FARM IRRIGATION STRUCTURES

A. R. Robinson

Handbook No. 2

Prepared in cooperation with the Void State Ayers for International Development. (macy All) D) SAN (x)Sk All reported opinions, conclusions or recommendathms are those of the author (contractor) and not those of the landmen age ms or the United States government. Menton of commercial product wi th a
 endorsement by AlD war weer product nom memoried

University Services Center Colorado State University
Fort Collins, Colorado

Agricultural \& Irrigation Engineering
Utah State University
Logan, Utah

TABLE (IF CONTENTS

Page
TABLE OF CONTENTS i
LISTIN(; OF FICiURES iii
I.ISTIN(; ©) IABIES v
FOREWORD vii

1. INTROD)U("TION 1
II. CHANNHISANI) STRUCTURES 3
2. Delive: (hamel and Dinther 3
a. (Kambel Design 3
b. larth Ditcher 7
c. I ined Dither 12
1) Concrete I mane 12
2) Asphathe concrete 15
3) Nathome 15
4) Auphath. Plastic, Kubber Sheeting 15
5) (hemical Seafant, 17
6) Sathen Materiah 17
2. Contral Stratume 17
a. Dハision Structurs 19
b. Drops 29
©. (heck) 37
d. Turnouts, Outlet, 45
3. Water Measurimg Structures 62
a. Weirs 62
b. Flumes 63
c. ()rifices 68
4. Miscellaneous Structures 68
a. Culverts, Bridges, Flumes, Crossings, Siphons 68
b. Dramage Stractures 69
c. Automated Structures 71
d. Other Stractures 71
III. IOW PKESSURE PIPE SYSTEMS 73
5. Pipe Design 73
a. Underground 73
b. Surface 73
c. Pipeline Capacits 73
6. Siructures 77
a. inlet Structures 77
b. Pressure and Flow Control Stands 78
c. Discharge Control Structures 83
d. Miscellanecus Structures 84
IV. CONSTRUCTION AND INSTALLATION 87
7. Ditch Construction 87
8. Ditch Structures 88
9. Pipe Systems 88
V. OPERATION AND MAINTENANCE 91
10. Operation 91
11. Maintenance 91
VI. BIBLIOGRAPHY 93
VII. DEFINITION OF TERMS 95
12. Channels and Structures 95
13. Hydraulics 96APPENDIX: 1 - Concrete for Small JobsAPPENDIX 2 - Standard Drawings of SCS Structures
APPENDIX 3 - ASAE Standard S 261.5 Design and Installation ofNon-Reinforced Concrete Irrigation Pipe Systems
APPENDIX 4-ASAE Standard S376 Design, Installation and
Performance of Underground Thermoplastic IrrigationPipelines

LISTING OF FIGURES

Figure

Prage
1 Surface irrigation canal sybem 3
2 Manning equation whtion for determining canal design 6
3 Animal powered V-dteher 10
4 Tractor powered V-diteher i)
5 Suggested procedure for mechancal reconstruction of earthen channels 11
6 Typer of home the vall canal 1.3
7 Contre lated catat 14
8 Precan conctete dhand extom 16
9 A Eatm mripathn w!em 18
 19
11 Division hom wh thos io lour dacte 20
12 Semimoduie dnanor ared in india and Pahiatan 21
13 Diviourtumona wed in ley and maia 22
14 French type propertional disions 22
15 Adjusabie propurtional bloch dismor 24
16 Two-way soncect block diwor 25
17 Three-way divisor 25
18 Concrete trapesidal wo-say divisot 26
19 Portable gates tor diviow otstutures 27
20 Disibion strmene usint extmaded, pefabricated stuctures 28
21 Drop strmate ued for grade contro! 29
22 Examplè ot small drop eructure 30
23 Drop stricture combined with turnout 31
24 Concrete traperoidal drop irtuctures 32
25 Concrete arop-check 33
26 Concrete bloch drop and check veructure 34
27 Drop-chech $\operatorname{tructure}$ wate extraded concrete secions 35
28 Drop streture with prabel-roch villing basin 36
29 Typical pipe dopp streture 37
30) Sloping rock drop structure 38
31 Ditch sheck in !ined ditch with iphon tuhes 38
32 Small concrete ditch check 39
33 Wooden ditch heck, with different openings 40
34 Wood single wall check with turnout 41
35 Concrete bloch check with apron for erosion control 42
36 Conerete block check tructure 43
37 Portable cansas check with discharge beeve 44
38 Flexible, portable diteh check 45
39 Portable metal sheck 46
40 Two types of portable checks 46
41 Gated pipe outlet 47
42 Commonly used turnouts for farm irrigation ditches 48
43 Concrete pipe turnout 49
44 Wooden turnout for basin and border irrigation 50
45 Two designs of wooden turnouts 50
46 Turnout-check structure using extruded concrete sections 51
47 Neyrpic gates and modular turnouts 52
48 Trapezoidal panel outlets 54
49 Concrete orifice panel outlets 55
50 Brick masonry installation for panel outlets 56
51 Precast concrete slab installation for panel outlet 57
52 Headloss through circular concrete turnouts 58
53 Spiles used for furrow or corrugation irrigation 59
54 Siphon tubes for furrow irrigation 59
55 Large siphon with priming pump for turnout 60
56 Discharge of siphon tubes 61
57 Concrete lined ditch with bank cuts for irrigating 64
58 Rectangular weir 65
59 Ninety-degree V-noth weir 65
60 Parshall measuring tlume 66
61 Cutthroat measuring Hume 66
5? Trapenoidal measuring tlume 67
63 Broad crested weir (b-c-w) measuring flume
67
67
64 Flume for carrying irrigation water across a depression
68
68
65 Inverted si;hon made from concrete pipe 69
66 End details for siphon crossmg 70
67 Inlet stand for underground pipeline 77
68 Typical concrete pump stand 78
69 Combination gate and overtlow stand 79
70 Float value stand 80
71 Typical alfalfa valve hydram 81
72 Orchard valve hydrant
82
82
73 Gated surface pipe and tubing attached to jo:table hydrants 82
74 Open pot hydrant with orchard valve 82
75 Air v:nt for underground pipelines 85

LISTING OF TABLES

Table Page
$1 \quad$ Values of Manning roughness coefficient n for earthen and lined canals 5
2 Suggested maximum flow velocities and side slopes for lined and unlined c:hannels 8
3 Earth irrigation ditch sizes for different slopes, roughness and discharges... 9
4 Discharge capacity of spiles 62
5 Head loss in concrete pipe with concentric gasket joints 75
6 Resistance coefficient k for fittings and valves 76

PREFACE

The purpose of this handbook is to provide information on small structures used in irrigated agriculture, primarily for selecting those structures needed to improve on-farm water management. Complete information on design, construction and operation of the multitude of structures that are available is impossible to assemble in one publication. This handbook is intended to emphasize the importance of adequate control and distribution of irrigation water, emmerate some of the successful structures that are available, give a selected amount of design information, show a limited number of examples of design procedures, and give references where more information can be obtained. With the exception of low pressure underground pipeline systems, only surface systems are discussed. Sprinkler and other methods of irrigation are not covered in this handbook.

Information on small canals and structures is given for flows of less that: 0.14 cubic meters per second (5 cubic feet per second). Generally the flows will be in the 0.03 to $0.06 \mathrm{~m}^{3} / \mathrm{s}(1-2 \mathrm{cfs})$ range. Structures that can oe constructed from local materials and with local labor are emphasized. Precast structures and structures constructed from precast brick block and sections are also presented.

In addition to the extensive bibliography listed for small canals and structures, there is a section presenting standard definitions of terms used in the handbook. Appendices given include: 1) preparation of concrete for small jobs; 2) standard designs of farm irrigation structures (including metric conversion factors); 3) standards for pipe irrigation systems; and 4) standards for plastic pipe irrigation systems.

FARM IRRIGATION STRUCTURES

A. R. Robinson

I. INTRODUCTION

Surface methods of irrigation are still used on most of the 234 million hectares (1972 data) of irrigated, cultivated lands in the world with the remaining lands being irrigated by sprinkler and trickle systems (3). It has been projected that the irrigated area will increase to about 273 million ha by 1990 . An estimated 86 million ha of the world's irrigated lands have shems that now need improvement of both the main and on-farm systems for distributing and applying irrigation water. The United States of America presently (1980) has about 21 million ha of irrigated, cultivated lands, of which 70 percent is surface irrigation.

The sprinkle and trickle methods of irrigation use pumps almost entirely. Pumps require a large energy input, and initially, the systems require a large capital outlay. There is limited use of gravity pressure sprinkle and trickle systems. In the near future, the obvious world shortage of cheap fossil fuel energy will probably mean a return to gravity pressure irrigation systems. The rapidly expanding world population will den'and an increasing food supply which will also require ar increase in production from irrigated agriculture, mostly from surface gravity systems.

Water application efficiencies for surface irrigation systems a.ound the world typically have been quite low, 4()-50 percent (1i). Water conveyance efficiencies can be quite low aiso, possibly in the 40-50 percent range, due to canal and ditch seepage, leakage, and spllage. Overall irrigation efficiencies then might range as low as $28-35$ percent indicating that 65-72 percent of the water is lost to the individual farm use. Overall, the efficiencies can be materially increased with canal and ditch mainterance and lining, use and improvement of control structures, and improved on-farm water management. Good farm irrigation wates management includes all of these con-
cerns as well as reliable water delivery and a regulated flow rate. Improved water control structures, properls used, ant materially improse the use and consol of irrigation water. It is possible for many surface irrigation 9 vitems to hate water application efficiencies of 70 to 80 percent and higher

The primary purpose of this handbook is to present infomation on small irrigation chanmels and tructure that can be used to improse on:-farm water management. I.on preseme pipe stistom are also considered. The application of this infor-
 rigation water sith the cendlant increase in water for existing crops and for irrigating additional arcas. Improsement of water management on individual farms will result in higher crop yideds also.

There ba been a lack of attemtion to the design and operation of the irrigation systems at the farm level becanse government custody unally ends with the seeondary canal swiems, and farmers, either by organization or individually, operate the balance of the systems. There also has been the asumption that farm irrigation structures should be low cost and therefore, quality has been a seeondary consideration.

It is important that the systems and structures be adapted for use in different countries with consideration for availahility and existence of materials, skills, labor, financing and customs. Generally, the procedures and structural designs in this handbook are described simply. The structures are usually casy to operate, are reliable and give good, positive control. Some will require more maintenance than others. Structures and linings that require specialized and expensive equipment for installation are not emphasized. Small, low cost struciures that can be constructed entirely with local materials and labor are presented.

II. CHANNELS AND STRUCTURES

1. Delivery Channels and Ditches

The channels discussed here are tertiary and quaternary canals, i.e., the canals commonly called farm and field laterals. They supply water to farm or field outlets and turnouts. The larger canals (tertiary) are called farm laterals (USA), meskus (Egypt) and minors (Pakistan and India), while the smaller one (quaternary) are called fiedd laterals and head-ditches (USA) and murwes (Igypt), (Hgure I). The channels may be unlined earth or lined with concrece, masonry or asphalt.

a. (hannel Design.

In order to determine the channel size required, the maximum discharge, together with the desired shape of the section and an estimate of the chamel roughness, must be known. The Manning equation is the most commonly used relatonship for delermining channel discharge and will be used in this handbook.

$$
\begin{equation*}
\mathrm{Q}=C A R^{2} \mathrm{~s}^{\prime}: / \mathrm{n} \tag{1}
\end{equation*}
$$

where $\mathrm{Q}=$ discharge, $\left(\mathrm{L}^{3} / \mathrm{T}\right)$.

$$
\begin{aligned}
A= & \text { cross sectional area of } \\
& \text { ditch, }\left(L^{2}\right) .
\end{aligned}
$$

$\mathrm{R}=$ hydraulic radius-area divided by the wetted perimeter, (L).
$s=$ longitudinal slope, (L / L).
$\mathrm{n}=$ Manning roughness coefficient ($\mathrm{L}^{1 /}$) (same value for both metric and English units).
$C=1.0$ when asing metric units, I. 49 for English units.

Figure 1. Surface irrigation canal system.

The Manning roughness coefficient, n, for canals varies from 0.010 for smooth concrete to over 0.10 for channels with weeds and brush. Table 1 lists values of n for earthen and lined channels that can be used for design. The value for n should be chosen only after a careful study of the field situation.

The design problem is usually to determine the width and depth required for a
given flow with a measured slope in a given material or with a selected lining of a predetermined shape. In other situations an estimate of the discharge is required while knowing the ditch size and slope, with an estimate of the roughness (Manning n from Table 1). Figure 2 gives a solution for Equation l that can be used to make estimates of the ditch shape and flow. The following are two examples using Figure 2.

Example I

Earth canal in clay loam after weathering, clean; $n=0.022$ (Table 1).
Assume: Bottom width, $\mathrm{B}=0.45 \mathrm{~m}(1.5 \mathrm{ft})$
Longitudinal slope, $s=0 .(\mathrm{K}) 1$
Side slope, $z=1.5$ (1.5 horizontal to 1 vertical)
Discharge, $Q=0.10 \mathrm{~m}$ '/s (3.5 cfs)
Problem: Determine the depth of flow.

Solution: Solve for the E_{m} in Figure 2.
$E_{m}=(\mathrm{Qn} / \sqrt{ } \mathrm{s}) / \mathrm{B}^{* 1}=[(0.10)(0.022) /(0.032)] /(0.12)=0.57$
From Figure 2 for $z=1.5, \mathrm{E}_{m}=0.57$, then $\mathrm{D} / \mathrm{B} \cdots(0.60$.
Since $B=0.45 \mathrm{~m}$, then
$D=0.27 \mathrm{~m}(0.89 \mathrm{ft})$.

Example 2

Brick with vertical wall, mortar trowel finished surface, n - 0.013 (Table 1).

Assume: Boltom width, B: 0.45 m (1.5 fi)
Depth of section, $0.45 \mathrm{~m}(1.5 \mathrm{ft})$
Freeboard. 10.15 m (0.5 ft)
Depth of tow, D - 0.30 m (1.0 ft)
Longitudinal slope, s : 0.0)
Side slope, 8 ()

Problem: Determine the discharge.

Solution: From Figure 2, for D/B $=0.67$ and $z=0$ then $E_{m}=0.28$
$E_{m}=(O n / s) B^{i}$ or

$Q=0.083 \mathrm{~m}^{\prime \prime} \mathrm{s}(2.93 \mathrm{cfs})$

Table 1. Values of Manning roughness coefficient, n, for earthen and lined channels (30).

Type of Channel and Description	Roughness coefficient n		
	Minimum	Normal	Maximum
A. Excavated carthen channels			
a. Straight and uniform			
1. (lean. recently completed	0.016	0.018	0.020
2. Clean, after weathering	0.018	0.022	0.025
3. Ciravel, miform sction, clean	0.022	0.025	0.030
4. With short grass, few weeds	0.022	0.027	0.033
5. With long gras and weed	(0.030	0.040	0.045
b. Winding and tugeish			
1. No vegetation	0.023	0.025	0.030
2. Ciras, some weed,	0.025	0.030	0.033
3. Dense weed or aytatic plants. in deep channch	0.030	0.035	0.040
4. Larth botom and rubble sides	0.028	0.030	0.035
5. Stony bottom and weedy banks	0.025	0.035	0.040
6. Cobble botum and clean sides	0.030	0.040	0.050
c. (hannels not maintained, weeds and brush uncut			
1. Deme weeds, high at flow depth	0.050	0.080	0.120
2. Clean bottom, brush on sides	0.040	0.050	0.080
3. Same, highest sate of thow	0.045	0.070	0.110
4. Dense brush, high stage	0.080	0.100	0.140
B. Lined or built-up channels			
a. Cement			
1. Neat, mooth surface	0.010	0.011	0.013
2. Mortar	0.011	0.013	0.015
b. Concrete			
1. Trowel timinh	0.011	0.013	0.015
2. Float finish	0.013	0.015	0.016
3. Finished, with gravel on			
4. Unfinished	0.014	0.017	0.020
c. Brich 0			
1. Cilased	0.011	0.013	0.015
2. In cement mortar	0.012	0.015	0.018
d. Masonry			
1. Cemented rubble	0.017	0.025	0.030
2. Dry rubble	0.023	0.032	0.035

Figure 2. Manning equation solution for determining canal design (30).

Note that the amount of flow is inversely proportional to the roughness, n; i.e., an increase in roughness decreases the discharge in direct proportion; with shape, slope and depth remaining the same. If the discharge remains constant and the roughness increases (such as from growing vegetation), then the depth of flow must increase

So that the ditch is not overtopped, there should be a freehoard (distance from the maximum water surface to the top of the banks) of at least 15 cm (6 in .) for the small canals. The baaks tend to lower with seasoning, aging of the canal, and use of the banks by traffic.

b. Earth Ditches.

Unlined earth ditches are the most common means of conveying irrigation water to the farm fields. Unlined ditches are preferred by many farmers because they can be built cheaply and easily, and maintained with farm equipment. Also, unlined ditches provide flexibility - it is easy to change the layout, increase capacity, or even eliminate them after a rotation and rebuild them the next season. However, they have many disadvantages that make them less desirable than lined ditches or underground pipe.

1. They occupy more land than lined ditches.
2. They usually lose more water due to seepage, leakage and spillage.
3. Rodents can cause leakage.
4. If weed growth is a problem, frequent cleaning is needed.
5. Earth ditches can erode and meander, creating problems in maintaining straight and proper alignment.

The slope for an earth ditch may be as low as 0.00018 . (Egyptian irrigation canals generally have slopes ranging from 0.00018 to 0.00020 .) However, small slopes result in slow flow velocities, large cross sections, and porsible sediment deposition on the bed.

It is customary to use a gradient of 0.001 in many areas. The slope of the ditch should be such that the bed does not erode and the water flows at a selfcleaning velocity; i.e., there is no deposition. A heavy clay soil will allow fairly high velociiiz, without eroding, (Table 2). At times it is necessary to inse:t drops into the ditch to reduce selocities and prevent scour and erosion. For soils that are normally encountered, the maximum velocities given in Table 2 should not be exceeded. tor Example 1, the average velocity for an carth canat in day loam is $0.43 \mathrm{~m} / 4$ (1.4 ft). Ion Example 2 and lined ditch, the velocity is $0.61 \mathrm{~m} / \mathrm{s}(2.0$ fos). Both of these velocition are in the afe range. For unlined diteh side slopes. the lower value (steepat sloper) given in Table 2 should be useci for cuts and the higher value (thatter slopes) for canals excavated in a fill section.

The approximate sizing of earth ditches with a side slope of 1 :2 (1 1.5) is given in Table 3 and can be used for preliminary design. With an estimate of slope, roughness factor and desired discharge, several possible ditch sizes can be determined. Conversely, with a known ditch shape (bottom width), roughness and discharge, the required depth and slope can be estimated. By using the Manning Equation (1), tables can be developed similar to Table 3 for other ditch shapes, roughness and slopes.

Ditch locations should be carefully planned to adequately serve the irrigated area. If adjacent fields are being leveled, any needed fill material for the ditch can be easily obtained. Earth ditches can be formed manually or with pulled ditchers. The animal powered V-ditcher shown in Figure 3 can be used to form the diteh. The V-ditcher is run in furrows opened by a moldboard-type plow. Two furrows are made adjacent to each other with the furrow slice thrown in opposite directions. The V-ditcher then moves the soil to form a berm on each side. Usually it is necessary to plow a second or third time to obtain more earth for the banks.

Table 2. Suggested maximum flow velocities and side slopes for lined and unlined channels (5).

Type of Surface	Maximum Flow Velocities		Side Slopes Range (z)*
	$\mathrm{m} / \mathrm{sec}$	$\mathrm{ft} / \mathrm{sec}$	
Unlined Ditches, seasoned			
Sand	0.3-0.7	1.0-2.3	3
Sandy loam	0.5-0.7	1.6-2.3	2-21/2
Clay loam	0.6-0.9	2.0-3.0	11/2-2**
Clays	0.9-1.5	3.0-5.0	1-2**
Gravel	0.9-1.5	3.0-5.0	1-11/2
Rock	1.2-1.8	4.0-6.0	1/4-1
Lined Ditches			
Concrete			
Cast-in-place	1.5-2.5	5.0-8.2†	$3 / 4-11 / 2$
Precast	1.5-2.0	5.0-6.5	$0-11 / 2 \dagger \dagger$
Brick	1.2-1.8	4.0-6.0	$0-11 / 2 \dagger \dagger$
Asphalt			
Concrete	1.2-1.8	4.0-6.0	1-11/2
Exposed membrane	0.9-1.5	3.0-5.0	$11 / 2-2$
Buried membrane \ddagger	0.7-1.0	1.6-3.3	2
Plastic			
Buried membrane \ddagger	0.6-0.9	2.0-3.0	$21 / 2$

* Eis the horisontal unit to one (1) vertical unit.
* Side sloper of $1: 1$ for small canals in clay and clay loam are common.
+ Flows in this velcoty range may be supereritical (see definitions) and difficult to control. They are not recommended except for special uses.
it Small precast and brick channcts may have vertical walls ($\%$ - -0).
\ddagger Maximum thow velocitien will depend on the cover over the membrane.

Tractor drawn ditchers may be obtained in many different designs and sizes, Figure 4. They may be adjusted manually or hydraulically. Generally the "nose" clement is at an angle with the "wings" so that when tilted, a somewhat flat bottom is obtained. The wings are adjustable for different widths. By combining tilt with wing spread, depth and top width can be
varied. In use, the first pass is not at full depth unless the earth is reasonably soft. On the second pass the tractor wheels or tracks will compact the earth moved out on the first pass. This will reduce seepage and stabilize the banks. Compaction of the banks and bed by manual or machine tamping or rolling is desirable.

Table 3. Earth irrigation ditch sizes for different slopes, roughness and discharges (33).

Flat bed before ditch is formed														Finished ditch section															
														$s=0.0005$				$s=0.001$				$s=0.002$				$s=0.003$			
														$\mathrm{n}=$	$=0.03$	$\mathrm{n}=$	0.04	$\mathrm{n}=$	003	$\mathrm{n}=$	0.04	$\mathrm{n}=$	0.03	$\mathrm{n}=$	0.04	$\mathrm{n}=$	0.03	$\mathrm{n}=$	0.04
	B	D		F		W		T		A		k		Q		Q		r_{2}		Q		Q		Q		Q		Q	
m	ft	m	ft	m	11	m	11	m	fi	$\mathrm{m}^{\text { }}$	$6^{\text {a }}$	m	ft	m's	fls	m'	ft: 5	m's	f1's	m's	fi's	m'is	$\mathrm{ft}^{\prime} \mathrm{s}$	$\mathrm{m}^{1 / \mathrm{s}}$	$\mathrm{ff}^{1} \mathrm{~s}$	m'/s	fi's	$\mathrm{m}^{1 / 5}$	$\mathrm{ft}^{1 / \mathrm{s}}$
0.15	0.5	0.30	1.0	0.15	0.5	0.30	1.00	2.6	8.5	0.19	2.000	0.15	0.49	0.04	1.4	0.13	1.0	0.05	1.9	0.04	1.5	0.08	2.7	0.66	2.1	0.10	3.4	0.07	2.5
0.30	1.0	0.30	1.0	0.15	0.5	0.46	1.50	3.0	10.0	0.23	2.50	0.16	0.54	0.05	1.8	0.12	1.4	0.07	2.6	0.06	2.0	0.10	3.7	0.08	2.8	0.13	4.5	0.10	3.4
0.46	1.5	0.30	1.0	0.15	0.5	0.61	2.00	3.5	11.5	0.28	$3.00)$	0.18	0.59	0.7	2.1	0.05	1.7	0.09	3.3	0.07	2.5	0.13	4.7	0.10	3.5	0.16	5.7	0.12	4.3
0.61	2.0	0.30	1.0	0.15	0.5	0.76	2.50	4.0	13.0	0.33	3.50	0.19	0.62	0.08	-.	O.m	2.1	0.11	4.0	0.08	3.0	0.16	5.6	0.12	4.2			0.15	5.2
0.30	1.0	0.37	1.2	0.21	0.7	0.38	1.25	3.4	11.3	013:	3.36	0.19	0.6 .3	0.08	2.7	0.06	2.0	0.11	3.9	0.08	2.9	0.16	5.5	0.12	4.1			0.14	5.0
0.46	1.5	0.37	12	0.21	0.7	0.46	1.50	3.7	12.3	13-	3.96	0.21	0.68	0.10	3.4	0.07	2.5	0.14	4.8	0.10	3.6			0.14	5.1			0.18	6.2
0.61	2.0	0.37	1.2	0.21	0.?	0.61	2.00	4.2	13.8	0.42	4.56	0.22	0.72	0.12	4.1	0.08	3.1	0.16	5.7	0.12	4.3			0.17	6.1				
0.46	1.5	0.41	133	0.24	0.8	0.53	1.75	4.1	13.6	0.45	4.65	0.23	0.74	0.12	4.2	0.19	3.2			0.13	4.5								
0.61	2.0	0.41	1.33	0.24	0.8	0.61	2.00	4.5	14.6	0.49	5.31	0.24	0.78	0.14	4.9	0.11	3.8			0.15	5.3								
0.61	2.0	0.46	1.5	0.30	1.0	0.46	1.50	4.7	15.5	0.59	6.38	0.26	0.86	0.18	6.4	0.14	4.8												
0.91	3.0	0.46	1.5	0.30	1.0	0.61	2.00	5.3	17.5	0.73	7.88	0.29	0.94			0.18	0.3												

A - cross sectional area
R - hydraulic radius
n- Manning's roughness coefficient 0.03 - soil with gravel
0.04 - soil with grass
$\stackrel{0.04-5}{ } \mathrm{~s}$ - slope
Q - ditch flow capacity

Figure 3. Animal powered V-ditcher

Figure 4. Tractor powered V-ditchers.

Many old ditches become eroded and deteriorated and it is better to remove the old ditehes and form new ones. Figure 5 gives a procedure for doing this that will result in a new, more stable channel that will lose less water than the old one. The compaction and forming of the new channel can be done manually or with a machine. Soil which has a high percentage of silt and clay will form the best channel from all standpoints.

The importance of good construction for earth channels depends a great deal on expected ditch usage. Some ditches, such as those run on a contour for grain and
rice, are used only one season and then filled in. Other ditches are relatively permanent and should be constructed with more effort and care. Ditches intended for furrow or border irrigation directly from the ditch need substantial banks; and the banks might be higher for using spiles and siphon tubes than for open diteh bank cuts. In this case the top of the banks should be a minimum of $25 \mathrm{~cm}(10$ in.) above the surrounding field surface. Banks must be high enough to allow the water level to be increased by checks if needed. If seepage is excessive, compaction of the banks or deposition of a clay bianket can be tried.

1) Remove the Old Banks and Pile the Organic, Vegetation Filled Bank Soil away from the New Channel Site
2) Build a Pad of Clean, Moist Soil on the New Channel Site and Compact the Pad in $10-15 \mathrm{~cm}$ (4-6 in.) Layers

3) Pull the Ditch in Stages, Compocting the Bank Soil between each Excovation In $10-15 \mathrm{~cm}(4-6 \mathrm{in})$ Layers

4) Continue Enlarging the Channel and Compacting the Moist Soll Deposited on the Banks in Layers.

5) Trim and Shape the New Compacted Banks to the Design Cross Section

Figure 5. Suggested procedure for mechanical reconstruction of earthen channels with a tractor-drawn scraper, ditcher, and compactor (30).

c. Lined Ditches.

Often farm ditches are lined to reduce water loss and maintenance and to improve water control. lining can reduce the amount of seepage loss, control weed growth and prevent the ditch from eroding. limed ditches with sloping sidewalls must have adequate support from earthen banks that should be constructed to atn elevation of 10 to 15 cm (4-6 in.) above the top of the lining. These banks must be maintained to protect the lining from damage. linings also reduce the amount of land occupied by the ditches and may provide some control against damage by rodents or burrowing animals. However, improved water control is the major benefit of liming. There is a reduction in water sorage and ponding and water moves through the system at a faster rate.

The most common types of lining for larger canals are concrete and concrete with masonry. Asphaltic linings and compacted soil materials are also being used. Limited use has been made of chemical sealants and plastic membranes. For small canals and ditches, brick or rock masonry linings are common in some areas. The selection and construction of a lining is governed by: 1) the availability of the material, 2) equipment and labor required for installation, 3) size of ditch, and 4) climatic and soil conditions. Chemical composition of the water may be a factor. Many times the initial cost governs the type of diteh lining chosen. However, the availability and need for water should also be considered. Fluctuating water tables and intermittent streams of water can damage linings. Tile drains can be used to lower the water table below the botlom of the canal to prevent damage to the lining.

