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PREFACE

This Teachers' Guide accompanies the text which was
prepared at a study and writing workshop held during the
summer of 1265 at Mombasa, Kenye, in which mathematicians
and teachers from most Englishi-speaking countries of Tropical
Africa, the United States and the United Kingdom participated.,

This material is intended o follow Sccondary Three,
Secondary Two, and Secondary One of the Entebbe Mathe-
maties Series which were prepared at similar  workshops
during the summers of 1964, 1963, and 1962 at Entebbe, Uganda.

I.  Preliminary Nature of This Material

The material must be considered to be preliminary until
it has been tried out in elass-rooms and modified in accoruance
with the experience gained from this experimentation. The
Student Text and Teachers' Guide fer SECONDARY FOuR
ALGEBRA and GEOMETRY of the Entebbe Mathematies Series
will be subjeet to correction and improvement in the light of
suggestions from the teachers who use them.

This means that the teacher who uses this material has
the responsibility, in addition to helping interpret the new
material to students, of helping identify the areas where im-
provement is needed. To guide us in future revisions, we hope
that teachers will fill out Secondary Chapter Reports. (See
sample Report on pages ix, x, xi, xii.) In partial reward for this
burden, the teacher will have the satisfaction of knowing that
he or she is taking part in an experiment which is of great
potential value.

[I. Emphasis on Mathematical Ideas

In recent years there has been accumulated much evi-
denee that young students are far more interested in mathe-
matical /deas than they have usuaily been given credit for,
and that they are far more competent to deal with such ideas
than the current curricula would suggest., A presentation of
mathematies which puts its emphasis on coneepts rather than
the rules of manipulation is likely to lead to far greater salis-
faction on the part of the student, and will also lead to greater
mathematical competence.

[I1. Content of the Text

The subjects of algebra and geometry are treated in two
volumes; one is devoted to algebra and the other to geometry,
ac in Sccondary Three, The material is arranged so that there
is considerable flexibility in the order in whicli the tepies ean
be studied, although Chapter 1 of ALGEBRA should be studied
hefore beginning Chapter 6 of-GROMETRY.

\I



The treatment of algebra continues the start made in
Secondary One, Two, and Three Lo develop algebra as a unified
structure. All five chapters are about functions. Chapter 1
treats the general concept of function. In Chapters 2 and 3
the pupil studies some of the most important types of functions:
the rational funetions and the exponential and logarithmic
funetions. As a result of having studied the polynomial functions
in Secondary Three and the funetions in Chapters 2 and 3 of
this volume, the pupil will be familiar with all the basic types
of elementary functions except the trigonometric [unections
which will be studied in Secondary I7ive, In Chapter 4 the
domain is narrowed to the set of positive integers, with em-
phasis on two of the most important types, arithimetic vro-
gressicns which are really just linear functions with the domain
restricted o the positive integers, and geometrie progressions,
which are really just exponential functions with the domain
restricted to the positive integers. Finally the central concept
in Chanter 5 is that of a function whose domain is a finite set.
These Tunctions are studied in 1o context of deseriptive
statisties. The finite set is ealled a population and the functions
are called population functions. Chapter 1 should be done first,
so that the student will see the other four chapters as the study
o! special types of functions. The remaining four chapters are
independent of cach other and may be studied in any order.

As the pupils will have studied formal, deduetive geometry
in Secondary Three, there is now no need to be so formal in
SECONDARY FOUR GEOMETRY. He will have already been ex-
posed to formal proofs and will by this time have an idea about
rigour in these proofs. Therefore, Chapter 1 of SECONDARY
FOUR GEOMETRY indicates how rauch loosening up irom Second-
ary Three oceurs in this volume. The pupils however, are now
equipped to be able to take any of the theorems or examples in
the text and write out as formal a proof as they wish. Chapters
2 to 5 follow the pattern of Sccondary Three except that not
so much Ume is spent on the formal aspeet of deductive
reasoning. Chapter 6 is quite different both in content and
spirit from the other chapters. The treatment of rigid motion
is informal and intuitive. This approach avoids the complica-
tions of establishing a set of axioms from which the basic
facts avout rigid motion can be deduced. It should be mentioned
that it is quite possible to develop all our geometric ideas by
starting off with rigid motions. wxeept for Chapter 6 which
could be studied any time after Chapter 1 of ALGEBRA. the
chapters are hest studied in the order in which they appear.
Teachers who wvrefer the informal, intuitive treatment of
geometry may wish to spread out the study of Chapter 6
throughout the school year.

Vi



IV. The General Approach

As in previous texts we try to be mathematically sound
but at the same time the development is gradual with an
effort to mvolve the pupils actively. Instead of just telling
the ideas to the pupils outright, the teacher should use prob-
lems and careful class discussion to help the pupils recognize
the ideas for themselves,

The best education is the education that the pupil ereates
from his own direct efforts. The teacher should resist the
temptation to tell the class exaetly what to do and how to
do it. It is indeed a great temptation, for by such means a
class will appear to be proceeding at a vcapid pace. If the
teacher takes the time and effort to lead the pupil to think
through the ideas himself without telling him outright, there
is considerably more assurance that the idea will be mastered
and retained by the pupil and will become truly his own.

Here again the demands on the teacher are greater. The
teacher, like the student, must be thinking at every moment,
for it takes far more insight to lead than to tell. This Guide
is intended primarily to assist the teacher in the actual con-
duet of the elass. Methods are sugeested which will encourage
student imagination and generate student interest. In addition
the Guide contains mathematical background and explanatory
materials bevond that given in the Text. Answers to the
problems are provided.

V. Relationship to Other Materials

This Text is based on the assumption that the pupil has
studied from the previous Texts in the Entebbe Mathematies
Series. I a pupil has not studied all of the earlier texts it
may be necessary to go back and study portions of Secondary
Two and Secondary Three. lTowever, the pupil can make good
progress in the preseat Text without having a complete
mastery ol these previous Texts.

This Text is designed to prepare the pupil for further
mathematies in cither the conventional school curriculum or
in curricula evolving from this and similar experimental pro-
grammes. It is also designed to conform to the requirements
of the present examinations,

It should be emphasized that this moditied curriculum
represents a great opportunity for teacher and pupil alike.
In making use of it the schoel participates in a great experi-
ment to help develop a strong African educational system of
which we can be proud. W is a massive joint undertaking, in
which pupils and teachers work side by side with mathema-
ticians of international eminence, from theiir own country and
from a dozen others, to ereate within Alrica something that
will be of major significance for Africa itself, and in a larize
measure for all the world.
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Chapter 1
ANOTHER LOOK AT THE
DEDUCTIVE METHOD

The purpose of this chapter is to refresh the pupils’ understanding of
inductive and dedactive reasoning and to provide another critic al look at the
deductive method now that they have had substantial experience in Secondary
Three. Much of the material is written for self-reading, and it is not ex-
pected, therefore, that more than four or five lessons be spent on this
chapter.

The effect of this chapter on the pupils should be a de-emphasis of the
postulational approach to geometry. Although it might appear that the geom-
etry of Secondary Three was largely interested in such an approach, it actu-

ally had {iree main goals in mind:
(1) the discovery of new geometrical facts (through inductive reasoning),

(2) tbo pupils were to learn to use deductive procfs as a means of con-
vincing ‘nenselves and others of the truth of these newly discovered facts,
and

(3) geometry was to be revealed as a deductive science, all of its
th2orems being obtained by deductive arguments fron. a small number of
initial statements called postulates.

The first two of these goals are by far the most important at this stage
of the pupils’ development. The third is largely of historical and aesthetic
interest. Unfortunately, due to the large amount of detail and care required
to achieve the third goal, it is frequently the case that the first two are ob-
scured. There is also danger that the pupils may lose confidence in their
own geometric intuition because of the fact that they spend a long period of



time proving theorems that they were already convinced of anyway. And they
may come to feel that deductive proofs are something peculiar to geometry
and that they are somehow inseparable {from the postulates and long chains
of theorems.

In studying this chapter, the pupils should be reassured that their
common sense, imagination, and geometric intuition are suprenie when it
comes to discovering new facts. This is inductive reasoning, and they should
not become bogged down in minute details during this activity. Only after
they have discovered a new idea which they think likely to be true should
their thoughts turn to constructing a proof to convince themselves and others
that it is really true. And then they should realize that a deductive proof is
nothing more than a reasonable, common sense argument that starts with
certain hypotheses and shows /iy the conclusion should be believed if the
hypotheses are believed.

In each of the examples of this chapter, the particular geometrical
problem chosen for the example is inessential. What s important is the way
in which inductive and deductive reasoning work together and the reduced
emphasis placed on the postulational structure of geometry. The methods
and attitudes and not the results should be emphasized. Only a few of the
specific theorems are used in later work, although several of them are inter-
esting in their own right. This is especially true of the discussion of Euler’s
formula and its application to regular polyhedra in Sections 1-5 and 1-6.
These two sections provide an excellent opportunity to see inductive reason-
ing and deductive proofs used in a more relaxed context that cannot be con-
fused with the narrower purpose of the postulational development of geometry.
In this respect, these two sections are much more typical of more advanced

mathematics as it is done today than is most of the geometry studied so far.

1-1  WHY DO WE PROVE THEOREMS?

This section is written for the pupil to read himself. The amount of
discussion in class can be varied according to the amount of time available.

One of the main points of the section is that the pupils already have had
enough experience with circles, triangles, and other geometrical objects to



discover and prove new theorems without being ovi.~burdened with new
definitions and postulates. In studying geometry it is n¢Z necessary to be so
highly organized and to prove theorems in exactly the right order as must
be done when the postuiational approach is the mair item of interest. To
make this point strongly, it is helpful to point out that the argument about
the angle-in-circle theorem which accompanies Figure 4 can be made per-
fectly convincing to pupils who have studied only the geometry of Secondary
One and Two but have not studied the geometry of Secondazy Three at all.

It would be interesting to have the pupils prapare a list of additional
gecmetrical facts which they feel are so natural and fundamental that they
could be used without proof in starting the study of geometry. The postulates
of last year will likely be placed in such a list, but in general so will many
other facts v/hich were proved from the postulates as theorems. This is the
time to point out that one may choose as many statements to use as postu-
lates as he wishes. But of course only those persons who accept these state-
ments as true geometrical facts will necessarily be convinced that his
theorems are also true.

In discussing the main example of this section, it is interesting to have
several pupils measure the angle BCA in Figure 2 and to have several others
measure the angle BOA. 1tis unlikely that they agree exactly on their meas-
urements or that the first group finds BCA to be exactly half as large as
36}4. The need for a deductive argument becomes very apparent.

Some pupils may recall the exterior angle theorem from Secondary
Three and may want to use it in the proof that (B/C\A) =1 m(B/O\A). This is
very good, and the opportunity should be used to emphasize that different
proofs may be given depending on the experience of the audience.

The essential ingredient of a correct proof will be discussed in Section
1-2.

Answers to

Student Text Pages 3-5

PROBLEMS 1-1

1. This is a numerical exercise using the result of the text. It should not




be emphasized.

(a) m(BAO) = & (105) = 52-5°

(b) m(BOA) = 180-105 = 75°

(c) 7;1(36‘0) = L (75) = 37-5°

(a) m(CBO) = m(BCO) = 37-5°

(e) m(OB 4) = m(BAO) = 52-5°

(f) 1(CBA) = 1}1(CB())+ ;11(OBA) = 375 + 52-5 = 90°, or
(

m CBA) = 180 - Hz(BCO - m(BAO) = 180 - 375 - 52:5 = 90°

The angle CBA is, of course, a right angle. This follows from the

following computation: (this is a proof)

() m<36‘c> = v

(b) m(BAO) = 5x

(¢) m(BOA) = 180 -

(d) »(BCA) = % (180 - ) = 90 - 5 X

(e) m(CBA) = 180 - y(BCA) - m(BAO) = 180 - (90 - 5 %) - (3 %)
=90 - 3x+ +x=90°

This result follows by adding the measures of the angles BAD and Dz/ﬁl\C.

Again, this is a numerical exercise and should not be emphasized.
(a) m(CAD 1(CcOD) = m(CED) = 37°

(b) 1(COD) = 2 1m(CBD) = 2A37) = 74°

(c) m(OéD) m(OﬁC), thereforem(OaD) = 3 (180 - m(Cf)\D)) =

5 (180 - 74) = 53°

Angles ACB and BDA are congruent, because the measure of each is
half of the measure of AOB

(draw the segments AO and B0).

il

The reasons to be given are the following: (the wording may vary, of

course)

1. The base angles of an isosceles triangle are congruent.

2. Definition of congruence of segments.

3. Two right triangles are congruent if a leg and an acute angle of one
are congruent respectively to a leg and an acute angle of the other,

4, Corresponding parts of congruent triangles.



5. Byv definition, the cougruent angles BAD and CAD have the same

measure,
The hypotheses used in the argument are 1 and 3.

6. The triangle which is suspended by the trisectors is equilateral. A
routine proof using trigonometry or coordinate geometry can be given—
but it is quite lengthy. Emphasize the use of inductive reasoning to
discover this fact. It is hardly an obvious fact and should motivate the

need for the stronger tools of coordinate geometry and trigonometry.

1. The triangle is equilateral. Again—a routine proof (although lengthy)
can be given using coordinate geometry. It is important thai sturients
realize that there are many facts that they can discover easily but
which are not readily proved with the tools they presently have avail-
able. This is one of the reasons why mathematics continues to grow

and develop.

1-2 WHAT 1S A CORRECT PROOF?

The pupils have written many proofs in Secondary Three and are ex-
pected to have some feeling for the nature of correct proofs, But this is the
time to re-emphasize that the main purpose of a deductive proof is to con-
vince. There is 1o set format, style, or rules that must be followed, and
giving deductive proofs does not require the context of postulates, Never-

theless, all correct deductive arguments have two muain features:

1) There are certain statements, called liypotiieses or assumptions,

which are accepted to start with, and

2) There is an argument which proceeds to show in a step-by-step
manner why the conclision must be true if the hypotheses are true.

In order that the proof be convincing for a given individual, he must
accept the truth of the hypotheses and must understand and believe each step
of the argument. Certainly both of these things depend cn his experience and
maturity. A proof that is convincing to a mathematician may not be at all
convincing to the pupils. And similarly, a proof that is convincing to the

pupils this year may have been incomprehensible to them last year.



The two-column form of proof is frequently used to teach pupils how
to write proofs. It has the advantage of reminding the pupils that they must
be able to give a reason for every statement that they make and that they
must know clearly what hypotheses were used. But they should become
aware that writing proofs in this way is largely a teaching device and that
they should be able to carry over the same clarity and orderliness into a
good English paragraph. They should learn to use discrimination as to which
of the reasons to emphasize and which ones to leave for the reader to fill in
for himself. And they should be reassured that there is no easy path to skill
in writing proofs. It is very similar to learning to write good English—only

practice and criticism and ruore practice lead to a good sense of proof.

Auswers to
PROBLEJMS 1-2

Student Text Pages 8-9

1. The reasons to be filled in are the following {the particular wording is

not important).

1. Construction.

2. Both are right angles by construction,
3. Definition of length of a segment.

4. Two sides and the included angle of APAMA are congruent respec-
tively to two sides and the included angle of A PAIB (SAS Postulate).
5. Corresponding parts of congruent triangles.

The only hypothesis is reason number 4.

2. STATEMENTS REASONS
1. OQ is perpendicular 1. There is a unique perpendicular that
to line ( can be drawn from a given point to a

given line.

2. P is different from ( 2. Construction: ()ﬁ(g is not a right

angle,



3. 772(@1/}0)4-))1(1)6(‘_))4- 3. The sum of the measures of the
(P@\O) = 180 angles in any triangle is 180°.

4, ;)z.(Qf5O)+ m(PaQ) =90 4, Follows from 3 and the fact that
m(PQO) = 90,

5. m(Q}/’\O) < 90 5. Follows from 4 an/l the fact that
m(Pf)\Q) > 0.

6. OQ < OP 6. If two angles of a triangle are
unequal, then the lengths of the sides
opposite these angles are unequal,
and the larger side is opposite the

larger angle.

7. @ is inside the circle, 7. The inside of a circle is the set of
points whose distance from the

centre is less than the radius.

8. ( intersects the circle 8. A line which passes through a point
twice inside a circle must intersect the
circle twice.

The hypotheses in this argument are 1, 3, 6, and 8.

1-3 AN EXAMPLE OF AN INCORRECT PROOF.

As is often the case when we are learning about new methods and ideas,
it is instructive to see what can happen when the methods are misused. The
example in this section should help the pupil to understand the importance of
knowing what all of his hypotheses are.

The configuration in Figure 5 is impossible, but it is not immediately
obvious that this is the case. Drawing such a figure involves making certain
assumptions, in this case the false assumption that the angle bisector and
the perpendicular bisector intersect inside the triangle.

It is excellent exercise for the pupil to examine the proof carefully, list
the hypotheses upon which the proof was built, and decide which hypcthesis is

at fault. The given proof contains, in fact, a perfectly correct deductive



argument But one need not be convinced that the corclusion is true unless
he is convinced that all of the hypotheses are true.

In the argument accomparnying Figures 5 and 6, the triangles ADEA
and ADIEC are congruent because two sides and the included angle of one are
congruent respectively to two sides and the included angle of the other. Tlie
triangles ABDG and ABDI are congruent because they are right triangles
with the hypotenise and an acute angle of one congruent respectively to the
hypotenuse and an acute angle of the other. And, linally, the triangles AADG
and ACDJI® are congruent because they are right triangles with the hypote-
nuse and a leg of one congruent respectively to the hypotenuse and a leg of

the other.

Answers lo

Student Text Pages 10-11

PROBLEMS 1-3

L. The point of intersection will lie outside the triangle. It is worth men-
tioning that the two hisectors coincide if the triangle is isosceles but

do indeed have a unique point of intersection otherwise.

2. The same proofl holds verbatim. The false assumption made by the
figure this time is that ¢ is between A and and I is between C and
B. One of these pcints must fall on the extension of the side rather

than on the side iiself.

3. This time the figure hides no false assumptions. But one line of the
proof is now false. Namely, after showing that AG = CF and GB =
1L as belore, we cannot add these equations to give AR and Cp. For
AB = AG v GB whereas C3 = I'B - CI. The fact that one of the
points ; and I is on a side of the triangle AABC aud the other is on

a side exlended is the key to explaining the ‘*false proof*".

1-4 ANOTHER EXAMPLE.

There are two main points to be made in reading this section. The

first is to emphasize that inductive and deductive reasoning work together to



discover and then to establish a new theorem. Aund the second is that the
deductive method depends in no way on the development of geometry from
postulates.

Each individual, through his study and experience, has acquired a
reservoir of geometrical intuition and knowledge in which he has confidence.
The usual strategy for constructing a deductive proof of a new theorem is to
work backwavds from the theorem to be proved to statements in this reser-
voir, the latter statements being the hypotheses of the proof. It is in general
a poor strategy to start with hypotheses from this reservoir and to try to
“work up'’ to the theorem.

After having studied Secondary Thiee, the pupils have gained quite a
bit of knowledge, and so it will be easier to construct proofs than it was a
year ago. The geometry of Secondary Three began with a very small re-
servoir of only 26 statements, the so-called postulates. But it is essential to
realize that all that was really required of this initial reservoir of facts was
that they be acceptable as true and fundamental geometrical facts to as large
a group of people as possible.

In the example, the pupil discovers, of course, that the medians are
concurvent, that is,they meet in a single point. As is often the case in
mathematics, it becomes even easier to prove this fact by discovering still
more facts which make the theorem to be proved even stronger. In this case
the new discovery is the fact that the intersection point O divides the medians
in the ratio 1:3. After this discovery it is quite natural to try to construct
parallel lines which cut AA" into three pieces, one of them inteisecting AA’
at the point O, and to show that these parallel linzs are equally spaced.

The constructed segment B74" is parallel to the base of AABC and is
half as long (this is used as a hypothesis—it was proved last year, of course,
as an easy exercise in congruent triangles). Thus the quadrilaterals B/A'EA
and B'A'DB are parallelograms because opposite sides are parallel. Then
AE = BD because they are both equal to B'A’, and EB = G'A’ because each
of them is 1+ of AB. Thus AE = EB = BD. Since the four parallel lines (,
ﬁf, ﬁ, and }W} cut the transversal ﬁ) in three congruent segments, they
will cut any other transversal in three congruent segments (again, this state-
ment is used as a hypothesis). Thus AAT is cut into three congruent pieces

as desired.



The proof will be convincing for anyone who is familiar with the geo-

metric figures involved (triangles, parallelograms, parallel lines) and who

accepts the two hypotheses.

Although the median concurrence theorem is interesting in its own

right, the methods used to discove: and prove it are the real points of

emphasis.

Answers to
PROBLEMS 1-4

oo

Student Text Pages 14-17

The hypotheses used in the proof are:

1. The various paralle! lines of the proof can be constructed, and they
. . “— (——:
intersect the lines A and AC as stated,

2. The line segment connecting the midpoints of two sides of a triangle
is parallel to the third side and is half as long.

3. If a set of parallel lines culs off congruent segments on one trans-

versal, then it cuts off congruent segments on every transversal.

The first hypcthesis is easily accepted by beginning students of geom-

etry. The third is readily accepted after experience with the construc-
tion of parallel lines. The second hypothesis is accepted by pupils who
have had more experience, for example, by those who have studied

Secondary Three geometry.

The perpendicular bisectors are concurienl. A more observant pupil
may also discover that their common point of intersection is equidis-
tant from the three vertices of the triangle. The point of intersection
may fall inside, on, or outside the triangle, and in the case of a right

triangle it lies on the hypotenuse.

The altitudes are concurrenl, For a right triangle the common point
of intersection is the vertex of the right angle. The point of inter -
section may fall either inside, on, or outside the triangle; this is the
reason for defining the altitudes here te be lines rather than line seg-

ments.

10



The angle bisectors are concurvent. Again, an observant pupil may
also discover that their cemmon point of intersection is equidistant

from the three sides of the triangles.

The triangle AA'B'C' is equilateral. A proof may be given using the

methods of Chapter 6.

(a) The two perpendicular bisectors intersect because they are re-
spectively perpendicular to non-parallel lines and hence are not
themselves parallel.

(b) Any point on the perpendicular bisector of a segment is equidis-
tant from the end points of the segment.

(¢) Same reason as (b).

(d) Follows from (b) and (c¢).

(e) Any point which is equidistant {rom the endpoints of a segment lies
on the perpendicular bisector of the segment.

Three parallelograms in the figure are ABA'C, AC'BC and ABCB'.

(a) AB and T7C are opposite sides of a parallelogram.

(b) AB and D'C are opposite sides of a parallelogram.

(c) The point C is the midpoint of Z1757, and the altitude of AABC
through C is perpendicular to 15 and hence also to AL,

(d) The remaining two altitudes of A.\BC are also perpendicular bi-
sectors for the remainin two sides of A[A'3'CY,

(e) The altitudes of AABC are the perpendicular bisectors of the

sides of AAB'C!'. They are therefore concurrent by Problem 6.

(a) If the anglz bisectors of A and 3 were parallel, tnen the sum of
the measures of A and B would be 360°.

(b) Any point on the bisector of an angle is Q 0]
equidistant {rom the two sides. This is
easily proved by showing that the right P
triangles AOLPQ and AOPR shown in the
figure are congruent.

(¢) The point 0O is equidistant from sides BA and BC since it is on
the bisector of angle L. Tt is also equidistant from sides AC and

AR since it is on the bisector of angle A. 1t is therefore equidistant

11



from the sides of angle C. But it must A
therefore be on the bisector of f,\ This

may be proved by showing that the tri- 0

angles ACOA' and ACOB' are congruent. B!

1-5* EULER’S FORMULA.
*This section can be considered as optional.

Euclidean geometry is primarily interested in the size and shape of
geometrical objects, the basic relation between objects having the same size
and shape being that of congruence. In Section 1-5, however, we are con-
cerned with a quite different property of geometrical figures, namely the
way in which they are put together from simpler figures.

In the case of polyhedra, for example, the two objects shown in the
figure are very different from the view-

point of Euclidean geometry. But they

| .
:

are both constructed from six quadri-

laterals, three of which come logether

at each of the eight vertices. They
have much in common—the same number of faces, the same number of edges,
the same number of vertices. And the quadrilaterals are fastened together in
the same way in each figure. Only the shapes and dimensions of the quadri-
laierals differ.

It might seem that there is very little left to say once size and shape
are overlooked. This section and the next, however, contain examples to
show that this is not the case. And indeed a whole branch of modern mathe-
matics—topology —has had its beginnings in just such considerations.

The table which the pupils are asked tc complete is given belcw. It
is immediately noticed that Vv - £ + I = 2 for each of these polyhedra, and
the main result of Section 1-5 is to prove that this formula, called Euler’s
formula, holds for any simple polyhedron. The additional example given in
Figure 11 of the student’s text also satisfies this formula, for the number of
vertices, edges, and faces are given by V = 12, E = 28, and I’ = 18.

12



Name v E F (V-E+F)
(a) | tetrahedron 4 6 4 2
(b) | cube 8 12 6 2
(¢) | hexagonal 7 12 7 2
pyramid
(d) | square 5 8 5 2
pyramid
(e) | pentagonal 10 15 7 2
prism
(f) | no name 10 17 9 2
(g) | octahedron 6 12 8 2

The simple polyhedra are exactly those for which the trick of remov-

ing one tace and flattening out the remainder into a network can be accom-

plished. It takes some practice to visualize the appearance of the polyhedron

after it has been flattened inte a plane network. The examples in Figure 13

will help. It is rather easy to see the correspondence between the vertices

of the polyhedron and the vertices of the network, and similarly for the edges

and faces. The correspondence between the faces is indicated on Figure

13(g) of the text by means of numbers. Notice that in each example, the

outside edges of the network correspond to the edges of the face that was

removed, and this face in turn corresponds to the infinite region of the plane

outside of the network.

Answers lo

PROBLEMS 1-5 A

13

Student Text Pages 21-22




2. I D I V-E+I°

(a) 11 15 6 2
(b) 10 15 7 2
(c)| 19 i 33 16 2
3. Making several of these polyhedra is an entertaining activity if mater-

ials are available and time nermits.

4. Note the picture of the icosahedron in Figure 25 of the student's text.

The content of the two experiments which show that edges can be added
to a network without changing the value of 1V - E + I and that outer triangles
can be ““peeled away' without changing this value is most easily demonstra-
ted at the blackboard with a single example. For example une could begin
with the network shown in Figure 14 of the student's text and add edges one
hy one (as in Figures 15 and 16), pausing after each addition to recount the
number of vertices, edges, and regions. The pupils can easily see that each
time an edge is added, the number " remains unchanged and the numbers
I and F Dol increase by 1. The value of " - I+ I does not change,

therefore, since
V-(E+ 1)+ (I +1)=V-F+[,

Now, using the eraser, begin removing triangles as described in the

text.

14



By examining the number of vertices, edges, and 1 2gions removed at
each step, the pupils can see that Vv - £+ " does not change, because the
sum of the number of vertices and regions removed is always the same as
the numbe. of edges removed (see the table on Page 21 of the student's text).

The procedure described above for beginning with a polyhedron, re-
moving a face and f{lattening it out, ‘““triangulating’’ the regions, and peeling
away the triangles, shows why the value of 1" - E + I is the same for the
polyhedron as for a single triangular region. Thus it becomes clear that

7 - £ + I must be 2 for the polyhedren.

Answers to Student Text Page 25

PROBLEMS 1-5 B

1. 17 =28 and I' = 27
Therefore 28 - E +27 =2, and so E = 28 + 27 - 2 = 53.

2. Since the polyhedron is constructed from 20 equilateral triangles, we
know that /* = 20. If I = 12 and E = 28 as the pupil's friend suggests,
then I” - £ + 7 =12 - 28 + 20 = 4 and this violates Euler's formula.

The correct value of £ is 30.

3. V=21, FE =30, and ¥ =11. Thus " - E + I =2 as
expected. Note that removing (or adding) a vertex in
the middle of an edge does not change the value of N
I7- E + I, for this would decrease the values of both

NS

IZand 1" by 1 and does not change I© at all.

4, I7=16, £ =32, and I = 16. Thus the valueof IV - E + I'is 0. Note
that the ““interior’ of this polyhedron is shaped like a flat slab of
stone with a square hole in it. It can be proved in general that if the
interior of the polyhedron has p holes through it, then 1" - £ + [- = 2
- 2p. When p = 0, the poiyhedron is called simple and this equation

reduces to Euler's formula.

15



1-6* REGULAR POLYHEDRA.
*This section can be considered as optional.

The fact that there are only five kinds of regular polyhedra was already
known to the ancient Greeks. The derivation of this fact from Euler's form-
ula, however, came much later. It is an interesting example of proving a
theorem in geometry using methods quite different from the traditional ones
of postulational geometry.

It is, of course, not possible to construct a regular polyhedron from
congruent squares by joining four squares at each vertex. For the sum of
the measures of four right angles is 360, and hence the four squares would
lie in a single plane. Similarly one cannot construct a regular polyhedron
from congruent regular hexagons, because the measure of each vertex angle
of a regular hexagon is 120, and thus three of them when joined together
would lie in a plane.

