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ABSTRACT
 

This paper covers some major techniques of analysis of nntritional and 

socio-economic data. The choice of techniques is primarily based on the 

experience gained at the Cornell Nutritional Surveillance Program where a 

number of data sets arising from various nutritional and socio-economic surveys 

have been analyzed over the past year or two. Most of the illustrations come 

from this on-going research. The paper is directed in the main to practitioners 

involved with some aspect of nutritional surveillance although others may also 

find some of the material useful for other purposes. A rudimentary 

understanding of basic statistics and some familiarity with survey data is 

assumed. Relevant concepts and definitions are given first and elements of data 

processing and presentation are reviewed. The bulk of the paper discusses basic 

and advanced analytical techniques. Basic techniques include categorical data 

analysis, correlation analysis and analysis of variance. Advanced techniques 

consist of regression analysis, covariance analysis, models with binary dependent 

variable, and some less widely used methods of classification: discriminant 

analysis, principal components analysis and cluster analysis. 
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1. PURPOSE 

Satisfaction of basic needs requires, above all, the provision of adequate 

nutrition for all. To assist in meeting this challenge national and local 

nutritional surveillance systems are being set up in a growing number of 
developed and developing countries alike. i'he major function of these systems is 

to provide decision-makers with useful information that helps them to improve 

the selection, implementation, monitoring and evaluation of policies and 

programs that bear, directly or indirectly, on the nutritional conditions of a 

population. This function can be suitably discharged only when nutritional and 

socio-economic data are properly collected and analyzed. 

Mason et al. (1982) have dealt extensively with the need for and the usual 

sources of statistical information in efforts directed at nutritional surveillance. 

They note that a great deal of routinely collected, relevant data often exist in 

many developing countries, not to mention developed countries, even if the 

institutional structures with direct responsibility for nutritional surveillance are 

only beginning to take shape. ANhile it may on occasion be necessary to commit 

more resources to the collection of additional data, data accumulation has often 
received more attention than adequate analysis. Much of the available data have 

either not been analyzed and used at all or only partially analyzed and used in 

decision-meking. Indeed it may well be that excessive accumulation of data has 

detracted attention from analysis not only by diverting the limited resources 

available, but also by overwhelming those that remain. Clearly there is little 
point in collecting more and better data unless they are intended to be analyzed 

and used to either describe the existing situation or make more informed 

decisions. This is the ultimate justification for any data collection. 

The results produced from existing nutritional surveillance systems are 

largely confined to tabulations of single indicators by broad groupings of 

population, commonly by administrative area, and these are indeed the first 

results that are likely to be of interest. The use of multiple indicators tabulated 

by socio-economic grouping is also important for many purposes in the planning 

context (ibid, Table I1.1) These purposes essentially involve: comparison of 
nutritional conditions (or other outcome indicators) of different population 

groupings at one point in time; detecting changes in these indicators over time; 
'describing or accounting for both these types of differences in terms of the 

characteristics of the groups involved, and studying the possible causes of these 
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differences at one time or over time. The purposes of data analysis for adequacy 

evaluation (ibid, Chapter IV) are to follow nutritional conditions of program 

target groups and/or recipients over time and compare them with planned and 

baseline values. For impact assessment (ibid) it is necessary to investigate 

associations between indicators of program delivery and changes in outcome 

indicators, controlling statistically for other factors that may be associated with 

changes in outcome. Finally, in timely warning and intervention programs (ibid, 

Chapter V) the purpose of data analysis is to rapidly decide whether certain 

variables are showing significant changes, specifically whether they are crossing 

the threshold or trigger values that should lead to predetermined actions. 

This paper seeks to provide some guidance on data analysis in these 

contexts. This is possible because, as the experience in data analysis at the 

CNSP indicates, there are in fact a limited number of widely applicable 

techniques that will cover most needs. Because of the important emphasis given 

to bringing out the meaning of data for decisions on policies and programs, the 

potential analytical techniques needed for nutritional surveillance require some

what more systematic application than has been the case in analyses of 

nutritional and related data in the past. This is all the more feasible now with 

the wide availability of computer facilities and, more importantly, powerful 

programs that can routinely do analyses undreamt of (by the layman anyway) 

only a few years ago. While this paper covers a good many useful techniques no 

attempt is made to be comprehensive. Frequent references to standard texts are 

providcd throughout. 

This paper is directed to practitioners in the nutrition area who have had 

some prior training in statistical methods, albeit in the distant past, some 

experience of working with nutrition-related data and a desire to go beyond using 

only simple descriptive tools for presentation of data. The analytical techniques 

in this paper become increasingly more sophisticated but an attempt has been 

made to present their essential elements in simple terms and with frequent 

illustration. Simplification, however, may have at times been achieved at the 

expense of rigor. Hence, for confident application of th it isese techniques 

advisable to consult the principal references given. 

The rest of this paper consists of five sections. Section 2 presents 

concepts and definitions. Processing of data and their presentation will be 

briefly discussed in Sections 3 and 4. The last two sections constitute the core 

of the paper where basic and advanced analytical techniques are discussed. 
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2. CONCEPTS AND DEFINITIONS 

2.1 Types of Data and Variables 

Types of data can be distinguished by their level of measurement, i.e. by 

the amount of information conveyed Lby their numerical values (Nie et al. 1975). 

The weakest or lowest level of measurement belongs to nominal data. The 

values of a nominal variable merely classify its different categories. The 

variable "sex", for example, takes on two values, say 0 and 1, depending on 

whether a subject is male or female. Other examples include the presence or 

absence of a certain disease or the type of water source where numerical values 

may refer to "well", "stream", "piped", etc. It is not possible to interpret these 

numerical values as reflecting the relative size or worth of the relevant 

categories. 

Ordinal data provide more information by ranking or ordering the cate

gories with respect to the degree to which the characteristic being measured by 

the variable is possessed. Grouping by attitude (strongly disagree, ... , strongly 

agree) and by income brackets are two examples of ordinal measurement. A 

third example is when it is possible to ascribe a ranking to otherwise nominal 

data - e.g. when housing can be ranked bad, medium or good; or when it is valid 

to postulate that a piped water source is better than a well, which in turn is 

better than a stream. This latter example converts nominal to ordinal data. 

Categorical level of measurement encompasses nominal data (unordered cate

gories), ordinal data (ordered categories) and dichotomous or binary data (exactly 

two categories). 

The third type of data is interval. Interval data additionally provide a 

measure of distance between categories. In contrast to the former two types of 

data which were discrete, interval data are continuous and are measured in 

terms of some well-defined and recognizable physical unit; height, weight, 

distance and income are a few of the more common examples of intervally 

measured characteristics. Along with ratio data - which we do not need to 

discuss separately here - - interval data are also referred to as continuous. 
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A summary of classification of levels of measurement is as follows: 

Level of Measurement 

Categorical Continuous 

Nominal Ordinal Dichotomous Interval Ratio 

or 

Binary 

A higher level of measurement can always be reduced to a lower level at will. 

Continuous data, for example, can be made ordinal by the simple device of 

creating class intervals or brackets as is commonly done when households are 

grouped into various income brackets. By ignoring their ranks or order, ordinal 

data too can be reduced to become nominal. The reverse can happen as well. 

Nominal data can be made ordinal if the categories can be ordered on the basis 

of the degree to which a particular characteristic is present or absent. Ordinal 

data are also sometimes treated es, or converted to, continuous data in an ad hoc 

fashion. For instance, distance of villages to nearest road may have been given 

in four categories as: 

Walking distance to nearest 
Category road in minutes 

1 0- 50 
2 50- 100 
3 iOO - 200 
4 > 200 

One method )f transforming this distance variable into a continuous 

variable is to assign the mid-point of each interval to all the villages in the 

category to which the interval pertains. All villages in the third category for 

example, may be assumed to be 150 minutes walking distance from the nearest 

road. Villages in the last category may be assigned a distance of, say, 240 

minutes arbitrarily. A great deal of care must however be exercised when the 

level of measurement is artifically increased. 

It may be useful to briefly define a few additional terms as well. A 

variable can assume any one of a number of possible values. If the values it 

assumes depend, at least in part, on those of one or more other variables, i.e if it 
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is "described" by other variables, it will be known as a dependent variable. If 

however it does not depend on other variables and is used instead to describe 

them, it will be known as an independent variable. Two or more variables that 
depend on one another simultaneously are referred to as interdependent 

variables. A random variable, also known as a variate, takes on different values 

with given probabilities that must sum to one. It may be discrete (when it 
assumes a finite or countable number of numerical values) or continuous (when it 
may assume any numerical value on a continuous scale). The probability 
distribution of a rtindom variable provides a probability for each possible value 
(in the discrete case) and a probability that its value lies in any given range (in 

the continous case). 

Since data from a particular sample survey will be extensively used in the 

examples and illustrations in this paper, it may be useful to provide a brief 
outline of its contents. The survey covered about 500 households but our interest 

focuses on 261 households with children 12-84 months of age, for whom data 
were complete. There were 428 such children belonging to 36 area clusters 

(villages) chosen in the first of a two-stage sampling process with probability 
proportional to the size of the cluster, i.e. to the number of households within 

each cluster. The entive population of the survey area consists of 20,016 
households grouped into 694 area clusters. These clusters were ordered by 

altitude and the sample clusters were chosen by a systematic sampling design. 
The selection of sample households in the second stage was carried out with 

probabilities inversely proportional to those with which their corresponding 
clusters were chosen in the first stage. The upshot of this design is that every 

household in the population would have approximately the same probability of 
being included in the final sample. This is known as a self-weighting design. The 
number of children within the sampled clusters range from 2 to 25. For each 
child weight-for-age (WA), height-for-age (HA), and weight-for-height (WH) can 
be calculated using Harvard Standards (Hitchings/CBS 1979). Using these figures 

the mean values of these variables and their standard deviations can be found for 

each cluster and for the entire group of children in the sample. For the entire 
sample of 428 children these figures, in percent, are respectively 80.3, 90.3 and 
94.0 for the means and 11.9, 6.6 and 8.5 for the standard deviations. These 
values were calculated assuming that the observations had been gener, d by 
simple random selection. Whether or not this assumption is justified will be 

considered later in Section 5.4. A partial list of the variables from this data set 



6 

is given in Section 3.2, Table 3. 

2.2 Basic and Advanced Analyses 

Data analysis is the process of applying statistical techniques to data in 

order to answer questions in which the analyst may be interested. Its purpose is 

to extract information which helps und,.,-standing, description, interpretation and 

decision making. The type of analyses or techniques to use depends on the 

questions asked, data available, resources at hand, time, assumptions made, level 

of confidence and precision required, etc. Our emphasis here is on analytical 

techniques that can profitably be applied to nutritional and socio-economic data. 

Analysis of such data is needed, for nutritional surveillance, to lead to decisions. 

In essence, this comes down to 'Looking at two related aspects of deta: 

differences, and correlations or associations. We are interested in differences 

among populatior groups and overtime; in characteristics of these groups and in 

factors associated with their differences. Conceptually differences and 

correlations are similar. A difference in nutritional status between groups 

defined by landholding size implies also a correlation or association between 

nutritional status and landholding. But a similar difference across areas, 

although still implying an association between nutritional status and area, is 

commonly studied as a difference rather than as a correlation since area is a 

nominal variable and correlations ordinarily require data measured at least 

ordinally. T1 'e basic analyses described here have the objective of studying 

differences ar-A correlations whereas more advanced techniques deal with these 

at a more sophisticated level as well as with other questions such as modeling, 

data reduction, prediction, etc. 

Basic analytical techniques are fairly simple and tend to be rather 

regularly employed. Advanced analytical techniques on the other hand are less 

well-known in nutrition-related literature and are thus less frequently used. By 

briefly discussing them in this paper and illustrating some of their applications it 

is hoped that they will be employed more regularly in the future. By encouraging 

the more widespread application of the advanced techniques we in no way wish 

to detract attention from the regular use of the basic techniques, particularly 

when time and expertise are in short supply. Indeed, it is worth emphasizing that 

prior use of the basic methods is often essential before proceeding to the more 

advanced analyses. A brief guide to the methods discussed in this paper is given 

in Table 1. 
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2.3 Causality, Statistical Significance and "Importance" 
In making policy and evaluating programs it is essential to try to have as 

thorough an understanding as possible of the nature of interrelationships that link 
various factors or variables together. Data analysis serves this purpose by 
pursuing one or more of the following distinct, but related, objectives: it may 
try to establish the structure of causality within a given set of variables; it may 
seek to measure the strength of a relationship in alternative ways; and it may try 
to single out the more "I.nportant" variables for purposes of not only analysis but 

also of survey design. Conclusions on all these points can be derived from both 
basic and advanced techniques of analysis. Some elaboration is in order. 

The statistical techniques of empirical research are inherently incapable of 
establishing a causal connection between two or more variablep. They may 
suggest one, but the ultimate proof, if there exists one at all, could only come 
from some kind of theoretical construct. Short of that, experimental design 
techniques may provide the most convincing evidence of a possible structure of 
causality. Such causal structures are however often hypothesized and the object 
of empirical investigation then becomes to discover whether the available 
information corroborates the hypothesized causality or not. Indeed, in a strict 
sense, all that a statistical analysis demonstrates is whether the available 
evidence contradicts or rejects an a priori hypothesis with a given level of 
confidence. It is important to bear this fact in mind since all too often a strong 
correlation or the statistical significance of a relationship is presumed to offer 
evidence for the existence of a cause-and-effect relationship on the basis of 
which a particular program is advocated and justified. The reverse situation 
occurs just as often. Such inferences may be very misleading. 

Assuming that the structure of causality among some variables has been 
satisfactorily established, or that the hypothesis of its existence has been 
statistically verified, it is useful to try to measure the relative strengths of such 
mutual interelationships. Such measurements can be arrived at in a variety of 
ways. Correlation coefficients can be found and the variation in the "dependent" 
variable(s) "explained" or "accounted for" by the variation in the "independent" 
variable(s). These relationships, once tested and verified, can be employed for a 
variety of purposes including making predictions regarding changes in the 
dependent variable(s) assumed to result from changes in the independent 

variable(s). 



Name of 
Method 

Basic 

Categorical data 
analysis 

Correlation 
analysis 

Analysis of 
variance 

Advanced 

Multiple regression 
analysis 

Analysis of 
covariance 

Logit analysis 

TABLE 1 

BRIEF GUIDE TO SELECTED ANALYTICAL 

Dependent 	 Independent 
Variable Variable 
Classification Classification 

Nominal 	 Mostly nominal, 
but sometimes ordinal 

(The variables can be continuous or ordinal.) 

Continuous 	 All nominal 

Continuous 	 Classically all 
continuous, but, 
practically, any 
type(s) can be used 

Continuous 	 Mixture of at least one 
continuous and at least 
one categorical variable 

Categorical Any type(s), usually 
(often dichotomous) a mixture of continuous 

and categorical variables 

METHODS 

General Purpose Section 

5 

To describe the relationship between 
a nominal dependent variable and 
several nominal or ordinal independent 
variables, although applications to 
situations involving only dependent 
variables are possible 

5.2 

To measure the degree of association 
between pains of continuous or ordinal 
variables 

5.3 

To describe the relationship between 
a continuous dependent variable and one 
or more nominal independent variables 

5.4 

co 
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To describe the extent, direction, and 
and strength of the relationship between 
several independent variables and a 
continuous dependent variable 

6.1 

To describe the extent, direction and 
the relationship between a mixture of 
continuous and categorical independent 
variables and a continuous dependent 
variable 

6.2 

To describe the extent, direction, and 
strength of the relationship between 
one or more independent variable(s) and 
a categorical dependent variable 

6.3 



TABLE 1 (Cont'd)
 

BRIEF GUIDE TO SELECTED ANALYTICAL 


Name of 
Method 

Dependent 
Variable 
Classification 

Independent 
Variable 
Classification 

Discriminant Analysis Nominal Classically all continuous 
but practically can have 
a mixture of various types 
as long as some are con-
tinuous 

Principal Component 
Analysis and Factor 
Analysis 

(The variables used in these two techniques 
are classically continuous, but, practically, may be 
of any type. These variables are not clearly 
identifiable as being either dependent or independent, 
although the resulting factors may be used as 
dependent or independent variables in a later 
analysis.) 

Cluster Analysis (The variables may be of any kind.) 

Source: Based in part on Kleinbaum and Kupper 1978, Table 2.1 

METHODS
 

General Purpose Section 

To determine how one or more inde-
pendent variables can be used to 
discriminate among different categories 
of a nominal dependent variable 

6.4 

Variable construction or reduction using 
several variables to define one or more 
new composite variables called principal 
components or factors 

6.5 

To identify groups or "clusters" of 
entities having an interesting feature 
on the basis of observations on their 
characteristics 

6.6 
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Finally it is sometimes necessary to decide on the relative "importance" of 

variables. This is of extreme practic-l value. It is not uncommon for an 

investigator to be swamped with an overwhelming mass of statistical 

information. Indeed there are many examples, in the developing countries and 

elsewhere, of all kinds of expensively collected survey and non-survey data that 

are, because of their sheer volume, never analyzed. Such masses of data would 

first have to be reduced to manageable proportions in meaningful ways. The 

essential elements, or the important variables, should of course be retained. 

However these have to be identified first. Data reduction techniques can 

sometimes be helpful in deciding what is important and that is not. Such 

knowledge is invaluable in survey design if the available resources are to be 

employed optimally. 

It should be noted that tests of "significance" in statistics, while often 

helpful, may not always be able to decide on the "importance" of a variable. In 

other words statistical significance should not be confused with the practical 

significance of a relationship. An example may be useful. It might be found 

that a highly significant correiation existed (in the sense that there was a high 

degree of confidence that the relationship was not due to chance) between, say, 

prevalence of malnutrition in different villages and the distance of a village to 

its water supply. This, however, would be of little practical importance if the 

prevalence rate changed little across villages. In Figure 1 note that the 

relationship between the two variables in the top panel is almost perfectly linear 

resulting in a high correlation coefficient. On the other hand the observations in 

the bottom panel are far more scattered and the relevant correlation coefficient 

is much smaller. Nevertheless a sizable upward trend is clearly evident. The 

rate of prevalence does appear to move up with increasing distance to water 

supply even though the correlation coefficient might be fairly small. Statistical 

significance is a strong function of, among other things, the number of 

observations (sample size) whereas the importance of a relationship is not; it has 

to do with the practical value of the information to increase understanding and 

improve decision making. An important relationship need not be statistically 

significant; neither is a statistically significant relationship necessarily 

important. 
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3. PROCESSING OF DATA 1 

3.1 Hardware 

Most processing of data, and hence application of analytical techniques, is 

presently done using computers. This may not always be the best solution, 

particularly (and paradoxically) if speed is of crucial importance. In this case 

simple hand-tallying and calculation may be more reliable and controllable. 

on computer processing can inhibit understanding ofMoreover, too much reliance 

results. However, application of statistical techniques is almost always done 

at a minimum from a programmablewith some electronic assistance 

calculator. This section deals with some considerations when undertaking or 

planning analyses by computer. 

The first consideration is, obviously, what computer set-up to use. For 

major constraint at present isnutritional (or any social data of this type) the 

suitable programs (computer equipment is usually known as "hardware", programs 

use on largeas "software"). The availability of powerful package programs for 

computers, with improved access to these installations through time-sharing, has 

aremade a lot of difference to the potential for data analysis. There 

advantages, in terms of access, in considering smaller installations, but these 

lack suitable programs at present. It is urged that decisions on computer 

into account as a crucial determinant, asinstallations take program availability 

well as organizational requirements. InTable 2 we give a brief summary of the 

main choices available, with potential advantages and disadvantages of each. 

3.2 Processing 

The processing of data by means of a computer can be broken into four 

main steps: coding, data entry, editing and statistical analysis. While the use of 

statistical packages in the analysis may require special skills, it is generally the 

least time consuming of these main steps, often taking up less than a fifth of the 

The total time will vary of course with the amount and complexitytotal time. 

of the data and the analyses required. 

Coding. The data are usually entered in the form of a matrix where the 

rows refer to the observations or cases, e.g. households, and the columns to the 

variables, e.g. nutritional indicators or economic status variables. It is easiest to 

begin by preparing a coding manual which lists the descriptions of variables, 

1 A portion of this section was first drafted by Cay Loria. 
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their names, the columns in which each variable can be found, format, the values 

which each variable can assume and the code for missing values. An example of 

portions of a simple coding manual is given in Table 3. If the design is relatively 

simple, much time can be saved by setting up the questionnaires so that the data 

can be entered into the computer directly from them. 

It is also important to conceive the structure of the sort of data we are 

concerned with. This is eisiest with respect to sample survey data, but actually 

applies to any type, even if collected from routine sources. Essentially, we have 

a number of variables collected per sample unit (or element) - household, child, 

etc. For each individual unit this can be conceived as a string of numbers, e.g.: 

Identification Measurements/Variables 

Region No. 6 Household No. 46 Child No. 2 Household size 6 Child's 

Weight 12.3kg 

For many units, this would logically be arranged in the familiar form of a 

table or matrix: 

Identification Variables 

Region Household Child Household size Child's weight 

6 46 2 6 12.3... 

6 47 1 8 15.2... 

