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OPPORTUNITIES FOR ECONOMIC ANALYSIS OF COMPONENT TECHNOLOGY AT FILELD S1TES

J. C. Flinn *

Introduction

Yieids averaged across locations within a research site {adjusted
for harvest and storage reductions) are normally used as the single
productivity measure when evaluating the benefits of alternative bio-
technical innovations. Most budget analyses compare the average return
per unit of land between cropping patterns or practices. Unfortunately,
reporting in terms of averages provides no information on the stability
of a practice or the environment over which it is relevant. Indeed,
an average is about the best way to hide information. In most situations,
it makes sense to analyze the budget results in more detail to provide
insights to the stability of alternative innovations, their comparative
advantage for different target groups of farmers (c.g. owners or tenants),
and on different aspects of the landscape at the site, and if possibple,
identify why the productivity of specific practices vary over space and
time.

The purposc of this paper is to discuss somc of the ways cconomic
analysis may be extended beyond a [irst round budget-comparison of
averages. Hopefully, economists working in production-focused rescarch
will be encouraged to pursue the analysis ol agronomic trials in greater
depth and not regard an average budget analvsis as a satisfactory end-
point of their activitics. The suggestions of course, are nol exhaustive,
but arc those feasible with a calculating capacity met by less than a
$50 electronic carculator, graph paper, and any standard statistical
textbook.

However, before addressing these issues. There are several
points which should be addressed related to the conduct of budget
analysis; they are not considered here, but are flagged nonetheless,
(The interested reader is referred to Perrin et al (1976) and Rae
(1977) for a discussion of some of the considerations that enter the
budget process.) First, the harvested yield recorded for a crop or
pattern even from on-farm trial tends to represent a highly optimistic
estimate of the output which will accrue to the farmer., Tenure and
harvest arrangements, processing, cartage and storage losses, for
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example, may result in the economic benefit to the decision maker being
considerably less than inferred from the harvest yield. Second, input
costs, particularly for labor and capital, may vary for different target
groups of farmers. Third, economists have a propensity to estimate
benefits per unit of land. This is appropriate when land is really the
scarce resource. The analyst should be careful to identify what is the
limiting resource, it may be labor, capital, possibly irrigation water,
power capacity, or time, as reflected in the length of the growing season.
Further, the effective constraint may be the resource requirement at a
specific and critical period rather than the total use of the input,
Fourth, the time sequence of costs and returns may vary between cropping
patterns and technologies. If this is so, gains and costs may nz2ed to be
discounted to a common point to enable_ alternatives to be compared on the
same basis, at the same point in time. This becomes more important, the
more different are the time sequences of costs and returns,

Variability of Net Benefits

Profit stability of cropping patterns are usually compared in terms
of their central tendency (usually the mean), and the dispersion around
that value (usually the variance). The assumption of course, is that
the data are normally distributed -- in which case the mean and the variance
provide a precise description of the distribution.

Table 1 provides an example of an analysis of the net bencfits of five
methods of applying nitrogen to rice (No N, urea, mudballs, SCU, and
briquettes) in terms of the above measures of dispersion., The data used
are drawn from 15 experiment station trials conducted by the INFER net-
work in the Philippines (IRRL, 1979). The coefficients of variation
across the 15 sites for each treatment sugges:s that the SCU yields are
most stable, with zero N, urea, and briquettes making up another group,
the mudballs being somewhat more variable. The cause of high variability
in the net benefit of any treatment, in this case mudballs, should be
explored.

