therefore x > y as was to be proved.
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Answers lo
CLASS ACTIVITY

Student Text Page 113

1. y=2"%=(271)" = (%) . The inverse function therefore is defined by

y = log, x.
2

2.
X -6]-5 6|y = log%x
= 9V 1]1 L I T S .
Yy =2 64132 2|3 6 | 32 | 64 Y
3.
!
R
!
|
: i
T | REE NN
! i | . ; i H
P : : :
I ‘ e
i ! ! | v
P ? X
n -10 .9 -8 .7 -6 12 13 14
- o
N ‘ !
. } ; : | , ,
; ‘
1 ; i . .
| N
| l 4ol : : I
| L 5 ‘ I
| ' | o
| | U

4, a. Decreasing.
b, {v:0<x<1}
c. {x:x>1}

5. a. 4,6, -5.

6. a. 24,2 2.




7. The graphs of the functions defined by log , ¥ and log, x are mirror
2

images of each other in the x-axis.

Answers lo

PROBLEMS 3-6B Student Text Page 114

AV o1 (1Y _ 1
d. <1o) = 1000 (10) “1o000° S <%
2. CHALLENGE PROBLEM
Let log; x = pand log1y = gq.
i 7]
Then <%> = x and <El>‘1 =y
- ro
Since x > vy, <%> > (%)q .
Since a > 1, % < 1 and (%) is decreasii:g, that is, a decrease in (%)

corresponds to an increase in x.
Therefore p < g, that is, log, v <log: y, as was to be proved.
a a

3-7 FURTHER PROPERTIES OF LOGARITHMIC FUNCTIONS.

Very briefly we remind the pupils of the properties of logarithmic
functions which make them useful in computational work, and we point out a
few further interesting properties having to do with changes of base in
logarithmic functions. This is only a hint of further study of logarithmic
functions which can be done in a more advanced course. The hint is in-
tended here to give the pupils a little appreciation of the nature of mathe-
matics as a rich expanding body of ideas.

If you feel that it is important at this time to spend time on revision of
computation by means of logarithms, you can give the class some work sim-
ilar to that in Chapter 11, pages 198 to 220, in Secondary Thvee. Otherwise
this section is intended just for class discussion.
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Chapter 4
SEQUENCES AND SERIES

4-1 INTRODUCTION.

This chapter is essentially another chapter on functions. The distinc-
tive feature of the functions studied in this chapter is that the domain is the
set of natural munbevs, that is, the set of positive integers.

While it is normally assumed that the domain is the set of all natural
numbers, in some problems it is clear that the domain for all practical
purposes is a finite subset of this set; for example, the sequence for which
the general term is the number of ships entering {ne harbour at Mombasa
on the nth day counting from January 1, 1966. No mention is made of this
difficulty in the pupil’s text. However if some pupil should raise the ques-
tion, we might have distinguished between finite sequences with domain
{1, 2, 3, ..., n} in which there is a last term, and infinite sequences with
domain {1, 2, 3, ..., », ...} in which there is no last term. This is a
minor point and should not be mentioned unless the question arises in class.

This chapter is concerned with three principal topics:

(1) the general concept of a sequence

(2) the special cases of arithmetic and geometric progressions with

the accompanying formulas for the nth term and the sum of its
first n terms and their applications, and

(3) the notion of the limit of a sequence treated very informally in

Section 4-6, and appearing again in the optional material of Sec-
tion 4-17.

The discussion about counting and trying to find a function which gives
the correct number for the general term offers the teacher an opportunity
to point out the similarity between mathematics and the experimental sciences
in which one gathers information and then tries to formulate a general theory
which will include all the data collected. One can also point out the impor-
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tance of furnishing a convincing argument for the conjectures (guesses) one
proposes. The discussion is intended to serve as an introduction for se-
quences in general, but should be especially helpful in leading to the results
obtained in the section on arithmetic progressions. In particular the story
abcut Gauss is an attempt to show by an example the method for deriving the
formla for the sum of the terms of an arithmetic progression.

Answers to

CLASSROOM ACTIVITY Student Text Pages 117-118

1. (a) 5 (b) 9 (c) 19 (d) 2n-1

2. (a) 6 (b) 16 (c) 24 (d) 2n

3. (a) flirst team (b) second team (c) 11

4, (a) 16 shillings (b) 24 shillings (c) 48 shillings (d) 112 shillings
5. (a) 3rd week (b) 6th week (¢c) 16th week

6. (a) 52 shillings (b) 136 shillings

Challenge Problens
(c) 580 shillings (d) 3172 shillings

All of these questions except 11d) and 2(d) can be answered by simply
counting or adding. However we would hope that some pupils would see pat-
terns emerging and discover for themselves for instance that the nthterm
when counting by 2’s beginning with 1 is 27 - 1 or that in Problem 4 the
worker’s wages are obtained by counting by 2’s beginning with 10 and that
the »nth term is 10 + (#-1)2 or 8 + 2n. These are ol course special cases of
the formula for the nth term of an arithmetic progression developed in Sec-
tion 4-3. If some pupil discovers the formula, fine; if not, simply let the
class count, add, and guess.

In Problem 6, parts (¢) and (d) are too time consuming unless some
ambitious pupil loves to do long sums or unless some one discovers his own
formula for computing the sum. For example, he might, like Gauss, antici-
pate the method used in deriving the formula for the sum of the first » terms

of an arithmetic progression.
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Answers to

Student Text Pages 119-120
PROBLEMS 4-1

a) 10 (b 19 (c) 28 (d) 58 (e) 1+ (n-1)3o0r3n -2
f) 13 and 16. They are the fifth and sixth terms.

(
(
2. (a) 22 (b) 70 (c) 145
(a) 8 (b) 14 (c) 23 (d) 47 (e) 2+(n-1)3 or 3n - 1

4, (a) 15 (b) 40 (c) 155
CHALLENGE PROBLEM
(d) %z [4 +(n-1)3} or%l(Bn + 1)

In Problem 4 probably only parts (a) and (b) should be assigned. If
some pupils are interested and discover the pattern themselves, then en-
courage them to do (c) and (d) and to share their results with the class.

5. (@) 10 (b) 13 (¢) 17 (d) T+(nu-Dor6+n (e) 34 () 170

() 132 CHALLENGE PROBLEM (n) # [14 +(n-1)] or 4 (1 + 13)

Parts (g) and (h) are probably too difficult unless someone thinks of
using Gauss’s method to solve them.

6. (a) 5 (b 1 () 0 (qa -4
7. 4, The sixth term will be 19.

8. We could be counting by 2’s, 3’s, or 6's, but not by 5's. The difference
between 17 and 5 is [2 and sinc: this must be a multiple of the commmon
difference d, we can be counting only by numbers which are divisors
of 12; that is, by I’s, 2’s, 3’s, 4’s, 6’s, or 12’s,

4-2 SEQUENCES.

The formal definition of a sequence should be followed immediately in
class with many examples of sequences. Let pupils select any function
(perhaps ones which they have encountered in previous chapters) and ask
them to calculate in order f(1), £(2), f(3), ... . Write the rule defining the
functicn on the board and list the values of the function in order. Give the
pupils a great deal of practice using the new notation.

96



For example if the function is f = i(x, x2)§~ write

flx) =x°
fi=1=1
f2 =22 =4
f3=3"=9
fi=4% =16
fs =5% =25
f" =712

Notice that we may write the sequence in the form il, 4, 9, 16, 25, ...,
n?, ... (»
Other functions which might be used now with the domain restricted to
the natural numbers, are:
1) linear functions, defined by f(x) = mx + b
2) polynomial functions
3) rational functions
4) the exponential and logarithm functions.
You might also encourage pupils to think of non-mathematical sequences

th person standing in line to enter a movie, or the temperature

such as the n
in the schoolroom at 8 a.m. on the nth day of the year, or the nth name in the
telephone directory, etc.