6 47 2 8 9.3... 

Note in passing that when this is computerized, the data are entered in one 

row, even if conceptually they remain as a series of rows. The section of the 

computer tape with these data, when printed out, might read: 

/06046206123... /06047108152... /06047208093...
 

Data entry. The method of data entry depends on the available hardware. 

Keypunching cards has traditionally been the main technique; however, this mode 

is quickly becoming outdated. Typing the data directly into a computer file on a 

typewriter-like terminal has the advantage of allowing the input data to be seen 

on a screen or printer, thereby making it easier to catch any obvious errors. 

Such interactive data entry can be accomplished by means of a data entry 

program (or editor). Each )perating system usually has an editor through which 

files can be created and changed. A program written specifically for entering 



TABLE 2 

Computers 

1. 

System 

Mainframe C;omputer 

Example 

IBM, etc. - main computer
installations. 

Characteristics 

Large Capacity, speed. Expensive.
Requires substantial organization. 
Time sharing usually available. 

1. 

2. 

3. 

4. 

Advantages 

Ability to handle large 
amounts of data. 
Can use powerful statistical 
programs, which are widely
available. 
Organization usually includes 
service for data entry from 
coded sheets. 
Service back-up usually good. 

1. 

2. 

3. 

Disadvantage 

User has little control over 
data handling. 
Delays experienced in access 
to facility.
Skills needed to use 
programs; more so to program
directly. 

4 -

2. Minicomputers WANG, 
etc. 

tIWLE'TTI-PACKARD, Cost range about $20,oI0f to 
$100,000. Crpabilities approaching 
those of mainframe computers. 
Unavailability of software a chronic 
constraint. 

1. 

2. 

3. 

4. 

Can be de-centralized, 
therefore easier access and 
control. 
Capacity approaching that of 
mainframe computers, can 
handle large amounts of data. 
Often compatible easily with 
mainframe computers. 
Service back-up reasonable 
from major companies. 

1. 

2. 

3. 

4. 

Virtually no suitable 
programs yet available for 
social data, therefore custom 
programming needed. 
Still require organization, 
especially for data entry;
established organization 
cannot always be used 
(except: where compatibility 
witn mainframe computer 
can be exploited). 
Expense still substantial, so 
that a certain volume of use 
needed to justify. 
Service back-up not always 
well-developed. 



3. Microcomputers APPLE, PET. II-P 80, etc. Cost range $5,000 to $20,000. 1. Cheap enough to be feasible 1. Virtually no suitable 

Mass produced. Fairly portable. 
Virtually no software available. 
Capacity less than minicomputers, 
but increasing with present rapid 
technological development, 

2. 

3. 

4. 

for small unit to own 
Control over installation and 
access. 
Suitable for small sets of 
data with simple analyses. 
Suitable for de-centralized 

2. 

3. 

programs available. 
Limited capacity so that 
analysis slow; this also may 
require more compiex 
programming. 
Not easily compatible with 

use. larger systems. 
4. Since multiple terminals riot 

used; data entry, which can 
only be direct, is slow and 
ties up machine for long 
periods. (

5. Still expc.inental to some 
extent hence questionable 
reliability; also quickly 
obsolete. 

6. Doubtful service back-up. 

4. Programmable Calculator ii-P, Texas Instruments, Casio, Desk-top, portable, cheap. No Flexible total control by user. Unsuitable for handling any volume 
etc., etc. Capacity for data storage (or very 

li!nited). Many programs available. 
of data since data needs to be reentered each time. Some recent 

models allow very limited storage. 



TABLE 3
 

AN EXAMPLE OF PORTIONS OF A SIMPLE CODING MANUAL
 

Description of 
Variable 

CARD 1 

Identification 
FAOI 
Area number 
Cluster number 
Household number 

Area Characteristics 
Ecozone 
Distance to road category 

Distance to road-absolute 

Income characteristics 
Main occupation 

Farmer data 
Landholding (area cultivated)-

category 

Variable 
Name 

AREA 
CLUSTER 
HOUSE 

ECOZONE 
ROADCAT 

ROADABS 

MAINOCCI 

CULT 

Columns 

1-4 
5-6 
7-8 
9-11 

12 
13 

14-16 

27 

31 

Fcrmat 

-
2.0 
2.0 
3.0 

1.0 
1.0 

3.0 

1.0 

1.0 

Value Labels 

FAO01 (All codes) 
1-19 
1-40 
5-q96 

1: Plain; 2: Mountain 
1: 0 - 50 mins. 
2: 50 - 100 mins. 
3: 100 - 200 mins. 
4: > 200 mins. 

10-240 mins. 

1: Farmer 
2: Other (does not exist) 
3: Livestock (does not exist) 
4: Cash employment 
5: Self-employed 
6: Other 

1: < .l ha. 
2: .1- .2 ha. 
3: .2 - 1.0 ha. 
4: 1.0 - 5.0 ha. 
5: > 5.0 ha. 



TABLE 3 

AN EXAMPLE OF PORTIONS OF A SIMPLE CODING MANUAL 

Description of Variable 
Variable Name Columns Format Value Labels
 

CARD 2
 

Identification 
Same as Card 1, columns 1-11
 

Family data
 
Kid 2

Birthdate - day DAY 2 
 12-13 2.0 Should be born- month MONTH 2 
 14-15 
 2.0 before 03-03-80- year YEAR 2 
 15-16 
 2.0
 

Weight 
 WGT2 18-20 
 3.1 2.0 - 25.0 kg. 

Edema EDEMA 2 
 27 1.0 0: No; 1: Yes 
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data can prompt the user for each specific data item, ensuring it is entered in 

the correct format and position. These programs can also be made to check 

whether the value entered is within the correct range. Data entry programs are 

the most efficient especially when the data are complex; however, they are not 

widely available and must often be custom written. SPSS (Statistical Package 

for the Social Sciences) Conversational Statistical System (SCSS), the interactive 

vers on of SPSS, does have a prompting data entry system which can 

simu.taneously edit the data. 

Editing. Data editing or cleaning, is a combination of techniques which 

check for out-of-range values, inconsistencies, and structural errors (e.g. missing 

records). Inconsistencies are logical impossibilities for a specific variable which 

can be checked on the basis of another variable. For example, if the value for 

the variable sex is male, the number of miscarriages cannot be greater than 0. 

Once these kinds of errors are located, they can be corrected with an editor. 

The importance of cleaning is often overlooked; if insufficient time is devoted to 

cleaning, a disproportionate amount of time will be spent on determining the 

cause of the errors in the output that originate from errors in the data. 

A few editing packages exist, such as UNEDIT, solely for purposes of 

cleaning data. UNEDIT is easy to use and will run on most small computers 

(Francis, 1979). Most general-purpose statistical packages can also be used to 

clean data. The ranges of variables can be checked by printing the frequencies 

and thus the values for each variable (e.g. PROC FREQ in SAS (Statistical 

Analysis System), general mode of the FREQUENCIES subprogram in SPSS and 

the HISTOGRAM command in MINITAB). With all of these packages, the values 

of the iden:t.?ication variable(s) for cases with errors can then be printed out. 

InconsisLencies can be found by using logical operators (=,> , < , 0) and can be 

printed out in a number of ways, depending upon the package. For instance, in 

SAS one command to find the errors for the example used above would be: IF 

SEX = MALE AND MISCAR>0 THEN LIST; where MISCAR is the variable name 

for the number of miscarriages. In this case, the input line for any records 

containing these specific conditions would be printed. Some packages (e.g. 

PSTAT and SAS) can also check for missing records. 

Statistical Packages. There are many statistical packages available to 

choose from (for a detailed review see Francis, 1979). These packages run 

mostly on mainframe computers. The three main kinds of packages are: general
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purpose ones; those with restricted applications (i.e. they perform only a few 

statistical techniques); and those which tabulate data and calculate a limited 

number of descriptive statistics. Choosing between them is largely dependent 

upon specific needs. The capabilities of each package, i.e. the level and quantity 

of statistical anelysis and the size of data set which each is designed to handle, 

are of primary importance. Other major considerations are the ease of learning 

and using them, their reliability and ease of maintenance, and their portability, 

i.e. space and storage requirements (Francis, 1979). 

Some examples of large-scale, general-purpose packages are PSTAT, SAS 

and SPSS. All of these perform a wide array of statistical techniques including 

multivariate and nonparametric techniques. These packages can easily 

manipulate files, especially those which are hierarchically structured (e.g. 

organized by households within villages within districts within states). MINITAB 

is an example of a smaller-scale version of general-purpose packages. It is 

designed for use with small to medium-sized data sets and although its 

limitations depend upon which version is being used, the maximum number of 

variables is usually one hundred. Also, with the exception of multiple regression 

and analysis of covariance, MINITAB will not perform multivariate techniques. 

MINITAB is easier to learn than some of the larger packages and can be installed 

on many small systems. It is presently suitable for minicomputers if these are 

programmable in FORTRAN or a FORTRAN complier is available. Tabulation 

packages, such as CENTS-AID and COCENTS, are generally limited to producing 

crosstabulation tables and simple descriptive statistics such as the mean or 

standard deviation. However, both packages have the advantages of being 

designed for use with census and household data, are very er'sy to use, and run on 

small computers. 

4. PRESENTATION OF DATA 

Just like beauty, the contents of a data set must be 2leverly and clearly 

revealed to be appreciated. The revelation comes with the presentation of data, 

i.e. with how the informational content of data is conveyed clearly and 

effectively. Powerful presentation should also enable the reader to understand 

the data quickly and as easily as possible. This also implies that to the extent 

possible a particular presentation should be self-contained so that frequent 

references to the accompanying text would not be needed. 
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How the data are presented is not a particularly demanding task but a 

small dose of artistic talent can be quite valuable. Methods of presentation are 

varied and are largely governed by four characteristics of the data: the number 

of variables to be included together, their levels of measurement, the number of 

observations, and finally the aspect(s) of data that need to be highligl'ted. 

A typical survey, for example, consists of a relatively large number of 

characteristics observed on a far larger number of elements, say households. 

Because of the number of variables involved and the variety of permissible 

household classifications it is possible to create an extremely large number of 

tables, correlation coefficients, etc. To actually do this is of course totally 

inappropriate even if possible. One can easily get lost in the resulting massive 

output and sensible interpretation would become all but impossible. It is 

necessary to theorize or to hypothesize on the basis of one's expectations, 

preferably even before the survey itself is conducted and data collected. While 

the prior knowledge of the relationships is of course very limited in most 

circumstances, it should always be possible to concentrate only on the more 

important relationships. Fishing expeditions are not recommended but selective 

choice of a relatively few relationships is both necessary and usually sufficient, 

particularly when they are being reported. 

Table 4 shows three ways of reporting tho number of households in four 

land categories and is based on our sample survey data. The first panel of the 

table records the frequency distribution in a one-way "table". Graphical 

demonstration in panels (B) and (C), in the forms of a line diagram and a bar 

chart, are designed to make visual impact and tend to stress the relative 

frequencies rather than their absolute values as in the first panel. These are 

some of the simplest kinds of data presentation that are quite common for single 

categorical or ordinal variables. Indeed, as in this example, the variable can be 

of interval type as long as class intervals are introduced to transform it into a 

categorical or ordinal variable. This appears to be the practical approach that is 

widely used in nutrition related literature as well as in many other fields. The 

number of classes may be as large as 20 or 30 or larger even though the 

presentation may increasingly become cluttered and awkward. The way out of 

this Problem is to redefine the class intervals (or categories) to make them 

larger and fewer. 
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ALTERNATIVE METHODS OF REPRESENTING THE DISTRIBUTION OF
 
HOUSEHOLDS BY LANDHOLDING CATEGORY
 

(A) Number and Proportion of Households by Landholding Category. 

Landholding Catego y 
1 2 3 4 5 Total 

No. of Households 25 27 145 62 2 261 
Proportion oft________________ 

Households .096 .103 .556 .237 .008 1.000 

a] Carreau = 1.29 hectares 	 Landholding Category Size of Holding 
1 (0.1 Carreau (Cx)a 
2 	 .1 -. 2 Cx 
3 	 .2 - 1.0 Cx 
4 1.0 - 5.0 Cx 
5 > 5.0 Cx 

(B) Line Diagram for the number of households in each landholding category. 

140 

60 

,4 50
 
2. 

40 

30 

20 _ 
10	 T0 

1 2 3 4 5 
Landholding Category 

(C) Bar Chart for the number of households in each landholding category. 

14 

60
 

50
 

• 40 

S30
 

. 20 

10 

0 - _ 

1 2 3 4 5 
Landholding Category 
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A variation of the bar chart technique arises whep a researcher is 
interested in the relative frequency of households in each class interval defined 
for an initially continuous variable. The bars becan placed adjacent to one 
another and the result is known as a histogram. The class intervals are 
represented by the widths of the individual bars and need not be equal. One 
advantage of presenting data in the form of a histogram is that it provides some 
understanding of the shape of the distribution of the variable thereby enabling 
the researcher to decide whether or not the distributional requirements of an 
analytical technique he may wish to employ are adequately satisfied. (For a 
formal way of testing this requirement see Section 5.2). There are other insights 
that may be gained in some situations. The histogram of age distribution in 
Table 5, for example, suggests that the "local peaks" at 6, 12, 18 and 24 months 
of age may be due to rounding of age by respondents. If the implications of this 
rounding are deemed to be serious it may be preferable to define class intervals 
of 2 or 3 months to remove the possible errors due to rounding. Another use of a 
histogram is ;n cleaning data (see Section 3.2) where peculiarities in the 
distribution of variables (such as the existence of outliers or observations which 
are very much out of the ordinary, genuinely or otherwise) may be traced to 
various errors in the earlier stages of data processing. 

Data presentation of course need not be limited to a single variable at a 
time. Cross-tabulations, or contingency tables in the parlance of statisticians, 
are well-known and widely used. A two-way cross-tabulation, for instance, 
represents the joint frequency distribution of entities or cases classified 
according to two of their attributi-s. Each cell of such a table gives the 
frequency of observations having a particular combination of attributes, n-way 
cross-tabulations are possible even if they soon get out of hand with n above 3 or 
4. Many computer packages are available (see Section 3.2) that provide such 
outputs cheaply, accurately, rapidly and neatly. An illustration of a 2-way table 
produced by SAS is given in Table 6 and is based sample survey.on our It gives 
the frequency of well-nourished (0) and malnourished (1) children in the sample 
by area along with three derived statistics. The four numbers in each cell are 
respectively: Lhe number (frequency) of the children, its percentage in total 
number of children, percentage of total children rowin each and percentage of 
total children in each column. The numbers in the margins give row and column 
totals as well as percentages relative to the total number of children. 
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TABLE 5
 

HISYCOPAM AGE Dl31Th31JTICN--CAE--AKISTA4 

MIDPOINT HtI r,' COUNT F0R 9.AGZ (E.AO-4x- 1) 

3.0000 . I I
9.0000 .2 2 -XX
 

165 - 1.0 13 -. XXXXXXXXXXXX
 
L1.000 1.5s 13 -XXXXXXXXXXX~XXXXXX
 
12.000 2.9 48P *xXXXXXXXXXXXXxXXXXXXXXXXXXxXXXXXXXXXXX
 
If.00 2.0 --- -Xxxxxxxxxxxxxxxxxxxxxxx-X
 
14.000 1.1 14 -xxxxxxxxxxxxx 
15. 000 1.6 20 -XXXXXXXXXXXXXXXXXX 
100 . X xxx xxxxx xxxxxx xx 
17.000 1.2 1.5+XXXXXXXXXXXXXXX 
13.000 2.- 4c -~XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXx 
19. . :5 21 -~XXX~xxXxxXXXXXXX xxxxxxxxxx
 
.000o 1.5 19 -Xxxxxx::xxxxxxxxxxxx
 

11.000 2. 3 25.XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
:s. J. 4u 

23.000 2.9 26 -XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
24.000 3.7 46 -XXXXXXXXXXXXXXXXXXXXXXXXXXXXcxxxxxxxxxxxxxxxxxX 

1. 17 -Axxxxxxxxxxxxxxxx 
26.000 1.2 16 -XXXXXXXXXXXXXXXX 
27.000 1.3 16 -XXXXXXXXXXXXXXXX
~.9.000 1.9 24.-*XXXXXXXXXXXXXXXXXXXXXXXX 
Z..9.00 2.3 29-XXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
20.000 2.3 25-Xxxxxxxxxxxxxxxxxx'XxxxxxxXXXXXXXXX 

19 24 XXXXXXXXXXXXX
 
21-000 2.2 29 -XXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
1-.000 -2.7 L-6*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXY':,XXXXXXXXXXX

347O 7F- xx oxxx XXXXXXXXXXXXXXXXXXXXXXX
 
25.000 3.3 41 -xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

26.000 3.1 39 -xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
1-1. .4 2-0 -XXXXXX~XXXXXXXXXXXX 

29.000 I.z 19 -XXXXXXXXXXXXXXXXXXX 
29.000 1.5 19 -XXXXXXXXXXXXXXXXXXX 
6.Y00 .7 22. -xx Xxxxxxx7~xxxxxxx 
41.000 2.3 25 *xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
42. m0 1.7 21 -XXXXXXXXXXXXXXXXXXXXX_________ 
43. 	QO 2.2 29 -XXXXXXXXXXXXXXXXXXXXXXXXXXX~X 
44.000 1.2 1.- -XXXXXXXXXXXXXXX 
41-.000 	 2.5 21 -XXXXXXXXXXXXXXXXXXXXXXXXXXAXXXX
 

.L;-.~ ~ zTo ..xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 
47.000 3.0 37 -XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
48.000 	 1.9 =3 -KXXXXXXXXXXXXXXXXXXXXXX
 

.19000 1.-% 17 -Xxxx Xxxxxxxxxxxxx
 
50.000 1.7 21 *Xxxxxxxxxxxxxxxxxxxxx 
51.000 	 .3 10 -XXXXXXXXXX
 

.000o .9 It -Axxxxxxxxxx
 
153.000 1.4 17 -~xxxxxxxxxxxxxxxx 
IZ4.000 1.1 14 -XXxXXXXXXXXXXX ..Z.000 1.9 23-xxxxxxxxxxx 
Z.6.000 1.7 21 -XXXXXXXXXXXXXXXXXXXXX 
7.000 1.0 12 -XXXXXXXXXXXX 
'd -io .7 9 -xxxxxxxxx 
59.000 .2 2 -XX 
60.000 .4 5 *XXXXX 

(Drake et a]. 1980, P. 101) 
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TABLE 6 

DISTRIBUTION OF CHILDREN BY NUTRITIONAL STATUS AND AREA 

A REAS 

1 2 3 4 5 6 TOTAL 

Well nourished 

36 
8.41 

17.22 
45.57 

34 
7.94 

16.27 
42.50 

34 
7.94 

16.27 
72.34 

51 
11.92 
24.40 
48.11 

24 
5.61 

11.48 
44M4 

30 
7.01 

14.35 
48.39 

209 
48.83 

Malnourished 

43 
10.05 
19.63 
54.43 

46 
10.75 
21.00 
57.50 

13 
3.04 
5.94 

27.66 

55 
12.85 
25.11 
51.89 

30 
7.01 

13.70 
55°56 

32 
7.48 

14.61 
51.61 

219 
51.17 

TOTAL 79 
18.46 

80 
18.69 

47 
10.98 

106 
24°77 

54 
12.62 

62 
14.49 

428 
100.00 

Numbersin each cell, top to bottom, refer to: 

number of children 
percentage in total number of children 
percentage in all well nourished children 
percentage of all malnourished children 
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The clarity of presentation is of critical importance. A presentation that 
is difficult to comprehend creates alienation on the part of the reader. To 
minimize this possibility it is advisable that it be reasonably self-contained. To 
th.- extent possible a presentation should tell its storyown without requiring 
fiequent references to the accompanying text. It should also be precise enough 
to remove any possibility of misinterpretation. 

Finally a word of caution is in order here: whereas our purpose in this 
section has been to stress the importance of the way in which data are 
presented, we should hasten to add that this aspect can easily be 
overemphasized. The truth of the matter is that how data are presented is never 
as important as the data being presented and their reliability. Elaborate 
preseration of unimportant and/or unreliable data may sometimes suggest the 
contrary. This possibility should always be guarded against. 