Livestock can damage some linings and, if necessary, special provisions should be made for livestock watering at suitable locations. Washing of clothes and utensils should be anticipated and provided for in some areas. Vegetation can damage some linings unless steps are taken to control growth. Figure 6 shows some types of small channel linings.

1. Concrete Lining. Concrete linings have many fine qualities. When properly constructed, and where site conditions are favorable, the linings will give long service with minimum repair and maintenance cost. They will withstand high water velocities and are resistant to damage from animais, machines and man. Sulphate resistant cement should be used when irrigation water or the soil contains high concentrations of sulphates. Instructions for preparation and mixing of the concrete are given in Appendix 1.

Concrete lining can be placed in many ways:

1. handplaced by plastering on sides and bottom;
2. using forms and pouring alternate panels;
3. pneumatically blown;
4. precast concrete box or part sections; and
5. slipform using heavy equipment (Figure $7 a, b$).
The slipform method requires very careful scheduling of operations and a large amount of equipment, including a transit mixer for the concrete. For small canals, reinforcing steel is generally not necessary and the concrete linings are usually placed without it.

In some areas, particularly India, Turkey and Egypt, precast sections are placed manually in the small farm ditches. Figure 8 shows forms for casting small, rectangular sections. Precast concrete sections are usually manufactured at a central place and hauled to the job site $(22,36)$. Precast sections may be made box-shaped, semicircular, trapezoidalshaped or half-parabolic. The semicircular sections are usually made by pipe companies, $1-2 \mathrm{~m}$ (3.3-6.6 ft) in length, $46-61 \mathrm{~cm}$ ($18-24 \mathrm{in}$.) in diameter. The sections can be placed above the ground surface, supported on cradle-type pedestals when needed to cross low areas. Parabolic sections $20-30 \mathrm{~cm}$ ($8-12 \mathrm{in}$.) wide are made in halves in Egypt, and when installed and mortared, can result in lined ditches with a range of top widths. This feature is desirable since the same precast sections can be used for a narrow range of ditch sizes by varying the top width.

a) Rectangular Brick Masonry on a Poured Concrete Pad

e) Precast Concrete (SCS photo)

Figure 6. Types of linings for small canals (30).

(c)

Figure 7. Concrete lined canals. Lining with slipform (a) and (b), and the alternate panel method (c) (25).

When the conerete lining is hand placed and the diteh is not over 0.6 m (2 ft) deep, the side slopes can be as step as horizontal to I vertical (are must be ex ercised with the concrete mix or it dees not damp from the becep bide. When steeper stopen or vertical sidewath are us ed, form ate mecerary to hold the conerete in place antil it sets. Donsembored concrete limes, wh wertal vide can be used for depthe ap $100.5 \mathrm{~m}(1.6 \mathrm{tt})$. The bottom and sides thould hase a bitichnos of at least 15 cm (6 in) and expansioncontraction joint ate necoded.

The alternate pancl method can be used for fomme vall parabolic and traperodal ditche, and catal: (k. 36). For these sectoms, gende lerms are ared and the ections, ate pourd athemate with the fimished section wed ton forming the
 (preformed erach-) pateed at interath of $1.5103 \mathrm{~m}(5 \cdot 10) 11$ ate needed for the expatmion and contration of the nomestinfored conctete. These rack ate filled
 water leakape.

To sate conctere and whachitate torming, the wil suberade should be oterescavated and compacted to the exat thape, zrade and aliemmen of the underside of the lame. A tractor or animat Jrawn dicher an do a sufficiontly accurate exatation wh whth a minimum of hand work requited. Catelal attention must be pata to the foundation of ans diach lining copectally when fill ate inwhed the till bould be carchulty made compaciced and welled prior to placement of concrete. The top of the dike or berm on either side of the ditch sould hate a minimum wiuth of $0.4-0.5 \mathrm{~m}\left(1.2^{2}-1.6 \mathrm{f} 1\right.$). The berm should be seeded to grass after construction if possible.
2. Asphatic (omerete. The asphaltic concrete liming has had only limited use. It
is similar in installation to cement concrete but has a shorter service life expectancy since it is more subject (1) mechanical and animal damage. However, this rype of lining when properIy installed and maintained can give satisfactory performance (28). It can be placed by the tip-torm method or hand placed ia mannes similar wement concrece. However, the wherade mast be serilized to prevent vegetation from damaging the liming.
3. Masomr: Single layer brick, tile or sone may be wed for atisfactory lining of fied inteation channels (23). The bricks, tile or sones are lad tlat on the compacted sides and holtom of the trapeodal hannel and the joint are tilled with ement mortar. Ior a rectangular chamel, the botom mas be contrete or masonry with vertical masonry walls. Wall height should be limited to 5-6 courses for brick. Lstally the water side of the masonty trmeture in plasered, particularly if the bricks are not of good quality: The montar hould have a cement-sand ratio of 1:4. The choice of brick, tile or stone depends mainly on its avalability and cosi. Masonry channels are suceesstully ued in many areas of the world. In some areas, only the sides of the channel are lined, but this is usually not recomenended since the bottom may crode and calue the sides to fall.
4. Asphath. Plastic and Rubber-like Sheeting. These lining materials have been used but have not been successful in some areas. Weathering, particuiarly exposure to the sum, has been a problem. Suberades must be sterilized with chemicals to present vegetative damage. Mechanical and animal damage have contributed to failures. However, plastic sheeting used underneath precast or poured concrete sections has been successful in reducing water losses.

Figure 8. Precast concrete channel sections. Wooden forms used for casting (22).
5. Chemical Sealants. Chemical sealants have been used to reduce seepage losses from canals only to a limited extent. Some have been used successfully, but oth.ers have failed after a short life.
6. Earthen Materials. One of the oldest methods for reducing seepage losses and improving ditches is to remove the porous earth and replace ii with clay material. When impervious earthen material is found near the ditch, it may be used to solve the problem. If the material is slightly moist, and if it is placed in $10-15 \mathrm{~cm}$ (4-6 in.) layers and rolled and/or compacted, the effectiveness of the lining will be greatly increased. However, some clays are subject to excessive shrinking and cracking upon drying and should not be placed as lining material.

Bentonite clay is sometimes used to line ditches. This material swells greatly when wet and is best adapted to ditches that are not subject to frequent wetting and drying. It is asually mixed with the surface layer of soil with a disk or spike-tooth harrow. It may also be placed as a blanket on the dith botom and covered for protection will about 5 cm (2 in) of soll or gravel.

2. Controi Structures

Small irrigation structures must be adapted for use in particular areas depending on the availability and cost of materials and labor. The irrigation methods, customs in the area and the irrigation water delivery schedule are factors also. Small, low cost structures that can be brilt and installed with local labor and materials are desired. Control structures must be easy to operate, relatively leak proof and give good, positive control. Bolh permanent and temporaryportable itructures are discussed.

Physical layout, operational features, and socioeconomic factors should be considered when selecting small, irrigation control struciures. The important decision considerations of the physical system of divisors, drops, checks and turnouts include:

1. availability of water requiring division, equitable delivery, and minimizing leakage, spillage and seepage,
2. topography of the area and available hydraulic head for the system,
3. size of area served by each canal, lateral and turnout,
4. amount of time each canal is used and number of times each turnout is used,
5. number of turnouts and the amount of regulation for each,
6. need for regulating flow depths in the system requiring permanent and/or temporary checking,
7. importance of minimizing head loss in the system,
8. need for flow measurement, and
9. availability of materials and labor.

Social and economic considerations are very important for the improved system and include:

1. availability of skills and cost of labor for construction and irrigation,
2. cost of materials,
3. marginal cost or value of water,
4. availability of capital to finance the improved system,
5. organization, or lack thereof, of the water users,
6. level of experience and understanding of the users,
7. cooperative nature of the users,
8. pride in ownership, and
9. potential theft problems of the structures and materials for other uses.

In some areas domestic 1 ises (washing and bathing) and animal access must be considered also.

The layout of a small canal systern with different structures is given in Figure 9. It is diff:cult to separate small irrigation structures into distinct categories since division structures may also serve as checks and/cr turnouts. For this publication the primary function of the structures has been used to categorize the structures.

Figure 9. A farm irrigation system.

a. Division Structures.

Divisors (diversion structures) are used to separate a flow into two or more parts. These structures simply divide the flow in a ditch inte; the desired measured or proportiomal parts. ldeally, water levels and How in the divome atc carclally controlled and measamed. Ihe dimemsions of the opening, are non necessatrly in the same proportions at the destred divaion at discharge becatoe ot the flow whation The opename mat be made thed of variable dependmas on the need lom llex-

 fos conditoms dombl be smatar and
 wed to divide the fors betacell lat dia-

ed and the middle divisor is movable for adjusting the flow between the middle channets. The divisor shown in Figure 10 does not always aceurately divide the fow due to the larec pier and the low velocity of flow. Divinors that give accurate proportoms divide the flom at atomion sectoon where - 1 pereriticai low (see definitonot icomblesist vich as lhat shown in Figure 11. Fow cian be acemately divided without supereritical thow if: l) there is a long strageht approach upstream; 2) there is no backuater effer in the downstream channels, and 3) the llow sections have uniform roughnes (3). The divisor shown in Figure 11 , alfhomeh effective ds a divider, has he distinct disadvantage of a large hydratalic head loss. Nose small irrigation \quad blems need to conserve head and minimice (ow, so the divisor in Figure II is !emerally not recommended.

Figure 10. Divisor to distribute the flow between two ditches (4).

Figure 11. Division box for flon to four ditcher (s) S Photo).

In some areas, the amount of water delivered to a sitem may vars, but al! deliveries within the sytem are to remain proportional 10 the gross amount delivered. This insure a somewhat equitable distribution withou providing a control desice at cach individual turnout for periodic regulation (29). In arca where detiverice are bated on crop acrage or on land irrigated, equitable distribution of avalable water to uers has been attempted. For intance, in India, Pakistan and Eespm, measurement is
made at the head of the tertiary canal and equiable distribution serven as a basi for delivery. This method requites that the tertiary canal be designed of that the water level is essemtially the same fore cach turnout (which commonly hate no gatc control). This water level is difficult to mantain, particularly for the turnome at the end of the ertiary shtem. For a shtem where there are several turnous, there hould be adequate inflow to insure that all water users get their allotted share.

The semimodular turnout shown in Figure 12 delivers equitable amounts reasonably well. The entrance is shaped so that an equitable share of the flow is extracted. Exit conditions are such that changes in downstream water levels do not significantly change the discharge over a range of downtecan depths. However, the discharge is redned when the downsteam depthexeed, than range. This divisor mamour umbe used ator as a water measuring de.ane

Thereate vered ypes of barralor pipe type dasore lumome that xerse the purpose ot exumate dishon of atater based on delivery the , 5 tem. Figure 13 , how the pipe outlets that presently are und in Leypt, Pakiwan and India. In Egyp, pipe diancters are detemined depeading on the area to be irrigated and abomed water
duty or use. A constant water depth of 25 cm is assumed to exist on the upstream side for all divisor turnouts in the individual system. Submergence on the downstream end of the pipe is assumed but rarely occurs, resulting in flow variations due to depthe of flow at the outlet below the top af the pipe.

An aljustathe dmesor used in southern burope and morth trica is shown in Figure 14. The disiding bade is adjustable and calibratom have been made so that the now may be proportioned accutately between (bo channeh (6). The design abume, that do:antram flow conditions do not change the amoumt and division of flow over a wide range since the flow normatly pares (o) upereritical flow ofer a cres. This divinor is quite expensibe 60 build.

Figure 12. Semimodule divisor used in India and Pakistan (29).

(a) Present Field Outlets

(b) Improved Outlets

Figure 13. Divisor-turnouts used in Egypt and India.

SECTION

PLAN

Figure 14. French-type proportional divisor (6).

A simple type of proportional divisor is shown in Figure 15 and has an adjustable divisor board. This divisor can be made semiportable (movable) from wood or metal and permanent from concrete or masonry. Its usefulness is limited except as a means for temporarily dividing the flow. The device requires calibration for different setting of the divinor board and different flow conditons. Another design for an adjustable diswor is , hown in Plate 1. Appendix 2.

Several design hor wand three way small divisors are , inown in Figures $16-18$. These stactures can be consmucted in place to the inside dimentons shown aing concrete, concrete blocks, hrick, or rock. The designs hatse been modified to provide for an overflow section abowe the gate or siop log slots to asure that the water will not overfow onto the diteh banks, but that excess flow will spill into the downstrean diteh. They are most often used to divert the full incoming flow into one ditch or another.

In some areas, structures with formed gate slots and sliding gates are a source of problems. The slots become chipped and broken. Gates and stop logs become lost or stolen. When in ase they jam, leak and become clogeded with sediment and debris. An alternative to the formed gate slots is angle iron guides which are fastened 10 the inner face of the structures in the same position as the slots. Since these guides
are fastened to the surface, the area for flow would be redued by the width of the two angle iron pieces. Shee metal liners for formed gate vol an hown on Plate 2. Appendia 2, hate heen sucesstul also.

Another atmematise for valames like Figure is would be to elimmate gate shom entirely and we portahle gates. These glace would be placed in traperodal or rectangular ection and would compleceIf or partialls obtruct the flow as hown iif F gute 19 . The adantate ate case of insertion and temonal in the ditches. The disadvantase ate lach of adintment for depot and powibilits of beme remosed for other unes.

A recent derclopment of the FAO) Wontd Bank Cooperative Programme is shatl imbation structures fabricated from concrete components produced on extrasion machines (9). Figure 20 show a divisor comstructed from the prefatractled nection now being produced in hadia. Fwo sices of traperoidal and rectangular scetions are being produced hy extrusion. Hollow blocks with gate grooses are also being made.

A combination pump outle and division structure is shown in Plate 3, Appendix 2. The wood (or metal) baffle is necessary to diffuse and still the flow from the pipe.

Figure 15. Adjustable proportional divisor (see Plate 1, Appendix 2).

Figure 16. Two-way concrete block divisor (12).

Figure 17. Three-way divisor (12).

Figure 18. Concrete trapezoidal two-way divisor (14). (See Plate 2, Appendix 2).

(a) Trapezoidal Gate

Figure 19. Portable gates for divisor structures.

Top View

Figure 20. Division structure using extruded, prefabricated sections (9).

b. Drops (Grade Control Structures).

Drops are required to reduce channel grade whenever the natural grade would result in erosive flow velocities in unlined earth channels. Drops are used to 1) control the upstream water velocities to reduce erosion, 2) drop the flow to a lower level, 3) dissipate the excess energy, and 4) control downstream erosion. Drops are particularly needed for newly constructed channels to reduce erosive velocities. After a period of time, the banks and bed may stabilize as the banks become sodded with grass, and drops may no longer be needed.
left of the structure must be provided. Figure 24 shows a concrete drop and check structure under construction (a) and after several years of operation (b). Rock riprap can be used for a distance downstream from the structure to prevent bank erosion. In some areas there may be objections to water impounding in the downstream apron because of mosquito breeding. An opening in the lower sill is often provided for drainage during nonflow periods. Plates 4, 5, and 6, Appendix 2, give designs for trapezoidal drop structures for drops ranging from $0.3-0.9 \mathrm{~m}$ (1-3 ft).

For a steeply sloping channel, erosion can lie controlled by conveying water from one level to another in a stairsten manner with drops (Figure 21). Drops in series are generally spaced so that the difference in :vater surface elevation at each drop is in the range of $0.3-0.6 \mathrm{~m}(1.0-2.0 \mathrm{ft})$. The drop spacing may need to be modified if there a' sirrigation turnouts in the s-ries requirit.g a prescribed depth of water between two drops.

Figure 22 shows selected types of drop seructures that can be constructed from concrete, concrete jiock, brick or stone. These structures are quite effective but mav be quite expensive to build, particularly from formed concrete. Where water is to be diverted frorn one ditch to a lower ditch or field, a drop like that shown in Figure 23 can be used. This structure is a combined turnout, check and drop. The roughness blocks

Figure 21. Drop structures used for grade control (4). (teeth) in the downstream section are used to accelerate the dissipation of energy and allow use of a shorter and shallower stilling basin. Provision for erosion control in the earth channel to the

Figure 22. Examples of small drop structures.

The drop-check structure shown in Figure 25 can be constructed of concrete, precast concrete, or brick masonry. The wall thickness is usually $7.51010 \mathrm{~cm}(3-4$ in). For the small irrigation ditches, a structure with an opening of $60 \mathrm{~cm}(2.0 \mathrm{ft})$ should generally be used. Optional side walls for the stilling basin are shown. The drop and check structure can be easily constructed with standard concrete block following the directions stated on Figure 26. The length of the stilling pool (L) should be at least twice the fall height (H). Rock protection is placed at the end of the stilling pool to compensate for the relatively short pool.

Concrete drop structures that have been
developed over a long period of years by the USDA Soil Conservation Service are shown in Appendix 2. Trapezoidal chute drops for ditch elevation changes of $0.30-0.91 \mathrm{~m}(1.0-3.0 \mathrm{ft})$ are given in Plates 4, 5, 6. Vertical, rectangular basin drops are given in Plates $7,8,9,10$ for elevation changes of 0.15 to $0.61 \mathrm{~m}(0.5-2.0 \mathrm{ft})$. In most cases, the smaller structures with drops of $0.30 \mathrm{~m}(1.0 \mathrm{ft}$) or less do not require reinforcing steel for construction. Adequate cutoff walls are provided at either end of the structures to prevent seepage and leakage which might cause the structures to be undermined. These structures have many operational advantages, but disadrantages include high cost and a great amount of lathor to construct.

Figure 23. Drop structure combined with turnout.

Note: Steel reinforcement must be supported on wire bridges or small pieces of concrete so that it is above the groumd surfate.
Figure 24a. Forms for trapezoidal drop structure ready for pouring concrete (SCS Photo).

Figure 24b. Concrete Irapezoidal drop structure (SCS Photo).

Drive-thru irrigation drops made from concrete blocks and concrete are given in Plates 11 and 12 (Appendix 2). These drops are termed drive-through since one set of wheels of tractor-powered ditch cleaning equipment can pass through the structures. Since these structures are long in length, wing walls are not necessary to control the seepage path.

In those areas where wood is available, drop structures like that shown in Pláe 13
can be used. For long life, the wood should be treated with a preservative. Sheet meta! drope can be made to the same basic dimensions.

Drop-check structures made from the extruded concrete sections are shown in Figure 27 (9). The opening in the rectangular check portion of the structure is 30 cm (12 in) wide and the drop does n. usually exceed 30 cm (12 in).

Figure 25. Concrete drop-check (21, 33). Optional sidewalls are shown (SCS Photo).

Figure 26. Concrete block drop and check structure (21).

Figure 27. Drop-check structure using extruded concrete sections (9).

In a study made on the performance of small drop-check structures (16) several conclusions were made to aid future designs.

1. Commercial prefabricated stractures generally did not have adequate stilling basins.
2. End sills and low tail water depth caused excessive scour due to water cascading over the end sills. The scour hole should be lined with rock or gravel.
3. Wide basins performed better for downstream scour presention.
4. Trapezoidal basims operated successfully only with high tailwater. (Properly placed blocks in the basin would improve operation.)
5. A nonatrated nappe bee definition of terms) from the drop stracture resulted in better villing.
6. Headwall structure with adequati cutoff depth and widh with gravel lined basin or planece pool was most effective and mos conomical.

The structure deseribed as a hededwall with gravel-fined basin was sery effective as a drop. Only the vertical wall of the
structure shown in Figure 26 is used and can be concrete or masonry. Precast concrete walls are quite common and economical, but are sery heasy and re quire hoisos to place For a masonry wall, the thichness hould usually be $30 \mathrm{~cm}(12$ in.), unteinforced concrete, 20 em (8 in.) and reinfored conctexe, 10 cm (4 in.). Slots, either ëth into the vides of the opening or with chamel iron tastened to the edge, are ancd with stop loge 10 adjust elevation of the drop opening. The widn of the gratel-lined basin should be about wice the headwall opening owe kengh. The length of the basin thould be 2103 times the difteroce in upstcem and downstram wate lesels (fall height /1) at normal ditch capacits. Imitally the hasin can be dug to an inserted conc hape (V) with the depth below the downstream ditch bolom thene ahour the same as the difference in upstram and downstream "ater surfaces at momal ditch dixcharges. I arge grabd or ctahedrock up to 2.5 to $5.0 \mathrm{~cm}(1-2 \mathrm{in})$ in sice in a laser about 5.0 cm (2 in) thich should be used lor the still. ing pool. During operation, the low will adjust the siec and shape of the pool for a stabilized stilling pool (i igure 28).

Figure 28. Drop structure with gravel/rock stilling basin (16).

A pipe drop structure is shown in Figure 29. Capacities range from $65 \mathrm{l} / \mathrm{s}$ ($2.3 \mathrm{ft}^{3} / \mathrm{s}$) for 25.4 cm (10 in .) diameter pipe, to $154 \mathrm{l} / \mathrm{s}\left(5.5 \mathrm{ft}^{3} / \mathrm{s}\right)$ for 38.1 cm (15 in.) pipe, both $3.3 \mathrm{~m}(11 \mathrm{ft})$ long operating with a $0.3 \mathrm{~m}(1 \mathrm{ft})$ water depth. The pipe diameter is sized specifically to maintain an upstream water level. The change in water surface elevation upstream to downstream of the pipe structure ranges from $0.30-0.91 \mathrm{~m}(1-3 \mathrm{ft})$ depending on the design. Concrete, asbestos cement and baked clay pipe may be used as well as corrugated metal pipe. Riprap protection from erosion is usually needed on the downstream side. Disadvantages are that the pipe entrance is easily plugred with debris and the pipe alternately primis and breaks when the flow is less than the

It should be noted that many of the drops can also be used as water measuring weirs. Drops like those shown in Figures 25 and 26 can be adapted for water measurement by carefullv measuring the width of the opening and the upstream water depth. This function is discussed in the sectica on measurement of flow.

c. Checks.

Irrigation ditch checks may be permanent or temporary, portable or stationary. They may check the entire flow or allow a portion of it to pass. The primary purpose of a check is to increase the ditch storage and water surface elevation. Many times, checks and drops are combined into one

Figure 29. Typical pipe drop structure (3, 21, 33).
design flow, causing surging. One advintage is that the structure can be used as a road crossing, possibly using a somewhat longer length of pipe. Different designs of pipe drops are given in Plates 14, 15, and 16, Appendix 2.

Chutes as drops can be cheaply constructed where rock is locally available. Chutes as shown in Figure 30 are suitable where falls (H) of 1.5 to $3 \mathrm{~m}(5-10 \mathrm{ft})$ are encountered. Fairly large rock, $15-20 \mathrm{~cm}$ ($6-8 \mathrm{in}$) in diameter can be used, placed in two layers. The rock layer extends above the waterline at the ditch sides. The rough rock face of the chute assists in dissipating the energy of the falling water. A shallow stilling basin is desirable.
structure so that a discussion of drops also applies to checks as indicated in the foregoing section on drops.

A variety of checks are used in both lined and unlined ditches. The checks are fitted with checkboards, slide gates or other means for releasing a portion of the flow while maintaining a desired water level. It is highly recommended that checks have an overflow provision so that the ditch will not be overtopped if the check is inadvertently left closed when turnouts are closed. This can be accomplished by providing a weir overflow section on the check at an elevation lower than the ditch bank.

Note:

1. Grovel (if ovailoble) should be used to fill between Rocks
2. Rocks can be Grouted

Figure 30. Sloping rock drop structure (21).

Figure 31. Ditch check in lined ditch with siphon tubes.

Several different types of ditch checks utilizing various methods to control the flow are shown in Figure 31, 32, 33 and 34. Figure 34 is a simple check structure combined with a turnoltt. Adequate erosion protection for the bypassed flow must be provided downstream from a check in the form of a basin, rock riprap, or a paved apron. Checks may be used for measuring irrigation flows using standard weir or orifice relationships $(6,35)$. It should be kept in mind that when checked for irrigating, the water surface in the ditch should typically be $10-15 \mathrm{~cm}(4-6$ in.) above the field ground surface (possibly more for spiles and siphons). Also a freeboard for the camal bank of 15 em (6 in .) above the water surface must be maintained. This results in the top of diteh banks being 25-30 cm (10-1. in.) above the surrounding ground surface.

Several simple checks that can be made from wood, sheet metal, concrete or masonry are shown in Figure 33. The
width is determined for the rectangular opening by the width of the ditch, bank elevation, and maximum flow that the structure will pass. However, the opening is usually 50) $60 \mathrm{~cm}(20-24 \mathrm{in}$.) wide with the bottom within a few cen!!meters (5-10) ($2-4 \mathrm{in}$.) of the bottom of the ditch. Cheekboards in widths of $5-10 \mathrm{~cm}$ (2-4 in.) are sometimes used to give incremental depths when required during an irrigation. Checks with rectangular or circular openings are sized using the orifice equation (6,35 ; with maximum flow and a small difference ($5-10 \mathrm{~cm}$) (2-4 in.) in the depth upstrean and downstream from the check. In all cases the cutoff wall for the checks should project to a depth below the diteh bottom of $20 \mathrm{~cm}(8 \mathrm{in}$.) for clay soils and 30 cm (12 in .) for sandy soils. The wall should extend into each bank $20-30 \mathrm{~cm}(8-12 \mathrm{in}$.$) at the elevation of$ maximum water level. With careful backfilling and compaction, the check should not "wash out."

Figure 32. Small concrete ditch check (21).

(a) Top-opening Gate with Removable Section Cover

(b) Center-opening Gate with Unit Slide Cover

(c) Bottor-:-opening Gate with Swinging Cover

Figure 33. Wooden ditch checks with different openings (19).

Figure 34. Wood, single-wall check with turnout (19).

Checks that can be made from concrete blocks or brick masonry set on a concrete foundation are given in Figures 35 and 36. In both cases, the bottom of the opening should be set at the level of the upstream ditch bottom. The depth and width of structures will vary dependine on the diteh but usually for small ditches they are built to the dimensions given in Figures 35 and 36. The rubble or masonry spillway basin shown in Figure 35 should be set so that the bottom is $5-7 \mathrm{~cm}(2-3 \mathrm{in}$.) below the original ditch bottom. The gravel lined plunge pool described in the section on drops can be used with a check like Figure 36 if downstream erosion is a problem. The design of permanent, cast-in-place concrete checks is given in Plate 17. Appendix 2.

Portable irrigation dams are checks used to raise the water level in ditches for direct irrigation. They can be made by the irrigators or purchased. Figure 37 shows a canvas check with a sleeve for discharging part of the water. The sleeve can be tied with a drawstring to control the flow to be bypassed. A pipe or long, strong stick is used acro's the top. The canvas has a long section upstream that is anchored in the soil and partly covered to prevent leakage. Plastic and rubber sheeting can be used instead of the canvas cloth as shown in Figure 38. The overflow section can be raised or lowered hy furning and anchoring the crossmember.

Top View

Figure 35. Concrete block check with apron for erosion control (12).

Figure 36. Concrete block check structure (14).

Figure 37. Portable canvas check with discharge sleeve (21).

Figure 38. Flexible, portable ditch check.

Rigid and flexible porrable check dams are shown in Figures 39 and 40. The rigid dam in Figure 39 is made from metal and driven into the soil. Flow can then be passed downstrearn through a gate. The series of dans in Figure 40a are flexible and r'ade from canvas. Siphon tubes are being used to irrigate the area served between euri, dam. The metal dam in Figure 40 b checks the fiow for discharge thruugh the upstream gate onto borders. When the ditch is in operation, this gate is held in place in the trapezoidal lined ditch by the water pressure.

d. Turnout, Outlets.

When irrif ation water is delivered from the distributury or secondary canal to the tertiary canal, a gated turnout of some design is used. Turnout structures are sometimes similar to check structures but are placed into ditch banks to permit water to te emoved from the ditch. A rotation syst:m of water delivery to the tertiary sanals is common where the water is on foi a prescribed number of days and off for a period. Variable amounts of flow are delivered during the "on'" period
depending on availability. When the tertiary system has been designed to deliver equal amounts of water, divisors used as turnouts are used as shown in Figures 12 and 13. These divisor-turnouts are common!'y used in Pakistan, India and Egypt.

