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TO THE STUDENT
 

In using this textbook you have the opportunity to continue 
in the great experiment which was started in the summer of 
1962, when more than fifty mathematicians and mathematics 
teachers gathered in Entebbe, Uganda, to begin the prepara
tion of mathematics books as up-to-date as those in use any
where else in the world. The writers came from most countries 
in English-speaking Tropical Africa, from the United States 
and from the United Kingdom to take part in this project. In 
the summer of 1962, Secondary One of the Entebbe Mathe
matics Series was written, in the summer of 1963, Secondary 
Two; in the summer of 1964, Secondary Three; and in the sum
mer of 1965 this book. Now you and your teachers must do 
your share to find out whether this book is as good as it can 
be made. By using the textbook critically and making the most 
of the opportunities it offers to make the learning of mathe
matics an interesting and enriching experience, you will have 
played a part in the new growth of mathematics education in 
Africa. 

Since you studied the earlier Entebbe Mathematics Series 
Secondary books, you know that you can expect to meet many 
familiar ideas, sometimes expressed in unfamiliar ways, and 
there will be some new ideas. Careful reading will be important 
because this book treats mathematics as a language designed 
to express certain kinds of ideas and you must learn to read 
and speak this language. 

You will continue to learn why numbers behave as they do 
and find that algebra helps us more and more to understand 
arithmetic ideas. You will also explore some geometric ideas, 
some of which are familiar, some of which will be new, deducing 
these geometric facts from a small number of simple assump
tions. You will also be using the idea of rigid motion in deducing 
geometric facts both familiar and new. 

Do not hesitate to ask questions. Talk about your work 
with your teacher and with your fellow pupils. Above all, try 
to look upon mathematics as something that can be exciting 
and rewarding, for if you give it half a chance, that is exactly 
what it is. 
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Chapter 1 

ANOTHER LOOK AT THE 
DEDUCTIVE METHOD 

1-1 WHY DO WE PROVE THEOREMS? 

In your study of geometry in Secondary Two you learned many facts 

about geometric figures. Some of these facts were very easy to believe 

while others were rather surprising. In Secondary Three you saw how 

deductive arguments and the postulational method can be used to organize 

these facts and to discover new ones. Now that you have had more experi

ence with deductive arguments, let us remind ourselves once again of the 

reasons for doing geometry in this way. 

,If your teacher tells you that the length of any side of a triangle is less 

than the sum of the lengths of the 

other two sides, most of you believe 

this at once. 'You believe it because B 

many times in your life you have 

walked from one point A to another , 

point C, and your experience tells 

you that it is nearly always faster 

to go from A to C in as nearly a 

straight line as possible than to c 

follow a more roundabout path. If 

all of the facts of geometry were as A 
simple and easy to believe as this 

one, it would not be necessary to 

study it in school. Fig. 1. 



Suppose, on the other hand, that you take your compass and ruler and 

draw a figure like the one shown here. 

The centre of the circle is the point 0, B 

and the points A, B, and C are on the 

circle. Which of the angles BOA and 

BCA is smaller? Can you tell how much 

smaller? If your teacher would tell you 

that BCA is exactly half as large as BOA 

would you be convinced of this at once? C 

Some of you may, and that would be very 

loyal but not at all scientific. Others of 

you will want to draw several more 

figures. Measure with your protractor the Fig. 2. 

angles in each of th- following figures. 

B 

C 

C0 

B B 

AA
 

Fig. 3. 

Do you find in each case that BCA is half as large as BOA ? Are your 

measurements accurate enough to be sure that it is exactly half as large? 

You have learned, of course, that it is not possible to settle this 
question by measuring a million figures or even a million million figures. 

This would take your whole lifetime, and when you are very very old your 
friend might still say to you "I'm sorry, but I just don't believe that BCA 

is exactly half as large as BOA. My measurements only show that it is 
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approximately half as large, and for very small circles I can't even make 

the measurements at all." How can you convince your friend? Surely you 

can't threaten to feed him to a crocodile. 

Last year you learned that a much better way to settle such disputes is 

to give a deductive proof. You A . can say to your friend, B 

"Now look here. Angles BCA and CBO are 

congruent because the triangle ACBO is x A 

isosceles. Let x be the measure of each cf 

these two angles; look at my figure. Then angle 

BOC has measure 180 - 2x. Therefore angle C 

BOA has measure 2x because it is supplemen

tary to BOC. This proves that BOA is twice as Fig. 4. 

large as BCA." 

It is likely that your friend will now be convinced. For you have shown him 

why BOA must be exactly twice as large as BCA. Rather it is more accu

rate to say that he will be convinced ifhe accepts the two statements which 

you used in your proof: 

1) The base angles of an isosceles triangle are congruent. 

2) The sum of the measures of the angles in any triangle is equal to 

the measure of a straight angle. 

Since you and your friend have studied Secondary Three geometry together, 

he will probably believe both of these statements. 

Every deductive argument has the two features illustrated by the proof 

given above. There are certain facts which are accepted to start with; we 

usually call them assumptions or hypotheses. And there is a clear and 

orderly argument which shows why the conclusion must follow from these 

hypotheses. 

PROBLEMS 1-1 

Use the figure given here to compute the B 
1. 


measure of each of the following angles. C 15
 
a) BAO0 d) CR0 

b) BO3A e) OBA A 

c) BCO f) C11\ 
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0 

2. 	 The angle CBA in Problem 1 is said to be 
inscribedin the semicircle. What did you B 
discover about such an angle in Problem 1? I 
Prove that this niust always be the case by (F)A IA 

computing the measure of each of the 
following angles. 

(Let the measure of BOC be x and fill in C 
the blanks.) 
(a) in(B'OC) =x (d) m(BCA) = 
(b) m(BAO) = (e)in(CBA) = 
(c)ne(BOA) = 180 - x 	 B 

3. 	 From the accompanying figure deduce that 0 
(B'C) =-- -m(BO C). -

Hint: First show that m(BAD) = -m(BOD) A
 
and m(DAC) = -bn(DaC).
 

4. 	 Compute the measure of each of the follow- C 
ing angles, using the result of Problem 3.
 

a) CAD
 
b)COD 
 0 D 
C) OCD A 	 370 
Are ACB and BD congruent? Why? 	 8 

5. 	 Your friend has drawn an isosceles triangle and has constructed the 
segment AD perpendicular to the base BC. He 
then tells you, "The segment AD bisects the vertex A 
angle 	A because the two right triangles, ,AADB and 
AADC, are congruent." What are the assumptions
 
(hypotheses) which are made in his argument?
 
Hint: It may be easier for you to list the assump

tions if you first fill in the reasons in the following 
expanded version of your friend's proof. B D 

Statements Reasons
 
1. ABC =ACB 	 1. 
2. Ai-D =AD 	 2. 
3. AADB -AADC 3. 

4. 	 BD CAD 4. 
5. AD bisects BAC 5. 

C 

4 



C
 

6. 	 Draw any triangle you wish. Then, 

with your protractor, trisect each of 

the angles A, B, and C and mark 

the points A', B', and C' as shown 

in the figure. Measure the sides of A 

AA 'B'C'. Repeat this construction 

starting with triangles of different sizes and shapes. Now state a 

theorem which you believe to be true on the basis of your experiments. 

This 	theorem can be proved by methods familiar to you but the 

proof is very difficult. However next year you will learn about power

ful new tools in geometry with which giving a proof becomes almost 

routine, though it can be quite long. 

7. 	 Draw a circle and select any 

three points A, B, and C on A' 

this circle. Mark the points 

A' B', and C' by measuring 

600 angles as shown in the cy 

figure. Finally, draw the 

triangle which connects the B60 

midpoints of the segments 

A'B, B'C, and C'A. What do 

you discover about this tri

angle? Is it obvious to you C 

that this must happen? [Next Bt 

year you will be able to 

prove this fact as well as the one in Problem 6.] 

1-2 	 WHAT IS A CORRECT PROOF? 

Pupils taking geometry for the first time often ask, "How do I know 

whether I have written a correct proof?" Unfortunately, this is a difficult 

question to answer. Making correct proofs is something that each of us 

learns by experience, and your study of geometry last. year has probably 

given you a pretty good idea of the way in which proofs are given. It will 

help you a great deal if you remember that a deductive proof consists 
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essentially of clear and orderly thinking. What is most important is thaf 

the proof be convincing, and it matters very little whether you present the 
proof on the blackboard, or whether you write a little paragraph as was done 

in Section 1- 1, or whether you arrange your argument in two columns giving 

statements in one column and reasons in 	the second column as you did many 

times in Secondary Three. 

When given in two-column style, the proof given in Section 1-1 looks as 

follows (see Figure 4.). 

Statements 	 Reasons 

1. 	 CO = BO 1. Construction. They are both 

radii of the same circle. 

2. ABOC is isosceles. 2. 	 Definition 

3. m (BCA) = mn(CBO) 3. 	 The base angles of an isos

celes triangle have the same 

measure. 

4. 	 m(Bi 5C) = 180 - 2x m(BCA) 4. The sum of the angles in any 

triangle is 1800. 

5. 	 Tn(BOA) = 2x n(BCA) 5. BOC and BOA are supple

mentary angles by construc

tion. 

Writing the proof in this form reminds us that we must be able to give a 

reason for every statement that we make. And it also makes it easier to see 

the hypotheses which we accept to start with. Do you see the two hypotheses 

among the reasons in the second column? 

When you gave a proof to your friend in Section 1-1, you didn't bother 

to give all of the reasons because you felt that they were so easy that your 
friend would know them without being told. If you were trying to convince a 

pupil who has had much less practice, however, you would have had to give 
all of the reasons very carefully. This same pupil might not even believe 

your two hypotheses. Did you believe them one year ago? If he were asked 
to give a proof of the same fact, he would start with simpler hypotheses and 

give a longer proof. He might write, for example: 

6 



Reasons
Statements 


1. 	CO = BO 1. Construction. They 

are both radii of the 

same circle. 

2. 	 a COB -ABOC 2. SAS congruence 

postulate. 

3. 	BCO = CBO 3. They are correspond
ing parts of the con

gruent triangles in 2. 

4. 	 m(BCO) = m(CBO) 4. Congruent angles have 

the same measure. 

5. 	 m(BCO) + m(CBO) + .n(BOC) = 180 5. The sum of the 

measures of the 

angles in any triangle 

is 180 ° . 

6. m(BOC) = 180 - 2x m(BCO) 6. 	 Follows from 4 and 5. 

7. 	 m(BOA) = 2x m(BCO) 7. BOA and BOC are 

supplementary angles 

by constructio; i. 

We notice that this pupil has begun with different hypotheses (numbers 2, 4, 

and 5 in the second column) and has taken smaller steps in his proof. Is this 

a better proof than the first one? Is either one of these proofs better than 

the paragraph proof in Section 1-1 ? 

The answer is that they are all good proofs. Each of them is clear and 

orderly. And each of them makes it clear what the starting hypotheses are. 

Which one you choose depends entirely on whom you want to convince. The 

more experienced that person is, the shorter your proof may be. Probably 

your teacher will want you to give proofs which are convincing to him and to 

everyone in your class. You will probably also be allowed to write your 

proofs in paragraph form. But you should be able to fill in the reasons 

whenever anyone asks for them. 
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PROBLEMS 1-2
 

"Every point on the perpen

dicular bisector of the seg

ment AB is equidistant from 

the end points of the segment." . "-. 

The preceding statement is A - - " B 

true, because M itself is M 

equidistant from A and B 

and because any other point 

P on the bisector determines 

two congruent right triangles, 

A PMA and A PMB, of which AP and BP are corresponding 
parts. Rewrite the proof in two-column style.
 

Hint: Fill in the blanks.
 

Statemcnts 	 Reasons 

1. AM = MB 	 1. 

2. 	 m(PMA) = m (PAB) 2. 

3. PM = PM 	 3. 
4. 	 A PMA A PMB 4. 

5. AP =PB 	 5. 
6. 	 Every point of the per- 6. M is equidistant by 1, and 

pendicular bisector is any other point is eq,,

equidistan. from A and distant by 5. 

B.
 

What 	are the hypotheses used in this proof? 

2. 	 Take a point P on a circle and let f be any line passing through P 

which is not perpendicular to the radius OP. 

Here is a proof that f must intersect the 

circle twice. There is a unique segment OQ P 
which is perpendicular to 2, and is such that
 

the point Q lies on f. Q is different from P
/x 	 0
 
because OPQ is not a right angle. Since the
 
sum of the measures of QPO and POQ is 900,
 
m(OPQ) is less than 900. Therefore OQ is
 
shorter than OP because it is opposite a
 

smaller angle in A OPQ. Therefore the point
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Q. is inside the circle. But then f must intersect the circle twice 

because 	it passes through a point inside the circle. Try to rewrite this 

used in the proof?proof in two-column form. What are the hypotheses 

1-3 AN EXAMPLE OF AN INCORRECT PROOF. 

The deductive method teaches us to be critical in our thinking and 

careful in our choice of starting B 

hypotheses. We will understand 

this method even better if we see 

what may happen when we are not 

careful. Let A ABC be any tri

angle, and draw the bisector of 

angle B and the perpendicular 

bisector of AC as shown in the A L E - C 

figure. Mark the intersection Fig. 5. 

point as D. 

Now ADEA = ADEC (why?). Thus AD E CD because they are cor

responding parts of these congruent tri

angles. Draw the perpendiculars from D B 

to the sides AB and CB as shown in 

Figure 6. Then the right triangles ABDG 

and A BDF are congruent (why?) and so 
,FGD =_FD and GB =_FB. But then the 

right triangles AAGD and ACFD are D%%
 

A E .
also congruent (why?) so AG CE. We 

have shown, therefore, that GB = FB and 
Fig. 6.

CF, and from these two equationsAG = 

we get AB = CB. Thus we conclude that 

the AABC is isosceles. But we started with any triangle, and hence we have 

proved that any triangle is isosceles. 

Do you believe the conclusion of this deductive argument? Probably 

not. But then what do you think is wrong? You will find that each step is 

clear and accurate, being in each case one of the facts which you learned last 

year about congruent triangles. But let us examine the hypotheses used in 

the proof. 
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(1) We assumed that we can construct the bisector of B and the per
pendicular bisector of side AC-. 

(2) 	 We assumed, in drawing our figure, that these two bisectors are 
not parallel and that their point of intersection D lies inside the 
triangle AABC. 

(3) 	 We assumed that the perpendiculars DG and DF to the lines AB 
and CB could be constructed and that G was between A and B and 
F was between C and B. 

(4) 	 We assumed the facts about congruent triangles which you learned 
and proved last year. 

Do you believe all of these hypotheses? Which do you not believe? You 
will be quite right if you point out number (2). If you draw the figure care
fully you will find that the point D falls outside of the triangle (unless the 
triangle is isosceles). In fact you will find in Problem 2 that the third hypo
thesis is also false. It is hardly surprising, then, that we did not believe the 
conclusion of the proof. 

This example should convince us that one must be very careful to know 
all of the hypotheses used in a proof. Particularly when we use figures, we 
must make sure that no false hypotheses are hidden in the figure. 

We might feel less disappointed in ourselves if we point out that even 
the greatest mathematicians who have ever lived have sometimes fallen into 
the trap of assuming incorrect hypotheses without realizing it. But you will 
not fall into this same trap if you keep your eyes and mind wide open at all 
times. This is perhaps the most important lesson to be learned from a study 

of the deductive method. 

PR OBLEMS 1- 3. 

1. Draw several triangles of different sizes and shapes and very carefuily 

construct the angle bisector and the perpendicular bisector of the oppo

site 	side as was done in this section. Where does the point of inter

section of these two bisectors lie-inside or outside the triangle? 

10 



2. 	 Let us start with a different B 

figure and repeat the proof of 

this section. Follow t e proof 

line by line and verily that one 

still comes to the conclusion G 

that the triangle is isosceles. 

What false assumption is made A 

by the figure this time? % 
D 

3. 	 Let us now begin with as accurate 

a figure as possible. This time the 

figure does not hide any false 

assumptions. Follow the proof 

once again, this time referring to G 

the new figure. Which step of the E C 

proof is not true? 	 A .A 

D 

1-4 	 ANOTHER EXAMPLE. 

Your experience in geometry last year was more than just an intro

duction to the deductive method. You also discovered the rather surprising 

fact that most of the interesting theorems of geometry can be proved from a 

very small number of assumptions which you called postulates. Do you re

member how many postulates you had? 

This year we shall pay not quite as much attention to postulates and 

detailed proofs as we shall to the geometric facts themselves. We shall still 

use deductive proofs to convince ourselves about new facts, of course, but we 

shall not always take the time to show that all of our hypotheses can be 

proved from the original postulates, As long as the hypotheses are ones 

which we accept as true, they will suit our purpose. 

If your friend insists upon giving proofs for all of these hypotheses, 

you may tell him that it is possible to do so and that it is indeed an inter

esting exercise. But while he is busy proving these facts of which we are 

already convinced anyway, we shall go on to new and interesting topics. 
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We shall give one more example in this section of how to discover and 

prove a new geometrical fact. And in the next section we will discover a 

theorem of a quite different and exciting kind. Pay particular attention while 

studying these examples to notice how inductive and deductive reasoning 

work together. And try very hard not to be so involved in the deduction that 

you stop using your imagination and common sense. 

CLASS ACTIVITY 

Draw any triangle AABC, bisect each of the three sides, and draw the 

line segments AA', BR', and CC' as shown in the figure. Perhaps you re

member that these segments are 

called the medians of the triangle C 

AABC. 

If you carry out the construction A 

very carefully, you discover that the Be 

medians intersect in a single point 0. B 

Do you think that this must always be c,
 

true? Try it out for several different A
 

triangles. Let's try to find a deduc- Fig. 7.
 

tive proof. 

Sometimes, when trying to prove a theorem, it is easier to prove al 

even stronger theorem. With your ruler, measure the segments 

OA', AA; OB ,BB'; OC' ,CC' 

What do you discover about the lengths of these segments? Do you find in 

each case that the longer segment is three times as long as the shorter one? 

Let us prove that it is. C 

In the triangle 

AABC with medians 

AA' and RB', draw the A' 

segment A'B'. Then B, 

draw AID parallel toAB 

B'B with D on the line F 

AB. Likewise draw 

A'E parallel to AC ,E 

with E on the side AB. Fig. 8. 
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And finally draw E and the line 2 both parallel to B 'B with F on the side 

AC and 2 passing through the point A. All of these constructions are 

shown in the figure. 

Tell why each of the following statements is true: 

(1) B 'A 'EA is a parallelogram. 

(2) B 'A 'DB is a parallelogram. 

(3) B'A' = BD and B'A' = AE. 

(4) EB = AE = BD. 

We see, therefore, that the segment AD is divided into three congruent parts 

by the parallel lines 2, FE, E'B, and A'D. But these same parallel lines 

divide the segment IAT into three segments, and we know therefore that 

these three segments are congruent. Thus OA' =I AAI which is what we 

wished to show. 

What have we proved so far? We have proved that the median BB' 

intersects the median AA' in a point 0 

whosa distance from A' is I of the dis

tance AA '. C 

Suppose that we now draw the 

medians AA' and CC'. Where do they 

intersect? You see at once that the A' 

same argument may be used to show 

that CC' intersects AA' in a point 0' 

whose distance from A'is I of the B 

distance AA '. But this means that AC, 

OA' = O'A', and thus 0=0'. There- A 

fore all three medians pass through the Fig. 9. 

single point 0. Let us state this result 

as a theorem. 

The medians of a triangle meet in a single point 

0. For each median this point is located 2 of 

the way from the vertex to the opposite side. 

The point 0 where the medians intersect is called the centroidof the tri

angle. It is the point at which the triangular region could be made to 

"balance" on the point of a pin. 
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PROBLEMS 1-4 

1. 	 Make a list of facts which are assumed in the proof given in this sec
tion. 

2. 	 Draw several triangles and construct the perpendicular bisectors of
 
the three sides. Choose at least one triangle which has an angle
 
greater than 90°. What do you discover? State a theorem about the
 
perpendicular bisectors which you think likely to be true. 

3. 	 The altitudes of a B
 

triangle tIABC are A
 

the lines through the
 
vertices which are C
 

perpendicular to the A 
 B 
opposite sides. The 

altitudes through A 

and B are shown 
for each of the tri
angles in the figure. 
Draw 	several differ

ent triangles, at 
least 	one of which has 
an angle greater than 
900, and construct the three altitudes in each case very carefully. What 
do you discover? State a theorem about the altitudes which you think 
likely to be true. 

4. 	 Draw any triangle AABC and construct the th:, ee angle bisectors. 
What do you discover? State a theorem about the angle bisectors which 
you think likely to be true. 
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5. Draw any triangle A ABC and 

construct an equilateral triangle
 

on each oi the three sides. For 

each of these equilateral tri

angles, find the point where the 

medians intersect. These are 

marked inthe figure as A', B', 

and C'. What do you discoverI 

about the triangle AA'B'C'? Do 

you think it islikely that this 

must be true? 

Each of problems 2-5 was an example of the discovery of a theorem by 

means of inductive reasoning. Deductive proofs for the facts discovered in 

problems 2-4 are easily constructed if you follow the hints given in the next 

three problems. A proof for Problem 5 is most easily given using the 

methods of Chapter 6. 

6. Let AABC be given and con- B 

struct any two of the perpen

dicular bisectors of the sides. 

For example the perpendicular 

bisectors of AB and CB are 

shown in the figure. -

Answer each of the following 

questions (in the order given): AA 

(a) Why do these perpen

dicular bisectors 

intersect; that is, why can't they be parallel? (Call their 

point of intersections 0.) 

(b) Why is the point 0 equidistant from A and B? 

(c) Why is the point 0 equidistant from B and C? 

(d) Why is the point 0 equidistant from A and C? 

(e)Why must the perpendicular bisector of the remaining side 

AC pass through the point 0? 
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(You see by examining your arguments that the point of intersection of 

the three perpendicular bisectors is equidistant from the three vertices 

of AABC. Thus the circumscribedcircle of AABC, that is the circle 
passing through the three vertices, can be drawn by taking its centre at 

the 	point 0.) 

7. 	 To show that the three altitudes 

of 	AABC meet in a single point, A$ 
Bconstruct the triangle AA'B 'C' 

as shown in the figure so that the 

three sides of AA'B'C' are par- C 

allel respectively to the three 

sides of A ABC. 

Answer each of the following Bt
 

questions:
 

(a) 	Can you find three parallelograms in the figure? Name them. 

(b) 	 Why is A 'C = B'C? (Hint: Compare them with AB) 

(c) 	 Why is the altitude of AABC through the vertex C the same 
as the perpendicular bisector of A'B'? 

(d) 	 Do you see that the altitudes of AABC are the same as the 

perpendicular bisectors of the sides of AA'B'C'? Now use 

the result of Problem 6. 

8. 	 To show that the angle bisectors B 

of AABC meet in a single point, 

answer the following questions. 

(a) 	 Why must the bisec

tors of angles A and At 

B intersect? (Why 

can't they be parallel?) 

(b) 	 Construct the perpen-

diculars QA ', OB', A BO 

and OC' as shown in 

the figure. Why do these 

segments have the same length? 

(c) 	 Does the bisector of C pass through the point 0? 

Hint: Show that AOCA' = AOCB'. 

C 
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(While giving the proof that the angle bisectors meet in a single point, 

you also discovered that their point of intersection is equidistant from 

the three sides of AABC. The circle with centre at 0 which passes 

through A', B', and C' is called the inscribedcircle of AABC. This 

circle touches all the three sides of the triangle AABC-at the points A', 

B', C'.) 

1-5* EULER'S FORMULA. 

Examine the figures shown below. Each figure represents a hollow 

three-dimensional object that is constructed from plane polygons by fasten

ing them together along their edges. You can make models of these objects 

by cutting triangles, squares, pentagons, etc., out of paper and gluing them 

together in appropriate fashion. 

(d) 

(fg)
 

(e) 

Fig. 10. 
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Such objects are called polyhedra, although you will recognize some of them 
as having special names. Can you find a cube, a tetrahedron, a square pyra
mid, a pentagonal prism? Which of these objects is constructed from eight 

triangles? Do you know what this object is called? What name might you 
apply to (c)? 

The line segments along which the polygons are joined are called the 
edges of the polyhedron. The corners are called its vertices, and the inter
iors of the polygons are called the faces of the polyhedron. Thus the cube 
has eight vertices, twelve edges, and six faces (count them). Fill in the 

following table giving the number of vertices, edges, and faces of each of the 
other polyhedra in Figure 10. Also fill in the last column of this table. 

NAME V E F V - E + F 

(a) 

(b) cube 8 12 6 2 

(c) 

(d) 

(e) 

(f) no name 

(g) octahedron 

What do you discover by filling in this table? If you have counted correctly, 

the last column will contain the number 2 in each case. Is it possible that 
the value of V - E + F must be 2 for any polyhedron no matter how compli
cated? Let's try another example. Count the numbers of vertices, edges, 
and faces of the star-shaped polyhedron shown in the next figure. You can 

construct this polyhedron, if you wish, by gluing together 16 triangles and 2 
squares.
 

V=?
 

E=?
 

F=?
 

V-E+Fs? 

Fig. 11. 

18 



You are probably beginning to believe that we have found a very gen

eral relationship between the number of vertices, edges, and faces of any 

polyhedron. In all cases that have been considered so far, we have found that 

V - E + F = 2. But how can we convince ourselves that this must be true? 

One of the ways that complicated problems can be solved in mathe

matics is to reduce the problem to a simpler situation. In the case of our 

polyhedra, it is difficult to draw these objects because they are three-dimen

sional, and it is difficult to count the number of vertices, edges, and faces 

even if we succeed in getting a good picture. Let us replace each polyhedron, 

therefore, by a plane figure obtained by removing one face and spreading the 

polyhedron out flat. For example, if we remove the face of the cube which is 

shaded in the figure below, then we can spread the remaining five faces out 

flat as shown. 

Fig. 12. 

It is necessary to imagine that the cube is made of rubber or of some other 

elastic material in order that the face may be stretched out into the plane. 

Each of the other polyhedra shown in Figures 10 and 11 can be spread out in 

a similar way after a face has been removed. Some of the resulting plane 

figures are shown below in Figure 13. In each case it is the shaded face of 

the polyhedron which has been cut away. 

(a)
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(d) 

(g) 
\4 "4 ; 

Fig. 13. 

In each of these examples, the vertices and edges of the polyhedron are con

verted into points in the plane and straight line segments connecting these 

points. Let us continue to call them vertices and edges, and let us call 

the whole plane figure a network. (Some people are reminded of a network of 
roads connecting several towns.) 

Into how many regions do each of the networks in Figure 13 divide the 

plane? Do you see that these regions correspond to the faces of the original 

polyhedron? Which region corresponds to the face that was removed? 
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CLASS ACTIVITY 

In Figure 13 (a), point out the regions corresponding to each of the four 

faces of the tetrahedron. Which vertex of the network corresponds to the 

vertex of the tetrahedron opposite the shaded triangle? Which ,vAges of the 

network correspond to the edges of the shaded triangle? 

In Figures 13 (d), the square pyramid is spread out in two different 

ways. Point to the vertex of the network in each case which corresponds to 

the bottommost vertex of the pyramid. Point to the four edges in the net

work in each case which correspond to the edges of the square base of the 

pyramid. 

PROBLEMS 1-5A 

1. 	 Draw figures showing what each of the following polyhedra look like 

when the shaded face is removed and the polyhedron is spread out into 

a plane network. 

2. 	 For each of the following networks, count the number V of vertices, 

the number E of edges, and the number F of regions, and fill in the 

table which is given. 

V 	 E F V-E+F 

(a) (b) 	 (a) 

(b) 

(c(c 
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3. 	 Construct several of the following models. 

(a) 	A tetrahedron 'y gluing together 4 congruent equilateral 

triangles. 
(b) 	 A cube, by gluing together 6 congruent squares. 

(c) 	 An octahedron, by gluing together 8 congruent equilateral 

triangles. 
(d) 	Cut out 12 pentagons as shown, and glue them together to 

make a polyhedron. The resulting object is called a dodeca

hedron (meaning 12 faces). 
3"I 

Keep for later use any of these models which you )1080 3", 
make. 31" 

4. 	 Try to construct a polyhedron from 20 congruent 3"
 

equilateral triangles. Hint: Five triangles come 3"
 

together at each vertex.
 

You have seen how the value of V - E + F may be computed for any 
polyhedron by counting the numbers of vertices, edges and regions of a 
certain plane network which is obtained from the polyhedron. Let us now 
perform several experiments with networks. 

Draw a plane network such as the one shown in the figure. For this
 

figure we find that
 

V = 13 

E = 18
 

F= 7
 

Fig. 14. 

What is the value of V - E + F? Now select any one of the polygons in the 
figure which is not a triangle, and draw an additional edge which connects 

two of its vertices. Does this change the 

number of vertices? How many regions 

does it add? What is the new value of 

V - E + F? You will have discovered that 
adding an edge in this way does not change Fig. 15. 
the 	value of V, while both E and F increase 
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by 1. Since E and F occur in the expression V - E + F with opposite signs, 

the value of V - E + F is not changed. If you are given any network, 

therefore, you may draw as many additional edges in the above fashion as 

you wish. In fact you may do this until the only polygonal regions which 

are left are triangular. 

Fig. 16. 

Now perform a second experiment. Begin with any network which has only 

triangular regions, and consider what happens if we "remove" one of these 

regions which lies along the outside edge D 

of the network. There are two cases that 

we must consider. The region numbered 

1 in Figure 17 has two edges in common C 

with the network. This region may be 

"removed" by taking away the edge AB A B 

but not the vertices A and B. This results Fig. 17. 

in the network shown in Figure 18(a). On 

the other hand, the region numbered 2 in Figure 17 has only one edge in 

common with the network. We may "remove" this region, therefore, by 

taking away edges BC and CD together with vertex C, but leaving vertices 

B and D. This results in the network shown in Figure 18(b). 

D D 

A B A B 
(a) (b) 

Fig. 18. 

As we remove these triangles in the way described, let us see how the 

numbers V, E, and F change. 
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Number of Vertices 

Removed 

Number of Edges 

Removed 

Number of Regions 

Removed 

No. 1 0 1 1 

No. 2 1 2 1 

In each case the sum of the number of vertices and regions removed is equal 

to the number of edges removed. Do you see, therefore, that the value of 
V- E + F does not change? 

Let us now put together all that we have learned. Starting with a poly
hedron, we can first spread it out into a plane network. Then we can draw 

additional edges until only triangular regions remain. Finally, we can "peel 
away" the triangles one-by-one until only one triangle is left. We have seen 

that none of these activities changes the value of V. E + F. Therefore, the 
value of V - E + F is the same for the original polyhedron as it is for the 

network consisting of the single triangle. But here we can easily compute its 

value as 
V- E+F = 3- 3 + 2 = 2 

Let us summarize our results as a theorem. 

S 	 For any simple polyhedron, the number of ver

tices, edges, and faces satisfies the equation 

V- E+F = 2. 

The equation V - E + F = 2 is often called Euler's formula after the 
Swiss mathematician Leonard Euler (1707 - 1783) who first discovered it. In 

the next section we shall see how this formula may be used to obtain a very 
interesting result about polyhedra. 

The use of the term simple polyhedron instead of just polyhedron is in

tended to emphasize that we are thinking of objects of the kind illustrated in 
Figures 10 and 11. If we ,vere to imagine any one of these polyhedra to be 

made of rubber, we could inflate it into the shape of a sphere. These are 

exactly the polyhedra which can be flattened into a plane network in the man

ner described. Another way to describe a simple polyhedron is to say that 

its interior is one solid piece without any holes through it. Problem 4 gives 
an example of a polyhedron whose interior does have a hole through it and 

hence is nol a simple polyhedron. You will see that in such cases Euler's 

formula does not hold. 
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PROBLEMS 1-5B 

1. 	 Count the number of vertices and 

regions in the given network and 

compute the number of edges from 

the formula V- E +F = 2. Now 

count the number of edges and
 

compare the results.
 

2. 	 Your friend has just constructed the model suggested in Problem 4 of 

Problems 1-5A. He tells you that this model has 12 vertices and 28 

edges. Do you believe him? Which piece of information is incorrect? 

3. 	 There is no special reason why the 

edges of a network must be straight 

line segments. The numbers V, E, 

and F remain the same if curved
 

edges are used instead. Count the
 

number of vectices, edges, and
 

regions for the adjoining figure and
 

verify that V - E + F = 2.
 

4. 	 The figure shows a polyhedron which 

is not a simple polyhedron. Count the 

number of vertices, edges, and faces 

and show that Euler's formula does 

not hold. What value does V - E + F 

have ? 

1-6* 	 REGULAR POLYHEDRA. 

When we are studying polygons, we sometimes like to distinguish be

tween ordinary polygons such as the ones shown in Figure 19 and the regular 

polygons of Figure 20 for which all of the edges 
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Fig. 19. 

are congruent and all of the angles are congruent. 

Fig. 20. 

Regular polygons appeal to us as especially beautiful because of the many 
symmetries which they display. 

When studying polyhedra we are likewise attracted by those which show 
particular simplicity and symmetry such as the tetrahedron and the cube 
shown in Figure 21. 

Fig. 21. 

The tetrahedron is constructed from four congruent equilateral triangles
 
with three triangles coming together at each vertex, and the cube is 
 con
structed irom six congruent squares with three squares being joined at each 
vertex. In general, a regularpolyhedron is con
structed from congruent regular polygons in such a 
way that the same number of polygons are joined at 
each vertex. 

Do you know examples of regular polyhedra 
besides those shown in Figure 21? What object do 
you obtain by gluing together eight congruent equi
lateral triangles in such a way that four triangles 
come together at each verte.? Perhaps you have Fig. 22. 
already constructed a model of this object. 
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QUESTIONS FOR CLASS DISCUSSION. 

Why is it not possible to construct a regular polyhedron from congruent 

squares by joining four squares at each vertex? Is it possible to construct a 

regular polyhedron from congruent regular hexagons? (Look at Figure 23).

D
1200 

Fig. 23. 

Let us try to find other examples of regular polyhedra. In particular, 

let's try to construct such a polyhedron from congruent regular polygons 

each of which has e edges. Let n be the number of polygons to be joined at 

each vertex. Do you see that the number n also represents the number of 

edges which are joined at each vertex? 

n=3 0n=3 4 n=4 

Fig. 24. 

Suppose that you are told the number of vertices and faces of a certain 

regular polyhedron. Can you compute the number of edges? There are two 

ways to do this. First of all, there are F faces and each face has e edges. 

Thus the polygons have eF edges in all. But since each edge of the poly

hedron is obtained by joining two edges of polygons, the total number of edges 

of the polyhedron must be 2 eF. Secondly, we can begin with the number V 

of vertices of the polyhedron and remember that n edges are joined at each 

vertex. Does the number nV represent the total number of edges of the 

polyhedron? Why must we take nV instead? 

You have seen from this discussion that if either V or F is given to 

you, the value of E can be computed from the equation E = 2 e F or 

E = I nV. If you multiply each of these equations by 2 and remember that 

the numbers V, E, and F must also satisfy Euler's formula, the following 

three equations result. 
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eF = 2E 

nV = 2E 

V- E+F = 2. 

Let us see what can be deduced from these equations. 
Multiply the third equation by en. This gives e(n V) - enE + n(eF) = 

2en. Then, using the first two equations, replace both nV and eF by 2E. 
This results in the equation 

2eE - enE + 2nE = 2en, 

and you can now solve for E in terms of e and n. You should get the 
formula 

2en
 
2e- en + 2n
 

Verify that this formula works for each of the objects shown in Figure 
24. 

Now the number E must be a positive number since it represents the 
number of edges of a polyhedron. But this means that the expression 
2e - en + 2n must also be positive; that is, 2e - en + 2 n > 0. Writing this 
inequality in the form 2e - n (e- 2) > 0 and adding n(e 2) to both sides,-
we obtain it (e - 2) < 2e. Finally, since e - 2 is a positive number (why?), 
we may divide both sides of the last inequality by e - 2 and obtain 

2e 
it < e-2 

What new facts do we learn about e and n from this inequality? Fill 
in the blanks below and then see if you can answer the question. 