5. BASIC ANALYTICAL TECHNIQUES 
The earlier sections of this paper have dealt with some preliminary issues 

in data analysis, preparation of data and some aspects of their presentation. 
This section and the next take up data analysis proper. The term data analysis 
can refer to nothing more than mere inspection of raw data resulting in a few 
(often tentative) conclusions, on up to the application of the most sophisticated 
analytical techniques requiring great investments in time, equipment and 
expertise. The common thread that runs through the various techniques of this 
section and the next is an attempt to draw out the relationships that may exist 
between two or among a set of variables. Some of these techniques are
 
relatively simple, widely 
 known and quite powerful. Computing facilities for 
them are widely available and they can be profitably applied in varied 
circumstances. They are furthermore not very time consuming. We are 
referring to these techniques as basic to stress their importance and encourage 
their more widespread application. This section discusses basic analytical tech
niques. More advanced techniques will be taken up later. In Section 5.1 some 
elements of hypothesis testing will be briefly reviewed. Analysis of categorized 
data will then follow and the last three sections will deal with correlation 
analysis and analysis of variance. In most cases these analyses involve only two 
variables simultaneously. 
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5.1 Hypothesis Testing 

The subject of statistics, according to Bhattacharyya and Johnson, "is 

comprised of the art and science of the collection, interpretation and analysis of 

data and the ability to draw logical generalities that relate to the phenomenon 

under investigation," (1977, p. 4). Statistical techniques can be of two kinds: 

descriptive and inferential. The primary purpose of descriptive statistics is to 

summarize the informational content of data in a way that attention can be 

focused on the essential features rather than on unimportant details. Summary 

deviation,measures of data such as the mean, median, mode, standard 

correlation coefficient, etc. are used in descriptive statistics to reduce 

unmanageable raw data to manageable dimensions. Descriptive techniques are 

not limited to such simple procedures and can include elaborate multivariate 

methods of data reduction and data classification. Some of these techniques will 

be discussed in the section on advanced analytical techniques. 

The more important function of statistics however is to use methods of 

statistical inference to arrive at some generalized conclusions inferred about a 

population from the knowledge of data gathered by a sample. Inferences about 

one or more populations involve estimation and hypothesis testing. The 

estimation process is concerned with setting up the appropriate rules, or 

formulae, with the help of which estimates of population parameters are made in 

such a way that they would possess certain desirable properties. The term 

"parameter" refers to the actual value of a characteristic of the population 

which is to be estimated on the basis of sample data. The estimates can be 

either point estimates (i.e. a single value, e.g. a mean prevalence of 25%) or 

interval estimates (e.g. a prevalence of 20-30%) with an associated level of 

confidence (e.g. 95%). 

Hypothesis testing is the more dynamic form of statistical inference and is 

concerned with procedures for deciding whether or not one can reject an 

assertion about a population on the basis of sample data. An assertion about a 

population is termed a statistical hypothesis. The assertion may be true or false 

and hence there are two complementary hypotheses: 

110: the assertion is false; 

HI: the assertion is true. 

The first hypothesis is usually called the null hypothesis and the second the 

alternative hypothesis. It is always assumed that the null hypothesis is true, i.e. 
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the assertion about the population is false, unless there is adequate evidence to 

the contrary. This is analogous to the null hypothesis that an accused person is 

"not guilty" (the assertion being that he is) until and unless substantial evidence 

to the contrary can be found (Bhattacharyya and Johnson 1977, p. 168). It is 

considered a more serious error to incorrectly reject the null hypothesis (e.g. to 

conclude that there is a difference in, say, prevalence rates when in reality there 

is none or that someone is guilty when in fact he is not) than to fail to reject it 

when it is in fact false (not to conclude that there is a difference when in fact 

there is or not to find someone guilty when in fact he is). The error made when a 

true null hypothesis is rejected is called a Type I error. Type II error refers to 

the failure tc reject a false null. hyothesis. In hypothesis testing the probability 

of committing a Type I error is termed the level of significance and is set by the 

researcher. Common levels are 5% and 1% even though it should be noted that 

there is nothing sacrosanct about these levels. Even much higher levels of 

significance (lower levels of confidence, where level of confidence = 1 - level of 

significance) may at times prove to be useful and adequate. The steps involved 

in hypothesis testing can be summarized as follows (Kleinbaum and Kupper 1978, 

p. 26): 

1. 	 Check the assumptions concerning the properties of the underlying 

variable(s) being measured, which are needed to justify the use of the 

testing procedure being considered. 

2. 	 State the null hypothesis H0 and the alternative hypothesis H1 . 

3. 	 Specify the significance level, commonly denoted byo(. 

4. 	 Specify the test statistic to be used and its distribution under H0 . 

5. 	 Form the decision rule for rejecting and not rejecting H0 (i.e., 

specify the rejection and acceptance regions for the test). 

6. 	 Compute the value of the test statistic from the observed data. 

7. 	 Draw your conclusions concerning rejection or non-rejection of H0 . 

Many examples of simple applications of hypothesis testing are available in 

all standard textbooks of statistics. These usually involve the comparison of 

means or proportions in two samples obtained in a variety of different ways (see, 

e.g. Lapin 1978). We will not dwell on such applications partly for reasons of 

space but also because they are generally well known. Instead we take up those 



28
 

techniques that are likely to be of particular relevance to the type of data 

available from nutritional surveys even though these applications do not exhaust 

the areas of their usefulness. 

5.2 Categorical Data Analysis 

Nutritional surveillance frequently employs categorized data where the 

observations fall into a fairly small number of categories or groups. In the 

sample we use for our data base, for instance, most of the variables pertaining to 

the characteristics of the clusters (villages) and households have from two to 

five categories. Sometimes this is inevitable in that the only possible level of 

measurement for a variable may be nominal (e.g. area). At other times 

measurements could have been made as continuous variables, (e.g. distance to 

water supply), but are not for various reasons (such as ease of collection). It may 

also be the case that a variable is measured at more than one level. Distance to 

road in this sample is given both in four categories and by minutes. As noted 

earlier, a higher level of measurement can always be reduced to a lower level 

and since nominal measurement is the lowest possible, every variable can be so 

measured. This fact increases the potential usefulness of the types of analysis 

considered in this section. These types of analysis are not however the only ones 
the can be used with categorical data. References to some others will be given 

and indeed a few of the techniques to be discussed later in this paper allow for, 

sometimes in fact require, categorized data along with other data measured at 

higher levels. In this section however our interest lies in simple analytical 

techniques that are suitable for application to nominally measured variables or 

variables whose level of measurement is reduced to make them so. A more 
sophisticated method of dealing with the same type of data is to use log-linear 

models which will not be discussed here (see, e.g. Anderson et al. 1980 and 

Knoke and Burke 1980). We assume that our data consist of frequency counts for 

the categories defined by reference to one or more characteristics of entities 

under observation. The number of categories must be at least two. 

The most widely used method of analysis of categorical data relies on 

Pearson's chi-square statistic that has the following general form: 

2- _ __--_ _ _ 

2 

j':6 
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where Oj is the actual count (frequency) of observations in group or cell j, Ej 

refers to its expected count and k is the total number of categories or cells. 

Three of the purposes for which this statistic can be used are the following: 

(a) 	 Testing for "goodness-of-fit" is the first area of the application of 

the chi-square test. Its purpose is to determine whether or not the 

frequency distribution of the sampled population follows a particular, 

hypothesized shape. Many statistical techniques for example require 

variables to have a normal distribution and the assumption of 

normality may need to be tested beforehand. This use of the test is 

however relatively rare. 

(b) 	 Testing for the statistical independence of two variables is the 

second reason for the use of this test and is far more common. The 

data perttining to this application of the test are usually presented in 

the form of a cross-tabulation recording the actual frequencies in 

each cell. The null hypothesis of statistical independence allows the 

investigator to determine the expected frequency of each cell so that 

X2the value of the (chi-square) can be oetermined and the test 

performed. 

(c) 	 At times it may be desired to test whether the rates of prevalence of 

a condition, e.g. infant mortality, are the same in different groups of 

people. When only two groups are involved the elementary 

procedures of testing for the equality of two proportions can be 

applied (see, e.g. Lapin 1978, pp. 490-3). With more than two groups 

the appropriate test statistic is the Pearson's X2 . This use of the test 

is also very common. 

In each of these cases the general procedure is to assume that the null 

hypothesis is true and to find the expected frequencies in all the cells. The null 

hypotheses in the three cases above are respectively: that a particular 

distribution, such as normal, uniform, etc., applies and the sample is drawn from 

a population distributed thus; that the two variables are statistically 

independent; and that the rates of prevalence, or proportions, are the same for 

all groups. The actual frequencies are of course given by the sample. With these 

X2pieces of information now given, a value can be found using the above 

formula. An associated number of degrees of freedom is also determined using 
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the appropriate rules (to be mentioned below). Given the number of degrees of 

freedom and the specified level of significance the critical value of X2 can be 

found from the table of X2 distribution. If the calculated X2 exceeds this value 

the null hypothesis is rejected. The intuitive idea is that if actual frequencies 

deviate "too much" from the expected frequencies, i.e. if X2 is "too large", the 

sample would be unlikely to come from a population for which the null hypothesis 

would be true. For an explanation of the rationale behind the test see any 

modern statistical text, e.g. Winkler and Hays (1971) or Bhattacharyya and 

Johnson (1977). We now proceed to three examples based on our data set to 

illustrate the three situations described above. 

Example 1: Testing for Goodness-of-Fit 

In hypothesis testing involving anthropometric indicators such as WA, HA 
and WH it is often assumed that the distribution of these indicators in a 
population is normal. This assumption is of course never satisfied precisely but 
slight deviations usually do not matter very much since many tests are quite 
robust and remain valid. Large deviations, of course, do sometimes create 
difficulties and to find out the validity of the assumption it would be necessary 
to test it once in a while. 

The assumption that anthropometric indicators such as WA, HA and WH are 
distributed normally is a convenient one since it allows the use of many 
statistical hypothesis testing procedures for these indicators. But how good is 
this assumDtion? A visual inspection of the histograms of these indicators based 
on our data set appears to support it (Tables 7-9). These histograms are drawn 
with class intervals equal to one-fourlh of the standard deviation of each 
indicator. This ratio is chosen somewhat arbitrarily but the fact that the class 
intervals are defined in terms of standard deviations is intended to facilitate 
subsequent testing of the hypothesis of normality. 

The actual frequency, or the number of children, in each class interval is 
given in Tables 7-9. Under the null hypothesis of normality, the expected 
frequen2ies can also he easily calculated. This is done by first finding the 
probability, or the proportion, of observations that are expected to be in each 
class interval. These probabilities are calculated from a table of areas under the 
standard normal curve. Since distances from the mean in these tables are given 
in standard deviation units the definition of class intervals above makes it a 
simple matter to find the relevant probabilities. These probabilities can then be 
multiplied by 428, :r the total number of children, to find the expected 
frequency for each class interval. If the null hypothesis of normality were 
correct it would not be very likely that actual frequencies deviate "substantially" 
from the expected frequencies. In terms of the X2 test statistic a "low" value 
indicates that the null hypothesis (of normality) cannot be rejected and, on the 
contrary, a "high" vlaue is evidence that it should probably be rejected. The 
values of X2 statistic for WA, HA and WH, as calculated from equation 5.2.1, are 
20.0, 21.2, and 24.5 respectively. Note that the intervals at both ends of the 
distribution are combined to prevent any individual expected frequency from 
falling below 5 (see below). 

Are these values of X2 statistic "high" or "low"? The answer comes from a 
X2comparison of each with a "critical" value of the for a given level of 

significance and an appropriate number of degrees of freedom. Let us set the 
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HISTOGRAM OF WEIGHT FOR AGE AND TESTING FOR THE NORMALITY 
OF TIE DISTRIBUTION 
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TABLE 8
 

HISTOGRAM OF HEIGHT FOR AGE AND TESTING FOR THE NORMALITY
 
OF THE DISTRIBUTION
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TABLE 9
 

HISTOGRAM OF WEIGHT FOR HEIGHT AND TESTING FOR
 
THE NORMALITY OF THE DISTRIBUTION
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level of significance at 5 percent. Since the population values of the mean and 
standard deviation of these indicators have had to be calculated from sample 
data, the appropriate number of degrees of freedom is the number of class 
intervals for which expected frequencies are calculated (18 in this case) less 3 
(for the underlying argument in this case, see Lapin 1978). The critical values of 
X2 are read from the table of X2 distribution which can be found at the end of 
almost every statistical textbook. With the chosen level of significance of 5 
percent and with 15 degrees of freedom this critical value is 25.0. This value 
exceeds the calculated values of X2 statistics for all three indicators. It follows 
then that the null hypothesis of normality of the distribution of these indicators 
cannot be rejected. This conclusion can be restated in this way: only in about 
five out of 100 cases where the population values of the indicator are in fact 
normally distributed are we going to have a X2 value above 25.0; since this is a 
rare event we conclude that we can, with a high level of confidence, refuse to 
reject the assumption of normality. We say "refuse to reject" rather than 
"accept" to emphasize the purpose of a statistical test of significance which is to 
evaluate the falsity of a statement rather than to try to establish its truth. 

The results above are reassuring since they imply that the common 
assumption of normality is a valid one. Some cautionary remarks are however in 

X2order. The calculated values of depend partly on the choice of class 
intervals. It is quite possible to obtain seemingly contradictory results by 
choosing different class intervals in a given situation. In these marginal cases it 
is probably safe to assume that the hypothesis of normality holds. Slight 
deviations are usually of little consequence since many statistical tests that are 
based on the assumption of normality are "robust" and still remain valid. Even if 
the choice of class interval happened to be irrelevant and the null hypothesis wa: 
still rejected, but only barely, it may not be totally inappropriate to still 

X2 
In the case of WH above the calculated value of

maintain the assumption. 
was only just below the critical value of X2 leading to the non-rejection of the 

If it had been only just above, it would have led to its rejection.null hypothesis. 
In practical terms however there is almost no difference between these two 
cases. The main point to remember is that statistical tests should not be applied 
and interpreted mechanically. Some exercise of judgement regarding their 
practical importance is to be recommended. Statistical tests of significance 
should be carried out and their results should be taken seriously, but not always 
too seriously. 

Another point related to the definition of class intervals is that they need 
not be equal. Some statisticians, for instance, prefer to define the class 
intervals such that the expected frequency within each class would be equal. In 
this case it is often recommended that twenty unequal intervals be defined. The 
expected frequency for each interval in our case would then be 0.05 x 428 = 21.4. 
The actual frequencies for these unequal intervals can easily be determined by 
first identifying the limits of class intervals in terms of standard deviation units. 
For an assumed normal distribution, and with twenty equal areas (probabilities or 
expected frequencies) the interval limits are - 1.645, - 1.282, - 1.036, - 0.842, 
- 0.675, - 0.524, - 0.385, - 0.253, - 0.126, 0.000, + 0.126, + 0.253, + 0.385, + 0.524, 
+ 0.675, + 0.842, + 1.036, + 1.282, + 1.645. The actual observations in each 

indicator are then to be standardized and the number of observations falling 
within each class interval counted. The usual procedure can then be followed to 
carry out the test. 
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Example 2: Testing for Independence 

The previous example concerned a situation where the hypothesized 
distribution of a single variable was being statistically tested. Suppose now 
however that observations are grouped according to two variables. Such outputs 
are ordinarily presented in 2-way tebles (see Section 4) and a primary question of 
interest with regard to such tables is whether the two variables are independent. 
The general approach is to set up a null hypothesis of independence between the 
two variables, use it to derive the expected frequencies of each cell and use the 
X2 test of independence to determine ',,hether the actual frequencies are 
sufficiently different from the expected frequencies to lead to the conclusion 
that, with a given level of confidence, the null hypothesis should be rejected. 

X2To give an example of this application of the test, consider Table 10 
which is based on our sample survey data. The question is whether sample data 
support the null hypothesis of no association between children being 
malnourished or not on the one hand and the area cultivated by their households 
on the other. If the null hypothesis is true, the expected frequency of each cell 
would be equal to the product of the marginal totals (row and column totals) 
pertaining to that cell divided by total frequency (see Lapin 1978). For the first 
cell, for instance, the expected frequency would be (208 x 38)/428 = 18.5. With 
the knowledge of expected and actual frequencies for all cells, the X2 statistic 
can be computed from equation 5 .1 which in our example turns out to be 12.9 
(this value can also be read from computer printout; the output of option ALL in 
SAS (1979) is reproduced at the bottom of Table 10 which reports the X2 value as 
well as the values of other test statistics. Some of these are going to be 
discussed later in Section 5.3. The associated number of degrees of freedom in a 
two-way table is the product (r-1)(c-l) where r and c refer to the number of rows 
and columns of the table. Here we have (2-1)(4-1) = 3 degrees of freedom. With 
95 percent level of confidence (level of significance of 5 percent) the critical 
value of X2 is 7.8. Since the calculated value of 12.9 exceeds 7.8 it is possible to 
reject the null hypothesis of no association. It appears that there exists some 
association between children being malnourished and the size of holding of their 
families. The p-value for X2 = 12.9 with 3 degrees of freedom is 0.005 implying 
that if a sample of 428 children was randomly drawn from a population for which 
the null hypothesis of no association held, there would be 0.5 percent chance that 
a sample would be chosen for which the X2 value would be at least as high as 
12.9. Since this is a very small probability, it is concluded that, with 95 percent 
level of confidence, the hypothesis of no association can be rejected. For 99 
percent level of confidence the critical value of X2 is 11.3 which again leads to 
the same conclusion, if only just so. This conclusion can also be immediately 
arrived at by noting that the p-value of 0.005 is less than the level of 
significance 0.01 corresponding to a level of confidence of 99 percent. 

Example 3: Testing for Equality of Proportions 

It is often desired to compare the rates of prevalence, or proportions, in 
two cr more groups for equality. For instance one may be interested in the 
comparison of the proportions of children sick in regions 1 and 2. Suppose that 
out of a total of 428 children, 164 come from the first region and 264 from the 
second. There are 68 children in the first region and 165 in the second who were 
sick i.e. 41.5 and 62.5 percent respectively. Are these prevalence rates 
significantly different from one another? 

One statistical approach to answer this question is to apply a X2 test. This 
example applies the X2 test to two regions but its extention to more than two 
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TABLE 9.10
 

RESULTS BY LAND HOLDING AREA
 

TABLE OF MALNOUR BY CULT
 

MALNOUR CULT AREA CULTIVATED CLASS 

F$REQUENCY I 
PERCENT I
 
ROW PCT I
 
COL PCT I0 11 12 13.".TOTAL
 

--------- -4.-- ----------------------------------4--------
0 17 I 20 I 102 I 691 208 

I 3.97 I 4.67 I 23.83 I 16.12 1 48.60 
I 8.17 9.62 4 33.17,9.04 
I 4 .74 I 51.28 I 42.32 I 62.73 i 

4-----------
1 n 1 1 1 1?1 19 139 41 220 

.1. 4.91. 4.44_IL .32.48._1_ 9.58 _1. 0 ._ 

I 9.55 I 8.64 I 63.18 I 18.64 I 
1 55.26 I 48.72 I 57.68 I 37.27 I 

+---------------

TOTAL 38 39 241 110 -. 428.. 

8.88 9.11 56.31 25.70 100.00
 

MALNOUR = 0, WA-80 CULT = 0 Area cultivated z_ 0.1 Cx 
MALNOUR = 1, WAz 80 CULT = 1 O.l 0.2 Cx 

CULT = 2 0.2-" 1.0 Cx1_ 
CULT = 3 1.OI r Cx 

RESULTS BY LAND HOLDING AREA
 

STATISTICS FOR 2-WAY TABLES
 

CHI-SQUARE 12.928 DF= 3 PROB=0.0048
 
PHI 0.174
 
CONTINGENCY COEFFICIENT 0.171
 
CRAMER'S V 0.174
 
LIKELIHOOD RATIO CHISQUARE 13.020• DF= 3 PROB=0.0046
 

GAMMA -0.203 ASEI= 0.081 
KENDALL'S TAU-B -0o113 
SlUART'S TAU-C -0.124 ASEI= 0.050 

SOMER'S D CIR -0,124 ASEI= 0.050
 
SOMER'S D RIC -0.103 ASEI= 0.042
 

PPODUCT MOMENT CORRELATION -0.097
 
SPEARMAN CORREL4TION -0.120
 

LAMBDA ASYMMETRIC CIR 0.000 
LIMSDA ASYMMETRIC RIC 0.139 
LbMBOA SYMMETRIC 0.073 

UNCERTAINTY COEFFICIENT CIR 0.014
 
UNCERTAINTY COEFFICIENT RIC 0.022
 
UNCERTAINTY COEFFICIENT SYM 0.017
 

ASEl IS THE ASYMPTOTIC STANDARD ERROR.
 
RIC MEANS ROW VAR DEPENDENT ON COLUMN VAR.
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regions follows a similar procedure and is trivial. The basic idea is to recognize 
that this problem can be transformed such that the test of independence in 
Example 2 can be used. 

With the information given above (the number of children and the rates of 
prevalence in each region) it is easy to set up a 2 x 2 (in general a 2 x n) table 
such as the following: 

SICK NOT SICK TOTAL 

Region 1 68 96 164 

Region 2 165 99 264 

TOTAL 233 195 428 

If the rates of prevalence in the population of children in both regions are equal, 
the variables region and health status must be independent of one another. On 
the other hand if prevalences are indeed different this implies an association 
between region and health status. The next step should now be clear. apply a X2 

test of independence to these data and interpret the results accordingly. The 
X2calculated value in this example turns out to be 18.0. The critical value of 

X2 with a level of significance of 5 percent and (2-1)(2-1) = I degree of freedom 
is 3.8. Therefore the null hypothesis of independence must be rejected since the 
calculated value of the test statistic is by far higher than the critical value of 
the X2 . This is equivalent to the conclusion that the rates of prevalence in the 
two regions do indeed differ significantly. A level of significance of 1 percent 
would lead to the same conclusion since the corresponding critical value of 6.6 is 
still far lower than the calculated value of X2 . 