Two equations relating the number of vertices, edges, and faces of a
regular polyhedron are derived in the text. They are E = ! ¢ and E = 5 nV,
The first is explained in the text, and the second follows {rom the observa-
tion that =V is the number of ““ends'" of edges, and since each edge has two

ends, the number of edges is ; nV.

Using the inequality 1 < 22_—82 , which is derived from these two equa-

tions together with Fuler's formula, we find that:

When e = 3, 1 is less than 6.
When ¢ =4, i is less than 4.
When ¢ = 5, i is less than 33.
When ¢ = 6, n is less than 3.
When ¢ = 17, n is less than 2%.

But it is impossible for 1 to be less than 3 since it is the number of faces of
a regular polyhedron which are joined at a vertex. Thus it is impossible for
¢ to be greater than 5. This leads to the five cases listed in the student’s
text and consequently to the conclusion that there can be at most five kinds

of regular polyhedra.

16



The table listing these five cases is easily filled in.

e n E |4 F name
Case 1 3 3 6 4 4 tetrahedron
Case 2 3 4 12 6 8 octahedron
Case 3 3 5 30 12 20 icosahedron
Case 4 4 3 12 8 6 cube
Case 5 5 3 30 20 12 dodecahedron
.

In each case (except 4) the name of the polyhedron is derived from the
number of its faces. The cube could, of course, be called a regular hexahe-
dron.

Answers to Student Text Pages 30-31

PROBLEMS 1-6

1. There is an interesting duality between the cube and the octahedron. If
one connects the midpoints of adjacent faces (that is, faces that have a
common edge) of the cube as shown in the figure in the text, a regular
octahedron results. Conversely, if one connects the midpoints of ad-
jacent faces of the octahedron, a cube results. (Recall that the mid-
point of a triangle is the point where its med:ians intersect.)

2. The tetrahedron is ‘“self dual’’.

3. Connecting midpoints of adjacent faces of a dodecahedron results in an

icosahedron, and conversely.

17



Chapter 2
AREAS OF POLYGONAL REGIONS

The subject matter of this chapter is the traditional one of areas of
triangles, parallelograms, trapeziums and other plane regions bounded by
segments. We also treat the very important theorem—Pythagoras’ Theorem.
We begin with an informal discussion of the idea of area (Sections 2-1
through 2-4). The discussion is a continuation of work done in earlier years,
and is meant to develop further the pupils’ intuitive understanding of the
subject.

The viewpoint adopted in the formal treatment differs in certain es-
sentials from the traditional one. First. we state explicitly as postulates
the properties of area which we assume. This is much in keeping with the
spirit of the geometry of Secondary Three.

The second point of difference is the introduction and the definition of
the term “‘polygonal region’’. This certainly requires some explanation.
One would expect such a term to refer to a region bounded by a polygon.
One, however, soon encounters difficulties if one adopts this approach. It is
fairly straightforward to define the concept of a polygon. The definition of
the interior of a convex polygon does not present much difficulty either. But
when one tries to deline the interior of a general polygon, one faces an en-
tirely different situation. It is not at all easy to define this more eeneral
concept. Moreover, the boundaries of the regions we study will not always
consist of single polygons. So, it our definition of “‘polygonal regions’’ were
to apply only to such regions, we would have to find a more general term to
apply to the wider class of regions we study here. The definition we give in
Section 2-5 avoids these difficulties, among others, at the cost of a feeling
of strangeness, admittedly. But this feeling should wear off with usage.

Our definition allows such regions as depicted in Problem 2(d)-(f) of
Problems 2-5 to be called polygonal regions. So, you will observe, does

18



it . mit certain regions which are totally disconnected. The union of the
two totally disjoint triangular regions shown beiow is a perfectly good ex-
ample of a polygonal region.

Z

B c E

Thirdly, in the development of the theorems (and these are basically
those covered in a traditional course), the sequence adopted here is differ-
ent. Traditionally, one first derived the area of a parallelogram, and from
this deduced the area of a triangle. A main criticism of this approach is
that the proof usually given for the area formula of a parallelogram is in-
complete—only one out of four possibilities is treated. We reverse this
particular sequence of derivations. In fact, we deduce the area formula for
a parallelogram as a corollary of the theorem giving the area formula of a
trapezium. We also give in the Appendix to this chapter two alternative
sequences for the derivations of the various area formulae.

Some further yvemayks on the avea postulates: As stated in the Student
Text, we already have enough postulates to develop our theory of area. We
assume as postulates the statements contained in the Area Postulates 1 to 4
only because it would be too difficult to prove them as theorems. Observe
that the area postulates are similar to the postulates we assumed for dis-
tance and for angle measurement.

The question might be asked why we define our basic unit in terms of
a square region, and not, for instance, relative to a triangular region—
especially, since we define a polygonal region as the union of certain trian-
gular regions. This is partly a matter of convenience. The area formula
for a triangle (given in Theorem 2-3) is, in fact, equivalent to our Area
Postulate 2. One could start by assuming that the area formula for a triangle

19



of base b and corresponding altitude / is %I)/z. One then has to show that

the product “0/i”’ is independent of the particular base chosen. The proof of
this is simple, but involves a knowledge of similar triangles (Chapter 3).
We give the proof in the Appendix.

The last result also provides us, incidentally, with a convenient start-
ing point if we wish to prove the statements contained in the area postulates
as theorems. The area formula for a triangle may then be taken as the
definition of the area of a tricingle.

It is, nevertheless, an interesting exercise (for the brighter pupils) to
derive area formulae for various polygons, using as the unit of area an
equilateral triangle, an isosceles right triangle, a rhombus, a regular hexa-
gon, etc,

On the question of the area of a Polygonal region being independent of
the method of triangulation, it may help to convince the pupils of the truth of
this if they consider specific examples. For instance, a quadrilateral ABCD
may be triangulated in each of the following three ways:

(1) Dby drawing the diagonal [1C;
(2) by drawing the diagonal 51);
(3) by drawing both diagonals AC and BD.

(1) (2)

It is wien pointed out that each of the triangulations (1) and (2) may be ob-
tained by suitably combining in pairs the four triangular regions given by (3).
So that, in a sense, triangulation (3) is the “‘sum’’ of triangulations (1) and
(2).

Finally, the rather minor point may be made that whereas we may, in
theory, compare the lengths of any two segments without “breaking up”’
either of them, we cannot, in general, compare the areas of two regions
without in some way cutting up at least one of them., (Consider, for instance,
the triangle and the rectangle in the figure.)
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2-1 INTRODUCTION.
PROBLEM: Student Text Page 32

The area of the first piece is 9 X 6 sq. {t. = 54 sq. {t.
The area of the second piece is 8 X 7 sq. ft. = 56 sq. f{t. One would
choose the second. It is a better value for one’s money!

2-3 AREAS BY SUMMING UP SQUARES.

Answers to
PROBLEMS 2-3A Student Text Page 33

Each square should be divided

into unit squares. (d) is illustrated

in the figure. In(a) - (c), make

sure that the units given in the

answers are correct.

(a) 9 sq. cm.
(b) 64 sq. in.
(c) 196 sq- ft.
(d) s°

21



The method for dividing the rectangles into unit squares is essentially
the same as that for squares.

Answers: 15; ab

Answers lo

PROBLEMS 2-3B rStudent Text Page 34

The point to note in these problems is that the unit square has to be
divided into suitable congruent squares. These congruent squares we use in
(ii) to (vi) to cover exactly the given region,

(1) (ii)
Fe-=-- Amm - ittt I Y
1 : : ! i v,
/31 ! : : 3
| : ! ; %
| | | |
[ et T T 4 .
! 1 | )
v : ! |
%) | ! l 10
| d 1 !
] (S .. 4'
[_— i | i
: 1
Y | |
I ’
Y, 2 % B oo %
W
10
an = L 1_ 1
Alea—gsq.ft. 33—10><3

Area = 100 x% sq. cm, = 11% sq. cm,

(iii) Sides of rectangle are % ft. by % yd. <= % ft.).

We divide the rectangle into squares each of sido % ft. (L.C.M. of de-

nominators is 6). Area = % sq. ft. Alternately, we may work in yards.
1

Area = 1§ S9. yd.

(iv) Divide the rectangle into squares each of side ‘73% mile. Area = 56— sq.

(97}

mile.
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(vi)

1
Divide the rectangle into squares each of side Td‘km' Area = —5—54- sq.

km, = 10% sq. km.

Divide the rectangle into squares each of side

h)
Area = /—— .
qs

Auswwers lo
PROBLEMS 2-3C

24

(a) 2V3
Yes; 3.

qs ’

Student Text Page 36

APPROXIMATIONS TO AREAS OF SOME PLANE REGIONS.

CLASS ACTIVITY

Student Text Page 36

By calculation, the area is 8V3 sq. cm. = 13-85 sq. cm.

The length of the other diagonal is 4 in. Hence, by calculation, the

area is 6 sy. in.

Accuracy is important, but the real point of the exercises is to teach

the method whereby we obtain successive approximations to the area we

want. Note that the actual position of {igures on the squared paper will affect

the results obtained. It may be pointed out that this becomes less and less

important with successive approximations.




POLYGONAL REGIONS.

Aunswers to

PROBLEMS 2-5 Student Text Page 40

It does not, because the two triangular regions ABC and DEF have the
triangular region DPQ in common.

General remark: Each region may be subdivided into triangular re-
gions in an infinite number of ways. (This is the answer to Problem
4i). Ask the students to subdivide each region in different ways. They
may also try to discover the minimum number of triangular regions
into which each region may be subdivided.

(a) (b)
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1
~
~N
2
~
(f)
8 3/ 2 RN
/ /4 4
/; |
V/// 6 T \5 \\\\
2-6 AREAS OF POLYGONAL REGIONS.
Answers lo
PROBLEMS 2-6 Student Text Page 43
1. Yes 2. No
3. Yes; (according to the convention stated in the text.)
4, No. 5. False

Student Text Page 44

2-T SOME AREA FORMULAE.

Reasons for the statements in the proof of Theorem 2-2

25



[S2 I 52 B - N C N )

EFDF' is a parallelogram (EF || F'D and EF' || FD, by construction)
and the angle at I is a right angle.

SSS

Area Postulate 3.

Area Postulate 4 and statement 3.

Statement | and Theorem 2-1

Statements 5 and 6.

Ansicers to
PRODLIMS »2-7

Triangles AABC and A DEF
with altitudes A G and DiT

respectively such that

AG = DIl

1 )

DEF L 5

Student Text Page 50

©

o ____2> b
)
m
m
N

1

1

v

Statement: 1If two triangles have equal bases, the ratio of their areas

is equal to the ratio of the altitudes to these bases. The proof is sim-

ilar to that given in Problem 1.

(a) The ratio of the areas is equal to the ratio of the bases, BC and
EF. (The triangles have equal altitudes.)

(b) ABC = DEF

26



10.
11.

12.

13.

Let ¢ be the constant area.
—
(i) P is a point on either of the two lines parallel to BC and distant

2a from it.

BC
. . . I 4 . . 2a
(ii) P is a point on the cylinder with BC as axis and radius BC
stretching infinitely in both directions.
(i) 30
. 60, 8
(i) T3 =413
168 _ .18
(a) S5 =635
(b)y 7
(c) 24 (Note that this is just the given leg!)
10
96 _ o3
1095
156

08 yards

92
18 {t.

This may be considered as a special case of Problem 3(b). A direct
proof may be given, of course:
ABD _ BD
ADC ~ DC
=1
S ABD = ADC.

No;
The triangles will be congruent only if A ABC is isosceles, with base
By the mid-point theorem,

B'C'=BA'= A'C

C'A"=CDB'"= B'A

A'B'= AC'=(C'B

AA'B'C"=E AAB'C! SSS
= ADBC'A! SSS
= ACA'B! SSS

27



14,

15.

16.

A'B'C' = AB'C'
= BC'A’
= CA'B

A%T'=%MQMN+ABT’+M%M+CABQ

=%(ABC)

AEC=% \BC

AFczéfum
AECEF = AEC + AFC

i}

(ADBC + ADC)

ABCD

It

DNoj—=  pOj—=

A0 is a median of the
AADB. Hence

ADO = ABO.
Similarly A B0 = BCO
and BCO = DCO.

AO <X BD

Dof =

ADBD =

BCD=%CUXBD

ADBCD = ABD + BCD

=%A0xBD+%COXBD
=%(AO+CU)BD

= 21- AC X BD
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16.

17.

18.

2-8

Cont,

Yes. (A rhombus is a quadrilateral satisfying the condition of the
theorem.) If ¢1, d, are the lengths of the diagonals of a rhombus, the

area of the rhombus is -é: dyls .

(i) S°

(ii) -é— d* (using the result of Problem 16).

d? = 2s" or d = sV2.
(i) av2

oy 1
(ii) 5

(iii) —o=

V2

PYTHAGORAS’ THEOREM.

Student Text Page 52

Reasons for the statements in the proof of Theorem 2-6.
(1) The four triangles AHEP, AEFQ, AFGR and AGHS are each congru-

ent to the original triangle AABC, Hence HE=EF=FG=GH=AB=c.

Also, from the congruent triangles AHEP and A EFQ, we have

a s
PHE = QLI

. -
Again m(PHE) + m(PEH) = 90
a N Fas
and  w(PEI) + m(QLEF) + m(IIEF) = 180.
m(H[ﬂ;‘F) = 90.

(2) Area Postulate 2.
(3) Area Postulate 4.
(4)

(5) Theorem 2-2.

Statement 1 and Area Postulate 3.

Reasons for statements (4) and (6) in the proof of Theorem 2-7.

(4) From statement 3 and the fact that both ¢ and ¢’ are positive

numbers.

(6) Corresponding angles of the congruent triangles A ABC and

AA'B'C’,
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Answers to

PROBLEMS 2-8 Student Text Page 55

a b C
1. (i) 12 5 13
(ii) 7 24 25
(iii) 16 20 4V4T
(iv) 9 9 9v2
v 5 0
(vi) 8 15 17
(vii) 6 2VT 8
(viii) 09 4 41
2. QR=QN+NR
=10+ 18
= 28 3. 15 feet 4.  (b), (d), (g).

We use bolli Pythagoras’ Theorem and its converse. More pre-
cisely, we conclude from Pythagoras’ Theorem that if ¢* # a® + b”, the
triangle is not right-angled (at C); the converse tells us that if ¢? =
a® + b*, the triangle is right-angled (at C).

5. (/)2 +q2)2 — /)4 + 2/)2(12 +(14
= (p* - 2p%¢" + ¢*) + 4p2¢°
= (p*- ¢°)* + (2pg)°.
(The numbers involved are all positive.) p° + ¢*. (This is the largest
of the three numbers.)

6. p q p? - ¢* 2 pq p*+q°
2 1 3 4 5
3 1 6 10
3 2 12 13
4 1 15 8 17
4 2 12 16 20
4 3 7 24 25
5 1 24 10 26
5 2 21 20 29
5 3 16 30 34
5 4 9 40 41

There are 10 such triangles.
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10.

11,

If # is a positive integer, there are i(%'—-l—l such triangles where

the hypotenuse has length less than or equal to »® + (i - 1)* = 2u® - 2n
+ 1.

{3, 4, 5}; {5, 12, 13 }; {8, 15, 17};

{1, 24, 25}; {20, 21, 29} {9, 40, 41}.

BH? = HF*® + BF* (AHFB is right-angled at F)
= 20° + 217 (HF? = HG? + GF?
= 29° =12% + 16°

BH =29 = 20%)

DE C_‘/I, since each segment L DC.

AABC = ABED
PAN VAN
ABC = BED
PAN N
m(DBE) + m(BED) = 90
Pas A
m(ABC) + m(DBE) + m(Aji\E) = 180
m{(ABE) = 90
ACDE = ABC + ABE + BED

%(a+b) (a+b)=%ab+%cz+7i;ab

a®+ 2ab + b2 = 2ab + ¢*

a® + b = ¢*

Each of the triangles A EAH, A DEG, ABDF is congruent to the triangle

AABC (the hypotenuse and an acute angle of each of them are congruent

to the hypotenuse and an acute angle of A ABC).
CH=AC - AH
=b-a
Similarly, HG = GF = FC = b - «.
Moreover, the angle at C is a right angle.
ABDE = ABC + BDFF + DEG + EAH + CFGH
1

¢t = 4(-?: ab) + (b - a)?
=a’® +b*
FaN
(1) SAS (CAE = H.Zl\B, the measure of each is

90 + m(C.Zl\B)).
(2) Statement (1) and Area Postulate 3.
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12.

13.

14.

15,

16.

17.

18.

(3) The square CAHJ and the triangle A ABH have equal bases (AH) and
fvial altitudes (CA).

(4} Similar to reason for statement (3)

(6) From statements (2), (3) and (4).

(6) The steps involved are similar to those used in proving statement
(5).

(7) Statements (5) and (5) and Area Postulate 4.

SAS
Mid-point theorem applied to A ABD.
CE =3 AD
= -é— AB (AB = ;ff), corresponding segments of congruent triangles

AACB and AACD).

In AACD, AD = CD and m(A4) = 80. Hence AACD is equilateral and
1

AC =AD =5 AB,

5 -
sV3
2
s*V3
4
16,;/? sq. cm.
2
2 _ S _ g2
S 4 Y/} A
3 s® 2 1
=/ |
4 /N
_2V3 n-
§=Sg A BE N C
2 77
Area = ! :;‘5
60_,.8
6, 1374713
-1 _ 288
ABX —2AbCD AN = 25
=12 - 11%—2— (11-52)
BX =12-5
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19. PR? = PQ® + QR?
= 5%+ 12° (PQ = QS = 5)
PR =13

PSR XX

I
Do l—

o
($)]

%
>4
[

cl& o

9
13

Il
Do

20, AABP = AADQ

A . 60° 15°
BAP = QAD

m(BAP) = m(QAD)
= % (90 - m(P;l\Q)) 150

15
VAN
m(BPA) = 75

AN
m(CPQ) = 45 75060:5°

It

I
i

45°

1)

o0

A PQC is an isosceles right triangle. B . P 0
Let AB = s and AP = [, Then s- \Ti' N2
{ £
= = d = - =
cpP 75 and BP = s 75
Apply Pythagoras’ Theorem to right triangle AABP to give

[ =sz+<s——ﬁ--)2

V2
0% =2V2 st- 4s* = 0 and the quadratic formula gives
0 =(-V2 = V6)s
Ll . £
ndavw-vz (£>0)

[Alternately, we may use
ABCD = ABP + PCQ + QDA + APQ.

D S SN S 4 L 0*V3
$ ‘25@'¢§)+<4+2S@'J§)+ 4
S _0(v3+1)

V2 4

2 _2V2

s J3+1

=J§(J§—1).]
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21. XL =av3

A 2c D
XN=a(2+V3)
(XC)? = (XN)* + (NC)?
=a® (2 + V3)* + *
=a® (8 +4V3) A S
=a* (8 +2VI2)
XC=a (V6 + VD)
22. ADIE = ADD + BDE
=ADB + DCD
= ADCD
23. Yes.
ADE = ADB - BDE

ADDB - DCB
ABCD

(=) e €—3 €—>
Through I draw G || AD, and let G intersect DC in .

€—3,  €—> (—>3 3
Through I draw B (] AC, and let I intersect DC in J-.
AAFG is the required triangle.

25.  We use the “‘angle-sum’’ theorem to deduce that [[EF is a right angle,

34



APPENDIX

A. Alternative sequences for the derivation of the area formulae given in

Theorems 2-1 through 2-5.

First Sequence—Theorem 2-1': Same as Theorem 2-1.
Theorem 2-2': The area of a parallelogram is the
product of any base and the corresponding altitude.
Given: A parallelogram ABCD with base DC = b and
corresponding altitude AL = /.
Pyrove: ABCD = bl
Proof: Draw the altitudes AL and BF

A B

mp-——o >

(1) (2)

As shown in the figure, there are four cases to consider:

Case 1: (E lies between ) and C.)

L. AADE = ABCK (hypotenuse and one leg of right A ADI are
congruent to hypotenuse and one leg of right
ABCK)

2. ADL = BCTF (Statement 1 and Area Postulate 3)
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3. ABCD = ADE + AECB (Area Postulate 4)
= BCF + AECB (Statement 2)
= AEFB (Area Postulate 4)
= bl (Theorem 2-1': AEFB is a rectangle)

Case 2:
E coincides with D. Parallelogram ABCD is a rectangle and the re-
sult follows immediately by Theorem 2-1'.

Cac? 3:
L coincides with C.
The proof is the same as for case 1.

Case 4:
Both I and I fall outside the segment DC.

1. AADE = ABCF (hypotenuse and one leg of right triangle ADF
are congruent to hypotenuse and one leg of
right triangle ABCF.)

2. ADE = BCF (Statement | and Area Postulate 3)

3. ADE = ADCG + GCLE (Area Postulate 4)

4, BCF = BGEF + GCE (Area Postulate 4)

5. ADCG + GCE = BGEF + GCE  (Statements 2 to 4)

6. ADCG = BGEF (Statement 5)

7. ADCG + ABG = BGEF + ABG  (Statement 6)

8. ABCD = ABEF (Statement 7 and Area Postulate 4)

9. ABEF = bl (Theorem 2-1'; ABLEF is a rectangle)
10.  ADBCD = bh (Statements 8 and 9)

Tneorem 2-3'": The area of a triangle is half the product of any base
and the corresponding altitude.

Given: A triangle AABC with base BC = b and corresponding altitude
AE =],

Prove: ABC = % bh
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Pyoof:

Through A we draw AD || BC and through C we draw CD||BA.

1. ABCD is a parallelogram (Construction)

2.  AABC=aADC (8S8)

3. ABC = ADC (Statement 2 and Area Postulate 3)
4, ABCD = ABC + ADC (Area Postulate 4)

5. ABCD =bh (Theorem 2-2')

6. ABC = %_— bl (Statements 3, 4 and 5)

Theorem 2-4': Same as Theorem 2-4.

Second sequence:
Theorem 2-1'"": Same as Theorem 2-1
Theorem 2-2'': Same as Theorem 2-2
Theorew 2-3'"": The area of a parallelogram is the product of any
base and the corresponding altitude.
Given: A parallelogram ABCD with base BC = b and corresponding
altitude /.
Pyrove: ABCD = bh
Proof: E A 5

H
|
|
|
|
h
i
|
I
I
|

i
|

1

|

'

]

th

I

]

!

1

I
—_—d L
B b C F
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If ABCD is a rectangle, the result follows immediately from Theorem
2-2. Otherwise we choose the opposite vertices B and D which are
such that the two altitudes BE and DF lie entirely in the exterior of the
parallelogram, except for the end-points B and D.

AABE =ACDF (hypotenuse and one leg of right AABE
are congruent to hypotenuse and
one leg of right ACDF.)

ABE = CDF (Statement 1 and Area Postulate 3)
BEDF = BEA + ABCD + DCF (Area Postulate 4)

BEDF = (b + AEh (Theorem 2-1'': BEDF is a rectangle)
BEA = % AE X I (Theorem 2-2')
DCF = —é—AE X I (Statements 2 and 5)

(b + AE) I = —é— AE X i + ABCD + -21- AL X (Statements 2 to 6)

ABCD = bh (Statement 7)
Theorem 2-4'': Same as Theorem 2-3
Theorem 2-5'"": Same as Theorem 2-4.

Theorem: In any triangle, the product of a base and the corresponding
altitude is independent of the choice of the base.

Given: A triangle AABC with altitudes BA and CN.

Prove: AB X CN = AC X BM

38



IfA isa right angle, M = A = N, and the result is trivial. Suppose
now that 4 is not a right angle. Then M # A and N # A. In triangles
AAMB, AANC,

A N

A=A

AMB = ANC (each is a right angle)
AAMB ~ AANC (AA Similarity Theorem)
AB _ B

AC CN

AB X CN = AC X BM.
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Chapter 3

SIMILAR TRIANGLES
AND POLYGONS

3-1 INTRODUCTION.

Your pupils will have done some work with similar polygons in Sec-
ondary Two and therefore will have some understanding of what is meant by
two figures having the same shape but not necessarily the same size. They
will already have had considerable experience in drawing scale models of
larger figures. They may not have been aware at the time that the figures
they drew on their papers (if they were drawn to scale) were exact models
of larger figures. You should remind them of this fact here and perhaps
pursue the idea a little further by asking them how they would draw on their
paper a picture of a triangle whose sides are 10 ft., 12 ft., and 15 ft.

In similar triangles, as in congruent triangles, the notion of a one-to-
one correspondence between the vertices is important. We call the pupil’s
attention to this correspondence here by repeating the definition of congruent
triangles so that later, when similar tri langles are formally defined, he will
have a basis for comparison. Actually, we could define congruent triangles
in terms of similar triangles by observing that when two similar triangles
have the ratio of their corr esponding sides equal to 1, the trianzles are con-

gruent.

Comments on

Student Text Page 62
CLASS ACTIVITY

You may want your pupils to do more of the kind of activity suggested
here. It is important for them to realise that one way of classifying geomet-
ric figures is by similarity and in order to make this classification easy and

exact we need a precise definition of similarity.
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In Problems 1 and 2, of course, all circles are similar to each other
as are squares. [n Problem 3 some of your pupils may have been fooled by
their pictures into thinking that all rectangles are similar. Once they have
seen an example of two rectangles like the figure in the text they should be
convinced of the error in their thinking.

3-2 RATIO AND PROPORTION.

If your pupils have studied Rational Functions in Secondary Four -
Algebra, they will have already done considerable work with ratios and you
may want to omit part or all of the exercises in Problems 3-2A. The only
thing new here is the word ratio and its representation by the symbol 2:3 or
the words 2 to 3. Be sure that your pupils understand that a ratio is a
number and that it is usually described as the quotient of two numbers, even
when the denominator is 1. Thus if » is a number, & can be expressed as a

2

. . IA
ratio since £ = i

We have defined ratio in terms of positive numbers {or two reasons.
The first is that the numbers used in geometry represent measurements
and are therefore pesitive. The second is that it eliminates the necessity of
always having to restrict our denominators to non-zero numbers in our
discussions and problems. We adopt this same convention later, when we
define proportion.

Ausiers o

PROBLEMS 3-24 Student Text Pages 64-65

2. () 2 (c) 1558
() 15 () =
3 () x=9 (c) \=%
() x=62 (d) x=1
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4 (2 §=3% () =3
(b) *-4 @ 3=3%
5. (a) £ (0 {
(b) £ (d) 2t3

6. Two such sequences might be 9, 15, 21 or 15, 25, 35. (Any sequence
which is a multiple of 3, 5, 7.)

4s _4
s 1

8. Since the length of the diameter of the circle equals the length of the
side of the square, the area of the square is given by (25)° = 452, The

.2
ratio of the area of the square to the area of the circle is then 4—;5 = %
T

Answers lo the
PROBLEM (Page 66 )

Cad [pma

We have treated proportions rather extensively in this section. Your
pupils may already have a fine understanding of the algebra of proportions.
If this is the case, you may wan! to skip over this section rather hurriedly,
concentrating on the definitions, hut omitting many of the exercises—es-
pecially if you are {faced with a shortage of time. On the other hand, here is
a good example of how algebra and geometry are interrelated. If your pupils
are weak in the algebraic manipulation of fractions, the exercises here should
provide ample revision for them.

By a miean proportional between ¢ and ¢ or a geomelyic mean between
@ and ¢ we mean any number b for which «: b = b: ¢ is a true statement,

. a_ b .
Since i b? = ac, we get two numbers, b = Vac and b = - vac, as
c
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possible geometric means between ¢ and ¢. We have defined //ie geometric
mean or (ke mean proportional between @ and ¢ to be the positive nuniber
vac. Perhaps the phrase ‘“between @ and ¢”’ for the geometric mean is not
a wise choice of words since the word ‘‘between’” implies that vac is between
a and ¢: thatis, « < Vac <cora >Vac > c¢. If a and ¢ are positive and

a # ¢, this is actually the case. However, il ¢ = ¢, then Vac = a = ¢ and the
point representing the geometric mean is ro! between the points representing
a aud ¢ on the number line. If your pupils are not confused by this use of

the word between, I would not bother them with the above discussion. The
word ‘‘between’’ arises from the fact that, when writing the proportion
a:b=>0:c, bappears in order between « and c.

The basic theorem on proportions is Theorem 3-1. There are many
other theorems concerning proportions which are consequences of Theorem
3-1 and the laws of algebra. We list the more important of these in Theorem
3-2 following Problems 3-2B.

Answers Lo
PROBLEMS 3-2B

Student Text Page 67

} - '——:E =
1. (a) Itb d,then ad = bc.

Proof:

a ¢
'Y d
(bd # 0 because b # 0 and ¢ # 0) we get ad = bc.

By hypothesis Multiplying both sides of this equation by bd

(b) If ad = be, then £=£,
b d
Proof.
By hypothesis, ad = bc. If b # 0 and d # 0, we can divide by bd
. .oa_c
obtaining Bk

. 2,86
2. No,5#2

i) because 2 X 20 # 5 X 6.
3. (a), (o), (d).

