PN-AAP-782/22 1510-34257

# INTERNATIONAL FEED DATABANK SYSTEM

An Introduction Into the System with Instructions For Describing Feeds and Recording Data



- L. E. HARRIS, Director, International Feedstuffs Institute, Professor of Nutrition, Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah 84322 USA
- H. HAENDLER, Director, Dokumentationsstelle der Universität Hohenheim, Paracelsusstrasse 2, Postfach 70 05 62, 7000 Stuttgart 70, Federal Republic of Germany
- R. RIVIERE, Institut d'Elevage et de Médecine Vétérinaire des Pays Tropicaux, 10 Rue Pierre-Curie, 94700 Maisons-Alfort, France
- L. RECHAUSSAT, Institut d'Elevage et de Médecine Vétérinaire des Pays Tropicaux, 10 Rue Pierre-Curie, 94700 Maisons-Alfort, France

# NOTE: This publication may be ordered from Members of the International Network of Feed Information Centers

#### **Reference Citation**

Harris, L. E., H. Haendler, R. Rivière, L. Réchaussat, 1980. International feed databank system; an introduction into the system with instructions for describing feeds and recording data. International Network of Feed Information Centers. Publication 2. Prepared on behalf of INFIC by the International Feedstuffs Institute, Utah Agricultural Experiment Station, Utah State University, Logan, Utah, USA 84322

International Standard Book Number \_\_\_\_\_087421-103-4

Library of Congress Catalog Card Number \_\_ 80-81687

Published by the International Network of Feed Information Centers (INFIC) Copyright November 1980

## Cooperating International Network of Feed Information Centers (INFIC)

Agriculture Canada, Research Branch, Ottawa, Ontario, CANADA K1A OC6 Dr. Jack Aitken, Research Coordinator

Arab Centre for the Studies of Arid Zones and Dry Lands (ACSAD), Animal Science Division, P.O. Box 2440, Damascus, SYRIA Dr. Mohamad F. A. Farid, Head, Nutrition Section

Australian Feeds Information Centre, Commonwealth Scientific and Industrial Research Organization (CSIRO), P.O. Box 239, N.S.W., 2148, AUSTRALIA Dr. T. F. Leche, Director

College of Fisheries, University of Washington, Seattle, Washington 98195, USA Dr. J. E. Halver

Dokumentationsstelle der Universität Hohenheim, Paracelsusstrasse 2, Postfach 70 05 62 7000 Stuttgart 70, FEDERAL REPUBLIC OF GERMANY Dr. H. Haendler, Director; Mr. F. Jager

Institut d'Elevage et de Médecine Vétérinaire des Pays Tropicaux, 10 Rue Pierre-Curie, 94700 Maisons-Alfort, FRANCE Dr. J. F. Giovannetti

Instituto Interamericano de Ciencias Agricolas (IICA), Apartado 10281, San Jose, COSTA RICA Dr. R. Martinez-Ferrate, Associate Deputy Director General for External Coordination

International Feedstuffs Institute (IFI), Utah State University, Logan, Utah 84322, USA Dr. Lorin E. Harris, Director; Mr. Leonard C. Kearl, Associate Director; Dr. Paul V. Fonnesbeck, Assistant Professor, Animal, Dairy and Veterinary Sciences

Korean Feedstuffs Institute, College of Agriculture, Seoul National University, Suweon, 170-00, KOREA Dr. In. K. Han

Ministry of Agriculture, Fisheries and Food, Great Westminster House, Horseferry Road, London, 2W1P 2AE, UNITED KINGDOM Mr. G. Alderman

Philippine National Feeds Information Centre (PNFIC), Department of Animal Science, University of Philippines at Los Banos, College, Laguna, PHILIPPINES Dr. R. G. Zamora, Project Leader

Tropical Products Institute, 56/62 Gray's Inn Road, London WC1X 8LU, UNITED KINGDOM Mr. B. S. Capper

Universidade de Lisboa, Cidade Universitaria, Lisbon, PORTUGAL Dr. Ribeiro

Universiti Pertanian Malaysia, Faculty Veterinary Medicine and Animal Science, Serdang, Selangor, MALAYSIA Dr. S. S. Jalaludin, Dean Faculty Veterinary Medicine and Animal Science

## **Consultants or Contributors**

Mr. G. Alderman, Senior Scientific Advisor, Ministry of Agriculture, Fisheries, and Food, Great Westminster House, Horseferry Road, London SW1 T2AE, England

Dr. C. C. Balch, National Institute for Research in Dairying (NIRD), Shinfield, United Kingdom

Dr. T. F. Leche, CSIRO, Division of Animal Production P.O. Box 239, Blacktown N.S.W. 2148, Australia

Dr. L. Mayer, P.O. Box 460, Koror, Palan, West Caroline Islands, US-Tr. Terr., Pacific Is. 96940

Dr. V. A. Oyenuga, Ibadan University, Nigeria

Dr. A. J. H. van Es, Institute for Livestock Nutrition Research "Hoorn," Lelystad, Netherlands

### Acknowledgements

• ,

The following organizations have assisted financially or technically in the development of INFIC:

Agency for International Development, Livestock Division, Washington, D.C., USA

11

. . . .

Agriculture Canada, Research Branch, Ottawa, Canada

Sec. is

Bundesministerium fuer wirt chaftliche Zusammenarbeit, Bonn, Federal Republic of Germany

Dokumentationsstelle der Universität Hohenheim, Stuttgart, Federal Republic of Germany

FAO, Animal Production Service, Animal Production and Health Division, Food and Agriculture Organization of the United Nations, Via delle Terme di Caracalla, 00100, Rome, Italy

Institut d'Elevage et de Médecine Vétérinaire des Pays Tropicaux (IEMVT), Maisons-Alfort, France

1

1 1 Y 6

Institut für Dokumentationswesen, Frankfurt, Federal Republic of Germany

International Feedstuffs Institute, Utah Agricultural Experiment Station, Utah State University, Logan, Utah, USA

## Contents

|       | COOPERATING INTERNATIONAL NETWORK OF FEED INFORMATION<br>CENTERS (INFIC)                          |
|-------|---------------------------------------------------------------------------------------------------|
|       |                                                                                                   |
|       | ACKNOWLEDGEMENTS · · · · · · · · · · · · · · · · · · ·                                            |
|       | SUMMARY · · · · · · · · · · · · · · · · · · ·                                                     |
| 1.    | INTRODUCTION TO THE INFIC SYSTEM • • • • • • • • • • • • • • • • • • •                            |
| 1.1   | Background · · · · · · · · · · · · · · · · · · ·                                                  |
| 1.2   | The International Network of Feed Information Centers (INFIC)                                     |
| 1.3   | The Aims of the International Network of Feed Information Centers (INFIC)                         |
| 1.4   | Membership of INFIC • • • • • • • • • • • • • • • • • • •                                         |
| 1.5   | Geographic Responsibilities of INFIC · · · · · · · · · · · · · · · · · · ·                        |
| 2     | INTERNATIONAL SYSTEM FOR DESCRIBING AND NAMING FEEDS                                              |
| 2.    |                                                                                                   |
| 2.1   | The International Feed Description                                                                |
| 2.1.1 | The INFIC Feed Thesaurus                                                                          |
| 2.1.2 | The Facets of the International Feed Description       • • • • • • • • • • • • • • • • • • •      |
|       | Facet 2: Parts of the Material Used as Feed as Affected by Process                                |
|       | Facet 3: Processes or Treatments the Material has been Subjected to                               |
|       | Facet 4: Stage of Maturity                                                                        |
|       | Facet 5: Cutting or Crop · · · · · · · · · · · · · · · · · · ·                                    |
|       | Facet 6: Grade (Quality) • • • • • • • • • • • • • • • • • • •                                    |
| 2.1.3 | The International Feed Description and the International Feed Description File                    |
| 2.2   | Feed Classes                                                                                      |
| 2.3   | The Feed Description File and the International Feed Number • • • • • • • • • • • • • • • • • • • |
| 2.4   | International Feed Names • • • • • • • • • • • • • • • • • • •                                    |
| 2.5   | Country or Regional Feed Names • • • • • • • • • • • • • • • • • • •                              |
| 2.6   | Rules for Naming Pasture • • • • • • • • • • • • • • • • • • •                                    |
| 2.0   |                                                                                                   |
| 3.    | INTERNATIONAL SYSTEM FOR RECORDING FEED DATA                                                      |
| 3.1   | Methods of Collecting Feed Composition Data                                                       |
| 3.2   | International Source Form for Recording Data                                                      |
| 3.2.1 | Card 10 Origin of Data, Origin of Sample and Description of Feed Sample • • • • • • 9             |
| 3.2.2 | Card 21 Quality of Feed, Soil and Fertilization                                                   |
| 3.2.3 | Card 22 Plant Height and Feed Storage • • • • • • • • • • • • • • • • • • •                       |
| 3.2.4 | Card 24 Environmental Pollution and Pesticides • • • • • • • • • • • • • • • • • • •              |
| 3.2.4 | Card 30 Digestibility Trial                                                                       |
| 3.2.6 | Card 4 Chemical and Biological Data                                                               |
| J     |                                                                                                   |

| 3.3   | Attribute Deck                                                                        |
|-------|---------------------------------------------------------------------------------------|
| 3.4   | Duplicate Copy of Source Form .                                                       |
| 3.5   | Card Formats and Their Use                                                            |
| 3.6   | Definitions for Energy Terms                                                          |
| 3.6.1 | Units of Measurement                                                                  |
| 3.6.2 | Explanation of Terms Under Conventional Scheme and True Energy Distribution Scheme 19 |
| 3.6.3 | Conventional Scheme                                                                   |
| 3.6.4 | True Energy Distribution Scheme                                                       |
| 4.    | PROCESSING OF INFORMATION IN THE DATABANK                                             |
| 4.1   | Storage of International Feed Descriptions and Data                                   |
| 4.2   | Preparing International Feed Descriptions and Data for Publication                    |
| 4.3   | Calculation of Averages and Derived Values                                            |
| _     |                                                                                       |
| 5.    |                                                                                       |
| 5.1   | Compilation of Feed Composition Tables                                                |
| 5.2   | Retrieval of Data for Individual Use                                                  |
| 5.3   | Different Access to the Databank                                                      |
| 5.4   | Statistical Use of the Databank                                                       |
| 5.5   | Exchange of Data                                                                      |
|       | REFERENCES                                                                            |

#### LIST OF TABLES

|                                           |                                                                                                                                                                                                                                                                                          | 34                                     |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| 1.1                                       | Responsibilities of INFIC Centers                                                                                                                                                                                                                                                        |                                        |
| 2.1                                       | Examples From the International Feed Thesaurus, Facet 1: Original Material,<br>Main Part                                                                                                                                                                                                 | 35                                     |
| 2.2                                       | Examples From the International Feed Thesaurus, Facet 1: Original Material,<br>Auxiliary Part                                                                                                                                                                                            | 36                                     |
| 2.3                                       | Examples From the International Feed Thesaurus, Facet 2: Parts                                                                                                                                                                                                                           | 37                                     |
| 2.4                                       | Examples From the International Feed Thesaurus, Facet 3: Processes                                                                                                                                                                                                                       | 38                                     |
| 2.5                                       | Examples From the International Feed Thesaurus, Facet 4: Stage of Maturity                                                                                                                                                                                                               | 39                                     |
| 2.6                                       | Examples From the International Feed Thesaurus, Facet 6: Grades (Quality · · · · ·                                                                                                                                                                                                       | 39                                     |
| 2.7                                       | Examples of International Feed Descriptions (English, German, French)                                                                                                                                                                                                                    | 40                                     |
| 2.3                                       | Examples of International Feed Descriptions                                                                                                                                                                                                                                              | 41                                     |
| 2.9                                       | Feed Classes                                                                                                                                                                                                                                                                             | 42                                     |
| 2.10                                      | Examples of International Feed Descriptions, International Feed Names, and Country<br>Names From the International Feed Description File                                                                                                                                                 | 43                                     |
| <b>2.11</b> a                             | Part Descriptors Changed or Deleted When Composing the International Feed Name From the International Feed Description                                                                                                                                                                   | 44                                     |
| <b>2,11</b> b                             | Parts Listed in Table 2.11a · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                          | 46                                     |
| <b>2.12</b> a                             | Process Descriptors Changed or Deleted When Composing the International Feed Name From the International Feed Description                                                                                                                                                                | 48                                     |
| 2.12b                                     | Processes Listed in Table 2.12a · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                    | 50                                     |
| 2.13                                      | Examples of International Feed Descriptions for Forage Type Plants Used as Pasture, Hay and Silage                                                                                                                                                                                       | 52                                     |
|                                           |                                                                                                                                                                                                                                                                                          |                                        |
| 2.14                                      | Forage Type Plants Grazed in the Western United States USA ••••••••••••••••••••••                                                                                                                                                                                                        | 52                                     |
| 2.14<br>2.15                              | Example International Feed Descriptions for Forage Types Grazed                                                                                                                                                                                                                          | 53                                     |
|                                           | Example International Feed Descriptions for Forage Types Grazed                                                                                                                                                                                                                          |                                        |
| 2.15                                      | Example International Feed Descriptions for Forage Types Grazed                                                                                                                                                                                                                          | 53<br>54<br>55                         |
| 2.15<br>2.16                              | Example International Feed Descriptions for Forage Types Grazed                                                                                                                                                                                                                          | 53<br>54<br>55<br>56                   |
| 2.15<br>2.16<br>2.17                      | Example International Feed Descriptions for Forage Types Grazed<br>Examples of International Feed Descriptions for Forage Types Which are Grazed or Cut for Hay<br>Examples of International Feed Descriptions for Forage Type Plants Grown on Extensively or<br>Intensively Grazed Land | 53<br>54<br>55<br>56<br>57             |
| 2.15<br>2.16<br>2.17<br>3.1               | Example International Feed Descriptions for Forage Types Grazed                                                                                                                                                                                                                          | 53<br>54<br>55<br>56<br>57<br>58       |
| 2.15<br>2.16<br>2.17<br>3.1<br>3.2        | Example International Feed Descriptions for Forage Types Grazed                                                                                                                                                                                                                          | 53<br>54<br>55<br>56<br>57<br>58<br>59 |
| 2.15<br>2.16<br>2.17<br>3.1<br>3.2<br>3.3 | Example International Feed Descriptions for Forage Types Grazed                                                                                                                                                                                                                          | 53<br>54<br>55<br>56<br>57<br>58       |

#### LIST OF TABLES (continued) ,

| 3.7 | Brand of Pesticide                                                                                                                                                        |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3.8 | Animal Breeds                                                                                                                                                             |
| 3.9 | List of Attributes and Codes                                                                                                                                              |
| 4.1 | Facets, Elements, and Descriptors which Portray the International Feed Description,<br>International Feed Name, and Country Names                                         |
| 4.2 | Example of Individual Source Data Printed Out by Bibliographic Reference Number and Source Form Number                                                                    |
| 4.3 | Regression Equations to Estimate Total Digestible Nutrients                                                                                                               |
| 4.4 | Equations Used to Estimate Digestible Protein (Y) From Protein (X) for Five<br>Animal Kinds and Four Feed Classes                                                         |
| 4.5 | Conversion of $\beta$ Carotene to Vitamin A for Different Species                                                                                                         |
| 5.1 | Atlas Format for Tables of Feed Composition                                                                                                                               |
| 5.2 | Example Table with International Feed Names Listed Alphabetically, followed by Scientific<br>Names. Data Expressed (1) As Fed (2) Moisture Free                           |
| 5.3 | Example Table with Scientific Names Listed Alphabetically, followed by International Feed<br>Names. Data Expressed (1) As Fed (2) Moisture Free                           |
| 5.4 | Example Table with International Feed Names Only, Listed Alphabetically. Data<br>Expressed (1) As Fed (2) Moisture Free                                                   |
| 5.5 | Example Table with Scientific Names Listed Alphabetically, followed by Indonesian Feed<br>Names and International Feed Names. Data Expressed (1) As Fed (2) Moisture Free |
| 5.6 | An Example of a Computerized Diet                                                                                                                                         |

### LIST OF FIGURES

| LIST | OF FIGURES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3.1  | Feed samples should be labeled with this information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3.2  | This source form may be used to describe the feed sample and record data for card formats, 10, 21, 22, 24, 30 and 4 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3.3  | This source form may be used to describe the feed sample and record data from card formats 10, 30 and 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3.4  | Map of fishing areas (the numbers on the map are the codes for fishing areas)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3.5  | The partition of energy according to the conventional scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3.6  | The utilization of energy (scheme to show where we is a set of the |
| 3.7  | Conventional biological partition of feed energy in fish · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

### Summary

An International Network of Feed Information Centers (INFIC) has been organized to contribute to more efficient animal production by establishing feed information Centers at strategic locations for the dissemination of data throughout the world.

INFIC has developed an International System to describe feeds, record chemical and biological data about feeds, and to code the data so it can be stored, summarized, retrieved, and printed in flexible formats. On-line data is available for calculating diets to obtain maximum profit.

An International Feed Description, which is the basis for a clear identification of feeds, is made up by combining descriptors of six facets:

- 1. original material (plant, animal or other basic material)
- 2. parts of the material used as feed
- 3. processes or treatments the material has been subjected to
- 4. stage of maturity
- 5. cutting or crop (for plants only)
- 6. grade (quality)

International Feed Names have been formulated for use in feed composition tables.

Also, according to their physical and chemical characteristics, feeds are grouped into eight classes as follows:

- 1. dry forages and roughages
- 2. pasture, range plants, or forages feed green

- 3. silages
- 4. energy feeds
- 5. protein supplements
- 6. mineral supplements
- 7. vitamin supplements
- 8. additives

Each feed is assigned a 5-digit international feed number, which links the chemical and biological data and the feed descriptions, the International Feed Names and other names together. Usually when printouts or tables are prepared, the feed class number (one digit), previously mentioned, is entered in front of the International feed number.

Apart from the identification of the feed, every attribute which has resulted from an analysis requires identification. A coding system with three digit codes identifies each attribute; examples are: dry matter, code 101; protein, code 109; calcium, code 530.

An extended system for describing factors which have, or may have, influenced the feed value of a sample (specific characteristics) has also been elaborated, for example, country, soil, fertilizer.

This publication describes the INFIC system and gives instructions to personnel in cooperating laboratories for entering feed composition information onto source forms. The completed source forms are sent to Type I INFIC Centers for processing.

## Previous Page Blank

#### 1. INTRODUCTION TO THE INFIC SYSTEM

#### 1.1 Background

The need for information concerning the nutritive value of feeds was recognized long ago. Thaer (1809) was among the first to publish tables in which the values of different feeds were compared with the value of hay ("hay equivalents"). Boussingault (1843) calculated such hay equivalents by using the nitrogen content of feeds. Wolff (1861), a feed scientist working in Hohenheim, first compiled extended tables on crude nutrients, nutrient requirements, digestibility and feed prices in 1861. In 1871, he published the first table with mineral values and later (1894) published a table including digestible nutrients.

Such tabulation was possible because Henneberg and Stohmann (1864) had standardized the "Weende" methods for analyzing feeds and for estimating their digestibility, In 1874, Atwater introduced this work in the United States. Armsby (1903) in the USA, and Kellner (1905) in Cermany compiled tables that included the nutrient contents and the energy values of feeds. Since that time, many feed composition tables have been published in different countries. For example, beginning with the 15th edition (1930) of his book "Feeds and Feeding" (first published in 1898) Morrison included feed composition tables. In 1952, the United States National Academy of Sciences recognized a need to review feed composition information. This resulted in two publications, one on the composition of concentrates (National Research Council 1956) and one on the composition of forages and grains (National Research Council 1958).

Since 1952, the predecessor of today's Documentation Center, Hohenheim University, Federal Republic of Germany, started a new series of feed composition tables compiled after a period of systematically collecting feed composition data. These tables are known as "DLG-Futterwerttabellen."

Within recent years comprehensive tables of feed composition have been published (National Academy of Sciences 1971; McDowell et al., 1974a; NcDowell et al. 1974b; Göhl 1975; Agriculture Research Council 1976; Kearl et al. 1979 and Hartadi et al. 1930).

#### 1.2 The International Network of Feed Information Centers (INFIC)

It seems to be more than a mere coincidence that in the home countries of the afore-mentioned pioneers in

compiling of feed composition tables, Germany and the United States, two separate centers of feed data documentation were established. Feed documentation began in Germany in 1949 (Haendler 1963; Haendler 1966; Haendler and Jager 1971; Haendler and Harris 1973); and in the United States in 1952 (Harris et al. 1968; Harris and Christiansen 1972).

Although there was contact between the centers for several years, it was not possible to combine the two systems nor adapt them to each other. Personnel at the Utah (United States) Center contacted the Food and Agriculture Organization (FAO) of the United Nations concerning the need for world cooperation. FAO, in turn, sent a consultant to review ongoing international activities in the fields of feed data collection and systems for coding, storing, and retrieval of these data; and to report on possibilities for collaboration among these centers on an international basis. In his report, Alderman (1971) enumerated the value of a collaborative effort in this field, both to developing countries and to animal production at the international level. The recommendation was that FAO act as the coordinator for international activities in collecting data on feed composition and its summarization and dissemination.

FAO sponsored the first meeting which was held in 1971, in Rome (INFIC 1978). At that time, representatives from several feed information groups formed the International Network of Feed Information Centers (INFIC). Members were: Australian Feed Information Centre, Blacktown, Australia; Agriculture Canada, Ottawa, Canada, FAO, Rome, Italy; International Feedstuffs Institute, Utah State University, Utah, USA; US AID Feed Composition Project, University of Florida, Florida, USA; and the Documentation Center, Hohenheim University, Stuttgart, Federal Republic of Germany.

At the General INFIC Meeting held in Rome, June, 1980, there were 18 organizations represented. At this meeting, the discussions focused on the ratification of a constitution establishing the organization and governing body of the International Network of Feed Information Centers (INFIC). After some minor modifications, the constitution, as prepared by the policy committee, was ratified by those present.

#### 1.3 The Aims of the International Network of Feed Information Centers (INFIC)

Article III of the INFIC Constitution explains the aims of the Network as follows:

#### General

To contribute to more efficient animal production throughout the world

By improving access to reliable information on the composition, nutritive value and practical use of feeds for animals.

#### Particular

To promote the establishment and effective operation of co-operating centers for the collection, processing and dissemination of:

- numerical data on the chemical composition and nutritive value of feeds.
- general information on practical feeding of animals and efficient use of feeds.

To promote widespread adoption of the INFIC International System for describing and recording information on feeds, in order that this information may be exchanged and disseminated in a simple, uniform and unambiguous manner within and between countries.

To encourage the development and use of Improved standard methods for analysis of feeds.

#### 1.4 Membership of INFIC

The constitution regulates the question of membership in Article IV as follows:

Membership is available only to institutions and organizations and not to individuals.

To be eligible for membership, a center must

- subscribe to the aims of INFIC.
- agree to abide by and uphold the constitution and by-laws of INFIC.
- where appropriate, meet the technical requirements described in Section V Types of Membership.

#### Members of INFIC

The constitution of INFIC distinguishes three kinds of members:

- Full Members (Type I)
- Full Members (Type II)
- Observer Members

Only institutions or organizations can be members.

At present there are:

Full Members (Type I)

A ustralian Feeds Information Centre CSIRO, Division of Animal Production P.O. Box 239, Biacktown, N.S.W. 2148, AUSTRALIA

Dokumentationsstelle der Universität Hohenheim Paracelsusstrasse 2, Postfach 70 05 62, 7000 Stuttgart 70 Federal Republic of GERMANY

International Feedstuffs Institute Utah State University, Logan, Utah 84322, USA

#### Full Members (Type II)

Agriculture Canada Research Branch, Ottawa, Ontario, K1A OC6, CANADA

Arab Centre for Studies of Arld Zones and Dry Lands P.O. Box 2440, Damascus, SYRIA

College of Fisheries Aquaculture Division, University of Washington Seattle, Washington, USA

Institut d'Elevage et de Médeclne Vétérinaire des Pays Tropicaux 10, Rue Pierre-Curle, 94700 Maisons-Alfort, FRANCE

Instituto Interamericano de Ciencias Agricolas Apartado 10281, San Jose, COSTA RICA

Korean Feedstuffs Institute College of Agriculture, Seoul National University Suweon, 170-00, KOREA

Ministry of Agriculture, Fisheries and Food Great Westminster House, Horseferry Road London 2W1P 2AE, UNITED KINGDOM

Philippine National Feeds Information Centre University of Philippines at Los Banos, College, Laguna, PHILIPPINES

Tropical Products Institute 56/62 Gray's Inn Road London, WC1X 8LU, UNITED KINGDOM

Universidade de Lisboa, Cidade Universitaria, Lisbon, PORTUGAL

Universiti Pertanian Malaysia, Faculty Veterinary Medicine & Animal Science, Serdang, Selangor, MALAYSIA

#### **Observer Members**

Centraal Veevoederbureau in Nederland Runderweg 6, Lelystad, NEDERLAND

Institut National de la Recherche Agronomique Station de Recherches de Nutrition, Domaine de Vilvert, 78350 Jouy-en-Josas, FRANCE

International Livestock Centre for Africa P.O. Box 4689, Addis Ababa, ETHIOPIA

University of Ibadan Department of Animal Science, Ibadan, NIGERIA

Verband Deutscher Landwirtschaftlicher Untersuchungs und Forschungsanstalten, Bismarckstrasse 41A, 6100 Darmstadt, FEDERAL REPUBLIC OF GERMANY

#### Admission of New Members

Applications for admission to membership shall require a simple majority vote, including postal votes, of all members.

#### Alteration or Termination of Membership

Membership may be terminated by a member or by a twothirds majority of all members in a postal vote. Membership may be altered by a two-tl..rds majority vote, including postal votes of members.

#### Types of Membership

There shall be two types of members:

- Full Members who have full voting rights
- Observing Members who shall have all privileges except voting rights.

In addition, there shall be two types of Full Members:

Type I Members who shall be substantially and actively engaged in all of the following aspects of processing of information about feeds and feeding:

- collection of data from contributing laboratories and other sources.
- recording and computer processing for the storage, sorting and retrieval of data.
- exchange and dissemination of data for the benefit of users, including other members.

Type II Members shall be substantially and actively engaged in the following aspects of processing information:

- collecting data on feed composition for processing by a Type I Member, and
- disseminating information processed by a Type I Member.

#### Membership Qualifications

Membership shall not imply any geographical, national, or political jurisdiction or representation and INFIC shall not be involved or concerned with any such matters.

#### Membership Representation

Each member shall appoint one person to represent it at general meetings and, as appropriate, to act on its behalf on the Executive Committee.

The member must notify the secretariat of such appointment before the delegate may participate in any INFIC affairs.

The actual members of INFIC are named under the section entitled MEMBERS OF INFIC.

#### 1.5 Geographic Responsibilities of INFIC

Members of the INFIC group agreed that some centers would assume major responsibility for collecting data and feed information within specified geographic regions. This arrangement does not preclude some overlapping of data collection in many developing countries due to ongoing international programs entered into between developed and developing countries. Generally speaking however, centers will assume responsibility for collection of information as outlined in Table 1.1.

#### 2. INTERNATIONAL SYSTEM FOR DESCRIBING AND NAMING FEEDS

This publication describes an international system for recording feed names and feed data on source forms and outlines how the data may be stored, summarized, and retrieved. The procedure was first described by Harris (1963) and Harris et al. (1968).

The problem of naming feeds has different aspects:

 An unambiguous identification is needed to permit processing data units in the databank and selecting them by special characteristics. This is assured by composing an "International Feed Description" according to the "INFIC Feed Thesaurus."

- A system must be maintained for standardizing feed names acceptable in international trade. The International Feed Description is modified in some cases. The modified names are known as International Feed Names.
- Some other technical aspects require additional devices (Feed Classes, International Feed Numbers).

#### 2.1 The International Feed Description

Data documentation requires high precision for the identification of specific items entered into a databank. Such a system requires that single data units be so listed to describe each characteristic of a feed. In other words, the single data units in the feed databank, when combined into a logical sequence, must accurately describe the feed in question. The necessary grade of exactitude demands a very sophisticated system that describes feeds in a systematic way by taking into consideration each single essential characteristic of the feed. This has to be done so that the representation of each characteristic can be used as a selection factor.

This operation requires a logical analysis of the feed and synthesis of fixed terms for describing these characteristics.

The result is the so-called International Feed Description. The terms used in composing such a Feed Description are called Descriptors. The aggregate of all descriptors used for describing feeds is called the International Feed Vocabulary.

For practical use, this Vocabulary must be displayed in a useful order, enriched with explanations (scope notes), relations, references, etc. like a well edited dictionary. This tool is the INFIC Feed Thesaurus.

#### 2.1.1 The INFIC Feed Thesaurus

The INFIC Feed Thesaurus is the main basis for an exact identification and selection-oriented description of feeds. Because of its volume, it exists only in different computer printouts but is in preparation as INFIC publication No. 4 (Haendler et al. in prep.). Nevertheless, the Thesaurus or at least the Vocabulary has been in use for many years and was the basis for composing over 17,000 International Feed Descriptions. To compose accurate International Feed Descriptions and to understand the full philosophy of describing feeds, the Thesaurus must be used. Therefore, the present publication gives only a general impression of the background of the Thesaurus and its use. The philosophy of the Thesaurus is also explained in Haendler (1979).

The Thesaurus provides information so that the description of a feed can be composed in a systematic and standardized manner. This is possible since the structures of all feeds follow, more or less, the same basic scheme:

- A feed always comes from an original material (plants, animals or others).
- In most cases, only special parts rather than the whole plant or animal is prepared as a feed.
- Furthermore, the material has undergone special processes or treatments.

These three categories must be considered in describing a feed. Occasionally, other categories or characteristics are also relevant such as:

- the stage of maturity of the plants or animals that are being used
- the cutting or crop (for plants only); and
- special grades of quality.

Thus, a system for a systematical description of feeds has to take into consideration six categories of characteristics. The descriptors needed for describing these characteristics, therefore, belong to six different facets of the description system:

- Facet 1: original material or origin (plant, animal, other basic material)
- Facet 2: parts of the material used as feed as affected by processes
- Facet 3: processes or treatments the material has been subjected to
- Facet 4: stage of maturity
- Facet 5: cutting or crop (for plants only)
- Facet 6: grade (quality)

The International Network of Feed Information Centers (INFIC) uses this system for describing feeds. A multilingual Thesaurus was, therefore, developed by putting all descriptors into three versions: English, German, and French (other language versions are in preparation). This means that each descriptor has three different lingual equivalences, all representing the same concept. Great care was taken to obtain semantic equivalence even when homonymy or polysemy existed in a term in one of the languages.

#### 2.1.2 The Facets of the International Feed Description

Since each facet comprises all the descriptors relevant to the characteristics within each category, each facet has its own parameters to which descriptors are fixed. Also, the information provided by each entry within a facet differs from that of another facet. To illustrate:

#### Facet 1: Original Material (Origin)

Facet 1 has many options, since an immense number of plants, animals, or other original material (minerals, chemicals, etc.) can be used as feed. Further, many different feed names are in common use for the same original material (synonyms) and sometimes the same name has different meanings (homonyms).

To solve this problem in a multilingual situation, the descriptors of this facet were split into two constituents; one of which is the scientific name (Latin) of the biological subject (or an adequate quasi-scientific name in cases where no real scientific names exist); the other one is a preferred term of each of the system languages (Common terms) chosen from the (possibly existing) different synonyms in the .espective language.

It must be said that even scientific names are changed according to scientific progress. Thus, if synonyms exist among the scientific names, the most appropriate has been chosen as the preferred term.

Scientific names are assigned to living things according to common characteristics. Generally, these groupings consist of: (1) genus, (2) species, and as far as appropriate (3) variety. Thus the preferred term, whenever possible, should provide these three elements.

References in order of priority to make up the scientific names are: Hortus Third (1976); Zander (1979); Standardized Plant Names (1942); Göhl (1975); and Hartley (1979) and other miscellaneous publications. If a country uses different scientific names than those in INFIC, publication 5 (Harris et al. 1980) cross references should be used to refer to the Scientific Feed Name used by INFIC.

Usually, common terms follow this principle. Thus, the preferred terms have two or three elements: (1) generic

or common name, (2) breed or kind, (3) strain or chemical formula. In other words, the descriptors within Facet 1 consist--in one language version--of up to six elements.

Table 2.1 gives examples of three entries for the main part of Facet 1 as contained in the Thesaurus. The presentation shows in the upper part of the entries (1) the preferred term of the scientific name (language code 000) followed by (2) the three preferred terms (common names) in each of the three system languages (German, English, French) marked by the respective language code (001, 002, 003).

As explained before, the full descriptors within the three languages are in the first example

(German) TRIFOLIUM PRATENSE ROTKLEE (English) TRIFOLIUM PRATENSE CLOVER RED (French) TRIFOLIUM PRATENSE TREFLE VIOLETTE

The other examples present descriptors used for a feed of animal origin and mineral origin.

The examples given in Table 2.1 also show that nondescriptor terms are added to the entries with "used for" references. These may be synonyms to the preferred terms in the system languages or equivalent terms in other languages. Each of these "used for" terms is marked with a min is (--) and the respective language code. This applies to scientific synonyms likewise.

These references are the reciprocal references to the "use" references of the "Auxiliary Part" of this Facet which serves as a "lead-in-vocabulary" to the Main Part, i.e. to find the right descriptor in such cases in which the (preferred) scientific name is not known. Thus, lead-in-terms in this meaning are synonyms of scientific names, as well as German, English and French preferred terms and their synonyms and also equivalents in other (non-system) languages. Examples of entries in the Auxiliary Part are given in Table 2.2.

#### Facet 2: Parts of the Material Used as Feed as Affected by Process

The second Facet is closely related to the first one, because it consists of descriptors that allow a more specific characterization of the material actually used as feed.

Usually the material named by a descriptor of Facet 1 will not be the substance fed to the animal but only a special part of it. Using modern technology, it is possible to separate biological or other material into many different fractions. Because of this, many industrial byproducts are suitable for animal feeds.

To describe unambiguously the specific part of the material being used, a "part" descriptor has to be added to the "original material" descriptor. Thus, by increasing the available products it became necessary to provide a great number of different descriptors describing the parts to be fed. It also became necessary to consider the different fractionating steps and the combinations of such different fractions. Thus, sometimes those "parts" have to be described for which in natural languages or in one of the system languages no usual term exists. In such cases, descriptors had to be coined. Examples are:

WHOLE To denote that the feed comprises all material expressed by the Facet 1 descriptor.

#### or

AERIAL PART To denote that the parts of a plant above the ground (mostly the green parts) are what is used as feed of the original material. See also Table 2.3.

To assure correct use of all descriptors, they are explained in the Thesaurus by a "scope note" (SN). This may not always be a complete definition but an explanation of how the descriptor is to be used within the area of the INFIC feed description system. Other devices for the right use of the descriptors are the references to broader or narrower terms, which in this Facet are partitive ones (not generic). These are: broader term partitive (BTP) and narrower term partitive (NTP). For instance, the broader term partitive of AERIAL PART is WHOLE (see Table 2.3). The Thesaurus gives (in Facet 2 as well as in other facets) more devices of this kind, which need not be mentioned here.

#### Facet 3: Processes or Treatments the Material has been Subjected to

The descriptors of this facet represent another category of essential characteristics of a feed. The process or treatment the material has been subjected to changes it into a specific feed.

The many processes or treatments used to prepare feeds must be described by an adequate descriptor. Furthermore, many feeds such as industrial by-products may be consecutively subjected to different processes. In such cases, it is necessary to describe each of the single processes. Since the technical conditions of the INFIC system do not allow post-combinations of descriptors from the same facet, it was necessary to include in Facet 3 a number of precombined descriptors for the designation of multi-processes. Facet 3 descriptors found in the Thesaurus are explained by scope notes (SN) to ensure their proper use. To avoid confusion, references to related terms (RT) are included to show similar processes that may have to be designated by another descriptor. Examples of Facet 3 descriptors are given in Table 2.4.

#### Facet 4: Stage of Maturity

The characteristics described by descriptors of the first three facets apply generally, but the stage of maturity is a characteristic applicable only in certain cases. The nutritive value of forage crops is greatly influenced by the stage of maturity. Thus, forages in different vegetative stages have to be considered as different feeds. To overcome this differentiation, a Facet 4 descriptor is assigned to each of these feeds. Feeds of animal origin are sometimes affected by age. Therefore, descriptors for describing the stage of life in which the animal was slaughtered are included in Facet 4. Additional information concerning this Facet are included as scope notes (SN) and "used for" references. These are shown in Table 2.5.

#### Facet 5: Cutting or Crop

This facet takes into consideration that many forage crops are harvested several times during the year and that a specific cut may influence the value of the forage crop. Therefore, this characteristic has to be designated by a descriptor when applicable. Needless to say, such a Facet comprises only a few simple descriptors like CUT 1, CUT 2, etc.

#### Facet 6: Grade (Quality)

Generally, the descriptors of the five facets previously mentioned describe a feed sufficiently. But some commercial feeds or feed ingredients may have specific characteristics not explained by the descriptors of the first five facets. The sixth facet makes available further descriptors characterizing grades of quality as used sometimes in the feed trade. Descriptors of this kind are often expressed in terms of "more than" (minimum) and "less than" (maximum) or even "from .... to" of designated contents of crude fiber, protein, fat, etc. Generally, artificial grades should not be made up because the feeds are not on the market. Examples of descriptors of this facet are given in Table 2.6.

## 2.1.3 The International Feed Description and the International Feed Description File

To adequately describe new feeds to be recorded in the databank, it is necessary to select an appropriate

descriptor from all applicable facets. As mentioned heretofore, descriptors of the first three facets are generally necessary to describe the essential characteristics of a feed and in certain cases descriptors of the other three facets are added as appropriate.

Since the Thesaurus is multilingual, the description can be realized in one of the three system languages: German, English or French. Independent of the language, each such composition using the correct descriptors--gives an unambiguous description of the feed.

As explained above, the INFIC Thesaurus gives a list of descriptors (including definitions and how they are to be used) within each of the six facets. "The International Feed Description File" brings the descriptors together to form the "International Feed Descriptions" (Harris et al. 1980).

Table 2.7 shows an example of an International Feed Description in the three languages. Table 2.8 shows examples of International Feed Descriptions with scientific names and without scientific names.

#### 2.2 Feed Classes

For certain practical purposes, it was decided to use-beside the International Feed Description--a system that groups feeds into eight classes on the basis of their composition and the way they are used in formulating diets.

Each feed is assigned to a class according to its most common use in normal feeding practices. The eight classes are shown in Table 2.9.

#### 2.3 The Feed Description File and the International Feed Number

All International Feed Descriptions are listed in the Feed Description File (Harris et al. 1980). Each new entry in this file is assigned a current number for its identification. This is the "International Feed Number" which consists of five digits. The international feed number is the link between the International Feed Description in different languages and also to other information concerning the same feed.

Analytical and biological data entered into the databank are also identified by the international feed number. Thus, when feed composition tables are compiled, the description or name listed under the corresponding entry in the Feed Description File can be printed out with the data by using the international feed number. The feed class number previously mentioned is usually put in front of the international feed number when feed composition tables or reports are printed.

#### 2.4 International Feed Names

The requirements for an unambiguous and selectionoriented identification of feeds by using the INFIC system compose International Feed Descriptions that are unusual in ordinary communication. For instance, the combination of descriptors like AERIAL PART + SUN-CURED is the result of a correct conceptual analysis and represents well these characteristics of the feed for the purposes of the system. But in ordinary communication, it is usual to call this concept "hay."

Thus denominations used for the feed composition tables must consider usual terminology. But to avoid a relapse to ambiguousness and multiplicity of terms in natural languages and to facilitate using databank information in publications, a standardization of these names is also necessary.

For use in English-speaking countries, special standardized feed names have been formulated. These follow as closely as possible the rules of describing feeds with descriptors, while avoiding, however, complicated phrases and unusual expressions. This is called the International Feed Name (Harris et al. 1980).

There exists only one International Feed Name (in English) for one feed and this is part of the one entry in the list of International Feed Descriptions.

In the area of other languages, there are the same problems as for the English speaking countries. In translating the International Feed Name into other languages, there is the well known problem of different morphological structures of different languages. In these cases, the International Feed Name is translated to give the meaning, but may not be structured exactly the same as the English International Name. The International Feed Names for other languages are also entered into the feed description file. Thus, International Feed Names in all languages can be recalled from the file for information purposes by using the respective International Feed Number.

Table 2.10 shows a comparison of the International Feed Description and the International Feed Name for English and German.

The International Feed Names are coined from the International Feed Description by leaving out descriptors or replacing descriptors for Facet 2, parts (Table 2.11a). Table 2.11b gives an example of a feed name for each of the Facet 2, parts listed in Table 2.11a. Table 2.12a gives a list of Facet 3, processes which are modified to make up the International Feed Name from the International Feed Description. Table 2.12b gives an example of a feed name for each of the processes listed in Table 2.12a.

#### 2.5 Country or Regional Feed Names

In most countries or regions, local feed names exist. Some of them are very common, others are defined in scientific papers, confirmed by government regulations or established by other organizations.

Since users of feed composition tables may be familiar with these names, they may look for them in the feed tables. Thus, it is necessary to use such "Country Names" as reference terms in feed composition tables, especially in those prepared for a special region. For this purpose, Country Names are recorded in the file of International Feed Descriptions and are marked with their respective country and language codes (see Table 2.10).

#### 2.6 Rules for Naming Pasture

Several classes of feeds may be associated with one origin but may be processed differently (Table 2.13). An example is timothy. It is possible to have Timothy, aerial part, sun-cured (class 1); Timothy, aerial part, fresh (class 2); and Timothy, aerial part, ensiled (class 3). Each class refers to a specific type of product identified by characteristic processes it undergoes before it is fed to the animal (see Table 2.9). In these cases, class 1 feeds are described as forages cut and cured, commonly called hay; class 2 are forages grazed in the field commonly called pasture or cut and fed to the animal in a fresh state; and class 3 are those forages cut and cured through processes of anaerobic fermentation in a silo commonly referred to as silage.

The term pasture refers to plants grown for the feeding (usually by grazing) of animals. Therefore, when the origins of pasture plants are known (up to four plant species) they are entered by scientific and common name. However, for forages used for pasture, hay and silage where five or more kinds of plants are involved, it is not practical to describe each plant. Therefore, since similar mixtures of plants tend to grow in certain localities within countries, these plant communities are referred to as a "Forage Type", and this name may be used as Facet 1 original material. Forage types commonly found in the Western United States (USA) are given in Table 2.14. Examples of feed descriptions (feed names) using forage types found in pasture are given in Table 2.15. Since forage type plant species are different in various localities, the analytical and biological data would only apply to the locality where the plants are grown. Example feed descriptions that can be coined for plant types used for pasture, hay, or silage in some parts of Europe are shown in Table 2.16. Many of these forage types are also applicable to other Regions.

When a specific plant species is dominant in a plant type, insert the scientific name for that plant in the species area and the kind area of Facet 1 (Table 2.16).

Marsh plants may be growing in fresh water or sea water. For plants grown in fresh water, no descriptor needs to be entered. Plants growing in salt water, however, have the descriptor part IN SEA WATER inserted in the scientific variety area and in the kind area (Table 2.16).

For Africa and similar areas, appropriate descriptions for plant types (genus and generic) would be STEPPE PLANTS, SAVANNA PLANTS, etc.

Sometimes the description of the pasture does not give a plant type. In these situations, the origin descriptor would be GRASS-LEGUME-FORB (Table 2.17).

The forage on land used for pasture is not only grazed, but may also be harvested for hay or silage. Since grazing may affect the composition of the forage, the following descriptor parts (when appropriate) are put in the species and kind areas:

LAND EXTENSIVELY GRAZED under 55% utilization

LAND MODERATELY GRAZED 55 to 70% utilization

LAND INTENSIVELY GRAZED over 70% utilization

Other intensity and methods of grazing may be put in the species and kind areas. See Table 2.17 for examples.

Other appropriate descriptors for pasture are:

Genus and Generic Descriptors

GRASS LEGUME FORB GRASS-LEGUME GRASS-FORB CEREALS

#### Part Descriptors

It used for pasture, hay, or silage, the part descriptor would be AERIAL PART

#### 3. INTERNATIONAL SYSTEM FOR RECORDING FEED DATA

To record feed data, label the feed cample collected, catalogue the description of the sample on a source form, and record the results of chemical or biological analyses on the source form.

#### 3.1 Methods of Collecting Feed Composition Data

Unless the necessary precautions are taken to obtain samples of a feed and preserve it in a state that represents properly the original material as it was collected or will be fed to the animal, the efforts of sampling and laboratory analyses are in vain (AOAC, 1975). Samples must be packaged, transported, and stored so that the nutritive materials to be analyzed are not significantly altered. For materials to be named correctly, it is necessary to have precise information on the sample to be analyzed. This information must be properly and accurately recorded. When a sample is collected, a tag is attached to it (Figure 3.1). The project leader or the person collecting the sample should fill in the project number, experiment number, date when collected, a brief description of the sample, and the name or initials of the person who did the sampling.

#### 3.2 International Source Form for Recording Data

The international source form has been developed to provide a systematic way of recording data and information about animal feeds. The system currently uses six card formats to record approximately 700 attributes about feeds. Additional cards can be added as the need arises.

Figures 3.2 and 3.3 illustrate examples of source forms. Each INFIC center may devise other source forms appropriate to their needs. Figure 3.2 illustrates a source form that may be used to record all the attributes about a sample including toxic and pollution information. Figure 3.3 illustrates a source form for recording data for cards 10, 30 and 4 (see Sections 3.1.1, 3.2.5, and 3.2.6). The data from most feed samples may be recorded on this source form. Items that may be recorded are outlined below; however, only those which are applicable to the particular feed sample are recorded (see examples of completed source forms; Figures 3.2 and 3.3). Completed source forms are forwarded to Type I INFIC centers where the information is coded for entry into the databank. Codes are available from each INFIC center (Kearl et al. 1980). Each source form is designed so that information may be entered on 80-column computer cards, magnetic tape, or by using a remote terminal.

At present, source forms are available in English, German and Arabic. French, Portuguese and Spanish source forms are being prepared.

A description of information to be filled in for each area of the source form follows.

## 3.2.1 Card 10 Origin of Data, Origin of Sample and Description of Feed Sample

Project No. This number is filled in by the project leader.

*Country or Region.* Enter the name of the country or region where the laboratory is located that analyzed the feed sample.

State, Province or Department. Enter the name of the state, province, department or similar divisions within the country where the laboratory is located that analyzed the feed sample.

Laboratory Name and Address. Fill in laboratory name and address.

Laboratory Sample No. Enter the number assigned to the sample. When source forms are prenumbered, this number could be used as the laboratory number; however, other numbers may be used. For example, the first sample collected in 1980 could be 80-1, the second 80-2, etc.

#### **Origin of Sample**

Date Originally Collected. Record the date the sample was collected. This is especially important for forages as the nutritive value is influenced by the age of the plant.

*Country or Region.* Enter the name of the country or region where feed originated. For example, Anchovy, fish meal, may have come from Chile and be fed to livestock in Brazil. In this case, enter Chile for country.