When r ore than two regions are involved, and the null hypothesis of equal 
prevalences has been rejected, it would be interesting to attempt to identify the 
region or groups of regions that contributed to the finding of significant 
difference. This attempt usually involves the partitioning of all regions into two 
regional groups and comparing their prevalences in the usual way. the choice of 
the two regional groups can be either planned beforehand or suggested by the 
data, i.e. whether, say, the neighboring regions are grouped together, or the 
regions with "low" and "high" prevalences are grouped separately. There are 
slight differences in these two cases and the interested reader may consult Fleiss 

(1973, pp. 92 ff. 
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X2In using Pearson's test, be it for testing goodness-of-fit, statistical 

independence or sample homogeneity, a number of points need to be kept in mind 

about the assumptions on which it rests. The first is that this test is only an 

approximation. To have adequate validity the number of observations (total 

frequency) must be large enough so that the expected frequency in each category 

or cell would be no less than 5 where there is more than one degree of freedom 

(df > 1) and no less than 10 where df = 1. If these conditions are not met 

cetegories must be combined so that they would be. But this option may not 

always be open with small sample sizes or rt e categories. For the 2 x 2 case 

with a small sample size the Fisher-Erwin Exact Test, which uses the actual 

probabilities of getting the observed frequencies, should be used (see 

Bhattacharyya and Joh ison 1977). 

The second point to note is that the sample units must be independently 

and randomly drawn from the population. Thus there must be independence both 

within and between the groups or categories being compared. This assumption 

however is not often satisfied since a simple random selection (srs) is the 

exception rather than the rule. In the sample survey we use as our data base a 

two-stage selection procedure was involved and hence the application of the X2 

test as explained in the examples above is really inappropriate since the 

observations are not made entirely at random. Nevertheless most hypothesis 

tests are carried out as if the sample w~s drawn by simple random selection. In 

Section 5.4 the effects of c1 ustering on sample statistics will be discussed and, 

based on that discussion, a suggestion or two will be made as to the 

modifications that need be made to the X2 tests of this section. 
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5.3 Correlation Analysis
 

Correlation Coefficients
 

Correlation analysis is one of the most commonly employed analytical 

techniques. In a summary table of studies relating measures of nutritional status 

(Asrat 1980, Part II) correlation analysis is identified as the sole method of 

analysis in about half of them. In most of the rest, it was used along with at least 

one other analytical technique. Correlation analysis provides some measure of 

the degree to which two variables are associated. The concept is related to that 

of testing for independence of two variables as discussed in the previous section. 

Two causally related variables are expected, under most circumstances, to 

exhibit a relatively high degree of association but the reverse need not be the 

case, i.e. a high correlation is not necessarily an indication of a causal 

connection. Examples of "nonsense" or spurious correlations abound and any 

inferences regarding a possible cause-and-effect relationship must rely on more 

than merely a high degree of association. 

The degree of association or correspondence between two variables is 

measured by a correlation coefficient lying in the range from -1 to +1. There 

are maniy different types of correlation coefficients. They are not always 

alternatives to one another and the choice of which one to use is largely 

determiaed by the level of measurement of the two variables. Our purpose here 

is to give brief descriptions of a few of them that are likely to be of some value 

in the study of nutri, onal status. Our illustrations will be based on the sample 

survey data we have used before. 

The best known measure of correlation between two continuous variables is 

the Pearson product moment correlation coefficient. Suppose that paired 

observations are available on two random ,'ariables X and Y. The z-score of 

each of ttiese variables is a linear transformation such that the mean and the 

standard deviation of the transformed variables are 0 and 1 respectively. The 

Pearson correlation coefficient, r, between X ana Y is the mean of the z-score 

products of the two variables. Hence, 

where zx and Zy are the z-scores, X and Y are the means of n sample 

observations and sx and Sy are their standard deviations. A value of zero for the 

coefficient indicates a lack of correlation between the two variables. The values 

+1 and -1 signify perfect positive or negative correlation, respectively. Positive 
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correlation indicates that the two variables tend to move together either up or 

down and negative correlation implies a tendency to move i, opposite directions. 

The correlation coefficient measures the degree of linear association 

between two variables. If the two variables move in perfect correspondence but 

in a non-linear fashion, e.g. on a parabola, the coefficient would be different 

from unity. Furthermore, it is a pure (dimensionless) number and its statistical 

significance depends partly on the sample size, i.e. the number of observations. 

With a small sample size even a large coefficient may be entirely lac'ing in 
2

statistical significance. The square of the coefficient, r , is often referred to as 

the coefficient of determination (on which more later) and measures the pro

portion of variation of one of the two variables accounted for by the other (this 

interpretation is standard in regression analysis (see Section 6.1). 

A straightforward extension of the concept of correlation coefficient is the 

correlation matrix which records all correlation coefficients between all pairs of 

a given set of variables. The matrix is symmetrical and has unit elements in its 

principal diagonal. The correlation matrix in Table 11 is an example based on 

our data set. As expected the correlation coefficient between WA and HA is 

quite high (0.80) and that between WA and WH (0.58) demonstrates their 

relatively strong association. The correlation coefficient between HA and WH is 

however practically zero and for this reason the negative sign is of no 

importance, or interest. (For a discussion of the correlations between these 

three pairs of indicators, see Ilitchings/CBS 1979.) Also note that the above 

statements about correlation coefficients are not made based merely on the size 

of their estimates but also on their statistical significance. The statistical 

significance of a correlation coefficient is discussed later. 

As noted earlier, the Pearson correlation coefficient requires intervally 

measured (continuous) variables. Many variables are however not measured on 

an interval scale. When at least one of the two variables is ordinal, the 

Spearman rank correlation coefficient could be used instead. It is denoted by rs 

and is merely the Pearson correlation coefficient of the ranks of the variables 

rather than their values. For example if the children in the sample survey were 

ranked from 1 to 428 according to their WA, HA, and WH, the matrix of 

Spearman rank correlation coefficients would be as given in Table 12. This is 

nothing more than the matrix of Pearson correlation coefficients calculated 

from the ranks of children rather than from their actual measures of WA, HA 
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and WH. It is seen that the rank correlation coefficients exhibit the same 

pattern as do Pearson correlation coefficients but are slightly larger. 

Kendall tau rank correlation coefficient is the third in our list of 

to Spearman rank correlationcorrelation coefficients. It is an alternative 

though its rationale is completely different. Its main advantagecoefficient even 
to a partial correlationover its alternative is that it can be generalized 

coefficient (the correlation coefficient between two variables when the effect of 

one or more other variables is controlled) whereas Spearman's cannot. The 

mechanics of its computation are somewhat more involved and with more than 

p.about 200 observations it becomes fairly expensive to compute (see SAS 1979, 

175). For an explanation of the computational procedure, see Nie et al. (1975) 

or Roscoe (1975). An example of its application to a study inves'igating the 

causal factors of nutritional status may be found in Sanjur and Romero (1972). 

in situationsThe correlation coefficients discussed so far can be used 

where paired observations are available on two variables. When observations are 

arranged in a bivariate frequency table, or a cross-tabulation, other correlation 

coefficients may be appropriate. As a possible example we consider the 

Goodman-Kruskal gamma coefficient which provides a measure of the 

association between two discrete, ordinally measured variables in a cross

tabulation. The simplest case is that of a 2 x 2 table in which H and L refer to 

high or low values that two variables can take. 

In the following table 

First Variable 

H L 

Second 

Variable 

H 

L 

a 

c 

b 

d 

a, b, c, and d are cell frequencies. There are "a" entities which show high scores 

on both variables, "b" entities that have a low score on the first variable but a 

high one on the second, etc. The Goodman-Kruskal gamma measures the extent 

to which high values or low values tend to happen together across the sample. In 

this case it is defined as: 

i _ ad - bc 

ad + bc 
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When high values of one variable pair only with high values of the other and its 

low values oniy with the low values of the second, b and c would both be zero and 

Y= +1. On the other hand when high values of one variable pair only with the 

low values of the other Y= -1. Generalization to more than two categories for 

each variable is straightforward but rather messy. An example from the sample 

data we use relates to association between four distance-to-town categories and 

five land-holding categories as measured by gamma (Table 13). The value of 0.12 

indicates that among farmer households there is some association between 

proximity to town and wealth as measured by the amount of land a farmer 

household cultivates. 

A correlation coefficient appropriate for a situation where one of the 

variables is continuous such as HA, and the other is dichotomous, e.g. whether a 

child was sick the week before or not, is the point biserial correlation 

coefficient. It is given by 

b;; 

where x = the continuous variable, a child's HA 

M = the mean of the continuous variable for the group scoring one on 

the dichotomy, the child being sick the week before 

M = The mean of the continuous variable for the group scoring zero 

on the dichotomy, the child not being sick the week before 

15-= the standard deviation of the continuous variable 

p = the proportion of the total group scoring one on the dichotomy, 

the proportion of children sick last week 

q = the proportion of the total group scoring zero on the dichotomy, 

the proportion of children not sick last week. 

On the basis of our data M1 = 90.09, M0 = 90.64, 6x = 6.55, p = 0.54, and q = 0.46. 

Hence the point biserial coefficient in this case is 0.04, indicating almost no 

correlation at all. 

A simple extension of the above is to a situation where both variables are 

dichotomized, i.e. when a 2 x 2 table is involved. The appropriate correlation 

coefficient in this case is the phi coefficient. Suppose that we wish to find the 

degree of association between the WA of a child being below or above 80 percent 
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TABLE 13 

CROSS TABULATION OF CHILDREN BY DISTANCE
 
TO TOWN CATEGORY AND LANDHOLDING
 

AREA CULTIVATED
 
(in Cx = 1.29 hectares) 

0.1 0.1-0.2 0.2-1.0 1.0-5.0 >5.0 Total
 

0-50 2 12 36 16 1 67 

I- 50-100 21 9 56 30 2 118 

CD 

0 174
100-200 12 13 106 43 

EC 

LI) 

- 200 3 5 43 18 0 69
 

Total 38 39 241 107 3 428
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of standard and a morbidity measure such as whether or not he was sick last 

week. The cross-tabulation is the following: 

Distribution of Children by Malnourishment and Morbidity 

WA> 80% WA 80% TOTAL 

Sick last week a = 97 b = 99 196 

Not sick last week c 111 d 121 232 

TOTAL 208 220 428 

The formula for the calculation of the phi coefficient is: 

A bc - J 

which gives a value of 0.016 indicating practically no correlation between 

malnourishment and morbidity. No significant phi correlation could be found 

between wasting and morbidity either. As a rule of thumb a phi coefficient of 

less than .30 or .35 may be taken to indicate no more than trivial association 

(Fleis3 1973, p.60). It should also be pointed out that an exact relationship exdsts 

between phi and the X2 for the same table which is of the following form 

where n is total frequency. The relative advantages of X2 and phi are discussed 

in several sources including Fleiss(1973. Briefly we point out that X2 is very 

sensitive to the total frequency whereas phi is not. 

There are a host of other measures of correlation in addition to those 

mentioned above. For a more thorough discussion of those above and some 

others the reader may consult Hays (1973) and Roscoe (1975). A summary of the 

correlation coefficients introduced here, with their uses, is given in Table 14. 

Significance Tests for Correlation Coefficients 

Correlation coefficients typically lie within a range from - 1 to + 1. 

Suppose that the data from a particular sample result in an estimate of 0.7 for 

the Pearson correlation coefficient in the population. Does this estimate 

necessarily imply that the population value is significantly above zero? The 
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Table 14 

Summary of Uses of Different Correlation Coefficients 

CORRELATION COEFFICIENT TYPES OF VARIABLES 	 EXAMPLE: COMMENTS 
Correlation 
Between 

1. 	 Pearson's product Both continuous HA and WA The most common 
moment type of corre

lation coefficient; 
measures linear 
association. 

2. Spearman's rank Both ordinal 	 rankings of Finds Pearson 
HA and WA 	 correlation co

efficient of 
rankings of two 
variables. 

3. Kendall's tau rank Both ordinal 	 rankings of Alternative to 
HA and WA 	 Spearman's rank 

correlation 
coefficient; can 
be generalized 
to a partial corre
lation coefficient. 

4. 	 Goodman-Kruskal Ordinal data in location and Popular with 
bivariate frequency farm size sociologists; 
tables the only corre

lation 	coefficient 
here designed for 
use with discrete 
ordinal data. 

5. Point biserial One continuous, other 	 WA and Invariant with 
dichotomous 	 sick/wel respect to actual 

values of dicho
tomous variable. 

6. 	 Phi Both dichotomous Wasted/not Extension of 
wasted and point biserial 
sick/well 	 coefficient; 

not sensitive to 
total frequency. 
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answer is of course that it does not. Correlation coefficient is a sample statistic 

with a sampling distribution which depends not only on the magnitude and sign of 

the correlation in the population, but also on the sample size. Just as for any 

other statistic, the statistical significance of a sample coefficient of correlation 

can and, sometimes, should be tested. 

Consider the Pearson correlation coefficient first. If its value in the 

population is zero and the joint distribution of the two variables is bivariate 

normal in form, the sampling distribution of its sample estimate would be 

symmetrical and approximately normal. With increasing sample size the 

approximation improves, albeit rather slowly. When population value of the 

correlation coefficient is different from zero, however, the sampling distribution 

of the sample estimate would be skewed to the right for negative correlation and 

to the left for positive correlation. As the population value increases, the 

degree of skewness increases as well. The difference in the sampling distribution 

between the two cases when the population value is zero and when it is not 

suggests that it is simpler to carry out significance tests for the correlation 

coefficient in the first case than it is in the second. This is indeed the case. 

The null hypothesis of interest for the moment is /0 - 0, i.e. population 

value of the correlation coefficient is zero. For relatively small sample sizes 

the relevant test statistic is the following: 

2 
/-' 

with N - 2 degrees of freedom. r is the sample estimate of the correlation 

coefficient. The comparison of the calculated value of t from the above 

equation with the critical value for a given level of significance and N - 2 

degrees of freedom (read from the table of t-distribution) results in the rejection 

or non-rejection of the null hypothesis. When N is large the normal distribution 

can be used instead of the t-distribution above. For instance the correlation 

between 

value of 

WA 

the a

and 

bove 

HA was 

statistic 

calculated 

is 

for a sample size of 428 to be 0.8. The 

04z 
'Y 

(,7. 
- 2 

2 5 

which is considerably higher than the critical value read from the normal 

distribution table for a level of significance of, say, 0.01. Therefore the 
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between these two illdicators ispopulation value of the correlation coefficient 

not zero. 

This conclusion is hardly striking, or interesting. Indeed in many tests of 

value is zero should be ofsignificance the null hypothesis that the population 

little interest. Its popularity stems from the simplicity of the testing procedure 

even though it often adds little to the knowledge already available. When this is 

the case a null hypothesis that the population value is some number different 

from zero is of considerably more interest. For instance one may wish to test 

wh ,,ther the population value in this case is 0.7. Alternatively one may wish to 

construct a confidence interval for the population value. This is likely to be a 

useful result than that the population value is significantly different frommore 

zero. 

Let us find the confidence interval for the correlation coefficient between 

WA and HA. Since the population value is significantly above zero, the sampling 

estimate of the correlation coefficient, r, is highlydistribution of the sample 

skewed and despite the large size of the sample, the usual procedure of 

establishing confidence intervals using normal distribution is not applicable. 

Fisher has however shown that, for samples of at least moderate size, the usual 

procedure can be applied to a particular function of r given by 

where loge indicates the natural logarithm of the expression in parantheses. 

Once the confidence interval for Z is found it can be converted to that for r with 

a reverse transformation using the above relationship (see Winkler and Hays 

1971, pp. 609 ff.) 

Since the sample estimate of correlation coefficient r is 0.8 the 

calculated to be 1.099. The approximatecorresponding value of Z zan be 

sampling variance of Z is given by 

,Q;a'L- ( 7) ----

The confidence interval for Z can be written as: 

Z 4---
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where Z is 1.96 for 95 percent level of confidence and N = 428. is the Greek 

letter zeta and refers to the population value of Z. Therefore the 95 percent 

confidence interval for is 

Using these confidence limits for and the relationship between Z and r, the 95 

percent confidence interval for the population correlation coefficient of WA and 

HA, is given by: 

0.763 16< 0.832. 

This result is of considerable interest. It clearly points out that the sample 

estimate of 0.80 is very accurate. This is a consequence of the large sample size 

used in this case. There is a problem however in that the sample units were not 

drawn randomly as the assumptions of this test would require. We show in the 
next section that the violation of this assumption can be partly compensated for 

by using an effective sample size instead of the actual sample size. The 

effective sample size is the size of an equivalent simple random sample that 

yields the same degree of precision as that offered by the actual clustered 

sample. It will be shown there that the effective sample size in the case of our 
data set is roughly 60 percent of the actual sample size of 428, or about 260. 

Using this value for N in the above procedure results 1P a 95 confidence interval 

that is slightly larger than the one derived above. It turns out that the new 

confidence interval is: 

0.751/0,<' 0.840. 

Having a clustered sample does not appear to involve much "cost," in terms of 

precision, in this particular case. 

This discussion is intended to emphasize two points. First, the calculation 

of a confidence interval for a population correlation coefficient is far more 

useful than that of merely a sample estimate since its precision is also taken into 

consideration. Second, and more importantly, significance tests involving the 

null hypothesis of zero population value are often useless since, in many 
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instances, they add nothing to the current knowledge. Because of the difficulty 

of computing confidence intervals they need not of course be calculated for 

every sample estimate even if it were possible. But for a few important 

estimates the extra effort is likel, 'o be well worth it. 

The arguments above were made with reference to Pearson correlation 

coefficient, but they are equally valid for the point biserial correlation 

coefficient as well. For tests of significanet. of the other correlation 

coefficients, which are incidentally simpler, see Roscoe(1975 Chapter 31. 

5.4 Analysis of Variance 

Consider a situation where at least two groups of individuals, households, 

entities, etc. are identified by the different values, or combination of values, of 

one or more categorical variables. It is sometimes desired to carry out 

statistical tests of hypotheses involving the means of a continuous variable 

across these groups. A familiar example is where interest lies in comparing the 

means of two groups for equality. The usual procedure in this simple case is to 

apply the t-test. Where moi e than two groups are involved, and where there may 

be more than one categorical variable defining the groups, the appropriate 

procedure is to apply the techniques of analysis of variance. 

The term analysis of variance (ANOVA or AOV) is something of a misnomer 

since these techniques are in fact concerned with the simultaneous comparison 

of means of one variable across several groups. Such comparison however 

requires the examination of ratios of sample variances and this fact explains the 

origin of the term. The categorical variable(s) that distinguish the groups from 

one another are sometimes referred to as the independent variable(s) whereas 

the continuous variable is commonly known as the dependent variable. 

Examination of the effects of a single categorical variable on the dependent 

variable is referred to as a one-way ANOVA. When simultaneous effects of two 

or more categorical variables are studied, the ANOVA is called two-way or n

way respectively. A fixed-effects or linear hypothesis model is used in ANOVA 

where classes or groups of entities are fixed (i.e. remain the same) over repeated 

experiments. In contrast, a random-effects or variance component model is used 

where classes or groups included are a random sample of a larger number of 

possible groups. The key difference between these two models is whether 

inferences are being made about only groups presently included in the study, or a 

set of all possible groups of which only a sample is being studied. A combination 
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of fixed- and random-effects models is called a mixed-effects model. Most 

statistical packages are limited to performing the ANOVA using a fixed-effects 

model even though, since computations are in most cases parallel, a random

effects interpretation is usually possible, if appropriate. The techniques of 

ANOVA are discussed in all elementary statistical texts. Interesting and faiiy 

comprehensive treatments are given in Blalock (1972), Winkler and Hays (1971), 

Hays (1973), Nie et al. (1975), and Snedecor and Cochran (1980). 

The one-way ANOVA test is based on estimates of variances. The total 

variation over all groups under study can be partitioned into two parts: one is 

specifically due to the variation between the group means under comparison 

(commonly referred to as the between 3um of squares or SSB) whereas the second 

part is the variation within groups not accounted for by the variable defining the 

groups (within sum of squares or the mean square error, MSE). If there is little 

or no difference between the group means, i.e. if the null hypothesis is rue, the 

ratio of these two estimates will be approximately equal to one. On the other 

hand if the groups do indeed differ with respect to the dependent variable, i.e. 

the null hypothesis is false, the ratio will be larger than one. The F-distribution 

can then be used to determine how large a difference ig tolerable, i.e. how large 

the difference can be and still have the groups come from the same population. 

While quite powerful, ANOVA models are based on somewhat limiting 

assumptions: sample observations are to be statistically independent and 

randomly drawn; populations must be normally distributed and their variances 

must be equal. The process of randomization, of course, ensures that the first 

assumption is satisfied. The normality assumption may not always be justified 

and partly because of this, nonparametric alternatives of ANOVA are sometimes 

preferred (e.g. using Kruskal-Wallis test in place of one-way ANOVA). The 

homogeneity assumption, or the assumption of eq -dity of variances, appears to 

be not too restrictive since it has been established that choosing samples of 

equal size goes a long way towards preserving the robustness of the ANOVA 

models. If it is desired to test this assumption, a simple method, i.e. t-test, can 

be used in the two-sample (group) case. The ratio of the sample variances, S/ , 

approximates an F-distribution with n 1-1 and n 2-1 degrees of freedom. Thus this 

ratio can be compared with the appropriate critical value read from an F table in 

order to decide whether the hypothesis of equal variance should be rejected. 