The point of the discussion up to PROBLEMS 4-2A is to show that all
the problems we considered in Section 4-1 can be solved if we can find a
function whose values are those we used in making the various lists.

The function w requested for the worker’s wages is given by
w(n) =10+ (n-1)2 = 8 + 2n.

There may be more than one way to state a rule defining the same
function; however the function w(n) was devised to show that although the
first few values of a formula may give correct results we need something
more than a guess to be sure that the function we propose really solves the
problem for «ll values of n.

The graphs requested in PROBLEMS 4-2A are to give practice in
drawing graphs and to see how graphs of sequences differ from the graphs
of the corresponding functions with the real numbers as their domain. The
point is that the graph of a sequence is always a subset of the graph of the
corresponding function with domain the set of real numbers.
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Answers to
PROBLEMS 4-24A Student Text Pages 122-123

1. f={nf) : f, =n] 2.

f f)
91— --@— 9
8 o e S 8 -
7 - L ] 7
6 — L4 - 6 —
£ ¢ - - 5p— !
4 . 4 | ; i
3| e - ] B A
i i ! i
21 ¢ A 2 o
i i
; | |
e oy - 1 i
? | I | n f : | | n
0 2 3 4 5 6 7 8 9 0 1 2 3 4

In | g(n)
9 9
] - 8 - e .
7 i s - 71 s
o ‘ e 6
sb-- - e f e 5
: | |
48—~ - ,...i S S l - ,,,M_F I 4 5 .
3 4. R - ] ]
| | g { n
0 1 2 3 4 5 6 7 8 0 ] 5 6 7 8

98



32

N

30

28

26
24

.

22

20

16

L ]

14
12

®

6

8

10

12

14

99

2.
h(n)
sl- 20 B .
7 _
6 N ]
| _
i 1 n
0 1 2 4 5 6 7 8
w(n)
32
30
28
26
24
22 /
20
NETY B
116
14
12
10
8
/
6
ne
2
w
-4 -2 0 6 8 10 12 14



Answers lo

PROBLEMS 4-2B Student Text Page 123

1. ;1, 6, 11, 16, ..., 51 - 4, .. § or f(n, 5n - 4) or the sequence defined
by f, = 5n - 4. We obtained 512 - 4 from 1 + (n - 1)5.
;3, 8, 13,18, ..., 5n -2, .. § or f(n, 5n - 2) or the sequence defined
by f, =5n - 2. We obtained 51 - 2 from 3 + (n - 1)5.

2. S(1)=1
S(2)=1+2=3
S(3)=1+2+3=6
S(4)=1+2+3+4=10
S(5)=1+2+3+4+5=15

3. CHALLENGE PROBLEM

S(n) = 1 + 2 + 3 +...4+4m-1+ =n
Sn)= n +(m-D+n-2)+...+ 2 + 1

2S()=(n+ )+ (m+1)+(n+1) +...+(n+1) +(n+1)

=n(n+1)
S(n) =n(n+1)
2
S(n)
16
At s
b N
n S(n) oL
o} .o
. .;;,E %
1 1 T 1
2 | s T
6 Toe | by
Jdo |
4 10 R
5 15 o1 :
i l | 1 o L
A r
o "2"4 "6 "8 " 10

No, the points do not lie on a straight line.
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Answers to

PROELEMS 4-2C Student Text Pages 124-125

1. Sequence? First 5 terms
(a) yes 5, 8, 11, 14, 17
(b) yes 6, 18, 54, 162, 486
(c) yes 5, 11, 29, 83, 245
(d) no 2f1=18, fi =3 or -3

f1 is not uniquely determined. Defines
a relation but not a function.

(e) yes 1,3,1,3,1

(f) yes 3, 3, 3, 3, 3,

(g) no f1 = 2 or -2, Defines a relation but not
a function.

(h) yes 1, 2, 4, 8, 16

(i) no Cannot find f2 or f, for > 1.

() yes 1,2, 4,17, 11

(k) yes 2,3,5, 17,11

(1) yes 1,2, 4,6, 10

(m) vyes 1, 2,4,7, 12
Although each of these defines a func-

(n) yes tion, we do not have the information

(o) yes which would give us the terms of the
sequences.

CHALLENGE PROBLEM
(p) yes 1,1,2 3,5

2. In this problem there is no one answer. Any rule which gives the first
four values correctly is acceptable. It will be inctructive to find how
many different sequences pupils can define which begin in the same
way. At least one rule defining a function is given below for each part,
but the teacher is urged to examine each proposed answer and accept
any one which gives the correct first four terms. Also it does not
matter how informal the statement of the rule defining the sequence
may be if values for the sequence can be determined.

(a) fa=2n - 1; the sequence of odd natural numbers.

(b) f,=n?; the sequence of squares of the natural numbers.

(¢) fa.=(-1)7-'; alternately 1 and -1; odd terms are 1 and the even
terms are -1,
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(a)

fn=10%4""': first term is 10 and any succeeding term is 4
times the preceding one.

n = ———1-—; fractions with numerator 1 and denominator the
n(n + 1)

product of the number of the term and the next larger natural
number,

_ 1 . . . . . )
In = TXoX.. . X fraction with numerator 1 and denominator

the product of all the natural numbers up through the number of the
term.

o =271 -1; one less than the power of two which is one less than
the number of the term.

"=
Jn= 2(%) 1; first term is 2 and every term after that is é— the
preceding term.

Jn= 3723:1 15 fractions in which we count by 3’s beginning with 3 to

get the numerator, and the denominator is 1 greater than the
numerator.

£, is the nth prime number.

S =f2 =1, f,02 =f,0 +f,; first 2 terms are 1 and add twe con-
secutive terms to get the next one.

n-1 '
Ju=- %—1 ; negative fractions with denominators powers of

3 and numerators 1 more than powers of 4 beginning with the
zeroth power of 4.

Jr=1, fouu =fn+(n+1); first term 1 and after that the sum of
the preceding ' 2rm and the number of the term.

2))1)11: :13 for n=2m - 1, i.e. n is the mth odd number

Sy = ;

2m + . .
pro % for n = 2m, i.e. n is the mth even number

or for odd terms fractions with odd numbers in the numerator

beginning with 5 and denominators natural numbers beginning with
2, for even terms fractions with odd numbers in the numerator
beginning with 3 and natural numbers in the denominator beginning
with 2.

1, 3,5, 17,09, 11, 13
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(b) 1,4, 9,16, 25, 36, 49
(¢) t,-1,1,-1,1,-1,1
(d) 10, 40, 160, 640, 2560, 10240, 40960

() 1 1 1 1 1 1 1
1X222X%X3’3X424X5'HX6?6XT?TXS8

(1) 1 1 1 1 1
P I X221 X2X3P1IX2XI X441 xXx2X3IXx4X5H?

1 1
I X2X3X4XHIXB?1X2X3IX4EXHXEXT

(g 0,1,3,717, 15,31, 63

1 11 1 1
(h) 2, 1)5)—4—)§"]'__6)3—2

(1) 2,770 13> 167 19° 22
() 2,8,5,17,11, 13, 17

(k) 1,1,2,3,5,8, 13
(

2 5 17 65 257 1025 _ 4097
3279’ "27’ "8I’ 243’ ~T729’ " 2187

4, CHALLENGE PROBLEM
(a) 1,1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144
1+V5-(1-+vV%5)_2V5

(b) =1 o5 avs
p=9 A*rVE)?-(1-V5)® 1+2/5+5-(1-2V5+5) _
2%V5 45
4V _
4V5
n___3§1+\/§)3-(1-\/_5-)3=
2%V5
1+3\/§+3><5+5\/—-(1—3\/?3+3><5-5\/_5_)=
8V5
65 +10V5 _ 16V5 _,
8V5 8V5

4-3 ARITHMETIC PROGRESSIONS.

The aim of this section is to develop and apply the formulas for the
general term and the sum of the first # terms of an arithmetic progression.
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The pupils should work enough problems so that they understand what makes
a sequence an arithmetic progression.