= 3
4, (a) x =6.3 or 675 -
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4, Cont.
(b) x=6. (As agreed in Problems 3-2A, the letters in this Problem
set represent positive rumbers, so x = -6 is not a permissible

solution.)
.83 125
(¢) x= 5 Ol 136.
(d) x=4
5 4V3,
X _10
6. y— 3 .

7. If % =§§ and a # 0, we have by Theorem 3-1 ax =ay and, dividing by

a, x =y.

1
-1

[3;1[{e]

8. X =

. . . a_c . .
The equivalent forms of the given proportion - = P listed in Theorem

b d
3-2 are often very useful and if the pupil recognizes how they are obtained
from the given proportion he can save himself many steps in the proofs of
certain theorems involving proportions.

Prior to discussing Theorem 3-2 you might want to give your pupils

the proportion %=% and ask them how they would obtain other proportions

from it by rearranging the order of the terms «, b, ¢, d so that the cross-
product ad = bc is retained. This should produce parts (a), (b), and (c) of
Theorem 3-2. You could then ask them to try to discover other proportions
whose cross-products are reducible to ad = bc by using only the four terms
a, b, ¢, d and the operations of addition and subtraction on them in setting
up the proportions. Once they have discovered parts (d), (e), and (f) of
Theorem 3-2 you could ask them to use these results to generate even more

proportions equivalent to %= % This kind of pupil activity should make

them thoroughly familiar with the various equivalent forms they will find
useful in later work with proportions.



Answers to

PROBLEMS 3-2C Student Text Page 68

1. (a) is obtained by interchanging the first and fourth terms of the

ortion a_c
prop b=d"

(b) is obtained by interchanging the second and third terms.
(c) is obtained by inverting the iwo ratios.
(d) is obtained by denominator-addition.
(e) is obtained by denominator-subtraction.
(f) is obtained by numerator-denominator-addition.
13. 3
2 (a) ’—5—’ 5
9. 5
(b) 4 4
3. If ;—I, = % = % , then by an extension of Theorem 3-2(f) we get
a+b+c _a . dhence L= &
a'+b'+c' a' p'oa'’
LEC AD + DB _ AE+ EC
== == T =
4, AD VL then by Theorem 3-2(d) we get 1D 15 By
one of our segment measurement postulates AD + DB = AB and
AE + EC = AC. Therefore, — AB _AC
AD AE

3-3 RATIO AND PROPORTION IN GEOMETRY.

Be sure that your pupils understand Definition 3-2 and the discussion
that follows it. There is nothing new about the algebraic properties of
proportions in this section, but the agreements made in Definition 3-2 and
the paragraph that follows it are important to the work that comes in Sections
3-4, 3-5, and 3-6.

Stress the importance of two segments being measured in terms of the
same unit before a number can be obtained for their ratio. It would be

absurd, for example, to say that the ratio of AB to CD is % if the measure of
AB is 2 feet and the measure of CD is 3 inches. When we say that the ratio

of two segments is % we mean that the first segment is % as long as the
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second, and, of course, this would not be true at all about the two segments
abave.

The answer to the question posed on page 69 is important and it may
seem obvious to some of your pupils while others may not be so0 certain.
Some may feel that since measuring two segments with different units gives
different numbers for their lengths, it may also give a different number for
their ratio. A little thought and some discussion of examples like those in
the text should convince everyone of the truth of Theorem 3-3, Once the
pupils have arrived at the statement of Theorem 3-3 through looking at
examples, there is not much to be gained by discussing the formal proof as
given in the text. It is sufficient for the poor pupil to know that if one seg-

.2 . . Sy
ment is % as long as another, it remains so regardless of what unit is used

to measure them. It is more important for the good pupil to recognise the
need for Theorem 3-3 than it is for him to be able to prove it.

Answers to

PROBLEMS 3-3 Student Text Page 71

AB _BC _AC
FD DE  FE°

2. B'C' =21,
A'C' =39,

regardless of whether they are measured in

wlno

i i 24
3. Their ratio is 36 =
inches, feet, yards, o. miles.

4 AB _ BC
' XYy Yz

:1
3 -

3-4 THE BASIC PROPORTIONALITY THEOREM.

THEOREM 3-4. If a line parallel to one side of a triangle intersects
the other two sides in distinct points, then it cuts off segments which are
proportional to these sides.

Given: A ABC with points D and £ on AB and AC respectively

< <>
such that DE || BC.



Prove:

Pyoof:
(1)
(2)

(6)

(7)

Draw D_C— and EE.

In AADE and A BED let

us regard AD and BD as B
the bases. The triangles

have the same altitude, A
namely EF. Therefore
by Corollary 2-3-1 the
ratio of their areas is

the ratio of their bases, -

and we have g £~

Area A BED _BD
Area AADE AD:

In AADE and ACED let
us regard AE and CE as
the bases.

The triangles have
the same altitude DG.
Therefore by Corollary
2-3-1 we have as before

Area ACED - CcL
Area AADE AL"

Now A BED and A CED have the same base DE and equal

altitudes.
. Area A BED = Area A CED.

Combining the statements in (2), (3) and (4) we have

BD _CE

AD AE"

. BD | _CE ,  BD+AD_CE+AE
"TAD AE" " TTAD AE
. AB_AC
""AD "AE "

The proof of this theorem is mainly based on areas.
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COROLLARY 3-4-1.

The first part of the corollary follows by inverting the result obtained
in step 5 of the proof of Theorem 3-4 which gives

AD AL ) AD_ BD
BD “CL From this we ge tAL CE and from Theorem 3-4 we get
AB AD AB _ BD
Ac T AL These last two results give == qC "L
AB _AC
Therefore, BD-CL’

which is the second part of the corollary. (We have used Theorem 3-2 in
transforming these proportions.)

COROLLARY 3-4-2.

There are two cases as indicated in the two figures.

In both cases draw BE and DC.

The proof to the first case follows directly from the proof of Theorem
3-4 by interchanging B and D, and C and E respectively. To prove the
second case we use Corollary 2-3-1 on the proportionality of the ratio of
areas of triangles to the ratio of their bases. We get

(1) Area A BLD
Area ACED

=1. They have the same base and equal altitudes.

Area ABED _ BD .
(2) Area AADL - Ap - Corollary 2-3-1.
(3) Area ACED _ CE
Area AADE ™~ [EA

Corollary 2-3-1.

(4) Combining (1), (2) and (3) gives the required result.
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THEOREM 3-5

In the construction for the proof of the
theorem we assumed that ' lies between A and C.
Obviously it is impossible for € to be be-

tween A and I°. It can be seen that if ¢ lies be-
—> <>
tween A and I then DI° cannot be parallel to BC
since it intersects it. Now suppose I is such
that A is between I and . Then since DI || BC

it follows that

(1) DIG = BCA by corresponding angles.

(2) w(DFG) > m(DAG) by the Exterior
Angle Theoren.

G
. . s
(3) m(DAG) > m(BCA) by the Exterior N F
N
Angle Theoren. N A
|
- - |
(4) m(DFG) > m(BCA) by Statements Y E
(2) and (3).
~ This leads to a contradiction of the fact B C

‘\——.—),l <
that DF 1 BC.

<—
Hence if DF || BC then I¥ must lie between 4 and C.
There should be a short discussion on ‘‘the method of indirect proof’’
to refresh the notion in the minds of the pupils.

«—> >
NOTATION: The notation B D for ADB H CD must not be

A c
confused with the notation for rays. The arrows on rays are at the end of

the segment: /

Ansiwers Lo

PROBLEMS 2- Student Text Pages 75-78

XM LZ XY XM XY XY
% LX’ Xz’ XL’ MY’ Xz
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AC =5,

AE  AB AB AL
EC’ AD’ AC’ AD"’
(a) QT =4, (b) PR =18, (¢) PS=T1.
(a) CE =8, (b) FG = 8.
MQ =6, sy =48,
ot e AE _AD
From AADE and A ABC : 7C - BD
From ACEN and ACA Y ; C T CN
XY AD . cre
" CXN  BD b =3
L OE _OF .
(1) InAOAB, o1 " OB Theorem 3-4
OF _0G ‘
(2) In AOBC, 0L~ 0C Theorem 3-4
., 0C ol .
(3) InAOCD, oC = 00 Theorem 3-4
OE _ ol
(4) OA = 0D Statements 1, 2 and 3
< e
(5) InAODA, IE /] DX Theorem 3-5

Let D‘~\>and Illz?intersect in the

point 0.

(1) From A QAL and A OBF
0.\ _ AL
OF LI

(2) From A OAL and A OCG
A _ AC
OL ~ EG

(3) From AOAL and AODIH
OA _AD
OF ~ Ell

(4) From statements (1) and (2)

4¢ 48 Jo G =6 and FG = 4.

Y

EG  LEF D
(5) From statements (1) and (3)
AD AD

T Lo B =12 and 1IG =6,
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10. (1) Since ABDE and A CDE have the
same base and equal altitudes their
areas are equal,

‘. Area ABDE =Area ACDE
(2) ﬁrea A/-%DE - AL
rea ADDE  BI

o Area AADE _AD . . B

Corollary 2-3-1.

s AL AD
BE (D

(4) Combining statements (1), (2) and (3) give

= &> <> <>
11. Since, by hypothesis, I3 = I'D and ED || FD it follows that BI || £D.
Therefore in ACGD and A C/HI" by Theorem 3-4,
I _CF
GIl D~
SO CH =G
Similarly in AABI and AAEG,

L.

AG AL 1
Gl B
W AG =Gl
Hence AG = GI = 1IC,

Hence G and II trisect AC.
«—> <>
For the last part consider AALG and ACDG. By hypothesis, AE || cD.

Therefore by application of the result of Problem 10 we have

EG _AG _ 1
GD - GC 2
C o1
CEG =% GD
2EG=%MD-E®
EG =1 1p
: 3

3-5 SIMILAR TRIANGLES.

The definition of a similarity, like the definition of a congruence, re-
quires two things: a congruence between corresponding angles and a pro-
portionality between corresponding sides. For similar triangles we could
have based our definition on either one of the two conditions, and proved the
other. However it is better to define similar triangles in a manner that can
be generalized to other polygonal figures.

51



Two triangles are similar if they have the same shape but not neces-
sarily the same size. If two triangles are similar it ought to be possible to
“magnify’” or ““stretch’’ one of them, without changing its shape, so as to
get the second triangle. Also the second triangle could be “shrunk’’ or
“diminished’’, without altering its shape, so as to get the first triangle.

The setting up of the correspondence between two similar triangles
must be carefully dealt with, A lot of diagrams should be drawn to explain
how the corresponding parts of two
struilar triangles can be picked out.
For example, in A:ABC, by inspection

m(B) > m(A) > (). In AABCY, c’
by inspection m(B') > (') > m((‘x’).

Hence if AABC ~AA'B'C" we should g
expect that A =1, I = 1}’ and C = Cr
Some pupils may tend to think C
that coiresponding angles in two
similar triangles are the ones which occupy the same relative position on
the blackboard. It is necessary to give several examples to dispel this idea.
It must be stressed to the pupils that the notation for a triangle sim-
ilarity must be such that letters representing corresponding vertices in the
similarity are relatively situated within the expressions denoting the tri-
angles. Thus il A <> X, B« Y, and C <> Z, then AABC ~ AXYZ.

Answwers lo

S
PROBLEMS 3-5 Jtudent Text Page 80

A yan A FaN Fas FaN
1. A« B’ B« AT C «<=C/', AB <= B'A!,
BC < A'C!, CA < C'B!,

2. DE = 3; DI" = 3.

3. Since AABC ~AA'B'C!
AL BC _CA
A'B" B'C C'AY
JoAB =12 and BC = 16
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4_6 _a -efore, b = b i =4 i
5, =13 —g - Therefore, b =5 in. anda = 4 in.

Since AADBC ~AYXNZ
AL _BC _ AC
XY NC T YC

8 BC_9

"1\’)/_ 6 '5.

(1) ChL _CLE _DE _ 1 (by hypothesis D <

CA (OB AB™ 2
and £ are the midpoints of AC and BC.} A
; A B

<> >
DE|| AB by Theorem 3-5

.« vy o 40 »~ D4
.‘\)—9 andbC—S.

2

49 Cc=¢
5) AABC ~ A DEC by Definition 3-3.

S’

(2)

(3) CDE =(CAB and l)l;‘(‘ =4 BC by the Alternate Angle Theorem
(

(

Let AABC and A A'B'C’ be two equilateral triangles.
(1) A=B=CandA’=p'= Cr
(2) ADB=DBC =CA A'B = B'CT=C'A",
then from (1)

A=A B=p and C = (",
and from (2)
AD - BC _ CA
A'B" pICT A
o AADBC ~ AA'B'C! by Definition 3-3.
From (1) and (2) we have also A ABC ~ A B'C'A’,
AADBC ~AC'A'D,

Yes. Let AADBC = ADELF. Therefore

(1) A=D, B=E, C= R
(2) AB = DI, DC =Ll and AC = DF,
Hence from (2) we get
(3) 42 . LC _AC
DE  EFF DFE
From (1) and (3) we conclude that A ABC ~ A DEF.
Not every pair of similar triangles are congruent. For example, if
AABC ~ ADEF then (1) and (3) above hold. But (2) does not neces-

sarily imply (2) which is necessary for congruence of the two triangles.

Since A ABC ~ A RST, by definition
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8. Cont.

/\z/\ ,.\=,\ SN f_“_@_-@g-éﬁ
(1) A=R B=S,C=T, RS ST RT
Since ASTR ~A YZX, by definition

Q> -2 S_o ST TR _SR
(2) S=Yy,T=Z,R=X, YZ SZY Ny
Combining (1) and (2) we have

Lov pev ~_ o AL BC AC
3y A=X,B=Y,C=2Z, Y C17 " 7y

Hence it follows from (3) that AABC ~ AXYZ.

3-6 THE BASIC SIMILARITY THEOREMS.

THEOREM 3-6 (The AAA Similarity Theorem).
This theorem may be stated briefly as:
If the angles of one triangle are congruent respectively to the angles of

another triangle, then the triangles are similar.
)

In the proof of the theorem we assume that —% > 1 and 452, > 1. If

AB <A'B" and AC < A'C" the proof follows in the same manner with the roles
of AADC and AA'B'C' interchanged.

COROLLARY 3-6-1.

If two angles of one triangle are congruent to two angles of another
triangle then by the Angle Sum theorem for triangles the third pair of angles
are also congruent. Hence the three angles of one triangle are congruent to
the three angles of the other triangle. It follows from Theorem 3-6 that the
two triangles are similar.

COROLLARY 3-6-2. A
. > &>

Given: AABC and DE || BC D E

Prove: AABC ~ AADE

Proof: B o
(1) Al) g = B Corresponding Angle Theorem
(2) DEA = C Corresponding Angle Theorem
(3) A=4
(4) AABC ~AADE AAA Similarity Theorem.
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COROLLARY 3-6-3.

Let AABC and A DEF be the two right triangles with right angles at A
AN
and D and b\’ = I, It follows from the AA Similarity Theorem that
AABC ~ ADEF.

COROLLARY 3-6-4.

Given: AABC ~ADEF and AA'B'C' ~A DEF
Prove: AABC ~AA'B'C’

Proof:
VS Pas AN o~ e VAN )

(1) A=D,B=E, C=F since AABC ~ ADEF.

(2) 3 = f’, L = Z;’", I o= (p‘\’ since ADEF ~ AA'B'C',

(3) A= zfl”, B = /-I\', C = (' Statements (1) and (2)

(4) .. AABC ~AA'B'C', by the AAA Similarity Theorem.
COROLLARY 3-6-5 Al
Given: AADBC ~AA'B'C!" with A

altitudes AD and A'D’
I Bl ; Cl
respectively. | D
oropes AL L AB_ BC _AC I
yove: ADT T At T oBICY _A'C' B hH ¢
Proof: D
(1) B =B since AABC ~AA B'C".
(2) AABD ~AA'B'D' by Corollary 3-6-3.
AD AD
(3) AD' AR
AR BC AC o A tare
(4) L ST - e since AABC ~ AA'B'CY, and
(5) AD _ AB _ BC _ AC
ADYA'BY B'CT AlC! T
COROLLARY 3-6-06 A
AI
Given: AABC ~ AA'B'C" with
angle bisectors AD and A'D?, | 5
Prope: AD A BC  AC : D ¢
Yores Apt T At Tpic TA'C! n
|
B! Dl’ c!
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Proof:
AB  BC _ AC
A'BT T BICT T AC!
(2) BAD = BIAD! by Statement (1) and hypothesis.
(3) AABD ~AA'B'D' by the AA Similarity Theorem.
AD AL

~ NN -
(1) B=B",A=A"and since AABC ~ AA'B'C’.

(4) AT AL by Definition of similarity of triangles.
o AD AB BC AC "
(5) A0 A S et St Dy Statements (1) and (4).
Answers lo
PROBLEMS 3-6 Student Text Pages 85-87
1. (a) Similar; SAS (b) Similar; SSS
(¢c) Similar; SAS (d) Similar; AAA
lil_ = !_K - 3 AR -1 o
2. 0r S <— 4> and I is common to the two triangles.
W AIKE ~ ADII by the SAS Similarity Theorem.
* M = .1’—”_
" DE o DEFC
K = 12.

3. They are similar by the SAS Similarity Theorem.

4, They are similar by the SAS Similarity Theorem.
AL AC
DiE DI

A =D and

S 1‘1_() = ()IJ) <: g
oD OC 1
AAOL ~ ADOC by the SAS Similarity Theorem.

) and AOB = COD.

6. AABC ~ AAED by the SAS Similarity Theorem,

orR _0s . . _be
g op YR

8. Consider ANYZ and AXZ1;
NVOXNZ s

N7 oNT and Z\'1

ANYZ ~ANZW by the SAS Similarity Theorem.

ONZY ;

i

N
WXZ by hypothesis.

il

AWz Corresponding angles in two similar triangles.

N AN\
. XWZ is a right angle since X2V is a right angle.
ZW 1L XY
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10.

11.

12,

13.

14.

In the isosceles triangles A ABC and ADEF let AB = AC and DE = DF.

AB _AC
‘" DE DF
N\ VAN

A =D Dby hypothesis
. AABC ~ ADEF by the SAS Similarity Theorem.

AN

A\
In the isosceles triangles A ABC and A DEF if the base angles B, C,
AN N\
E and I’ are congruent it follows that ﬁ = f)\ and by the result of

Problem 9 we have A ABC ~ ADEF.

Since P = R it follows that PQ = RQ.
Bv hypothesis RM = PL. Hence MQ = LQ.

. MQ _LQ
T RQ  PQ
. APQR ~A LQM by tt e SAS Similarity Theorem
AN FAN N N\
£2=@LMand R = LMQ
—> &>
LA || PR

Let AABC ~ AXYZ. Then by definition
AB _BC _AC
XY Yz XZ

=k, say.

AB+ EC+ AC XY+ kYZ+ RXZ _ 3

XY+YZ+XZ XY+ YZ+ XZ
Hence the result follows.

AMXZ ~ALXY by Corollary 3-6-3.
MX - XZ _ Mz
LX XY LY’
Since AABC ~ADEF we have
NN AB _BC AC
B=Eand o= = or
* —@ = 2BG = Eg
" DE 2Eill EN'
AABG ~ ADEH by the
SAS Similarity Theorem.

. é_G_zfl.ﬁ
" DH DE’
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Challenge Problem
N\ AN N\ A\
15. DAE = ECP and ADE = CPE (alternate angles).
AED = CEP (vertically opposite angles).

‘. AADE ~ ACPE by the AAA A
Similarity Theorem.
. AE _AD b
0 . CE=Crp c_P
DBF = PCF and BDF = B . F

CPF (alternate angles).
"« ABFD ~ ACFP Dby the AAA Similarity Theorem

. I'B _BD
(2) .. CF-CP
Since BD = AD by hypothesis, we have from (1) and (2)
B AL
CF CE

3-7 METHODS OF PROVING LINE SEGMENTS PROPORTIONAL.

This section is very important as it shows the student how to set out
attacking problems involving similar triangles. Great pains should ke
taken to show the student why, given a problem involving several triangles,
we pick out two of the triangles and try and prove them similar. These
triangles are picked out, not arbitrarily, but so as to involve the ratios or
proportions we are interested in. The second example illustrates the
rmethod to follow when no pair of triangles involve all the sides in the pro-
portion. We then pick two sides in one of the ratios and look for triangles
involving them. Do the same for the other two sides and try to find a con-
necting link. Some students find this fascinating and relatively easy. Others
find it extremely difficult. Be patient but do not spend too much time trying
to getevery student to master this technique.

Answers to

PROBLEMS 3-7 Student Text Pages 89-92

N S
1. Let AABC and AXYZ be two equiangular triangles. Then A = B = C

AN -

FaN
and X =Y =27
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Cont,
and by the Angle-Sum Theorem for triangles the measure of each

angle must be 60°. Hence we have
S AN N as

A=X,B=Y,C=2
Hence AABC ~ AXYZ by the AAA Similarity Theorem.
Also AABC ~ AYZX and AABC ~AZXY.

Ch_EC (. 1)
AC BC 3

> >

DE || AB by Theorem 3-5.

e /
C/D\E = A and I)L\‘C = 23\ by the Corresponding Angles Theorem
ACDE ~ ACAB by the AAA Similarity Theorem.

Let .:I—B—, 6’5, 62, and OC represent
the tree, the pole, the shadow cast by B
the tree, and the shadow cast by the
pole respectively. Then

CD =6, 0A = 30, OC = 9. D
AOAD ~ A OCD by the AAA
Similarity Theorem 0 C A
. AB _04
" CD oOcC
S AB =20

Hence the tree is 20 feet tall.

If AB and CD represent the cliff and

the telephone pole respectively, then 8
CD =20, OC =15 and 0OA = 120.
AOAB ~ AOCD by the AAA
Similarity Theorem
. AB_0A
" CD oOC
. AB =160,
Hence the cliff is 160 feet high.
D
o rC A
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10.

A ABC ~ A ADE by the AA Similarity Theorem
AB _BC _AC
* AD DE ~ AE
1

‘. AB=4'2,BC=9

s ~ ~ A <> <>
XML =Y and MLX = Z since LM H YZ.

. AXYZ ~ AXML by the AAA Similarity Theorem

ML XM

YZ XYy°

d_ _«a

b a+c’
ab

d_a+c

a

C= @ and [3 = 2 by the Alternate Interior Angle Theorem.
. AABO ~ ADCO by the AAA Similarity Theorem
. A0 _ B0
DO CO
. AOXCO =B0OXDO
Let the trapezium be as shown

> > A b
with AD || BC.

» DAO = BCO and ADO = OBC.
. AAOD ~ ACOLB by the AAA
Similarity Theorem.

¢ &:O_D.
" CO OB°

B C

EBF = FDG and BEF = I‘aD by the Alternate Interior Angle Theorem.
. ADFG ~ A BFE by the AAA Similarity Theorem
DG _ DI
" BE BF
‘. DG X BF =DF X BE

Consider A ABC and A DAC

CAB = C/D\A both are right angles

A§C = D.ZC both are complenentary to BA\D
. AABC ~ ADAC by the AAA Similarity Theorem
. AD _CD
" AB AC
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10.

11.

12.

13.

14.

Cont.

Similarly we can show that A ABC ~A DBA. From this we obtain

BD _AD . BD_AB
AB TAC €€ 4Ap T Ac
Consider A ABC and A AED.

A\

A
B=E both are right angles.
N\ ZaN AN
C = DAE both are complementary to BAC.
AABC ~ A DEA by the AA Similarity Theorem.
DE_AE .. DE_AB
+ Ap = pc and hence ik

XY =YZ by hypothesis.
s AN
X=Z base angles of isosceles triangle.

AN AN
XML = LNZ both are right angles.
“ XML ~AZNL by the AA Similarity Theorem.

. LM _ XM
"' NL NZ°

LM X NZ = MX X NL.
Consider A ADG and A BEF.
AﬁG = BEF both are right angles.

Dx/ﬁl\G = B'I?E both are complementary to EﬁF.
AADG ~ AFEB by the AA Similarity Theorem.
AD _ DG
" I'E BE
. AD X BE = DG X EF.
Similarly it can be easily shown that
AADG ~ AGCF Ly the AA Similarity Theorem.
AD _ DG
CG CF
" ADXCF = DG X CG.

A/I}C = BEC both are right angles.

a N

c=c¢C

AADC ~ ABEC by the AA Similarity Theorem.
In AAFE and A BFD,

N N\
AEF = BDF both are right angles.

61



14.

15.

16.

17.

Cont.
N\ \
AFE = BFD

vertically opposite angles.

AAFE ~ABFD by the AA Similarity Theorem.

From AABC and A BFE

BE _BF (_1 -
AB " BC (— 2) by hypothesis

> <>
EF || AC by Theorem

3-9

N

N\ N\ FAN
BFE = C and BEF = A by
the Corresponding Angles

Theorem

Similarly we obtain

PN VAN AN N\ B C
CFG=pBand CGF = A F

and

AEG = B and AGE = C
by using the Angle Sum Theorem for triangles we get

EFG = A, FGE = B, FEG = C
AABC ~ A IFGIE by the AAA Similarity Theorem.

1. BAD = ALE

CAD = AER

BAD = CAD

CABE = ALB
b _Ac
BD AE

CD _AC
B!y AB

(o> N 51 BRIV

«— &>
Since AE || BF

~ /-
ABI = BAE
N a
AFD = GAE
A\ N
BAE = GAE

by the Alternate Interior E
Angles Theorem A

corresponding angles. / \\
by hypothesis. / \

statements 1, 2, and 3. ! \

by Corollary 3-4-1.

by Statements 5 and 6.

alternate angles.
corresponding angles

by hypothesis
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17.

18.

Cont,
N\ N\
‘. ABF = AFB
. AF =AB
«—> <«>
Since AFE H BF
BE _ AF
CE AC
by Corollary 3-4-1
BE _AB
CE AC

Using the results of
Problems 16 and 17

we had
BD _AB
CD AC
and
BE =AB
CE AC’
. B_IZ:BE
*'CD CE°

//
P
~
A_¢7
/[)/\\
F AN
~
\\\ A
N \\
SN N E
B

You may draw the attention of the better pupils to the following im-
portant point which arises from Problem 18:

DEFINITION: D and £ are said to divide BC havmonically; con-
versely B and C are said to divide DE harmionically. The points

C, D, B and L are said to form a havmonic range if

BD _BE
CD CE°

The notion of harmonic ranges is important in the study of projective
geometry,

3-8 SIMILARITY IN RIGHT TRIANGLES.

The main purpose of this section is to derive the mean proportional

theorems of Corollary 3-9-1 from the similarities of the triangles formed

by dropping the altitude to the hypotenuse of a right triangle. Your pupils

should have no difficulty in seeing that this altitude subdivides the given

right triangle into two right triangles that are similar to it and to each other.
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The proportions that result from the similarities of Theorem 3-9 are easy
to discover by just looking at the correspondences set up between the sides
of the similar triangles. Some of these proportions are useful in physics
and carpentry.

For example, a carpenter’s square can be used to find the distance
between two points. By placing a pole of convenient height at one point (A)
and sighting the second point (13) along the edge of the square as in the fig-
ure below, we can measure the distance )/ and by a mean proportional

theorem find A L. Thus if AC = 6 {t. and DA = 2% ft., we can find AL = 16 ft.

We have an application of similar
right triangles in physics when we study c
the principle of the inclined plane. Perhaps
one of your pupils could show the rest of

the class how this principle works and how / \\\
. . el Ve | . / N
similar right triangles are used. pl__ \>‘B

The exercises of Problems 3-8 may A
seem repetitious and certainly not all of
them need be assigned. They simply give the pupil practice in applying the
correspondences of the triangle similarities developed in the theorems and
are not important in themselves. Do not worry your poor pupils with Prob-
lem 6. It is obvious from the figure that point U falls between points A and
D and they should not even feel the need for proving it. Your good pupils
should know that we do have the tools in our geometry fov proving this ob-
vious fact and the problem provides another good example of proof by con-
tradiction. Be sure to assign Problem 10 to all the pupils as we will use
this problem as a beginning to a proot of Pythagoras’ Theorem using similar
triangles in the next section.

Ansiers lo

PROBLEMS 3-8 Student Text Pages 94-95

1. a=6V5; b=3V5; =6
2, %; CD and EE; AD and CD.
3. x=4; v =3V5; h=2V5,
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. % WY and ZV; ZW and X7V.

5.  x=15; a =45, b=8V5

6. There are actually 5 cases to consider. They are:
I. (1) A is between D and B (See Figure I below.).
(2) B is between A and D.
The procfs to these two cases are similar, so only one of
them will be treated here.
II. (1) A =D (See Figure II below.)
(2) B=D
Again, the proofs to these two cases are similar so we treat
only one of them.
I11. D is between A and B.
We will show that cases I and II are impossible, so III is true.

C
- B

A EIGURE I A=D FIGURE II

C

|

|

|

!

l

A b B
D riGurE It

Pyoof.