Turnouts and outlets are also used on the tertiary canals (farm laterals) for water release to the quaternary canals (field ditches). They have gates or stop logs for individual flow control (see Plate 18, Appendix 2). These devices may also serve as divisors as shown in Figures 17, 18 and 20; drop structures, Figures 23, 24, 25,26 and 27 ; and check structures, Figures 34, 35 and 36.

Small control structures and devices such as gated outlets are used to deliver the water from the field ditches (quaternary canals) to the farm fields. Devices used for this purpose include siphon tubes, spiles (straight tubes), slots in lined canals, and bank cuts in earth canals. For basin irrigation, regular outlet structures like Plate 16, Appendix 2, are used to deliver water to the field.

Figure 39. Portable metal check (21).

Figure 40. Two types of portable checks (25).

Camal or ditch sates attached to pipe (Figure 41) are the most common type of turnom. The gate may be attached to a concrete or masomes headwall or directly to a sted, conctete or plastio pipe which protrudes through the ditch hank (see Plate 19. Appendi 2). 1 walty the gate is on the upstrean side, but can be placed on the downatrame end of the pipe lor cance of operation and diteh deaming. There ate mans commenctally destened ditchetate in mes. I he monable plate mat be squate or roumd and the mosemem can be contionlad :ath an adjusable rod on hand whed. a hmon in levere +1 .
()ne type of camal :ata has been uncd as a lamout and meatume devec in the (1.S.A.(35). The diedhatee end on the pres has an clhw lanned upwas w hat the pipe flows tuil. I wh tillin: well wih point gages ob monder ate and dedere mine the bodrambernat on the canal and downstram lom the pipe !ate. With the difference in the swo head and the area of gate openinge meanured bs the rine in
the gate stem, the amount of flow is determined based on prewious calibrations.

Simall piper wates ate commonly used for turnout control in fiedd outlets on lined divhes (figume tia and 43). The gates are monnted sembally in rectangular baped concrete on matoms tined ditches and along the vacuall for mapeovidal linings. (iatce, atached 10 pipe. can be mounted cither sertically or at at ander, and can be wed in carth dither, in most cases, rock riprap will be needed at the pipe discharge end to contan! erombr. Baric dimemsons and fos range are hown in figure 43.

 mate from wow hut hee metal an be wes. Thes atre sempertate and may he rexe by the errigator an neded. Ihe floor should be xe at or belos the field urface--up 1015 cm belon. - minimiac erosion. These home are particularls adapted for the laree flow sheded in border and basin irrigation.

Figure di. (iated pipe outlet.

A comerete black momom ditch éonstructed from extruded blocks for an unlined ditch is shown in Figure to (9). The curnout is combined with a check structure and utilies block with formed gate groose set on a $5 \mathrm{~cm}(2 \mathrm{in}$) thich concrete sab. Erosion protection is needed downstrean from the turnout.

Vespric orifice mudules (6, 21), uned as intakes for secondary and tertars canals ats well an farm turnout are shown in Figure 47. The module is a meteringe device with mosable slide which can be opened singly or in multiples to obtain the desired flow. Typically, the small distributor (module) has compartment
for $5,10,15$ and 301 , flow for a masimum fow of 60) $4(2.1$ chs). For correct operation, the parent camal shouk operate withina preseribed depth with on
 combant operating depth upateam from the module. constant upvecam or downatiam lesel batco ate wed in the
 adrantage of thi whem are: 1 w ambomatio and relatively cas uperation. 2) prese dixharge amomos, and i) mot casy (0) lamper with. The diadramane
 clogging with dehris, and 3) requites an almost constant depth wh water which in turn requice deph control.

(b)

Figure 42. Commonly used turnouts for farm irrigation ditches (SCS Photo) (25).

D	H		W		H_{1}		W		Copocit,	Range
in cm	1 n	cm	1 n	cm	in	cm	in	cm	cts	l / s
$6 \quad 15.2$	22	56	17	43	14	36	11	28	07-10	20-28
8203	25	64	17	43	18	46	11	28	12-17	34-48
$10 \quad 25.4$	29	74	2.1	53	22	56	15	38	1.6-24	45-58
$12 \quad 305$	33	84	21	53	25	64	15	38	24-31	58-88

Figure 43. Conerptr pipe turnout (34).

Figure 44. Wooden turnout for basin and border irrigation (34).

Figure 45. Two designs of wooden turnouts-apron (1) level with soil surface and (2) depressed below soil surface (19).

Top View

Section A-A
Figure 46. Turnout-check structure using extruded concrete sections (9).

Figure 47. Neyrpic gates and modular turnouts (6,21).

Trapezoidal panel outlets as used in Spain and Pakistan (31) are shown in Figure 48. They are precast from concrete and easily inserted in the ditch by the farmer. Forms are used for constructing the panel and lid so that the two fit together closely for a minimum of leakage. Outlets of variable heights can be constructed. The outlets do not have an adjustment for variable openings and must be operated either fully open or fully closed. This feature is not desirable for many systems.

Circular concrete turnouts have been recently developed and are widely used in Pakistan (Figures 49, 50 and 51) (31). The outlet gates are operated fully open or closed, which is particularly adapted to the system. Irrigation water is rotated to each farmer on Pakistan watercourses on a weekly basis. Consequently, outlets from tertiary to quaternary ditches are used frequently. The water is seldom divided, so gates do not need to regulate flows--only to direct it. Field sizes are small, and thus the conveyance system is extensive, requiring numerous outlets along the tertiary channels. The turnouts are generally used in pairs--one to check the flow in the ditch and the other to divert the flow. The circular concrete turnouts also serve as drops when opened in series along a tertiary canal.

Because cement, sand and bricks are readily available and local craftsmen are talented in constructing masonry structures, the outlet structures are particularly adapted to fit local needs. The circular panel is precast using steel molds constructed locally. The lid is, cast in the panel and then ground smouth by turning the lid in its panel to assure a light, relatively leakproof fit. Most of the supporting structures are brick masonry and are constructed in place as shown in Figure 50. Another turnout design using precast concrete sections is shown in Figure 51. The head losses for a range of discharges and sizes of circular panel turnouts are given in Figure 52 (31).

To install, the soil placed around the structures needs to be carefully compacted to prevent washouts. Soils should
be moist when placed and compacted in layers. A hand tamper should be used. For some installations a cutoff wall as shown in Figure 50 may be needed, but for cohesive soils, the wall is probably not needed. However, since water leakage around structures is a major problem, care should be exercised to prevent leaks and possible loss of the structure.

Spiles are used to release irrigation water from the head ditch into the field for furrow or corrugation irrigation. Spiles are usually short pieces of pipe inserted through the ditch bank. Normally, the spiles are installed each season although they can be left in place for longer periods. Figure 53 gives the general plan for using spiles and Table 4 gives the discharge for sizes ranging from 1.0 cm (0.5 in .) to $10 \mathrm{~cm}(4.0 \mathrm{in}$.) in diameter.

Siphon tubes are widely used for furrow and flood irrigation from lined and unlined head ditches, as shown in Figure 54. Aluminum and plastic tubes are quite common and are set manually over the ditch bank with each irrigation. Very large siphons can be used for turnouts as shown in Figure 55. The flow is started using a hand pump. The large siphons are useful for irrigating large, level borders. The discharge for individual siphon tubes is given in Figure 56 and Table 4. Head is the difference in elevation of the water level in the ditch and the discharge from the pipe if flowing free, or the water level in the ditch and water level in the furrow or field if the end is submerged.

For conventional siphon tubes, as shown in Figure 54, there is need to reset or reprime after an interruption of flow in the supply canal. Siphon tubes are available that hold their "prime" after flow interruption, so that flow continues after the supply canal is refilled. However, these tubes are quite expensive compared to the conventional ones.

Be sure to set the di arge end of spiles and siphon tubes as low as possible to minimize erosion. If there is erosion, cloth, sacking, plastic sheeting or vegetative material should be place under the discharge.

Figure 48. Trapezoidal panel outlet (31).

Figure 49. Concrete orifice panel outlet (31).

Figure 50. Brick masonry installation for panel outlet (31).

Figure 51. Precast concrete slab installation for panel outlet. (31).

Figure 52. Head loss through circular concrete turnouts of various diameters, I), flowing full, assuming a submerged orifice coefficient of 0.8
(31).

Figure 53. Spiles used for furrow or corrugation irrigation (34).

Figure 54. Siphon lubes for furrow irrigation.

Figure 55. Large siphon with priming pump for turnout (SCS Photo).

Figure 56. Discharge of siphon tubes (34).

Table 4. Flow through small spiles and siphons (5).

Diameter of Spile or Siphon	Pressure head (cemimeters)							
	2.5	5	7.5	10	12.5	15	17.5	20
cm .	liters per eecond							
1	0.03	0.05	0.06	0.07	0.07	0.08	0.09	0.09
2	0.13	0.19	0.23	0.26	0.30	0.32	0.35	0.73
3	0.30	0.42	0.51	0.59	0.66	0.73	0.79	0.84
4	0.53	0.75	0.91	1.06	1.18	1.29	1.40	1.49
5	0.83	1.17	1.43	1.65	1.85	2.02	2.18	2.33
6	1.19	1.68	2.06	2.38	2.66	2.91	3.14	3.36
7	1.62	2.29	2.80	3.24	3.62	3.96	4.28	4.58
8	2.11	2.99	3.66	4.23	4.72	5.18	5.59	5.98
9	2.67	3.78	4.63	5.35	5.98	6.55	7.07	7.56
10	3.30	4.67	5.72	6.60	7.38	8.19)	8.73	9.34

Bank or ditch cuts (notches) are the simplest method for irrigating from a head ditch. Figure 57 is a concrete ditch with notches and small gates spaced frequently along the ditch. The least desirable method is cuts made in the earth canal bank with a shovel. This methor is probably the least costly but results in variable flow rates and the channel bank cuts erode. Also, the refilled cuts frequently leak or wash out.

To avoid numerous cuts in the canal bank in furrow ir rigation, use small, temporary ser ditches. These are small ditches running parallel to the quaternary canals. The water is diverted from the quaternary canal into the set ditch by one bank cut, or preferably, by some type of turnout. The water is then distributed by cuts in the set ditches to 6-12 furrows, depending on conditions. This method is better than having a cut in the quatemary canals for each furrow, although siphon lubes are the most desirable method.

3. Water Measuring Structures

On-farm water measurement has generally been ignored in many areas of the world, but is very important for good irrigation water management and use. Just as it is important for the farmer to know how much seed he plants, how much iertilizer he applies, and how much crop he harvests, he should know how much water was applied to each crop,
each field, over the entire season. Water measurements can be made at the fied and farm level by several means $(4,6,7$, $21,25,27,35)$. A summary of the characteristics and limitations of several methods is given hy Bor (6).

a. Heirs.

One method of measurement is to use an existing drop, check or turnout strueture as a rectangular weir. Structures like Figures 24, 25, 26, 32, 34, 35 and 36 ran be adapted for measurement by deter aning the width of the opening and mounting a staff gage upseream to wotain the depth of thow over the base of the opening. For an accurate measurement, the downstram water surface must he below the base of the opening and the nappe of the jet must be aerated underneath. The rectangular weir equation is

$$
\begin{equation*}
Q \quad C I h^{\circ} \tag{2}
\end{equation*}
$$

where () = discharge - m's (efs)
$C=$ coefficient $=1.83$ (metric) 3.33 (English)
$\mathrm{L}=$ width of opening, m (ft) and
$h=$ head over the weir, m (ft).
Actually, Equation 2 is for a sharp edge weir with a deep pool upstream, but using it as suggested will not result in a significant error in measurement provided that h and L are deeermined with care.

The standard rectangular weir is easy to construct and simple to use. It can be made from concrete, masonry, steel or wood but should have a metal blade $(4,6$, 35), Figure 58. In the U.S.A., small reetangular weirs are usually made in standard widths of $30.5,45.7,61.0 \mathrm{~cm}(1,1.5$ and 2 ft) for which rating tables are available. A prescribed distance must be maintained between the tip of the weir blade and the bottom of the ditch and between the sides of the opening and the ditch banks. Only the upstream measure of water depth over the weir crest (Figure 58) and a rating table are needed to obtain the discharge. One major drawback is the large head loss , equirement to obtain an accurate measurement. The downstream depth must be at some point below the weir blade elevation for correct measurement.

The 90-degree W-notch weir (Figure 59) has some advantages in irrigation water measurement (35). The water depth over the bottom of the V is determined as with the rectangular weir and the installation requirements are similar. The V-notch has the advantage of being able to accurately measure a large range of flows, particularly low flows. However, the head requirement is even greatei than the rectangular weir, which can be a distinct disadvantage.

b. Flumes.

There are several measuring flumes that should be considered when measuring irrigation flows less than $142 \mathrm{l} / \mathrm{s}(5 \mathrm{cfs})$. The Parshall measuring flume has received wide acceptance and is used in many areas (Figure 60) (6, 21, 35). The 15.2 and 22.9 $\mathrm{cm}(6$ and 9 in.) flumes have the desired flow range and rating tables have been prepared for them. The Parsha!! flume, as with other flumes, can be used while
submerged, i.e., when the depth of flow downstream relative to that upstream is greater than approximately 70 percent. This means that the loss of hydraulic head can be considerably less than when using weirs. This is a distinct advantage. Requirements, rating tables and curses for discharge with various degres of submergence are a a alable (35). The Parshall flume can be constructed as a permanemt installation with concrete, masonry, metal and wood, or a a portable device using metal, wood or fiberglass.

The Cutthroat measurine flume is an acceptable flume for irrigation uses. It can be constructed from the above materials and can be permanent or portable (27). The construction is much simpler than the Parstall flume since there is a flat botom throughout and the parallel-walled throat section is eliminated (Figure 61). The flume will operate under freeflow or subinerged conditions, and thereare tables and charts available for determining the flow. The 4 in. by 3 ft and 8 in. by 3 ft flumes (27) cover the desired range of discharges for small gravity irrigation systems.

The traperoidal flume is used to measure flow in small systems (26). This flume, which has sloping sidewalls, was initally designed to be an integral part of a concrete-lined irrigation ditch (Figure 62). Flume E-1 (26) has the desired flow range up 105 cis ($1421 / 5$). It has a flat bottom throughout and $1: 1$ sloping sidewalls. The flume can be constructed with concrete, masonry, metal, wood and fiberglass. The advantages are: 1) the shape fits the common ditch shape, 2) there is less head loss, and 3) it accommodates a large range of flows. The disadvantages are: 1) it is more difficult to construct, and 2) the cost is greater than other flumes.

Figure 57. Concrete lined ditch with bank cuts for irrigating.

Figure 58. Rectangular weir used as a combination measuring device and drop structure (35).

Figure 59. Ninety-degree V-notch weir (35).

Figure 60. Parshall measuring flumes. (35).

Figure 61. Cutthroat measuring flume (27).

Figure 62. Trapezoidal measuring flume (26).

Figure 63. Broad crested weir (b-c-w) measuring flume (7).

A recent development has been the broad crested weir flume (b-c-w) (7), which is particularly adapted for placement in an existing lined ditch. Details of the flume are shown in Figure 63. The construction is simply a concrete block with an approach ramp placed with defined incremental heights; the correct height being determined from a design discharge and corresponding normal depth of flow. The design discharge is usually the maximum sustained flow in the channel. Depth of flow through the b-c-w flume is determined at a definitive point upstream
adapted for measarement by determining the area of the opening and the flow depth on the upstream and downstream sides of the opening. Figure 52 can be used to determine the flow rate for the circular panel turnout (Figures 50 and 51).

For small flows, spiles and siphon tubes (Figures 53 and 54) can be used for flow measurement using Table 4 and Figure 56. An accurate measurement of the pipe inside diameter and the inydraulic head is necessary.

Figure 64. Flume for carryi• p irrigation water across a depression (SCs Photo).
using a staff gage or water stage recorder. The advantages are: 1) simple con:s-ruction, 2) adequate aceuracy of measurement, and 3) low head loss at design discharge. The disadvantages may be: 1) high head losses at flows less than design discharge, 2) canal blockage, and 3) sediment deposition.

c. Orifices and Other Devices.

Several of the control structures can be modified to serve as orifice type measuring devices also. The canal gate shown in Figure 41 serves the purpose very well with the addition of wells to measure the water depths upstream and downstream from the gate and an elbow or obstruction on the downstream end so that the pipe flows full. The gate has been calibrated for a range of standard sizes and illows (35). Other orifice type structures such as Figures 13, 33, 34, 39 and 50 can be

4. Miscellaneous Strictures

a. Culverts, Bridges, Flumes, Cross.

Oper irrigation ditctes must have crossing structures so that people and equipment can cross. Concrete and metal pipe is most commonly used for culverts over irrigation ditches. Bridges made from concrete, lumber and metal sections are used in most areas. Bridges are sometimes combined with check and drop structures.

Flumes constructed of wood, metal or concrete carry water across depressions. These can be constructed with sui- or super-structure to support a channel or pipe as shown in Figure 64. The structure must have ample strength to support the flume when it is flowing at maximum capacity.

Inverted siphons made from concrete or steel pipe are useful for carrying the flow across depressions, channels and underneath roads. They differ from culverts since the pipe is lower than the water surface in the irrigation ditch. The siphons may be more expensive than flumes to build, but are more durable. Figure 65 shows an inverted siphon made from standard concrete pipe with concrete entrance and exit structures. The earth fill over the pipe should be a minimum of 1.0 m (3 ft) because of vehicular loads. Designs for siphon crossing inlet and exit structures are given in Figure 66. The structures are made from extruded concrete sections (9). Designs of concrete inlet and outlet structures for siphons of different diameters are given on Plate 20, Appendix 2.

b. Drainage Structures and Wasteways.

Irrigation water that leaves the canal, farm, or areas of application must be conducted to a drainage way. This water is normally called waste water and may result from several causes.

In some areas, waste water can come from excess rainfall and leakage and spillage from canals ind siructures are
possible sources. Generally, though, waste water is from over-irrigation. One major source of waste is irrigation water furnished on a 24 -hour basis, which is onIy tended by the farmer during the daylight hours. However, for surface irrigation it is normal for some water to pase into dramage ways or"tail" ditches in order that all areas in the field, including the ends, receive sufficient water.

Some of the same structures used to convey irrigation water are used for wasteways and drainage ways. In particular, drops and chutes are required and pipe crossings are commonly used. ()f particular er . rn is the section where the small open 'n enters a larger main drain. Eros. n will occur unless some structure is used to safely convey the flow from the higher level to the drain level. Many times a cantilevered pipe outle is used for this siluation. Because of the pipe, large scour holes and excess bank erosion usually occur. Simple outlet structures and rock riprap can alleviate this situation.

Whenever possible, waste water should be diverted to a ditch or canal at a lower elevation so it can be reused on another field.

Figure 65. Inverted siphon made from concrete pipe (25).

Figure 66. End details for siphon crossing (9).

c. Automated Siructures.

Automatic control devices have been develuped for underground pipe systems and, to a limited extent, for surface systems (3). Many of the automatic devies utilize premmatic, radio and electronic controls. In zaddition to turning water on and off, stractures and devices have been developed to automatically reduce the flow afier an initial high flow for "cut-back" irrigation. Self-propelled, traveling sphom hate been used successfully where a large diecharge in needed for border irrigation.

Most of the equipnemt and device for automation are quite complicated and require a great amoum o! skill and attention for operation. There are a limited number of ir rigation gater and checks operated by manual timers, hedraulic presure (Iigure
47), sinking floats and water clock principles that may be of limited use in developing countries.

d. Other Structures.

In some cases, sand traps and trash racks (sereens) can be used in areas where there is a large amount of sediment and trash (3). These structures are quite specialized and require a great amount of observation and maintenance for successful operation. They are rarely used for individual surface farm irrigation systems. Usuall: the farmers will manualIy remove trash and deposited sediment from channels and structur:

Refer to the section on pipe line structures for details on trash sereens and desilting boxes that can he adanted to the needs of surface systems.

III. LOW PRESSURE PIPE SYSTEMS

There are three types of on-farm low pressure pipe systems (3). The first is a buried pipe system where water enters by gravity from an irrigation ditch or pumpstand. Water is released direetly to the field from risers on the buried pipeline. Buried pipelines with risers are usually made of concrete, asbestos-concrete, or more recently, rigid plastic.

The second pipe system is a combination of buried pipe and portable surface pipe attached to the risers. The surface pipe is usually gated so that water is delivered at many point along the pipe.

The third type is completely portable surface pipe where the water is delivered directly by pump or from an open ditch turnout. The surface pipe is used to deliver water from the open end or from gated sections along the pipe. Surface pireline is usually rigid ataminum or plastic pipe but can also be flexible plastic and rubber-like materials.

Pipe distribution systems offer many advantages and are finding increasing tese in developing countries ($3,4,20,24,25$, 33, 36). The advantages are: 1) minimal seepage and evaporation losses, 2) no loss of land to ditches, 31 better weed control through elimination of ditch banks, 4) ease of water distribution on uneven land, 5) -educed maintenance, and 6) good rontrol of irrigation water. The disadvantages are: 1) high initial cost and 2) damage or loss from vandalism.

1. Pipe Design

a. Underground.

Noareinforced concrete pipe has been used extensively for low pressure systems with asbestos-cemen:, plastic, and very recently, fibergiass pipe, also used. Most low pressure systems operate at a head
less than 500 cm (16 ft). If pressure heads exceed $650 \mathrm{~cm}(21 \mathrm{ft}$), reinfored concrete, steel, asbestos-cement, plastic and other pressure pipe is used. Low pressure concrete pipe commonly has mortared tongue and groove joints, although rubber-gasket, Hexible-joint pipe is also used. The pipe should be located with care to serve the area and hould be positioned away from heasy traffic. Experience has shown that a minimum depth of $0.6 \mathrm{~m}(2$ ft) over the top of the pipe is sate in areas using animad-drann behick and implements and $1.0-1.5 \mathrm{~m}(3.5 \mathrm{ft}$) in areas using mechanical culliation practices and heasy rehicular trattic. Pipe capacity must be large enough fo: the maximum water requirememts. Appendix 3 gives ASAE: S26) Sor desien and ins:allation of nombenfored conctete imgation pipe system and Appendix 4, ASAI: S376 for design, imstallation and performance of underground thermoplastic irrigation pipelines.

b. Surface.

Surface pipe is used instead of an operin ditch and usually has a multitude of small gates (gated pipe) to distribute the flow. The pip: is usually aluminum. Common sizes include 127, 152, 203, and 254 mm $(5,6,8$, and 10 in $)$ dameter in $6-9 \mathrm{~m}$ (20)-30 it) lengths. In some areas, plastic pipe (PVC) is used. Cuick couplings are available which are relatively leakproof.

c. Pipeline Capacity.

The pipeline diameter which will deliver the desired antount of irrigation water must - or determined. The capacity depends on the size and reughness of the pipe, hydraulic losses of the entrance, exit, bends, joints, valves, etc., and the difference in elevation (head) at the entrance and exit.

There are a number of relationships (equations) that have been developed for determining th friction losses (head losses) in pipe. However, for low head, on-farm irrigation systems, the Manning equation adapted for pipe flow is recommended for simplicity. Because, for pipe, the hydraulic radius, R, equals $D / 4$, and the area, A, equals $\pi D^{2 / 4}$,

$$
\begin{equation*}
\mathrm{Q}=\mathrm{CD} \mathrm{D}^{\prime} \mathrm{s}^{\prime} / \mathrm{n} \tag{3}
\end{equation*}
$$

For Equation 3, C is 0.31 for metric and 0.46 for English units.

Table 5 gives the head loss for concre e pipe with gasket joints $(11=0.011)$. Head losses for other types of pipe (such as plastic) of similar diameter can be determined by increasing or decreasing the values in Table 5 for the different roughness, n, values. As an example, if the n value $i, 0.008$ (plastic pipe), then the head losses in Table 5 for the same diameter and discharge should be decreased $b ;$ the factor $0 .(008 / 0.011 \quad 0.73$. The actual head loss for pipe friction (H,) is found by dividing the length of pipe system by 100 and multiplying by the value found from Table $5(n-0.011)$.

The total head loss in a pipeline $\left(\mathrm{H}_{1}\right)$ is the sum of the pipe friction losses and other head losses caused by entrances, valves, elbows, tees and structures. These losses are accumulated depending on the friction and head losses, thus

$$
H_{1}=
$$

$$
\begin{equation*}
\left(\mathrm{K}_{1}+\mathrm{K}_{:}+\mathrm{K}_{1}+\ldots \mathrm{K}_{n}\right) \frac{\mathrm{Q}^{:}}{2 \mathrm{~A} \cdot \mathrm{~g}}+\mathrm{H} \tag{4}
\end{equation*}
$$

where $g=$ ac eleration of gravity, 9.8 $\mathrm{m} / \mathrm{sec}^{2}\left(32.2 \mathrm{ft} / \mathrm{sec}^{2}\right)$. Values of the resistance coefficient K for different features are given in Table 6. For the gravity system, the pipe discharge and size is determined by the following steps.

1. Determine $H H_{F}$ as the difference in elevation of the water surface at the entrance and at the point of lowest discharge. The point of discharge
for the low head pipe system will probably be one or more alfalfa type valves discharging through hydrants.
2. From a selection of pipe diameter and estimated discharge, determine H_{f} from Table 5.
3. Determine and sum the resistance coefficients $K_{1} \ldots K_{n}$ for the different pipeline features," such as line valves, elbows, tees, risers and delivery valves.
4. Solve Equation 4 for the discharge Q.
5. If the determined discharge Q is different from the estimated discharge used in step (2), repeat the computations from step (2) using the computed discharge to obtain H_{f}. The final computation after these trials will give the correct discharge.

To actually design the system, it is necessary to first have a topographic profile of the system showing the ground surface and pipeline elevations. Upon knowing the location of each pipeline feature, such as stands, risers, valves, ete., and the water delivery schedule, the next step is to determine the hydraulic grade line for each possible schedule. The hydraulic gradient at the point of delivery and the valve characteristic determines the discharge there.

The capacity of a gravity pipe system is basically determined by the pipe diameter and the difference in the elevation between the upper water surface and that where the lower end discharges. If the system is supplied by a pump, the head can be increased. The usual practice is to design the underground pipe system so that the hydraulic gradient is $30 \mathrm{~cm}(1 \mathrm{ft})$ above the ground surface at the discharging alfalfa valve. This will insure adequate flow without excessive erosion for direct irrigation. If rigid or flexible gated pipe is used with a hydrant, the hydraulic gradient will need to be $61-91 \mathrm{~cm}(2-3 \mathrm{ft})$ at the alfalfa valve level.

Table 5. Head loss in concrete pipe with concentric gasket joints* (3).

Flow rate (Q)		Pipe Diameter							
		$\begin{gathered} 203 \mathrm{~mm} \\ (8 \mathrm{in} .) \end{gathered}$	$\begin{aligned} & 254 \mathrm{~mm} \\ & (10 \mathrm{in} .) \end{aligned}$	$\begin{aligned} & 305 \mathrm{~mm} \\ & (12 \mathrm{in} .) \end{aligned}$	$\begin{aligned} & 356 \mathrm{~mm} \\ & (14 \mathrm{inl}) \end{aligned}$	$\begin{aligned} & 381 \mathrm{~mm} \\ & (15 \mathrm{in} .) \end{aligned}$	$\begin{aligned} & 406 \mathrm{~mm} \\ & (16 \mathrm{in} .) \end{aligned}$	$\begin{aligned} & +57 \mathrm{~mm} \\ & (18 \mathrm{in} .) \end{aligned}$	533 mm (21 in.)
L/s	$\mathrm{fl}^{1 / \mathrm{s}}$	Head loss (m 100 m or ft 100 ft)							
15.0	0.53	0.14							
20.0	0.71	0.25	0.07						
30.0	1.06	0.55	0.17	0.06					
40.0	1.41	0.98	0.30	0.11					
50.0	1.77	1.54	0.46	0.18	0.08				
60.0	2.12	2.21	0.67	0.25	0.11	0.08			
70.0	2.47	3.01	0.91	0.34	0.15	0.10	0.07		
80.0	2.82	3.93	1.19	0.45	0.20	0.14	0.10	0.05	
90.0	3.1	4.97	1.51	0.57	0.25	0.17	0.12	0.07	
100.0	3.53		1.86	0.70	0.31	0.21	0.15	0.08	
150.0	5.30		4.18	1.58	0.69	0.48	0.34	0.18	0.08

- Computed from Manning Formula, $n=0.011$

Table 6. Resistance coefficient K for use in tormula $H=K Q^{2} 2 A^{2}$ for fittings and valves (33).