When e = 3. it is less than 6. 
When e = 4. n is less than 

When e = 5. n is less than 
When e = 6. n is less than 

When e = 7. n is less than 

What happens when e is greater than 5? Do you see that the only pos
sible values for e are 3. 4. and 5? When e = 3, you will see that n < 6, and 
hence )z must have one of the values 3, 4, or 5. When e = 4, you know that 
n < 4, therefore the only possible value for n is 3. And when e = 5, you 
know that n . 10/3, so again the only possible value for a is 3. 
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If we put all of these facts together we see that there can be at most 

ive kinds of regular polyhedra corresponding to the cases: 

(1) e = 3 and n= 3 

(2) e = 3 and n=4 

(3) e = 3 4nd n = 5 

(4) e =4 and n= 3 

(5) e = 5 and n= 3 

For each of these cases we can compute the numbers E, V, and F 

from the formulas: 

2en 
E = 2e - en + 2n 

V 2E 
)I 

F 2E 

e 

For example in case (2), we use the values e = 3, n = 4, to obtain 

2 x 3 x4 24 24 
E =2X3-3X4+2X4 = 6- 12 +8 - 2 12 

_ 2x12 _ 24_
 
4 4
 

F =2X12 24 83 3 

Thus the polyhedron arising from this case is constructed from eight tri

angles (F = 8 and e = 3) with four triangles being joined at each vertex 

(n = 4). Do you recognize this polyhedron? Write its name in the proper 

space in the following table, and then fill in the remainder of the table. 

e n E V F name 

Case 3 3 

Case 2 3 4 12 6 8 

icosahedron
Case 3 3 5 30 

Case 4 4 3 

dodecahedron
Case 5 5 3 
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Three of the polyhedra named in this table are familiar to you. The other 
two may be new, so we have filled in their names. The word dodecahedron 
means polyhedron with twelve faces, and the word icosahedronmeans poly
hedron with twenty faces. Is this in agreemernt with the numbers you com

puted for F? 

The discussion given above shows that there are at most five kinds of 
regular polyhedra. There is a picture of each of them in Figure 25, but you 

will be able to imagine them much better if you and your classmates con

struct models. 

Fig. 25. 

PROBLEMS 1-6 

1. 	 Do you notice an interesting relationship between the number of 

vertices, edges, and faces of the cube and the octahedron? Examine 

the following figure carefully. If the outside figure is a cube and the 

points which are marked are the midpoints of its faces, what can you 
say about the figure inside? 
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What figure results if one connects the mid

points of the four faces of a regular tetrahe

dron? 

What relationship would you expect to find 

between a dodecahedron and an icosahedron? 

This will be difficult to imagine unless you 

have already constructed models of these two 

figures. 
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Chapter 2 
AREAS OF POLYGONAL REGIONS 

2-1 INTRODUCTION. 

You are already familiar with the notion of area and have calculated
 
areas of figures such as triangles, parallelograms and circles. In this
 
chapter, we will consider the concept of area in a more precise manner. 
 We 
will study area as a measure of polygonal regions just as we studied length 
as a measure of segments. 

Let us recall our previous notion of area by considering the following
 
problem:
 

A seamstress went into a shop to buy material to make handkerchiefs. 
For each handkerchief, she would require a piece of material one foot 
square. The shopkeeper offered her two rectangular pieces of the same 
material for exactly the same price. The first piece measured 9 feet by 
6 feet; the length of the second was 1 foot shorter but its width was 1 foot 
longer. Which piece would you choose if you were the seamstress, and why? 

2-2 UNIT OF AREA. 

Before we make a careful study of the concept of area, let us revise 
some of our previous ideas. Just as we chose a unit segment to measure the 
lengths of segments and a unit angle relative to which we could find the 
measure of angles, so we choose a unit region in order to measure the areas 
of other regions. We would remark, to begin with, that there is no natural 
unit for measuring areas of regions, just as there is no natural unit for 
measuring lengths of segments. You know, of course, that the straight angle 
is a natural unit for finding the measure of an angle. 

For our preliminary discussion, we take the following statement as a 
definition: 
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DEFINITION 2-1. The area of a square region 

of side 1 (unit of length) is 1 (unit of area). We 

will call a square of side 1 a unit square. 

If length is measured in some standard unit such as inch, centimetre, 

mile, etc. the corresponding unit of area is the square inch (abbreviated to 

sq. in.), square centimetre (sq. cm.), square mile (sq. ml.), etc. 

2-3 AREAS BY SUMMING UP SQUARES. 

You will recall that "congruent" means, roughly, "duplicate" or 
"copy." It is reasonable then to assume that congruent regions have equal 

areas. We make this assumption in the following informal discussion, and 

introduce it later as one of our postulates about area. 

We shall now try to find the areas of 

some plane regions; that is, regions all of 

whose points are in one plane. Let us con- 1 1 

sider a square of side 2 units. We find that 

if we divide the square as shown in the 

figure, we obtain four smaller squares. 

These squares are all congruent to each 1 I 
other (each is in fact a unit square) and 

they are non-overlapping. It is natural to 

conclude that the original square has area 

4. Fig. 1. 
You will have observed that we have 

here assumed that we can find the area of the large square by summing up 

the areas of the four non-overlapping small squares. Later we will formu

late this notion precisely, when we will call it "The Area Addition 

Postulate". 

PROBLEMS 2-3A 

Show by diagram how you could find the area of a square whose side 

is: 
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(a) 	 3 cm., (b) 8 in., (c) 14 ft., (d'i s (where s is a positive 

integer). 

You will have found from Problem (d) that if a square has side s
 
(s a positive integer), then its area is S 2 .
 

Do you think we can use this method of dividing a region into unit 
squares to find the area of some other polygons? You will find that we can 
do it for a rectangle whose sides are integral multiples of the chosen unit of 
length. Show how this could be done for a rectangle of sides 5 by 3. 

Use this method to determine the area of a rectangle whose sides are 
a by b, where a and b are positive integers. 

We now consider the areas of rectangles the lengths of whose sides 
are rational numbers, which are not necessarily 

integers. We shall illustrate the method we use 

in such cases by considering a square of side . 

By dividing a unit square as shown in Figure 2, A A Y 

we find that we need four non-overlapping 

squares, each of side - to cover exactly the unit A A Y2 

square. These squares are all congruent to each 

other and so should have equal areas. Let us call Y2 Y 

each area A. Then Fig. 2. 

A+A+A+A = 1 

A 	 1which means = 
4. 

PROBLEMS 2-3PB 

Find, by drawing suitable 	figures, the areas of the following: 

(i) a square of side I ft.
3 , 1 

(ii) a square of side 3 1 cm., 

(iij) a rectangle of sides 	1 ft. by -1 yd.,
3 2 

(iv) 	 a rectangle of sides i ml. by 2MI.)
 
5 7~m.
 

(v) a rectangle of sides 	 4 1 km. by 2 km.,
2 5 
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(vi) a rectangle of sides P by r 
q S 

where p, q, r, s are positive integers. 

You will have found from the above problems that, if a rectangle has 

sides a by b where a and b are positive rational numbers, then we can 

find its area by dividing it into suitable squares and summing up the areas 

of these squares. The area we obtain by this procedure is ab. There are, 

however, rectangles which we cannot subdivide into small squares such that 

we already know the areas oi these squares or can easily compute them by 

our previous methods. Let us try to find the area of a rectangle R whose 

sides are 2 by 1. You will observe that this rectangle has a side which is 

a non-rational multiple of the unit of length. 

You will recall that, in Secondary Two, we obtained the following sets 

of inequalities for '2 : 

1.4 < V/2 < 1. 5 

1.41 < Vf2 < 1.42 

1-414 < <_ 1.415 

1.4142 < r < 1.4143 

1.4 J1 1.5 

Fig. 3. 

We consider a rectangle Ri whose sides are 1.4 by 1. If you look at 

the figure, you will see that such a rectangle can be made to fit into the given 

rectangle R with the shaded region left over. You will agree then that the 

area of the rectangle Ri should be smaller than the area we are trying to 

find. By our method of dividing a rectangle into suitable squares and 
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summing up their areas, we find that the area of rectangle Ri is 1.4 x 1 = 
1.4. This means that the number 1"4 is less than the number we are trying 
to find. On the other hand, a rectang]'- of sides 1.5 by 1 will be larger than 

the rectangle R. This means that 1.5 x 1 = 1.5 is greater than the number 
we want. Arguing in this way, we obtain an increasing sequence of numbers 
1.4 x 1, 1.41 x 1, 1.414 x 1, . . . , each of which is less than the required
 

number and also a decreasing sequence of numbers 1.5 x 1, 1.42 x 1,
 

1.415 	x 1, . . . , each of which is greater than the required number. 

If A is the area of the rectangle R, we have shown that A satisfies
 

the following inequalities:
 

1.4 x 1 < A < 1-5 x 1 

1.41 	 x 1 < A < 1.42 x 1 

1.414 x 1 < A < 1.415 x 1 

1.4142 x 1 < A < 1.4143 x 1 

Or, 1.4x 1 < 1.41x 1 < 1.414x 1 < . . . < A < . . . < 1-415x <
 
1.42x 1 < 1.5× 1.
 

It would seem that the area (A) of the rectangle R is f2 x 1. Do you 

agree?
 

PROBLEMS 2-3C 

1. 	 Using the above method, suggest what should be the area of a 
rectangle whose sides are: 

(a) 	 - by 2; (b) - by v2. 

2. 	 Can we use this method to obtain the area of a square whose side 
is V- ? If your answer is yes, what would be its area? 

2-4 	 APPROXIMATIONS TO AREAS OF SOME PLANE REGIONS. 

CLASS ACTIVITY 

The following exercises are to be done on squared paper. 

1. 	 Draw an equilateral triangle of side 8 cm. 
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(a) 	 Count the number of complete squares contained in the 

triangular region. 

(b) 	 Count the number of complete squares which together just 

contain the triangular region. 

(c) 	 What can you say about the area of the triangle? 

2. 	 As in Problem 1, but with a rhombus of side 2.5 in. and one 

diagonal of length 3 in. 

[Make a note of your answers to these two problems; we shall 

refer to them later.] 

3. 	 Trace out an outline map of your country from an atlas onto a 

piece of squared paper. (Note the scale given for this map.) 

(a) 	 Count the number of complete squares enclosed by your 

outline map. 

(b) 	 Count the number of complete squares which together just 

enclose your outline map. 

(c) 	 What area of land does one square on the graph represent? 

(d) 	 What, very roughly, is the area of your country? 

[Note: You will already know that the surface of the Earth is 

curved, so that a map is a representation of a curved surface on 

a plane. There are a number of different ways of doing this, and 

a map preserves or accurately represents some features of the 

original surface such as angles or distances, while it distorts 

others. Your teacher will discuss the special features of the 

map you use. Let us hope that it represents areas reasonably 

accurately.] 

We could improve on the estimates we have obtained in the three 

problems above. Here is one way of doing it: In the (a) part of each 

problem, you include as a complete square every square which is such that 

the greater part of it is inside the region. (You will, of course, have to 

estimate this.) 

A second method of improving your results is this: You divide each 

square which is cut by the boundary into four non-overlapping congruent 

squares, as in Figure 2 above. You now include in the various counts the 
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number of these smaller squares, which are either inside the region or are 

cut by the boundary of the region, as the case may be. 

Which of the two methods do you think is the better and why? 

You may have realised that the second method we have suggested for 
improving your estimates of areas may be repeated a number of times to 

give closer and closer approximations. The idea underlying this method for 

finding the areas of a region will be used again when you study the areas of 

other regions, such as circular regions. 

For our present study, which is that of plane regions bounded by seg

ments, we find that a slightly different approach is more suitable. The first 

two exercises given at the beginning of this section may have shown you that 

it is not always possible to subdivide such regions into a finite number of 

square regions. It can be shown, however, that such regions can be sub

divided into a finite number of triangular regions. 

Our definition of a polygonal region will reflect this last fact. Our 

basic unit still remains the unit square. From it, we shall first derive the 

area formula for a rectangular region. Then, by relating a triangular region 

to a rectangular region, we shall derive the area formula for the former. 

2-5 POLYGONAL REGIONS. 

We now begin our formal study of area. Before we state any postulates 

and us, them to prove some theorems, we shall define what we mean by a 

polygonal region. 

You have already met the term "triangular region." We re-state the 

definition here: 

DEFINITION 2-2. A triangularregion is the 

union of a triangle and its interior. The sides 

and vertices of the triangle will also be called 

the sides and vertices of the triangular region. 

As already remarked, the regions we wish to study are such that they 

can always be subdivided into a finite number of non-overlapping triangular 

regions. This suggests our next definition. 
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DE FINITION 2-3. A polygonal region is the 

union of a finite number of coplanar triangular 

regions such that, if any two of the regions 

intersect, they do so only in vertices and 

sides of these regions. 

Triangular regions, which are related as in this last definition, are 

said to be non-overlapping. It is true, of course, that the regions have edges 

in common. We use the term non-overlappinghere in the sense that the 

regions have no interiorpoints in common. Here are some examples of 

regions cut up such that they satisfy the definition of polygonal region. (The 

continuous line segments are the boundaries of the regions.) 

/ 

/ 
/ 

/
/ 

/ 
/ 

II 
II It 

/ I 3 
I I \ 

I -
II 

I / _ 

I /9
 



PROBLEMS 2-5 

1. 

2. 

Does the region shaded in the 

figure satisfy the definition of a 

polygonal region if it is consid

ered as the union of the triangu

lar regions ABC and DEF? If 

it does not, could you divide it in 

such a way that it does satisfy 

the definition? 

Divide each of the following 

regions into triangular regions 

in a way which will make it a 

polygonal region: 

E 

A 

(a) 
(b) 

N/ 

(c) (d) 
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(e) 	 (f) 

3. 	 Draw a few more regions bounded by segments and cut them up 

as in Problem 2. 

4. 	 Suppose a region R can be subdivided as in Problem 2. In how 

many different ways do you think this can be done? 

DEFINITION 2-4. A square region is the union 

of a square and its interior. 

Can you give a similar definition for a rectangular region? 

CONVENTION: You may have observed that, in 

the above discussions, we have used the expres

sions "area of a triangle," "area of a square," 

"area of a rectangle" when we should have said 

"area of a triangular region," "area of a 

square region," "area of a rectangular region" 

respectively. This is an accepted and useful 

convention, and we shall continue to adopt it. 

The convention will also apply to other polygonal 

regions whose boundaries are easily named. 

2-6 	 AREAS OF POLYGONAL REGIONS. 

We now state a few postulates which will enable us to prove theorems 

about areas of polygonal regions. Actually, we could have used our previous 
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postulates to prove these new ones as theorems. But this would be rather
 
difficult to do, and so we take the statements as postulates.
 

Area Postulate 1: 

To every polygonal region, there corresponds, in terms of a chosen
 
unit, a unique positive real number, which is its area.
 

Note: In stating our other postulates and when we prove theorems
 
later, we shall always assume that the chosen unit of area is fixed.
 

You will recall that our choice of the unit square as the unit of area
 
enabled us to show that a square of side s has area s 2 , where s is a 
rational number. Though we did not prove it, we found it reasonable to 
accept this result as holding for all positive real numbers s. We now state 

this as our next postulate. 

Area Postulate 2: 

The area of a square of side s is s 2. 

Area Postulate 3: 

If two triangles are congruent, they have the same area. 

DEFINITION 2-5. Let the polygonal region Ri 
be the union of the finite set S1 of non-overlap

ping coplanar triangular regions, and similarly 

R2 the union of the finite set S2. We say that 

Ri and R2 are two non-overlappingpolygonal 
regions if they intersect in at most the vertices 
and sides of the triangular regions belonging to 

Si and $2. 

Area Postulate 4 (AreaAddition Postulate): 
Let the polygonal region R be the union of two non-overlapping poly

gonal regions Ri and R2. Then the area of R is the sum of the areas of 

Ri and R2. 

Remarks: 

1. Postulate 4 gives us a way of finding the area of a polygonal 
region R in terms of the areas of two other regions: Ri and R2. 

The definition preceding this postulate can be extended to give a 
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meaning to n non-overlapping polygonal regions Ri, Rz, . . . , 

R , for any finite n. We can show that, if polygonal region R is 

the union of n non-overlapping regions R1, R, ... , R,, the 

area of R is the sum of the areas of R1, R2, . , R,. We shall 

use this result very often in the work that follows. 

2. 	 You may have realised that if a region R can be subdivided so 

that it satisfied the definition of polygonal region, then the subdi

viding can be done in many ways (in fact, in infinitely many ways). 

Area Postulate 4 and our earlier remark tell us that if R is 

subdivided into a finite number of non-overlapping triangular 

regions, then the area of R is the sum of the areas of these tri

angles. If our area postulates are to be consistent, then we must 

be able to prove that all the infinitely many ways of subdividing R 

lead to the same area, which is that assigned to R by Area Postu

late 1. This can actually be done, though we shall not do so here. 

Notation: 

When a polygonal region can be completely des

cribed by naming the vertices of the polygon 

which forms its boundary, we may denote its 

area by just naming the vertices (witilout any 

symbol or descriptive expression). For in

stance, the area of a triangular region ABC 

will be denoted by ABC, and that of a quadri

lateral region PQRS by PQRS. 

PROBLEMS 2-6 

1. 	 Is a triangular region a polygonal region? 

2. 	 Is a square a polygonal region? 

3. 	 Can we meaningfully use the expression "area of a quadri

lateral" ? 

4. 	 Suppose we are given a positive real number r. Can we conclude 

from Area Postulate 1 alone that there is a polygonal region 

whose area is r? 

43 



5. 	 "If two triangles have the same area, then they are congruent." 

Is this statement true or false? 

2-7 	 SOME AREA FORMULAE. 

In this section, we shall state and prove theorems, which will give us 
expressions for the areas of certain polygons in terms of their sides and the 
lengths of certain segments associated with these polygons. 

NOTE: In Chapter 1 we considered the altitudes 

of triangles as lines in order to show that these 
lines (altitudes) meet in a single point for a 

given triangle. In this chapter, we will use the 
term altitude to mean the perpendiculardis

tance between any vertex of a triangle and the 
side opposite that vertex, or the perpendicular 

distance between the parallel sides of a paral
lelogram, a rectangle, a square, a rhombus, or 

a trapezium. 

We now prove a lemma, which we need for the proof of our first 
theorem. (A lemma is a "helping theorem," which we prove as a step 
towards proving our main theorem.) 

Lemma: Two rectangles which have equal 
bases and altitudes have equal areas. 

D 	 S RC 

a -
p 

A Q 
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Given: 	 Two rectangles, ABCD and PQRS, each with sides of 2 

and w. 

Prove: ABCD = PQRS. 

Proof: 

1. 	 AABC ACDA 1. SSS 

2. ABC = CDA = a 2. Area Postulate 3. 

3. 	 ABCD = 2a 3. Area Postulate 4. 

4. 	 PQRS = 2p 4. Why? 

5. 	 AA3C APQR 5. SAS 

6. ABC = PQR (or a = p) 6. Area Postulate 3. 

7. 	 ABCD = PQRS ". From 3, 4 and 6. 

THEOREM 2- 1. The area of a rectangle with 

sides f by w is f w. 	 [ 

Given: 	Rectangle TQWX with sides f by w. 

Prove: The area of the rec-

tangle is 2w. 

Proof: 	From the lemma, we 
deduce 	that the rec-

tangles 	 TQWX and 

SVXU have equal 

areas. 	 Let the area 

of each 	rectangle 

be a. 

1. a, 	 = a 2 = a 

+ w) 22. 	 PQRS = (2 

3. PQRS = f2 	 + a, + a 2 +W 2 

4. 	 PQRS = 22 + 2a +W 2 

2 W)25. 22 	 + 2a +w = (2 + 

p 	 w Q 

2 

a2 

X1 
1 2 

W a1 I W W 

S 	 U w R 

1. 	 Lemma 

2. 	 Area Postulate 2. 

3. 	 Area Postulates 4 and 2. 
4. 	 Statement 1. 
5. 	 Statements 2and4 and 

uniqueness of area (Area 

Postulate 1). 
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6. 	 (2 + w) 2 = 22 + 2fw +w 6. Using algebraic proper

ties of numbers. 
7. 	 So a = 2w 7. Statements 5 and 6 and 

algebra. 

THEOREM 2-2. The area of a right triangle is 
half the 	product of its legs. 

Given: 	A right triangle ADEF with the right angle at F, DF = b 
and EF = h. 

Prove: DEF = Abh. 

E 	 F' 

F 	 b D 

Proof: 	Let F' be the point of intersection of the line through E' 
parallel to FD and the line through D parallel to EF. 
(Why must these two lines intersect?) 

1. The quadrilateral EFDF is a rectangle. 
2. AEFD = ADFIE 
3. EFD = DFE (Denote each area 	by a.) 
4. 2a = EFDF' 
5. EFDF = bh 

6. a =- bh 

Give reasons for the statements in the above proof. 

THEOREM 2-3. The area of a triangle is half 
the product of any base and the corresponding 
altitude. 
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Given: Triangle AABC with base BC 

altitude AE = h. 

Prove: ABC = bh. 

- b and corresponding 

A A A 

I 	 h 

B E 	 b2 C B=E b C B b C bi E 

(1) (2) 	 (3) 

Proof: As seen from the figures, there are three cases to 

consider:
 

(1) 	 The point E is between the end-points B and C. 

Let BE = bl, and EC = b2 , so that bi + b2 = b. 

By Theorem 2-2, 
ABE = bih, AEC 	 = b2h. 

By Area Postulate 4, 

ABC = ABE + AEC. 

Hence ABC = 	 b1h + b2h 

(b, + b 2 )h 

bh. 

(2) 	 The point E is one of the end-points of B-C_ (E = B). Tri

angle ABC is then a right triangle and the result is given 

immediately by Theorem 2-2. 

(3) 	 The point E falls outside the segment BC. We take C to be 

between B and E. Let CE = bl. By Theorem 2-2, 

ABE = -I(b+ bl)h, ACE = btI 
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By Area Postulate 4, 

ABC + ACE = ABE.
 

Hence ABC + - b1h =1(b + bl)h
 
from which we deduce that
 

ABC = 	 - bh. 

COROLLARY 2-3-1. If two triangles have 
equal altitudes, then the ratio of their areas 
is equal to the ratio of the corresponding 

bases. 

THEOREM 2-4. The area of a trapezium is 
half the product of the sum of the parallel sides 

a'id its altitude. 

Given: 	A trapezium ABCD with parallel sides AB and CD, 
whose respective lengths are AB = b, and CD = Theb2 . 
height of the trapezium ABCD is h. 

Prove: ABCD =1(b + b2 )h . 

A 

ih 

DN 

Proof: We draw one diagonal, AC-d, of the trapezium ABCD. 
This divides the trapezium into two triangles ABC and 
AADC. By Theorem 2- 3, 
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ABC = -2b1h and ADC = b2h 

ABCD 	= ABC + ADC (Area Postulate 4) 

= b1h + ,b 2h 

= 1(b, + b2)h. 

You will recall that a quadrilateral wiith a pair of opposite sides 

parallel and congruent is a parallelogram. What must be the relation
ship between b1 and b: (in Theorem 2-4) for the trapezium to be a 

parallelogram? 

You will have found the answer to the last question to be b1 = b2. 
We use this fact to prove our next theorem. 

THEOREM 2-5. The area of a parallelogram 

is the product of any base and the correspond

ing altitude. 

Given: 	 A parallelogram ABCD with base DC = b and altitude 
AE = h. 

Prove: ABCD = bh 

A b1 =b 	 B 

D 	 E b2=b C 

Proof: 	The parallelogram may be considered as a trapezium 

ABCD with bi = b2 = b. Theorem 2-4 then gives us 
immediately, 

ABCD 	= (b, + b2 )
 

= bh.
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PROBLEMS 2-7
 

1. 	 Prove Corollary 2-3-1. 

2. 	 Write a true statement about the ratio of the areas of two tri

angles which have equal bases. Prove that your statement is 

true.
 

[Hint: Look at Corollary 2-3-1.]
 

3. 	 Triangles A.ABC and ADEF are such that the vertices B, C, E, F 

are collinear and the lines AD and BC are parallel. 

(a) 	 What can you say about the ratio of the areas of the two 

triangles ? 

(b) 	 Wha. can you deduce if BC _= F ? 

4. 	 BC is a fixed segment. P is a point such that the area of the 

triangle APBC is always equal to a given fixed positive nunjber. 
What can you say about the point P if 

(i) 	 all the triangles APBC lie in one plane? 

(ii) 	 the triangles APBC do not have to lie in one plaie? 

5. 	 A right triangle has legs 5 and 12, and hypotenuse 13. 

(i) 	 Find the area of the triangle. 

(ii) 	 Find the altitude to the hypotenuse. 

6. 	 The hypotenuse of a right triangle is 25, one leg is 24, and its 

area is 84. 

(a) 	 Find the altitude to the hypotenuse. 

(b) 	 Find the other leg. 

(c) 	 What is the altitude to this second leg? 

7. 	 A triangle has area 35 and base 7. Determine the altitude to this 

base. 

8. 	 A triangle has area 48. Ore altitude is 10. What is the corres

ponding base? 

9. 	 The lengths of the parallel sides of a trapezium are 10 and 16. 

The altitude is 12. Calculate its area. 

10. 	 A plot of land is in the form of a trapezium PQRS (see figure). 

PQ = 42 yds. The altitude of the trapezium is 20 yds., and the 

area of the plot is 1000 sq. yds. Determine SR. 
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P 42 yds. Q 

20 yds.I
 
S 	 R 

11. 	 A parallelogram has area 40 sq. in. If one side is 1 ft., find the 

corresponding altitude. Give your answer in feet. 

12. 	 Prove that a median of a triangle divides the triangle into two 

triangles of equal areas. Will the two smaller triangles be con

gruent in every case? In any case? 

A 

CDB 

13. 	 If A', B', C' are respectively the midpoints of the segments 

BC, CA, AB, prove that the area of the triangle A'B'C' is of 

that of triangle AABC. 

A 

C1 	 B' 

B A' 	 cB
A5 
 C
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14. The points E, F are the mid-points of tbh2 sides AB, AD of the 
parallelogram ABCD. Prove that AECF = - ABCD. 

15. 	 Prove that the A B 

diagonals of a 

parallelogram
 

divide it into
 
0 

four triangles 

which have 

equal areas. D C 

16. 	 A quadrilateral has perpendicular diagonals. Prove that its 
area is half the product of the lengths of the diagonals. Can you 
give an area formula for a rhombus from this theorem? If so, 
what is the formula? Look at Problem 2 of Problems 2-4. How 

good was your area estimation? 

17. 	 A square has side s and diagonal d. Find its area 

(i) in terms of s;
 

(ii) in terms of d.
 
What relationship between s and d do you deduce from this?
 

18. 	 An isosceles right triangle has legs of length a. Find 

(i) the length of the hypotenuse; 

(ii) the area of the triangle; 

(iii) the length of the altitude to the hypotenuse. 

[Hint: Use the relationship you found in Problem 17.] 

2-8 	 PYTHAGORAS' THEOREM. 

In this section we shall use some of our previous results on area 
to prove a very important relationship between the lengths of the legs and 
the length of the hypotenuse of a right triangle. You have already met this 
result " your work in Secondary Two, when it was called "The Pythagorean 

Property." 
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THEOREM 2-6. If a right triangle has legs o.L 

lengths a, b and hypotenuse of length c, then 
2 2 2 

c = 	a + b2 . 

Given: A right triangle AABC with the right angle at C. 
2 a 2Prove: c = + b2. 

p 	 E b Q 

bFA 

a 

b 

c 	 B 
F 

b 

G a R 

Proof: We construct a square PQRS of side a + b, and sub

divide the square region determined by PQRS as shown 

in the figure. 

1. 	 The quadrilateral EFGH 

is a square of side c. 

2. 	 PQRS = (a + b) 2 

3. 	 PQRS = HEP + EFQ + FGR + GHS + EFGH 

4. 	 HEP = EFQ = FGR = GHS 

5. 	 HEP = - ab 

6. 	 (a + b) 2 = 4(- ab) + Statements 1-5, and 
Area Postulate 1. 

7. 	 a2 + 2ab + b = 2ab + c2 Statement 6 andalgebra 

a 2 + b2 C 28. = 	 Statement 7and algebra 
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Give reasons for the first five statements of the above proof. 
The theorem just proved is named after the Greek mathematician 

Pythagoras, who lived in the 6th century B. C. It is not known for certain 
whether he himself discovered this theorem. It is reputed that there are 
more proofs of this theorem than there are of any other theorem in the 
whole field of mathematics. In Problems 9-11 below, we give other methods 
for proving the theorem. In particular, we give in Problem l ithe proof 
which has come down to us from Euclid. You will observe that this proof is 
purely geometric in character. This is because the ancient Greeks thought 
cJ Prea, not entirely as a number (as we have done), but more as a region. 

The coaverse of Pythagoras' Theorem is also true. We prove this in 
our next theorem. 

THEOREM 2-7. If the square of one side of a 

triangle is equal to the sum of the squares of 
the two remaining sides, then the triangle is 
right-angled, the right angle being opposite the 
first side. 

Given: A triangle A.ABC with AB = c, BC = a, CA = b 'such that 

C 
2 =a 2 + b. 

Prove: C is a right angle. 

At

C 

C1b 	 abt 

A c 	 B t atC	 BI 

Proof: 	We construct a right triangle AA'B'C' with legs BIC' = a' = a, 
and C'A'= b'= b. Then 

(1) 	 c' 2 = a' 2 + b'2 (1) Pythagoras' Theorem
 
2 +b 2
(2) 	 c' = a (2) Statement (1) anda'=a, b'=b 

by construction 
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= C2 	 (3) Statement (2) and a2 + b2 = 

(3) C'2 

C2 by hypothesis. 

(4) c' =c 	 (4) 

(5) AABC = AA'B'C' (5) 	 SSS 

(6) C = C' 	 (6) 

(7) 	 C is a right angle (7) Statement (6) and C' is a 

right angle (by construction). 

Give 	reasons for statements (4) and (6) in the above proof. 

PROBLEMS 2-8 

1. 	 If a, b, c are respectively the lengths of the sides and hypoten

use of a right triangle, complete the following table: 

a b c 

(i) 12 13 

(ii) 24 25 

(iii) 16 20 

(iv) 9 

(v) 15
4 

25 
4 

(vi) 15 17 

(vii) 6 8 

(viii) 0"9 4"1 

2. Calculate the length p 

of the side QR of the 

triangle APQR. 

3. A window- cleaner 24 

has a ladder which is 

25 feet long. He 

places it so that it N R 

just reaches a window 

sill 20 feet from the 

ground. How far 

from the house is the foot of the ladder? 
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4. Which of the following sets of numbers could be the lengths of 
a right triangle? 

(a) 7, 40, 41 (e) 6, 12, 14 

(b) 15, 36, 39 (f) 32 2 31 

(c) 8, 15, 19 (g) 5, 5 5, 

12 2 
(d) 0.75, 1, 1.25 (h) 10, 20, 25 

What theorem(s) have you used here? 

5. If p and q are positive integers such that p > q, prove that 
p2 q2 2pq, and p2 + q can be taken as the lengths of the
 
sides of a right triangle.
 
Which integer gives the length of the hypotenuse?
 

6. Make a table with the following column headings: 

p q p2 - q 2pq p2 + q2 

Using the results of Problem 5, list in the table the integral 
lengths of sides of right triangles, the hypotenuse being less 
than or equal to 25.
 

(There are six such triangles.)
 
Continue the table to give the lengths of the sides of such tri
angles where the hypotenuse is less than or equal to 41. How
 
many such triangles are there? Can you generalize this last
 

result?
 

7. A set of three positive integers, such as 3, 4, 5 which can be 
regarded as the lengths of the sides of a right triangle is called 
a Pythagoras' Triple. A Pythagoras' Triple is said to be prim
itive if it is not an integral multiple of some other Pythagoras' 
Triple. For example, the set {5, 12, 13} is a primitive Pytha
goras' Triple, but the set {15, 36, 39} is not. Write down all 
the primitive Pythagoras' Triples which are included in your 
table in Problem 6. 

8. The rectangular solid shown in the figure has the edges as indi
cated. Calculate the length of the diagonal BH. (Hint: First 
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calculate the length of the H G 

segment HF. What type 

of triangle is AHFB?) 

DF 

12 1002 

A 16 B 

9. Starting with a right triangle 

AABC, we construct a second 

triangle ABED congruent to the 

first as shown in the figure. 

Prove that the quadrilateral 

ACDE is a trapezium, and also 
that EBA is a right angle. 

D 

I 

bi 

I 

I 

/ 

I/ 
/ 

C/ 
/\ 

/ 
/ 

E 

' 
\\ 

\ 

Using the fact that the area of 

the trapezium ACDE is the 

sum of the areas of the tri

angles AABC, AABE and 

ABED, prove that 

a 2 + b = c 2 . 

a 

C 

/ 

b A 

10. In the figure, ABDE is a 

square of side c,drawn on 

the hypotenuse AB of the 

right triangle AABC; IH 
BCand DG IIC. Show 

E 

\\ 

G< 

-

F.,'I 

\ 

1 

O 

that the quadrilateral CFGH 

is asquare of side b -a,i 
and hence prove Pythagoras' 

Theorem. 

I 

A 

\\ 

H 

c 

B 
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11. 	 In this problem we 

shall consider area - ,\
 
as a region, rather 
 -,," \F 
than 	as a number, H \
 
and prove Pythagoras' \-.
 

Theorem in the form:
 

IfAABC is a right
 
triangle, the square 
 / 

on the hypotenuse AB
 
is equal to the sum of 
 / 
the squares on the 

legs AC and BC. We /
 
shall give the steps in
 
the proof and you E 
 K 	 D 

should supply the
 
reasons for them. To
 
prove that ABDE = BCFG + CAHJ.
 

(1) 	 AAEC AABH 

(2) 	 AEC = ABH 

(3) 	 CAHJ = 2ABH 
(4) 	 AEKL 2AEC 

(5) 	 CAHJ = AEKL 

(6) 	 BCFG = BDKL
 

(There are a number of steps involved in this.)
 
(7) 	 ABDE = BCFG + CAHJ 

12. 	 Prove that the median to the hypotenuse in a right triangle is 
half as long as the hypotenuse. Hint: In the figure, let AABC 
be right-angled at C with CE 	the median to the hypotenuse. On 

A 

E 
> 

-

D 	 C 
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the ray opposite CB, take the point D such that CB = CD. Then 

AACB = AACD (why?), and CE = AD (why?). Complete the 

proof. 

13. 	 Prove that in a 30* - 600 - 900 right triangle the leg opposite the 

300 angle is one half as 

long as the hypotenuse. A 

Hint: In the figure, let 

CD be the median to the 

hypotenuse of the right D 

triangle AABC. Use the 

result of Problem 12 to 100 

determine the type of tri- c 

angle AACD is. 

14. 	 Find the length of the altitude of an equilateral triangle of side 

s. What is the area of the triangle? Now look back at Problem 1 

of Problems 2-4. How good was your approximation to part (c)? 

15. 	 Find the area of an equilatei'al triangle whose altitude is 4 cm. 

16. 	 Show that the side of an equilateral triangle of altitude h is 

2 3 h. 
3 

What is the area of the triangle? 

17. 	 The sides of a triangle are 5, 6.5, 6.5 respectively. Find the 

length of the altitude drawn to the side of length 5. What is the 

length of the altitude drawn to a side of length 6.5? 

18. 	 ABCD is a square of side 12, 

and XC = 3.5. Calculate the 
area of the triangle ABX DX 3.5 

also the length of the segment 

BX. 	 Hence find the length of 1 N 

the altitude AN. 	 12 
I-
,'

I 	 - \ 
"
 

I -t 	 \
iI -


A 12 

C 
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19. Calculate the length of 
PR, and the altitude 
SN.N 

p 

Q" 

0,% 

450", 

5 S 

N 

7 R 

20. Challenge Problem 

The triangle APQ is an 

equilateral triangle inscribed 

in the square ABCD. Find 
the ratio of a side of the tri-

angle to a side of the square. 

A 
= --

\,-," 

' - " 

D 

""2- Q 

B p 	 C 

21. 	 Challenge Problem 
An equilateral triangle AXAB and a square ABCD have a 
common side AB and are such that the points X and C are on 
opposite sides of the line AR. 
Prove that the length of the segment is ( 6 + f_) a, where 
AB = 	2a. 

22. 	 Let ABCD 

be a con- D 
vex quad- C 
rilateral. 	 ', 

On the ray 

AB,we 
choose the 

point E A -
such that B E 

CE is par
allel to DB.
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Prove that the area of the triangle AADE is equal to the area of 

the quadrilateral ABCD. 