AN —
L. In Figure I, ADC is a right angle since we are given CD | Ai? and B;J\C
is acute since A ABC has a right angle at C. This contradicts the ex-

A\
terior angle theorem (we cannot have BEC < ADC), so A is not between
D and B. Similarly, B is not between A and D.
N N\
II. In Figure II, if A = D, then we have m(CDB) = in(CAB) = 90°, and this

contradicts the fact that CA\B is an acute angle. So A # D. Similarly,
B # D.
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Since cases I and II are false, case II is the only remaining possibility.

__ 64, .25, 40
7. v y=0 /1——0.
- 25, , - 144 _ 60
8. x=1%; V=13 =13

D
9. Since, in the figure, ACDB AACB, we havefTé = g—g Substituting,

%=—q and /1=ﬂ.
c c

D
10. By the mean proportional theorems, %— =% and D—;:l-=% Therefore,
2 2
BD = and pa = X,
c c

3-9 PYTHAGORAS’ THEOREM.

The mean proportional theorems of the last section provide us with a
remarkably simple proof of Pythagoras’ Theorem. If you assigned Problem
10 of Problems 3-8, ask your pupils to take their results for B and .l and,
using the figure in the text, prove ¢* = «* + 0. Do not spoil your pupils® fun
of discovering the proof lor themselves by giving them any more information
than is suggested in Problem 10. Those who are unable to complete the

proof should be able to do so when given the hint that BD + DA = BA. We
2 2
have B = % and D = b—c by Corollary 3-9-1 and algebrua. By a segment
2 2
measurement postulate LD + D/ = DA, and by substitution, (—(C- + [—)C— = cC.
Multiplying by ¢ gives ¢® + 5® = ¢* and the theorem is proved.

Your pupils might reasonably ask why we bother to prove the same
theorem so many times. You could answer them by saying that this is one
of the theorems in geometry that lends itsell to many dilferent kinds of proof
and is a good example of the [lexibility of our geometry. We are interested,
not in proving the theorem for its own sake, but in finding various proofs
that are logical consequences of the foundations that have already been laid.
Finding new proofs to this theorem has ocrupied the minds of mathematicians
and laymen alike for many centuries, which is one reason why this theorem
is said to have more different proofs than any other in mathematics. Each
new proof has its own beauty which only the mathematician and those inter-

ested in logical reasoning and the thrill of discovery can appreciate.
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The exercises of Problems 3-9 are intended to give the pupil more
practice in using the theorem and to call his attention again to the properties
of the two special right triangles—the isosceles right triangle and the 30° -
60° - 90° right triangle.

Answers o

PROBLEMS 3-9 Student Text Pages 96-97

1. X =6V2.

2. %2.; We can prove that this ratio is the same for all isosceles right
triangles by letting « be the length of each leg and . the length of the
hypotenuse. We have, by Pythagoras’ Theorem,

X2 =a* +¢® and
X =av2.
ati ' o i -L = -—L
Thus the ratio of a leg to the hypotenuse is e T

3. Each leg is 5.

4. The remaining leg is 6vV3

. Here, the pupil must remember that the shorter leg is % as long as the

hypotenuse. The longer leg, then, is 5V3.

5 1 . . o ° o . :

6. —= =+ TI rat > same [or ¢ - -9 "ight triangles.
573 - T3 This ratio is the same for all 30" - 60 0" right triangles
Proof:

Let x be the length of the hypotenuse. Then the shorter leg is % X,

and, if v represents the longer leg we have, by Pythagoras' Theorem,
2

e
yz + (% .\) =% from which we get v = ‘-‘;’—\ The ratio of the shorter leg

3 1
to the longer leg is 73 ] = 73
5 -

1. The shorter leg is 1 and the longer leg is V3 .
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3-10 POLYGONS.

We include this section on polygons in order to develop some of the

definitions and properties pertaining to polygons that will be needed in the

next section. The main purpose of this section is to define regular polygons

and to derive the formulas for the sum of the interior angles of a simple,

convex polygon and for each angle of a regular polygon. We try to get the

pupil to discover these formulas for himself through the Class Activity

exercises.

The first part of this section is a revision of many of the definitions

given in Chapter 11 of Secondary Three. It has been some time since the
pupil has used these definitions, and he may have forgotten many of them.

Connmnents on
CLASS ACTIVITY

Student Text Page 98

We candraw 1, 2, 3, 4, and 5 diagonals respectively from one vertex
tor polygons of 4, 5, 6, 7, and 8 sides. In the general n-gon we can
draw »-3 diagonals from one vertex. This can be seen from the fact
that there can be no diagonal drawn to 3 of the vertices, namely the
vertex itself and the two vertices on either side of it. Thus there are
n-3 vertices to which diagonals can be drawn.

I we draw the diagonals from one vertex for polygons of 4, 5, 8 and »
sides, the polygons are subdivided into 2, 3, 6, and 1-2 triangles
respectively. We observe that each side of the polygon, along with two
diagonals, determines a triangle except for the two sides adjacent to
the vertex from which the diagonals are drawn. Thus there are -2
triangles formed in each nz-gon.

360; 540; 1080; (12-2) X 180. Since each n-gon is divided into -2
triangles by the diagonals from one vertex, and the sum of the degree
measures of the interior angles of che polygon is the same as the sum
of the degree measures of all the angles of the triangles, we have the
number of triangles (12-2) times the sum of the degree measures of the
angles of each triangle (180) for our formula.
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Answers to
PROBLEMS 3-10

3-11

By definition, there are two exterior angles at each vertex. They are
vertically opposite each other, hence are congruent. The sum of the
degree measures of the exterior angles of any n-gon is 360. This is
seen from the fact that the sum of the interior and exterior angles at
eacl vertex is a straight angle. Since there are » vertices in an 1-gon,
we have u straight angles for the sum of all the interior and exterior
angles. But the interior angles have been shown to have a sum of (1-2)
straight angles. This leaves 2 straight angles, or a degree measure of
360, for the sum of the exterior angles and this result is independent
of the number of sides the polygon may have.

Student Text Pages 98-99

108; 120, 128—7- .
72, 60; 45 .
10.

12; 360:

No; using the formula, if it were possible for a regular n-gon to have

each of its interior angles 130°, we would have (L—%)—l—gp =130 which

gives n = 7%. This is impossible since » represents the number of
sides and must be a positive integer greater than 2.
A rhombus is such a polygon.

A rectangle is such a polygon.

SIMILAR POLYGONS.

Definition 3-5 of this section generalizes the definition of similar

triangles given in Section 3-5 to polygons of any number of sides. Stress

again the importance of the one-to-one correspondence between the vertices

of the two polygons ana the naniing of the two polygons so that their vertices

are in the proper order; that is, corresponding vertices »re named in
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corresponding positions. Of course, because of this correspondencs, two
polygons cannot be similar unless they have the same number of sides.

Emp’asize to your pupils that the AAA, SAS, and SSS theorems for
similar triangles do not hold for polygons of more than 3 sides by showing
them examples like the ones in the text.

Answers lo
PROBLEM (Page 99)

N\ ZANEVAN NN AN AN AN N 2\
We must also have A =A" B=p' C=C', D= D', E=FE' F=F' and
AB _ BC _ CD DE — EF  FA

A'B' T BIC' T C'D' T D'E' T EF T TIAT

Connnents on

Student Text Page 100
CLASS ACTIVITY

1. Since each side of a regular polygon has the same length, if we denote
the lengths of each side of polygons ABCD ... and A'B'C'D' . . . by ¥

and s respectively, then the ratio of any two corresponding sides is o

e

Therefore, the corresponding sides of the two polygons are propor-

tional.
2. The degree measure of each angle of a regular polygon is given by the
i - <1k . .
formula (e 2)”\ 180 . Since » is the same number for both polygons,

each of their angles has the same measure and so corresponding
angles are congruent,

3. By Definition 3-5 polygon ALCD ... ~ polygon A'B'C'D! ... .

4, Il your pupils are not careful in forming the statement of this theorem,
they may make a statement to the effect that “‘all regular polygons are
similar.”” If this is the case, the questions in (5) should show them
that they have left out a very important part of the theorem.
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Scme of the more important theorems regarding similar polygons are
stated as exercises in Problems 3-11. Problem 1 should be assigned to
everyone. Problems 7, 8, and 9 are theorems that tell us we can subdivide
similar polygons into correspondingly placed similar triangles and if two
polygons can be so subdivided, they are similar. Thus the problem of prov-
ing two polygons similar is reduced to that of proving corresponding triangles
similar, and we have all the theorems on similar triangles at our disposal
to do this.

Answers fto

PROBLEMS 3-11 Student Text Page 101-102

1. Let ABCD ... and A'B'C'D’ ... be the two polygons such that
ABCD ... ~A'B'C'D'".... By delinition of similar polygons we

AB D
have —=573 = BB,g, = CC'I)' = ... and by Theorem 3-2(I)

AB + BC + CD +.... AB L v
ABT+BC +CD + ... AG" But, AB + BC + CD + ... equals

the perimeter (P?) of the first polygon and A'B’' + B'C'+ C'D' + ...

equals the perimeter (P’) of the second polygon.

D
Thus % =% and the theorem is proved.

2. The perimeter of the larger polygon is 48 in.

L, 12; 161 ; and 281 respectively.

4, 4% in. X 7 in.

0. 27; 33; 42; 51,
6. No.

7. No.

8.

That the polygons can be subdivided into triangles by drawing the
diagonals from one vertex has been shown in the Class Activity of
Section 3-10. To prove the corresponding triangles are similar, we
proceed as follows.
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10.

We are given (in the figure above) ABCDE ~ A'B'C 'D'E'" and so
~ ~ AB BC _ CD DE

_ /\.' _ /\, .‘\.—— /‘\’ /\_ /\, /\_ /\,
A=A B=B,C=C",D=D",E=F and s = 56T S oont C D
EA

a7 Dby definition of similar polygons. We have AABC ~ AA'B'C'

A
AC _ BC _ CD
by S.A.S. and SOt T RIcT C cpr

traction of angles, ACD = A ’L/"D’. Therefore, AACD ~ AAd'C'D! by

AD CD o

SA-S. and s =t = D

Also, BCA = B'C'A and by sub-

Since, by the second pair of similar

triangles, COA = C'D'A\’, again by subtraction of angles we have ADE

= A'D'E' and A ADI ~AA'D'E by S.A.S. Thus each pair of corre-
sponding triangles are similar and the theorem is proved.

We could state the general theorem as follows: ‘‘If two polygons are
similar they can be subdivided into triangles so that corresponding
triangles are similar.”” This theorem is true and can be proved in a

manner similar to the proof of the theorem in Probiem 8.

D C D’ c'

In the figure above we are given
AABC ~AA'B'CY,
AACD ~AA'C'D!,
AADE ~AA'D'LE’,
We want to prove ABCDE ~ A'B'C'D'E’.

12



Proof:

From the similar triangles we have

AB BC _ AC _CD _AD _ DE _ AE
A'B!' TB!'C! TA!'C' T C'D' T A'D' T D'E!' A'E!"?
sides of the two pentagons are proportional.

so the corresponding

The corresponding angles of the three pairs of similar triangles are
AN\ ~ AN N
congruent, and by addition of angles we get B = B!, BCD = B'C'D’,

AN s as e ~ ~
CDE =C'D'E', DEA = D'E'A’, EAB = E'A'B'. Thus the corresponding
angles of the two pentagons are congruent, and ABCDE ~ A'B'C'D'E'
by Definition 3-5.



Chapter 4
CIRCLES

This chapter may be divided into three parts. The first deals with the
intersection properties of a circle and a line in the plane of the circle (here
we touch briefly on similar properties of a sphere and a plane in space).
The second studies the degree measuie of arcs of a circle and properties of
arcs, chords, secants and tangents in relation to certain angles. The third
part is concerned with distance relations between segments of chords,
secants, and tangents.

Most of the theorems of this chapter are contained in the exercises,
and certainly not all of them need to be proved. It is important that your
pupils know the meaning of terms like circle, radius, diameter, chord, se-
cant, tangent, interior and exterior of a circle, internally and externally
tangent circles, minor arc, major arc, semicircle, central angle, angle in-
scribed in an arc of a circle, degree measures of arcs, and congruent arcs
and circles.

The important theorems are Theorems 4-2, 4-5, 4-6, 4-14, 4-16, 4-117
and its corollaries, 4-19, 4-20, and Problem 10 or Problems 4-3B. Be sure
that you discuss these theorems with your pupils and that they work problems

involving them.

4-1 CIRCLES AND SPHERES.

Observe that, as with a triangle, we define a circle to be the boundary
of a certain region, and not the region itself. Similarly a sphere is the
surface of a certain solid figure.
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Answers to

PROBLEMS 4-1A Student Text Page 105

1. (a) The sphere
(b) The circle

2. (a) (i) The empty set
(ii) The two circles

(b) (i) The empty set
(ii) The two spheres

3. Infinitely many;
Longitudes (or meridians) and the equator.

Some examples of words used to denote both a segment and a length
are diagonal, base, altitude, hypotenuse, side. Note that ‘‘altitude’’ was also
used in Chapter 1 to denote a line.

Answers to

PROBLEMS 4-1B Student Text Page 106

1.  The diagonals AC, BD of the quadrilateral ABCD

A D
bisect each other at right angles. (40 = OC = 0
BO = OD = the radius of the circle; and, by
hypothesis, AC L BD). Hence ABCD is a square. A
B
2. A OAB is equilateral, and hence
o

2\
n(OBA) = 60

N\ \
m(OBC) = 180 - n(OBA)
120.

— "
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3. In the right triangles A ADO, A BDO

AO = BO (radii of the same circle)
OD = 0D

AADO = ALDO

AD = BD

4, Draw OD L AB.
In right triangle A AOD,
AO =v > AD.

27 > 2AD = AB (using the result of Problem 3). A »
B

0. This follows immediately from Problem 4 and the definition of a
diameter of a circle.

4-2 INTERSECTION OF A LINE WITH A CIRCLE.

The important result here is the one contained in Theorem 4-5. The
students will readily accept that there are only the three possibilities for the
intersection of a circle with a line lying in the plane of the circle. They
may, however, /ind some difficulty with the proof of Theorem 4-3, which
enables us to deduce the third case. It is important that they realise the
necessity for proving the statement:

2

““If the iine { intersects the circle in a point @, then#? = x? + d?

where NQ@ = x,’’ as well as its converse.

Answers to

PROBLEMS 4-24 Student Text Page 113

1. (a) Theorem 4-6.
A OAB is isosceles,

and ON is the perpendicular from the vertex B
O to the base AB. Hence AN = NB.
(b) Theorem 4-7. A

Using the figure for (a), ON is the median to
the base AB of the isosceles A OAB. Hence ON L AB.
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Answers to
PROBLEMS 4-2B

1.

(c)

Theorem 4-8,

Again, using the figure for (a), the perpendicular bisector of the
chord AB in the plane of the circle is the set of all points in that
plane which are equidistant from A and B. The centre O of the
circle is one such point, and hence the perpendicular bisector
contains O,

From Theorem 4-5, it follows immediately that no line has more
than two points of intersection with a circle. [Note that in Theo-
rems 4-6 and 4-7, we should exclude chords which are diameters]

From Theorem 4-5, if a line ¢ is tangent to a circle, then case (2) of

Theorem 4-5 must hold. Theorem 4-4 follows immediately, since the

point K is the point of contact.

(a)

(b)

Student Text Page 113

Theorem 4-10.
In right triangles
AOAM, APCN
OA = PC (radii of congruent ‘

A o) D

circles) M 5 d

OM = PN (hypothesis) ¢
CoAOAM = A PCN

But AB=2 AM and CD = 2 CN (Theorem 4-6)
. AB = CD.

Theorem 4-11.

(Same figure as for (a)). We take M and N as the mid-points of
the congruent chords AB and CD.

In triangles A OAM, A PCN,

OA = PC (radii of congruent circles)
AM = CN (/mz%fﬁ,a’zéc—l);xﬁzéj),by

hypothesis)

OMA = PNC (each is a right angle by Theorem 4-7)
. AOAM = A PCN
OM = PN.

(4



Answers o

(c) Theorem 4-12. (Same Figure as for (a)).

AM = -é: AB and CN = % CD  (Theorem 4-6)

J.AM < CN (AB < CD by hypothesis)
In right triangle A OAM
0A% = OM? + AM? (Pythagoras’ Theorem)

Similarly, PC? = PN? + CN?
But 04 = PC (radii of congruent circles)
.. OM? + AM? = PN® + CN*?

OM? - PN* =CN? - AM? > O (CN> AM)
.'. OM? > PN?
.. OM > PN.  (Both OM and PN are positive numbers)

If in the same circle, or in congruent circles, two chords are at un-
equal distances from the centre(s), the chord nearer the centre is the
longer of the two chords.

The proof is similar to that for Theorem 4-12.

PROBLEMS 4-2C Student Text Pages 115-118
1. (a) The empty set (b) The empty set

(c) One point (d) Two points
2. OA =5cm., ON =4 cm.

By Pythagoras' Theorem,
AN? = OA% - ON?
= 52 _ 42 A
= g2 ANN 78

AN =3 cm. and AB=2XAN =6 cm.

12 cm.
6\/§in.

The secant is the perpendicular bisector of the given chord and lies in
the same plane as the circle. By Theorem 4-8, the secant contains the
centre of the circle, and hence cuts the circle in a chord which con-
tains the centre; that is, in a diameter.
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10.

11.

12.

Find the intersection of the perpendicular bisectors of AB and AC.
This intersection exists, since the two chords are not parallel (they
have the common point A ).

Draw any two chords of the circle which are not parallel, and deter-
mine the intersection of their perpendicular bisectors. This intersec-
tion is the centre of the circle.

(a) Theorem 4-10 (f) Converse of Theorem 4-12
(b) Theorem 4-11 (g) Theorem 4-2
(¢) Theorem 4-9 (h) Theorem 4-4
(d) Theorem 4-7 (i) Theorem 4-3

(e) Theorem 4-6
Each tangent is perpendicular to the given diameter.

Let O be the centre of the circle and
A, B the points of contact of the
parallel tangents £,)1 respectively.
Draw the segments OA, OB. Then
OA L £ and OB L . Since £ || m,
0.t and OB are either parallel or
segments of the same line. But OA

and OB cannot be parallel since they
have a common point 0. Hence O, 4, B are collinear points, and AB
is a diameter of the circle.

In triangles A OAP, AOBP
OA= OB (radii of the same circle)
OP= 0P
OAP= OBP (each is a right angle, by Theorem 4-4)
JAQAPE AQOBP
AP = BP
Given: A secant ;i containing chord EE‘,
and a tangent £ with point of contact 4.
O is the centre of the circle and £ || .
We want to prove that the diameter AD

through A bisects the chord BC.

—> “~—>
Proof: The line OA L £ and hence OA L i,

The diameter AD is contained in the line
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13.

14,

15.

OA. Hence AD L . If AD intersects BC in E, OF is a segment from
the centre O to the chord 5C and OF L BC. Hence OF bisects BC, or
AD bisects BC.

OR is a segment from the centre to the chord AB of the larger circle.

—>
Also OR L A B, since R is the point of contact of the tangent AL to the
smaller circle. Hence AR =RB and AR = RE.

Theorem 4-13.

There are twu coses to consider and we will treat both cases at
once. ;
Given: Two circles with centres O and P, which touch at a point /.
Line { is the common tangent. We want to prove that the line Bl?con-
tains A', . o
Proof: O L 0 at the point .l and PAL e at the point 1.
Hence ?771 and 7??:11@ one and the same line; that is, (/)b[3> contains A.
Given: Three non-collinear points .\, B, C.
We want to prove that there is one and only one circle containing the
three points.
Proof: [Existence - Let the perpendicular bisectors of the segments
AB, AC meet in a point 0. Then OA = OB = OC, and the circle with
centre O and radius 04 contains the three points /A, B, .
Uniqueness—Suppose there is a second circle with centre O' contain-
ing the points 4, B, (. Since AB is a chord of this circle, the centre
O' lies on the perpendicular bisector of AB. Similarly, ' lies on the
perpendicular bisector of AC. Hence 0 is the (unique) intersection of
the two perpendicular bisectors. But from the first part of the proof,
this intersection is also the point 0. Hence O' = 0 and 0’4 = OA.
Therefore the two circles are the same.
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16.

17.

18.

19,

Corollary 4-14-1: The corollary follows immediately from the
theorem, since the vertices of a triangle are three non-collinear points.

Given: Two congruent circles with
centres O and P, which touch externally
at A. We must prove that any point
equidistant from O and P lies on the

common tangent (.,

Proof: By Theorem 4-13, the line ?)7)}
contains the point .. Also O = P,
and OP L (. Hence { is the perpendicu-
lar bisector of the segment OP. Any
point equidistant from O and ” must, therefore, lie on £ .

AC L1 , BD L ( (hypothesis)
PTL 1 (PT is the radius through the point of contact 7
of the tangent ()

<> > <>
CLACH B PT

Now, the parallel lines +(, 7)1', BD cut off congruent segments on the
transversal A5, hence they cut off congruent segments on CB; that is,
CT=7TDand CT= TD.

Theorem 4-15: The second part is just the result of Problem 11, and
the first part follows from the congruence of the triangles A OAP and
AOBP (proved in the solution of that problem).

We draw the segment PC.

&> >
AC ]

~ N <
CAP = DPB (corresponding angles: PC)

~ ~ “— >
PCA = CPD (alternate angles AC || PD) c
A A D
CAP = DCA (base angles of the isosceles
A

A PAC) B

X7

AN N\
. DPB=CPD
In triangles A PDC, A PDB,

PD= PD
PC = PR (radii of the same circle)
VAN VAN

CPD = BPD (proved)
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http:transversal.AR

SoAPDC = APDB

A A
S PCD=E PBD
N —
But PCD is a right angle, since P°C is the r.dius through the point of
<> ~ ——
contact C of the tangent C'). Hence PBD is a right angle. Since PBis

<«
a radius this implies that DB is a tangent to the circle at .

4-3 ARCS OF CIRCLES.

In this section we develop the theorems pertaining to the degree
measures of certain angles formed by two lines (secants, tangents, or a
secant and a tangent) intersecting a circle. These angles are measured by
the arcs they intercept on the circle. Once we have proven Theorem 4-17,
the proofs of Theorems 4-19, 4-20, and “*roblem 10 of Problems 4-3B are
all based on this result.

The important thing here, along with the theorems mentioned above, is
that the pupils understand Definition 4-11.

In Secondary Three we postulated that a point separates a line. Such
is not the case with a circle. However, two distinct points on a circle
separate the circle into two sets of points which we define to be the minor
and major arcs having the two points as endpoints. The ambiguity in naming
an arc mentioned in the Student Text should not cause any real problem if
pupils are careful to use a third point of an arc along with its endpoints when
naming the arec,

Theorem 4-16 enables us to add the measures of two arcs which have
only their endpoints in common. We sometimes refer to this as 7ie Arc
Addition Theorenr. The proof is rather tedious because we need to examine
five cases, but each of the cases is easy. We want to prove in each of the
five cases that ;;1(1’/(;7{) = IIJ(I,’(T)) + m(@).

Case 1 Case 2 Case 3
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Case 4 case 5

A~

Case 1. PQR is a minor arc. The conclusion follows from the Angle
Addition Postulate.
IR
Case 2. PQR is a semicircle. The conclusion follows from the Angle
Addition Postulate.
N
Case 3. PQR is a major arc, and P’ and R are on opposite sides of the
diameter that contains . We have 360 = + » + 8§ + {
and 360 - (w+&)=r+s
N ~~ ~~
or m(PQR) = m(PQ) + m(QR).
N
Case 4. PQR is a major arc and I’ and R are on the same side of the
diameter that contains ().
TN e N
We have m(PQRR) = 360 - s ={360 - (¥ + 8)] + ¥ = m(PQ) + m(QR).
Ega NN
Case 5. PQR is a major arc, and one of the arcs PQ, @R, is a semi-
circle.
i N N
We have m(PQR) =360 -/ =180+ 180 -~/ =180+ s =m(PQ) + m(QR).

Answers to

PROBLEMS 4-3A Student Text Pages 123-125

A\ TN
1. AOC is subtended by the arc CYA

N\ TN z A
COB is subtended by the arc BXC
VAN N Y
BOA is subtended by the arc AZB
~ N B
ABC is inscribed in arc ABC and is subtended by \
AN
arc AYC s
/\ TN
ACBis inscribed in arc ACB and is subtended by
AN
arc AZB

A = ~
BAC is inscribed in arc BAC and is subtended by arc BXC
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10.

(a) The minor arcs are:
A~ ~~ —~ —~
EXF, FYD, DZG, GUL.

(b) The major arcs are:
—~ —~ e
EDEF, I'IED, DEG, GDE.

(¢) The semicircles are:
~~

—
LD, EGD.

Given: Two congruent circles

with centres () and . A chord

AB of one circle and a chord

CD of the other are congruent.

—~ —~
To prove that yu(ANB) = 1 (C YD),

Proof: AOAL = APCD (SSS)
°. A@B = Ci’l)

~ ~
on(ANDB) = (CYD) (by definition)
Given: A circle with centre 0. .\ /3 is a chord

— —_— —_— TN
and AN = N2, ON meets the minor arc A\ 23 in

N AN
M. To prove that //(ANA) = (M YD),

Proof: A0ALDL is isosceles and ON is the

N
3

median to the base .1//. Hence -lON = DON.,

>
x

SN NN
By definition, this implies i (ANA) = 1 (MYB).
SN N TN
m(ALB) = 60, m(ADC) = 120, n{CDB) = 180
NN
m(BCA) = 260
m(OPR) = 60

360 - v

(a) 120

(b) 30

(¢) 90

1. 111(le\) + u/(lj?) =90

2 111(1/\/.:') + 1) = 90
~~ N

3. m(AB) = (L) (from statements 1 and 2)
~~ N

4, (DE) = (') similar to the deduction of 3.
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o
6
7.
8

N N N
m(FB) = m{QT) = m(FCB)

~~

g
m(AD)Y + m(QT) = 90
—~ —~
m(EF) + m(RS) = 90

))1(7&?)) + m((/é—\T) =m(EF) + m(?{g)

Answers to
PROBLEMS 4-3B

(definition)
(fromu: statements 1, 4, and 5)

(similar to deduction of 6)

(frorn statements 6 and 7)

Student Text Pages 131-133

Given: A triangle AAPBC inscribed in a circle
with centre O. A side AB of the triangle con-
tains (). To prove that AABC is a right

triangle.

C

DY

Proof: JACPH is inscribed in the semicircle

N a
ACB. Hence by Corollary 4-17-1, ACB is a

right angle.
N 3
Given an arc ACD of a circle.

AN

mine m(ACB): we find the measure of any

inscribed angle (ADZ for example) sub-

TN

tended by the arc ACL, The measure of

TN

To deter-

TN

the angle subtended by ACB is —12~ m(ACBY,

1 —~ ~ ——~
Hence 3 m(ACEB) = m(ADB) and m(ACB) =

2 m(Af)B).
Theorem 4-18.

Given: A quadrilateral ABCD inscribed in A

a circle with centre 0O.

&l

To prove that m(/A) + m(z) = 180
Vas N\
D) =180

m(B) + m(
1 NN

Proof: m(ﬁ) =5 m(BCD)

N\ 1 TN
m(C) = 5 m( BAD)
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10.

m(ﬁ) + m(@) = % ‘{m(B/C—?B) + m(@))}
% X 360
1

1l

8C,
VAN AN
Similarly, m(B) + m(C) = 180.

The opposite angles of a parallelogram are congruent. If the para-
llelogram is inscribed in a circle, by Theorem 4-18, the sum of the
measures of the opposite angles is 180. Hence each of the angles of

the parallelogram is a right angle, and the parallelogram is a rectangle.
m(BCD) =89, m(CDA) = 75

By Theorem 4-17, the measure of the arc intercepted by the inscribed
angle is 180. The intercepted arc is, therefore, a semicircle. From
this it follows that the given arc is itself a semicircle.

FaN
m{CAB) = 40

VAN
m{(CDB) = 40

Draw the segment AC.

m(AES\D) -1 m(ZB) 2x B
VAN

2
=x
AN
Similarly, m(BAC) =y

N N AN
m(COB) = m(ACD) + m(BAC)
Exterior angle theorem applied to AAOC.

777(C83) =X +y =%[m (AD) + m(EE)]

%(203 +59) = 131

Given: A circle with centre 0 and two

C
< >
tangents BA, CA with points of tangency
B, C and intersecting at A. To prove A
N N
that m(BAC) = 180 - m(BXC).
B

Proof: In the quadrilateral 4BOC,

7\

— «>
m(B) = 90 (OB is the radius to the tangent AB at its point of
tangency B)
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PAN
Similarly m(C) = 90
VAN N\
Hence m(A) + 1#(0) = 180
But 1(0) = m(BXC)  (by definition)
N N\
*. m(BAC) =180 - n(0)
=180 - m(BXC).
11. (i) In triangles AEAN, A DAX,

EX = DX (hypothesis)

AX = AX
N\ AN
EXA = DXA (cach is a right angle, A
hypothesis)
. AEAX = ADAX (SAS) B
AN ~
Co EAX = DAX (corresponding angles of congruent
triangles A EAX, ADAX.
P AN o~
(ii) But NCB = DAX (angles inscribed in the same arc DCB)

Ve A\
C.EFAXN = XCB

> «—>

(iii) Let AE intersect CB in Y.