*Climatic Zone.* To be filled in by the INFIC center. This is a geographic area within a country (or countries) with similar altitude, latitude, and rainfall. Fishing Area. Identify the nearest relevant state, province, department; etc., within a country, and the fishing area where the fish were caught (Table 3.1 and Figure 3.4).

#### State, Province, Department, Etc. Give name.

*County.* Record name of county or similar local administrative unit where collected. This will assist in Identifying areas where plants exhibit nutritional deficiencies and/ or toxic levels of materials when fed to animals. When sufficient data are collected, maps can be drawn outlining these areas.

Bibliographic Reference No. For data that are original and not published, record the name and address of the laboratory furnishing the data. The INFIC Processing Center (Type I) will assign a bibliographic reference number for this data.

When data being reported have been published, fill in the bibliographic reference giving the senior author, year, journal, volume number, and page.

Description of a Feed and International Feed No. When a feed can be identified using the list of international feed descriptions or feed names (Harris et al., 1980), enter the international feed description in the scientific name area. Also, enter the international feed number above the spaces on the source form reserved for this purpose.

When the international feed description cannot be identified, study how to name a feed in Section 2; check the International Feed Description File or feed name file for similar feeds to obtain an idea of how the descriptors should be arranged. Finally, check the Thesaurus (Haendler et al., in prep.) to be sure the correct descriptors are used. After carefully checking these instructions, enter the information in the spaces under scientific name, common name, part, process, maturity, cutting and grade. When access to a name file or a Thesaurus is not possible, enter the information in the most logical order.

*Class of Feed.* Check one of the spaces: dry forages, cut and fed green, silage, or other.

Scientific Name (Genus and Species). When the international feed description is not entered here, as outlined above, enter the genus and species. These must be specified as all feeds are identified by the scientific name, i.e., Zea mays.

Scientific Name (Variety). When this area is not used for the international feed description as outlined above, give the variety, i.e., Zea mays indentata. (indentata is the variety. Common Name for Scientific Name. Common names are Important in feed terminology. Many are part of our everyday language. Enter here the common name(s) by which the feed is known in your locality.

Part of Plant, Animal or Other Product. A list of descriptors describing the parts of the plant, animal or feed product are given in the Thesaurus (Haendler et al., In prep.). The parts are integrated together in the Feed Description File to form International feed descriptions (Harris et al. 1980). Study the parts which are used in similar feeds to the one being described. Select a part that fits the feed being described and enter it in this area.

Process(es) Feed has Undergone Before Feeding to Animal. A list of descriptors describing the process the feed has undergone is given in the Thesaurus (Haendler et al., in prep.). The processes are integrated together into feed descriptions in the feed description file (Harris et al. 1980). Study how the processes are used. When there is a word or phrase that fits your feed sample, enter it in the process area.

Other descriptive terms, such as rained on, moldy, frozen, weathered, insect damage, etc. may be added to obtain a more accurate description.

Stage of Plant Maturity or Age of Animal. Use one of the terms listed in Tables 3.2 or 3.3. Some forages, especially those in the tropics, bloom intermittantly. For these, enter the length of time in days since the plant started to grow or since the previous cutting.

When plants are continuously grazed, the stage of maturity should be stated as an estimate of the number of days required (under constant grazing) for the plant to reach its height at the time the sample is taken.

Number of Cut. This refers to the number of times the plant is cut and harvested during the year. Enter first, second, third cut, etc.

Official Grade (Name and Number or Grade). Many countries have an "Official" grading system for hays and grains. If your country has such a system, obtain an official grade on your sample and insert it under this term. Some countries have a "Feed Control Service" that describes feeds that are sold in the marketplace. (Association of American Feed Control Officials 1980; Canada Feed Act, 1967). Also, in some cases, they specify minimum and maximum guarantees for certain attributes. When feeds in your country carry official guarantees, indicate amounts as "more than" (minimum) and "less than" (maximum) or even "from . . . to" of designated contents of crude fiber, protein, etc. An example: Wheat, flour by-product, less than 2.5% fiber.

Artificial grades should not be formulated. Record only feed grades that are sold on the market. For example, Alfalfa, aerial part, dehydrated, 17% protein; or Soybean, seeds oil residue, sclvent extracted ground, 43% protein.

Plant Crosses or Other Feed Products. When a plant cross is on the market as a commercial feed, give the plant cross and state "sold on the market." This name will then be added to the name file. However, if the plant cross is not available in the marketplace, give the plant cross and state "not sold on the market." The plant cross will then be coded by the Type I Center so the data can be retrieved at a later date assuming it becomes a commercial product. The following is an example: The international feed description is Wheat, grain, hard red winter; the new wheat is: Wheat, grain, hard red winter, highland; highland is the strain. Until this strain is important and on the market, all data are put under HARD RED WINTER.

Additives. Give name of additive. These materials are added in small amounts. For example, sodium hydroxide used in treating straw or molasses when added to silage.

Unit Weight for Additive. Check appropriate square, mg, g, or kg.

Amount of Additive. Give amount of additive used per metric ton of feed.

Season. Record one of the following: dry or wet (rainy). These seasons apply primarily to the tropics or to areas which have long, dry and rainy seasons. The stage of maturity takes care of the seasons in temperate climates.

*Fertilizer.* Record whether fertilizer was used or not used. Do not enter information unless the type of fertilizer and application rates are known (see Section 3.2.2, card 21). When unknown, leave blank.

#### 3.2.2 Card 21 Quality of Feed, Soil and Fertilization.

Feed Quality Designations. The quality of dry forages or hays are described according to the information given in Tables 3.4 and 3.5. Eventually, forages should be analyzed for acid detergent fiber or neutral detergent fiber (Harris, 1970). In the meantime, however, crude fiber values can be used as the basis for establishing quality grades. For each sample of hay record a grade taken from Tables 3.4 or 3.5.

For silages record one of the following grades:

Grade 1 excellent Grade 2 good Grade 3 fair Grade 4 inferior

Note: This is a temporary listing of grades used for silage. A more complete description for each grade will be determined after consultation with agronomists and other interested parties.

Degree of Purity Percent. Give the percent of feed (origin) material present in the sample. Most samples contain impurities. This information is useful in establishing quality grades.

Foreign Material. Record one of the following: sandearth, mineral contamination, weed seeds, other foreign material.

Soil

Soil Units. Record one of the soil units in Table 3.6.

Soil Textural Classes. Record one of the following:

Coarse textured: sands, loamy sands, and sandy loams with less than 18% clay, and more than 65% sand.

Medium textured: sandy loams, loams, sandy clay loams, silt loams, silt, silty clay loams, and clay loams with less than 35% clay and less than 65% sand; the sand fraction may be as high as 82% when a minimum of 18% clay is present.

Fine textured: clays, silty clays, sandy clays, clay loams, and silty clay loams with more than 35% clay.

Slope Classes. Record one of the following:

Level to gently undulating: dominant slopes ranging between 0 and 8%

Rolling to hilly: dominant slopes ranging between 8 and 30%

Steeply dissected to mountainous: dominant slopes are over 30%

The above descriptions for soils are those used on a world basis by the Food and Agriculture Organization of the United Nations (FAO-UNESCO 1974). Each INFIC center, however, may use the soil classification system used in the country or area they serve.

Soil pH. Enter the pH value of the soil.

Water (Type). Record the type of water application.

reinfall irrigation (sprinkler) irrigation (furrow) irrigation (border flooding) irrigation (drip)

Irrigation Plus Rainfall. Enter total water in mm. (water applied "by" irrigation plus rainfall).

#### Fertilization

*Nitrogen Fertilizer (Type).* Enter the name of nitrogen fertilizer used. For example:

ammonia gas ammonium nitrate ammounium sulfa-nitrate urea calcium ammonium nitrate calcium nitrate (nitrate of lime) caluium cyanamide nitrate of soda (sodium nitrate) ammonium sulfate or the name of other nitrogen fertilizer used.

Quantity in Kilogram per Hectare. Enter kg applied per hectare.

No. of Days Between Last Application and Harvest. Enter number of days.

*Phosphorus Fertilizer (Type).* Enter the name of phosphorus fertilizer used. For example:

hyperphos novaphos thenania phosphate,  $CaNaPO_4 + CaSiO_3$ raw phosphate superphosphate thomasphosphate,  $CA_3P_2O_8 + CaO + CaO \cdot SiO_2$ or the name of other phosphorus fertilizer used.

Quantity in Kilogram per Hectare. Enter kg applied per hectare.

Potassium Fertilizer (Type). Enter the name of potassium fertilizer used. For example:

kainite potassium magnesia potassium chloride, 38-42% K<sub>2</sub>O potassium chloride, 48-52% K<sub>2</sub>O potassium chloride, 60% K<sub>2</sub>O potassium sulfate or the name of other potassium fertilizer used. Quantity in Kilogram per Hectare. Enter kg applied per hectare.

Calcium Fertilizer (Type). Enter the name of the calcium fertilizer used. For example:

quicklime, burned lime lime, ground, from iron works calcium carbonate slaked lime or the name of other calcium fertilizer used.

Quantity in Kilogram per Hectare. Enter kg applied per hectare.

Organic Manuring (Type). Enter the name of the organic manuring used. For example:

green manure guano semi-liquid manure horn meal liquid manure, slurry sewage sludge bone meal compost garbage plant residues, plant refuses peat moss stable manure, barn manure or the name of other organic manures used.

Quantity in 100 Kilogram per Hectare. Enter kg applied per hectare.

Trace Element Fertilizer (Type). Enter the name of the trace element fertilizer used:

boron fertilizer chlorine fertilizer cobalt fertilizer iron sulphate copper sulphate magnesium fertilizer manganese sulphate molybdenum fertilizer sodium fertilizer sulphur fertilizer zinc fertilizer or the type of trade element fertilizer used.

Quantity in Kilogram per Hectare. Enter kg applied per hectare.

*Mixed Fertilizer (Type).* Enter the name of the mixed fertilizer used. For example:

phosphorus-potassium nitrogen-magnesium phosphate-potassium phosphate-potassium phosphorus-potassium nitrogen-potassium nitrogen-phosphate thomasphosphate-potassium nitrophoska grey (11.5% N, 8.5% P<sub>2</sub>O<sub>5</sub>, 18% K<sub>2</sub>O) nitrophoska red (13% N, 13% P<sub>2</sub>O<sub>5</sub>, 21% K<sub>2</sub>O) nitrophoska blue (12% N, 12% P<sub>2</sub>O<sub>5</sub>, 20% K<sub>2</sub>O) or the name of other mixed fertilizer used.

Quantity in Kilogram per Hectare. Enter kg applied per hectare.

### 3.2.3 Card 22 Plant Height and Feed Storage

Height When Cut. Enter height of the plant in centimeters.

Height of Stubble. Enter height of the stubble remaining (in centimeters) after cutting.

*Storage Place.* Enter the name of the storage place. For example:

cellar pit trench kiln granary stack

#### temporary silo

upright high stack silo upright half high stack silo attached silo flat silo moveable silo fence silo metal or plastic silo silo made with pressed material (plywood) sealed upright silo experimental silo

Kind of Building Material Used in Constructing Storage Facilities. Enter one of the following:

concrete soil wood plastic metal stone straw miscellaneous *Kind of Covering or Lock.* Enter the kind of covering or lock. For example:

concrete cover plaștic sheet inner race lock clamp lock mechanical pressing sound bag lock seeger retaining ring dipping cover

Storage Time in Days. Enter the number of days the feed was stored.

*Temperature in Storage Container.* Enter the temperature to the nearest whole degree in Centigrade.

Air Humidity in Storage Container. Enter the air humidity to the nearest whole percent.

Light and Air Conditions. Enter one of the following:

light with air exchange semi-dark with air exchange dark with air exchange air tight with light air tight and semi-dark air tight and dark

#### 3.2.4 Card 24 Environmental Pollution and Pesticides

Pollution Source. Record one of the following:

Natural Source

volcanos dust clouds, dust storm inundation

Sources created by human activity

coal mines

Chemical and adherent industries

factories for acid, alkali and chlorine production potassium industry and saline soda works fertilizer factories plant protection products industry detergents and soap industry plastic material industry iron works, iron foundries

Metal works and refoundries

aluminum works copper works lead works zinc works furnaces for steam and energy production nuclear energy production plants mineral oil industry

Stone and earth industry

cement industry mortar factories limestone factories brick works china-ware factories enamel works plant for processing animal and vegetable products

Other industries, manufacturers, and agriculture

wood, cellulose, and paper industry plants for carcass disposal and meat/bone production compost of garbage (housing) and refuse (industry)

#### Sewage from

agriculture household industry

#### Traffic

railway inland navigation sea navigation air traffic automobiles

#### Agriculture means

fertilizing applying of plant protection products

Infestation with

fungus parasites

*Pollution Substance.* Record toxic materials from attribute deck (see Table 3.9). Examples are:

fluorine lead mercury lindane

State of Substance. Record one of the following:

gasiform (gases and fumes)

dustiform (dusts and aerosols)

liquid (liquids or emulsified substances) gasiform and dustiform (gases, fumes, dusts, and aerosols)

gasiform, dustiform, and liquid (gases, fumes, dusts, aerosols, and liquids)

gasiform, liquid, or emulsified (gases, fumes, liquids, or emulsified substances) dustiform, liquid, or emulsified (dusts, aerosols, liquids, or emulsified substances)

*Distance Between Source and Receptor.* Record one of the following:

| 0•10 m      | 0.701 - 1,000 km        |
|-------------|-------------------------|
| 11 · 20 m   | 1,001 - 1,500 km        |
| 21 - 50 m   | 1,501 - 2,000 km        |
| 51 - 100 m  | 2,001 - 3,000 km        |
| 101 - 150 m | 3,001 - 4,000 km        |
| 151 · 200 m | 4,001 - 5,000 km        |
| 201 - 300 m | <b>5,001</b> - 6,000 km |
| 301 - 400 m | 6,001 - 7,000 km        |
| 401 - 500 m | 7,001 - 8,000 km        |
| 501 - 700 m | 8,001 - 9,000 km        |
|             | over 9,000 km           |

Wind Direction. Record one of the following:

prevailing wind direction (downwind) opposite direction to the prevailing wind (upwind) lateral to the prevailing wind

Unit of Measurement for Pollutant Concentration. Unit (check one)  $\mu$ g/m<sup>3</sup> air; mg/m<sup>3</sup> air; mg/kg soil; mg/l water.

*Pollutant Quantity in Relation to Unit.* Record amount of pollutant in terms of units under pollutant concentration.

Intensity of Automobile Traffic. Record one of the following:

| stable:      | 0 - 600 cars/hour      |   |
|--------------|------------------------|---|
| stable:      | 601 - 1,200 cars/hour  |   |
| undisturbed: | minimum 1,201 cars/hou | r |

*Exposure of Feed Material to Pollutant.* Record number of days feed sample was exposed to the pollutant.

Symptoms of Damage on Original Material.

healthy looking

acute damages (exterior and/or interior parts of the plant having been destroyed by gas)

direct chronic damages (malfunction by gas, smoke, and dust influence)

indirect chronic damages (depression of growth and/or yield by gas, smoke, and dust influence) infested (mycel)

Brand of Pesticide. Record the brand of pesticide used (examples are given in Table 3.7). Also, record the

name and concentration of active ingredients. Keep a record of those you use. Each INFIC Center maintains their own list.

Class of Pesticide. Record one of the following:

acaricides fungicides herbicides insecticides products against parasites infesting material in storage molluscocides nematocides rodentiacides

Formulation of Pesticide. Record one of the following:

emulsifiable spray products products emitting fog products emitting smoke wet disinfectants (seeds) spray powder spreading products fine spray products

Active Ingredients of Pesticide. Record the amount of active ingredients of pesticide in percent without a decimal point.

Method of Pesticide Application. Record one of the following methods of pesticide application:

spraying (drops minimum  $150\mu$ ) fine spraying (drops  $50 - 150\mu$ ) fogging (drops maximum  $50\mu$ ) spreading smoking

*Type of Application of the Pesticide.* Record one of the following:

application in store rooms soil application aerial application

Unit for Pesticide. Record one of the following:

g/ha kg/ha liter/ha

Pesticide Quantity in Relation to Unit. Record the amount of pesticide in relation to the units given above. Carry two decimal points if necessary.

Number of Pesticide Applications. Record the number of pesticide applications which were put on the crop.

Days Between Last Pesticide Application and Harvest. Record number of days between the last application and harvest.

Unit for Residue of Pesticides in Feed Fed to Animal (Diet or Ration). Record one of the following units:

µg/kg mg/kg g/kg

Note concerning columns 56 - 70: Residues of pesticides come through the feed into milk, meat, liver, bones, etc. Therefore, it is necessary to know the quantity of a pesticide in the diet, the daily intake and the feeding period. Such data show the correlation between the quantity of pesticide taken in by the animal from the feed and the quantity found in milk, meat, liver, etc. (carry-over effect).

Quantity of Pesticide in Relation to Unit. Record the amount of pesticide used in relation to the units above. Carry three figures beyond the decimal point if necessary.

Daily Intake of Pesticide. Record the amount of pesticide consumed in mg. Carry one figure beyond the decimal point if necessary.

Feeding Period in Days. Record the number of days pesticide was consumed.

Weight of Animal at Beginning of Feeding Pesticide. Record weight in kilograms. Carry three figures beyond the decimal point if necessary.

Note: If the daily intake of pesticide, feeding period in days and weight of animal at beginning of feeding pesticide are filled in, a card 30 must be filled in giving animal kind.

#### 3.2.5 Card 30 Digestibility Trial

When a digestibility trial has been conducted on the feed sample, enter the information in this section on the source form. For procedures for conducting digestibility trials, see Schneider and Flatt, 1975; Harris 1970.

Animal Kind. The data reported for digestion coefficients, availability, percent rumen digestion (nylon bag), digestible energy, metabolizable energy, nitrogenequilibrium metabolizable energy,  $NE_m$ ,  $NE_{gain}$ , TDN, or other measures made on animals are associated with a specific animal kind; therefore, animal kind must be filled in when these data are reported. *Do not enter*  estimated data on the source form. Examples of animal kind are cattle, llama, horse, sheep, swine, etc.

Animal Breed. Enter the breed name. When the animal is a crossbreed, list the male first. See Table 3.8 for examples.

Sex. Enter the status of the animal; male, castrate male, female, or spayed female.

Animal Requirements. The nutrient requirements for various physiological functions are recorded here. The data in columns 12-14, 15-17, 18, 21-25, 28-35, 36, and 49-55 are used to arrive at this code. For example, if the animal kind is cattle, breed is Holstein and the animal is lactating, the animal requirement would be for a dairy cow. The processing INFIC center fills this area in.

Age of Animal. Enter age of animal in years and months; months and weeks; or in weeks.

Number of Animals in Treatment. Enter number of animals used in the trial for each feed.

Average Weight of Animals. Enter the actual weight expressed in kilograms.

*Physiological State.* Check the appropriate space on the source form in each of the following areas:

non-pregnant, pregnant first 2/3, or pregnant last 1/3 losing weight, maintaining weight, gaining weight or fattening lactating, laying eggs or working very thin, thin, thrifty, fat, or very fat.

Percent of Test Ingredient in Ration Fed (100.0% Dry Matter). Calculate and enter only when feed is not fed alone.

Ad libitum Feeding or Controlled Feeding. Check which method was used.

Method Used for Digestion Trial. There are two methods used for digestion trials, the direct and indirect. When using the direct method for determining the nutrient digestion coefficients of a feed, the test feed is the only feed given to the animal. When using the indirect method, the test feed is fed with a base feed. Record one of the following:

#### direct method

indirect method; when no further information is given, record indirect method; however, if more information is given, record one of the methods below:

Addition: Varying proportions of a test feed are added to the base feed.

Exchange: A certain proportion of the base feed is exchanged by the test feed.

Replacement: A certain indigestion component of the base feed is replaced by an adequate proportion of the test feed;

Regression: Varying quantities of a test feed are added to the base feed; digestibility is calculated by regression equations.

*Type of Feces Collection.* Check one of the following feces measured by the total collection; or by the indicator method.

Length of Digestion Trial. Record the length of the preliminary period and the collection period in days.

Daily Dry Matter Consumed. Record the amount of feed (dry matter) consumed in kilograms per day (decimal in column 52).

*Weekly Dry Matter Consumed*. Record the amount of feed (dry matter) consumed in kilograms per day (decimal in column 59).

#### 3.2.6 Card 4 Chemical and Biological Data

Each datum unit should represent a single observation; however, when individual attribute values are not available, average values may be used (especially when taken from the published literature).

Check Analysis Wanted. The squares under this headil (Figures 3.2 and 3.3) are put in for convenience of the chemist. The squares on the left of the attribute are checked for the analyses wanted. At this time, chemica analyses work sheets are made by entering the laborator number or source form number in the appropriate chem ical analysis workbook (Harris 1970).

Some attributes to be analyzed on the sample may no be on the source form. Enter additional attributes under other analyses and check for analyses wanted (see Table 3.9).

At this point, the feed sample has been described; the next step is for the chemist to analyse the sample (Harris 1970). The chemical and biological analysis are then copied onto the source form. Pigden et al. (1979) suggested fiber and biological analyses that should be made on feed samples.

*Dry Matter.* Record the as fed dry matter (attribute identified by number 101 for dry matter) on the source form. A sample may be accepted without an

as fed (as consumed) dry matter providing the data are reported on a partial dry or dry basis (see below).

Dry Matter Basis on Which Analytical Data are Reported on this Form. This area must be filled in for the data to be entered into the system. When possible, the data should be reported on a dry basis (Harris et al., 1969); however, it may be reported on an as fed or partial dry basis. Check appropriate square and enter one dry matter value opposite 102, 103, or 104 to indicate the dry matter basis of the data on the form. Data can be accepted under the following conditions:

1. When a sample has an as fed (as consumed) dry matter:

|                              | v         | Data<br>Value |  |
|------------------------------|-----------|---------------|--|
|                              | Attribute | in %          |  |
| a. dry matter as fed         | 101       | 25.2          |  |
| basis of data, as fed        | 102       | 25.2          |  |
| b. dry matter as fed         | 101       | 25.2          |  |
| basis of data, partially dry | 103       | 90.5          |  |
| c. dry matter as fed         | 101       | 25.2          |  |
| dry (100% dry matter)        | 104       | 100.0         |  |

2. When a sample does not have an as fed (as consumed) dry matter:

| a. basis of data, partially dry | 103 | 94.1  |
|---------------------------------|-----|-------|
| b. basis of data, dry           | 104 | 100.0 |

When the basis of the data is on an "as fed basis", attributes 101 and 102 must be filled in using the same value for each. The following are definitions of as fed, partially dry, and dry:

As Fed. Refers to the feed as it would be if it had been consumed. The term "as collected" is used for materials which are not usually consumed, i.e., urine, feces, etc. If the analysis on a sample are affected by partial drying, the analyses are made on the wet or as collected sample. Similar terms: air dry i.e., hay; as received; fresh; green; wet.

Partially Dry. Refers to a sample of "wet" or "as collected" material that has been dried in an oven (usually with forced air) at a temperature usually about  $60^{\circ}$  C or freeze dried and has been equilibrated with the air; the sample after these processes would usually contain more than 88% dry matter (12% moisture); some

materials are prepared in this way so they may be sampled, chemically analyzed and stored. This analysis is referred to as "partial dry matter % of 'wet' or 'as collected' samples." The partially dry sample must be analyzed for dry matter (determined in an oven at 105° C) to correct subsequent chemical analysis of the samples to a "dry" basis. This analysis is referred to as "dry matter % of partial dry sample." Similar terms: air dry.

*Dry.* Refers to a sample of material that has been dried at  $105^{\circ}$  C until all the moisture has been removed. Similar terms: 100% dry matter; moisture free. When dry matter (in an oven at  $105^{\circ}$  C) is determined on a "wet" sample, it is referred to as "dry matter on wet sample." When dry matter is determined on a partial dry sample, it is referred to as "dry matter of partial dry sample." It is recommended that analysis be reported on the "dry" basis (100% dry matter or moisture free), and, in addition, the "as fed dry matter" should be reported (Harris et al. 1969; Harris 1970).

Chemical and Biological Data. Record the analytical data on the source form in the spaces provided. Definitions for energy terms are given in Section 3.5. Digestion coefficients such as 106.0, 84.0% are to be recorded. Negative digestion coefficients are identified by a minus sign in the column just left of the most significant digit (-50.0). Positive signs are assumed and need not be recorded. Animal kind must be entered in card 30 when biological data such as digestion coefficients, metabolizable energy, etc., are recorded (see Section 3.2.5).

Do not enter calculated values or ruminant values on the source form. Calculated values and ruminant values (average of cattle and sheep values) are made when the data are summarized (see Section 3.3 and 4.3).

Other Analyses and Other Digestion Coefficients. When analyses are determined by a method other than those indicated under method of analyses, record data under "Other Analyses and Other Digestion Coefficients." Also in the space provided, enter analyses not shown on the source form. Specify decimal, unit, kind and method of analyses. See Table 3.9 for a list of attributes (other analyses and other digestion coefficients) which may be recorded on a feed. When recording information on the source form, be sure to use the correct units.

The "International Energy Congress" has adopted the joule as the unit for energy. INFIC also favors the use of the joule. If a country has adopted the joule, enter energy data on the source form in MJ/kg with two

decimal points (Figures 3.2, 3.3 and Table 3.9). However, if a country has not adopted the jould, the energy data could be entered on the source form (a modified one would need to be prepared) in kcal/kg and converted to Mcal/kg for the larger animals (Table 3.9). However, when trading data, it is converted to MJ/kg.

When amino acids are reported on a protein basis (g/16gN), enter the name of the amino acid under other analyses and record the unit as (g/16gN). When a ratio for amino acids is recorded, there must be a protein value and an as fed dry matter, or a protein value with the data recorded on a dry (100% dry matter) basis, otherwise the data are discarded (Figure 3.2). With the above information, the amino acid values are converted to a percent of dry matter and stored in the databank.

When fatty acids are entered as g fatty acids/100 g fat, enter the fatty acid and the unit as g fatty acids/100 g fat.

There must also be a fat (ether extract value) value and an as fed dry matter or a fat value with data recorded on a dry (100% dry matter) basis, otherwise, the data are discarded (Figure 3.2).

When fatty acids are entered as g fatty acids/100 g fatty acids, enter the fatty acid and the unit as g fatty acids/per 100 g fatty acid.

There must also be a total fatty acid value and an as fed dry matter, or a fatty acid value with data recorded on a dry (100% dry matter) basis, otherwise, the data are discarded.

With the above information, the fatty acids are converted to fatty acids as percent of dry matter and stored in the databank.

Supplementary Information About Feeds. Enter additional information about the feed in this space. It is helpful to know other factors which may influence the nutritive value of the feed, such as a complete description of the fertilizer used, whether the crop was irrigated or not irrigated, class of plant, crop badly weathered, or otherwise damaged.

#### 3.3 Attribute Deck

The attribute deck contains the following information (Table 3.9):

Sequence Number Codes. These numbers control the order in which the attributes will appear when feed

composition tables are printed using the Atlas Format (see Section 5).

Attribute Codes. These codes identify over 700 different nutrients and other information, such as dry matter intake and gain per hectare.

Animal Kind Codes. These codes identify the different species of animals.

Unit Codes. Each means of expression is coded, such as % and digestion coefficient (dig. coef.)%.

When a table using summarized data is printed, each individual datum entry is identified by the appropriate unit of expression.

Numbers to Right of Decimal Point. This column specifies the number of digits to the right of the decimal point when data are printed.

*Working Attribute Deck.* For convenience, an abridged attribute deck is made up to list only those attributes most commonly used within each center.

As stated above, INFIC favors the use of joules to express energy, however, some countries still use the calorie system. For these countries, it is suggested that data be entered as kcal. For the larger animals, kcal can be converted to Mcal by multiplying by .001 as shown in the right column. When data are traded among the centers, however, it is converted to MJ/kg.

Data should not be entered on the source form which are calculated. These items are as follows:

Digestible protein Data for ruminants Energy for cattle NE<sub>I</sub> Nehring NF<sub>f</sub> energy values Scandinavian Feed Units Starch equivalent (SE) Starch unit Available minerals Available amino acids Vitamin A equivalent

#### 3.4 Duplicate Copy of Source Form

As a convenience to personnel in the nutrition laboratory, source forms may be bound in 100-page (duplicate) books (Harris 1970). They can then be used as a laboratory recording system. The original copy is submitted to the INFIC center for processing and the duplication remains in the laboratory as a permanent record. If this system is followed, the data do not need to be copied from laboratory records to the source forms.

#### 3.5 Card Formats and Their Use

In some cases, it may be more convenient to use card formats for recording data, especially data taken from the literature or when entering data from laboratory records (Kearl et al. 1980). These card formats and how to use card formats should be made by the Type I INFIC center in cooperation with the laboratory providing the data.

#### 3.6 Definitions for Energy Terms

Many terms are used to describe the energy content of feeds. Examples are starch equivalent, total digestible nutrients, and Scandinavian feed unit. These terms are now being replaced by systems which measure energy in heat units (Harris 1966; Blaxter 1962). This system is described below to enable proper and uniform recording of data on the source form.

The joule has been adopted by Le Systeme International d'Unites (SI) and the National Bureau of Standards (USA) as the preferred unit for expressing electrical, mechanical, and chemical energy. In view of this, the joule has replaced the calorie as the unit for energy in nutritional work in some countries. INFIC supports the use of the joule and data are exchanged among centers on this basis. However, some countries have not adopted the joule, so definitions and formulas are given using both joules and calories.

#### 3.6.1 Units of Measurement

**Joule (J)** A joule, a unit of electrical energy, is the work expended per second by a current of one ampere flowing through one international ohm.

1 joule = 0.239 calorie or 1 Joule =  $10^7$  erg.

Kilojoule (kJ) A kilojoule is 1,000 joules.

Megajoule (MJ) A megajoule is 1,000 kilojoules or 1,000,000 joules.

calorie (cal) As usually used in nutrition literature, a calorie (sometimes referred to as a small calorie) is the amount of heat required to raise the temperature of one gram water to  $15.5^{\circ}$ C from  $14.5^{\circ}$ C.

1 calorie = 4.184 J.

kilocalorie (kcal) A kilocalorie is 1,000 small calories. Kilocalorie is preferred to calorie because it avoids difficulty of differentiating between a calorie (small "c") and a large Calorie (large "C").

Megacalorie (Mcal) A megacalorie is equivalent to 1,000 kcal or 1,000,000 cal. A megacalorie is equivalent to a therm. Megacalorie is the preferred term.

gross energy (GE) The amount of heat, measured in joules or calories, that is released when an organic substance is completely oxidized in a bomb calorimeter containing 25 to 30 : tmospheres of oxygen. A similar term is "heat of combustion."

metabolic body size (W<sup>0.75</sup>) The weight of the animal raised to the three-fourths power. It is useful when comparing metabolic rates of animals of different body sizes.

#### 3.6.2 Explanation of Terms Under Conventional Scheme and True Energy Distribution Scheme

Usually the various energy measures are expressed on the basis of a time interval such as 24 hours, but they can be expressed on any time interval by using appropriate factors. When making up feed composition tables, the energy values are usually expressed on a per unit (kg, g, etc.) basis. It is preferable to state the composition on an "as fed" and a "moisture-free" basis; the dry matter should also be stated on an "as ied" basis. If requirements are expressed on a moisture-free basis, it makes computations of diets simpler for calculation by hand or for linear programming (Butcher 1976).

Figure 3.5 (conventional scheme) shows the usual energy distribution for calculating digestible, metabolizable, and net energy for animals, while Figure 3.6a shows the distribution in digestion and metabolism and Figure 3.6b shows the true digestible, true metabolizable, and true net energy. Figure 3.7 shows the conventional scheme for fish.

Under the conventional scheme fecal metabolic energy and endogenous urinary energy are considered part of the losses in digestion and metabolism; in the true energy distribution scheme these fractions are part of the maintenance energy requirement (Figure 3.6b). Because of these facts, digestible, metabolizable, N-corrected metabolizable, net, and maintenance energy are all "apparent" under the conventional scheme. Since the term "apparent" has not been used in the past in connection with energy utilization, with the possible exception of digestible energy, it is omitted to simplify the terms and make them identical with previous values in the literature. When the metabolizable energy has been corrected to nitrogen equilibrium, the term N-corrected metabolizable energy (ME<sub>n</sub>) should be used.

#### 3.6.3 Conventional Scheme

Food-intake gross energy  $(GE_i)$  is the gross energy of the food consumed.

GE<sub>i</sub> = dry wt of food consumed X GE of food per unit dry wt.

Fecal energy (FE) is the gross energy of the feces. It consists of the energy content of the undigested food and the metabolic (body) fraction of the feces.

FE = dry wt of feces X GE of feces per unit dry wt.

Apparent Digestible Energy (DE) DE is food-intake gross energy minus fecal energy. Similar terms: apparent absorbed energy, energy of apparently digested food.

DE = (GE of food per unit dry w<sup>+</sup> x dry wt of food)---(GE of feces per unit dry wt x dry wt of feces)

Gross Energy Digestion Coefficient The GE digestion coefficient is the percentage of gross energy apparently absorbed.

(GE of food/unit dry wt x dry wt of food) — (GE of feces/unit dry wt x dry wt of feces) (GE of food/unit dry wt x dry wt of food) x 100

Gaseous Products of Digestion (GPD) GPD includes the combustible gases produced in the digestive tract incident to fermentation of food microorganisms. The energy of these gases (methane) can be estimated from the gross energy of the diet (Blaxter 1962).

Methane makes up the largest portion of the combustible gases; however, hydrogen, carbon monoxide, acetone, ethane, and hydrogen sulfide reach significant amounts under certain dietary conditions. Energy lost as methane in ruminant and nonruminant herbivores is usually the only gas which needs to be considered.

Urinary energy (UE) is the gross energy of the urine. It includes the energy content of the non-utilized portion of the absorbed nutrients and the energy contained in the endogenous (body) fraction of the urine.

Metabolizable energy (ME) is the food intake gross energy minus fecal energy, minus energy in the gaseous products of digestion, minus urinary energy.

ME = GE<sub>i</sub> - FE - GPD - UE.

For fish the gill excretions need to be taken into account (Smith 1980).

 $ME = GE_i - (FE + UE + ZE)^a$ 

or per unit weight

 $\frac{ME = GE - (FE + UE + ZE)^{a}}{Dry weight of feed intake}$ 

<sup>a</sup> ZE stands for gill energy excretion.

The energy in the gill excretions is difficult to measure directly. The dried material will not burn in a calorimeter. Wet oxidation methods can be used, but these methods are too laborious and time consuming for routine work. In view of this, the energy is estimated based on the nitrogen content. In freshwater fish, about 85% of the nitrogen is in the form of ammonia and most of the remaining 15% is in urea. The heat of combustion for ammonia is C3.9 kcal/mol and urea is 151 kcal/mol. This equates to 4.92 kcal/gN for ammonia and 5.39 kcal/gN for urea. The weighted average is 4.99 kcal/gN which is rounded to 5.0 to calculate the energy in the gill excretions.

(4.92 × 0.85) + (5.39 × 0.15) = 4.99

For rainbow trout

ZE = 5.0 kcal/gN in gill excretions

ZN = Nitrogen in gill excretions.

Multiply by 4.184 to convert kcal to kJ.

Nitrogen balance (NB) is the nitrogen in the food intake (NI) minus the nitrogen in the feces (FN), minus nitrogen in the urine (UN). Similar term: nitrogen retention.

NB = NI - FN - UN.

This formula is used for the calculation of the nitrogen balance, as this value is needed to adjust the metabolizable energy to account for the nitrogen retained in or lost from the body tissues.

For extremely precise work, the nitrogen lost through perspiration and epidermal excreta should be taken into account. For some types of research, the nitrogen in the products synthesized--such as milk, eggs, or wool-should also be considered.

N-corrected metabolizable energy  $(ME_n)$  is the food intake gross energy minus fecal energy, minus energy in the gaseous products of digestion, minus urinary energy; the total is then corrected for nitrogen retained or lost from the body. For birds and monogastric mammals, the gaseous products of digestion do not need to be considered. For mammals, the correction is made as follows: for each gram of nitrogen lost from the body (equal to negative nitrogen balance) 31.17 kJ or 7.45 kcal are added to the metabolizable energy and for each gram of nitrogen retained in the body (equal to positive nitrogen balance) 31.17 kJ or 7.45 kcal are subtracted from the metabolizable energy.

In the case of animals synthesizing products such as milk or eggs, no correction is made for the nitrogen in these products. A similar term for N-corrected metabolizable energy is katabolizable energy.

 $ME_n = GE_i - FE - GPD - UE \pm (NB \times 7.45 \text{ kcal}).$ Multiply by 4.184 to convert kcal to kJ.

For birds, the factor most often used is 34.39 kJ or 8.22 kcal because it represents the energy equivalent of uric acid per gram of nitrogen. Sometimes the factor 36.53 kJ or 3.73 kcal is used because it gives approximately the average energy content of urine per unit of nitrogen (Titus 1956).

Heat increment (HI) is the increase in heat production following consumption of food when the animal is in a thermoneutral environment. It consists of increased heats of fermentation and of nutrient metabolism. There also may be a slight expenditure of energy in masticating and digesting the food. This heat is wasted except when the temperature of the environment is below the critical temperature. This heat may then be used to help keep the body warm. When used in this manner, it becomes part of the net energy requirement for maintenance (Figure 3.6b).

A method that gives consistent results for measuring the heat increment is as follows:

HI of food fed = heat production from animal on feed — heat production of animal while fasting

If it is not feasible to fast the animal, the heat production may be determined by feeding at two or more levels of nutrient intake and calculating the difference in heat production. The levels fed should be somewhere near those required for the physiological function to which the data are to apply. The heat increment of specific nutrients may be determined. This has erroneously been referred to as the specific dynamic effect. Similar terms for heat increment are calorigenic effect, thermogenic action, and sometimes specific dynamic effect.

Heat of fermentation (HF) is the heat produced in the digestive tract as a result of microbial action.

Heat of nutrient metabolism (HNM) is the heat produced as a result of the utilization of absorbed nutrients.

Net energy (NE) is the difference between metabolizable energy and heat increment, and includes the amount of energy used either for maintenance only or for maintenance plus production. Net energy can also be expressed as the gross energy of the gain in tissue or of the products synthesized plus the energy requirement for maintenance. Below the critical temperature the heat increment is also part of net energy (Figure 3.6b).

When reporting net energy, it should be clearly stated which fractions are included. For example, there may be values for net energy for maintenance plus production  $(NE_{m+p})$ , net energy for maintenance only  $(NE_m)$ , or net energy for production only  $(NE_p)$ . The subscripts are suggested because there is often confusion in the literature concerning which energy fractions are contained in net energy.

Net energy for maintenance  $(NE_m)$  is the fraction of net energy expended to keep the animal in energy equilibrium. In this state, there is no net gain or loss of energy in the body tissues. The net energy for maintenance for a producing animal may be different than for a nonproducing animal of the same weight. This is due to changes in amounts of hormones produced and to differences in voluntary activity. This difference may be charged to maintenance, but in practice, it is usually charged to the production requirement.

Net energy for production  $(NE_p)$  is the fraction of net energy required in addition to that needed for body maintenance that is used for work or for tissue gain (growth and/or fat production), or for the synthesis of for example, a fetus, milk, eggs, wool, fur, or feathers. It should always be clearly stated which production fractions are included. For example, there could be:  $NE_{egg}$ ;  $NE_{gain}$ ;  $NE_{milk}$ ;  $NE_{preg}$ ;  $NE_{wool}$ ; or  $NE_{work}$ .

Basal metabolism (BM) or standard metabolism (SM) BM is the chemical change which takes place in the cells of an animal in the fasting and resting state when it uses just enough energy to maintain vital cellular activity, respiration, and circulation as measured by the basal metabolic rate. For most homeotherms, it is close to a constant and can be computed as kcal/24 hr. =  $70(W_{kg}, 75)$ . Multiply by 4.184 to convert kcal to kJ. For the measurement of basal metabolism, the animal must be under basal conditions, i.e., in a thermally neutral environment at post-absorptive state, conscious, and quiescent. In the case of ruminants, since it is difficult to determine just when they reach the post-absorptive state, terms such as fasting heat production (FHP) and fasting heat catabolism (FHP + urinary energy lost during fast) may be preferred. The length of the fasting period should be specified. Experimentally, it has taken from 48 to 72 hours postprandial to obtain valid fasting metabolic values. In fish SM is used because it is not possible to have a fish completely quiet.

Energy of voluntary activity (VE) is the amount of energy needed by an animal to provide the energy required in, for example, getting up, standing, moving about to obtain food, grazing, drinking, and lying down. (See net energy for maintenance for differences between non-producing and producing animals.)

Heat to keep body warm (HBW) HBW is the additional heat needed to keep the animal's body warm when the temperature of the environment is below its critical temperature. The critical temperature for an animal is defined as that environmental air temperature below which its heat production increases. The heat increment (heats of fermentation and nutrient metabolism), in total or in part, can be used for keeping the animal warm.

In fish this fraction is not applicable, because they assume the temperature of their environment.

Heat to keep body cool (HBC) HBC is the extra energy expended by the animal when the temperature of the environment is above its zone of thermal neutrality. Above the critical air temperature for an animal, the rate of metabolism remains rather constant with a rise in air temperature, until the air becomes so hot that the body temperature increases. This then causes greater heat production by speeding up the body functions (panting, respiration rate, heart rate, etc.) in spite of the animal's already being too hot. If the animal suffers so much from heat that appetite fails, then less total heat may be produced because of the decrease in heat increment due to the lower feed intake.

In fish this fraction is not applicable, because they assume the temperature of their environment.

Total Heat Production (HE) is the total energy lost from an animal system in a form other than as a combustible compound. Heat production may be measured by either direct or indirect calorimetry. In direct calorimetry, heat production is measured directly by physical methods whereas indirect calorimetry involves some indirect measure of heat such as the measurement of oxygen uptake and carbon dioxide production using the thermal equivalent of oxygen based upon respiratory quotient (RQ) and theoretical considerations. The commonly accepted equation for indirect computation of heat production from respiratory exchange is  $HE_{(kcal)} =$  3.866 (Liters  $O_2$ ) + 1.200 (Liters  $CO_2$ ) - 1.431 (g UN) - 0.518 (Liters  $CH_4$ ). Multiply by 4.184 to convert kcal to kJ.

Heat production may also be measured indirectly from the total carbon and nitrogen balance or from a comparative slaughter experiment. Both methods arrive at total heat production by a difference calculation and are subject to systematic error of measurement.

Energy Balance (EB) is the relation of intake of energy to output of useful energy. In the case of an animal raised for meat the energy balance equals the energy content of the gain. However, in the case of a lactating cow, the balance of energy would be the summation of tissue energy, lactation energy and energy in products of conception.

#### 3.6.4 True Energy Distribution Scheme

The true energy distribution scheme was first proposed by Harris (1966). This scheme is shown in Figure 3.6b. Sibbald has worked out a method to measure the true metabolizable energy in chickens (Sibbald 1976). Data using this method can be recorded on the source form.

Under the true energy distribution system metabolic fecal energy and endogenous urinary energy are part of the maintenance requirement (Figure 3.6b). Definitions of terms in the true energy distribution system follow:

Fecal energy, metabolic (FE<sub>m</sub>) is the amount of energy contained in the metabolic (body) fraction of feces (i.e., abraded intestinal mucosa, digestive fluids) that is not obtained from unabsorbed ration residues. This fraction measures part of the maintenance requirement and is continually replaced. Because producing animals consume more food than comparable non-producing onimals, their food requirements are larger, and hence the metabolic fecal energy fraction is larger, providing the digestibility of the rations is the same. In practice, this difference may be considered a part of the production requirement.

True digestible energy (TDE) is the food-intake gross energy minus fecal energy of food origin (FE minus  $FE_m$ ) minus energy in gaseous products of digestion minus heat of fermentation.

or

 $TDE = GE_i - FE + FE_m - GPD - HF$ 

In the last formula  $FE_m$  is shown as a plus item because it is part of the maintenance requirement (Figure 3.6b).

Urinary energy, endogenous (UE<sub>e</sub>) is the amount of energy contained in the endogenous (body) fraction of the total urine. This consists of urinary energy not directly of food origin. This fraction measures part of the maintenance requirement and is continually replaced (Figure 3.6b). If hormonal control increases the basal metabolism in producing animals, this fraction may be larger for those animals (See net energy for maintenance).

True metabolizable energy (TME) is the food-intake gross energy minus fecal energy of food origin (FE minus  $FE_m$ ), minus energy in gaseous products of digestion, minus heat of fermentation energy, minus urinary energy of food origin (UE minus  $UE_e$ ).

or

TME = GE<sub>i</sub> -- FE + FE<sub>m</sub> -- GPD -- HF -- UE + UE<sub>e</sub>.

 $TME = GE_i - (FE - FE_m) - GPD - HF - (UE - UE_e)$ 

In the last formula  $FE_m$  and  $UE_e$  are shown as plus items because these fractions are part of the maintenance requirement (Figure 3.6b).

N-corrected true metabolizable energy (TME<sub>n</sub>) is the food-intake gross energy minus fecal energy of food

<sup>-i</sup>qin (FE minus FE<sub>m</sub>) minus energy in gaseous products o. astion minus heat of fermentation energy minusurinary energy of food origin (UE minus UE<sub>e</sub>); thetotal is then corrected for nitrogen retained or lost fromthe body.

$$TME_n = GE_i (FE - FE_m) - GPD - HF - (UE - UE_e) \pm (NB X 7.45 kcal)$$

or

 $TME_n = GE_i - FE + FE_m - GPD - HF - UE + UE_e$  $\pm (NB X 7.45 kcal)$ 

Multiply by 4.184 to convert kcal to kJ.

See  $ME_n$  above for explanation of factors to use for birds in place of 31.97 kJ or 7.45 kcal.

True net energy (TNE) is the food-intake gross energy minus the fecal energy of food origin ( $FE - FE_m$ ) minus energy in gaseous products minus heat of fermentation energy minus urinary energy of direct food origin (UE -  $UE_e$ ) minus heat of nutrient metabolism.

TNE = 
$$GE_i - (FE - FE_m) - GPD - HF - (UE - UE_e)$$
  
- HNM  
or  
TNE =  $GE_i - FE + FE_m - GPD - HF - UE + UE_e - HNM$ 

In the last formula  $FE_m$  and  $UE_e$  are shown as plus items because these fractions are part of the maintenance requirement.

**True net energy for maintenance (TNE\_m) is the sum of the energy required for basal metabolism, voluntary activity, metabolic fecal energy (body origin), and endogen. 3 urinary energy (body origin). The net energy for a producing animal may be different than that for a non-producing animal of the same weight (see net energy for maintenance).** 

 $TNE = BM + UE + FE_m + UE_e$ 

Below the critical temperature and above the point of hyperthermal rise the heat to keep the body warm, or the energy to keep the body cool must also be considered.

#### 4. PROCESSING OF INFORMATION IN THE DATABANK

## 4.1 Storage of International Feed Descriptions and Data

Processing data for entry into the data file is accomplished by using the international feed description, the international feed number, and the attribute code to identify the specific information.