Probably, the casiest way to gain an impression of the existence
of extreme values, or "outliers," is to plot the observed values of each
treatment as a histogram. Figure 1, by way of example, shows the histo-
grams for three of the practices (No N, urea, and mudballs) and provides
a quick and visual impression of the central tendency of yields (mode),
their dispersion and symmetry, and outlying values. The extreme value in
the case of the mudballs is apparent (the $-37/ha for Trial No. 76). The

See Chisholm and Dillon (1966) for an excellent treatment of discounting
procedures, Add a copy of this publication to your calculator, graph paper,
and statistical text,
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reasons for such extreme values should be examined and a decision made as
to whether these outliers are related to treatment effects, and whethcr
the observation should be rgjected to prevent unwarranted distortion

of the subsequent analysis. In this case the extreme value is rejected,
and the mean and variance for the mudball treatment reestimated with =his
particular observation excluded.

The inclination may be to make the next step in the analysis a
test of whether or not there is a signiticant difference between the
economic returns of the various treatments. Using the "hand calculator"
technology (as we already have the means and variances) the hypothesis
can be tested (using the student distribution) whether or not pairs of
means are likely to be significantly different. The necessary calcu-
lations are shown in Appendix B, while the estimated t-tests, and their
probabilities of occurrence, are listed in Table 2. The "probability"
intervals listed in che two right columns of Table 2 are the probabilities
of the sample means of one mathod of applying N being the same as the
other it is being compared with, For example, there is a less than a
1% chance (based on the observations) that the mean gross margin for
No N will be the same as the urea trcatment, alternatively, there is
between a 57% to 60% likelihood of SCU gross margins exceeding that
of the mudballs. In summary, in this case, the analysis suggests that
while the mean net benefits of the zero N-plots are lower than those
where N was applicd, within this latter set of N-trcatments, there is
no significant difference cue Lo the method of application.

Depicting Variability of Net Ben.fits

Figure | provided a visual impression of the variability of net
benefits, howecver, of more interest arce some of the relationships which
can be inferred from these distributions. For example, from the mecan
and variance it is possible to calculate (among other):

(1) the minimum level of net beneflits for specificd Levels of probability;
(2) the probability of achieving minimm defined levels of net benefits;

(3) the probability of losses of given magnitudes

for each practice being evaluated. An example is provided in Table 3 of
the analysis of the N-application alternatives in terms of the variability
criteria, assuming the observations are normally distributed (which they
are not).

2 1f the cause of the extreme value can be explained as being independent
of treatment then theobservation may be rejected. If, as in this case we
cannot explain why the yield was extreme, we may still be inclined to reject
it if the probability of observing such a value is remote, given the numbcer
of observations to hand.
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Arc Net Benefits Normally Distributed?

The above sequence of analyses assumes that the economic
returns of each practice are normally distributed, which may not
necessarily be the case. Tf the distribution of net benefits are
skewed -- which is often the case in practice (Day, 1965; Roumasset,
1976) -- then the above inferences from assuming normal distributions
(Table 3) are biased. Thus, resecarchers should satisfy themselves
that the assumj tion of normality is a reasonable one before procecding
with a detailed analysis.

In the field context, the easiest way to test whecher the data
approaches a normal distribution is to plot the observed points on
"normal probability" graph paper. If the plot approximates a straight
line, the assumption of normality is reasonable. If it 1s not, then
it is often possible to transform the daca? to gain a straight line
on the normal probability paper.

The cumulative percentage frequencies for the zero N and
briquettes treatments are plotted on normal probability graph paper
in Figure 2. The cumulative frequencies do not appear to follow a
straight line, hence it is unlikely that a normal probability process
is operative with this specific set of rice data. If anything, the
curves appear to be convex inferring that the distributions are negatively
skewed as was also gleamed from Figure 1. (Such a negative skewness
incidentally, is not normally expected from crop-yield data.)

Cumulative Frequency Distributions

Instead of trying to identify a transformation which will nor-
malize a given data set, a better approach when in the field with
limited facilities may be to plot the cumulative frequencies and derive
the probabilities of interest directly from the graphs, The (first
order) cumulative probability distributions for four of the N treatments
are sketched in Figure 3, the fifth (that with mudballs) is left out
to prevent the diagram becoming excessively cluttered. From the
frequency distribution for any treatment, it is possible to diirectly
read:

(1) the probability of the gross margin exceeding any target value;

(2) the minimum level of gross margin expected for any desired level
of probability;

(3) the probability of net benefits falling within a desired range.