N A\ PaN ¢

M(EAX) + m(AEX) + m(EXA) = 180 (angle-sum of AEAX)
as 7\ N
Similarly, m(XCB) + m(YEC) + m(EYC) = 180
PN N

But m(EAX) = m(XCB) (proved)

m(A/I}X) = YEC) (they are vertically opposite angles)
. i'iz(ESx'\'A) = m(Ef(L‘)

N

But EXA is a right angle, by hypothesis.

S <«—> <>
.". EXC is a right angle and C5 L AL,

Answers to

PROBLEMS 4-3C Student Text Pages 136-137

VAN N N
1. m(A) = 35, m(B) = 65, m(BCE) = 35
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N\
CBA = CAB (base angles of i.osceles A.4BC)

A

oS Fas . 1 /"\‘
CAB = BCD (each is 5 m(BEC))
VAN N
*.CBA =BCD

. CDIAT by the converse of the Alternate
Interior Angle Theorem.

b
(@]
» )

A B
& PN
< A{\B S < i >
\\\ Y :
X \\\ X fO Y
<€ > !
c\/n
C D
Case 1 Case 2 Case 3
&> &> —~

,CL which intercept arcs ANC, BYD of

&

Given: Two parallel lines A

a circle.
—_

To prove that 1m(AXC) = m(BYD)
Proof: As shown in the figure, there are three cases to consider.

> <>
Case (1): AB, CD are both secants.
We draw the segment AD.

BAD = ADC (alternate angles)
;n(B)YI)) = % m(B)/'\D) (the arc BYD is intercepted by the
angle Bﬁ]’))
Similarly, m(ADC) = % 1;1(A/‘\'\C)
m(ff\’\C) = 111(13)/7))
Case (2): il}} is a secant and’?‘I;}is the tangent at C,
We draw the segments A—C, BC.
ABC = BCD (alternate angles)

l TN

~ EN
BCD = BAC (both are measured by 5 m(BYC)

A\ AN
'« ABC = BAC
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~ 1 — 0
But #m(ABC) =5 m(AXC) (the arc AXC is intercepted by
the angle AEC)
I\ 1 N
and 1 ( BAC) = 5 m(BYC).

NN AN
Hence m{ANC) = m{ BYC).

Case (3): AB is the tangent at A and CD is the tangent at C.
In this case, the chord AC contains the centre of the circle

and hence is a diameter of the circle. (We have OA L AD at

A, hence OA L CD. But OC L CD at C, and there is just the

one line through O perpendicular to CD, so OA = OC.)
N TN

The arcs AX(C, BYC are semicircles and hence have equal

measures.
This is Problem 3 of Problem Set 4-3A.

In the same circle, or in congruent circles, if two minor arcs are
congruent the chords joining the endpoints of the respective arcs are
congruent,

Given: Two congruent circles

with centres O and P°. The
NN N

minor arcs ANDB and CYD B c
are congruent. A X d
To prove that AB = CD. Y
Proof: ;11(4\8) = m(( YD) (hypothesis)
m(A().b’) = m(A\.b’) (definition)
m(C Pl)) = m(C }1)) (definition)
m(A()B) = m(C 1A3D)
AOB = CPD.,
In triangles AAOB, ACPD,
AO =CP (radii of congruent circles)
OB = PD
VAN AN
AOB =CPD (proved)
‘' AAOB = ACPD (SAS)
‘. AB =CD.
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N\ N\
DAE = ADB (alternate angles)

ay
ADB= FAB (both are measured by
1 N
5 m(BXA))
s N\ A
"“DAE = ADB = FAB
N\ N\
DAE = ACD (both are measured by
l N
D) m(DYA)

N\ N\
Similarly FAB = ACB
N\ PN
JCACD = ACB
—_— N
and hence AC bisects BCD.

<> <>
Let the common tangents AB and PX inter-
sect at X,
AX = PN (Theorem 4-15)

. AN
. XAP = xPA
PAN PaN
Similarly XBP = \XPB,

In AAPB,
m(‘\’;l\P) + m(XjDA) + m(XlAS‘P) + m(XI/;B)
= 180.
N\ PAN
Hence 2m(XNPA)Y + 2m(XPB) = 180
m(‘\’IA’A) + nz(.\'IA)B) =90
or, m(Al/%’) = 90,
A A
B B b
D
X
c! c!

C

N\ as
Given: A quadrilateral ABCD in which m(A) + (C) = 180.
To prove that a circle can be drawn through the four points 4, B, C, D.
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Proof: We draw the circle through the points A, B, D.

<>
This is possible by Theorem 4-14. BC is not a tangent to this circle,

for, if it were, we would have:

" o —~
BAD = DBC (both would be measured by % DX B))

S AN
Since m(BAD) +m(BCD) = 180, this would imply that
Pas
I)I(Dﬁ(‘) + n(BCD) = 180.

. . . H 69 . 3 .
This would in turn imply that BD, CD were parallel lines. This is a
contradiction, since 5D and CD intersect at ). Since BC intersects

>
the circle in B, we deduce from Theorem 4-5 that BC intersects it on
a second point ¢'. If ' = (C, our result is proved.
So suppose (' # C. Then

m(d) + m(C) = 180 (hypothesis)

/\\

(A +

~N SN

") = 180 (Theorem 4-18)
e .
oan(C) = (.
N AN
But this is impossible, since one of the angles ¢, (' is an exterior
angle and the other is one of the opposite interior angles of the A DCC'.
Hence ¢’ = C and the problem is proved. The statement of this prob-

lem is the converse of Theorem 4-18.

Pas Pas
ACB =2 ACD  (by Theorem 4-22, the
N N
minor arcs AL, AD A
which they intercept
are congruent) B
A s X
ACD =TAD  (both are measured by /
1 T T ~
5 nlAND)) D o
VAN e
ACB=TAD
In triangles AABC, A TDA
AN N
ACB =TAD (proved)
~ s
ABC = TDA (]DA is the exterior qng,le of an inscribed quad-

nlateml and both LXBC anda ][)A are supplement-

ary to AI)C )
. AABC ~ ATDA. (AA Similarity Theorem).
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10.

11.

AB is a chord of a circle with centre

0. OC is a radius L AB and intersects
ABat N. AM is the tangent at A and
— >

CM 1L AM,

To prove that CN = CAl.

Proof: Since ON L AB, AN = NB

In triangles AANC, A BNC.

AN= BN (proved)
CN=CN
ANC = BNC (each is a right
angle)

JoAANC = ADBNC

VAN VS
‘. CAB=(CBA.
(Alternately, the perpendicular CN to the base BC of AABC bisects
the base. Hence AABC is isosceles with AC = BC.)

L - 1 ~
But CBA = CAM (both are measured by 5 m(AC))
L CAB = CAM.
In triangles A CAN, ACAM

CNA= CMA (each is a right angle)

CAN= CAM (proved)

AC= AC

o ACAN = ACAM  (ASA)
*.CN=(CM
Ais collinear with O, ', and hence
the four points O, /i, O', B are all
collinear.

EOA= FO'B (corresponding angles)

;11(EA\()) == m(GL) = % [180— m(EA)]

__é_
5[180—111(15814 )]-

, ~
180 - ;;1(1«‘0'3),-

DO

Similarly, m(1'BO') =

Hence Ez’l\() = 1«‘3’()’, from which it follows that AL || B—F, since the two

angles are corresponding an:les.
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12. Two circles with centres O and P touch in-
ternally at A. The radius of the larger circle is
congruent to the diameter of the smaller one.
AB is any chord of the larger circle intersecting

J
(L

the smaller one again at ¢. To prove that

AC = BC.

Proof: O, P, A are collinear, and A OBA is isosceles (O = OA by
hypothesis).

OCA is a right angle (angle inscribed in a semicircle).

OC is therefore the altitude from the vertex O of the isosceles A OBA
to the base AB. Hence OC bisects /Tl_)’, and AC= BC.

*4-4 SEGMENTS CF CHORDS, SECANTS AND TANGENTS.

The last two sections of this chapter, while interesting in themselves,
may well be considered as supplementary material outside the main stream
of the treatment of circles. We have starred these sections to indicate that
you may omit them if you are pressed for time. On the other hand your
good students will find many interesting properties of circles developed in
the examples and exercises of these sections. The properties are those of
the relationships of the measures of segments of lines which intersect one
or two circles in various ways. We also use the triangle similarity theo-
rems and the angle measurement theorems to arrive at solutions of many
problems about circles, intersecting circles, circles and triangles, ete.

First we are interested in computing the lengths of various segments
of chords, secants and tangents passing through a fixed point /> and deter-
mined by the intersections with the circle. The point /” may be in the in-
terior or exterior of the circle.

We start with /?in the interior and try to determine the largest and

shortest chords containing P.

Answers lo

PROBLEMS 4-dA Student Text Pages 138-139

1. Construct 0Z L PQ. Since OX L i‘—l), if it were also L to PTJ, PQ would
be || to CD but this is impossible since they both contain .X. Then
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0Z < OX because a perpendicular is the
shortest distance from a point to a line.

S PQ > CD by the theorem that if two
chords are unequally distant from the cen-
tre, the closer chord is the greater. Since
AB is a diameter its distance to the centre

isO. .. It is greater than 13—@ whose dis-
tance OZ > (. Another proof of the fact
ADB > PR would be:

ADB=208=20@ but OQ >2Q .*.AB > 220 = PQ.

OP 1 AD since the distance [rom a point to

a line is measured along the perpendicular.

A0 =13, 0P =05, B
AP* = AP - PO® by Pythagoras’ Theorem A ‘I

AP = V132 - 52 = V169 - 25 = V141 = 12

.'. AB = 24, By Problen. 1,5 is the short-

est chord through /°. Also the longest chord

through P is the diameter through P and its
length is twice the radius. It is therefore 26 inches.

|

Draw ON 1 AB, OX = 15, p RN

1 1 A B
AN =548 =5(16) = 8
AO* =0N? +.AN¢ 0

= 15% + 8% = 225 + 64 = 289
.'. r‘() = 17

AD AP oP AO = 0OC CD =24¢
(a) 12 6 3 V36 +9 = | 3V5 6vV5
(b) [10V3 V75 5 10 20
(¢) 18 9 V144-18 12 24

3VT
(d) 48 24 7 242 + 172 50
25 ]

(e) |118V3 93 9 18 36

94



In each part we use the formula A0% = AP* + PO?

Now we begin to use the angle measurement theorems and the basic
similarity theorems. In developing Theorem 4-23 we first assume P is in-

N

side the circle. In this case I = D because they intercept the same arc AC

while A = (\‘ because they intercept arc El\) The triangles are similar by
the AA Similarity Theorem. The proportion follows since the segments in-
volved are corresponding sides of the similar triangles. The result is true
of course if AL were a diameter and CD L AB since this would be only a
special case of our theorem. Of course if P is on the circle one of the seg-
ments degenerates to a single point which is not usually said to have a length
so the theorem no longer has meaning. But if we do for the moment say the
length of such a “‘segment’’ is 0, the same formula still holds.

Proof in the case of two secants.

1. /I = 13 1. Each angle is inscribed in B8C.
2. AP\C = DPB 2. They are the same angle
3. AAPC ~ADPB 3. AA Similarity Theorem.
AP  DP T i
oC S PR 4. Definition of similar triangles
5. PAX PB= PCX PD 5. Property of a proportion.

Proof for the case of a tangent and a secant.

1. n(ADP) = %)11 (AC) 1. Inscribed angle theorem
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Ansiwers to
PROBLEMS +4-4B

VAN 1 7~
2. m(CA4P) = 5 m{AC) 2. The angle formed by a tangent and a
chord at the point of contact is
measured by one half the intercept-

ed arc.

s N
3. ADP =CAP 3. They have the same measure.

N AN
4, APD =(CPA 4. They are the same angle.
5. AAPD ~ ACPA 5. AA Similarity Theorem.

apr_ P . L L

6. PD - 1A 6. Definition of similar triangles.
7. AP?2=pPC xPD 7. Property of a proportion

Student Text Pages 142-146

See above
See above

Draw any secant through P
cutting the circle in points
Cand /). By Theorem 4-23
PA% = PC < PD and

PB?* = PC < PD

PA®% = PB% and since P-4 and
P are positive real numbers,
being the lengths of P\ and
I’-I;’, we know [’ = PD,

1. APC =DhPB

N ~N
2. PAC is a supplement of CAB

3. PZ)\B is a supplement of (.',1\!)’

3. They are opposite
angles of the inscribed
quadrilateral ACDD,
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N A\
4. PDB = PAC 4, Steps 2 and 3.

5. APDB ~ APAC 5. AA Similarity Theorem.

6 PD _PA 6. Definition of similar triancl
- BT pe . Definition of similar triangles

7. PAX PDB=PCx PD 7. Property of a proportion

PA? = PBx PC = PD* by segment A P

product theorem <
PA? = PD?
PA = PD

PB X PC = PA* = PD X PE
.'. PB X PC = PD X PE

PB X PC = PA? = PD x PE

PBX PC = PDX PE

P PD .
PE = PC property of a proportion
BPD = EPC

APDBD ~ APEC by the

SAS Similarity Theorem.

1. BC?=BD x BE 1. Segment product theorem
2. = (BA - DA) X (BA +
AL) 2. Measurement addition postulate
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5.

= (BA-AC)X(BA+AC) 3. All radii of the same circle have
the same measure.

= BA? -~ AC? 4. Algebraic product of sum and dif -
ference of two numbers.

BA? = AC? + BC? 5. Addition

Challenge Problems

(a)

Given PA X PB = PE x PF. To prove

P lies on the line of the common

<>
chord CD.

«—>
Proof: Draw the secant PC.

Since I?intersects the circle with
cenire O at C it must intersect it
again, say at Y. In the same man-
ner it intersects the circle with
centre O' at some point, say at .\.

Then by the segment product
theorem:

PC X PY = PAd x PBand PPC x PX = P x PF,
Since PA X PB = Pic X PI) then PC x PY = PC x PX and PY = PX.
This means that X and Y al‘eﬂe same point since they are Ongﬁ
same side of /" as C on line PC and there 15 only one point on PC
at a certain distance from /2 on a given side of 7’;(* But this point
must then be 1) since the two circles intersect only in the two )
points ¢ and /). This means Fl)asses through D or P lies on Z_[)>
The proof is identical with that in (a) except that both X and } are
on the opposite side of /” as (.,

The two circles are tangent at

i <> <
C. Draw PC., If PC is tangent

to the circles we are finished.
<«

If PC is not tangent to the two
circles it intersects each one
at C and therefore at another
point X on O' and VY on ). X
and )" are different points since

C is the only point on both circles.
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(e)

But now PEX PF = PC X PX and FA X PB = PC X PY. Since PEX
PF = PA x PB, PC x PX = PC x PV making PX = PY. This means
X and Y are the same point contradicting the aqsumptlon that they
are distinct. Therefore the hypothesis that PS is not tangent is

false and ?C—} is tangent to both circles.
This result is xa immediate consequence of Problems 5 and 9(a).
In Problem 5 we prouved that T p
the tangents from any point in <

«—>

CD are equal. Using Problem
9(a) we can show the converse 5 o
which is required to establish

the locus. T
For if PT = PT' then since
PT?=PA X PB and PT"? = ’
PE X PF it follows that PA X

PB = PE x FF and by Problem ¢(a) P lies on (,D

If the tangents PT and PT' are drawn from any point in the com-

>
mon tangent PC then PT = PC = PT'. Conversely if the tangents
PT and PT' are congruent, again PAX PB= PEX PF and by Prob-
lem 9(c) P lies on the common tangent.

TI
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(1)

<

Given PA X PB = PE X PF. Draw PRand DS tangent to the
circles. Also ﬁ’), P_()’,. OR and 0'S. We are going to prove that
if the hypothesis is true the perpendicular from P to 00O’ always
passes through a certain fixed point ) and therefore P’ always lies

on the fixed line which is perpendicular to OO’ at D. To do this
we will show that OD = a fixed constant. We know OR is the radius
of one circle and O'S of the other. Therefore OR =a constant,
call it ¢, and O'S a constant, call it 5. We use the theorem of
Pythagoras.

PO? = PR* + RO?

PO'™ = PS* + 0'S® But PR?* = PA X PB = PE x PI = PS?

PO® = PO™ = RO* - 0'S% =% - p2 = 4 constant, call it c.
Again, PO?%=0p%+ PD?

PO'™ = 0'D? + PD?

PO? - PO =0D? - 0'1)” = ¢
but OD* - 0'D* = (0D + 0'D) (0D - 0'D) = 00" % (0D - 0'D)
and OO’ is a constant we can call 4.

I

i

d X (0D -0'D)=c¢ or OD-0'D =§ since d > 0
C.OD+0'D =

OD -0'D =%
d
2X 0D =d + (‘—1 or OD = (d + 5) X % Everything on the right

is a constant. .". OD =a constant and D is a fixed point.
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In doing the next set of numerical problems be careful to pick the seg-

ments correctly for the segment product theorem.

Answers to

PROBLEMS 4-4C Student Text Pages 147-148

1. In each problem MR X RN = PR X RQ.

MN MR RN  PQ PR RQ
a) 6 4 9 x= 4 4y = 2% 4
b) 9 6 4 x=2—é7 4y = 9% 6
c) x=@ x 4 9 x2=4x%x9
d) 15 12 3 13 x=[9,4] 13-x x(13-x) = 3% 12
x?-13x+36 =0
x=9,4
e x=|&| 10 x-10 12 5 7 10(x - 10) = (5x 7)
_1
x-lo—z
x=ﬂ
9
f) 6 4 2 7 T-x X x(7-x) =4 x 2
x2-Tx+8=0

This equation does not factor so we solve it by the quadratic

formula x = T F 32 M 5/17 . Then i+ ‘/__ ———1s the length
of the longer segment and 7—'—2L_1—1 that of the shorter segment.

The approximate values are 5-6 and 1-4.
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2.

a)

b)

d)

e)

f)

RS RT ST RV RW wv RP
2 16 4 x=18 4x = 32
2 16 4 X +4 x=14 4(x + 4) = 32
6 12 6 x =151 9 +x 9 x(x +9) =172
¥ = -9 + V369
2
2 16 x=[4V2 | x* =32
8 X+ 8 ¥ = (10 12 8(x + 8) = 144
5 11 8 5 6 v=|VES | af=5x 11
The shortest cuiord is the one L PO. Its seg-
ments are equal in length, therefore \? = 9 x 4, X b (r2)
X =6, and the length is 12. If O = 2 then A 9 4 \g
7% -4 =367 =2VI0. The longest chord X

through P is of course the diameter whose
length is 4V10.

Challenge Problein

X2=IS XLR

LR = 200 feet = 5‘32%% miles

- 200 .. .
LS =8000 + 5980 miles
2 _ 200 200
¥* =250 % (3000 + 5280)
.2 5, 200
X 5980 X 8000

Note that the other term (-&O—f is too small to
5280 :

effect the result to the appropriate degree of accuracy.

£ 2 zlﬁ_SQZOBﬁ , X R 4—%@ ~ 16-5 miles.
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*4-5 SIMILAR TRIANGLES AND CIRCLES.

These exercises and problems give the student a chance to use together
many different ideas and methods of proof, so that he gets some idea of how
the various aspects of geometry fit together to cive more powerful tools to
solve problems. We have only outlined solutions believing that you can in
most cases easily supply the reasons and details.

Answers to

PROBLEMS 4-5 Student Text Pages 150-153

—— s S . l /\‘

1. Draw AD. ADE = ABE  both are measured by 3 (AL,
A A 1 o

ADF = ACIF both are measured by 5 ni(AF).

ABE = ACF  since ADE = ADE.

BE || CF since corresponding angles are con-
gruent.
T~ . Al .
2. Draw AD and choose point G on ray BL such that I is between G and L.

s\
ALG is supplementary to ALLD.

ADB is supplementary to 125 since they are opposite angles of

an inscribed quadrilateral.
(1) . AEG = ADB.
FAN N
ADB is supplementary to ADF,

N N
ACFE is supplementary to ADF since they are opposite angles
of an inscribed quadrilateral.

(2) .. ADEB = ACF.

N AN —_— —_—
from (1) and (2) we have AEG = ACF, hence BE | CF by the
Alternate Interior Angle Theorem.

3. See pages 96-97, first five steps of proof for Problem 4.

4, Draw AB
—

N Al l
1 = 2 both are measured by 5 m(AP).

A S
2 is supplementary to 3.
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—_— AN
Drawing AP we see that APB is a right angle since it is inscribed in

N s
the semicircle APp. Similarly APC is a right angle. But this means

A <
BPC is a straight angle and so P lies on BC'.

AB L BD because they are a tangent

and a radius drawn to the same point & 2 # A
on a circle. ()é’C is a complement £

of CBA. AABE = AACE by SAS, ok’

hence BC L OA and BAO is a com- 5 N /

plement of (‘ﬁA. I)]E(‘ = B:AO but
o~ -
n(BDC) =90 = 1 ABO)
o ABCD~ AAODB by the AA Similarity Theorem.

Since AL | IT(Q, 1 =9 and 1/)’2) = /1-1\)

N PN
= 2 since they are both meas-

ured by % (AP ) 1=

111(13) =1 [Ill(rl/—l)’a)) - m(AP)]

2
=% [1/1(51?) + //.'(1/)’-(;) - 111(;1?))] ¢

N P AN s
HABY = ni(BRAY, -, BYA = PDA making A BQA ~ A PDA .

Dof—

It is interesting to note that A BRA is also similar to AADQ.

To prove:
PA? = PR x PC.
Draw CA and A,
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10.

Cont.

Consider ACAP and A BAP .
Draw OC and O'B. They are
both L PC and are parallel.

—~ —~
. m(AC) = (BD) since

they have the same measure

as that of the congruent

N N N 1 S A\
angles COP and BU'P. But now m{PCA) = 5 m(CA)Y and m(PAB) =

1 N N N N\ FaN R
5 (D). This means PCA = PAB. APC = BPA. .. AAPC ~ BPA

PA_ P
PC P

and

Frequently it is very important to pick out the correct triangles to try
to prove similar. Here we pick A LD and A EBC . In either of the

N
<
.

A
EBC since they each intercept the same arc LC

I

two figures, EFD

EADB = DI the second congruence resulting from

—> <>
the parallel lines AL and DC.

il

In figure (a) ECE

In figure (b) ECE is supplementary to ;l because they are opposite

S e
angles in an inscribed quadrilateral and D is supplementary to A be-
cause they are adjacent angles in a parallelogram. In either case we
now have A EDRC ~ ALFD and I—L,—(,: [1{)

ED LT
Draw 3D and BC and consider AALD
and AABC. AD is tangent to the circle

I 1 N A
with centre O'. .*. m(DAE) =35 m(AFB)
= H{(AE‘U) F
AC is tangent to the circle with centre 0. p
e TN ~
Som(BAC) = % m(AHB) = m(ADD) .

e AN e ”
.. DAB = ACBand BDA = BAC
A DAB ~AACD
DB _AB
AB OB
In this problem it is very easy to get confused as to which are the

or AL =DB XCD

corresponding sides in the two triangles.

105



Chapter 5
CIRCLE MEASURES i

5-1 REGULAR POLYGONS AND CIRCLES.

In the first section of this chapter we study the relationship between
regular polygons and circles. On the basis of this relationship we then ex-
plore the problem of determining the length of the circumference of a circle
and the area of a circular region. This is done on quite an intuitive basis
without any reference to limits which would be necessary for a more rigor-
ous treatment. Next we examine parts of circles and circular regions and
decide how to measure them. In the final section we introduce the idea of
radian measure of angles in anticipation of its use later in trigonometry and
calculus if pupils continue their study of mathematies,

The discussion of the relationship of regular polygons and their cir-
cumscribed and inscribed circles while interesting in its own right is pri-
marily aimed at providing an introduction to computing the circumference
and area of circles. We first find certain properties common to all regular
polygons of i sides. Then we shall observe that by increasing 1 we can
make the »-gons get closer and closer to either the circumscribed or in-
scribed circle. Thus it should seem natural to the pupils that many proper-
ties of regular »-gons wiil also be properties of circles.

Theorems 5-1 and 5-2 teli us that given a regular »-gon we can always
circumscribe and inscribe circles in it and that these two circles have the
same center. In the proof of Theorem 5-1, ABC = DCB by definition of a
regular v-gon. OB = OC because they are radii of the circle drawn through
A, B, and C: OCB = OBC because of the isosceles A OLC; and 0CD = ()Z?A
by subtraction. In Theorem 5-2 the chords .‘—1_1)‘, BC are each at the distance
¥ [rom O. But distance from a point to a line is measured along a perpen-
dicular. In the tollowing figure (X is this perpendicular. So if a circle is
drawn with centre 0 and radius 5}, 7173, being perpendicular to the radius at
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its endpoint X, is tangent to the circle. Similarly each other chord is tangent
to this circle.

B X N A

R

Theorem 5-3 reverses the situation and starts with a given circle.
Note that this theorem does 0! tell us how to carry out the construction. It
simply says that if 5z points A, B, ..., N equally spaced on the circle are
given, then the chords and tangents will form regular i#-gons. It does not
tell us how to find these points for a certain #. As a matter of fact this is
fairly easy to do for n = 3, 4, 5, 6, 8, 10 which are therefore the polygons
usually used in designs. Of course we can measure a central angle approxi-

mately equal to —3—%Q for any integer u by using a protractor and this will en-
able us to approximate any regular nz-gon.

Some students like to make designs using regular i#-gons so we show
quickly how to draw them in the cases mentioned above.
(a) »n=4. Construct two diameters perpendi-
cular to each other and connect the

N
end points. AB is the required arc

since m(;l-l\}) = m(A/OB) =90 = 372_0 )

as N
(b) n=8. Bisectthe AOB in the previous construction. BX is the re-

VasmnN
quired arc since m(BX) = 45 = %
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(c) With A as center and OA as radius
determine AB = 0A = OB. ZI\S is
the required arc since m(/fl}) =
m(AaB) = 60 = 3% .

—

(d =»n=3. AC in the previous figure is the required arc since m( C)=
2m(AB) = 120 = 480,
(e) =n=10. B Construct two perpendicular diam-

—— — N
determine AD = AC. AD is the
required arc. The proof is a fairly

eters. Construct the circle with
0’ b diameter OB and center O'. Draw

Ao’ cutting the small circle at C.

!J A With 4 as centre and radius AC

complicated algebraic computation
to show m(:l?)) = 36. First con-
sider AAQO"and let O4 = 1. Then

00' = é and AO' =4/1 + é = —12- V5., AC = %\/— - -;: =AD, Now consider AAOD,

With D as centre and radius DA
determine £ between O and A.
Then AO0DA and A DEA are each
isosceles triangles with a common
base angle at.l. They are there-

X (1-x)
fore similar.
A o ADEA - OA DA
AODA~AI)EA..DA—EA. Let
OF = x and rememberOA=1andDA=%(\f5—l). Then k4 =1 - x,
Loy
1 2 B I
= " . _ 1 _1)\2
%(\fg_l) 1-x Sol-w =75 - 1)
D y=1-16-2/54+1)
a/a
v = -6+2V5_2/5-2
‘ 4 4
0 a_, E2a 20A ,\=%( V5 - 1)
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_—  — — ~ ~
This means OFE = AD = DE. .*. Letting ¢ = m(AOD) =m (EOD)
N\
we get m(()j)\E) =a. m(DEA) = 2a by the exterior angle the-
AN FaN
orem. m(A) =2a = m(ODA), since OA = OD, Then in AAOD

we have a + 2¢ + 2a = 180 or @ = 36. This finally establiishes

that m(AD) = 36 = §1§0Q and AD is the required arc.

(f) wn=5. IfA, Dand F are successive vertices of the regular 10-gon
. . . Ty T _ 360
AF is the required arc since m(AF) = 2m(AD) =172 = = -
Theorem 5-4 is proved easily and leads directly to the important con-

4
. y b . h .
clusion that for any two regular n-gons /}— =——,)/_, . Since i- is the same number

for any two regular n-gons it is always a constant for a given ». It is im-
portant however to see that this ratio does change as » changes and in the
problems we ask the students to compute it for the cases # =3, 4 and 6.

What we are after is to see the pattern of the change so that as » gets larger
and larger and p gets closer and closer to C, the circumference of the circle,

we might hopefully be able to see what ;- 18, since it p gets close to C we
P
)
this we will show a little later on in this chapter how we can start with p;

would expect *- to get close to % Although we do not ask the students to do

and from it compute successively ps, piz, p24, ... or from pa compute ps, pis,

paz, ... thus getting /)4 for larger and larger » and so closing in on %
Answers to
PROBLEMS 5-1 Student Text Pages 159-160
1. 3 =8
s =V64 +64 =8V2
a=4V2 sza
P=4x8V2=32/2 v
P ' p
;‘_4 =328\2 :4\/_:4X1.414:55.7 Q _iz5.7
"
Py _32V2 _, P_,
a 4V2 ' p
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b - ¥ 63 _1
pr ! pro5
e Pl = r - 45
s=y. p'=6s" s =%

67 so ﬁi is always 6.

