by

T.R.Brainerd

Resource Economics Department

ICMRD Working Paper \# 10

Interuational Center for Marine Resource Dovelopment
University of Rhode Island
Kingston, Khode Island 02831
USA
June, 1934

Abstract

This is one of five working papers that evaluates fisheries development projects in West Africa. Working paper $\# 9$ presents an overview of fisherie development projects in West Africa, summarizes the conclusions of the four case studies presented in the other working papers, and suggests some recommendations for future fisheries development pianning in West Africa. Working paper \# 10 evaluates the purse seine/trawler construction project in Ghana, and compares the financial data obtained from the operations of the 10 vessels that were constructed by the project with the estiaates made during the appraisal of the project. Working paper it 11 evaluates the oyster culture project in Sierra Leone, and discusses the possible factors that led to the non-implementation of the extension phase of the project. Working paper 12 evaluates the artisanal fisheries project implemented at Cacheu in Guinea-Bissau, and discusses the project's contribution to eaployment and protein supply in Cacheu. Working paper if 13 evaluates artisanai fisheries projects in Senegal and discusses their contribution to national income and Gross Natjonal Product (GNP).

by

T.R.Brainerd

1. Introduction

During the early 1960s, Ghana's fishing industry developed from a predominantly traditional canoe fleet to a mixed traditional-modern fleet with fishing craft ranging from the canoe to factory travler. This rapid development was due mainly to the need for providing more animal protein to Ghana's growing population, to conserve foreign exchange by reducing the importation of fish, and to create employment opportunities.

The domestic catch increased from 42,653 tons in 1962 to 157,578 tons in 1970 , an average annual increase of 30 percent (Nyanteng, 1981). This increase was likely due to increased motorization of canoes (about 50 percent motorized by 1967), the provision of funds to Ghanaians under a "Charter Party Scheme" to purchase inshore fishing vessels, and an increase in the deep-sea fleet to 45 vessels, (including trainlers, sejners, and one factory ship). However, by the late 1960s the deep-sea fleet which initially accounted for about 3 ? percent of the annual catch had a number of setbacks. Its annual catch decreased about 50 percent as a result of the loss of external fishing
grounds due to the extension of dedes by otner coastal countries, the lack of spare parts and equipment for fishing vessels becaust of foraign exchange problens, and poor managersent of the fleet.

The whariaian covernaent requested assistance fron the Food and Aoriculture Urganization and the Interrational Bank for Reconstrucsion and Developnent ($\mathrm{PAO} / \mathrm{DBFi}$) to review the status of its fisaing industry, and to inake recomendations for reorgenization and inpruvenent. The $\mathrm{FAO} / \mathrm{LBi}$ io Gooparative Progran lission which visited unnana in June 195'7 identified the inshore fisnery is a possible area for increasing fisa production because insnore vessels can exploit polagic stocks further off-shore, out of the range of the canoe fishery. after considering tha recourandations of the mission, the inaniaian vovernnent sumpitted a proposil to LuRD for funding , tite construetion of insnore fisning veissels. A project was prepererl, appraised, and accepted for funding by IBRD. Tnis project was called the Gunana fisheries Project.

One principal objective is to eveluate the windid Fisneries Project. A brief description or the project with the revision to its allajor coaponents is preseated in section 2. S'ection 5 contalins a detailed finducial dialysis of the project Ärsiniag vessels. 'ine pruject perfornance is assessed in section t, and the papor concluder with a sumnary of the results of the evaluation.

2. Description of the Project

The fovernaent of Gnana subaitted a request to the World Bank for financinó the project in Aujust 1900. 'ine project was dppraised in september/Octuber 1yoo and world Bank credit jecane effective in January 1y7u. Ine objectives of the orioinal project were to expand the fisning industry, to save foreign exchange by reducint; inports of fisit, and to contrisute to the inprovenent of nutrjtion jin unnana.

The original project included five conponents.
a. The design and construction of tu fisminc vessels, each having an overall leath of aporoxinazly 43 feet, and hold capacity of approximately $2 \cup$ tons, fully equipped for purse seine opłretion.
b. The provision of Loans or other forus of credit to fishernen or rishin onterprises 0 tarough the A_{g} ricultural Developnent Bank ($A_{1} \mathrm{~N}_{3}$) for the purchate of the fisning vessels.
c. Ine procureant of spare parts for the tu versels.
d. Provjsion of mana, ement stitif for tile Boatyard Division.
e. strudies ror the juprovenent, expansion and developaent of Iisneries in indna, includiniz: detalled engirnering stuijas at the fisming port of Tena, conparative preliminary endineerjas studies at the finginis ports of Blnina and fiunford, and detailed en;ineering studies at
either tine fishins port of Elnnina or the fishing port of Ilumford.

The present analysis covers the tirst four conponents only. The to purse seiners financed under tine project were expected to averaze 75 trips each year, and to fisn for sardinella between July and October. The average annual catch par vessel was estimated at 225 tons (three torm par trip). Tne annual increase in total production wis estialated at $9,(0)$ tons. Tnis should have provided a valuable addition to annual protein supplies for consunption, and oreated enployment opportuinities for approxinately Ju^{\prime} fisnernen. 'ithe construction of the fo vessels would enable the Boatyard Division to operate at rull capicity durine the construction period.