1:tune い Saluc		Vommal diomeici				
		: in :une:	$\begin{gathered} 1^{-5} \mathrm{~m}, \mathrm{~m} \\ \mathrm{y}^{-} \mathrm{m.} \end{gathered}$	$\begin{aligned} & 2(k) \mathrm{mm} \\ & \text { (sim.) } \end{aligned}$	250 mm (10) in.)	$\begin{aligned} & 3(x) \mathrm{mm} \\ & (12 \mathrm{in} .) \end{aligned}$
				Standard pipe		
Flbou.						
Rewhat lumged (x) degree		(1)25	0.2-	0.26	0.25	0.24
1 oner dhat thanced 90 degme		0.1s	$0.1{ }^{7}$	0.15	0.14	0.12
l cou						
Hanged lane thow		0.12	0.11	0.10	0.109	0.08
Hanced hameh tow		0.60	0.58	0.56	0.52	0.48
Vatco:						
(inhe thanced		5.80	5.0	S.6)	5.50	5.40
Gate thaned		0.11	0.09	$0.0{ }^{-5}$	(1).06	0.045
Sume theich laneed		2.00	$2 .(x)$	$2(x)$	$2 .(6)$	2.00
font		0.80	0.80	0.80	0.80	0.80
Altalta 2()*				2.14	2.14	2.14
Orchard 20$)^{*}$				2.78	2.78	2.78
Other						
Inter ors chtance:						
lnward promectay		0.78	Sll diameters			
Sharp comered		0.50	All diameters			
Slighty monded		0.23	All diameters			
Bell-mouth		0.04	Dll diameters			
Sudden entargemeni $k\left(\begin{array}{ll}1 & d \\ \text { a }\end{array}\right)$	whered	diameser of smatler pipe and d: diameter of large pipe				
Sudden contrachonh $\quad 1.7\left(\begin{array}{ll}1 \cdot & d \\ \hline\end{array}\right)$	whored	didmeter of smatler pipe and $\mathrm{d}_{\text {: }}$ - diameter of large pipe				

2. Structures

Control structures are needed for the low pressure underground pipe sbitems to deliver the corree flow at the devired locations (3,, ... $), 33$) Appendis 2 give design information on seructures for the systems. Although conerete pipe is shown, the design can be adapted to other pipe materials.

a. Inlet Structures.

Water may enter a pipetine by gravily from an irrigation dich or may be

Fumped trom a well or canal. Inlet strictures are wed to direet the water into th: pipe shetem and abomay ereve as a debris and sediment trap.

1. (eraver Imber. Whem water entersa pipeline troman open ditho a atructure like that hewn in figure of is and. The inke vand are conmerneicd of poured concrete. whatw hims, brich mabones or karge diameme concreti pipe. They are cquipped with a trash rack or sereen and a tomonabie coner. Plate 21. 22 and 23, Appondix 2 give devighs for gravil? inter.

Figure 67. An inlet stand for taking water by gravity from a ditch into an underground pipeline $(4,32)$.
2. Pump Stands. Stands are installed to receive water from a pump and convey it into a pipeline. They are open at the top and the stand diameter is larger than the pipeline, usually 3 to 4 times larger. This allows the stand to act as a surge chamber and allows entrapped air to escape. They are buil high enough to develop the head needed and are given some freeboard. A tepical stand is shown in ligure 68. If an mowally high stand is needed, the stand is capeed and a smaller diameter seet pipe is extended to the necessary height. A
flexible coupling is put in the pump line to protect the stand from pump viorations. Flates 24 and 25, Appendix 2, give designs for pump stands. Plate 26 , Appendix 2 , shows an inlet stand combined with a sand trap.

b. Pressure and Flow Control Stands.

Control structures are needed to maintain delivery water levels, regulate the flow into branching lines, limit pipe pressures, and provide for the removal of er.rained air.

Figure 68. Typical concrete pump stand: The flexible coupling is needed to absorb vibrations from the pump; the flap gate prevents back flow to the pump (4, 32).

1. Gate Stands. Gate stands are diversion structures that control the flow into laterals. They are also used to increase the pressure upstream, to prevent high pressures, and to act as air vents and surge chambers. The gates are often used to control pressures as required by upstream outlets. A single structure is often built to function as a gate stand and as an overflow stand as shown in Figure 69. Plate 27, Appendix 2 , gives the design of a gate stand combined with an overflow stand.
2. Overflow Stands. These serve as check and drop structures in addition to the other functions of a stand. As a
check, the stand regulates upstream pressures to maintain uniform flow from outlets or into laterals. As a drop, it limits the excess head developed by the natural slope. It may be used with or without the side turnout shown in Figure 69. It has the disadvantage that air is often entrained in the water as it spills from the overflow baffle. To minimize this, a gate which is normally open is installed between the two chambers in the stands. When pressure is needed for upstream diversion, the gate is closed sufficiently to bring the water level to the crest with only a small overflow. An overflow stand usually is not needed in areas of flat or very slight slopes (see Plate 27, Appendix 2).

Figure 69. Combination gate and overflow stand used for regulating upstream pressures and diverting water into other pipeline laterals or for direct irrigation (4, 32).
3. Float Valve Stands. On steep slopes, it is advantageous to install a semiclosed system with float valve stands as shown in Figure 70. Design of the stand is given on Plate 28, Appendix 2. The float valver, open when the downstream pressure falls to a predetermined level, and admit into the line only as much flow as can be released by the hydrants that are oper. Thus, each valve automatically controls pressure in the reach of pipe downstream from it. When a pipeline is served directly from storage, float valves provide full control of the water from the lower end of the line. High overflow stands on steep slopes may be eliminated by using float valves. A semiclosed system is efficient, since surplus water is not wasted at the end of
the line as is sometimes done when overflow stands are used. Tables giving head loss for various size and types of valves at diffeıent openings are useful in selecting the proper valve (24).
4. Line Gate Valves. Line gates in each lateral are sometimes substituted for gate stands. These valves are regular gate valves with special huts that are mortared directly into the line. They permit operation from the ground rather than from the siand top. The present trend is toward increased use of line gate válves wit'ı adjacent, small diameter, capped, vent stands instead of large gate stands. Friction losses in wide open gate valves are low and are often expressed as equivalent lengths of straight pipe (24).

Figure 70. Float valve stand; pressure and flow in the line are automatically regulated by the float valve $(4,32)$.

Figure 71. Typical alfalfa valve hydrant; the riser and valve assembly are sometimes cast to a short section of main pipeline to simplify installation (4, 32).

Figure 72. Orchard valve hydrant showing the rectinmended installation of the valve in the riser (4).

Figure 73. Gated surface pipe and tubing attached to portable hydran:s fitted cver alfalfa or orchard valves. The flow to the furrows is adjusted from individual outlets in the pipe or tube (4).

Figure 74. Open-pot hydrant with orchard valve and slide gate control (4).

c. Discharge Control Structures.

Outlets are necessary to deliver water from the pipeline to the land surface or into some distributing device. They consist of risers huilt of vertical sections of pipe into which outlet valves or gates are instalied to control discharge.

1. Outle V'olves. Outlet valves are used to distribute water directly into burder strips, basins or ditches where relatively large flows are needed. Two general types are used in the United States of America, alfalfa balves and orchard balves. Alfalfa values are normally grouted to the top of a pipe riser as shown in Figure 71 (Plate 29, Appendix 2). This is referted $(0$ as an alfalfa valve hydrant. Orchard valves are smaller than alfalta balves and are used where smaller flow are accentable. They are usually installed inside the riser as shown in ligure 72 (Plate 30). Appendix 2). Sime water usually flows from an orchard value with lower velocities, they are commonly used in place of alfalfa valves where crosion is a problem or where the pressure in the riser is extra high.

Portable hydrants and sheet metal stands can fil over the valves for water delivery into surface pipe or ditches. The hydrants are constructed so that the valves can be regulated with the hydrant in plate. Gated surfate pipe or tubing can be attached to the hydrant to distribute water to furrows or corrugations (Figure 73). Sheet metal stands are sometimes fitted with multiple-connections so that one stand may serve several surface pipes individually or simultancously.
2. Pot Hydrams. There are several types of distributing hydrants, two of which ars the alfalfa and orchard type where the water flow, from the top of the riser. Another, used for furrow irrigation, consists of a riser pipe extending to the ground level with a larger pipe, called a pot, fitted over it as shown in Figure 74. The pot has openings fitted with slide gates through
which water is distributed to the furrows. The slide gates are placed on the inside of the open pot to minimize erosion. The water level in the hydrant is regulated with an orchard valve. When line presures are low enough, the valve in the riner may be omitted with control at the slide gates.

In instatlation where the hydratic gradient is not more than 30 (0) 60 (cm (1 to 2 ft) above the ground, the pot may be capped and the orchard valse elimimated. In this case, the slide gates are instatled and operated from the outside of the riser. The flow is controlled by adjusmem of line presures and the gate.

Capped por outco have the adtantage of not allowing leave or debris to enter the rinet to clog the vide gates. Howeser, thes proside les control of the flow, and crosion trom the water jet is moreseber: The vide patce ate blten ieplaced by upectal soce - ispe valses which allow kes crobion. The use of capped pot outlet in watly limited to orchards and permanent crops where small flows are distributed into furrows.

With low line pressures, the pol is sometime omitted and the stide gate put in the vide of the rieer which may be lett open or capped. Flow rating and maximum recommended design capacities lor slide gates have been determined (24).
3. Surface Pipe llyelrame Seneral different types of hydrants are used to connect the pipelines to surtace pipe or lubing. These are essemtially variations of those mentioned previously in which the slide gatenare replaced by nipple, or connections for attachment of the surface pipe. Unless excess pressure is in the pipeline, the riser must extend high enough to produce the required pressure in the surface pipe. If the pressure in the pipeline is more than required, the riser may be equipped with an orchard value to prevent it from overflowing.

The height of an open hydrant should equal or exceed the head loss in the gated pipe or tubing plus freeboard. Reterences are available which are he Ipful in determining head loss in surface pipe and tubing (24). Discharge into the furrow; is controlled by individual outlets along the pipe or iube.

d. Miscellaneons Structures.

1. Samd Trups. Sand trap are usually buil! into the pipe inle seructures. Mest of the suspended material may be removed by making the stand extra large in diameter to insure low wate velocity and to provide a malling basin. The bottom of the hand is set some distance below the invert of the outlet pipes forposide spate for sediment deportion (see Plate 26, Appendix 2).

Sediment collecting in the pipeline is minimized if a minimum velocity of 60 $\mathrm{cm} / \mathrm{sec}(2 \mathrm{ft} / \mathrm{sec}$), and preferably 90 cmı/sec (3 li/see), is maintained. Sediment deposits in the pipeline reduce the capacity and eventually may plug the line. It is particularly important that sediment be removed from the water when surface pipe and lubes are used. Sediment deposition in this equipment makes the pipe very difficult to move.
2. Dehris and Heed Soreens. Debris and weed screens should be provided at every gravity inlet. Much of the difficulty caused by this material will be eliminated if provision is made to remove it from the water before entering the pipe. Designs are given in Plates 31 and 32. Appendix 2.
3. Air l'ents. Vents are required on every pipeline to release air and to pre-
vent high surge pressures. Vents are needed at all high points of a line, where the pipe slope increases sharply down grade, at sharp turns in the line, at the end of the line, and direetly betow any structure that entrains air in the flowing water. In addition to releasing air, open vents serve to release pressure surges and pievent damage to the line when gates or valves are opened or closed. They also prevent pipe collans. from vactum when the line is draned.

The eross-sectional area of the vent riser should be at least one-half the area of the pipeline. A typical instatlation is shown in Figure 75 with design information given on Plate 33, Appendix 2. It is often recommended that the small vent pipe extend part way down into the riser. Air trapped in the space between the end of the pipe and the "oncrete cap absorbs pressure waves and the riser thus acts as a surge chamber. The area of the smaller vent pipe should not be less than one-sixtieth of the main line area and in no case less than 5 cm (2 in.) in diameter.

All vents should extend at least 120 $\mathrm{cm}(4 \mathrm{ft})$ above the ground or as high as necessary to prevent overflow during normal oneration. The $120 \mathrm{~cm}(4 \mathrm{ft})$ height is for visibility to prevent damage during field operation. If an excessively high vent stand is required, it may be advisable to install an airrelief valve to reduce the height as indicated in Figure 75. Air-ielief valves permit air to escape or enter but do not allow water to pass. They should not be located where it may be necessary to relieve momentary high pressure surges.

Figure 75. Air vent for underground pipelines. The vent pipe is sometimes allowed to project into the riser to form an air pocket and surge chamber in the top of the riser $(4,32)$.

IV. CONSTRUCTION AND INSTALLATION

The e is an apparent lack of concern and understanding of the construction and operation requirements of small gravity irrigation systems and water control struciures. This partly results from past emphasis on the design of large structures and from governmental responsibility for irrigation systems ending at the point where the use of emall structures starts. The small structures and systems require an emphasis on economy in - . struction and installation while insuring reliable, simple operation for the farmeroperator of the sytem. There is ome similarity between the small structures and ditch linings and the larger stru:dares and canals in some construction phases like foundations. concrete mix, backfilling, erosion prevention, etc.

Two types of construction for irrigation structures predominate in developing countries. The most common type is brick-masonry, which may be covered with concrete mortar. Concreic footings and slabs are used under the brick construction. Precast concrete blocks, sections and complete structures are next in common use. The sections may be that, part circular, or parabolic for forming masonry lininge or structures. Metal structures have only limited uses and wood, hardly at all, because of shortage. susceptibility to tire, and need for using the wood for other uses. Other than canal lining, poured-in-place concrete has only limited use in small irrigation control structures. The ileed for forms, and onsite rmixing and pouring of concrete makes these structures costly and labor intensive.

1. Ditch Construction

Small earth irrigation ditches can be formed by hand or machine in either cut or fill sections. The fill sections should be well compacted in layers 10 to 15 cm (4-6 in.) deep. If the ditch section is higher than the field, an earth pad should be constructed and the ditch formed as shown in Figure 5. The side slupes of an earth ditch should not be steeper than 1:1 with
recommended side sicpes given in Table 2. Permanent ditch bank: or berms should be at least 30 to $76 \mathrm{~cm}(12-3 \mathrm{Jin}$.) wide at the top as given in Table 3. The banks must be high enough to give a frectoard over the maximum water level of 15 cm (6 in.).

A discussion of lined ditch construction has beengiven in Seeti.n II, lc. For the small ditches, masonry lining using brick. concrete lining and precast concrete lining are the most common. Other types of lining such as asphatice and plastic are almost never used in developing comentries but would be useful as liners below precast linings.

The ditch section; need to be overexcavated to accommodate the thickness of the lining material. The soil should be compacted using a hand tamper if a roller or other mechanical method is not available. Prior to placing the lining, the soil should be sprinkled with water if it has dried.

The concrete and mortar used for ditch linings should follow the specifications given in Appencix 1. It should be thoroughly mixed, preferably by machine and kept free of soil and debris. The local concrate and or brick mason should be relied upon to lay the brich or place the concrete in an acceptable manner. For the matl concrete ditches, it is not necessary to \therefore e reinforcing steel. The thicktess of the: tang should range between 5 and 10 cm (-4 in .) depending on the ditch size and flow velocity (13). There should be contraction joints cut transersely in the we concrete to about one-third its depth, about $3 \mathrm{~mm}(10 \mathrm{ft})$ apart. If the slope of the ditch lining is over 0.02 (2 percent), collars extending $30 \mathrm{~cm}(1 \mathrm{ft})$ betow and laterally from the sides of the lining are requirce dt each joint. The joint should be over the collar. After a period of time the joint should be filled with expansive material like bitumen. Construction joints abutting structures should contain a suitable expansion joint material, such as bitumen ol rubber.

Precast concrete liners should be placed on the earth sections that have been compacted and shaped to the outside shape of the liner. It is important that the liner is in complete contact with the soil or the plastic sheet underying the liner. The joints of the precast sections must be perfectly aligned when mortared. Misalignment will reduce the flow 湤atity of the ditch and also promote eracking at the joini.

Brick lined chanacls shouk be covered with a 1 cm (0.4 in.) layer of concrete mortar, particularly when the brisk is not of good quality. It is very important that the soll be well compacted, moistened. and shaped for olacing the brick lime.

2. Ditch Structures

Take care to prepate the tomdaton for stractures that are to be poured trom ine crete or built from brick. A concrete pad. slab or footing 10 em (.t in.) thich shouid be sufficient. This is placed on the excavated soil that has beem leveled and compacted (atso wetted). It is importanc that the soil be wetted before pouring the concrete since a dry soil will remove water from the fresh concrete, reducing its final strength.

If forms are required, they must be tied or braced so that they cannot move. Biick structures must be made using the best local construction practices with the water side covered with a thin layer of mortar. Gate slots should be made with metal angles or channels and fastened to the structure rather than forming the slots in the concrete or mortar.

The new concreie should be allowed to cure for at least 5 days by covering it with cloth, canvas, burlap or sand, which should remain wet for the $:$ day period. In some areas, concrete curing compounds are available. Directions for their use are printed on the containers.

After the conerete or brick murtar has had time to properly cure, the structures should be carefully backitlled. This phase is very important since the mos! cummon structural failure is improper or insufficient backfil!ine. Backtill soil should be mosis and compacted in 10-15 cm (4-6 in.) layers. When complete, the backfill should extend atbose the sidewalls of the s'ructure.

3. Pipe Systems

The comerustem, imstaliation and testing of low presure pipe sestems should generaly follow the specifications given by the Amerian Society of

 pendix 3) and to: undereremen phasth ir-
 satdaid relate the hers pratice for conbruction :abi mbtallation. For pecificadions and imstuttoms on matheng concrete and mortar for the pipeline whemres, refer :o Appendia 1.

Pipe trencher should be excavated deeply enough so that 0.75101 .20 m (30-48 in.) of corer is placed over plastic pipe and a minimuan of 0.6 m (24 in) corer over concrete pipe (3). The pupe should be uniformly supported over its entire leneth on firm, stable material in the trench. When trenches are excavated in soiks containing rock or in soils subject to appreciable swelling or shrinkage, the trenches should be overexcavated and backfilled with stable materials to provide a firm, uniform base. Trench widths just adequate to allow room for pipe installa. tion provide maximum support for the finished pipeline.

Before backfiiling, f:ll plastic pipe with water and check for leaks. Keep the pipe full of water during back filling to prevent collapse of the pipe. The trench is partially back filled and water is added until the fill is thoroughly saturated. Allow to dry and then complete the backfilling.

For concrete pipe with mortar joints, partially back fili the trench while the mortar is still plastic. Complete backfilling after the mortar joints have set for at least 30 hours. The pipeline should not be filled with water beiore backfilling is completed. Pipelines should be tested for leaks by observing the trench after two weeks of continuou water in the lines.

Conned concre:- pipelines onstractures msing mortar. Siructures are constructed in a manner similar to those previously descrited for conc:ete ditches. For pump stands, the line trom the pump must have a flexible jo:at so that vibrations ate not iransmitted to the stands.

V. OPERATION AND MAINTENANCE

1. Operation.

The operation of farm irrigation systems varies widely and is somewhat dependent on the operation and water delivery schedule of the secondary delivery canals (distributary canals, Figure 1). Usually the farmers, either by organization or individually, operate the balance of the system (tertiary and quaternary canals, Figure 1). The water delivery methods or sehedule for the secondary canals can be broad!y classified as demand, rotation or continuous flow systems (3). Another method classifies the system water delivery as either rigid (predetermined) or flexible (modified) schedule. In developing countries, water delivery from the government operated system usually follows a rigid schedule and gives a varied amount on a fixed frequency. The rigid sehedule and varied amount often supply excess water during periods of low crop demand, resulting in water waste and drainage problems. Conversely, during periods of greater crop water demand, not enough water is available resulting in farmer conflicts. The above factors indicate that the flows in a particular system vary widely and this is usually the case.

The proper operation of an irrigation system depends on an organizational structure that will insure equitable delivery to the water users. To have equitable delivery, there must be water measurement, good conveyance systems and positive control, which will result frorn properly if igned on-farm irrigation systems. A farmer-run organization is necessary to obtain correct water delivery based on the right and land holding of each individual. One individual employed or designated by the farmer organization should be responsible for equitable water delivery and also for recommending maintenance of the system.

2. Maintenance.

Good maintenance of irrigation systems and structures is necessary for efficient delicery and use of water. The maintenance of small onfarm irrigation canals and structures stowald be the responsibility of the cultivator and is a continuine lank

1. Seep areas in ditches or around structure hould be immediately repaired.
2. Remore edment and regetation from dithes, vatures, and repair feature that hate heen damaged or deteriorated.
3. Design stature in unlined ditches so the y will not imterfere with ditch claming when mechanical equipment is uncd.
4. Dithere need to be cleaned at least once a sear (more often where weed growh is cery rapid), and
5. the ditch hould be reshaped at the same lime.

Clean, reshaped camals have a lower roughness value (Table 1) and will therefore allow the water to flow faster with less ponding than poorly maintained canals. Clean channels can conserve head in areas where gravity irrigation systems operate with limited a alable head. Since the discharge is inversely proportional to the roughness cocfficient (Equation 1), a channel may carry as much as four times the flow when clean as when containing dense weed, (Table 1).

Low, short growing grass on the ditch banks is recommended for stabilization, but should not interfere with the flow capacity of the ditch. Weeds along the ditch banks, hould be eliminated. Rodents and burrowing animal are a major cause of ditch and structure failures and should be controlled. If rodents are known to be a majo. problem in an area, rodent activity arourid an irrigation structure can be reduced by mixing coarse sand and gravel with the backfill material when the structure is installed.

Ditch erosion, bank scouring, weak or low spots in the ditch bank, structure cracking and deterioration, and erosion around or below structures are ail maintenarse flems that most be correeted. If scouring or crosion is accurring, changes and or additions to the ditch structures, hould be made. Additional grade control or energy disipating stractures may be necemary. In atea, where it is available, mating erubed rock or coarse grasel on the diteh baith and hed downstream fom a ertacture may assis in reducing cour and erosion. Broken concrete a: bitick is ustal for this pur. pose.
(rack in comesta, manoms and brich structures hoald be repaired by Ement mortar or by other means. Nans crack are catused by temperature and mosture changes. Howerer, when cracking is callsed by foundation setlement and/or backfill movement and pressure, the
structure may need to be removed and rebuilt. The structures should be installed so that water does not pond in the ditches when the irrigation flow is off. Ponding enhancer seepage bank failure, mosquito brecding and contributes to stucture fature. Howerer, in sonce arcas ponding is desired for domestic purposes such as liserock wattering.

Metal structures and metal parts of other structures hould be protected by painting and or rustprooting. Metal in contad with the soil mas need spectial treamemt. Netal part, hodd be kept to a minimum, but it used, mus be firmly attached and protected agains :andalism or remosal lor wher use

A good matntenance progran an piolong the life of canals and structures several times over. A routine, thorough program hould be maintained.

VI. BIBLIOGRAPHY

1. American Society of Agricultural Engineers. 1981-82. Agricultural Engrs. Yearbook. ASAES 376. Design. Installation and l'erformance of Underground Thermoptastic Irrigation l'ipeltmes. St. Joneph, Mich.
2. American Societs of Agricultural Engineers. 1981-82. Agricultural Engrs. Yearbook, ASAES 261.5. Desten and Imstallaton of Nonremforced Concrete lrrigation lipe Systems. Si. Joueph, Mich.
3. American Societs of Agricultural l:ngineers. 1980. Design and Operation of Farm Irrigatoon Sistems. Monograph No. 3. ASAE. St. Joseph, Mich.
4. American Society of Agonomy. 1967. Irreation of Agricultural Iands, Chapter 42: "Water Control and Meaburement on the Fam." ASA Monograph No. 11. Madison. Wis.
5. Booher, K. J. 1974. Surface Irreatmon. I A (Agricultural Development Paper No. 95. Food and Agntultural ()rganization of the United Nations. Rome, Italy.
6. Bos, M1. (i. 1976. Mashare Measuremem Structures. Publ. No. 20. International Institue for I and Rechamaton and Improwenent. Wageningen, Netherlands.
 for lrisatom (anals Iamer Bulletin No. 2268. I:.S. Department of Agriculture, Science and Pdacatoon Admmatratom. Phoenix, Aria
7. Code, W. I. 1957. /arm Irrmafon Strmatures. Bul. 496-5. Colorado State University, Agricultaral tapermemt Station. Fort Collins, Colo.
8. IAO) World Bank (ooperative Program. 1981. Small Irrigatom Struchures. Rev. I. Rome, laty
 1). International ($o m m$ mion on Irrgaton and Drainage. New Delhi, India.

 Cement Asociation. (hater, III.
9. Bansen. V. I., O. W. Wre:hon and (i. I. Siringham. 1979. Irrisatom Prmciples and Practues, lourth Edimon, John Wikey and Sons. New York, N. Y'
10. Herpich, R. 1. and M. 1. Manges. 1959. Irrmatmen Water (omerol Structures. Land Reclamation ${ }^{7}$. (ontribution Vo. 82. Department of Agricultural Enginecring, Agricultural Equetment Staton. Manhattan, K's.
11. Holy, Milos. 1979. Irmatmon Strmeares. Publ No. 135. Contral Board of Irrigation and Power. New !elhi. India.
12. Humpheress, A. S. and A. R. Robimson. 1971. Field Evaluatoon of Drop-(heck Siruchare for larm lrogatom Swems. ARS 42-140. L'SDA Agricultural Research Service and Idaho Agricultural Experment Station. Kimberly, Id.
13. International Commission on Irrigation and Drainage. 1967. Multilngual Technical Dictionary on Irrgatom and Dramage. ICID (entral Office. New Dethi, India.
14. International Commission on Irrigation and Drainage, 1969. Transactions, Vol. IV. Mexico City, Mexico.
 California, College of Agriculture, Agricultural Experiment Satmon Berheley, (at.

 United Natom, Kome, Italy.

 New Delhi. Inda.
 1.TD. New Delhn, Inda.
 Experment Stann, Extemon Serve Coire A领. Berkeles. (a

Miscelaneou, Publtathon Vo. 926. LS. Gowernment Pimene othce. Wanhegon. D.C.

 Collins, Colo.
15. Skogerhoe, (i. V., K. Bennett and W. Wather. 1973. Selectum and /maldatmon of
 No. 120. Colorado Aericultural Faporment Station. Fort Collime Colo.
 Institute Blde. College Park, Nd.
 farm Turnom, ASCE: Paper, (.S. Burean of Reclamano: Denber, (olo. (Mimeo)
16. Trout, I. J. and D. W. Kemper 1980. Waterobur:e Impromemem Manal Water Management Iechacal Report No s8. Water Manatement Reseath Projeci, (ol orado State Lniments. Iont Collins, (olo.
17. Trout, Thomas. W. 1) Kemper, and Hatia Sadrul Hasan. 1981. (ircular (innerefel/ rigatoon /urnow: Desun and (ontructon. Handhook. No. 1. Water Management
 lins. Colo.
 Soil (onservation Service, Washington, D). (. (See Appendo)
 rigation." LSDA Suil (onservatoon Servae. Washmeton. D).
18. L.S. Deparment of Interior. 1951. Irreaton Admers' (itude LSBl Bureau of

 Reclamation, L.S. (oovernment Printing r)tfice. Washington, D.(.
19. Zimmerman, J. D. 1966. Irrıatom. John Wiley \& Sons, Inc New York, N. Y.

VII. DEFINITION OF TERMS (17)

1. CHANNELS AND STRLCTCRES

a. Delisery Chanmets. Watcronure fam hateral or ficld lateral.|

 diverhutaries and woplyme water to vh-mmors outle or turnout-

 mimer and upplsme water whote and or tumbur. Head-diteh

b. Division Siructures.

 hetween tan or mofe obtake at the end of a canal on between beeld and once or mate witate

Division bos, proportional distributor. A larm structure to diside the water uppis

c. Drops, (hutes.

Drops

Drop stracture, fall stracture. A structure designed to lower the water surtace in a channel in a hort distance and with sate doupatom of energy.