In the equilateral A AOB

BC =Y

AB = OB = 7, 3

2 /A 2 2
-.- + 5) =Y
a (2) !

. ¥ 2
since a = 6, 36 tg =

3r? _
ER

¥2 =48
r =4V3

p=6s=6r=24V3

(¢) #=04=AB=38
a=4v3

(a) }=§q\/§; a=§\/§

(b) 7=%\/7; (1=%

¥

!

=15
2

!

=

]

NN

5

p—
ro|n
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.Tp" =5X63,p" =45 but in any regular 6-gon

= 6. Of course pg =68 =




v \

N —

In the following answers, ¢ represents the radius of the inscribed

circle.
a =6 a=6V2 a=6V3
s =12V3 s =12V2 s =12
p =36V3 p =48V2 p =12
) )

/7 N

. \
s { S )
7

R
R N
R =24 R =12V2 R =8V3
S =24V3 S =24 S =8V3
P=12V3 P =96 P=48V3
If the radius is 7,
(6.)(1=4§ a=§\/§ a=§v"3_
s =+rV3 s =rV2 s =9
p =3rJ3 b =4rVe p = 6%
(7.) R =2r R=%V2 =%"\/§
S =27 V3 S =9 s=%"\/§
P =6¥V3 F = 8y P=4yJ3

Note that when talking about a regular n-gon, 7 stands for its radius
which by definition is the radius of its circumscribed circle. Referring
back to the results of Problem 8, we [ind
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1§?-=3’;}/§=3\/§z3x1-73:5-2
L:?_=4"}/7=4\/‘z4><1-41:5-6
/_)ﬁ.:ﬁ—}—:6 :6.0
/}— )

We note that this ratio is increasing as » increases. In the next sec-

tion we will study, for a given circle, the ratios é— for the inscribed regular

) . . 3 .
iz-gons and (l(- for the circumscribed regular iz-gons, where « is the radius of

the inscribed circle and is equal to the radius, s, of the inscribed polygon.

. .. . P
(See the figure below.) To anticipate this. look at — for the three cases above.
: ’ a

Py 803 _ 6504
a y ’ \
Pi_8r =8

.

a
Do A0 V3 _ 475 =69 ( )
o )

This ratio decreases as » increases. The perimeters of the circum-

\\

scribed i-gons also get close to the circumference of the circle so again we
get an estimate of ¢ . Hopefully we can squeeze ;C- between two estimates
- "

and thus get a better idea of its value.

10. 0O® =0P and APO = A@() since a tangent
is perpendicular to the radius at the point

of contact. This makes AAPO = A AQO and

therefore P() = QA() and A EF)P = A/()(L).

Since 1/ PA(L)) - u-2

T
- /l_____}; 2 % 90. This makes m(A0Q) =

x 180 we know 1/ (Q;l())
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90 - <”——;l—2 X 90) = —1—]81—9 Similarly m(B6Q) = 1—?1— and therefore AE)\Q =

BOQ. By ASA this makes A AOQ = ABOQ and so AQ = BQ. 0@ is
therefore the unique perpendicular bisector of A5. Similarly, OR is
the unique perpendicular bisector of BC. Therefore, the point O is
unique and there exists only one circle inscribed in ABC ... .

5-2 CIRCUMFERENCE OF A CIRCLE.

In this section we assume the existence of ‘‘length’’ as applied to a
circle, even though length so far has only been used for line segments. Ob-
viously a circle is not made up of line segments so this is a new use of the
word. What is done in advanced mathematics is to define the length of a
circle as the limit of the lengths of the perimeters of inscribed 1-gons as
i increases in such a fashion that the length of every side of the n-gon de-
creases towards zero. This limit is proved to exist and to have a certain
value. We do not make any attempt to prove this but make use of the fact
that most students feel intuitively that such a length does exist and can be
approximated in some such fashion as we indicate here.

Using the fact that the circle has an inscribed regular n-gon and a
circumscribed regular rz-gon and assuming that the circumference of the
circle lies between the perimeters of these two i2-gons we {ind for » = 6 that

6<%<6&

In order to determine ¢ more accurately we present here a method for
-

computing the perimeters of certain inscribed and circumscribed regular
n-gons in terms of the radius of the given circle. Let us indicate the peri-
meters of these n~-gons by p, and P, respectively, and their sides by s, and

S, . Since the ratios /;f’ and [;f’ are each constant for different values of » we
will choose 3 = 1. This will make our computations easier. Before going to
the trouble of doing all this computing we want to be reasonably sure it will
be worthwhile. If p, increases with i will it get too big or will there be an
upper bound, beyond which it cannot go? We show that p, is always less
than P,, that p, < pz» and P, > P2,. Starting with » = 3 this will give us a
series of inequalities for p, and [, which will be a help to answer the

question.
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We can write all these inequalities togther in the following way: If
i<j and / andj are both multiples of 3, jp; - piyPp > Pjyand p; < Py
From this we can see that any p is less than any P. Thus ps < ps < p12 < Pis
while p2a < Pa <Pz <Ps < Ps., If we plot these values on the number line
we get a figure something like this

& - . .

P3 Pe  Py1g Pay

vV

But we have not found the actual values. How can we do this so that we
can draw the above graph reasonably accurately? We do this by finding a
formula for the side s,, for the inscribed 2n-gon in terms of s, and ¥, and
for S,, for the civcumscribed 2n-gon in terms of S, and ). Then knowing
ss = V3 and S; = 27 V3 and with »* = 1 we make our computations.

Careful diagrams will help us as always. If A7 is the side of the regu-
lar inscribed n-gon and C is the midpoint of @, AC will be the side of the

2n-gon. We know AD = %—s,, and we can compute in succession DO, DC and

AC = s5.,. We get s3, = \/2'}2 - V& o, 2
C
A _\ B
v Hp
r
0

On the other hand if W. and XV are sides of a regular circumscribed »n-gon
and C is the midpoint of @, then DL is one side of the 2n-gon. XB = %S,,,

CD= %S 2n = DB, We compute in succession XO, NC,AD,CD and ED = S;,,.

The answer is S,,= % {\/41‘2 + S,7 - 21']

If ¥=1we know s3 = V3 and S;3= 2V3. We compute
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\/2 X 1% -1V4X12-3 and S, = é%—é— [J4“"+“(‘2‘\r—§)“2 - 2J

wn
o
1l

o)

V

=1 = 3

Both of these agree with the previously k.~ wn values for the sides of
these polygons and this provides a check on our formulas. Applying the
formulas again we find

2
e = [ a
2_\/4_1 alld 512—2\/3—[4+3 2}
3

Sz =
=~ .518 = + 536
Also s, zw/Z _ VT --2680 and Saq = 3%6_ [ 4 + (-536)2 - 2]
= +260 ~ «264
From these values we find
ps =3 X V3 =5-196 Ps =3X2V3=10-392
pe =6 X1 = 6.00 Pes =6 x¥~ 6-928
prz = 12 x (:518) ~ 6-216 P12 =12 x.536 = 6.432
p2a =24 X (-260) = 6:240 Poy =~ 24 X .264 = 6:336

We see that P3 - p3=5.18; Ps - pg = 0-92
P12 - pr2 = 0-216; P24 - p2a = 0.096. These differences are getting smaller
and smaller as i increases. Since p, < ¢ < P, the average of p, and P,

21_+2_P_ Pe + Ps

might be a good estimate of C. We note =779, g = 6.46,

Liz ¥ Tho ;P‘Z - 6.32 and Zut e +2P24 = 6:28.

If we continued the computations for larger and larger » and assumed
that  was exactly 1 so the results could be given to as many figures as we
wanted, the differences P, - p, would get closer and closer to 0. We al-
ready know that 6.:240 < ¢ < 6-336 and we suspect that the average of these,
i.e., 6:28 would be a pretty good value for C. As a matter of fact since

T = % we would have 7 = g.iSI = 3+14 and this is correct to three digits.

We now plot the values of p; and P; as we have found them so that we
get a better picture of their relationship.
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+¢~n

} It Il I3
L] T LI 1

N

5 Py (lsplz Py, P]2 P 7
Pe Pay

We could of course have started with 3= 1, sa = »vV2 and S4 = 27. In
this way we wor'd have obtained somewhat different approximations for C
but by the time we had done the computations for » = 8, 16 and 32 we would
again have obtained the value of (' to be 6-28 to three digits or the value of 7
to be 3-14. There are much easier ways to compute 7 to many more places.
These involve more advanced mathematics than your students have yet had
but at least this relatively straightforward method gives us a reasonable
approximation.

5-3 COMPUTING WITH .

Many pupils will be tempted to give the circumference of a circle to
many more digits than are justified. Do not ask for and do not allow pupils
to give answers with greater accuracy than the initial data allow. The dis-
cussion in the text should make this clear. Usually answers in terms «f 7
should be allowed unless otherwise specified.

Answers to

PROBLEMS 5-3 Student Text Pages 165-166

1. a. 67 d. 2vZr g. 67 oo &
in
b. 107 e. 6Vh 7 h, 7 k. 5
, 67
c. 34n f 5 i. 2V27 l. 1l47n
25 5 Y1
2 a. b6 c 5 e. 9 g - L=
17 45 V2 18 45
b. 5 d. ) f 5 h. - j o
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D

Area A BOC = L)% BC

2
Area of polygon = ar

K AD + %'}'

1
DO

DNol—  DIjr—

,}-/)

(AB+ BC + ...

a. 20 c. 525 e. 45 g, 21 i. 204
b. 38 d. 45.3 f 19.7 h., 27-1 j. 204
_2 _4V3
s=4 a= § \/§ C= —T_ o
,r:f}_ \/§ C'_M_Tl r
3 3 >
C
s=6 a=3 C = 67
r=3Y2 C'=6V271 ¢!
C
s=10 a=5V3 C =10V3n
=10 C'=20m
The polygon need not be regular.
1o ap
Area AAOD = 51 X AD 5 c

etc.

ea AAQOB + area
ABOC+, ..

XB(‘+... /

+ DA)

B

We know a circle may always be inscribed in a regular polygon. As in

Problem 7,

Area = %/; * (radius of inscribed circle)

= %7‘/)
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5-4 AREAS OF CIRCLES.

The area of a circular region, just as the circumference of a circle, is
assumed to have a measure which may be approximated by the areas of the
associated regular iz-gons. Although we might carry out these successive
approximations again it seems better simply to note that for the circum-

scribed polygons 4, = -é: ;" P, and that as 1 increases 4, gets close to A and

P, to C. The logical result is that A = %r ¢ which leads immediately to the

familiar formula A =792, The expression ““area of a circle’’ is inaccurate
since the circle has no area but nevertheless the meaning is clear and the
phrase is mucl shorter than any more accurate one so we will use it freely.

Answers to

PROBLEMS 5-4 Student Text Pages 167-170

1. a. 257 d. 27 g. 2 i, G4n
b. 497 e. 367 . ﬁ% k. Or
L £, 1447 i I 1. 367

. 9 . 1 . 9 i

2. a. 8 d. 3 o, 6VT .o 2V
b, 11 e. 18 h. 3V5 k. % VT
c., 13 f. 5V2 i. 2V22 1. 1

3. a. A=175=nm72 ;:%m C =25 = 1037
b. m?2 =647 > =8 C = 167
c. mrc =87 = 2V2 C =4vV27
d < =97 ;=3 C =67
e. % =10007 > = 10V10 C =20V/10 4
£, mt=125 ; —%\F:ﬁ C = 10V57
g. m*=2324 )=1?§\/F C =36Vnr
h. w2 =425 ) =§ JIT7 C = 10V177
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Area of ring =7 X 36 -7 X 16 = 207
area of ring 20m

*area ol smaller circle 16w

o

Area of smaller circle is 167 .°

Area of first circle = 7.2° = 47
Area of second circle = 87
. 7% = 87 and the radius of the second circle = 2V2 inches

=% . If ' = 3a then r = 2a

'=9q%nm, A =4d*n. So %ﬁ%

.

=7 %X 225

.12
ﬂ")'

.
5 v =18

S
1]
~J
=
1l
Do
o
=t
l
e
(2]
~
RN
1]
=
!

I =

2 220m _ _ 225

. <5
36 02 xw (G B
The radius of the larger circle is 18 inches.

Wf=%4n=ﬂ. r1=1 =04
D
77722:%'477:277. )2—\/—2—7—013 c
2_ 3 A B
m™ Y =7 47 = 37 ', 13 = V3 = OC
A

Quite a surprising looking target
isn’t it?
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10.

11.

12.

13.

5-5

A _mf R g
Al=qyt? AT Tyt T T T <}")
a. %m'z = —%10077 = 507 since a diameter divides a circle in half.
b. 7}7;)'2 = %1007r = 257, This is obviously half of the semicircular

region.

d.

a. The two parts (shaded and unshaded) are the same shape so each
must be hall the circle; i.e., area = 507.

b. Perimeter = hall of the large circle plus 2 halves of the small
cirele

><27r><10+2><%><27r><5

=1
2
=1

O7 + 107 = 207.

If )y = 6, the side of the large equi-
lateral triangles is 6V3. The small
triangles are also equilateral so
each side = 2V3, The unshaded

part is made up of 12 such triangles.
Its area is therefore 12 x 33 =
36V3.

Area required is: 367 - 36V3 =

36(7 - V3)

LENGTHS OF ARCS, AREAS OF SECTORS AND SEGMENTS.

This section takes up lengths and areas of certain subsets of circles

and circular regions. The fundamental technique is the use of the additive

property of measure. We express the required point set as the union or in-

tersection of point sets whose measures we already know and then add and

subtract the corresponding measures as required. Thus the union of two

semicircles of the same radius which have only their end points in common

is the whole circle. The length of each semicircle is therefore half the
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length of the circle. Similarly if we have an arc of measure i in degrees,
where i is an integer, the arc is the union of »m arcs each of measure 1.

The length of the arc of 1 degree measure is ﬁ of the circle since the
union of 360 such congruent arcs with only end points in common will be the

circle. I y is not an integer we simply define the length of the arc as

m . .
760 ° 271" so that the same formula will always hold true. The same tech-

nique yields the formula for area of a sector.

For a segment bounded by -1/ and :\T we
note that {Sector 1O} = the union of { A AOD} “‘l‘l
and {Segment /A /2 }. Note the new use of the word ‘\\
segment. The “‘segment’ A\ is part of a line; 5
““segment of a circle’’ is that part of a circular
region cut off by a chord. Area of segment = area
of sector - area of triangle. The difficulty here is
that the area of A 1O/ is dilficult to compute if
only the radius of the circle and the measure of AB are known. It can be

done of course by use of the trigonometric formula area AAOL = é— A0 X BO

X sin A0,

Answers lo

PROBLEMS 5-5 Student Text Pages 173-175

L. Perimeter = OA + length of fb’ + DO

=G+%277><6+6

12 + 27 o

7 X 36 = 67

Ofr—

Area

3 P— —__l /\! —_ ]. \ — .8_
2. Perimeter = m(AL) + m(AD) = 8 +5 167 =8 + 3T

m(Sector AOB) - 1 (AAOL) A -

Area
047 ,
= '—6‘_ - 1()\/§ 8

327

=—3'-16\/§. 0 B
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v o= 49 _ 257
Area of Sector AQB = 360 X7 X100 = 5
1

m(AAOB) =5 0B x AC, but AC = OC A
since m(OAC) = 45. .. AC = 5v3 10
(A AOB) =% 10 X 5vV2 = 25V2.

Area of segment = z—gﬂ - 25V2

g’é%XﬂXIO():‘lO?T lengthofarc=§;ggx2nx10=%><207T=87T

10
36

m = 144. (Degree measure of arc.)

=40

N )—_BQ 2 _
Area AOD = 36077 X 12° = 127, A

ArearAoB=LopxAc=L12x¢ =36,
2 2 20

Area Segment = 127 - 36. c

Area A0 = %—8 X 81 = 277,

Area AAOD = % O x AC =% 9 x

=
Area segment = 277 - ﬂtf—S

(3.) Major sector = 1007 - —2-% = 172577 .

Major segment = 1007 - (2—3—” - 25 \/Q) = _1_72_57_r + 25V2,

(56.) Major sector = 1447 - 127 = 134i.
Major segment = 1447 - (127 - 36) = 1327 + 36.
(6.) Major sector = 817 - 277 = 547.

Major segment = 817 - (27ﬂ - %\g_) - 547 4 81{‘3.
Required area of intersection is sum of A

2 segments.
OA=00"=10"=12

i A'(}b’) =120
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10.

11.

12,

12

Area segment AO'B = 3 1

X 7144 - 5 AB ¥ OC = 487 -7,13-12\/§>< 6

(e}

[e2]
[en]

=487 - 36V3
.. Required area = 967 - 72V3.
Area of union = area of circle O + area of circle O' - area already

found
= 1447 + 1447 - (967 - 72V3) = 1927 + 712V3
ek X 1r® = 715% - 712?
:'2
ig = 2257 - 1447
r2 = 36(81)

F=6x9 = 54.

The area the goat can graze over

is made up of one semicircular

region of radius 16 feet, two

quarter circle regions of radius

12 and two of radius 4. The total
area is

—é—w 162+2><%77 122+2><-i-n42:

1287 + 127 + 87 = 2087 sq. {t.

The required area is the difference
between the areas of AALC and
the three 60° sectors.

Area AALC = % X4 x2V3 = 4V3

Areca of each sector = %77 X 4 = %

Answer 4V3 - 27

The required area is the difference between the areas of the square
ABCD and the four 90° sectors. If the radius of each small circle is

equal to.x, AL = 2v,
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Area = 4.% - 712,
We still have to find .. P~(_J is a
diameter. P’ =16

ACP = AL + BC* = (20)2

+(20)° = 8a?

AC 2\@\‘, PA =y, CQ =y,

PR=x+2V2x+ 1 =21(2V2+2)

Cox(2V2+ 2) = 16

It

H

a8 oy
A —\/E+1—8(\/2 J.)

v =642 - 2V2 4 1)
64(3 - 2V2)
Area = (4 - 7)64(3 - 2V2) = 9.3,
Since the area of the large circle > 201, the shaded part is about 4-5%

1

Il

of the total.

5-6 RADIAN MEASURE.

This last section takes up the radian measure of an angle in anticipa-
tion of its use in trigonometry and, by those who take advanced mathematics,
in calculus. The concept of using different units for angle measurement
should not be too difficult for pupils who are used to using such different
units as inches or centimetres for measuring segments. However they will
need a lot of practice in converting [rom one type of unit to the other.

Answers lo

PROBLEMS 5-6 Student Text Pages 177-178

-3
=
o«
=

L —— O == 1 I
Loa g d. Tg0 2 I 5
27 I i 2n
b. 9 e 3 h. 5 k. 5
T 51 1797 4n
¢ 13 I 13 L 780 L5
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e
[J%)
DN
—
o)
oo}

b. 36 e. 50 h 3?# k. 1575
270 180 180

¢ - { 120 i 7 1. -

a. 7 d. %” o, 1225 .2

b, 87 e. 6 h 4

c. 7 f. 9-1 i. 9

m(A}}C) =% B

N
AC is one fifth of the circle. The length of

o .4 . X
ADC is 5 of the circumference

—~

: C
.. Length of ALC :% 247 = 9—9‘—7 A

)

The angle at the ship is % radians.

Suppose we could draw the circle
determined by the ship and the two
lighthouses.

Then 1/1(r‘16b’) = 2//1(z1f$‘1;’)

i

//1(AE)/;’) =

cel=

N
This means that .\ is an arc whose

degree measure is 60 and AAOL is

an equilateral triangle. We can then {ind the position of O by drawing
two circles with centres at 1 and /5 and each with radius 10 miles. O
will be the intersection of these circles on the seaward side of A 7.
Draw the circle with centre O and radius 10. The ship is somewhere

on the major arc of this circle since at any point on this arc the meas-

N —
ure of the angle subtended by A/ will be equal to'—('5 .
If a third lighthouse were visible at some point ¢ a similar con-
struction would put the ship on a circle of which BC was a chord. The

intersection of these two circles would be the position of the ship.
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Chapter 6
MOTIONS AND TRANSFORMATIONS

INTRODUCTION.

Introductory Commerits. The ideas presented in this chapter have been well
known in advanced mathematics for a long time. It is only in the past few
years, however, that they have begun to appear in secondary school texts. As
you will see, these ideas are simple, natural, and directly related to other
major areas of mathematics, such as algebra. Many cducators and mathe-
maticians believe that, in years to come, these ideas will become more and
more important in secondary mathematics.

Because these ideas are probably new to you as well as to your pupils,
they are presented slowly and with care in the Student Text. If is vitally -
portant that you gice the entive Student Text and the entire Teacher’s Guide
(for this chapter) a careful reading before vou begin to leach this material.

In this way you will get an over-all view of the direction and main ideas of the
material, and you will sce how very simple and ciementary these ideas ave,
once they are properly understood. In your careful preliminary reading, pay
special attention to Sections 6-1 to 6-6. Also, be sure to look at all the prob-
lems and at the discussion of answers given in this Guide. The problems are
meant to be especially helpful for obtaining an easy and correct understanding.

We now give a briefl general summary of the over-all content of Chapter
6. We follow this with a brief summary by sections. We then give some more
general comments. We then discuss various ways of omitting material to
shorten the program. We then give several suggested programs. Finally, we
end the Introduction with a discussion of how to ptan your time in presenting
Chapter 6 to your pupils. After the Introduction, we take up the Student Text,
section by section, giving answers to problems and giving other general com-

ments on the material.

126



You will probably find that you will understand the summary below
better after you have worked through the entire Text and Guide.

Summary. This chapter presents the concept of igid :notion in the plane.
Various kinds of rigid motion are considered, certain mathematical facts
about rigid motions are obtained, and a number of applications are described.
A rigid motion is a mapping (that is to say, function) from the plane onto the
plane such that the distance between the images (under the mapping) of any
two points is the same as the distance between the two points. Special kinds
of rigid motion include direct motions, reversing motions, translations, ro-
tations, and reflections. One of the chief mathematical facts presented is
that every rigid motion can be viewed either as a translation, a rotation, a
reflection, or a combination of reflection and translation. (Which of these a
motion is will depend upon the particular motion.) This fact and others lead
to a variety of useful applications in geometry. Also, certain algebraic no-

tations and ideas can be used in working with rigid motions.

Summary by Sections. Sections 6-1 and 6-2 use exercises with tracing paper
to help prepare and build the pupil’s thinking. Questions of congruence and of
““moving’" geometrical figures in the plane are the immediate subject matter.
In Section 6-3, the concept of rigid motion is introduced and several basic
mathematical facts about rigid motions are given. Section 6-4 gives two il-
lustrations of the way in which the concept of rigid motion can help our
thinking in solving geometrical problems. In Section 6-5, the basic kinds of
rigid motion are described and illustrated. In Section 6-6, we use the idea of
rigid motion to give a general definition of congruence for geometrical fig-
ures in the plane. Sections 6-7, 6-8, and 6-9 give further information and ex-
amples about translations, rotations, and reflections. In Section 6-10, we con-
sider ways that different rigid motions can be combined, one after the other,
to give new rigid motions, and we sec the usefulness of algebraic ideas in
working with such combined motions. In Section 6-10, we also present some
of the main theoretical facts, such as, for example, the fact that every direct
motion is either a translation or a rotation. Finally, in Section 6-11, we give
several further applications of rigid motions to solving geometrical prob-

lems.

General Comments. (1) As you read through the Text and Guide, you see that
our work on rigid motions in Chapter 6 is closely related to the work on al-
gebra in Secondary Four. Both in the algebra and in the geometry of rigid
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motions, the concept of function is fundamental. In algebra, we have func-
tions from real numbers to real numbers. In geometry, a rigid motion is a
special kind of function from points in the plane to points in the plane. In
Section 6-3 of the Student Text, this connection between the pupil's work in
geometry and algebra is emphasized, and various notations used in the pupil s
work are also used for rigid motions. In studying Section 6-3, you should read
again the basic material on junctions in the algebra Student Text and
Teacher's Guide.

(2) A main reason for studying rigid motions is that they have a close
connection with more advinced work in algebra as well. This is shown a
little bit in the work on coordinate axes in Sections 6-7, 6-8, and 6-9, and it
is shown in the work in Section 6-10 on combinations of motions. It will be-
come much clearer in Secondary Iire algebra where the pupil will be
introduced to matrices and to the concepts of linear algebra which are
fundamental for so much of modern mathematics and its applications. The
pupil will then find that his study of rigid motions will have provided him
with a valuable preparation for this later work in algebra.

(3) The value of this study of rigid motions comes, in large part, from
the simplicity and naturalness of the geometric ideas. The work in Chapter
6 is intended to show this. If your pupils find Chapter 6 easy, dc not be dis-
mayed. This only means that you are doing a successful job in teaching the

material to them.

Material that can be omitted.  The Student Text is arranged so that, depend-
ing on time available, on the background and enthusiasm of your pupils, and
on your personal preferences, certain material can be omitted. This material,
which we list below, is in part theoretical. While of value, it is not essential.
Even if you omit all of the material below, many important points and ideas
will remain, and the student will still have a sound and worthwhile program
upon which to build later mathematical work., Do not hesitate to drop any of
this material that does not suit your class, your time, or your preferences.
Material can be omitted, as you choose, according to the following out-

line, which proceeds section by section.

6-1. All of this section should be used.

6-2. The last part, after Problems 6-2B, can be omitted or treated
lightly. This part, on “‘using ruler and compasses, ' will be of more interest
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to pupils who have already had ruler and compasses constructions up to the
construction of a line through a given point parallel to a given line. Note the
important final sentence of Section 6-2 (just before Problems 6-2C). Rigid
motion ideas are very useful for solving problems about ruler and conipasses
construetions, but knowledge of ruler and compasses constructions is not

necessary for understanding the theory of rigid motions.

6-3. All of this material should be used. Note, however, that certain
proofs (of properties (2)-(6) from property (1) ) have been placed in an Ap-
pendix. These proofs are intended as ‘‘footnotes’’ to the text. Later work
does not depend on them. Except for pupils with a special interest in theia,
the proofs in this Appendix should be omitted.

6-4. The first example should be used, but the second can be omitted or
treated lightly, especially if pupils have not studied ruler and compasses con-
structions. (See comment above on possible omission of material from Sec-
tion 6-2.)

6-5. All of this section should be used.

If you are pressed for time, you can stop with 6-5 and omit the rest of
Chapter 6. Your class will still have obtained much of value. If you go
further, you can take one of the following alternatives.

(a) Do Sections 6-6 through 69.
(b) Do Sections 6-6 through 6-10.
(c) Do Sections 6-6 through 6-11
In each of these alternatives, there are partial omissions possible in the sec-
tions listed. We now describe these.
6-6. The ‘‘Note on isometric mappings’* at the end of the section can be
omitted. It is not difficult, however, and should be kept if possible.
6-7. The proof following Definition 6~2 can be either omitted or treated
briefly. The material on coordinate axes can be omitted.
6-8. The proof following Definition 6-3 can be either omitted or treated
briefly. The material on symmetry and coordinate axes can be omitted.
6-9. The proof following Definition 6-4 can be either omitted or treated
briefly. The material on symmetry and coordinate axes can be omitted.
6-10. This section can be done even if all the above omissions in Sections
6-7, 6-8, and 6-9 have been made. Section 6-10 is necessary for Section
6-11. The material under ““A basic theorem’" (after Problems 6-10D) should
be included, except that the construction after the statement of Theorem 6-1

can be omitted.
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6-11. Either or both of Examples 3 and 4 can be omitted.

Appendix. These proofs can be omitted as noted above in the comment
on Section 6-3.
Suggested program. What program you choose, and how much you omit, will
depend on four things: (i) your own preferences as to emphasis; (ii) how much
time you have available; (iii) the interest and previous preparation of your
pupils; and (iv) the examination syllabus for which your pupils are preparing,
The minimum program noted above (Sections 6-1 through 6-5 with some omis-
sions) provides the pupil with much of value for later work in mathematics,
At the present writing (1965) an examination syllabus has not been prepared
for Secondary -/. When such a syllabus is drawn up, we would expect it to
cover material in Sections 6-7, 6-8, and 6-9 as well, and possibly some mat-
erial from Section 6-10. The following comments on time may help you in
planning a program for your class.

Planning your time. We assume five class meetings per week, We estimate
that the sections will take the following amounts of time. (You may find that
the material goes somewhat faster than this.)

Sections 6-1 and 6-2 together will take about a week. There is not much
mathematical content, but the exercises need to be covered with some care.
These sections will take less than a week if the ruler and compasses part of
Section 6-2 is omitted.

Sections 6-3 and 6-4 together will take about a week. Again, the total
amount of material is not great, but there are new ideas and new terminology
that need to be treated with care. These sections will take less that a week
if the second illustration in Section 6-4 is omitted.

Sections 6-5 and 6-6 together will take about a week, and less if the
last part of Section 6-6 is omitted.

(Thus the minimum program mentioned above, of Sections 6-1 through
6-5 with oriissions, can be covered in two to two and a half weeks.,)

Sections 6-7, 6-8, and 6-9 together can be covered in two weeks. With
omissions, they can be covered in a week and a half.

Section 6-10 will take about a week.