Betinean January 197J (the tiate the credit becane effiective) and Augist 1971, an increase in tile construction costs of tia vesuels, and iatoradion on tad level of the fish stochs to be exploited vy these vessels led to inajor revision in the projert components.
tine proposed nuaber of vesiols was reluced froa to to 1U, with a change in thenr design to allo:r for tramling as well is purss seining. line Boatfard completed tile construction of the 10 aulls by aid-lyil. afine wore fitted witn engines and ancessorles and startal fisning operations in dejpteriver 197%. The tenta vessel started fisaninä operations in July 1\%\%. An allocation vir vos.alju, w was made to the Abricultural Developnent bank (ADB) in viatila for
technical assistance, and an ailocation of U.is.alou, OU was nade to the Boatyard Division for the purenase of equipnent. (Both allovations were made of (BRD).

The forld Bank provided credit for U.s's.ibl 3 million to cover 55 percent of the costis (ioreign exchange components) as follo:n:
a. U.S.M3j,0VU for inaterials, couponents, nets, and gear for fisinin's vessels.
b. U.B.BIN,N for spare parts and equipuent for the Boatyari Division.
c. U.S.iplj, uJ for staff for the Boatyard Division.
d. U.S. 2j30, (N) for consultant's services for haroor studies.
e. U.N.ゅ.i7v, Nu as unallocated.

The finanaian woverment contriouted an additional U.S.Bl.J miliion to cover the rest of the cost of the project.

The total cost of the j-yuar project at appraisal was U.i.32.j million.

3. finianciad analysis

Pra innancial analysis consists of two parts. The first, ex-ante part deals with the analysis of the estinated annual incones and finameial ratios of the three vessel types (purse seine, trawl, purse seine/trawl) under the assumptions wade at the project appratat. Nine second, ex-post part analyzes the actual annual production costs and
financial ratios over a 3-year period for the 10 vessels that operated, and then conpares the tiwo results.
3.1. Estimated Annual Incones and irinancial Ratios
of thie Ihree Vessel lypes
Purse Seine. Ihe estinated annual net varnings for a purse seine vessal is 9,733 cedis (dypendix 1). with a U-jear operatin's life, the Internal Rate of keturn (iizi) is 15 percent. Ine Uperatin; Ratio (which is the operating exponses divided by the revenue) is 59 percent (Table 1). This ratio indicates the avility of mandenent to control the operating costs. As a rule of thant, littinger (1932) reconnends this value be between 50 percent and 30 percent. The value of 69 percent snows that the vessel is expected to nake didequate returns on its operations.

Phe return on sales (which is the net incone divided by the revenue) is y parcent. This vaike suows how larage en operatins narjin the vessel has on its sales. In general, the value depends on the nature oif the activj.ty. If tine sale of the product or nerchandse is cuntinous throughout the yeer or seison, and tine deaand for it is fairly high, then the ratio need wot oe nisgn. For these tinree veasel types, the purse saine vessel opuration is ni.shly seasonal,

TABLE 1. ESTIMATED FINANCIAL RATIUS FOR FIEHING VESSELS GHANA FISHERIES PROJECT

while the operations of the other two vessel types are year round. This suguests that tine return on sales ratio should be higher for the purse seine vessel to allow for a wide enough margin for it to operate.

The return on assets (which is the operating incone divided by the assets) is 20 percent. This value indicates the earning power of its assets, and is vital if this yessel is to coapate with other enterprises for funds. A crude rule 0 i thun is that, once the business is oparating at norual capacity, the return on assets should exceed the cost of capital aid dedsured by tne bank lendiis rate to industries, provided that there is no interest suosidj (uittinger, 1932). No data is availaole on the bank lending rate in Gnana, but it is possible that it was lower than $2 v$ percent at the besinuing of the project.

Appendix 1 gives the gnnual production costs of a purse seine vessel under the s:ane assumptions. the estimated average total cost par ton of fisin for a purse seine vessal naking $\%$ trips a jear, and catching an averaye of three tons of fisn par trip is 114 cedis, and the estinated averuje varjethe cost par ton for the sane vessel is 34 cedis. Ine zuerase price par ton is 140 cedis, and the profit per ton is 20° cedis.

Pravier. the estinated annual net earninss for a trawl vessel is 13,0us cedis (appenujx 2). . Iitin a 10-year operating life, the Interral kate of Return (IikR) is $2+$ percent. line operating ratio of 73 parcent is within

Gittinger's reconnended runge and indicates that the vegsel can make adequate returns on its operations. The return on sales is 22 percent. The return on ajsets is 23 percent (Table 1), which likely is greater than the bank lending rate to industries in whana at the tiae of the project's appraisal.

Appendix 2 gives the annual production costs for the trawl visizel. Rile estinated averaye total cost per ton of
 annual averase of 1.13 tons per day is 201 cedis, and the estinated average variable cost jur ton is 170 cedis. 'lhe averase price per ton is $2 \notin u$ cedis, and the profit per ton is $3 y$ cedis.