PROBLEMS 4-3A are to be done from the definition cf an arithmetic
progression: i.e. A,41 = A, +d. As yet we have developed no general
formula for A, in terms of # and d. It is assumed that the pupil will be able
to guess from looking at the first few terms how the sequence continues. If
he does not observe a pattern, then he will have to work out for himself that
the tenth term is obtained by starting with the {irst term and adding the
common difference 9 times. If some pupils have difficulty getting the nth
term don’t push them. The formula will be that much more impressive
after we obtain it.

Answers to

PROBLEMS 4-3A Student Text Page 126

1. 3,8,13,18,23. A, =3 +(n-1)5 or 51 - 2.

2. 5,12, 19, 26, 33. A, =5 +(n-1)7 or Tn - 2.

3. A, =3,d=4,A40=3+9%x4=39,A4,=3+(n-14=4n-1.
4. (@) Ay =9,d=2A,=9-2=7 (c) Agg=5+199x 2 =403

by Ay =A, ~d=T7T-2=5 (d A,=5+(n-1)2=21+3
5. Ay =47, As =52, As =Ay +d
52 =47 + d
5 =d
Ay =A1 + 3d Ago=4A1 +49 xd
47 =A, +3 X5 Az50=32+49%5
32 =4, Aso=2117

The derivation given in the text of the formula A, = A, +(n -1)d is not
a proof but simply an informal argument to convince pupils that the formula
is true cr at least seems plausible. For a rigorous proof we need the method
of proof called mathematical induction. Such proofs are based on a property
of the natural numbers which appears as an axiom in some formulations of
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arithmetic. We have chosen to omit a discussion of mathematical induction
in the pupils’ text at this time becausa the informal arguments seem con-
vincing, while the induction argument is very sophisticated and takes a good
deal of effort to explain to pupils of this age. We feel that it should 1ot be
introduced until there is a clear need which cannot be met by a more in-
formal argument and until the pupils are more mature. However the
teacher should know that there is a way to prove these formulas using only
the definition of an arithmetic progression and the induction property of the
natural numbers. Accordingly we give a brief account of the method and its
application to the proof of the formulas of this section. (Remember that
““ke S’ means that % is an element of set S.)

The Principle of Mathematical Induction is as follows:

It Sis any set of natural numbers which has the properties
i) 1eS
i) if ke S, then (& + 1) €S,

then S is the set of «ll natural numbers.

This Principle expresses a property of the natural numbers which
seems very reasonable and even obvious. Any set of natural numbers S hav-
ing properties i) and ii) contains 1 by property i). By property ii) since 1¢ S,
so is 2. By property ii) again, since 2 €S (by the previous step), 3¢ S. Again
by the same argument, since by the previous step 3¢S by property ii) 4 € S,
etc. A repetition of this argument (12-1) times would show that » also belongs
to S. This is the point at which we call on the Induction Principle to say that
all natural numbers belong to S. We are unable to repeat an argument in-
finitely often. Although we could show that 10,000,001 belongs to S by re-
peating the argument 10,000,000 times, that is not quite the same as saying
that all natural numbers belong to S. However since we could show that any
particular natural number belongs to S, we might as well agree that all
natural numbers do. This is the content of the Induction Principle. It states
an intrinsic property of the natural numbers and is taken as an axiom or
postulate,

We illustrate how this property of the natural numbers is used to
prove propositions which are conjectured to be true for all natural numbers
by proving that the formulas of Section 4-3 hold for all natural numbers. The
proofs use 0.y the definition of an arithmetic progression and the Principle
of Mathematical Induction.
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The plan of all such proofs is first to consider the set, S, of all na-
tural numbers for which the proposition holds. We show that S has prop-
erties i) 1eSand ii) if k€S, then (% + 1)eS. We then call on the Induction
Principle to assert that S is the set of all natural numbers; that is, the set
of natural numbers for which the proposition is true, is the set of all natural
numbers.

Consider the proposition: If {A,} is an arithmetic progression,

A, =A, +(n - 1)d for all natural numbers .

Let S be the set of natural numbers for which the formula
A, =A, +(n-1)dis true; i.e. S= {n:4, =4, +(n-1)d}.

Step 1. leSsince Ay =A, + (1 - 1)d

=A, +0xd
= A,

Step 2. It keS, thenA, =A, +(k - 1)d.

We know, however, that A4, = A; + d since {4,} is an arithmetic progres-
sion, so il A, = A, +(k - 1)d, then

Apgy = (../-11 +(k - 1)(1) +d=A, + ((le +1) - I)d.

However this is just the statement that (2 + 1) €S, i.e. Apy, = A1 + ((/e + 1)-1)(1’.
Hence we have shown that if €S, then so is % + 1.
Step 3.  Since we have shown thati) 1€S
and ii) if 2 €S then (& + 1) €S,
by the Principle of Mathematical Induction, S is the set of all natural num-
bers.

We recall that S is the set of natural numbers for which the formula
A, =A, +(n - !)dis true. Therefore A, = A, + (n - 1)d is true for all na-
tural numbers n.

This kind of proof is a very powerful weapon in the mathematician’s
arsenal, but it is somewhat sophisticated and should not be used the first
time to prove statements which seem obvious to pupils without such a fancy
argument. There are m=ny formulas whose validity is not nearly so obvious
and in proving some such formulas mathematical induction is a most con-
vincing and indeed indispensable tool. Most arguments which contain ‘. ..”
or ‘“‘and so on’’ could be replaced by a proof which depends on the Principle
of Mathematical Induction.

As a second illustration we shall prove that the sum of the first n terms

of an arithmetic progression is given by the expression % [ZA1 +(n- 1)(1’].
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The informal argument which is used in the pupil’s text to derive the form-

ulad, + A, +...+ A4, =—g [Al + A,,] depends on the ‘‘obviousness’ of adding

two expressions for S, both of which contain ““...”” and getting n(A, + 4,).
We may avoid this bit of informality by replacing the argument with one
which relies on the Principle of Mathematical Induction.

We now show that: The sum of the first » terms of an arithmetic

progression is given by %[2/11 + (1 - 1)(1]f01' all natural numbers .
Let S be the set of all natural numbers for which
A +4,+ ...+ 4, =’§L[2A1 + (1 - 1)(1]; i.e.
S = -{n:/h +A, + ...+ A, =g[2A1 + (n - 1)(1]}.
. 21
Step 1. 1¢S since A1—~2-[2A1+(1 - l)d]
=5 [24, + 0 xd]
=3 (24,)
= A,
Step 2. IfleeS,A1+A2+...+Ak=/§"[2Al+(/e-l)d]
However Ay + Ay + ...+ Ap + Aps = (AL + A+ o+ Ay) + (A, + kd) Why?
But if keS, A+ Ag + ...+ Ay + Apyy = 5 [24, % (k- D]+ A, + kd

=h A, + -l?f (k-1)d+ A, + kd

J
=(k+1)A, + (—5 -5+ !e)d
12 3
= (k + 1)A, +/‘ 5/” d

= (k+1)A, + (k4 El)k d

k+1
2

_k 5 1[241 + ((/e + 1) —l)d]

This is simply the statement that (2 + 1) €S. We have proved that if ke S,
then (& + 1) €S,

[.‘ZAl + /ed]
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Step 3. Since i) 1eS and ii) if 2eSthen (k + 1) €S, by the Principle

of Mathematical Induction S is the set of all natural numbers. However S
was the set of natural numbers for which A, + A4, + ...+ A4, =

'—21 [ZA1 +(n - 1)(1]; hence this formula is true for all natural numbers .

The formula A, + A, +...+ A, = %[A1 + A,,] 1s now obtained by re-

placing A, + (n - 1)d by A,, in the previous result.

Answers to

PROBLEMS <-3B Student Text Pages 130-132

1.

If A, =100,000 shillings, ¢ = 0.06 x 100,000 = 6,000 shillings, then
A, 4, shillings is the amount accumulated by the end of the nth year,
100,000 + 5{6,000) = 130,000, the amount after 5 years.
160,000, the amount after 10 years.