(Thus a minimum program leading through Section 6-10 would take from
four to five weeks.)

Section 6-11 will take a liitle less than a week.

(Thus a maximum program through Section 6-11 and including all ma-
terial could take as much as seven weeks.)
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Special materials needed. In addition to the usual materials for geometry,
each pupil should be supplied with about twenty sheets of tracing paper. Any
paper thin enough to make tracings from a pencilled drawing will serve.

6-1 FIGURES WITH THE SAME SIZE AND SHAPE.

General discussion. Read this entire section with care. You will need two
class meetings to cover this section. In the first meeting you can discuss the
section with the class, go over the examples in the text, and carry out the
class activity. In the second meeting you can go over the problems with the
class. Thesec problems, while easy, are of ceutral importance for giving the
pupil a full understanding. You can also invent additional problems as we
point out below.

The main idea of this section is simple. In previous work two triangles
were defined to be ‘“‘congruent’ if they had corresponding sides congruent,
and corresponding angles congruent. The pupil proved as a theorem (SSS)
that if corresponding sides are congruent, then corresponding angles are
congruent also. The notion of congruence was important because it made
precise the idea of two triangles having ‘‘the same size and shape’’. Can we
state the idea of *‘same size and shape’ in a more general way that will apply
to other figures besides triangles? Section 6-1 answers this question in a
simple and obvious way. Two figures have the same size and shape if a
tracing of one figure can be made to coincide with the other. This answer is
not a purely mathematical one, but it leads us, in later sections, to a variety
of interesting mathematical ideas. Sections 6-3 and 6-6 will show how the
answer can be made purely mathematical. If pupils ask you for a more pre-
cise answer at this stage, probably the best reply is to tell them to imagine
a ‘“‘perfect’ tracing, and then to say to them that two figures have the ‘‘same
size and shape’ if a perfect tracing of one figure can be made perfectly to
coincide with the other.

As the text makes clear, there is one aspect of our answer that the pupil
may find unnatural at first. This is the fact that we allow our tracing to be
turned over. (And thus we say that in Figure 7, for example, A and B have
the same size and shape.) The pupil may not feel that this agrees with his
own private idea of “same shape’. In any case, he must understand that this

is the way the words *‘came shape’ are to be used in the present chapter.

Warning. There are two places where your pupils may be confused by the
words we use. (1) We use the word “‘figure’’ sometimes to mean a single
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geometrical figure such as a triangle, a square, or a circle, and sometimes
we use the word ““figure’" to mean an entire drawing in the text such as
“Figure 7" or *‘Figure i1.”" Once the pupil is aware that *figure' is usecd

in these two distinct ways, he will have no trouble. Which of the two meanings
is intended will always be clear from surrounding statements. Thus, in the
title of Section 6-2 (**Moving a figure in the plane™), it is the first of the
above meanings that is intended. (2) In the paragraph following Figure 7, we
speak of *‘turning over'* the tracing paper. By this we iican turning the paper
entirely over so that the side of the paper which was previously underncath
and facing the figure being traced is now on top and facing you. (Some pupils
may make the mistake at first of thinking that “turning over'' means sliding
the paper through a rotation of 1800 while always keeping the same side of

the paper in contact with the figure being traced.)

Answers to questions raised in text.

The triangles in Figure 1 do have the same size and shape. So do the
triangles in Figure 2, the circles in Figure 3, and the circles in Figure 4,
The ruler and compasses construction to find the centre of a circle is to
draw two non-parallel chords and find their perpendicular bisectors. The in-
tersection of these biscectors is the centre of the cirele. You may wish to
omit the exercise with Figure 4 (since it will require drawing on the pages
of the text ) and to put a blackboard exercise in its place.

The two figures in Figure 5 have the same size and shape, as we can
see by sliding a tracing of one over the other. In the Class Activity, the
figures in (a) and (¢) have the same size and shape, but the figures in (b) do

not.

Ansiwers to

PROBLIEMS 6-1 Student Text Pages 183-185

1. (a) yes; (b) yes; (c) yes (in this case, the tracing paper must be turned
over.)

2. (a) 1; (D) 2; (¢) 6; (d) 4; (e) 4.
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Comment. The purpose of these problems is not to teach a special tech-
nique of using tracing paper, but rather to prepare the student for the mathe-
matical idea of a jgid molion. Once the student sees how the tracing paper
is used, he may find that he is able to answer certain questions (like Problem
2 above) by imagining the correct motion of the tracing paper without actually
carrying it out physicatly. This should be encouraged. Problems similar to
Problem 2 can be casily made up by you lor use in class. For example, the

following figures can be used.

K
(b) (c)

(e)
Fig, G-1.

P
o))
S

Here the answers are: (a) 8: (b) 2; (¢) 1; (d) 2; (e) 1. (Letters of the alphabet

make a good source of problems.)

6-2 MOVING A FIGURE IN THE PLANE.

General discussion. The material in Section 6-2 falls into three parts. The
first part (up to Problems 6-2A) shows how we can use tracing paper to
“move’ a figure from one place to another in the plane. The second part
(up to Problems 6-2B) shows that, along with the figure being nioved, any
such “*movement’ by tracing paper carries every other point in the plane to
a new position. The third part (up to Problems 6-2C) shows that ruler and
compassces can often be used without tracing paver to get the same result, in

moving a figure ora point, that we would get with tracing paper.
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The first two parts will take one class meeting each. The third part,
if you decide to use it, will take one or possibly two class meetings. As with
Section 6-2, the problems are especially important for the pupil to get a full
understanding and you should spend time in class discussing them. A good
class activity in the second part is to have your nupils use tracing paper to
check the statemeats made about Figures 16, 17, and 18 in the text.

As we remarked in the Introduction, the third part can be omitted, If
you omit the third part, Problems 4 and 5 (and possibly 6) in Problems 6-2C
should still be given to your pupils.

Warning. Two difficulties can arise in connection with the basic steps de-
scribed at the beginning of Section 6-2. (1) How is the student to make a
copy of Figure 10? One answer is to have the student make a tracing of Fig-
ure 10 on tracing paper. If he does this, however, he may become confused
between his two pieces of tracing paper in carrying out the steps described in
the text. A better way is to have him make the copy on a sheet of paper which
is somewhat thicker than tracing paper, but which is still thin enough to trace
onto from the Figure in the book. A third and still better way is to have a
copy of Figure 10 already prepared for his use. (These remarks also apply
to later Figures and Problems.) (2) How can we be sure that the student is
following the basic steps correctly? The main thing here is to have him see

Vi A
7

PANR$ PANRS

(a) (b)

(d)
Fig., G-2,
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that P is the piece of paper with the original copy of Figure 10 and T is the
piece of tracing paper which he is using to move the triangle to a new position
on P. The successive steps can be pictured as in Figure G-2. In (a) we have
the copy P of Figure 10. In (b) we have placed the tracing paper on top and
made a tracing of the triangle. In (¢) we have moved the tracing paper.
(d) gives the result on P after we have pricked through the vertices of the tri-
angle from T onto P and then drawn its sides on P.

Be sure to emphasize to your pupils that for certain motions (Problem
3 below, for example) they will have to turn paper T over before pricking

through onto P.

Answers to
PROBLLEMS 6-2A

Student Text Pages 186-187

1. Figure 44 (in the Student Text) gives one solution.
2. Figure 45 (in the Student Text) gives one solution.
3. Figure 46 (in the Student Text) gives the solution.
4, The four answers to Problem 1 are indicated in Figure G-3. Note that

for two of these answers the tracing paper must be turned over. The

four answers to Problem 2 are indicated in Figure G-4.

//\\ /‘\\
/ \ // N
il \ N
P \ // \\
———— g ——— y \ N
i l 1 ’ \ 7 N
| 7 \/ AN
i—— |/\ _é\ ———————— / A\/
N !\ ot
AN I\ ’
N / \ Vd
N // v 7
Ny \v/
Fig. G-3. Fig. G-4.
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Answers to

PROBLEMS 6-2B Student Text Pages 190-191

1. In this movement every point moves the same distance (such a move-
ment will be called a {yanslation in Section 6-5), so that there is no
fixed point. Figure G- 5shows the new positions of Py, P,, and P; as
Py’ P, and Py,

P

o P!

0P3

Fig. G-5,

2. Points 7’1, P, and P, are moved as
shown in Figure G-6. The circle D
is invariant under this movement as
can be checked with tracing paper.
The centre of the circle is a fixed
point of the movement. (This move-
ment is an example of what will be
called, in Scction 6-5, a yolalion. )

P, ®

Pl
Fig, G-6, ¢
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3.

d.

This carries L, and L, onto themselves, and Lg to the position L,’ in
Figure G-7. (This movement is an example of what will be called, in

Section 6-5, a reflection.)

Fig. G-T.

(a) The fixed points are the points of line L,.
(b) L, is invariant and any line perpendicular to L, (such as L,) is in-
variant, (Note, however, that the only fixed point on L, is its point of

intersection with L, .)
There are six motions, and the new positions of P are as in FigureG-8.

Fig. G-8.
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Answers to
PROBLFEAMS 6-2C

Student Text Pages 195-196

Find B’ on CD so that CB’ =CB. Then draw an arc of radius AB about
B’ and an arc of radius AC about C. Take an intersection of these arces
as A’,

Find B’ between D and F so that B’} = BA, Then take an arc of radius
AC about F and an arc of radius BC about B’. Their intersection in-

side the given circele yields the third vertex ¢,

Constructthe desired rectangle on L by constructing a perpendicular
to L at &, laying off A'l"=ADon L and C'E=CD on the perpendicular,
and then getting 37 as the intersection of two appropriate arcs with

centers at A’ and C’.

Let D’ be the new position of D. To locate D', we take an arc of radius
AD about 4" and an arc of radius CD about C’. These arcs will inter-
sect at two points. D" will be the intersection which lies on the op-
posite side of A’C” from B’ (since D lies on the opposite side of AC
from B.) The new positions of E and I can be found similarly. Note
that we could have equally well used arcs around A’ and B’ or around
C’ and B’ to locate D',

(@) The points on a circle of radius AP about A7,

(b) The two points given by the two intersections of an arc of radius
AP about A" with an arc of radius BP about 5,

(¢) The single point given when we take the two intersections as in

(b) and then choose that intersection which lics on the opposite side

of A’B" from C’.

There arc a variety of acceptable answers. We give two examples

here.
Example 1. *If we are given three points not all on the same
straight line, and if we know where a movement carries cach of
those three points, then we can find where the movement carries

any fourth point.”

Example 2. “Let 2 and A’ be any two points, then there are many
different movements which carry A to A’, Let A, B, A, and B’ be
four points such that A is different from B and AB=A'B’.
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Then there are exactly two movements which carry A to A’ and
Bto B'. Let A, B, and C be any three points not on a straight

line, and let A’, B’, and C’ be any three points such that AB = A"B’,
BC=DB'C’, and AC=A'C’. Then there is exactly one movement
which carries A to A’, Bto B’, and Cto C’.”

6-3 RIGID MOTIONS.

General discussion. This section has two main parts. In the first part, we
see that any ‘‘movement’” of tracing paper gives us a function or mapping
from the plane onto itself. (For the purpose of seeing this, we imagine that
our tracing paper is infinitely large and covers the whole plane.) Any such
function, given by a tracing paper movement, is called a 1igid motion. We
here use the word *‘function’’ in exactly the same way that the word *‘func-
tion’" is used and discussed in Secondary IFFour algebra. Ask your pupils to
go back and revise their work on functions in algebra. The domnain of a
rigid motion is the whole plane, and the range of a rigid motion is the whole
plane. In the first part of Section 6-3, we give notations and terms that will
be used in the study of rigid motions. The pupil will have met some of these
already in his work on algebra. I 7 is a rigid motion and P is a point, and
if T carries I to @, then we use the functional notation of algebra and write
“T(P)=Q.” We call @ the image of P under the rigid motion 7. P is some-
times called a *‘pre-image’ or ‘‘inverse image"’ of ) under the rigid motion
T. The result of not moving the tracing paper at all is also taken to be a
rigid motion and is called the **identity motion.”" It is like the identity func-
tion in algebra.

The second part of the section begins with the list of six properties
that all rigid motions have. It presents these properties to the pupil and in-
troduces several additional new words. The most important property is the
first property, which states that given any rigid motion 7" and given any two
points P and @, the distance between T(P)and 7(Q) is the same as the dis-
tance between P and . This property of rigid motions is called the iso-
metric property. (The word *'isometric’’ comes {rom the Greek: iso +

metron where iso = same and melron = measure.) Later, in the part of
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Section 6-6 called Note on Isometiic Mappings, we shall show a fundamental
fact about this property: not only does every tracing paper motion have this
property, but, also, every function from the plane into the plane with this
property can be obtained from an appropriate tracing paper motion. We state
this fundamental fact for the pupil in Definition 6-1.

The Student Text has been written so that your pupils can approach the
subject of rigid motions in either of two quite different ways. (1) The pupil
can continue to think of a rigid motion as something got by moving tracing
paper. In the second part of Section 6-3, he then simply observes, as a fact
about tracing paper, that cvery rigid motion must have cach of the six prop-
erties listed. For him, the definition of rigid motion is like the definition of
polynomial function in algebra--namely, it is a function which can be actually
carried out in a certain way (by a certain movement of tracing paper. which
is like, in algebra, calculating values of a certain polynomial.) This approach
to rigid motions has the advantage that it is easier for the pupil to follow and
understand. You will probably wish to have most of your pupils take this ap-
proach. The Text is written so that pupils can follow this approach to the
end of the Chapter. This approach has the disadvantage, however, that it de-
pends on an essentially non-mathematical idea: the idea of tracing paper,

(2) The pupil can define rigid motions to be those functions from the plane
into the plane which happen to be isometric. This makes the concept of rigid
motion purely mathematical, but at the expense of requiring that the pupil
accept and use a more abstract idea. Probably, most of your pupils will not
be ready for this approach. The Text is written, however, so that pupils who
wish to, can also follow this approach to the cnd of the chapter. If this ap-
proach is taken, then the remaining five properties of rigid motions become
mathematical facts to be proved. Geometric proots of these facts are given
in the Appendix at the end of the chapter. If your pupils follow the first ap-
proach, you may still wish to point out to them that the second approach
exists, even though you are not using it. (Tell them that Definition 6-1, using
the isometric property, is just a way of making the idea of tracing paper
mathematically precise.) As the Text remarks, the more abstract approach
1s necessary when we study rigid motions in three-dimensional (solid) geo-
metry.

Although the ideas arc simple (especially if you use the first approach
mentioned above), you will want to be sure that your students can use these

ideas carefully and correctly. This means that you should spend three or
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four days on Section 6-3: one day for each of the two parts of the section,
and one or two days to go over problems and examples.

Warning. The word *‘movement”’ may be confusing to some of your pupils.
They may think that *‘rigid motion’ means a particular patli of movement.
This is not true. A rigid motion is determined by the initial and final posi-
tions of the tracing paper. If the tracing paper moves through two different
paths to get to the same final position, then it is the same rigid motion, which-

ever path is used.

Comments on motion geometry. In the study of plane geometry, other func-
tions besides the rigid motions are sometimes used, and additional term-
inology is used. A function with properties (3) and (4) (and hence also (2) and
(6), see Problem 12) is called a lransforination, or, sometimes, an «ffine
transformalion. A function with these properties and property (5) as well is
sometimes called a homolhelic transforinaiion, or a similarily transfor-
mation, or, simply, a molion. Functions with property (1) as well, that is to
say, rigid motions, are sometimes also called Euclidean lransforinations.

In recent years, these various functions have been used more and more in
presenting geometry to secondary pupils. Problem 7 gives an example of a
transformation which is not homothetic, and Problem 9 gives an example of a

homothetic transformation which is not a rigid motion.

Answers to

PROBLEMS 6-3. Student Text Pages 200-204

L. In Figure G-9, @,', @," and @,’ are the images of @,, @, and @4 and
S’ is the image of S.

2. In Figure G-9, B has @, as its image, and triangle 4 has AP, P,P, as
its image. (This rigid motion is an example of what will later be called

a translation.)

Fig. G-9,
P! Pl Q
PP i, -
(7 P3 /’\
\
s Y 7N
Al - P, Q< >
l/ o N //
Q] v SI
e B L4 ;
) Q4
L
Q
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The image of AP,'P,' Py’ is AP, P,P,, hence AP/'P, P, is, itself,
the triangle which has A P, P, P, as its image. (This rigid motion is an
example of what will lat~r be called a reflection.)

In Figure G-10, AP,""P,""P;"" is the image of A P,'F,'P,’, and tri-
angle A has A P, I’, P, as its image. (This rigid motion is an example
of what will, in Section 6-10, be called a glide reflection, )

(a) No. A shift of the trac- Py

ing paper, such as in Problem N

1 above, has no fixed point. // \\\
Every point gets moved the P']'li _____ -\-\Pé'

same distance.

(b) Yes. In the identity mo-

tion, for example, every line Py
is identical with its image.
Are there examples other
than the identity motion? Yes,
the shift of Problem 1 is such

Az
R
w

a motion. !
(c) No. A rotation of the trac-
ing paper through 90° will, for
example, make every line per-
pendicular to its own image. RN
(See Problem 2 of Problems Vs ,>
6-2B.) Vo
(d) No. See (c) above. v Fig. G-10.
(e) Yes. In Problem 1, the

>
line P, P, ', for example, is its own image. (If students ask for a “proof’’
of this, tell them to wait until Section 6-7.)
(f) No. Assume that a motion maps some triangle onto itself. Either it

maps all three vertices onto themselves (and we have the identity motion)
or it maps some one vertex onto another and we have a triangle that

must be isosceles or equilateral. In the former case, every point is a
fixed point. In the latter case, the intersection of the angle bisectors

must be a fixed point. (Since every angle bisector gets mapped onto an
angle bisector, a point that lies on all three angle bisectors must lie on all
three images of angle bisectors.)
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Hence any motion which maps a triangle onto itself must have a fixed
point.

ABC
We use the notation (DEF) to stand for that rigid motion which takes

Ato D, BtoE, and C to F. Similarly we use (’é?,lc)) to stand for that

rigid motion which takes A to E, B to I, and C to D, Similarly for the
other four possibilities. We consider each of the six possibilities in
turn.
(i) (ABC>. This motion shifts every point the same dis-
DEF
tance to the right, and there are no fixed points.
(ii) (éf‘%) This motion is given by a rotation of the
tracing paper about a {ixed point P, in Figure G-11,
It has P; as its one and only fixed point.

Fig. G-11,

L

(iii) (‘?;gg) This motion is given by a rotation about point

P,. It has P, as its one and only fixed point.

(iv) (’?,glc)

turned over and put back down in such a way that it has

). This motion requires that the tracing paper be

the line L as its set of fixed points.

(v) (‘ggIC,) This motion requires that every line parallel

to ﬁB be moved perpendicular to itself. Hence there
are no fixed points.
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(vi) (‘g?,g) This motion requires that every line parallel

to BC be moved perpendicular to itself. Hence there
are no fixed points.

This problem is easier than the pupil may expect. Let P be any point
not on L and let @ be the foot of the perpendicular from Pto L. Then
P'Q" = 2(PQ). Since PQ # O, PQ# P'Q’. Hence the mapping 7' is not

isometric. Hence it is not a rigid motion,

This construction amounts to turning the tracing paper over and placing
it back down so that every point of L falls on its original position.

The “Hint’’ suggests a more formal, geometrical proof. This proof is
given with Figure 80 in Section 6-9 of the Student Text.

The proof that T is not a rigid motion is similar to that in Problem 7.
Take P different from O. Then OP # O and O'P' = OP' = 2(OP).

To show that 7' is a transformation, we must show that it has
properties (3) and (4).

Any point P is the image of the point halfway between P and O.
This shows that (3) holds.

To show (4), we must show that the image of every line is a line.
To do thiz, let L; be any given line. If L, contains O, then L, is imme-
diately see. to be its own image. If L, does not contain O, let Pand @
be any two distinct points on L,. Let L, be the line through the points
T(P) and T(Q). Let A be a line through O intersecting L, and L. at
R and R’. Then, by a similar triangles argument, OR = RR’. Hence
R = T(R). This shows that every point on L, is carried to a point on L.,.
and that every point on L, comes from
some point on L,. Hence L, is the im-
age of L,. See Figure G-12. To show
that 7 has property (5), it is enough to
show that the image of any triangle A
is a triangle similar to A. To show
this,it is enough (because of a basic SSS
theorem on similar triangles) to show
that the image of any segment is a seg-
ment that is twice as long. To show
this latter fact, consider the segment
PQ and its image in Figure G-12.
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10.

11.

12,

The figure on the right shows that
property (5) fails, since P’@’R’ is
contained in, and hence smaller

than, P@R. (Here @' is the same

point as @.) Q.,Q!
JT———P

. . . ‘ | >~
Any point P is the image of the | ~—_
point halfway between P and L. /! : TS~ p
This shows that property (3) holds. / :
To show (4), we must show that the RJ l
image of every line is a line. The R!

proof is similar to that for Prob-
lem 9. Let L, be any given line. Fig. G-13,

If L, is identical with L, then

clearly the image of L, is L it-

self. If L, is parallel to L, then clearly the image of L, is a line par-
allel to L and twice as far from L. If L intersects L at some point
@, let P be any point on L, different from . Find 7°(P) and let L2 be
the line determined by ¢ and T(P).
Let M be any line perpendicular te
L, and let R and R’ be its intersec-
tions with Ly and Lz. Let P; be

the foot of the perpendicular from

P to L and let R, be the intersec-
tion of M with L. By the construc-
tion, we have £, P = distance from

P to T'(P). Hence by similar tri -
angles, Ry R = RR'. Hence R’ = T(R).
This shows that every point on L is
carried to a point on L, and that
every point cn Lz comes from some
point on L,. See Figure G-14.

We first show (2) and then deduce

(6) from (2). Let T be any transfor-
mation. (That is to say, T has prop-
erties (3) and (4).) We show (2) by
assuming that (2) is false and getting,

from this, a contradiction.
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If (2) is false, there are distinct pén_ng P, vna Pz, and a point @, such
that 7'(P; ) = T(P2) = Q. Let L be P, P>. Then by (4), the image of L
is a straight line M. Let @7 be a point not on M. Then, by (3), @ has
a pre-image under 7. Let 7 be a pre-image of @', Tuen P’ cannot
lie on L. Let L, be Pi /" and let La be P27, Lot 1/’ be Q@7. Then
A" must be the image of both Ly and Lz. Let M’ be any line parallel
to M’. Take distinct points (), and @z on M. Let Py be a pre-image
of @, and P, be a pre-image of ,, P, and I?; must be distinet, since
@, and Q2 are distinct. Let L'’ be 5 P5. Then L' must intersect L,
or Lz. Also L' has M’ as its image. As we saw onthe preceeding
page, L, and L, have 1/’ as their common image. Hence the point of
intersection between L’ and Ly or Ly must map to a point of intersec -
tion between M and M. But M’ ana A’ are parallel. This is a con-
tradiction. We have hence shown (2). See Figure G-15.

It is easy now to gou and show (6). See the last proof in the Ap-

pendix,
1
Py
|P3
M! Q
P, P! 0!
M
P
4 Q
\ L Q,
M
Li

Fig. G-15.

Note. Even though the proof uses only clementary ideas, Problem 12 above

is perhaps the most difficult of all the problems in Chapter 6. If any of your
pupils get a correct solution to this problem, it is likely that they have mathe-
matical abilities of a high order, and that they will be able to pursue a univer-

sity course in advanced mathematics with distinction,

146



A somewhat easier problem that you can also give to your students is
the following: show that if a function from the plane into the plane has prop-
erties (2) and (4), then it must have property (3). An outline of the solution is
as follows. Let () be any point. We wish to show that@ is the image of some
point. Take any two lines L, and L,. Let A and M, be the images of L, and
L,. Take any line through @ that intersects A/, and A/, and let @, and @, be
the points of intersection. Let I’, and I’; be the pre-images of @, and @,.
Thenmmust havom as its image, and hence the point ¢ since it lies on

S a .
@1 Q2must have a pre-image.

6-4 USING MOTIONS TO SOLVE PROBLEMS

General discussion. This section can be treated rather briefly. It is intend-
ed to show the pupil some of the ways in which the idea of rigid motion can
e useful., It is separate from the work in other sections, and later sections
do not depend on it. You should allow one or two class meetings for it (only
one meeting if the second example is treated lightly or omitted.) Example 1
is a practical problem where the use of a rigid motion gives a quick and
neat answer. Example 2 is a geometrical construction which appears diffi-
cult until we find that, by thinking about the correct motions, we can organize
our aitack on it in a rather simple way. The {inal ruler and compasses solu-
tion which we get does not speak of motions, even though we use motions to
discover it.

The main point of this section is not the particular examples given, and
it is not to give special ways of solving problems. The main point is that the
general idea of motion can often be surprisingly helpful in both practical and

mathematical thinking.

Answer to Challenge Problem. Let A be the centre of C;. Construct a line
parallel to L through A. (See the construction for Figure 28 in Section 6-2.)
Find a point B on this line such that AB = PQ. Draw a circle with centre B and
radius same as C,. Let P, and I be the points of intersection of this circle
with C,. Draw lines through I} and P, parallel to L, Let @, and (), be the in-
tersections of these lines with C; as shown in the figure below. Then 171(—91 and

P,Q, are the two possible segments.
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Fig. G-16.

6-5 SPECIAL KINDS OF RIGID MOTION

General discussion. In this section we give an informal description of various
kinds of rigid motion that will be considered further in later sections. All
rigid motions can be divided into two special and separate kinds: direct and
reversing. The direct rigid motions include two special kinds: translations
and rolations. We shall see in Section 6 10 (Theorem 6-1) that every direct
rigid motion must either be a translation or a rotation. (The identity motion
is usually counted as both a translation and a rotation.) The reversing rigid
motions include two special kinds: reflections and glide reflections. In Sec-
tion 6-10 (Theorem 6-2) we see that every reversing rigid motion must either
be a reflection or a glide reflection. The present section gives the pupil a
first introduction to the ideas: direct; reversing; translation: rotation; and
reflection. Translations are considered in more detail in Section 6-7, rota-
tions in Section 6-8, and reflections in Section 6-9. Section 6-10 gives further
facts about these ideas, including the two theorems mentioned above. Glide
reflections are not discussed in this section or in later sections except for a
brief treatment in Section 6-10. The motion in Figure 47 is a glide reflection.

Although this section is short, and the ideas are easy, it is important
that the student have a clear understanding of the new wurds given to him.
You should allow two or possibly even three class me (ings to discuss this
material with your class and to go over the problem ;.

Warning. The new ideas introduced in this section are defined in terms of
tracing paper movement. More purely mathematical definitions for translation,



rotation, and reflection will be given in Sections 6-7, 6-8, and 6-9. The use
of “*clockwise order' and ‘counterclockwise order' helps to put the defini-
tions of direct and recersing in somewhat more mathematical form, but the
ideas *‘clockwise’ and “counterclockwise™ are still not perfectly mathemat-
ical. Perfectly mathematical definitions for direct and recersing can be
given, but they require a long treatment and rather complex proofs to show
that they are satisfactory. Since the underlying idea is very simple when
thought of in terms of tracing papcr, we shall, in Chapter 6, omit the purely
mathematical delmitions. If a pupil asks for a more mathematical definition,
tell him that he can get delinitions using “clockwise™ and eounterclockwise™
by taking the two statements before Problems 6-5 which are called Jacts, and
thinking of them as desinitions. 1 he does this, he is then left with the prob-
lem of proving, as a thcorem, that every rigid motion must be either direct
or reversing. The prool is not hard, but it is rather long and we do not give
it here. It amounts to showing that il the vertices of some one triangle are
arried from clockwise order to clockwise order by a rigid motion, then the
vertices of any other triangle are carried from clockwise order to clockwise

order by the same rigid motion.

Note. Dircct motions arce sometimes called orientation-preserving,” and
reversing motions are sometimes called *‘orientation-reversing. ™ Rigid
motions in three dimensions can also be divided into direct and reversing,
although the informal definitions are not quite as simple a. for rigid motions
in the plance. The book, Through the Looking Glass , by Lewis Carroll tells
what it would be like to live in a world after it had been subjected to a re-

versing rigid motion.

Answers to

PROBLEMS 6-5 Student Text Pages 210-211

1. In 1 of Problems 6-2B, the motion is direct and is a translation.
In 2 of Problems 6-2B, the motion is direct and is a rotation about the
centre of the circle D,
In 3 of Problems 6-2B, the motion is reversing and is a reflection
about the line L.
For 5 of Problems 6-2B, we use Figure 38 and the notation given in

the Guide for the answer to Probiem 6 of Problems 6-3.
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(gg%) is direct and a translation. <‘§§ig> is direct and a ro-

ABC
I'DE

> Is reversing and a reflection about

tation about point P, in Figure G-11. < ) is direct and a rotation

FED
line L in Figure G-11. (égg) is reversing but not a reflection.
ABCY i avmrc o 0 raflant ABC ABCY _
(DFE) Is reversing but not a reflection. (Both (EDF) and (DFE) are

glide reflections.)