3 . . . . : .
The most common transformations used are logarithmic, semi-logarithmic
and square root transformations.
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The results from this analysis are compared to the estimates
derived when assuming a normal distribution (i.c. Table 3) in Table 4.
In this case, the estimated income levels for a given level of probability
(below the mode) are lower when estimated directly from cumulative
frequency distribution than when derived from the assumed normal
distribution. Conversely, the cstimated probability of achieving a
target income above the mode is higher. These results -- and directions
of biases -- are as anticipated. Had the underlying distributions been
positively skewed, then the biases would have been in the opposite
directions from the normal distribution estimates.

0f equal interest to the probability inferences which can be
drawn from the individual probability distributions is to compare the
entire probability distributions of alternative practices, on the one
diagram, as in Figure 3. This comparison underlies the concepts of
stochastic dominance which provides a means of identifying technologies
which have a greater probability of a higher net benefit than alter-
native technologies (Anderson, 1974). Thus, in Figure 3, the Urea,
Briquette and SCU treatments, at any level of cumulative frequency,
have a higher gross margin than the No N. (That 1s, the cuwaulative
frequency distributions for the plus-N treatments always lie to the
right of the zero N.) For this reason, the treatments with applied N
are "risk efficient" when 2ompared to the zero-N treatment and are
therefore preferred to it.” However, in mary situations the concepts
of stochastic dominance if strictly applied does not so neatly differ-
entiate treatments as was the case in Figure 3. The problem occurs
because the cumulative distributions of two treatments may CLOss =
possibly more than once - in which case, for some Llevels of income
one technology may be "best," and for income levels, the alternative
technology would be identified as superior.

Limited Observations (Sparcce bata)

Rarely are rescarchers in the fortunate position of having large
numbers of observations to work with, normally decisions must be based
on a limited number of observations. This is referred to as a spavae
data situation. TFortunately, as demonstrated by Anderson ct al (1977,
p. 42), a distribution rule cxists which can be used to approximate
the parent distribution from the few cbservations which is valied irres-
pective of the nature of the underlying probability distribution.
Supposc only a small number of observations, n, are available on the
net benefits of a technology. When arranged in ascending order,

4

' Also, given the sketch, the briquette treatment is stochastica'ly
dominant to urea.

J This particular section draws heavily on this subject matter as
presented in Anderson et al (1977, pp. 42-44).
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the k-th observation is a reasonable estimate of the k/ (n + 1) fractile.
This rule is reasonable in the sense that the expected fraction of all
values of the random variable falling below the k-th order statistic

is k/n (n + 1) (Barnet, 1975).

The fractile estimates from the sparce data rule can be plotted
and a cumulative distribution smoothed though these coordinates and
other points lacorporating any additional information available,

For example, the researcher may be confident that the zero-N treat-
ment for rice will yield at least 1 ton/ha but certainly not more
than 5 tons; also, the cumulative distribution of a unimodal two-
tailed distribution is § shaped,

Suppose for example, we have 5 observations on the rice yields:
2.2, 3.5, 2.0, 4.1, 2.8 tons/ha, To apply the sparce data rule, first
arrange the observations in order: 2.0, 2,2, 2,8, 3.5, 4,1, which then
serve as the estimates of the 1/6, 2/6, 3/6, 4/6 and 5/6 fractiles,
respectively. To provide an estimate of the distribution, smooth a
subjective cumulative distribution though these points, making use
of the data on extreme values which is also available (Figure 4),

As pointed out by Anderson (1974), the sparce data approach
18 nothing more than a subjective approximation of the underlying
distribution. Nonetheless, the approach 1s found to provide a better
stochastic representation than obtained by assuming for example, that
the mean and the variance of the population is adequately estimated
from a few observations. Perry and Greig (1975) demonstrate how “he
mean and variance of a distribution can be estimated from smoothed
distribution functions,