All data pertaining to the source from which the information came, the environmental factors affecting the material, and the chemical and biological information are coded (Kearl et al. 1980). All information is listed and checked for errors. Data are converted to standard units (the metric system) and a dry basis (100% moisture free). New data being entered are compared to data in the existing data file. When data vary more than two standard deviations from the mean, they are listed for visual inspection by the processor. Erroneous data are corrected or deleted and acceptable data are re-entered into the data file. The corrected data are then merged with the old data and an updated data file is generated.

The international feed descriptions and other feed names are maintained on a separate tape, but they are linked to the data on the data tape by the international feed number.

#### 4.2 Preparing International Feed Descriptions and Data for Publication

To recall feed names (international feed descriptions, international feed names or country names) and data from the databank, make a list of international feed numbers representing the feeds selected for the report in the order the information is to appear in the printout.

After the international feed numbers have been arranged in the proper order, select the name (international feed description, international feed name, or country name) that is to be used. Element tags have been assigned to each international feed name (Kearl et al. 1980). One of these tags is entered following the international feed number for each feed selected (Table 4.1). This makes an eight-digit number (5 dig ts for the international feed number + 3 digits for the element tag). When printed out, the names will appear in the tables in the order selected using one name (tag 155 or 350) or using a combination of names (tag 155, 350, etc.). The element tag for the international feed description is 155; for the international feed names, 350, 360, or 370; and for country (local names 425, 430, etc. In some cases, language codes (three digits) are used with source element tags (350-425) to print the feed names in that particular language. For specific country (local) names (tag 425, etc.) the country code is put before the international feed number.

When the names have been selected and sorted into the proper order, select and list the attribute codes that are to appear in the tables. A list of those selected are made and placed in the order they are to appear. This order is from left to right (for example 101 code for dry matter, 109 code for protein, etc.). See Table 3.9 for a list of attribute codes.

Data values for the selected international feed numbers and attribute codes are retrieved from the data file using the international feed number. Oftentimes, data from closely associated feeds are combined to present a more complete listing of attributes (nutrients). An example is: data from Alfalfa, aerial part, sun-cured, early bloom cuts 1, 2, 3, etc., may be combined and printed out under Alfalfa, aerial part, sun-cured, early bloom. This gives more complete information for the chemical and biological data for this feed (Kearl et al. 1980). For screening purposes, all attribute data can be listed by individual entry (source form) within each feed (Table 4.2). This is done for visual comparison of all values for those attributes selected for a given feed.

The data are then sorted by parameters selected to list the information requested. Examples of parameters are country, state, laboratory, fishing area, fertilizer, season, or animal kind. See Sections 3.1.1, 3.1.2, 3.1.3, 3.1.4, and 3.1.5 for other parameters.

#### 4.3 Calculation of Averages and Derived Values

Each INFIC center may use their own formula and summarize the data in any way appropriate for local

use. Examples of formulas and one way the data may be summarized follow.

Data are stored in the databank by individual source form entry, therefore, to become meaningful in tables of feed composition and other printed reports, the information has to be summarized. Software has been developed to calculate the means for all attribute values, the standard deviation, the coefficient of variation, the maximum and minimum values, and the total number of observations.

Regression equations are used to calculate specific attribute values for missing information using data stored in the databank. INFIC supports the use of the joule, however, some countries have not yet adopted the joule, so data may be reported in publications in joules or in calories.

When printing feed tables, the estimated values are marked with an asterisk (\*) for identification purposes. Each Center should select the formula suited to their needs.

All values for each attribute (for each feed) are totaled, means calculated, and when there is four or more values, the coefficient of variability is calculated.

Organic Matter (OM) The mean is calculated:

OM = 100 - % ash.

Nitrogen Free Extract (NFE) The mean NFE is calculated:

NFE(%) = 100 - % ash - % crude fiber - % ether extract - % protein.

NFE is not usually used in the calculation of diets. It is, however, used in the calculation of total digestible nutrients,  $NE_f$ , Scandinavian Feed Unit, and starch equivalent.

**Conversion Factors** To convert calories to joules, use the following conversions:

- 1 cal = 4.184 J 1 kcal = 4.184 kJ
- 1 Mcal = 4.184 MJ

To convert joules to calories, use the following conversions:

- 1 J = 0.2389 cal
- 1 kJ = 0.2389 kcal
- 1 MJ = 0.2389 Mcai

Gross Energy Gross energy is calculated as follows (Guenther 1979):

GE(MJ/kg DM) = 0.0242 CP + 0.0366 EE + 0.0209 CF + 0.017 NFE - 0.0007 S. GE(kcal/kg DM) = 5.77 CP + 8.74 EE + 5.00 CF + 4.06 NFE - 0.17 S.

0.0007 S is applied as part of the equation when the sugar content in the dry matter is more than 8%.

CP = crude protein; EE = ether extract; CF = crude fiber; NFE = nitrogen free extract; and S = sugar.

Digestible Energy Digestible energy for each animal kind is calculated from:

- a. the mean of digestible energy in kJ/kg or MJ/kg or in kcal/kg or Mcal/kg.
- b. DE(kJ/kg DM) = GE(kJ/kg DM) x GE digestion coefficient or DE(kcal/kg DM) = GE(kcal/kg DM) x GE digestion coefficient
- c. TDN for cattle and sheep (Crampton et al. 1957; Swift 1957):

DE(kcal/kg DM) = TDN % x 44.09.

To convert to kJ/kg DM, multiply the answer by 4.184.

d. TDN for horses (Fonnesbeck et al. 1967, and Fonnesbeck, 1968):

DE(Mcal/kg DM) = .0255 + 0.0366 TDN% DE(MJ/kg DM) = 1.07 + 0.153 TDN%

 e. TDN for swine (Crampton et al. 1957; Swift 1957): DE(kcal/kg DM) = TDN % x 44.09.

To convert to kJ/kg DM, multiply the answer by 4.184.

Metabolizable Energy Metabolizable energy for each animal kind is calculated from:

- a. the average metabolizable energy in kJ/kg or MJ/kg or in kcal/kg or Mcal/kg
- b. nitrogen corrected metabolizable energy (ME<sub>n</sub>) for chickens and turkeys (Harris 1966)
- c. true metabolizable energy (TME) for chickens (Harris 1966; Sibbald 1976)
- d. ME for poultry (Haertel et al. 1977):

ME(MJ/kg DM) = 0.0183 DCP + 0.0388 DEE + 0.0173 DNFE

ME(kcal/kg DM) = 4.38 DCP + 9.26 DEE + 4.13 DNFE

DCP = digestible crude protein; DEE = digestible ether extract; DNFE = digestible nitrogen free extract. e. ME for ruminants (Guenther 1979):

ME(MJ/kg DM) = 0.0152 DCP + 0.0342 DEE + 0.0128 DCF + 0.0159 DNFE -0.0007 S.

ME(kcal/kg DM) = 3.63 DCP + 8.17 DEE + 3.06 DCF + 3.81 DNFE -- 0.17 S.

0.0007 S is applied as part of the equation when the sugar content in the dry matter is more than 8%.

DCP = digestible crude protein; DEE = digestible ether extract; DCF = digestible crude fiber; DNFE = digestible NFE and S = sugar.

f. DE for cattle and sheep (Moe and Tyrrel 1976): ME(Mcal/kg DM) = -0.45 + 1.01 DE(Mcal/kg DM)

To convert to MJ/kg DM, multiply the answer by 4.184.

Moe and Tyrrell's formula is for dairy cattle, but it can be applied to sheep until a better formula can be found.

g. DE for horses as:

ME(Mcal/kg DM) = 0.82 DE(Mcal/kg DM)

To convert to MJ/kg DM, multiply the answer by 4.184.

h. DE for swine (Asplund and Harris 1969): ME(kcal/kg DM) = (0.96 - 0.00202 x crude protein %) x DE(kcal/kg DM)

To convert to kJ/kg DM, multiply the answer by 4.184.

i. ME for fish (Smith 1980):

 $ME(kJ/kg DM) = GE_i - (FE + UE + ZE)$ 

 $ME(kcal/kgDM) = GE_i - (FE + UE + ZE)$ 

FE = fecal energy; UE = urine energy; ZE = gill energy.

Net Energy Net energy for finishing cattle is calculated from:

a. average net energy for NE<sub>m</sub> or NE<sub>a</sub>

25

 b. net energy (NE) values for some cattle feeds are calculated from equations developed by Garrett (1977):

 $NE_{m}(MJ/kg DM) = 4.665 - 0.8971 ME + 0.1555 ME^{2} - 0.005872 ME^{3} + 0.00007816 ME^{4}$ 

 $NE_{m}$  (Mcal/kg DM) = 1.115 - 0.8971 ME + 0.6507 ME<sup>2</sup> - 0.1028ME<sup>3</sup> + 0.005725 ME<sup>4</sup>

 $NE_g(MJ/kg DM) = 3.178 ME - 0.2066 ME^2 + 0.007283 ME^3 - 0.00009266 ME^4 - 13.912$ 

 $NE_{g}(Mcal/kg DM) = 3.178 ME - 0.8646 ME^{2} + 0.1275 ME^{3} - 0.006787 ME^{4} - 3.325$ 

c. net energy for cattle (NE<sub>I</sub>) is calculated from equations of Moe and Tyrrell (1976):

NE<sub>I</sub>(Mcal/kg DM) = -0.12 + 0.0245 TDN(% of DM)

To convert to MJ/kg DM, multiply the answer by 4.184.

d. net energy lactation (NE<sub>1</sub>) for ruminants (Guenther 1979):

 $NE_{I}(MJ/kg DM) = 0.6 [1 + 0.004 (q - 57)]ME$ 

q = (ME/GE)100

To convert to Mcal/kg DM, multiply the answer by 0.2389.

Total Digestible Nutrients Total digestible nutrients (TDN) for each animal kind are calculated from:

a. average TDN

b. digestible nutrients

| digestible protein in %               | x 1    |
|---------------------------------------|--------|
| digestible crude fiber in %           | x 1    |
| digestible nitrogen-free extract in % | x 1    |
| digestible ether extract in %         | x 2.25 |
| TDN in %                              | Total  |

c. DE for cattle and sheep (Crampton et al. 1957; Swift 1957):

TDN% = <u>DE in Mcal/kg DM</u> 0.04409

d. DE for horses (Fonnesbeck et al. 1967, and Fonnesbeck 1968):

 $TDN\% = 20.35 \times DE(Mcal/kg + 8.90)$ 

This formula is only used for class 1 feeds.

e. ME for cattle and sheep (Crampton et al. 1957; Swift 1957):

TDN% = 27.65 x ME in Mcal/kg DM

- f. TDN% for horses and swine is not calculated from ME.
- g. regression equations (see Table 4.3).

INFIC discourages the use of TDN. It is described here because DE, ME, and NE may be calculated from TDN when other data are not available.

Amino Acids and Fatty Acids When amino acids are reported on a protein basis (g/16g N), they are converted to percent amino acid in dry matter of feed and stored in the databank (see Section 3.2.6). When fatty acids are reported on a fat basis (g fatty acids/100g fat) or fatty acid basis (g fatty acids/100g fatty acids) they are converted to fatty acid percent in the dry matter and stored in the databank. To calculate amino acids or fatty acids on a ratio basis, proceed as follows:

Amino acid (g/16g N) =

<u>% amino acid in dry matter</u> x 100 protein % in dry matter

Fatty acid (g fatty acid/100g fat) =

<u>% fatty acid in dry matter</u> x 100 fat % in dry matter

Fatty acid (g fatty acid/100g fatty acid) =

% fatty acid in dry matter fatty acid % of dry matter

Digestible Protein Digestible protein is calculated for each kind of animal by the usual formula:

e. digestible protein = % protein x protein dig. coeff.

100

b. or by equation in Table 4.4 when protein digestion coefficients are not available.

Vitamin A Standards The international standard for vitamin A activity as it relates to vitamin A and betacarotene are as follows:

IU = international unit

1 IU vitamin A = 1 USP unit vitamin A

- = 0.344 microgram crystalline all-trans vitamin A acetate
- = 0.300 microgram all-trans vitamin A alcohol
- = 0.550 microgram vitamin A palmitate

Beta-carotene (Provitamin A) Equivalents (Based on the Rat)

1 IU vitamin activity = 0.6 microgram beta-carotene

1.0 milligram beta-carotene = 1667 IU vitamin A activity

To convert grams or milligrams of beta-carotene to IU of vitamin A multiply by 1,667,000 or 1,667, respectively.

Vitamin A international standards are based on the utilization of vitamin A and beta-carotene by the rat.

Conversion of carotene to vitamin A varies by specles. Therefore, it is suggested that the conversion rates In Table 4.5 be used.

# 5. USE OF THE FEED DATABANK

# 5.1 Compilation of Feed Composition Tables

The primary task of the International Network of Feed Information Centers is to collect feed data for publication in feed composition tables. Feed composition tables are one of the most effective means of conveying information to users.

These tables are composed according to different uses and to meet specific needs. One of the most common uses is to select material from the databank to compose a table for a special kind of animal. To meet these needs different tables for ruminants, horses, pigs, and poultry and other animals are prepared. This requires the selection of two sets of data The first one is to select all those feeds, which may be fed to the specific kind of animal; for instance, the main part of feeds for ruminants are not feeds for pigs and poultry, although there is a great overlapping. The second requirement is to put those kinds of nutrients into the table which are important for the specific kind of animal. (See section 4.2 and 4.3 for a discussion of how the data are summarized for feed composition tables.)

The calculation of energy values as well as those of other derived values (for instance of digestible protein) are included in the general process of compiling feed composition tables. Other steps included in this process are the selection of data and the calculation of averages and standard deviation, the sorting of the material and the combination of the data with the right International Feed Descriptions or International Feed Names (or Country names in a specific language).

Another option is the preparation of feed composition tables with special groups of nutrients or substances. For instance, tables with the contents of minerals, trace minerals, toxic minerals (heavy metals), amino acids, vitamins and others are prepared.

When tables are prepared for a broad distribution, they are photoset, based on the magnetic tape, and printed. These tables are generally produced by book publishing companies and available via book dealers.

In cases where more specific information is selected from the databank for a special user, the computer printout or a photocopy of it can be used directly. This procedure leads to the individual use of the databank. Each center uses the type format best sulted to its needs. Example formats are: the Atlas Format with the international feed vocabulary first used by Crampton and Harris (1969) and later by the National Academy of Sciences (1971). This format is illustrated in Table 5.1.

By sorting the raw data before summarization, it is possible to have data organized in different ways: for example, by country, by dry and rainy season, or with or without fertilizer. The headings for country, or for dry or rainy season, or with and without fertilizer may be entered on the same line as the international feed number.

The table column for any one feed is as long as is necessary to include all of the analytical data that are available.

The main advantages of the Atlas Format are that all data are listed in one place and it is economical of printing space when there is wide variation in the number and kind of nutrients between feeds. It is difficult, however, to determine which analytical data are missing and to locate a feed with a particular level of a certain nutrient.

To overcome these problems with the Atlas Format, the Long Format is used. There are many options in printing the feed names.

- In Table 5.2 the generic or common name, Facet 1, is printed first followed by the scientific name, Facet 1. Facets 2-6 are printed below this heading. This format has the advantage of not having to print the common and scientific name more than once when there are several names with the same Facet 1.
- In Table 5.3 the scientific name is printed first followed by the common name, Facet 1. Facets 2-6 are printed below this heading.
- For local use, it is sometimes desirable to print only the International Feed Name (Table 5.4). If the International Feed Name is not fully understood, information can be:

put in parentheses after the name,

or official and local names may be inserted directly under the International Feed Name .

The information may also be printed in another language such as Spanish (McDowell et al. 1974b) or in English Turkish and Arabic (Kearl et al. 1979) or in Indonesian (Hartadi et al. 1980) (see Table 5.5).

Feeds are known by many names (Harris et al. 1980). Because of this, it may be necessary to put cross references in feed composition tables so the local feed names are referred to the International Feed Names. Examples are Corn - see Maize; Blood - see Animal; Lucerne - see Alfalfa.

The data in a feed composition table should be on an as fed and dry basis (moisture free) (Harris et al. 1969).

## 5.2 Retrieval of Data for Individual Use

The multiplicity of characteristics and codes given to the data units stored in the databank enables the information Centers to retrieve data for special purposes according to different needs. For instance, it is possible to select all information on a specific feed by recalling the data using the international feed number. The data material can be given as averages from all values or as single values alternatively, or when requested, by selecting maximum and/or minimum values.

Other parameters for selecting data from the bank could be specific substances, for instance, those which are not often found or analyzed in feed samples. This occurs when a specific substance becomes of public interest, due to possible harmful effects on animals or humans.

Furthermore, the influence exerted on a feed by the environmental factors to which it may have been subjected to may affect its nutritive value. For instance, the content of heavy metals may be increased through contact with the effluents from the neighborhood industrial plants or intense traffic. Also influences of geographical or geological origin on the feed sample may belong to this category of selection parameters.

## 5.3 Different Access to the Databank

The more individual view points come into the scope of interests of the user of the databank, the more it seems to be advisable to make access to the bank as convenient as possible. The Information Centers are using different methods to answer the user's questions. One of these is the specific computer printout as mentioned above. Special information can be recalled on a terminal and the information made up in different ways can be transferred to the user.

The ultimate goal of making feed composition data available to the user is to provide him with an on-line access. Today, more and more information terminals are established in universities, research centers, industrial companies, etc. Thus, the way is open to the direct on-line access to the bank from different localities. It should be mentioned, however, that for the near future, such on-line access to users will not provide access to the general feed databank with the original raw data, but only to a databank with aggregated data (averages, standard deviations, etc.). The very multiple and complicated procedure of the raw original databank should be reserved to the specialist in the Feed Information Center.

A special kind of a bank with aggregated data is one which is currently supplemented with current prices (or the cost can be added at the terminal) for feeds in a given area. Such a databank can be used on-line for the calculation of diets and feed mixtures for the most profit (Table 5.6).

The following references give information on how to calculate animal diets (McPherson 1971; Gleaves et al. 1973; Black et al. 1976; Chandler and Brown, 1976; Fonnesbeck, Harris, and Kearl 1976).

## 5.4 Statistical Use of the Databank

The large size of the original databanks with some hundred thousands of data units permits the material to be used for making certain statistical assessments. For instance, long term trends in the changes of feed composition as caused by the efforts of plant breeders, agricultural methods or the development of industrial processes can be examined. Also the calculation of regression equations, for example, for the estimation of the digestibility or other feed parameters are possible by using this extensive data store. (See section 4.2 and 4.3 for example regression equations.)

## 5.5 Exchange of Data

The possibilities of providing users with reliable informa tion and for the production of various types of data material are extremely increased by the fact that the INFIC Processing Centers are able to exchange information. The standardization of data recording, describing and processing permits the exchange of material on different data carriers like magnetic tapes. This standardization enables each Processing Center to add the material to its own store, process it according to the same methods as other recorded material and use it to dissiminate better and more reliable information to the users. Raw data are exchanged on a card format basis (Kearl et al. 1980). This raw data is on a dry basis (moisture free) and preferred unit (metric system).

The integration of data material previously processed by different centers is used for example to compile feed composition tables for regions in which only few data are available like in certain developing countries.

# References

Agriculture Research Council. 1976. The nutrient requirements of farm livestock No. 4. Composition of British feedstuffs (Prepared by I. Leitch and A. W. Boyne). Agricultural Research Council (obtainable from Her Magesty's Stationery Office, 49 High Holburn, London, W. C. I.) 710 pp.

Alderman, G. 1971. Proposals for establishment of a feeds information system for the Food Agricultural Organization, FAO AGA/MISC/7a/28.

Armsby, Henry Prentiss. 1903. The principles of animal nutrition, 1st ed. John Wiley and Sons. New York, USA.

Asplund, J. M. and L. E. Harris. 1969. Metabolizable energy values for nutrient requirements for swine. Feedstuffs 41(14):38-39.

Association of American Feed Control Officials Inc. 1980. Official publication Association of American Feed Control Officials. Donald H. James, Department of Agriculture, Room + - 111, State Capital Building, Charlestown, WV, USA 25305.

Association of Official Analytical Chemists. 1975. Official methods of analysis of the association of official analytical chemists, 5th ed. Association of Official Analytical Chemists, P.O. Box 540, Benjamin Franklin Station, Washington, DC, USA 20044.

Atwater, W. V. 1874. Annual Report, Connecticut Board of Agriculture.

Beeson, W. M. 1965. Relative potencies of vitamin A and carotene for animals. Fed. Proc. 24:924.

Black, R., D. Fox, S. Harsh and D. Hilmen. 1976. TelPlan--a cooperative extension service timeshare computer network. First International Symposium, Feed Composition, Animal Nutrient Requirements and Computerization of Diets.

Blaxter, Kenneth Lyon. 1962. The energy metabolism of ruminants. Charles C. Thomas Publisher, Spring-field, IL, USA.

Boussingault, Jean-Baptista. 1843. Economie rurale consideree dans ses rapports avec la chimie, la

physique et la météorologie. Bechet Heunne. Paris. (In 2 volumes.) Translated by Sir George Lawes. 1845. Rural economics in its relation with chemistry, physics and meteorology. D. Appleton and Company, New York, USA.

Butcher, J. E. 1976. Simple diet formulation. First International Symposium, Feed Composition, Animal Nutrient Requirements, and Computerization of Diets. (Edited by P. V. Fonnesbeck, L. E. Harris, and L. C. Kearl) Utah Agr. Exp. Sta., Utah State University, Logan, Utah, USA.

Canada Feed Act and Regulations. 1967. Roger Duhamel, Queen's Printer and Controller of Stattionery, Ottawa, Canada.

Chandler, P. T. and C. A. Brown. 1976. Mathematical equations for calculating maximum profit dairy diets on the computer. First International Symposium, Feed Composition, Animal Nutrient Requirements and Computerization of Diets. (Edited by P. V. Fonnesbeck, L. E. Harris, and L. C. Kearl) Utah Agr. Exp. Sta., Utah State University, Logan, Utah, USA.

Crampton, E. W., L. E. Lloyd and V. G. MacKay. 1957. The calorie value of TDN. J. Animal Sci. 16:541-545.

Crampton, E. W. and L. E. Harris. 1969. Applied animal nutrition, the use of feedstuffs in the formulation of livestock rations. W. H. Freman and Company. San Francisco, CA, USA.

FAO-UNESCO. 1974. Soil map of the world. Publishted by the United Nations Educational, Scientific and Cultural Organization, Place de Fontenoy, 75700 Paris, France.

Fonnesbeck, P. V., R. K. Lydman, G. W. Van der Noot and L. P. Symons. 1967. Digestibility of the proximate nutrients of forages by horses. J. Animal Sci. 26:1039.

Fonnesbeck, P. V. 1968. Digestion of soluble and fibrous carbohydrate of forage by horses. J. Animal Sci. 27:1336.

Fonnesbeck, P. V., L. E. Harris and L. C. Kearl (editors). 1976. First International Symposium, Feed Composition, Animal Nutrient Requirements and Computerization of Diets. 825 pp. Utah Agr. Exp. Sta., Utah State University, Logan, Utah, USA 84322.

Garrett, W. N. 1977. (unpublished data) Animal Sci. Dept., University of California, Davis, California, USA 95616

Gleaves, E. W., P. Q. Guyer, J. G. Kendirck, G. F. Owen, E. F. Peo, Jr., and T. W. Sullivan. 1973.
Nebraska computer feed formulation data feed ingredient analyses and ration specification and restrictions. MP 24 revised, Neb. Agr. Exp. Sta. 47 pp.

Göhl, Bo. 1975. Tropical feeds, feeds information summaries, and nutritive values. Food and Agriculture Organization of the United Nations, Rome, Italy.

Günther, K. D. 1979. Nettoenergie Lactation (NEL) die neue energetische Futterbewertung für Milchkühe. Kraftfutter 62:310-311.

Haendler, H. 1963. Bedeutung and Aufgaben des Archivs für Futtermittel in Hohenheim. Kraftfutter 46(11):555-556.

Haendler, H. 1966. Bemühungen zur Schaffung besserer Unterlagen fuer die Futterwertbestimmmung. Das wirtschaftseigene Futter 12:16-27.

Haendler, H. 1979. Relationship to INFIC: Feed Data Documentation and Standardized Methods.
Standardization of Analytical Methodology for Feeds.
Proceedings of a workshop held in Ottawa, Canada, 12-14 March 1979. Intern. Development Research Centre, Ottawa, Canada, p. 114-119.

Haendier, H. and F. Jager. 1971. Stand und Entwicklung der Befunddokumentation Futtermittel.
Mitteilungen der Gesellschaft für Bibliothekswesen und Dokumentation des Landbaues 15:23-31.

Haendler, H. and L. E. Harris. 1973. Data Documentation in the field of feed analysis and the international cooperation it includes. Quarterly Bul. Interna. Assoc. Agr. Librarians and Documentalists. 18(2):87-94.

Haendler, H., U. Neese, F. Jager and L. E. Harris. INFIC Feed Thesaurus, a multilingual thesaurus for describing feeds for the databank of the International Network of Feed Information Centers, publication 4. Prepared on behalf of INFIC by the Dokumentationsstelle der Universitat Hohenheim, Postfach 70 05 62, D 7000 Stuttgart 70, Federal Republic of Germany (in preparation). Haertel, H., W. Schneider, R. Seibold, und H. J. Lantsch. 1977. Beziehungen zwischen der Nkorrigierten umsetzbaren Energie und den Nährstoffgehalten des Futters beim Hohn. Archiv für Gefluegelkunde. 41:152.

Hartadi, Hari, Soedomo Reksohadiprodjo, Soekanto Lebdosukojo, Allen D. Tillman, L. C. Kearl, and L. E. Harris. 1980. Tabel-Tabel Dari Komposisi Bahan Makanan Ternak Untuk Indonesia (Tables of Feed Composition for Indonesia). Fakultas Peternakan, Universitas Gadjah Mada, Program EFD, Yayasan Rockefeller, Yogyakarta, Indonesia and International Feedstuffs Institute, Department of Animal, Dairy and Veterinary Sciences, Utah Agr. Exp. Sta., Utah State University, Logan, Utah, USA 84322.

Harris, L. E. 1963. Symposium on Feeds and Meat Terminology: III. A system for naming and describing feeds, energy terminology, and the use of such information in calculating diets. J. Animal Sci. 22:535.

Harris, L. E. 1966. Biological energy interrelationships and glossary of energy terms. Printing and Publishing Office, National Academy Sciences, 2101 Constitution Avenue, Washington, DC, USA 20418.

Harris, L. E., J. Malcolm Asplund and Earle W. Crampton. 1968. An international feed nomenclature and methods for summarizing and using feed data to calculate diets. Utah Agr. Exp. Sta. Bul. 479. 391 pp.

Harris, L. E. 1970. Nutrition research techniques for domestic and wild animals, Vol. 1. L. E. Harris, 1408 Highland Drive, Logan, Utah, USA 84321.

Harris, L. E. and W. C. Christiansen. 1972. International Network of Feed Information Centers (INFIC).
Mitteilungen der Gesellschaft für Bibliothekswesen und Dokumentation des Landbaues. H 17:93-100.

Harris, L. E. Earle W. Crampton and J. Malcolm Asplund. 1969. Feed description and methods for reporting nutritive value. Techniques and Procedures in Animal Science Research Monograph. pp. 157. Am. Soc. Animal Sci., 19 Sheridan Ave., Albany, New York, USA 12210.

Harris, L. E., F. Jager, T. Leche, H. Mayr and L. C. Kearl. 1980. International feed descriptions, international feed names and country feed names. International Network of Feed Information Centers, publication 5. Prepared on behalf of INFIC by the

International Feedstuffs Institute, Utah State University, Logan, Utah, USA 84322.

Hartley, W. 1979. A checklist of economic plants in Australia. The Curator, Herbarium Australiense, Division of Plant Industry, CSIRO, P.O. Box 1600, Canberra City, A.C.T. 2601.

Henneberg, W. and F. Stohmann. 1864. Beiträge zur Begründung einer rationnellen Futterung der Wiederkäuer. II Heft, Braunschweig.

Hortus Third. 1976. Hortus third, a concise dictionary of plants cultivated in the United States and Canada. Intially compiled by Liberty Hyde Bailey. Macmillan Publishing Co., New York, NY, USA 10022.

INFIC. 1978. International Network of Feed Information Centers, publication 1. Prepared on behalf of INFIC by International Feedstuffs Institute, Utah State University, Logan, Utah, USA 84322.

Kearl, L. C., L. E. Harris, H. Lloyd, M. F. A. Farid, M. F. Wardeh. 1979. Arab and Middle East Tables of Feed Composition. International Feedstuffs Institute, Department of Animal Dairy and Veterinary Sciences, Utah Agr. Exp. Sta, Utah State University, Logan, Utah, USA 84322 and The League of Arab States, The Arab Center for the Studies of Arid Zones and Dry Lands (ACSAD), Department of Animal Science, P.O. Box 2440, Damascus, Syria.

Kearl, L. C., D. Lai Dinh, F. Jager and L. E. Harris. 1980. International feed databank system, coding instructions and processing procedures. International Network of Feed Information Centers, publication 3. Prepared on behalf of INFIC by International Feedstuffs Institute, Utah State University, Logan, Utah, USA 84322.

Kellner, Oscar Johann. 1905. Die Ernährung der Landwirtschaftlichen Nutztiere. Verlagsbuchhandlung, Paul Parey. Berlin.

Knight, Arlin D. and Lorin E. Harris. 1966. Digestible Protein estimation for NRC feed composition tables. Amer. Soc. Animal Sci., Western Sec. Meetings 17:283.

McDowell, Lee R., Joe H. Conrad, Jenny E. Thomas and Lorin E. Harris. 1974a. Latin American tables of feed composition. University of Florida, Gainesville, Florida, USA, 509 pp. G1-G16.

McDowell, Lee R., Joe H. Conrad, Jenny E. Thomas and Lorin E. Harris. 1974b. Tables de composition de alimentos de America Latina. Universidad de Florida, Gainesville, Florida, USA, 49 pp., G-G21.

McPherson, W. K. 1971. Manual for the computer formulation of livestock feed mixtures. M.L. McPherson, Route 2, Box 330, Gainesville, Florida, USA 32601.

Moe, P. W. and H. F. Tyrrell. 1976. Estimating metabolizable and net energy of feeds. First International symposium; Feed Composition, Animal Nutrient Requirements, and Computerization of Diets.
(Edited by P. V. Fonnesbeck, L. E. Harris, and L. C. Kearl.) Utah Agr. Exp. Sta., Utah State University, Logan, Utah USA 84322.

Morrison, Frank B. 1930. Feeds and feeding. 15th ed. F. B. Morrison Publishing Co., Ithaca, New York, NY, USA.

National Academy of Sciences. 1971. Atlas of nutritional data on United States and Canadian feeds (prepared by E. W. Crampton and L. E. Harris). Printing and Publishing Office, National Academy of Sciences, 2101 Constitution Avenue, Washington, DC USA 20418.

National Research Council. 1956. Composition of concentrate by-product feeding stuffs (prepared by Donald F. Miller), publication 449. National Academy of Sciences--National Research Council, Washington, 25, DC, USA.

National Research Council. 1958. Composition of cereal grain and forages (prepared by Donald F. Miller), publication 585. National Academy of Sciences--National Research Council, Washington, 25, DC, USA.

Pigden, W. J., C. C. Balch and Michael Graham (editors). 1979. Standardization of analytical methodology for feeds. Cosponsored by the International Development Research Centre (IADC) and the International Union of Nutritional Sciences. Copies may be obtained from IRDC P. O. Box 8500, Ottawa, Canada KIG 3H9.

Rohweder, S. A., R. F. Barnes and Ned Jorgensen. 1976. The use of chemical analysis to establish hay standards. The First International Symposium Feed Composition, Animal Nutrient Requirements, and Computerization of Diets (Edited by P. V. Fonnesbeck, L. E. Harris, and L. C. Kearl), Utah Agr. Exp. Sta., Utah State University, Logan, Utah, USA 84322. Schneider, Burch H., and William P. Flatt. 1975. The evaluation of feeds through digestibility experiments. The University of Georgia Press, Athens, Georgia, USA 30602.

Sibbald, I. R. 1976. A bioassay for true metabolizable energy in feedingstuffs. Poultry Sci. 55:303-308.

Smith, Robert R. 1980. United States Department of the Interior Fish and Wildlife Service. Tunison Laboratory of Fish Nutrition Route No. 1, Box 256-1 Hagerman, Idaho, USA 83332.

Standardized Plant Names. 1942. Standardized plant names, 2nd ed. (Edited by Harlan P. Kelsey and William A. Dayton). J. Horace McFarland Co., Harrisburg, Pennsylvania, USA.

Stoddart, Laurence A. and Arthur D. Smith. 1955. Range Management. Second Edition. McGraw-Hill Book Company, Inc. New York, NY, USA.

Swift, R. W. 1957. The calorie value of TDN. J. Animal Sci. 16:753-756.

Thaer A. 1809. Grundsätze der rationellen Landwirtschaft. Vol. 1. Sec. 275. Die Realschulbuchhandlung. Berlin.

Titus, H. W., 1956. Energy values of feedstuffs for poultry. Proc. Nutrition Council, American Feed Manufacturers Association. November, 1956. p. 11.

Wolff, Emil. 1861. Die landwirtschaftliche Fütterungslehre und die Theorie der menschlichen Ernährung. Cotta'scher Verlag. Stuttgart.

Wolff, Emil. 1871. Aschenanalysen von landwirtschaftlichen Producten, Fabrik-Abfällen und wildwachsenden Pflanzen. Wiegandt u. Hempel. Berlin.

Wolff, Emil. 1894. Landwirtschaftliche Fütterungslehre. 6. Auflg. Paul Parey. Berlin.

Yearbook Fishery Statistics. 1977. Vol. 44. Food and Agriculture Organization of the United Nations, Via delle Terme di Caracalla 00100, Rome Italy.

Zander. 1979. Handwörterbuch der Pflanzennamen. Verlag Eugen Ulmer. Stuttgart.

**Tables** 

# TABLE 1.1 Responsibilities of INFIC Centers

| Region                                      | Collection and<br>Dissemination<br>Center (s) <sup>a</sup> | Processing<br>Center(s) |
|---------------------------------------------|------------------------------------------------------------|-------------------------|
| Africa (without Arab<br>States)             | IEMVT, TPI,<br>HUDOC                                       | HUDOC                   |
| Australia and Oceania                       | AFIC                                                       | AFIC                    |
| Europe                                      | HUDOC, UL                                                  | HUDOC                   |
| Korea                                       | KFI                                                        | IFI                     |
| Latin America                               | IICA, IFI                                                  | IFI ,                   |
| Malaysia                                    | UPM                                                        | AFIC                    |
| Middle East (with Arab<br>States in Africa) | ACSAD, IFI                                                 | IFI                     |
| North America                               | IFI, AC                                                    | IFI                     |
| Philippines                                 | PNFIC                                                      | AFIC                    |
| United Kingdom                              | MAFF                                                       | Ì IFI Ì                 |
| World (for fish)                            | CF                                                         | IFI                     |
|                                             |                                                            |                         |

| 8 | AC:    | Agriculture Canada, Ottawa, Canda                                                                                       |
|---|--------|-------------------------------------------------------------------------------------------------------------------------|
|   | ACSAD: | Arab Center for the Studies of Arid Zones and Dry Lands, Damascus, Syria                                                |
|   | AFIC:  | Australia Feeds Information Centre, Sydney<br>(Elacktown), Australia                                                    |
|   | CF:    | College of Fisheries, University of Washington<br>Seattle, Washington, USA                                              |
| 1 | HUDOC: | Hohenheim University, Documentation Center,<br>Germany, F.R.                                                            |
|   | IEMVT: | Institut d'Elevage et de Médecine Vétérinaire<br>des Pays Tropicaux, Maisons-Alfort, France                             |
|   | IICA:  | Instituto Interamericano de Ciencias Agricolas,<br>San Jose, Costa R:ca                                                 |
|   | IFI:   | International Feedstuffs Institute, Utah State<br>University, Logan, Utah, USA                                          |
|   | KFI:   | Korean Feedstuffs Institute, College of Agricul-<br>ture, Seoul National University, Suweon, 17000,<br>Korea            |
|   | MAFF:  | Ministry of Agriculture, Fisheries and Food, London<br>London, 2W1P 2AE, United Kingdom                                 |
|   | PNFIC: | Philippine National Feed Information Centre,<br>University of Philippines at Los Banos, College,<br>Laguna, Philippines |
|   | ; TPI: | Tropical Products Institute, London, United<br>Kingdom                                                                  |
|   | UL:    | Universidade de Lisboa, Cidade Universitaria,<br>Lisbon, Portugal                                                       |
|   | UPM:   | Universiti Pertanian Malaysia, Serdang, Selangor,<br>Malaysia                                                           |

TABLE 2.1Examples From the International FeedThesaurus, Facet 1:Original Material, Main Part

Example 1

```
TRIFOLIUM PRATENSE (L.)
  001<sup>a</sup> ROTKLEE
  002 CLOVER RED
  003
      TREFLE VIOLETTE
         USED FOR-001 WIESENKLEE
                 -002 CLOVER PURPLE
                 -002 CLOVER MEADOW
                 -003 HERBE A VACHE
                 -003 TREFLE GRAND
                 -003 TREFLE ROUGE
                 -003 TRIMENE
                 -003 TRIOLET ROUGE
                 -004 TRIFOGLIO PRATENSE
                 -004 TRIFOGLIO ROSSO
                 -005 TREBOL VIOLETA
                 -005 TREBOL ROJO
                 -007 ROODE KLAVER
                 -007 ROODE BRABANTSHCE
                       KLAVER
                 -008 ROOIKLAWER
                 --010 ROEDECLOEVER
                 -014 KLEVER LUGOWOJ
                 -016 KONICZYNA CTERWONA
Example 2
```

BOS TAURUS 001 RIND 002 CATTLE 003 BOEUF

Example 3

CALCIUM CARBONATE 001 FUTTERKALK KOHLENSAURER 002 CALCIUM CARBONATE CACO3 USED FOR-001 CACO3 -001 KALZIUMKARBONAT

 <sup>a</sup> 001 German, 002 English, 003 French, 004 Italian, 005 Spanish, 007 Netherlandian, 008 Afrikaans (South Africa), 010 Swedish, 014 Russian, 016 Polish. TABLE 2.2 Examples From the International Feed Thesaurus, Facet 1: Original Material, Auxiliary Part

| Lead-in-Terms |     | Preferred Terms of the Scientific Name |
|---------------|-----|----------------------------------------|
|               | , , |                                        |
|               |     |                                        |

Example 1

| •                             |                    | <b>h</b> |
|-------------------------------|--------------------|----------|
| 001 <sup>a</sup> WIESENKLEE   | TRIFOLIUM PRATENSE |          |
| 001 ROTKLEE                   | TRIFOLIUM PRATENSE | • •      |
| 002 -CLOVER MEADOW            | TRIFOLIUM PRATENSE | • •      |
| 002 –CLOVER PURPLE            | TRIFOLIUM PRATENSE | • •      |
| 002 CLOVER RED                | TRIFOLIUM PRATENSE | •        |
| 003 -HERBE A VACHE            | TRIFOLIUM PRATENSE |          |
| 003 - TREFLE GRAND            | TRIFOLIUM PRATENSE |          |
| 003 - TREFLE ROUGE            | TRIFOLIUM PRATENSE | (L.)     |
| 003 TREFLE VIOLETTE           | TRIFOLIUM PRATENSE | (L.)     |
| 003TRIMENE                    | TRIFOLIUM PRATENSE | (L.)     |
| 003 -TRIOLET ROUGE            | TRIFOLIUM PRATENSE | (L.)     |
| 004 –TRIFOGLIO PRATENSE       | TRIFOLIUM PRATENSE | (L.)     |
| 004                           | TRIFOLIUM PRATENSE | (L.)     |
| 005 – TREBOL ROJO             | TRIFOLIUM PRATENSE | (L.)     |
| 005 -TREBOL VIOLETA           | TRIFOLIUM PRATENSE | (L.)     |
| 007 -ROODE BRABANTSCHE KLAVER | TRIFOLIUM PRATENSE | (L.)     |
| 007 –ROODE KLAVER             | TRIFOLIUM PRATENSE |          |
| 008ROOIKLAWER                 | TRIFOLIUM PRATENSE |          |
| 010 -ROEDECLOEVER             | TRIFOLIUM PRATENSE |          |
| 014                           | TRIFOLIUM PRATENSE |          |
| 016 -KONICZYNA CTERWONA       | TRIFOLIUM PRATENSE |          |
|                               |                    | (,       |
|                               |                    |          |
| Example 2                     |                    |          |
| Example 2                     |                    |          |
| 001 RIND                      | BOS TAURUS         |          |
| 002 CATTLE                    | BOS TAURUS         |          |
| 003 BOEUF                     | BOS TAURUS         |          |
|                               |                    |          |
|                               |                    |          |
| Example 3                     |                    |          |
| 001 FUTTERKALK KOHLENSAURER   | CALCIUM CARBONATE  |          |
| 001 –CACO3                    | CALCIUM CARBONATE  |          |
| 001 -KALZIUMKARBONAT          | CALCIUM CARBONATE  |          |
| 002 CALCIUM CARBONATE CACO3   | CALCIUM CARBONATE  |          |
|                               |                    |          |

<sup>a</sup> See Table 2.1 for language codes. <sup>b</sup> The initial after the scientific name is not included in the "International Feed Description File" (Harris et al. 1980).

×.,

# TABLE 2.3Examples From the International FeedThesaurus, Facet 2: Parts

### Example 1

AERIAL PART

SN:<sup>a</sup> all plant parts above the ground - not for trees and shrubs (use BROWSE) - not for mosses and algae (use WHOLE)

RT: BROWSE

BTP: WHOLE

Example 2

MILK

| SN: | 1. | animal product     |
|-----|----|--------------------|
|     | 2. | liquid in coconuts |

NTP: SKIMMILK

<sup>a</sup> SN scope notes, RT related terms, BTP broader term partitive, NTP narrower term partitive.

Example 1

### DEHYDRATED

- SN:<sup>a</sup> dried by act of artificial heat or having had most of the moisture removed by artificial heat.
- RT:<sup>a</sup> DEHYDRATED ON ROLLERS SPRAY DEHYDRATED FREEZE DEHYDRATED FAN AIR DRIED WITH HEAT

UF:<sup>a</sup> artificially dried

Example 2

GROUND

- SN: 1. reduced in particle size by impact, shearing or attrition
  - 2. in milling powdered (to flour) and separated from foreign material
- RT: FINE GROUND, COARSE GROUND

Example 3

DEHYDRATED GROUND

SN: two consecutive processes DEHYDRATED (see DEHYDRATED) and GROUND (see GROUND)

Example 4

CENTRIFUGED FRESH

- SN: process and condition; CENTRIFUGED (see CENTRIFUGED) and FRESH (see FRESH)
- **RT: CENTRIFUGED DEHYDRATED**

<sup>a</sup> SN - scope notes; RT - related terms; UF - used for.

Example 1

EARLY BLOOM

- SN:<sup>a</sup> period between initiation of bloom up to stage at which 1/10 of the plants are in bloom; first flowers in grass heads in anthesis
- UF: early anthesis, first flower, headed out, in head

Example 2

DAY OLD

SN: age of birds

UF: one day old

.