Purse Seine/Irawler. Ihe estinated annual net earnings for a purse beine/trawl vessel is 13,914 celis (appendix 3). With a 1 -year oparating life tiae IRR is 20 percoit. The operating̈̆ ratio is 77 percent and is witain üittinger's reconinended range, indicating that the vessel can ake adequate returns on its operations. ine return on sales is 22 percent. The return on assets is 25 percent.

Appendix s gives the anatal production costs for a purise siaine/travl vessal under the siane assunptions. The estiad. d diveraje total cost per ton is lif cedis, and the estinated arerex variable cost par ton is 123 cadis. The eistimatad dvertse price oer ton for booth purse seine and trevil operations is lig cedis.

In sumary, the purse seine/truw vessel has the
highest annual net earnings $(13,91+$ cedis), and the purse seine vessel has the lowest ($7,13 j$ cedis). The trawl vessel has tile nighest Iat (24 percent), and the purse seine vessel has the lowast fii ($1 . j$ percent). The finarial ratios indicate that the purse seine vessel has the hishest return on sales (31 percent), and the lowest operating ratio (50 parcent), i.e. the lowest operating expenses to revenue" The annual production costs estinates show that the traisl vessel nds the nighest profit arorin with respect to the average price per ton of fish.

3.2. Net Revenues and financial Ratios of the 1u Vessels

We now examine the net revenues and financial ratios for the 10 purse seine/trawl vessels that actually operated. One vessel was fitted with an engine of nigher horse power tnen tine others, and its cost, including the trawl net was $3,1 \geq 3$ cedis. The cost of the otner 9 ressels, includines trawl net was $57,4 j$ cedis eam. Ine cost of the purse seine net ins 23,132 cedis. straisnt line depreciation is used in the calculations. The variaple costs are luiped together in the data, thus the variade cost factors cannot be iteaizad. Inere is no data on the number of fisning trips or fisnine days, and no data on catch per trip for the vessels.

Tale 2 dives the net revenues for the iv vesiels. Rapid inflation and inport restrictions caused averase costs for individual vessels to increase considerably. lhis increase in costs range frou ty percent to 30 J percent, wile average revenues increased up to $20 J$ percent. Host of the vessels were uravie tij cover their costs. During the first year, all nine vessels that operated covered their averaje varidule costs. rour vessels did not cover their averaje total costs. 'iso or these four vessels discontinued operationis ifiter tine first jear, one of the two vessels sunk.

TABLE 2. NET REVENUES FOR 10 PURSE SEINE/TRAWL VESSELS GIIANA FISHERIES PROJECT

Vessel No.	Net Revenues (Cedis)*		
	July 1973-June 1974	July 1974-June 1975	July 1975-March 1976
1	3652	--	--
2	14175	-4157	4506
3	1119	1669	1502
4	-4003	-4757	-8534
5	6055	--	4580
6	15132	-327	-1505
7	-2565	-8938	-9887
8	3232	-11133	2348
9	--	-6824	--
10	--	--	9011

*2.75 Ceris $=$ U.S. $\$ 1.0$ (USAID Country Profile, 1983).

During the second jear, orny six vesisels oparited. Four of them covered their average variable costs, while tw veisels did not. Only one vessel covered its averace total cost. (It is likely that there were serious design and/or managenent problens that affected tne operations of these vesselis.) During the third year, eight vessels operated, seven covered their average variable costs, and six of these seven covered their averaige total costs.

Appendix 4 fives the financial ratios for the ten vessels during the 3-year period. Tnere was a wide variation in the operating ratios of these vessels. Given the rule or thuinb (between $j J$ percent and 3) percent), some values are worth nention. Three vessels had their operains ratios velow $\bar{\chi}$ percent for the first year of operation. Inis maj indicate that some costs nave been onitted, or were not reported. Inree other vessels nad their operating ratios within the expected range for the first year. The ratios for the renainin's vessels were over 30 parcent. For the second and third jears, the operating ratios showed similar variation, but were higher than the first year, and for two vessels, the ratios were over lu percent. The return on sales ratios also varied considerably for the first yeur. Two vessels ned low ratios compared to the other veisels. for the second year, two vessels had low ratios, and three vessels had negative values indicating that the net incones ware negative. The ratios for the third year showed that one vessel had a low value, and one
vessel had a negative value indicating a negative net income for this vesisel.

Assuaing that tine cominercial bank lending rate was above 13 percent, the return on assets ratio exhibitad values likely below the bank lending rate to industries for six vessels for the first year of operations. For the second year, the ratios for all operating vessels were likely below the bank lending rate to industries. Inree vessels nad ne, ;ative values indicating negative operating incones for tnose vessels. for the third year's operations, only two vessels had ratios that were likely avove the bank lendinz rate. One vessel had a nesative value.

The results of this anelysis show that there were serious prooleas with the operations of these vessels. Only one vessel covered its costs (both fixed and variaible) duriads the j-jear operations of these vessels. Another vessel covered its costs during the two years it operated. (It did not operate during the second year). One vessel covered its costs during the third year it opserated. All other viessels did not cover their fixed costs throughout their operations. One vessel covered its variable costs in the first jedr only.