Ditch drop. A farm veructure hull to aborb the excen grade when the vope of the ditch is greater than the grade which hould be wed in the dith. Frosive velocitie, are reduced uputeam.

Chutes. An inclined drop or tall which the towerme of the water surtace in achiesed oser a relatisely whort kengh of chamel.

d. Checks.

Check, check structure. Structure bult or placed asers a hanne! at suitable point, 10 control water level, and regulate water appl: Stop loge and check panct are the movahle econon placed in von to comool deptis.

Check drop. Chech structure combined with a drop. for a dual purpose vrothere
Check stop. A permanent or temporary struciure incerted in a doth lo panty or abolly check the flow. L'sed to raise the dater beel io nermit irmation through bank cuts, ipiles or siphon tuhes. Ma: he portable.

e. Turnouls.

Offtake regulator. A structure built at the head of an offtaking distributary channel to control and regulate water from the parent canal.

Headgate. Structure at the head of a watercourse, farm lateral or field lateral which consects with the distributing clannel. The turnout may be placed through the banks of tertiary and quaternary canais for water delivery to the fields.

Turnout. Structure that releases the water from a head ditch. Can be used to allow the water to pass through the banks of the head ditch onto a field, thus acting as a check gate and a head gate at the same time.

f. Miscellaneous Siructures and Devices

Measuring structures. Weirs, measuring flumes, structures used to find depth-discharge relationship.

Pipaline structures. Structures used with underground, low pressure irrigation pipeline sy:ems.

Drainage structures, tail escape structures. Structures for conveying water away from irrigated areas into a drainage system.

Ditch structures. Inlets, sutfalls, overflow sections, checks, drops, crossings, outlets.

Irainuse tile and pipe structures. Inlets, outets.
Destlime bexes, sund traps. Strustures to reduce the flow velocities so that sand and silt sellles and can be removed.

Other devices.
*Siphon tubes - Pipes over ditch banks.

- Spiles - - Pipes through ditch banks.
* Flexible pipe and lubing - To convey flow from pipes or spiles.

2. HYIDRAUIICS

a. Aerated Nippe. Undersurface of water flowing over a weir-type structure that has an ample supply of air
h. (ritical Depth. Depth of flow in an open channel where ihe eategy of flow is at a minimum value, i.e., where $H+V^{: / 2}$ is at a minimum.
c. friction loosses. loss in hydratic head due to friction caused by the roughness of the surfaces that are in contac! with the flowing water.
d. Belocit!: Head. The average velocity (V) multiplied by itself (V^{2}) divided by twice (2) the gravity acceleration (g) $9.81 \mathrm{~m} / \mathrm{s}^{:}\left(32.2 \mathrm{ft} / \mathrm{s}^{2}\right)$. This results in the velocity head in meters (or feet).
e. Availahle Head. Difference in elevation of an upper water surface and a lower surface such as a field or water surface.
f. Hydraulic Head. Depth of water referenced to a lower elevation. Height that water will stand in a lube. Energy available.
g. Head t.oss. Energy lost as a result of friction, impact or curbulence. Simply, the difference in two water surfaces connected by pipes or channels.
h. Hydraulic Grade lime. In an open channel, the water surface is the hydraulic grade line. In a clored pipe, a line joining the elevations to which water would stand in open gage tubes.
i. Hydraulic Ciradient. Slope of hydraulie grade line.
j. Hydradic Radias. Area of the Rowng water divided by the wetted perimeter. For pipes mowng full, this is cequal to the diameter divided by four (4).
h. Submerged lime. A condition of flow through or over a veructure where such flow is affected bs the depth of water on the downtream side.

1. Supercritical ITow. Velocity of flow is greater than critical flow (see 2b). High velocity flos.

Concrete for Small Jobs

Concrete is a widely used buideng material around the farm and home．Foundations，walls，sidewalks．patios，steps． floors，and driveway，ate bult by homeowners every where Conctece has sereal destable paperties that make it a ver satile and popula buidaing materal．Fondy mixed con－ cote can be formed mboratically ans shaper Mandened concrete is stonga and duratile

Cemem is the tine pumder sold by building materials
 ＂portand cement，＂ 10 differemtate 11 trom other kithd of cements used for other purposis．such as．tor example， masonrs cement．
 ageregates．Paste is composed of portand exment．Wated． and air．Ageregates are inert mimeral，such as vand eravel． and cruatied stme．

Duting mixing．the cement and wate loma a pose that
 two for the homs afte mixnes a chemical 心ation stants between the cement and the water．As this chemicat reac tion progeses．the cement paste hadens gradally and the
 harden mach like whe ath bad the agenceates together to form the sold mas that a concrete．

Ahhough read mated conctece is widels wed for large construction jubs． 11 s mal alwass practical to use ready mixed conctete on amall jobs．In ame cases．the amonn of concrete bou tequme mat he hess than I eufyd．．which is less than most ready mix producers will supply．And in some ateas there is m 心ad！mix plant．

If you are faced with one of these circtmstances．making your own concrete may be the only practical solmom．This is hard work but it has the advantage of low enst，and the amount of comerete mixed can be adjusted to suit you uwn work pace．

Quality concrete costs no more to make than poor cen crete．hat is far more economical in the long run becatase of
its greater durability．The rules for making good concrete are simple：

1．Use proper ingredients．
2．Proportion the ingredients correctly．
3．Measure the ingredients accurately．
4．Mix the inpredients thowngly．

CHOOSING THE INGREDIENTS

Portland cement is not a brand of cement but a type．Most porthand cement is gecy in color．However，white porthand cement is manufactured from special raw materials that produce a pure white color．It can be used instead of the nor ial grey portand eement，but it is highe in price， wheh mas restrict its use lo decorative vork and other vectial jobs．

You can buy portand cemomt in bage at vour local building materials dealer．In the United States，a bag weighs at Ih and holds 1 cu．ft．i in Canada，a bag weighs 80 lb ．and lowdsabout－cult．

Cement in bags should be somed in a dry location，pref－ cably on raned wooden platorms．Sonetimes when bags hate been stoded for a long time the cement in the hower part of a pile develops warehonse pack，that is，the cement appars to be hardened around the edges of the bags．You call manally comed this by rolling the bag on the foor．To asod warelomse pack．bage should not be stacked more thatl 心en high．

Cement suitable for use in concrete should be free－flow－ ing．The presence of lamps that canout be pulveriaed read－ ils between soun thumb and finger indicates that the cemem has ahonbed moisture．Such cement should never be used for mportant work，but when the lumps have been screened wat thongh an ordmary honse sereen，it can be used for certam mino fobs such as setting face posts．

Walle for making concrete can be almost any matural water that is drimkable and ！as mo pronounced taste or odon．Athough，some waters that are not suitable for drink－
ing will make satistactory concrex to be on the sate side use only wate tin tw dank

Air is alse an maportant meredent for making good concrete. In the late l9.30- 11 was desconemed that ant in the form of micuserpic bubbles exenty dispersed thoughout

 concrete.

 rupture (seake) the concele valace. The tany air bubbles ate an resemons on reled bates tor the expandne wate
 cictr.

 icers In cond dmates mid wem mold chmoter that ham

 sidewathe puttes and sep

Air chtamment , tho has other adsantace For example. the 'my an bubber at like bat beames in the mix. an
 water is required.

 me agents, ate added tor the ming wate Buadme mate-
 mix plants stock then ton then nwo use and would prohably sell you a salall guantu!. The ammat to he addec in the mix depends on the brand ot ati erbtamine atent This information caln he whaned from the buldme materals supplier or the ready mix puducer.

There is another method of whtaming aremeraned conctete. To save voll the trouble of buyng and measuing an arrentranime atert fand dimanting a possible errom in dosate many cement mambatumers mathet portand cements that comtan an motergomed at entraning agent. The ? cements ane decthfied on the bage as "at-entraming" and are avatable from the same supplers that sill regular portand cememts.

Aggegates are minerahs such as samd. gravel, and crushed stone that make up of to so percent of the velame of concrete. They at as an mert thller materal to reduce the amount of cellem equmed in conctete. Without aggregates. concrete would the very axpensive Farthermose, without ageregates. concrete womb shrimk a gerat deal upondrying and this woukd ked to excessive eracking Aggegates restrain the shrmkage that ocurs when conerete hardens.

Ageregates are divided into iwo sizes. fine and coarse. Fine depreate is always sand. and como agenerate is usually pravel or coustacd stome

Natmal sand is the most commondy wed fine aggegate: however manotaclured sand, made by emshong grave! or stone is also atablatle in wome ateas. Sund shold have partoces ranging in si/e irnon $\frac{1}{4}$ in. down to dusi size partickes small emough w pass through a No. 100 mesh sieve (10.000) operinge to the square inch). Ahortar sand should
mon be used for making concrefe since it comams ombly small particles.

Gravel or corsiced stone are the most commonly used coarse ageregates. Thes should consist of pattiches that are somd hard. and duable, not soli or thaky. with a minimum of lomge staer like preces. Partales should range in size fom ': 11 . पp w the manmum sise used for the job. The
 ally. He most commmat mix is obtaned by using the largest-sice coarse aspucgate that as practical or available Coarse aggregate up to l': in. in sta, lor example may be uxed in a thick foundaton wall or heavy footmg. In walls. the larest pieces should never be mone than one iffth the thickiess of the fimshed w: I section. For slabs. He maximum site should not exeed one thind the thickness of the slab. If comerete is to be placed around remforcine bars or pase the maxmmon we of the segregate shoud mot be more than thee than the of the ckar space between the bats
 11.

 agereqate seadily avalable

 arte whth ! w wengh and durability.

It wou usper that the sand contanm for much exfremely fine materalath as clay and sift, check its suitability for use in making comerete b! the so-cathed silt test (Fig. 1). Fill an whany quart camong far on mik bette to

Fig. 1. Silt test jeing made in a quart canning jar.

Fig. 2. Well-gaded aggregate have particten at varimosime. Shomn here o 1^{\prime} : in. mavimum- ife ware ageregate. Pecen vary in si/e from ': 101^{1} : in.
 qu: veron. The sample shoud he taten fom at least five
 secther. Add chen wate to the and in the jan an botte

 recombincd mon properly graded tome and coarce degreates.

Buy fine and coare ategedatio xparately from a reph-
 ponduce in what ara, it is proferable to purchate dgere-
 buy hase the conco wa and are varable fomakne con crect
 not directs on the ghnud. Apat from watsage of materal. gromed stomge mat Latse contammation with mod and

 buatly saturated wh wate and may contan an accumblaton of dirs waved hough from hagher lavera.

PROPORTIONING THE INGREDIENTS

In concrete, the cement and water form a paste that surrounds every pieco of aggregate. Within a few hours, the

 リ月al!

 dhes

 made as will be explamed in ddmatme the Thal Batch on page 7.

The valucs in Tahle I sould be wad at sum and meas.
 What by solame a recommedded tor cerom that wall be

 Imes that ate a litale mote ditticult lo wate than mixture
 ma: we wed an cath cubic font of conctece bobatin the
 redace the value tor coance atereate in Table 1 by 3 lb and mercase the valte for sand bs ? th.

The weight of materal eiven in Table 1 will make a I-co.ft. Batch. This a about the disht amoment for hand mixine. Fon machace ming. multuly the values in Table 1 by the eapacty wh the mex. Fur example if your mixer capacity is ? chatt and you ate making anterntained comcre with 'r-in. maximmone savel agregate you would

 30 lb . wf wate. It lou ate usting whacd stone of the same

 and ann be meatured in pats. cams. on ans wher sturdy
 conventom bathay chatame

Esimating quantitice needed. Betne getting down to the job of measmmy and mixne. bon will need to know just how much cement. sath and wase ageregate to buy for but project. To do this sun will fint have to esamate the amornt of concrele bult project will sepuise. Ex the fol. lawine smple formbar which works for any spate or other Nechamblatshaped area
Width(fi.)×Length(fi) \times Thictiness (in.) $=$ Cubic feed

Table 1. Proportions by Weight to Make $1 \mathrm{Cu} . \mathrm{Ft}$. of Concrete

- If crushed stone is insed. decrease coarst aqyegate by 3 It and incredse sanct by 3 its.

Table 2. Proportions by Volume

For example a 4 -in-thick patio slab. 12 ft . wide and 15 ft . lomg. would require: $12 \times 1.5 \times 4=00$ cufte of concrete. A
 $\frac{3 \times 10 \times 8}{12}=20$ cu.月

The amome of comerete detemined by the above for mula does moi athos for lonses dae to uneven suberate.
 In the caxe at the wall, He that ammont af concrete re guired womld te 20 $+10.10 \times 201: 22$ cu.h.

The gmantite of materat on bus can be catculated by
 example by the weights of matemats meded for 1 colf. given in Table 1. Abmang the wall will requice atren-
 gate to be 3 in. , the quantites of materal meded would be as follows:

$$
\begin{aligned}
& 22 \times 25=5501 \mathrm{~h} \text {, } 2 \mathrm{f} \text { cement } \\
& \therefore x+2=12+\mathrm{lh} \text {. of sand }
\end{aligned}
$$

 rial. a 10 pereent allmance hombld be made to cover nommal wastage It is peteable to have wme material left wer than tor ran the ask wf hemg shant on materal tien the end of the job.

The quantum, of matiol needed hmuld Herefore be increaxd do.

$$
\begin{aligned}
& 550 \div(0) 10 \times 550) \quad 105 \mathrm{th} \text {. } 10 \text { cemem } \\
& \text { 924 + (0).10 } \times 19+1 \text { 1.0161b at and } \\
& 1.430+(0.10 \% 1.430) \quad 1.57 .1 \mathrm{th} .01 \text { gravel }
\end{aligned}
$$

Simee a L.S. bay of cement webh 9 4 tb .. you will need
to buy $\frac{605}{94}=6.4$ or 7 bags. A (anadian bag weighs $x(0) 1 b$.. su) you will need $\frac{605}{80}=7.5$ or 8 bags if you buy your cement in Camada. If airemtraming coment is mot avalable. you will ako need to nhtam an airentathong ament.

Agerequte ane mod by the ton (2.000 lb.) of by the cubic yard 27 cult. (Quatition af aporeates can be converted fonm pumal lacuha gand. on vice versa by assum. ing a value of yo tb. pe cubic lon for the weight of sand and $1(0) \mathrm{th}$. per chbo font ter the weght of coarse agere-

 tams $\frac{1.573}{100}=15.7$ cu.ft ar $\frac{15.7}{27}=0.58$ cu.yd.

MEASURING THE INGREDIENTS

Ineredents must be meanored accurately to ensure productan of matom batches of quatity concrete. Jumedients may be meaved by weght of by volume.

Neasmestent by weipht is rewmmended becanse it is
 bath twhatch. Now, it se caver tomahe admathents in mix

 Three to tive-gallon satwated vied pals on buckets are vatahte. Remember to "ere" the vale with the empty

the level of the matemat made the comamer Subsopuent batche mas be mentucd by wing the math．The xate will

 tatc comtent of the and has ohamed

 くりがいい

Adjusting for water in the sud．Do mand 5 ：dels abmbate

 い．バい

 1115 of and by 1 the and dectase the patams of wate by 1 lh.

 damp on very wel sand．For example masture in sand

of bulking depends an the amonat of moisture in the sand and its timeness．Dos sand can bulk 101 limes the volume When wetmed．Acondangly it sou are meanming by volume 1！Whe met sand

MIXING THE INGREDIENTS

 They munt be wompohly med datheremen paste coats

 hacal emtal xelver vorem and

 drum．Thic maxmum hatch sies is mandy shown on an dentificatompate atached lo the mixet．For papper max－ mat meve lad a mase besond its maxmmom batch capac－ ity．The chave of mixe ve will depend on the extent af sour propect and the amount af contrele that gou want to handle in ans ane hatch keep in mand that 1 mix a 1 ．

 describes sand exposed to a recent rain．forms a ball if suered in your hand and leaves moisture on the palm．

 poll. amd, and coarse aggregate With light troweling. all yates between carse aggregate particlenare filled with and and cement phi.
 (b. of matcosal.

 mating water with the med rumbling.
 fire at hast three montero on mil all mat mats are thenroughly mise anta the concrete has amiturm color.

Comerele shad be placed in the forms as worn as pore

Mixing the trial batch the phomporn of amd and crane

 aments.
 fum Table 1. Dachas a ample of commerce for the

 Worhathe mass that will place and lon well proportion wed ate connect and med mo adjustment. The smabilins at the sample can be judged by worthy the concrete whit a
 workable mix toul low!. like the sample town in lite (
 wollout crumbling: It would , lice down, met rem oft. a
 (1) bind the pieces of agereate threshed on that they will
 the forms. There should be sulitiont sathecement paste to give clean, smooth surfaces free from mush spots (called honeycomb) when forms are stripped. In wither words, there should be just enough cement paste be completely bill the spaces between the particles of arrogate and to emote:

Fig. 7. This mix in tow wet because it contains loo little sand and coarse aggregate for the amount of cement paste. Such a mix would not be economical or durable and would have a strong tendency to crack.

Fig. 8 . This mix is too stiff because it contains ton much sand an coarse aggregate. It would be difficult to place and finish properly.

Adjuseing the trial batch. It He 16.1 hath in tow wet. Low
 H心 popultwin at as?

 mach fow , thf to place cement and wate may be added in

 (2il!

 fon sandy. Lease out some mose sand and add an equal weyld of conse agenceate in the mext bath. Recond the
 weight maths in the batch cans seondmes the adjusted

 cogual weight wh amd lat the be hath. Rewnd the new

 weroht.

 thes mon land.

 theretore should not be wed for conterte that will be exposed on free ing-thawing on de-ces.

Hand mixing should be carried wot on a ckan, hand suttace or in a mortan box to prevent contammatmon by mat and dit. A onctete shab make a good woming vatace The measured quantity of sand in ypeat out events an the stab. Then the required amonant of cement is damed on the sand and evenly distributed. Mix the cement and wed thoroughly by tuming with a shothenalled. syate-cod
 brown and grey. Streaks indiate that the sand and cement have not been thoroughly mixed. Nest. spead this mixture out evenly aver the vab and damp the required quan-
ig. 9. This min is $:=0$ remd becano it contains tow mach sand amd not enough oarse aggregate. It would place and finish easily, but would not be ecomomical, and could be very likely to crack.

 coare aggegate and not conough sand. It wouti i. ${ }^{\text {difficult to }}$ phace and tinish property and would result in honeycomb and promes concrete.

tity of coarse aggregate in a layer on top. The materials are again turned by shovel until the coarse aggregate has been uniformly blended with the mixture of sand and cement. After at least three turnings, form a depression or hollow in the eenter of the pile and slowly add the proper amouni of water. Finally. turn all the matenals in toward the center and contintie mixing until the water, cement. sand, and coarse aggregate have all been thoroughly combined.

Prepackaged mixes. Jobs small enough for hand mixing can usually be done with convenient prepackaged concrete mixes. Building materials suppliers, hardware stores, and even some supermarkets sell prepackaged conerete mixes: All the necessary ingredients-portland cement, dry sand, and dry coarse aggregate-are combined in the bag in the correct proportions. Packages are available in different weights, but the most common sizes are 45 and 90 lb . A $90 \cdot \mathrm{Ib}$. package makes $\%$ cu.ft. of concrete. All you do is add wuter and mix. Directions for mixing and the correct amount of water to add are given on the bag.

To ensure that you get good quality from prepackaged concrete mixes, the American Society for Testing and Materials has adopted Specifications for Packaged, Dry, Combined Materials for Mortar and Concrete (ASTM C387). This specification covers the quality of the ingredients, the strength of concrete obtained with the ingredients, and the type of bag in which the ingredients are packaged. ASTM C387 also requires that prepackaged conerete mixes meeting this specification be so identified on the bag. To obtain a quality product, make sure the prepackaged mix you buy contains a statement on the bag that it meets ASTM C387.

If the concrete will be exposed to freeze-thaw or deicers, prepackaged mixes must be machine mixed and must be made with air-entraining cement, or an air-entraining agent must be added to the mixing water.

As pointed out above, prepackaged mixes are most convenient for the very small job requiring only a few cubic feet of concrete. However, for larger jobs up to 1 cu.yd. (27 cu.ft.), you would be wise to compare the cost of using prepackaged mixes with the cost of buying the separate ingredients.

Cleaning the mixer. Soon after you finish using the mixer (before the concrete can harden), it should be thoroughly cleaned. To clean the inside of the mixer drum, add water and a few shovels of coarse aggregate while the drum is turring. Follow this by hosing with water. The thin cement film that builds up on the exterior parts of the mixer may be removed with vinegar. Concrete that builds up inside the mixer drum requires scraping and wire brushing for removal. Heavy hammers or chisels that might tear up the drum and blades should not be used. Remove stubborn buildup with a solution of 1 part hydrochloric acid (muriatic acid) in 3 parts of water. Allow 30 minutes for penetration, then scrape or wire brush and rinse with clear water.

Hydrochloric acid is hazardous and toxic and requires adequate safety precautions. Skin contact anci breathing of fumes should be avoided. As a general precautionary rule, rubber or plastic gloves and chemical safety goggles should be worn. If the acid is used indoors, adequate ventilation should be provided. Follow the storage and handling precautions stated on the label of the acid container.

Dry the mixer drum thoroughly to prevent rusting and store the mixer with the opening of the drum pointing down. Do not appiy oil to the inside of the drum unless the mixer is to be stored for an extended period of time. Thoroughly wipe off the oil before using the mixer again, as it may adversely affect the quality of the concrete.

The Portland Cement Association disclaims any and all responsibility for the application of the principles or procedures discussed in this publication or for the accuracy of the sources other than work performed or information developed by the Association.

Caution: Avoid prolonged contact between unhardened (wet) cement or concrete mixtures and skin surfaces. To prevent such contact, it is advisable to wear protective clothing. Skin areas that have been exposed to wet cement or concrete, either directly or through saturated cloth. ing, should be thoroughly washed with water.

APPENDIX 2

STANDARD DESIGNS OF FARM IRRIGATION STRUCTURES

U.S. Department of Agriculture

Soil Conservation Service

Index - Appendix 2

Plate

1 Steel division box.
2 Concrete trapezoidal division box.
3 Combination pump outlet and division box.
4 Trapezoidal chute drop, $0.30 \mathrm{~m}\left(1^{\prime} \cdot 0^{\prime \prime}\right)$ drop.
5 Trapezoidal chute drop, $0.61 \mathrm{~m}\left(2^{\prime} \cdot 0^{\prime \prime}\right)$ drop.
6 Trapezoidal chute drop. $0.91 \mathrm{~m}\left(3^{\prime}-0^{\prime \prime}\right)$ drop.
7 Concrete vertical drop, $0.15 \mathrm{~m}\left(0^{\prime}-6^{\prime \prime}\right)$ drop.
8 Concrete vertical drop, $0.30 \mathrm{~m}\left(1^{\prime}-()^{\prime \prime}\right)$ drop.
9 Concrete vertical drop, 0.46 m (1'-6") drop.
10 Concrete vertical drop, $0.61 \mathrm{~m}\left(2^{\prime}-0^{\prime \prime}\right)$ drop.
11 Concrete block drive-through irrigation drop, $0.30 \mathrm{~m}\left(1^{\prime}-0^{\prime \prime}\right)$ drop.
12 Concrete drive-through irrigation drop, $\left.0.30 \mathrm{~m}\left(1^{\prime}-0\right)^{\prime \prime}\right)$ drop.
13 Vertical wood drop, $0.30 \cdot 0.61 \mathrm{~m}\left(1^{\prime}-0^{\prime \prime}\right.$ to $\left.2^{\prime}-()^{\prime \prime}\right)$ drop.
14 Pipe drop, 0.31 m ($122^{\prime \prime}$) water depth.
15 Pipe drop with check inlet, 0.31 m ($12^{\prime \prime}$) water depth.
16 Pipe drop, 0.38 m (15 ") water depth.
17 Concrete check.
18 Concrete turnout.
19 Pipe turnout.
20 Siphon inlet or outlet.
21 Gravity inlet for buried pipelines.
22 Gravity inlet for underground pipe.
23 Inlet structure for irrigation pipelines.
24 High head pump stand for concrete pipe.
25 Low head pump stand for concrete pipe.
26 Pipe sand trap for concrete pipeline.
27 Overflow gate stand for pipelines.
28 Floal valve stands for pipelines.
29 Alfalfa valve outlet for pipelines.
30 Orchard valve outlet for pipelines.
31 Irrigation water desilting box and trash screen.
32 Irrigation water trash screen.
33 V'ent for concrete pipelines.

Dimensional Conversions

```
    meters \((\mathrm{m})=0.30\) times \((\not)\) feet \(\left(\mathrm{ft}^{\prime}\right)=0.025 \times \ldots\) inches (in ") centimeters \((\mathrm{cm})=30.48 \times \ldots \mathrm{ft}=2.54 \times \mathrm{in}\).
\(\ldots m^{2}=0.093 / \ldots \mathrm{fl}^{2}\)
\(\ldots m^{\prime}=0.028 \times \ldots f^{\prime}\)
\(\ldots m^{\prime}=0.76 \times \ldots \mathrm{yd}^{\prime}\) (cubic yard) -1 yard \(=3 \mathrm{ft}=36 \mathrm{in}\).
\(\ldots m^{1 / s}=0.000063 \times \ldots\) GPM (gallons per minute)
\(\ldots \mathrm{m}^{1} / \mathrm{s}=0.028 \ldots \ldots\) cfs (cubic feet per second)
```


I ग1Eld

Plate 3

sectional elevation a-a

oblique view

sectional elevation c-c

sectignal elevation d-d

PLAN SHOWING GATE SLOT DETAIL

YOME YCLITURE
d- DEPIK of water in DIten
h - height of fall in vater suaface

TRAPEZOIDAL CHUTE DROP			
SOIL (\%NSERUVATION SERUVICE			
Comer	0×15	L1	- 7 arim
		$3 \cdot 60$	7-L-36-30

(DETAIL OF SLOT IN END SILL)
motes
TME COMCRETE FOOTIUS FO UPSTEEAH WALL AO DONBTEEAM WALL SHLL BE POURED ACAIMST COASOLIOATED MATEAAL. TEE TMICRESS OF THE FOOTIMAS SMALL MOT BE Less thay slx imemes.
THE TMICXBESS of the comeate in the fomeo mals small mot be less tman fiye inches.
TME ixicryess of the coaceete in tue floon shat smuld mot be legs than foun Imenes.

PLAN
都

Water Surface 0 Ballom
SECTIONAL ELEVATION A-A

ELEEVATION
(DETAIL OF SLOT IN ENO SILL)
motes
fale comerete footimgs for upstafan wall and domittrent dill shall be poured agims: consolioated iaterial. the thickeess of the footings Shall mot be less than sir incites.

- ie thicriess of the cr :rett in the fobied walls shall mot ae less than fire inches.
the thiciness or ine congatte in ine floor glag shall mot be less than four inches.
$0=60 \mathrm{cis}$

hotes
THE CORCRETE FOOIIMOS FOR UPGIREAM WLL AMO DOWMTREAN YALL SHALL EE POUREO AGAIMST COMSOLIDATED WAIIRIAL. THE THICKESS OF TME FOOTIMOS SHALL NOT DE AGAIMST COMSOLIDATED
LESS THAM $\$ 1 \mathrm{I}$ IMCHES.
the thicamess of the concrete im the fomed wals shall mot ee legs than FIVE IMCHES.
the thiciness of the comerete in the floor sas shall mor be less than toun IMCHES.
REIMFORCEKEMT STEEL IM FLOOR, UPSTREIM POOTIMG, ANO DOMSTAEAN FOOTIMG SHALL be $3 / \mathrm{g}^{\circ}$ diameter roos placeo at cemien of Slab amo spaced appror. 9° cenien to cemyer both vars.

 hoos in the formed watis shall ixinio from the ground up. Tmige moos are 10
 AIR OR MITER SIOE. HORIZORIAL RODS IM FORME YALIS SMALG AE PLACED AgOUT 3 . fROM BOTIOM OF FOOTIMG AMD SPACED APPPOI. 9^{*} CERIER TO CERTER UPARC FROM COMOM RONS, AS SHOM IM TME ELEYATIOM SECTIOM A-A.

110	OESTIPTİN	Heum 1
cetcreie		1.02 Cu .15.
$\begin{aligned} & \text { REInFOCIng } \\ & \text { SlCl } \end{aligned}$	3/3* OIMEIER ROOS	164.5 LIM.F1.