Several methods are suggested in textbooks on general statistics for testing the 

equality of variances for more than two groups. Barlett's Test for Homogeneity 

2 
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of Variance and the maximum variance/minimum variance ratio are often 

recommended although their limitations should be borne in mind when 

interpreting the results (Snedecor and Cochran 1980). Blalock (1972) offers three 

strategies for dealing with unequal variances, If the departures from 

homogeneity are moderate, iQnsformations such as using the logarithm of each 

value may help resolve the problem. If only one group is widely different from 

the rest, it can be omitted from the ANOVA t-st. Alternatively the 

nonparametric analog- the Kruskal-Wallis test, can be used. For a discussion of 

the assumptions underlying the ANOVA models and methods of resolving the 

difficulties that arise when they are violated see Hays (1973). 

Let us turn now to the illustration of the ANOVA technique. The first 

illustration involves a typical application: we wish to test the null hypothesis 

that the mean WA of children is the same in all four dis.ance to town categories. 

Distance to No. of Mean 
town in mins. children WA 

0-50 67 85.8 
50-100 118 80.8 
100-200 174 78.7 
> 200 69 78.2 

Note that there are four distance to town categories and the number of children 

in each is fairly large. Note also that there appears to be a negative relationship 

between distance to town and mean WA. With ANOVA however we are not 

examining the nature of this relationship but only whether any relationship exists 

between WA and distance to town. The null hypothesis to be tested therefore is 

whether the mean WA is the same across distance categories. Some differences 

may be expected among pairs of category means due to sampling variability. 

The question of interest is whether at least one of these differences is large 

enough to be statistically significant at a given level. The results of ANOVA are 

given in Table 15. The F value of 6.82 corresponds to a p-value of 0.0002 

indicating that category means are very significantly different. The existance of 

such a difference is indicative of a relationship of some sort between the 

dependent variable WA and the independent variable distance to town. The 

nature of this relationship can be examined with other techniques such as 

regression analysis. 
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TABLE 15
 

ANALYSIS OF VARIANCE OF WEIGHT FOR AGE
 

ACROSS DISTANCE TO TOWN CATEGORIES
 

Source of Sum of Mean
 
Variation df Squares Squares F p
 

Between 3 2798.68 932.89 6.82 0.0002
 
distance
 
categories
 

Within 424 57999.37 136.79
 
distance
 
categoriles
 

Total 427 60798.05
 

http:60798.05
http:57999.37
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The second illustration is provided in the context of a problem already 
mentioned in an earlier section, namely, the effect of clustering in sample design 

on the standard errors of estimates of means and rates of prevalence. In our 
data set there art. 36 clusters that are selected in the first stage of a two-stage 
sampling design. Clustered designs have a particularly attractive feature: by 

selecting clusters of sample elements that are usually close geographically, they 
substantially reduce the cost of field work and alleviate problems associated 

with inadequate or unavailable sampling frames. The advantage however comes 

at a price: the standard errors of the estimates of population totals, means, 
prevalence rates, etc., increase compared with those of a simple random sample 
of equal size. While in the analyses of survey data this effect is often ignored 

and standard errors are calculated as if the sample was drawn at random, this 
practice can sometimes be inappropriate since it may lead to substantial errors 
regarding the reliability or precision of estimates. The error will be insignificant 

if the elements of each cluster are as variable as those in the population at 
large. Ordinarily however, because of the proximity of the cluster elements, 

there exists some degree of homogeneity within each cluster. The more 
homogeneous the elements of a cluster are, the less the additional information 
that is obtained by including an additional element in the sample. It follows that 

a clustered sample should usually be larger than a simple random sample from 
the same population if the same level of precision in the estimates is desired. 

The degree of homogeneity within a cluster is measured by intraelass 

correlation coefficient "Rho."In terms of the components of variance in a 
clustered sample it can be defined as: 

2 2 

2 2 2 Z 2 

where 6 o and - + c are respectively variance between clusters, 

variance within clusters and total variance. B is the number of elements within 
a cluster (see Kish 1965, p. 170). The estimate of Rho is denoted by rho and can 

be obtained as 

K/'- .2 

r) a=
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2
where S = - - 56 and S and can be taken from analysis of variance Table 

16. 

Now consider the following question: should one worry about the clustering 
effect? It depends. There are numerous sampling designs used in practice and 
the exact calculation of standard errors can be all but impossible. Usually 

approximate formulas are used to find them. One such approximation that is 
often employed assumes simple random selection with the hope that the 

calculated standard errors wculd not be too different from their correct values. 
If the intraclass correlation coefficient is not significantly different from zero 
this assumption would be as adequately vqlid as any. To test it, an ANOVA table 

such as that in Table 17 is produced. If the value of F calculated from such a 
table is not significantly above 1, one could conclude that the intraclass 

correlation coefficient is not significantly different from zero and the 
assumption of simple random sampling would be valid. If however the F value is 

above 1 and statistically significant it can be concluded that the intraclass 

correlation ccefficient is positive and significant. F values below 1 are possible 
but rare. They imply that intraclass correlation is negative or that the elements 

of a cluster are more variable than one would expect to find by random 

selection. This case is of no practical interest. 
To illustrate these ideas let us consider our sample data and ask the 

question whether the intraclass correlation coefficient in this case is sufficiently 

close to zero for the assumption of simple random sampling to be valid. The 
table of analysis of variance corresponding to HA is given in Table 17. The sums 

of squares are divided by their respective degrees of freedom to arrive at mean 
squares. The ratio of the mean squares yields an F value of 1.57. Considering 

the probability of the occurence of this value under the null hypothesis of no 

difference in the cluster means (or zero intraclass correlation c )efficient) which 
is 0.0235 we conclude that at five percent level of significance the means of HA 

across clusters are significantly different and that the intraclass correlation 

coefficient significantly exceeds zero. The assumption of simple random 

sampling would be inappropriate in this instance. It turns out that the same 
conclusion is reached in the cases of WA and WH. It is important to remember 

that since we are interested in all three of these variables the same test has to 
be carried out for each individually. It may 
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TABLE 16 

ANALYSIS OF VARIANCE FOR TWO STAGES OF RANDOM SELECTIONS
 

Source of Degrees of Sums of Mean Expected Values 
Variation Freedom Squares (SQ) Squares of Mean Squares 

Between I/2 
2clusters a - " 2 bs bSb2+ bS 

Within I 
clusters aa(b - I) Y "I - , Y Sb2 sb2 

Total ab - - -2 
=# ab 

In the language of the analysis of variance the above would often be called a 
finite model of a nested or hierarchal situation. Note that when the between 
and within wnean squares are equal, then s,,- - s,/b = 0. In expected values we 
have S,," - St,2/B = 0, whether we have complete clusters (b = B) or sub
sampling (h < B). These are the conditions for Roh = 0 (5.6.16). Hence the 
usual test to decide Mhether the ratio F = bs, 2/s, 2 

= I or > 1.also serves as a 
test to decide whether Roh = 0 or >0. Less frequently one may find genuine 
cases of F < 1, hence, negative Roh. 

(Kish 1965, p. 173)
 

TABLE 17
 

ANALYSIS OF VARIANCE FOR HEIGHT FOR AGE BY CLUSTER
 

Source of Sum of Mean
 
Variation df Squares Squares F p
 

Between
 
Clusters 35 2253 64.38 1.57 0.0235
 

Within
 

Clusters 392 16094 41.06
 

Total 427 18347
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well turn out that the hypothesis of no clustering effect is valid for some but not 

others of the variables. Another point to note is that at one percent level of 

significance the null hypothesis of equal cluster means (or zero intraclass 

correlation) for HA cannot be rejected. This fact implies that we are dealing 

with a borderline case and the conclusion depends on the arbitrary significance 

level chosen. However we maintain the significance level of 5 percent to 

demonstrate the procedure to be followed when intraclass correlation coefficient 

is found to be significantly above zero. 

What is the value of rho in this case? For HA we have from Table 16 and 

the formulas above 2 

2 =-_ 
2

AZ

.5 = -1302 

and finally rho = 0.05 or about 5 percent. Similar calculations are done for WA 

and WH and the corresponding rho's are both 0.06. These estimates of intraclass 

correlation are relatively close and fairly small even though they are all 
significantly above zero. Some idea of their importance can be gained by noting 

that the ratio of the variance of a cluster sample to that of a simple random 

sample of the same size, sometimes referred to as the design effect, is given by 
[1 + rho (b-l)] where b is the average number of sample elements per cluster. For 

HA, WA and WH the values of design effect are 1.50, 1.62 and 1.69 respectively. 

These results imply that the clustering effect of the sample design of our data 

set increases tlie variance, as compared to that of a simple random sample, by 

50, 62 and 69 percent respectively. Since the variances for a simple random 

sample can be obtained very easily, it is now possible to estimate the variance of 

the mean HA, WA and WH for our cluster sample using these estimates of design 

effect. Disregarding the design effect leads to the underestimation of the 

standard errors by 18, 22 and 23 percent. These in turn imply that the 

confidence intervals based on standard errors calculated with the assumption of 

simple random selection would be too narrow for a given level of confidence, or 

that the actual level of confidence is smaller than intended. 
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A further point needs to be made. The unit of analysis in the above 

example was a child. At the household level where HA, WA and WH refer to the 

means of these indicators based on child level values within each household the 

clustering effect may be different than at the child level. Table 18 sets out the 

values of F, p, intraclass correlation coefficient and the design effect for the 

three indicators at both child and household levels. It is seen that at the 

household level the design effect for HA and WA is not significant; hence the 

assumption of simple random sampling for these indicators can be justified at 

household level. 

The concept of design effect lends itself to an alternative interpretation. 

The effect of clustering is to increase the variance of an estimate relative to a 

situation where a simple random sample of the same size is employed. It follows 

then that for a given level of precision, the size of a clustered sample would 

have to be larger than that of a simple random sample by a multiplicative factor 

given by the design effect. (We ignore a rare exception when the design effect is 

less than one requiring a smaller clustered sample, see Hansen et. al. 1953.) 

When a clustered sample is being designed this factor is of course unknown. An 

informed guess based on past experience needs to be made. For instance, the 

Center for Disease Control uses a design factor of two for this purpose (see, e.g. 

Liberia, 1979). The reverse situation is when one knows the size of the clustered 

sample and wishes to find that of a simple random sample giving the same 

estimates of standard errors. Here the clustered sample size should be divided 

by the design factor. The result is sometimes referred to as the effective 

sample size, or effective n for short (Kish 1965, p. 162). The usefulness of the 

concept of effective n derives from the possibility of improvement that can be 

gained by substituting it for the actual n in some tests of significance. For 

instance in using the t-test for the equality of two means, effective n can be 

substituted for the actual n in the calculation of the standard error of the 

difference. In establishing a confidence interval around a mean one could 

multiply the critical value of t for a given level of significance by the square of 

the design effect to enlarge the interval (Kish 1965, Chapter 14). When X2 test 

is being used too, the use of effective n reduces its calculated value, thereby 

decreasing the probability of the rejection of the null hypothesis. (Note that 

both the numerator and denominator of the X2 statistic are reduced. But since 

the numerator is a squared term and the denominator is not, the resulting value 

for X2 is reduced by the same factor as the design effect, or by the same factor 



TABLE 18
 
ANOVA TESTS FOR PRESENCE OF DESIGN EFFECT
 

Dependent No. of No. of Interclass Design*Variable Level Cases Clusters F p Corr. Coeff. Effect 

HA Child 428 36 1.57 0.024 0.046 1.50 
WA Child 428 36 1.73 0.01 0.058 1.63 

WH Child 428 36 1.80 0.004 0.063 1.69 

MEANHA Household 261 36 1.14 0.282 

MEANWA Household 261 36 1.27 0.15 
MEANWH Household 261 36 1.76 0.008 0.095 1.60 

* Factory by which the sample size should be divided to give the "effective" sample size. 
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that the effective n falls short of the actual n.) These are ad hoc measures that 

partially take into account the clustering effect but they are adequate in most 

cases particularly when it is not very large. 

The analysis of sample surveys ordinarily involves the estimation of many 

statistics. Computing standard errors for each can be a demanding task despite 

the availability of modern computers. It complicates presentation of the results 

of the survey and can overwhelm the human resources available particularly if 

considerations such as clustering effect are to be properly taken into account. 

For these reasons standard errors are in most cases not computed at all or 

computed only in the simplest cases and based on the simplest assumptions. The 

fact that the theoretical issues have not always been satisfactorily resolved 

cannot but add to the difficulty of an attempt at comprehensive analysis. Given 

this state of affairs, rules of thumb abound. Since this is not intended to be a 

sampling manual we are not going to dwell too much on these issues (see Kish 

1965, Chapter 14). A few additional guidelines relevant to situations that arise 

often in the analysis of sample surveys may however prove to be useful. 

Every effort should be made to provide correct standard errors for at least 

a few of the most important estimates. Correct standard errors need not be, and 

usually are not, exact. They are only the best approximations to the true values. 

The validity of the assumption of simple random sampling should always be 

examined if at all possible. A test such as that used above can be employed. If 

clustering effect cannot be assumed away it should be calculated and used to 

provide better standard errors than those obtained with the assumption of simple 

random sampling. As a rule of thumb, when a relationship is highly significant, 

adjusting for the design effect may not appreciably reduce its signifioance. It 

only needs to be taken into account when the significance is marginal. 

Calculation of design effect for each variable may not be needed if there is any 

reason to believe that they are more or less similar. Even if several are 

calculated it may be possible to find some average of them that will be used in 

further analysis. In the case of our data set it is probably fair to assume that the 

effect of clustering is to increase variances of simple random selection by an 

average of about 60 percent. 

6. ADVANCED ANALYTICAL TECHNIQUES 

The basic techniques of the previous section are used in a wide range of 

circumstances and can answer many important questions of interest to an 
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investigator. Furthermore, data analysis often involves some experimentation at 
first to provide the investigator with some feel for his data. At this preparatory 
stage he develops an impression as to the descriptive characteristics of his 
variables, acquires an understanding of the relationships that may exist among 
them and formulates simple hypotheses which he could then test. An these are 
crucial elements of data analysis and basic techniques are particularly suited for 
these purposes. There are however other considerations. 

The basic techniques are typically limited to the consideration of two 
variables at a time. The simultaneous impact of several variables on one or 
more than one other variable is however also of great importance. In addition, 
the basic techniques are of little value insofar as prediction and forecasting are 
concerned. Even though partial correlation coefficients and 2- or n-way analyses 
of variance can statistically control the variation due to one or more variables, 
they are not prediction tools. Similarly these and other basic techniques are able 
to go some way towards identifying appropriate classification criteria but more 
formal techniques designed specifically for this purpose are needed as well. 

This section considers a number of multivariate techniques. The choice is 
based primarily on their potential usefulness in analysis of nutrition
related data. Another consideration is that there must exist at least one 
example of their application in the relevant literature. Regression analysis is 
the subject of Section 6.1. This well-known multivariate method is highly 
v(,-rsatile and is likely to be used regularly in futuremore nutritional studies. 
While the discussion of regression analysis here is at too basic a level to be of 
immediate practical value on its own, it does bring out certain important 
concepts of the subject. Analysis of covariance models and models with binary 
dependent variahle are extensions of regression techniquer that allow for 
categorical independent and dependent variables respectively. These extensions 
are discussed in Sections 6.2 and 6.3. The fundamental ideas of principal 
components analysis, discriminant analysis and cluster analysis are intuitively 
discussed in Sections 6.4 - 6.6 with some illustrations. These are essentially 
classification techniques that can also be useful for purposes of analysis. They 
have so far been rarely used in nutrition-related literature and their discussion 
here is intended to highlight their useful features and promote their more 
widespread application when appropriate. Note in passing that all the advanced 
techniques discussed here involve only one independek variale at a time. 
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6.1 Regression Analysis 

Statistical techniques of regression analysis are well developed, powerful 

and flexible. With computing facilities now widely available, regression analysis 

has become the most popular method of multivariate analysis. Other 

multivariate techniques that are becoming increasingly popular are often 

extentions of regression analysis developed for specific objectives and types of 

data available in particular circumstances. This section reviews some elements 

of the basic theory of regression and provides illustrations of its use in the 

analysis of data pertaining to nutrition and related factors. For a gentle 

the reader may consult Lewisintroduction to the topic of regression analysis 

Beck (1980). More comprehensive treatments are available in many textbooks of 

which one of the best is Gujarati (1978). 

Basic Elements 

Broadly speaking, the purpose of regression analysis is to explain or 

account for the variation in a dependent variable by the variation in one or more 

independent variables presumed to be responsible for it. 

Consider the following mathematical relationship between one possible 

outcome indicator of nutritional status such as a child's height-for-age Y (the 

dependent variable) and a number of explanatory variables X1 , X2,...,Xk (the 

independent variables) presumed to account for its changes: 

Yi = a + blXli + b2X2i + ... + bkXki (6.1) 

where i refers to a particular unit of observation, in this case a child. There are 

a number of points to be made with regard to this relationship: 

(a) The structure of causality is assumed a priori: it runs from the right

hand side (RHS) to the left-hand side (LHS). RHS variables change independently 

of the LHS variable thereby making it a dependent variable. This knowledge 

usually comes from theory, experience, previous analysis, or in the worst case, it 

may be no more than a pure guess. The important point to remember is that 

there is nothing in statistical techniques of regression analysis, or in any other 

statistical technique for that matter, that can "prove" or establish the causality. 

At the most, they may provide evidence of strong association. In epidemiology 

certain rules are applied to support the hypothesis of causality (see, e.g., 
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Mausner and Bahn 1974, Ch. 5) but these do not have an equivalent for regression 

techniques. 

(b) The number of factors that can be responsible for at least some 

change in a dependent variable is ordinarily large. For a number of reasons, not 

the least of which is simplicity, it is necessary to limit the independent variables 

to those that are judged to be of more importance. Statistical analysis can be of 

help in making such judgements. 

(c) The assumption of linearity of the relationship is just that, an 

assumption. Many functional relationships are nonlinear and whether or not a 

nonlinear specification is called for, and if so, of what form, is itself to be 

studied and tested. Much of regression analysis is based on the assumption of 

linearity. Fortunately this is not as restrictive an assumption as it may appear 

at first since it refers to the linearity in ?arameters of the population (the b's), 

not in the variables obtained fro.m a sample (the X's). Many types of nonlinearity 

in variables can be accomodated through some suitable transformation. 

(d) As it stands equation (6.1) is an exact, or deterministic, or algebraic 

relationship. The actual data almost never fit this relationship exactly. There 

are many reasons why this must be so. Some factors may have been excluded 

because they may not be known to influence the dependent variable, because 

they may not have been measured or because they may not be measurable. The 

assumption of linearity may not be valid. Measurements are never exact, and 

then there is the inherent randomness in such relationships. All of these reasons 

provide a rationale for the introduction of a random disturbance term to theui 

RIIS of the relationship. The result is then: 

Yi = a + biXli + b 2 X2i + ... + bkXki + ui (6.2) 

This is now a statistical relationship and the purpose of regression analysis is to 

use the available data on X's and Y to "estimate" parameters a, bl, b2 ,..., bk as 

well as to "test" for their "significance". The results are then interpreted. Note 

that the function of the random disturbance term ui is to take up the slack left 

after the influences of the X's on Y are accounted for. For all the reasons stated 

above the true values of this disturbance term for each and every observation 

cannot be known. In practice however they are usually assumed to follow a 

normal distribution with a zero mean. 
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Why would one want to estimate such a statistical relationship? There are 

two primary reasons: to explain an outcome and/or to predict it. To explain an 

outcome it is necessary to identify the nature of the relationship that relates it 

to its determinants. In practice, the feasible objective often turns ut to be no 

more than to identify only some of the major determinants of an outcome, or 

rather factors associated with it, in the hope that by manipulating them through 

intervention policies and programs the outcome can be influenced in the desired 

fashion. This objective often entails the separation of the individual effects of 

major outcome determinants. Since this cannot be done experimentally by 

holding all outcome determinants fixed except for the one whose influence is 

being estimated, regression techniques are often employed as a second-best 

alternative to control the influence of confounding factors. Confounding 

factors are those that influence the outcome but are also distributed differently 

(as compared with the distribution of the outcome variable) across the population 

of interest. Consider the following two examples. In a rural development 

project it is important to know whether coffee-producing farmers have better 

nutritional status than other farmers because of what they produce and the 

relatively high income coffee production generates or because they happen to 

live near roads and have better access to markets and services. If after 

statistically controlling for the possible confounding influence of the distance to 

road factor (which is assumed to vary across households) coffee producers still 

appear to have better nutritional status the plausibility of the hypothesis or 

theory that coffee production helps nutritional status is somewhat increased. 

There are of course ordinarily many potential confounding factors of which no 

more than a few may be statistically controllable in any given situation. 