For these vessels to continue operations in the snort-run, they nust cover their averag variable costs, and for then to continue operations in the lonsrun, they aust cover tneir fixed costs also. It is evident that only one vessel, posisibly two could have continued oparating in the
lons-run. (Une os the two vesishs ondy started operating in the trird year). Several factors could have been. resporsiole for the overall poor parforannce. It is likely that thare were irequant oreakdowis of enjines and equipuant. inis could nave disrupted risning operations and aliso increased repairis and inaintenance custis considerably. spare partis could nave ocen diricicult to obliain, and their costs lirely increased durina tile oparation of the versels. It is pusioiole that vessel owners lacked managenent asills. so data is available on the number of trips and trae catch fate, tnus it is not possiole to indicate whetner the Vessels nad low eaton rates.
tine resultis of the finincial analysis of the 10 vessels are conpared with the resultis oi the financial dnalysis of tine purse seine/brawl vessel using the disuuptions ande at tile project's appraisitl. Jnly two vesselis outained net revenues close to the appraisal estianate during tne first jear of operations. rior the uther vesibels, and fior tale rest of̂ the periou, the net revenues were luwer tinth the anjraisal estinate. ror soud vesiois, the nex revenues were nesjaive. Une would lave expected tale net revenues to de nigunc inince tns ex-vesiel price of. fisil wisi aluch nigher tilail at tree time of tas dypraisan. however, cuitis ruse nuch fister than revenulis, ald there were considerdole variations In the averiaje costa ur operathuns of these vessels during tale parivd.
line oparatino ratius fur the iv vesiels alsu varied
considerably. Sone ratios were auch higher than the appraisal estinate, and a few were lower. 'The evidence suguests that thej were unable to control operating expenses. Most of the vessels had fairly hish values for return on sales. This shows that there was no problen with the sale of the products, and that prices were high enough to bring adequite returns on sales. The return on assets ratios for the 10 vessels were auch lower than the appraisal estinate, except for one vessel. finis indicates that these vessels did not cover the costs of capital.

These large differences detween the values for the 1 ? veisiels and the appraizal estinates enpasize the need for sensitivity analysis to provide insi.ght to the economic viability of the operations if conditions change, or if vrong assumptions were made ducing the appraisal of the project. Phe next section presents a sensitivity analysis of tne purse seine/trawl vessel oparations usinis the assumptions inade duringr the appraisal to see wat sort of econonic problens could hive been prepared for.

3.j. Nensitivity Analysis

Seasitivity analysis is usaiul for project plannine because dateln rates can drop, prices rise or fall, or opseratin; expenses could incresise consideranly, day of wioh nay aifert the feasioility of the projuet. so data is available on the catch rates for this trpe of vessel, and there is no inforaation on price variation, whether
seasonal, or over a period of tide. Thus, there is no data base to perform any statistical ainalysis tinat would indicate the degree of varianility in these factors. Our approach nere is to vary within reasonable bounds the expected averase caton and averase price values to determine whotner fisming oparations are econonically viaple under these changed conditions. Ihe averaje catch per trip ror purse seine oparations is adjusted to plus and ninus 2.0 percent, and tha averase caton per day for trawl operations is adjuited to plus and minus j) percent. ine average prices par ton for tiae catcnes of botn operations are adjusted to plus and airus lu cedis.

The sen: i.tivity analysis snows sl.snificant conanges in the Lavor costs (Apreadices 1 to 3). Phis is because of the share systen used to conpute the lapor costs. Since lavor coista are conputad as shares of the ate darnings firon the salle of ifisu, enanges in earnines lue to a price change, an increase in operating costs, ete., affect labor costs. All otner variaile cost íactors are not affected by these adjustments.

Ine averaje coits sion aignificant variations (up to 27 purceat) particularlf when the averaje catcin and the average prices are reduced. ine averaje total cost values indicate thit at Least jo parcent of tha ceatel suould be nish priced firm (average jrice per ton $=2+\cup$ celis) if the vessel is to continue opereting in the Lorbriun. dith the results ootainad froad the anslysis of the operations of the iv
vessels, average costs ror individual vessels increased up to $3 j J$ percent, and average revenues insreased up to 2ω percent.

It is evident tisat the changes in the sensitivity anculyis soould have been of nuen nigner wagnitudes, but there were no objective evidence for neasuring likely variations that could account ior such chandes. Durind tha Life of the project, tinere was in uphard trend in prices, and the costs oir repair's dal equpant roze rapidly. Host of the factors responsible for the uprard trend in prices were oxogenous, such as the slobal effect of rapin increases in oil prices in the early 197js, the effect of iaport restrictions oy the fugnaian vovernant, and the filling value of the cedis dgainat the United States dollar. Since these fictors did not exist at the tiwe the project was appraised, they could not nave been considered in a sensitivity analysis.

t. Assessiment of the Project's Performance

Ous assessment of project periornarice consists of deteruining wetiner tine project succeedel in fulfilling its objutives, includinj ldentirfiná plainule causes of aily Irsillire to do so.