A, 4+, = 100,000 +12{6,000), the amount after 1 years.
To find how many years it will take to double his inheritance set

A, 4+ =200,000 = 100,000 + 6000 x

= 100000 _ 2 oo

t

A G

1

Ay

6000
At the end of 17 years he will have accumulated 202,000 shillings and
his inheritance will have doubled.

Ay=13, A =27, Ag=Ay+9d =27
A, =4 +2d =13
Awo-Ay= Td = 14
d= 2
A =A3-20=13-2x2=9
App=9+19x2 =47
Aigp=9+99x2 =207

S10=22[2 %9+ 9x2]=180
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~

Sp= 1 + 2 + 5§ +...+m-1D+ n
Su= n +m-DVD+n-2+...+ 2 + 1

2Sy=(n+D+m+D+m+1)+...+(n+1) +(n+1)
2S5, =n(n+1)

S, =§(n+ 1)

_ A+ A, _
Or just use the formula S, = » 5 ) with A =land A, = n.

Sy =1+3+56+...+(2n-1)
=g[1+(2)z—1)]=)22
Sp=2+4+6+ ...+ 2n

=212+ 2n] = n(n+1)

[\V]

A =100,d=-15. A, =100+ (n - 1) x (-15)
115 - 15n
The last possible halt occurs the last time 4, > 0.
Ay=115-15,>0
115 > 15,

2<
73/)z

Hence » must be 7,
A, =100 + 6(-15) = 10. The last possible hold occurs at launch minus
10 minutes.

Ar=21, d=3, 4,<100
A, =21+ (n-1)3<100

1
n < 27—3-
There are 27 integers between 20 and 100 which are divisible by 3.

A =17, d=117, A, =17 +(n - 1)17 < 1000

14
n < 5817

There are 58 integers between 10 and 1000 which are divisible by 17.
a+b ~_a+b-2a _b-a Since these differences are equal, the
2 ¢ 2 2 .
+ 0 . .
a+b 2-a-b b-a numbers a, —5 -, and b are in arith-
b - - , _ ,
2 2

metic progression by the definition.
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9. (@) 15 () 0 (c) 185 (d) 2 (e) 35 (D) -2 (z) m*+mm

10, (a) As =14, S5 =40
(b) d=1, S;0=135
(c) A, =8, Sg=216
(d) d=0, S,0=20
() d=-3, S,=5, §,=17, S,=6, S, =2

CHALLENGE PROBLEMS

() d=20. 5,,=10 [2x 2+ 9xd] =100

2
20 + 454 = 100

d= 218—(5) = lg@
(g) A =17T=A, +d =19 +d.
-2 =d
The largest value of S, will occur for the largest n for which A4, is
positive. After that A, will be negative and S, will start decreasing.
A, =A +(n-1d
=19 +(n-1)(-2) >0
21 > 2n
10—% > n
Ap=19 +9(-2) =1

810:120_[2X19+9("2)] =100 (S9 =Su = 99)

11. If 1965 is the first year, 1980 will be the 16th year.
A, =10, d=3, A, =10+ 15X 3 = 55 coconuts in 1980.
Sig = 520
Ay, =40=10+(n - 1)3, n=11.
In 1975 it will produce 40 coconuts.
Does A, = 60 for any n? 60 =10+ (n - 1)°, (i - 1)3 = 50 for no natural
number n. No, if we mean calendar years.

12, A, =16, d=32, 80 feet in the third second.
144 feet in the fifth second.
304 feet in the tenth second.
1600 feet in the first ten seconds.
1612 feet in the first » seconds.
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13. (a)

(b)

The centre of gravity should be at l—;—ﬁ if the weights are unit

weights evenly spaced, because we’d expect the rod to balance at
the mid-point.
The formula gives the centre of gravity to be

1(1)+1(2)+1(3)+...+1(l‘l):1+2+3+...+12
1+ 1 + 1 +...+ 1 n )

By Problem 3 above, 1 + 2 +3 + ... + n =M

1+2+3+...+n _n(m+1)

2

Hence

1_n+1
i 2 Xn— 2

and we have agreement with the intuitive answer in part (a),

4-4 GEOMETRIC PROGRESSIONS.

The developments in this section parallel those in Section 4-3. Since

the definitions of the two kinds of progressions are analogous with addition

of a fixed number replaced by multiplication by a fixed number, we did not

think it necessary to indulge in another long build -up to the formulas for

geometric progressions.
It is worth noting that the graph of a geometric progression will lie,

not on a straight line as was the case for an arithmetic progression, but on

an exponential curve witk rase »; G, =G, r»-1.

Answers to
PROBLEMS 4-4A

1. (a)

2. 25

3. 7f=3or-3;Gl=%or-§

o. 62

1
4, 64

Student Text Pages 134-135

L

4 (b) 1 (C) 39

1
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A proof by mathematical induction can be given for the formulas for
G, and S, as in Section 4-3. However it is hoped that the pupils will find the
informal arguments convincing.

Answers to

t -
PROBLEMS 4-4B Student Text Pages 135-137

1. (a) 768 (b) 63 (c) 1,048,575

2. Gy=-4=Gxr'=-r' r*=4, 7 =20r -2
There are fwo such progressions: G, = -1(2)""! or
G, = -1(-2)"-"
IfGy=4and G, = -1, 4 = -¥* or »® = -4, There are no geometric
progressions whose terms are real numbers with G, = -1 and G, = 4.

3. G2 = 4; A, = 5. The arithmetic mean is larger than the geometric
mean.

4. r¥=-1,8,=0,83=1,8,=0,S,00= 0, Sa75 = 1,

_ V1 if nis odd

Sn -
0 if n is even
5. P
AAPM is similar to A PBAM,
o v A_J_A_ = .A,L]J_ = /»
Therefore AP S wE ke
-
A M B

Thus MA =/ X MP and MP =/ x MB. Hence MB, MP, and MA are in
geometric progression by the definition.

CHALLENGE PROBLEMS

6. Arithmetic mean is & ; b; the geometric mean is vab.
vab =4 g b will be true if each of the following is true.
a+Db\*
@ =(%)
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Cont.

ab Saz+221b + b2

dab < a® + 2ab + b®
0 < a®- 2ab + b*
0 <(a-b)?

Since the square of any real number is non-negative, reading the chain
of steps backwards shows that the arithmetic mean of two positive
numbers is always greater than or equal to the geometric mean.

G1=2,G,=4,7=2,G,=2"G,G,...Gyoo=2"2%... 2=

100
gl+2+...+100 _ 2‘2—(1‘“(’0): 95050

(a) CD=50V2, DE =50, EF=25V2, FG = 25.

(b) Lo-= % V2, Lo = % The numbers form a geometric progression

. 1 D S
{L,} with L, =50V2 and v = ok Each term is 75 times the

preceding term since it is the side of a 45° isosceles right-angled
triangle whose hypotenuse is the preceding term.

5072 |(7g)" - 1]

(¢) Sy=L,+L,+...+L, = i
—_— -1
V2
n
This can be simplified to S, = 100(1 + v2) [1 - (Té_—) J

For large values of n this is close to 100(1 + v2) and for all
values of » this is less than 100(1 + V2) or approximately 241-4,
Hence with 250 ft. of fence he will not run out of material. In fact
he will never need more than 242 ft. of fencing material.

625

(d) A:=2500,A4,=1250, 4, = 625, A, = 312:5, Ay = 64 ~ 9.8,
A= —?g—g ~ 4.9, Each area is % the preceding area since the sides

of the right-angled triangle are both ‘/_% times the sides of the

preceding triangle.
() R, = 2500, R, = 1250, Ry = 625, R,,4, = 3 R,, {R,}forms a geo-

l l 99
metric progression with » = PR Rig = 2500(§>
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(f)

(e)

The area of the original lot iz 5000 square ieet.
A]_ +A2+-..+A100+R100:5000
A]_ +A2+... +A100=5000 "R.]_oo

= 5000 - 2500 (3)

Sioo= Ay + Ay + .rs + A= 2000 ((%)wo - 1)

1
[S2]
(o)
(@)
(@]
NN
—t
1
N
Do
\/’_
(=]
o

39
= 5000 - 2500 ()
CD = 25V3, DE =12, gr =12 3, po = 222
9
Lo= 25»@(5) L,o= 25V3 (r) The numbers L, L,, ...