23. 	 Look at Problem 22 again. You will see that it provides us with 

a ruler-and-compass method for constructing a triangle whose 

area is equal to that of given convex quadrilateral.
 

Does the construction hold if the quadrilateral is non-convex?
 

24. 	 Construct, using ruler and compasses only, a triangle whose 

area is equal to that of a given convex pentagon. 

25. 	 Challenge Problem: 

Some mathematicians claim that Pythagoras' Theorem is true 

only if the sum of the measures of the angles of a triangle is 

180. 	 Is the fact that the sum of the measures of the angles of a
 

triangle is 180 used anywhere in our proof of the theorem
 

(Theorem 2-6)?
 

(Remember that the "angle-sum" theorem is equivalent to the
 

parallel postulate.)
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Chapter 3 
SIMILAR TRIANGLES 
AND POLYGONS 

3-1 INTRODUCTION. 

Recall that when we studied congruence of triangles we required that 
two triangles iit only have the same shape but also the same size before we 
agreed to call them congruent. We set up a one-to-o:,e correspondence be
tween the angles and sides of the two triangles in a special way so that if


A<--> D, B <--> E, C <--> F and if A =D1 
 EC=Fy 1 B=DB F n 
~~= CF, AB =DE, BC =EF, and 

AC - DF, then we defined AARC to be congruent to ADEF. 
It often happens in the planning of buildings, the construction of bridges, 

the making of maps, etc. that we need to draw figures that are small but 
exact models of larger figures. Also when we work with a microscope in 
biology we often want to draw figures that are much larger than the objects 
we look at. For f. 3e and other reasons our study of geometry will not be 
complete if we do not consider some of the more important properties of 
those geometric figures that have the same shape, but not necessarily the 
same size. 

CLASS ACTIVITY 

1. Draw two circles that are not the same size. Do they have the same 
shape? Do all circles have the same shape? 

2. Draw two squares that are not the same size. Do they have the same 
shape? Do all squares have the same shape? 

3. Draw two rectangles that are not the same size. Do they have the 
same shape? Do all rectangles have the same shape? Explain. 
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You may have discovered in Problem 3 above that the two rectangles 

you drew did not appear to have the same shape. For example, if one of 

them were short and fat and the other long and thin as in the figure below, it 

is evident that one is not an exact model of the other. 

I zzz 

On the other hand if your two rectangles looked like this: 

you might have concluded that all rectangles have the same shape. 

This last example helps us see two things. First it can be misleading 

to draw conclusions from looking at only one example, and second it is nec

essary for us to define exactly what we mean when we say that one geometric 

figure is similar to (has the same shape as) another. 

The following definition of similar polygons was given in Secondary 

Two: "Two polygons have the same shape if the angles of one are congruent 

to the corresponding angles of the other and the ratios of the measures of 

corresponding sides are equal." In a later section we will be more precise 

as to what is meant by the correspondence mentioned in the definition, but 

since you may not have had much experience working with ratios and pro

portions we proceed to study these terms first. 

3-2 RATIO AND PROPORTION. 

You were introduced to the terms "ratio" and "proportion" in your 

work in Secondary One. Recall that if a and b are positive numbers the 

ratio of a to b is the number E. We may also write a ratio in the form "a: b" 
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(this is read "the ratio of a to b"). When a number is described or thought 
of as a ratio it is usually described as the quotient of two other numbers. 
For example, the ratio "5 to 1" is usually expressed as "5 : 1" or 

- rather 	than "5". 

It should be noted that if b = 0, the expression is not defined. We 
b 


need not be concerned about this here, however, since the numbers in our 
geometry will represent measures of angles, segments, areas, etc. and 
hence will be positive numbers. 

PROBLEMS 3-2A 

Unless otherwise stated, the letters in the problems of this section
 
and in later sections will representpo'itive numbers.
 

1. Which of the following ratios are equal to -!? 

1a) 	 (d) 4--2 


a) 114k
 
(b) 	 ( ) a 

3 17a 

2. 	 Reduce the following ratios to lowest terms.
 
15x (c) 51 abc
3x 69a 

(b) 42 ax 	 x 2 - x27 az 	 (d) x 2 + x 

3. For what value of x does each of the following ratios have the value 4? 

(a) 12 	 (C) -jX3x18
 

(b)_3x (d) x -3
 
45 x+2
 

4. Determine the ratio of x to y from the following statements: 
(a) 3x=4y 	 (c) 4x - 6y =0 
(b) ay = bx 	 (d) y =5x 
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a 
5. 	 Express each of the following as a ratio in the form and reduce to 

b 


lowest terms. 
91 

(a) 21 to 15 	 (c) j

(b) 6x :15x 	 (d) 2x +3: 1 

6. 	 To say that three numbers are in the ratio a:b:c is to say that the ratio 

of the first to the second is a to b, the second to the third is b to c, 
and the first to the third is a to c. For example, in the figure below 

we might say that the lengths of the sides of the triangle are in the 
ratio 	3:5:7.
 

6 
10 

14 

Find 	two other sets of numbers which have the ratio 3:5:7. 

7. 	 If the length of the side of a square is represented by the number s, 
find the ratio of its perimeter to its side. 

8. 	 A square is circumscribed about a circle of radius r. Find the ratio 
of the area of the s-i:qre to the area of the circle. 

If a, b, c ...and a', b', c' ... are two sequences of positive numbers, 

we say that the first sequence is proportionalto the second if - = b-= 

•.. = k. The number k is called the constant of proportionality. Why is k 

positive? We note that if the first sequence is proportional to the second, 
-then the second sequence is proportional to the first. Because if a- b 

c~~~a c
a'b 

= =k, then a'= 1= c-

a b c k"
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PROBLEM:
 

What is the constant of proportionality for the two sequences 2, 3, 7 

and 6, 9, 21 if we compare the first sequence to 'he second? If we compare 

the second to the first? 

DEFINITION 3-1. If a, b, c, d are positive numbers 
a c 

such that b - c we call this statement a proportion.
b d' 

Note that we have restricted the terms of a proportion to positive 

numbers. Although this restriction is not necessary (we need only restrict 

b and d in the definition to non-zero numbers), we do so for the reason 

stated earlier-the numbers we use in geometry are positive numbers. 

A proportion is a statement that two ratios are equal. Four numbers 

are said to be in proportion if the ratio of the first two is equal to the ratio 

of the last two. The numbers 2, 3, 4, 6 are in proportion. Why? Note that 

the order in which the numbers are given is important since the same num

bers in Lhe order 2, 6, 4, 3 are not in proportion. We sometimes use the 

notation 2:3 = 4"6 for a proportion. This is read "2 is to 3 as 4 is to 6" and 

4means 

If the second and third terms of a proportion are the same number, as 

in a:b - b:c, we call b a mean proportional between a and c or a geometric 

mean between a and c. The geometric mean between a and c is the positive 

number, vr'c. 

Example 

To find a geometric mean between 9 and 16 we set up the equation 

9 x
 
x = 6 and solve for x. We obtain x2 = 144 which has two solutions, x = 12 

and x 	= - 12. The geometric mean between 9 and 16, then, is the number 12. 

When more than two ratios are equal we may state this in the form of 
I c =e .sa xedd rprin 

an extended proportion. For example, b= = is an extended proportion. 

It is a short (and convenient) form for expressing the three proportions 

a c c e anda e 

b ddf' bf 
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Since a proportion is a statement about numbers, the properties of 
proportions can be proved quite easily using the laws of algebra. The 

following theorem is fundamental to the work that follows. 

THEOREM 3-1. If a, b, c, and d are positive numbers, 
a C
 

then - =- if and only if ad = bc.
b =d 

PROBLEMS 3-2B 

1. Theorem 3-1 above consists of two parts. 
(a) State the "only if" part of Theorem 3-1 and prove it. (This is 

sometimes referred to as the "cross-product" theorem.) 
(b) State the "if" part of Theorem 3-1 and 	prove it. 

2. Are the numbers 2, 5, 6, 20 in proportion? Why? 

3. 	 Which of the following are true statements? 
6)x = 4x 2 

(a) 3-12 

(b) 	 13 27 (d) 14xy = 21y

5 ' 26-x 39
 

4. 	 Determine x so that the following statements are true. 
(a) 	9 -_ 5 W x- 3 13 

275 -2 

(b) 4:x=x:9 	 (d) 2x- x-23 2 

5. Find the mean proportional between 4 	and 12. 

6. Find the ratio of x to y if x-_y 7 
x+y = 13" 

7. 	 Show that if and a/ 0, thenx=y.x y 

8. Findxandyif =2=. 

It is often convenient to transform a known proportion into some 
equivalent form. This is particularly useful when we prove the Basic 
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Proportionality Theorem in Section 3-4 and again, later, when we prove that 

perimeters of similar polygons have the same ratio as any pair of corre

sponding sides. We list below six of the more useful of these equivalent
 

forms. You should spend a little time studying them so that you recognise
 

how each is obtained from the given proportion. 

It is 	 quite easy to prove that each of the statements below is equivalent 

to the 	given proportion, since an application of Theorem 3-1 and algebra 

reduces each to the form ad = bc. 

THEOREM 3-2. 	 a C if and only if
 
b d ol
 

d _ c 	 (d) a+b c+d
(a)b a 	 b d 

(e) a-b c-da b 
c d b d 
b -- ed (f)(f a+ c _a(c)- +d)
 
a c b+d b
 

We can use Theorem 3-2 to generate even more proportions that are 

b t 	 For example, if we apply the theorem to the proportion
a~b c d
 

a+ b- c+d we may conclude
 
b d
 

a+b+b c+d+d or a+2b c+2d
 
b d b d
 

Similarly, applying the theorem to
 

a+b a a+b+a a etc.
c + d bwee 	 c + d +b b ec 

PROBLEMS 3-2C 

1. Tell how each of the statements of Theorem 3-2 is obtained from the 
a =c
 

given proportion, a d'
 

2. Complete each statement. 

then 	X +y =andXY(a) 	 If = , 


y 5' y y
(b) If x+V=3 _ 

(b) 	 ~-Li, then: = __and X
y 4 y 

_ 

y
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,3. If p=a + b+ c,p'=a+b+c' and 
a b c pa 
a = a-
b-cI prove p 


4. Inthe figure on the right, A 
ff DB =EC 

AD AE 
AB AC D -- E 

prove = 

B C 

3-3 RATIO AND PROPORTION IN GEOMETRY. 

In geometry, and in particular in the study of similar polygons, we will 
use the properties of ratio and proportion as they apply to segment lengths. 
When we talk about the ratio of one segment to another we will mean by this 
the positive number that is the ratio of their lengths. Of course, such a 
ratio will have meaning only if the two segments under consideration have 
been measured in terms of the same unit. 

DEFINITION 3-2. If AB and CD are segments, the ratio of AB 

to CD is the number AB . Two segments AB and CD are pro-CDAB CD
 
portional to the two segments A'B' and C'D' ifB'B CDA7~ C'D'" 

The statement that the sides of AABC are proportionalto the sides of 
AA'B'C' will mean that their corresponding sides have the same ratio;that 
i AB BC AC 
is,- - B'C' -

As you know from your earlier experience in measuring segments the 
number you get for the length of a segment depends on the unit you use in 
measuring it. For example, using the foot as a unit we might get the number 

21 for the length of a certain segment whereas if we had used the inch as 

our unit we would get the number 18. This poses an important question. 
Does the number that we get for the ratio of two segments depend on the 
unit that we use in measuring them? How would you answer this question? 
Can you make up an example that would give you some insight to the answer? 
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Suppose the lengths of two sides of a room are 24 ft. and 18 ft. What is the 

ratio of the lengths of the shorter side to the longer? What would be the 

lengths of the two sides if they were measured in yards? in inches? Is the 

ratio of the lengths of the shorter side to the longer the same for these new 

units of measure as it was before? What does changing the unit of measure 

do to the lengths of each side? Do you see that it just multiplies each of 

them by the same positive number? 

Example 1: 

The lengths of two segments when measured in feet are 2 and 5. The 

ratio of the shorter to the longer is - If they were measured in inches 

their lengths would be 2 x 12 and 5 x 12. If they were measured in yards 
1 

1 2 21 1 But 2 × 

and 2 Wetheir lengths would be 2 X and335X-. 5 × 12f12 an 5 31-.W=2 

see again that changing the unit of measure of two segments multiplies the 

length of each segment by the same positive number, buc leaves their ratio 

unchanged.
 

5 (EF) 
Example 2: .. B-

Let AB and CD be 

any two segments whose 4(EF) 

lengths are 5 and 4 when C D 

EF is the unit of measure x(GH) 
and let the length of EF E F 
be x when GH is the unit 

as in the figure. G - H 

We have AB = 5 (EF) 

and EF = x(GH), 

soAB= 5[x(GH)] = 5x(GH). 

Similarly, CD = 4 (EF) 

and EF = x(GH), 

so CD = 4 [ x(GH)j = 4x(GH). 

Once again we see that changing the unit of measure for the lengths of 

A-B and C--D from E to GH only multiplied each of their lengths by the same 
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4 
positive number x, while the ratio A-B 4 when EF is the unit and is = 

CD 4x 

when GH is the unit. 

It appears from our examples that the answer to the question posed 

above is "no". Do these examples constitute a proof that the answer is no? 

Does a consideration of more examples make you more sure of your answer? 

We will state the answer in the form of a theorem. 

THEOREM 3-3. If the same unit is used to measure 

the lengths of two segments, their ratio is the same 

number no matter what unit is used to measure them. 

Proof: 

We see from our examples that changing the unit of measure of two 

segments just multiplies each of their lengths by the same positive number. 
Thus if f and L are the lengths of two segments for one unit of measure, 

their lengths would be x and Lx respectively for a second unit, where x is 

the length of the first unit when measured in terms of the second unit. 

Since 	L x_= their ratio is the same number no matter what unit is chosen
Lx 	 L' 

to measure them. 

PROBLEMS 3-3 

1. 	 Write an extended proportion that shows the sides of AABC are pro

portional to the sides of AFDE. 

2. 	 If the sides of A ABC are proportional to the sides of AA 'B 'C' and if 

AB = 7, BC = 9, AC = 13, and A'B' = 21, find the lengths of B'C' and 

A'C'. 

3. 	 Two segments have lengths of 24 inches and 36 inches. What would be 

their ratio if they were measured in feet? in yards? in miles? 

4. 	 In the figure on the following page, the sides of AABC are proportional 

to the sides of AXYZ. If the lengths of the sides are as shown, what 

is the ratio of AB to XY? of BC to YZ? 
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B 

y 

8 9 

A 
C X 3 Z 

A 7C 

3-4 THE BASIC PROPORTIONALITY THEOREM. 

We shall find that triangles with the same shape have a number of 

interesting properties. A number of these properties deal with proportional 
segments. In particular we shall want to explore what proportions appear if, 

in a triangle, there is a segment parallel to one side and intersecting the 

other two sides. 

In the following figures if the line segment intersecting the two sides 
of the triangle is parallel to the third side what would you guess for the 

measures of the segments marked "?" ? 

4 

2 101 
8? 

3? 

Which of the following proportions do you believe are true if PQI BC? 

APAQ AP AC 
AB AC' PB AQ' A 
PB QC AB AC 
PA- QA ' BP CQ' 
AP PB AB AQ AB _AC P
"-Q=QC'AC APAQ-AP' 

B C 
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AB AC 
We shall be able to prove that AP = AQ is true and from it we can 

easily 	derive a number of other useful proportions. A convenient way to 

prove this proportion makes use of a theorem you proved earlier about the 

ratio of the areas of two triangles which have equal altitudes. Do you re

member it? 

THEOREM 3-4. If a line parallel to one side of a triangle 

intersects the other two sides in distinct points, then it 

cuts off segments which are proportional to these sides. 

Given: AABC with oints D and E on AB and AC respectively such 

that DEI BC. 

Prove: AB AC 

ADAE' 	 A 

Proof: 
1. 	 Draw DC and BE. 

2. 	 area ABED BD Why? D E 
ai 	a AADE AD ' 

3 	area A CED CE Wy?"
 
area AADE AE "Why?
 

4. 	 ABED and ACED have the B 

same base and equal altitudes. 

(Why?) .'.Area ABED = area ACED. Why? 
BD 	CE 
BD 	CE
Combining the three statements (2), (3), and (4) gives5. 

BD+AD CE+AE
6. AD AE Why? 

7 	 AB AC 
AD AE 

COROLLARY 3-4-1.
 

Using the above figure we also have
 
AD AE AB AC
 
BD CE' BD EC
 

This corollary follows directly from steps in the proof of Theorem 

3-4. Do you know which ones? 
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COROLLARY 3-4-2. 

If DIcuts the extensions of the sides of 6 ABC so 

that D and E are on AB and AC respectively, then 
AB AC 
AD AE 

After we have proved a theorem it is
 
always interesting to see whether the con- A
 
verse is true. Do you think the converse of 4 6
 
Theorem 3-4 is true? In this figure if the 6 

P 
9
 

indicated measures were correctly drawn C B 

do you think that PQI IBC? We can prove 
that it is. 

THEOREM 3-5. If a line intersects two sides of a triangle 
and cuts off segments proportional to these sides, then it 
is parallel to the third side. 

Given: 	 LABC with points D A
 
and E on segments
 

AB and AC respectively
 
AB AC 	 4 

such that -D I D 	 E 

Prove: 	DEI BC. 

Proof: 	 B C 

We shall use the method of indirect proof which you stu led in Seconda',y 
Three. Suppose DE is not parallel to BC. Then let DF 'ethe line through 
D parallel to BC intersecting AC in F, which is distinct from E. By Theorem 
3-4, 

AB AC
 
AD AF
 

But by 	hypothesis, 
AB AC
 
AD AE
 

AC AC
 
" AF AE
 

.'. AF 	= AE. 
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Hence F is the same point as E, contradicting the previous statement that F
 

and E are distinct points. Therefore DEI BC.
 

In the proof of this theorem we have assumed that F lies between A and C.
 

Is it possible for (a) C to be between A and F or (b) A to be between C and
 

F? If not, why not?
 

NOTATION We are going to use arrows on lines or 

line segments to indicate they are parallel. 

Thus: or 

/ D 	 D 

A C 	 A C 

indicates that AB II CD or ABI ICD. Lines with the same 

nmber of arrow heads are parallel to each other. 

PROBLEMS 3-4 

1. 	 In the figure if LMI YZ complete 

the following blanks: z 

XL MY-
XZ 'MX L 

XM=
 

XL
 

XY Xz
 
XZ L ' 	 x M 
MY_ 
LZ
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2. In the figure if DE BC and C 

if BD = 6, AD = 9, CE = 2, E 

find AC. 

3. In the figure if ADE = ABC, 

complete the following 

statements: 

AD = AC = 
BD 'AE 

A 

E 

AD 
AE 

AC 
-'AB B 

4. In the figure if 
(a) PS= 3, SR= 6., TR =8, findQT. P 

(b) QT =5, QR =15, PS = 6, 

find PR. 

S 

(c) PR = 21, QR = 30, QT = 10, 

find PS. 

__ 

T R 

5. In the figure shown, 

(a) IfAD=3,AC=9,FG =12 

find CE. 

(b) IfAD=1,CD=2,CE=4 

find FG. 
A B G 

6. In the figure if the lengths are as 

shown how long are the segments 
MQ and BM? 

C 

Q 

5 
)L\M 

A 
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7. In the figure if the 

lengths of the seg-

ments are as indi

cated how long is 

XY? 

A 

E > 

12 

B C 

8. In the figure as 

shown prove that 
HEIDA.o 

HE ] 

D 

H 

0 

G 

AF 

B 

9. In the figure find 

the lengths of 

FG and GH. 

A 

B 1 

2 

> 

E 

2 F 

C -2G \ 

3 

DH 

10. If, in the figure, 

DE IBC, prove that 
AE AD 
BE CD 

HINT: Draw BD and EC. 

Consider the ratio of areas 

of ABDE, ADEC, AAED. 

B C 
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Challenge Problem 

11. 	 AZABCD in a parallelogram B
 

and E and F are midpoints of AB
 

and CD respectively. AC inter

sects E-D and BF in G and H G 
respectively. Prove that G and 

H trisect AC. Prove also that A D 

EG =ED. 
3
 

HINT: Show that BFIlIED. Then consider ACHF and ACGD, and 
LAAGE and AAHB. For the last part apply the result of Problem 10 
to A C GD and A A GE. 

3-5 	 SIMILAR TRIANGLES. 

We have been talking about geometric figures and, in particular, 

triangles that have the same shape but not necessarily the same size. As 

yet we have not made a formal definition of what we mean by "same shape". 
Later, in Section 3-11, we will define similar polygons. Triangles are a 

particular class of polygons and, since some of the properties of similar 

triangles are useful in discussing similar polygons, we define them first. As 

in congruence, similarity involves a correspondence between the two trian

gles such that corresponding sides and corresponding angles have a special 

relationship to each other. 

DEFINITION 3-3. Two triangles are similar if and only 
if a correspondence can be set up between the two trian

gles such that the corresponding angles are congruent 
and the corresponding sides are proportional. The 

correspondence between two similar triangles is called 
a similarity. 

To be more explicit, two triangles AABC and AA'B'C' such that 
AAL C <-> AA'B'C' are similar if and only if 
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C tNAB BC AC 
-
(1) A=A',B B', C C and (2) A'B'B'C'AC' 

A A' 

B - - ,B 

Thus the definition of similarity requires two things: a correspondence 
set up such that (1) corresponding angles are congruent and (2) cor.,-espond
ing sides are proportional. For polygons, in general, both of these conditions 
must hold. However in the case of triangles it turns out that if one of the 
conditions holds then the other follows. In other words if corresponding 
sides are proportional then corresponding angles are congruent, and con
versely. Hence only one of the conditions is required to determine similar
ity betwe..n triangles. In the theorems that follow we will establish the 
equivalence of the two relations (1) and (2). That is, we assume congruency 
of corresponding angles and deduce proportionality of corresponding sides 
and conversely. 

We note that if there is a similarity correspondence between two 
triangles then the sides opposite congruent angles correspond. Thus if 
L ABC and AA'B'C' are similar such that A = A', B =B',C = CI the pairs 
of corresponding sides are BC and BTC'1, AC and A C I and AB and A 'B'. BC 
and B'C' are opposite the congruent angles A and A' respectively. A similar 
statement holds for the other corresponding sides. 

NOTATION: If AABC and AXYZ are similar such that 
A < X1 B < Y,C < Z we write AABC - AXYZ. 
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PROBLEMS 3-5 

1. 	 If AABC - B'A 'C' write down the pairs of corresponding angles and
 

the pairs of corresponding sides.
 

2. 	 In the figure A ABC - A DEF. A 

Find DE and DF. 10 D 

Z69F 
8 B 	 4 E 

3, 	 If AABC "-AA'B'C' andAC = 20, A'C' = 15, B'C' = 12, andA'B' = 9, 

find the lengths of the other sides of AABC. 

4. 	 The sides of a triangle are 4, 6 and a inches. The corresponding 

sides of a triangle similar to the first triangle are b, 12 and 8 inches 

respectively. What are the lengths of the sides of each triangle? 

5. 	 In the figure AABC - AYXC. A 
If CX= 6, CY=5,AX=3, and X 

AB 	= 8 find BC and XY. 

B Z Cy
 

6. 	 Prove that if, in AABC, D and E are the midpoints of AC and BC 

respectively, then AABC -A DEC. 

7. 	 Prove that any two equilateral triangles are similar. 

8. 	 Are two congruent triangles similar? Why? Are two similar triangles 

congruent? Why?
 

9. 	 Prove that ifAABC - ARST and ASTR - AYZX then AABC "- XYZ. 

3-6 	 THE BASIC SIMILARITY THEOREMS. 

Inthis section we prove fundamental theorems on similar triangles. 

CLASS ACTIVITY 

DrawA several triangles AABC and AA'B'C'AA of different sizes suchAA 


that re(A) = rn(A') = 60', m(B) = i(Bf) = 40', ni(C) = ('= 800. In each 
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case 	measure the lengths of the sides of the triangles and calculate the 

AB 	 BC AC 
ratios AB B'C' A'C'* What can you say about these ratios for each pair 

of triangles? Repeat this exercise for triangles with angles whose meas

ures are 1000, 500 , 300 . 

THEOREM 3-6. (The AAA Similarity Theorem)
 

If a correspondence between two triangles is such that
 

the corresponding angles are congruent, then the
 

correspondence is a similarity.
 

Given: 	 AABC and AA'B'C' such 
ix N A 	 A , 

A 	 A'thatA A', B=B', 

C _C'. 

Prove: AB _ BC and D E B' C' 
B'C' A'C'A'B' 

therefore AABC 

AA'B'C'. B C 

Proof: 

If we can prove the first of these equations the second equation will 

follow merely by a cyclic interchange of letters. Hence we set out to prove 

ACAB=that 

1. 	 Let D and E be points on AB and AC respectively such that AD = A'B' 

and AE = A'C'. 

2. 	 AADE AA'B'C' SAS congruence theorem 
A 

3. 	 ADE= B Why? 

4. 	 ADE - B Statement 3 and hypothesis 

5. 	 .. DE IBC Why? 

6. 	 If D and B coincide then AADE AABC and therefore AABC 

AIAB'C'. Thus AB = A'B' and AC = A'C' and hence AB AC Why? 
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7. 	 If D is different from B then by the Basic Proportionality Theorem we 

AB AC AB AC=have ; = 	- and thereforeAB, A-C r . Why? 

AB BC 
= 

8. Similarly we have 
A " B BC" 

9. ThereforeAB BC AC and hence AABC - AA'B'C'. 

What have we assumed about the relative sizes of the ratios AB and 

AC 
? Can you 	prove the theorem if AB <A'B' and AC <A'C'9 

COROLLARY 3-6-1. (The AA Similarity Theorem) 

If two angles of one triangle are congruent to two 

angles of another triangle, then the two triangles are 

similar. 

The proof of the corollary depends on the fact that if two pairs of cor

responding angles of two triangles are congruent then (by the Angle-Sum 

Theorem for triangles) the third pair mnust also be congruent. 

COROLLARY 3-6-2. 

If a line parallel to one side of a triangle intersects 

the other two sides in distinct points, then it cuts off a 

triangle similar to the given triangle. 

There are 	other corollaries which can be proved by the AAA Similarity4 
Theorem: 
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COROLLARY 3-6-3. 

If two right triangles have an acute angle of one 

congruent to an acute angle of the other, the triangles 

are similar. 

COROLLARY 3-6-4. 

If two triangles are similar to a third triangle, 

they are similar to each other. 

COROLLARY 3-6-5. 

Corresponding altitudes of two similar triangles 

are in the same ratio as any two corresponding sides. 

COROLLARY 3-6-6. 

Corresponding angle bisectors of two similar 

triangles are in the same ratio as any two correspond
ing sides. 

THEOREM 3-7. (The SAS Similarity Theorem) 

Given a correspondence between two triangles. If 

two pairs of corresponding sides are proportional and 

the included angles are congruent, then the correspond

ence is a similarity. 

Given: AABC and AA'B'C' 
AtAAB

A A' andA'B' 

AAC'C ' D -	 - - EB ZC 

Prove: AABC AA'B'C'. D E'C BB 

Proof. 

1. 	 Let D and E be points on AB and AC respectively such that AD - A'B' 

and AE = A 'C'. 
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2. 	 AADE - /A11BC' Why?
 
AB AC
 

3. 	 AD AE Why? 

4. 	 DE11BC Theorem 3-5. 

AA 

5. 	 B - ADE Why? 

6. 	 A-A' Hypothesis 

7. 	 AABC - AADE AA Similarity Theorem. 

8. 	 AABC - LAAB'C' Statement 2 and Corollary 3-6-4. 

In the proof of this theorem we have assumed that AB > A'B' and 
AC > A 'C'. Prove the theorem when 
(1) 	 AB<A'B'andAC<A'C' (2) AB = A'B' and AC = AC'. 

THEOREM 3-8. (The SSS Similarity Theorem) 

Given a correspondence between two triangles. If 
corresponding sides are proportional, then the corre

spondence is a similarity. 

Given: AABC and ,AA'B'C' such that A 

. BC-AB AC_ At 
A'B' B'C1 AC' 

D E
 
Prove: AABC - A A'B'C f
 

B 	 C B C 

Proof: 

1, 	 On AB construct AD = A B' and on AC construct AE = A 'C and draw 
DE, 

ARB 	 AC 
2. 	 AB AC Why? 

3. 	 A-A 

4. 	 AABC - AADE SAS Similarity Theorem. 
DE AD 

5. 	 DE AD Definition of similarity. 
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AD A IB6. DE = BC ×"A = BC X A'B 	 Statements l and 5. 

7. BIC' = BC x AB" 	 Hypothesis. 
B'C=BCAB 

8. DE = B'C' 	 Statements 6 and 7. 

9. 	 AADE AA'B'C' Statements 1, 8 and SSS Congruence
 

Theorem.
 

10. 	 &ABC - AA'B'C' Statements 4, 9 and Corollary 3-6-4. 

What assumptions have we made in the proof about the relative sizes of 

the sides of AABC and AA'B'C'? 

PROBLEMS 3-6 

1. 	 For each pair of triangles indicate whether the two triangles are 

similar and if they are similar state why. 

(a) 	 (c) 

2 	 2 

(b) 	 (d) 

10 8 4 	 500 

3 	 600 

6 

2. 	 In A DEF, DF = 20, DE = 16, EF = 24. Through H, a point in DF, and K, 

a point in EF, HK is drawn so that FH = 15 and FK = 18. Show that 

A HKF - A DEF. How long is HK? 

3. 	 The legs of one right triangle are 3 and 4 and the legs of another are 

6 and 8. Are the triangles similar? 
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4. 	 In AABC and ADEF, m(A) = m(D) = 60 ° , AB = 4, AC = 10, DE = 2 and 

DF = 5. Are the triangles similar? If so, prove it. 

5. 	 In the figure, AO = 8, BO = 6, OD = 4 
and OC = 3. Prove that B 

AAOB - ADOC. 0 

A 

AE 	AD6. 	 If in the figure X =;jC prove that A 

AABC - AAED. 	 E 

B 

7. 	 In the figure if OP = a, OQ = b, p 
OS = c and if AOPQ "AOSAL ,, S 

express OR in terms of a, b and 
C. 

Q R 

8. 	 If AXYZ is a right triangle with z
 

right angle at Z and if

XW 	 XZ 

- = 	 X I Mprovethat ZWI XY. Y 

9. 	 Prove that if two isosceles triangles have congruent vertex angles the 
triangles are similar. 

10. 	 Prove that if two isosceles triangles have congruent base angles the 
triangles are similar. 

<-->,,<--> R11. 	 If in the figure RM = PL prove that LMIIPR. M 

XQ 

P 
L 
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12. 	 Prove that if two triangles are similar then the ratio of their perim

eters is the same as the ratio of two corresponding sides, 

13. 	 In the figure MZ I XY and LY LXZ. Z 
Find two similar triangles. How 
many proportions can you write? 

L 

x VM 

14. 	 If AABC ,- ADEF and AG and DH are medians prove that the ratio of 

the medians is equal to the ratio of any two corresponding sides. 

Challenge Problem 

15. 	 In AABC, D is the midpoint of AB and E is a point on AC such that 

AE> EC. DE and BC intersect at F. Prove that 
FB AE 
FC CE 

HINT: Draw a line CP through C parallel to AB and intersecting EF 

at P. 

3-7 	 METHODS OF PROVING LINE SEGMENTS PROPORTIONAL. 

Many problems in similar triangles involve the setting up of ratios of 

line segments and proving line segments proportional. 

Suppose that in this figure 

we want to prove UW - -z 	 w 

This proportion naturally 

makes us think of similar triangles x L y 

because such proportions are a basic 

characteristic of similar triangles. 

If we could prove two triangles 

similar here the proportion might z 

come as a consequence. What triangles might we try to prove similar? Do 

these triangles have as sides the segments involved in the proportion? 
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What 	correspondence between the two triangles would produce the required 

proportion? What information do we have which might help prove the 

triangles similar? We now give a formal proof of the above result. 

Proof: 

1. 	 AXUW contains XW and UW and A UYZ contains segments YZ and UZ. 

2. 	 XUW YUZ Why? 

3. 	 WXU UYZ Why? 

4. 	 AXUW '-A YUZ Why? 

=	 ?5 UW UZWhXW 	 YZ Why? 

We can formulate the general method of attack on such problems. 

To prove that that four line segments are proportional we show that the 

line segments are corresponding sides of similar triangles. 

The steps in applying this procedure are: 

1. 	 Find two triangles each of which has two of the four segments as sides. 

2. 	 Prove that these triangles are similar. 

3. 	 Form a proportion using the fact that these line segments are corre

sponding sides of the similar triangles. 

4. 	 If necessary, transform the proportion by an application of theorems on 

ratio and proportion. 

Instead of proving the equality of two ratios of line segments we may 

be required to prove that the product of the lengths of two line segments is 

equal to the product of the lengths of two other line segments. In such a case 

we reduce the expression to the equality of two ratios and then apply the 

above procedure. For example in order to prove that AD x EF = BC X DE 

we show that 
AD BC AD DE 
DE -EFor TDfI, or BC EF 

Sometimes the four line segments to be proved proportional may not 

happen to be sides of similar triangles. In that case we show that each of the 

given ratios is equal to a third ratio. This may involve the consideration of 

more than two triangles. The following example indicates the method of 

attack. 
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Example. In the figure ZT7ABCD is 
B 

a parallelogram. Prove that AG 2 = A 

FGX EG. 

Analysis: This means that we 
_AGEG _ _ _ _ 

should prove that GAG D2 E 

Proof: 

The line segments AG, FG and EG do not all belong to any two triangles 

that we might be able to prove similar. So we consider each ratio separately. 

First take AG. These segments are sides of triangles AADG, A GFB 
FG
 

and AAGB. Out of this set of three triangles the two that appear to be sim

ilar are AADG and A GFB. But for a proper correspondence we should con

sider AAGD and AFGB (why?). These two triangles are similar. Why? 

(1)
Hence we have A 

Next consider E._ These segments are sides of triangles AAGB, A DGE andAG"
 

AADG. Again for easy matching we see that we must drop AADG from our 

consideration. For a proper correspondence we consider AAGB and A EGD. 

These two triangles are similar. Why? Hence we have 

EG = ED GD (2) 
AG AB GB 

AG EG
 

From (1) and (2) we see that each of the ratios :- and E- is equal toDG AAGE
 

= 
GD Hence AG and therefore AG 2 EG X FG. 

GB FG AG
 

PROBLEMS 3-7 

1. Prove that any two equiangular triangles are similar. 

2. In the figure AC = 18, BC = 24, C 

DC = 6 and EC = 8. IsDEIIAB? I E 

Is A CDE ACAB? 

A B 
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3. 	 A tree casts a shadow 30 feet long when a 6-foot pole casts a shadow 
9 feet long. How tall is the tree? 

4. 	 A line from the top of a cliff to the gound just passes over the top of a 

telephone pole 20 feet high and meets the ground at a point 15 feet 
from the base of the pole. 1i it is 120 feet from this point to the base 

of the cliff how high is the cliff? 

5. 	 Given the figure as shown. A
 

FindAB and BC.
 
3 4 

x06 

B 	 C 

6. 	 Given the figure as shown. z
 
Express d in terms of L
 

a, b and c.
 
b 

ZXd a c 

M 

7. 	 In the figure as shown prove
 

that: D
 

(a) AABO - A DCO 	 0 

(b) AO x OC = BO x OD. 

A
 

8. 	 Prove that the diagonals of a trapezium divide each other into four
 

segments that are proportional.
 
D 	 G ,G 

9. 	 Given the figure as shown with E and 
G as any points on AB and CD 

respectively. 

Prove that DG x FB = EB x DF. F 

A E B 
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10. 	 In the figure if m(CAB) = 90', 

m(ADB) = 90 °, prove that 

AD CD d BD AB 
A- = AC AD -AC 

11. 	 In the figure as shown prove that 

DE AB
 
AE BC 


12. 	 In the figure XY = YZ. Prove 

that LM x NZ = LN X MX. 

13. 	 In the figure 5l DEFG is a 

square.
 

Prove 	that: 

(a) AD x EB = DG x FE. 

(b) AD x CF = CGX DG. 

14. 	 Using the given figure prove that 

(a) 	A ADC -,A BEC.
 