The first ubjective patis eapaisis on expanding the riabing industry in indal ine revision nate to the project compents redued the number of vesselis constructid from tu t) 1 . H .nese 10 vessels accounted for tiw percent of the
total number of induatrial fisinins veiseis (insnore and deep Sea) between 197j and 197j, and for only 0.1 percent of tine total nuinber of fisinine craft (artisanal and induatrial) over the sane pariod. During this pariod the fishing industry in sinana experienced serious setbacks. Prior to 1973, the number of fisining vessels reached their nighost (3j3 industrial vessels, and 3720 artisanal canoes in 1972). Since 1973 the number of insain' vessels declined steadily, especially tike nunver of industrial vessels (Nyanteng, isul; p.12). Between 1975 and ly7j, there was a 15 percent decrease in the nunber of industrial fishing vessels. (Ine nunber of artisanal inining vessels decreased from 1972 to 197j, rellidned constant until 1975, and then continued to decline.) since the reduction in the number of industrial vessels was $1 j$ percent, and the 10 versols accounted for only two percent of the total nuibur of induatrial vesisels, the project neither caused any expansion to the lianins industry, nor prevented its decline.

Various factors could have been responsible for tile decline in the fibinins industry. here vere two loan senenas to fibabram prior to the roraulation and impleanatation of tais project. Une was tale "Undrter Party smeue", providinc iunds under nine purchasa dureenent iy ins vidnaizal voverndent ror purcilainj insaore fisulnä v:ests. inis schede incredsad the number of insmore
 197Je (Nifuntenjr 1931). Ine second senene provided loans to
artisanal fisnermen for purchasing outboard ongines. Spare parts and repair facilities were also provided in large towns and villdges. By 197j, the country was faced with foreign exchange problens, and the importation of equipnent and spare parts for these scheilus suffered savere reduction. pisning vessal operations were seriously aftected by this provlea, and so:ae vessels were laid up. 'ine distant watar fleet also lost ancess to fishing srounds necause other countries extended their econonic zones.

The annual total production of the 10 vessels wris 737 tons, $43 j$ tons, and 423 tons for 1973, 197t, and $197 j$ respectively. These $\mathrm{fi}_{\text {surus }}$ fell far below the appraisal estidate of $22 . j$ tons per vessel. The total annual production oased on this estimate snould have been 2,25 tons. Ine 1975 groduction wnich was the nighest was only 50 percent of tine estimated value. The actus L contributions of the 10 vesious in the total donestic production for the three yrars were J. + percent, $J .2$ percent, and 0.2 parcent respectivel.y.
the internal date of Return (ixi) Ior tile 10 vesiselis was also low. ine nignest hid was lu perceint. rlost vessels nad values lass titan one parcent. In sode cases, the total operatins costa exceeded the total revenues. for these versels to de dile to phy-ofir tile loansin five years, they nust earn an Lili of at ledst 20 percent. Despite tinis extrenely low rate of return, the loans on soven of the vessels were repaid witnin five years (one was fully paid by
the insurance). The loans on threa iressels were still outstanding, one of which had repaid only c? percent of the loan at the end of the j-jear loan period. fro:n the results, it is impossible for the loans to have been paid fron the revenues of these vessels. 'two possiole reasons could be given for the repayaent of the loans. Bi ther the vessel owmers/tisnernen gotained funds from other sources to repay the loans and avoid defaultins, or there was considerable under reportins of the revenues, and over reporting of the operatino costs, Nyanteng (193) suagests that sone local fishing vessels ware discherging fian in neifhiouring countries to earn hard currencies.

Ine per capita rish consuaption in cinana increased fron 19 ky . in 1900 to 53 k. in 1972 (Nyanteng, 1931). During the period tine 10 vessels operated (fron 1973), the per capita fish consumption decreased, and in 1975 it was down to 20 . The anall level of production did little to prevent this drop in consunption. ine iv vessels could have created about $1 W$ jobs for fimerata assumino that iv fisnermen were working on one vessen. Rhis nuaber is far short of the estiaated ow jobs that the projec was suppoasd to create for fisineraen.
'Ine Foatfard Division suffered considerable delays during the construction of the 10 vessels vecause of lack of materials and equijnent. inis was due to the roreign exchange problew in cintana. The buatyard Division wew only aide to continue construction of the vessels after lija wate
funds available due, to the reduction in the nunber of vesselis that was constructed. Ane Division also lacked efiricient nandonent at the tine the vessels were constructed. ixpatriate technical assistance wnich was called for in the project document was never provided. Ine financial statements of the soatyara Division did not separate the project's costs and revenues from other costs and revenues incurred in its seneral operations, thus the perfornance of the Boatyard Division durins tine project could not de deterained.
iwo otner fiactors are relevant to this evaluation. iThese are the procuranent procedures that were followed by the project for obtiainé enorines and equipaent for the vessels and the boatyard Division, and the institutional structure under waich fisineries develomaent activities were deinf undertaken. ihe procureaent procedures, outlined bj IWHD ild folloved $0, y$ the project, estaiblisned speciric guidelines for internationall bidding aid the acceptance of vidders. Anere ware considerable delays partioularly with the procurenent of ensines for tine vessels. risneraen Wanted elloines that tiley were already lamiliar with, out the ouidelines were not sufficiently flexiole to acconadate tneir requesta. By the tine da agreement was fiaduy reached, wate costs of the enjines nad increased sifonificently. Sucn delays could have been avoided in the apprajseal tean had included this consideration in the project.