Similarly in evaluating the nutritional effects of a food stamp program it is 

important to distinguish between a situation where the nutritional status of 

recipients is worse than that of non-recipients because the program has been 

ineffective and another where other factors account for the observed difference 

even though the program may have been highly effective. 

An investigator's major interest however may not be in explaining an 

outcome but rather in predicting it with the use of available data on some of its 

potential determining factors. For prediction purposes a statistical relationship 

needs to be developed between the outcome and its potential determinants such 

that a major portion of the variation of the outcome variable is accounted for by 

the relationship. This objective is usually difficult to attain and prediction of, 

say, nutritional status on the basis of data commonly available at the individual, 
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household and community levels is often too imprecise to be of much value. 

Regression techniques can be used for both the explaiiation of an outcome and its 

prediction but the illustrations provided here have primarily the first objective. 

Estimation and Interpretation 

The estimation of the parameters (a, bl, etc.) of equation (6.2) and the 

tests of significance conducted on the estimates involve a number of 

assumptions. These assumptions ensure that the estimators (formulas or rules 

employed to arrive at the estimates) have certain desirable properties (see, e.g. 

Gujarati 1978). The disturbance term ui is assumed to be a random variable with 

zero mean and constant variance. It should also be uncorrelated with other 

disturbance terms and with the independent variables. The X's are assumed to be 

nonrandom, or at least uncorrelated with one another in a linear fashion. The 

elements of the sample from which the data are generated are also assumed to 

be randomly and independently selected to allow inferences to be made about the 

population. 

Given these assumptions it can be shown that the dependent variable Y and 

parameters a, bt, b2,...,bk are all random variables with associated probability 

distributions. These distributions would all be normal if a further assumption of 

the normality of the distribution of the disturbance term is added. The 

mechanics of how these coefficients are estimated need not concern us here. 

Computer packages automatically calculate and print them. Briefly, it may be 

stated that the usual approach to the estimation of a regression equation is to 

use the method of ordinary least squares (OLS). This method is based o1i the 

principle of minimizing the sum of squared residuals,ze, where ei = Yi - Yi or 

the difference between the actual observation on the dependent variable Yi and 

its estimate Yi based on the corresponding value(s) of the independent 

variable(s). Those interested in pursuing this further may consult any 

introductory text on econometrics, in particular Gujarati (1978), and Wonnacott 

and Wonnacott (1979). We concentrate here on the interpretation of regression 

results. 

If all the assumptions stated above hold, the interpretation presents little 

difficulty. The estimate of, say, b2 is commonly denoted by b2 and represents 

the expected amount of change in the dependent variable resulting from a unit 

increase in the value of the corresponding independent variable X2 when the 

values of other X's are held constant or fixed. In controlled experiments the 
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fixity of these other X's can be assured by the investigator as he changes X2 by a 

unit. The type of data that a social scientist investigates however is generally 

non-experimental, i.e. he is usually not in a position to fix all but one of the 

independent variables. To insure that the interpretation of regression 

coefficients would still be valid the assumption of independence, or at least zero 

correlation, among pairs of independent variables would have to be made at the 

outset. When this assumption is not valid the investigator faces the problem of 

multicolinearity and has to be very careful in interpreting the significance of 

individual regression coefficients. Multicolinearity will be briefly discussed 

later. 

It was noted earlier that given the underlying assumptions of the regression 

model, each regression coefficient is a random variable and follows a normal 

distribution. The standard deviation of the sampling distribution of a coefficient 

is commonly referred to as standard error and is of paramount importance. It 

provides an indication of the degree of precision of the estimate of the 

coefficient. A "large" sta..dard error may suggest that the estimate is quite 

unreliable and vice versa. The size of the standard error is gauged relative to 

the size of the corresponding estimated coefficient. The ratio of an estimated 

ascoefficient to its standard error is termed t-ratio which is normally provided 

part of the output of a regression program. The t-ratio is used to test whether a 

parameter is significantly different from zero. If it turns out that it is not (when 

t-ratio is too low), one may be justified in concluding that the relevant variable 

has little or no effect on the depende,. t variable. On the other hand if the t

ratio is "high enough", the estimate of the coefficient would be significantly 

different from zero, i.e. the independent variable is likely to be a determinant of 

the outc.rie variable under consideration. 

The RHS variables in an estimated regression collectively explain or 

account for a portion of the variation in the dependent variable. The ratio of the 

explained portion of the variation to total variation is termed coefficient of 

determination and denoted by R2 . This is a measure of the goodness of fit of the 

estimated regression model and may have any value in the range from 0 to 1. 

Ordinarily one would like to be able to explain a high proportion of thp variation 

in the dependent variable. This can be done by choosing the "right" independent 

variables as well as by increasing their number. Addition of an independent 

variable never decreases R2 . This practice is not always to be recommended. 

One should never lose sight of the fact that regression analysis is a statistical 
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method of finding evidence for or against a presumed causal relationship. Hence 
the inclusion of variables on the RHS must be guided primarily by the knowledge 

of or hypotheses concerning this presumed relationship. 
Regression analyses of sample survey data which seek to explain variation 

in nutritional status variables by the differences in socio-economic variables 

R2typically result in values that are fairly low, often as low as 0.05 or 0.1. 
Regression models involving economic variables, by contrast, frequently show R2 

values as high as 0.8 or 0.9 or higher. This characteristic difference between 
nutritional surveillance data and economic data explains why regression analysis 
as a predictive tool is much more suitably applied in the context of economic 

data than in that of nutritional surveillance data. Recall that the unit of 
analysis in nutritional studies is typically an individual or a household. At the 

present stage of knowledge and data availability, the prediction of nutritional 

status of such small units using regression techniques is likely to be highly 
unreliable and is best avoided. As an explanatory device however, regression 
analysis is finding increasing acceptance in nutritional studies particularly as 
relevant data on determinants of nutritional status become more widely 

available. 

In the rest of this section and in the following two sections some additional 

features of regression will be discussed in the context of a few illustrations, 
violation of thr underlying assumptions and the use of categorical variables as 

both independent and dependent variables. 

Some llustrations 

With this much theoretical background behind us, we can now examine a 
number of estimated regression t juations using our sample data. This sample, as 
already discussed, is selected in a two-stage process that, while guaranteeing 
equal probability of selection for each household, nevertheless violates the 
assumption of independent selection. Obviously this is in violation of one of the 

assumptions underlying regression theory. Hence even though the estimates of 
parameters remain relatively unbiased, the usual tests of significance may lose 
their validity. While this may sometimes present a serious problem, in our case 
the problem is not very s3rious since the clusteriii, effect, while present, is not 

substantial (see Section 5.4). Where this is not the case, or when the significance 
is marginal, the interpretation of the results becomes more difficult and 

uncertain; some guidance on coping with this problem is given in Kish (1965), 

Chapter 14. 
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Our interest in this example lies in trying to relate one anthropometric 

indicator, HA, to household- and village-level characteristics. Our first decision 

has to do with the choice of the unit of analysis (child, household, or village) for 

the dependent variable. The difficulty with child-level analysis is that selection 

probabilities are not the same for children. Furthermore the set of independent 

variables would be identical for all the children in the same household thereby 

weighting households in proportion to their number of children. This is 

inconsistent with the fact that household selection was made with equal 

probability. Taking a household as the unit of analysis presents another problem 

however: what is the height-for-age associated with a household? There are 

several alternative answers: HA for a household could be taken as the mean of 

this measure for all the sample children in the household or the value of this 

measure for the worst-off child, for the oldest, or for the youngest. We choose 

to work with the mean HA for a household partly because the s ne approach 

could be adopted at the cluster level as well. The choice of other approaches 

may be equally valid, and it may be useful to undertake a comparative study of 

these alternatives in future research. 

It is always useful to begin with hypotheses or likely guesses, about at least 

the direction of the influence of individual independent variables on the 

dependent variable. For instance, we might expect that the prevalence of 

malnutrition in more isolated areas would be higher than in less isolated areas 

The degree of isolation may be measured with distance to town and a simple 

regression of HA on the absolute measure of distance to town appears to confirm 

this hypothesis. The two simple regressions (only one independent variable) at 

the cluster level and at the household level are: 

R 2Cluster HA = 92.642 - 0.018 TOWNABS = 0.22 
level F = 9.70 (p<0.01) 
t-ratio (126.29) (-3.11) n = 36 

R 2Household HA = 92.164 - 0.011 TOWNABS = 0.02 
level F = 4.86 (0.01(p ZO.05) 
t-ratio (124.14) (-2.20) n = 261 

We analyze these two regression equations somewhat more fully than those 

that follow in order to highlight the common approach to the analysis of 

regression results and some recurring features of our equations. While both the 

dependent and independent variables are the same in both equations, the units of 
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observation are not. A cluster consists of anywhere from two to twenty-five 

children and the HA variable at the cluster level is found as the mean of the 

values pertaining to individual children in each cluster. TOWNABS is a 

continuous variable defined for a cluster. Its values for households within a 
given cluster are the same. The sign of the estimated coefficient of this 

variable is negative in both equations as expected. This fact however would be 
of little value if the estimated coefficients of this variable were not statistically 

significant. As it happens, they both are at five percent level of significance 

since their corresponding t-ratios in absolute value (3.11 and 2.20) are "high 

enough". The second however is not high enough to be significant at one percent 

level of significance even though the first still is. As a rule of thumb, a t-ratio 
of about 2 or more indicates statistical significance at the level of, at least, five 

percent. 

Another way of arriving at the same conclusion is to inspect the value of 

F-statistic reported to the right side of both regressions. Note that, apart from 

rounding errors, the F values are equal to the square of the t-ratio of the 

coefficient of the independent variable in each equation. This is a mathematical 
property in simple (one independent variable) regressions but has no counterpart 
in multiple regressions (more than one independent variable). The p-value would 

be exactly the same for simple regression equations regardless of whether the t
ratio of the independent variable or the F value of the equation is used. 
Computer outputs determine the appropriate number of degrees of freedom for 
both and print the p-value. The t-ratio of the intercept terms in both equations 
are extremely large and as a result the estimates of these intercept values are 

highly significant. 

The value of R2 = 0.22 in the first equation indicates that some 22 percent 

of the variation of HA at the cluster level has been explained by the variable on 
the RHS, distance to town. The R2 of the second equation suggests that only 
about 2 percent of the variation of HA at the household level can be accounted 
for by distance to town. A striking fact about the values of this statistic in the 
two equations is that they are very different. In fact however they should not be 
compared F, all since the units of analysis are different. The fact that the R2 of 
the first equation is more than ten times that of the second does not necessarily 
imply that the regression at the cluster level is in any way 
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superior to that at the household level. The variation of HA at the cluster level 

is by far smaller than that at the household level since intra-cluster differences 

of HA are removed by aggregation. The two R2 values are not comparable. 

R2In simple regression the is the square of the simple correlation 

coefficient between the dependent and independent variables. The sign of the 

correlation coefficient is also identical to the sign of the coefficient of the 

independent variable. It will be recalled (Section 5.3) that the usual test of 

significance of correlation coefficient seeks to establish whether the coefficient 

is significantly different from zero. The exact equivalent of this test in simple 

regression is to estabiish whether R2 is significantly above zero (R2 is always 

positive). The relevant test statistic is the F value which is always provided as 

part of the regression output. A significant F value indicates that the 

independent variable (or the group of independent variables collectively in 

multiple regression, see below) explains a significant portion of the variation in 

the dependent variable, which is another way of saying that the two variables are 

correlated. It can be seen that all the inform.tion provided by simple 

correlation analysis is also provided by simple regression analysis. Regression 

analysis however provides some additional information as well. For example the 

coefficient of the independent variable relates the amount of change in the 

dependent variable to that in the independent variable, a piece of information 

not provided by correlation dnalysis. It is in this sense that regression analysis 

can be a prediction tool whereas correlation analysis cannot. This advantage is 

particularly useful when there are severel independent variables as in multiple 

regression. 

The two regressions discussed above are examples of -,imple regression 

where there is only one independent variable. Multiple regresion involves more 

than one independent variable. To illustrate it consider a regression similar to 

the cluster level regression before when a new independent variable, altitude, is 

added which may explain a little more of the variation in HA. The estimated 

regression is: 

R 2Cluster HA = 92.751 - 0.016 TOWNABS -0.002 ALTI = 0.23 
level F = 4.9 
t-ratio (120.84) (-2.40) (-0.55) (0.01 < p<0.05) 

n = 36 
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The addition of a second independent variable increases the explanatory power 

only marginally, 23 percent against 22 percent. This variable however is not 

significant as its t-ratio is small, but distance to town retain3 its significance as 

does the regression itself (F value is still relatively high). Little seems to be 

gained by including altitude as an explanatory variable and it may be better not 

to do so for the sake of simplicity. Other variables could P1 .o be added and they 

may turn out to be significant but it should be emphasized again that the choice 

of independent variables must as far as possible be guided by theoretical 

expectations and availability of data. 

Note that neither of the above conclusions (concerning the significance of 

the two coefficients) is ever certain. The idea is to assess the plausibility of the 

existence of a relationship. Such an assessment presumes that the assumptions 

made about the regression model are at least approximately valid. It also rests 

on a prior specification of what constitutes statistical significance. The level of 

significance is commonly set at one or five percent. In many circumstances 

however a higher level may still prove to be quite useful. There are no hard ant' 

fast rules for setting this level but it helps to understand why a coefficient may 

not be significant sihece it would then be possible to better appreciate the 

tentative nature of statistical significance. 

Clearly, a higher level of significance (e.g. 5% against 1%) increases the 

chances of finding statistically significant coefficients but it also increases the 

likelihood of committing Type II error, i.e. concluding that a relationship exists 

when in fact it does not. This level should be set before the regression results 

are available. If a coefficient is statistically not significant the most likely 

conclusion is that the corresponding independent variable probably has no bearing 

on the outcome variable and does not cause it to change. However, it may be 

due to certain statistical artifacts as well. The standard error of a coefficient is 

calculated from the following formula: 

C "-".._ . . .. 

-,)
-A 

whereZ e 2 is the sum of squared residuals, n is the sample size, k is the number 

of RHS variables and X refers to the particular RHS variable with mean X. Lack 

of statistical significance arises from a high standard error relative to the 

estimate of the coefficient b. Sb may Oe relatively high because the sample s-ze 

n may be low, or because the dispersions or variances of X-values may be 
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limited. If sample size and/or the dispersion of the values of the independent 

variables are high enough it is always possible to find statistical significance at 

any chosen level. This fact has to be borne in mind but it is also important to 

point out that the degree of control that can be exercized over these factors is 

usually fairly limited. For example sample size is often determined largely by 

the amount of resources that may be available for data collection. When sample 

size has to be small because of limited resources, it may be advisable, ceteris 

paribus, to allow the level of significance to be set at a higher level and vice 

versa. 

From a theoretical standpoint the number of RHS variables in multiple 

regression could be as high as the number of observations minus one (in which 

case the fitted regression would be perfect and R2 = 1). In practice however a 

regression with more than 5-10 independent variables is likely to give rise to 

problems of interpretation and violations of underlying assumptions. The 

inclusion of too many independent variables often signifies a lack of adequate 

understanding or clear hypotheses regarding the relationship. Addition of RHS 

variables has an apparent comforting effect in that it raises (or at least does not 

diminish) the coefficient of determination R2 or the portion of explained 

variation in total variation of the dependent variable. This however need not 

aiways be a desirable property in that the incremental increase in the R2 due to 

a particular added variable may be insignificant or, even if significant, may not 

be very important from a practical point of view. Aside from the notion that the 

inclusion of independent variables should be guided as far as possible by 

theoretical considerations and experience regarding the objectives of the 

analysis, statistical procedures are available to help in choosing what to include. 

Some of these will be briefly mentioned in the following pages. 

Violations of Assumptions 

Some of the difficulties encountered in proper use of regression techniques 

stem from the fact that on many occasions one or more of the underlying 

assumptions may be violated. If these violations are serious they may result in 

wrong signs, imprecise estimates or estimates that lack desirable properties. 

Much of the art of applying regression techniques consists of an ability to detect 

these violations, to understand their implications and to find ways of overcoming 

them. 
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When one or more assumptions are violated the usual approach is to revise 
the data or the model or, sometimes, the estimation procedure in order to reduce 

the e:-tent of violation or to minimize its impact on the desirable properties of 

regression estimates. In this section we discuss some of the more elementary 

approaches to coping with these problems. For a comprehensive treatment see, 

e.g. 	Gujarati (1978). 
There is precious little that can be done when the sample is non-random. 

The best advice in this case is probably not to use regression tools at all. When 

they 	 are employed anyway, as is sometimes the case, statistical tests of 
significance should either not be performed or if performed, the results must be 

interpreted very carefully. 
There are cases where the sample is indeed random but the sample 

selection procedure is not the simple random selection that ensures both equal 
probability of selection of the observations and their independence. Clustering 
methods of sample selection result in lack of independence although they may be 

self-weighting in that the probability of selection of each element is the same. 
This is how our sample data were collected. In this situation it may be possible 

to apply some simple methods of statistical correction (see e.g. Section 5.4 and 
Kish 1965, Chapter 14) to reduce the impact of lack of independence on the 

accuracy of the tests of statistical significance. 

Sample data may also have been obtained through a selection procedure 
that does not ensure equal probability of selection. It may also be the case that 

all observations may not have been made with equal degree of precision or that 
they may not be equally important. For example, in the cluster level regression 
discussed above each cluster constitutes a unit of analysis, but the precision of 

the cluster level dependent variable HA is not the same. Some sample clusters 
had more sample households than others. Since the values of cluster level 
variable HA were derived on the basis of different numbers of households in 

clusters it may be contended that these values are not equally precise, i.e. the 
HA mean for a cluster with 20 sample households is likely to be more precise 

than a THA mean for a cluster with only 2 sample households. In these and similar 
cases it may be argued that a more precise observation, a more important one or 
one with a smaller probability of selection should receive relatively more weight 

than others with smaller precision, less importance or higher selection 
probability. If a proper weighting scheme can be found it may be useful to 
employ weighted regression. In weighted regression the (weighted) sum of 
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squared residuals, consists of a weighted addition of individual squared residuals, 

not of a simple addition of individual squared residuals of each observtion as is 
the case in ordinary least squares method. Computer packages normally provide 

for this option. 

One feature of the regression analysis under discussion here is its linearity, 

i.e. the dependent variable must be mo-e or le-; linearly related to each and 
every one of the independent variables. When this assumption is violated, the 
regression equation has a poor fit and the R2 will have a lower value than it 

would if the nature of the relationship could be specified more accurately. It is 
advisable to plot the dependent variable against each independent variable to 
examine this assumption before estimating the regression equation. The nature 

of the relationship between the dependent variable and a particular independent 

variable often suggests the best way of incorporating the independent variable. 
A transformation may be required. For example if the dependent variable is 
number of calories per day consumed by an adult equivalent and the independent 

variable is household income it is likely that they are not linearly related. 
Calorie intake however may well be more or less linearly related with logarithm 

of income variable or some other transformation of it. The independent variable 

should in such cases be transformed to arrive at a more reliable specification of 

the regression model. 

The RHS variables are, ideally, uncorrelated with one another. Some small 

amount of correlation is almost always present and is "acceptable" since its 
effects on the properties of the estimation of coefficients are usually negligible. 
High correlation in at least one pair of RHS variables gives rise to the problem 

of matticolinearity and can become troublesome. Multicolinearity leads to an 
inability to differentiate the individual influences of the correlated variables. It 

manifests itself in diffe,'ent ways but the most common sign of its presence is n 
situation where the entire regression is significant (as evidenced by a significant 
F-value) but individual coefficients are not. There are several methods of 

detecting and correcting for multicolinearity but none is free of criticism (see 

any textbook on econometrics or applied regression analysis, e.g. Pindyck and 
Rubinfeld ) .76, Gujarati 1978, Draper and Smith 1980). Dropping one of the pair 
of correlated variables is one of the most commonly used devices to remove or 

reduce multicolinearity. This method may or may not be appropriate in a given 
situation but it does point to a larger problem: How does one decide if a variable 

"belongs" to, or should be included, in a particular regression? 
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The answer to this question can be sometimes very difficult. There are no 
hard and fast rules. The "kitchen sink" approach throws in just about any 

variables one could lay his hands on in an attempt to maximize R2 . This is 

almost always a bad approach. Seeking a theoretical basis for the inclusion of a 
variable is usually preferable except that in many cases it may not be strong 

enough. A formal method of approaching this problem is to use stepwise 

regression. In this method one proceeds by either introducing the RHS variables 
one by one (stepwise forward regression) or by including all the independent 

variables at the beginning and rejecting them one at a time (stepwise backward 
regression). The decision to include or drop a variable is usually made on the 
basis of its contribution to the explained sum of squares as judged by the F-test. 
This test is a formal measure of whether a variable is "worth" being included or 

not. A variation of the stepwise forward procedure allows for the possibility 
that a variable included in earlier steps may need to be rejected if those entering 
later make it superfluous (see Nie et. al. 1975 and SAS 1979). These methods are 
often employed at the exploratory stages of data analysis to gain an 

understanding of the data and possible relationships. They should not however be 
applied indiscriminately. Unfortunately the ease with which these methods can 
be applied (given the options available in widely used package programs) carries 
with it the danger that they may be overused, misused or abused. They should 
complement, not replace, theoretical formulation of relevant hypotheses and 

model specifications. 