<sup>a</sup> SN scope notes, UF used for

 TABLE 2.6
 Examples From the International Feed

 Thesaurus, Facet 6:
 Grades (Quality)

| 17.1–19% PROTEIN   | , |
|--------------------|---|
| Example 3          |   |
| LESS THAN 5% FAT   |   |
| Example 2          |   |
| MORE THAN 7% FIBER |   |
| Example 1          |   |

| Element   | Descriptors<br>(English)              | Descriptors<br>(German)           | Descriptors<br>(French) |
|-----------|---------------------------------------|-----------------------------------|-------------------------|
| Example 1 |                                       | 1 z /                             | · · · · · · · · · · · · |
| Genus     | TRIFOLIUM                             | TRIFOLIUM                         | TRIFOLIUM               |
| species   | PRATENSE                              | PRATENSE                          | PRATENSE                |
| generic   | CLOVER                                | ROTKLEE                           | TREFLE                  |
| kind      | RED                                   |                                   | VIOLETTE                |
| part      | AERIAL PART                           | UEBERERDIGER TEIL                 | PARTIE AERIENNE         |
| process   | DEHYDRATED GROUND                     | KUENSTLICH GETROCKNET<br>GEMAHLEN | DESHYDRATE BROYE        |
| cut       | CUT 2                                 | SCHNITT 2                         | COUPE 2                 |
| grade     | 17.1–19% PROTEIN                      | 17,1–19% ROHPROTEIN               | 17.1–19% PROTEINE       |
| Example 2 | · · · · · · · · · · · · · · · · · · · | 1                                 | (                       |
| Genus     | BOS                                   | BOS                               | BOS                     |
| species   | TAURUS                                | TAURUS                            | TAURUS                  |
| generic   | CATTLE                                | RIND                              | BOEUF                   |
| part      | SKIMMILK                              | MAGERMILCH                        | LAIT ECREME             |
| process   | CENTRIFUGED FRESH                     | ZENTRIFUGIERT FRISCH              | CENTRIFUGE FRAIS        |

TABLE 2.7 Examples of International Feed Descriptions (English, German, French)

| Components                                                                                                | Feed No. 1                                                                                                                                             | Feed No. 2                                                                | Feed No. 3                                  | Feed No. 4                                              | Feed No. 5                                                               | Feed No. 6                                               |
|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------|
| With Scientif                                                                                             | ic Name                                                                                                                                                | 1                                                                         |                                             |                                                         | <u> </u>                                                                 |                                                          |
|                                                                                                           | Class 1                                                                                                                                                | Class 2                                                                   | Class 3                                     | Class 4                                                 |                                                                          |                                                          |
| Genus                                                                                                     | TRIFOLIUM                                                                                                                                              | ·                                                                         |                                             |                                                         | Class 5                                                                  | Class 6                                                  |
| species                                                                                                   | PRATENSE                                                                                                                                               | AVENA                                                                     | MEDICAGO                                    | ZEA                                                     | BOS                                                                      | MAGNESIUM                                                |
| variety                                                                                                   | INAILIVOL                                                                                                                                              | SATIVA                                                                    | SATIVA                                      | MAYS                                                    | TAURUS                                                                   | CARBONATE                                                |
| unciy                                                                                                     |                                                                                                                                                        |                                                                           |                                             | INDENTATA                                               |                                                                          |                                                          |
| Generic                                                                                                   | CLOVER                                                                                                                                                 | OATS                                                                      | ALFALFA                                     | MAIZE                                                   | CATTLE                                                                   |                                                          |
| breed or kind                                                                                             | RED                                                                                                                                                    |                                                                           |                                             | DENT                                                    | GUERNSEY                                                                 | MAGNESIUM                                                |
| strain                                                                                                    |                                                                                                                                                        |                                                                           |                                             | YELLOW                                                  | GOERNSET                                                                 | CARBONATE                                                |
| part                                                                                                      | AERIAL PART                                                                                                                                            | AERIAL PART                                                               | AERIAL PART                                 | GRAIN                                                   | MILK                                                                     | MgCO <sub>3</sub> ·Mg(Ol                                 |
| process                                                                                                   | SUN-CURED                                                                                                                                              | FRESH                                                                     | ENSILED                                     |                                                         |                                                                          |                                                          |
|                                                                                                           | 1                                                                                                                                                      | 1                                                                         |                                             | ' DEHY<br>J DRATED                                      | FRESH                                                                    | GROUND                                                   |
| naturity                                                                                                  | LATE VEGE-                                                                                                                                             | EARLY                                                                     | EARLY                                       | DRATED                                                  | [                                                                        | 1                                                        |
|                                                                                                           | TATIVE                                                                                                                                                 | BLOOM                                                                     | BLOOM                                       |                                                         |                                                                          |                                                          |
| utting                                                                                                    | CUT 2                                                                                                                                                  |                                                                           | CUT 1                                       |                                                         |                                                                          |                                                          |
| rade                                                                                                      |                                                                                                                                                        |                                                                           |                                             |                                                         | ,———                                                                     |                                                          |
|                                                                                                           | •                                                                                                                                                      | • ,                                                                       |                                             | GRADE 2                                                 | l <del></del>                                                            | · ,                                                      |
|                                                                                                           |                                                                                                                                                        |                                                                           | · · · ·                                     | 69.5 KG/HL                                              |                                                                          | 1. 1.7 6                                                 |
| nternational f                                                                                            | , ,                                                                                                                                                    |                                                                           |                                             |                                                         | 5 2 W                                                                    |                                                          |
| number (IFN)                                                                                              | 1-01-395                                                                                                                                               | 2-03-287                                                                  | 3-07-844                                    | 4-02-931                                                | 5-08-626                                                                 | , , , , , , , , , , , , , , , , , , ,                    |
|                                                                                                           | t y                                                                                                                                                    |                                                                           |                                             | 402-531                                                 | .5.08.020                                                                | 6-02-754                                                 |
|                                                                                                           | ر<br>سے میں جب ختیر سے خت میں میں اور<br>1 ی                                                                                                           |                                                                           |                                             | · · · · ·                                               |                                                                          | l and the                                                |
| Vithout Scient                                                                                            | Class 1                                                                                                                                                | Class 2                                                                   | Class 3                                     | Ciass 4                                                 | Class 5                                                                  | Class 6                                                  |
| ,<br>enus                                                                                                 | Class 1<br>MEADOW                                                                                                                                      | Class 2<br>GRASS                                                          | Class 3<br>LEGUME                           | Class 4<br>BAKERY                                       | <u>Class 5</u><br>ANIMAL                                                 | Class 6<br>ROCK                                          |
| enus                                                                                                      | Class 1<br>MEADOW<br>PLANTS                                                                                                                            |                                                                           | e or stag                                   | S                                                       | ALTON AND                                                                |                                                          |
| ,                                                                                                         | Class 1<br>MEADOW<br>PLANTS<br>INTERMOUN-                                                                                                              |                                                                           | e or stag                                   | S                                                       | ANIMAL                                                                   | ROCK                                                     |
| enus<br>Decies                                                                                            | Class 1<br>MEADOW<br>PLANTS                                                                                                                            |                                                                           | e or stag                                   | S                                                       | ANIMAL                                                                   | ROCK                                                     |
| enus                                                                                                      | Class 1<br>MEADOW<br>PLANTS<br>INTERMOUN-                                                                                                              |                                                                           | e or stag                                   | S                                                       | ANIMAL                                                                   | ROCK                                                     |
| enus<br>pecies<br>rriety                                                                                  | Class 1<br>MEADOW<br>PLANTS<br>INTERMOUN-<br>TAIN                                                                                                      | GRASS                                                                     | LEGUME                                      | BAKERY<br>                                              | ANIMAL                                                                   | ROCK<br>PHOSPHATE                                        |
| enus<br>Decies                                                                                            | Class 1<br>MEADOW<br>PLANTS<br>INTERMOUN-<br>TAIN<br><br>MEADOW                                                                                        | GRASS                                                                     | LEGUME                                      | BAKERY<br>                                              | ANIMAL                                                                   | ROCK<br>PHOSPHATE                                        |
| enus<br>pecies<br><i>riety</i><br>eneric                                                                  | Class 1<br>MEADOW<br>PLANTS<br>INTERMOUN-<br>TAIN<br><br>MEADOW<br>PLANTS                                                                              | GRASS                                                                     | LEGUME                                      | BAKERY<br>                                              | ANIMAL                                                                   | ROCK<br>PHOSPHATE                                        |
| enus<br>pecies<br>rriety                                                                                  | Class 1<br>MEADOW<br>PLANTS<br>INTERMOUN-<br>TAIN<br><br>MEADOW<br>PLANTS<br>INTERMOUN-                                                                | GRASS                                                                     | LEGUME                                      | BAKERY<br>                                              | ANIMAL                                                                   | ROCK<br>PHOSPHATE                                        |
| enus<br>becies<br>briety<br>eneric<br>eed or kind                                                         | Class 1<br>MEADOW<br>PLANTS<br>INTERMOUN-<br>TAIN<br><br>MEADOW<br>PLANTS                                                                              | GRASS                                                                     | LEGUME                                      | BAKERY<br>                                              | ANIMAL                                                                   | ROCK<br>PHOSPHATE                                        |
| enus<br>pecies<br><i>riety</i><br>eneric<br>eed or kind<br>rain                                           | Class 1<br>MEADOW<br>PLANTS<br>INTERMOUN-<br>TAIN<br><br>MEADOW<br>PLANTS<br>INTERMOUN-<br>TAIN                                                        | GRASS<br>GRASS                                                            | LEGUME                                      | BAKERY<br>BAKERY                                        | ANIMAL<br>ANIMAL                                                         | ROCK<br>PHOSPHATE                                        |
| enus<br>becies<br><i>riety</i><br>eneric<br>eed or kind<br>rain<br>rt                                     | Class 1<br>MEADOW<br>PLANTS<br>INTERMOUN-<br>TAIN<br><br>MEADOW<br>PLANTS<br>INTERMOUN-<br>TAIN<br><br>AERIAL PART                                     | GRASS<br>GRASS<br>GRASS                                                   | LEGUME                                      | BAKERY<br>BAKERY<br>BAKERY<br>WASTE                     | ANIMAL<br>ANIMAL<br>BLOOD                                                | ROCK<br>PHOSPHATE<br>ROCK<br>PHOSPHATE                   |
| enus<br>pecies<br><i>riety</i><br>eneric<br>eed or kind<br>rain                                           | Class 1<br>MEADOW<br>PLANTS<br>INTERMOUN-<br>TAIN<br><br>MEADOW<br>PLANTS<br>INTERMOUN-<br>TAIN                                                        | GRASS<br>GRASS<br>GRASS                                                   | LEGUME                                      | BAKERY<br>BAKERY<br>BAKERY<br>WASTE<br>DEHY             | ANIMAL<br>ANIMAL<br>BLOOD<br>SPRAY                                       | ROCK<br>PHOSPHATE<br><br>ROCK<br>PHOSPHATE<br><br>GROUND |
| enus<br>becies<br><i>riety</i><br>eneric<br>eed or kind<br>rain<br>rt                                     | Class 1<br>MEADOW<br>PLANTS<br>INTERMOUN-<br>TAIN<br><br>MEADOW<br>PLANTS<br>INTERMOUN-<br>TAIN<br><br>AERIAL PART                                     | GRASS<br>GRASS<br>AERIAL PART<br>FRESH                                    | LEGUME                                      | BAKERY<br>BAKERY<br>BAKERY<br>WASTE<br>DEHY<br>DRATED   | ANIMAL<br>ANIMAL<br>ANIMAL<br>BLOOD<br>SPRAY<br>DEHYDRATED               | ROCK<br>PHOSPHATE                                        |
| enus<br>pecies<br>priety<br>eneric<br>eed or kind<br>rain<br>rt<br>ocess                                  | Class 1<br>MEADOW<br>PLANTS<br>INTERMOUN-<br>TAIN<br><br>MEADOW<br>PLANTS<br>INTERMOUN-<br>TAIN<br><br>AERIAL PART<br>SUN-CURED                        | GRASS<br>GRASS<br>AERIAL PART<br>FRESH                                    | LEGUME                                      | BAKERY<br>BAKERY<br>BAKERY<br>WASTE<br>DEHY<br>DRATED   | ANIMAL<br>ANIMAL<br>BLOOD<br>SPRAY                                       | ROCK<br>PHOSPHATE                                        |
| enus<br>becies<br><i>riety</i><br>eneric<br>eed or kind<br>rain<br>rt                                     | Class 1<br>MEADOW<br>PLANTS<br>INTERMOUN-<br>TAIN<br><br>MEADOW<br>PLANTS<br>INTERMOUN-<br>TAIN<br><br>AERIAL PART                                     | GRASS<br>GRASS<br>GRASS<br>AERIAL PART<br>FRESH<br>EARLY                  | LEGUME                                      | BAKERY<br>BAKERY<br>BAKERY<br>WASTE<br>DEHY<br>DRATED   | ANIMAL<br>ANIMAL<br>ANIMAL<br>BLOOD<br>SPRAY<br>DEHYDRATED               | ROCK<br>PHOSPHATE                                        |
| enus<br>becies<br><i>riety</i><br>eneric<br>eed or kind<br>rain<br>rt<br>ocess                            | Class 1<br>MEADOW<br>PLANTS<br>INTERMOUN-<br>TAIN<br><br>MEADOW<br>PLANTS<br>INTERMOUN-<br>TAIN<br><br>AERIAL PART<br>SUN-CURED                        | GRASS<br>GRASS<br>AERIAL PART<br>FRESH                                    | LEGUME                                      | BAKERY<br>BAKERY<br>BAKERY<br>WASTE<br>DEHY<br>DRATED   | ANIMAL<br>ANIMAL<br>ANIMAL<br>BLOOD<br>SPRAY<br>DEHYDRATED               | ROCK<br>PHOSPHATE<br><br>ROCK<br>PHOSPHATE<br><br>GROUND |
| enus<br>becies<br>briety<br>eneric<br>eed or kind<br>rain<br>rt<br>ocess<br>aturity<br>tting              | Class 1<br>MEADOW<br>PLANTS<br>INTERMOUN-<br>TAIN<br><br>MEADOW<br>PLANTS<br>INTERMOUN-<br>TAIN<br><br>AERIAL PART<br>SUN-CURED                        | GRASS<br>GRASS<br>GRASS<br>AERIAL PART<br>FRESH<br>EARLY                  | LEGUME                                      | BAKERY<br>BAKERY<br>BAKERY<br>WASTE<br>DEHY<br>DRATED   | ANIMAL<br>ANIMAL<br>ANIMAL<br>BLOOD<br>SPRAY<br>DEHYDRATED               | ROCK<br>PHOSPHATE                                        |
| enus<br>becies<br><i>riety</i><br>eneric<br>eed or kind<br>rain<br>rt<br>ocess                            | Class 1<br>MEADOW<br>PLANTS<br>INTERMOUN-<br>TAIN<br><br>MEADOW<br>PLANTS<br>INTERMOUN-<br>TAIN<br><br>AERIAL PART<br>SUN-CURED                        | GRASS<br>GRASS<br>GRASS<br>AERIAL PART<br>FRESH<br>EARLY                  | LEGUME                                      | BAKERY<br>BAKERY<br>BAKERY<br>WASTE<br>DEHY<br>DRATED   | ANIMAL<br>ANIMAL<br>ANIMAL<br>BLOOD<br>SPRAY<br>DEHYDRATED               | ROCK<br>PHOSPHATE<br><br>ROCK<br>PHOSPHATE<br><br>GROUND |
| enus<br>becies<br>briety<br>eneric<br>eed or kind<br>rain<br>rt<br>ocess<br>aturity<br>tting              | Class 1<br>MEADOW<br>PLANTS<br>INTERMOUN-<br>TAIN<br><br>MEADOW<br>PLANTS<br>INTERMOUN-<br>TAIN<br><br>AERIAL PART<br>SUN-CURED<br>LATE BLOOM<br>CUT 1 | GRASS<br>GRASS<br>GRASS<br>AERIAL PART<br>FRESH<br>EARLY                  | LEGUME                                      | BAKERY<br>BAKERY<br>BAKERY<br>WASTE<br>DEHY<br>DRATED   | ANIMAL<br>ANIMAL<br>ANIMAL<br>BLOOD<br>SPRAY<br>DEHYDRATED               | ROCK<br>PHOSPHATE<br><br>ROCK<br>PHOSPHATE<br><br>GROUND |
| enus<br>becies<br><i>riety</i><br>eneric<br>eed or kind<br>rain<br>rt<br>ocess<br>bturity<br>tting<br>ide | Class 1<br>MEADOW<br>PLANTS<br>INTERMOUN-<br>TAIN<br><br>MEADOW<br>PLANTS<br>INTERMOUN-<br>TAIN<br><br>AERIAL PART<br>SUN-CURED<br>LATE BLOOM<br>CUT 1 | GRASS<br>GRASS<br>GRASS<br>AERIAL PART<br>FRESH<br>EARLY<br>BLOOM<br><br> | LEGUME<br>LEGUME<br>AERIAL P. 3T<br>ENSILED | BAKERY<br>BAKERY<br>BAKERY<br>DAKERY<br>DEHY-<br>DRATED | ANIMAL<br>ANIMAL<br>ANIMAL<br>BLOOD<br>SPRAY<br>DEHYDRATED<br>GROUND     | ROCK<br>PHOSPHATE<br>ROCK<br>PHOSPHATE<br>GROUND         |
| enus<br>becies<br><i>riety</i><br>eneric<br>eed or kind<br>rain<br>rt<br>ocess<br>aturity<br>tting<br>ide | Class 1<br>MEADOW<br>PLANTS<br>INTERMOUN-<br>TAIN<br><br>MEADOW<br>PLANTS<br>INTERMOUN-<br>TAIN<br><br>AERIAL PART<br>SUN-CURED<br>LATE BLOOM<br>CUT 1 | GRASS<br>GRASS<br>GRASS<br>AERIAL PART<br>FRESH<br>EARLY                  | LEGUME                                      | BAKERY<br>BAKERY<br>BAKERY<br>DAKERY<br>DEHY-<br>DRATED | ANIMAL<br>ANIMAL<br>ANIMAL<br>BLOOD<br>SPRAY<br>DEHYDRATED               | ROCK<br>PHOSPHATE<br><br>ROCK<br>PHOSPHATE<br><br>GROUND |
| enus<br>becies<br><i>riety</i><br>eneric<br>eed or kind<br>rain<br>rt<br>ocess<br>aturity<br>tting<br>ide | Class 1<br>MEADOW<br>PLANTS<br>INTERMOUN-<br>TAIN<br><br>MEADOW<br>PLANTS<br>INTERMOUN-<br>TAIN<br><br>AERIAL PART<br>SUN-CURED<br>LATE BLOOM<br>CUT 1 | GRASS<br>GRASS<br>GRASS<br>AERIAL PART<br>FRESH<br>EARLY<br>BLOOM<br><br> | LEGUME<br>LEGUME<br>AERIAL P. 3T<br>ENSILED | BAKERY<br>BAKERY<br>BAKERY<br>DAKERY<br>DEHY-<br>DRATED | ANIMAL<br>ANIMAL<br>ANIMAL<br>BLOOD<br>SPRAY<br>DEHYDRATED<br>GROUND<br> | ROCK<br>PHOSPHATE<br>ROCK<br>PHOSPHATE<br>GROUND         |
| enus<br>becies<br><i>riety</i><br>eneric<br>eed or kind<br>rain<br>rt<br>ocess<br>aturity<br>tting<br>ide | Class 1<br>MEADOW<br>PLANTS<br>INTERMOUN-<br>TAIN<br><br>MEADOW<br>PLANTS<br>INTERMOUN-<br>TAIN<br><br>AERIAL PART<br>SUN-CURED<br>LATE BLOOM<br>CUT 1 | GRASS<br>GRASS<br>GRASS<br>AERIAL PART<br>FRESH<br>EARLY<br>BLOOM<br><br> | LEGUME<br>LEGUME<br>AERIAL P. 3T<br>ENSILED | BAKERY<br>BAKERY<br>BAKERY<br>DAKERY<br>DEHY-<br>DRATED | ANIMAL<br>ANIMAL<br>ANIMAL<br>BLOOD<br>SPRAY<br>DEHYDRATED<br>GROUND     | ROCK<br>PHOSPHATE<br>ROCK<br>PHOSPHATE<br>GROUND         |
| enus<br>becies<br><i>riety</i><br>eneric<br>eed or kind<br>rain<br>rt<br>ocess<br>aturity<br>tting<br>ide | Class 1<br>MEADOW<br>PLANTS<br>INTERMOUN-<br>TAIN<br><br>MEADOW<br>PLANTS<br>INTERMOUN-<br>TAIN<br><br>AERIAL PART<br>SUN-CURED<br>LATE BLOOM<br>CUT 1 | GRASS<br>GRASS<br>GRASS<br>AERIAL PART<br>FRESH<br>EARLY<br>BLOOM<br><br> | LEGUME<br>LEGUME<br>AERIAL P. 3T<br>ENSILED | BAKERY<br>BAKERY<br>BAKERY<br>DAKERY<br>DEHY-<br>DRATED | ANIMAL<br>ANIMAL<br>ANIMAL<br>BLOOD<br>SPRAY<br>DEHYDRATED<br>GROUND<br> | ROCK<br>PHOSPHATE<br>ROCK<br>PHOSPHATE<br>GROUND         |
| enus<br>becies<br><i>riety</i><br>eneric<br>eed or kind<br>rain<br>rt<br>ocess<br>aturity<br>tting<br>ide | Class 1<br>MEADOW<br>PLANTS<br>INTERMOUN-<br>TAIN<br><br>MEADOW<br>PLANTS<br>INTERMOUN-<br>TAIN<br><br>AERIAL PART<br>SUN-CURED<br>LATE BLOOM<br>CUT 1 | GRASS<br>GRASS<br>GRASS<br>AERIAL PART<br>FRESH<br>EARLY<br>BLOOM<br><br> | LEGUME<br>LEGUME<br>AERIAL P. 3T<br>ENSILED | BAKERY<br>BAKERY<br>BAKERY<br>DAKERY<br>DEHY-<br>DRATED | ANIMAL<br>ANIMAL<br>ANIMAL<br>BLOOD<br>SPRAY<br>DEHYDRATED<br>GROUND<br> | ROCK<br>PHOSPHATE<br>ROCK<br>PHOSPHATE<br>GROUND         |

TABLE 2.8 Examples of International Feed Descriptions

# TABLE 2.9 Feed Classes

| Class<br>Number | Class Denominations and Explanations                                                                                                                                                                                             | ``````````````````````````````````````      |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| 1               | Dry forages and roughages                                                                                                                                                                                                        | r'it                                        |
|                 | All forages and roughages cut and cured and other products with more than 18% crud taining more than 35% cell wall (dry basis). Forages and roughages are low in net ene weight usually because of the high cell wall content.   | e fiber or con-<br>rgy per unit             |
|                 | Example forages:                                                                                                                                                                                                                 | د و د<br>مربع ا                             |
|                 | hay<br>STRAW<br>stover (AERIAL PART WITHOUT EARS WITHOUT HUSKS (for Maize) OR AERIAL<br>WITHOUT HEADS (for Sorghum)                                                                                                              | PART                                        |
|                 | Example roughages:                                                                                                                                                                                                               |                                             |
|                 | HULLS<br>PODS                                                                                                                                                                                                                    |                                             |
| 2               | Pasture, range plants, and forages fed fresh                                                                                                                                                                                     |                                             |
|                 | Included in this group are all forage feeds either not cut (including feeds cured on the and fed fresh.                                                                                                                          | stem) or cut                                |
| 3               | Silages                                                                                                                                                                                                                          |                                             |
|                 | This class includes only ensiled forages (MAIZE, ALFALFA, GRASS, etc.), but not er GRAIN, ROOTS, and TUBERS.                                                                                                                     | siled FISH,                                 |
| 4               | Energy feeds                                                                                                                                                                                                                     |                                             |
|                 | Products with less than 20% protein and less than 18% crude fiber or less than 35% ce basis), as for example GRAIN, mill by-products, FRUIT, NUTS, ROOTS, and TUBER these feeds are ensiled they are classified as energy feeds. | ell wall (dry<br>S. Also, when              |
| 5               | Protein supplements                                                                                                                                                                                                              | n in an |
|                 | Products which contain 20% or more of protein (dry basis) from animal origin (includ products) as well as oil meals, GLUTEN, etc.                                                                                                | ing ensiled                                 |
| 6               | Mineral supplements                                                                                                                                                                                                              | х<br>2 ус.<br>3 у у ху х 1                  |
| 7               | Vitamin supplements                                                                                                                                                                                                              |                                             |
|                 | Including ensiled yeast.                                                                                                                                                                                                         | e s                                         |
| 8               | Additives                                                                                                                                                                                                                        | 2<br>1<br>1                                 |
|                 | Feed supplements such as antibiotics, coloring material, flavors, hormones, and medica                                                                                                                                           | •                                           |

÷.,

1.1

٠.

.

**42**,

| International Feed<br>Description                                                               | International Feed<br>Name (English)                                 | International Feed<br>Name (German)        | Country Name                                                                             |
|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------|------------------------------------------------------------------------------------------|
| Example 1                                                                                       |                                                                      |                                            |                                                                                          |
| TRIFOLIUM PRATENSE,<br>CLOVER, RED, DEHY-<br>DRATED GROUND,<br>EARLY BLOOM,<br>17.1–19% PROTEIN | CLOVER, RED, MEAL<br>DEHYDRATED, EARLY<br>BLOOM, 17.1—19%<br>PROTEIN | ROTKLEE, Gruenmehl,<br>17,1—19% Rohprotein | · · · · · · · · · · · · · · · · · · ·                                                    |
| Example 2                                                                                       |                                                                      | ·                                          | 5 * 5<br>5 c S                                                                           |
| ZEA MAYS, MAIZE<br>GLUTEN, WET MILLED<br>DEHYDRATED GROUND                                      | MAłZE, gluten, meal                                                  | Maiskleberfutter,<br>eiweissreich          | Durah shami,<br>gluten (Egypt)<br>Misir, gluten<br>(Turkey)<br>Corn gluten<br>meal (USA) |

TABLE 2.10 Examples of International Feed Descriptions, International Feed Names, and Country Names From the International Feed Description File

.

.

| Internati       | ional Feed Description                                                             | t ,' ``<br>                                                |
|-----------------|------------------------------------------------------------------------------------|------------------------------------------------------------|
| ltem<br>Number  | Descriptors in<br>International Feed<br>Description                                | Descriptors or Terms<br>Used in International<br>Feed Name |
| 1               | AERIAL PART                                                                        | Deleted                                                    |
| 2               | AERIAL PART OIL RESIDUE                                                            | Deleted                                                    |
| 3               | BLUBBER OIL RESIDUE                                                                | BLUBBER                                                    |
| 4               | BONE OIL RESIDUE                                                                   | BONES                                                      |
| 5               | BRAN WITH GERMS OIL RESIDUE                                                        | BRAN WITH GERMS                                            |
| 6               | BRAN WITH GERMS WITH HULLS<br>OIL RESIDUE                                          | BRAN WITH GERMS WITH HULLS                                 |
| 7               | CARCASS RESIDUE                                                                    | MEAT                                                       |
| 8               | CARCASS RESIDUE WITH BLOOD                                                         | Tankage                                                    |
| 9               | CARCASS RESIDUE WITH BLOOD<br>WITH BONE                                            | Tankage with bone                                          |
| 10              | CARCASS RESIDUE WITH BLOOD<br>WITH RUMEN CONTENTS                                  | Tankage with rumen contents                                |
| 11              | CARCASS RESIDUE WITH BONE                                                          | MEAT WITH BONE                                             |
| 12              | FLOUR OIL RESIDUE                                                                  | FLOUR                                                      |
| 13              | FRUIT OIL RESIDUE                                                                  | FRUIT                                                      |
| 14              | FRUIT WITHOUT PITS OIL RESIDUE                                                     |                                                            |
| 15              | FRUIT WITHOUT SEEDS OIL<br>RESIDUE                                                 | FRUIT WITHOUT SEEDS                                        |
| 16              | GERMS OIL RESIDUE                                                                  | GERMS                                                      |
| 17              | GERMS WITHOUT SOLUBLES OIL<br>RESIDUE                                              | GERMS WITHOUT SOLUBLES                                     |
| 18              | GLUE BY-PRODUCT                                                                    | GLIJE RESIDUE                                              |
| 19              | GLUTEN LOW GLUTAMIC ACID                                                           | GLUTEN                                                     |
| 20              | GRAIN OIL RESIDUE                                                                  | GRAIN                                                      |
| 21              | GRAIN SCOURINGS                                                                    | SCOURINGS                                                  |
| 22              | GRAIN SCREENINGS                                                                   | SCREENINGS                                                 |
| 23              | GRAIN SCREENINGS REFUSE                                                            | SCREENINGS REFUSE                                          |
| 24              | GRAIN STARCH                                                                       | STARCH                                                     |
| 25              | GRITS BY-PRODUCT OIL RESIDUE                                                       | GRITS BY-PRODUCT                                           |
| 26              | GRITS OIL RESIDUE                                                                  | GRITS                                                      |
| 27              | KERNELS OIL RESIDUE                                                                | KERNELS                                                    |
| 28<br>29        | KERNELS WITH COATS OIL RESIDUE<br>KERNELS WITH COATS WITH SOME<br>PODS OIL RESIDUE |                                                            |
| 30              | LEAVES OIL RESIDUE                                                                 | LEAVES                                                     |
| 31              | LIVERS OIL RESIDUE                                                                 | LIVERS                                                     |
| 32              | MEAT OIL RESIDUE                                                                   | MEAT                                                       |
| 33              | MEATS OIL RESIDUE                                                                  | MEATS                                                      |
| 34              | MEATS WITH HUSKS OIL RESIDUE                                                       |                                                            |
| 35              | MEATS WITH SHELLS OIL RESIDUE                                                      | MEATS WITH SHELLS                                          |
| 36 <sub>,</sub> | MEATS WITH SOME SHELLS OIL<br>RESIDUE                                              | MEATS WITH SOME SHELLS                                     |
| 37              | OIL SLUDGE OIL RESIDUE                                                             | OIL SLUDGE                                                 |

TABLE 2.11a Part Descriptors Changed or Deleted When Composing the International Feed Name from the

۰,

,

| ltem<br>Number | Descriptors in<br>International Feed<br>Description                           | Descriptors or Terms<br>Used in International<br>Feed Name |
|----------------|-------------------------------------------------------------------------------|------------------------------------------------------------|
| 38             | PITS OIL RESIDUE                                                              | PITS                                                       |
| 39             | POLISHINGS OIL RESIDUE                                                        |                                                            |
| 40             | PROTEIN OIL RESIDUE                                                           | PROTEIN                                                    |
| 41             | PUPAE OIL RESIDUE                                                             | PUPAE                                                      |
| 42             | ROOTS OIL RESIDUE                                                             | ROOTS                                                      |
| 43             | SEED COATS OIL RESIDUE                                                        | SEED COATS                                                 |
| 44             | SEEDS GUMS ADDED OIL RESIDUE<br>SEEDS HULLS ADDED OIL RESIDUE                 | SEEDS GUMS ADDED                                           |
| 45             | SEEDS HULLS ADDED OIL RESIDUE                                                 | SEEDS HULLS ADDED                                          |
| 46             | SEEDS LOW GOSSYPOL OIL RESIDUE                                                | SEEDS LOW GOSSYPOL                                         |
| 47             | SEEDS LOW PROTEIN LOW<br>CARBOHYDRATES OIL RESIDUE                            | SEEDS LOW PROTEIN LOW CARBOHYDRATES                        |
| 48             | SEEDS OIL                                                                     | OIL                                                        |
| 49             | SEEDS OIL RESIDUE                                                             | SEEDS                                                      |
| 50             | SEEDS UNSCREENED OIL RESIDUE                                                  | SEEDS UNSCREENED                                           |
| 51             | SEEDS WITH SOME HULLS OIL<br>RESIDUE                                          | SEEDS WITH SOME HULLS                                      |
| 52             | SEEDS WITHOUT COATS OIL<br>RESIDUE                                            | SEEDS WITHOUT COATS                                        |
| 53             | SEEDS WITHOUT HULLS OIL<br>RESIDUE                                            | SEEDS WITHOUT HULLS                                        |
| 54             | TUBERS WITHOUT PEELINGS OIL<br>RESIDUE                                        | TUBERS WITHOUT PEELINGS                                    |
| 55             | VISCERA WITH FEET WITH HEADS                                                  | BY-PRODUCT                                                 |
| 56             | VISCERA WITH FEET WITH HEADS<br>VISCERA WITH FEET WITH HEADS<br>WITH FEATHERS | BY-PRODUCT WITH FEATHERS                                   |
| 57             | WHEY WITHOUT ALBUMIN LOW<br>LACTOSE                                           | WHEY SOLUBLES                                              |
| 58             | WHOLE OR CUTTINGS                                                             | Deleted                                                    |
| 59             | WHOLE OR CUTTINGS OIL RESIDUE                                                 | Deleted                                                    |
|                | · · · · · · · · · · · · · · · · · · ·                                         |                                                            |

 TABLE 2.11a
 Part Descriptors Changed or Deleted When Composing the International Feed Name from the International Feed Description (Continued)

TABLE 2.11b Example International Feed Description and International Feed Names Corresponding to the Parts Listed ۲ ۱ in Table 2.11a t

.....

| Interna-<br>tional<br>Feed No. | ltem<br>From<br>3 4a | No.<br>I Table International Feed<br>Description                                                     | International Feed<br>Name                                                          |
|--------------------------------|----------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| 3-07-840                       | 1                    | ALFALFA, AERIAL PART, WILTED ENSILED, FULL<br>BLOOM, CUT 1                                           | ALFALFA, SILAGE WILTED, FULL BLOOM, CUT 1                                           |
| 1-00-030                       | 2                    | ALFALFA, AERIAL PART OIL RESIDUE, SOLVENT                                                            | ALFALFA, MEAL SOLVENT EXTRACTED                                                     |
| 4-09-283                       | 3                    | EXTRACTED GROUND<br>SEAL, HARBOUR, BLUBBER OIL RESIDUE,<br>SOLVENT EXTRACTED                         | SEAL, HARBOUR, BLUBBER, SOLVENT EXTRACTED                                           |
| 6-08-338                       | 4                    | ANIMAL, BONE OIL RESIDUE, BOILED SOLVENT<br>EXTRACTED GROUND                                         | ANIMAL, BONES, MEAL SOLVENT EXTRACTED                                               |
| 4-03-930                       | 5                    | RICE, BRAN WITH GERMS OIL RESIDUE, SOLVENT<br>EXTRACTED GROUND                                       | RICE, BRAN WITH GERMS, MEAL SOLVENT EXTRACTED                                       |
| 1-13-554                       | 6                    | RICE, BRAN WITH GERMS WITH HULLS OIL<br>RESIDUE, SOLVENT EXTRACTED GROUND                            | RICE, BRAN WITH GERMS WITH HULLS, MEAL SOLVENT EXTRACTED                            |
| 5-00-385                       | 7                    | ANIMAL, CARCASS RESIDUE, DRY RENDERED<br>GROUND                                                      | ANIMAL, MEAT, MEAL RENDERED                                                         |
| 5-00-386                       | 8                    |                                                                                                      | ANIMAL, TANKAGE, RENDERED                                                           |
| 5-00-387                       | 9                    | ANIMAL, CARCASS RESIDUE WITH BLOOD WITH<br>BONE. DRY OR WET RENDERED GROUND                          | ANIMAL, TANKAGE WITH BONE, MEAL RENDERED                                            |
| 5-08-336                       | 10                   | ANIMAL, CARCASS RESIDUE WITH BLOOD WITH<br>RUMEN CONTENTS, DRY OR WET RENDERED GROUND                | ANIMAL, TANKAGE WITH RUMEN CONTENTS, MEAL<br>RENDERED                               |
| 500398                         | 11                   | ANIMAL, CARCASS RESIDUE WITH BONE, DRY<br>RENDERED GROUND                                            | ANIMAL, MEAT WITH BONE, MEAL RENDERED                                               |
| 5-03-645                       | 12                   | PEANUT, FLOUR OIL RESIDUE, MECHANICAL<br>EXTRACTED                                                   | PEANUT, FLOUR, MECHANICAL EXTRACTED                                                 |
| 4-14-459                       | 13                   | PEPPER, FRUIT OIL RESIDUE, SOLVENT<br>EXTRACTED                                                      | PEPPER, FRUIT, SOLVENT EXTRACTED                                                    |
| 4-08-475                       | 14                   | OLIVE, FRUIT WITHOUT PITS OIL RESIDUE,<br>SOLVENT EXTRACTED GROUND                                   | OLIVE, FRUIT WITHOUT PITS, MEAL SOLVENT<br>EXTRACTED                                |
| 1-11-746                       | 15                   | COFFEE, FRUIT WITHOUT SEEDS OIL RESIDUE,<br>MECHANICAL EXTRACTED                                     | COFFEE, FRUIT WITHOUT SEEDS, MECHANICAL<br>EXTRACTED                                |
| 5-02-894                       | 16                   | MAIZE, GERMS OIL RESIDUE, DRY MILLED<br>MECHANICAL EXTRACTED GROUND                                  | MAIZE, GERMS, MEAL MECHANICAL EXTRACTED                                             |
| 5-02-898                       | 17                   | MAIZE, GERMS WITHOUT SOLUBLES OIL RESIDUE,<br>WET MILLED SOLVENT EXTRACTED GROUND                    | MAIZE, GERMS WITHOUT SOLUBLES, MEAL SOLVENT<br>EXTRACTED                            |
| 5-01-966                       | 18                   | FISH, GLUE BY-PRODUCT, DEHYDRATED GROUND                                                             | FISH, GLUE RESIDUE, MEAL                                                            |
| 5-02-901                       | 19                   | MAIZĖ, GLUTEN LOW GLUTAMIC ACID,<br>NYDROLYZED DEHYDRATED                                            | MAIZE, GLUTEN, HYDROLYZED                                                           |
| 4-13-332                       | 20                   | MAIZE, GRAIN OIL RESIDUE, SOLVENT<br>EXTRACTED GROUND                                                | MAIZE, GRAIN, MEAL SOLVENT EXTRACTED                                                |
| 4-02-152                       |                      | CEREALS, GRAIN SCOURINGS                                                                             | CEREALS, SCOURINGS                                                                  |
| 4-02-156                       |                      | CEREALS, GRAIN SCREENINGS                                                                            | CEREALS, SCREENINGS                                                                 |
| 4-02-151                       |                      | CEREALS, GRAIN SCREENINGS REFUSE                                                                     | CEREALS, SCREENINGS REFUSE                                                          |
| 4-08-023                       |                      | MAIZE, GRAIN STARCH, HEAT HYDROLYZED                                                                 | MAIZE, STARCH, HEAT HYDROLYZED                                                      |
| 4-08-025                       | 25                   | SOLVENT EXTRACTED                                                                                    | MAIZE, GRITS BY-PRODUCT, SOLVENT EXTRACTED                                          |
| 5-04-592                       | 26                   | EXTRACTÉD                                                                                            | SOYBEAN, GRITS, SOLVENT EXTRACTED                                                   |
| 5-03-648                       |                      | PEANUT, KERNELS OIL RESIDUE, MECHANICAL<br>EXTRACTED CAKED                                           | PEANUT, KERNELS, MECHANICAL EXTRACTED CAKED                                         |
| 5-26-963                       |                      | PEANUT, KERNELS WITH COATS OIL RESIDUE,<br>SOLVENT EXTRACTED TOASTED GROUND                          | PEANUT, KERNELS WITH COATS, MEAL SOLVENT<br>EXTRACTED TOASTED                       |
| 5-24-754                       | 29                   | PEANUT, KERNELS WITH COATS WITH SOME PODS<br>OIL RESIDUE, MECHANICAL EXTRACTED GROUND,<br>4.1-8% FAT | PEANUT, KERMELS WITH COATS WITH SOME PODS,<br>MEAL MECHANICAL EXTRACTED, 4.1–8% FAT |
| 2 <b>0167</b> 3                | 30                   | CREOSOTEBUSH, LEAVES OIL RESIDUE, ALCOHOL EXTRACTED                                                  | CREOSOTEBUSH, LEAVES, ALCOHOL EXTRACTED                                             |
| 5-01 <b>-</b> 968              | 31                   | FISH, LIVERS OIL RESIDUE, MECHANICAL<br>EXTRACTED GROUND                                             | FISH, LIVERS, MEAL MECHANICAL EXTRACTED                                             |
| 4–05–163                       | 32                   | WHALE, MEAT OIL RESIDUE, SOLVENT<br>EXTRACTED GROUND                                                 | WHALE, MEAT, MEAL SOLVENT EXTRACTED                                                 |
| 5-11-966                       | 33                   | PALM, COHUNE, MEATS OIL RESIDUE,<br>MECHANICAL EXTRACTED CAKED                                       | PALM, COHUNE, MEATS, MECHANICAL EXTRACTED CAKED                                     |

TABLE 2.11b Example International Feed Description and International Feed Names Corresponding to the Parts Listed in Table 2.11a (Continued)

| Interna-<br>tional         | ltem<br>Fron | No.<br>Table International Foed                                                                                        | International Feed                                                                       |
|----------------------------|--------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Feed No.                   | 3 4a         | Description                                                                                                            | Name                                                                                     |
| 4-12-244                   | 34           |                                                                                                                        | CASHEW, COMMON, MEATS WITH HUSKS, MEAL                                                   |
| 5 <b>-</b> 25-591          | 35           | RESIDUE, MECHANICAL EXTRACTED GROUND<br>WALNUT, PERSIAN, MEATS WITH SHELLS OIL<br>RESIDUE, MECHANICAL EXTRACTED GROUND | MECHANICAL EXTRACTED<br>WALNUT, PERSIAN, MEATS WITH SHELLS, MEAL<br>MECHANICAL EXTRACTED |
| 5-25-588                   | 36           | BEECH, EUROPEAN, MEATS WITH SOME SHELLS<br>OIL RESIDUE, SOLVENT EXTRACTED GROUND                                       | BEECH, EUROPEAN, MEATS WITH SOME SHELLS,<br>MEAL SOLVENT EXTRACTED                       |
| 4-20-663                   | 37           | OILPALM, AFRICAN, OIL SLUDGE OIL RESIDUE,<br>SOLVENT EXTRACTED                                                         | OILPALM, AFRICAN, OIL SLUDGE, SOLVENT<br>EXTRACTED                                       |
| 5 <b>-</b> 27 <b>-</b> 525 | 38           | APRICOT, PITS OIL RESIDUE, MECHANICAL<br>EXTRACTED GROUND                                                              | APRICOT, PITS, MEAL MECHANICAL EXTRACTED                                                 |
| 4–13–300                   | 39           | RICE, POLISHINGS OIL RESIDUE, MECHANICAL<br>EXTRACTED                                                                  | RICE, POLISHINGS, MECHANICAL EXTRACTED                                                   |
| 5-09-227                   | 40           | FISH, PROTEIN OIL RESIDUE, SOLVENT<br>EXTRACTED                                                                        | FISH, PROTEIN, SOLVENT EXTRACTED                                                         |
| 5-20-950                   | 41           | SILKWORM, PUPAE OIL RESIDUE, SOLVENT<br>EXTRACTED                                                                      | SILKWORM, PUPAE, SOLVENT EXTRACTED                                                       |
| 4-26-371                   | 42           | LICORICE, ROOTS OIL RESIDUE, MECHANICAL<br>EXTRACTED GROUND                                                            | LICORICE, ROOTS, MEAL MECHANICAL EXTRACTED                                               |
| 1-13-575                   | 43           | CACAU, SEED COATS OIL RESIDUE, MECHANICAL EXTRACTED GROUND                                                             | CACAO, SEED COATS, MEAL MECHANICAL EXTRACTED                                             |
| 5-20-657                   | 44           | RAPE, TURNIP, SEEDS GUMS ADDED OIL<br>RESIDUE, SOLVENT EXTRACTED GROUND                                                | RAPE, TURNIP, SEEDS GUMS ADDED, MEAL SOLVENT<br>EXTRACTED                                |
| 5-09-636                   | 45           |                                                                                                                        | COTTON, UPLAND, SEEDS HULLS ADDED, MEAL<br>MECHANICAL EXTRACTED                          |
| 5 <b>-</b> 09-002          | 46           | COTTON, SELES LOW (DSSYPOL OIL RESIDUE,<br>MECHANICAL FXTRACTED GROUND                                                 | COTTON, SEEDS LOW GOSSYPCL, MEAL MECHANICAL EXTRACTED                                    |
| 5-04-613                   | 47           | SOYBEAN, SEEDS LOW PROTEIN LOW<br>CARUCHYDRATES OIL RESIDUE, SOLVENT<br>EXTRACTED GROUND                               | SOYBEAN, SEEDS LOW PROTEIN LOW CARBOHYDRATES,<br>MEAL SOLVENT EXTRACTED                  |
| 4-20-836                   | 48           | COTTON, SEEDS OIL                                                                                                      | COTTON, OIL                                                                              |
| 5-02-041                   |              | FLAX, COMMON, SEEDS OIL RESIDUE, SOLVENT<br>EXTRACTED, 31% PROTEIN                                                     | FLAX, COMMON, SEEDS, SOLVENT EXTRACTED, 31%                                              |
| 5-02-057                   | 50           | FLAX, COMMON, SEEDS UNSCREENED DIL<br>RESIDUE, MECHANICAL EXTRACTED CAKED                                              | FLAX, COMMON, SEEDS UNSCREENED, MECHANICAL<br>EXTRACTED CAKED                            |
| 5-14-539                   | 51           | COTTON, SEEDS WITH SOME HULLS OIL<br>RESIDUE MECHANICAL EXTRACTED GROUND,<br>8.1-127 FAT                               | COTTON, SEEDS WITH SOME HULLS, MEAL MECHANICAL<br>EXTRACTED, 8.1-12% FAT                 |
| 5-25-582                   | 52           |                                                                                                                        | MALLOW, SEEDS WITHOUT COATS, MEAL SOLVENT<br>EXTRACTED                                   |
| 5-20-931                   | 53           | BUFFALOGUURD, SEEDS WITHOUT HULLS OIL<br>RESIDUE, SOLVENT EXTRACTED GROUND                                             | BUFFALOGOURD, SEEDS WTHOUT HULLS, MEAL SOLVENT<br>EXTRACTED                              |
| 4-10-466                   | 54           | DASHEEN, TUBERS WITHOUT PEELINGS OIL<br>RESIDUE, SOLVENT EXTRACTED GROUND                                              | DASHEEN, TUBERS WITHOUT PEELINGS, MEAL SOLVENT<br>EXTRACTED                              |
| 5-30-187                   | 55           | BOILTRY, VISCERA WITH FEET WITH HEADS,<br>BOILED                                                                       | POULTRY, BY-PRODUCT, BOILED                                                              |
| 5-14-508                   | 55           | POULTRY, VISCERA WITH FEET WITH HEADS<br>WITH FEATHERS, HYDROLYZED                                                     | POULTRY, BY-PRODUCT WITH FEATHERS, HYDROLYZED                                            |
| 4-01-188                   | 57           | CATTLE, WHEY WITHOUT ALBUMIN LOW LACTOSE, CONDENSED                                                                    | CATTLE, WHEY SOLUBLES, CONDENSED                                                         |
| 5-01-974                   | 58           | FISH, WHOLE OR CUTTINGS, DEHYDRATED GROUND                                                                             | FISH, MEL                                                                                |
| 5-01-997                   | 59           | FISH, FLOUNDER, WHOLE OR CUTTINGS OIL<br>RESIDUE, MECHANICAL EXTRACTED GROUND                                          | FISH, FLOUNDER, MEAL MECHANICAL EXTRACTED                                                |

| memuti         |                                                     | , · · ,                                                    |
|----------------|-----------------------------------------------------|------------------------------------------------------------|
| ltem<br>Number | Descriptors in<br>International Feed<br>Description | Descriptors or Terms<br>Used in International<br>Feed Name |
| 1              | ALCOHOL EXTRACTED GROUND                            | Meal alcohol extracted                                     |
| 2<br>3         | BOILED DEHYDRATED GROUND                            | Meal boiled                                                |
| 3              | BOILED ENSILED                                      | Silage boiled                                              |
| 4              | BOILED MECHANICAL EXTRACTED<br>GROUND               | Meal boiled mechanical extracted                           |
| 5              | BOILED PREPRESSED SOLVENT<br>EXTRACTED GROUND       | Meal boiled prepressed solvent                             |
| 6              | BOILED SOLVENT EXTRACTED<br>GROUND                  | Meal boiled solvent extracted                              |
| 7              | CONVENTIONAL COOKER DEHYDRATED<br>GROUND            | Meal conventional cooker dehydrated                        |
| 8              | DEHYDRATED COARSE GROUND                            | COARSE GROUND                                              |
| 9              | DEHYDRATED FINE GROUND                              | FINE GROUND                                                |
| lõ             | DEHYDRATED GROUND                                   | meal                                                       |
| Ĩ1             | DEHYDRATED OR SUN-CURED                             | DEHYDRATED                                                 |
| 12             | DRY MILLED                                          | Deleted                                                    |
| 13             | DRY MILLED MECHANICAL<br>EXTRACTED GROUND           | Meal mechanical extracted                                  |
| L4             | DRY MILLED SOLVENT EXTRACTED<br>GROUND              | Meal solvent extracted                                     |
| L5             | DRY OR WET RENDERED                                 | RENDERED                                                   |
| lő             | DRY OR WET RENDERED GROUND                          | Meal rendered                                              |
| .7             | DRY RENDERED                                        | Deleted                                                    |
| 18             | DRY RENDERED GROUND                                 | Meal rendered                                              |
| 19             | ENSILED                                             | Silage                                                     |
| 20             | ENSILED AMMONIATED                                  | Silage ammoniated                                          |
| 21             | ENSILED DEHYDRATED                                  | Silage dehydrated                                          |
| 22             | ENSILED DEHYDRATED PELLETED                         |                                                            |
| 23             | EXTRACTION UNSPECIFIED GROUND                       | Meal extraction unspecified                                |
| 24             | FLASH DEHYDRATED GROUND                             | Meal flash dehydrated                                      |
| 25             | FREEZE DEHYDRATED GROUND                            | Meal freeze dehydrated ,                                   |
| 26             | HEAT AND ACID PRECIPITATED<br>DEHYDRATED            | Deleted                                                    |
| 27             | HYDROLYZED DEHYDRATED                               | HYDROLYZED                                                 |
| 28             | HYDROLYZED DEHYDRATED GROUND                        | Meal hydrolyzed                                            |
| 29             | MALTASE TREATED DEHYDRATED<br>GROUND                | Meal maltase treated                                       |
| 30             | MANUALLY EXTRACTED ENSILED                          | Silage manually extracted                                  |
| 31             | MECHANICAL EXTRACTED GROUND                         | Meal mechanical extracted                                  |
| 32             | MECHANICAL EXTRACTED STEAMED<br>GROUND              | Meal mechanical extracted steamed                          |
| 33             | MECHANICAL EXTRACTED TOASTED<br>GROUND              | Meal mecnanical extracted toasted                          |
| 34             | PREPRESSED SOLVENT EXTRACTED<br>GROUND              | Meal prepressed solvent extracted                          |
| 34             |                                                     | Meal prepressed solvent extracted                          |