The developinent of the figneriey seetor in thana was the responsibility oif different institutions witn little or no coordination of their untivities. lne frisneries Departnent was responsible for iaplenenting the otner two schenes, and for general extension and developuent zorivities. Like lisineries Researcin Unit (FRU) was responside for all fisneries researcin activitias, ق.g. stock disessnent, diolo;ical studies, atc. Ine Boatyard Division dds under tre wandienent of the vinana Industriad Aoldine Corporation (xiliov), and tae Agricultural Developinent bank (ADB) was an autononowia institution. inere i:s ao evidence that iny attenpt was iatde to develop a structure or franework for coordinating tile activities of tnese institutions. he Pisneries Departalent could nave contriouted to the desi.gn and inplenentation of the project, givan tile experience tire Departaent had over tine fears with fisineries developant acrivities. ine dird could nave provided intoration on the stook level for the appraisal tedia to deteraine mether an increase in the nuaber of insare vesselis cound hive oesa economically iessible. It Was dpparent that the ailu in tilama lacked expertise in fibneriョs, and was not fatiliar vith the activities or the fisning industry. If a fradewors for ooordinatins the dativities of taese institutions ajd deeni in oparation, soide of the prowleas trat areated ajar ajtioners to the inpledentation of the project could have been avoided or ainiaized.

5. Conclusion

The projert did not succeed in expanding the timano induatry. Ins 10 vessels were only two percent of the totell nuaber of industrial vessels, and $J .1$ percent of the total. numiver of fisning orat'ts at that tiale. (Rae total nunber of industriai vessels declined by 15 preent during the project period.) Ine data for tate threa jears snowed that the 10 vessels contrijuted less tilan J.j percent to the total douestic production over this period. Inis level of production is not lisaly to nave contributed to the inprovenent of nutrition in diana. ioreover, the per capita fisa consuption foll by 7.0 sos. durins tinis pariod. ine nunber of: joos areated by the project for fismerden was likely around 1 W. linis was far sinort of the estinated $J J$ joos that the project was supposed to pruvide to fishernen. Ine findacial analjsis of the oparations of the 10 vessels shows that none of onden were able to odatain an
 nost of these vesisels the ind was less than one pereent, dud there inere obes witn total costs erceedins total revanes. This extremely lo:v rate oí return could have created prowleas ior vessel omers in neating tile loans dreeaent, but the loans on aeven vesiouls vere fully paid within tine loan period. int possible explanation for this is tnat venisel omers ivere dole to ontain fiunds fro:a otner sources, or tile reports of the operations or the 10 vessels were
inaccurate. Also, none of these vessels were able to obtain the estianted armued caten of 22) tons. Ine nighest anual catch was $1+\mathrm{v}$ tons.

There were protracted delays in the construction of the vessels. At first, the inuber of vessels was reduced from to to 10 because of inforaation released by the find that the fisn stocis could not sustain such a nigh level of narvesting. Next, ilsmermen wanted the suatyard Division to install engines tinef ware iamiliar witn on the vessels. beculse or the procureadint procedures set by [Bidy, it was not possidle ior the boatyard division to neet tneir deand, and a ansiderable tine elapsed before the issue was resolved. ine Boutyard Division also experienced delajs due to restrictions in tae iaportation of atatarials and equipaent for tile construction of the veasels. wo technival assistance pas providel to the Boatjard jivision as called for in the project docunent. It could have perforned better if tecimival assistance uxis provided to anage its :xtivities.

Altnough the project fas iapleamatad at a tine when there was a jeneral dechine in tre ïisains industry due to the econviac aituation in wilun, the project could have perroratid better iil the various inscinuthons involved in fisneries develognent activities in Guland coordintad their activities. hiere is evidence that there was conpleta lack Of knowledge on sulue aizects durilis' the fornulation of the project, aind that isey isisneries institutions were not
consulted.
In sumuary, the project did not create an expansion to the fisaino industry in inaina, nor signiricantly save forejoul uxchaige. dar fewer jobs ware created than envisajed. ine results froa the analysis show that vessel owners reaoed little, if any benefit and the country gis a whole did not oenefit econo:nically fro:d tne project.

Gittinger, J. Price ly3 . Icononic Analyais of Agricultural Projects. Second Rdition, Conpletely Revised and expanded. BD Bries in Beononic Development, Johins ropkins Univ. Press.
ivjanteng, V. K. 1301. ireads in Fisin Prices gind Inplications for the Jevelopnent of the Giamaian rishing lindustry. CWAir/Tecn/31/33 (en).
appendix 1: estimated annual production costs aidd gross earnings for puese seine vessel (cedis) ghana fisheries project