- A BFD.
(b) AAFE 

D 

AB 

C 

A 

x 

L 

M 

c 

z 

N 

B 

A D 

c 

B 

A B 
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C 

15. 	 In AABC let E, F and G be the midpoints of the sides AB, BC and CA 

respectively. Prove that A ABC A FGE.A. 

16. 	 Prove that the bisector of an 
Bangle 	of a triangle divides the 

opposite side into segments - - . 
proportional to the adjacent . 
sides. A 

HINT: Given AABC, AD the 
bisector of A meeting BC in D. The problem is to prove that =AC 

< _> _ BD AB* 
Draw BEIIAD. 

17. 	 Given AABC with AE the bisector E 
of the external angle at A meeting -1 

<---> BE BA 
BC in 	E. Prove that - -

CE 	 CA// 

F A 

18. 	 Given AABC. Let the bisectors of the internal and external angles at 
A <--BBE 

A meet BC in points D and E respectively. Prove that - = BCD 	 CE" 

HINT: Use the results of Problems 16 and 17. 

3-8 	 SIMILARITY IN RIGHT TRIANGLES. 

Consider the figure below where AABC has a right angle at C and the 
altitude is drawn from the right angle to the hypotenuse. 

C 

A B 
D 
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Are there any similar triangles in the figure? if you find two similar 

triangles, naine them, being careful to put corresponding vertices in the 

same order. Can you find more than one pair of similar triangles? How 

many pairs of similar triangles are there in the figure? 

Is IsADC "AAACB? Why? 

Is 6 ACB 6 CDB? Why? 

Is 6 ADC CDB? Why?'-

Can you summarize the results above into one statement? We will 

call this statement Theorem 3-9. 

THEOREM 3-9. The altitude to the hypotenuse of a 

right triangle subdivides it into two right triangles 

that are similar to the given triangle and to each other. 

Using the similarities developed in proving Theorem 3-9 we can write 

many different proportions involving corresponding sides of similar triangles. 

Let us list some of those proportions. 

From AADC - AACB we get (fill in the blanks): 

(a) AD ? ? AC 

AC CB CB ? (c) AC AB 

From AACB - 6 CDB we get: 

d) AC_ CB 
( DB 

(e) ? _ 

CB 
CB 
DB 

(f) CD -
AB 

From AADC 6CDB we get: 

(g) AD _? DC AC (i) 
? DR 9h CD CB 

If you look closely at the nine proportions you have written you will 

see that the pair (a) and (i) involve the same four numbers but in a different 

order; that is, one could be obtained from the other bv interchanging the 

second and third terms. Similarly for the pair (b) and (f) and the pair (d) 

and (h). What do you notice about each of the three proportions (c), (e), and 

(g)? Do you see that each of them has the same number for its second and 

.hird terms? What do we call this number wit; respect to the other two 

terms? We find these latter three proportions are more useful than the 

others, so we state theni as a theorem. Since this theorem is a natural 

consequence of Theorem 3-9, we list it as a coi ollary. 
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COROLLARY 3-9-1. 

Given a right triangle and the altitude from the 

right angle to the hypoLnuse: 

(1) 	 The altitude is the mean proportional between the 

two segments formed on the hypotenuse. 
(2) 	 Either leg is .he mean proportional between the 

hypotenuse and the segment 

adjacent to the leg. 

PROBLEMS 3-8 

1. 	 Find the length of a, b, and h in the 

figure on the right. 

2. 	 In Problem 1 above what is the ratio 

of b to a? What other pairs of seg-

ments in the figure have this same 

ratio? 

3. 	 In the figure on the right, find 

x, y, and h. 

4. 	 In Problem 3 above what is the 

ratio of h to y ? What other pairs 

of segments in the figure have 

this same ratio? 

5. 	 In the figure, find x, a, and b. 

Challenge Problem 

on the hypotenuse 

A 
3 

C 

I 

1h 

hB 
12 

x, 

5 

w 

/ 

\h 

"\ 

Y 

6 

z 

4 

0 x 

b 

6. 	 In arriving at the statement of Theorem 3-9 we assumed that the 
altitude from the right angle intersects AB in a point D that is between 

A and B. Prove that this is correct. 
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HINT: There are essentially five possible positions for D. They 

are 

(1) A is between 	D and B 

(2) B is between 	A and D 

(3) D=A 

(4) D= B 

(5) D is between 	A and B. 

Show that the first four of these contradict the fact that A is an acute 
angle, hencc (5) is the only remaining possibility. 

7. 	 In the figure on the right find 

x, y, and h in terms of the side c. 

8. 	 In the figure on the right find 

x, y, and h. 

9. 	 Use the figure on the right to 

= athus provingshow 	that h 
C 

the theorem that the altitude to 

the hypotenuse of 	a right triangle 

is the 	product of the legs of the 

given 	triangle divided by the 

hypotenuse. 

8 

x y 

13 

a h b/ 
B h"A 

-

10. In the figure of Problem 9 find BD and DA in terms of the lengths 

a, b, and c of the sides. 
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3-9 	 PYTHAGORAS' THEOREM. 

You were shown a proof to Pythagoras' Theorem in Chapter 2 using 
area. Other area proofs were suggested in the exercises. There are over 
300 known proofs to this famous theorem, not all of which employ the use of 
areas in their development. If you worked Problem 10 of Problems 3-8 
above, you will have taken a major step toward a remarkable proof of Pytha
goras' Theorem based on similar triangles. It is a very simple proof and 
you should feel the thrill of discovering it for yourself. Let us look at the 
figure of Problem 10 again. 

In the problem you were asked to C 

find BD and DA in terms of the lengths 
a, b, and c of the sides of right triangle a b 

'ABC, Do this and see if you can prove, 
2
in the figure, that ( + b2. Be sure B D 

you try the proof yourself before read- %. 
C 

ing the following hint: Use (2) of Corol
lary 3-9-1 and write expressions for BD and DA in terms of a, b, and c.
 

Now, BD + DA = c. Why? Complete the proof.
 

PROBLEMS 3-9 

1. 	 In the figure on the right, AABC is B 

an isosceles right triangle with 
sides as marked. Find the hypotenuse 

6 XX. 

2. 	 Find the ratio of the leg to the hypoten
use in Problem 1. Is this ratio the A 
same for all isosceles right triangles? 
Prove that it is. 

3. 	 Find the legs of an isosceles right triangle if the hypotenuse is v4". 

4. 	 One leg of a right triangle is 6 and the hypotenuse is 12. Find the 
other leg. 

5. 	 In a 30°- 60" - 90c right triangle the length of the hypotenuse is 10. 
Find the length of the longer leg. 
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6. 	 What is the ratio of the shorter leg to the longer leg in Problem 5? 

Do you think this ratio is the same for all 300 - 600 - 900 right trian

gles? Prove that it is. 

7. 	 In a. 300 - 600 - 90' right triangle the length of the hypotenuse is 2. 

Find the lengths of the legs. 

3-10 	 POLYGONS. 

Before defining similar polygons in the next section, we need to recall 

some of the definitions concerning polygons from your earlier work in 

geometry. We will then define a regularpolygon and develop some formulas 

that will enable us to find the sum of the degree measures of the interior 

and exterior angles of a polygon as well as a formula for each angle of a 

regular polygon. In this and the following section when we use the word 

polygon, we will mean a simple, convex polygon. 

You may recall that special names are given to polygons of 3, 4, 5, 6, 

7, and 8 sides. In case you've fo:gotten they are called respectively a 

triangle, quadrilateral, pentagon, hexagon, heptagon, and octagon. In general 

a polygon having n sides is called an n-gon. 

In the 	figure on the right, ABCD . . indi-
B an n-gon with n sides and n vertices. 	 A X 

cates 

Two vertices which are endpoints of the same C 

side such as A and B, B and C, C and D, etc. 

are called adjacent vertices. Those that do G D 

not lie on the same side such as A and C, 
F E

B and 	D, etc. are called non-adjacent or 


opposite vertices. Any line segment joining
 

two opposite vertices is called a diagonal.
 

An angle whose rays contain adjacent sides of the polygon such as ABC, BCD,
 

etc. is called an interiorangle of the polygon. An angle which is adjacent to
 

and supplementary to an interior angle, such as CBX, is called an exterior
 

angle of the polygon.
 

DEFINITION 3-4. A polygon which has all of its sides con

gruent and all of its angles congruent is called a regular 

polygon. 
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CLASS AC TIVITY 

1. 	 Draw polygons of 4, 5, 6, 7, and 8 sides respectively. How many 
diagonals can be drawn from one vertex in each of the polygons you 
drew? How many diagonals can you draw from one vertex in an n-gon? 

2. 	 Into how many triangles do the diagonals from one vertex subdivide a 
polygon of 4 sides? 5 sides? 8 sides? n sides? 

3. 	 What is the sum in degrees of the interior angles of a polygon of 4
 

sides? 5 sides? 8 sides? n sides?
 

4. 	 HITw many exterior angles are there at each vertex of a polygon? 
What is their relationship to each other? If we count only one exterior 
angle at each vertex, how many degrees are there in the sum of the 
exterior angles of a polygon of 4 sides? 5 sides? 8 sides? n sides? 

Your work in the problems above should have convinced you that the 
degree measure of the sum of the interiorangles of an n-gon is given by 
(n-2) X 180. Since the sum of the degree measures of the interior and ex
terior angles at each vertex is 180 (Why?) and since there are n vertices 
in an n-gon, the sum of the degree measures of the interior and exterior 
angles is 180 x n. Thus if we subtract the interior angles from all the 
angles, interior and exterior, we have 2 x 180 or 360 as the sum of the de
gree measures of the exteriorangles of any n-gon. 

Since a regularn-gon has all of its angles congruent, their degree 
measures are the same. Thus the degree measure of each interiorangle of 

a regular n-gon is given by n_2) x 180 
n 

PROBLEMS 3-10 

1. 	 What is the degree measure of each interior angle of a regular polygon 
of 5 sides? 6 sides? 7 sides? 

2. 	 What is the degree measure of each exterior angle of a regular polygon 

of 5 sides? 6 sides? 8 sides? 
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3. 	 The degree measure of each exterior angle of a regular n-gon is 36. 

How many sides does it have? 

4. 	 How many sides does a regular n-gon have if the degree measure of 

each interior angle is 150? 179? 

5. 	 Can each angle of a regular polygon have a degree measure of 130? 

Explain. 

6. 	 Name a polygon which has all of. its sides congruent but does not have 

all of its angles congruent. 

7. 	 Name a polygon which has all of its angles congruent but does not have 

all of its sides congruent. 

3-11 	 SIMILAR POLYGONS. 

In Section 3-1 we asked you to recall the definition of similar polygons 

given in Secondary Two. In this section we will restrict our attention to 

simple, convex polygons and give a precise definition of what we mean when 

we say two such polygons are similar. 

DEFINITION 3-5. Two polygons are similar if their 

vertices can be put into one-to-one correspondence 

such that: 

(1) Corresponding angles are congruent and 

(2) Corresponding sides are proportional. 

PROBLEM 

In the figure on the right, if E D 

A -~A', B ,-.- B', etc. what else must C El C 
be true before we can say that polygon F F1 

ABCDEF - polygon A 'B 'C 'D E 'F' ? 
A' B' 

A B 
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Example 1. For the two quadrilaterals shown in the figure below, although 
the corresponding angles are congruent (why?) the corresponding sides are 
not proportional. Are the polygons similar? 

3 
_JL 

3 3 

33 

3 3 

Example 2. For the two quadrilaterals shown below, although their cor
responding sides are proportional, their corresponding angles are not con
gruent. Are these polygons similar? 

3 3T_ L 

3 3 3 133 

33 

The two examples above show us that the AAA, SAS, and SSS theorems 
for similar triangles do not hold for polygons of more than three sides and 
thus we see just how remarkable these theorems really are. 

CLASS ACTIVITY 

Consider two regular polygons, each having n sides, as in the figure 

below. 

A B A' BI 

- C'/ C / 

DD
 
D 
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Each side of polygon ABCD ... has the 3ame length (Why?) which we 

will call r and each side of polygon A'B'C'D' ... has the same length s. 

1. 	 What is the ratio of AB toA'B'? Is this ratio the same for every pair 

of corresponding sides in the two polygons? Why? 

2. 	 What is the measure of each angle of polygon ABCD ... ? Is this 

measure the same for each angle of polygon A 'B 'C 'D'...? 

3. 	 Is polygon ABCD ... '- polygon A'B'C'D'...? Why? 

4. 	 What theorem about regular polygons have we proven? 

5. 	 Were you careful in your statement of Problem 4? A square and an 

equilateral triangle are regular polygons. Are they similar? 

We will write a formal statement of the above results and call it 

Theorem 3-10. 

THEOREM 3-10. Regular polygons having the same 

number of sides are similar. 

PROBLEMS 3-11 

1. 	 Prove that if two polygons are similar, the ratio of their perimeters 

is the same as the ratio of any two corresponding sides. Suggestion: 

Use Theorem 3-2 (f). 

2. 	 Given two similar polygons. If for one pair of corresponding sides the 

measures are 15 in. and 18 in. and the perimeter of the smaller polygon 

is 40 in. find the perimeter of the larger polygon. 

3. 	 The sides of a polygon have lengths of 5, 7, 8, 11, and 19. The peri

meter of a similar polygon is 75. Find the sides of the larger polygon. 

4. 	 A rectangular plot of ground has dimensions of 22 ft. and 35 ft. If we 

are to represent this on a map with a scale of 1 in. to the foot, what 

would be the dimensions of the plot on the map? 
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5. 	 The sides of a pentagon are 9, 11, 5, 14, and 17. If the shortest side 

of a similar penitagon is 15, find the rest of its sides. 

6. 	 If two polygons are similar, are they necessarily regular polygons? 

7. 	 If two polygons are regular, are they necessarily similar? 

8. 	 Prove that if two pentagons are similar they can be subdivided into 

triangles so that corresponding triangles are similar. 

HINT: In the figure we have ABCDE - A'B'C 'D'E'. We want to prove 
(1) AABC - AA'BtC' 

(2) AACD - AA'C'D' 
(3) AADE - AAfD'E' 

A 
At 

B El
E 

D C 

Proof: 

(a) 	 AABC - A'B'C' Why? 

(b) 	 AC = CD Why? 
A'C' CID' 

=(c) ACD A'C'D' Why? 

Complete the proof. 

9. 	 Generalize the theorem of Problem 8 to any two similar polygons.
 

Do you think it is still true?
 

10. 	 Prove the converse of the theorem in Problem 8; that is, if two penta

gons can be subdivided into triangles such that corresponding triangles 
are similar and similarly placed, then the pentagons are similar. 
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Chapter 4 
CIRCLES 

4-1 CIRCLES AND SPHERES. 

When we discussed simple plane and solid figures in Secondary One, 

we called the set of points in a plane, at a distance of 1 foot from a point A, 
a circle with centre A and radius 1 foot. We also used the surface of a 

globe as an example of a set of points which we called a sphere. We now 
give formal definitions of the circle and the sphere. 

DEFINITION 4-1: Let 0 be a point in space, 

and r a positive number. The sphere with 
centre 0 and radius r is the set of all points 
P in space such that OP = r. Let 0 be a 

point in a given plane, and r a positive num

ber. Then the circle with centre 0 and radius 
r is the set of all points P of the given plane 

such that OP = r. 

Two or more spheres (circles) with the same centre are called 

concentric. 
We now prove a theorem which deals with one aspect of the more 

general problem of the intersection of a plane and a sphere. 

THEOREM 4-1: The intersection of a sphere 
and a plane containing the centre of the sphere 

is a circle with the same centre and the same 
radius as the sphere. 
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Circle with centre 0. Sphere with centre R. 

OPI = OP 2 = OPS = OP4 = r = radius RTI, = RIT2 = R3'3 = V = radius 

Fig. 1. 

Three concentric 

circles with 

common centre Q. 

Fig. 2. 

Proof: 	Let S be a given sphere with centre 0 and radius r, and P a 

given plane containing O, The intersection of S and P is the 

set of all points belonging to both .3 and P. That is, every 

member of the intersection is 

(i) at 	a distance i, from the point 0. 

(ii) in 	the plane P. 
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Hence the intersection is the set of all points of P at a dis

tance r from the point 0 (which is also in P). This, by 

definition, is the circle in P with centre 0 and radius r. 

Although we cannot prove it yet, it is also true that, if a plane inter

sects a sphere, then it does so in either a circle or a single point. 

DEFINITION 4-2: The intersection of a sphere 

and a plane which contains the centre of the 

sphere is called a greatcircle. 

PROBLEMS 4-1A 

1. 	 What is (a) the union and (b) the intersection of a sphere and a 

circle with the same centre and the same radius? 

2. 	 Describe (i) the intersection and (ii) the union of (a) two con

centric circles and (b) two concentric spheres. 

3. 	 How many great circles are there to a given sphere? On the 

Earth sphere, special names are given to certain great circles. 

What are these names? 

Here 	are some further basic definitions. 

DEFINITION 4-3: A chord of a circle (sphere) 

is a segment whose end points are on the circle 

(sphere). 

A diameler of a circle (sphere) is a chord con

taining the centre of the circle (sphere). 

A secant of a circle (sphere) is a line which 

intersects the circle (sphere) in two distinct 

points. 
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A 

BD 

0 

Fig. 3. 

In Figure 3, AB and CD are chords. CD is a diameter, and the lines 
AB, 	 CD are secants. 

We have defined the radius of a circle (sphere) as a certain positive 
number. The word "radius'" is also used in a second sense. It is defined to 
be a segment from the centie of a circle (sphere) to a point on the circle 
(sphere). Thus, in Figure 1, the segments OP,, OP 2 , OP3 are all radii of 
the given circle, and th , segments RT 1 , RT 2 , R T. are radii of the sphere. 

Similarly, the word "diameter" is used in two senses. We have 
already defined it as a certain segment. We also use it to mean the positive 
number 2,r, where r is the radius (in the first sense) of a circle (sphere). 
It should be clear which of the two senses of these words is meant by the 
context in which they are used. 

PROBLEMS 4-1B 

1. 	 Two diameters of a circle, AC and BD, intersect at right 
angles. Prove that ABCD is a square. 

2. 	 A secant of a circle with centre 0 and radius r contains 
a chord AB of the circle. If AB = r, and BC is opposite to 
prove that m(OBC) = 120. 

3. 	 AB is a chord (which is not a diameter) of a circle with centre 
0 (Fig. 4). D is the foot of the perpendicular from 0 to AB. 
Prove that AD = DB. 

4. 	 AB is a chord of a circle with centre 0 and radius r. If AR is 
not a diameter, prove that AB < 2r. 
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Fig. 4. 

5. 	 Prove that the diameters of a circle are the longest chords of 

the circle. 

4-2 	 INTERSECTIO OF A L!NE WITH A CIRCLE. 

We have studied the circle and the sphere together in Section 4-1, and 

you may have ioticed the close relationship between the two. in the rest of 

this chapter, we will coPnine our study to the circle. 

DEFINITION 4-4: The interiorof a circle is 

the set consisting of the centre of the circle and 

all the points of the plane of the circle whose 

distance from the centre of the circle is less 

than the radius. 

The exteriorof a circle is the set of all points 

of the plane of the circle whose distance from 

the centre of the circle is greater than the 

radius. 

From the above definitions we see that every point in the plane of a 

circle is either in the interior of the circle, on the circle, or in the exterior 

of the circle. Thus the circle separates its plane into an interior and an 

exterior part. We often use the expressions "inside the circle" and "out

side the circle" for the "interior of the circle" and the "exterior of the 

circle" respectively. 

Let us now consider the intersection of a line and a circle lying in the 

same plane. What do you think will be the possible intersections? It would 

seem that the only possible cases are those shown below in Figure 5. 
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Case I - The Case II - The Case III - The 
intersectin is intersection is a intersection 
empty. (The line single point. consists of 
does not inter- (The line touches two distinct 

sect the circle) the circle) points. 

Fig. 5. 

Are these the only possible cases? Can you think of other possibili
ties? Try to give a reason for your answer. Consider a circle with centre 
0 and let f be a line in the same plane as the circle. Choose the point K 
on ( such tLat OK is the shortest distance from 0 to f. How do we know 
that the point K exists? What is the relationship between the segment GOK 
and the line 2,? You may have found that since OK i the shortest distance 
from 0 to f, Oi is the unique perpeidicular from 0 to f. We now choose 
the point N on the ray OR such that N is also a point on the circle. How 
do we know that such a point exists and is unique? 

Let us now consider the possible relationships between the segments 
OT and ON. There are only three po.,sibilities. 

(i) k > ON, (ii) OK - ON, (iii) K < ON. 

(Why?) Draw figures to show each of these possibilities. 

Case(i): If OK > ON, then every point of 2 (including K) is outside 
the circle (Why?), and so the line 2 does not intersect the circle. This is 

Case I in Figure 5. 

Case(ii): If OK = ON, then the point K is the the point N.same as 
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Hence k and the circle nave at least the point K in common. Since OK is 

the unique shortest distance from 0 to 2, it follows that any other point P 

on f is such that OP > OK. Hence P will lie outside the circle. (Why?) 

Thus k intersects the circle in one and only one point, This is C 11,.II in 

Figure 5. 

DEFINITION 4-5: A iareJntto a circle is a 

line which intersects the circl, in one and only 

one point. The point of intersection is called 

the point of conlact (or /he point of tangency). 

Case(iil): if i < ON, then at least one point K of C is in the inter

ior of the circle. When a line and a circle (which are in the same plane) are 

so related, it can be shown that. the line intersects the c;ircle in exactly two 

points and is therefore a secant. This is Case III in Figure 5, We shall 

prove this result later (as Theorem 4-3) and also collect the ideas above 

into the statement of Theorem 4-5. 

We should remark, however, that in the above analysis, we have not 

proved that any of the three cases actually exist. Can you show that Cases 

I and IIdo exist? Our next theorem siows that a tangent can be drawn to a 

circle at any point of the circle. 

THEOREM 4-2: The line perpendicular to a 

radius of a circle at its intersection with the 

circle is a tangent to the circle. 

Q 

Q
 

Fig. 6. 
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Proof: 	We have to show that if 9 i OP at the point P, then f inter

sects the circle in exactly one point. 

1. 	 By hypothesis P is a point
 

of intersection of the line k
 

and the circle.
 

2. 	 Let Q be any other point
 

on k. Then A OPQ is a
 

right triangle. Why?
 

3. 	 Q> OP Why? 

4. 	 Q is in the exterior of the
 

circle. Why?
 

5. 	 P is the one and only one 

point of f on the circle. Statements 1 and 4. 

Our next theorem will justify the conclusion we arrived at when we 

considered Case II of Figure 5. 

THEOREM 4-3: If a line intersects the in

terior 	of a circle, then it intersects the circle 

in exactly two points. 

0 

r, d~ 

Fig. 7. 

Proof: 	Suppose the line f contains a point P, which is a point in the 

interior of the circle with centre 0 and radius r. Then 

OP < r, by definition. We drop a perpendicular ON from 0 

to f. Then d = ON :s OP < r. 
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Now, if the line f iPtersects the circle in a point Q, then applying 

Pythagoras' Theorem to tie right triangle a 0rQ,we obtain 2r2 -- 0 + d2, 

where NQ - x. Conversely, if there is a positive number t- such that 

r 2 = 	 x 2 + d 2 . then the point Q on f, at a distance x from N,V. lI.ie on the 

circle, since its dista,,nce from 0 will be r. Hence f will intersect the 

circle 	in a point Q if and only if there exists a positIve solution of the 

equation x 2 = r2 - d2. Since r > d 0, y2 - d2 -- 0 and hence such a 

positive number x exists (it is 1r'r/-dV ). Moreover, given the positive 

number x, there are exactly two points Q and Q' on f such that NQ' 

NQ = x. Hence f intersects the circle in exactly these two points. 

Our next theorem tells us that the converse of Theorem 4-2 is also 

true.
 

THEOREM 4-4: A tangent to a circle is per

pendicular to the radius at the p.eint of contact. 

Let P be the point of contact of the tangent PQ with the circle (with 

centre 0). We have to prove that OPQ is a right angle. Our proof is by 

contradiction. 

Q 
z 

P 

Fig. 8. 

Proof: 

1. 	 The point P of PQ lies Definition 4-5 and 

on the circle, and every Theorem 4-3. 

other point of PQ lies 

in the exterior of the 

circle.
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2. 	 If OP is not perpendicular 

to PQ, we choose the point 

Z on Y- such that OZ _ Why is this possible? 

PQ. 

3. 	 A OZP is a righ' triangle, 

with the right angle at Z. Statement 2. 

4. 	 OZ < OP. Why? 

5. 	 Z is in the interior of the OP equals the radius of 

circle, the circle, and Statement 

4. 

6. Statements I and 5 are contradictory. liene we con~clude that 
<--7>
 

OP must be the perpendicular to the line PQ, which proves the 

theorem. 

We now state Theorem 4-5 to which we referred earlier. A number o 

interesting results can be proved using this theorem, We include some of 

these in the problems which follow. 

THEOREM 4-5: Let .C be a line in the plane of 

a circle with centre 0, and let K be the foot of 

the perpendicular from 0 to C. Then exactly 

one of the following three situations occurs: 

(1) 	 K is outside the circle, and the line f 

does not intersect the circle; 

(2) 	 K is on the circle, and C is a tangent to 

the circle; 

A(3) 	 K is inside the circle, and the line 

intersects the circle in exactly two points. 

Can you write out a proof to this theorem? You should be able to do 

so, following closely the arguments we used earlier in this section and 

applying Theorems 4-2 and 4-3. 
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PROBLEMS 4-2/1 

1. Write out proofs for the following theorems. 

(a) 	 THEOREM 4-6: The perpendicular from the centre of a 

circle to a chord bisects the chord. 

(b) 	 THEOREM 4-7: The segment joining the contre of a circle 

to the mid-point of a chord is perpendicular to the chord. 

(c) 	 THEOREM 4-8: if the perpendicular bisector" of a chord 

lies in the plaie of the circle, then it passes through the 

centre of the ciicle. 

(d) 	 THEOREM 4-9: No circle contains three collinear points. 

2. Use Theorem 4-5 to prove Theorem 4-4. 

We have used the term "congruent" in connection with segments, 

angles and triangles. On each occasion, one underlying notion has been that 

of "the same size" or "the same size and shape." From a different point 

of view, we also found that two figures are congruent if they car be made to 

fit each other .xactly. 

Can you suggest a condition (or conditions) under which two circles 

will fit together exactly? Can you make a definition of "congruent circles" 

out uf your answer? You will probably have a statement such as this: 

DEFINITION 4-6: Two circles with equal 

radiiare said to be congruent. 

PROBLEMS 4-2B 

1. Prove the following theorems. 

(a) 	 THEOREM 4-10: In the same circle, or in congruent 

circles, chords which are equidistant from the centre(s) 

are congruent. 

(b) 	 THEOREM 4-11: In the same circle, or in congruent 
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circles, any two congruent chords are equidistant from the 
centre(s). 

(c) 	 THEOREM 4-12: In the same circle, or in congruent 
circles, if two chords are unequal, the shorter chord is at 
a greater distance from the centre. 

Hint: 

C 

N 	 i-p 

B 
A ) 

D 

You 	are required to prove that, if AB < CD, then OM > PN. 
What is the relationship between AM and AB, and between CN 
and CD? How are the lengths AM and CN related? Now, apply 
Pythagoras' Theorem to the right triangles A OAM and A PCN, 
and 'ase the relationship you have found between AM and CN. 

2. The converse of Theorem 4-12 is also true. State and 1 -ove it. 

DEFINITION 4-7: Two distinct coplanar 
circles are said to be tangent (or to touch) 
if they are both tangent to the same line 
with the same point of contact on that line. 

Two circles which touch are internally tangent if their centres are on 
the same side of the common tangent; they are externally tangent if their 
centres are on opposite sides of the line. We also say that the circles touch 
internally (or externally). 
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Internally tangent 	 Externally tangent 

Fig. 9. 

PROBLEMS 4-2C 

1. 	 Given a circle with centre 0 and radius 3 cm. Determine the 

intersection of the circle and a line 2, in the plane of the circle, 

if the shortest distance from 0 to k is: 

(a) 5 	cm., (b) 4 cm., (c) 3 cm., (d) 1 cm. 

2. 	 A circle of radius 5 cm. has its centre at a distance of 4 cm. 

from a chord. Find the length of the chord. 

3. 	 A chord of a circle of radius 13 cm. has length 10 cm. Find the 

distance of the chord from the centre. 

4. 	 A chord, 12 in. long, is 6 in. from the centre of the circle. Whac 

is the radius of the circle? 

5. 	 Prove that if a secant bisects a chord of a circle and is perpen

dicular to the chord, it contains a diameter of the circle. 

6. 	 If AB and AC are two distinct chords of a circle, show how you 

can locate the centre of the circle. 

7. 	 Given a circle, describe how you would locate its centre. 

8. 	 In Figure 10, A, B, C, D, ., P are points on the circle with 

115 



B G 

CJ 

P 

H 
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Fig. 10. 

centre P. G, H, I are .oints on the chords AB, CD, EA 
respectively. The line contains the point F of the circle. 

State the theorem or theorems which justify each of the 
following conclusions: 

(a) 	 If PG - AB, PH± CD, and PG = PH, then AB E CD. 
(b) 	 If PG - AB, PH± CD, and AB E CD, then PG = PH. 
(c) 	 If A, B, C are distinct points on the circle, then the 

line segment AC cannot contain B. 

(d) 	 If A = E, then TI - AE. 

(e) 	 If PHD is a right angle, then CH - HD. 
(f) 	 If PH - CD, PI AE and PI < PH, then ;E > CD. 
(g) 	 If PF -L at F, then <J-5 is a tangent to the circle. 

(h) 	 If J- intersects the circle in exactly the point F, then 
the degree measure of JFP is 90. 

(i) 	 If M is inside the circle, then A intersects the 

circle in exactly one point other than A. 

9. 	 Prove that the tangents to a circle at the ends of a diameter are 

parallel. 

10. 	 Prove that the line segment joining the points of contact of two 
parallel tangents to a circle is a diameter of the circle. 

11. 	 In Figure 11, AP and BP are tangents to the circle at the 

points A and B respectively. Prove that AP = BP. 
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0P 

. B 

Fig. 11. 

12. 	 Prove th.t if, in a circle, a secant is parallel to a tangent, then 

the diameter through the point of contact of the tangent bisects 

the chord contained in the secant. 

13. 	 In Figure 12, we have two concentric circles with common 

centre 0. ABi is a chord of the larger circle and is also a tan

gent to the smaller circle at R. Prove that AR = RB. 

A B 

Fig. 12. 

14. 	 Prove the following theorem: 

THEOREM 4-13: The line containing the centres of two tangent 

circles also contains the common point of tangency. 

15. 	 Prove the following theorem and its corollary. 

THEOREM 4-14: Any three non-collinear points lie on exactly 

one circle. (You must prove there is one circle containing the 

three points and only one.) 

COROLLARY 4-14-1: One and only one circle can be drawn 

through the vertices of a given triangle. 
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16. 	 Prove that if two congrueni circls touch externally, then a,..y 
point equidistant from their cent:..-es lies on their common 
tangent. 

17. 	 m Figure 13, AB is a diameter of the: circle with centre P. 
Line isP a taagent to the circle at the point 2'. AC, BD are 
drawn perpendicular to k. Prove that TC = TD. 

A 

C T 

Fig. 13. 

18. 	 Prove the following theorem: 

THEOREM 4-15: If two tangents to a circle intersect, the angles 
which they make with the line joining the point of intersection to 
the centre of the circle are congruent, and the segments from 
the point of intersection to the points of contact are also con
gruent. (See Figure 11 of Problem .1). 

19. 	 AB is a diameter and AC is a chord of a circle with centre P. 
A secant through P parallel to AC intersects the tangent at C<->
 

in a point D. Prove that DB is tangent to the circle at B. 

4-3 ARCS OF CIRCLES. 

in Secondary Three, we defined the interior and the exterior of an 
angle. We now use these ideas to define an arc of a circle. 

118
 



semicircle 

miinor 

major min~or ar P 0 Q 
arc PQ arcRQ 

major 
arc -

semicircle 

Fig. 14. 

DEFINITION 4-8: In a circle with centre 0, 

let P and Q be two points of the circle which 

are not the endpoints of a diameter. The union 

of P, Q, and all the points of the circle in the 

interior of the angle POQ is called the minor 

arc PQ. The union of P, Q, and all the points 

of the circle in the exterior of angle POQ is 

called the major arc PQ. 

NO'ATION: The symbol PQ (which is read "arc PQ") will be used 

to denote an arc (of a circle) whose endpoints are P and Q. 

If P, Q are endpoints of a diameter of a circle, the union of P, Q, and 

all points of the circle in one of the half-planes (with edge PQ) of the plane 

of the circle is called a semicircle. 

By an arc of a circle, we shall mean a minor arc, a major arc or a 

semicircle. The points P and Q in Definition 4-8 are called the endpoints 

of the arc. 

You may have noticed the notation (PQ) for an arc with endpoints P, 

Q is ambiguous. It does not distinguish between the minor arc PQ and the 

major arc PQ, nor if P and Q are the ends of a diameter, does it tell us 

which of the two semicircles to consider. One way of avoiding this ambiguity 

is to label a third point on the arc under consideration, the two other points 

labelled being the endpoints. Thus in Figure 15 below, we can refer 

unambiguously to the semicircle PXQ, or the arc YXQ (which is the minor 

arc YQ). In what other way can you designate the major arc YQ? 
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x 

Q 

Fig. 15. 

We now recall certain definitions, which you have already met in 

Secondary Two. 

DEFINITION 4-9: A central angle of a circle 

is an angle whose vertex is the centre of the 

circle. 

Can you name any central angles in the circle of Figure 15? 
A central angle is said to be subtended by a chord (minor arc) if the 

sides of the angle contain the endpoints of the chord (minor arc). In Figure 
16, PQ is a diameter. The minor arc PR subtends the central angle POR. 

The chord PR also subtends the central angle POR. The minor arc RQ 

subtends the central angle ROQ. Name the chord that subtends the central 

angle ROQ. 

0 

Fig. 16. 

In Figure 17, the sides of the angle CAB contain the endpoints C, B 
of the arc CAB and the vertex A of the angle is a point of the arc. When 
this is the case, we say that the angle CAB is inscribed in the are CAB. If 
CEB is the other arc determined by the points C and B, we say that the arc 

120 



CEB subtends the angle CAB. In Figure 17, CDA is inscribed in the arc 

CDA, and is subtended by the arc CBA. In what arcs are the angles DAC 

and BAD inscribed, and what arcs subtend them? 

A 

OB 

C 
E 

Fig. 17. 

DEFINITION 4-10: An angle is said to be in

scribed in an arc of a circle if the sides of the 

angle contain the endpoints of the arc and if the 

vertex of the angle is a point, but not an end

point, of the same are. 

When an angle is inscribed in a given major (minor) arc, we also say 

that it is subtended by the minor (major) arc having the same endpoints as 

the given arc. 

We now want to define the degree measures of arcs. 

DEFINITION 4-11: The degree measure of a 

minor arc is the degree measure of the central 

angle which it subtends. The degree measure 

of a major arc is 360 minus the degree 

measure of the minor arc having the same end

points as the major arc. 

The degree measure of a semicircle is 180. 
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We will, in this chapter, refer to the degree measure of an arc simply 
as its measure, If the degree mneasure of arc AB is 30, we will denote this 
by writing i:" ',B) = 30. You may have noticed that the measure of a semi
circle is independent of the size of the circle of which it is a part. This is 
also true of the measures of minor and major arcs. In Figure 18, the minor 
arcs PQ, P'Q', P"Q" all have measure 60. What is the measure of the 

corresponding major arcs? 

pit 

PI 

P 

600 

Fig. 18. 

We now state an important result that seems reasonable, but whose 
proof will be omitted as it is a little tedious. 

THEOREM 4-16: If the arc PQR is the union 

of the arcs PSQ and QTR (with only the end

point Q in common), then in(PQR) = m(PSQ) 

+ nZ(QT). 

PORT 

Fig. 19. 
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We note that if PQR is a minor arc or a semicircle, the proof of 

Theorem 4-16 follows immediately from the Angle Addition Postulate. How

ever, if PQR is a major arc there are several cases to consider, but each 

of the cases is easy. If you are interested, perhaps your teacher will show 

you what they are. 