TABLE 2.12a Process Descriptors Changed or Deleted When Composing the International Feed Name from the International Feed Description , i, ,

,

| ltem<br>Number | Descriptors in<br>International Feed<br>Description | Descriptors or Terms<br>Used in International<br>Feed Name |
|----------------|-----------------------------------------------------|------------------------------------------------------------|
| 35             | SOLVENT EXTRACTED AMMONIATED                        | Meal solvent extracted ammoniated                          |
| 36             | SOLVENT EXTRACTED AUTOCLAVED                        | Meal solvent extracted autoclaved                          |
| 37             | SOLVENT EXTRACTED GROUND                            | Meal solvent extracted                                     |
| 38             | SOLVENT EXTRACTED TOASTED<br>GROUND                 | Meal solvent extracted toasted                             |
| 39             | SPRAY DEHYDRATED GROUND                             | Meal spray dehydrated                                      |
| 40             | STEAMED DEHYDRATED GROUND                           | Meal steamed                                               |
| 41             | STEAMED ENSILED                                     | Silage steamed                                             |
| 42             | SUN-CURED MECHANICAL EXTRACTED GROUND               | Meal sun-cured mechanical extracted                        |
| 43             | WASHED ENSILED                                      | Silage washed                                              |
| 44             | WATER EXTRACTED DEHYDRATED<br>GROUND                | Meal water extracted                                       |
| 15             | WET MILLED DEHYDRATED GROUND                        | Meal                                                       |
| 16             | WET MILLED MECHANICAL<br>EXTRACTED GROUND           | Meal mechanical extracted                                  |
| 17             | WET MILLED SOLVENT EXTRACTED GROUND                 | Meal solvent extracted                                     |
| 8              | WILTED ENSILED                                      | Silage wilted                                              |
|                |                                                     | the stand of the stand                                     |

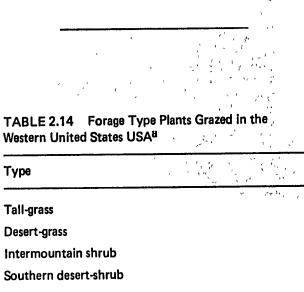
 TABLE 2.12a
 Process Descriptors Changed or Deleted When Composing the International Feed Name from the International Feed Description (Continued)

TABLE 2.12b Example International Feed Description and International Feed Names Corresponding to the Processes Listed in Table 2.12a

| Interna-<br>tional<br>Feed No. | item<br>From<br>3.5a | No.<br>Table International Feed<br>Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | International Feed<br>Name                                                       |
|--------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| 4-30-154                       | 1                    | HORSECHESTNUT, COMMON, MEATS WITH SHELLS,<br>ALCOHOL EXTRACTED GROUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HORSECHESTNUT, COMMON, MEATS WITH SHELLS, MEAL<br>ALCOHOL EXTRACTED              |
| 4-07-976                       | 2                    | GARBAGE, MUNICIPAL, BOILED DEHYDRATED<br>GROUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GARBAGE, MUNICIPAL, MEAL BOILED                                                  |
| 4-03-767<br>5-13-202           | 3<br>4               | POTATO, TUBERS, BOILED ENSILED<br>SESAME, SEEDS OF, RESIDUE, BOILED<br>MECHANICAL EXTRACTED GROUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | POTATO, TUBERS, SILAGE BOILED<br>SESAME, SEEDS, MEAL BOILED MECHANICAL EXTRACTED |
| 5-13-203                       |                      | COTTON, UPLAND, SEEDS OIL RESIDUE, BOILED<br>PREPRESSED SOLVENT EXTRACTED GROUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | COTTON, UPLAND, SEEDS, MEAL BOILED PREPRESSED<br>SOLVENT EXTRACTED               |
| 6-13-775                       |                      | CATTLE, BONF OIL RESIDUE, BOILED SOLVENT<br>EXTRACTED GROUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CATTLE, BONES, MEAL BOILED SOLVENT EXTRACTED                                     |
| 5-26-005                       |                      | ANIMAL, BLOOD, CONVENTIONAL COOKER<br>DEHYDRATED GROUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ANIMAL, BLOOD, MEAL CONVENTIONAL COOKER<br>DEHYDRATED                            |
| 1-02-780                       | 8                    | MAIZE, COBS, DEHYDRATED COARSE GROUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MAIZE, COBS, COARSE GROUND                                                       |
| 1-02-781                       | 9                    | MAIZE, COBS, DEHYDRATED FINE GROUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MAIZE, COBS, FINE GROUND                                                         |
| 1-00-018                       | 10                   | ALFALFA, AERIAL PART, DEHYDRATED GROUND,<br>LATE VEGETATIVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ALFALFA, MEAL, LATE VEGETATIVE                                                   |
| 4-13-452                       | 11                   | PEACH, FRUIT WITHOUT PITS, DEHYDRATED<br>OR SUN-CURED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PEACH, FRUIT WITHOUT PITS, DEHYDRATED                                            |
| 4-05-190                       | 12                   | WHEAT, BRAN, DRY MILLED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WHEAT, BRAN                                                                      |
| 5-25-556                       | 13                   | A REAL AND AND A REAL | MAIZE, GERMS, MEAL MECHANICAL EXTRACTED,                                         |
| 5-02-868                       |                      | MECHANICAL EXTRACTED GROUND, 4.1-8% FAT<br>MAIZE, GERMS OIL RESIDUE, DRY MILLED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.1–8% FAT<br>MAIZE, GERMS, MEAL SOLVENT EXTRACTED                               |
| 5-00-386                       |                      | SOLVENT EXTRACTED GROUND<br>ANIMAL, CARCASS RESIDUE WITH BLOOD, DRY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ANIMAL, TANKAGE, RENDERED                                                        |
| 5-08 <b>-</b> 786              | 16                   | OR WET RENDERED<br>ANIMAL, BY-PRODUCT, DRY OR WET RENDERED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ANIMAL, BY-PRODUCT, MEAL RENDERED                                                |
|                                | 477                  | GROUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SWINE, CRACKLINGS                                                                |
| 5-04-791<br>5-10-142           | 17<br>18             | SWINE, CRACKLINGS, DRY RENDERED<br>ANIMAL, CARCASS RESIDUE, DRY RENDERED<br>GROUND, 40% PROTEIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ANIMAL, MEAT, MEAL RENDERED, 40% FROTEIN                                         |
| 3-00-225                       | 19                   | ALFALFA, AERIAL PART AIV PRESERVATIVE<br>ADDED, ENSILED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ALFALFA, AERIAL PART AIV PESERVATIVE ADDED,<br>SILAGE                            |
| 3-26-647                       | 20                   | OATS, STRAW, ENSILED AMMONIATED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | OATS, STRAW, SILAGE AMMONIATED                                                   |
| 3-13-793                       | 21                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SORGHUM, SILAGE DEHYDRATED                                                       |
| 3-08-812                       |                      | ALFALFA, AERIAL PART, ENSILED DEHYDRATED<br>PELLETED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ALFALFA, SILAGE DEHYDRATED FILLETED                                              |
| 5-24-061                       | 23                   | FISH, COD, LIVERS OIL RESIDUE, EXTRACTION UNSPECIFIED GROUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FISH, COD, LIVERS, MEAL EXTRACTION UNSPECIFIED                                   |
| 5-26-006                       | 24                   | ANIMAL, BLOOD, FLASH DEHYDRATED GROUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ANIMAL, BLOOD, MEAL FLASH DEHYDRATED                                             |
| 1-14-457                       | 25                   | LEADTREE, WHITEPOPINAC, LEAVES, FREEZE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LEADTREE, WHITEPOPINAC, LEAVES, MEAL FREEZE                                      |
| 5-01-177                       |                      | DEHYDRATED GROUND<br>CATTLE, WHEY ALBUMIN, HEAT AND ACID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DEHYDRATED<br>CATTLI, WHEY ALBUMIN                                               |
| - • •                          |                      | PRECIPITATED DEHYDRATED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                  |
| 4-01-184<br>5-03-795           | 27<br>28             | CATTLE, WHEY, HYDROLYZED DEHYDRATED<br>POULTRY, FEATHERS, HYDROLYZED DEHYDRATED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CATTLE, WHEY, HYDROLYZED<br>POULTRY, FEATHERS, MEAL HYDROLYZED                   |
| 4-02-885                       |                      | GROUND<br>MAIZE, STARCH PROCESS RESIDUE, MALTASE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MAIZE, STARCH PROCESS RESIDUE, MEAL MALTASE                                      |
| 4-24-549                       | 30                   | TREATED DEHYDRATED GROUND<br>REET, SUGAR, PULP, MANUALLY EXTRACTED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TREATED<br>BEET, SUGAR, PULP, SILAGE MANUALLY EXTRACTED                          |
| 5-14-666                       | 31                   | ENSILED<br>ADANSONIA, GRANDIDIERI, SEEDS OIL RESIDUE,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                  |
| 5-01-571                       | 32                   | MECHANICAL EXTRACTED GROUND<br>COCONUT, MEATS OIL RESIDUE, MECHANICAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | EXTRACTED<br>COCONUT, MEATS, MEAL MECHANICAL EXTRACTED                           |
| 5-24-767                       | 33                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | STEAMED<br>SOYBEAN, SEEDS, MEAL MECHANICAL EXTRACTED TOASTE                      |
| 5-08-135                       | 34                   | EXTRACTED TOASTED GROUND<br>RAPE, SUMMER, SEEDS OIL RESIDUE,<br>PREPRESSED SOLVENT EXTRACTED GROUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RAPE, SUMMER, SEEDS, MEAL PREPRESSED SOLVENT<br>EXTRACTED                        |
| 5-09-352                       | 35                   | COTTON, SEEDS OIL RESIDUE, SOLVENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | COTTON, SEEDS, MEAL SOLVENT EXTRACTED AMMONIATED                                 |
| 5 <b>-</b> 26 <b>-96</b> 5     | 36                   | EXTRACTED AMMONIATED GROUND<br>PEANUT, KERNELS WITH COATS OIL RESIDUE,<br>SOLVENT EXTRACTED AUTOCLAVED GROUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PEANUT, KERNELS WITH COATS, MEAL SOLVENT<br>EXTRACTED AUTOCLAVED                 |

TABLE 2.12b Example International Feed Description and International Feed Names Corresponding to the Processes Listed in Table 2.12a

| Interna-<br>tional<br>Feed No. | ltem<br>From<br>3.5a | No.<br>Table International Feed<br>Description                                    | International Feed<br>Name                                                  |
|--------------------------------|----------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| 5-25-599                       | 37                   | AKEE, SEEDS OIL RESIDUE, SOLVENT<br>EXTRACTED GROUND                              | AKEE, SEEDS, MEAL SOLVENT EXTRACTED                                         |
| 5-04-607                       | 38                   |                                                                                   | SOYBEAN, SEEDS, MEAL SOLVENT EXTRACTED TOASTED                              |
| 5-00-381                       | 39                   | ANIMAL, BLOOD, SPRAY DEHYDRATED GROUND                                            | ANIMAL, BLOOD, MEAL SPRAY DEHYDRATED                                        |
| 600400                         | 40                   | ANIMAL, BONES, STEAMED DEHYDRATED GROUND                                          | ANIMAL, BONES, MEAL STRAI DEHIDRATED                                        |
| 4-25-024                       | 41                   | ARTICHOKE, JERUSALEM, TUBERS, STEAMED                                             | ARTICHOKE, JERUSALEM, TUBERS, SILAGE STEAMED                                |
| 5-24-020                       | 42                   | FISH, WHOLE OR CUTTINGS OIL RESIDUE,<br>SUN-CURED MECHANICAL EXTRACTED GROUND     | FISH, MEAL SUN-CURED MECHANICAL EXTRACTED                                   |
| 3-22-128                       | 43                   | BEET, COMMON, LEAVES, WASHED ENSILED                                              | REFT COMMON LEAVES OT LOS HAGIND                                            |
| 5-00-396                       | 44                   | ANIMAL, LIVERS, WATER EXTRACTED<br>DEHYDRATED GROUND                              | BEET, COMMON, LEAVES, SILAGE WASHED<br>ANIMAL, LIVERS, MEAL WATER EXTRACTED |
| 5-04-388                       | 45                   |                                                                                   | SORGHUM, GLUTEN, MEAL                                                       |
| 5-25-555                       | 46                   | MAIZE, GERMS OIL RESIDUE, WET MILLED<br>MECHANICAL EXTRACTED GROUND, 4.1-8% FAT   | MAIZE, GERMS, MEAL MECHANICAL EXTRACTED, 4.1-8%                             |
| 5 <b>-</b> 02 <b>-8</b> 98     | 47                   | MAIZE, GERMS WITHOUT SOLUBLES OIL RESIDUE,<br>WET MILLED SOLVENT EXTRACTED GROUND | MAIZE, GERMS WITHOUT SOLUBLES, MEAL SOLVENT<br>EXTRACTED                    |
| 3-00-221                       | 48                   | ALFALFA, AERIAL PART, WILTED ENSILED                                              | ALFALFA, SILAGE WILTED                                                      |


TABLE 2.13 Examples of International Feed Descriptions for Forage Type Plants Used as Pasture, Hay, and Silage

| Element  | Feed No. 1                  | Feed No. 2                  | Feed No. 3                  |
|----------|-----------------------------|-----------------------------|-----------------------------|
| Genus    | PHLEUM                      | PHLEUM                      | PHLEUM                      |
| species  | PRATENSE                    | PRATENSE                    | PRATENSE                    |
| variety  |                             |                             |                             |
| Generic  | TIMOTHY                     | ТІМОТНҮ                     | TIMOTHY                     |
| kind     |                             | ,                           |                             |
| strain   |                             |                             | · `                         |
| part     | AERIAL<br>PART <sup>a</sup> | AERIAL<br>PART <sup>b</sup> | AERIAL<br>PART <sup>C</sup> |
| process  | FRESH <sup>a</sup>          | SUN-CURED <sup>b</sup>      | ENSILEDC                    |
| maturity | LATE VEG-<br>ETATIVE        | EARLY<br>BLOOM              | LATE VEG-<br>ETATIVE        |
| cut      |                             | CUT 1                       | CUT 1                       |
| grade    |                             |                             | <del></del>                 |
| IFN      | 2-04-903                    | 1-09-003                    | 3-21-072                    |

<sup>a</sup> AERIAL PART, FRESH, is pasture or cut and fed fresh

<sup>b</sup> AERIAL PART, SUN-CURED is hay

<sup>c</sup> AERIAL PART, ENSILED is silage



Chaparral

Oak

Mountain-brush

Pinon-juniper

<sup>a</sup> Taken from Stoddart and Smith (1955).

,

| Element                | Feed No. 1    | Feed No. 2                             | Feed No. 3                             | Feed No. 4                             |
|------------------------|---------------|----------------------------------------|----------------------------------------|----------------------------------------|
| Genus<br>(type)        | MEADOW PLANTS | CHAPARRAL PLANTS                       | CONIFEROUS TREE                        | PINON-JUNIPER<br>PLANTS                |
| species                |               | · · · ·                                | · · · · ·                              |                                        |
| variety                |               |                                        |                                        |                                        |
| Generic<br>(name type) | MEADOW PLANTS | CHAPARRAL PLANTS                       | CONIFEROUS TREE<br>PLANTS              | PINON-JUNIPER<br>PLANTS                |
| ind .                  |               |                                        |                                        |                                        |
| train                  |               |                                        |                                        |                                        |
| part                   | AERIAL PART   | BROWSE AND<br>AERIAL PART <sup>a</sup> | BROWSE AND<br>AERIAL PART <sup>a</sup> | BROWSE AND<br>AERIAL PART <sup>a</sup> |
| Drocess                | FRESH         | FRESH                                  | FRESH                                  | FRESH                                  |
| FN                     | 2-27-463      | 2-12-325                               | 2-12-361                               | 2-12-362                               |

TABLE 2.15 Example International Feed Descriptions for Forage Types Grazed

<sup>a</sup> Some plants are trees or shrubs and others are grasses.

| Interna-<br>tional                |                           |                                            |            | Quand                     | ,                             | · · · ;     |                           | , .<br>,      | , , , , , , , , , , , , , , , , , , ,               |
|-----------------------------------|---------------------------|--------------------------------------------|------------|---------------------------|-------------------------------|-------------|---------------------------|---------------|-----------------------------------------------------|
| Feed<br>Number                    | Genus                     | Species                                    | Variety    | Generic<br>Name           | Kind                          | Strain      | Part                      | Process       | Cut                                                 |
| 2-12-367                          | CONIFEROUS<br>TREE PLANTS | LARGELY<br>CYNOSURUS<br>CRISTATUS          |            | CONIFEROUS<br>TREE PLANTS | LARGELY<br>DOGTAIL<br>CRESTED |             | BROWSE AND<br>AERIAL PART | FRESH         | •••<br>                                             |
| P-12-364                          | MEADOW<br>PLANTS          | LAND EXTEN-<br>SIVELY GRAZED               |            | MEADOW<br>PLANTS          | LAND EXTEN-<br>SIVELY GRAZ    |             | AERIAL PART               | FRESH         | r<br>T                                              |
| 2-12-365                          | MEADOW<br>PLANTS          | LAND INTEN-<br>SIVELY GRAZED               |            | MEADOW<br>PLANTS          | LAND INTEN-<br>SIVELY GRAZ    |             | AERIAL PART               | FRESH         |                                                     |
| 2-12-366                          | STEPPE<br>PLANTS          |                                            |            | STEPPE<br>PLANTS          |                               |             | AERIAL PART               | FRESH         | · · · · · · · · · · ·                               |
| 2•27•464                          | PRAIRIE<br>PLANTS         | (                                          |            | PRAIRIE<br>PLANTS         |                               | · · · · · · | AERIAL PART               | FRESH         | ; - <u></u>                                         |
| -27-463                           | MEADOW<br>PLANTS          | ·                                          |            | MEADOW<br>PLANTS          | <del></del> ,                 |             | AERIAL PART               | FRESH         | , <u>,</u><br>, , , , , , , , , , , , , , , , , , , |
| -12-368                           | MEADOW<br>PLANTS          | LARGELY CAREX                              |            | MEADOW<br>PLANTS          | LARGELY                       | ,<br>'      | AERIAL PART               | FRESH         | · · · · · ·                                         |
| -12-369                           | MEADOW<br>PLANTS          | LARGELY <i>ALOPE-</i><br>CURUS PRATENSIS   |            | MEADOW<br>PLANTS          | LARGELY<br>FOXTAIL<br>MEADOW  |             | AERIAL PART               | FRESH         | , 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,            |
| -12-370                           | MEADOW<br>PLANTS          | LARGELY <i>ALOPE-</i><br>CURUS PRATENSIS   |            | MEADOW<br>PLANTS          | LARGELY<br>FOXTAIL<br>MEADOW  |             | AERIAL PART               | SUN-<br>CURED | , <b>`CUT</b> :                                     |
| -12-371                           | MEADOW<br>PLANTS          | LARGELY <i>ARRHENA</i> -<br>THERUM ELATIUS |            | MEADOW<br>PLANTS          | LARGELY<br>OATGRASS<br>TALL   | <u></u>     | AERIAL PART               | SUN-<br>CURED |                                                     |
| 12-375                            | MEADOW<br>PLANTS          | LARGELY <i>TRISETUM</i><br>FLA VESCENS     |            | MEADOW<br>PLANTS          | LARGELY<br>OATGRASS<br>YELLOW |             | AERIAL PART               | FRESH         | · · · · · · · · · · · · · · · · · · ·               |
| 22-998                            | MARSH<br>PLANTS           |                                            |            | MARSH<br>PLANTS           |                               | <b></b>     | AERIAL PART               | FRESH         | · · ·                                               |
| •22• <del>9</del> 94 <sup>°</sup> | MARSH<br>PLANTS           | IN SEAWATER                                | , <u>.</u> | MARSH<br>PLANTS           | IN SEA-<br>WATER              |             | AERIAL PART               | FRESH         | , , , , , , , , , , , , , , , , , , ,               |

TABLE 2.16 Examples of International Feed Descriptions for Forage Types Which are Grazed or Cut for Hay

# TABLE 2.17 Examples of International Feed Descriptions for Forage Type Plants Grown on Extensively or Intensively Grazed Land

| Interna-<br>tional |                       |                              |         |                        |                              |        |                |                      |                            |       |
|--------------------|-----------------------|------------------------------|---------|------------------------|------------------------------|--------|----------------|----------------------|----------------------------|-------|
| Feed<br>Number     | Genus                 | Species                      | Variety | Generic<br>Name        | Kind                         | Strain | Part           | Maturity             | Process                    | Cut   |
| 2-22-962           | GRASS-LEGUME-<br>FORB | LAND EXTEN-<br>SIVELY GRAZED |         | GRASS-LEGUME<br>FORB   | LAND EXTEN-<br>SIVELY GRAZED |        | AERIAL<br>PART | LATE VEGE-<br>TATIVE | FRESH                      | CUT 2 |
| 2-12-363           | GRASS-LEGUME-<br>FORB | LAND EXTEN<br>SIVELY GRAZED  |         | GRASS-LEGUME<br>FORB   | LAND EXTEN-<br>SIVELY GRAZED |        | AERIAL<br>PART |                      | FRESH                      | · ,   |
| 1-23-382           | GRASS-LEGUME-<br>FORB | LAND EXTEN-<br>SIVELY GRAZED |         | GRASS-LEGUME-<br>FORB  | LAND EXTEN-<br>SIVELY GRAZED |        | AERIAL<br>PART | EARLY<br>BLOOM       | SUN-<br>CURED <sup>®</sup> | CUT 1 |
| 2-22-420           | GRASS-LEGUME-<br>FORB | LAND INTEN-<br>SIVELY GRAZED |         | GRASS-LEGUME -<br>FORB | LAND INTEN-<br>SIVELY GRAZED |        | AERIAL<br>PART |                      | FRESH                      |       |
| 1-23-395           | GRASS-LEGUME-<br>FORB | LAND INTEN-<br>SIVELY GRAZED |         | GRASS-LEGUME-<br>FORB  | LAND INTEN-<br>SIVELY GRAZED |        | AERIAL<br>PART |                      |                            | CUT 2 |
| 2-22-800           | GRASS-LEGUME-<br>FORB | LAND MODER-<br>ATELY GRAZED  |         | GRASS-LEGUME-<br>FORB  | LAND MODER-<br>ATELY GRAZED  |        | AERIAL<br>PART |                      | FRESH                      |       |

,

<sup>a</sup> Aerial part + sun-cured = hay.

### TABLE 3.1 Major Fishing Areas<sup>a</sup>

|             | · `    |   |     |        | <br>   |        |      |     | -, " |
|-------------|--------|---|-----|--------|--------|--------|------|-----|------|
| Description | -<br>; | د | · * | ۰<br>ب | 1<br>1 | ,<br>, | <. * | - , | ì    |
|             | ,      |   |     |        |        |        |      | 1.  | -    |

### Inland Waters

Africa America, North America, South Asia Europe Oceania USSR Antarctic

Fishing Areas, Atlantic Ocean and Adjacent Seas

Arctic Sea Atlantic, Northwest Atlantic, Northeast Atlantic, Western Central Atlantic, Eastern Central Mediterranean and Black Sea Atlantic, Southwest Atlantic, Southeast Atlantic, Antarctic

Fishing Areas, Indian Ocean and Adjacent Seas

Indian Ocean, Western Indian Ocean, Eastern Indian Ocean, Antarctic

Fishing Areas, Pacific Ocean and Adjacent Seas

Pacific, Northwest Pacific, Northeast Pacific, Western Central Pacific, Eastern Central Pacific, Southwest Pacific, Southeast Pacific, Antarctic

z

<sup>a</sup> Taken from yearbook of fishery statistics. 1977.

| Preferred term            | Definition                                                                                                                                                                                                  | Related terms                                                                                                                                                                               |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| For Plants that Bloom     |                                                                                                                                                                                                             |                                                                                                                                                                                             |
| Germinated                | Stage in which the embryo in a seed resumes growth after a dormant period                                                                                                                                   | Sprouted                                                                                                                                                                                    |
| Early vegetative          | Stage at which the plant is vegetative and before the stems elongate                                                                                                                                        | Fresh new growth, before heading ou<br>before inflorescence emergence,<br>immature prebud stage, very immatu<br>young                                                                       |
| Late vegetative           | Stage at which stems are beginning to elongate to just before blooming; first bud to first flowers                                                                                                          | Before bloom, bud stage, budding<br>plants heading to bloom, heads just<br>showing, jointing and boot (grasses),<br>prebloom, preflowering, stems elonga                                    |
| Early bloom               | Stage between initiation of bloom and stage<br>in which 1/10 of the plants are in bloom;<br>some grass heads are in anthesis                                                                                | Early anthesis, first flower, headed ou<br>in head, up to 1/10 bloom                                                                                                                        |
| Midbloom                  | Stage in which 1/10 to 2/3 of the plants are in bloom; most grass heads are in anthesis                                                                                                                     | Bloom, flowering, flowering plants, h<br>bloom, in bloom, mid anthesis                                                                                                                      |
| Full bloom                | Stage in which 2/3 or more of the plants are in bloom                                                                                                                                                       | 3/4 to full bloom late anthesis                                                                                                                                                             |
| Late bloom                | Stage in which blossoms begin to dry and fall and seeds begin to form                                                                                                                                       | 15 days after silking, before milk, in bloom to early pod, late to past anthe                                                                                                               |
| Milk stage                | Stage in which seeds are well formed but soft and immature                                                                                                                                                  | After anthesis, early seed, fruiting, in<br>tassel, late bloom to early seed, past<br>bloom, pod stage, post anthesis, post<br>bloom, seed developing, seed forming,<br>soft, soft immature |
| Dough stage               | Stage in which the seeds are of dough-like consistency                                                                                                                                                      | Dough stage, nearly mature, seeds<br>dough, seeds well developed, soft dent                                                                                                                 |
| Aature .                  | Stage in which plants are normally harvested for seed                                                                                                                                                       | Dent , dough to glazing, fruiting, fruitir<br>plants, in seed, kernels ripe, ripe seed                                                                                                      |
| Post ripe                 | Stage that follows maturity; some seeds cast<br>and plants have begun to weather (applies<br>mostly to range plants)                                                                                        | Late seed, over ripe, very mature                                                                                                                                                           |
| tem cured                 | Stage in which plants are cured on the stem;<br>seeds have been cast and weathering has taken<br>place (applies mostly to range plants).                                                                    | Dormant, mature and waathered, seeds cast                                                                                                                                                   |
| legrowth early vegetative | Stage in which regrowth occurs without<br>flowering activity; vegetative crop aftermath;<br>regrowth in stubble (applies primarily to fall<br>regrowth in temperate climates); early dry<br>season regrowth | Vegetative recovery growth                                                                                                                                                                  |

# TABLE 3.2 International Stage of Maturity Terms (Revised 1973)

| Preferred term             | Definition                                                                                                                                                                                                  | Related terms                                                 |  |  |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--|--|
| Regrowth late vegetative   | Stage in which stems begin to elongate<br>to just before blooming; first bud to first<br>flowers; regrowth in stubble with stem<br>elongation (applies primarily to fall<br>regrowth in temperate climates) | Recovery growth, stems elongation jointing and boot (grasses) |  |  |
| Immature                   | Used for fruit and leaves                                                                                                                                                                                   |                                                               |  |  |
| For Plants that Do Not Blo | ont <sup>a</sup>                                                                                                                                                                                            |                                                               |  |  |
| 1 to 14 days growth        | A specified length of time after plants have started to grow.                                                                                                                                               | 2 weeks' growth                                               |  |  |
| 15 to 28 days growth       | A specified length of time after plants have started to grow                                                                                                                                                | 4 weeks'growth                                                |  |  |
| 29 to 42 days'growth       | A specified length of time after plants have started to grow                                                                                                                                                | 6 weeks'growth                                                |  |  |
| 43 to 56 days'growth       | A specified length of time after plants have started to grow                                                                                                                                                | 8 weeks'growth                                                |  |  |
| 57 to 70 days growth       | A specified length of time after plants have<br>started to grow                                                                                                                                             | 10 weeks 'growth                                              |  |  |

### TABLE 3.2 International Stage of Maturity Terms (Continued)

<sup>a</sup> These classes are for species that remain vegetative for long periods and apply primarily to the tropics. When the name of a feed is developed, the age classes form part of the name (e.g., Pangolagrass, 15 to 28 days' growth). Do not use terms which apply to plants that bloom and those which do not bloom in same name. For plants growing longer than 70 days, the interval is increased by increments of 14 days.

| Ruminants and |                  |                      |
|---------------|------------------|----------------------|
| Non-Ruminants | Poultry          | Fish                 |
| day old       | day old          | larval               |
| suckling      | chick            | fry                  |
| grower        | broiler<br>adult | fingerling<br>grower |
| adult<br>aged | aged             | adult                |
| ayou          |                  | aged                 |

TABLE 3.3 Maturity Terms for Animals

|   |                                        | Stage of mate                                          |                                                                                                                                           |                                                                                                                                                 | Typica         | l chemical | composit   | ion-% <sup>b</sup> | Relative   |
|---|----------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------|------------|--------------------|------------|
| ( | Grades                                 | International<br>term                                  | Definition                                                                                                                                | Physical description                                                                                                                            | CP<br>(%)      | ADF<br>(%) | NDF<br>(%) | CF<br>(%)          | feed value |
| 1 | l Legume<br>hay                        | Late<br>vegetative                                     | Bud to first flower;<br>stage at which stems<br>are beginning to elon-<br>gate to just before<br>blooming.                                | 40 to 50% leaves <sup>C</sup> ;<br>green; less than 5%<br>foreign material; free<br>of mold, musty odor,<br>dust, etc.                          |                | < 31       | <40        | < 25               | > 140      |
| 2 | Łegume<br>hay                          | Early<br>bloom                                         | Early to midbloom;<br>stage between initia-<br>tion of bloom and<br>stage in which 1/2<br>of plants are in<br>bloom.                      | 35 to 45% leaves <sup>C</sup> ;<br>light green to green;<br>less than 10% for-<br>eign material; free<br>of mold, musty<br>odor, dust, etc.     | 17—19          | 31–35      | 40–46      | 26–29              | 124—140    |
| 3 | Legume<br>hay                          | Midbloom                                               | Mid to full bloom;<br>stage in which 1/2 or<br>more of plants are<br>in bloom.                                                            | 25 to 40% leaves <sup>C</sup> ;<br>yellow green to<br>green; less than<br>15% foreign mat-<br>erial; free of mold,<br>musty odor; dust,<br>etc. | 13–16          | 36–41      | 4751       | 30–34              | 100123     |
|   | Legume<br>hay<br>Grade— In             | Full<br>bloom<br>nferior <sup>d</sup>                  | Full bloom and<br>beyond                                                                                                                  |                                                                                                                                                 | < 13           | >41        | > 51       | > 34               | < 100      |
|   | noxious we<br>under cure<br>badly weat | eeds and hardwa<br>d, heat damaged<br>hered or stained | han a trace of injurious<br>re) or that definitely has<br>, hot, wet, musty, mold<br>, extremely overripe, du<br>aan 20% foreign material | s objectionable odor or<br>y, caked, badly broken,<br>sty, which is distinctly                                                                  | is<br>,<br>low | T          |            |                    |            |

# TABLE 3.4 Hay Grades for Legumes and Legume-Grass Mixtures<sup>a</sup>

ţ

<sup>a</sup> Adapted from Rohweder et al., (1976)

<sup>b</sup> Chemical analyses expressed on dry matter basis. CP = Crude protein; ADF = Acid detergent fiber; NDF = Neutral detergent fiber; Relative feed value = Digestible dry matter intake. Chemical concentrations based on research data from North Central and North East States and Florida, USA. Dry matter (moisture) concentration can affect market quality. Suggested moisture levels are: Grades 1 and 2 - 14%, Grade 3 - 18%, and Grade 4 - 20%.

<sup>C</sup> Proportion by weight.

<sup>d</sup> Slight evidence of any factor will lower a lot of hay by one grade.

|                | Stage of matu                                   | rity                                                                                                                                                                                             | <b>D</b>                                                                                                                                    | Typical chemical composition-9<br>CP <sup>C</sup> ADF NDF <sup>d</sup> CI |            |       | n-% <sup>D</sup><br>CF | Relative<br>feed value |
|----------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------|-------|------------------------|------------------------|
| Grades         | International<br>term                           | Definition                                                                                                                                                                                       | Physical description                                                                                                                        | (%)                                                                       | ADF<br>(%) | (%)   | (%)                    | (%)                    |
| 2 Grass<br>hay | Late<br>vegetative                              | Late vegctative to<br>early boot; stage at<br>which stems are be-<br>ginning to elongate<br>to just before heading;<br>2 to 3 weeks growth.                                                      | 50% or more leaves <sup>e</sup> ;<br>green; less than 5%<br>foreign material; free<br>of mold, musty odor,<br>dust, etc.                    | > 18                                                                      | < 33       | < 55  | < 22                   | 124–140                |
| 3 Grass<br>hay | Early bloom<br>to midbloom                      | Boot to early head;<br>stage between late<br>boot where inflores-<br>cence is just emerging<br>until the stage in<br>which 1/2 inflores-<br>cences are in anthe-<br>sis; 4 to 6 weeks<br>growth. | 40% or more leaves <sup>e</sup> ;<br>light green to green;<br>less than 10% foreign<br>material; free of<br>mold, musty odor,<br>dust, etc. | 13–18                                                                     | 33-38<br>, | 55–60 | <u>,</u> 27–32         | ´ <sup>1</sup> 01123   |
| 4 Grass<br>hay | Full bloom<br>to late<br>bloom to<br>milk stage | Head to milk; stage<br>in which 1/2 or more<br>of inflorescences are<br>in anthesis and the<br>stage in which seeds<br>are well formed but<br>soft and immature;<br>7 to 9 weeks regrowth.       | 30% or more leaves <sup>e</sup> ;<br>yellow green to green;<br>less than 15% foreign<br>material; free of molu<br>musty odor, dust, etc.    | 8–12                                                                      | 39-41      | 6165  | 33–36                  | 85-100                 |
| 5 Grass<br>hay | Dough<br>stage to<br>mature                     | Dough to seed; stage<br>in which seeds are of<br>dough-like consitency<br>until stage when<br>plant the normality<br>harvested for seed;<br>more than 10 weeks<br>growth.                        | 20% or more leaves <sup>6</sup> ;<br>brown to green; less<br>than 20% foreign<br>material; slightly<br>musty odor, dust, etc.               | <8                                                                        | >41        | > 65  | > 36                   | < 85                   |

## TABLE 3.5 Hay Grades for Grass-Legume Mixtures<sup>a</sup>

Hay which contains more than a trace of injurious foreign material (toxic or noxious weeds and hardware) or that definitely has objectionable odor or is undercured, heat damaged, hot, wet, musty, moldy, caked, badly broken, badly weathered or stained, overripe, dusty, which is distinctly low quality, or contains more than 20% foreign material or more than 20% moisture.

<sup>a</sup> Adapted from Rohweder et al., (1976)

<sup>b</sup> Chemical analyses expressed on dry matter basis. CP = Crude protein; ADF = Acid detergent fiber; NDF = Neutral detergent fiber; Relative feed value = Digestible dry matter intake. Chemical concentrations based on research data from North Central and North East states and Florida, USA. Dry matter (moisture) concentration can affect market quality. Suggested mositure levels are: Grade 2 14%, Grade 3 18%, and Grade 4 and 5 20%.

<sup>c</sup> Fertilization with nitrogen may increase CP concentration in each grade by up to 40%.

<sup>d</sup> Tropical grasses may have higher NDF concentrations than indicated in this table.

<sup>e</sup> Proportion by weight for grasses that do not flower or for which flowering is indeterminant.

<sup>f</sup> Slight evidence of any factor will lower a lot of hay by one grade.

# TABLE 3.6 Soil Units<sup>a</sup>

,

| Code             | Description                          | Code            | Description        | Code       | Description           |
|------------------|--------------------------------------|-----------------|--------------------|------------|-----------------------|
| J                | FLUVISOLS                            | Z               | SOLONCHAKS         | Ň          | GREYZEMS              |
| Je               | Eutric Fluvisols                     | Zo              | Orthic Solonchaks  | Мо         | Orthic Greyzems       |
| lc               | Calcaric Fluvisols                   | Zm              | Mollic Solonchaks  | Mg         | Gleyic Greyzems       |
| Jd               | Dystric Fluvisols                    | Zt              | Takyric Solonchaks | -          |                       |
| Jt               | Thionic Fluvisols                    | Zg              | Gleyic Solonchaks  | В          | CAMBISOLS             |
| 3                | GLEYSOLS                             | S               | SOLONETZ           | Be         | Eutric Cambisols      |
|                  |                                      | , <sup>1</sup>  |                    | Bd         | Dystric Cambisols     |
| Ge<br>Gc         | Eutric Gleysols                      | So              | Orthic Solonetz    | Bh         | Humic Cambisols       |
|                  | Calcaric Gleysols                    | ∘Sm<br>S≂       | Mollic Solonetz    | Bg         | Gleyic Cambisols      |
| Gd               | Dystric Gleysols                     | Sg              | Gleyic Solonetz    | Bx         | Gelic Cambisols       |
| Gm<br>Sh         | Mollic Gleysols                      |                 | VERMONS            | Bk         | Calcic Cambisols      |
| Gh<br>S-         | Humic Gleysols                       | <b>Y</b>        | YERMOSOLS          | Bc         | Chromic Cambisols     |
| Sp<br>Sw         | Plinthic Gleysols                    | Yh <sup>a</sup> | Haplic Yermosols   | Bv         | V ertic Cambisols     |
| Зх               | Gelic Gleysols                       | Yk              | Calcic Yermosols   | Bf         | Ferralic Cambisols    |
| •                | DEGGGGG                              | Yy              | Gypsic Yermosols   |            |                       |
| 3                | REGOSOLS                             | ° YI            | Luvic Yermosols    | L          | LUVISOLS              |
| Re               | Eutric Regosols                      | Yt              | Takyric Yermosols  | Lo         | Orthic Luvisols       |
| Rc               | Calcaric Regosols                    |                 | • • • • • •        | Lc         | Chrimic Luvisols      |
| ۱d               | Dystric Regosols                     | х               | XEROSOLS           | Lk         | Calcir Luvisols       |
| ۲x               | Gelic Regosols                       | Xh              | Haplic Xerosols    | Lv         | V ertic Luvisols      |
|                  |                                      | Xk              | Calcic Xerosols    | Lf         | Ferric Luvisols       |
|                  | LITHOSOLS                            | Ху              | Gypsic Xerosols    | La         | Albic Luvisols        |
|                  |                                      | ∧γ<br>XI ⁵      | Luvic Xerosols     | Lp         | Plinthic Luvisols     |
| 1                | ARENOSOLS                            | <u>л</u> і ′    | FUNC VELOSOIS      | Lg         | Gleyic Luvisols       |
| lc               | Cambic Arenosols                     | к               | KASTANOZEMS        | _          |                       |
| ll –             | Luvic Arenosols                      | Kh              | Haplic Kastanozems | Ð          | PODZOLUVISOLS         |
| lf               | Ferralic Arenosols                   | Kk              | Calcic Kastanozems | De         | Eutric Podzoluvisols  |
| la               | Albic Arenosols                      | KI              | Luvic Kastanozems  | De<br>Dd   |                       |
|                  |                                      | 111             |                    |            | Dystric Podzoluvisols |
|                  | RENDZINAS                            | · C             | CHERNOZEMS         | Dg         | Gleyic Podzoluvisols  |
|                  | RANKERS                              | Ch              | Haplic Chernozems  | Ρ          | PODZOLS               |
|                  |                                      | Ck              | Calcic Chernozems  | Ро         | Orthic Podzols        |
|                  | ANDOSOLS                             | CI              | Luvic Chernozems   | PI         | Leptic Podzols        |
|                  | 1                                    | Cg              | Glossic Chernozems | Pf         | Ferric Podzols        |
| D <sup>'</sup> ' | Ochric Andosols                      |                 |                    | Ph         | Humic Podzols         |
| n                | Mollic Andosols                      | Н               | PHAEOZEMS          | Pp.        | Placic Podzols        |
| h                | Humic Andosols                       | Hh              | Haplic Phaeozems   | Pg         | Gleyic Podzols        |
| /                | Vitric Andosols                      | Hc              | Calcaric Phaeozems | 0          |                       |
|                  | VERTICAL                             | HI              | Luvic Phaeozems    | , <b>W</b> | PLANOSOLS             |
|                  | VERTISOLS                            | Hg              | Gleyic Phaeozems   |            |                       |
| <b>p</b> -       | Pellic Vertisols                     | ציי             | Sicyle i lideozems | We         | Eutric Planosols      |
| D                | Chromic Vertisols                    | N               | NITOSOLS           | Wd         | Dystric Planosols     |
| -                | 1                                    |                 |                    | Wm         | Mollic Plansols       |
| -                | HISTOSOLS                            | Ne              | Eutric Nitosols    | Wh         | Humic Planosols       |
| 1                | Eutric Histosols                     | Nd              | Dystric Nitosols   | Ws         | Solodic Planosols     |
| 9<br>1           |                                      | Nh              | Humic Nitosols     | Wx         | Gelic Planosols       |
|                  | Dystric Histosols<br>Gelic Histosols |                 |                    |            |                       |

# TABLE 3.6 Soil Units (Continued)

| Code | Description         | , <b>'</b> | :<br>• •! | 1 | <b>€</b><br>; € | • | • | t., | •1 |  |
|------|---------------------|------------|-----------|---|-----------------|---|---|-----|----|--|
| A    | ACRISOLS            |            |           |   |                 |   |   |     |    |  |
| Ao   | Orthic Acrisols     |            |           |   |                 |   |   |     |    |  |
| Af   | Ferric Acrisols     |            |           |   |                 |   |   |     |    |  |
| Ah   | Humic Acrisols      |            |           |   |                 |   |   |     |    |  |
| Ар   | Plinthic Acrisols   |            |           |   |                 |   |   |     |    |  |
| Ag   | Gleyic Acrisols     |            |           |   |                 |   |   |     |    |  |
| F    | FERRALSOLS          |            |           |   |                 |   |   |     |    |  |
| Fo   | · Orthic Ferralsols |            |           |   |                 |   |   |     |    |  |
| Fx   | Xanthic Ferralsols  |            |           |   |                 |   |   |     |    |  |
| Fr   | Rhodic Ferralsols   |            |           |   |                 |   |   |     |    |  |
| Fh   | Humic Ferralsols    |            |           |   |                 |   |   |     |    |  |
| Fa   | Acric Ferralsols    |            |           |   |                 |   |   |     |    |  |
| Fp   | Plinthic Ferralsols |            |           | , |                 |   |   |     | г  |  |

۲......

~

<sup>a</sup> Taken from FAO-UNESCO (1974).

.

# TABLE 3.7 Brand of Pesticide

.