Within and Between Site Comparisona

The preceding analysis has op.rated on all data being pooled
and no provision made for the comparative performance of alternatives
within and between sites. Further, the pooled analysis may infer that
there 15 "no significant difference" between two treatments, yet
inspection of the data may suggest that one treatmant tends to be
superior to another, site by site, It 18 worthwhile exploring these
impressions,

For exampls, consider the gross margins of urea and briquettes,
The means across sites were not judged as significantly different
(bared on the t-test), yet in 12 of the 15 sites, the briquette yield
exceeded that of the straight urea, A simple visual starting point



to compare treatments over sites is to plot the paired comparisons,
then compare their scatter to 2a 45° 1ine (Figure 5). On the plotted
comparison, it is evident that in most cases, siie by site, t-at
applying N as briquette results in a higher net revenue than when
applied as urea, This observation should be tested statistically,

One straightforward way of testing paired comparisons -~
which does not require the assumption of nocrmality -- is the Wilcoson
sumb (Bliss, 1967, p. 290). The approach is es follows. If the two
samples come from the same population, then the sum of the expected
differences (Y1- Y2 ) is computed for each pair of observatiocns,
The z's are then ranked in order of increasing size (ignoring the
sign) with zero differences omitted. The pcsitive and negative ranks
are then summed, and the smallest sum, h, compared with its expected
critical value (Appendix C) for the n differences in the sample,

Consider the urea ani briqueetes case again. The arithmetic
to estimate the Wilcoxon sum test for this data is shown in Table 5.
Since the absolute total of the three ranks with the negative sign,
h = 18, is less than its expectation (25.3) at a 5 percent level of
probability with 15 cases being compared, we conclude that the briquettes
do indeed have a significantly higher economic return than urea alone.

Performance and Environmental Tndices

The analysis of the cumulative distributions and the paired
comparisons, while adding greater insights than an analysis of average
yiclds over sites does not address the question of whether there is any
relationship between the performance of a treatment and the environ-
ment of the site. That is, is there treatment-by-site interaction,
or in other word:z, do some treatments perform better in some envicon-

ments than others?

Plant breeders have been concerned with this class of question
for many years (c.g. Finlay and Wilkinsonm, 1963; Eberhart and Russell,
1966; Evenson et. al, 1978). Their approach (shile simplistic, it
remains within the realm of our pocket-calculator technology) relatas
the productivity of each treatment at a site to an environmental index
for that site. In the absence of other site descriptors, Finlay and
Wilkinson (1963) and Eberhart and Russell (1966) used the mean yield
of all treatments in the experiment at a site to provide a numerical
grading for each site, and define this as the environment index for
that site. The model fitted is:
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Y1j = a + bi xij + u1j
where
Yij = yleld of treatment i in environment j;
xij = the meen yield of all treatments at site j, i.e.,, the environ-
mental index;
uyj o= error term (deviation from trend line),

which can be readily estimated with our hand calculator.

The methods of nitrogen application data from the INFER trials
were analyzed in this manner, the results are plotted in Figure 6 and
recorded in Table 6.

As showwt in Figure 6, for each environmental index, the treat-
ments which have N-applied yielded higher gross margins than the zero-N
treatment. TFurther, under adverse environmental conditions (i.e.
environmental index of 300 for the site) SCU per formed better than
urea, with briquettes and (while not shown) mudballs in between.
However, in the best environments sampled (environmental index of
approximately 550), the briquettes resulted in a higher net revenue
per ha than the other forms of nitrogen tested. Inspection of the
slope coefficients (b, in Table h), also shows that as the environment
"improves," so does t&e profit-performance of urea and briquettes,
vis-a-vis the other treatments (P .05). It would be instructive to
have sufficient site-related information to determine what were the
key envirommental factors causlng these differcnces in performance
(moisture regimes, soil texture?).