PROBLEMS 4-3A 

are1. 	 In Figure 20, 0 is the centre of the circle, and A, B, C 

points of the circle. Name the central angles, and the arcs 

which subtend them. Name the inscribed angles, the arcs in 

which 	they are inscribed, and the arcs which subtend them. 

A 

Fig. 20. 

2. In Figure 21, D and E are the endpoints of a diameter. 

(a) Name the minor arcs. 

(b) Name the major arcs. 

(c) Name the semicircles. 

F 

D 

E 	 G 

Fig. 21. 
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3. 	 Prove that in the same circle, or in congruent circles, congruent 
chords cut minor arcs which are equal in measure. 

4. 	 Prove that the line from the centre of a circle which bisects a
 
chord bisects the minor arc determined by the chord.
 

5. 	 In Figure 22, P is the centre of the circle, CB is a diameter,
 

and D, A, E are also points of the circle. If AB E PC, find
 
m(AEB), m(ADC), m(CDB).
 

D 

C 

Fig. 22. 

6. 	 In Figure 23, find m(BCA), where 0 is the centre of the circle. 

B 

400 

400 

,A 

Fig. 23. 

7. 	 If m(PQR) of a circle with centre 0 is 300, find m(OPR). 

124 



8. 	 i the measure of a mAjor arc AB is x, where x is a positive 

real number (180 < x < 360), find the measure of the minor 

arc AB. 

9. 	 In Figure 24, AC is a diameter of a circle with centre 0. CE 

is a tangent at C, and B is a point on the circle. If m(BCE) = 

60, find the measures of 

(a.) the minor arc CB 

(b) the minor arc AB 

(c) angle ABC. 

A 

B 

01 

C E 

Fig. 24. 

10. 	 In Figure 25, AB and PQ are semicircles of two concentric 

circles with common centre C. EC _L AB and DC_ CF. Prove 

that m(AD) + mn(QT) = m(EF) + m(RS). (All the arcs in

volved are minor arcs). 

E 
F 

Ap C Q B 

Fig. 25. 
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We now prove a theorem which will give us a rel.ationship between the 
measure of an angle inscribed in an arc and the mestre of the arc subtend
ing the angle. 

THEOREM 4-17: The .measure of an angle n

scribed in aa arc is hal tho measure of the 
arc which subtends the angle. 

We first restate the theorem. In Figure 26. BAC is inscribed in the 
arc BAC. We have to prove that m(BAC) = 2 n(BDC). 

C 

D 

Fig. 26. 

Proof. There are three cases, and we consider them separately. 

Case 1: A side of BAC contains a diameter (A ) of the circle. 

C 

0 

Fig. 26(a). 

Let x = r(BOC), y = ;n(ABO), and z = M(BAC). Then 

1. 	 x = y + z 1. (Exterior Angle Theorem, 

applied to AACB). 
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2. y = z 2. 	 Why? 

3. x = 2z 3. 	 Statements 1 and 2. 

4. n(BAC) = -n(BOC) 4. 	 Statement 3 and algebra. 

5. 	 m(BAC) = m(BDC) 5. Statement 4 and Definition 

4-11. 

Case 2: Points B and C are on opposite sides of the line AD 

containing the diameter through A. 

B 	 E 

A 	 D 

C 

Fig. 26(b). 

From Case 1, 

m(BAD) = rm(BED) and
 

m(DAC) = !m(DFC)
2 

m(BAC) 	 = rn(BAD) + m(DAC) Why?
 

= 1 [rn(BED) + m(DFC)]
 

= 1 m(BDC) Theorem 4-16.
 
2 

Case 3: 	 B and C are on the same side of the line AE containing 

the diameter through A. 

From Case 1, 

M(BAC) + rn(CAE) = [m(BDC) + n(CFE)] 

and m(CAE) = m(CFE). 

Hence m(BAC) = m(BDC). 
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B D 

C 

F 

A E 
0 

Fig. 26(c). 

The following two corollaries follow immediately from Theorem 4-17. 

COROLLARY 4-17-1: An angle inscribed in a 
semicircle is a right angle. 

COROLLARY 4-17-2: Two angles inscribed in 

the same arc are congruent. 

When each of two lines (secants, tangents, or a secant and a. tangent) 
intersects a given circle, taey determine certain arcs which we call inter
cepted arcs. If the lines are parallel, as in Figure 27 below, the intercepted 
arcs are those arcs all of whose points (except the endpoinis) are between 
the parallel lines. 

AA 

DDCnC 

secants f and n secant line n tangent lines 
intercept minor and tangent line I and n inter
arcs AC and BD f intercept minor cept semicircles 

arcs AC and AD ACB and ADB 

Fig. 27. 
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If the two lines are not parallel, as in Figure 28 below, the intercepted 

arcs are those arcs all of whose points (except the endpoints) are in the in

terior of the angle formed by the two intersecting lines. 

A 

A 

CQ 

DD 

'N 

BPD intercepts minor 

arcs AC and BD 

'N 

APD intercepts minor 

arcs AB and AD 

p C 

APB intercepts arcs ACB and ADB 

Fig. 28. 

We may have two secants intersecting inside the circle as in Figure 

29 below. 

A 

Fig. 29. 
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In this case, we say that APC intercepts the minor arc AC. Name the 

other angles at P and the arcs they intercept. 
Figure 30 below shows two secants and a secant and a tangent inter

secting on the circle. Name the arcs intercepted by each of the angles APB, 

AP'B', and A'P'C'. 

AF At 

E 

C1 Pt Bt 

Fig. 30. 

We 	will now collect the above results into a definition. 

DEFINITION 4-12: An angle intercepts an arc 

of a circle if: 

(1) 	 the endpoints of the arc lie on the sides of 

the 	angle,
 

(2) 	 all other points of the arc are in the inter

ior of the angle, and 

(3) 	 each side of the angle contains an erdpoint 

of the arc. 

We 	could now restate Theorem 17 as follows: 

The 	measure of an angle inscribed in an arc of a circle is half the 

measure of the arc which it intercepts. 

Definition 4-10 defines an angle inscribed in the arc of a circle, or 

more simply, an inscribed angle. We now define what is meant by a polygon 

inscribed in a circle. 
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DEFINITION 4-13: A polygon having all of its 

vertices on a circle is said to be inscribed 

in the 	circle. 

We also say that the circle circumscribesthe polygon. 

InscribedInscribed 	 Inscribed 

trianglequadrilateral 	 pentagon 

Fig. 31. 

PROBLEMS 4-3B 

1. 	 Prove that an inscribed triangle is a right triangle if one of its 

sides contains Ihe centre of the circle. 

2. 	 Given an arc of a circle, explain carefully how you would deter

mine its degree measure. 

3. 	 Prove the following theorem: 

THEOREM 4-18: The opposite angles of an inscribed quadri

lateral are supplementary. 

4. 	 Prove that a parallelogram inscribed in a circle is a rectangle. 

5. 	 In Figure 32 below, find m(BCD) and m(CDA). 

6. 	 Prove the fellowing converse to Corollary 4-17-1: 

If an angle inscribed in an arc of a circle is a right angle, then 

the arc is a semicircle. 
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N 

Fig. 32. 

7. 	 In Figure 33, AC is a diameter of the circle, and CE is the
 
tangent at C. If D arid B are points of the circle, and
 

m(L.CE) = 40, find in(CAB) and m(CDB).
 

A 

D 

4 ° •->
 

C 	 E 

Fig. 	 33. 

8. 	 Secants AB and CD intersect at a. point 0 inside the circle. If 
AOD intercepts an arc AD whose measure, is 2 x, and COB 
intercepts an arc CB whose measure is 2 y, prove that the 

measure of COB is x + y. Hint: Draw AC and use the Exter
ior Angle Theorem on A AOC. 

We will state this result in the following theorem: 

THEOREM 4-19: The measure of an angle form ec by two secants 

of a circle intersecting at a point in the interior olf the circle is 
one-haf the sum of the measures of the arcs intercepted by the 

angle 	and its vertically opposite angle. 

9. 	 In Problem 8, find re(CC)B), if m(BC) = 203 and in(AB) = 59. 

10. 	 Prove that the measure of the angle formed by two intersecting 
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tangents is equal to 180 minus the measure of the minor arc 

intercepted. Hint: Draw the two radii to the points of tangency 

and consider the quadrilateral thus formed. 

11. AB and CD are two perpendicular chords of a circle which<---

intersect inside the circle at X. E is a point on XC such that 

EX = XD. Prove that 

(i) i EAX ADAX 

(ii) EAX - XCB 

(iii) CB ± AE 

An angle formed by a secant and a tangent with the vertex at the point 

of tangency is not an inscribed angle (why?), but our next theorem will show 

that such an angle is also measured by one-half the measure of its inter

cepted arc. 

THEOREM 4-20: The measure of the angle 

formed by a tangent and a secant with the ver

tex at the point of tangency is one-half the 

measure of its intercepted arc. 

There are two cases to consider, depending on whether the angle is 

acute or obtuse. We shall prove the first case, and leave the second to you 

as exercise. 

A 

0 
Q 

D 

B C 

Fig. 34. 
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Proof: 	Using Figure 34, we have to prove that m(ABC) = 

m(ADB). 

1. m(ABC) + m(ABO) = 90 	 Why? 
2. m(ABO) : n(BAO) 	 Why? 
3. 	 m(AOB) + 2 x m(A^O) = 180 Angle sum of AAOB, and 

Statement 2. 
4. m(AOB) + 2 x (90 - rn(ABC)) = 180 	 Statements 1 and 3. 
5. m(AOB) = 2 x m(ABC) 	 Statement 4. 
6. 	 m(ABC) =1 x m(AOB) = x m(ADB) Statement 5 and Defini

tion 4-11. 

Theorems 4-17, 4-19, and 4-20, along with Problem 10 of Problems 
4-3B, tell us how to find the measures of certain angles formed by two lines 
(secants, tangents, or a secant and a tangent) in terms of the arcs of a circle 
these angles intercept. Our next theorem will complete this list when we 
consider an angle formed by two secants or a secant and a tangent inter

secting outside a circle.
 

THEOREM 4-21: The angle formed by two 

secants or by a secant and a tangent inter

secLing outside a circle has a measure that 
is one-half the difference of the measures of 

the intercepted arc,. 

PB 

" 	 I
P I 

/ 

,/
 

D 

(a) 	 (b) 

Fig. 35. 
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We will treat both cases together, since the statements in the following 

proof could apply to either figure above. In Figure 35 (a) we want to prove 

that m(P) = 1 [ m(BD) - m(AC) ] and in Figure 35 (b) we want to prove that 

re(P) = 1[ m"(BC) - m(AC)]. In either case, we draw BC. 

Proof: 

1. 	 In both figures,
 

m(BCD) = 7n(P) + m(PBC) Why?
 

2. 	 in(P) = mv(BCD) - m(PBC) Statement 1 and algebra. 

3. 	 m(PBC) M(AC) Why?
2 

4. 	 In Figure 35(a),
 

m(BCD) m Why?
m(BD) 

and in Figure 35 (b),

1 -


m(BCD) = m7(BC) 	 Why? 

5. 	 In Figure 35(a), 

;n(P) = ['m(BD) - m(AC)] Statements 2, 3, and 4.
 

and in Figure 35 (b),
 

In(P) = [[Im(BC) - n(AC)] Statements 2, 3, and 4.
 

Consider the arcs AB and CD of the two concentric circles in Figure 

36 below. Each arc is measured by the central angle it subtends, hence each 

arc has a measure of 60. Would you say the two arcs are congruent? 

C 

Fig. 36. 
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Besides having equal degree measures, what else must be true about two
 

arcs in order for them to be congruent? We now define congruent arcs.
 

DEFINITION 4-14: Two arcs are said to be 

congruent if they are arcs of the same circle 

or congruent circles and if they have the same 

measure. 

PROBLEMS 4-3C 

1. 	 In Figure 37, find nz(B), in(A) and ni(BCE). 

A 

B ~800 

650 

E C D 

Fig. 37. 

=2. 	 An isosceles triangle AABC (with AC BC) is inscribed in a 
circle. Prove that the base AB is parallel to the tangent at C. 

3. 	 Prove that if two parallel lines intercept arcs of a circle, the 

intercepted arcs have equal measure. 

4. 	 Prove the following theorem: 

THEOREM 4-22: In the same circle, or in congruent circles, if 
two chords are congruent, then so are the minor arcs they 

determine. 

5. 	 State the converse of Theorem 4-22. Prove that the statement 

is true. 

6. 	 ABCD is a quadrilateral inscribed in a circle such that the tan
gent to the circle at A is parallel to BD. Prove that the diag

onal AC bisects BCD. 
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7. 	 Two circles are tangent externally at P. A common tangent AB 

is tangent to one circle at A and to the other at B. Prove that 

APB is a right angle. 

8. 	 Prove that if a pair of opposite angles of a quadrilateral are 

supplementary, then the quadrilateral can be inscribed in a 

circle. What relationship does this result have to Theorem 

4-18? 

9. 	 ABCD is a quadrilateral inscribed in a circle. AB AD and 

the tangent at A meets the line D at Prove that triangles-- T. 

AABC and A TDA are similar. 

10. 	 In a circle with centre 0, OC is a radius perpendicular to a 

chord AB. Prove that the point C is equidistant from AB and 

the tangent at A. 

11. 	 Two circles with centres 0 and 0' are externally tangent at A. 

OE and OIF are parallel radii, and AB is a diameter of the 

circle with centre 0'. Prove that the chords AE and BF are 

parallel. 

12. 	 Prove that if two circles are tangent internally, and if the radius 

of one is equal to the diameter of the other, all chords of the 

larger circle drawn from the point of contact are bisected by the 

smaller circle. 

*4-4 	 SEGMENTS OF CHORDS, SECiANTS AND TANGENTS. 

We have, up to now, been studying-the properties of circles and their 

relationships with certain lines, arcs and angles. We have learned how to 

determine the measure of angles formed by chords, tangents and secants 

whether the point of intersection lies on the circle, in its interior or in its 

exterior. We now want to consider how the lengths of certain segments of 

chords, secants and tangents are related. For this the main tools will be the 

similarity theorems studied in Chapter 3. 

If, in Figure 38, AB and CD intersect at P, is there any relationship 

between AB and CD? About all we could say is that each is less than or 

equal to the length of the diameter of the circle and greater than or equal to 

the length of the chord through P which is perpendicular to the diameter 
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A C
 

D( 

Fig. 	 38. 

through P. This is an immediate consequence of Theorem 4-12 as you will 
be asked to prove in the problems below. 

If we cannot say much about AB and CD, perhaps we can say some

thing about AP, BP, CP and DP. 

PROBLEMS 4-4A 

1. 	 In a circle with centre 0, AB is a diameter, X is a point on 
AB different from 0, CD ± AB at X. PQ is any other chord 

through X. Prove that PQ < AB, and PQ > CD. 

D 
A 

X Q 
P 

0 

C& 

Fig. 39. 

2. 	 If the radius of a circle is 13 inches long and a point P is 5 
inches from the centre, determine the length of the longest and 
shortest chords which can be drawn through P. 

3. 	 AB is a chord of a circle and AB =16 in. If AB is 15 inches 
from the centre of the circle what is the length of the radius of 

the circle? 
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4. In each case determine the lengths of the segments as indicated. 

AB OP C? CD 

a) 12 3 ? ? C 

b) ? 5 ? 20 A B 

c) 18 ? 12 ? 

d) 48 7 ? ? 

e) ? 9 18 ? 
D 

Consider now a circle, any point P, and two Fig. 40. 

lines passing through P which intersect or are 

tangent to the circle (Figure 41). If P is in the 

interior of the circle we have two chords AB and CD. If we draw AD and 

BC we see that D B and A = C (Why?) making AADP ACBP. (Why?) 

CR BP 
It follows that P- and thereforeAP DPDP 

AP x BP =CPx DP 

A 

D p// 

B 

Fig. 41. 

Would the result still be true if AB were a diameter and CD ± AB? 

Suppose now the point P is on the circle. We could have either of the 

two situations illustrated in Figure 42. 

In either case P, B and C are all the same point. Although we do not 

usually consider PB as a segment when P and B are the same point, it is 

sometimes convenient to do so. If we adopt this convention here and define 

PB = 0 when P = B, we have again 

PAX PB= PCxPD 
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cx 

V 

P=B =C 

/ 

0~Do 

Fig. 42. 

If P is outside the circle the two lines through P may both be secants, 

one may be a secant and the other a tangent or they may both be tangents. 

Let us look at each of these cases in turn. 

Suppose both lines are secants. 

AB 

P 

D( 

Fig. 43. 

Drawing AC and BD we can prove A ACP - A DBP and thus 

PAx PB =PC x PD 

If you think of the secant PBA turning slowly on P in a clockwise 

direction you will see that as it turns B and A get closer and closer 

together so that PA and get more and more nearly equal. (Fig. 44) 

You might guess that if PA were a tangent we would still have 

PAx PB = PC X PD or 

PA 2 = PC X PD. 

You should be able to prove this by looking at Figure 45 below and 

proving A ACP - A DAP. 

If PA and PC are both tangents to the circle we would have PA 2 = PC 2 

or PA = PC and this is a new proof that two tangents drawn to a circle from 

an exterior point are equal in length. 
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Fig. 44. 

Fig. 45. 

We have considered what happens when P is inside, on and outside the 

circle and in each case we have found that PA )" PB = PC x PD although, 

when we are considering tangents, PA may be equal to PB or PC equal to 

PD. We can combine all these situations into one theorem which we will call 

the "segment product theorem.' 

THEOREM 4-23: If through any point P two 

lines are drawn intersecting a circle, the pro

duct of the lengths of the segments of one is 

equal to the product of the lengths of the seg

ments of the other. 

141 



PROBLEMS 4.-4B 

1. 	 Write our. the details of the proof of Theorem 4-23 if both lines 
are secants. 

2. 	 Write out the details of the proof of Theorem 4-23 if one line is 
a secant and one a tangent. 

3. 	 Prove, using Theorem 4-23, that if two tangents are drawn to a 
circle feom a point in the exterior of the circle, the tangents are 
equal in length. 

4. 	 Prove Theorem 4-23 for two secants using Figure 46 below. 

Fig. 46. 

5. 	 Prove: PA = PD p 

A 
B 

Fig. 47. 

6. 	 If 2 circles are each tangent to PAi at A: 

Prove: PB x PC = PD x PE 
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B 

A 

D 

Fig. 48. 

7. If 2 circles are each tangent to P 

Prove: A PBD - A PEC 

P 

at A: 

B 

Fig. 	49. 

8. 	 An alternate proof of Pythagoras' Theorem may be given as 

follows: If C is a right angle in AABC, draw a circle with 

centre A and radius AC (Fig. 50). The circle will intersect BA 

at two points. (Why?) Call them D and E. Then: 

BC ' 	 = BD X BE 

= (BA -DA) x (BA + AE) 

= (BA-AC) x (BA +AC) 

BA2 	 - AC 2 
= 

BA2 AC 2 + BC 2 
= .. 
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A 

D 

B 

Fig. 50. 

Write out the reasons for the steps of this proof. 

Challenge Problems 
9. a. If two circles intersect at C and D if P is _ayoint on CD 

outside the circles, and if secants PAB and PEF are drawn, 

we can easily prove PA x PB = PC x PD = PE x Pr. 

Prove the converse: If P is a point outside each of two 

intersecting circles, if secants PAB and PEF are drawn, 
one to each circle, and if PA X PB = PE x PF, then P 

lies on the line determined by the common chord. 

P 

E 
C 

C 

Fig. 51. 
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b, Prove the corresponding statement if P is in the interior of 

both circles. 

Fig. 	52. 

c. 	 Prove: If two circles are tangent at C and from a point P 

secants are drawn to each circle such that PA X PB = 

PE x PF then P lies on the common tangent at C. 

6AA
P 

C 
B 

F 

Fig. 	53. 

d. 	 Prove: If two circles intersect at C and P. the locus of 

points from which the tangents to the two circles are con

gruent is all oi the line determined by the common chord CD 

except for CD itself. 

e. 	 Prove: If two circles are tangent at C the locus of points 

from which tangents to the two circles are congruent is the 

common tangent at C. 
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f. 	 Two circles, (40 not intersect and each is in the exterior of 
the o .her. Froom P, a point outside both eirc.es, secants 

)-'AB and PEF are drawn. If PA x PB 7.:PE >< PF prove 
that for all positions of P, P lies in a certain fbed line 
which is perpendicular t,)the line of centres of the two 

circles. Hints: Draw tangents and PSK, also P1 _.001. 

p 

P 	 PI 

B\L"" 	 .\ ,/ 

0 	 D ' 

Fig. 54. 

Try to show OD is a constant and therefore D is a fixed 

point. Then P lies on the line perpendicular to 00' at D. 
P\)x 

The theorxrn", we have just proved enable us to do many numerical 

problems. 

Examrple 1. In circle 0, AB and CD intersect at P, AP = 3, CF = 4,
 
DP = 6, we want to find AR. Let BP = x. Then by the segment pro
duct theorem 3 x x = 6 × 4, :ix = 24, x = 8. Therefore
 

AB = :3 + 8 = 11.
 

Fig. 55. 
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Example 2. Segments are given as marked (in Figure 56). Find AP. 
2

Again by the segment product theorem AP 2 = CP x BP,x = 

(4+ 5) x 4, x2 = 36, x = 6, AP = 6. Note that since x represents 
2the length 	of AP we need consicer only the positive root of x = 36. 

P 
4BB-


Fig. 	56. 

PROBLEMS 4-4C 

1. 	 a. MN= 6, RM= 2, 

QR =4,RP= ? 

b. 	 MR =9,RN=6, P 
MRP =4, QR =? 


c. 	 MR =RN,QR=9,
 

PR =4,MR = ? Q
 

d. 	 MN= 15, RN= 3,
 

PQ = 13, PR ?
 

e. 	 QR = 7, QP = 12, Fig. 57.
 

MR = 10, MN = ?
 

f. 	 MN= 6, MR = 4,
 

QP 7 QR ?
 

2. 	 a. RT =16, RS =2, T 

RV= 4,RW= ? V R 

b. 	 RT = 16, SR = 2, 
W
WV= ?RV 	= 4, 

c. 	 TS= 6, SR = 6,..
 

WV= 9, RV= ?
 

d. 	 RT= 16, SR = 2,
 
Fig. 58.


RP 	=? 

14T
 



e. RP= 12, RV =8, WV = ?
 
f, TS= 6, WV= 6, SR= 5, VR = ? RP = ?
 

3. 	 In Figure 59, A.P = 9, PB = 4. What is the length of the short

est chord which can be drawn through P? If the distance of P 
from the centre of the circle is 2, what is the radius of the 

circle? What is the length of the longest chord which can be 

drawn through P? 

P 

B 

Fig. 59. 

Challenge Problem 

4. 	 A man on the bridge of a ship is 20 feet above the sea. He has 

just caught sight of the top of a lighthouse which his charts tell 

him is 220 feet above sea level. How far is the ship from the 

lI-ghthouse? (Assume that the diameter of the earth is about 

8000 miles long). Noce that the distance along the surface of the 
earth 	is almost equal to x the length of the tangent from B to L. 

B 

L 

$R 

Fig. 60. 
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*4-5 SIMILAR TRIANGLES AND CIRCLES. 

Many problems involving circles and. triangles can be solved by using 

together the theorems about angle measurement and the theorems about 

similar triangles. 
This illustrates a fact which is of great importance in mathematics 

and also in other fields. One bit of information you know or one theorem 

you have proved may enable you to do certain problems. Another theorem 

or another bit of information helps you to solve another set of problems. 

But the two ideas used together may open up a whole new method of attack 

leading to the solution of many problems you could not begin to handle 

before. 

Example 1. Two circles are tangent at P. Two secants are drawn 

through P. Prove: AC II BD and A APC - A BPD. We e 'aw the 

common tangent XY. Then ACP = APX = BPY BDP and AC 11ED. 

Also APC - BPD so A APC - A BPD. 

B
A 

Fig. 61. 

Note that the result holds whether the circles are tangent externally or 

internally and the proof varies only slightly in that this time APX - BPX. 

A /X 

B 

r. P 
D 

Fig. 62. 
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Example 2. A is the midpoint of arc BC. BC and AD meet at E. 
Prove: AC2 = AE x AD. Draw CD. Since ACE ADC (Why?) 

AAEC - AACD (EAC = CAD). Therefore _ and the result 
AC AD 

follows. 

A 

B E -C 

De 

Fig. 63. 

PROBLEMS 4-5 

1. Prove BE I] CF 

C 

FB E 

P 
D A 

2. Prove BE II CF 

,B 
jAF 

Ir"0 



3. Prove: A PAB - A PDC 

D 

4. Prove: The tangent at P is parallel to CD. 

C 

5. 

D 

If two circles intersect at A and P and if AB and AC are 

diameters prove BP and PC lie on 23C. (Hint: Draw AP). 

A 

6. 

B C 

---

AB and AC are tangents to the circle with centre 

Prove ABCD - AAOB. 

0. CD ± BO. 
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0A
 

7. 	 AD is tangent to the circle. DQ II AB. Prove: zADP - aAQB. 
Hint: What do you know about AP and BQ? 

AD 

P
 
Q
 

8. 	 Two circles are tangent at A. The common external tangent CB 
meets the line of centres 00' at P. Prove: PA2 = PB X PC. 

P 

9. 	 In each of figures (a) and (b) below, ABCD is a parallelogram. 

ECEDProve: EF EB
 

Hint: Prove AEFD - AEBC
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E A D 

A E D 

F 

(a) 

FF 

(b) 

10. Two circles intersect at A and B. At A tangents 

one to each circle, meeting the circles again at C 

Prove AB 2 = CB x DB. 

are drawn, 

and D. 
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Chapter 5 
CIRCLE MEASURES 

5-1 REGULAR POLYGONS AND CIRCLES. 

In Chapter 4 you learned how to circumscribe a circle about any tri
angle. Do you think you could circumscribe a circle about any quadrilateral? 
Certainly you could about some quadrilaterals. For example you could 
always do it for a rectangle. In fact we have proved that a circle can be 
circumscribed about a quadrilateral if and only if its opposite angles are 
supplementary. (See Theorem 4-18 and its converse, Problem 8 of Problems 
4-3C). 

But for pentagons, hexagons and other polygons we have as yet no 
theorem. Are there any special polygons for which we would have some hope 
of being able to circumscribe a circle? We shall see there are. In fact there 
are certain ones for which we can always both circumscribe and inscribe 
circles. These are the regularPolygons. You will remember that they are 
like equilateral triangles or squares in that all their angles are congruent, 
and all their sides are congruent to each other. A restatement might be: a 
regular polygon is a polygon which is both equilateral and equiangular. Thus 
a pentagon ABCDE is regular if and only if AB a BC = CD DE EA and 
A B C D E. 

Suppose now ABCD. . . X is a regular polygon of n sides. We know 
from Theorem 4-14 that there is one and only one circle through A, B and 
C. The question is, does this circle also contain all the vertices D, E... 
to X? Suppose 0 is the centre of the circle passing through A, B and C. 

It follows that OA = OB = OC and if OD = OA, D will also lie on the 
circle. But this will be true if AAOB A DOC. Since AB - DC and 
BOA C-Othe triangles will be congruent by SAS if we can show thatAC Bu AB BC A 

ABO DCO. But ABC DCB (Why?) and OBC OCB (Why?). Our 
result follows; i.e., D does lie on the efrcle. We can continue this argument 
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B 

0 
r/, 

D /
 

Fig. 1. 

to show that the next vertex E is on the circle and so on for all the vertices. 

We have thus established the following theorem. 

THEOREM 5-1: Onf a).d only one circle can 

be circumscribed aout any regular polygon. 

Now suppose 0 is the centre of the circle circumscribed about the 

regular polygon ABC ... X of Figure 1 above. Since AB = BC - . ..-

XA, each of diese segments is the same distance r from 0. (Why?) A 

circle drawn with centre 0 and radius r will have each segment as a 

tangent. (Why?) Thus this circle is inscribed in the regular polygon and we 

have: 

THEOREM 5-2: A circle can be inscribed in 

any regular polygon. 

In the exercises at the end of this section you will be asked to show that 

there is only one such inscribed circle in any regular polygon. 

To complete the relationship between circles and regular polygons we 

need the following theorem. 
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THEOREM 5-3: If n points A, B, C. ... N 
are taken in order on a circle so that AB BC 
-CD= NA, the chords AB, BC,..., 

NA are the sides of a regular inscribed poly
gon. The tangents drawn at A, B, C, ... , N 
form the sides of a regular circumscribed 

polygon. 

Given: 	 AB - BC - CD -- X..4.N, XY tangent at B, YZ tangent at 
C etc. in Figure 2 below. 

Prove: 	ABC . . . N and XYZ . . W.	 are regular polygons. 

N 

W 

D * A 

z (B x 
C B 

Y 

Fig. 	2. 

Proof: 

1. 	 AB BC ... NA 1. Congruent arcs determine 

congruent chords. 

2. 	 m(ABC) = 1 360- m (ABC)} 

- -2m360 (BC4f 

m(BCD) = 3 6 0 -i(BC) 

-	 360- - 2. Why? 

3. 	 ABC BCD, etc, for all the 
angles of the polygon. 3. Why? 

4. 	 ABC . .. N is a regular 
poly,-n. 4. By definition. 
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YCB 5. They are all measured by5. 	 XAB XBA YBC 


ZCD ZDC etc. congruent arcs.
 

6. 	 AXAB A~XBA A YBC 6. By ASA congruence 

A YCB etc. theorem. 

7. 	 X -Y -Z --. .. etc. 

XA ~XB~ YB
 

YC . . . etc. 7. Def. of congruent triangles.
 

8. 	 XY YZ etc. 8. Why? 

9. 	 XYZ ... W is a regular 9. Steps 7 and 8.
 

polygon.
 

In Theorem 5-2 we proved that the centre of the circle circumscribed 

about a regular polygon is the same point as the centre of the inscribed 

circle. 

DEFINITION 5-1: The centre of a regular 

polygon is the commou centre of its circum

scribed and inscribed circles. 

Thus, 	in the figure below, ABCDE is a regular pentagon, 0 is its centre, 

OA 	 the radius of the circumscribed circle, and OP the radius of the in

scribed circle. 

D 

E 

P C 

A) 
B 

Fig. 3. 

We know by Theorem 3-10 that two regular n-gons are similar. From 

this we can prove: 
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THEOREM 5-4: The ratio of the perimeters of 
tio regular n-gons is equal to the ratio of the 
radii of their circumscribed or inscribed 
circles as well as the ratio of their sides. 

In Figure 4 below, if ABC ... and A'B'C'.. . are each regular n-gons 
whose centres are 0 and 0' we know that OA OB = OC =...= OF and 
AB = BC =...= FA. Also O'A'= O'B'= O'C' =...= O'F'and A'B'= 
B'C'= . = F'A'. This means that by SSS, AAOB ABOC = . . . =
 
AFOA and AA'O'B' AB'O'C ... = AF'OA'. 
 Since there are n of 
these triangles and the sum of the n congruent angles AOB, BOC etc. 
makes two straight angles we know that m (A'OB) = 360 and similarly 

m (A "'B) = 360 

Therefore AOB = A'O'B'. 

A F 

PA/ F1
 

BPr
 

B 

B I
 

Cf
 

C
 

Fig. 4. 

Also OA = OB and O'-W = O'B' so OA O A OORB 	 ThenB by the SAS Simi-Ar OA OP 
larity Theorem AAOB - AA'O'BR. It follows that 	.-- = -


A'R' O'A' 
-


The last proportion is true since 	 O'P'OP and O'p' are corresponding altitudes 
of similar triangles and we know their ratio is equal to the ratio of corres
ponding sides. The perimeter of ABC . . . is equal to n(AB) and the 
perimeter of A'BRC' ... is equal to n(A'B'). Letting p and pI stand for 
these perimeters we finally have, as required: 

P _ n(AB) _ AB OA = OP
 
P' n(A RB') A 'B' O 'AI O'P'
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If we let r and r' stand for the radii of the circumscribed circles and 

a and 	W' for the 'adii of their inscribed circles we can write 
p - - a 

It follows that 

P = 	P or P -P 
ar 


Stated in words and calling r the radius of the polygon, the first of 

these 	two proportions says that: 

THEOREM 5-5: In any regular poiygons 	of the 

same 	number of sides the ratio of the perimeter 

to the 	radius is a constant. 

, 
 ior a 	square is the sameNotice that this does not say that the ratio 

as for a regulr hexagon. It does say that _ you have [wo regular hexagons 

is the same for each one, or if you have severalof different sizes the ratio Yaclr oe yu il g hae sea 

different regular pentagons and compute ,pjor each one you will get 

number although it will be different from the one you got for the hexagons. 

PROBLEMS 5-I 

Note: 	 In the following problems, r represents the radius of the poly

gon (circumscribed circle), and a represents the radius of the in

scribed circle. 

i. 	 The radius of a regular polygon of four sides is 8. Findpits p 

perimeter and the radius of the inscribed circle Find and
7 

2. Two regular 6-gons have radii whose ratio is -6 if the peri

meter 	of thle larger polygon is63 find the.perimeter, the side, 
.

and the radius of the smaller one, Find 
.r 

Hint: What kind of a triangle is the triangle formed by two radii 

and a side? 

3. 	 The radius of the inscribed circle of a regular hexagon is6. 

Find r and b. 
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4. (a) ftthe side of an equilateral triangle is 8 find the radii of its 
inscribed and circumscribed circles. 

(b) ifthe side of a square is 8 find the radii of its inscribed 
and circumscribed circles. 

(c) If the side of a regular hexagon is 8 find the radii of its 
inscribed and circumscribed circles. 

5. 	 Repeat each part of Problem 4 if the side is s. 

6. 	 H the radius of a circle is 12, compute the side, radius of the 
inscribed circle, and perimi er of 	the regular inscribed 

(a) triangle, (b) quadrilateral, (c) hexagon. 

7. 	 Ifthe radius of a circle is 12, compute the side, radius and 
perimeter of the regular circumscribed 

(a) triangle, (b) quadrilateral, (c) hexagon. 

8. 	 Repeat Problems 6 and 7 if the radius is r. 

9. 	 Compute, to the nearest tenth, the ratio P for the regular t'"i
angle, quadrilateral and hexagon, using the results of Problem 8. 

10. 	 If ABC . . is a regular polygon 
and 0 is the centre of an inscribed A Q B 

circle, prove OQ, the radius to the 
point of tangency, is the perpendi- R 
cular bisector of AB. Similarly
 
OR is the perpendicular bisector 
 C 
of BC. Since these perpendicular
 

bisectors are unique, the point 0
 
is unique and there exists only one 
 Fig. 5. 
circle inscribed in ABC . 

5-2 	 CIRCUMFERENCE OF A CIRCLE. 

We now investigate how to find the length of the circumference of a 
circle when we know its radius. By wrapping a piece of string around a tin 
can and measuring the length needed we see that it is about three times as 
long as the diameter of the tin can or about six times the radius. 
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But we can easily see that this is not exactly right. To do this draw 

a circle of the same size as the circular end of the can and inscribe a reg

ular hexagon ABCDEF. We know that for the hexagon 

P - 6 (See Problem 9 in Section 5-1) 
r 

A B 

Y 

F C 

z 

Fig. 6. 

In Figure 6 above we have drawn a circle with regular inscribed and 

circumscribed hexagons. How do you think the length of arc AB compares 

with the length of segment AB? How do you think the length of arc AB 

compares with the length AX + XB? Take a piece of string or thread and 

fit it on arc AB so that it just covers the arc. You will need to cut the 

string so that it represents just the length of arc AB. Do the same for seg

ment AB and segments AX + XB. Now compare the lengths of the strings 

you have. Do you see that the length of the string representing arc AB is 

greater than that representing the length of AB, but is less than the length 

of string representing the sum of the lengths AX - XB? Do you think the 

above result would be the same for any circle and any inscribed and circum

scribed polygons of n sides? Try it for a circle of radius 2 inches and in

scribed and circumscribed equilateral triangles. You will find that for each 

such trial you make, the length of the arc is greater than the length of the 

side of the regular inscribed polygon but less than the sum of the half-lengths 

of two adjacent sides of the regular circumscribed polygon. 
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The fact that this is true for all circles and their regular inscribed 

and circumscribed polygons of n sides is very difficult to prove. Since, 
'
however, it can be proved by methods involv!.:Z ,lhe calculus, we will assume 

this fact here without proof. That is, we assume that for any given circle, 
and any given inscribed and circumscribed regular polygons of n sides, if 
AB is the side of the inscribed polygon and XY is a side of the circum
scribed polygon as in Figure 6 above, then AB < length of arc AB < AX + 
XB. 