, **,** 

| Brand<br>(Commercial Name) | . Description       |     | · · · · | ۰،<br>۱۰ جر |
|----------------------------|---------------------|-----|---------|-------------|
| Aldrin-Giessmittel         | aldrin              |     |         | 1,          |
| Aglutox-Streumittel        | aldrin              |     |         |             |
| Aldrin-Streumittel         | aldrin              |     |         |             |
| Deoval, Mon                | DDT                 |     |         |             |
| Derixol M, UCB             | DDT                 |     |         |             |
| DiDiTan Ultra, Sch         | ĎĎT                 |     |         |             |
| Gesarol 50, Spi. Ura       | DDT                 |     |         |             |
| Mause–Kindrin 391, Mar     | endrin              |     |         |             |
| Segetan-Wühlmausmittel     | endrin              |     |         |             |
| Sheil-Wühlmausmittel       | endrin              |     |         |             |
| STM3 , ASU                 | endrin              |     |         |             |
| Basiment 450 extra, Bay    | HCH, techn.         |     |         |             |
| Forst-Nexen, CME           | HCH, techn.         |     |         |             |
| Forst-Vitton-Emulsion, CME | HCH, techn.         |     |         |             |
| Forst-Vitton-Staub, CME    | HCH, techn.         |     |         |             |
| A Ahepta-Saatgutpuder, ASU | heptachlor          |     |         |             |
| Agronex–Hepta, CME         | heptachlor          |     |         |             |
| Agronex-Hepta-flussig, CME | heptachlor          |     |         |             |
| Sarea-Samenpille, Uni      | heptachlor          |     |         |             |
| Varonit, Bay               | hexachlor-benzol (H | CB) |         |             |

### TABLE 3.7 Brand of Pesticide (Continued)

| Brand<br>(Commercial Name)              | Description            | s <sup>2</sup> s , |
|-----------------------------------------|------------------------|--------------------|
| Varonit–Morkit, Bay                     | hexachlor-benzoi (HCB) | ٤ ٢٠               |
| A Agrano–Krähex, ASU                    | hexachlor-benzol (HCB) |                    |
| Abavit–Corbin, Sch                      | hexachior-benzol (HCB) |                    |
| Abavit, Sch                             | hexachlor-benzol (HCB) |                    |
| Ceresan-Universal-Trockenbeize-Bay      | hexachlor-benzol (HCB) |                    |
| Falisan–Universal–Trockenbeize–2,5,E.Is | hexachlor-benzol (HCB) |                    |
| Trockenbeize 4613, Bay                  | hexachlor-benzol (HCB) |                    |
| Abavit–Gamma–Corbin, Sch                | hexachlor-benzol (HCB) |                    |
| Kelthane PPS                            | kelthane               |                    |
| Kelthane Merck, CME                     | kelthane               |                    |
| Kelthane MF, Spi, Ura                   | kelthane               |                    |
| Kelthane MR RIEDEL, RdH                 | kelthane               |                    |
| Kelthane "Spiess-Urania," Spi, Ura      | keithane               |                    |
| Agronex, CME                            | lindane                |                    |
| Gamma–Betoxin, Pro                      | lindane                |                    |
| Gamma–Saatgutpuder Bayer, Bay           | lindane                |                    |
| Hortex–Saatgutpuder, CME                | lindane                |                    |
| Lindan forte, PPS                       | lindane                |                    |
| Luxan Lindan-Saatgutpuder, Lux          | lindane                |                    |
| Nexit-stark, CME                        | lindane                |                    |
| Verindal, Ultra, Sch                    | lindane                |                    |
| A Alindan–Inkrusta–S, ASU               | lindane                |                    |
| Agronex–Spezial, CME                    | lindane                |                    |
| Lindamal Neu, Bay                       | lindane                |                    |
| /erindal Rapsuder, Sch                  | lindane                |                    |
| Insektenpuder, PPS                      | lindane                |                    |
| Detia—Pflanzo—Emulsion, DEL             | lindane                |                    |
| Oktagam Neu, ASU, Pro                   | lindane                |                    |
| Cuprogram Neu, ASU                      | methoxychlor           |                    |
| Kaltnebellösung Methoxychlor N200, CGD  | methoxychlor           |                    |
| Methoxychlor—Emulsion, ASU, Pro         | methoxychlor           |                    |
| Methoxychlor—Stäubemittel, ASU, Pro     | methoxychlor           |                    |

63

#### Breed

#### Ass (Donkey) Code 850

Abyssinian East African Somali Southern African Sudanese Pacis Sudanese Riding

#### Buffalo, water Code 050

Egyptian Iranian Iraqi

#### Cattle Code 070

Aberdeen Angus Abyssinian-Shorthorned Zebu-Ingessana Abyssinian-Shorthorned Zebu-Murle Africander-Bolowana Africander-Bonsmara Alur

Angolian-Kisantu Angolian-Nateba Ankole-Bahima Ankole-Bashi Ankole-Kigezi Ankole-Watusi Angoni-Mozambique Angoni Angoni-Northern Rhodesia

Angoni-Nyasa Zebu Angoni-Nyasaland Arado-Asaorta Arado-Baria and Biberi Arado-Beja Arado-Galla Arado-Tigre Arado-Wagara

Arado-Wallega Ayrshire Barotse, Baila Basuto, Drakensberger Beefmaster Boran-Kenya Boran-Somali

#### Breed

Boran-Tanaland Brahman Brangus Brown Atlas Brown Swiss Charbray Charolais Charolais x Brahman

Criollo Damascus Danakil Egyptian Galloway German Black Pied German Brown German Red

German Red Pied German Simmental German Yellow Guernsey Hereford Holstein Friesian Humped and Humpless Crosses-Bambra or Mere

Humped and Humpless Crosses-Biu Humped and Humpless Crosses-Borgu Humped and Humpless Crosses-Djakore (Senegal) Humped and Humpless Crosses-"Sanga" Humped (Zebus)-Ar'amawa Humped (Zebus)-Azaouak Humped (Zebus)-Diali

Humped (Zebus)-Fellota Humped (Zebus)-Maure Humped (Zebus)-Red Bororo Humped (Zebus)-Senegal Fulani Humped (Zebus)-Shuwa Humped (Zebus)-Sokota Humped (Zebus)-Sudanese Fulani Humped (Zebus)-Tuareg

Humped (Zebus)-White Fulani Iranian Iraqui Jersay Karamajong-Karamajong Karamajong-Toposa

#### TABLE 3.8 Animal Breeds (Continued)

#### Breed

#### Cattle (continued)

Karamajong-Turkana Korean Native Kurdi Lake Chad Cattle-Kuri Lake Chad Cattle-Kuri x Zebu Lebanese Libyan Madagascar Zebu, Rana

Mashona Matabele-Goverui Matabele-Inkoue Milking Shorthorn Nilotic Naganda-Kyoga Naganda-Serere Nguni, Bapedi

North Sudan Zebu-Baggara North Sudan Zebu-Begait North Sudan Zebu-Kenana North Sudan Zebu-Red Butana Nuba Mountain Oksh Ovambo Polled Hereford

Polled Shorthorn Rvd Pole Rcd Pole x Criollo Santa Gertrudis Santa Gertrudis x Criollo Shorthorn Small East African Zebu-Lugware Small East African Zebu-Mongalia

Small East African Zebu-Masai Small East African Zebu-Nandi Small East African Zebu-Nkedi Small East African Zebu-Tanganyika Small East African Zebu-Zanzibar Small Humpless Cattle-Baoule (Ivory Coast) Small Humpless Cattle-Dwarf Shorthorn Small Humpless Cattle-Gold Coast

Small Humpless Cattle-N'Dama Small Zebus of the Somaliland-Garre Small Zebus of the Somaliland-Gasara

#### Breed

Small Zebus of the Somaliland-North Somali Sukuma Tonga Tswana-Batawana Tswana-Damara Tswana-Sengola and Sheshaga Tswana-Southern

•

Tuli Tuli or Jiddu Zebu Zebu x Crioilo

#### Chickens Code 140

Australorpus Blue Andalusians Buff-laced Polish Buff Cochins Buff Cochins Buff Leghorns Buff Orpingtons Buff Plymouth Rocks Buff Wyandottes

Buttercups Columbian Wyandottes Golden Speckled Hamburgs Jersey Black Giants Jersey White Giants Lamonas Light Bramas New Hampshire

Partridge Cochins Partridge Plymouth Rocks Partridge Wyandottes Rhode Island Reds Rhode Island Whites Shaver Silver-laced Wyandottes Silver Penciled Hamburgs

Silver Penciled Plymouth Rocks Silver Spangled Hamburgs Single Comb Anconas Single Comb Black Leghorns Single Comb Black Minorcas Single Comb Black Tailed Red Leghorns

#### Breed

#### Chickens (continued)

Single Comb Buff Minorcas Single Comb Dark Leghorns Single Comb Light Leghorns Single Comb Rhode Island Reds Single Comb White Leghorns Single Comb White Orpingtons Speckled Sussex White Cornish

White Dorking White-laced Red Cornish White Minorcas White Plymouth Rocks White Wyandottes

#### Fish Code 255

Trout (rainbow)

#### Goats Code 350

Angola Angora Arab Benadir, Biunal Benadir, Garre Benadir, Tuni Congo Damascus

East African, Boran East African, Kigezi East African, Nubendi East African, Small East African Egyptian Eritrean and Byssinian, Aruis-Bale Eritrean and Abyssinian, Kanakil Eritrean and Abyssinian, Galla-Sidamo

Fouta Djallon German Improved Fawn German Improved White Iraqui Karakul Kurdi Madagascar Milk Goats Nubian Sahel

#### Breed

Sokoto or Maradi Somali, Abgal Somali, Kenya Somali, Ogaden Somali, Somaliland Protectorate Southern Africa, Angola Southern Africa, Bechuanaland Southern Africa, Boer

Southern Africa, Northern Rhodesia Southern Africa, Mozambique Southern Africa, Nyasaland Southern Africa, Pafuri Southern Africa, South West Africa Southern Africa, Southern Rhodesia Southern Africa, Swazi

Southern Africa, Zulu Southern Sudan Sudanese Desert Sudanese Nubian Syrian Mountain

#### Horse Code 420

Abyssinian-Galla American Jack American Quarter American Saddle Appaloosa Arab-Barb Type, Beledougou or Banamba Arab-Barb Type, Chad Arab-Barb Type, Hodh

Arab-Barb Type, Horse of the South Arab-Barb Type, Sahel Arab-Barb Type, The Djerma Arabian Barb Berber Dongola Dongola Type, Dongola

Dorgola Type, Dongola-Barb Dongola Type, Housa Dongola Type, Songhai Draft Dulmer Pony East Friesian Egyptian German Thoroughbred

## TABLE 3.8 Animal Breeds (Continued)

| Breed                             | Breed                                             |
|-----------------------------------|---------------------------------------------------|
| Horses (continued)                | Arrit                                             |
|                                   | Atlantic Coast of Morocco                         |
| Hackney                           | Ausimi                                            |
| Hanover                           | Awassi                                            |
| Holstein                          | Barbary                                           |
| Kurdi                             | Berber                                            |
| Morgan                            | Beni Guil                                         |
| Mzabite                           | Bentheim                                          |
| Oldenburg                         | Deutrialiti                                       |
| Palomino                          | Black-Faced Highland                              |
|                                   | Black Head Persian                                |
| Persian Arab                      | Black Head Persian Derivatives,                   |
| Pony                              | Bezuidenhout Africander                           |
| Pony, Bobo or Bodoy               |                                                   |
| Pony, Kirdi                       | Black Head Persian Derivatives, Dorper            |
| Pony, Koto-Koli                   | Black Head Persian Derivatives, Van Rooy          |
| Pony, N'Bayar                     | Black Head Persian Derivatives, Wiltiper          |
| Pony, N'Par                       | Ob and a d                                        |
| Pony, Torodi                      | Cheviot                                           |
|                                   | Columbia                                          |
| Somali Pony                       | Congo Dwarf                                       |
| South African Horse, Boer Horse   | Congo Long-Legged                                 |
| South African Horse, Basuto Pony  | Corriedale                                        |
| South African Horse, Cape Horse   | Cotswold                                          |
| South African Horse, Namagua Pony | Criolla                                           |
| Standardbred                      | Debouillet                                        |
|                                   | Dongola                                           |
| Standardbred, Trotter             | Dorset                                            |
| Syrian                            | East African Black-Head                           |
| Tennessee Walking                 | East African Long-Tailed, Tanganyka               |
| Thoroughbred                      | Long-Tailed                                       |
| Trakehnen                         | East African Long-Tailed, Ruanda Urundi           |
| Western Sudan Pony                | Fellahi                                           |
| heep Code 770                     | German Blackheaded Mutton                         |
|                                   | German Heath                                      |
| Abyssinian, Akele Guzai           | German Heath<br>German Mountain                   |
| Abyssinian, Aruri-Bale            | German Mountain<br>German Mutton Merino           |
| Abyssinian, Mens                  | German Mutton Merino<br>German Whiteheaded Mutton |
| Abyssinian, Rashaidi              | German Whiteheaded Mutton<br>Hampshire            |
| Abyssinian, Tucur                 | • • • • •                                         |
| Africander, Damara                | Iran Fat-Tailed                                   |
| Africander, Namaqua               | Iran Thin-Tailed                                  |
| Africander, Ronderib              | Karakul                                           |
| Africander, Transvaal             | Kurdi                                             |
| Akkaraman (Turkish)               | Leine                                             |
| Algerian Arab                     | Lincoln                                           |
| -                                 | Macina                                            |
| Angola Thin-Tailed                | Madagascar                                        |
| Arab<br>Arabi                     | Masai, N.E. Uganda                                |
| Arabi                             | Masai, Nandi                                      |

,

# TABLE 3.8 Animal Breeds (Continued)

, ,

| reed                                     | Breed                                    |
|------------------------------------------|------------------------------------------|
| heep (continued)                         | West African Long-Legged, Arab (Maure)   |
| ······································   | West African Long-Legged, Fuiani         |
| Masai, Samburu                           | West African Long-Legged, Taureg         |
| Mast Friesian                            | Western-Southdown                        |
| Merino                                   | Wurttemberg Merino                       |
| Mondombes                                | `                                        |
| Montdale                                 | Swine Code 840                           |
| Morkaraman                               |                                          |
| Naumi, Bapedi                            | American Landrace                        |
| Naumi, Landim                            | Angein Saddleback (Angler Sattelschwein) |
| ······································   | Berkshire                                |
| Naumi, Swazi                             | Chester White                            |
| Naumi, Zulu                              | Duroc                                    |
| Northern Sudanese Sheep, Baraka          | German Landrace (Deutsche Landrasse)     |
| Northern Sudanese Sheep, Gezira          | German Pasture (Deutsches Weideschwein)  |
| Northern Sudanese Sheep, Sudanese Desert | · · · · · · · · · · · · · · · · · · ·    |
| Northern Sudanese Sheep, Wallega         | German Yorkshire (Deutsches Weisses      |
| Oxford                                   | Edelschwein)                             |
| Panama                                   | Hampshire                                |
| Fonding 2.13                             | Hereford                                 |
| Rahmanı                                  | Poland China                             |
| Rambouillet                              | Poland China, Spotted                    |
| Rambouillet x Merino                     | Tamworth                                 |
| Rhodesian, Northern Rhodesia             | Yorkshire                                |
|                                          |                                          |
| Rhodesina, Nyasaland                     | Turkeys Code 910                         |
| Rhodesian, Southern Rhodesia             |                                          |
| Romeldale                                | Black                                    |
| Romney                                   | Bourbon Red                              |
|                                          | Broad-Breasted Bronze                    |
| Ryeland                                  | Narragansett                             |
| Shropshire                               | White Holland                            |
| Somali, Adali                            |                                          |
| Somali, Kenya                            |                                          |
| Somali, Toposa                           | х.                                       |
| Southdale                                |                                          |
| Southdown                                |                                          |
| Southern Sudan                           |                                          |
| Suffolk                                  |                                          |
| Suffolk x Western                        |                                          |
| Tadla                                    |                                          |
| Tadmit                                   |                                          |
| Tailless                                 | · · ·                                    |
| Targhee                                  |                                          |
| Theen                                    |                                          |
| Tswana                                   |                                          |
| West African Dwarf                       |                                          |
| West African, Fellata                    |                                          |
| West African, Zaghaw                     |                                          |
| ttest wittenti magnette                  | ,                                        |

, ·

TABLE 3.9 List of Attributes and Codes

ţ

| Sequence No. | Attribute No. | Animal No. | Unit No. | Attripate Coint Point Po |
|--------------|---------------|------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0005         | 105           | 000        | 01       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0010         | 547           | 000        | 01       | ASH, ACID INSOLUBLE (SILICA) 🕺 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0015<br>0020 | 344<br>559    | 000<br>000 | 01<br>01 | ASH, SOLUBLE % 1<br>ASH, NEUTRAL DETERGENT % 2<br>CRUDE FIBER % 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 025          | 106           | 000        | 01       | CRUDE FIBER % 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0030         | 1060          | 070        | 02       | CATTLE DIG COEF % O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| )035<br>)040 | 106D<br>106D  | 210<br>280 | 02<br>02 | DOGS DIG COEF % O<br>FOXES DIG COEF % O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 045          | 106D          | 350        | 02       | GOATS DIG COEF % O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0050         | 106D          | 420        | 02       | HORSES DIG COEF % 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| )055<br>)060 | 106D<br>106D  | 490<br>560 | 02<br>02 | MAN DIG COEF % O<br>MINK DIG COEF % O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 065          | 106D          | 630        | 02       | RABBITS DIG COEF % O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 070          | 106D          | 700        | 02       | RATS DIG COEF % O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| )075<br>)080 | 106D<br>106D  | 710<br>770 | 02<br>02 | RUMINANTS DIG COEF % O<br>SHEEP DIG COEF % O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| )085         | 106D          | 840        | 02       | SWINE DIG COEF % O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 090          | 931D          | 860        | 02       | IN VITRO DIG COEF % O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| )095<br>)100 | 101<br>101D   | 000<br>070 | 01<br>02 | DRY MATTER % 1<br>CATTLE DIG COEF % 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| )105         | 101D          | 210        | 02<br>02 | CATTLE DIG COEF % O<br>DOGS DIG COEF % O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| )110         | 101D          | 280        | 02       | FOXES DIG COEF % O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| )115<br>)120 | 101D<br>101D  | 350<br>420 | 02<br>02 | GOATS DIG COEF % O<br>HORSES DIG COEF % O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| )125         | 101D          | 420        | 02       | MAN DIG COEF % O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| )130         | 101D          | 560        | 02       | MINK DIG COEF % O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| )135         | 101D          | 630<br>700 | 02       | RABBITS DIG COEF % O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|              |               | 700        |          | RATS DIG COEF % O<br>SHEEP DIG COEF % O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| )150         | 101D          | 840        | 02       | SWINE DIG COEF % O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              | 916D          |            | 02       | IN VITRO (TILLY) DIG COEF % O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              | 959D<br>962D  |            | 02       | IN VITRO (BARNEŚ) DIG COEF % O<br>IN VIFRO DIG COEF % O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|              |               |            |          | (VAN SOEST)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| )170         | 929D          | 000        | 02       | ESTIMATED DIG COEF % 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| )175         | 930D          | 070        | 02       | (VAN SOEST)<br>CATTLE DIG COEF % 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -            | ł             |            |          | (NYLON BAG)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              | 930D          |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | 107<br>107D   |            |          | ETHER EXTRACT OR CRUDE FAT % 1<br>CATTLE DIG COEF % 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| )195         | 107D          | 210        | 02       | DOGS DIG COEF % O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              | 107D          |            |          | FOXES DIG COEF % O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              | 107D<br>107D  |            |          | GOATS DIG COEF % 0<br>HORSES DIG COEF % 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| )215         | 107D          | 490        | 02       | GOATSDIGCOEF% 0HORSESDIGCOEF% 0MANDIGCOEF% 0MINKDIGCOEF% 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              | 107D          |            |          | MAN DIG COEF % O<br>MINK DIG COEF % O<br>RABBITS DIG COEF % O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1225         | 107D          | 030        | 02       | RABBITS DIG COEF % O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| Sequence No. | Attribute No.     | Animal No. | Unit No. | Attribute                            | Uni                  | t            | ,   | Number Digits<br>to Right of<br>Decimal Point | r , |
|--------------|-------------------|------------|----------|--------------------------------------|----------------------|--------------|-----|-----------------------------------------------|-----|
| 0230         | 107D              | 700        | 02       | RATS                                 | DIG                  | COEF         | %   | 0                                             |     |
| 0235         | 107D              | 710        | 02       | RUMINANTS                            | DIG                  | COEF         |     | 0<br>0                                        |     |
| 0240         | 107D              | 770        | 02       | SHEEP                                | DIG                  | COEF         |     | 0                                             |     |
| 0245         | 107D              | 840        | 02       | SWINE                                | DIG                  | COEF         |     | 0                                             |     |
| 0250         | 108               | 000        | 01       | NITROGEN FREE EXTRA                  |                      |              | %   | 1                                             |     |
| 0255         | 108D              | 070        | 02       | CATTLE                               | DIG                  |              |     | 0                                             |     |
| 0260         | 108D              | 210        | 02       | DOGS                                 | DIG                  | COEF         |     | 0                                             |     |
| 0265         | 108D              | 280        | 02       | FOXES                                | DIG<br>DIG           | COEF<br>COEF |     | 0<br>0                                        |     |
| 0270         | 108D              | 350<br>420 | 02<br>02 | GOATS<br>HORSES                      | DIG                  | COEF         |     | 0                                             |     |
| 0275         | 108D<br>108D      | 420        | 02       | MAN                                  | DIG                  | COEF         |     | 0                                             |     |
| 0285         | 108D              | 560        | 02       | MINK                                 | DIG                  | COEF         |     | 0<br>0                                        |     |
| 0290         | 108D              | 630        | 02       | RABBITS                              | DIG                  | COEF         |     | Õ                                             |     |
| 0295         | 108D              | 700        | 02       | RATS                                 | DIG                  |              |     | Ō                                             |     |
| 0300         | 108D              | 710        | 02       | RUMINANTS                            | DIG                  | COEF         |     | 0                                             |     |
| 0305         | 108D              | 770        | 02       | SHEEP                                | DIG                  |              |     | 0                                             |     |
| 0310         | 108D              | 840        | 02       | SWINE                                | DIG                  | COEF         |     | 0                                             |     |
| 0315         | 110               | 000        | 01       | ORGANIC MATTER                       | ~ ··· <del>-</del> - |              |     | 1                                             |     |
| 0320         | 117               | 350        | 63       | GOATS DIG ORGANI                     |                      |              |     | 0                                             |     |
| 0325         | 117               | 770        | 63       | SHEEP DIG ORGANI                     |                      |              |     | 0<br>0                                        |     |
| 0330         | 927D<br>112D      | 860<br>860 | 02<br>02 | IN VITRO (MOORE)<br>IN VITRO (TILLY) |                      | COEF         |     | 0                                             |     |
| 0335         | 109               | 000        | 01       | PROTEIN                              | DIU                  | UULI         |     | 1                                             |     |
| 0345         | 109D              | 070        | 02       | CATTLE                               | DIG                  | COEF         |     | ō                                             |     |
| 0350         | 109D              | 210        | 02       | DOGS                                 | DIG                  | COEF         |     | Ō                                             |     |
| 0355         | 109D              | 280        | 02       | FOXES                                | DIG                  |              |     | 0                                             |     |
| 0360         | 109D              | 350        | 02       | GOATS                                |                      |              |     | 0                                             |     |
|              |                   | 420        |          | HORSES                               |                      |              | %   |                                               |     |
| 0370         |                   | 490        | 02       | MAN                                  |                      |              |     | 0                                             |     |
| 0375         |                   | 560        | 02       | MINK                                 | -                    |              |     | 0                                             |     |
| 0380<br>0385 | 109D<br>109D      | 630<br>700 | 02<br>02 | RABBITS<br>RATS                      |                      |              |     | 0<br>0                                        |     |
| 0385         | 109D              | 710        | 02       | RUMINANTS                            | DIG                  | COEF         |     | 0                                             |     |
| 0395         | 109D              | 770        | 02       | SHEEP                                |                      |              |     | Õ                                             |     |
| 0400         | 109D              | 840        | 02       | SWINE                                | DIG                  |              | • • | Õ                                             |     |
| 0403         | 963D              | 860        | 02       | IN VITRO                             | DIG                  |              | %   | 0                                             |     |
| 0405         | 111               | 070        | 03       | CATTLE                               | DIG                  |              |     | 1                                             |     |
| 0410         |                   | 210        | 03       | DOGS                                 | DIG                  |              |     | 1                                             |     |
| 0415         |                   | 280        | 03       | FOXES                                | DIG                  |              | %   | 1                                             |     |
|              |                   | 350        | 03       | GOATS                                | DIG                  |              |     | 1                                             |     |
| 0425         | 111               | 420        | 03       | HORSES                               | DIG<br>DIG           |              |     | 1<br>1                                        |     |
| 0430<br>0435 | $\frac{111}{111}$ | 490<br>560 | 03<br>03 | MAN<br>MINK                          |                      |              |     | 1                                             |     |
| 0435         | 111               | 630        | 03       | RABBITS                              |                      |              |     | 1                                             |     |
| 0440         | 111               | 700        | 03       | RATS                                 | DIG                  |              |     | 1                                             |     |
| 0450         | 111               | 710        | 03       | RUMINANTS                            | DIG                  |              | -   | ī                                             |     |
| 0455         | 111               | 770        | 03       | SHEEP                                |                      |              | -   | 1                                             |     |
| 0460         | 111               | 840        | 03       | SWINE                                |                      |              | %   |                                               |     |

-

|                                                                                                                                                                       | <i>i</i>                                                                                                                                                                                                  |                                                                                                             | · ·                                                                                                                                                    |                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| Printing<br>Sequence No.<br>Attribute No.                                                                                                                             | Animal No.                                                                                                                                                                                                | Attribute                                                                                                   | Unit                                                                                                                                                   | Number Digits<br>to Right of<br>Decimal Point       |
| 0465 212<br>0470 213<br>0475 963<br>0480 784<br>0485 785                                                                                                              | 000 0<br>000 0                                                                                                                                                                                            | 1 NITROGEN FACT<br>1 NITROGEN, TOT                                                                          | TAL %<br>NLUE (MITCHELL) %                                                                                                                             | 1<br>2<br>1<br>0<br>0                               |
| CARBOHYR                                                                                                                                                              | DATES A                                                                                                                                                                                                   | ND RELATED COMF                                                                                             | POUNDS                                                                                                                                                 |                                                     |
| 0495 341<br>0500 325<br>0505 334<br>0510 321<br>0515 324<br>0520 328                                                                                                  | 000 0<br>000 0<br>000 0<br>000 0<br>000 0                                                                                                                                                                 | L CARBOHYDRATES<br>L CELL CONTENTS<br>L CELL CONTENTS<br>DETERGENT S                                        | 5, OTHER %<br>5 BY DIFFERENCE %<br>5, AVAILABLE %<br>5 (FONNESBECK) %<br>5, (NEUTRAL %<br>50LUBLES)(VAN SOEST)                                         |                                                     |
| 0525 3280<br>0530 3280<br>0535 3280<br>0540 3280<br>0545 3280<br>0550 3280<br>0555 3280<br>0560 3280<br>0565 3280                                                     | 210       02         280       02         350       02         420       02         490       02         560       02         630       02         700       02                                           | 2 DOGS<br>FOXES<br>GOATS<br>HORSES<br>MAN<br>MINK<br>RABBITS<br>RATS                                        | DIG COEF %<br>DIG COEF %<br>DIG COEF %<br>DIG COEF %<br>DIG COEF %<br>DIG COEF %<br>DIG COEF %                                                         | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                |
| 0570 3280<br>0575 3280<br>0580 3280<br>0585 9320<br>0590 337<br>0595 329                                                                                              | 770 02<br>840 02<br>860 02                                                                                                                                                                                | SHEEP<br>SWINE<br>IN VITRO<br>CELL WALLS (F                                                                 | DIG COEF %<br>DIG COEF %<br>DIG COEF %<br>ONNESBECK) %<br>EUTRAL DETERGENT %                                                                           | 1                                                   |
| 0600 3290<br>0605 3290<br>0610 3290<br>0615 3290<br>0620 3290<br>0625 3290<br>0635 3290<br>0635 3290<br>0645 3290<br>0645 3290<br>0655 3290<br>0655 3290<br>0657 9330 | 210       02         280       02         350       02         420       02         490       02         560       02         630       02         710       02         770       02         840       02 | CATTLE<br>DOGS<br>FOXES<br>GOATS<br>HORSES<br>MAN<br>MINK<br>RABBITS<br>RATS<br>RUMINANTS<br>SHEEP<br>SWINE | DIG COEF %<br>DIG COEF % | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
| 0660 237<br>0670 327                                                                                                                                                  | 000 01                                                                                                                                                                                                    | NITROGEN IN                                                                                                 | % :<br>ERGENT FIBER                                                                                                                                    |                                                     |

| Printing<br>Sequence No.                                                                                                     | Attribute No.                                                      | Animal No.                                                                                            | Unit No.                                                                         | Attribute                                                                                                                                                                | Uni                                                                                     | ,<br>t                                                       | Number Digits<br>to Right of<br>Decimal Point                                                               |  |
|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--|
| 0675<br>0680<br>0685<br>0690<br>0695<br>0700<br>0705<br>0705<br>0710<br>0715<br>0720<br>0725<br>0730<br>0735<br>0740         | 323<br>323D<br>323D<br>323D<br>323D<br>323D<br>323D<br>323D        | 000<br>070<br>210<br>280<br>350<br>420<br>490<br>560<br>630<br>700<br>710<br>770<br>840<br>860        | 01<br>02<br>02<br>02<br>02<br>02<br>02<br>02<br>02<br>02<br>02<br>02<br>02<br>02 | CELLULOSE (CRA<br>CATTLE<br>DOGS<br>FOXES<br>GOATS<br>HORSES<br>MAN<br>MINK<br>RABBITS<br>RATS<br>RUMINANTS<br>SHEEP<br>SWINE<br>CELLULOSE (CRA                          | MPTON)<br>DIG<br>DIG<br>DIG<br>DIG<br>DIG<br>DIG<br>DIG<br>DIG<br>DIG<br>DIG            | COEF<br>COEF<br>COEF<br>COEF<br>COEF<br>COEF<br>COEF<br>COEF | % 1<br>% 0<br>% 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0           |  |
| 0745<br>0750<br>0755<br>0760<br>0765<br>0770<br>0775<br>0780<br>0785<br>0790<br>0795<br>0800<br>0805<br>0810                 | 338<br>314<br>314D<br>314D<br>314D<br>314D<br>314D<br>314D<br>314D | 000<br>070<br>210<br>280<br>350<br>420<br>490<br>560<br>630<br>700<br>710<br>770<br>840               | 01<br>02<br>02<br>02<br>02<br>02<br>02<br>02<br>02<br>02<br>02<br>02<br>02<br>02 | IN VITRO<br>CELLULOSE (FON                                                                                                                                               | NESBECK)<br>RONE)<br>DIG<br>DIG<br>DIG<br>DIG<br>DIG<br>DIG<br>DIG<br>DIG<br>DIG<br>DIG | COEF<br>COEF<br>COEF<br>COEF<br>COEF<br>COEF<br>COEF<br>COEF | % 1<br>% 1<br>% 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |  |
| 0825<br>0830<br>0835<br>0840<br>0845<br>0850<br>0855<br>0860<br>0865<br>0870<br>0875<br>0880<br>0885<br>0880<br>0885<br>0890 | 330<br>330D<br>330D<br>330D<br>330D<br>330D<br>330D<br>330D        | 000<br>070<br>210<br>280<br>350<br>420<br>490<br>560<br>630<br>700<br>710<br>710<br>770<br>840<br>860 | 01<br>02<br>02<br>02<br>02<br>02<br>02<br>02<br>02<br>02<br>02<br>02<br>02<br>02 | CELLULOSE (SCH<br>CELLULOSE (VAN<br>CATTLE<br>DOGS<br>FOXES<br>GOATS<br>HORSES<br>MAN<br>MINK<br>RABBITS<br>RATS<br>RUMINANTS<br>SHEEP<br>SWINE<br>IN VITRO<br>(VAN SOES | ARRER)<br>SOEST)<br>DIG<br>DIG<br>DIG<br>DIG<br>DIG<br>DIG<br>DIG<br>DIG<br>DIG<br>DIG  | COEF<br>COEF<br>COEF<br>COEF<br>COEF<br>COEF<br>COEF<br>COEF | x 0<br>x 0<br>x 0<br>x 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                        |  |
| 0895                                                                                                                         | 351                                                                | 000                                                                                                   | 01                                                                               | CHITIN                                                                                                                                                                   | 72                                                                                      |                                                              | % · 1                                                                                                       |  |

| TARIE 30 | List of Attributes | and Codes (Cou | ntinued) | 4 |  |
|----------|--------------------|----------------|----------|---|--|
|          | ۹ پر               |                |          |   |  |

|                                                                                                                                                                   |                                                                                                                                                                                                                                                                                            |                                                                                                                                                       | 1                                                                                                                                                                                                                                                        | · .                                           | 1 |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---|--|
| Printing<br>Sequence No.<br>Attribute No.                                                                                                                         | Animal No.<br>Unit No.                                                                                                                                                                                                                                                                     | Attribute                                                                                                                                             | Unit                                                                                                                                                                                                                                                     | Number Digits<br>to Right of<br>Decimal Point |   |  |
| 0900 273 (                                                                                                                                                        | 000 01                                                                                                                                                                                                                                                                                     | FIBER, ACID DETERGEN                                                                                                                                  | Т                                                                                                                                                                                                                                                        | % 1                                           |   |  |
| 0910 273D 2<br>0915 273D 2<br>0920 273D 3<br>0925 273D 4<br>0930 273D 4<br>0935 273D 4<br>0940 273D 6<br>0940 273D 7<br>0950 273D 7<br>0955 273D 7<br>0960 273D 8 | 070022100228002350024200256002560027000271002770023400236002                                                                                                                                                                                                                               | (VAN SOEST)<br>CATTLE<br>DOGS<br>FOXES<br>GOATS<br>HORSES<br>MAN<br>MINK<br>RABBITS<br>RATS<br>RUMINANTS<br>SHEEP<br>SWINE<br>FIBER, ACID             | DIG COEF<br>DIG COEF                                                                                                 | % % % % % % % % % % % % % % % % % % %         |   |  |
| 0973 239 0                                                                                                                                                        | 000 01                                                                                                                                                                                                                                                                                     | DETERGENT IN VITRO<br>NITROGEN IN ACID DET                                                                                                            | ERGENT                                                                                                                                                                                                                                                   | % 2                                           |   |  |
| 098033600985355009903160099531701000317D01005317D21010317D21015317D31020317D41030317D51035317D61040317D71055317D71055317D81060936D810653390                       | 60       02         30       02         30       02         200       02         200       02         200       02         200       02         300       02         300       02         300       02         300       02         300       01         300       02         300       02 | SHEEP<br>SWINE<br>IN VITRO<br>HEMICELLULOSE (FONNES<br>HEXOSANS<br>HEXOSES<br>INULIN<br>LACTOSE<br>LIGNIN (ELLIS)<br>CATTLE<br>GOATS<br>HORSES<br>MAN | DIG COEF<br>DIG COEF | ***********************************           |   |  |

ı

| 1125       2110       710       02       RUMINANTS       DIG       COEF       X         1130       2110       770       02       SHEEP       DIG       COEF       X         1140       345       000       01       LIGNIN       (FONRESBECK)       X       X         1145       2720       070       02       CATTLE       DIG       COEF       X         1150       2720       070       02       CATTLE       DIG       COEF       X         1160       2720       420       02       HONSES       DIG       COEF       X         1170       2720       630       02       RABBITS       DIG       COEF       X         1180       2720       700       02       RHEP       DIG       COEF       X         1185       2720       700       02       SHEP       DIG       COEF       X         1190       270       000       1       LIGNIN       NAN       DIG       COEF       X         1202       2700       0350       02       GADTS       DIG       COEF       X         1210       2700       020       ZANTEN <td< th=""><th>Printing<br/>Sequence No.<br/>Attribute No.<br/>Unit No.</th><th>Attribute</th><th>Unit</th><th>Number Digits<br/>to Right of<br/>Decimal Point</th></td<> | Printing<br>Sequence No.<br>Attribute No.<br>Unit No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Attribute                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Unit                                                                                                                                                                                                                                                                                                                                                                                                                             | Number Digits<br>to Right of<br>Decimal Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1130211D $770$ $02$ 1135211D $840$ $02$ 1140 $345$ $000$ $01$ 1145 $272$ $000$ $01$ 1150 $272D$ $070$ $02$ 1155 $272D$ $350$ $02$ 1160 $272D$ $420$ $02$ 1165 $272D$ $490$ $02$ 1170 $272D$ $630$ $02$ 1175 $272D$ $700$ $02$ 1180 $272D$ $710$ $02$ 1185 $272D$ $770$ $02$ 1190 $272D$ $840$ $02$ 1195 $270$ $000$ $01$ 1200 $270D$ $070$ $02$ 1210 $270D$ $420$ $02$ 1210 $270D$ $490$ $02$ 1225 $270D$ $700$ $02$ 1230 $270D$ $710$ $02$ 1230 $270D$ $710$ $02$ 1240 $270D$ $840$ $02$ 1255 $280D$ $070$ $02$ 1260 $280D$ $420$ $02$ 1265 $280D$ $490$ $02$ 1270 $280D$ $630$ $02$ 1275 $280D$ $710$ $02$ 1280 $280D$ $710$ $02$ 1285 $280D$ $710$ $02$ 1290 $280D$ $840$ $02$ | SHEEP<br>SWINE<br>LIGNIN (FONNESBECK)<br>LIGNIN (SULLIVAN)<br>CATTLE<br>GOATS<br>HORSES<br>MAN<br>RABBITS<br>RATS<br>RUMINANTS<br>SHEEP<br>SWINE<br>LIGNIN (VAN SOEST)<br>CATTLE<br>GOATS<br>HORSES<br>MAN<br>RABBITS<br>RATS<br>RUMINANTS<br>SHEEP<br>SWINE<br>LIGNIN KMNO4 (VAN SO<br>CATTLE<br>GOATS<br>HORSES<br>MAN<br>RABBITS<br>RATS<br>RUMINANTS<br>SHEEP<br>SWINE<br>LIGNIN KMNO4 (VAN SO<br>CATTLE<br>GOATS<br>HORSES<br>MAN<br>RABBITS<br>RATS<br>RUMINANTS<br>SHEEP<br>SWINE<br>MALTOSE<br>MANNOSE<br>PECTIC SUBSTANCES<br>PECTIC SUBSTANCES<br>PECTIS<br>PENTOSANS<br>PENTOSES<br>RIBOSE<br>STARCH<br>SUCROSE<br>SUGARS, TOTAL<br>SUGARS, NON REDUCING<br>SUGAR, INVERT<br>XYLOSE | DIG COEF<br>DIG COEF | %       0         %       0         %       1         %       0         %       0         %       0         %       0         %       0         %       0         %       0         %       0         %       0         %       0         %       0         %       0         %       0         %       0         %       0         %       0         %       0         %       0         %       0         %       0         %       0         %       0         %       0         %       0         %       0         %       0         %       0         %       0         %       0         %       0         %       0         %       0         %       0         %       0      %       0      % <t< td=""></t<> |

| Printing<br>Sequence No. | Attribute No. | Animel No. | Unit No.        | Attribute                      | Unit                                  | · . ,          | Number Digits<br>to Right of<br>Decimal Point |
|--------------------------|---------------|------------|-----------------|--------------------------------|---------------------------------------|----------------|-----------------------------------------------|
| ENÈ'R                    | נקי עו        | ΓΊLΙΖ      | ĂŢ Ì,           | ON                             | · · · · · · · · · · · · · · · · · · · | 2<br>X<br>T    | •'                                            |
| 1365                     | 421           | 000        | 53              | ENERGY, GROSS                  | ∴GÊ `                                 | MJ/KG          | 2.                                            |
|                          | . · · · ·     |            | 1<br>1          | ENERGY, DIGESTIBLE             |                                       |                | •                                             |
| 1370<br>1375             |               |            | 54<br>54        | CATS<br>CATTLE                 | DE<br>DE                              | MJ/KG<br>MJ/KG | 2                                             |
| 1380                     | 422           | 210        | 54              | DOGS                           | DE                                    | MJ/KG          | 2                                             |
| 1385                     | 422           |            | 54              | FISH, SALMON,                  | DE                                    | MJ/KG          | 2                                             |
| 1390                     | 422           | 260        | <sup>.</sup> 54 | TROUT<br>FISH, WARMWATER       | DE                                    | MJ/KG          | 2                                             |
| 1395                     |               | 280        | 54              | FOXES                          | DE                                    | MJ/KG          | 2                                             |
| 1400<br>1405             |               | 350<br>420 |                 | GOATS<br>HORSES                | DE<br>DE                              | MJ/KG<br>MJ/KG | 2<br>2                                        |
| 1410                     | 422           | 490        | 54              | MAN                            | DE                                    | MJ/KG          | 2                                             |
| 1415<br>1420             |               | 560        | ,               | MINK                           | DE                                    | MJ/KG          | 2                                             |
| 1420                     |               | 630<br>700 |                 | RABBIT,S<br>RATS               | DE<br>DE                              | MJ/KG<br>MJ/KG | 2<br>2                                        |
| 1430                     | 422           | 710        | 54              | RUMINANTS                      | DE                                    | MJ/KG          |                                               |
| 1435<br>1440             |               | 770<br>840 | 54<br>54        | SHEEP                          | DE                                    | MJ/KĞ          |                                               |
| 1440                     | 422           | 040        | 94              | SWINE<br>ENERGY, METABOLIZABLE | DE                                    | MJ/KG          | 2                                             |
| 1445                     |               | 060        |                 | CATS                           | ME,                                   | MJ/KG          |                                               |
| 1450<br>1453             | 423<br>437    | 070<br>070 | 55<br>55        | CATTLE<br>CATTLE LACTATING     | ME<br>ME                              | MJ/KG<br>MJ/KG | 2                                             |
| 1455                     | 423           | 210        | 55              | DOGS                           | ME                                    | MJ/KG          |                                               |
| 1460                     | 423           | 255        | 55 <sup>.</sup> | FISH, SALMON,                  | ME                                    | MJ/KG          | 2                                             |
| 1465                     | 423           | 260        | 55              | TROUT<br>FISH, WARMWATER       | ME                                    | MJ/KG          | 2                                             |
| 1470                     |               | 280        | 55              | FOXES                          | ME                                    | MJ/KG          | 2                                             |
| 1475<br>1480             | 423<br>423    | 350<br>420 | 55<br>55        | GOATS<br>Horses                | ME<br>ME                              | MJ/KG<br>MJ/KG | 2                                             |
| 1485                     | 423           | 490        | 55              |                                | ME                                    |                | 2                                             |
| 1490                     | 423           | 560        | 55              | MINK                           | ME                                    | MJ/KG          | 2                                             |
| $1495 \\ 1500$           | 423<br>423    | 630<br>700 | 55<br>55        | RABBITS<br>RATS                | ME<br>ME                              |                | 2 2                                           |
| 1505                     | 423           | 710        | 55              | RUMINANTS                      | ME                                    |                | 2                                             |
| 1510                     | -             |            | 55              | SHEEP                          | ME                                    | MJ/KG          | 2                                             |
| $1515 \\ 1520$           |               |            | 55<br>55        |                                | ME<br>ME                              |                | 2<br>2                                        |
| 1525                     | 424           | 140        | 57              | CHICKENS ME                    | – N                                   | MJ/KG          | 2                                             |
| 1530                     | .424          | 910        | 57              | TURKEYS ME<br>ENERGY, NET      | - N                                   | MJ/KG          | 2                                             |
| 1535                     |               |            | 58              |                                | - M                                   | MJ/KG          | 2                                             |
|                          | 426           |            | 58              | RUMINANTS NE                   | - M                                   | MJ/KG          | 2                                             |
| $1545 \\ 1550$           | 426<br>426    | 770<br>840 | 58<br>58        |                                |                                       | MJ/KG<br>MJ/KG |                                               |
|                          |               | 5.0        |                 |                                | - 1.1                                 | nu ku          | L                                             |

.

•

| Printing<br>Sequence No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Attribute No.                                                                                                                                   | Animal No.                                                                                                                                             | Unit No.                                                               | Attribute                                                                                                                                                                                                                                                                                                         | Unit                                                                                                                                                                                                                                                                      | Number Digits<br>to Right of<br>Decimal Point                                               |   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---|
| $1555 \\ 1560 \\ 1565 \\ 1570 \\ 1575 \\ 1580 \\ 1583 \\ 1590 \\ 1595 \\ 1605 \\ 1605 \\ 1610 \\ 1615 \\ 1620 \\ 1625 \\ 1630 \\ 1645 \\ 1655 \\ 1660 \\ 1665 \\ 1660 \\ 1665 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 1670 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 10$ | 427<br>427<br>427<br>427<br>427<br>427<br>428<br>438<br>433<br>433<br>433<br>433<br>421<br>4210<br>4210<br>4210<br>4210<br>4210<br>4210<br>4210 | 070<br>759<br>770<br>840<br>140<br>070<br>070<br>770<br>840<br>000<br>070<br>210<br>280<br>350<br>420<br>490<br>560<br>630<br>700<br>710<br>770<br>840 | 59955905642221<br>5965642221<br>30444444444444444444444444444444444444 | CATTLE<br>RUMINANTS<br>SHEEP<br>SWINE<br>CHICKENS<br>CHICKENS<br>CATTLE<br>CATTLE (NEHRIN<br>SHEEP (NEHRIN<br>SWINE (NEHRIN<br>SWINE (NEHRIN<br>SWINE (NEHRIN<br>ENERGY, GROSS<br>CATTLE<br>DOGS<br>FOXES<br>GOATS<br>HORSES<br>MAN<br>MINK<br>RABBITS<br>RATS<br>RUMINANTS<br>SHEEP<br>SWINE<br>ENERGY, DIGESTIB | IG) NEF MJ/KG<br>IG) NEF MJ/KG<br>GE KCAL/KG<br>GE DIG COEF %<br>GE DIG COEF % | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | * |
| 1675<br>1680<br>1685<br>1690<br>1695                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 422<br>422<br>422<br>422<br>422<br>422                                                                                                          | 060<br>070<br>070<br>210<br>255                                                                                                                        |                                                                        | CATS<br>CATTLE<br>CATTLE<br>DOGS<br>FISH, SALMON,<br>TROUT                                                                                                                                                                                                                                                        | DE KCAL/KG<br>DE MCAL/KG<br>DE KCAL/KG<br>DE KCAL/KG                                                                                                                                                                                                                      |                                                                                             | * |
| 1700<br>1705<br>1710<br>1715<br>1720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 422<br>422<br>422<br>422<br>422                                                                                                                 | 260<br>280<br>350<br>350<br>420                                                                                                                        | 05<br>32<br>05<br>32                                                   | FISH, WARMWAT<br>FOXES<br>GOATS<br>GOATS<br>HORSES                                                                                                                                                                                                                                                                | DE KCAL/KG<br>DE MCAL/KG<br>DE KCAL/KG<br>DE MCAL/KG                                                                                                                                                                                                                      | 0<br>2 .001<br>0<br>2 .001                                                                  |   |
| 1740<br>1745<br>1750<br>1755                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 422<br>422<br>422<br>422<br>422<br>422<br>422<br>422<br>422<br>422                                                                              | 420<br>490<br>560<br>530<br>700<br>710<br>710<br>770<br>770<br>840                                                                                     | 05<br>05<br>05<br>32<br>05<br>32<br>05<br>32<br>05                     | HORSES<br>MAN<br>MINK<br>RABBITS<br>RATS<br>RUMINANTS<br>RUMINANTS<br>SHEEP<br>SHEEP                                                                                                                                                                                                                              | DE KCAL/KG<br>DE MCAL/KG<br>DE KCAL/KG<br>DE KCAL/KG                                                                                                                                                                                                                      | 0<br>0<br>2 .001<br>2 .001<br>0<br>2 .001                                                   |   |
| 1775                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 423                                                                                                                                             | 060                                                                                                                                                    | 0 <b>6</b>                                                             | CATS                                                                                                                                                                                                                                                                                                              | ME KCAL/KG                                                                                                                                                                                                                                                                | 0                                                                                           |   |

TABLE 3.9 List of Attributes and Codes (Continued)

|                                                                                      | ~ '                                                                | 4                                                                                                          | · · · · · ·                                                                                                                      |                                                                                                                                          |                                                            |             |
|--------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------|
| Printing<br>Sequence No.                                                             | Attribute No.                                                      | Animal No.                                                                                                 | Attribute                                                                                                                        | Unit                                                                                                                                     | Number Digits<br>to Right of<br>Decimal Point              |             |
| 1780<br>1785<br>1790<br>1795<br>1800<br>1805<br>1810                                 | 5 423<br>437<br>5 437<br>6 425<br>5 423                            | 070 33<br>070 06<br>070 33<br>070 06<br>140 06<br>210 06<br>255 06                                         | CATTLE<br>CATTLE LACTATING<br>CATTLE LACTATING<br>CHICKENS<br>DOGS<br>FISH, SALMON,                                              | ME MCAL/KG<br>ME KCAL/KG<br>ME MCAL/KG<br>ME KCAL/KG<br>ME KCAL/KG<br>ME KCAL/KG                                                         | 0<br>2.001<br>0<br>0<br>0                                  | *<br>*<br>4 |
| 1815<br>1820<br>1825<br>1830<br>1835<br>1840<br>1845<br>1855<br>1860<br>1865<br>1860 | 423<br>423<br>423<br>423<br>423<br>423<br>423<br>423<br>423<br>423 | 260 06<br>280 06<br>350 33<br>350 06<br>420 33<br>420 06<br>560 06<br>560 06<br>630 06<br>710 33<br>710 06 | FOXES<br>GOATS<br>GOATS<br>HORSES<br>HORSES<br>MAN<br>MINK<br>RABBITS<br>RATS<br>RUMINANTS<br>RUMINANTS                          | ME KCAL/KG<br>ME KCAL/KG<br>ME KCAL/KG<br>ME KCAL/KG<br>ME KCAL/KG<br>ME KCAL/KG<br>ME KCAL/KG<br>ME KCAL/KG<br>ME KCAL/KG<br>ME KCAL/KG | 0<br>2.001<br>0<br>2.001<br>0<br>0<br>0<br>0<br>2.001<br>0 | 1           |
| 1875<br>1880<br>1885<br>1890<br>1895<br>1900<br>1905<br>1910<br>1915                 | 423<br>423<br>438<br>424<br>424<br>424<br>426<br>426               | 770 33<br>770 06<br>8.0 06<br>140 36<br>140 07<br>910 07<br>070 34<br>070 08<br>710 34                     | TURKEYS N<br>ENERGY, NET<br>CATTLE N<br>CATTLE N                                                                                 | ME MCAL/KG<br>ME KCAL/KG<br>ME KCAL/KG<br>TME KCAL/KG<br>ME-N KCAL/KG<br>ME-M KCAL/KG<br>NE-M KCAL/KG<br>NE-M KCAL/KG                    | 2 .001<br>0<br>0<br>0<br>0<br>2 .001<br>0                  | *           |
| 1920<br>1925<br>1930<br>1935<br>1940<br>1945<br>1950<br>1955<br>1960                 | 426<br>426<br>426<br>427<br>427<br>427<br>427<br>427               | 710 08<br>770 34<br>770 08<br>840 08<br>070 35<br>070 10<br>710 35<br>710 10<br>770 35                     | RUMINANTS N<br>SHEEP N<br>SHEEP N<br>SWINE NE-G<br>CATTLE NE-G<br>RUMINANTS NE-G<br>RUMINANTS NE-G                               | NE-M KCAL/KG<br>NE-M MCAL/KG<br>NE-M KCAL/KG<br>NE-M KCAL/KG<br>MAIN MCAL/KG<br>MAIN KCAL/KG<br>MAIN MCAL/KG                             | 0<br>2 .001<br>0<br>2 .001<br>0<br>2 .001<br>0<br>2 .001   | *<br>*      |
| 1965<br>1970<br>1975<br>1980<br>1985<br>1990<br>1995<br>2000<br>2005                 | 427<br>427<br>428<br>430<br>433<br>433<br>433<br>433<br>433        | 7701084010140090704107046070617706184061                                                                   | SHEEP NE-G<br>SWINE NE-G<br>CHICKENS N<br>CATTLE N<br>CATTLE (NEHRING)<br>CATTLE (NEHRING)<br>SHEEP (NEHRING)<br>SHEEP (NEHRING) | AIN KCAL/KG                                                                                                                              | 0<br>0<br>2 .001<br>2 .001<br>0<br>2 .001<br>0             | *           |

| Printing<br>Sequence No. | Attribute No. | Animal No. | Unit No. | Vumber Digits<br>Decimal Point<br>Attripate                                                                                                                                                                                                                                                                                                  |
|--------------------------|---------------|------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2015                     | 429           | 070        | 01       | TDN<br>CATTLE % 1<br>DOGS % 1                                                                                                                                                                                                                                                                                                                |
| 2020<br>2025             | 429<br>429    | 210<br>280 | 01<br>01 | DOGS 7 % 1<br>FOXES % 1                                                                                                                                                                                                                                                                                                                      |
| 2030                     | 429           | 350        | 01       | GOATS % 1                                                                                                                                                                                                                                                                                                                                    |
| 2035<br>2040             | 429<br>429    | 420<br>560 | 01<br>01 | HORSES % 1<br>MINK % 1<br>RABBITS % 1<br>RATS % 1<br>RUMINANTS % 1<br>SHEEP % 1<br>SWINE (LEHMANN) % 1                                                                                                                                                                                                                                       |
| 2045                     | 429           | 630        | 01       | RABBITS % 1                                                                                                                                                                                                                                                                                                                                  |
| 2050<br>2055             | 429<br>429    | 700<br>710 | 01<br>01 | RATS % 1<br>RUMINANTS % 1                                                                                                                                                                                                                                                                                                                    |
| 2060                     | 429           | 770        | 01       | SHEEP % 1                                                                                                                                                                                                                                                                                                                                    |
| 2065<br>2070             | 429<br>436    | 840<br>840 | 01<br>15 | SWINE (LEHMANN) % 1<br>SWINE (LEHMANN) % 1                                                                                                                                                                                                                                                                                                   |
|                          |               |            |          | SCANDINAVIAN FEED UNIT                                                                                                                                                                                                                                                                                                                       |
| 2080<br>2085             | 432<br>432    | 070<br>420 | 43<br>43 | CATTLE UNIT 2<br>Horses UNIT 2                                                                                                                                                                                                                                                                                                               |
| 2090                     | 432           | 770        | 43       | SHEEP UNIT 2                                                                                                                                                                                                                                                                                                                                 |
| 2095<br>2100             | 432<br>431    | 840<br>710 | 43<br>42 | SWINE UNIT 2<br>STARCH TQUIVALENT (SE) UNIT 1                                                                                                                                                                                                                                                                                                |
| 2105                     | 006           | 000        | 00       | CODES FOR SE                                                                                                                                                                                                                                                                                                                                 |
| 2110<br>2115             | 007<br>434    | 000<br>000 | 00<br>00 | VALUE NUMBER FOR SE<br>STARCH UNIT 1                                                                                                                                                                                                                                                                                                         |
| 2120                     | 114           | 000        | 01       | NUTRITIVE MATTER (FONNESBECK) % 1                                                                                                                                                                                                                                                                                                            |
| 2125                     | 116           | 000        | 01       | NONNUTRITIVE MATTER % 1<br>(FONNESBECK)                                                                                                                                                                                                                                                                                                      |
| 2130                     | 435           | 000        | 01       |                                                                                                                                                                                                                                                                                                                                              |
| 2135<br>2140             | 912<br>912D   | 000<br>070 | 01<br>01 | NUTRIENTS, TOTAL % 1<br>NUTRITIVE VALUE INDEX (NVI) % 0<br>CATTLE % 0<br>DOGS % 0                                                                                                                                                                                                                                                            |
| 2145                     | 912D          | 210        | 01       |                                                                                                                                                                                                                                                                                                                                              |
| 2150<br>2155             | 912D<br>912D  | 280<br>350 | 01<br>01 | FOXES % O<br>GOATS % O                                                                                                                                                                                                                                                                                                                       |
| 2160                     | 912D          | 420        | 01       | HORSES % 0                                                                                                                                                                                                                                                                                                                                   |
| 2165<br>2170             | 912D<br>912D  | 490<br>560 | 01<br>01 | MAN % O<br>MINK % O                                                                                                                                                                                                                                                                                                                          |
| 2175                     | 912D          | 630        | 01       | RABBITS % 0                                                                                                                                                                                                                                                                                                                                  |
| 2180<br>2185             | 912D<br>912D  | 700<br>770 | 01<br>01 | RATS % 0<br>SHEEP % 0                                                                                                                                                                                                                                                                                                                        |
| 2190                     | 912D          | 840        | 01       | SWINE % 0                                                                                                                                                                                                                                                                                                                                    |
| 2195<br>2200             | 917<br>917D   | 000<br>070 | 01<br>01 | RELATIVE INTAKE % 0<br>CATTLE % 0                                                                                                                                                                                                                                                                                                            |
| 2205                     | 917D          | 210        | 01       | DOGS % 0                                                                                                                                                                                                                                                                                                                                     |
| 2210<br>2215             | 917D<br>917D  | 280<br>350 | 01<br>01 | GOATS       % 0         HORSES       % 0         MAN       % 0         MINK       % 0         RABBITS       % 0         RATS       % 0         SHEEP       % 0         SWINE       % 0         RELATIVE INTAKE       % 0         DOGS       % 0         FOXES       % 0         HORSES       % 0         MAN       % 0         MAN       % 0 |
| 2220                     | 917D          | 420        | 01       | HORSES % 0                                                                                                                                                                                                                                                                                                                                   |
| 2225<br>2230             | 917D<br>917D  | 490<br>560 | 01<br>01 | MAN % O<br>MINK % O                                                                                                                                                                                                                                                                                                                          |
| 2235                     | 917D          | 630        | 01       | RABBITS % O                                                                                                                                                                                                                                                                                                                                  |
| 2240                     | 917D          | 700        | 01       | RATS % 0                                                                                                                                                                                                                                                                                                                                     |

. . . . . .