Technology Performance and Site Factors

The environmental index used in the analysis reported in Table 5
sulifers from the linitation of being treatment related (ideally it should
be treatment independent), and does not provide the researcher with a
usable characterization of the enviromments in which the trials were
located. However, if no site-related data is available, then the
index does provide a working approximation Lo rank the productivity
of sites,

However, what is more important is to identify the causes of
yield variability between sites. An often used approach to tackle this
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task is to use regression techniques to relats observed -ields to
managed and non-managed site related factors., Sometimes, even a
minimal description of a site (e.g. planting dates, crop density,
number of weedings, soil analysis, and yields) may go a loug way
towards explaining the variability of yields between sites (e.g.
Flinn and Lagemann, 1976). More detailed site descriptions of
course enables more complete models to he constructed with pu:pose
to estimate among other, the econcmic levels of inputs to use,

and the importance of managed and non-managed inputs (both weather,
soil pest and diseasc related) in explaining yield differences
between sites and years (Figure 7). An excellent example of the
inclusion of site-related and management variables in the analysis
of on-farm experiment is provided in the work of Herdt and Mandac
(1979) and Mandac (1978), Table 7.

Multi-variate regression analysis is of course beyond the
scope of the pocket-calculator technology of this paper. Nonetheless,
the questions of which site descriptors arc the pricrity ones and
which should be zollected for different agroccological zones is a
critically important issue -- irrespective of our calculating capa-
city in the field. The cost of collecting massive quantities of site-
related data is large .and in many cases difficult; similarly the
penalty (opportunity cost) of not collecting the priority variables
is equally high. Suffice it to submit that the production economists
could be far more innovative in addressing, in collaboration with
biological scientists, the question of why yields differ between sites,
and quantifying the impact of both managed and site-related [actors
on the appropriatencss of a technology.

Evaluating Innovations Within Farm Plans

Budgeting prerccdures, supplemented by returns to the scarcest
resources and by measures of variability, in the majority of cases
provides the end point of the economic analysis and comparison of new
innovations with old, Some additional comparative analysis, recognizing
the importance of site-rclated variables, have also been suggested in
this paper. The above procedures have the strength of being relatively
simple and are usually suf ficient to identify new cropping patterns 2nd
practices which have a real chance of being adopted.

7 In situations where most of the data is qualitative, c.g. (N,
S, . E, W facing as.ect; wet, dry; position on lardscape, weedy or clean
field) discriminate analysis offers a possible alternative.
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The above analyses are of course partial in the sense that the
technologies are not evaluated as an integral component of a farming
system, In particular, it is difficult to judge whether the input
requirements for the technology are managerially feasible, and the
output economically attractive to the farmer, given his resource base,
existing technologies, and the alternative uses which the family commit
these resources, One way of internalizing many of these issues is to
analyze the proposed and existing production opportunities at the same
time in a simulated whole-farm framework.

A commonly used whole farm analytical approach used by researchers
to evaluate technological opportunities is linear programming and its
extensions. Jayasuriya (1979) has discussed this technique. Suffice
it to point out that linear programming is certainly not a field-based,
pocket-calculator technology. However, more simple approaches do exist
which enable the analyst to evaluate a new technique within a farm
planning framework, at least in terms of the one or two most limiting
constraints. The potential for example, of using gross meargin planning
and simplified programming (Richards and McCornell, 1967; Weathers, 196%)
as a ficld aide in farm level cvaluation of innovations shouid be more
seriously cxamined than seems to have been the case in the Network,
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Table 1. Gross vargis ($/ha) for 5 nel’ ods of applyi g M, INFER trials,
Philippie«, wot scason, 19073 a