It follows, then, that the perimeter, p, of the inscribed hexagon is less 
than the circumference, C, of a circle; that is p < C and P = 6 < r r
 
Similarly, if P is the perimeter of the circumscribed hexagon, we have
 

12r
 
C < P. In Problem 8 of Section 5-1 we found P = . Therefore
12P
1
 
S j = = 41-3 = 6.9. Since -= 6 and 1= 
4V'3 for the corresponding 

inscribed and circumscribed regular hexagons for a circle of any radius, we 
find that for any circle, 6 < C< 6.9. 

In as much as we are going to be working with the perimeters of the 
inscribed and circumscribed regular n-gons, a convenient notation is useful. 
We shall use p,, and P respectively for these two numbers. Thus p. is 
the perimeter of the inscr'ibedequilateral triangle, P. the perimeter of the 

circumscribedri, gular hexagon, etc. 
In Problem 8 of Section 5-1 we found that 

p3 = 3I-'r= 5.196r 

P4 = 4v'2r 5. 656r 

p6 = 6r = 6.OOOr 

It is true that P3 
< P4 

< P6 and it seems as though pn increases as n 

increases. Do you think this would always be true? Would p6 < p,, P22 < 

P23, etc? As a matter of fact this is true but it is not at all easy to prove. 
What is easy to show is that p, < P2, for any n. This is true since in 
going from the inscribed regular n-gon to the inscribed regular 2n-gon we 
replace each line segment AB in p, by two line segments AP and PB and, 
by the triangle inequality, AB < AP + PB. 

P 

AlB Fig. 7. 
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Also p, < P, since in this comparison the segment AB is replaced 
by AX and XB and AB < AX + XB. 

x 

AB 

Fig. 8. 

On the other hand P2 n < .P, since this time we replace the two seg
ments PX and XQ by the single segment PQ and PQ < PX + XQ.
 

x 

Fig. 9. 

Take a circle of radius r and circumference C. Consider the series 
P3 ' P6, P12, Y . , of perimeters of inscribed regular polygons. We know this 
series increases. But every member of the series is less than every mem
ber of the the decreasing series P 3 , P, P 1 2 '. . .. For example P4,, < P4 8 

< P24 < P12 < P or P6 < P12 <...< P < P 
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As n gets larger and larger p, increases and gets closer and closer
 

to C. So also LL gets closer and closer to
 
r 

Since for regular n-gons of different sizes but with n fixed we haveP,
 
proved is a constant it wo-u1!d seem that likewise for circles of different 

sizes C should be a constant. Itwill also always be true that for any n?, 
.rpr

< L'' < - and p, and P,, get closer and closer together as n increases, 
always squeezing C betweeA them. Thus by computing p, and P, for 

increasing values of n we can determine Lhe value of f- to as many sinifi
r 

cant digits as we wish. C__
 
=
IfCris a constant then certainly is a constant. We give this-

last constant a name and call it 77. ( v is a Greek letter pronounced pi). 

5-3 COMPUrING WITH ,. 

What is the value of 7? We know that 6 < 6.9.6- Therefore since 

In = we have 3 < r < 3.45. 

There are methods in advanced mathematics for computing 77 quickly 

to many digits but the important thing for us to know and remember is tlat 7r 

is a real number which represents the ratio of the circumference to the 

diameter of any circle. Its value to five significant digits is 3.1416, but this 

is only an approximation to ,7 since 7Tis an irrational number and you know 
that it cannot be represented exactly by any numeral with a finite number of 

digits. Another approximation to 7r which is sometimes used is 22 
7

When you are asked to compute the circumference of a circle whose 

radius is given use the formula 

and leave your answer in terms of 7T unless you are specifically asked to 
give a numerical approximation. In this case you must be careful not to give 

an answer to a greater degree of accuracy than you had in the original 

information. 

Thus if you measure a piece of string to be five inches long and use it 

as a radius to draw a circle, how long a piece of string will it take to measure 

the circumference? Our formula tells as C = 2 7rr = 10 7r. 
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To approximate 7T we might use 3 or 3.1 or 3.14 or 3.141 or 3.1416 

etc. and in each case we would get a different value for C; i.e., 30 in., 

31 in., 31.4 in., 31.41 in., 31.416 in., etc. Which one should we give as our 

answer?
 

Tf you measuxed the radius very roughly, that is if 5 inches meant 

somewhere between 4.5 and 5.5, then you have only one significant digit in 

this factor and the product should have only one: i.e., the answer should be 

30 inches. But if you measured the radius carefully with a ruler and really 

meant that it was between 4-95 and 5.05 inches long you could have said it 

was 5-0 inches long. Since the number representing this measurement has 

two significant digits your answer also should have two significant digits and 

should be given as 31 inches. The general rule is to use the approximation 

to 7T with one more significant digit than you want in the answer and then 

round off the result to the correct number of digits. 

PROBLEMS 5-3 

1. 	 Find the circumference of each circle if the radius r or diam

eter d is as given. 
3
 

a. 	 r= 3 d. r=v2 g. d= 6 j. r =
7 

d 4
b. r 	=5 e. r =3'5 h. d= 1 k. 

5 

c. r 	=17 f. r 5 i. d =2,f2 1. r= 7 

2. 	 Find the radius of each circle if the circumference is 

a. 12T c. 25 7 e. 187 g. 10 i. 22 

b. 17 7 d. 45 f. 2 T h. 36 j. 45
2 

3. 	 A draftsman draws circles with the following radii. Find ,.he 

circumference correct to the appropriate number of significant 

digits in each case. 

a. 3.2 c. 8.35 e. 7.2 g. 3.4 1. .0325 

b. 6.0 d. 7.21 f. 3.14 h. 4.32 j. 32.5 

4. An equilateral triangle has each side 4 in. long. Find the cir

cumferences of the inscribed and circumscribed circles. 
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5. 	 A square has each sic.e 6 in. long. Find the circumferences of 
the inscribed and circumscribed circles. 

6. 	 A regular hexagon has each side 10 in. long. Find the circum
ferences of the inscribed and circumscribed circles. 

7. 	 A polygon is circumscribed about a circle of radius r. Prove 
the area of the polygon is - where p stands

.1for the perimeter. 

8. 	 Prove that the area of any regular polygon is 1 r X 	p, where r 
is the radius of the inscribed circle and p is the perimeter of 

the polygon. 

5-4 AREAS OF CIRCLES. 

We know (see Problem 8 in Section 5-3) that the area of any regular 
polygon is - r x p, where r is the radius of the inscribed circle and p is 
the perimeter. In Figure 10 below we have drawn a circle and its regular 
circumscribed pentagon as an illustration. 

Fig. 10. 
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The area of the circumscribed pentagon is 1 r x P3. If we draw the 

tangents at the midpoints of the arcs we get the regular circumscribed 
210-gon. Its area is 1 r x P10 -

Let us consider the regular circumscribed n-gongs. We know from 

Section 5-3 that as n increases P,, gets closer and closer to C, the cir
cumference of the circle. It seems reasonable to suppose that the areas of
 

the polygons get closer and closer to the area. of the region bounded by the
 

inscribed circle. That this is actually the case can be proved by methods
 

which you have not yet studied. Since we do not wish to go into the detail, of
 

such a proof here, we assuume its truth without proof. Thus we have An (the
 

area of the regular circumscribed n-gon) approaching A (the area of the in

scribed circle) and P, (the perimeter of the regular circumscribed n-gon)
 

approaching C (the circumfereace of the circle) for large values of n.
 

Therefore our formula for the area of a regular circumscribed n-gon,
 
An = '-r x P,,, gives a number close to A-- 1 r x C for large values of n.
 

We take this latter formula for the area of a circle.
 

Since C = 27rr2 we find that A = 1 27r x r or 
2 

-
A = rr2. 

Usually we call A the area of the circle even though we really mean 

the area of the circular region or the area of the region bounded by the 

circle. 

PROBLEMS 5-4 

1. Find the area of each circle if 

a. r =5 d. r =Nf2 g. d= 5 j. d =16 

b. r =7 e. r =6 h. d= 7 k. d= 6 

c. r =2 f. r =12 i. d =_2 1. d =123 	 3
 

2. 	 Find the radius of each circle whose area is
 

a.647T d.k T g. 72 7T j. 75
 
4 
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b. 121 7 e. 324 7 h. 45 7 k. 100 

c. 169 7T f. 50 7 i. 887 1. 7T 

3. 	 Find the circumference of the circle whose area is 

a. 75 c. 8 7T e. 1000 7 g. 324 

b. 64 v d. 9 7 f. 125 h. 425 

4. 	 Two concentric circles axre drawn (Figure 11). The radius of the 
larger is 6 inches while the radius of the smaller is 4 inches. 

What is the area of the ring-shaped region between the two 
circles? How does this area compare to the area of the smaller 

circle ? 

Fig. 11. 

5. 	 A circle has radius 2 inches. A second circle is to be drawn 

whose area is to be just twice the area of the first. What is the 
radius of the second circle? 

6. 	 Two circles have radii whose ratic is I What is the ratio of the3. 
areas 	of Lhe circles? 

50
 
7. 	 The areas of two circles are in the ratio of L. If the radius of

72 
the smaller circle is 15 inches what is the radius of the larger 
circle? 

8. 	 A target for an archer has concentric circles painted on it 
(Figure 12). If the target is a square four feet on a side and the 
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circles have diameLer 1, 2, 3 and 4 feet, find the areas of each 

of the regions of the target numbered from I to 5. 

5 	 5 

3 4
2 

M(0 

5 	 5 

Fig. 	12. 

9. 	 A target for an archer is a circle of diameter 4 feet. Three 

smaller, concentric circles are painted on it so that the four 

resulting areas have equal measure. Determine the radius of 

each of the three circles. 

10. 	 Prove that the ratio of the areas of any two circles is equal to 

the square of the ratio of their radii. 

11. 	 Given a circle whose radius is 10. 

a. 	 What is the area of the region bounded by a semicircle and 

its diameter? 

b. 	 What is the area of the region bounded by a 90' arc and the 

two radii drawn to the end points of the arc? 

c. 	 What is the length of the semicircle? 

d. 	 What is the length of the 900 arc? 

12. 	 The larger circle in Figure 13 has radius 10 and the two smaller 

semicircles each have radius 5. The circles are tangent at A, 

0, arid B and AB is a diameter. Find the area of the shaded 

portion of the figure. Find the perimeter of the shaded portion. 

A 0 B Fig. 13. 
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Challenge Problem 

13. 	 A, B, C, D, E and F are equally spaced on the circumference 
of a circle of radius 6 (Figure 14). ACtii, BD etc. intersect 
to form a star. Find the area of that portion of the circle outside 
the star (the area of the shaded part of the figure). 

A 
F 

B 

E0 

C 
D 

Fig. 14. 

5-5 	 LENGTHS OF ARCS, AREAS OF SECTORS AND SEGMENTS. 

DEFINITION 5-2: A sector of a circle is a 
subset of the circular region bounded by an arc 
of the circle and the radii drawn to the ends of 
the arc. If the arc is a minor (major) arc the 
sector is a minor (major) sector. 

DEFINITION 5-3: A segment of a circle is a 
subset of the circular region bounded by an arc 
of the circle and the chord connecting the two 

end points of the arc. If the arc is a minor 
(major) arc the segment is a minor (major) 

segment. 
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minor major minor major 
sector sector segment segment 

Fig. 15. 

Note that the word "segment" here is used in an entirely different 

sense from that intended when you speak of a "line segment." 
How do we find the length of an arc and the area of a sector or a seg

ment of a circle if the radius of the circle and the measure of the arc are 

given? 
The answer depends on two fundamental properties of any kind of 

measure. The first is that the measures of two congruent figures are the 

same. The second is the addition property of measure. This means that if, 

for instance, AC is the union of AB and BC, then AC = AB + BC, or if 

BD is in the interior of ABC then m (ABC) = m (ABD) + m (DB'C). For 

areas the same property holds: the area of a region composed of two non

overlapping regions is the sum of the areas of the regions. 
A diameter subdivides a circle into two congruent arcs and the circu

lar region into two congruent regions (Figure 16). Since ACB ADB their 

A C 

Fig. 16. 
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lengths must be the same and since together they form the circle the length 
of each is one half the circumference. That is, the length of ACB = x2 
2 iar. Similarly the area of the region bounded by the semicircular arc ACB 
and the diameter AB is half the area of the circle.1 r
 

Area of the semicircular region = X Tr2 .
 
An arc of 60' is one of six possible congruent arcs which together
 

make up the circle. Its length must be one sixth the circumference
 

/A 

/0\
 

/ \ 

Fig. 17. 

of the circle. f (AB) - 1 27r. The sectoi.1 AOB is one of six congruent6 
sectors that make up the circle so its area is - x 7,r2 . 

Similarly if the arc has degree measure 1, then -t is one of 360 possi
ble congruent arcs which make up the circle. s length is x 2 7rr and13b .
the area of its sector -L x 7Tr2 

If the degree measure of AB is m, where w is an integer, AB can be 
divided into m congruent arcs of measure 1. B, the additive property of 

measure: 
k(A-B) = m x 2iir and area of sector AOB - m x 7Tr 2 . 

360 360 
If m is an arbitrary real number (not necessarily an integer) between 

0 and 360 it is the degree measure of some arc and we define the length of 
this arc and the area of its sector by these same formulas. 

Example 1. In a circle of radius 6 the length of a 450 arc is 45 X 
6) x 127=(27 x = 7T 3 

8
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Example 2. Find the area of the minor sector and the minor segment 

determined by a 600 arc in a circle whose diameter is 24. We have 

d = 24 and r = 12. In Figure 18 below, 
Area 	of sector = 3-0 >,144 = 24 ?T. 

360 

Area of segment = 	 Area of sector - area of AAOB 

247 - x 12 X 6.V 24 v- 36,3 

2 

2/1 

12 

Fig. 18. 

PROBLEMS 5-5
 

1. 	 Find the perimeter and area of a 60' sector in a circle of radius 

6. (Perimeter is made up of 2 radii and the arc.) 

2. 	 Find the perimeter and area of a 600 segment in a circle of 

radius 8. (Perimeter is made up of a chord and the arc). 

3. 	 Find the area of a 450 sector and a 450 segment in a circle of 

radius 1.0. (Hint: To find the area of AAOB in Figure 19 drop 

the altitude from A to U-). 

A 

Fig. 19. 
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4. 	 In a circle of radius 10 a sector has area 40 7. Find the degree 
measure and length of the arc of the sector. 

5. 	 Find the areas of a 30' sector knd a 30' segment each in a circle 
of radius 12. 

6. 	 Find the areas of a 120' sector and a 1200 segment in a circle of 

radius 9. 

7. 	 To find the areas of a major sector or segment determine the 
areas of the corresponding minor sector or segment and subtract 
from the area of the circie. 

Find the major sectors and segrmients determined by the arcs 
given in Problems 3, 5 and 6. 

8. 	 Two circles whose radii are each 12 inches have their centres 
12 inches apart. Find [he area of the intersection of the two 
regions. Find the area of the union of the two regions. 

9. 	 The area of a 100 sector of a certain circle is equal to the area 
of the ring between two concentric circles whose radii are 15 
and 12. What is the radius of the first circle? 