V3

form a geometric progression with L, = 25V3 and 7 = 5

L, approaches 100V3 + 150 for large n. Hence 250 feet would not
do but 324 feet would.

Ay =25—‘/§: A, = 18'—'—55 \’ﬁ, A3=—5g§5\/§,

b a2 a- BT (.

A, A, ...form a geometric progression with 4, = % V3

=3
and'r—4.

Ry = 18275 V3, R, = 5625\/— R, 16875\/—

R, R, ... form a geometric progression with R, = —1% V3

99
and1f=%. Rigo= 1875\/_ ()
Al +A2+...+A100+R100=1250\[3—
AL +A, + ... + A0 = 125073 - 1875J‘()

Bva(3) - 1)
Si00 = 3 )
4

= 1250v3 - 1813 J:T(%)gg
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4-5 COMPOUND INTEREST.

Application to interest and annuities is a traditional topic in school
mathematics. While simple interest can be computed using the formulas for
arithmetic progressions, progression~ are really unnecessary in simple
interest. The amount of interest paid over n years is simply n times the
interest for a single year. Consequently the inclusion of simple interest is
intended only as an introduction to compound interest. Compound interest,
on the other hand, is a very good practical application of geometric pro-
gressions.

Since we want the principal to be the first term of the geometric pro-
gression, the second term (under interest compounded annually) will be the
amount at the beginning of the second year, and in general the nth term,

P(l + 100) , will be the amount at the beginning of the ;th year. We shall

therefore speak of the amount at the beginning of a year in interest com-
pounded annually.

Answers to

Student Text Pages 138-139
PROBLEMS 4-5A

1. Amount 3rd year 6th year 2. nthyear
(a) 1200(1-06)3 1200(1-06)° 1200(1-06) "t
(b) 500(1-05)2 500(1-05)° 500(1-05) -t
(c) 2000(1-04)2 2000(1-04)° 2000(1-04) "t
(d)  1500(1-045)® 1500(1-045)° 1500(1-045)" "}

The amounts indicated as answers may be computed directly or they
may be approximated by using logarithms. In many books of tables the
amount of 1 shilling invested at various rates of compound interest is given,

y n
Of course this is just a table of values of (1 + —1—5(—)72) for different values of i
and n.

Below we give the answers for Problem 1 when the amounts «re com-

puted from a four-place compound interest table.

3rd year 6th year
(a) 1348-32 (c) 2163-20 (a) 160584 (c) 2433-40
(b) 551:25 (d) 1638-00 (b) 638:15 (d) 1869:30

115


http:2000(1.04
http:500(1.05
http:500(1.05
http:1200(1.06

Although the rate of interest 7 is always given as an annual rate, if the
interest is compounded more often than annually, the terms of the geometric
progression are actually the amounts at the beginning of each interest period

and the ratio v of the geometric progressions is 1 + —mzaﬁwhere n is the

number of times per year the interest is compounded.

Answers to

Student Text Pages 139-140
PROBLEMS 4-5B

The answers given below were computed using a four-place compound

interest table.

1 year 3 years
1. (a) 1000(1-03)° = 1194-10
(b) 500(1.01)* = 520:30 500(1-01)'* = 555-60
(c) 2000(1-0225)% = 209-05 2000(1-0225)° = 2285-20
5 years
(a) 1000(1-03)'%= 1343:90
(h)  500(1-01)*°= 610.60
(c¢) 2000(1-0225)'°= 2498-50
2. CHALLENGE PROBLEMS
ar _ __log 2 ~
(a) 1000(1-01)* = 2000, t “—%—)4 Tog(1-01 12 years
N2l = _ log2 .
(b) 200(1-03)* = 400, t=5 Tog 1703 12 years
log 2
(c) 500(1-05)' = 1000, t = T@O‘%m ~ 15 years

4-6 GEOMETRIC SEQUENCES AND INFINITE SERIES.

This section is designed to use the information on geometric progres-
sions to introduce informally the idea of the limit of a sequence. This idea
is then used to describe convergence of an infinite geometric series. The
attempt is a very modest one and no effort is made to introduce new symbols
or precise definitions for limits. The hope is that this informal introduction
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to limits of sequences and to convergence for infinite geometric series will
make the study of limits and infinite series easier when it is met again in a
more formal and complete presentation.

The main difficulty pupils are likely to have is that of confusing the two
sequences {G,} and {S,}. {G,} is the sequence whose terms are added to
obtain the infinite series, while {S,} is the sequence of partial sums of the
infinite series. The point must be made clear that there are fivo sequences
which are involved and that it is the sequence of partial sums {S,} which is
used to find the sum of a convergent geometric series.

While we prove no theorems, pupils may notice that whenever the in-
finite series converges, the terms of the sequence {G,} which are added to
obtain the infinite series, approach a limit and that limit is zero. This is a
necessary condition for the infinite series to converge. However for infinite
series in general this is not sufficient. For example the series

1 +% +313— +% + ... +% + ... has the property that '% approaches zero as »

becomes large; however the sequence of partial sums becomes as large as
we like. This can be seen by grouping the terms in the following way:

Lo he (b Beded e D (e )

1.1 1 1
>1+§+§+§+§+...

The definition of convergence for an infinite series states that the
series converges if and only if the sequence of partial sums {S,} has a limit.

Answers to
CLASS ACTIVITY Student Text Pages 140-141

The point of these exercises is to help the pupils to discover that when
lr| < 1, the sequence of partial sums S, = G, + Gy + ...+ G, of the geometric

. ... G o
series does approach the limit 1 _1 ol while in the other cases, |7| = 1, the
series diverges.

L () 23 33,33, 3%, 343, 38L 302, 3121 525
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(b)

1 1
(C) Szo=4‘?u Si00 = 4 'EEB

(d) S, is always less than 4, but becomes closer and closer to 4 as »
becomes large.

(e) G,

= ou-z approaches 0 as # becomes large.

(a) 2, 4, 6, 8, 10, 12, 14, 16, 18, 20

[ ]

18 f————f— e
16

14 - @fe

12 e

10 B

N
®
i
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(c)

(d)

Szo =40

S100 = 200

S» becomes as large as we like for large enough n. (S, = 2n)

In other words, n increases without limit.

() 1, 0,1,0,1,0,1, 0,1, 0

(b) s, e

-2

14 S B o

........... -
>
0 1 2 3 5 [ 7 8 9

(C) Sen =0

San-1=1

For large even values of »n, S, is zero and for large odd values of

n, S, is 1.

(a) 2, 6, 14, 30, 62, 126, 254, 510, 1022, 2046

(b)
Sn
20

16

12

119

(c)

(d)

820 = 221 -2

SIOO = 2101 -2

S, becomes very large for
large values of n.



Answers to

PROBLEMS 4-6A4 Student Text Pages 142-143

1. S, Sum
1 n
16(1 -5
(a) 1(4) ) Converges §3é
" q
(b) 10(2"-1 Diverges
2-1
§ "
15((5) - 1) . _
(c) 5 Diverges
2-1
_1_ " >
-4(1- (-3) 8
(d) -3
ey 3
2
n Diverges
(1) 0 Converges 0
2 Ss Ss S1o
(a) 9 20 65
7 31
(b) g 33 1023
8 32 1024
(c) 6 10 20
3 b} 10
(d) 7 6 11
(e) -6 -22 682
5 17 2341
(0 1% 250 29520
3. Su Reason
(a) n(n +3) Diverges S, > nforalln
(b) 1- (%)n Converges A geometric series with
¥ < 1. The sum is 1.
(c) 2n Diverges S, > niorall n
1 .
(d) 1- p— Converges The sum is 1.
(e) Diverges |S, | becomes large
() Diverges See page 117 in the Teachers’

Guide.
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4, 6+4+—§-+l§+...