OBLIQUE VIEW
(LOOKING UPSTREAM)

hotes

the concrete footings for upstrgay wall and domstrem mall shall be rounco agaimst consolionita material. the thicrafss of taf footings shall not oe less than six inches.
the thicemess or the concretie in the roryed malls shall not be less than Five inches.
the thickess of the comerete in the floor slab shall mot be ligs tataf four inches.

 10 cemife soth mats.
 cemper of mall ame spacio jopaor. go cemier to centeg goth may. all reatical eode in :he formo ritis shall fitimo foon the crouxd lip. thfsi poos arf io
 if or vater sice. mopizcmit poos im inhmio ralls shall of placeo agout jo
 prom sonter rcos. as shom in ree elemapion section a-4.

Iifm	2[S.:21PTIDM	nooun I
Cancrite		
		1.13 Cu. 10.5
j:et		130.0 lm .619

$0=6.0 \quad$ c.f.

CONCRETE VERTICAL DROP FOR NONCOHESIVE SOILS			
1.12"			$\mathrm{H} \cdot \mathrm{Z}^{\prime} \cdot \mathrm{O}^{\circ}$
Ts	-	$12-59$	7-L-36-38

Plate 12

PLAN

ISOMETRIC VIEW OF CONCRETE SLAB (See note No. 5)

SECTIONAL ELEVATION ON CENTER LINE
capacity and lengths reguiren

PIPE SI7E	$r=10^{\circ}$				D -12°				$0=15^{\circ}$			
riconatioed desicm captlity	1.6 C.f.S.				2.4 C.f.5.				3.7 C.F.S.			
Ha?	\checkmark	0 HAx.	L_{2}	$\mathrm{R} \cdot \mathrm{L}$?	y	¢ M ${ }^{\text {a }}$.	l_{2}	$\mathrm{R}^{2}+$	1	$3^{+14 .}$	12	R+2
${ }^{1}=0^{\circ}$	4.2	2.3	-11-0	$12^{\circ}-0^{\circ}$	4.3	3.7	11-6.	12'-0.	4.5	5.5	11-0	$12^{\prime}-0^{-}$
$1-C^{\prime}$		2.3	-12'-6*	$14^{1}-0 \cdot$		4.1	$12{ }^{1-6}$	$14^{1-0} 0^{\circ}$	5.4	6.6	12'-6	$14^{1}=0^{\circ}$
$2^{\circ}-0^{\circ}$	5.9	-3.2	14,-0.	150	6.0	-1.7	$-14{ }^{1}-0^{8}$	$16^{\circ} 0^{\circ}$	E. 1	7.5	$1{ }^{14}{ }^{1} 0^{8}$	16 ${ }^{\circ}{ }^{\circ}{ }^{\circ}$
$3^{\prime}-6^{\circ}$	6.4	3.5	$13^{\prime}-5$.	$16^{1}-{ }^{-}$		5.2	$13^{\prime}-6^{*}$	$16^{-1} 0^{\circ}$	6.6	月. 1	${ }^{13} 3^{\prime}-6^{\circ}$	$16^{\prime}-6$
$3^{\circ}-0^{\circ}$	6.8	3.7	$15^{\circ}-0^{\circ}$	$18^{\prime}-0^{\circ}$	6.6	5.2	$15^{\circ}-0^{5}$	$18^{\prime \prime}-0^{\circ}$	6.5	8.1	15 ${ }^{\circ} 0^{\circ}$	13\% ${ }^{6}$

40TES

1. Select a pipe size that mill ppoyiof a greater capacity tham is afquifed to oischarce
 fPS gasio on mormi. IPRIGafing stplht:

2. Six then hamp quceopip-aip may je sujstitute mod concrete slag.

g- Jepph of wite in juten
f-rategoso in oitcn

R-LE"j!m Cs yertical plat atints ienter lime
L_{2} - Lengim of nealimill pipe alomg cemter lime

- riscirr \#f P1PE - FDg.
Q- jisemarse inrcugmpipi - C.f.s.
TARIE TF
crarefte tiditities
$0-10^{\circ} \quad 0.25$ cu. 0 O.
$\begin{array}{ll}0=12^{\circ} & 0.35 \text { Ci. } 8.5 . \\ 0.15^{\circ} & 0.29 \text { ri. }\end{array}$

SECTIONAL ELEVATION ON CENTERLINE

notes

 ips gasco on hopal lapication streah.
 Of Dat: \& M DIMEKSIDM L_{2} gr $\mathrm{a}^{\circ}-0^{\circ}$.

$1 t / 4$	Jscopplicm	THOUM		
		c =-10	$\bigcirc 12^{\circ}$	$0-10^{\circ}$
couchers		2.140.0.0.	0.17 rit. 0 05.	5.17 01.105.
$\begin{aligned} & -\operatorname{sincog} \ln \sigma \\ & \operatorname{sicel} \end{aligned}$	3/8. 21a. atas	3: (1/.ft.	35 LIM.E).	35 LIM.ET.
$1^{1} 1015$	crejuc 31005	\cdots	7 -	2-
Caty. 3atis	1/2.	4	4	-
C16. adstas	1180.	,	4	+

3- jlamica=in pipi
a - Licocioc ripl

CORRUGATED METAL PIPE DROP		
WITH CHECK INLET		

ISOMETRIC VIEW

Sheof metal
liner recommended 7

CONCRETE CHECK

d-12" B-2'-6"

Concrefe quantity $=0.55 \mathrm{cu} . \mathrm{yd}$.

NOMENCLATURE
B Boltom width of structure
b-Botlom width of ditch $d=$ Depth of water in ditch

CONCRETE CHECK		
d-12"		B-2'-6"
	$4-60$	7-L-36-44

ISOMETRIC VIEW

Concrate quantity $=0.47 \mathrm{cu} . \mathrm{yd}$.

NOMENCLATURE
$B=$ Bottom width of structure
$b=$ Bottom width of ditch
$d=$ Depth of woter in ditch

CONCRETE TURNOUT			
d=12"			B=2'-O"
सxil	crems	$4-60$	7-L-36-45

b	d	F	W	L
$f 0 e 1$	$f 0 e t$	$f 0 e t$	$f 001$	$f .01$
0.5	1.0	0.5	1.00	4.0
1.0	1.0	0.5	1.50	6.0
1.5	1.0	0.5	2.00	6.0
2.0	1.0	0.5	2.50	6.0
1.0	1.2	0.7	1.25	6.0
1.5	1.2	0.7	1.50	6.0
2.0	1.2	0.7	2.00	8.0
1.5	1.33	077	1.75	8.0
2.0	1.33	0.77	2.00	8.0

Note: TOD of pipe inlat not to be above the water surfoce.

NOMENCLATURE
$b=$ Bolfom width of form irrigotion ditch

- Depth of wator in farm irrigation ditch

W: ToD widin
F : Free boord
L : Length of pipe
D - Diameter of pipe

12^{*} Diameter			Gota
CORRUGATED METAL PIPE TURNOUT			
U. \&. DFPARTMENT OF AGHICCITI:BF: SOII. CONSEIRVATION SERVICE			
cinds	काप्य	$3 \cdot 60$	7-L-36-40

PLAN

PLAN

Notes:

1. When $0 \equiv 27$ or when C_{2} is greoter than $1 / 2$ D eliminate tlop gote ond use o check volve in pump dischorge pipe NOMEINClature

0-Prometer of vericol pipe
O_{1} - Dicmeter of underground pipe
O_{2}-Diometer of pump fischorge fipe
1 - Trickness of concrete vose
H-arijut of verifical pipe above lod of concrete dose

0 - Discrerge through structure in cis. ind 9 pm
?

high head non-tapered				
PUMP	STAND	FOR	CONCFETE	PIPE
		12.	$39 \quad 7-L-$	36-7

NOMENCLATURE

$D=$ Ciomater of vertical concrete pipe
$D_{1}=$ Diomater of iniol or outiat pipe
$D_{2}=$ Diametar of inlat or outlat pipe
$t=$ Thechnoss of concreta baso
$H=$ Haight ef vortical concrato pipu ubove lop of concreto base

2 : Dischorge ihrough structure
in c f 5 ond o D m .

Mox. 0		0	Concrets Base			
		H=10'or less	Hzmore than 10	Rainforcing steal		
c. ${ }^{6}$	9 Pm		Inches	1 ¢ cuyd	1 cu yd	Size Lengin
1.22	550	30	6 - 23	$8^{\prime \prime} \quad 30$	$3 / 8^{-} 21^{\prime}$	
1.49	670	33	$8^{*} \quad 35$	$0^{*} \quad 35$	$3 / 8{ }^{\circ} \quad 22^{\prime}$	
1.77	795	36	$8^{-1} 39$	8* 39	$38^{\circ} \quad 23$	
2.40	1075	42	$8 \quad 50$	8 - 50	$38^{*} \quad 3 \underline{8}^{\top}$	
314	1410	48	8* 62	8 - 62	$1 / 2^{\prime}-46^{\prime}$	
3.98	1785	54	$8 \quad 76$	$8^{4} 76$	$1 / 22^{\circ} 53^{\prime}$	
4.90	2200	60	$8^{*} .91$	$8^{4} 91$	-2" 7	

CONGRETE FIPE SAND TRAP FOR CONCRETE PIPE LINE			
I- H HFPAMTMENTOF AliRICl:LTUHE GOM. (NNSERVATION SERVICF.			
wxits	आum	12479	$7-L-36-8$

TABLE OF QLIANTITIES

NOMENCLATURE

D - Diometer of concrete riser pipe
D_{1} - Diometer of underground concrete pipe
O_{2}-Dianeter of valve oullel
n - Height of hydroulic grode line obave field surfoce

ORCHARD VALVE OUTLET			
FOR CONCRETE PIPE LINES			
	creat	$12 \cdot 30$	7-L-36-4

APPENDIX 3

DESIGN AND INSTALLATION OF NONREINFORCE.' CONCRETE IRRIGATION PIPE SYSTEMS

American Society if Agricultural fongineer
ASAE Stand.rd: ASAI: S261.5

DESIGN AND INSTALLATION OF NONREINFORCED CONCRETE IRRIGATION PIPE SYSTEMS

Developed by Concrete Irmation Pipe System Committec approved by Sonl and Water Division Stan dardi Committe ! SW. U31; adopted by ASAE 195^{7}; revised 1960. 1401. 1402. 196,3, June 196K. May 197. Decentere 14* rewntirmed fir one vear December 147). March 1981. March 1982

SECTION 1-PURPOSE AND SCOPE

1.1 This Standard is intended as a guide toengineers in the design and installation of low or intermediate pressure nonreinic reed concrete irrigation pipelines and for the preparation of detaled specifications for a particular installaton. It is restricted to pupelines ats! aenis or sands open to the atmopphere lt is not intended to serve as a complete set of design criteria and cometrathon spectications.
1.2 The syctem derigned and or ins:alled under this Standardi shati utilize pipe contorming to one or more of the triburns type at mone forced concete irrigation pupe.
1.2.1 Plpelleses wh mortar joints. The pipe shall contorm to the requitements of Amertan swente for tesung and haterials Standard Clls. Spectifations bir Concrete Pipe for Iragatorn or Drainage
1.2.2 Pipelines with ruhber guske joints. The pipe and gathets
 Concrete Irrigatwon Pipe with 'aubber Gasket Joints.
1.2.3 Cast-In-place plpeines. The pipe shall conform to American Concrete Institute Standerd 3.4n. 70. Specifications for Cast-in- Place Nonreinfored Concrete Pipe.

SECTION 2-DISICN CRITERIA

2.1 Plpeline

2.1.1 Safety factors

2.1.1.1 External load IImlt. Altheugh loads are generaily light on this type of installation, where there are excessively high tills over the pipe, a satety factur of ar least 1.25 shall be applied to the 3 -edge-bearing test in computing allowable heights of fill over precast pipe. The loads shall be determined by the methods outined in ASAE Engineering Practice ASAE EP260, Design and Construction of Subsurface Drains in Humid Areas.
2.1.1.2 Pressure. Maximuin working head for cast-in-place pipelines shall be $15 \mathrm{ft}(4.0 \mathrm{~m})$ above the centerline of the pipe. Maximum working heads tor precast piper shall not exceed $1 / 4$ the certified hydrostatic test pressure as prescribed in ASTM Cl18 for mortar-jointed pipelines or $1 / 3$ the certified hydrostatic test pressure as prescribed in ASTM C505 tor pipelines with rubter ga.ket joints.

2.1.1.3 Soll conditions

2.1.1.3.1 Concrete pipelines shall not be installed on sites where \cdot a sulfate sal! concentration exceeds 1.0 percent as water suluble sulfate in suil samples, or 4060 parts per million sulfate in grounduater samples. Concrete pipe made with Type fo eement or cement whose tricalcium aluminate content does not exceed 5 percent shall be used on sites where the water soluble sulfate content in soil samples is 0.20 to 1.0 percent, or where the sulfate content of ground. water samples ranges from 1000 to 4000 parts pe. million. Concrete pipe made with Type II cement or cement with a tricalcium aluminate content of not more than 8 percent shall be used on sites where the water soluble sulfate concentration in soil samples ranges trom 0.10 to less than 0.20 percent, or the sulfate content in groundwater samples is from 150 to 1000 parts per million. There are no restrictions as to the type of cement used in concrete pipe for sites where the sulfate content is less than 0.10 percent in soil, or 150 parts per million in groundwater.
2.1.1.3.2 Cast-in-place pipe shall be used only in stable soits or soits that have been stabilized as in Section 3.3 of the referenced ACl pecifications, where the trench form conforms to the requirements for the trench as prescribed in Chapter 3 of ACI 346,70 .
2.1.2 Friction lose. In computing friction less for motar-jointed or cast-in-place pipeliaes, Scobey's concrete pipe equation with a coeificient of retardaare $K_{s}=0.310$ or Manning's equation with roughess :refficient $n=0.013$ shall be used. Similar coefficients rhould be used for f.pe with rubber gasket joints, except that for the smoothest make:. of such pipe produced, the Scobey coefticient of retardance may range up tr K s $=0.370$ and the Marning's roughness cuefticietat duwn to $1=0.011$. Minor losses can be computed in accurdance with entent recommendations.

2.2 Stand reciulemeats

2.2.1 Stands iha ll te placea at each inlet to a concrate irrigation pipe system and at such other points as required. All stands shell be supporied on a base adequate to support the stand and prevent undue movement ir stre's on the pipeline. All stands shall serve as rents in addition to their other functions as follows:
2.2.1.1 They shall avoid entrainment or air.
2.2.1.2 They shall allow. 1 it $5 \mathrm{ft}(0.3$ to 1.5 m$)$ of freeboard.
2.2.1.3 If constructed of concrete pipe, they shall be constructed of Class II Reinforced Concrete Pipe. as specified in ASTM (:70, Specifications for Reinforsed Concrete Culvert, Storm Drain, and Sewer Pife, if of greater diameter than 24 in . $(010 \mathrm{~mm})$.
2.2.1.4 If cast in place, they shall cortain stecl reinforcing on not nore that: 1 ft centers to provide stet areas equal to or greater than the least values specified for Class II Reinforced Concrete Pipe in ASTM C76.
2.2.1.5 The tops of all stands shall be at leasi $4 \mathrm{ft}(1.2 \mathrm{~m})$ above the ground surface. If visibility is not a factor, stands may be lower if covered or equipped with trash guards.
2.2.2 Pump itands. Pump stands shall be:
‥2.2.1 Concrete box stands with verical sides suitably reinforced to withstand handling and installation stresses.
2.2.2.2 Niontapered stands of concrete pipe suitably reinforced to withstand handling and installation stresses.
2.2.2.3 Nontapered concrete pipe stands, capped and having a vent pipe to the height of the hydraulic gradeline plus frecboard.
2.2.2.4 Steel cylii.der stands mortared to a single concrete pipe riser.
2.2.3 The centerlite of the pump discharge pipe shall have a minimum vertical offset above the centerline of the outlet pipe equal to the sum of the diameters of the inlet and outlet pipes.
2.2.4 Check valves shall be used in the pump discharge line wherever the potential backflow from the pipeline would be sufficient on dran the prpeline ur damage the pump.
2.2.5 Construction shall be such as to insure that the vibration from the pump discharge pipe is not carried to the stand.

2.2.6 Veloctiles in stands

2.2.6.1 Downward water velocities shall m . prreed $2 \mathrm{ft} / \mathrm{sec}$ $(0.6 \mathrm{~m} / \mathrm{sec})$. In no case shall such velocities exceed the average pipeline velocity.
2.2.6.2 If the size of the stand is decreased above the pump discharge pipe, the top rent portion shall be of such inside cross. sectional area that, if the entire thu of the pump were discharg. ing through it, the average velocity would not exceed 10 ft sec ($3.0 \mathrm{~m} / \mathrm{sec}$).
2.2.7 Sand traps. Purap stands serving as satud raps sha'l have a minimum insidi diameter of 30 in . ($0,12 \mathrm{~mm}$) and shall be constructed so that the hotwon is at least 24 in . 1010 mm) below the in. vert of the outlet pipeline. Suitable provisions for deaning sand traps shall be provided.

2.2.8 Gate stands

2.2.8.1 Gate stands shall be constrated of concrete pipe or cast in place. Reinfurcing requirenents under paragraphs 2.2.1.3 and 2.2.1.4 apply.
2.2.8.2 Demensions of gate stands shall be sufficient to accommodate the gate or gates required.
2.2.8.3 Gate stands shall serve as vents.
2.2.8.4 Gate stands shall be of such dimensions that gates are arcessible for repair.
2.2.9 Float valve stands. Float valve stands shatl be of sufficient diameter to provide accessibility for maintenance and to dampen turge. (The wide-open trichon loss for the valse approximates 2.4 velocity hearis tor the single disk vpe and 1.9 velocity heads for the double disk type.)

:. 3 Vent requirements

2.3.1 Locations. Vents shail be placed
2.3.1.1 At the downstrean end of each lateral.
2.3.1.2 At a design point dennoteam from where there is upprotunity for air entramment and inadequate opportunity for escape of that atr.
2.3.1.3 At high points wherever there are changes in grade downtard in direction of thow of more that 10 deg .
2.3.1.4 At all turns of 90 deg or mor" with the exception of lines not more than $50 \mathrm{tt}(15 \mathrm{~m})$ in !ength.
2.3.2 The design print in 2.3.1.2 shall be determined by the equation

$$
L=1.76(\%)
$$

where

$V=$ maxmandestgn velecter in fiter sec
$15=$ inside dameter of the pipe at th.
2.3.3 Any stand shall substitute for a vent.
2.3.4 There shall be considered opportunity for air entrainment at all gravity inlets and at pump stands where the pump might possibly pump air. When pumping from wells. it there is a downdrant of air into :he well cusing while the pump is in operation, the well stall te considered to pump arr. In woh case a vent shati be placed immediately downstream from the pump stand if the average downward wolocity in the siand from the pump discharge to the pireline exceeds 1 it sec $193 \mathrm{n} \cdot \mathrm{sec}$.
2.3.5 Slize
2.3.5.1 The cross-sectional atea of the vent shall be at least half the stoss-sectumat area of the mpeline (both mside measuremens) tor a dostance of at lease 1 pletioe dameter up from the centerlane of the pipeline. Above thas the went may be reduced to 1 to of the crossebectomal area of the pepelne. but not less than 2 in. (50 mm) dameer pipe shall be used.
2.3.5.2 Vents shall! ve aminmamitrecoratad of $1 \mathrm{ft}(0.3 \mathrm{~m})$ above the hydraule gradeline I he maximum heteht shall not exceed the maximum working head ut the pape
2.3.6 Alr release vadver. An atr-sacuum relea e bahemat be used in lieu of an open vent. Th valse outle shatl have a 2 in .50 mm$)$ nominel minimum clames. [wo inci 150 mmo outlets stall be
 outlets for pipelines of 2010 n .118 to 254 mm dameter and 4 in. (102 mmi) outlets lor pipehes of 12 ma .1305 mm alat hatger diameter.

2.4 Anchorn

2.4.1 Abrupt changes in pipeline prate or aboment requite a stand of dameter greater than the pipeline or an anchur to absord any axial thrust of the popeline. An aurupt change stall be considered to be:
2.4.1.1 An angle of 45 deg or greater when thee maximum working head is und... ! 0 ft (3.0 m .
2.4.1.2 An angle of 30 deg or gleater when the maximum working head is between 10 and 20 ft (3.0 and 6.1 m).
2.4.1.3 An angle of 15 deg or greater when the maximum working head is $20 \mathrm{ft}(0.1 \mathrm{~m})$ or nowe.
2.4.2 Anchors shall be constructed of concrete poured to fill the space between th pipe and the undisturbed earth at the side of the trench on the out ide of bends or of plastie soil cement with at least I part of cenent to 10 parts of soil of sandy loam or coarser texture. similarly placed.
2.4.3 The anchors shall be to the full height of the ou:side diameter of the pipe ant shall have a minmum thicknes of 6 in . (152 mm). The lene:h in feet normal to the direction of hrust is determined by the equation:

$$
L=94 \frac{1 i l}{n}: \frac{1}{2}
$$

where

$$
\begin{aligned}
& H: \text { maximum workmb head in it } \\
& D=\text { inside dameter of the prese in ft }
\end{aligned}
$$

$$
\begin{aligned}
& a=\text { deflectinnangle ot the pipe bend } \\
& \text { 1. lensthataminem mit }
\end{aligned}
$$

2.4.4 The pipe shall be clean and wet when placing the anchor, to provide a good bond between anchor and pipe. Where adequate soil tests ae now available. the allowable passive soil pressure shall be considered to he $500 \mathrm{lb} / \mathrm{sq}$ f($(23.9 \mathrm{kPa})$.

SECTION 3-iNSTALIATIOA

3.1. Slze and loeaton. The pipe and appurerances suall conform to the standards specified ana ,hall be locaied and constatued as shown on the engineer's plans and in the consertation specilications.

3.2 Jolnts and connections

3.2.1 Joints shall be numar or rubber gasket, as specitied and where required. all joints shail be constrected to lave the inside of the pipeline and appurtenateces free of any cestruction which would reduce capacity behon cesign standards.
3.2.2 Joints in stands and connections to appurtenanees shall ecenferm to the requirements of ASTM C118 or AS -1.1 SO5.
3.2.3 Stoppage and horizonta! joints for cast-in-place pipelines shall contorm to the requirements of $\mathrm{ACI} 340 \cdot 70$. Connection joints shall he prepared by cleaning and treeing of loose or defective concrete, coatings, and foreign material. The contact faces of the pipe and fittings shall be wetted and the fitting mortared into place using honding mortar as specitied in ACI 340-70.

3.3 Placement

3.3.1 The prpelines shall be placed deep enough folow the land surface of permit conering the pipe a minimum of $2 \mathrm{ft}(0.5 \mathrm{~m})$ unless shalluwer covermg is specified fur rucky areas or other local conditions. it shallower cowering is specified. there shall be provision to protect the lane trom damage by vehicular traffic. Greater depths of cover shal! be specified when lusal conditions indic te a nerd.
3.3.2 Where trenches are excavated in sot!, containing rock or wher hatd materats, or in wils subject ouppreciable swelling and shrinking on atorng or drying, or where the erench bottom is anstable, the trerches shall be overexcavated and backfilled with selected materiab to sufficient depth to pronide a sutable base, if atater is in the trach, it shat be drained away or contolled in a manter to present dimage w the jomi mortar and io mantan a sulable base.
3.3.3 Prwisums in parapraphs 3.3.1 and 3.32 apply tomontarjointed and rubher wasket pipe. Pacement for case-in-place pipe that te as spectied in $\mathrm{ACl} 3+6-70$.
3.3.t Rubber gasket pipe stahl not be placed with the joints rammed texether tight enough io that lungitudinal compression deselups trom abethe expansion of the pipe. If there is any quistion concerning tha dith any partucular joint aesign, the end of the spikot shall be pulted back tom the shoulder of the bell a slight distance but but more thas 0.0) in. (1.5 mom).

3.4 Curing and back fllling

3.4. Paragraphs 4. 2, 3.4.3 and 3.4.4 apply to mortar-jomed pipelmes moly, and 3.45 applics 0 mortar-jomed and rubber gasket pipelines.
3.4.2 There shath be an mital buchtill of what around the prie and sovering the pipe to a depth of at least 0 in. (152 mme for the full width of the trench and net more than " sectons ot pipe behand the laying. It latige eases tor ? hro or more the inital back till shall be brounght up to and coser the last comple ed fomt, Nothing in this secton shall prohbit te complete bacinif ling white mortar bands are still plaste. It complete backtilling is the done at this tome. the completion shat be delated at leab 20 hrs, but ni... be completed
 before nater is put into the line.
3.4.3 Mortar gomes are whe protecteci fom drying out. If the som in the inital backtill is not thonughts most, a suituble membrane over the mortar shall be uned. Aembranes copmstmg of one layer of krati paper, or paper cut from cement sach - or membranes contorming to ASTM (${ }^{-1}$. Specticatoms for She d Materials for Cuing Conctete or ASTM C.304. Spectiontions for Liquid MembameForming Comporand for Cumb Conerets, shall be combdered suitable.
3.4.4 In areas where rips lingentadmal arates or ruptures have been known to ocour. it simp rtant that the soblaced in the matial
 wall mot roboon in time wher moss, we hati mat hat more than 30 peremt by wetgh of maternd thet that 2 moroms. fhis

 with wate.
 ir acoord wht the prowsoman ar! ano O

3.5 Testing

3.5.1 It shat we drmometated that aif petines function properly
 wall be no dojectionable wabe or water hammer To be objecthonabie there shatl be ember.
3.5.1.1 Continumg, umstedy dethery io ater.
3.5.1.2 Damage to the sestem.
3.5.1.3 Betrimental wetticatran wore we strands.
3.5.2 Pipelines shall be tested for leaks by wherving normal operation any time atter a pernow 2 ahs, we continuous weting. All visible kak; shall be repared. lenses stall nut exceed 0.10 , 0.05

 for the te.ing of martar jumted or case-in-place pipelines.

 wothmanshar and colur: when the requirenembs of the contract Such garanter, ,hall and appe sarthuahe of lan! sethement

 water of temperature less than 5 deg F lis deg C

SECTION 4- DEFMVIIO OF IKRMS

4.1 Appurtenances

4.1.1 Gate. A deesce wed to contri the thos of water in the pipeline. It maty be opened and cosed by suten act on or by slide action. The later is used onl: where presures an a welotites in the line are so kon that sudden clowe ah not wate exoesses ater hammer Typer of gates. mdicatue of the place they whll be tred. are:
A.1.1.1 Gate, line. A huberadgate xhath martated intw the pipeline. It is a sere: tye gate.
4.1.1.2 Gate, stand. A gate in Tand or brine an mble: intio a pipelime, ant controling the tho now suat a pipelace, It is of either the screw or the clide type Tive she ber has a devce to lock it in an destred perstion
4.1.1.3 Gate, stand, pressure. A gate in a stand covering an oute from a pipeline. it is of the screw type.
4.1.2 Inlet. An appurtenance ${ }^{(1)}$ deliver water to a pipeline ssstem.
4.1.2.1 Indet, gravity. A structure to control the thow of water from an open conduit into a pipeliane. It may be comboned whth a battle, gate, screen and ur a sand trap.
4.1.2.2 Stand, pump. A stracture where water enters a system frum a mump or remene sw:em.
4.1.3 Outlet. An appurtenance to deliser water from a pipe wstem th the land ur to any surface pipe system. An outtet may in. whe the ase of a salve, reser pipe, and or an outle gate. Several lypes of auters are detined as tollows:
4.1.3.1 Dhstributor, swhel-arm. This type of ouflet has a valve and leo.arms of gaied pipe attached to and swiveling from the top of the reser (busualty a seed pipe reser). Chained to a center post, they are ou: of the waty of cultivation, and when dropped. the gates allow the water bo diseributed inte fur. raws.
4.1.3.2 Gate, outhet. L'sually a slade gate or other type of balve, wed to control the thes at of the outlet.
4.1.3.3 Hydrant, portable. An mutlet uned for conneting sur

4.1.3.4 Outlet, plpe, surface. An male: used for attachment -f surface ppe uthout a portable bedent.
4.1.3.5 Pot, open. S smple urchard batemoth a vertical piece of pere latere than the tivet phace onet and mortared whe
 the pot.
t.1.3.0 Rtser, capped or pot. A riset cxtentime abowe gremat
 on the sudes slient; ahere the groand setace fapped raer). It accommodate mere athet gates. wmethen, a pot is used on top. larger than the enser capped pot), Somenem dee cast serew type
 Outlet gates. phaced an the watsone of the baer of puts as the muse be the the dhed trpe produce ate eronve jet or water. which the de-cose bhes clammate.
4.1.3.7 Valve, alfulfa. An vutle what bas a dahe on lop: control then, and hat an opening ecuatin diameter to the inside. dianneter of the ther. A mong around the base wutside of the disk provides a reat and seal tor a portable hydranc. Some alatia vaives have a emall arr releane value on the dish, which provides for dranage of pudales follomanerrigaturnats anoscuito dbatement measue and for supplemental air itease from a pipeline during tilling.
4.1.3.8 Valve, alfalfa, modified. This medtied alfalfa whe is the same as the alfalfa value, exept that the rme is omitted. The unly portable todrant that ean be used, therefore, are these upes whech tit wer the raser pipe.
4.1.3.4 Valse orchard. The orchard valve is inserted inside the riser pipe. Lite the alfalfa valve the orchard valve provides How control by screwing a horionnal disk up and down from a seat helow. Honcere the openmes is smaller than the mside dameter of the raser pipe, and. therefore, the flow capacity is methles. Ihe of of the riser may be cut off at or sliginag vac: erourd surtace. may rise t, to 12 in. (152 to 305 mm) above ground surtace with a noth cut in whe side, or may stmoty rise aboue the ground and have tho or more wetet gates inserted in the riser a feen miches off the ground.
4.1.4 Stand. A irructure iormed trom vertical sections if vipe or sometmes trem wereft cast-in-phace the stanct. it maty serve as
 alon functun at, a went and send trap Sometmes, when bates
 luabue to hytrathe pradeline Fhat wise stands ate used on the seeder shnes atete the rate a maply an he wared and autumatio contal ulters advantages.
4.1.5 Valie, foat. A vale actuated hy a that in a stand wheh -ntroh the hers of wer wit: the stand
 faccake of ar :or arem the pretine.