1

| IABLE                                                                                                                                                                                | 3.9 Lis                                                                                                                                          | t of Atl   | tribul                                                                          | tes and Codes (Continued)                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Printing<br>Sequence No.                                                                                                                                                             | Attribute No.                                                                                                                                    | Animal No. | Unit No.                                                                        | Vumber<br>Decimal Point<br>Attripre<br>Attripre<br>Attripre                                                                                                                                                                                                                                                                                                                                                           |
| 2245<br>2250                                                                                                                                                                         | 917D<br>917D                                                                                                                                     | 770<br>840 |                                                                                 | SHEEP % 0<br>SWINE % 0                                                                                                                                                                                                                                                                                                                                                                                                |
| MINE                                                                                                                                                                                 | RALS                                                                                                                                             |            |                                                                                 | 7                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2255<br>2260<br>2265<br>2270<br>2275<br>2280<br>2295<br>2300<br>2305<br>2310<br>2325<br>2320<br>2325<br>2330<br>2325<br>2330<br>2345<br>2355<br>2360<br>2355<br>2360<br>2370<br>2375 | 548<br>585<br>567<br>5885<br>587<br>588<br>530<br>539<br>541<br>555<br>553<br>541<br>555<br>543<br>541<br>555<br>543<br>541<br>555<br>543<br>541 | 000<br>000 | 17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>1 | ALUMINUMMG/KG 2ANTIMONYMG/KG 3ARSENICMG/KG 3BARIUMMG/KG 3BERYLLIUMMG/KG 3BORONMG/KG 3CADMINEMG/KG 3CALCIUM% 2CHLORINE% 2CHLORINE% 2CHLORINEMG/KG 3COPPERMG/KG 1FLUORINEMG/KG 3IRONMG/KG 3LATHANUMMG/KG 3LATHANUMMG/KG 3LATHANUMMG/KG 3LATHANUMMG/KG 3LATHANUMMG/KG 3LATHANUMMG/KG 3LATHANUMMG/KG 3LATHANUMMG/KG 3LITH JUMMG/KG 3MAGNESIUM% 2MANGANESEMG/KG 1MERCURYMG/KG 2NICKELMG/KG 2PHOSPHORUS% 2CHICKENS, HENS% 0 |
| 2385                                                                                                                                                                                 | 534D                                                                                                                                             | 141        | 01                                                                              | AVAILABILITY<br>CHICKENS,CHICKS % 0                                                                                                                                                                                                                                                                                                                                                                                   |
| 2395<br>2400                                                                                                                                                                         | 534D<br>534D                                                                                                                                     | 910<br>911 | 01<br>01                                                                        | AVAILABILITY<br>SWINE AVAILABILITY % O<br>TURKEYS, HENS AVAILABILITY % O<br>TURKEYS, POULTS % O<br>AVAILABILITY                                                                                                                                                                                                                                                                                                       |
| 2405<br>2410<br>2415<br>2423<br>2420<br>2430<br>2435<br>2440<br>2445                                                                                                                 | 581<br>580<br>582                                                                                                                                | 000        | 01<br>01<br>01                                                                  | AVAILABILITY<br>CHICKENS, CHICKS AVAILABLE % 2<br>CHICKENS, HENS AVAILABLE % 2<br>SWINE AVAILABLE % 2<br>TURKEYS, HENS AVAILABLE % 2<br>TURKEYS, POULTS AVAILABLE % 2<br>ORTHO PHOSPHATE % 2<br>CITRATE SOLUBLE PHOSPHORUS % 2<br>PHYTIN PHOSPHORUS % 2<br>WATER SOLUBLE PHOSPHORUS % 2                                                                                                                               |

,

| Printing<br>Sequence No.                                                                                                     | Attribute No.                                                                                                                                                                    | Animal No.                                                      | Unit No.                                                                         | Attribute                                                                                                                                                                                                                                                                 | Unit                                                                                                                                | Number Digits<br>to Right of<br>Decimal Point                                                              |
|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| 2450<br>2455<br>2460<br>2465<br>2470<br>2475<br>2480<br>2485<br>2490<br>2495<br>2500<br>2505<br>2510<br>2515<br>2520<br>2525 | 797<br>909<br>544<br>589<br>546<br>536<br>537<br>568<br>551<br>590<br>591<br>549<br>553                                                                                          | 000<br>000                                                      | 17<br>17<br>17<br>17                                                             | SODIUM<br>SULPHUR<br>STRONTIUM<br>THALLIUM<br>TIN<br>TITANIUM<br>TUNGSTON<br>URANIUM<br>VANADIUM                                                                                                                                                                          | MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG                                                                                           | 2<br>3<br>2<br>3<br>3<br>2<br>2<br>2<br>2<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3           |
|                                                                                                                              |                                                                                                                                                                                  |                                                                 |                                                                                  | ATED COMPOUNDS                                                                                                                                                                                                                                                            |                                                                                                                                     |                                                                                                            |
|                                                                                                                              | $\begin{array}{c} 914\\ 646\\ 647\\ 675\\ 676\\ 677\\ 678\\ 679\\ 681\\ 913\\ 630\\ 648\\ 915\\ 649\\ 655\\ 6551\\ 655\\ 6551\\ 652\\ 683\\ 688\\ 685\\ 688\\ 685\\ \end{array}$ | $\begin{array}{c} 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 00$ | 01<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17 | CAROTINE<br>CAROTENOIDS<br>CAROTENE, TOTAL<br>A-CAROTENE<br>B-CAROTENE<br>G-CAROTENE<br>LUTEIN<br>CRYPTOXANTHIN<br>XANTHOPHYLL<br>ZEAXANTHINE<br>CHOLINE<br>ERGOSTEROL<br>FOLIC ACID<br>INOSITOL<br>NIACIN<br>P-AMINOBENZOIC ACID<br>RIBOFLAVIN<br>THIAMINE<br>TOCOPHEROL | MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG | 2<br>2<br>0<br>2<br>2<br>3<br>1<br>3<br>1<br>1<br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |

٢,

. , ,

| TABLE 3.9 | List of | Attributes | and | Codes | (Continued) |
|-----------|---------|------------|-----|-------|-------------|
|           |         |            |     |       | ,           |

•

|                                      | 34                                     |                                                      |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------|----------------------------------------|------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Printing<br>Sequence No.             | Attribute No.                          | Animal No.                                           | Unit No.                   | Attripate Cugits Official Point Attripate Cugits Official Point Attribute Cugits Official Poin |
| 2675<br>2680<br>2685                 | 657<br>658<br>659<br>663<br>654<br>660 | 000<br>000<br>000<br>000<br>000<br>000<br>000<br>000 | - 19                       | VITAMIN B6<br>VITAMIN K<br>VITAMIN K<br>VITAMIN B12<br>VITAMIN A<br>VITAMIN A EQUIVALENT<br>VITAMIN E<br>VITAMIN E<br>VITAMIN D2 AND D3<br>MG/KG 1<br>VITAMIN D2 AND D3<br>MG/KG 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| AMINO                                | D ACI                                  | DS,                                                  | AVA                        | ILIBILITY AND AVAILABLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2705.<br>2710<br>2715                | 764                                    | 000                                                  | 01                         | ALANINE % 2<br>ARGIN NE % 2<br>CHICKENS, CHICKS % 0<br>AVAILABILITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2720<br>2725                         | 764D<br>764D                           | 840<br>910                                           | 01<br>01                   | SWINE AVAILABILITY % O<br>TURKEYS, POULTS % O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2730<br>2735<br>2740<br>2745<br>2750 | 011<br>012<br>013<br>765<br>766        | 000<br>000<br>000<br>000<br>000                      | 01<br>01<br>01             | TURKEY, POULTS AVAILABLE % 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2755<br>2760<br>2762<br>2765<br>2770 | 767<br>798<br>769<br>770               | 000<br>000<br>000<br>000<br>000                      | 01<br>01<br>01<br>01<br>01 | CYSTEINE% 2CYSTINE% 2CYTISINE% 2GLUTAMIC ACID% 2GLYCINE% 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2775                                 |                                        |                                                      |                            | CHICKENS, CHICKS % O<br>AVAILABILITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2780<br>2785                         | 770D<br>770D                           | 840<br>910                                           | 01<br>01                   | SWINE AVAILABILITY % O<br>TURKEYS, POULTS % O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2795                                 | 015                                    | 000                                                  | 01                         | AVAILABILITY<br>CHICKENS, CHICKS AVAILABLE % 2<br>SWINE AVAILABLE % 2<br>TURKEYS, POULTS AVAILABLE % 2<br>HISTIDINE % 2<br>CHICKENS, CHICKS % 0<br>AVAILABILITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2815<br>2820                         | 771D<br>771D                           | 840<br>910                                           | 01<br>01                   | SWINE AVAILABILITY % O<br>TURKEYS, POULTS % O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2840                                 | /72                                    | 000                                                  | 01                         | AVAILABILITY<br>CHICKENS, CHICKS AVAILABLE % 2<br>SWINE AVAILABLE % 2<br>TURKEYS, POULTS AVAILABLE % 2<br>HYDROXYPROLINE % 2<br>ISOLEUCINE % 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| Printing<br>Sequence No.             | Attribute No.      | Animal No.                      | Unit No.             | Attripate Cumber Digits Attripate Cuit Attripate Cuit Solution Sol |
|--------------------------------------|--------------------|---------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2850                                 | 773D               | 140                             | 01                   | CHICKENS, CHICKS % O<br>AVAILABILITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                      |                    | 840                             | 01                   | SWINE AVAILABILITY % O<br>TURKEYS, POULTS % O<br>AVAILABILITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2865<br>2870<br>2875<br>2880<br>2885 | 024<br>774         |                                 | 01<br>01<br>01<br>01 | CHICKENS, CHICKS AVAILABLE % 2<br>SWINE AVAILABLE % 2<br>TURKEYS, POULTS AVAILABLE % 2<br>LEUCINE % 2<br>CHICKENS, CHICKS % 0<br>AVAILABILITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2890<br>2895                         | 774D<br>774D       | 840<br>910                      |                      | SWINE AVAILABILITY % O<br>TURKEYS, POULTS % O<br>AVAILABILITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2900<br>2905<br>2910<br>2912         | 029<br>030         | 000<br>000<br>000<br>000        | 01<br>01             | CHICKENS, CHICKS AVAILABLE % 2<br>SWINE AVAILABLE % 2<br>TURKEYS, POULTS AVAILABLE % 2<br>LUPANINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2915                                 | 775                |                                 | 01                   | LYSINE % 2<br>CHICKENS, CHICKS % 0<br>AVAILABILITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2925<br>2930                         | 7 7 5 D<br>7 7 5 D | 840<br>910                      |                      | SWINE AVAILABILITY % O<br>TURKEYS, POULTS % O<br>AVAILABILITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2935<br>2940<br>2945<br>2950<br>2955 | 035<br>036         | 000<br>000<br>000<br>000<br>000 | 01<br>01<br>01       | CHICKENS, CHICKS AVAILABLE % 2<br>SWINE AVAILABLE % 2<br>TURKEYS, POULTS AVAILABLE % 2<br>LYSINE AVAILABLE (CARPENTER) % 2<br>METHIONINE % 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2960                                 | 776D               | 140                             | 01                   | AVAILABILITY<br>CHICKENS, CHICKS % O<br>AVAILABILITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2965<br>2970                         | 776D<br>776D       | 840<br>910                      | 01<br>01             | SWINE AVAILABILITY % O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2980<br>2985                         | 042                | 000                             | UL                   | AVAILABILITY<br>CHICKENS, CHICKS AVAILABLE % 2<br>SWINE AVAILABLE % 2<br>TURKEYS, POULTS AVAILABLE % 2<br>METHIONINE CYSTINE % 2<br>PHENYLALANINE % 2<br>CHICKENS, CHICKS % 0<br>AVAILABILITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3010                                 | 777D               | 910                             | 01                   | SWINE AVAILABILITY % O<br>TURKEYS, POULTS % O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3015<br>3020<br>3025                 | 046<br>047<br>048  | 000<br>000<br>000               | 01<br>01<br>01       | CHICKENS, CHICKS AVAILABLE % 2<br>SWINE AVAILABLE % 2<br>TURKEYS, POULTS AVAILABLE % 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| TABLE 3.9 | List o | f Attributes and Co | des (Cont | inued) | + |
|-----------|--------|---------------------|-----------|--------|---|
| 3         | • ^    | · ·                 | د<br>۱    | × 1    | 7 |

÷ .

•

| Printing<br>Sequence No.                                                                     | Attribute No.                                                                    | Animal No.                                                        | Unit No.                                                 | Attribute                                                                                                                                                                                  | Unit                                                                                                   | Number Digits<br>to Right of<br>Decimal Point                                                                                                                               |          |
|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 3030<br>3035<br>3040<br>3045                                                                 | 780                                                                              | 000<br>000                                                        | 01<br>01                                                 | GHIGKLAS                                                                                                                                                                                   |                                                                                                        | % 2<br>% 2<br>% 2<br>% 0                                                                                                                                                    | <u> </u> |
| 3050<br>3055                                                                                 | 780D<br>780D                                                                     | 840<br>910                                                        | 01<br>01                                                 | AVAILA<br>SWINE<br>TURKEYS,<br>AVAILA                                                                                                                                                      | AVAILABILITY<br>POULTS                                                                                 | % 0<br>% 0                                                                                                                                                                  |          |
| 3075                                                                                         | 053<br>054                                                                       | 000<br>000<br>000                                                 | 01<br>01<br>01                                           | CHICKENS<br>SWINE<br>TURKEYS,<br>TRYPTOPHAN                                                                                                                                                | , CHICKS AVAILABLE<br>AVAILABLE<br>POULTS AVAILABLE<br>, CHICKS                                        | <b>%</b> 2                                                                                                                                                                  |          |
| 3085<br>3090                                                                                 | 781D<br>781D                                                                     | 840<br>910                                                        | 01<br>01                                                 | SWINE                                                                                                                                                                                      | AVAILABILITY<br>POULTS                                                                                 | % U<br>% O                                                                                                                                                                  |          |
|                                                                                              | 059<br>060<br>782<br>783                                                         | 000 000<br>000<br>000                                             | 01<br>01<br>01<br>01                                     | CHICKENS,<br>SWINE<br>TURKEYS,<br>TYROSINE<br>VALINE<br>CHICKENS,                                                                                                                          | CHICKS AVAILABLE<br>AVAILABLE<br>POULTS AVAILABLE<br>CHICKS                                            | % 2<br>% 2                                                                                                                                                                  |          |
| 3125<br>3130                                                                                 | 783D<br>783D                                                                     | 840<br>910                                                        | 01<br>01                                                 | AVAILAE<br>SWINE<br>TURKEYS,                                                                                                                                                               | AVAILABILITY<br>POULTS                                                                                 | % 0<br>% 0                                                                                                                                                                  |          |
| 3140<br>3145                                                                                 | 064<br>065<br>066<br>961                                                         | 000<br>000<br>000<br>140                                          | 01<br>01                                                 | SWINE<br>TURKEYS,                                                                                                                                                                          | CHICKS AVAILABLE<br>AVAILABLE<br>POULTS AVAILABLE<br>O ACID AVAILABLE                                  | %2<br>%2                                                                                                                                                                    |          |
|                                                                                              | -                                                                                |                                                                   |                                                          |                                                                                                                                                                                            | PECIFICATIONS                                                                                          |                                                                                                                                                                             |          |
| 3155<br>3160<br>3165<br>3170<br>3175<br>3180<br>3185<br>3190<br>3195<br>3200<br>3205<br>3210 | 563<br>282<br>278<br>115<br>271<br>689<br>694<br>274<br>275<br>210<br>216<br>218 | 000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>00 | 01<br>01<br>01<br>01<br>01<br>01<br>01<br>01<br>01<br>01 | INSOLUBLE IN<br>CHOLESTEROL<br>FAT, ROSE GO<br>FAT, TOTAL<br>TOTAL LIPIDS<br>SAPONIFIABLE<br>NONSAPONIFIA<br>FREE FATTY A<br>PETROLEUM ET<br>FATTY ACIDS<br>ACETIC<br>ARACHIOIC<br>(EICOSA | FORMIC ACID<br>TTLIEB<br>LIPIDS<br>BLE LIPIDS<br>CID<br>HER INSOLUBLES<br>2:0 (ETHANOIC)<br>NOIC 20:0) | %       1         %       1         %       1         %       1         %       1         %       1         %       3         %       3         %       3         %       3 |          |

| Printing<br>Sequence No.<br>Attribute No.                          | Animal No.                                                  | , icit<br>V                                        | Attribute                                                               |                                                                                                  |                                                                          | Unit                                    | Number Digits<br>to Right of<br>Decimal Point                                                 | · · · · · · · · · · · · · · · · · · · |
|--------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------|
| 3215 2                                                             | 20 0                                                        | 000` 0                                             |                                                                         | CHIDONIC<br>(EICOSATE                                                                            |                                                                          | C 20:4)                                 | % 3                                                                                           | · · ·                                 |
|                                                                    |                                                             | 00 - 00<br>00 - 00                                 | 1 BEN<br>1 BEN                                                          | HENIC (DO<br>HENOLIC<br>(DOCOSENO                                                                | COSANOI                                                                  | C 22:0)                                 | % 3<br>% 3                                                                                    |                                       |
| 3235 0<br>3240 2<br>3245 2<br>3250 2                               | 079 0<br>224 0<br>226 0<br>228 0                            | 000 (0)<br>000 (0)<br>000 (0)                      | 1 BU <sup>-</sup><br>1 2-6<br>1 CAN<br>1 CAN<br>1 CAN<br>1 CAN<br>1 CEN | TANOIC 4<br>BUTYLOCTA<br>PRIC (DEC<br>PROIC (HE<br>PRYLIC (O<br>ROTIC                            | :0<br>DECANOI<br>ANCIC<br>XANOIC<br>CTANOIC                              | C 22:0;;;<br>10:0)<br>6:0)<br>8:0)      | % % 3<br>% % % 3<br>% % % %<br>% %<br>%                                                       |                                       |
| 3265 2<br>3270 0<br>3275 8<br>3280 8                               | 283 0<br>085 0<br>398 0<br>397 0                            | )00 0<br>)00 0<br>)00 0<br>)00 0<br>)00 0          | 1 DE(<br>1 DE(<br>1 2-[<br>1 DI <br>1 DI                                |                                                                                                  | O:O (CA<br>O:1<br>DECANOI<br>TADECAN<br>TADECEN                          | PRIC)<br>C 28:0<br>OIC 18:0<br>OIC 18:1 | * 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 |                                       |
| 3290 2<br>3295 2<br>3300 2<br>3305 2<br>3310 7                     | 287 0<br>230 0<br>232 0<br>234 0<br>725 0                   | 000 0<br>000 0<br>000 0<br>000 0<br>000 0          | 1 DOC<br>1 DOC<br>1 DOC<br>1 DOC<br>1 DOC<br>1 DOC                      | COSANOIC<br>COSAHEXAE<br>COSAPENTA<br>COSATETRA<br>COSATRIEN<br>COSENOIC                         | 22:0 (<br>NOIC 2<br>ENOIC<br>ENOIC                                       | BEHENIC)<br>2:6<br>22:5<br>22:4         | * * * * * * * * * * * * * * * * * * *                                                         |                                       |
| 3320 2<br>3325 2<br>3330 0<br>3335 7<br>3340 8<br>3345 8<br>3350 2 | 246 0<br>284 0<br>287 0<br>291 0<br>372 0<br>386 0<br>236 0 | 000 0<br>000 0<br>000 0<br>000 0<br>000 0          | 1 DOG<br>1 DOG<br>1 2[<br>1 DOT<br>1 DOT<br>1 DOT<br>1 EIG              | BEHENOLI<br>DECANOIC<br>DECENOIC<br>DODECYLOC<br>RIACONTA<br>RIACONTA<br>RIACONTE<br>COSADIENO   | C)<br>12:0 (<br>12:1<br>TADECAN<br>HEXAENO<br>NOIC 3<br>NOIC 3<br>IC 20: | IC 32:6<br>2:0<br>2:1                   | * * * * * * * * * * * * * * * * * * *                                                         |                                       |
| 3355 2<br>3360 2<br>3365 2<br>3370 2<br>3375 2                     | 244 0<br>238 0<br>240 0<br>220 0                            | 000 0<br>000 0<br>000 0<br>000 0                   | 1 EIC<br>1 EIC<br>1 EIC<br>1 EIC<br>1 EIC                               | COSANOIC<br>ARACHIOI<br>COSENOIC<br>COSAHEXAE<br>COSAPENTA<br>COSATETRA<br>ARACHIDO<br>ANTHIC (H | C)<br>20:1<br>NOIC 2<br>ENOIC<br>ENOIC<br>NIC)                           | 20:5<br>20:4                            | % 3<br>% 3<br>% 3<br>% 3<br>% 3                                                               |                                       |
| 3380 8<br>3385 2<br>3390 2<br>3395 8<br>3400 0<br>3405 8<br>3410 0 | 242 0<br>216 0<br>396 0<br>75 0<br>365 0                    | 00000<br>00000<br>00000<br>00000<br>00000<br>00000 | 1 EIC<br>1 ETH<br>1 12,<br>1 2-E<br>1 HEM<br>(<br>1 2-H                 | OSATRIÈN<br>IANOIC (A                                                                            | OIC 20<br>CETIC 2<br>-9-OCTA<br>DECANOI<br>11:0<br>IC)                   | :3<br>:0)<br>DECENOIC<br>C 18:0         | %<br>3<br>3<br>3<br>3<br>3<br>3<br>8<br>3<br>3<br>8<br>3<br>3<br>8<br>3<br>3<br>8<br>3        |                                       |

|           | ,                                        |
|-----------|------------------------------------------|
| TABLE 3.9 | List of Attributes and Codes (Continued) |

;

| TABLI                    | E 3.9 / L     | ist of A   | ttribu   | tes and Codes      | (Con | tinued)          | ·      |            |                    | e                                      |                            |                                          |                                               |                  |
|--------------------------|---------------|------------|----------|--------------------|------|------------------|--------|------------|--------------------|----------------------------------------|----------------------------|------------------------------------------|-----------------------------------------------|------------------|
| Printing<br>Sequence No. | Attribute No. | Animal No. | Unit No. | Attribute          | *    | ,<br>,<br>,<br>, | ,<br>, | ,<br>,     | Unit               |                                        | Number Digits              | to Right o <sup>£</sup><br>Decimal Point | , <u>, , , , , , , , , , , , , , , , , , </u> | ,<br>,<br>,<br>, |
| 3415                     | 713           | 000        |          |                    |      | SADIE            |        | 2          | 1:2                | %                                      | 3                          | <b>7</b>                                 |                                               |                  |
| 3420                     | 860           | 000        |          |                    |      | SANO             |        | 1:0        |                    | ******                                 | 3<br>3<br>3<br>3           |                                          |                                               |                  |
| 3425<br>3430             | 752<br>742    | 000<br>000 |          |                    |      | SAHE             | -      |            | 21:6<br>21:5       | %<br>~                                 | 3                          |                                          |                                               |                  |
| 3430                     | 724           | 000        |          |                    |      | SAPEN<br>SATR 1  |        |            | 21:5               | 70<br>92                               | ່ງ<br>                     | ı                                        |                                               |                  |
| 3440                     | 732           | 000        |          |                    |      | SATEI            |        |            | 21:4               | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ·3<br>3<br>3               |                                          |                                               |                  |
| 3445                     | 876           | 000        |          | HENE               | ICO  | SENOI            | C 2    | 1:1        | ,                  | %                                      | 3                          | 1                                        |                                               |                  |
| 3450                     | 790           | 000        |          |                    |      | CONTA            |        |            |                    | %                                      | 3                          |                                          |                                               |                  |
| 3455<br>3460             | 871<br>885    | 000<br>000 |          |                    |      | CONTA<br>Conte   |        |            | 1:0                | %<br>~                                 | 3                          |                                          |                                               |                  |
| 3460                     | 757           | 000        |          |                    |      | SAHE             |        |            | 1:1<br>27:6        | 70<br>92                               | 3<br>7                     |                                          |                                               |                  |
| 3470                     | 867           | 000        |          |                    |      | SANDI            |        | 7:0        | 27.0               | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | .3                         |                                          |                                               |                  |
| 3475                     | 747           | 000        | 01       | HEPT               | ACOS | SAPEN            | TAEN   | OIC        | 27:5               | *******                                | 333333333                  |                                          |                                               |                  |
| 3480                     | 737           | 000        |          |                    |      | SATET            |        |            | 27:4               | %                                      | 3                          |                                          |                                               |                  |
| 3485<br>3490             | 881<br>794    | 000<br>000 | 01<br>01 |                    |      | SENOI            |        | 7:1        | ANOIC              | %<br>~                                 | 3                          |                                          |                                               |                  |
| 3495                     | 710           | 000        | 01       |                    |      | CADIE            |        |            | 7:2                | %<br>%                                 | ২                          |                                          |                                               |                  |
| 3500                     | 856           | 000        | 01       |                    |      | CANOI            |        |            |                    | ୖୄ%                                    | 3                          |                                          |                                               |                  |
|                          |               |            |          |                    |      | ARIC)            |        |            |                    |                                        |                            |                                          |                                               |                  |
| 3505                     | 730           | 000        | 01       |                    |      | CATET            |        |            | 17:4               |                                        | 3                          |                                          |                                               |                  |
| 3510<br>3515             | 720<br>857    | 000<br>000 | 01<br>01 | HEPT/<br>HEPT/     |      |                  |        | ι<br>7:1   | 17:3               | ~%<br>%                                | 3<br>3                     |                                          |                                               |                  |
| 3520                     | 863           | 000        | 01       | HEPT               |      |                  |        |            | NTHIC)             | *                                      | 3                          |                                          |                                               |                  |
| 3525                     | 717           | 000        | 01       | HEXA               | COSA | ADIEN            | OIC    | 26         | 5:2                | %                                      | 3                          |                                          |                                               |                  |
| 3530                     | 746           | 000        | 01       | HEXA               |      |                  |        |            | 26:5               | ******                                 | 3<br>3<br>3                |                                          |                                               |                  |
| 3535<br>3540             | 756<br>866    | 000<br>000 | 01<br>01 | HEXA(<br>HEXA(     |      |                  |        |            | 26:6               | %<br>                                  | 3                          |                                          |                                               |                  |
| 3540                     | 000           | 000        | 01       |                    |      | TIC)             | 20:    | U          |                    | ю                                      | 3                          |                                          |                                               |                  |
| 3545                     | 736           | 000        | 01       | HEXA               |      |                  | AENO   | IC         | 26:4               | %                                      | 3                          |                                          |                                               |                  |
| 3550                     | 728           | 000        |          | HEXA               |      |                  |        |            | 5:3                | %                                      | 3                          |                                          |                                               |                  |
| 3555                     | 880           |            | 01       | HEXA               |      |                  |        |            | · . 0 <sup>·</sup> | %                                      | 3                          |                                          |                                               |                  |
| 3560<br>3565             | 709<br>260    | 000<br>000 | 01<br>01 | HE XA (<br>HE XA ( |      |                  |        |            | 5:2                | ****                                   | 3<br>3<br>3<br>3<br>3<br>3 |                                          |                                               |                  |
| 0000                     | 200           | 000        | •        |                    |      | (TIC)            | 10.    | 0          | 1                  | 70                                     | 5                          |                                          |                                               |                  |
|                          | 729           | 000        |          | HEXAL              |      |                  |        |            | 16:4               | %                                      | 3<br>3                     |                                          |                                               |                  |
|                          | 719           | 000        |          | HEXAL              |      |                  |        |            | 5:3                | %                                      | 3                          |                                          |                                               |                  |
| 3580                     | 202           | 000        | 01       | HEXA[              |      | TOLE             |        | :1         |                    | %                                      | 3                          |                                          |                                               |                  |
| 3585                     | 226           | 000        | 01       | HEXAN              |      |                  | 0 (C   | APRO       | (JIC)              | %                                      | 3                          |                                          |                                               |                  |
| 3590                     |               | 000        |          | HEXAT              |      | CONT             | ENÓI   | C 3        | 6:1                | %                                      | 3<br>3<br>3                |                                          |                                               |                  |
| 3595                     | 081           |            | 01       | 2-HE)              |      |                  |        |            | 24:0               | %                                      | 3.                         |                                          |                                               |                  |
| 3600<br>3605             | 892<br>705    | 000<br>000 | 01<br>01 | H Y DRC<br>H Y DRC |      |                  |        | 10:        | 2:0                | %<br>4                                 | 3                          |                                          |                                               |                  |
| 3610                     | 893           |            | 01       | HYDRO              |      |                  |        |            | 2:0                | *****                                  | 3                          |                                          |                                               |                  |
| 3615                     | 704           | 000        | 01       | HYDRC              | XYE  | ICOS             | ANOI   | 2          | '0:0               | %                                      | 3<br>3<br>3                |                                          |                                               |                  |
|                          | 701           | 000        | 01       | HYDRO              |      |                  |        |            |                    | %                                      | 3                          |                                          |                                               |                  |
| 3625                     | 702           | 000        | 01       | HYDRC              | XYH  | EXAD             | ECAN   | <b>JIC</b> | 16:0               | %                                      | 3                          |                                          |                                               |                  |
|                          |               |            |          |                    |      |                  |        |            |                    |                                        |                            |                                          |                                               |                  |

|                   |              | ب و ر         | 1. X. X. X. |
|-------------------|--------------|---------------|-------------|
| TABLE 3.9 List of | f Attributes | and Codes (Co | ntinued)    |
|                   | 1 1 A        | 5 en 1 e - 5  | ÷,          |

| Printing<br>Sequence No.                                                                                                                             | Attribute No.                                                                                                       | Animal No.                                    | Unit No.                                                             | Attribute                                                                                                                                                                                                                                                                                                                                                                                   | Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         | Number Digits<br>to Right of<br>Decimal Point                                               |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------|--|
| 3630                                                                                                                                                 | 700                                                                                                                 | 000                                           | 01                                                                   | HYDROXYOCTAD<br>18:2                                                                                                                                                                                                                                                                                                                                                                        | ECADIENOIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | %                                       | 3                                                                                           |  |
| 3680<br>3685<br>3690<br>3695<br>3700<br>3705<br>3710<br>3715<br>3720<br>3725<br>3730<br>3725<br>3730<br>3740<br>3755<br>3760<br>3755<br>3760<br>3765 | 856<br>241<br>964<br>215<br>217<br>219<br>221<br>223<br>225<br>227<br>229<br>231<br>233<br>235<br>712<br>068<br>070 | 000                                           | 01<br>01<br>01<br>01<br>01<br>01<br>01<br>01<br>01<br>01<br>01<br>01 | HYDROXYOCTAD<br>HYDROXYOCTAN<br>9-HYDROXY-12<br>12-HYDROXY-9<br>2-HYDROXYPRO<br>HYDROXYTETRA<br>LAURIC (DODE<br>LINOLEIC<br>(OCTADECAD<br>LINOLENIC<br>(OCTADECAT<br>MARGARIC<br>(HEPTADECA<br>16:0 (MULTIP<br>17:0 (MULTIP<br>18:0 (MULTIP<br>19:0 (MULTIP<br>20:0 (MULTIP<br>21:0 (MULTIP<br>22:0 (MULTIP<br>23:0 (MULTIP<br>25:0 (MULTIP<br>25:0 (MULTIP<br>26:0 (MULTIP<br>28:0 (MULTIP | OIC 8:0<br>-OCTADECENOIC<br>-OCTADECENOIC<br>PANOIC 3:0<br>DECANOIC 14:0<br>CANOIC 12:0)<br>IENOIC 18:2)<br>RIENOIC 18:2)<br>RIENOIC 18:3)<br>NOIC 17:0)<br>LE BRANCHED)<br>LE BRANCHED) | ************                            | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 |  |
| 3775<br>3780<br>3785<br>3790                                                                                                                         | 078<br>074<br>077<br>067<br>076                                                                                     | 000<br>000<br>000<br>000<br>000<br>000<br>000 | 01<br>01<br>01<br>01<br>01                                           | 2-METHYLEICO<br>15-METHYLHEX<br>METHYLNONADE<br>8-METHYLNONA<br>10-METHYLOCT<br>14-METHYLPEN                                                                                                                                                                                                                                                                                                | SANOIC 21:0<br>ADECANOIC 17:0<br>CANOIC 20:0<br>NOIC 10:0<br>ADECANOIC 19:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                    |  |
| 3805<br>3810<br>3815<br>3820<br>3825<br>3830                                                                                                         | 721<br>090<br>082<br>072<br>071<br>252                                                                              | 000                                           | 01<br>01<br>01<br>01                                                 | 2-METHYLTETR<br>METHYLTRIDEC<br>MYRISTIC                                                                                                                                                                                                                                                                                                                                                    | ANOIC 4:0<br>ACOSANOIC 25:0<br>ADECANOIC 15:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | %                                       | 3<br>3<br>3<br>3<br>3<br>3                                                                  |  |

÷x.

| Printing<br>Sequence No. | Attribute No. | Animal No. | Unit No. | Attribute                          | Unit.`                 | Number Digits<br>to Right of<br>Decimal Point                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------|---------------|------------|----------|------------------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          |               |            |          | ·····                              |                        | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3835                     | 254           | 000        | 01       | MYRISTOLEIC<br>(TETRADECENO        | (C 14.1)               | %ີ່3                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3840                     | 759           | 000        |          | NONACOSAHEXAEN                     | DIC 29:6               | <b>%</b> 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3845                     | 869           | 000        |          |                                    | 29:0                   | , <b>%</b> , <b>3</b> `                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3850<br>3855             | 749<br>739    | 000<br>000 |          | NONACOSAPENTAEI<br>NONACOSATETRAEI |                        | % 3<br>& 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3860                     | 883           | 000        |          |                                    | 29:1                   | * 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3865                     | 711           | 000        |          | NONADECADIENOIO                    | : 19:2 ,               | % 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3870                     | 858           | 000        | 01       |                                    | 9:0                    | % 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3875                     | 741           | 000        | 01       | NONADECAPENTAE                     |                        | * 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3880<br>3885             | 731<br>722    | 000<br>000 | 01<br>01 | NONADECATETRAEN<br>NONADECATRIENO  |                        | <b>添 う</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3890                     | 859           | 000        | 01       |                                    | .9:1                   | ~ Э<br>Ж. Э                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3895                     | 864           | 000        | 01       | NONANOIC 9:0                       | PELARGONIC)            | %       3         %       3         %       3         %       3         %       3         %       3         %       3         %       3         %       3         %       3         %       3         %       3         %       3         %       3         %       3         %       3         %       3         %       3         %       3         %       3         %       3         %       3         %       3         %       3         %       3         %       3 |
| 3900                     | 084           | 000        | 01       | 2-NONYLOCTADECA                    | NOIC 27:0              | % 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3905<br>3910             | 758<br>868    | 000<br>000 | 01<br>01 | OCTACOSAHEXAENO                    |                        | % 3<br>~ _                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3910                     | 748           | 000        | 01       | OCTACOSANOIC 2<br>OCTACOSAPENTAEN  | 28:0<br>0IC 28:5       | 76 J<br>Y J                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3920                     | 738           | 000        | 01       | OCTACOSATETRAEN                    |                        | % 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3925                     | 882           | 000        | 01       | OCTACOSENOIC 2                     | 8:1                    | % 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3930                     | 248           | 000        | 01       | OCTADECADIENOIC                    | 18:2                   | % 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3935                     | 266           | 000        | 01       | (LINOLEIC)<br>OCTADECANOIC 18      |                        | %່3                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3333                     | 200           | 000        | 01       | (STEARIC)                          | , ,                    | <i>k</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3940                     | 256           | 000        | 01       | OCTADECATETRAEN                    |                        | %3<br>%3                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3945                     | 250           | 000        | 01       | OCTADECATRIENOI                    | C 18:3                 | % 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3950                     | 258           | 000        | 01       | (LINOLENIC)<br>OCTADECENOIC 1      | 8:1 (OLEIC)            | % 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3955                     |               | 000        |          | OCTADECENDIC I                     | CAPRYLIC)              | * 3<br>* 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3960                     |               | 000        |          | OCTYLCYCLOPROPE                    | NYLOCTANÓIC            | * 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3965                     | 795           | 000        |          | OCTYLCYCLOPROPY                    | LOCTANOIC              | * 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3970                     |               | 000        |          | OLEIC (OCTADECE                    | NOIC 18:1)             | % 3<br>% 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3975                     | 260           | 000        | 01       | PALMITIC<br>(HEXADECANOIC          | 16.0)                  | * 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3980                     | 262           | 000        | 01       | PALMITOLEIC                        | 10.07                  | % 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                          | -             |            |          | (HEXADECENOIC                      |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3985                     |               | 000        |          | PELARGONIC (NON                    |                        | % 3<br>% 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                          | 862<br>745    | 000<br>000 |          |                                    | 25:0<br>NOTC 25.5      | % 3`<br>% 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                          | 735           | 000        |          | PENTACOSAPENTAE<br>PENTACOSATETRAE | NOIC 25:5<br>NOIC 25:4 | ル ン<br>ダ 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                          | 879           |            | 01       |                                    | 25:1                   | % 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                          | 708           |            | 01       | PENTADECADIENOI                    | C 15:2                 | x<br>x<br>x<br>x<br>x<br>x<br>z<br>z<br>z<br>z<br>z<br>z<br>z<br>z<br>z<br>z<br>z<br>z<br>z<br>z                                                                                                                                                                                                                                                                                                                                                                            |
|                          | 855           |            | 01       | PENTADECANOIC                      | 15:0                   | % '3<br>*                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                          | 718<br>089    |            | 01<br>01 | PENTADECATRIENO<br>PENTADECENOIC   | IC 15:3<br>15:1        | 76 J<br>42 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4035                     |               |            | 01       |                                    | (VALERIC)              | % 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4040                     | 889           | 000        | 01       | PENTATRIACONTEN                    | ÒIC 35:1               | % 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4045                     | 264           | 000        | 01       | PROPANOIC 3:0                      | (PROPIONIC)            | % 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                          |               |            |          |                                    |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| ) |
|---|
| 1 |

| TABLE 3.9 | List of | Attributes and | Codes | (Continued) |
|-----------|---------|----------------|-------|-------------|
|-----------|---------|----------------|-------|-------------|

| Printing<br>Sequence No.             | Attribute No.                                                      | Animal No.                                                        | Unit No.                                           | Attribute                                                                                                                                                                                                                                                                                                             | Unit                                                                                                            | Number Digits<br>to Right of<br>Decimal Point                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4050<br>4055<br>4060                 | 264<br>069<br>266                                                  | 000<br>000<br>000                                                 | 01<br>01<br>01                                     | 6-PROPYLNO<br>Stearic                                                                                                                                                                                                                                                                                                 |                                                                                                                 | % 3<br>% 3<br>% 3                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4065<br>4070<br>4075<br>4080<br>4085 | 716<br>723<br>878<br>754<br>744                                    | 000<br>000<br>000<br>000<br>000                                   | 01<br>01<br>01<br>01<br>01                         | TETRACOSAD<br>TETRACOSAN<br>TETRACOSEN<br>TETRACOSAH<br>TETRACOSAP                                                                                                                                                                                                                                                    | OIC 24:0<br>OIC 24:1<br>EXAENOIC 24:6<br>ENTAENOIC 24:5                                                         | x 3<br>x 3<br>x 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>x 2<br>3<br>x 2<br>3<br>x 3<br>3<br>x 3<br>3<br>x 3<br>3<br>x 3<br>3<br>x 3<br>3<br>x 3<br>3<br>x 3<br>3<br>x 3<br>3<br>x 3<br>x                                                                                                                                                                                                                                                |
| 4090<br>4095<br>4100<br>4105         | 734<br>727<br>707<br>252                                           | 000<br>000<br>000<br>000                                          | 01<br>01<br>01<br>01                               | TETRACOSAT<br>TETRACOSAT<br>TETRADECAD<br>TETRADECAN<br>(MYRISTI                                                                                                                                                                                                                                                      | RIENOIC 24:3<br>IENCIC 14:2<br>DIC14:0                                                                          | % 3<br>% 3<br>% 3<br>% 3                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4110                                 | 254                                                                | 000                                                               | 01                                                 | TETRADECEN<br>(MYRISTO                                                                                                                                                                                                                                                                                                | DÍC 14:1<br>LEIC)                                                                                               | % 3                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4115<br>4120                         | 874<br>792                                                         | 000<br>000                                                        | 01<br>01                                           | 34:6                                                                                                                                                                                                                                                                                                                  | ONTAHEXAENOIC                                                                                                   | % 3<br>% 3                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4185                                 | 726<br>877<br>706<br>854<br>875<br>088<br>083<br>873<br>887<br>865 | 000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>00 | 01<br>01<br>01<br>01<br>01<br>01<br>01<br>01<br>01 | TETRATRIAC<br>TRIACONTAN<br>TRIACONTAN<br>TRIACONTAN<br>TRIACONTAN<br>TRIACONTAN<br>TRIACONTAN<br>TRICOSADIE<br>TRICOSADIE<br>TRICOSANOIO<br>TRICOSATET<br>TRICOSATET<br>TRICOSATET<br>TRICOSATET<br>TRIDECANOIO<br>TRIDECENOIO<br>TRIDECENOIO<br>TRIMETHYLOO<br>TRIMETHYLOO<br>TRITRIACON<br>UNDECANOIC<br>(HENDECAN | EXAENOIC 30:6<br>DIC 30:0<br>ENTAENOIC 30:5<br>ETRAENOIC 30:4<br>DIC 30:1<br>NOIC 23:2<br>AENOIC 23:6<br>C 23:0 | %       3         %       3         %       3         %       3         %       3         %       3         %       3         %       3         %       3         %       3         %       3         %       3         %       3         %       3         %       3         %       3         %       3         %       3         %       3         %       3         %       3         %       3         %       3         %       3 |
|                                      | 692                                                                | 000                                                               | 47                                                 | F FAT QUALITY<br>ACID VALUE<br>ALDEHYDE VALUE                                                                                                                                                                                                                                                                         |                                                                                                                 | /G 1<br>AT 1                                                                                                                                                                                                                                                                                                                                                                                                                            |

| Printing<br>Sequence No.                     | Attribute No.                                 | Animal No.                                                        | Unit No.                                                       | Attribute                                                                                                                                                                                                                     | Unit                                          | Number Digits<br>to Right of<br>Decimal Point       |
|----------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------|
| 4245<br>4250<br>4255<br>4260<br>4265         | 699<br>691<br>693<br>698<br>697               | 000<br>000<br>000<br>000<br>000                                   | 52<br>48<br>49<br>52<br>52                                     | BUTYRIC ACID<br>IODINE ABSORPT<br>PEROXIDE VALUE<br>POLENSKE VALUE<br>REICHERT-MEISS<br>VALUE                                                                                                                                 | ION NUMBER G/100<br>MILLIMOLE/H<br>ML A/5G F/ | KG 1<br>At 1                                        |
| 4270<br>4275<br>4280                         | 690                                           | 000<br>000<br>000                                                 | 51<br>47<br>37                                                 | RHODANIC VALUE<br>SAPONIFICATION<br>MELTING POINT                                                                                                                                                                             | I. 100 TEIL<br>NUMBER MG<br>DEGREES           | /G 0'                                               |
| NONPI                                        | ROTEI                                         | N NIT                                                             | rro(                                                           | GEN                                                                                                                                                                                                                           | ,<br>,                                        |                                                     |
| 4285<br>4290<br>4295<br>4300<br>4305<br>4310 | 113<br>848<br>673<br>849<br>850<br>672        | 000<br>000<br>000<br>000<br>000<br>000                            | 01<br>01<br>01<br>01<br>01<br>01                               | NONPROTEIN NIT<br>AMMONIA<br>BIURET<br>NITRATE<br>NITRITE<br>UREA                                                                                                                                                             | ROGEN                                         | % 1<br>% 2<br>% 2<br>% 2<br>% 2<br>% 2<br>% 2       |
| ALKAI                                        | OIDS                                          | AND                                                               | REL                                                            | ATED COMPOUNDS                                                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · ·         |                                                     |
| 4360<br>4365                                 | 840<br>843<br>841<br>846<br>838<br>842<br>907 | 000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>00 | 01<br>01<br>01<br>01<br>01<br>01<br>01<br>01<br>01<br>01<br>01 | ALLYL - ISOTHIOC<br>CAFFEIN<br>GOITRIN<br>GOSSYPOL, TOTA<br>GOSSYPOL, FREE<br>HYDROCYANIC AC<br>ISOTHIOCYANATE<br>LUPINIDIN<br>MUSTARD OIL<br>NICOTINE<br>P-HYDROXYBENZ-<br>SAPONIN<br>SOLANINE<br>TANNIC ACID<br>THEOBROMINE | L<br>Id (HCN) Mg/k                            | % % % % % % % % % % % % % % % % % % %               |
| мусот                                        | OXINS                                         | 5                                                                 |                                                                |                                                                                                                                                                                                                               | ,<br>,                                        | с х<br>, <u>,</u> , , , , , , , , , , , , , , , , , |
| 4400<br>4405<br>4410                         | 818<br>819<br>820                             | 000<br>000<br>000<br>000                                          | 17<br>17<br>17<br>17                                           | AFLATOXIN B1<br>AFLATOXIN B2<br>AFLATOXIN G1<br>AFLATOXIN G2<br>AFLATOXIN M1<br>AFLATOXIN M2                                                                                                                                  | MG/K<br>MG/K<br>MG/K<br>MG/K<br>MG/K          | G 3<br>G 3<br>G 3<br>G 3                            |

.