TNTER — R Y I T "~
irial to. o d . e Cndiaai o Seu irjcucttes

63 359.00 425,77 354,63 375.93 137,62
69 197,00 137,72 435,55 375,93 291,52
70 170.00 304,22 327.63 402,93 391.53
71 413,00 533,72 520,13 551.43 607.63
72 372.50 547 .22 543,53 537.03 62:.13
75 : 399,50 560,77 563,65 551,43 623,13
76 2./8.00 335,22 236,37 402.¢ hit.63
79 291,50 317,72 31,13 416,45 2%7 .63
30 455 .50 679,72 403,57 4k 595,62
37 313.50 452.72 L62 .52 VAL 445,53
o4 345.50 507,72 557,13 537,00 567 .13
36 305,09 400,22 hh9 13 526,42 35,13
0 372.50 547,22 516,63 55,43 507,67
an 27¢.,00 479,72 449.33 4047 512,13
92 372.50 547 .22 540,67 6044 504,19
X 328,410 459,92 473.4% 431,28 Ly .83
77.63 90,25 150,41 76.03 V04 .63

cvV (%) 24 20 35 16 21

—— - =t —

ha s Teie e W rm—— | . v e taaes PR A Tl - . -

N o0 - - .
dgouree: The INFER vieid data i Listed as Appe disc Al

Prices uced 3 the a alysis wvere:

Paday  S$9.15h er Lelor 80,301/ day
Urea SOy e M} 0,500 Iny

Othice cssunptlo s as fou 4o TRRI (1y70),
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Tests for sipntifica-ce Letwee: mean gross narpi-s of N application
INFER trials, Philippl 'es, wet seasor, 1973.

methods

Probnbllity“{TFerval

Conparico  betueon
Metlod Ei iletirod ij t lower higher
No M 323.4 Uirea 459.9 4,28 - .01
" Mudballd  461.7 3.40 - .01
" SCu 41,3 5.49 - .01
" Briquettes 497.3 5.04 - .0l
Urea 459.4 Mudball®  461,7 0.05 .9 -
" sCu 431,72 u.71 N 5
" Briquettes 497,3 1.0o .3 b
Mudballd  461,7 SCu 431.3 0.63 5 .0
" Briquettes 497,38 1.04 .3 A
SLu 431,3 Briquettes 497.3 0.50 .6 .7

—

————

a4 mudball observatioss, extrere value deleted, adjust X = 461,00,
S = 80.74, CV =

1770.

the - dmplies a less than once pereent likelihood of occeurrence,
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Table 3. Conpariso: of et be:efits of methods of N appilcation, INFER
trials, Pidlipples, wet season, 1978.

Meti:od of I appiication
Units Mo M Urea Mudbaii SCU_ Priquettes

Mean net benefit $/ha 323 460 462 481 493
Standard deviation 78 90 81 75 104
Degrees of freedom n-1 14 14 13 14 14
Mir. berefits, PZ 90 $/ha 223 345 358 385 365
Min, benefits, P =170 §/ha 275 399 407 430 423
Prob. of at least $500/ha % 1 33 32 40 42

Table 4. Probability estirates derived from cunulative frequency
distribution of N applicatio methods to rice,

Mothod ox Y applicatio-
Ho M Urea SCU Lrlquettes

cpad__ ~pb  Cpd wph Cpa  pL Cp¥  Npb

Min., benefits, P= a0, 200 228 315 345 330 335 340 365
i1, beaecfits, P = 75% 272 275 335 399 400 430 400 428
Prob., of ¥ = $5n00/ha 0 1 40 33 45 40 50 42

Merived directiy from Figure 3 using the actual Cumulative Distribations

shown therc.