 Vo. 11. except as noted belom
4.2.1 Freeboned. The vertical dastance tutops of vents or stands
above the elebaton of the hadrankic eradehate it working head
4.2.2 Hend, working. The vertical Ashance that water all rase in
 any point in the sbsem On protile ot the pupeltres. matumam

 of consecutae vents and if stands. It is, thas the suthme tend plus frechorate
4.2.3 Surge. That pheommerm aherem a rochang or mathathe

4.2.4 Wiater hammer. That openomenon, resultag trom chech. ing of thras. th... wherem pressu e wabes pass thre wheh the water at the speed of suand Water hammer cian produce acesssbe momentary pressure. It as at to be contused with surge, athough under certath condinums buth may be actuated smultanemush.

Clted Standards:

 Cuntan ennerete
 \because Coshet Jum:

APPENDIX 4

IDESIGN, INSTAILATION AND PERFORMANCE OF UNDERGROUND THERMOPIASTIC IRRIGATION PIPELINES

American Society of Agricultural Engineers
ASAE Standard: ASAE S 376.1

DESIGN, INSTALLATION AND FERFORMANCE OF UNDERGROUND, THERMOPLASTIC IRRIGATION PIPELINES

Developed by the ASAE Irrigation Water Supply and Conveyance Committee; approved by the Soil and Water Division Standards Committee; adopred by ASAE Aptil 1975; recontirmed for one year December 1979. February 1981; revised April 1982

SECTION 1-PURPOSE AND SCOPE

1.1 Purpose. Thermoplastic pipe is manufactured in several size classifications from different materials of various grades, types and formulations involving many different snecifications. It is used for applications other than irrigation where sertain requirements often apply to pipe used for a specific purpose. Inis Standard pertains to thermoplastic pipe used underground fo: irrigation and is intended to:
1.1.1 Provide minimum guidelines for engineers and others in planning, designing and specifying thermoplastic pipe commonly used for irrigation. It is not intended as a complete specification nor to replace the judgment of personnel familiar with site conditions or other controlling factors.
1.1.2 Consolidate applicable reference information and technical data in readily available form.
1.1.3 Establish uniform standards for materials used in the manufacture of thermoplastic irrigation pipe and to promote uniformity in classitying, pressure rating, testing and marking the pipe.
1.1.4 Establish minimum requirements for the design, installation and testing of pipelines which are necessary for the satisfactury pertormance and safe operation of the irrigation system and to prevent damage to the system.
1.2 Scope. This Standard applies to underground, thermoplastic pipelines used in the conveyance of irrigation water to the point of distribution and may or may not apply to potable water systems.
1.2.1 High pressure plpellines. This term applies to underground pipelines constructed of thermoplastic pipe from 21 o 710 mm (1/2 to 27 in .) nominal diameter that are closed to the atmosphere, and subject to internal pressures, including surge pressures, from 550 to 2170 kPa (80 to 315 psi).

NJiE: Nominal pipe size in millimeters is the actual outside pipe diameter to the nearest millizneter fo- OD controlied pipe and the actual inside diameter to the nearest millimeter for ID controlled pipe.
1.2.2 Low pressure plpellnes. This term applies to underground thermoplastic pipelines 114 to 650 mm (4 to 24 in .) nominal diameter that are used in systems subject to pressures of 545 kPa (79 psi) or less.

SECTION 2-DEFINITIONS

2.1 Design area: The specific land area in which pipelines are planned and incated to serve as integral parts of an irrigation water distribut in or conveyance system, designed to facilitate conservation, use and management of water and soil resources, and which the supplier or designer and purchaser mutually understand to be irrigated.
2.2 Irrigatlon system: All equipment required to apply water to the design area.
2.3 Irrigation pipelines: Includes the underground, thermoplastic pipelines and appurtenances installed in an irrigation system.
2.4 Outlets: Appurtenances required to deliver water from the pipe. line to an individual sprinkler or to a lateral of sprinklers, to surface fipe located on the ground, to distribution pipe or laterals containing surfare or subsurface emitters or tricklers, to surface valves, or to open dithies.
2.5 liydrostatic design stress: The estimated maximum tensile s:ress in the wall of the pipe in the circumferential orientation, due to internal hidrostatic water pressure, that can be applied continuously with a high degree of certainty that failure of the pipe will not occur.
2.6 Pressure rating ("R): The estimated maximum pressure that water in the pipe can exert continuously with a high degree of certainty that failure of the pipe will not occur.
2.7 Dimension ra:lo (DR): The ratio of pipe diameter to wall thickness.
2.7.1 For outside diameter (OD) based pipe, which includes polyvinyl chloride (PVC), acrylonitrile-butadiene-styrene (ABS) pipe and some polyethylene (PE) pipe, the ratiu is calculated by dividing the pipe's average outside diameter by the pipe's minimum wall thickness. The minimum wall thickness shall not be less than $1.52 \mathrm{~mm}(0.060 \mathrm{in}$.). Certain DR values have been selected as standard and given the designation Standard Dimension Ratio (SDR). The SDR and DR values for PVC and ABS are rounded to the nearest 0.5 .
2.7.2 For inside diameter (ID) based pipe, which includes some PE pipe, the ratio is calculated by dividing the average inside diameter of the pipe by the pipe's minimum wall thickness. The minimum wall thickness shall not be less than $1.52 \mathrm{~mm}(0.060 \mathrm{in}$.). The SDR values shall be rounded to the nearest 0.1 .
2.8 Relation between standard dimenslon ratlo, hydrostatic design stress and pressure rating: The following expression, commonly known as the ISO equation (from International Organization for Standardization Standard ISO 161/1-1978, Thermoplastic Pipes for the Transport of Fluids-Nominal Outside Diameters and Nominal Pressures-Part 1: Metric Series), is used to relate standard dimension ratio, hydrostatic design stress, and pressure rating:
2.8.1 For OD based plpe:

$$
\begin{aligned}
& 2 S / P=R-1 \\
& \text { or } \\
& 2 S / P=(D, t)-1
\end{aligned}
$$

where

$\mathrm{S}=$ hydrostatic design stress, kPa (psi)
$\mathrm{P}=$ pressure rating, kPa (psi)
D. = average outside diameter, mm (in.)
$\mathrm{t}=$ minimum wall thickness, mm (in.)
$R=$ dimension ratio, $D R$ (equals D_{0} / t for PVC, $A B S$, and other OD based pipe)
2.8.2 For ID based plpe:

```
2S/P=R+1
```

or
$2 S / P=(D / 1)+1$
where
$R=$ dimension ratio, $D R$ (equals D / t for $I D$ based pipe such as some PE pipe
$\mathrm{D}_{\mathrm{i}}=$ avertge inside diameter, mm (in.)

SECTION 3-DESIGN CRITERIA

3.1 Worhing pressure

3.1.1 General. The pipeline shall have a pressure class rating lsee Table 1) greater than the static or working pressure plus surse at any point in the system. Surge pressures should not exceed 28 percent of the pipe's pressure class rating; therefore, if surse is not

OD based piper		PVC		PF inaterialsmatirials (all pipes Oil based)												ABS materials (all pipes OD) hased)									
		PVC 1120		PVC 2116		PVC 2112		PVC 2110		PF 3408		PF $=406$ PF 354.6 Pr: 2306 pL KPa				ABS 1316		ABS 2112		ABS 1210					
	based pribe	ps	kPa	po	hPa	pu	kPa	pu	kPd	pa	kPd			$k \mathrm{~Pa}$	ps	KPa	psi	kPa	Hos	kPa					
based piper	5.3									250	1725	200	1:380		160	1105									
	70									200	1380	160	1105	125	860										
$1: 0$ 40 160 1105 125 860 100 199																									
135	115		2170	250	172:	200	1580	160	1105	\%	1105	40 050				250	1725		1380		110:				
170	150	250	1725	-00	1350	110	1105	126	Ktio						200	1780		$125 \quad x 60$							
210		200	1380	1100	1105	125	n60	100	640	80	650	60 6.4	440				160	1105		125	860	$\begin{aligned} & 125 \\ & 100 \end{aligned}$	100690		
260		160	1105	125	htio	100	690	80	550	64	140	50	145			125	860	100	600	K0 550					
325		125	n60	100	690	80	550	6.3	435	5040	345275		275			100	690	80	55)	$64 \quad 440$					
110		100	690	no	550	63	135	50	145				215			80	550	64	$\begin{aligned} & 410 \\ & 115 \end{aligned}$	$50 \quad 345$					
510		Ko	55.1	63	451	50	145	40	275							6.4	$40-50$			$10 \quad 275$					
1.: 0		63	435	50	346	10	275		170										115						
610		50	345	40	276	30	205									40	275×30		205	$25 \quad 170$					
$93:$		4.3	295																						
50 It heal		22	150																						

TABLE 2-MAXIMUM AILOWABLE PRESSURE FOR NONTHREADED THEMMOPLASTIC PIPES

SDR		PVC materials (all pipes OD based)								PE materials (pipes made to both OD \& ID basis)						ABS materials (all pipes				OD based)		
		PVC 1120 PVC 1220 PVC 2120 psi kPa		PVC psi	2116 kPa	PVC 2112		PVC 2110		PE 3408		PE 3406		PE 2305		ABS	1316	ABS	1212	ABS	1210	
based pipe	based pipe			psi		kPa	psi	kPa	psi	$k \mathrm{~Pa}$		kPa	psi	kPa	psi	kPa	psi	$k \mathrm{~Pa}$	psi	kPa		
	5.3								4		180	1240	144	995	115	795						
	7.0									144	995	115	795		620							
11.0	9.0									115	795	90	620		495							
13.5	13.5	227	1565	180	1240	144	995	115	795							180	1240	144	995	115	795	
17.0	15.0	180	1240	144	995	115	795	90	620	72	495	58	400	45	310	144	995	115	795	90	620	
21.0		144	995	115	795	90	620	72	495	58	400	45	310			115	795	90	620	72	495	
26.0		115	795	90	620	72	495	58	400	45	210	36	250			90	620	72	495	58	40 C	
32.5		90	620	72	495	58	400	45	310	36	250	29	200			72	495	58	400	46	315	
41.0		72	495	58	400	45	310	36	250	29	200		150			58	400	46	315	36	250	
51.0		58	400	45	310	36	250	29	200							46	315	36	250	2 y	200	
64.0		46	310	36	250	29	200	22	150													
81.0		36	250	29	200	22	150	18	125							29	200	22	150	18	125	
93.5		31	215																			
50 ft head		21	145																			

$\ddot{*}$ Maximum allowable working pressure a pressure rating (PR) $\times 0.72$ for SDR and DR pipe.
\dagger For water at $23^{\circ} \mathrm{C}\left(73.4^{\circ} \mathrm{F}\right)$.

TABLE 3-MAXIMUM, OR CRITICAL, SURGE PRESSURE FOR THERMOPLASTIC PIPE

	Pipe SDR (or DR)	Surge pressure* per $\mathrm{ft} / \mathrm{s}(0.3 \mathrm{~m} / \mathrm{s})$ of sudden change in flow velocity					
OD based	ID based	For psi	400,000 modulus PVC)	For psi (i	of 300,000 modulus ABS)		ial of 0 MPa) udes
		psi	kPL	psi	kPa	psi	kPa
	5.3	28.1	195	24.3	170	14.0	95
	7.0	25.1	175	21.7	150	12.5	85
11.0	9.0	22.5	155	19.5	135	11.2	75
13.5	11.5	20.3	140	17.6	120	10.2	70
17.0	15.0	18.0	125	15.6	110	9.0	60
21.0		161	110	13.9	95	8.0	55
26.0		14.4	100	12.5	85	7.2	50
32.5		12.9	90	11.2	75	6.4	45
41.0		11.4	80	9.9	70	5.7	40
51.0		10.2	70	8.8	60	5.1	35
64.0		9.1	65	8.9	bi	4.5	30
81.0		8.1	55	7.0	50	4.0	30
93.5		7.5	50	6.5	45	3.2	20

- $\mathrm{P}=\mathrm{V}\left(\frac{3960 E T}{\mathrm{et}+300.000 \mathrm{D}}\right)^{1 / 2}$

where

$\mathrm{P}=$ surge pressure, psi
$\mathrm{V}=$ sudden change in velocity, ft , ec
$\mathrm{E}=$ modulus of elasticity of pipe material, psi
$t=$ pipe vall thickness, inch
$D=$ pipe inside diameter (ID), inch
See also: Seipt, W.R. 1974, Water hammer considerations for PVC pipeline in irrigation systems. TRANSACTIONS of the ASAE 17(3):
417-423.

TABLE 4-PRESSURE RATING SERVICE FACTORS FOH TEMPERATURES FROM 2 is TO 60 C (73.4 TO 140 F) FOR PVC AND PEPIPES ${ }^{+}$

Temperature			
\mathbf{C}			

- To obtain the pressure rating for a temperature above $23^{\circ} \mathrm{C}\left(73.4^{\circ} \mathrm{F}\right)$, multiply the pressure rating at $23^{\circ} \mathrm{C}\left({ }^{\circ} 3.4^{\circ} \mathrm{F}\right)$ as given in Table 1 or Table 2 as appropriate by the corresponding service ftcior. For PE pipe havig improver strength zetention with an increase in temperature, anc PE mpe used at temperatires exceeding $38^{\circ} \mathrm{C}\left(100^{\circ} \mathrm{F}\right)$, the manufact irer should bc consulted for recommier ded service factors.
†For ABS pipe used at emperatures above $23^{\circ} \mathrm{C}\left(73.4^{\circ} \mathrm{F}\right)$ service factors recommended by the manufacturer should be used.
known, the working pressure shall not exceed the maximum allowable working pressure as given in Table 2 for the particular pipe and SDR or DR used. Maximum or critical pressure as a function of pipe SDR or DR is shown in Tabie 3 for thermoplastic pipe having different moduli of elasticity.
3.1.2 Service factor. Ali pressure ratings are determined in a water environment of $23 \pm 2^{\circ} \mathrm{C}\left(73.4 \pm 3.6^{\circ} \mathrm{F}\right)$. As the tem-rerature of the environment or fluid increases, the pipe becomes more ductile. Therefore, the pressure rating must be decreased for use at higher temperatures to allow for safe operation of the pipe. The service factors for PVC and PE are shown in Table 4. For PE pipe having improved strength retention with an increase in temperature and PE pipe used at temperatures exceeding $38^{\circ} \mathrm{C}\left(100^{\circ} \mathrm{F}\right)$, the marufacturer should be consulted for recommended service factors. For ABS pipe, service factors recommended by the manufacturer should be used
3.2 System capacity. The design capacity of the pipeline shall be sufficient to provide an adequate flow of water for all methods of irrigation planned.
3.3 Fricton losses. For design purposes, friction head losses shall be no less than those computed by the Hazen-Williams equation using a flow coefficient (C) equal to 150 .
3.4 Flow velocity. The design water velocity in a pipeline when operating at system capacity should not exceed $1.5 \mathrm{~m} / \mathrm{s}(5 \mathrm{ft} / \mathrm{s})$ unless special considerations are given to the control of surge or water hammer and adequate protection from these pressures is provided (see paragraph 3.1.1 and Table 3). Adequate pressure and/or air relief valves shall be used with all velocities.
3.5 Outlets. Outlets shall have adequate capacity at the pipeline working pressure to deliver the design flow to the distribution system at the design operating pressure of the respective systems, i.e., sprinklers, surface pipe, emitters, tricklers, etc.
3.6 Check vaives. A check valve shall be installed between the pump discharge and the fipeline where detrimental back flow may occur. It shall be designed to close, without slamming shut, at the point of zero velocity before damaging reversal of flow can occur.
3.7 Presscre rellcf valves. These shall be installed between the pump discharge and the pipeline when excessive pressures can develop by operating with all valves closed. Pressure relief valves or surge chambers shall be installed on the discharge side oi the check valve where back flow may occur and at the end of the pipeiine when needed to relieve surge.
3.7.1 Low pressure systems. Pressure relief valves may be used as alternatives to serve the pressure relief functions of vents and stands open to the atmosphere. They do not function as air release valves and shouid not be substituted for such valves where release of en. trapped air is required.
3.7.1.1 Pressure relie! valse, shall be large enough to pass the full pump discharge with a pipeline pressure no greater than 50 percent above the permissible working head of the pipe.
3.7.1.2 Pressure relief vakes shall be marked with the pressure at which the valve starts to open. Adjustable valves shail be installed in such a manner to prevent changing of the adjust.tent marked on the valve.
3.7.2 High pressure systems. The ratio of nominal size pressure reliet valves to pipeline diemeter shall be no less than 0.25 . Pressure reliet valves shall be set to open at a pressure no greater than $34.5 \mathrm{kPa}(5 \mathrm{psi})$ above the pressure rating of the pipe or the lowest prossure rated comporent in the system.
3.8 Alr release and vacuum relief valves. Air release and vacuum relief valves shall be installed at all summits, at the ends, and at the e;7tran e of pipelines to provide for air escape and air entrance. Combination air vactum release valves which provide both functions may be used.
3.3.1 Alr flow capeclty. Valves having large orifies to exhaust large quantities of air from pipelines when filling and to allow air to enter to prevent a vasuum when draining are required at the end and entrance of all pipelines. Valves intended to release entrapped air only may have sn, aller orifices and are required at all summits.

3.8.2 Low pressure systems (noi open to the atmospher',.

3.8.2.1 Air-vacuum release valves shall be provider, a each of the locations described in paragraph 4.5.3.
3.8.2.2 The size of valve outlet for lo pressure systems shall be as specified in paragraph 4.6.2.
3.\%.3 High pressure systems. The ratio of air release valve diameter to pipe diameter for valves intended to release air when filling the pipe should not be less than 0.1. However, smaller diameter valves may be used as a means of limiting water hammer pressures by controlling air release where filling velocities cannot be controlled. Equivalent valve outiet diameters of less than 0.1 are permitted for continuously acting air release valves. Adequate vazuum relief must still be provided. It is not only very important to select the correct aic release or vacuum breaker valve, but also to select the right size and to locate valves properly at all places where neecied. Air vacuum release valves shall be used as follows (all valve diameters refer to the total cross-sectional flow area of the vent or port outlet).

Plpe diameter	Minimum alr-vacuum release valve outle: diameter mm (ln.)
$\mathbf{m m}(\mathbf{l n})$.	$13(0.5)$
$102(4)$ or less	$25(1)$
$127-203(5 \cdot 5)$	
$254-500(10.20)$	$51(2)$
$530(2 i)$ or larger	0.1 pipe diameter

3.9 Draining. Provisions shall be made for draining the pipeline completely where a hazard is impesed by freezing temperatures, drainage is recommended by the manufacturer of the pipe, or drainage of the line is specified for any reason. Where provisions for drainaze are required, drainage outlets shall be located at all low places in the line. The outlets may drain into dry wells or to poials of low elevation. If drainage cannot be provided by gravity, provisions shall be made to empty the line by pumping,
3.10 Flushing. Where provision is needed to flush the line free of rediment, a suitable valve shall be installed at the distal end of the pipeline.
3.11 Gate stands and float valve stands. When these are used in low pressure pipelines not open to the atmosphere, refer to the criteria in paragraphs 4.4.1 and 4.4.2.

SECTION 4-SPECIAL DESIGN CRITERIA FOR : OW PRESSURE PIPELINE SYSTEMS OPEN TO THF ATMOSPHERE

4.1 Stands, general. Stands shall be used wherever water enters the pipeline to avoid entrapment of air to prevent surge pressures. to avold collapse due to negative pressures, and to prevent pressure from es ceeding the head class of the pipe. Stands shall be supported on a tare adequate to support :he stand and prevent movement or undue : :tell on the pipeline. Stands shall be designed:
4.1.1 To allow at least 0.3 m (1 ft) of freeboard aboue desisn working head. The stand lieight above the centerlue of the preline
thall be such that nemter de statho hear nor thestergen wetheng head plas treeboard thall cteed the bead dats of the phese
4.1.2 With the ton of each stand at leat $12 \mathrm{~m}(+\mathrm{m})$ atone the
 equpped wet trash tace ath
4.1.3 Weth doantitat water sclesties ith stands net to exceed (timeris a imembde dameter of the stand shall mot be less ate starmete: of the pipeline
4: Hump bands. When the watar relocts of an inket exceeds three ementre selimels athe nuter. the centerlime of the milet shatl have a nathmum vetheal otse trom the centerlme of the outlet at least equal an mor of the dameters of the inlet and outlet pipes. The crossrectional area ot the stands may be reduced above a point 0.3 m (1 fi) aboue the top of the upper inlet, but in no case shall the redued cross section be such that te would produce an average velocity of more than $3 \mathrm{~m} s(10 \mathrm{fl} 5$) it the entire tlow was discharging through it.
4.2.1 Types. Pump stands shall be one of the following sypes:
4.2.1.1 Steel cylinder stands.
4.2.1.2 Concrete box stands with vertical sides, suitably reinforced.
4.2.1.3 Nontapered stands of concrete pipe, suitably rein-
4.2.1.4 Nontapered stand of corcrete pipe, capped and hav-
ing a vent pipe of a height exceeding the hydraulic gradeline plus treeboard.
4.2.2 Vibration control. Construction shall insure that the vibration from the pump discharge is not transmitted to the stand. Vibration control also applies to low head pipelines not opea to the atmosphere when pump stands are used.
4.3 Sand traps. Sand traps, when combined with a stand, shall have a minimum inside dimension of 762 mm (30 in .) and shall be constructed so that the bottom is at least $610 \mathrm{~mm}(24 \mathrm{in}$.) below the invert of the outlet pipeline. The downward velncity of flow of the water in a sano trap shall not exceed $0.08 \mathrm{~m} / \mathrm{s}(0.25 \mathrm{ft} / \mathrm{s})$. Suitable provision for cleaning sand traps shall be provided.

4.4 Gate stands and float valve stands

4.4.1 Gate stands. Gate stands shall be of sufficient dimension to accommodate the gate or gates, and shall be large enough to make the gates accessible for repair.
4.4.2 Float valse ztands. Fioat valve stands shall be large enough to provide accessivility for maintenance and to dampen surge.
4.5 Vent requirements. Vents shall be designed into the system to provide for the removal of air and protection from surge.
4.5.1 Vents shall have a minimum freeboard of $0.3 \mathrm{~m}(1 \mathrm{ft})$ above the hydraulic gradeline. The maximum height of the vent above the centerline of the pipeline must not exceed the working head class of the pipe.
4.5.2 Vents shall have a cross-sectional area of at least one-halt the crosssectional area of the ppeline (both inside measuremients) for a distance of at least one pipeline diameter up from the center. line if the pipeline. Aiove this elevation the veat may be reduced ro $51 \mathrm{~mm}(2 \mathrm{in}$.) in diameter.
4.5.3 Vents shall be located as follows:
4.5.3.1 At the downstream end of each lateral.
4.5.3.2 At all summits of the line.
4.5.3.3 At pointe where there are changes in grate of more than 10 deg (18 percent) in a downward direction of flow
4.5.3.4 Immediately below any stand if the downward velocity in the stands exceeds $0.6 \mathrm{~m} / \mathrm{s}(2 \mathrm{ft} / \mathrm{s})$.

4.6 Air-vacuum release ahes

4.6.1 In ali- wacuum release valve may be used in lieu of an open vent, but either a vent or an air-wacuum release valve shall be provided at each of the locations listed in paragraph 4.5.3.
4.6.2 Air-vacuum release valve outlets shall have a 51 mm (2 in.) minimum diameter. The valves shall be used as follows:

Pipe d'ameter	Minimum air-vacuum release valie outlet diameter $\mathbf{m m}(i n)$.
$\mathbf{m m}$ (in.)	$51(2)$
$152(0)$ or less	$76(3)$
$178.254(7.10)$	$102(4)$
$305(12)$ or larger	

NOTE: Air-vacuum release valves shall not replace the open stand tequired in paragraph 4.1 .

SECTION 5-PIPE MATERIALS

5.1 Compounds. This Standard covers pipe .made from the compounds that are listed and identified in this section by code classification and that are further detined and identitied by hydrostatic design stress rating. The respective pipe compound shall have an established long term hydrostatic design stress rating as given in Table 5 when tested in accordance with paragraph 5.1 .1 . The compound shall meet the short term test requirement denoted by its code classitication and detined in the relevant American Society for Testing and Materials Standards reterenced in paragraph 5.2.
5.1.1 Sustained pressure. The pipe shall not fail, balloon, burst. or weep as detined in Section 4 of ASTM Standard D1598, Test for Time-to-Failure of Plastic Pipe Under Long-Term Hydrostatic Pressure. The pipe shall be treated in accordance with the following section of the applicabie ASTM Standard:
5.1.1.1 PVC: Section 7.5 of ASTM Standard D2241, Specitications for PVC Plastic Pipe, at the appropriate test pressure given in Table 3 of that specification or Table 6 of this Standard.

[^0]Fong-term hydrostatic strength is determined by ASTM Standard D1598. Test for Time-to-Failure of Pla, tic Pipe Under Long-Term Hydrostatic Pressure, and ASTM Standard D2837, Obtaining Hydrostatic Design Basis for Thermoplastic Pipe Materials. NOTE: Recommended design stress values are issued by the Plastics Pipe Institute, New York, NY and are reissued periodically. Design stress values were issued in Technical Report TR-4, 1982.

$\begin{aligned} & \overline{\mathrm{SDR}} \\ & \text { (DR) } \end{aligned}$			Pressure required for test \ddagger					
	\qquad		PVC 2116		PVC 2112		PVC 2110	
-	psi	kPa	psi	kPa	psi	kPa	psi	kPa
51	170	1170	135				90	620
64	135	930	105	¢25	90	620	75	515
$\begin{aligned} & 81 \\ & 93.5 \end{aligned}$	$\begin{array}{r} 105 \\ 90 \end{array}$	725	85	585	70	485	60	415
93.5	90	620						
50 ft							8	
head	83	570						

- Requirements in addition to those listed in ASTM Standard

D2241, Specification for Poly (Viny! Chloride) (PVC) and Chlorinated Poly (Vinyl Chlorice) (CPVC) Plastic Pipe (SDR-PR), for SDR rated PVC plastic jipe.
\dagger With water at $23^{\circ} \mathrm{C}\left(73.4^{\circ} \mathrm{F}\right)$
†The fiber stresses used to derive the test pressures are as fcilows:

PVC 1120, PVC 1220, PVC 2120	$\frac{\mathrm{psi}}{}$		MPa
PVC 2116	4200		29.0
PVC 2112	3360	23.2	
PVC 2110	2800	19.3	

5.1.1.2 PE: Section 7.7 of ASTM Standard D2239. Specitication. for Polyethylene Plastic Pipe, at the appropriate test pressures given in Table 3 of tha, specitication.
5.1.1.3 ABS: Section 7.4 of ASTM Standard D2282, Specitications for ABS Plastic Pipe, at the appropriate est pressures given in Table 3 of that specitication.