8 16
4+—§+—9+...

The first sum gives the total distance the ball falls. The second sum
gives the total distance the ball rises on the rebounds. If

S=4+3+18, . then the total distance travelled by the ball is

6 + 2S.
Since S is the sum of terms of a geometric progression with first

term 4 and ratio % ,

G _ %
“1-r =12

S

and 6 + 25 = 30. The hall travelled less than 30 ft.
5. CHALLENGE PROBLEM
1 1

11
wn+1) n n+id

Hence the sequence of partial sums is given by

s (1-4) (-9 (D) (e )

Therefore the series converges to the sum 1.

Rational numbers as we have seen in Secondary Thvee can be repre-
sented by terminating decimal numerals if the denominator contains only the
prime factors 2 and 5; otherwise the decimal representation is a repeating
decimal. A repeating decimal can be represented as the sum of a convergent

geometric series in which » < 1. Such a series always converges to the sum

G
-7’

A rational number whose decimal representation does not repeat im-
mediately but eventually repeats, can be written as the sum of a terminating

decimal numeral and a convergent infinite geometric series.
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Answers tlo

PROBLEMS 4-6B Stuclent Text Page 144

1. 5=5+:05+:005+... (G =-5, 7=-1)
=2 .9
1-1°9
2. 14 =14 +-0014 + -000014 + ... (G, =14, 7= -01)
14 1
1--01 99
3. 281 = -281 + 000281 + -000000281 + ... (G, = *281, 7 = -001)
__ 281 _ 281
1--001 _ 999
4. 2143 = +21 + -0043 + -000043 + -00000043 + ... (G, = *0043, # = -01)
. 0043 _ 21 43 _ 1061
=21+ 777201 7006 * 9900 - 1950
5. 141 =14 +-01 + +001 + -000L + ... (G, = +01, 7 = 1)

=l§'+—.‘m'—-:ﬁ-+—1-_—_l_2_7.
10+Y1T-1710*90~ 90
6.  1.41 =1+ .41 +-0041 + 000041 + ... (G, = 41, = -01)
.4l 41140
=l+1-01=1+99 " 99
7. 1414 =1+ -414 + -000414 + -000000414 + ... (G, = -414, 7 = -001)
=1 4414 . 414 1413

ST T-.001 T ' Y999 T 999
8.  2.1828 = 2 + -1828 + -00001828 + ... (G, = 1828, » = -0001)
.1828 1828 _ 21826

= 247720001 - 2+9999 - 9999

*4-T THE NUMBER e.

This section can be considered as optional.
We present a very interesting way of obtaining one of the important
transcendental numbers of mathematics. The number e appears as the limit

n
of the sequence (1 + %) (that is, the number which the terms of the sequence

approach for large values of n). It is the base of the system of natural
logarithms. Logarithms to this base are universally used in calculus and
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other parts of higher mathematics because of the convenient form which the
derivative of the logarithm to this base has.

The discussion in this section is another attempt to introduce the idea
of the limit of a sequence. The reader is led step by step to see that a se-
quence which is increasing and bounded approaches a limit. This material
could be very interesting for bright pupils, but should not be attempted by
below average or even average pupils. The argument is quite sophisticated
and involves several rather delicate inequality relations.

The reader is led to conclude that the sequence {A,} is an increasing
function of iz by exhibiting a proof that the subsequence A(2") is increasing.
To show that no term of the sequence ever exceeds four, we examine a

similar sequence B(1)= (1 - %) and show that the subsequence B(2”) is also

increasing and hence that the sequence decreases., It is easy to show

1
B(zn)

1 and hence the terms of the sequence A(n)are all

B(n)
less than any term of the decreasing sequence =

that for all n A(n) <

Since = 4, we have

_1
B( 1)’ B(2)

shown that A(2") < 4 for all i.
The details are as [{ollows:

Al—(1+1>1—
el
/43=<1+ )

= (1 > 206 = 2444
The values of A, seem to be increasing with 1. Since this represents the

|
[\"]

[l
CD [\"]
[\"]
(9]

amount at the end of a year of 1 shilling invested at rate 100% compounded »n
times a year, if » increases we would expect the amount to increase.
In the argument that A(21)> A(n) the reason for the step

2]y " 2 2
1+l+<—1—> ><1+,1> 1sthat1+l\l+1 <1> s1nce0<<1>
1 21 n n 2n 2

and for positive numbers ¢ and b if @ < b, then o” < b”,
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Answers to

t
CLASS ACTIVITY Student Text Page 145

L. B(1)=0, B(2)='25,B(3)=-2§7=-296, B(4)=—§-16z.316

2. Yes. B(n)does seem to be increasing (rather slowly however).

3. B(an)=(1- —2%)2 =[(1 - 2—3;)2] -(1-1+5) > (1- 1) =B,

. l_ n .l n_ i._ n "y
4, A(n)X B()z)—(l +n> (l —n> —(1 _n2> <1" =1,

! . 1 \220 . 1 \2®
e ) (gl
(1-5) (L+g0)™  (1-50)

The inequality is true since replacing the denominator by a larger
number 1*°° makes the fraction smaller.
Since by Problem 2, B(2nr)> B(n)for all x,

B(2) < B(2%) < B(2%) < ...<B(2%9

1 1 1 1
or B >B(2ﬂ>B(23) Z e 2 B(2%)

20
>(1egp) =AR2)

> A(2%9)

- &JY B 1 =
B@ =81 " 316 proy =4

. 1 1 1 20 20
7. Since W>m>...>mo§>/l(2 ), A(2°°) < 4,

Since there was nothing special about 7 = 20 in the subsequences A(2")
and B(2”) we might as well have written

. 1 1
A2) < gy =5

Near the bottom of page 145 of the pupil’s text, there is a disguised
and, hopefully, obvious theorem: any monotonic sequence which is bounded

1 X
2) <B(§j for all n = 2.

has a limit.

If we plot the values of the two sequences {A4,} and {'1‘31—} on the num-

'l

ber line we have the following picture:
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A]_ Ag A3 A4 B4 B2
) \\i/ \\/ J/\Z } i $
e
Answers to Student Text Page 146
PROBLEMS 4-7

If the bank charged ¢% per year and deducted the charge » times a

year, then after the first deduction the amount would be 1 - 1—(;0—’—1 . After

. i ) i i\
the second deduction <1 - —1——0—0——n> - <1 - ﬁoﬁ) 000~ (1 - _——10012> .

2]

. . RN iy T RN
After the third deduction (1 - _1—0572> - (1 - m) 100" (1 - TDT)Tz) , ete.

After the nth deduction one would have B(n)= (1 - TO%O—;J” shillings.

One can show that B(21) > B(n) just as before and so one would like to
have the bank deduct the charge very often. The more times per year the
deduction is made, the more money one would have in the bank at the end of

the year.
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Chapter 5
DESCRIPTIVE STATISTICS

The aim of this chapter is to familiarize the pupil with some of the
more common descriptive statistics: frequency distribution, histogram,
mean, median, mode, standard deviation, and range of a population function,

and scatter diagram for two population functions.

5-1 POPULATIONS AND FUNCTIONS ON POPULATIONS.

There is nothing new in this section except the words ‘‘population’’ and
‘ “population function.’”” Make clear that we are just dealing with a function
whose domain is a finite set, called the population, and whose values are real
numbers. Since the values of our functions are usually obtained not from a
formula but by empirical measurement, we usually describe the function by
listing the elements of the population and, opposite each, the corresponding
value of the function.