In Figure G-17 below, @, = 7(Q) if T is direct, and W= T(Q)if T is
reversing. Note, as a general principle, that if we are given the images
of two points, then there are exactly two motions possible, one of them
direct and one of them reversing. See Problems 5 and 6 in Problems

6-2C. 7«
02

T(P,) T(P,)

A Y
Ql

Fig. G-17.

°P,

In the figure above, the points ¢, and ¢, are found by drawing a
circle about 7'(P) with radius P, @, and a circle about T(L5) with radius
BR. @ and @, are the two intersections obtained. @, is selected so
that T(P,), T'(P,), @, occur in clockwise order (since P, B, Q occur in
clockwise order.) @, is selected so that T(P), T(B), ¢, occur in
counterclockwise order.

(a) Yes. (b) Yes. See the solution to Problem 2 above.

6-6 CONGRUENT FIGURES

General discussion. You should allow one or possibly two class meetings for
the material in Section 6-6. There are no problems to be solved, and the
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text presents ideas that will already be fairly obvious to some of the pupils.
The section is in two parts. The first part (up to the Nole on Isometric Map-
pings) takes the ideas of Section 6-1 and restates them using the mathemati-
cal words of Section 6-3. The first part begins by noting that a triangle must
be congruent to its image under any rigid motion (by S8S), and then showing
that given any two congruent triangles, there is a rigid motion which makes
one triangle the image of the other. Thus we sec that two triangles are con-
gruent if and only if there is a rigid motion which makes one triangle the
image of the other. Finally, we use the idea of rigid motion to make a general
definition of congruence for any pair of figures in the plane: we say that two
figures are congiuent if there is a rigid motion which makes one figure the
image of the other. Because of our result above about triangles, we know
that our now general definition of congruence agrees with our old definition
for the special case of triangles.

In previous sections, we have taken “rigid motion™ to mean ‘‘mapping
given by a movement of tracing paper.’” In Section 6-3, we remarked that the
idea of isometric mapping puts the idea of rigid motion in purcly mathemati-
al form. It was clear in Section 6-3 that every tracing paper movement
gives an isometric mapping. Now, in the sccond part of Section 6-6, we com-
plete the justification of our remarks in Section 6-3 by showing that for every
isometric mapping there is a movement of tracing paper that gives that map-
ping. This is not a purely mathematical result, since it talks about tracing
paper. Even though the result is not purely mathematical, a convineing argu-
ment (or “*justification’’) for it can be given: and this is the argument given
here in Section 6-6.

The argument refers to a construction in Section 6-2. This is the con-
struction for Figures 29 and 30 in the Text. It begins with the words *‘Let
ABC be a triangle.'” If you omitted this construction when you covered Sec-
tion 6-2, and if you are not omitting the second part of Section 6-6, then you

should go back and do this construction with your pupils now.

Note. The result about triangles in the first part of Section 6-6 uses the
tracing paper idea of rigid motion. To geta purely mathematical proof of
this result (using ¢ ‘rigid motion’’ to mean *‘isometric mapping' ), proceed as
follows. (1) Show that a triangle must be congruent to its image under any
isometric mapping. (The proof is immediate by SSS exactly as before).
(2) Given two congruent triangles, use the construction from Section 6-2
(mentioned above) to define a mapping which you can show to be isometric.

In comment (b), just before the Nole on Isometvic Mappings, the words
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“original study of congruent triangles’’ refer not to earlier portions of this
chapter, but rather to work in a previous year where the pupil was first in-
troduced to the idea of congruent triangles.

6-7 TRANSLATIONS.

General discussion. Section 6-7 on translations, Section 6-8 on rotations,
and Section 6-9 on reflections each follow the same general outline. First,
a particular kind of construction is presented. (In Section 6-7, this is the
construction for "translating' a point P by a given vector U. In Section
6-8, this is the construction for "rotating' a point P through a given angle
A about a given point O . In Section 6-9 this is the construction for
"reflecting' a point P in a given line L.) A construction of this kind (With
a fixed U in the case of 6-7, a fixed 3 and O in the ca<e of 6-8, a fixed L
in the case of 6-9) gives a mapping from points of the plane to points of the
plane. Second, a proof is given that this mapping must be isometric and
hence a rigid motion. (As we mentioned in the Introduction, the proof in
this second part can be omitted or treated lightly.) Third, *his kind of
mapping is given a name ({ranslation in 6-7, rotation in 6-8, reflection

in 6-9). Fourth, various facts about mappings of this kind are given. These
include some geometrical facts (like, for example, the fact that every line
gets moved onto itself or else parallel to itself by a translation), some
facts about coordinate axes, and, in the case of rotations and reflections
some facts about symmetry.

In case pupils have already done some coordinate geometry, you will
find that the parts on coordinate axes can be treated rather briefly. Other-
wise (unless you omit the parts on coordinate axes) the meaning of locating
a point P on the plane by P(a,b) should be discussed in more detail. Once the
meaning of («,b) has been made clear, the solutions to the problems on coor-
dinate axes will become quite simple.

Note. In 6-7, the Text asks the question: *‘For what lines is it true that the
image of L is L itself?’’ The answer is: ‘‘those lines which are parallel to

U-”
You should allow about three class meetings to cover the material and

problems in Section 6-7.
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Answers to
PROBLEMS 6-7 Student Text Pages 217-219

1, In the following figure, A is the image of the triangle, B is the image of
the circle, and C is the figure whose image is the circle.

/7 ™~
N\
/ \
. | eB
N N L
/ ~
AN
Lo N
—
U / N
[
\' ¢
N 7
Fig. G-18.
2. All lines parallel to U,
3. The identity motion.
u v
4. The result is a translation by the vector
W given in the following Figure G-19. W >
5. (3, -3), (0, 0), (9, -14). Fig. G-19.

6. In the following figure, right triangle I is congruent to right triangle II

153



(by ASA), hence the two legs

of IT have lengths i (for the Y % P!
horizontal leg), and » (for the i I'
vertical leg), and hence 2! has ) - —-p(m,n) !
the coordinates (¢ + 1/, b + ")y, I ! I :
i /  d
- / U P(alb)
o 1 1 1 1 1 1 1 i 1 ] 1
Let P be any point and let 2! 0 x
be T(P). LetU be the vector |
from Pto P’'. Let@® be any .
‘ , - Fig. G-20.
point, and let @’ = 7(Q). By
assumption PP’ = Q@’.  Since T is a rigid motion, we also have

PQ = P'@Q’. It iollows that one of the two possibilities given in Figure

G-21 must occur.

-
-
R .~
-
//
o' P_~
~ -
/ N~ -
/ /y\ u
/ // \\
/// \\ P!
A\
Q¥ -
S
\‘R’
(a) (b) N o
~
Fig, G-21.

We next show that possibility (b) cannot occur. Let R be any point far
out along line PQ on the side of P opposite to Q. Then R’ = T(R) must
be a point far out along fJ—’(j on the side of I’" opposite to Q'. As we take
R farther and farther out, the distance RR' continues to increase. This
is contrary to our assumption that all points move the same distance.
Thus the only possibility is (a). Since a simple quadrilateral with up-
posite sides equal in pairs must be a parallelogram, we havea@’
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10.

parallel to PP’. But this means that @’ is the result of translating @
by the vector U. Since @ was any point, we see that 7 is a translation.
(Note that Problem 7, together with the facts given in the text, tells us
that the translations are exactly those rigid motions in which every
point moves the same distance. We therefore say that the translations
can be clharaclerized as those rigid motions which move every point
the same distance.)

Consider a rotation of the tracing paper through 180° about some fixed
point (), This motion is not a translation since not every point is moved
the same distance. (In :act one point, namely @, is not moved at all.)
Lot the points be given as in the following figure. Let T be the result

Al

of a reflection in L followed by a translation by U. 7" will then carry
P to P’ and Iyto By, The motion T is reversing (since the tracing
paper must be turned cver to carry it out). Hence T cannot be a trans-

lation.

Fig. G-22.

Let @ be any third point. By Problem 5 of Problems 6-2C, 7 must
carry @ to either @’ or @'’ in the following figure. Because T is
direct, it must carry @ to ¢’. But triangle P, %@ is congruent to
triangle P’ P,’Q’ (by SSS). Hence, using equal angles from these tri-
angles, we get PI_Q parallel to P,'Q’. Since B,Q = I'Q’, we have that
P, QQR'F," is a parallelogram (because a simple quadrilateral with one

pair of opposite sides equal and parallel must be a parallelogram).
Hence Q@' = P, P,’. But Q was any point. Hence T moves every point
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the same distance. Hence,

by Problem 7, T must be a P,
translation, =T N
P —_—— / \
2 /
// o = J////
/ - "
[l = Py
p¥

Note. In the answers to Problems
7 and 10, ‘‘simple quadrilateral’”’ Fig. G-23.
means quadrilateral in which no
pair of opposite sides intersects.

6-8 ROTATIONS.

General discussion. The text for Section 6-8 follows the same general out-
line as for Section 6-7. See the general discussion above for Section 6-17.
Note that we pay special attention in the problems to quarter-turns and half-
turns. Note also that Problem 12 of Problems 6-8A asks for a proof for tn.
‘‘fundamental fact’’ mentioned just before Problems 6-8A. (See below for a
solution.)

After Problems 6-8A, rotational symmetry is discussed.

The idea of symmetry is quite important in bringing out geometrical
properties of figures. For example in dealing with the equilateral triangle,
we could infer that the centre is the same distance from each vertex, in case
the pupils had not come across this fact previously, and so on.

We see that the square cannot be brought into coincidence with itself by
a rotation of 120, however a rotation of 90° does.

In Figure 74, rotations of 60°, 120°180°, 240° will bring the diagram in-
to coincidence with itself. The idea of order of symnetry can be introduced
at this stage. However the text does not choose to cinphasize this idea. Fig-
ure 75 does not have rotational symmetry about O.

In connection with coordinate axes, note that, since a half-turn would
take a point distant » along the positive x-axis to a point distant  along the
negative x-axis and similarly for a point on the y-axis, a half-turn would send
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a point P(a,b) to point P’ (-a, -D). A quarter turn would send a point 1*{a,d)
to point P’ (-b,a).

You should allow three or four class meetings to cover the material
and problems in Section 6-8.

Answers to

PROBLEMS 6-8A Student Text Pages 222-225

Al
1. m(AaA')= 90° ¢
OA = 0A’
O. A.
Fig. G-24.
2. BXB’' is a straight line
BX = B'X M X gt
Fig. G-25.
B!
3. B'A’ is at right angles to AB
AB =A'B’
Al
0 A B
4. B, A', 0, 4, B, all lie Fig. G-26.
on a straight line.
AB= A'B’
Move from right to left .
to get from A’ to B’. 8! Al 0 A B
Fig. G-27.

157



5, .

6. Join AB’, BA’ to get the

quadrilateral AB’A’B,
L)

BOB', AOA’ are straight lines.

We prove AAOB = AA’OB’,

[Since (Ié-l E(—)-Z’; (-)Ez(-)_[_g-'; AE Em_’]
Hence ABB' (same as AﬁO) = A'B'B
(same as A ’23\’()) .

So AB is congruent and parallel to B’A’,

Therefore AB’A’B is a parallelogram.

B! Al

Fig. G-29.

7. The equilateral triangle with centre O remains 0
invariant. The other figures move to the posi-
tions indicated by the broken lines.

8. O lies at the mid point of AA’.
9. O lies on the perpendicular bisector of AA’,

158



10.

11,

12,

Challenge Problem

If rotation is about O, OA = OA’ and OF = OB

For OA = 6;4-’, the locus of O is the perpendicular bisector of AA,

For OB = OB’,the locus of O is the perpendicular bisector of BB'.

So O will be given by the intersection of the perpendicular bisectors of
AA'" and BB'. There is a rigid motion which carries AB to A’B' and is
not a rotation, namely the reversing motion which takes A to A" and

B to B,

By similar reasoning as in Problem 10, we get O to be given by the
point of intersection of the perpendicular bisectors of AA', BB' (and
CC'). All three are concurrent. (Note that, unlike Problem 10, there
is no other motion which takes AABC to AA'B’C’. See Problems 5 and
6 of Problems 6-2C.)

Let L be a given line and let L’ be its image under a rotation about O.
Make the construction indicated in the following figure by dropping per-
pend}culars froAm O toL and L'. The/g m(CbB) + m(()ﬁC) = 90°and
m(DAB) + m(OBC) = 90 Hence m(COB) = m (DAB), which is the fact to
be proved.

Fig. G-31.
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Answers to
PROBLIEMS 6-8B

Student Text Page 227

1. All the figures are regular except the triangle, so each has rotational
symmetry except the triangle.

2. The regular octagon (1st figure) has order of symmetry 8,

The reguiar pentagon (2nd figure) has order of symmetry 5,

The regular hexagon (3rd figure) has order of symmetry 6.

The triangle has no rotational symmetry and so its order of symmetry
is 1. (The identity motion is the only rotation carrying this triangle
onto itself.)

The square has order of symmetry 4,

3. Let O be a fixed point of the given rigid motion, If every other point
is also a fixed point, then we have the identity motion which is a rota-
tion. Otherwise let P be a point which is not a fixed point. Let
P'=T(P). Letp-= m(]’@]”). Let ¢ be any other point. (See Figure
G-32 below). By the isometric property, 7'(Q) must be either @' or @',
Since T is direct, 7(Q) must be @’. By SSS, A OL@ is congruent to
AOP'Q". Therefore (by a simple equation) we get m((ﬁ)\(g'): ;;1(1)6]”) =
B. Thus Q' is obtained from by a rotation through the angle 3. Since
@ was any point, we have that 7' is a rotation.

QI

Note. The solution to Problem 3 puts us A ——— P

very close to a proof of Theorem 6-1 ~ // id

(in Section 6-10) which states that every // ,//

direct rigid motion is either a rotation / /// o Q!

of a translation. To prove Theorem 6-1, //,’

it only remains to show that any direct a8

motion without fixed points must be a 0 <§‘\ \\\\\ _

translation. For more on this, see the \\\\ \\1\0

discussion below on Section 6-10. \\\\ \\

\\\
S P
Fig. G-32.
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6-9 REFLECTIONS.

General discussion. The text for Section 6-9 follows the same general out-
line as for Section 6-7. See the general discussion above for Section 6-17.

Although some of the pupils will have come across reflections in
Physics, it would not be a waste of time to go through it thoroughly again.
The idea of reflection along a line instead of a plane mirror may not be casy
to get across initially. The construction given in the definition of reflection
is the most practical for obtaining images of reflection. The pupils’ atten-
tion must be drawn to the fact that this construction is equivalent to turning
the tracing paper over along the line of reflection.

After problems 6-9A, the idea of «xis of symunielry is discussed. An-
other way of stating Definition 6-4 is as follows. “‘If a ligure is invariant
under a reflection, then the line of reflection is called an axis of synimelry
of the figure.”’

You should allow about three class meetings to cover the material and

problems in Section 6-9.

Answers Lo

PROBLEMS 69 Student Text Pages 230-232

1. Yes

-—
2. Same direction as AB, i.e.left to right.

Oe¢
B’ A’ A B
L
Fig. G-33.

161



Right to left,
Yes.

AABC = AA'B'C’

Because reflection

AI
is an isometric B!
transformation.
Yes.
A
D

Image is a circle.
Arrow in image will
point counterclock-

wise.
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Fig. G-34.

Fig. G-35.

Fig. G-36.

B!

(o)

Al

D!



9, The line of reflection is obtained by joining the mid-points of AA’ and

BB’ in each case,

/
A /
A B /
_________ /
// ~A!
Al B! /
g/
/
B!
/
/
Fig. G-31.
10.
I
|
I
|
| B
B! I
Al : A
|
c! |
| C
|
I
Fig. G-38.

11. Not possible.
It is not a reflection since the image shown in the problem results from
a direct rigid motion while a reflection is reversing.

Answers to
PROBLEMS 6-9B

Student Text Page 234

1. Through every point X of XE,) we drop a perperdicular to L, which cuts
L at P and produce the perpendicular to cut €C_D>at X'. XP=X"P. (This
is easily shown by congruent triangles.) Alternately, from any point ¥
on <C_5>we can get ¥’ on <:4_B_>in the same way as above with YP= Y P.

So we have shown that every point of ZB has its image on E;and vice
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versa. Hence L is an axis of symmetry.

Line m is also an axis of symmetry,
This is enough to show that L andm are the loci of points equidistant

“—>
from Xgand CD.

2, A half-turn of P about O gives P’ where P'OP is a straight line and
OP = OP'. This is the same as the result given in the problem.

Challenge Problem

3. Yy = X is an axis of sym- P'(b,a)
metry of this diagram. AN
So P’ is the point (b,a). :
-~ ——F — = P(o,b)

l [
I |
| !
Fig. G-39.

6-10 ONE MOTION FOLLOWED BY ANOTHER.

General discussion. You should allow five or six class meetings to cover
the material in this section. The first two class meetings would cover up
through Problems 6-10B. The third and fourth class meetings would cover
up through Problems 6-10D. The fifth and possibly sixth class meetings
would cover the material given under the heading ‘“*A Basic Theorem,”’

The material given in Section 6-10 provides only the briefest and
shallowest introduction to a rich mathematical subject, A full year could
easily be spent in further and deeper study of some of the ideas that are
touched on here. The basic idea is that one rigid motion can be comnbined
with another by carrying out the two motions one after the other. This com-
bination yields a resulting mapping which is, by itself, a rigid motion. We
say that this third rigid motion is the “‘result of combining’’ the first two rigid
motions. If the first two rigid motions are R andS and if T is the third
rigid motion which results from carrying out first R and then S, we say that
““T equals R followed by S.”* The act of combining two rigid motions is some-
times called an operation. 1t is a way of putting two motions together to get
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a motion, just as, in arithmetic, the operations of addition and multiplication
are ways of putting two numbers together to get a number.

In Section 6-10, we first define the operation of combining rigid motions,
and then we look at some facts concerning some of the simplest combinations
of different kinds of rigid motion. This material is covered in Problems
6-10A on translations combined with translations, Prcblems 6-10B on trans-
lations combined with half-turns, Problems 6-10C on half-turns combined
with half-turns, and Problems 6-10D on reflections combined with reflections
in the special case where the two lines of reflection are parallel. Finally, in
the last part of the section, we give some general facts and rules about com-
binations of rigid motions. (Such as, for example, the rule that any combin-
ation of two reversing motions must be a direct motion.)

If we were to carry oul further and deeper study of the operation of
combining rigid motions, there are two directions in which we could proceed.
(1) We could look at ways in which this operation (and facts about it) can be
used to solve geometrical problems. Section 6-11 gives some examples of
this (Examples 3 and 4) where we sce that the use of this operation leads to
quicker and casier solutions than we would otherwise get. (2) We could
study the ‘‘algebra’’ of this operation in much the same way as, in previous
years, the pupil has studied the algebra of the addition and multiplication op-
erations from arithmetic. Except for a few brief comments in some of the
problems, Chapter 6 does not take up this “algebra’’ of rigid motions. In Sec-
ondary Fire, both in algebra and geometry, the pupil will study it further.

The rigid motions form what is called, in higher algebra, a group.

Comments. In considering Definition 6-6, remind the student that a rigid
motion is a mapping given by a tracing paper movement. It is not the actual
path of the movement. This is important if the student is to understand, for
example, how the combination of two reflections (in Figure 101) can be a
translation.

Note that a number of facts are given without proof. (For example, the
fact that a translation followed by a translation must be a translation.) In
most of these cases, proofs are easy to find, and can be given to your pupils
as added exercises. (For example, use of Problem 7 in Problems 6-7, to-
gether with the fact that each translation moves all points the same distance,
gives an immediate proof that a translation followed by a translation must

be a translation.)
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Algebraic notation for the operation of combining rigid motions is in-
troduced, to a small extent, in some of the problems. (Problem 2 of Problems
6-10C is the first of these.)

Warning. Note that, in the algebraic notation used in Chapter 6, the motion R
followed by S is written as SR. Thus we abbreviate ‘‘R followed by S’

by having R follow S on the page. This reversal is in some ways bad and

can cause confusion to the pupil. It has, however, the following advantage,
which explains why we use it: if 7" is R followed by S, then for any point

P, T(P)= S<R(P)) If we write 7"= SR, then we can abbreviate S(R(_P)) as SR(P).
For us, the convenience of this notation outweighs the dangers of confusion.

Note that RS need not be the same as SR. (In the special case where R
and S are both translations, it is true that RS = SR.) Pr~“lems 6-10B, 6-10C,
and 6-10D give various examples where 1S and SR are not the same rigid mo-
tion. Thus, to use a word from algebra, we would say that the operation of
combining rigid mctions is not commulative. (It is, however, associative,
that is to say, (QR)S = Q(RS); because, for any point P, both [(®R)S] (P) and
[Q(RS)] (P) are the sape as Q(R(S(P))) .

The basic facts and rules given at the end of the section (under the
heading ‘A Basic Theorem’’) are not proved, although the first of these, the
rule on direct and reversing motions, is immediately clear from the tracing
paper idea of motion. These facts and rules are, however, an important and
central part of Chapter 6. Please make every effort to persuade your pupils
that they are important and true,

How could a proof for Theorem 6-1 be found? It would amount to show -
ing that the method illustrated in Figure 105 always worked (that is to say, that
if two of the perpendicular bisectors meet, thenall three meet at a common
puint--the fact that we then have a rotation is immediate). This proof is
based on congruent triangles. It is lengthy, but not hard.

What about Theorem 6-2? Here the construction (corresponding to the
construction in Figure 105 for Theorem 6-1) is as follows. Take the mid-
points of AA’, BB, and CC’. At least two of these midpoints are distinet
(otherwise we have a half-turn, which is not reversing). All three midpoints
are on the same line (a lengthy congruent triangles proof). Then 7' is either
a reflection, or else a glide reflection, with this line as its line of reflection.
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Answers to questions raised in Text. In the text on ‘‘Rotation Followed by Ro-
tation,”” how do we show that the combination of two half-turns about the same

point is the identity? Since a point gets rotated 180° by the first turn and then
180 by the second turn, it must be returned to its original position. The com-

bination leaves every point fixed and we have the identity.

In the text for Figure 105, why must at least two of the perpendicular
bisector lines be distinct? If all three coincide, it is easy to see (draw a
figure) that the given motion has to be reversing, contrary to assumption.

Answers to

PROBLEMS 6-10A Student Text Pages 238-239

To describe a translation completely we had to introduce vectors. Com-
bining translations is, in effect, addition of vectors. We see in the diagram be-
low that U + V =W =V + U. That is, translation U followed by translation V
gives translation W, which is also obtained from translation V followed by
translation U.

It is a good idea to get the pupils to try several pairs of translations to
demonstrate the rule for combining translations.

U

Fig. G-40.

1. The two sides of any triangle whose third side is W give a solution.
(Of course, U and V are not included.) Hence there are an unlimited

number of acceptable answers.
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W is the single vector and W = U + V,

Fig. G-41.

Fig. G-42.

Any right-angled triangle having V as hypotenuse will be an acceptable
solution.
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5. T will move A’ to A", 2T away from 4.
T will move A’/ to A”'’. 3T away from A.

A Al Al Alll AV

v

In the preceeding problems try to see if the students can give a general
solution.

Answers to
PROBLEMS 6-10B

Student Text Page 239

1. No. (Note that C'’=D’ and that D''=C'. Note further that only a trans-
lation or a reflection will take C’’ back to C and D'’ back to D.

2. Yes.
For example: Take a point P along HEK distant d from CD. A half-turn
about P followed by a translation T parallel to W, where the length of
T is W - 2d, will move CD to C'D’.

3. The final position will be at-a distance W from CD but on the opposite
side of CD from C’'D’. Not the same as CD.
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Answers to
PROBLEMS 6-10C

1.
R .RII
P pi
e ° oqn °
Q
.H ° K
[ ]
Bl
R!
Fig. G-44.

2. From Problem 1, GF is a translation given by 2(?',

Student Text Pages 240-241

PP = QQ" = RR" = (2/IK)
They are parallel to each other,
since each is parallel to HK.

i.e,,a translation

parallel to GF and twice the length of GF.

So S = GF,

since 17’ = 25?2

3. Calling the half-turn about A, A, half-turn about B, B, etc.

A followed by B = T where T = 248,

D followed by C = § where § = 2 D—g

But AR = D—C_‘\’(ABCD is a parallelogram.)

Hence T = §,
i.e,AB = DC,

4, HK is a half-turn about X followed by a half-turn about H.

HK + KH .

The translation HK is equal in length to the translation KH but opposite

in direction.

5. Define KJH as a half-turn about H, followed by a half-turn about J fol-

lowed by a half-turn about X.

Suppose H carries P to P’
J carries P’ to P’
K carries P to P’
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So KJH carries P to P/,
KJ carries P’ to P'"' so P'P'"'= 2JK.

. ’ g I \’
JH carries P to P’ so PP'' = 2HJ. H K
P'P'"" is equal and parallel to PP"’ N

(because JK = HJ).

Pl n
Hence PP''P'"' P’ is a parallelogram. , 7
So PJ = JP'"" (interscction of diagonals). Fig. G-45.
Hence J carries Pto P'"’
l.e., KJH = J.
P(B)= B’ B B!
Q(B') = B"
S(B”) = B'"" P o R s
B_B>” - 2ﬁ
I@ = RS and PQRS is a straight line.
Hence BB''= 2R S and B B''is parallel to RS. B!
Since B'"S =5 B'", we have in A BB/B s that , B
point R lies on BB'’’and that BR = RB'. Fig. G-48.
Hence R(B) = B'",
i.e. SQP(B) = R(B),
AP) = P
BA(P) = P,
cP'y=P"
PP = 2AF (= 2DC),
since ABCD is a parallelogram.
In APP''P"", PDP'"' is a straight line, b
since PP'’ = 2 DC and parallel to it . D _- TN

So PD = DP""’
Hence D(P)= P'"!
i.e.,,CBA(P) = D(P).
Also, CD(P) = P,
where PP = 2DC and parallel to it. P!
AB(R) = B,

where P P, = 2 B4 and parallel to it

But CD = BA; so PJ_P; = P—H

Also I?E?points in the same direction as P_P,

Hence B and P coincide,
i.e., ABCD(P) = P.
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Answers to

PROBLEMS 6-10D Studant Text Pages 241-243

1. Distances are as indicated in the diagram.
PP'"=p+p+(d-p)+(d-p)

=2d. A A
P p! pn
o€ P > P e &(d-p) >te—(d-p) >
v v
L' Fig. G-a7.
2. Distances are as indicated in the diagram.

PP =p+2d-p

= 2d. F A
n P <P P!
P < (p+d) < (p+d) > 1
< p+d p+2d >
N
L m
Fig. G-48.
P P
3. Each point moves a distance

2d (if d is the separation of
L and »i). Hence a translation
(see Problem 7 in Section 6-7).

Fig. G-49,

Fig. G-50.
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5. S'" R', Q' and P’ p! p pn
. N . . * N 4 N
give the required images. ;‘94‘90—,2 o
SS'"" =RR'" =QQ"’ lel——2——2 -3
. R R R!
=PP'’ =6 units. € 6 <131€13,
€ 4 >
) S sn
§! s 6 K
<€ 7 7 >
< 4 <4 >
f g
Fig. G-51.
6. S, R", @', P'" are the required images.
SS'"" = RR'' = QQ'" = PP"" = 6 units.
Pl P P!
[ >€—2 2>
[ ] ® [ J
< 5 5 >
Q! Q Q!
< 6 >< 4 > 4
[ ] [ ] L]
< 7 < 7
R R R!
3 6 < 7 7 >
[ ]
< 10 10
Y s! S
€—2 312 S><I><]>
.1 6 [ J [ J
f g
Fig. G-52.
7. Any two parallel lines perpendicular to T and whose distance of

separation is half the length of T will be an acceptable solution.

6-11 MORE EXAMPLES OF THE USE OF MOTIONS.

General discussion. In this section we give four illustrations of the power of
rigid motion ideas in solving geometrical problems. If you have had a tradi-
tional training in Euclidean geometry, you will find these examples especially
imprescive.

You should allow four class meetings if you wish to cover all four ex-
amples. You may select any subset of the four if you prefer, for the examples
do not depend upon each other. You may wish to use only the first two ex-
amples. These are simpler thanthe last two.

Note that both of the first two examples have very simple congruent
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triangle solutions. What is important in these examples is not so much that
rigid motions give the pupil shorter proofs (though they do do that) but
rather that they give him an entirely new way of thinking about the problems.
This new way of thinking about geometrical problems makes the solutions
of many problems easier to find.

Note in Examples 3 and 4 the very powerful use made of the basic
facts and rules given at the end of Section 6-10.

Answers to

PROBLEMS 6-11A Student Text Pages 247-248

1. 60° (See the fact stated just before Problems 6-8A and proved in Prob-
lem 12 of Problems 6-8A).

2. Wgoes to mby a rotation through 90° about B. The isometric
property of this rotation gives the result immediately.

3. Immediate by fact stated just before Problems 6-8A.

Ansuers to
PROBLEMS 6-11B

Student Text Page 249

1. The reflection in L carries AB onto CB and hence A onto C. By prop-
erty (5) of rigid motions, we have the desired result.
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