I . . . . . . . . -
Derived by assuming the distribution 1s normally dist.ibuted as in Table 3.
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Table 5, Wilcoxor sum test for briquettes a . urea, INFER trials,
wet seasc, Pillippiies, 1973,
Trial Y) Y2
Mo, _ Brigquette Urca Y1 - Y2) Ra -k
63 337.63 425,72 -33.09 -15
69 321.63 317,72 73.91 12
770 391.63 304,22 87.41 14
71 607.63 533,72 73.9 12
72 621,13 547,22 73,91 12
75 521,13 560,72 60.41 9
76 413,63 385,22 33.41 4.5
79 337.63 317,72 19,91 3
80 526,63 479,72 46,91 6.5
32 445,63 452,75 -7.i2 -2
3 567.13 505,72 60,41 9
85 436,13 493,22 -7.09 -1
87 507.63 547.22 60.41 9
90 513,13 479.72 33,41 4,5
92 594.13 547.22 46,91 6.5
N oz IS For negative dJdiffeve we I /ra l:3/ = 18
For positive & ffere ce ¥ /raks/ = 102

for ™ = 15, h = 13, .02 >p > 0l
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Table 6. Gross margins per heccare of five methods of applying N as related
to environment.?d
N source FPartial regression coefficientb 2
bo (t) bl (t) R F

Zero N ~9.506 (0.12) 0.759 (4.44) .57 20
Urea ~29.969 (0.84) 1.100 (13.97) .93 195
Mudball 37.721 (0.74) 0.938 (8.33) .83 69
SCu 90.351 (2.07) 0.878 (9.08) .85 82
Briquette ~64.,205 (1.39) 1.262 (12.37) .92 153

d¢ource INFER wet season trials, Philippines, 197¢.

Fitted model:

where:

bLSD (P < .05) for slope coefficients is 0.342.

1

1 is the environmental index

Y=Db +b, IT+e
o 4

Y is pross margin/ha

e are deviations from trend line,



Table 7.

Production Iuncrion escinated from

1974 wet scason to 1977 dry season.
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combined all sites, Nueva Ecija,

Independent variables Symbol Regression coefficient
Equation 1 Equation 2

Constant 2422 1248

Applied fertilizer (linear) F -5.18876

Applied fertilizer (quadratic) F2 -0.02986* -0.02907%%*

Insect control cost (linear) 1 ~1.68886%** 0.47209%:%

Inscet countrol cost (quadratic) 12 0.00232*%%*

1 xF IF 0.00675%%

12 x F 1%F ~0.0000083%*

Weed control cost (iinear) W 0.85781 0.69068%*%*

Weed control cost (quadratic) w2 0.)1264%*

WxF WF -0.00894

Age of seedlings A ~15,61711%%% -10.14466%%%

AXxTF AF C.08966%*

Pest Jamage index P 1.47486

PxF PF ~-0.13196%** ~0.11468%%%

Discase incidence index D =-27.33710%%% =25,76919%*%

D xF DF -0.206612%%x* ~0,25110%:%

Soil srganic matter (linear) OMq 3111.28400%%% 1€4.06790%%%*

Soil organic matter (quadratic) oM~ ~-657.80790%*%

OM % F OMF 0.22347

oM x F2 OMF? 0.00147

o1l texture (linear) T -106,29080%**

Scil texture (quadratic) T2 0.71679%:xk

Soil extractable P EP 5.64052 2.454682%%%

P x F EPF ~0.01764%*

LLate water stress SL =44,19641

SL x F SLF 0.04427 -0.20722%:4

Solar radiation SR 89,3573 %% 99,4922 %%

SR x F SRF 0.92762%# 0.82938%%*

SR x SL SRSL 1.17469

Dummy vaviable for tvnhoon occurence DT =471,31E90%*% -416,37120%*x

Average T efficiency DIF ~1.97364%%* =1.9934%%%

Average [ crificiency DIJ ~0,A7455%% ~0.46925%%%

Average U efficiency DWW =1.56297 4%

R-
F

* ig significant
*% 15 sipgnificant
AR ig significant

Sourced Maudac and Herdt, 1979,

0.658
179.087

At the 107 level (t=1.443)