10. 	 A goat is tied. by a rope 16 feet long. The other end of the rope 
is tied to a post at the middle of one side of a shed which is 
8 feet square (Figure 20). How many square feet of ground are 
available for the goat to wander over if he can never get inside 
the shed? 

~~~16 \\ 

Fig. 20. 
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11. 	 Three coins are laid on a table next to each other so as to be 

tangent to each othcr. If the radius of each coin is 2 cm. what is 

the area of the region shaded in Figure 21? Hint: Draw the 

equilateral triangle formed by the centres of the three circles. 

Fig. 21. 

12. 	 The larger circle in Figure 22 has radius 8. The radii of the 

four small circles are equal. Each of them is tangent to the 

large circle and to two small circles. Find the area of the 

shaded region. Hint: Draw the square formed by the centres of 

the four smaller circles. Find the area of the square and sub

tract from it the areas of the four 900 sectors. 

Fig. 22. 

5-6 	 RADIAN MEASURE. 

You will remember that several different units are customarily used in 

measuring a line segment. Sometimes the unit is a foot, sometimes a meter, 
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sometimes an inch or again a centimeter. However in measuring an angle 
we have up to ncw used only a degree as the unit, although at one time we 

said a more natural unit might be a straight angle. Now that you know what 

is meant by the length of an arc we can introduce another unit for the meas

ure of an angle. This unit angle is that angle which intercepts on any circle 

for which it is a central angle an arc whose length is equal to the radius of 

the circle. if an angle intercepts an arc of length 2r its measure in terms 

of this new unit is 2. If the arc length is some constant k tir.es r the 

central angle has measure k. Since a right central angle intercepts an arc 

which is one fourth of the circumference; i.e., - x 27Tr = gr the measure 
new unit is 7.of a right angle in terms of this 2 

The unit of angle measure we have defined in this way is called a 

radian. Since the length of a 600 arc is -2 i r = L r the radian measure of 

600 angle is . imilarly the length of an arc of in degrees is x 27Tr 
_ 11 77 3 7 3 

- r, so the radian measure of an angle of m degrees is L-7'
 

We can set up a table to help convert degree measure of angles to
 

radian measure.
 

degree measure radian measure 

> 7T900 
2 

> 7T45 < 
4 

60 7
3 

7T30 

1801 
180 

77 - 1800 

&180 1807T IT 180 

x 180 

7T 

To convert from degree measure to radian measure multiply the 
78degree measure by 180" 

To convert from radian measure to degree measure multiply the 

radian measure by 180" 

An angle of one radian is an angle of 180 degrees. This is an angle of 

about 570 17' 45" or 57.30. 
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In most work in geometry we will use degree measure for angles but 
when you study trigonometry again in Secondary Five you will find that radian 

measure of angles becomes very useful and important. AIso if you study 
advanced mathematics in Sixth Form and at the universities you will use 
radian measure almost exclusively so it is well to begin to learn about this 

new unit. 

PROBLEMS 5-6 

1. 	 Find the radian measure of the angles whose degree measures 

are 

a. 30 d. 7 g. 135 j. 36 

b. 40 e. 22.5 h. 157.5 k. 72 

c. 15 f. 75 i. 179 1. 144 

2. 	 Find the degree measure of the angles whose radian measures 

are 

a. d. 2.4 g. .6 j. 5 

b. e.. 18- h. k.5e 1.3 8 

c. 	 1.5 f. 27 i. 7T 1. 1
 
3 7
 

3. 	 The radian measure of AB = radian measure of AOB, where 0 
is the centre of the circle. Find the length of the arc AB if the 
radian measure of AB and the radius of the circle are given. 

radian i (AB) 	 radius 

a) 7-	 6
6
 

b) 7T 8
 

c) 7T 	 10 
10 

d) -7 	 8
 
12
 

2 3
 

f) .35 2.6
 

g) .35 .35
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radian m (AB) radius
 

h) 1 4
 

i) 1.5 6
 
I 4
 
2
 

4. 	 An inscribed angle ABC has radian measure in a circle 

whose radius is 12. Determine the length of ABC. 

5. 	 Two lighthouses are situated 10 miles apart. A ship at sea 

measures the angle between the lines of sight to the two light

houses as being equal to E radians. Determine the possible
6 

position of the ship in relation to the lighthouses. 
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Chapter 6 
MOTIONS AND TRANSFORMATIONS 

6-1 FIG..AES WITH THE SAME SIZE AND SHAPE. 

Look at the following triangles. Do they have the same size and 

shape? 

Fig. 1. 

One way to test whether or not they have the same size and shape is 

to measure the sides of each triangle with a ruler and the angles of each 

triangle with a protractor. If you obtain the same measurements for each 

triangle, then, as far as you can tell by your measurements, the triangles 

do have the same size and shape. 

In work on geometry that you have already done, you learned that if 

you measure the sides (but not the angles) of two triangles, this is enough. 
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If the measurements of the sides for one triangle are the same as the 
measurements of the sides for the other triangle, then the measurements of 

the angles for one triangle must also be the same as for the other triangle. 

Can you state the theorem which showed this? 

Using dividers or a pair of compasses to compare sides, test whether 
the following two triangles have the same size and shape. 

Fig. 2. 

Look at the following circles. Do they have the same size and shape? 

) 
Fig. 3. 

One way to test whether or not they have the same size and shape is 
first to find the centre of each circle and then to measure the radius of each 

circle. If the measurements are the same, then the two circles have the 

same size and shape. 

Using compasses and a ruler, test whether or not the following two 
circles have the same size and shape. 
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Fig. 4. 

(Remember to use the construction for finding the centre of a circle 

which you learned in Cnapter 4.) 

In our earlier work, if two triangles had the same size and shape we 

said that the two triangles were congruent. If two circles had the same 

size and shape, we said that the two circles were congruent. 

Now look at the following two figures. Do these figures have the same 

size and shape? 

A B 

Fig. 5. 

Clearly there are no simple measurements with ruler and compasses 

that you can use to answer this question. Think hard and decide what you 

would do if you had to get an answer. 

One good -.ay to get an answer is the following. Take a piece of 

tracing paper (any thin paper that you can see through a little bit will do), 

9S
 



and place this paper over figure A. Then, holding this paper so that it does 

not move while you are writing on it, carefully trace, with your pencil, an 

outline of figure A. Next, move the papei- over to figure B and try to find 

a position where the traced figure falls exactly on top of figure B. If you 

succeed, then you will know that, as fa,- as you can tell by your drawings, 

the two figures do indeed have the same size and shape. 

Do the above figures have the same size and shape? 

CLASS ACTIVITY 

For each of the following pairs of figures, test whether or not the two 

figures have the same size and shape. 

a. 

b. 

C. 

Fig. 6. 
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Consider the following pair of figures. 

A B 

Fig. 7. 

Make a tracing of figure A above. Now compare this tracing with 

figure B. You will find that you cannot make the tracing of A fall exactly 

on B. Now turn the tracing paper over so that the tracing of A is on the 

bottom. Place this over B and, looking through the paper, see if you can 

make the tracing of A fall on B. You will find that the tracing can now be 

made to fall exactly on B. 

Shall we say that A and B have the same size and shape? In geometry, 

mathematicians long ago agreed to use the words "same size and shape" in 

such a case. We therefore do say that A and B have the same size and 

shape. 

In general, we say that two figures in the plane have the same size and 

shape if a tracing of one can be made to fall exactly on the other, where we 

may turn the tracing over if needed. 

PROBLEMS 6-1 

1. Do the following figures have the same size and shape? 

a. 

D 
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C. 

Fig. 8. 

2. 	 For each of the figures in Figure 9, make a tracing of the first figure. 

For how many distinct positions of the tracing paper can you make the 

tracing fall exactly on the second figure? (Include positions where the 

tracing paper is turned over.) 

a. 
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C.
 

d. 

e. 

Fig. 9. 

6-2 MOVING A FIGURE IN THE PLANE. 

By using tracing paper, we can take a figure in the plane and make a 

copy of it at a new position in the plane. Here is an example. 

Consider the following picture. 

B 
E 

OF
znD 

A C G 

Fig. 10. 

185 



Make a copy of this picture on your own paper, and call the plane of the 
picture P. We are now going to make a copy of the triangle ABC at a 
new position in P. We shall place this copy of the triangle ABC so that 

point 	 C falls on point F and line segment AC falls on the line of segment 
EF. 	 We do this as follows. Take a piece of tracing paper. Call this paper 
T. Place paper T on top of P and make a copy of triangle ABC on paper 
T. Next, move paper T so that point C of paper T falls above point F of 
plane P, and line segment AC of paper T falls along line segment EF of 
P. Keeping the paper in this position, copy triangle ABC from paper T 
onto P. This may be done by using a point of your compasses or of your 
dividers to prick through from paper T to P at points A, B, and C, of 
paper T, and then using a ruler to draw the line segments between points
 
on P. Plane P will now look like this.
 

At BI 

E c' 
D F 

A C 	 G 

Fig. 11. 

Here we have used A', B', and C' to name the vertices of the tri

angle 	in its new position. 

When we have done all this, we say that we have moved the triangle 
to a new position in the plane of P. There are now two triangles in P: 
triangle ABC and triangle A 'BIC'. In such a case, we shall often think of 
these as the same triangle in two different positions. 

PROBLEMS 6-2A 

1. 	 Copy the following picture. In this picture, line L is parallel to AD. 

Use tracing paper to move the rectangle ABCD so that point D falls 
on point E of the circle and each side of the rectangle in its new posi

tion is parallel to its first position. 
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-LB C 

A D
 

Fig. 12. 

2. 	 In the same way, in the followng picture, move the triangle ABC so 

that the point -C falls on it. original position and the segment CB 

falls along the line of segment CD. 

C 

A 77D 

E 

Fig. 13. 

3. 	 In the same way, in the following picture, move triangle ABC so that 

segment AB falls along segment DE, point A falls on point F, and 

triangle ABC falls entirely inside the circle. 

CA 
B( 

D :I 
EFig. 14. 

(Note that you will have to turn the tracing paper over before you copy 

the triangle back onto the picture.) 

4. 	 Show that Problem 1 has four different answers and that Problem 2 

has four different answers. 
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Consider the following figure, 
B 

EA 

Fig. 15. 

and the movement of the tracing paper which carries A to C and AB onto 

the line of CD. This gives Figure 16 below. 

P B 

BB 

A 

Fig. 16. 

Now take any point in the original figure. Call it P. The same move

ment of the tracing paper which carries the triangle to the top of the square 

also carries the point P to a new position P'. We can get P' by marking 

P on the tracing paper at the same time that we copy the triarigle and then 

pricking through, after we have moved the tracing paper. 

The following picture shows the result for several different point, 

P, P2 , P.. P1' is the new position of P; P2' is the new position of 

P 2 ; and P3 1'is the new position of P3 . 

Note that in this movement of the tracing paper, some points may move 

farther than others. 

.P1 

UPI B P2 

B' 

"3';A 

OQ 

Fig. 17. 
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can see that there is one point which does not get moved
(Indeed, we 

the same as its old position. This point is marked 
at all. Its new position is 

Q in Figure 1.7.) 
the individual

Sometimes a movement of the tracing paper will move 

but leave the final form and position of the entire figure
points in a figure, 

if we add the following equilateral triangle to 
unchanged. For example, 

Figure 17, 

B 

A 

P3P1 

Fig. 18. 

then the movement described before gives the following result. 

B 

A 

SQ 

P1P3' P3P2' 

Fig. 19. 

Here the new position of P1 is the same as the old position of P 2 , 

is the same as the old position of P 3 , and the new 
the new position of P 2 


the same as the old position of P 1 . Each point of the

position of P 3 is 

come out 
triangle has moved, but the whole triangle in its new position has 

exactly on top of its old position. 
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If, in a movement, a point (like the point Q in the example above) has 

its new position the same as its old position, we say that it is a fixed-point 

of that movement. 

f, in a movement, a figure (like the triangle P P2 P3 in the example 

above) has its new position fall exactly on its old position, we say that the 

figure is invariantunder the movement. 

PROBLEMS 6-2B 

1. 	 Consider the movement which carries AABC to AA'B'C' in the following 
picture. 

c' 

C OP3
1 A' 	 B' 

A 	 BP2 

Fig. 20. 

Where does it carry points P 1, P2 , and P3? Does this movement 

have 	any fixed points? 

2. 	 Consider the movement which carries AABC to AA'BIC'. 

A' 

B' C' 

• P1 	 */ P2 

2 

P3 

A OIB 


Fig. 21. 

190 



What 	does it do to the point P? To the point P2 ? To the point P 3? 

To the circle D? 

to AA'B 'C' in the following
3. 	 Consider the movement which carries AABC 

picture. 

CL
C 

A'A 
B 	 B' 

< ''" 	 >L 2
 

Fig. 22. 

Where does it carry the line L1 ? Where does it carry the line L 2 ? 

you will have to turn your tracingL3 ? 	 (Note:Where does it carry the line 

paper over to obtain this movement.) 

Challenge Problem 

In Problem 3. what are the fixed points of the movement?4. 	 a. 

b. 	 For the movement of Problem 3, describe all lines that are 

invariant under the movement. 

A onto triangle B?5. 	 How many distinct motions carry triangle 

P.z 

BA 

Fig. 23. 

What 	does each of these movements do to the point P? 
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USING RULER AND COMPASSES TO MOVE FIGURES AND POINTS 

If we wish to move a figure like either of the two below, 

Fig. 24. 

we must use tracing paper and prick through many points of the figure. But 

if we have a figure made up entirely of straight line segments and circular 

arcs, we can move it by ruler and compasses without using tracing paper at 

all. Our earlier work in geometry shows us how to do this. For example, 

in the following picture (which is the same as Figure 10 in this section) 

E 
B D F 

G 
A C 

Fig. 25. 

we can move triangle ABC so that C falls on1 F and AC falls on the line 

of EF as follows. Extend segment EF. Measure distance AC and mark 

off an equal distance from F on EF extended. This gives a point A' on 

EF extended. Draw an arc with centre F and radius BC. Draw an arc 

with centre A' and radius AB. Take the intersection of these arcs as B'. 

Draw the segments A'B' and FB'. When you finish, your figure should 

look like this. 
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' A' 

B E' 

DF 

A -- C G 

Fig. 26. 

Here is another example. Move the line segment AB parallel to it

self so that point A falls on point C in the following picture. 

ec 

AB 

Fig. 27. 

To solve this, draw segment AC and extend it beyond C to E. Then 

BAC in measure.use compasses to obtain point D so that DCE equals 

Draw CD and locate B' on its extension so that CBR = AB. When you are 

finished your figure will look like this. 
E 

C 

A 

Fig. 28. 

GB Iis the new position of AB that we wanted. 

Let ABC be a triangle. Assume that a ce- .ain movement of the trac

ing paper carries A to A', B to B', and C to C'. If we know the positions 

of A ABC and A A'B'C', and if we are given any point P, we can then use 
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movement carries P. The construction is compasses to find where the same 

very simple. (See Figures 29 and 30 below). 

With A' as centre,With B' as centre, draw a circle of radius BP. 

draw a circle of radius AP. If P lies on AB, then these circles intersect 

at one point, and we take this point of intersection for the new position of P. 

/ A'
 

C 

A 
P 

B C' 

(new position of P) 

Fig. 29. 

If P does not lie on AB, then these circles intersect at two points which lie 

on opposite 	sides of A'B'. In this case, see if P lies on the same side of 

If so, choose, as the new position of P, that point of intersectionAB as C. 

If not, choose that point ofwhich lies on the same side of A'B' as C'. 

A'B' from C'.intersection which lies on the opposite side of 

The following picture shows this construction for the case where P is 

not on the same side of AB as C. 

PI 

(new position of P) 

AC 

A 

B IC 

two points of intersection C' 
B
 

P 
Fig. 30. 
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The use of ruler and compasses to move a figure or point often gives 

a more accurate result than the use of tracing paper. In the rest of this 

chapter we are going to study some of the things that happen when we move 

move 	a figure, orfigures and points in the plane. We shall find that if we 

facts about the originalpart of a figure, this can often help us to find new 

in order to carry out a proof, it will be enough to imagine thefigure. Often, 


movement and then make a rough sketch of the result, without using tracing
 

paper or doing all the details of a ruler and compasses construction.
 

PROBLEMS 6-2C 

1. 	 Use ruler and compasses to do Problem 2 in Problems 6-2A. 

2. 	 Do the same for Problem 3 in Problems 6-2A. 

3. 	 Do the same for Problem I in Problems 6-2A. 

4. 	 In the following figure, a certain movement of the tracing paper 

carries AABC to IA'B'C'. Use compasses to find where this 

movement carries the points D, E, and F. 

B 
B1 

IA	 C 

C1 
CD 

eF 

Fig. 31. 

Where does this movement carry the triangle whose vertices are D, 
E, and F? 

5. 	 a. If a movement carries point A to point A' in the following picture, 

what are all the possible new positions of point P? 
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0 

A#
 

A 

P 

Fig. 32. 

b. If a movement carries A to A' and B to B', what are all the 

possible new positions of the point P? 

a BI 

"A
 

"p
 

Fig. 33. 

c. If a moveir-nt carries A to A', B to B', and C to C', what 

are all the possible new positions of the point P? 

C' 
* B '0 

BBB *C
 

*A
 

*p
 

Fig. 34. 

Challenge Problem 

6. State a general rule which covers the cases described in Problem 5. 
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6-3 RIGID MOTIONS. 

In the last section, we moved figures and points in the plane by sliding 

a piece of tracing paper to a new position. Let us now imagine a large (in 

on top of the plane. By copying from thefact infinite) piece of tracing paper 

plane onto the tracing paper and then sliding the tracing paper to a new posi

move a figure in thetion (or possibly turning it over and sliding it) we can 

can seeplane. Indeed, given a change in position of the tracing paper, we 

orwhere, in the plane, that change of position carries any given point, line, 

figure that we are interested in. Such a change in position over the entire 

plane is called a rigidmotion. Given a rigid motion and given a point P, the 

new position of P is called the image of the old position of P. Given a figure, 

the new position of the figure 	is called the image of the old position of that 

a point P under a given rigid motion, we somefigure. If PI is the image of 

times say that the motion maps P to PP. 

is much like a function in algebra. JustA rigid motion in geometry 

as a function on the real numbers is a way of assigning to every real number 

x a real number y called the value of the function at x, so a rigid motion T 

in the plane a point P' called 	the imageis a way of assigning to every point P 

of P under the rigid motion. In algebra, if f is a function and x is a real 

number, we sometimes write the value of f at x as f(x). Similarly, in geo-

P is a point, we sometimes write the imagemetry, if T is a rigid motion and 

of P under T as T(P). This notation gives us a short and useful way to say 

things about rigid motions. For example we can now restate the definition of 

fixed-point as follows. 

P is a fixed-point of T if and only if T(P) = P. 

have spoken of a rigid motion as a change in position of an imaginaryWe 

piece of tracing paper, and we have talked about movement of this paper. It 

would be better to speak of a rigid motion simply as a new position of the en

tire piece of tracing paper. In our study of geometry it does not matter what 

path we follow during the actual movement of the paper. All that matters is 

the final position of the paper. Thus we see that a rigid motion is, in fact, 

a function (of a certain kind) from the plane into itself. 
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What if we take our infinite tracing paper and do not move it at all? 

In this case, the new position of the infinite sheet of tracing paper is the 

same as the old position. Since there is no change in position, it is 

natural to ask whether or not we wish to call this function from the plane 

into the plane (where, for every point P, the image of P is P itself) a 

rigid motion. We shall find it useful to call this function a rigid motion, 

even though no change in position has occurred. This rigid motion is called 

the identity motion, and we often write it as I. Thus we have, in our 

notation: 

for any point P, I(P) = P. 

(Hence every point is a fixed point of the identity motion.) 

We now list several important facts about rigid motions. These facts 

hold for all rigid motions. Since they hold for all rigid motions, we say that 

they are propertiesof rigid motions. Let T be a rigid motion defined by 

the change in position of an infinite piece of tracing paper. 

(1) If P and Q are points in the plane, if PF = 

T(P), and if Q' = T(Q), then the distance PQ 

is the same as the distance P'Q,. 

(2) 	 If P and Q are distinct points, if P' = T(P), 

and if QI = T(Q), then P is distinct from Q'. 

(3) 	 For every point Q there is a point P such 

that Q = T(P). That is to say, every point 

is an image of some point. 

(4) 	 The image of any straight line is a straight 

line. 

(5) 	 If P, Q, and R are distinct points, and if 

PF = T(P), Q I= T(Q), and RI = T(R), then 

P'Q'R I is the image of PQR and P'Q 'R = 

PFR in measure. 

(6) 	 If two straight lines are parallel, then their 

images are parallel. 
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These six properties are obvious from the tracing paper idea of a 

If two lines are parallel,rigid motion. Consider Property (6) for example. 

then their copies on the tracing paper are parallel, and these copies remain 

Hence the images of the lines must
parallel as we move the tracing paper. 

be parallel. 
Property (1)

It is an interesting and surprising fact that, if we assume 

for rigid motions (in other words, if we take Property (1) as a postulate), 

(3), (4), (5), and (6) as theorems. We can
then we can prove Properties (2), 

These proofs will not
do this without using the idea of tracingpaperat all. 

as part of your geometry course. If you are interested inbe given here 

looking at these proofs, you will find them in the appendix at the end of this 

chapter. 

Since Property (1) is so basic, we give it a special name. It is called 

the isometric property. If a function from the plane into the plane has Pro

perty (1), we say that the function is isometric. 

must there be a change in position of ourIf a function is isometric, 

us the function? We shall see, ininfinite tracing paper which will give 

to this question is yes. The idea of an isometricSection 6-6, that the answer 

function and the idea of a rigid motion (as given by change in position of 

tracing paper) are therefore completely equivalent. Hence we could, if we 

wished, study rigid motions without using the idea of tracing paper at all. 

We would begin with the following formal definition. 

DEFINITION 6-1. A rigidmotion is a function 

from the plane to the plane which is isometric. 

We could then base our whole study on this formal definition. We will 

not do this here. In our work on rigid motions we will keep on using the 

tracing paper idea to help us to understand important facts and constructions. 

often called a mapping on theA function from the plane into itself is 


plane. In geometry, this word "mapping" has exactly the same meaning as
 

mapping has the isometric prothe word "function". As we have seen, if a 


perty, it is called a rigid motion.
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If a mapping has both Property (3) and Property (4) it is called a 

transformationon the plane. We have seen above that every rigid motion 

is a transformation. In Problem 6 below, we shall give an example of a 

transformation which is not a rigid motion. 

In the rest of this chapter we shall study rigid motions in the plane. 

In later work in mathematics, we shall study other kinds of transformations 

as well. Transformations are important in both algebra and geometry. 

In this chapter, we consider rigid motions of the plane onto itself. 

Rigid motions can also be used in space. In space, we can no longer use the 

tracing paper idea, but the formal definition of rigid motion can be given 

exactly as above. That is to say, rigid motion is a mapping from space 

into space with the property that for any points P1 and P2, if P,' is the 

image of P1 and P 2' is the image of P 2 , then PIP2 ' = PP 2 . In what 

follows, our main study will be of rigid motions in the plane. 

PROBLEMS 6-3 

1. 	 Let T be the rigid motion which takes A P 1 P 2 P 3 to A Pl'P2
1 P 3 ' in the 

following figure. Find the images of the points Q1, Q2, and Q3 under 

T. What is the image of the square S under T? 

P 1P 	 P 2 ' 

P 2	 3 

P3 

° Q3 

Fig. 35. 

2. 	 In the figure of Problem 1, what point has Q, as its image under T? 

Draw the triangle that has A P1 P 2 P3 as its image under T. 
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3. 	 Let T be the rigid motion which takes A P 1 P 2 P 3 into A Pl'P2 'P 3' in the 

following figure. 
P3 	 P3

1 

I 	 P2 

Fig. 36. 

Can you draw the 	triangleWhat is the image of API'P2 'P 3 ' under T? 


which has A P.P 2 P 3 as its image?
 

Challenge Problem 

4. 	 Let T be the rigid motion which takes A P1 P 2 P 3 into A PI'P 2 'P3' 

in the following figure. 
P3 

1 

P2
 ~P21
 

P10
P1 P3 

Fig. 37. 

T? 	 Can you draw the triangleWhat 	is the image of A PI'P2'P 3 r under 

which 	has A PF P 2 P 3 as its image? 

true 	and which are false.Tell which of the 	following statements are5. 

(a) 	 Every rigid motion has a fixed point. 

a rigid motion such that the image of each straight(b) 	 There exists 


line is either identical with that line or parallel to it.
 

(c) 	 In every rigid motion there is some straight line which is paral

lel to ita image. 

(d) In 	every rigid motion there is a line which is its own image. 

(e) 	 There is a rigid motion which has no fixed point, but has a line 

which is its own image. 
a(f) 	 There is a rigid motion tha. has no fixed point, but which has 

triangle that is its own image. 
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Challenge Problem 

6. There are six different rigid motions which carry A ABC to A DEF 

in the following figure. 

B E 

A C 	 D F 

Fig. 38. 

Locate the fixed points, if any, for each of these rigid motions. 

7. 	 Let L be a given line. We define a certain mapping T by showing, 

for any point P, how to find T(P). 

Let P be given. If P is on L, take T(P) to be P itself. If P is 

not on L, drop a perpendicular from P to L, and locate a point on 

the perpendicular which is on the same side of L and twice as far 

from 	L as the point P. Take this new point to be T(P). 

/ 
L 

\ T(P) 

Fig. 39. 

Show that this mapping is not a rigid motion. (Hint: show that this 

mapping is not isometric by finding two points P and Q such that 
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T(P) and Q' = T(Q). It then followsPQ # PIQ', where P' = 

that T cannot be a rigid motion.) 

Tracing paper cannot be used to get this mapping. We canNOTE: 

get it if, in place of tracing paper, we use a thin rubber sheet that 

can be stretched after we trace onto it. 

Challenge Problem 

T by showing,8. Let L be a given line. We define a certain mapping 

for any point P, how to find T(P). 

If P is on L, take T(P) to be P itself. If P isLet P be given. 

not on L, drop a perpendicular from P to L, extend the perpendicular 

beyond L, and locate a point on the perpendicular which is on the 

P and at the same distance from L as P.opposite side of L from 


Take this new point to be T(P).
 

L 

Fig. 40. 

Show that this mapping is a rigid motion.
 

(Hint: show that the mapping is isometric by showing that for any
 

Q' = two points P and Q, PQ = P'Q', where P' = T(P) and 

It then follows that T must be a rigid motion.)T(Q). 


How can we move our tracing paper to get the mapping T?
 

Challenge Problem 

9. 	 Let 0 be a given point in the plane. Then for every point P in the 

(which will depend on P) as follows.plane, we can locate a point P' 

If Pis O, wetake P'tobe 0. If P isnot 0, we drawaline 

from 0 through P and extend it beyond P. We then find a point P' 

on this line such that OP = PP'. 
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This procedure defines a mapping T such that for any P, T(P) = P'. 

Show that T is a transformation but not a rigid motion. (Hint: use 

similar triangles for proving Property (4).) 

NOTE: As in Problem 7, tracing paper cannot be used to get this 

transformation, but we can get it if, in place of tracing paper, we 

use a thin rubber sheet that can be stretched after we trace onto it. 

The transformation defined in Problem 9 also has Property (5). (Can 

you prove this ?) If a transformation has Property (5), it is called a 

motion. Hence T, in Problem 9, is a motion which is not a rigid 

motion. Problem 7 gives an example of a transformation which is not 

a motion. See Problems 10 and 11. 

10. 	 Show that T in Problem 7 does not have Property (5). 

Challenge Problem 

11. 	 Show that 7'in Problem 7 has Properties (3) and (4). (T is therefore 

a transformation.) 

Challenge Problem 

12. 	 Prove that every transformation has Property (2) and Property (6). 

6-4 	 USING MOTIONS TO SOLVE PROBLEMS. 

There are many ways in which rigid motions can be used to help solve 

problems in geometry. We shall look at some of these in later sections. 

We give two examples here. 

Example 1 

The following figure shows a map of a river and a road. The figure 

also shows a scale of distance. It is desired to build a factory at a point on 

the river that is within two kilometers of the road. What points of the river 

can be used? 
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RIVER 

1 Km 

ROAD 

Fig. 41. 

Solution to Example 1 

The road is a straight line. Use the rigid motion which moves this 

straight line parallel to itself towards the river for a distance of two kilo

metres (on the scale). This gives the following figure. 

OLD LINE 

Fig. 42. 

give the
The portions of the river that lie below the image of the road now 

points that can be used for building the factory. 

Example 2 

In the following figure, construct a line segment which is parallel to 

line L, has length PQ, has one of its endpoints on circle C1 aud has one 

of its endpoints on circle C2 . 
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CC2 

P 

Q 
L 

Fig. 43. 

Solution to Example 2 

Use a rigid motion which carries the circle C, a distance PQ towards 

C2 in a direction parallel to L. The points of intersection of C2 with the 

image of C, now give the possible points on C2 for the segment to be 

constructed. 

Challenge Problem 

Use ruler and compasses to construct a line segment as asked for in 

the second example above. (There are two segments possible). 

6-5 SPECIAL KINDS OF RIGID MOTION. 

In the sections above, we have looked at different examples of rigid 

motions. Some of these rigid motions had special properties that others 

did not have. For example, some rigid motions had fixed points, others did 

not. It is helpful to have special names for some of the different kinds of 

rigid motions that are possible. In this section, we use the tracing paper 

idea to show the meaning of some of these names. In following sections we 

shall give more exact definitions. 
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(1) 	 A rigid motion is called direct if we do not need to turn the trac

do have to turn the tracinging paper over in order to carry it out. If we 

paper over, the rig',d motion is called reversing. 

(2) A rigid motiOi 's called a translationif it is direct and can be 

obtained by sliding the tracing paper, without rotation, so that every point 

moves the same fixed distance. 

(3) A rigid motion is called a rotation if it is direct and can be ob

tained by rotating the tracing paper about some chosen fixed point. 

(4) 	 A rigid motion is called a reflection if it is reversing and can be 

overobtained by choosing a straight line and then turning the tracing paper 

and putting it back down so that every point on the chosen line falls on its 

The chosen line is called the line of reflection of theoriginal position. 

rigid motion. 

Examples 

(1) In Problem 1 of Problems 6-2A, the rigid motion which yields 

Figure 44 below 

B' C1 

EA 

Fig. 44. 

is a translation. 

(2) In Problem 2, the rigid motion which yields Figure 45 below 
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A#
 

c B' D 

E 

Fig. 45. 

is a rotation. (Here C is the fixed point of the rotation.) 

(3) In Problem 3, the transformation which yields Figure 46 below 

CI 
I 

B' A' 

L 
Fig. 46. 

is a reflection. (Here L is the line of fixed points which we call the line of 

reflection.) 

(4) In Problem 4 of Problems 6-3 we get an example of a rigid motion 

which is neither a translation nor a rotation nor a reflection. The rigid 

motion in this problem can be obtained by carrying out first a reflection and 

then a translation. In the following figure, the straight line indicates the 

line of reflection. Note that the translation leaves the line of reflection 

invariant. 

208 



J "'\ S translation slides tracing 

/ \ / paper in direction of this arrow 

Fig. 47. 

We shall see later that every rigid motion is either a translation, a rotation, 

a reflection, or can be obtained by carrying out first a reflection, and then a 

translation. as in the above example. 

Certain words and ideas are especially useful in talking about whether 

or not a motion is reversing. We give these words and ideas here. 

Assume that we are looking down at the plane from above. Let A, B, 

C be the vertices of a triangle in -he plane. We say that we see the ver

tices A, B, C in clockwvise order if, as we look fr'om A to B to C and 

back to A, our eyes follow the same direction that they would follow if we 

were watching hands move on the face of a clock. I the following picture, 

A) BI C occur in clockwise order. 

B 

A clock 

Fig. 48. 
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In the following picture, A, B, C do not occur in clockwise order. 

C 

4 Bclock 

B 

Fig. 49. 

Whether or not vertices occur in clockwise order depends upon the order in 

which we name them. In the last picture above, A, C, B occur in clock

wise order, while A, B, C do not. 

If vertices do not occur in clockwise order, we say that they occur in 

counter-clockwise order. Thus, in the last picture above, we say that A, B, 

C occur in counter-clockwise order. 

The following facts are now clear. 

A rigid motion is direct if, for every triangle ABC in which A, B, C 

occur in clockwise order the images A', B', C' occur in clockwise order. 

A rigid motion is reversing if, for every triangle ABC in which A, 

B, C occur in clockwise order, the images A', B1, C' occur in counter

clockwise order. 

PROBLEMS 6-5 

1. 	 Look at the rigid motions described in Problems 1, 2, 3 and 5 of 

Problems 6-2B. Which of these are direct and which are revers

ing? Which are translations, which are rotations and which are 

reflections ? 

2. 	 We are given a rigid motion T. In the following figure, find T(Q) 

assuming that T is a direct motion. 
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T(P 1 ) T(P 2) 

.P 
1 

.Q 

OP2 

Fig. 50. 

In the same figure, find T(Q) assuming that T is a reversing motion. 

3. T is a rigid motion; Pi, P 2 and Q are three distinct points. 

(a) You are given T(Pi) and T(P 2), and you are told that T is 

direct. Can you find T(Q)? 

(b) You are given T(P) and T(P2 ), and you are told that T is 

reversing. Can you find T(Q)? 

6-6 CONGRUENT FIGURES. 

As we have seen, the image of a triangle under a rigid motion is 

congruent to the original triangle (by SSS). It is also true that for any 

two congruent triangles, there is a rigid motion which carries one triangle 

to the other. This fact is easy to see from the tracing paper idea of rigid 

motion. 

Let ABC and A'B'C' be two congruent triangles. We must show 

that there is a movement of tracing paper which carries A ABC to 

A A'B'C'. 

Imagine that we have made a tracing of A ABC. Since the triangles 

are congruent, AB = A'B'. Slide the tracing paper so that A falls on A' 

and B falls on B'. 

(i) If C (on the tracing) now falls on the same side of A 'B' as C', we 

see that C must fall exactly on C' (since CAB = C'A'B' in measure, 

and CBA = C'B 'A ' in measure). 
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(ii) If, after the tracing paper is moved, C happens to fall on the 

opposite side of A'B' from C', turn the tracing paper over and place 

A over A' and B over B'. Now the new position of C falls on the 

same side of A'BI as C', and, as before, C must fall exactly on C'. 

Thus, in either case, we have a movement of the tracing paper which 

carries A ABC to A A'B'C' . This movement defines the rigid motion 

that we wanted. 

We thus have the following: 

Two triangles are congruent if and only if there is a rigid motion 

which carries one triangle on to the other. 

In the same way, we could show that two circles are congruent if and 

only if there is a rigid motion which carries one circle on to the other. 

These facts suggest that we use the idea of rigid motion to define con

gruence for any two figures in the plane. 

General definition of congruence. Let S and S' 

be two sets of points in the plane. We say that 

S is congrtent to S' if there is a rigid motion 

under which S' is the image of S. 

This definition is different from the definitions of congruence for tri

angles and circles that you were given in your earlier work in geometry. 

We make the following two comments. 

(a) For triangles and circles, the new definition agrees with the old 

definition. (That is to say, two triangles are congruent under the new defi

congruent under the old definition.)nition if, and only if, they are 

(b) The new definition is closer to the informal idea of "same size 

and shape" which led to our original study of congruent triangles. This 

informal idea was, simply, that two triangles are congruent if we can move 

one of them so that it falls exactly on the other. 

NOTE ON ISOMETRIC MAPPINGS 

In Section 6-3, we saw that every mapping obtained by using trac

ing paper must be isometric. We also stated that every isometric mapping 
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can now see why this last factcan be obtained by using tracing paper. We 

is true. 
Let T be a given isometric mapping. Then T has the property that 

(This was Property (4) init carries every straight line to a straight line. 

Section 6-3. The fact that every isometric mapping has this property is 

proved in the P ppendix to this chapter.) Let ABC be any given triangle. 

Let A' = T(A), B' = T(B), and CI = T(C). Then the image of AABC 

under T must be AA'BrC', (by Property (4) of T); hence AA'B'CI is 

of T and SSS). Whatcongruent to A ABC (by the isometric property 

we did at the beginning of this section shows that there is a movement of 

tracing paper which carries A to A', B to B', and C to C'. Call the 

mapping over the plane given by this movement: T'. Then T'(A) = T(A), 

T'(B) = T(B), and T'(C) = T(C). Now look at the construction given at 

the end of Section 6-2. This construction shows that if we know where an 

isometric mapping carries the vertices of a triangle, then we can find out 

exactly where that mapping carries any other point. Given any point P, 

the constructions for 7' and for T' must be the same. Hence, for any point 

P, T(P) = T'(P). Hence T and T' are the same mapping. Thus our given 

mapping T can be obtained by a movement of tracing paper, which is what we 

set out to show. 

6-7 TRANSLATIONS. 

Let two points A and B be given. Draw an arrow from A to B. 

/ B 

A 

Fig. 51. 
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For any point P we carry out the following construction. Through P draw 

a line parallel to AB. Call this line L'. (In case P lies on AB, we take 

LI to be AB itself.) On LI, we take a point PI so that PP = AB and PI 

lies in the same direction from P that B lies from A. 

B 

/ 

A -J 
01 

'PP 
/ 

Fig. 52. 

Note that mn this construction, if we draw an arrow from P to P', we get 

an arrow with the same length and same parallel direction as the arrow 

from A to B. 

An arrow from one point to another point in the plane is called a 

vector. We shall use the symbols U and V to stand for vectors. NOTE: 

Do not confuse a vector with a ray. A vector has direction and length, 

whereas a ray has direction only. 

Let u3 give the name U to the vector from A to B in the above 

construction. 

DEFINITION 6-2. If P is obtained from P as 

in the above construction, we say that PI is the 

result of translatingP by the vector U. 

Let a vector U be given in the plane. The construction above can be 

carried out for any point P. Hence we have a mapping T which we get by 
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for any point P, to be the result of translating P by thetaking T(P), 

vector U. 
be a rigid motion? IfMust the mapping T, which we get in this way, 

we can show that T is isometric, then, by our work in Sections 6-3 and 6-6, 

a rigid motion. We can show that T is isometric as we will know that T is 

follows. Take any points P1 and P 2 . The construction of P 1 ' and P 2 ' gives 

the following figure. 

B 

P P2 

Fig. 53. 

To show that T is isometric, we must show that PIP2 = Pl'P2 '. 

Consider the quadrilateral P1 P'P 2 'P 2 . P, P' is parallel to P 2 P 2 ', 
1 

since both are parallel to U by construction. P P' = P 2 P 2 , since both
 

are equal to the length of U by the construction. Hence P1 P,11 P 2 P 2 ' is a
 

parallelogram. (Recall that any convex quadrilateral with a pair of opposite 

are equal in length and parallel must be a parallelogram.) Hencesides which 


= P 1 'P 2 ', since opposite sides of a parallelogram must be of equal

P1 P 2 


length. (In the figure, we have assumed that P P' and P 2 P 2 ' are distinct
 

even simpler.)lines. In case they are the same line, the proof is 


T is a rigid motion.
We have shown T is isometric, and we see that 


Is the rigid motion T direct or reversing? The following figure makes it
 

clear that T must be direct.
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SC1
 

BI 

Fig. 54. 

What kind of rigid motion is T? Clearly, every such T is what we 

called, in Section 6-5, a translation,and every translationcan be obtained 

by using a suitable vector U in the above constructionfor T. The vector 

U simply gives the distance and direction through which we slide the trac

ing paper to get the rigid motion T. 

We now list some more important facts about translations. In a 

translation, every point moves the same distance. This is clear from the 

construction. 

Given any line L, the image of L in a translation is either parallel 

to L or else is L itself. To see that this is true, look at Figure 53 where 

we showed PI P 2 = P1 'P 2 '. If P1 and P 2 are two points on L, then P,' and 

P 2 ' are two points on the image of L, and, since P1 P,'P2'P 2 is a parallel

ogram, we have that L and its image are parallel. For what lines is it true 

that the image of L is L itself? 

Is the identity motion a translation? We agree to call it a translation, 

although it is the translation in which every point moves zero distance. It 

is given by a vector whose length is zero. 

TRANSLATIONS AND COORDINATE AXES 

Suppose we take a point 0 which is the origin of a coordinate system. 

Then we can draw our coordinate axes as in Figure 55. 
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P'(a+m, b+n) 

(m,n) 

U 

0	 
x 

Fig. 55. 

Suppose we are given a vector U from the point 0 te some point 

have coordinates (a, b). Let P' be the
with coordinates (I, 	 n). Let P 

P by U. What are the coordinates of P'? Clearly
result of translating 

Can you show this?P' has coordinates 	 (a + m, b + n). 

PROBLEMS 6-7 

U in 	the following figure.
1. 	 Let T be the translation given by the vector 

Find the image of the triangle. Find the image of the circle. Find the 

figure which has the circle as its image. 

U0 

Fig. 56. 

carried into themselves by T (are
2. 	 In Problem 1, what lines are 


invariant under T) ?
 

3. 	 What is the result of applying first translation U and then transla

tion V in the following figure?
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U V 

Fig. 57. 

4. 	 What is the result of applying first translation U and then translation 

V in the following figure? 

UV 

Fig. 58. 

5. 	 Let U be the vector between (0, 0) and (2, -4). For each of the 

following points P, find the coordinates of P' where P' is the result 

of translating P by U. 

P. 	 (1, 1) 

(-2, 4) 

(7, -10) 

6. 	 In the last paragraph of this section (Figure 55), prove that P' has 

coordinates (a + m, b + n). 

Challenge Problen 

7. 	 You are told that a certain rigid motion T has the property that it 

carries every point the same distance. Show that T must be a trans

lation. 

8. 	 You are tcld that a certain rigid motion T has the property that, for 

every line L, the image of L is either parallel to L, or is L itself. 

Show that T need not be a translation. 

9. 	 You are given two points P1 and P 2 , you are told thac a certain rigid 

motion T carries P1 to P,' and P 2 to F2', and you are told that 

P P'P2'P2 is a parallelogram. Show that T need not be a translation. 
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Challenge Problem 

10. 	 You are given the same information as in Problem 9 and you are also 

Show that T must be a translation.told that T is direct. 

6-8 ROTATIONS. 

have a fixed point 0 and a point P. If we move P to the
Suppose we 

in such a way that = and m(POP') = (3,position P' (as in Figure 59) OP OP' 

have turned P through an angle ( about 0.
then we say that we 

P1 

P0 

pN
 

Fig. 59. 

P to get P". So it is possibleWe can also turn P through an angle 


to turn P through the same angle p3, but getting two different positions as
 

P, and P" in Figure 59.
 

result when we talk about rotating a point
In order to get just one 


through a given angle ( about a fixed point, we need to give also the direc

tion in which the angle ( is turned.
 

case P moves to P', we actually
For example in the above when 
To getthat is the counter-clockwise direction.turned in the direction (y (9

P" we would turn in the direction ( • We see clearly that is in the 

• So we use the following sign convention:opposite direction to D the 

direction (3 (counter-clockwise) will be taken as positive and the opposite 

direction (clockwise) will be taken as negative. 
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Whenever we say that a point (or for that matter anything else) is 

turned through an angle 0 > 0, we mean that the turning is in the counter

clockwise direction, and when we say that a point is turned through an angle 

~ 0, we mean that the turning is in a clockwise direction. 

DEFINITION 6-3. The point P is rotatedabout 

0 through an angle 03, if P moves in such a way 

that it remains a fixed distance from 0 while 

OP turns through the angle j3. 

Let a point 0 be given in th'e plane and let a value of 03 be given. For 

any point P we can find a new point P' by rotating P about 0 through an 

angle /3. Hence we have a mapping T which we get by taking T(P), for any 

point P, to be the result of rotating P about 0 through an angle !3. 

Must the mapping T, which we get in this way, be a rigid motion? If 

we can show that T is isometric, then, by our work in Sections 6-3 and 6-6, 

we will know that T is a rigid motion. We can show that T is isometric as 

follows. Take any points P and P2 . The construction of P1 ' and P 2 ' gives 

the following figure. 

P2, 

/A
 
/ 

/ 
/ 

-\ P2 

0 A: 

Fig. 60. 

To show that T is isometric, we must show that PIP2 = F1 'P2 '. 

In this figure, re(P1 OP 2) = 13 + m(P1 'OP) and m(P1 '&P2 ') = I + 

m(P.1OP). Hence re(PlOP2) =m(P1'0P 2 '). Also, OP 2 = OP 2' and 

OP, = OP', by the construction. Hence, by SAS, AP 1 0P 2 ' is congruent to 
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AP, OP 2 . It follows that P1 P 2 = 	P1 'P 2 1. (In the figure, we have assumed 

P1 'OP 2 ' overlap. In case they do not over
that the interiors of P01P2 and 

= 
lap, the proof is the same except 	that m(PIOP2) = in(P'0P2 ') 3 

i(Pi 'OP 2).) 

see that T is a rigid motion. Is
Therefore, T is isometric, and we 

the rigid motion T direct or reversing? The following figure makes it 

clear that T must be dire't. 

C1 

II A'B'B 

I 
Ii / 6 

1 I / -

Fig. 61. 

What kind of rigid motion is T? Clearly every such T is what we
 

called, in Section 6-5, a rotation, and every rotation can be obtained by
 

3 in the above construction of T. The

using a suitable point 0 and value 

rotate the tracing paper (imagine
point 0 is simply the point about which we 


a pin stuck through the tracing paper at this point), and 3 is the measure
 