6.2 Covariance Analysis 
The examples of simple and multiple regression discussed above involved 

only continuous independent variables. It will be recalled that analysis of 
variance, by contrast, required only categorical independent variables. 
Covariance analysis bridges the gap between these two techniques by allowing a 
mixture of continuous and categorical variables to be used on the RHS. The 

dependent variable is still required to be continuous. The following illustration 
involves two continuous independent variables (ROADABS: distance to road and 
DEMOG: the proportion of children younger than 6 to the size of the household) 

and two categorical variables (WEALTH which reflects housing condition and 
SANDUM which refers to distance to water supply reflecting sanitary 
conditions). The categorical independent variables are both dichotomous and are 

often referred to as dummy variables. Dummy variables usually take values 0 or 
1 depending on the absence or prcsence of a certain characteristic. In our 
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example WEALTH = 0 refers to poor housing and WEALTH = 1 to improved 

housing conditions. In turn SANDUM = 0 refers to a household far from a source 

of water whereas SANDUM = 1 indicates a household with water supply nearby. 

These values are chosed such that if, as expected, improved housing condition 

and nearness to water supply are associated with better nutrition, the 

coefficients of these dummy variables would turn out to be positive. The 

standard of comparison is a household with poor housing and distant water 

supply. The estimated regression is as follows: 

Household HA = 94.32 - 0.017 ROADABS - 0.207 DEMOG + 1.608 WEALTH 
level 
t-ratio (75.31) (-3.10) (-1.43) (2.05) 

R2+0.111 SANDUM = 0.06 

2 =- 0.04 

t-ratio (0.13) F = 3.86 (p < 0.01) 
n = 261 

This equation is highly significant as the p-value corresponding to F = 3.86 

is lower than 0.01. The portion of total variation of the HA that is explained 

however is only about 6 percent. All the coefficient signs are in the expected 

direction although two of the independent variables (DEMOG and SANDUM) are 

not significant at 5 percent. The inclusion of DEMOG variable was intended to 

examine whether nutritional status would be poorer in households with relatively 

larger number of dependent younger children. This does not appear to be the 

case onca the more important factors of accessibility and weath are accounted 

for. Similarly, distance to water supply does not seem to have any bearing on 

nutritional status in the presence of other included variables. The other dummy 

variables (WEALTH) is fairly significant. Its coeffcient of 1.6 indicates that the 

average HA in households with improved housing exceeds that in households with 

poor housing by about 1.6, all other things remaining equal. 

The value of the R2 indicates that only about 6 percent of the variation of 

If2 , the HA is being explained and adjusted coefficient of determination, is 

somewhat less. The l-2 is often more meaningful in multiple regression than R2 

R2as it "corrects" or "adjusts" for the inflation of the when more and more 

independent variables are added. Such additions never decrease R2 but they may 

well reduce q2 if the "cost" of the addition of an unimportant variable is more 

than its "benefits". The 112 may be negative and is related to R2 by the 
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following relationship: 

-2

where k is the number of parameters in the equation including the intercept term 

(e.g. in simple regression k=2). Choosing the "best" model by maximizing A2 is 

only slightly less objectionable than doing so by maximizing R2 . Let us 
emphasize one point again: The purpose in regression analysis is to develop a 
model that is logical, theoretically sound and useful. The main concern is the 

relevance of the explanatory variables to the explanation of the dependent 

variable. The statistical significance of coefficients is of greater importance 

than the values of R2 or l2. High values for these statistics are desirable but 

not desirable enought to be had at the expense of theoretical expectations and 

findings of previous empirical research. 

6.3 Models with Binary Dependent Variable 

In classical regression analysis a continuous dependent variable is regressed 

on one or more independent variables which are also 'continuous. As we saw in 

Section 6.2 the use of dummy (0-1) variables allows categorical independent 

variables to be used as well with the usual OLS method of estimation. The 
extention of the model to situations where the dependent variable is categorical 

is the subject of this section. 

Consider the case of a random sample of children of whom some are 

stunted (with height-for-age below 90%) and others are not. The dependent 
variable here, stunting, is dichotomous (0: not stunted, 1: stunted) and can be 

related to a set of independent variables such as socio-economic characteristics 

of a child's household or his community, his health condition, his die., etc. If the 

relationship between the set of characteristics and stunting is sufficiently 
strong, it may be possible to use information on such characteristics to predict 

with some accuracy whether or not a child is stunted. 

As another example (from Edmonston et al. L981) consider a sample of 0-10 
year old Bangladeshi children of whom a small number have died. The purpose is 

to examine whether child mortality depends on any of a number of maternal and 
child specific characteristics. Here, as in the previous example, the dependent 

variable is dichotomous (0: alive and 1: dead) and the explanatory variables 

consist of child's sex, child's parity (a function of household size), mother's and 
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child's ages, interaction between sex and age and prior birth interval. (The 

dependent variable may have more than two categories; see, e.g. Pindyck and 

Rubinfeld 1976.) 

The usual OLS estimation procedure can be used to derive the estimated 

regression of the dichotomous dependent variable (stunting in the first example 

and mortality in the second) on a given set of independent variables. The result 

is a linear probability model. There are however three reasons which make it 

unsatisfactory: 

(a) 	 The error term is itself dichotomous and hence not normally 

distributed as required for testing hypotheses; 

(b) 	 The variance of the error term is not constant as assumed in classical 

regression, i.e. the the error term is heteroskedastic; 

(c) 	 The predicted values of the dependent variable can in principle have 

any value, not just 0 and 1 as is the case with actual observations on 

the dependent variable. What does a predicted value of 2 mean? Of 

0.47? Of -1.5? 

If the predicted value lies in the range 0-1 the interpretation is relatively 

simple: such values can be taken to represent the probability of the presence of 

the characteristic, for example, stunting or mortality. This is a natural 

interpretation since our information is almost never sufficient to make a 

perfectly certain prediction of whether or not a child is stunted. The problems 

however still remain of some predicted values lying outside the 0-1 range and of 

finding an estimation procedure that can cope with (a) and (b) above. One way to 

cope 	with these problems is to employ probit analysis which will not be discussed 

here (see, e.g. Pindyck and Rubinfeld 1976). Another, more appealing way to get 

around these problems is to use logit analysis. When Pi is the probability that a 

child is stunted, the logit of stunting can be defined as 

Note that the expression \k/(,Ai'.) is the ratio of the probability of stunting 

to that of not stunting and is known as the odds that a child is stunted. The logit 

model regresses the logarithm of tha odds in favor of a characteristic on the 

independent variables. 

The usefulness of this transformation of a simple probability Pi to the logit 

of stunting is that when Pi varies from 0 to 1 the value of the logit of stunting 
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takes values from - o to + o , i.e. the entire range of real numbers. The logit 

model is then of the following form: 

r0 12 Vc N XLA 

The problem of predicted values outside the 0-1 range does not happen al..ymore. 
The logit transformation is only one of many possible ways of dealing with this 

problem although it is one of the most convenient, not least from a 
computational standpoint. 

The parameters of iogii model cannot be estimated by the usual OLS 

method since when Pi is either 0 or 1 (which is always the case in actual 
observations) the expre.ssion /(% --I',)A is undefined. T'.ere are several 

alternatives (see, e.g. Pindyck and Rubinfeld 1976, Andersen et al. 1980 and 
Morris and Rolph 1981) but the maximum likelihood procedure is the most 
common and in large samples its esti*mates will be approximately unbiased. An 
alternative procedure is available if subjects can be grouped by the values, or the 
combination of values, of one or more independent variables. This usually 
requires large samples and categorical independent variables. A third method of 

approaching the same estimation procedure relies on linear discriminant analysis 
w,;hich looks at the problem somewhat differently and which will be discussed in 

some detail in the next section. 

As an illustration of the application of the three models above the results 
of the estimation of a linear probability model, a probit model and a logit model 
are sho'..n in rable 19. The data came from a child-year file pertaining to 
Bangladeshi children and the estimated models along with two others, are 
reported in Edmonston et al. (1981). The dependent variable in the OLS model is 

the probability of death of a child, ?Y, whereas in the probit model it is Zi where 

z i = P -l (PL) is the inverse of the cumulative normal probability function and in 
the logit model it is the logit of mortality or log ( ) from which 

I 

e-. 
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PROBABILITY OF INFANT OR CHILD MORTALITY
 
Bangladesh 1966-1976
 

OLS Model Probit Model Logit Model
 

Variable Coefficient t-ratio Ctti:ient t-ratio Coefficient t-ratio 

Sex (1=male) .02106 2.74 .175 4 1.70 .05203 2.79 

Parity .00125 .75 .01340 .46 -.01337 .25 

Mother's Age 
in years -.000056 1.13 -.00801 .91 -.00257 1.63
 

Child's Age
 
in years -.00842 7.68 -.21783 7.2L -.22924 5.66
 

Interaction of
 
Sex ano
 
Child's Age -.00343 2.21 -.04167 .98 -.12434 2.14
 

C-


Prior Birth Interval
 
in Months:
 

(12 .02797 1.98 .46518 2.24 .36444 .90
 

12-23 .01918 3.24 .37324 3.61 .56908 3.20
 

24-35 .01062 1.86 .26929 2.55 .51196 2.90
 

36 1 ----.-.--.--.----..----.---


Constunt .06124 5.26 -1.4395 7.28 -1.98067 5.66
 

2

R = .03567 Log likelihood= 587.6639 (pseudo R =.0414) Log likelihood=-630.3.93 

Mean of dependent variable = .0286 Cni-squared r 228.5481, df = 8 (-2) (log likelihood ratio) 143.24, 

Standard error of regression = .1639 Sample size = ti14 (155 deaths) df = 9 

Samnle size = 5404 Sample size = 5404 (155 deaths)
 

Source: Ldoston et al. 1981,Tables I - 3.
 

http:likelihood=-630.3.93
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The results of the models are broadly similar. The signs of the coefficients 
are in most cases in the expected direction. Except for parity, which is never 
significant, coefficients have the same signs across models and their levels of 
significance are about the same. Male children initially have a higher probability 
of death but the negative interaction between sex and age indicates that their 
rate of mortality declines faster with age. Both mother's age and child's age are 
negatively associated with mortality. Prior birth interval as it increases, is 
expected to reduce the probability of death and the first two models agree wth 
this expectation although the logit model does not. 

The agreement among the three model is reassuring although it is not 
unexpected. The OLS model suffers from statistical limitations some of which-
were noted briefly above - which makes it theoretically somewhat unappealing, 
particularly since the estimated coefficients are very sensitive to the fact that 
there is a preponderance of observations in which a child lives (i.e. the 
dichotomous dependent variable is usually 0 and only in very few cases assumes a 
value of 1). However it is much cheaper to estimate than the alternative models 
and is "useful for an initial scanning of the relative importance of major 
variables," (Edmonston et al. 1981, p.6). The probit model is usually less costly 
than the logit model although the latter is often preferred because of its 
theoretical appeal (see Pindyck and Rubinfeld 1976). 

6.4 Discriminant Analysis 

Assume that a particular effort at collecting nutritional data in a certain 
country has had as its objective the collection of weight-for-age data on all 
preschoolers. These data could allow indicators of nutritional status to be 
derived for all the districts (about 1500) in the country. This information, apart 
from having a descriptive value, is hoped to be used by the government for 
purposes of targetting and possibly of evaluation. The coverage of the weighing 
program is uneven. For over half the districts no weight-for-age data are 
reported. For some of the remaining districts it is believed that the reported 
figures may not be very reliable if their coverage, i.e. the proportion of children 

weighed, is either too low or too high. When the coverage is too low, say below 
20 or 30 percent, the sample may be "unrepresentative" of the population of 
children in a district. On the other hand a coverage of more than about 90 
percent of the children may suggest that not all the children for whom weight

for-age data were reported were actually weighed. By specifying a range of 
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acceptable levels of coverage it is possible to identify several hundred districts 
whose weight-for-age data can be assumed to be adequately reliable. Along with 

this information, there exist some descriptive data on various characteristics of 
all districts in 'the country, much of it derived from a previous census. These 
include total population, popuiation density, number of villages, climatic 

conditions, information on major crops, total number of physicians, etc. A 

question of major interest can now be posed in the following general terms: given 
the information on nutritional status and descriptive data for several hundred 

districts is it ,ossible to determine the likely nutritional status in other districts 
with the knowledge of their descriptive characteristics? The answer is indeed 

yes and a formal technique that helps in this regard is discriminant analysis. 

In the situation above, and in many real-life situations that are similar, it 
is desired to find a set of characteristics that enable a researcher to distinguish, 

or discriminate, between two or more groups. These groups are defined a priori, 
i.e. before the techniques of discriminant analysis are used. For example, in the 

situation above we may distinguish two groups of districts: those with more 
than, say, 20 percent malnourished children and thos- with less than 20 percent. 

We may of course define more than two groups: districts with less than 10 
percent malnourished children, those with between 10 and 20 percent, between 

20 and 30 percent, etc. These groups of districts might exhibit different 

characteristics that can be used to tell them apart. Except for the criterion 

used in defining them, percent of malnourished children, it is unlikely that any 
single characteristic, say their size or income per capita, could completely 

distinguish them from one another. A collection of characteristics usually works 

better; even then it would be a rare instance if all districts could be correctly 
identified as belonging to a particular group. The purpose of discriminant 

analysis is to find a set of characteristics, or variables, that when used in 
combination, can best distinguish one group from another. To explain the 
essentials of the discriminant analysis it would be useful to confine ourselves to 

a situation with three groups: for example, districts with more than 45 percent 
malnourished children (worst affected), those with between 20 and 45 percent 

(moderately affected) and those with less than 20 percent (least affected). (For 

an introductory treatment of the two-group discriminant analysis, Nie et al. 
(.975) or Kleinbaum and Kupper (1978) may be consulted. More advanced 

exposition of the general technique is available in most books on multivariate 

analysis including Kendall 1975 and Green 1978.) 
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Suppose data are available on several "discriminating variables", xi, for 

each member of the three groups, such as on some district characteristics. Two 

(in this case) "discriminant functions", L1 and L2 , can be formed by linearly 

combining the standardized values of these discriminating variables: 

L. bg .- *- ,1x, /Z -

where p is the number of variables. If the values of b's were known, the above 
discriminant functions could be evaluated for each member of each group. There 

a'e as many values of L1 and L2 in each group as there are members and these 
values will in general be different from one another. However if the functions 
are to be able to best discriminate among the three groups on the basis of values 
of L1 and L2 , the b's should be chosen such that: 

(a) 	 The means of L1 values in the three groups are as different as 

possible; 

(b) 	 L1 and L2 are uncorrelated; 
(c) The three group means of L2 values are as different as possible. 
The discriminant functions above include all the variables on which data 

are available. This need not always be the case. It may well hap-c.n that only a 
few variables would be necessary, and additional variables would not add 
significantly to the discriminating power of the fun-tions. Computer programs 

such as SPSS provide options for the concurrent inclusion of all the variables or 
for several stepwise procedures that in general bring the variables into the 
functions one by one in the order of their contribution, measured according to 
one of several possible criteria. (For a discussion of alternative stepwise 

procedures, see Nie et al. 1975.) 

If the underlying assumptions of the method of discriminant analysis are 
met, statistical testing of the derived coefficients is possible. A discussion of 
these issues is not attempted here. However, there is a simple method of 

partially evaluating the results of a discriminant analysis. Once the discriminant 
model is specified, it can be used to classify those members already known to 
belong to each of the three groups. A measure of the probability of assigning a 
member to the wrong group is given by the error rate or the mis-classification 

rate. There are two such error rates, one for each group. These error rates 
usually overestimate the discriminating power of the analysis since they are 
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after all based, through the discriminant functions, on the knowledge of the 

actual classification. When the function is used to determine the groups to 

which unclassified members belong it is likely that the error rates would in fact 

be higher. 

One of the results of the discriminant analysis is a classification table 

which provides a measure of how well the model predicts. It can be seen in 

Table 20 that only 35 percent of the 815 districts whose nutritional group is 

known are correctly classified. This is not a very high percentage. The model 

has a tendency to allocate districts to extreme nutritional groups (worst and 

least affecteac. Howeker, the rate of correct classification of worst effected 

districts is 76 percent which is quite high. This model therefore is mt'.h more 

useful if it is used for the identification of the worst affected districts rather 

than of all types of districts. The model is relatively poor primarily because the 

correlation between the discriminating variables and prevalence of malnutrition 

in a district are not very high. There are 683 cases whose actual prevalence 

grouping is not known but they are predicted to belong to one of the three 

groups. The breakdown is given in the last row of the table. 

Another example comes from a rare application of this technique in the 

literature concerned with the nutritional status of children. In a study based on 

data from the nutrition module of the Kenyan Integrated Rural Survey 

(Hitchings/CBS 1979), Jon Hitchings attempts to identify the food group that 

best predicts which children had low, medium and high values of HA or of WH 

within each agroecological zone. Note that this application of the discriminant 

analysis has a different purpose than that described earlier. The purpose is not 

to classify districts in nutritional groups, but to find the most important food 

group that can discriminate among groups of children already known to belong to 

one or the other. The purpose is analysis, not classification. 

There are 1372 children in this study with their HA and WH calculated 

previously. These two indicators are used in turn to define three groups of 

children with low, medium and high nutritional status in the following way: 

Definition of Groups of Children by Nutritional Status 

Low Medium High 

First case HA <90% 90-95% > 95%
 
Second case WH < 90% 90-100% > 100%
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TABLE 20
 

CLASSIFICATION RESULTS OF DISCRIMINANT ANALYSIS
 

Actual No. of Predicted Nutritional Group
 
Nutritional Cases
 
Group Worst Moderately Least
 

Affected Affected Affected
 

Worst 66 50 8 8
 
affected (76%) (12%) (12%)
 

Moderately 650 236 187 227
 
affected (36%) (29%) (35%)
 

Least 99 22 31 46
 
affected (22%) (31%) (47%)
 

Unknown 683 246 188 249
 
(36%) (28%) (36%)
 

Proportion of known cases correctly classified = 50 + 187 + 46 35%
 

66 + 650 + 99
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The agroecological zones, the number of children in each zone, food groups and 

the average monthly frequency of their consumption by the children in each zone 

are given in Table 9.21. 

To gain an Lnr-Aerstanding of the problem more readily let us concentrate on 

the first zone (Tea West of Rift Valley) with 174 children. These children on the 

average consume cereals more frequently (48 times per month) than other food 

groups. Vegetables and milk are consumed about as often as each other but 

somewhat less frequently than the cereals. "Potatoes/Cas.,ava", "Bananas", 

"Beans", and "Meat/Fish/Eggs" food groups are however rare 7 used, on average 

only about one t(,two times a week. It is of course clear thri, as averages, these 

frequencies mask differences that may exist among the Lhildren in this zone. 

Using HA as an indicator, these children can be divided up into three groups with 

low, medium and high values of this ratio as defined above. It may be postulated 

that children in each group may have on average a specific consumption 

frequency pattern that is significantly different from the consumption patterns 

of the other two groups. For example those with low HA may tend to consume 

meat, fish and eggs less frequently than the children in the medium and high HA 

groups but rely more frequently on cereals for subsistence. The question of 

interest is to find one food group whose frequency of consumption best predicts 

the nutritional group to which a given child is likely to belong. 

In principle this question can always be answered for each zone and for 

each indicator, HA and WH. One may wish however to set a priori guidelines 

that result in statist,,ally significant results and also results that can be easily 

interpreted. Hitchir, chose to consider only the first food group with the 

highest discriminatory power in each zone which satisfies the following three 

criteria: 

1. 	 The average frequency of consumption in the low, medium and high 

groups follows a consistent pattern, i.e. the trend is either decreasing 

or increasing. Patterns like 5, 20 and 10 are not allowed; 

2. 	 The average difference in the consumption rates between the high 

and low groups is more than 10 times per month, i.e. a pattern such 

as 5, 7 and 9 is ignored; 

3. 	 The overall F-statistic for the food group exceeds 2.5. 



TABLE 21 

AVERAGE MONTHLY FREQUENCY OF FOOD GROUP CONSUMPTION 

BY ECOLOGICAL ZONE (PROBABLY UNDERESTIMATED) 

E 

Tea West of Rift Valley 

Coffee West of Rift 
Valley 

Upper Cottoni West of 
Rift Valley 

Zone 
Code 

1 

2 

3 

n 

174 

201 

246 

Cereals 

48 

41 

52 

Potatoes
Cassava 

7 

9 

13 

BananasBaansbeas 

5 

5 

6 

Beans 

7 

4 

3 

Vege-

es 

37 

29 

24 

Meat 

FishFs 

Eggs 

5 

7 

8 

Milk 

(Cow
(o 
Goat) 

36 

30 

23 

Tea East of Rift Valley 

Coffee East of Rift 
Valley 

Upper Cotton East of 
Rift Valley 

4 

5 

6 

93 

202 

60 

33 

37 

39 

22 

27 

17 

15 

14 

15 

30 

30 

23 

12 

21 

13 

532 

8 

8 

36 

19 

Lower Cotton East of 
Rift Valley 

High Altitude Grass
lands 

Coast 

7 

8 

I0/ii 

152 

114 

81 

53 

41 

43 

7 

30 

4 

4 

3 

4 

32 

6 

8 

7 

30 

11 

8 

5 

8 

36 

35 

27 

COMBINED ALL 1372 45 11 7 17 20 6 35 

*Note: Includes some zones not shown.
 