at the 57

ac toe  1n

level (t=1.960)
leval

(t=2.576)
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Fig., 1. Frecuency disctribution of net benefits for rice, three methods of
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Appendix A. “Vield data, INFER trinls, thilippives, wet scason, 1978.0
TRFRR TT771 Lot 0T e ion

to. o U U'rea ludball sou Briquettes

Treatnment lo. 1 7 9 10 11
68 3.4 4.1 4.0 3.8 3.5
69 2.2 3.3 4.6 3.8 3.9
70 2.0 3.2 3.8 4.0 3.9
71 3.8 4.9 5.3 5.1 5.5
72 3.5 5.0 5.4 5.0 5.6
75 3.7 5.1 5.4 5.1 5.6
76 2.8 3.8 1.1 4.0 4.1
79 2.9 3.3 3.9 4.1 3.5
80 4.1 4.5 h.4 4.3 4.9
62 3.1 4.3 4.8 4.5 4.3
84 3.3 4.7 5.5 5.0 . 5.2
86 3.0 4.6 4.7 4.9 4.6
87 3.5 5.0 5.2 5.1 5.5
20 2.8 4.5 4.7 4.5 4.8
92 3.5 5.0 5.4 5.5 5.4

Prices: Urca $0,406 /iy
Paddy £0,135
Labor $0, 11
SCU $§n0.55
45 maadave fba = 832,715

"Source IRRI (1979, Tabie 3 | p 58 ),
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Appendix B. Estimating the significanrce of the difference between two
sample means.

To test the hypothesis that the two samples come from the same population,

we compute

= - =
x1 X2

ltl=|xl->‘<2{_

where il and iz are the mean values of the two samples; Si -3 is the
standard error of the pooled data. 1 2

11
Sc -5 = S |=— + -
X] X2 \f N1 N2

where Nl and N, are the number of observations in cach sample,
and ’ T T T T
e 2 .2
A Tl W Tl
Nl + N, 2
2 2 .

where Sl and 82 are the variances of the two samples.,
Exampla: No N N, =15 X] = 128.4 5, = 17.63

Urea N, = 15 X, = 459.9 8, = 90.25

e e v o —— T L s mmar T SRS e

) . 2 2
4 - I
g =v/ (16)(77.63) 7 + (14)(90.25) " _ g4 |8

28

et e —

Sc s 1 1
- X = 3 — -—_ = Y/
Xl kz 84.16 Jr 15 + 15 30.74

Ho: the two samples con~ from the same normal population.

Refer to the t-table with Nl + N2 - 2 degreces of freedom.

l 131,50
T L - e = [ ,?_
Test ' | Jr/;n./a .28

From the t-table, with N = 28, P(/t] »4.28) <.0l. The hypothesis is
rejected so it is rcasonable fo assume the rice responds to the

treatment with uircd.



Appendix C. Wilcoxon sum.*

No. of P for two-sided tests of significance

cases 0.10 0.05 0.02 0.01
N ——

5 0.6 - - -

6 2.1 0.6 - -

7 3.7 2.1 0.3 -

8 5.7 3.7 1.6 0.3

9 8.1 5.7 3.1 1.6
10 10.8 8.1 5.1 3.1
11 13.9 10.8 7.2 5.1
12 17.5 13.8 9.8 7.3
13 21 4 17.2 12.7 9.8
14 25.7 21.1 15.9 12.7
15 30.4 25.3 19.6 15.9
16 35.6 29.9 23.6 19.5
17 41.2 34.9 28.0 23.4
18 47.2 40.3 32.7 27.7
19 53.6 46.1 37.8 32.4
20 60.4 52.3 43.4 37.5
21 67.5 58.9 49,3 42.9
22 75.3 66.0 55.6 48.7
23 83.9 73.4 62.3 54.9
2, 91.9 81.3 69.4 61.5
25 100. 90 89.5 76.9 68.5

0.05 “0.025 0.0} 0.005

P for one-sided tests of significance

*Source: Bliss (1967) p. 512,
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