NOTE: Tests of pipe made with different diameters and wall thicknesses but with the same material shall not be required to reestablish long-term hydrostatic design rating since this is a compound qualitying te:t

5.2 Compound code classification

5.2.1 PVC: ASTM Standard D1784-12454 B (Type 1, Grade 1) 12454 C (Type 1, Grade 2) 14333 D (Type 11, Grade 1)
5.2.2 PE: ASTM Standard DI24-11 C.P23 (Type II. Grade 3. (lass C)
III C.P33 (Iype III. Grade 3. (lans C)
IV C.P3: (Type III. Grade 4. (lass C)
5.2.3 ABS: ASTM Standard DI-88.5.2.2 (Type 1. Grade 2)
3.5 (Type 1. Grade 3)
4.4 .5 (Type 11, Grade 1)
5.3 Rework materials. Clean rework material generated from the manutacturer's own pipe production may be used by the same manutacturer, as long as the pip: produced meets all the requirements of this Standard.

5.4 Physical requirements

5.4.1 Workmanship. The pipe shall be homogeneous throughout and free from visible cracks, holes, foreign inclusions, or other defects. The pipe shall be as uniform as commercially practicable in color, opacity, density and other physical properties.

5.4.? Dimensions and tolerances

5.4.2.1 Wall thickness. The wall thickness and tolerances

 shall be determined in accordance with the appropriate sections of ASTM S ndard D2122, Determining Dimensions of Thermoplastic Pipe and Fittings, and shall be as shown in Tables 7. 8 and 9 of this Standard.5.4.2.2 Diameters. The outside diameter or inside diameter of the pipe shall be determined in accordance with the appropriate sections of ASTM Standard D2122, Determining Dimensions of Thermoplastic Pipe and Fittings, and shall be as shown in Tables 10 and 11 of this Standard.

5.5 PVC pipe requirements

5.5.1 Burst pressure. The minimum burst pressure shall be determined in accerdance with Section 7.5 of ASTM Standard D2241. Specifications for PVC Plastic Pipe, and as given in Table 4 of ASTM Standard D2241 or Table 12 of this Standard.
5.5.2 Flattening. There shall be no evidence of splitting, cracking, or breaking when the pipe is tested in accordance with Section 7.6 of ASTM Standard D2241, Specification for PVC Plastic Pipe.

TABLE 11 －INSHDE MAMFTFR AND TOHEMANCH for PE PIPt．

Nommal pipe size in．mim			II）		Towrance	
			in．	mm	in．	mm
12	！${ }^{\text {a }}$	If	1）．12\％	13．4．1	－ 0.1110	0.25
1.	21	119	19.52 .4	20.43	－U 1110	（1）：25
					0.115	0.36
1	27	If＇s	1.043	26.64	－0．610	0.25
					0.020	0.51
：${ }^{1}$	35	IPS	1.380	35.05	－0．011：	0.95
					－0．020	0.5 ．
11：	41	195	1.610	\＄0．84	－0．010	0.25
					－0．020	0.51
2	52	IPS	2.067	52.50	＋0．01；	0.38
					－0．02）	0.51
$2!2$	63	JPS	2.469	62.71	＋0．01 5	0.38
					－－0．025	0.64
3	78	IPS	3.068	77.93	＋0．015	038
					-0.080	0.76
4	102	IPS	4.026	102.25	＋0．015	0.38
					－0．0：5	0.89
	102	PIP	4.000	101.6	＋13．0： 0	0.51
					－0．0：0	0.51
6	154	IPS	6.065	154.05	＋110 0	0.51
					-0.035	0.89
	152	PIP	6.000	152.4	－1．123	こ．C：
					-0.025	0.64
8	203	PIP	8.000	20.3 .2	－0．040	1.02
10	25.4	PIP	10000	25．4．0	－0．0．40	1.02
12	305	Pli	120000	3u）． 8	－9．6．0	1．0\％
15	381	Pl	$15.0 \% 0$	3810	－ 0.6 .80	1.02

5．5．3 Everuslon qualty．The pipe shat mot thake or disintegrate when tested ir accordanse ath ASY：standard I．2152．Test tor Quality of Extruded PVC Prpe by Acetme Immersmen．
S．5．4 Impact reslitance．The pipe shatl is tested in asordance with ASTM Standard I2t＋4．Test tor Impact Resisiance of Tner－ moplastic Pipe and Fintigs by Mean of a Tup folling Weight）． using a $89 \times 120 \mathrm{~b}$ ．I ype B wp wah in hat phate a： $23 \therefore$ ？Cr73．4 $\pm 3 . C^{=} 8$ ）and shald mect the tes levels smon mable 13 of this Standard．The impat tes：shath he made on new production pipe at the time of manutacere

S．6 PE plpe requirtments

5．6．1 Thlekness of outer layer．For prpe produced hy simultane． bus multiple extrusion，that is，pipe containting two or mere concen． tric layers，the ruter layer shall be at least $0.51 \mathrm{~mm}(0.020 \mathrm{in}$. thick．
5．6．2 Bond．For pipe produced by simulaneous multiple extru－ sion，the brond between the layers shall be sirong and uriform．It shall not be prssitie ！i，separate any two layers with a prowe or a

TABLE 12－BLOST PRESSURE RFUUIRESAENTSFOR PVC

$\begin{aligned} & \text { SDR } \\ & \text { (D) } \end{aligned}$	Sinamum burst pressure！			
	PVC	1120	PG：	2116
	P6	1290	PC	2112
	P゙G	2120	PV＇	2110
	ps	H．P．1	usi	kPa
51	260	1790）	200	1380
64	200	1380	1100	1105
81	160	1105	125	860
93.5	140	965		
50 ft				
head	127	875		

 ASTM standard $)$－20．4 ．Spectication for

plastar more．
－With water at $33^{\circ} \mathrm{C}$（B．3．4 $\left.{ }^{\circ} \mathrm{F}\right)$ ．
The faber str＋n＇wedt io derne the thst pressures atera follo：s

	psi	MPa
$\text { PVC } 120, \mathrm{PVC} 1220$ $\text { PVC } 2120$	6400	4.1
PVC2116，PVC 2112.		
P＇C2110	5400	3.4

peint of ：finte blade os that the layers separate cleanly at any point．
5．6．3 Carbor black．The pipe extrusion eompound shall contain at leest 2 percent carborn black when tested in accordance with Sec．
 （PE）Pastic Pipe For pipe prodaced by simultancous multiple ex－ trusion，this requirement shall apply the outer haver．
S．6．4 Densly．The pelyethylene base resin（uncolured PE：in the pipe compousid shali have a density in the range trom 0.920 lo $0.940 \mathrm{Mk} \mathrm{m}^{\prime}$ for pipe made from Grade P 23 and 0.4 .41 io $0.905 \mathrm{M} 1 \mathrm{~g} \mathrm{~m}^{\prime}$ for pape made trom Cotade P3．3 and Crade P3t of 15TM Standard Dl2is Spewticatoms for Polvethyten：Plastic Molding and Estrusor．Wateriats，when determined in accordance with Section ${ }^{-6}$ of iSTM Standard D2239．Spechfoation ior Poly． ethysene Plastic Pipe．
5．6．5 Burst pressure．The momum barse pressure for PE plastic pipe shat he desermined in acerdance with Section 7 ．h and Table 4 of ASTM Standard D2234．Specificatoms for Polyethene Plastic Ppe．

TABLF 13－IMPACT REQUIKKMENTSFORPVCA：OHABLPIPt．

Nominal																								
pipe size					UFS 93．4		SuK mi		Suk ba		S1）K 51		ADI 4．		stur 32．5		S1HH：		SHR 21					
门．	mm				ft．th		41） 1	： m	It．lbi	Nim	TH14	Sim	ftlts	\therefore m	ftref	： m	12．1t，	1－1	filit	： im	f16t	17 Nm	$\begin{aligned} & \text { SDR } \\ & \text { foht } \end{aligned}$	$\begin{aligned} & 1.3 .5 \\ & 1!\mathrm{Nm} \end{aligned}$
11	21	16																						
：	25	15：																					2：	35
1	37	［ ${ }^{\prime}$																			i 1	50	35	50
$1 \cdot$	$+2$	Ii＇																	38	$51)$	3 t	S0	315	54
11，	46	1FS													50	70	20	－1，	50	76	51）	710	50	70
2	60	if S													6.3	H：	6	5	5	\％	5 1	70	30	70 45
2：	73	Ifr													63	H：	is 3	5：	6.1	H5：	$\cdots 3$	FS	6：	45 85
3	83	15＇													： 5	100	73	R 100	7	¢ ${ }^{\text {（1）}}$	4.3	H5，	63	85 1011
31：	102	Its													：－	100	7	110	7	101	75	100	75	101 100
1	114	1PS							S0	70					H（）	1111	101	135	100	135	100	100 195	－5	100 135
	105	PIP	30	10			30	40			70	95	70	45										
3	$1+1$	1PS													［1）	120	1114	1，11	111	1！，${ }^{\text {a }}$	1：1）	150	111	150
F	1， H	IFs							60	80					110	1.5	1215	1ij	120	16.5	120	1105	120	16．5
		rir	30	10	30	40	30	40			80	110	80	110										
9	219	IPS							71	45					（1）N	1．55	100	135	134	17：	130	175	1.70	175
11	207 273	PIP	310	46	30	40	30	40			90	120	40	120										
If	273	If							$41)$	110					110	100	110	$1: 10$						
12	259 324	P＇p^{\prime} if	20	80	i）	80	64	80			100	135	100	$1: 5$										
12	324 311	P＇ P1 P							101	135					111	1511	isil	215						
14	3r3	P1\％	1100 110	135	100	135	100	135			110	150	110	150										
15	304	P1\％	110 110	150 1511	100	135	110	151			120	165	120	16：	121）	145，	150	205	150	205	130	205	150	20＇
：${ }^{5}$	HOf	$1 F^{\prime}$	110	150）	111）		110 111	150			120	165	120	lis？										
14，	ibitis．	IP fip			110	150	110	1：0			120	${ }_{1+1}{ }^{\prime}{ }^{\text {j }}$	1：0）	20，	120	10，5	： 0	205						
29	ご入	i^{1}			110	15	1111	150			120	$1 i^{5}$	1f，1）	21：	15，	205								
21	3ts	H^{1}											1：1）	205		－								
24	510．6．31）				111）	130	110	130			120	16：	1：1）	21：	1：10	205								
25	310	Fif											！ 0	20：										

5.6. Enslronmental stress araching. There thall he fue loss of presure on the pree when texted in ...क.
 Pre.

5.7 ABS plpe iequirements

5.7.1 Burst pressure The mimmumburst pressure shall be deter

 with ASIA Standard llatat. lent tor lmpat Reshatate of Ther

 the time of mathotacture

5.8 Joints

5.8.I General. Alt jombs shall te comstacted to withstand the destgn mavimun torknes prewure tor the pipeline withon

 for gomine pre hat be used whem non in comblet with requirements "f paratraph 5 .
5.8.2 Sockets and couplings. The mberal bell or separat: coupling shall meet the sume wtength requitements as the plee. When joint atsemble requre's ace of eparate couplangs, one such coupling of the same dhe and sue whil he lurnished with each length of pp:
5.8.3 Solvent cements. Solven: cements sinly for use with PVC pipe and totnes shall meet the regurements of ASM Standard D250t. Specticatoms fer Solvent Cements for PVC Plastic Pipe
 meet the regurements of ASTA Standard D2235. Specitications for Solvent Cement for AisS Plastic Pipe and Fittings. The pipe manufaturer should be consulted tor the tepe of cement rewommende for jowing large diameter pupes Sate handing of solvent cements shall conform 10 ASTM Standard F4O2. Recommended Pracice for Sate Handinge of S then (ement Lised for Janine Thermoplantic Pipe and Fitangs.
5.8.4 Rubber gasket joints. Rubber gasket jumbs ball suntirm to ASTM Standard D3130. Specificatans for Joines for Plassic Pressure Dipes Using Flexiele Elasmmestic Seals.
5.8.5 Plastic risers. Plastic rimen shatl have at least the same streneth as the pre, including risers with use limed to subsurface attathment.

5.9 bittings

5.9.1 General. A!! fittings, such as कuplings. reducers. bends, tees and eresses stall he made of material that is recommended for use with the pipe and shall be installed in acordance with the recommendatiotis of the manafacturet. Witere fittings made of steed ot other matermis subject on corrosion are used in the line, they shat be adequately pentected by wrappias with phatic tape or by coating whth hah quality corrosion prowentatives. Where plastic tape is used. all surtate fote wrapped shall be thoroughly cleaned and then coated with promer compatible with the tape prior so *rapping.
5.9.2 Kequirements. Fitcin.p, fur IPS sued pipe shall meet al! the dimensional and quality requmements enen in the fe!lowing A.ST. Standards:

ASTM Standard D2tos, ABS Plastic Pipe Fittings, SocketType, Schedule 40
ASTM Standard D2409. ABS Pastic Pipe Fittings. SocketType, Schedule 80
ASTM Standard D2009, PE Plastic Inser: Fittings
ASTM Standard D32t. But Heat Fusion tor PE Plastic Pipe and Tubing
1STM Standard L2072. Bell-End PVC Pastic Pipe
ASTM Standard D3036, PVC Plastic Line Couplings, Socket-Type
ASTM Standard D2466. PVC Plastic Pipe Fittings. SocketType, Schedule 40
ASTM Standard D2467. PVC Plastic Pipe Fittings, SucketType. Schedule 80

SECIIONO-MARKING

6. 1 General. Ithe pure wall he marked at mentis of not mere than
 a nationd standad. In the sectom customary units are thountirst, Barking shall inctude the following:
0.1.1 The mommal pipe sise, eg. + in. (114 mm).
6.1.2 The pipe (on) sumg wotem when applicable (IPS. IP, or PII, e.s. PlP.

6.1.4 The :ype of phatic ppe material in atcordance with the devematmon che ex. PVO 1120

6.1.5 Pressure rating

6.1.5.S I.on pressuat plpe. The pressure rating shall be shown in priand or intice of head: e.p. 22 psi(152 kPa) $50 \mathrm{ft}(15.2 \mathrm{~m})$ head.
6.1.5.2 SDR plpe. The pressure ctass rating in psi tor water at
 standard dimemon n rath as calcabated in paragraph 2.8 : eg.

6.1.6 The manatalater, name er trademark and code.
6.1.7 Pipe intended tw the comes anee of potable water shall abo imdude the seat mertion the latmatory making the evaluation for this purpone, ypated at interats speatied be the laboratory.

SECIION - - MSTMAAMON REOLIREMIVIS

7.1 General. The thermplastie pipe shall be installed in accordane with the manatuctater recombendatom. It these are not avalable. then for ope 152 mon 6 in d dameter orss. ASTM Standard D2774. Rew amended Practice for L'metoround In atalatin of 7 hermoplastic Pressare Pbinge of the Sandard hatl he followed. Recommendations in AS[: Standard DE32!, Lenderernund Instathation of Flexible Thermaplastic Sener Pige, may ake be tollowed.

7.2 Tranch construction

 than 15 man (0.e in. in siec Whete ledge rocis. hard pan or bumdersare encomemed, the trench hotom hall be underent and tilled a th hedding materal, using sand or compacted line-grained sals:. proside a minimon depth ot bed betueen the pipe and roek
 coumered. stahilizan metheds and materials to provide adequate and permancon suppor: hall be used.
7.2.2 Trench widh. The width ot the erench at an: peint below the tup of the pue hadal mot be greater than necessary to prowide adeynate romm lon jommy the pipe and compacting the intial hacktill. The trench width should he vaticient to pronide adequate won tor jomme the pipe in the wench, it the is necessary; tilling
 side atong the lootom of the dith, it recommended by the prese manatacturer. Trench widtas above the wp of the pipe vhould tor be greater that $0.6 \mathrm{~m}(2 \mathrm{f}$) wher that the pipe diameter, exetpt that in umable soin where hotghing or catime may octar or wiere required by regulation or local conditios. the sitewall, abone the top of the pipe may be sloped.
7.2.2.1 Lon pressibre pipe. Masimum and minimum trench "itths beiow the top of the pipe tor low presure pipe shall be as folluws:

Pipe sire	
$\ldots \mathrm{in}$.	mm
4	102
6	152
8	203
10	254
12	305
14	356
15	381
18	457.475
20	508
24	0110.6 .30
27	710

	Approsimate trench widih		
mlniaum		maximum	
in.	mm	in.	mm
15	Sin	30	76
18	4is)	30	760
20	5u	31	$7(x)$
22	56.0	. 30	700
24	610	30	80
26	20,6)	. 30	Fbo
27	0.90	30	760
30	7×11	36	910
32	410	36	410
36)	410	42	1070
4)	1020	46	1170

7.2.3 Trench depth. The trench deptit should be decermined with pipe siec and coser conditions (see paragraphs - 2.1 and 7,7). The deptis thall be satficient to ensure placement of the top of the pipe 0.25 m (10 m) below the tron line unles the requirements of paragraph 3.9 are satistied.
7.2.4 Safety. Prowstons shall be made to insure seie working conditions where unstable soil. Irench depth or other conditions impose a satet hazard to personnel working in the trench.

7.3 Placement

7.3.1 General. Special handling and an atwareness of temperature effects on thermoplastic pipe are needed to prevent permanent distortion and pipe damage when handling during unusually warm or eold weather. Prior to any backlilling beyond light backtill for shading, and prior to connecting to other facilities, the pipe shall be allowed to conme to within a few degreses of the temperature it will reach after complete covering. The pipeline shall be installed to provide protection trom hazards imposed by tratfic crossing, farming operations, freezing temperatures, or soil eracking. It the pipe is assembled above ground. if should be lowered into the trench with care to prevent dropping or damaging the pipe or its joints Treatment such is dragging or excessive bending which could cause excessive joint stressigg, displacement or pull-out should be avoided.
7.3.2 Deflection and bending. The pipe shall be installed in a manner to ensure that excessive deflection in elastomeric seal joints and excessive bending of the pipe do not oceur during installation. Bending stresses should be avoided and at no time should the pipe be blocked or braced to hold a bend. The pipe manufacturer should be consulted for maximum permissible deflection limits and minimum pipe bending radii.
7.3.3 Connection to a rigid structure. Where differential settlement could create a concentrated lcading on a pipe or joint, as at the connection of a buried pipe to a rigid structure such as a stand, extra care should be taken to compact the foundation and bedding adjoining the structure. A supporting structare beneath the joint and the pipe or a flexible joint also may he used.
7.3.4 Bell holes for rubber gasket Joints. When the pipe being installed is provided with rubber gasket joints, bell holes shall be : x cavated in the bedding material to allow for the unobstructeci assembly of the joint. Care should be taken that the bell ho!e is no larger than necessary to accomp'ish proper joint assembly. When the joint has been made, the bell hole should be carefull: filled with initial backfill material to provide adequate support of the pipe throughout its entire length.

7.4 Thrust blocking

7.4.1 General. Thrust blocking prevents the line from moving and is required primarily with rubber gasket joints. Unequal forces due to water pressure at changes in pipeline alignment result in thrust loads. The thrust block transfers this load from the pipe to a wider load bearing surface. Thrust blocks are required at the following locations:
7.4.1.1 Where the pipe changes the direction of the water (i.e., ties, elbows, crosses, wyes and tees).
7.4.1.2 Where the pipe size changes (i.e., reducers, reducing tees and crosses).
7.4.1.3 At the end of the pipeline (i.e., caps and plugs).
7.4.1.4 Where there is an in-line valve.
7.4.2 Placement. The thrust block must be formed against a solid trench wall that has been excavated by hand. Damage to the bearing surface of the trench wall may result from excavation by mechanical equipment. The size and type of thrust block depends on pipe size, line pressure, type of fitting, degree of bend and type of soil. Thrust block size can be zalculated by the procedures shown in Table 14.
7.4.3 Side thrust on curves. An outward pressure exists on all deflections from a straight line. Generally, good soil properly tamped in sufficient to hold side thrust. If the soil is unstable, blocking should be placed against the pipe on the outside radius on each side of a gasketed coupling. Do no: thrust block the coupling itself.
7.4.4 Construction of thrust blocks. Thrust blocks are anchors placed between the pipe or fittings and the solid trench wall. The recommended blocking is concrete having a calculated compressive
strength of at least $13.8 \mathrm{MPa}(2000 \mathrm{psi})$. The concrete mixture is one part cement, two parts washed sand and four parts gravel. Thrust blocks should be constructed so the bearing surface is in direct line with the major force created by the pipe or fitting (see Table 14). The earth bearing surface should be undisturbed with only the simplest of forms required.

7.5 Inltial backfill

7.5.1 General. The pipe should be uniformly and continuously supported over its entire length on firm stable material. Blocking should not be used to change pipe grade or to intermittently support pipe across excavated sections.
7.5.2 Speclal considerations. Special consideration must be given to soils, backfilling, and bedding procedures for 457 mm (18 in .) diameter and larger low pressure pipe to ensure protection of the pipe under the maximum loading conditions to which it may be subjected. Special engineering design and soils analysis may be needed to determine the supportive strength of the soils intended for use as backtill.
7.5.3 All low pressure pipelines shall be water-strutted or filled with water prior to backfilling The backfill must be compacted to the required or on adequate density for all low pressure pipe. Either the water packing method or hand or mechanical backfilling methods may be used for backfill consolidation.
7.5.3.1 Water packing. When water packing is used, the pipeline must first be filled with water, all air removed, and the pipe kept full during the backfill operation. The initia! backfill material shall be is specified in paragraph 7.5.3.2. The backfill, before wetting, shall be 300 to 450 mm (12 to 18 in .) deep over the top of the pipe. Water packing is accomplished by adding water in such quantity as to thoroughly saturate the initial backfill. While saturat 1 , rods, shovels, concrete vibrators or other means may be used to help consolidate the backfill around the pipe, taking care not to float the pine After saturation, the pipeline shall remain full until after final backfill is made. The wetted fill shall be allowed to dry until firm enough to walk on before final backfill is begun.

7.5.3.2 Hand or mechanical backflling. The initial backfill in

 contact with the pipe and imme diately surrounding it shall be of fine-grained material free from racks, stones, or clods greater than approximately $19 \mathrm{~mm}(0.75 \mathrm{in}$.) diameter and earth clods greater than approximately $50 \mathrm{~mm}(2 \mathrm{in}$.) diameter. The backfill shall be tamped in layers not to excced 150 mm (6 in .) lift and compacted firmily around the pipe and up to at least 152 mm (6 in .) above the top of the pipe. The backfill material shall be sufficiently damp to permit thorough compaction under and on each side of the pipe to provide support free from voids. Care should be taken to avoid deforming, displacing, or damag. ing the pipe during this phase of the operation.
7.6 FInal backfill

7.6.1 After pipeline testing, final backfill shall be placed and spread in approximately uniform layers in such a manner as to fill the trench completely so that there will be no unfilled spaces under or around rocks or iamps of earth in the backfill. Final backfill shall be free of large rocks, frozen clods and other debris greater than 75 mm (3 ir .) in diameter.
7.6.2 Rolling equipment or heavy tampers should not be used to consolidate the final backfill until after the minimum depth of cover has been placed and then only with pipe having wall thicknesses greater than that of SDR-41.

7.7 Minimum depth of cover

7.7.1 General. At low places on the ground surface, extra fill may be placed over the pipeline to provide the minimum depth of cover. In such cases, the top width of the fill shall be no less than 3 m (10 ft) and the side slope no steeper than 4 horizontal to 1 vertical. The minimum depth shall be as foilows:

Plpe size $\mathbf{m m}(\mathrm{in})$.	Minimum depth of cover $\mathbf{m m}(\mathbf{l n})$.
$13.64(0.5 .2 .5)$	$460(18)$
$76.102(3.4)$	$610(24)$
$>102(>4)$	$760(30)$

7.7.2 Minimum cover for load applications. At least 760 mm (30 in .) cover over the top of the pipe shall be provided before the trench is wheel-loaded for both low pressure and high pressure pipe.

Step 1. Multiply the workntio wessure by the appropriate value Shonatil the following: table to whin total chart in N (1) :

- Based on thrust per ala (psi) pressure

Step 2. Determine the bearing strength, of the soil from the table below:

Step 3. Divide the total thrust obtained in Step 1 by the bearing strength of the soil to get the area needed, $m^{2}\left(f^{2}\right)$. SIDE THRUST ALTERNATIVE PROCEDURE

*Based on side thrust per 689 kPa (100 psi) pressure per degree of deflection.

NOTE: Multiply side thrust from table by degrees of deflection times kPa (psi) divided by 100 to obtain total side thrust in N (lb).
7.8 Maximum depth of cover. I he mavmum depte n cower for wow
pressure pye shall be 1 ? 1 It tul Fur whet danses of pipe the pipe manufacturer shond be combled fis? mamam depths of ener greater than appromately $1.2 \mathrm{~m}(+14)$

SECllON. - - 5 STING

 pletely tented for pressure strengh and kedkage hefore bachtill operafons dre underthen. It it is necessary (1) partatly backtill the line betore testme whold the lime in place, the partial backtill shall he undertaken as sentied a pasaraph ${ }^{-}$. . Onls the hody of the pape sections shall be uncred whth all jomets and sonnections left uncovered
 8.2 Filling. The line shali be shomly tiled wath water. The velocity of the water input shall n ene exeed $(2.2 \mathrm{~m},(1 \mathrm{i}$. s). Adequate prosiben shall be made for air relese whte tillinge takireg cire to heed all enirapped ate in the pocess The presoure vali be slouly butt up to the maximum design working pressure. Pressuriang thould take at hast ten minutes for puelaces 102 mon $1+\mathrm{m} .1$ and smatler in dameter and
 (1000 f:) For larger dameters. anger lines and hikher pressares. pro. portionately longet butidep thens shall be wed.
8.3 Inspecton. The pipelane hat be mopected in its enturet white the maximum working pressure is mantaned. Where leaks are docow ered. Wey shall he proptly retared and the line retested
8.4 Floer eapacte. It hatl te demonetated ty testime that the pipefane will function properly at desien capatits. At or below design capacty, there shall be mo whectionable varge water :ammer.
8.5 Objectunal flow condtions. Objectional tion Antme tesumb con-

 $(100): 11$.

SECTHONG-B.ASIS OF ACCPPIANCE

9.1 Requirements. The acceptabity of the perame bhall le deat.
 Standard with respect we the texen of the lane, the phe atod appurtenances used, and the mamman mathation requirenem:

SEGTION 10 -CERTIFICATION

10.1 General. All materats shall conturm to these minmom re quirements and ow the tests prescrithed in the appioabie ASTM Standards.
10.2 Certifcution. When required, the pape shall be certitied by a qualifed testine taboratory for amplatee with the equirements set out in this Standard.

SECTION 11 -PLANS AND SPECIFICATIONS

11.1 General. Plans and specitications for constraction of under. ground thermoplastic irrigation pipelines shall be in keeping with this Standard and shall describe the requiremens for application of the practice to achieve its intended purpest.
' "re siailuarins:
 Bdatrah
 Internal Pressure
 and Chumated Pow Nimsl (hande) (ompounds
 Plasto

 PresthRPR
 Pr"
ASIS OS4.4. Fest fir lapact Resstante it Thermoplashic Pipe and

 Shedale 40

 shedule ma

 : ABS! Plaso Pre Fillonn, Schedule mo
 (PVC) Phastic Pipe and Fistan"
 Pantic Ppe

 Ihermophets Pasutc Pamb
 Pipe Vaterobs

 Couplings. Sinket-I:pe
 Flastomerse Sest
 :1pe and Tuhum
ASTAF402. Rewnmended Practae for Safe Handing of Solent Cenents Lsed for Jomeng thememplatic Pree and Fitungs

 Pipe)
 Outside Datmeters and Nominal Pressures--Part I: Wetric Series

[^0]: Applies to compounds for pressure pipe
 \dagger Hydrostatic design stress $=\frac{\text { long-term hydrostatic strength }}{2.0} \ddagger$