No. Trips/Year	75	75	75	75	75	75	75	75	75
Av. Catch/ Trip (tons)	1	1	1	2	2	2	3	3	3
Av. Prica/Ton (cedis)	130	140	150	130	140	150	130	140	150
Gross Earnings	9750	10500	11250	19500	21000	22500	29250	31500	33750
Fixed Costs:	6860	-:6360	6860	6860	6860	6365	6860	6360	6860
$\square^{\text {Eoat G Equipment }}{ }^{\text {a }}$	3100								
-Gear ${ }^{\text {b }}$	900								
- Insurance	2400								
${ }^{\text {S Standard Tax }}$	250								
${ }^{-}$Fishing License Fee	50								
- Harbor Fee	160								
Variable Cosis:	10907	11157:	11407	14507	15007	15507	18107	18357	19607
- Diesel Fuelc	1950								
${ }^{-}$Lubricaring Oild	637								
${ }^{-10}{ }^{\text {a }}$	525								
- Food	495								
- Rul1, Engine \& Equip. l'aintenance ${ }^{\text {E }}$	2000								
-Gear maintenance ${ }^{\text {h }}$	2250								
${ }^{\text {n Labor }}{ }^{\text {I }}$	2050								
-liscellancous	1000								
Total Costs (cedis)	17767	18017	18267	21367	21867	22367	24967	25717	26467
Total Catch (tons)	75	75	75	150	150	150	225	225	225
$\begin{gathered} \text { Av. Total Cost } \\ (\text { cedis } / \text { ton }) \\ \hline \end{gathered}$	237	240	244	143	146	149	111	114	118
Av. Variable Cost \qquad	145	149	152	97	100	103	81	34	87

Hole: The Internal Rate of Return (IRR) with av. catch/trip of 3.0 tons and av. price/ton of 140 cedis, assuming 10 years economic lize of vessel, is 15%.

FOOTNOTES, APPEIIDIX 1.
${ }^{\text {a Cosí }}$ of vessel ε equipment $=4090,000$ cedis. Straight line depreciacion with 9,000 cedis salvage value after 10 yewrs.
${ }^{\mathrm{b}}$ Cost of̈ gear $=9,000$ cediz. Straight line depreciation. No salvage value
${ }^{\text {c Seventy-five trips at }} 13$ hours per trip at five gals. per hour at 0.4 cedis per gal.
$\mathrm{d}_{\text {Five percent }} \mathrm{Gi}_{\mathrm{F}}$ diesel iuel consumed 2 t 2.60 cedis per gal.
eAveiags of helf ton tc one ton of fish at 14 cedi- per con.
$\hat{S}_{0.30}$ cedis pir head for 75 trips, est. 22 fishermen per trip.
$g_{\text {Five percent of }}$ cost.
$h_{\text {Twenty-Eive percent of cost. }}$
$i_{\text {One-third }}$ gross earnings afier deducting costs of fuel, lubricating oil, ice and food.
2.75 CEDIS $=$ U.S. $\$ 1.0$ (USAID Country Profile, 1983).
appendix 2: estimated annual production costs and gross earnings for trawl vessel (Cedis) GHANA FISHERIES PROJECT

No. Trips/Year	320	220	220	220	220	220	220	220	20
Av. Catchy Trip (tons)	0.68	0.68	0.68	1.18	1.18	1.18	1.68	1.68	1.68
Av. Price/Ton (cedis)	230	240	250	230	240	250	230	240	250
Gross Earnings	34408	35904	37400	59708	62304	64900	85008	88704	92400
Fixed Costs:	11480	11480	11480	11480	11480	11480	11480	11480	11480
- Boat \& Equipment ${ }^{\text {a }}$	3550								
-Gear ${ }^{\text {b }}$	4800								
- Irsurance	2670								
-Standard Tax	250								
-Fishing License Fee	50								
SHarbor Fee	160								
Variable Costs:	30339	30839	31339	39799	40666	41533	49250	50493	51726
-Diese1 Fue1c	14784								
- Lubricating Oi1d	4805								
-Ice ${ }^{\text {e }}$	2100								
Foodf	1320								
-Hull, Engine \& Equip Maintenance ${ }^{\mathrm{g}}$	2500								
- Labor ${ }^{\text {r }}$	3830								
aMiscellaneous	1000								
Total Costs (cedis)	41819	42319	42819	51279	52146	$\frac{53013}{260}$	60739	51973	$\frac{63206}{370}$
Total Catch (tons)	150	150	150	260	260	260	370	370	370
Av. Total Cost (cedis/ton)	279	282	286	197	201	204	164	168	171
Av. Variable Cost (cedis/ton)	202	206	209	153	156	160	133	137	140

Note: The Internal Rate of Return (IRR) with av. catch/trip of 1.5 tons for 80 trips (on-season), av. catch/trip of 1.0 tons for 140 trips (off-season), and av. price/ton of 240 cedis, assuming 10 years economic life of vessel, is 24%.

FOOTNOTES, APPEIVDIX 2 :
${ }^{\text {a }}$ Cost of vessel $\&$ equipment $=44,500$ cedis. Straignt line depreciation with 9,000 cedis salvage value after 10 years.
${ }^{\mathrm{b}}$ Cost of gear: 10 trawl nets at 480 cedis each. iNo salvage value.
$\mathrm{C}_{\text {Two }}$ hundred and twenty days per year, 24 hours a day fishing time, seven gal./hour at $0.40 \mathrm{cedis} / \mathrm{gal}$.
$d_{\text {Five percent }}$ of diesel fuel consumed at 2.60 cedis per gal.
eAverage of one ton to one ton of fis'l at 14 cedis per ton.
$f_{0.60}$ cedis per head for 220 fishing days: est. 10 fishermen.
Five and one-half percent of cost.
$\mathrm{h}_{\text {One-third }}$ of sales after deducting costs of fuel, lubricating oil, ice and food.
2.75 CEDIS $=$ U.S. $\$ 1.0$ (USAID Country Profile, 1983).