Here are the possibilities for listing the pupils in order of increasing

height:
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Pupil x H(x)
1 A A C C G G 60
2 C or G or A or G or A or C 60
3 G C G A C A 60
4 D 62
5 63
6 H I 64
or
7 I H 64
8 E 66
9 67
or
N A 57

We can choose any of 6 orders for places 1, 2, 3 with either of 2 orders for
places 6, T with either of 2 orders for places 9, 10, so there are 6 X 2 X 2
or 24 different correct lists, but you should not go into this unless a pupil
raises the question.

The answers to the questions ‘“What is the height of the second person?’’
etc., are the same for any of the 24 correct listings.

In the temperature example, the graphical representation of the popu-
lation functions H and I should again remind the pupils that these are just
functions with finite domains.

Be sure the pupils list the elements (members) of the population and

the values of L, S, L~ L S 50 they will have a concrete picture of how
L ; S is related to L and S.
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L +8
Element x L(x) S (x) o (x%)

Su 88 82 85
M 85 81 83
Tu 86 81 835
W 91 85 88
Th 87 84 855
F 87 86 86:5
Sa 88 84 86

For the two digit number population, encircling the subsets for which F + S
has each value helps to make it clear that the values of F +S are 2,3, ...,
8 and that the corresponding frequencies are 1, 2, 3, 4, 3, 2, 1.

>

2
3
4 >
5

F +8

1

I}

/7
F+S:6 :7 :8

The list of pupils in your class, and the corresponding values of
several population functions, will be used tu illustrate all the concepts
introduced in this chapter. One way to prepare the list is: on the day
before the list is to be prepared, you choose the population functions to
be used, and announce that each pupil should be prepared on the following
day to report his weight to the nearest 5 pounds, age at last birthday, or
whatever information you may have chosen to use.

Answers to

PROBLEMS 5-1 Student Text Page 150

1. 0,1,7, 17, 8, 10. Here is the graph:
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f(v) I

2+
1} et
! v
0 b | 1 s 1 )
12 13 14 15 16 17 18

The dotted lines are not a part of the graph. The dot at the point (14, 1)
emphasizes that {14, 1) is part of the graph, (14, 5) is not. The function is

discontinuous.
Value of the function
2. Element L K Z L -E E+Z
THERE 2 0 3 2
IS 2 0 0 2 0
NO 2 0 0 2 0
LARGEST 7 1 0 6 1
INTEGER 7 2 0 5 2

The point of Z is that the value of a population function need not vary. Again
this is nothing new, as the pupils are familiar with constant functions.

3. A has the value 0 at bdbd
" 1 at abbb, babb, bbab, bbba
" 2 at aabd, abab, abba, baab, baba, bbaa
" 3 at aaab, aaba, abaa, baaa
" 4 at aaaa
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B has the values 0, 1, 2, 3, 4 for 1, 4, 6, 4, 1 elements respectively. This
exercise is a small first step toward the binomial coefficients:

(1 +x)* =1 + 4y + 6x% 444 1 o?
The values of A - B (which, since B =4 - 4, is just the function 24 -~ 4)
are -4,-2, 0, 2, 4. The only value of A + B is 4 (another constant function).
The values of Max(A4, B) are 2 (for the six elements with A = B = 2), 3
(for the 8 elements with A4 =1 or 3), 4 (for the 2 elements with A = 0 or 4).

5-2 DISTRIBUTION AND HISTOGRAMS.

The distribution of a population function is also known as the frequency

distribution or frequency function of the population function.

Answers to

PROBLEMS 5-2 Student Text Page 153
2. Distributions:
X Y X+Y z
v f 7 f ) J v ¥
0 4 0 8 1 2 0 12
1 6 1 9 2 3 1 12
2 7 2 9 3 4 2 11
3 8 3 9 4 5 3 10
4 9 4 9 5 5 4 9
5 8 5 7 6 6 5 5
6 7 6 5 7 6 6
7 6 7 3 8 7
8 5 8 1 9 6
10 6
11 5
12 5
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( The pupils are really doing a little coordinate geometry here; with
the market as origin, the functions X, Y give just the x and Y
coordinates of the shop; they are observing that the locus of

X + 3y = constant is a line.)

HISTOGRAMS
for X f forY
9k
8
7}k
6l
5k
41
3—
2k
1t
v
1 1 L L 1 ] 1 ] 1 1 1 1 1 1 1 1 (] i
1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
f
12
for Z
1M
forX+Y 10k
9k
sl
71
61
5
4F
3
2t
v 1} N
1 1 1 1 1 [l 1 1 1 1
3 4 5 6 7 8 9 10 N 12 N R N R \ \
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5-3 THE MEAN, MEDIAN, AND MODE OF A POPUL ATION FUNCTION.

The title of the section and the notation M(X) (read M of X or the
mean of X or the mean of the function X) emphasize a small but important
point: the things that have means are population functions. It is true that
the mean of a population function depends only on its distribution, so statis-
ticians often speak of the mean of a distribution, but at this stage any shift
of emphasis away from population functions would be a mistake: the pupil
will never understand why M (X + Y) = M(X) + M(Y) if he thinks of
the mean only in terms of distributions.

The point of the peculiar way of writing the values lor L - S, elc., for
example, writing 88 - 82 instead of 6, is that if we add the columns before
doing the subtraction, we see at once why M (L -S) = M (L) - A(S).

When the pupil finds M (S - 80) without first finding A (S):

Day VSal_ue8 gf
Su 2
M 1
Tu 1
W 5
Th 4
F 6
Sa 4
TOTAL 23
veay | 2

then adds 80 to get M (S) = 80 + 23 = 233, he will see how the sub-
traction simplifies the calculation of M (S).
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The formula (described in words in the text)
+ v f
n n

ViJi+ Uafat oo

M(X)

:fl+f2+ cee + f

is also the formula [or the centre of gravity of weights f,, Joy oo uy f"

at positions v, v,, ..., v,

on a line, so the mean of a population

function is the point where its histogram balances. You may want to

mention this if your pupils have met this idea in physics.

Answers to
PROBLEMS 5-3

Student Text Page 159

2 ¢ M(X) median mode(s)
2
1 2 1 1
15 2 1 0,1, 1.5
6 b ]
2 1 1 0, 1,2
11
10 5 1 0, 1, 10
M(x) = 2rgrl £, its graph is
M(X)
2
1
1 / ] 1 t
1 3
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The median of X is 1 for ¢ 2
" tfor 0 < t < 1
<

" 0 for ¢ 0;
its graph is
median
of X
2k
1
) 1 i | 1 1 [l t
3 2 1 0 1 2 3 4

The point of this probiem and the next is to give the pupil some appre-
ciation of the way the mean and median are affected by changes in a
single individual. The median is affected rather little, but every change
in a value of a population function is reflected by a proportional change
in the mean.

M(S) = % = 16 TbT (a change of more than 8)

median of S = 2 (a change of 1)
mode of S is 0 (no change)

_(0X4) +(1X6) +(2XT) +(3x8) +(4%x9) +(5X8) +(6XT) +(7%X6) +(8X5)
MX) =376+ 7T+ 8+ 9+ 8+ T+ 6+ 5

o 244
= %o = 4067

The median of X is 4; the mode of X is 4.

X 1X X1 184
)« QX002 XD g0

The median of Y is 3; 1, 2, 3, 4 are all modes of Y.

M(X+Y) = (1X2) + .6.0. + (12 X 5) - 462(? ~ 7-133

Alternatively M (X +Y) = M(X) + M(Y) = 26161 + 16861 = 462(?

The median of X + Y is 7; the mode of X +Y is 8.
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(0x12) + ... + (6x1) 131

M(Z) = 60 = %0

~ 2183

The median of Z is 2; the modes of Z are 0 and 1.

5. The pupils discover here that the relative frequencies of the values of
a population function, that is the fractions of the population for which
a function has each of its values, are sufficient to determine the shape

of its histogram, and its mean, median, and modes.