(H'itchings/CBS 1979, p. 1-5-10)
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The final results of the discriminant analysis are given in Table 9.22. Note 

that not all agroccological zones appear in the table. Furthermore, although 

both indicators HA and WH were considered in each zone, in no zone could food 

groups be found that satisfied the above criteria in the case of both indicators. 

It is also interesting to note that the data discriminated more often groupings 

defined according to WH than HA. Hitchings interprets this result as a 

reflection of the fact that consumption data and WH both pertain to recent 

events whereas HA reflects past nutritional status. Zones 10 and 11 were 

excluded since it was felt that the samples of children in these zones were too 

small. 

6.5 Factor Analysis and Principal Components Analysis 

In multivariate analysis a typical data set consists of n observations on p 

variables arranged in the format of an n x p matrix. An observation pertains to 

an entity such as a village, a household, an individual, etc. The variables refer to 

the measures of different characteristics of these entities. For example a figure 

of 32 in row 18 and column 4 of a data matrix might refer to the age of a 32

month-old child who is 18th in the listing of children. Age is the fourth variable 

recorded. These variables can be viewed as the elements of a p-element vector 

variable. The number of parameters associated with this vector variable is 2p + 

p(p-1)/2 of which p parameters refer to the means of the variables, another p 

parameters to their variances and the rest, p(p-1)/2, to the covariances, or more 

familiarly, correlations among all possible pairs of them. These correlations are 

ordinarily not zero since the variables are usually interdependent. It can easily 

be seen that the number of parameters to be estimated and interpreted rises 

extremely rapidly as the number of variahles, p, increases. It is also clear that 

the primary reason for this phenomenon lies in the existence of correlations 

among the intercorrelated variables. Given that such intercorrelations are 

common, how can one transform the data so as to construct an uncorrelated 

vector variable having 2p (or even fewer) parameters, p means and p variances? 

To give some intuitive meaning to this question consider a case where data 

on some 15 variables are available on many individuals. The choice of these 15 

variables is governed by a variety of considerations such as ease of 

measurement, usefulness for targetting purposes, etc. It often happens that 

several of these variables may actually measure more or less the same thing, say 

wealth of an individual. Type of housing, possessions in the household, education 
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TABLE 22
 

SUMMARY OF DISCRIMINANT ANALYSIS
 

OF FOOD GROUPS BY ECOLOGICAL ZONE
 

Mean Monthly 	 Con-
F Food
sumption Frequency


Ecological Nutrition 	
---

Stat-istic RankGroup
of Subgroups
Zone auriable Food Group 


Med- High
hium
 

Ecolc Var-iable 

Low 

1 HA Vegetables 27 35 43 5.2 1
 

41 48 8.6 1

2 WH Cereals 33 


3 WH Vegetables 34 25 19 6.8 1
 

---
4-7 None --

8 WH English
 
19 33 33 3.2 2
Potatoes 


-

10/11 Omitted -	 - 

'medium' and 	'high' subgroups for HA were less
NOTES: 1 	 The 'low', 

than 90 per cent, 90-95 per cent and more than 95 per cent.
 

The other groups
The 'low' group was the same for WH. 

Children in
 were 90-100 per cent, more than 100 per cent. 


zone I having an HA below 90 per cent took vegetables 
an
 

average of 27 times a month.
 

1 means that 	no other food group in
2 A food group rank of 

the zone had a higher overall F-statistic with respect 
to
 

that nutrition variable.
 

The tubers in zone 8 are known to be English potatoes, 
not
 

3 

cassava or sweet potatoes.
 

(Hitchings/CBS 1979, p. I5-10)
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of the household head, etc. are normally expected to be highly correlated not 

only among themselves but also individually with wealth. In one way or another 

they are all measures of wealth. Several others of the 15 variables may in turn 

be various measures of another "factor" such as household composition which 

may be deemed to be essentially independent of the other "factoL", wealth. It 

would be helpful if these factors could be identified. The advantages of 

transforming the original variables in this manner are that, first, the number of 

variables could be reduced substantially to a smaller number of important 

"factors" and, second, the intercorrelations among pairs of original variables can 

be removed by finding relatively independent factors. 

Factor analysis (FA) consists of a set of techniques that can sometimes 

provide useful transformation of the original data resulting in new insights into 

their structure. It is based on the premise that a few underlying factors account 

for the covariances (or correlations) among the observed variables which are 

comparatively more numerous. Its purpose is to identify these underlying factors 

from the knowledge of the correlations among the observed variables. An 

attempt is then made to understand and interpret the nature of these factors as 

well as to name them. This is usually the end of factor analysis. The results 

however can be used in further analytical stages employing other techniques. 

Identifying and interpreting underlying factors is easier said than done and, 

besides, the theoretical underpinnings and usefulness of factor analysis have been 

questioned (see, e.g., Williams 1971 and the references given therein). However 

the idea of trying to reduce the dimensionality of data by combining variables to 

construct fewer, relatively uncorrelated, composite variables can be of great 

practical value. This brings us to another multivariate technique, the principal 

components analysis (PCA), which has a lot in common with factor analysis. In 

fact the PCA is one means of finding the factors in factor analysis. The purpose 

of PCA is to find p uncorrelated linear functions of the original variables called 

"principal components". There are as many principal components as there are 

original variables and their advantage over the original variables stems from the 

fact that they are constructed in such a way as to be independent of one another. 

Furthermore, the "first" principal component is chosen so as to maximize the 

amount of variation in the original data that it can account for. The "second" 

principal component is sought such that, subject to being uncorrelated with the 

first component, explains as much of the remaining variation in the original data 

as possible. The "third" principal component is uncorrelated with the first two 
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and maximizes the amount of variation explained of the remainder, and so on. 

The pth principal component accounts for the rest of the variation and is 

uncorrelated with all the other components. 

It may be useful to point out some areas of application of principal 

components analysis. It should be noted that the number of uncorrelated 

principal components is always equal to that of the original observed variables. 
Since the correlations in the observed variables are removed by the construction 

of the principal components the number of parameters to be found is 

considerably reduced. But this is almost never the end of the story. The main 
purpose of the PCA is to reduce the dimensionality of the original data. Suppose 
that the first few principal components account for much of the variation in the 
original data. For instance, consider a situation where the first two or three 
principal components explain about as much of the variation in HA as do the 10 
or 15 observed variables from which the principal components are derived. It 

would then be possible to discard, at the expense of a little loss in accuracy, all 
but the first few principal components which are then taken to represent a larger 
number of correlated observed variables. This procedure is, for example, 
sometimes recommended to deal with the problem of multicolinearity in 
regression analysis. This use of the technique may, however, give rise to some 
difficulties in interpretation. A principal component is a composite variable that 
lumps together variables with possibly different units. Altering the units by 

which the observed variables are measured can furthermore result in different 
sets of principal components which is an obviously serious drawback. One can 
usually get around these problems by standardizing all the original variables 
before any principal components are extracted. Standardized units are, however, 
sometimes awkward to work with. 

The choice of the first few principal components can have more useful 

applications. We cite two examples from the literature relating to nutritional 
status and basic needs. The first pertains to a suggestion by E.P. Lozy (1972a) 

to the effect that the first two principal components derived from 

anthropometric and/or biochemical tests could be interpreted as "size" and 
"shape" factors, respectively. The size factor conveys an overall picture of the 

nutritional status, whereas the shape factor might provide an indication of 

whether a malnourished child is heading along the marasmus or kwashiorkor "line 
of development". In another short paper (1972b) he examines the first three 

principal components extracted from a correlation matrix derived from 
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measurements of eight anthropometric variables by Robinow and Jelliffe (1967). 

He finds that the first component is the sum of eight observed variables with 

almost identical weights. This component is the "size" factor above and explains 

some 60 percent of the variation in the measured variables. The second and 

third components account for 13 and 9 percent of the variation, respectively, and 

are taken together to represent the "shape" factor. 

The second example relates to a study of basic needs performance in 110 

less developed countries by Sheehan and Hopkins (1979). Data available to them 

pertain to eight basic needs output indicators: calorie consumption, protein 

consumption, population per doctor, population per nurse, life expectancy, infant 

mortality, literacy and primary school enrollment rate. They used the principal 

components technique to seek out the "best" indicators of basic needs 

performance from among the above eight indicators. Their results are 

reproduced in Table 23. The first two components account for slightly more than 

three-fourths of the total variation in basic needs output indicators. In the first 

the three indicators life expectancy, infant mortality and literacy rate figure 

prominently. The second component is heavily influenced by calorie and protein 

consumptions. These two being highly correlated, they conclude that the four 

indicators of life expectancy, infant mortality, literacy rate and calorie 

consumption are sifficient to represent the totality of output indicators, albeit 

not perfectly. This reduction in the number of indicators is a simplifying step to 

reduce data to manageable proportions. These four indicators are used in their 

work as input into a further stage utilizing discriminant analysis. 

6.6 Cluster Analysis 

Consider a multivariate n x p matrix wherein observations on p variables 

referring to a collection of n individuals, households, objects, or simply entities, 

are recorded. The number of entities n, is usually far larger than the number of 

variables, p. A typicl sample survey, for eXample, might provide data on 

several characteristics of a few hundred localities or a few thousand households. 

In reporting a summary of such data, or for purposes of analysis, observed 

entities are ordinarily classified or grouped according to one or several given 

criteria. The choice of such criteria is naturally guided by the type of 

information it is desired to convey. In this sense the choice is fairly arbitrary. 

One may be interested, for instance, in grouping the prevalence cf second and 

third degree malnutrition by location (municipality, province, et--.), by income 
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T.CLE 23
 

12 jjUts of principal component analysis 
2f 1asic__q~4a outputp.ndicators 

VaLiable 
(all were 1970) 

Factors 

1 2 3 4 5 6 7 8 

Calorie consump
tiorn .2Q .86 -.17 -.13 .22 .01 .08 .31 

Protein con
sumption 

Population per 
doctor 

Population per 

nurse 

.17 

-. 35 

-.17 

.96 

-.09 

-.14 

-.01 

.90 

.13 

-.10 

.15 

.96 

.O 

-.18 

-.10 

.03 

-.03 

-.01 

-.01 

-.03 

-.01 

-.17 

-.02 

-.01 

Life expectancy .77 

Infant mortality -. 87 

Literacy .77 

Primary enrol
m'r.t rate .51 

.33 

-.17 

.25 

.19 

-.29 

.27 

-.26 

-. 26 

-.11 

.23 

-.12 

-.17 

.25 

-.20 

.34 

.78 

.36 

.15 

.06 

.03 

.07 

.14 

.38 

.04 

.00 

-.01 

.05 

.02 

Eigen value 

% of variation 
explained 

4.87 

60.9 

1.22 

15.3 

.79 

9.8 

.45 

5.6 

.30 

3.7 

.17 

2.2 

.13 

1.6 

.07 

0.9 

(Sheehan and Hopkins 1979, p.55) 
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bracket, by household size, etc. or by a combination of such criteria. 
Sometimes, however, it may be interesting to ask whether, given the data on the 
measured variables, there exist ioentifiable or "natural" groupings or "clusters" 
among the observed entities. In other words, we may wish to find out if the 
collective information on the observed entities can lead to the emergence of a 
(new) classification or pattern of clusters having an interesting feature. 
Techniques of cluster analysis are designed to respond to this question. 

There is a multitude of clustering methods proposed in the literature (see 
Everitt 1974 and 1977). This is in large part due to the fact that no consensus 
exists as to what constitutes a cluster. Roughly speaking, a cluster is a 
collection of more or less homogeneous entities. Most methods of clustering are 
able to form clusters of similar entities, even from very large data sets, but 
there is no guarantee that they all yielV same result. This can be something 
of a nuisance since the choice of an approriate technique is by no means 
straightforward. We shall, however, ignore such problems here since our main 
concern is only to introduce the subject of cluster analysis. 

The available methods of cluster analysis are, in most cases, nonstatistical 
in the sense that no distributions or inferences are involved and no hypotheses 
are tested. Instead, the application of some technique or other to the data, 
often treated as the population rather than a sample, is expected to generate one 
or more hypotheses which will subsequently be tested. As such, cluster analysis 
can serve as a preliminary step to organize, summarize and/or describe the data 
so that statistical techniques of analysis can then be used. 

The inital stage in most clustering methods 1,; to seek a measure of 
distance, or alternatively of similarity, between pairs of observed entities on the 
basis of the values of their characteristics. A common example of the former is 
Euclidean distance, dij , defined as: 

C. II?/ 

where xik is the value of the kth characteristic for the ith entity. This means, in 
its simplest form, the difference between values in two cells of a matrix. The 
larger the "distance" between two entities, the greater is the dissimilarity 
between them, and the smaller the "distance", the more alike they are assumed 
to be. Alternatively one could measure the same thing through some kind of 
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similarity coefficient, ordinarily assumed to take a value in the range 0 to 1. 
Pearson's product moment correlation coefficient is, for example, a well-known 

coefficient of similarity. From one such measure one can form an n x n matrix 
of pairwise distance or similarity coefficients (a correlation matrix). If the 
number of entities, n, is not large, clusters may be formed merely by inspection 

of the distance or similarity measure (for an example see Kendall 1975, pp, 34
5). Usually, however, the task is performed by a computer. But it has to be told 

first how to do it. 

To appreciate better the concept of cluster analysis let us take a simple 

illustration of a pa-ticular clustering technique known as group average 
clustering. Consider the following 6 x 3 data matrix which refers to six entities 
or individuals on whom the values of three characteristics are recorded (e.g. size 

of household, number of cows, monthly income or some such variable): 

4 9 0 
1 2 5 

9 7 8 

x 3 0 0 

6 6 2 
9 8 1 

Our first job is to compute a matrix of Euclidean distances between all possible 
pairs of these six entities. As an example, the distance between the second and 

last entities is calculated as follows: 

d2 6 =1-9)2 + (28)2 + (5-1)2 = 10.77 

An observant reader may object that we are here mixing apples and oranges. To 
deflect this criticism each variable can be standardized first to remove the 

effect of the measurement units (the usual approach) or a weighting scheme 
introduced or both. To get the main point across and to keep the numbers simple 

these corrections are ignored for the moment. The resulting distance matrix, D1 , 
is then: 1 2 3 4 5 6 

1 0 9.11 9.64 9.06 4.12 5.20 

2 0 9.90 5.74 7.07 10.77 
3 0 12.21 6.78 7.07 

D0 : 4 0 7.00 10.05 

5 0 3.74 
6 0 
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To begin with, assume that each entity constitutes a cluster. There are six of 

them now. Our immediate purpose is to join the two clusters that are closest to 

each other, i.e. the two clusters that are more similar than any other two 

clusters. Excluding diagonal zeros which represent the distance of a cluster to 

itself, the two closest clusters are 5 and 6 since their distance of 3.74 is the 

smallest number in Dl. Joining these two reduces the number of clusters by one 

from six to five. 

Next it is necessary to compute a new distance matrix D2 pertaining to the 

five clusters we now have. The distances between any pair of the first four 

clusters are still the same since they are single-membered. They can be lifted 

directly from DI . We have to compute, however, the distances between each of 

these four and the last cluster containing two members, In group average 

clustering the rule is to take the arithmetic average of distances from a single

membered cluster to each of the members of the multi-membered cluster to 

represent the distance between the two cluster. For instance, the distance 

between the second cluster and the last cluster containing entities 5 and 6, is 

given by: 

d2 ,( 56 ) = 1/2 (d2 5 + d 2 6 ) = 1/2 (7.07 + 10.77) = 8.92 

Similar calnulations give the distances between each of clusters 1, 3 and 4, and 

the last two-membered cluster. The new 5 x 5 distance matrix D2 is given by: 

1 
2 

1 
0 

2 
9.11 

0 

3 
9.64 
9.90 

4 
9.06 
5.74 

(56) 
4.66 
8.92 

D2 = 3 

4 

0 12.21 

0 

6.92 

8.52 

(56) o 

Since the smallest number in D2 is 4.66 a new three-membered cluster is formed 

by joining the first and the last clusters together. A new 4 x 4 distance matrix 

D3 , is formed along the same lines as set out above and the result is: 

2 3 4 (156)
 

2 0 9.90 5.74 8.98 

3 0 12.21 7.83 
DS3 4 f 0 8.7
 

(156)0
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The next new cluster is formed by joining single-membered clusters 2 and 4 since 
their distance, 5.74, is the smallest number in D3. We now have three clusters, 

namely: 

Cluster 1 Cluster 2 Cluster 3 

Members 2,4 3 1,5,6 

The corresponding distance matrix, D4 , is computed to be: 

(24) 3 (156) 

(24) F0 11.06 8.84] 
D4= 3 0 7.83 

(156) L 

where, for example, d( 2 4 ), (156) is calculated in the following way: 

d( 2 4 ), (156) = 1/6 (d2 1 + d 2 5 + d 26 + d4 1 + d4 5 + d4 6 ) = 

(1/6)(9.11 + 7.07 + 10.77 + 9.06 + 7.00 + 10.05) = 8.84 

In the next step, the cluster containing entity 3 joins the last cluster and the 
final step fuses the two remaining clusters into one containing all six entities. 

The series of steps above can be visualized with the aid of a dendrogram 
which is a diagram showing the fusion of clusters at each step of the procedure. 
For our example of group average clustering the dendrogram is shown below: 

Group Average Clustering Dendrogram 

9.40 

7.83 

S.74 _ 

4.66 

4 3.74 

0.00 

2 3 1 51 

6; 4 / 

http:1/6)(9.11
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The group average clustering is one example of a large r-Imber of 

hierarchical methods which begin by considering each entity as a single-member 

cluster. At each stage of the procedure the two closest clusters are joined 

together until a single cluster encompasses all entities. There are n - 1 such 

stages. Hierarchical techniques can also be worked backwards. Initially, a single 

cluster contains all entities. Successive stages then break it down into smaller 

and smaller clusters. The tui-mer are referred to as agglomerative methods and 

the latter are known as divisive methods. 

In contrast to the hierarchical methods, optimization methods of clustering 

attempt to partition the observed entities in such a way as to optimize a given 

clustering criterion. Many such criteria have been proposed and one common 

ext- ple is the minimization of thi total of sums of squares within all clusters. 

Clearly the variety of possible criteria that one can conceive, the number 

of clusters to be had, the rules of aggregation of clusters and a host of other 

related factors give rise to a large number of techniques of cluster analysis. No 

comprehensive review of the comparative advantages and disadvantages of these 

techniques seems to be available yet. 

The use of cluster analysis as a tool for aggregating observations in 

nutrition related studies has so fpr been infrequent. One such application is that 

by Crawford and Thorbecke (1978). They make an attempt to identify regional 

poverty groups in Kenya using the data for a sample of 139 sublocations, each 

with 12 households, from the Integrated Rural Survey carried out in 1974/75 and 

published in 1977. The variables of interest to them were only two: total 

household consumption and geographical location. However, other variables such 

as indicators of nousehold amenities and access to government services could 

have been included as well. Their purpose is to find the grouping scheme that 

minimized the within-cluster variance by comparison to the variance between 

clusters. A fixed number of clusters ranging from five to twelve were set in 

each run. The geographical location is identified by latitude and longitude and a 

scaling factor of 1:50:50 was applied to the consumption, latitude and longitude 

respectively. In their words, "in spite of the heavy weight given to the 

geographical variables, the program generated a set of clusters that were 

relatively homogeneous in terms of consumption levels, but not in terms of 

geographical location" (ibid, p. 15). To them this result points to the diversity 

of rural Kenya, with rich and poor found in the same region. The regional 

clusters, while reflecting rather homogeneous consumption levels are, they point 
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out, "inconveniently shaped from the standpoint of targetting programs to meet 
the needs of their inhabitants". The pattern of regional distribution of welfare 
levels as a result of the application of cluster analysis does not appear to suggest 
any underlying causal mechanism but they regard the method of cluster analysis 
"promising in general". 

It may be helpful here to contrast the methods of factor analysis and 
cluster analysis. Consider a multivariate data matrix with the sample or 
population entities appearing in rows and the observations on variables relating 
to them in columns. From the discussion of these two techniques it is seen that 
factor analysis attempts to find a useful grouping of the variables (columns), 
whereas cluster analysis seeks to find useful groupings of the entities on which 
observations are made. While the rationale for these two techniques are entirely 
different it should be clear that there are some similarities between them. In 
essence they are both methods of classification, one of variables and the other of 
observed entities. The parallel between them may suggest that it should be 
possible to use factor analysis to group observations and cluster analysis to find 
groupings of variables. This is indeed the case although the interpretation of the 
first is not clear. An example of the application of cluster analysis to group 
variables is given by Kendall (1975). The problem is usually much simpler since 
the number of variables is often fairly small and the mere inspection of the 

correlation matrix is sufficient to give the required groupings. 
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