APPENDIX 3: ESTIMATED ANNUAL PRODUCTION COSTS AND GKOSS EARNINGS FOR PURSE SEINE;TRAWL VESSEL (CEDIS) GHANA FISHERIES PROJECT

No. Fishing Days/Year	220	220	220	220	220	220	220	220	220
Purse Seining: Av. \qquad	3.0	3.0	3.0	2.5	2.5	2.5	2.0	2.0	2.0
$\begin{aligned} & \text { Trawling: Av. } \\ & \text { Catch/Day (tons) } \\ & \hline \end{aligned}$	1.5	1.5	1.5	1.0	1.0	1.0	0.5	0.5	0.5
Furse Seining: Av. Price/Ton	130	140	150	130	140	150	130	140	150
Trawling: Ton Av. Price/	230	240	250	230	240	250	230	240	250
Gross Earnings	79500	84000	88500	53200	61600	65000	36900	39200	41500
Fixed Costs:	10760	10760	10750	10760	10760	10760	10760	10760	10760
- Boat \& Equipment ${ }^{\text {a }}$	3550								
- Gears ${ }^{\text {b }}$	4080								
- Insurance	2670								
- Standard Tax	250								
- Fishing License Fee	50								
- Harbor Fee	160								
Variable Costs:	48483	49983	51483	40543	41676	42809	32603	33369	34136
- Diesel Fuel ${ }^{\text {c }}$	12320								
- Lubricating OiII	4004								
- Ice ${ }^{\text {e }}$	4620								
${ }^{-1}$ Food ${ }^{\text {f }}$	1368								
- Hull, Engine \& Equip. Maintenanceg	3108								
- Purse Seine Net Maintenance ${ }^{h}$	3000								
\square^{-}Labor ${ }^{1}$	19063								
Niscellaneous	1000								
Total Costs (cedis)	59243	69741	62243	51303	52436	53569	43363	44129	44896
Total Catch (tons)	450	450	450	340	340	340	230	230	230
Av. Total Cost (cedis/ton)	131	135	138	151	154	158	189	192	195
Av. Variable Cost (cedis/ton)	107	111	114	119	123	126	142	145	148

FOOTNOTES, APPENDIX 3:

Note: The Internal Rate of Return (IRR) assuming: 1) Purse Seining--80 trips, av. catch/trip 2.5 tons, av. price/ton 140 cedis; and 2) Trawling-- 140 fishing days, av. catch/day 1.0 ton, av. price/ton 240 cedis, assuming 10 years economic life of vessel, is 20%.
${ }^{\mathrm{a}}$ Cost of vessel \mathbb{G} equipment $=44,500$ cedis. Straight line depreciation with 9,000 cedis salvage value after 10 years.
${ }^{b}$ Cost of purse seine $=13,000$ cedis. Cost of six trawl nets $=2,880$ cedis. No salvage value.
${ }^{\text {Eighty }}$ trips at 13 hours/trip purse seining, seven gals./hour at 0.40 cedis/hour.
One hundred and forty fishing days at 24 hours fishing time per fishing day, seven gals./hour.

${ }^{\mathrm{c}_{\mathrm{Half}}}$-ton of ice per one ton of fish (purse seining) at 14 cedis per ton. One ton of ice per one ton of fish (trawling).
${ }^{{ }^{\text {P }}}$ Purse seining: 0.30 cedis per head for 80 trips: est. 22 fishermen.
Trawling: 0.60 cedis per head for 140 fishing days: est. 10 fishermen.
$\mathrm{g}_{\text {Five }}$ and one-half percent of cost.
$h_{\text {Twenty-five percent of cost. }}$
$\mathrm{i}_{\text {One-third }}$ of sales after deducting costs of fuel, lubricating oil, ice and food.
2.75 CEDIS $=$ U.S. $\ddagger 1.0$ (USAID Country Profile, 1983).

APPENDIX 4: FINANCIAL RATIOS FOR 10 PURSE SEINE/TRAWL VESSELS GHANA FISHERIES PROJECT

Vesse1No.	Operating Ratio (\%)			Return on Sales (\%)			Return on Assets (\%)		
	1973-74	1974-75	1975-76	1973-74	1974-75	1975-76	1973-74	1974-75	1975-76
1	39.9	--	--	60.1	--	--	13.1	--	--
2	39.2	87.5	75.8	60.9	12.6	23.2	25.2	4.0	11.1
3	55.4	74.1	79.2	44.6	25.9	20.8	10.1	10.8	7.6
4	82.3.	92.1	64.1	17.9	8.0	35.9	4.2	3.4	15.8
5	51.5	--	78.8	48.5	--	21.2	15.8	--	12.2
6	48.2	79.0	90.1	51.8	21.0	9.9	26.3	8.5	4.2
7	83.0	104.4	114.8	17.0	N	N	5.9	N	N
8	68.7	111.9	74.4	31.3	N	25.6	12.6	N	8.6
9	--	62.0	--	--	38.0	--	--	1.0	--
10	--	--	61.4	--	-	38.6	- --	--	17.0

$N=$ Negative.