For 100 pupils:

Distribtuion of X Histogram of X
f
v f "
0 60 50}
40
1 30
30|
2 10 201
0
[l i 1 v
0 1 2

(0x60) + (1x30) + (2x10) 50

M(X) = 60 + 30 + 10 =700 = 'O
median of X = modeof X = 0
For 200 pupils:
Distribution of X
v f The histogram is as before except
0 120 that the points labelled 10, 20, . . .,
1 60 60 on the f axis are now labelled
2 20 20, 40, .. ., 120.
i) - QXU QX80 « (2x30) o0,

median of X = mode of X = 0.

5-4 STANDARD DEVIATION AND RANGE.

Standard deviation is a subtle concept, and, with the brief discussion
given here, the pupil cannot be expected to have the same clear intuitive
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grasp of it that he has for mean. Standard deviation is a square root of a
mean of a square of a difference of two population functions: four consecu-
tive operations, and five if you count tinding the mean of the original function
as an operation.

Concentrate on the station example, and the easily grasped idea that
the average delivery cost is some kind of measure of how spread out the
stations are. Any population function can be interpreted as locations of an
imagined set of filling stations along a road, and this interpretation will be
helpful. For instance it shows at once that adding a constant to the values
of a function doesn’t change the variance, since this can be interpreted as
just measuring distances from another town, without moving the stations or
depots at all, which obviously will not affect delivery costs.

Where the pupils are asked to fill in the missing entries, which are

36
49
169
49
8
7
1
49
0
0

point out that the 0’s are not accidental: the mean is just the constant to
subtract from the values of a function to make the mean of the resulting

function 0.
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pupil A A - M(A) [A - M(4)]?
A 14 - -8 .64
B 15 .2 -04
C 16 1-2 1-44
D 14 - -8 -64
E 17 2-2 4.84
F 15 +2 .04
G 16 1.2 1-44
H 13 -1-8 3-24
I 14 - -8 -64
J 14 - '8 +64
TOTAL 148 0 13:60
MEAN 14-8 0 1-36

The variance of A is 1-36,

Here are the calculations for the variance of A - 13:

pupil A - 13 (A -13) - M(A - 13){[(A-13)-M(A - 13)]?
A 1 - -8 .64
B 2 +2 -04
C 3 1-2 1-44
D 1 - -8 .64
E 4 2:2 4-84
F 2 +2 .04
G 3 1.2 1-44
H 0 -1-8 3-24
I 1 - -8 - 64
J 1 - -8 - 64
TOTAL 18 0 13-60
MEAN 1-8 0 1-36
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The variance of A - 13 is 1-36. Having already done the longer pre-

vious calculation, the pupil will appreciate the computational advantage of

subtracting a suitable constant from the values of the function before calcu-

lating variance. Had we subtracted 15 the numbers would have been even

smaller, and you may want the pupils to do this.

Answers to
PROBLEMS 5-4

Student Text Page 162

X X-M(X) | [X-M(X)]
v f v S v /
T 7| -4 7 16 7
2 2 6 2 .36 2
3 1 1-6 1| 256 1

IXT) + (2x2) + 3x1 _ 14
T + 2 + 1 T 10

_ (16X T) 4 (+36X9) + (256X 1) 4:40 _
- T + 2 + 1 10 T

The mean of X is 1-4. The variance of X is -44.

Mx) = ¢ = 1-4

44

M ([ X - M(X)]z)

The largest value of X is 3, the smallest value of X is 1, the range of
X is 3 -1 = 2. You can find the standard deviation and range of any
population function from its distribution. This is the point of the prob-

lem. Yes, since the distribution can be produced from the histogram.

For 1000 globes manufactured, the distribution of I, is

v f

1 1000x

2 1000 (1 - 2x )
3 1000x
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L L-M(L) [L-Mm(L) ]

v f v f v f
1 1000 x -1 1000 x 1 1000 x
2 1000 (1 - 2x) 0 1000 (1 -2x) | O 1000 (1 - 2 x)
3 1000 x 1 1000 x 1 1000 x
_1(1000)x + 2 (1000) (1 - 2x) + 3 (1000) x _ 2000 _
M(L) = 1000 = 1000 - 2
2\ _ 1(1000) x + 0 (1000) (1 - 2x) + (1000) x
M ([L-M(L)]?) = 1000
_2000x _ 9 x
1000 ~ -
The mean of L is 2. The standard deviation is v 2 x.
X mean of L standard deviation of L
0 2 0
-1 2 45
-2 2 63
-3 2 78
-4 2 90
5 2 1-00
20 graph of M(L)
8}
6
14l
125 graph of standard
NB) - deviation of L
6k
4l
2+
. X
1 2 -3 4 5
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5-5 SCATTER DIAGRAMS.

Scatter diagrams have already been treated in Secondary Two, but

their revision here is a natural continuation of the work of the first four

sections.

Answers to
PROBLEMS 5-5

2. (a)

M(X)

standard deviation (s.d.) of X

range of X is 4.

Student Text Page 165

Histogram for X

4 .
3, variance of X

14 < 1.2
/B - v

The histogram and (therefore) mean, standard deviation, and range

of Y are the same as for X.

Histogram for X +7Y




M(X +Y) = z, variance of X + ¥ = lg-,

s.d.of X+V = 1/19‘1—; 1.2,

range of X +Y is 4.

wloo

Point out that the histogram for X + Y is just the reflection of that
for X in a vertical line. The histogram for the function 4 - X would
be identical with that for X + Y, so

the meanof X +Y = mean of 4- X = 4 - mean X = -g,
s.d.of X+Y = sd.of4-X = s.d.of X=1.2
Histogram for X Histogram for Y
f
5
441
3
2
v
] 1 1 L 1}
1 2 3 4
! 1 i 1 v
0 1 2 3

M(X) = 2, variance of X = 2,

s.d.of X = V2 = 1-4, M(Y) = %, variance of Y = 72"’
range of X is 4. s.d.of Y = \/g x 1.1,

range of Y is 3.

Histogram for X +Y

=
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(c)

M(X+Y) = %,varianceof X+Y = 13

sd.of JT+Y = 1/-1—43 =~ 1.8,

range of X +Y is T.

Histogram for X Histogram for ¥y

<

M(X) = %, variance of X=g, M(Y) = 2, variance of Y =-g—,
- /5 L. -3 L1

s.d.of X = » ~ I s.d.on-\/;~12,

range of X is 3. range of Y is 4.

(compare with Y in (b))

Histogram for X +Y

0 1 2 3 4 5 5 7
M(X+Y) = %, variance of X +Y = _.2?1’
s.d. of X+Y = 'VE‘II = 2.3,

range of X +Y is 1.
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(d) Histogram for X Histogram for Y

f f
5t 5
4f 4t
3r 3+
2 2+
1 1+
1 1 1 1 1 v 1 1 1 1 | v
0 1 2 3 4 0 1 2 3 4
M(X) = 2,variance of X = 1—3,
/14 16 . 264
s.d.of X = 3 1-0, M(Y) = 13 variance of Y=-1—é-§,
range of X is 4. sd.of ¥ = /2% < 12,

range of Y is 4.

Histogram for X + Y

-

M(X+Y) = 22 variance of X +¥ = 111.(‘5.1%

s.d.of X+V = %g ~ 1+5,

range of X +Y is 6.
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(e)

Histogram for X

Histogram for Y

-

-

M (X) = 2, variance of X
s.d. of X is V4 = 2,
range of X is 4.

4, M(Y) 2, variance of X = 2
s.d.of ¥ = V2 = 1-4,

range of Y is 4.

(compare with X in (b))

Histogram for X +Y

M(X +7)
sd.nf X +Y
range of X +Y is 8.

(f)

4, variance of X +7Y
V6 = 2:4,

6,

Histogram for X
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M(X) = 2,varianceof X + Y = 2,
s.d.of X = V2 =~ 14,

range of X is 4.

All answers for Y are the same as for X.
(compare with X in (b), Y in (e))

Histogram for X +Y
f

5

4

M(X +Y) = 4,varianceof X + ¥ = 0,
sd.of X+ Y =V0 =0,

range of X + Y is 0.
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