turn the tracing paper.of the angle (positive or negative) through which we 

If (3 = 90 0 in a rotation, we call that rotation a quarterturn. If 

Some of the prob(3 = 180 in a rotation, we call that rotation a half turn. 


lems below have to do with these special rotations.
 

get for (3 = 00. (The
The identity motion is the rotation that we 


identity motion is thus called both a rotation and a translation.)
 

T be a
Note the following fundamental fact about rotations. Let rota

be the image of Ltion through an angle (3. Let L be any line. Let L' 


measure (3.
under T. Then L and L' form 	an angle whose is 
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S/LI 

// 

Fig. 62. 

PROBLEMS 6-8A 

1. If A is rotated 900 about 0, where will its image A' be? 

o A 

Fig. 63. 

2. If "B is rotated 1800 about X, where will its image B I be? 

B x 

Fig. 64. 

3. If AB is rotated 900 about 0 where will A 'Bt be? 

0 A B 

Fig. 65. 
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AB in 	Figure 66? If A 'IB is 
4. 	 Where will a half-turn about 0 bring 

the image of AB from this rotation and you moved towards the right to 

get from A to B, in what direction would you move to get from A' 

to B'? 

o A B 

Fig. 66. 

5. 	 Where will a quarter turn about 0 bring AB? 

A 

0. 

Fig. 67. 

AB about 0.
6. 	 Draw A'BI, the segment resulting from a half turn of 

Can you sjow that ABA 'B' is a parallelogram? 

B 
A 

0. 

Fig. 68. 

0, the centre of the equilateral7. 	 Let T be a rotation of 1200 about 

T of the circle, and the two trianglestriangle. Find the images under 


in the following figure.
 

*0 

Fig. 69. 
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8. 	 If, in the figure, A' is the image of A under a rotation about a point 0 

which lies along AA, where is this point 0? 

.A' •A
 

Fig. 70. 

9. 	 Let A and A' be given. If A is moved to A' by a rotation about some 

point 0, what is the locus of possible points 0? 

Challenge Problem 

10. 	 If AB is transformed into A 'B' by a rotation about a point 0, how 

can you find the position of 0? Is there a rigid motion which carries 

A- to A 'B', but is not a rotation about some point 0? 

A-	 B 

A' 

8 ' 

Fig. 71. 

11. 	 Triangle A'BICI is the image of A ABC under a rotation. How would 

you find the point about which it was rotated? 

B 

C1 A C 
B1% 

A' 

Fig. 72. 
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NOTE: The point about which a rotation is made is known as a centre 

of rotation. 

12. 	 Prove that in a rotation through angle 13 any line makes an angle 

with its image. 

A 
ROTATIONAL SYMMETRY 

Consider the equilateral triangle 

ABC, with centre 0. Suppose we ro

tate the triangle through 120 about 0. - """" 

Where will the sides of the image, B C 

A A'B'C', lie? Fig. 73. 

You will find they lie on the sides of & ABC, although now C' will be where 

A was, A' will be where B was and B' will be where C was. That is, 

this image will fall exactly on the original triangle. Also if we rotate the 

find that the sides of the image again fall exactlytriangle through 2400, we 

on the original triangle. 

0. If 	we rotateSuppose we next take a square ABCD with centre 

the square 1200 about 0, will the sides of the image fall on the sides of the 

original square? What happens when the square makes a quarter-turn about 

0? 

Consider the following figure. Could you find a rotation about 0 which 

will give an image lying on top of the original figure? (Find as many angles 

as possible lying between 0 and 3600 for which this could be done.) 

Fig. 74. 
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If we restrict ourselves to a rotation less than a complete turn (that 

is, less than 3600) do you think you can find a rotation about 0 which will 

give an image coincident with the original figure in this illustration? 

C 0 

Fig. 75. 

When we do a complete turn, every point returns to itself (and so we 

have the identity motion). So a complete turn will always leave a point, a 

line or any figure unchanged. If it is possible to rotate a figure less than 

3600 about a point 0 and bring it into coincidence with itself, then we say 

that the figure has rotationalsymmetry about 0. 

ROTATIONS AND COORDINATE AXES 

consider a point
Suppose we 

O which is the origin of a co

ordinate system, and we draw 

the coordinate axes as in the 

figure. A point R on the x

axis, when rotated 900 about R 
.
0, goes to R' What is the . . 

distance of R' from 0? 0 r x 

Suppose we considered another 

point P distant p from 0 

along the y -axis. Where will its 

image P' lie under a quarter-turn 
Fig. 76.about 0? Where will its image P" 


lie under a half-turn about 0?
 

We can see that a half-turn will take R to R", where R is a dis

tance r from 0 along the positive x-axis and R" is a distance r from 0
 

R to R', where RI is
along the negative x-axis. A quarter turn will move 
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a distance r from 0 along the positive y-axis. Can you make similar 

statements for the point P? 

Let a point P have coordinates (a, b). What do the coordinates of P 

become under a half turn about the origin? Under a quarter-turn about the 

origin? 

PROBLEMS 6-8B 

1. 	 Which of the following figures have rotational symmetry? 

(a) (b) 	 (c) 

(e)

(d) 

Fig. 77. 

2. 	 The number of distinct rotations that carry a figure onto itself for 

rotations less than 3600 is called the order of symmetry of that figure. 

Find the order of symmetry of each of the figures in Problem 1. 

Note that a figure whose order of symmetry is 1 does not have rota

tional symmetry. 

Challenge Problem 

3. 	 You are told that a rigid motion T has at least one fixed point. You 

are also told that T is direct. Show that T must be a rotation. 
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6-9 REFLECTIONS. 

Let a line L be given. 

Fig. 78. 

For any point P, we carry out the following construction. Through P 

we draw a line perpendicular to L. On this perpendicular we take a point 

P' so that P' is on the opposite side of L from P, and P' is at the same 

P' to be P itself).distance from L as P. (In case P is on L, we take 

Q 

P1 

P 

Fig. 79. 

DEFINITION 6-4. If F' is obtained from F as 

in the above construction, we say that F' is the 

result of reflecting F in L. 

Let a line L be given in the plane. The construction above can be 

carried out for any point P. Hence we have a i-n-',Pping T which we get by 

to be the result of reflecting F in L.taking T(P), for any point P, 

Must the mapping T, which we get in this way, be a rigid motion? if 

we can show that T is isometric, then, by our work in Section 6-3, we will 

know that T is a rigid motion. We can show that T is isometric as follows. 
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Take any points P1 and P 2 . The construction of P1 ' and P?' gives 

Figure 80 below. 

P2 

P1' 

Fig. 80. 

To show that T is isometric, we must show that P1 P 2 = P1 'P2 '. 

In the above figure, PIN = P1 'N by the construction. Hence APNM 

is congruent to AP 1 'NM by SAS. Hence PM = P 'M and m(PMN) = 

2) = )n(Pi'MP 2 ). Since P 2 M = P 2'IM by them(Pi'iMN). Thus m (PiMP

by SAS, and P, P 2 =construction, we have APIAMP 2 congruent to API'MP2' 


P 1 'P 2 '. (In the figure we have assured that P1 and P2 lie on the same side
 

of L. The proof is similar in case P and P 2 lie on opposite sides of L.)
 

Hence T is isometric, and we see that T is a rigid motion. Is the 

rigid motion T direct or reversing? The following figure makes it clear 

that T must be reversing. 

8
 

At I 

I2I 

I 
I\ 

A" I 

C1 

i 
I 

F 

II 

Fig. 81. 
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What kind of rigid motion is T? Clearly, T is what we called, in Sec

tion 6-5, a reflection, and every reflection can be obtained by using a suitable 

line L in the above construction for T. The line L is simply the line which 

have turned the tracing paper over.remains fixed after we 

The rigid motions which we call reflections are closely related to the 

no doubt had the experience ofidea of reflection in a mirror. You have 

standing in front of a mirror and observing your image. The image looks 

exactly like you and appears to be situated as far behind the mirror as you 

are standing in front of it, One big difference between you and your image, 

as the right side of the image andhowever, is that your left side appears 

vice versa. If you have been studying General Science or Physics in your 

come across very many interesting experimentscourse, you would have 

and examples dealing with reflection. 

If T is one of the rigid motions in the plane which we are calling 

L is much like the mirror-image that you wouldreflections, then the line 

seem to see if you were to look at P in a mirror. The fact that T is re

interchanged in a mirrorversing is like the fact that left and right are 


image.
 

PROBLEMS 6-9A 

1. 	 The line m is parallel to a reflecting line L. Is its image mn' going 

to be a parallel to L also? 

2. 	 If AB is parallel to the reflecting
 

line L, in what direction will
 

the image A 'B' point?
 

A B 

< 	 > L 

Fig. 82. 
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3. 	 The line AB is perpendicular at 

O to the reflecting line L. Draw 

the image A'B' of AB. 0 

L 

Fig. 83. 

4. 	 If, in Problem 3, one moves from left to right in going from A to B, 

in what direction would he move in going from A' to B '?
 

Is the result in Problem 4 similar to that obtained for a half-turn about
5. 

0? 

6. 	 Draw the image of A ABC under 

a reflection along L. Is A ABC A 

A A'B'C', where AA'B'C' is the B 

image of AABC? How do you know 

Cthis ? 

L 

Fig. 84.
 

7. 	 Draw the image of ABCD under a 

reflection along L. Is this image 

congruent to ABCD? 

C 

L 

Fig. 85. 
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8. 	 What will the image of a circle be 

under reflection on a line? -4-" 

The arrow in the circle is clock

wise. In what direction will the 

arrow 	point in the image ?
 

L
 

Fig. 86. 

9. 	 If A'B' is the image of AB under a line reflection, where will the 

line of reflection lie in the following diagrams? 

B' 

BB 
A 

ABB 

Fig. 87. 

If AA 'B'C' is the image of AABC under a 	line reflection, where will10. 

the line of reflection be? 

B' 	 B 

A' 	 A 

C' 	 C 

Fig. 88. 

an11. 	 Is it possible to get a line of reflection which will make AA'B'CI 

in Figure 89? If not, could you find a reason?image 	of AABC 

A BA' B' 

CC' 

Fig. 89. 

232 



AXIS OF SYMMETRY 

Consider the isosceles triangle ABC with AB AC and AD an 

altitude. A reflection of this triangle along AD will 

give a triangle AC'B' which is the same as triangle A 

ABC with CI falling on B and<---> B' falling on C, 

since the reflection of A in AD still gives A. 

We see that, in the above reflection, each 

point P of the triangle is reflected to give an \ 

image point PI which is on the triangle. That is, B D C 

every point P and its image belong to the triangle. 
Fig. 90. 

P of a fig-DEFINITION 6-5. If for every point 

ure its image P' under a reflection on a line L 

is also a point of the figure, the line L is an 

axis of symmetry of the figure. 

REFLECTION ALONG COORDINATE AXES 

A point R at a distance r along the positive x-axis becomes point R' 

at a distance r along the negative x-axis. Similarly a point Q at a distance 

q along the positive y-axis will become point Q' at a distance q along the 

negative y-axis. 

Q 

R1 R
 

0'
 

Fig. 91. 
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A point P(a, b) when reflected in the x-axis becomes point P' 

(a, -b). A point P(a, b) when reflected in the y-axis becomes point P" 

(-a, b). 

In general, the point (x, y) becomes (x, -y) under a reflection in the 

x-axis and the point (x, y) becomes (-x, y) under a reflection in the 

y-axis. 

PROBLEMS 6-9B 

1. 	 Lines L and ni are the bisectors of the angles formed by the lines 

AB and - in Figure 92 below. Show that L is an axis of symmetry 

of the figure. 

C 	 I 

Fig. 92. 

Show 	that L and m are the locus of points equidistant from the lines 
4-->
 

AB and CD. 

2. 	 We say that a point P is reflected in a point 0, if its image P' is such 

that POP' is a straight line and PO = OP'. Show that this is the 

same as doing a half turn about 0. 

Challenge Problem 

3. 	 What will the coordinates of the point (a, b) become under a re

flection along the line y = x? 
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6-10 	 ONE MOTION FOLLOWED BY ANOTHER. 

Let a rigid motion R and a rigid motion S be given. For example, 

R might be the rotation about 0 which carries AABC to AA'B'CI in 

the following figure, and S might be the translation given by the vector 

U in the figure. 

BA 
C1 	 U
,1 op 	 :
 

0 SQ1 C 

A' 

Fig. 93. 

Now for any point P, we carry out the following construction. First 

we find the point R (P), which we call P'. Then we take P' and find the 

point S(P), which we call P". We can carry out this construction for any 

point P. Hence we have a mapping T which we get by taking T(P), for 

any point P, to be the point P" obtained from P by this construction. 

Must the mapping T, which we get in this way, be a rigid motion? If 

we can show that T is isometric, then, by our work in Sections 6-3 and 6-6, 

we will know that T is a rigid motion. Take any points Pi and P2 . To show 

that T is isometric, we must show that PIP 2 = Pl"P2". But PIP 2 = PI'P2', 

since 	R is isometric, and P1 rP2' = P1"P 2", since S is isometric. Hence
 

= P1"P 2", and we have that T is isometric. Therefore T must be
P1 P2 

a rigid motion. 

DEFINITION 6-6. Given any two rigid motions 

R and S, the new rigid motion T which we get 

when 	R is followed by S is called the combina

tion of R with S. We shall also refer to is as 

simply "R followed by S". 
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Think for a moment of the tracing paper idea of a rigid motion. R 

results from a certain movement of the tracing paper and S results from 

a certain movement of the tracing paper. If we make the first of these 

movements and then follow it with the second, we reach a final position 

(after the two movements) which could have been reached by a single move

ment of the tracing paper. T is the rigid motion which results from this 

single movement. 

What kind of rigid motion is T ? This will depend, of course, on the 

rigid motions R and S. In Figure 93 above, T is a rotation about the point 

marked Q1. (You can check this with some tracing paper.) 

What would happen if we carried out the two motions R and S in 

reverse order? Tnen the figure would be as follows. 

A B A' B1 
U 

P P1 

C " 
C0Q2 

0 

Fig. 94. 

The resulting rigid motion, as you can check with tracing paper, is a rota

tion about the point Q2. Clearly we get two different motions, depending 

upon the order in which we take R and S. 

This example tells us an important fact about combinations of rigid 

motions: if R and S are rigid motions, R followed by S need not be the 

same as S followed by R. 

In special cases, R followed by S and S followed by R may be the 

same. For example, if R and S are the translations given by U and V 

in the following figure, you can check that, in this case, R followed by S 

is the same as S followed by R. Each is the transformation T given by W. 
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W 

U 

Fig. 95. 

There are some general rules which we can use to tell what kind of 

rigid motion T is if we already know what kinds of motion R and S are. 

We now look at some of these rules. 

TRANSLATION FOLLOWED BY TRANSLATION 

We remind ourselves that in a translation every point in a line or 

figure moves the same distance and in the same direction, and that a trans

lation can be described by means of a vector whose length gives the distance 

that every point moves and whose direction gives the direction that every 

point moves. 

All 

UAt 

Fig. 96. 

In Figure 96 the triangle A can be moved to A' by the translation
 

given by vector U and A' moved to A" by the translation given by vector
 

V. Hence A is moved to A" by translating first by U and then by V. 

But clearly A is also moved to A" by the translation given by W. The 

three vectors are drawn to the right in Figure 96. 
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This example suggests that a translation followed by another trans

lation must always be a translation. We can state this precisely as 

follows: 

A translation R followed by a translation S equals a translation T. 

If R is given by a vector R and S is given by a vector S whose initial 

point is the end point of R (see Fig. 97) then T is given by vector T, with 

R and 	end point at the end point of S.initial 	point at the initial point of 

TS 

R 

Fig. 97. 

Try several pairs of translations like R and S on different figures 

to test the correctness of the above statement. 

PROBLEMS 6-10A 

1. 	 In Figure 96 above, find two other translations besides U and V which 

have the same effect as W when used one after the other. 

2. 	 Draw a triangle A and two vectors U and V. Draw the image of A 

under U; i.e., draw A ' where A is moved by U. Draw A" where 

A' is moved by V. Draw a vector showing a single translation 

moving A to A". Is this equal to U followed by V? 

3. 	 Draw three vectors 5, T, U in any position. Draw a vector V 

showing a translation equal to translation S followed by translation 

T, followed by translation U. 

4. 	 Draw a vector V showing a translation. Draw two vectors S and T 

at right angles showing translations such that V equals S followed 

by T. 
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5. If A is moved to A' by translation T, where does T move A'? 

If A' is moved to A" by T, where does T move A"? Draw a dia

gram showing A, A', A", A €"', Aiv where T moves each point 

to the next one to its right. 

c .,,,D'
EXAMPLE 

In Figure 98, the line segment CD " 

can be moved to C'D' by a half-turn %K"-

about H followed by a translation W. -" -,,,, 

CD can also be moved to C'D' by a ",%c 
Any other figure D

half-turn about K. w 

will be moved to the same position by the Fig. 98. 

half-turn about K as by the half-turn 

about I followed by translation W. We say the half-turn about K equals 

the half-turn about H followed by the translation W. 

PROBLEMS 6-10B 

1. In Figure 98, suppose CD is moved by translation W to a new 

position, say C"D". Can you find a half-turn which will move 

CI'D ' into CD? 

2. In Figure 98, can you find a half-turn about another point and a 

translation to follow it which is equal to a half-turn about K; i.e., 

moves CD to C'D'? 

3. Suppose C"D" in Problem 1 is moved by the half-turn at H; i.e., 

CD is moved by W followed by a half-turn at H. Where is the 

final position of CD? Is it the same as C-D? 
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ROTATION FOLLOWED BY ROTATION 

Consider a point P rotated about a point 0 through angle a to give 

P followed by another rotation of P through angle f3 to give P". 

Clearly a rotation of P through angle a -- 13 will also give P". 

However if the rotations are about two different centres the result 

is not so simple to obtain. Here we shall only consider combinations of 

some special rotations-such as half-turns-about different centres. We 

give two facts about such combinations. 

(1) A 	half-turn about point H followed by another half-turn about H 

is 	the identity. 
Can you show this? 

(2) The result of a half-turn about a point H followed by a half-turn 

To show this, let P be moved 

about a point K is a translation T, shown by a vector twice the vector from 

H to K. 
p ip 

to P by H and let P' be moved to P 

P" by K in Figure 99. Since H, K 

are the mid-points of the sides, P'P 
P1

and PIP" of the triangle PPP",. 

then 	 PP" = 2HK. Fig. 99. 

PROBLEMS 6-10C 

1. 	 Mark two points H, K about one inch apart as centres of half-turns. 

Take any three points P, Q, R and construct their images under the 

half-turn about H followed by the half-turn about K; i.e., find their 

images P', Q', R' respectively under the half-turn about H and then the 

images of these points P', Q', R' under the half-turn about K, which 

could be labelled P", Q", R" respectively. What can you say about 

the length of the segments FP", QQr,, RR" ? Are these segments 

parallel to each other? 

2. 	 Let S be a translation shown by a vector LL'. Let F and G be any 

two points whose distance apart is half the distance LL', and FG is 

parallel to LL'. Show that the translation S = GF, where GF means 

performing the half-turn about F followed by the half-turn about G. 
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3. 	 ABCD are the vertices of a parallelogram. Show that the half-turn 

about A followed by the half-turn about B is the same motion as the 

half-turn about D followed by the half-turn about C. 

4. 	 Let KH be a half-turn about H followed by a half-turn about K. What 

would you mean by HK? Is HK = KII? If not, what is the difference? 

5. 	 Let H, J, K be three half-turns about points which lie on a line, 

equally spaced with J between H and K. Show that KJH = J. (How 

would you define KJH?) 

6. 	 P, Q, R, S are half-turns about points on a line shown in the diagram 

with PQ = RS.
 

Show that SQP = R.
 

I I 	 t I 

R Q 	 R S 

Fig. 100. 

a7. 	 Let A, B, C, D be four half-turns about successive vertices of 

parallelogram. Show that CBA = D and that ABCD is the identity. 

REFLECTION FOLLOWED BY REFLECTION 

We shall get information about a reflection followed by a reflection 

from the following problems. 

PROBLEMS 6-10D 

Consider two parallel reflecting lines L and m, with a point P first 

reflected along L to give P' and P' then reflected along )n to give P". 

1. 	 Suppose the distance of P from L is p, 

and the distance between L and m is d.
 

What is the length of PP"?
 

p 	 P' p,, 

L 

Fig. 101. 
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2. 	 Use the same values as in Problem 1, but 

now P is reflected first along m to give P1' and then P1' is 

reflected along L to give Pi". What is the length of PPI"? 

3. 	 Consider the line segment PQ in 

Figure 102. Can you determine 

the image P"Q" which results 

from reflecting first along L and Q 

then along m? Can you show that 
L 	 m

this double reflection is equivalent 


to a translation? Fig. 102.
 

4. 	 Replace the numbers 1 and 2 in 

Figure 103 by the image of B 

under reflection on f and the 

image of B under reflection on B 

f, followed by reflection on g. 
f 	 9 

Fig. 103. 

5. 	 Let f and g be parallel lines three units apart. Find the second 

images of the following points when reflected first in f, then in g, 

where f is to the left of g. 

(a) P, one unit to the right of f. 

(b) Q, one unit to the left of f. 

(c) R, four units to the left of f. 

(d) S, one unit to the right of g. 

6. 	 Find the second images of the above points if they are reflected first 

in g, then in f. 

We see from the solutions to the above problems that the result of two 

reflections along parallel lines is a translation shown by a vector perpendicular 

to the lines of reflections of length twice the distance between the parallel lines. 
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_7. Let T be a translation shown by the 

vector T. Find two parallel lines of T 

reflection f and g, so that f 

followed by g equals the translation T. Fig. 104. 

A BASIC THEOREM 

Let R and S be rigid motions, and let T be the rigid motion R followed 

by S. We looked at some rules above for finding out what kind of motion T 

is, if we know what kinds of motion R and S are. We now look at several 

further facts that can be useful in getting information about T. These facts 

will not always tell us exactly what T is, but they can give some helpful 

information. The first of these facts is the following. 

If R and S are both direct, then T must be 

direct. If R and S ar2 both reversing, then T 

must be direct. If R is direct and S is revers

ing, or if R is reversing and S is direct, then 

T must be reversing. 

We see from the definition of direct and reversing why this fact is true. 

re-For example, if R requires that the tracing paper be turned over and S 

quires that the paper be turned over again, then clearly, in the resulting rigid 

motion T, the tracing paper has the same side up that it had to start with. 

The following basic theorem gives an important and useful fact about 

direct rigid motions, as we shall see. 

THEOREM 6-1. Let T be a rigid motion. If T 

is direct, then either T is a translation or T is 

a rotation. 

We shall not give the proof of this theorem here. Instead, we shall 

tell you how to find out exactly what kind of rigid motion T is, if you know 

that T is direct, and if you are given two triangles ABC and A'B'C' 

such that A' = T(A), B' = T(B), and C' = T(C). 
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Do the following: 

At least two of these segmentsDraw the segments AA', BB', and CC'. 

have positive length (otherwise the triangles are the same). Draw the per

pendicular bisector line for each of the segments with positive length. At 

least two of these perpendicular bisector lines will be distinct. (Can you 

prove this?) We show some of the possibilities in the following figures. 

(In these figures, the perpendicular bisector lines are marked L 1 , L 2 , and 

L 3 .) 

-B
A A# AA IA ' . I \-. 

.. \ 

- C '. 

B B' 

L3 L1 

L2
 

A A' 

B' 

B 

C'C 

L2
 

LIL 3
 

Fig. 105. 

I 
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If these lines areChoo,,2e tv, - distinct perpendicular bisector lines. 

parallel, then you have T as the translation which moves every point parallel 

to AA' through a distance AA'. If these lines intersect (call this point of 

T the rotation about 0 which carries Aintersection 0), then you have as 

to AI. 

The method will always work. We do not prove this here. If you can 

prove that the method always works, you will be very close to having a proof 

for Theorem 6-1. 

Theorem 6-1 is a strong tool for getting information about combinations 

of rigid motions. Look at the following example. In Figure 106, let R be a 

reflection about L, and let S be a reflection about L 2 . Let T be R 

followed by S. 

pit L2
 

L1 

P
 
P 

Fig. 106. 

What kind of motion is T? We can find this very simply as follows. 

Since R and S are each reversing, we know that T must be direct. Hence, 

by Theorem 6-1, T must be either a translation or a rotation. But the 

point 0 is a fixed point of T. Hence T must be a rotation about 0. (It 

cancannot be a translation, since no translation, except the identity motion, 

have a fixed point. T is not the identity motion, as we see from the points 

P, p?, and PF1 in the figure.) To find the angle of rotation, we need only 

measure the angle POP" in the figure. 

A second basic theorem can be given for rigid motions that are reversing. 

We state it below as Theorem 6-2, but do not consider it further. 
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DEFINITION 6-7. T is called a glide-reflection, 

if T is R followed by S, where R is a reflec

tion and S is a translation given by a vector 

parallel to the line of reflection of R. 

For example, if R is reflection in L, and S is the translation given 

by U in the following figure, then the motion R followed by S, which we are 

calling a glide-reflection, is the motion which takes A ABC to A A"'B"C". 

L 

BB 

Ap 

Fig. 107. 

THEOREM 6-2. Let T be a rigid motion. If T 

is reversing, then either T is a reflection or T 

is a glide-reflection. 

Hence we know from these two theorems that every rigid motion is 

either a translation, a rotation, a reflection, or a glide-reflection. 

6-11 MORE EXAMPLES OF THE USE OF MOTIONS. 

In Section 6-4 we looked at two examples of the use of rigid motions to 

solve problems. Both of these examples used translations. We now look at 
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These 	new examples will use rotations and reflectseveral more examples. 

ions as well as translations. 

Take any triangle ABC. Construct equilateral trianglesEXAMPLE 1. 

on AB and BC as in the figure. 

A 

N 

Fig. 108. 

We wish to show that AM = CN. 
can be used to show this (by using SAS toA congruent triangle proof 

get A ABM congruent to A NBC). But the idea of a rotation can be used 

to get an even quicker proof as follows. Let T be a rotationabout B 

through an angle of 600. Clearly, T(N) = A (since BN = BA and m(NBA) 

600), and T(C) = M (since BC = BM and m(CBM) = 60). Thus 

segment AM is the image of segment CN under T, and AM = CN by the
 

isometric property of rigid motions.
 

PROBLEMS 6-11A 

1. 	 In the figure for Example 1, let Q be the point of intersection of AM
 

and CN. What is the measure of NQA?
 

2. 	 In the following f.gure, ABC is any triangle, and squares have been
 

constructed on K.6 and BC.
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I C
 
I 

N 

Fig. 109. 

Use a rotation to show that AM = CN. 

3. In Problem 2, show that AM is perpendicular to CN. 

EXAMPLE 2. Let ABC be a triangle (Figure 110) in which 

m(BAC) = m(BCA). 

It is a fact of elementary geometry that AB must be equal to BC. 

Let us assume, for the moment, that you have forgotten this fact, but that 

you do remember the basic properties of rigid motions. (These were 

listed as Properties (1) to (6) in Section 6-3). How could you use what you 

do know about rigid motions to prove that AB = BC? 

B 

A/ C 

Fig. 110. 
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One very simple proof would be as follows. Take the perpendicular 

be the rigid motion: reflection in L.
bisector of AC, call it L. Let T 

Since T leaves the measure of an angle unchanged (Property (6) in Section 

6-3), the image of AC under T must also be pei.pendicular to L. Hence, 

C and the image of C is A.
since f is a bisector, the image of A is 

Since angles BAC and BCA have equal measure, the image of angle BAC 

BCA must be angle BAC. 
must be angle BCA, and the image of angle 

AB is line CB and the image of line CB is line AB.
Hence the image of line 

Since point B lies on both AB and CB, the image of B must lie on both 

CB and AB. But this means that the image of B has to be B itself. Thus 

CB, and the image of segment CR is
the image of segment AR is segment 

we have AB = CB,which is whatsegment AB. By the isometric property, 

we wanted. 

PROBLEMS 6-11B 

ABC be a triangle in which AB = CB. It is a fpvt of elementary
1. 	 Let 


must be equal to ?n(ACB). Assume, for the
geometry that ni(CAB) 

moment, that you have forgotten this fact, but that you do remember 

Use a rigid motion to provethe basic properties of rigid motions. 


that m(CAB) = m(ACB). (Hint: let L be the bisector of ABC in
 

Figure 111, and make a reflection in L.) 

B 

L 

A 	 C 

Fig. 111. 
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Note: As we saw in Secondary Three, it is possible to get the facts of geo

metry from a certain set of axioms about points, lines, aagles, betweenness, 

and congruence. It is also possible to get the facts of geometry in an en

tirely different way by taking the idea of rigid motion as basic (along with 

the ideas of point, line, and angle), and by starting with a set of axioms which 

includes basic facts about rigid motions (such as those listed in Section 6-3). 

This set of axioms is quite different from the set of axioms used in Second

ary Three. In this new deductive theory, we can get all the same facts of 

geometry that we got before, but the proofs are quite different, and the theo

rems appear in a different order from before. Example 2 above and the 

problem which follows it shows us what such proofs would be like. We do not 

consider this new theory any further, and we do not give the set of axioms for 

it here. 

In the next two examples, we shall look at more difficult problems. In 

each of thcse problems, rigid motions can be used to get a solution which is 

shorter than any other solution known. In solving eaci. problem, we will 

allow ourselves to use facts that we know about rigid motions together with 

any other facts of geometry that are already known to us. 

EXAMPLE 3. 

Let ABCD be any convex quadrilateral. Construct equilateral triangles 

APB, BQC, CRD, and DSA as in Figure 112. Note that two triangles are 

constructed towards the inside of the quadrilateral and two are constructed 

towards the outside. 

B 

A 
/ \\ I 

IQ 

/ \ / 

Fig. 112. 
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We wish to show that the points R, Q, P, and S must form the ver

tices of a parallelogram. We use rigid motions to prove this as follows. 

Let T, be a rotation through 600 about A, and let T 2 be a rotation 

through -60o about C. Let U be the rigid motion: T, followed by T2 . 

Since T, and T2 are direct, U must be direct. Hence by Theorem 6-1 of 

Section 6-10, U must be a translation or a rotation. If it is a rotation through 

an an angle /3, then, by our work at the end of Section 6-8, every line makes 

angle /3with its own image. Let L be any line. Let L, be the image of L 

L, forms anunder T, and let L 2 be the image of L, under T 2 . Then 

angle of 600 with L, and L 2 forms an angle of -600 with L 1 . Hence L 2 

forms an angle of 00 with L. Hence, if U is a rotation, it can only be a 

Thus U must be either therotation through 00, which is the identity motion. 

identity motion or a translation. 

Let us see where U carries the points S and P. T, carries S to D 

and T2 carries D to R. Hence U(S) = R. Also, T, carries P to B, 

U is a translationand T2 carries B to Q. Hence U(P) = Q. Thus 

which carries segment SP to segment RQ. 

U, SP = RQ. Since every translationBy the isometric property of 

a line parallel to itself (or else onto itself), SP is parallel to RQ.carries 

Since the quadrilateral SQPR has a pair of opposite sides which are equal 

and parallel, it must be a parallelogram. This is what we set out to show. 

EXAMPLE 4. In the following figure, 

let ABC be any triangle. ABM, BCN and M 

CAO are equilateral triangles constructed ' ".
 
on the sides of triangle ABC. Let P, Q, R I .P -.
 

I OI 

be the centres of these three equilater-.I I * I
 

triangles. (By centre of an equilateral A C
 

O /triangle we mean the point at which the \ R I/ •P 2 

/three perpendicular bisectors of the sides \/ 

meet. This is the point about which an \ I
 

equilateral triangle has rotational sym- V
 

metry.) 0
 

Fig. 113. 
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We wish to show that P, Q, and R must form the vertices of an 

equilateral triangle. 

Let T, be a rotation through 120 about P. Let T2 be a rotation 

through 1200 about Q, and let T3 be a rotation through 1200 about R. Let 

U be the rigid motion: T, followed by T 2 followed by T 3 . U is the re

sult of three rotations, each of 1200. Hence, in the same way as in Example 

3, we see that U is either a translation or a rotation through 3600. But this 

means that U must be a translation or the identity motion. 

From the figure, we see that T, (A) = B, T2 (B) = C, and T3 (C) = A. 

Thus U(A) = A, and A is a fixed point of U. But the only translation which 

has a fixed point is the identity motion. Hence U must be the identity motion. 

Now take the point P. Let Pi be the image of P under T 1 , let P2 

be the image of P, under T 2 , and let P 3 be the image of P 2 under T 3. 

Since T1 is a rotation about P, we see that P1 is the same as P. Since U 
is the identity motion, we see that P3 is the same as P. Hcnce P, Q, P 2 

and R form the following figure. 

P 
i~/
 

RQ 

P2
 

Fig. 114. 
/I 

I/ 

In this figure, PQ =P2Q by the isometric property of T2, and P2R= 

.PR by the isometric property of T3 . Hence, by SSS, triangles PQR andFig.1114 
P2 QR are congruent. Hence m (PQR) = nz(P2 QR) and in(PRQ) = in(P2RQ). 

But mz(PQP2.) = 1200 since T2. is a rotation through 1200, and in (PRP2) = 

120' since T3 is a rotation through 1200. Hence m(PQR) --" m(PQP,.) = 
.
60b,and m(PRicQ) prM(PRP ) 60 But any triangle with two angles 

of 600 must be equilateral. This is what we set out to prove. 
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*APPENDIX TO CHAPTER 6
 

In Section 6-3, we listed six properties of rigid motion, and we said 

and (6) from Property (1)that we could prove Properties (2), (3), (4), (5), 

We(the isometric property) without using the idea of tracing paper at all. 

give these proofs here. 

Let T be a mapping from the plane to the plane which has Property 

(I). 

Proof of Property (2). If P and Q are distinct, then Q >0. By 

Q' must beProperty (1), P'Q' = PQ. Hence PQ'>0,and P' and 

distinct. 

Proof of Property (3). Let Q be any given point. We shall find a 

point P such that T(P) = Q. Take any triangle in the plane and let P 1 , 

,P3'P1' P3 P 1 . Hence, by SSS, 

P 2, and P 3 be its vertices. Let P 1 
1 , P2 ', and P 3 be the images of P, P 2, 

and P3 under T. By Property (1), Pi'P2 ' = P1 P 2, P2 'P 3 ' = P2P3 , and 

= P 7 P 2 ' and P3 ' form the vertices of a 

triangle (and AP 1 P 2 P3 - Pl'P2 'P3
1). This means that the points Pil P 2 ', 

P 3 ' do not all lie on the same straight line. Now at least one out of the fol

is the same point as Q, orlowing three cases must occur. Either (i) P 

(ii) Q does not lie on 	 P,'P 21, or (iii) Q does not lie on Pl'P3 '. 

(i) If P, is the same point as Q, then P, 	 is the point 

P 	 that we want. 

Pi'P2 ', we do the following.(ii) 	 If Q does not lie on 

and with asWith P1 as centre, we draw a circle of radius P'Q , P 2 

draw a circle of radius P 2 'Q. Let M and N be the points ofcentre, we 

We now have a figure that looks like theintersection of these two circles. 

following. 
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P3 # 

P, M 
P 2 0 

N M) 

P3I 
P2) pit 

Fig. 115. 

Take the image of M, which we call M', ard the image of N, which we call 

N'. By Property (1), P1 'M' = PIN' = PiQ, and P 2 'M' = P 2 'N' = P 2'Q. 

Since M and N are distinct, M' and N' must be di:stinct (by Property (2) 

which we have already proved). Hence M' and N' Itall on opposite sides of 

PI'P2 '. By SSS, APIP2'Q = APJP2'M - I-,P 2 'N. Hence, if Q is on 

the same side of P , 'P2 ' as M', then Q must be the same point as Al', and if 

Q is on the opposite side of P1 
1P 2 ' from M', then Q inust be the same point 

as N'. If Q is the same as M', then M is t~he point P that we want; if Q is 

the same as N', then N is the point P that we want. 

(iii) If Q does not lie on P1 'P3 ', we carry out the same proof as for 

(ii), but use P3 ' in place of P2 '. We again. find the point P that we want. 

Thus in all three cases we can get the point P that we want. This ends 

the proof of Property (3). 

Proofof Property (4). Let L be a given straight line. Take two distinct 

points P1 and P 2 on L. Let P1 1 be the image of P , and let P2' be the 

be the image of P 2 . Let L' be the line determined by P 1 ' and P2 '. To 

prove (4) we need to show that every point on L has its image on L', and that 

every point on L' is the image of some po.nt on L. 

Let Q be any point. By Property (3), which we have already proved, 

there is a point P such that Q = T(P). If Q is not on L' then, since the 

triangle P 1 P 2 P3 is congruent to the triangle P I 'P 2'O, P is not on L. 

Conversely, if P is not on L, then, by the same congruent triangles, Q is 

not on L'. This gives us the result we want, because it shows that every 
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on L' and, by Property (3), it shows thatpoint on L must have its image 

every point on L' must be the image of some point on L. 

which we have proved, P'Q 'R'Proof of Property (5). By Property (4), 

is the image of PQR. Since, by Property (1), and SSS, APQR S APtQ'R', 

we have that PrQ'R ¢ = PQR in measure. 

Let L 1 1Proofof Property (6). Let L, and L 2 be two parallel lines. 

L 2 ' be the image of L 2 . By Property (4), whichbe the image of LI, and let 

are straight lines. If L 11 and L 2 ' intersectwe have proved, L 11 and L 2 1 

at some point Q, then, by Property (3) and Property (4) there is a point P 

such that T(P) = Q, Plies on LI, and P lies on L 2 . But if P lies on 

L, and L 2 , L, and L 2 cannot be parallel. This shows that L 1 ' and L 2 ' 

must be paralle1 . 

Thus we have proved Properties (2), (3), (4), (5), and (6) from Property 

(1). 
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LIST OF THEOREMS
 
AND OTHER IMPORTANT RESULTS
 

Page 

THEOREM. 	 The medians of a triangle meet in a single point 0. For 
each median this point is located f- of the way from the 
vertex to the opposite side. 13 

THEOREM. 	 For any simple polyhedron, the number of vertices, edges, 
and faces satisfies the equation V - E + F = 2. 24 

LEMMA. (To Theorem 2-1.) Two rectangles which have equal bases and 

THEOREM 2-1. 

THEOREM 2-2. 

THEOREM 2-3. 

COROLLARY 2-3-1. 

THEOREM 2-4. 

THEOREM 2-5. 

altitudes have equal areas. 44 

The area of a rectangle with sides - by w is J1 w. 45 

The area of a right triangle is half the product of its legs. 46 

The area of a triangle is half the product of any base and 
the corresponding altitude. 	 46 

If two triangles have equal altitudes, then the ratio of 
their areas is equal to the ratio of the corresponding bases. 48 

The area of a trapezium is half the product of the sum of 
the parallel sides and its height. 48 

The area of a parallelogram is the product of any base and 
the corresponding altitude. 49 

PROBLEMS 2-7, PROBLEM 12. A median of a triangle divides the triangle 
into two triangles of tql areas. 51 

THEOREM 2-6. 	 If a right triangle has legs of lengths a, b, and hypotenuse 
2of length c, then c = a 2 + b 2 .	 53 

THEOREM 2-7. 	 If the square of one side of a triangle is equal to the sum of 
the squares of the two remaining sides, then the triangle is 
right-angled, the right angle being opposite the first side. 54 

PROBLEMS 2-8, PROBLEM 12. The median to the hypotenuse in a right 
triangle is half as long as the hypotenuse. 58 

PROBLEMS 2-8, PROBLEM 13. In a 30' - 60' - 900 right triangle the leg 
opposite the 300 angle is one-half as long as the hypotenuse. 59 

THEOREM 3-1. 	 If a, b, c, and d are positive numbers, then a = c if and 
only if ad = bc. 67 
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68 

Page 

THEOREM 3-2. -a = c-if and only if
S c 	 a+b c+d 

THEOREM 3-3. 

THEOREM 3-4. 

COROLLARY 3-4-1. 

COROLLARY 3-4-2. 

THEOREM 3-5. 

THEOREM 3-6. 

COROLLARY 3-6-1. 

COROLLARY 3-6-2. 

COROLLARY 3-6-3. 

COROLLARY 3-6-4. 

COROLLARY 3-6-5. 

COROLLARY 3-6-6. 

(a) 	 b a (d)-~-b d 
a _b 

(e) - -b-- 
e 	 a-b _c-d 

(b) b 
cb 	 d abc a 

(f) 	 b+d b 
(c) 

If the same unit is used to measure the lengths of two 

segments, their ratio is the same number no matter what 
71unit is used to measure them. 

If a line parallel to one side of a triangle intersects the 

other two sides in distinct points, then it cuts off segments 
which are proportional to these sides. 73 

Using the figure above (Page 65) we also have 
73AD AE AB =AC 


BD CE' BD EC
 

If DE cuts the extensions of the sides of AABC so that 

D and E are on AB and At respectively, then 
74AB_ AC 


AD AE"
 

If a line intersects two sides of a triangle and cuts off 

segments proportional to these sides, then it is parallel to 
74the third side. 

(The AAA Similarity Theorem) If a correspondence between 

two triangles is such that the corresponding angles are 

congruent, then the correspondence is a similarity. 81 

(The AA Similarity Theorem) if two angles of one triangle 
are congruent to two angles of another triangle, then the 

82two 	triangles are similar. 

If a line parallel to one side of a triangle intersects the 
other two sides in distinct points, then it cuts off a triangle 

82similar to the given triangle. 

If two right triangles have an acute angle of one congruent 

to an acute angle of the other, the triangles are similar. 83 

If two triangles are similar to a third triangle, they are 
83similar to each other. 

Corresponding altitudes of two bimilar triangles are in the 

same ratio as any two corresponding sides. 83 

Corresponding angle bisectors of two similar triangles are 

in the same ratio as any two corresponding sides. 83 
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THEOREM 3-7. 

THEOREM 3-8. 

THEOREM 3-9. 

COROLLARY 3-9-1. 

THEOREM 3-10. 

THEOREM 4-1. 

THEOREM 4-2. 

THEOREM 4-3. 

THEOREM 4-4. 

THEOREM 4-5. 

THEOREM 4-6. 


THEOREM 4-7. 


(The SAS Similarity Theorem) Given a correspondence 
between two triangles. If two pairs of corcspunding sides 
are proportional and the included angles are congruent, then 
the correspondence is a similarity. 83 

(The SSS Similarity Theorem) Given a correspondence 
between two triangles. If corresponding sides are proportional, 
then the correspondence is a similarity. 84 

The altitude to the hypotenuse of a right triangle subdivides 
it into two right triangles that are similar to the given 
triangle and to each other. 93 

Given a right triangle and the altitude from the right 
angle to the hypotenuse: 94 

(1) 	The altitude is the mean proportional between the two
 

segments formed - the hypotenuse.
 

(2) 	 Either leg is the mean proportional between the
 
hypotenuse and the segment on the hypotenuse
 
adjacent to the leg.
 

Regular polygons having the same number of sides are similar. 101
 

The intersection of a sphere and a plane containing the
 
centre of the sphere is a circle with the same centre and
 
the same radius as the sphere. 103
 

The line perpendicular to a radius of a circle at its
 
intersection with the circle is a tangent to the circle. 109
 

If a line intersects the interior of a circle, then it
 
intersects the circle in exactly two points. 110
 

A tangent to a circle is perpendicular to the radius at
 

the point of contact. 111
 

Let I be a line in the plane of a circle with centre 0,
 
and let K be the foot of the perpendicular from 0 to ..
 
Then exactly one of the following three situations occurs: 112
 

(1) 	K is outside the circle, and the line A_ does not 

intersect the circle; 

(2) 	 K is on the circle, and I is a tangent to the circle; 

.
(3) 	 K is inside the circle, and the line f intersects the 
circle in exactly two points. 

The perpendicular from the centre of a circle to a chord 
113bisects the chord. 

The segment joining the centre of a circle to the mid-point 
of a chord is perpendicular to the chord. 	 113 
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THEOREM 4-8. If the perpendicular bisector of a chord lies in the plane 
of the circle, then it passes through the centre of the circle. 113 

THEOREM 4-9. No circle contains three collinear points. 113 

THEOREM 4-10. In the same circle, or in congruent circles, chords which 
are equidistant from the centre(s) are congruent. 113 

THEOREM 4-11. In the same circle, or in congruent circles, any two 
congruent chords are equidistant from the centre(s). 113 

THEOREM 4-12. In the same circle, or in congruent circles, if two chords 
are unequal, the shorter chord is at a greater distance 
from the centre. 114 

THEOREM 4-13. The line containing the centres of two tangent circles also 
contains the common point of tangency. 117 

THEOREM 4-14. Any three non-collinear points lie on exactly one circle. 117 

COROLLARY 4-14-1. One and only one circle can be drawn through the 
vertices of a given triangle. 117 

THEOREM 4-15. If two tangents to a circle intersect, the angles which they 
make with the line joining the point of intersection to the 
centre of the circle are congruent, and the segments from 
the point of intersection to the points of contact are also 
congruent. 118 

THEOREM 4-16. 

THEOREM 4-17. 

If the arc PQR is the union of the arcs PSQ andQTR 
(with only the endpoint Q in common), then m(PQR) 
m(PSO) + m(QTR). 

The measure of an angle inscribed in an arc is half the 

122 

measure of the ..rc which subtends the angle. 126 

COROLLARY 4-17-1. An angle inscribed in a semicircle is a right angle. 128 

COROLLARY 4-17-2. Two angles inscribed in the same arc are congruent. 128 

THEOREM 4-18. The opposite angles of an inscribed quadrilateral 
supplementary. 

are 
131 

THEOREM 4-19. The measure of an angle formed by two secants of a circle 
intersecting at a pojut in the interior of the circle is one-half 
the sum of the measures of the arcs intercepted by the angle 
and its vertically opposite angle. 132 

PROBLEMS 4-3B, PROBLEM 10. The measure of the angle formed by two 
intersecting tangents is equal to 180 minus 
the measure of the minor arc intercepted. 132 
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THEOREM 4-20. 	 The measure of the angle formed by a tangent and a secant 
with the vertex at the point of tangency is one-half the 
measure of its intercepted arc. 133 

THEOREM 4-21. 	 The angle formed by two secants or by a secant and a 
tangent intersecting outside a circle has a measure that is 
one-half the difference of the measures of the intercepted arcs. 134 

THEOREM 4-22. 	 In the same circle, or in congruent circles, if two chords 
are congruent, then so are the minor arcs they determine. 136 

PROBLEMS 4-3C, PROBLEM 8. If a pair of opposite angles of a quadrilateral 
are supplementary, then the quadrilateral can be inscribed in 

137a circle. 

THEOREM 4-23. 	 If through any point P two lines are drawn intersecting 
a circle, the product of the lengths of the segments of one 
is equal to the product of the lengths of the segments 
of the other. 141 

THEOREM 5-1. 	 One and only one circle can be circumscribed about any 

regular polygon. 	 155 

THEOREM 5-2. 	 A circle can be inscribed in any regular polygon. 155 

are taken in order on 	a circleTHEOREM 5-3. 	 If n points A, B, C, ... N 
== so that AB BC .. -NA, the chords 

AIB, BC..... NA are tLh sides of a regular inscribed 
polygon. The tangents drawn at A, B, C, ... , N form 

the sides of a regular circumscribed polygon. 156 

THEOREM 5-4. The ratio of the perimeters of two regular n-gons is equal 
to the ratio of the radii of their circumscribed or inscribed 

158circles as well as the 	ratio of their sides. 

THEOREM 5-5. 	 In any regular polygons of the same number of sides the 
ratio of the perimeter to the radius is a constant. 159 

PROBLEMS 5-1, PROBLEM 10. There exists exactly one circle that can be 
160inscribed in a regular 	n-gon. 

The area of any regular polygon is I r × p,PROBLEMS 5-3, PROBLEM 8. 
where r is the radius of the inscribed circle and p is the 

166perimeter of the polygon. 

T 	 T is direct, then either T isTHEOREM 6-1. 	 Let be a rigid motion. If 
243a translation or T is a rotation. 

THEOREM 6-2. 	 Let T be a rigid motion. If T is reversing, then either T 
is a reflection or T is a glide-reflection. 246 
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