89

,

| Sequence No. | Attribute No. | Animal No. | Unit No. | · · ·                    | ,              | Number Digits<br>to Right of<br>Decimal Point |
|--------------|---------------|------------|----------|--------------------------|----------------|-----------------------------------------------|
| . Ser        | At            | An         | 2        | Attribute                | lit 📜          | ت ۹ ۵                                         |
| 1120         | 022           | 000        | 17       | ASPERTOXIN               | MG/KG          | 3                                             |
| 4420<br>4425 | 824           |            |          | B-24-TOXIN               | MG/KG          |                                               |
|              | 825           |            |          | CITRININ                 | MG/KG          | 3                                             |
| 4435         | 826           | 000        | 17       | DIACETOXYSCIRPENOL       | MG/KG          | 3                                             |
|              | 827           | 000        |          | FUSARENONE               | MG/KG          | 3                                             |
|              | 828           | 000        | 17       | ISLANDITOXIN             | MG/KG          | 3<br>3                                        |
|              | 829           | 000        |          | LUTEOSKYRIN              | MG/KG          | 3                                             |
|              | 830           |            |          | NIVALENOL                | MG/KG          |                                               |
| 4460         |               |            |          | OCHRATOXIN               | MG/KG          | 3                                             |
| 4465         |               | 000        | 17       | PATULIN                  | MG/KG          | 3                                             |
| 4470         | 833           |            |          | RUBRATOXIN               | MG/KG<br>MG/KG | 3                                             |
| 4475         | 834           |            |          | STERIGMATOCYSTIN         | MG/KG          | 3                                             |
| 4480         | 835           |            |          | T-2-TOXIN                | MG/KG          |                                               |
| 4485         | 836           | 000        | 17       | ZEARALENONE              | MG/KG          | 3                                             |
| PFST         | ICIDE         |            | RFI      | ATED COMPOUNDS           |                |                                               |
|              |               |            |          |                          |                |                                               |
|              | 801           |            | 17       | ALDRIN                   | MG/KG          |                                               |
| 4495         | 789           | 000        |          | ALDRIN AND DIELDRIN      | MG/KG          |                                               |
|              | 802           |            |          | CHLORDANE                | MG/KG          | 3<br>3                                        |
|              | 803           | 000        |          | DDE                      | MG/KG          | ა<br>ა                                        |
|              | 804           | 000        |          | DDD 5                    | MG/KG<br>MG/KG | 3                                             |
| 4515         |               | 000        |          |                          | MG/KG          | ა<br>ი                                        |
|              | 806<br>807    |            |          | DIELDRIN<br>ENDRIN       | MG/KG          | ວ<br>?                                        |
|              | 808           |            |          | HEPTACHLOR               | MG/KG          | 2                                             |
| 4530         | 808           |            | 17       | HEPTACHLOR EPOXIDE       | MG/KG          | 3                                             |
| 4555         |               |            |          | HEPTACHLOR &             | MG/KG          |                                               |
| 4540         | /0/           | 000        | 1/       | HEPTACHLOR EPOXIDE       | huyku          | 5                                             |
| 4545         | 761           | 000        | 17       | HEXACHLORO - A -         | MG/KG          | 3                                             |
|              | -             |            |          | CYCLOHEXANE              | ,              |                                               |
| 4550         | 762           | 000        | 17       | HEXACHLORO-B-            | MG/KG          | 3 、                                           |
|              |               |            |          | CYCLOHEXANE              |                |                                               |
| 4555         | 810           |            |          | HEXACHLOROCYCLOHEXANE    | MG/KG          |                                               |
| 4560         | 811           |            |          | HEXACHLORBENZOL          | MG/KG          | 3                                             |
| 4565         |               | 000        | 17       |                          | MG/KG          | 3                                             |
| 4570         |               | 000        | 17       | LINDANE                  | MG/KG          | 3                                             |
| 4575         | 814           | 000        | Τ/       | MEINUAICHEUK             | MG/KG          | 3                                             |
|              |               |            |          | POLYCHLORINATED BIPHENYL | MG/KG          | 3                                             |
| 4583         | 815           | 000        | 17       | TOXAPHENE                | MG/KG          | 3                                             |
| MISCI        | ELLANI        | EOUS       |          |                          |                |                                               |
| ΛΕΘΕ         | 926           | <u>170</u> | 20       | DM INTAKE, CATTLE        | KG/DAY         | 2                                             |
|              |               |            |          | DM INTAKE, GOATS         | KG/DAT         |                                               |
| / LON        |               |            |          |                          |                |                                               |

| TABLE 3.9 | List of Attributes and Codes (Continued) | ,       |  |
|-----------|------------------------------------------|---------|--|
|           | · · · · · · · · · · · · · · · · · · ·    | · · · · |  |

|                                                      | <u> </u>                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                             |
|------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Printing<br>Sequence No.<br>Attribute No.            | Animal No.<br>Unit No.                               | Attribute                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ` Unit₄`_`                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Number Digits<br>to Right of<br>Decimal Point                                               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | <ul> <li>DM INTAKE,</li> &lt;</ul> | RATS<br>SHEEP<br>SWINE<br>CATTLE %<br>GOATS %<br>HORSES %<br>RABBITS %<br>RATS %<br>SHEEP %<br>SWINE %<br>CATTLE<br>GOATS<br>HORSES<br>RABBITS<br>RATS<br>SHEEP<br>SWINE<br>LE<br>S<br>SHEEP<br>SWINE<br>LE<br>S<br>SHEEP<br>SWINE<br>LE<br>S<br>SHEEP<br>SWINE<br>LE<br>S<br>SHEEP<br>SWINE<br>LE<br>S<br>SHEEP<br>SWINE<br>LE<br>S<br>SHEEP<br>SWINE<br>LE<br>S<br>SHEEP<br>SWINE<br>LE<br>S<br>SHEEP<br>SWINE<br>LE<br>S<br>SHEEP<br>SWINE<br>LE<br>S<br>SHEEP<br>SWINE<br>LE<br>S<br>SHEEP<br>SWINE<br>LE<br>S<br>S<br>SHEEP<br>SWINE<br>LE<br>S<br>S<br>SHEEP<br>SWINE<br>LE<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S | OF BODY WT<br>G/W 0.75<br>G/W 0.75<br>G/W 0.75<br>G/W 0.75<br>G/W 0.75<br>G/W 0.75<br>G/W 0.75<br>G/W 0.75<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG/DAY<br>KG | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |

| Facet<br>No.   |                                  | Element                                  |                                                        |                                       |
|----------------|----------------------------------|------------------------------------------|--------------------------------------------------------|---------------------------------------|
|                |                                  | tag ,                                    |                                                        | Descriptors <sup>a</sup>              |
| Inter          | mational Feed Desci              | ription                                  | i , ,                                                  | · · · · · · · · · · · · · · · · · · · |
| 1              | Original<br>material<br>(origin) | 025<br>030<br>035                        | Genus (first)<br>Species (first)<br>Variety (first)    | TRIFOLIUM<br>PRATENSE                 |
|                |                                  | 040<br>045<br>050                        | Genus (second)<br>, æcies (second)<br>Variety (second) |                                       |
|                |                                  | 055                                      | Genus (third)                                          |                                       |
|                |                                  | 060<br>065                               | Species (third)<br>Variety (third)                     |                                       |
|                |                                  | 070<br>075<br>080                        | Genus (fourth)<br>Species (fourth)<br>Variety (fourth) |                                       |
|                |                                  | 155<br>156 for continuation<br>of 155    | Generic (common) name                                  | CLOVER                                |
|                |                                  | 157 for continuation<br>of 156           |                                                        |                                       |
|                |                                  | 158 for continuation<br>of 157           | ,<br>                                                  | · .                                   |
|                |                                  | 185<br>186 for continuation<br>of 185    | Breed or kind                                          | RED                                   |
|                |                                  | 195<br>196 for continuation<br>of 195    | Strain or chemicai formula                             | •                                     |
| •              | Part                             | 215<br>216 for continuation              |                                                        | AERIAL PART                           |
|                | · · · · ·                        | of 215<br>217 for continuation<br>of 216 |                                                        |                                       |
| ہ<br>ا         | Process                          | 245<br>246 for continuation<br>of 245    |                                                        | SUN-CURED                             |
| · <sup>1</sup> |                                  | 247 for continuation<br>of 246           | •                                                      | · •                                   |
| ,<br>1         | Maturity                         | 275<br>276 for continuation<br>of 275    |                                                        | EARLY BLOOM                           |
| i              | Cutting                          | 300                                      |                                                        | CUT 2                                 |

## TABLE 4.1 Facets, Elements, and Descriptors which Portray the International Feed Description, International Feed Name, and Country Names

,

| Facet   |                   | Element    |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------|-------------------|------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No.     | No.               |            |                            | Descriptors <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 6       | Grade             | 325        |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | 1<br>1            | 326        | for continuation of 325    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | , , , ,           | 327        | for continuation<br>of 326 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Interna | ational Feed Name | 1          | · · · · · · ·              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |                   | 350        |                            | have a structure of the state o |
|         |                   | 350        | for continuation           | International Feed Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         |                   |            | of 350                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |                   | 352        | for continuation of 351    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |                   | 360        |                            | Alternate International Feed Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         |                   | 361        | for continuation of 362    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |                   | 362        |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |                   | 370        |                            | Alternate International Feed Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         |                   | 371        | for continuation of 370    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |                   | 372        | for continuation of 371    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ountr   | y Feed Names      |            |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | 1                 | 425        |                            | Conjetus Food Name (Stud)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         | s<br>4            |            | for continuation           | Country Feed Name (first)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         |                   |            | of 425                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | •                 | <b>427</b> | for continuation<br>of 426 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |                   | 430        | ،<br>ب                     | Country Feed Name (second)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         |                   |            | for continuation of 430    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |                   | 432        | for continuation           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |                   |            | of 431                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |                   | 435        |                            | Country Feed Name (third)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         |                   | 436        | for continuation of 435    | , w , -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         |                   |            | for continuation<br>of 436 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |                   |            | 504 in groups              | Country Feed Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         |                   |            | of five as above           | (fourth—fifteenth)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

# TABLE 4.1 Facets, Elements, and Descriptors which Portray the International Feed Description, International Feed Name, and Country Names (Continued)

<sup>a</sup> Facets and descriptors pertain only to the International Feed Descriptions (elements 025 to 325).

TABLE 4.2 Example of Individual Source Data PrintedOut by Bibliographic Reference Number and SourceForm Number

|                                                |                          |                      |            | <u>, , , </u> |                                                        |
|------------------------------------------------|--------------------------|----------------------|------------|---------------|--------------------------------------------------------|
|                                                |                          |                      |            | Crud          | e Fiber                                                |
| Biblio-<br>graphic<br>Refer-<br>ence<br>Number | Source<br>Form<br>Number | Dry<br>Matter<br>(%) | Ash<br>(%) | (%)           | Diges-<br>tion<br>Coeffi-<br>cient <sup>a</sup><br>(%) |

#### RYEGRASS, PERENNIAL. Lolium perenne

Ryegrass, perennial, aerial part, sun-cured (international feed description)

Ryegrass, perennial, hay, sun-cured (international feed name)

International Feed Number 1-04-077

| 8010209 | 00005917                        | 87.0 |      | •••• |     |
|---------|---------------------------------|------|------|------|-----|
| 8010194 | 00006540                        | 83.4 | 9.0  | 30.4 | 66. |
| 8010205 | 00000483                        | 88.0 | 9.2  | 27.5 |     |
| 8010205 | 00000483                        | 88.0 |      |      | 66. |
| 8010194 | 600004600 <sup>b</sup>          | 83.1 | 10.2 | 28.7 | 75. |
| 8010194 | 600004601 <sup>b</sup>          | 84.5 | 10.4 | 34.6 | 65. |
| 8010194 | 600004602 <sup>b</sup>          | 80.9 | 7.4  | 30.3 | 55. |
| 8010424 | 600007 <b>6</b> 46 <sup>b</sup> | 96.4 | 22.5 | •••  |     |
|         | Dry avg.                        | 86.4 | 11.5 | 30.3 | 65. |
|         | As fed avg.                     | 86.4 | 9.9  | 26.2 | 65. |
|         |                                 |      |      |      |     |

<sup>a</sup> For sheep.

<sup>b</sup> These new source forms are made up by combining data, hence they have nine digits. This gives all analyses figures for the data (see Kearl et al. 1980).

| Animal<br>Kind | Feed<br>Class | Equation            | · · · · · · · · · · · · · · · · · · ·                                                    | Sheep | 1, .;;                                | % •TDN = | 37.937 - 1.018 (CF) - 4.886 (EE)<br>+ 0.173 (NFE) + 1.042 (Pr) + 0.015<br>(CF) <sup>2</sup> - 0.058 (EE) <sup>2</sup> + 0.008 (CF)<br>(NFE) + 0.119 (EE) (NFE) + 0.038 |
|----------------|---------------|---------------------|------------------------------------------------------------------------------------------|-------|---------------------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cattle         | 1             | % •TDN <del>-</del> | 92.464 – 3.338 (CF) – 6.945 (EE) –<br>0.762 (NFE) + 1.115 (Pr) + 0.031 (CF) <sup>4</sup> | 2     |                                       |          | (EE) (Pr) + 0.003 (EE) <sup>2</sup> $(2r)$                                                                                                                             |
|                | `,            |                     | -0.133 (EE) <sup>2</sup> + 0.036 (CF) (NFE) +                                            |       | 2                                     | % *TDN = | - 26.685 + 1.334 (CF) + 6.598 (EE                                                                                                                                      |
|                | 1             | ,                   | 0.027 (EE) (NFE) + 0.100 (EE) (Pr) -<br>0.022 (EE) <sup>2</sup> (Pr)                     |       | ,<br>,                                |          | + 1.423 (NFE) + 0.967 (Pr) - 0.002<br>(CF) <sup>2</sup> - 0.670 (EE) <sup>2</sup> - 0.024 (CF)<br>(NFE) - 0.055 (EE) (NFE) - 0.146                                     |
|                | _             | % *TDN -            | -54,572 + 6.769 (CF) - 51.083 (EE)                                                       |       |                                       |          | (NFE) = 0.055 (EE) (NFE) = 0.146<br>(EE) (Pr) + 0.039 (EE) <sup>2</sup> (Pr)                                                                                           |
|                | 2             | % *TDN =            | -54,572 + 6,769 (CF) - 51,063 (EE)<br>+ 1,851 (NFE) - 0,334 (Pr) - 0,049                 |       |                                       | -        |                                                                                                                                                                        |
| -              |               | ,                   | $(CF)^2 + 3.384 (EE)^2 - 0.086 (CF)$                                                     |       | '                                     | ,        |                                                                                                                                                                        |
| · ·            | •             |                     | (NFE) + 0.687 (EE) (NFE) + 0.942                                                         |       | 3                                     | % *TDN = | - 17.950 - 1.285 (CF) + 15.704 (E                                                                                                                                      |
|                | ,             |                     | $(EE) (Pr) = 0.112 (EE)^2 (Pr)$                                                          |       |                                       | , I      | + 1.009 (NFE) + 2.371 (Pr) + 0.01                                                                                                                                      |
|                |               |                     |                                                                                          | . (   |                                       |          | $(CF)^2 - 1.023 (EE)^2 + 0.012 (CF)^2$                                                                                                                                 |
|                | 3             | % *TDN =            | - 72.943 + 4.675 (CF) - 1.280 (EE)                                                       |       | , · · ·                               |          | (NFE) - 0.096 (EE) (NFE) - 0.550                                                                                                                                       |
|                | , <b>`</b>    | 70 ° 1 DIN =        | - 72.943 + 4.875 (CF) - 1.280 (EE)<br>+ 1.611 (NFE) + 0.497 (Pr) - 0.044                 | ,     |                                       |          | (EE) (Pr) + 0.051 (EE) <sup>2</sup> (Pr)                                                                                                                               |
| -              |               | ,                   | $(CF)^2 - 0.760 (EE)^2 - 0.039 (CF)$                                                     |       |                                       |          | 22,822 - 1,440 (CF) - 2,875 (EE)                                                                                                                                       |
|                |               | · ·                 | (NFE) + 0.087 (EE) (NFE) - 0.152                                                         | 1     | 4                                     | % *TDN=  | + 0.655 (NFE) + 0.863 (Pr) + 0.02                                                                                                                                      |
|                |               |                     | $(EE) (Pr) + 0.074 (EE)^2 (Pr)$                                                          | ,     | * <u>.</u>                            | ,        | $(CF)^2 = 0.078 (EE)^2 + 0.018 (CF)$                                                                                                                                   |
| \$             | ,             | •                   | · · · · · · · · · · · · · · · ·                                                          | 2,    |                                       |          | (NFE) + 0.045 (EE) (NFE) - 0.08                                                                                                                                        |
|                | 4             | % *TDN =            | - 202.686 - 1.357 (CF) + 2.638 (EE)                                                      |       |                                       | ,        | $(EE) (Pr) + 0.020 (EE)^2 (Pr)$                                                                                                                                        |
|                |               |                     | + 3.003 (NFE) + 2.347 (Pr) + 0.046                                                       |       | , ×                                   |          |                                                                                                                                                                        |
|                | ¢             | ,                   | (CF) <sup>2</sup> + 0.647 (EE) <sup>2</sup> + 0.041 (CF)                                 |       |                                       |          |                                                                                                                                                                        |
| ¢              |               | e                   | (NFE) - 0.081 (EE) (NFE) + 0.553                                                         |       | 6                                     | % *TDN = | - 54.820 + 1.951 (CF) + 0.601 (EF                                                                                                                                      |
| ,              |               |                     | (EE) (Pr) - 0.046 (EE) <sup>2</sup> (Pr)                                                 |       |                                       |          | + 1.602 (NFE) + 1.324 (Pr) - 0.02                                                                                                                                      |
|                | ,             |                     |                                                                                          |       | - *                                   |          | $(CF)^2 + 0.032 (EE)^2 - 0.021 (CF)$                                                                                                                                   |
| *              | 5             | % *TDN =            | - 133.726 - 0.254 (CF) + 19.593                                                          | ,     |                                       |          | (NFE) + 0.018 (EE) (NFE) + 0.035                                                                                                                                       |
|                |               | · ·                 | (EE) + 2.784 (NFE) + 2.315 (Pr) +                                                        |       | +                                     | 4        | (EE) (Pr) - 0.0008 (EE) <sup>2</sup> (Pr)                                                                                                                              |
| ,              | `             | ំ។                  | $0.028 (CF)^2 - 0.341 (EE)^2 - 0.008$                                                    | Swine | 4                                     | % *TDN = | 8.792 - 4.464 (CF) + 4.243 (EE)                                                                                                                                        |
|                |               | •<br>1              | (CF) (NFE) - 0.215 (EE) (NFE)                                                            | ••••• | , , , , , , , , , , , , , , , , , , , | ,        | + 0.866 (NFE) + 0.338 (Pr) + 0.000                                                                                                                                     |
| *<br>*         | , ``          | 1                   | - 0.193 (EE) (Pr) + 0.004 (EE) <sup>2</sup> (Pr)                                         |       |                                       |          | (CF) <sup>2</sup> + 0.122 (EE) <sup>2</sup> + 0.063 (CF)<br>(NFE) + 0.073 (EE) (NFE) + 0.182                                                                           |
| Horses         | <b>1</b> - 7  | % *TDN =            | 52.476 + 0.189 (CF) + 3.010 (EE)                                                         | ,     | 1                                     |          | $(NFE) + 0.073 (EE) (NFE) + 0.182 (EE) (Pr) - 0.011 (EE)^2 (Pr)$                                                                                                       |
| ,<br>1         | · · ·         |                     | - 0.723 (NFE) + 1.590 (Pr) - 0.013                                                       |       | ۰ ۱                                   | <i></i>  |                                                                                                                                                                        |
|                |               |                     | $(CF)^2 + 0.564 (EE)^2 + 0.006 (CF)$                                                     | 1     | · .                                   |          |                                                                                                                                                                        |
| 4              |               |                     | (NFE) + 0.114 (EE) (NFE) - 0.302                                                         |       | · ·                                   |          |                                                                                                                                                                        |
|                | *             | ٩                   | (EE) (Pr) – 0.106 (EE) <sup>2</sup> (Pr)                                                 |       | · , .                                 | 1        |                                                                                                                                                                        |

TABLE 4.3 Regression Equations to Estimate Total

ł

<sup>a</sup> in the equations CF = Crude Fiber, EE = Ether Extract, NFE = Nitrogen Free Extract, Pr = Protein.

TABLE 4.4Equations Used to Estimate DigestibleProtein (Y) From Protein (X) for Five Animal Kindsand Four Feed Classes<sup>a</sup>

| Animal  | Feed       | Regression equation |  |  |
|---------|------------|---------------------|--|--|
| kind    | ciass      |                     |  |  |
| Cattle  | 1          | Y = 0.886 X - 3.06  |  |  |
| Cattle  | 2          | Y = 0.850 X · 2.11  |  |  |
| Cattle  | 3 -        | Y ≖ 0.908 X - 3.77  |  |  |
| Cattle  | 4          | Y = 0.918 X - 3.98  |  |  |
| Goats   | 1 and 2    | Y = 0.933 X - 3.44  |  |  |
| Goats   | 3          | Y = 0.908 X - 3.77  |  |  |
| Goats   | - <b>4</b> | Y = 0.916 X - 2.76  |  |  |
| Horses  | 1 and 2    | Y = 0.849 X ⋅ 2.47  |  |  |
| Horses  | 3          | Y = 0.908 X - 3.77  |  |  |
| Horses  | 4          | Y = 0.916 X - 2.76  |  |  |
| Rabbits | 1 and 2    | Y = 0.772 X - 1.33  |  |  |
| Sheep   | 1,'        | Y = 0.897 X - 3.43  |  |  |
| Sheep   | 2          | Y = 0.932 X · 3.01  |  |  |
| Sheep   | 3          | Y = 0.908 X - 3.77  |  |  |
| Sheep   | 4          | Y = 0.916 X · 2.76  |  |  |

<sup>a</sup> Knight and Harris (1966).

TABLE 4.5 Conversion of  $\beta$  Carotene to Vitamin A for Different Species

|              | Conversion mg         | IU of Vitamin A      |
|--------------|-----------------------|----------------------|
|              | eta-Carotene to IU    | Activity (calculated |
|              | of Vitamin A          | from carotene)       |
| Species      | mg IU                 | %                    |
| Standard     | 1 = 1,667             | 100.0                |
| Beef cattle  | 1 = 400               | 24.0                 |
| Dairy cattle | 1 = 400               | 24.0                 |
| Sheep        | 1 = 400-500           | 24.030.0             |
| Swine        | 1 = 500               | 30.0                 |
| Horses       |                       |                      |
| Growth       | 1 = 555               | 33.3                 |
| Pregnancy    | 1 = 333               | 20.0                 |
| Poultry      | 1 = 1,667             | 100.0                |
| Dogs         | 1 = 833               | 50.0                 |
| Rat          | 1 = 1,667             | 100,0                |
| Foxes        | 1 = 278               | 16.7                 |
| Cat          | Carotene not utilized |                      |
| Mink         | Carotene not utilized |                      |
| Man          | 1 = 556               | 33.3                 |

<sup>a</sup> Taken from Beeson (1965).

| Feed Name or Nutrient      |            |              | As Fed                                 | Dry                                                                                                             | No.<br>Analyses    | Coeff. c<br>Var. <sup>a</sup> |
|----------------------------|------------|--------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------|-------------------------------|
| Wheat, hard red winter, gr | ain        |              |                                        |                                                                                                                 |                    | r<br>t                        |
| Triticum aestivum          | am         |              | · · · · · · · · · · · · · · · · · · ·  | · · · · · · · · · · · · · · · · · · ·                                                                           |                    | د ,                           |
|                            |            |              |                                        | 1                                                                                                               | <b>x</b>           | · · ·                         |
| IFN 4-05-268               |            |              | • • • f<br>• • •                       | s is a second | · · · ·            | · · ·                         |
| Dry matter                 |            | , ~ <i>i</i> | % ,88.                                 | 100.                                                                                                            | 10                 | Эн. <b>4</b>                  |
| Ash                        |            | ι.           | % 1.7                                  | 1.9                                                                                                             | 19<br>13           | '" 1                          |
| Crude fiber                | , <b>,</b> | · · ·        | % 2.5                                  | 2.8                                                                                                             |                    | 12                            |
| Sheep                      | ۰۰<br>۲    | dig. coef.   | % 33.                                  | 33.                                                                                                             | 12                 | · 8                           |
| Ether extract              |            |              | % <u>55.</u>                           | • , ,                                                                                                           | 3                  | ,<br>,                        |
| Sheep                      |            | dig. coef.   | % 72.                                  | 1.8                                                                                                             | 15                 | 16                            |
| Nitrogen free extract      |            |              | · · · · · · · · · · · · · · · · · · ·  | 72.                                                                                                             | 2                  |                               |
| Sheep                      |            | dig. coef.   |                                        | 79.2                                                                                                            | 5                  | ~ 1                           |
| Protein                    |            | uig. coer.   | N /                                    | · 92.                                                                                                           | 2                  | ۰,                            |
| TOCENT                     | 17 C       | 1            | % 12.6                                 | 14.3                                                                                                            | 15                 | 6                             |
| TDN Ruminant               | *<br>*     | · ·          | 0 <sup>°</sup> –                       |                                                                                                                 | و د کې د           | 7,                            |
| TDN Ruminant               | · .        |              | % 78.<br>% 78.                         | 89.                                                                                                             | 2                  | . 4 8                         |
|                            |            |              | % 78.                                  | 89.                                                                                                             | √*_ <b>`1</b>      |                               |
| TDN Sheep                  |            |              | % 78.                                  | 89.                                                                                                             | , s., <b>1</b> ' ] |                               |
| DE Ruminant                |            | Mcal/i       | kg 3.43 <sup>b</sup>                   | 3.92 <sup>b</sup>                                                                                               | e k                |                               |
| DE Sheep                   |            | Mcal/I       |                                        | 3.93                                                                                                            |                    |                               |
| ·                          |            |              | ······································ |                                                                                                                 |                    |                               |
| ME Ruminant                |            | Mcal/I       | (g 3.09b                               | 3.51 <sup>b</sup>                                                                                               |                    |                               |
| ME Cattle                  |            | Mcal/I       |                                        | 3.51                                                                                                            |                    |                               |
| ME Sheep                   |            | Mcal/k       |                                        | 3.52                                                                                                            |                    |                               |
| NE <sub>m</sub> Ruminant   |            | Mcal/k       | (g 2.12 <sup>C</sup>                   | 2.41 <sup>c</sup>                                                                                               |                    |                               |
| NE <sub>m</sub> Cattle     |            | Mcal/k       |                                        | 2.41 <sup>c</sup>                                                                                               |                    |                               |
|                            |            |              |                                        |                                                                                                                 |                    |                               |
| NE <sub>a</sub> Ruminant   |            | Mcal/k       | (g 1.46 <sup>c</sup>                   | 1.66 <sup>C</sup>                                                                                               |                    |                               |
| NEg Cattle                 |            | Mcal/k       | -                                      | 1.66 <sup>C</sup>                                                                                               |                    |                               |
| 8                          |            |              | • ••••                                 |                                                                                                                 | 1                  |                               |
| //E <sub>n</sub> Chicken   |            | kcal/k       | g 3210.                                | 3648.                                                                                                           | •• 3,              |                               |
| NE <sub>p</sub> Chicken    |            | kcal/k       |                                        |                                                                                                                 | U,                 |                               |
| ·                          |            |              | ·                                      | I                                                                                                               | ·                  |                               |
| DN Swine                   |            |              | × 76.                                  | 86.                                                                                                             |                    |                               |
| DE Swine                   |            | kcal/k       |                                        | 3771. <sup>C</sup>                                                                                              | 1                  |                               |
| fE Swine                   |            | k cal/k      | g 3090. <sup>c</sup>                   | 3511. <sup>c</sup>                                                                                              |                    |                               |
| P Ruminants                |            | 9            | 6 8.5 <sup>с</sup>                     | 9.7 <sup>c</sup>                                                                                                | ,                  |                               |
| P Cattle                   |            |              |                                        | 9.1 <sup>c</sup>                                                                                                | ة<br>س             |                               |
| P Sheep                    |            | 9            |                                        | 10.3 <sup>c</sup>                                                                                               |                    |                               |
| P Horse                    |            | ,<br>9       |                                        | 10.3 <sup>c</sup>                                                                                               | ,                  |                               |
|                            |            | <i>,</i>     | 0.1-                                   | 10.35                                                                                                           | ĩ                  | ۲                             |
| alcium                     |            | <u></u> 9    |                                        | .05                                                                                                             | 14                 | a' <b>11</b>                  |
| hlorine                    |            | ່ຯ           | 6 .05                                  | .06                                                                                                             | . 2                | . '                           |
| lagnesium                  |            | 9            | 6 .11                                  | .13                                                                                                             | 10                 | 20                            |
| hosphorus                  |            | 9            |                                        | .43                                                                                                             | 14                 | 20<br>8 <sup>/</sup>          |
| otassium                   |            | .9           | 6 .43                                  | .49                                                                                                             | 12                 | 10 ()                         |
| odium                      |            | 9            |                                        | .02                                                                                                             | ÷ 9                | 91                            |
| ulfur                      |            | 9            |                                        | .15                                                                                                             | 2<br>. 2           |                               |
| unui                       |            |              |                                        |                                                                                                                 |                    |                               |

۱.

120 , 1

.

# TABLE 5.1 Atlas Format for Tables of Feed Composition

| Feed Name or Nutrient  |                                       | As Fed          | Dry          | No.<br>Anaiyses  | Coeff. of<br>Var. <sup>a</sup> |
|------------------------|---------------------------------------|-----------------|--------------|------------------|--------------------------------|
|                        | · · · · · · · · · · · · · · · · · · · | ·····           |              |                  |                                |
| Cobalt                 | mg/kg                                 | .14             | .16          | ່ 8              | 40                             |
| Copper                 | mg/kg                                 | 4.8             | <b>.</b>     | 8                | 20                             |
| Iron                   | mg/kg                                 | 31.2            | 35.4         | 10               | · <b>17</b>                    |
| Manganese              | mg/kg                                 | 29.0            | 32.9         | 9 Č              | 20                             |
| Selenium               | mg/kg                                 | .399            | .453         | 8                | 88,                            |
| Zinc                   | mg/kg                                 | 37.7            | <b>42.8</b>  | 8                | 28                             |
| Biotin                 | mg/kg                                 | · .11´          |              | "<br>1           |                                |
| Carotene               | mg/kg                                 | ', ≊ <b>`.1</b> | .1           | 3                | <u>`</u>                       |
| Choline                | ˈ mg/kg                               | 1040.           | 1179.        | ~ · 9            | 18                             |
| Folic acid             | mg/kg                                 | .39             | .44          | 4                | · 9                            |
| Niacin                 | mg/kg                                 | 53.6            | 60.9         | <sup>-</sup> 161 | 18                             |
| Pantothenic acid       | mg/kg                                 | 9.8             | 11 <b>.1</b> | ° 159 👘          | 31                             |
| Riboflavin             | mg/kg                                 | 1.4             | 1.6          | 160              | , 18 <b>−</b>                  |
| Thiamine               | mg/kg                                 | 4.2             | 4.8          | 159              | 10                             |
| Vitamin B <sub>6</sub> | mg/kg                                 | 3.0             | 3.4          | 154              | 23                             |
| Vitamin E              | mg/kg                                 | i11.0           | 12.5         | 4                | 25                             |
| Arginine               | · · · · · · · · · · · · · · · · · · · | .64             | .73          | 9                | <b>4</b>                       |
|                        | ` <b>%</b> ,                          | .32             | · .36        | 9                | 9                              |
| Cystine                | %<br>%                                | .57             | .65          | 8                | 4,                             |
| Glycine<br>Histidine   | %                                     | .30             | .34          | 9                | 8                              |
| Isoieucine             | %                                     | .51             | .58          | <b>` 8</b>       | 9                              |
| Leucine                | · %                                   | .89             | 1.00         | 8                | 6                              |
|                        | %                                     | .36             | .41          | <b>`9</b>        | 4                              |
| Lysine                 | %<br>%                                | .21             | .24          | <b>′9</b> .      | , 11                           |
| Methionine             | , <b>,</b> ,                          |                 | · · · · ·    | 4 %              | , ', (t<br>, '                 |
| Phenylalanine          | . <b>%</b>                            | .63             | .71          | 8                | · 6                            |
| Serine                 | <b>%</b>                              | .59             | .67          | 7                | <b>7</b>                       |
| Threonine              | <b>```%</b> `                         | .37             | .42          | 8, ,             | <b>, 11</b>                    |
| Tryptophan             | <b>`%</b>                             | .17             | <b>.19</b> ' | 3                |                                |
| Tyrosine               | %                                     | .43             | .49          | ° 9              | , <u>}</u> 6                   |
| Valine                 | %                                     | .59             |              | * <b>8</b> *,    | <sup>`</sup> 12                |

· • • •

### TABLE 5.1 Atlas Format for Tables of Feed Composition (Continued)

•

<sup>a</sup> Coefficient of variation is calculated if there are four or more analyses.
 <sup>b</sup> Weighted average of cattle and sheep.
 <sup>c</sup> Calculated by formula (see Section 4.3).

| Entry<br>Num-<br>ber | International Feed Name<br>Scientific Name | Interna-<br>tional<br>Feed<br>Number | Dry<br>Matter<br>(%)       | Cal-<br>cium<br>(%)  | Chio-<br>rin <del>e</del><br>(%) | Magne-<br>sium<br>(%) | Phos-<br>phorus<br>(%) | Potas-<br>sium<br>(%)     | So-<br>dium<br>(%) | Sul•<br>fur<br>(%) | Co-<br>bait<br>(%) | Cor<br>per<br>(%) |
|----------------------|--------------------------------------------|--------------------------------------|----------------------------|----------------------|----------------------------------|-----------------------|------------------------|---------------------------|--------------------|--------------------|--------------------|-------------------|
|                      | ALFALFA. Medicago sativa                   |                                      |                            |                      |                                  |                       |                        |                           | ,                  |                    | -                  |                   |
| 01<br>02             | fresh                                      | 2-00-196                             | 24.<br>100.                | .48<br>′ <b>1.96</b> | .11<br>.47                       | .07<br>. <b>27</b>    | .07<br>.30             | .51<br>2.09               | .05<br>.19         | .09<br>.37         | .032<br>.133       | 2.<br>9.          |
| 03<br>04             | -hay, sun-cured, early bloom               | 1-00-059                             | 91.<br>100.                | 1.28<br>1.41         | .34<br>, .38                     | .30<br>.33            | .20<br>.22             | 2.29<br>2.52              | .13<br>.14         | .25<br>.28         | .146<br>.161       | 9.<br>10.         |
| 05<br>06             | -hay, sun-cured, midbloom                  | 1-00-063                             | 91.<br>100.                | 1.28<br>1.41         | .34<br>.38                       | .29<br>.31            | .22<br>.24             | 1.55<br>1.71              | .11<br>.12         | .26<br>.28         | .327<br>.360       | 11.<br>13.        |
|                      | ALMOND. Prunus amygdalus                   | به در<br>۲۰ م                        |                            |                      | <b>'</b> ,                       |                       | ,                      | `                         |                    |                    |                    |                   |
| 07<br>08             | -hulls                                     | <b>4-00-359</b>                      | 90.<br>100.                | .21<br>,23           | - ,<br>-                         | -                     | .10<br>.11             | .47<br>.53                | ` <u> </u>         | .10<br>.11         | -                  | -                 |
|                      | BAHIAGRASS. Paspalum notatum               | т<br>• ×                             |                            | 1                    |                                  | • 4 <sup>5</sup> t    | ;                      |                           |                    |                    |                    | _                 |
| 09<br>10             | -fresh                                     | 2-00-464                             | 30,<br>100,                | .14<br>.48           | - ,<br>* '                       | .07<br>.25            | .06<br>.22             | .43<br>1.45               | -                  | ,<br>              |                    | -                 |
|                      | BAKERY                                     | *                                    |                            |                      |                                  | `+                    |                        | $c^{12}$                  | I                  |                    |                    |                   |
| 1<br>2               | -waste, dehydrated (dried bakery product)  | 4-00-466                             | 92. ·<br>100.              | .13<br>·· .14        | 1.48<br>1.61                     | .24<br>.26            | .24<br>.26             | .49<br>.53                | 1.14<br>1.24       | .02                | .968<br>1.053      | 4.9<br>5.3        |
|                      | BARLEY. Hordeum vulgare                    |                                      |                            |                      |                                  | '                     |                        | ,                         | ,                  |                    |                    | -                 |
| 3<br>4               | -grain                                     | <b>4-00-549</b>                      | 88.<br>100.                | .04<br>. <b>05</b>   | .16<br>.18                       | .14<br>.15            | .34<br>.38             | .41 <sup>***</sup><br>.47 | .03<br>.03         | .15<br>.17         | .087<br>.099       | 7.9<br>9.0        |
| 5<br>6               | -hay, sun-cured                            | 1-00-495                             | .87 <sup>°</sup> .<br>100. | .20<br>.23           | -                                | .16<br>.18            |                        | 1.03<br>1.16              | .12<br>.14         | .15<br>.17         | .058<br>.066       | 21.2              |
| 7                    | <b>**</b> *****                            | 4 00 400                             |                            |                      | ,                                |                       |                        |                           |                    |                    |                    | 24.3              |
| 8                    | —straw                                     | 1-00-498                             | ´ 91.<br>100,              | .27<br>.30           | .61<br>.67                       | .21<br>.23            |                        | 2.16<br>2.37              | .13<br>.14         | .16<br>17          | .060<br>.066       | 4.9<br>5.4        |
| _                    | BEET, SUGAR. Beta vulgarıs altissıma       |                                      |                            |                      |                                  |                       | · 、                    |                           | \$                 |                    |                    |                   |
| 9<br>0               | -aerial part with crowns, silage           | 3-00-660                             | 22.<br>100.                | .35<br>1.56          |                                  | .24<br>1.07           | .29                    | 1.28<br>5.74              | .12<br>.54         | .13 /<br>.57       | -                  |                   |
| 1<br>2               | -pulp, dehydrated                          | 4-00-669                             | 91.                        | .63                  | .04                              | .24                   | .09                    | .18                       | .19                | <b>.20</b>         | .073               | 12.5              |
|                      | ``                                         | · - ` ,                              | 100.                       | .69                  | 04                               | .27                   | <b>.10</b> ′           | .20                       | .21                | .22                | .081               | 13.8              |
| 3                    | CARROT. Daucus spp<br>-roots, fresh        | 4-01-145                             | 12.                        | .05                  | .06                              | .02                   | .04 <sup>-</sup>       | .33                       | . <b>12</b>        | .02                | ,<br>              | 1.2               |
| 4                    | · · · · · · · · · · · · · · · · · · ·      | 5 44<br>42<br>10                     | 100.                       | .40                  | .50                              | .20                   |                        |                           | 1.04               | .17                | · ••••             | 10.4              |
|                      | CATTLE. Bos taurus                         |                                      |                            |                      |                                  | e                     |                        |                           | _                  |                    |                    |                   |
| 5<br>3               | —livers, fresh                             | 5-01-166                             | 28,<br>100.                | .01<br>.04           | -                                |                       | .23<br>.82             | .20<br>.72                | .10<br>.35         | -                  | -                  | 6.1<br>21.9       |
| р<br>Г<br>           | —lungs, fresh                              | 5-07- <del>9</del> 41                | 21.                        | .01                  | -                                |                       | .15                    | .07                       | .15                |                    | .089               | 1.0               |
| •                    | ۱.                                         |                                      | 100. (                     | .06                  | -                                | .03                   | .69                    | .33                       | .69                | -                  | .416               | 4.                |

.

TABLE 5.2Example Table with International Feed Names Listed Alphabetically, followed by Scientific Names.Data Expressed (1) As Fed (2) Moisture Free

,

| TABLE 5.3 Example Table with Scientific Names Li | sted Alphabetically, followed by | International Feed Names.                                                                                       |
|--------------------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Data Expressed (1) As Fed (2) Moisture Free      | i a, a                           | i e de la composición |

| Entry<br>Num-<br>ber | Scientific Name<br>International Feed Name | interna-<br>tiońsi<br>Feed<br>Number | Dry<br>Matter<br>(%)     | Cal·<br>cium<br>(%)    | Chio-<br>rine<br>(%) | Magne-<br>sium<br>(%) | Phos-<br>phorus<br>(%) | Potas-<br>sium<br>(%) | So•<br>dium<br>(%) | Sul•<br>fur<br>(%) | Co-<br>balt<br>(%) | Cop<br>per<br>(%) |
|----------------------|--------------------------------------------|--------------------------------------|--------------------------|------------------------|----------------------|-----------------------|------------------------|-----------------------|--------------------|--------------------|--------------------|-------------------|
|                      | BAKERY                                     |                                      | s.                       |                        |                      |                       |                        |                       |                    | v                  | t                  | ```               |
| 01<br>02             | -waste, dehydrated (dried bakery product)  | 4-00-466                             | 92.<br>100.              | .13<br>.14             | 1.48<br>1.61         | .24<br>.26            | .24<br>.26             | .49<br>.53            | 1.14<br>1.24       | .02<br>.02         | .968<br>1.053      | 4.9<br>5.3        |
|                      | BETA VULGARIS ALTISSIMA. Beet, sugar       |                                      | *                        |                        | 1                    |                       | ,                      | 4<br>                 | , ,                | · , ·              |                    | ,                 |
| )3<br>)4             | -aerial part with crowns, silage           | 3-00-660                             | 22. <sup>°</sup><br>100. | .35<br>1.56            | ′ <b>–</b>           | .24<br>1.07           | .06<br>                | 1.28<br>5.74          | .12<br>.64         | .13<br>.57         | -<br>-             | -                 |
| )5<br>)6             | -pulp, dehydrated                          | 4-00-669                             | 91.<br>100.              | .63<br>.69             | .04<br>.04           | .24<br>.27            | .09<br>.10             | .18<br>.20            | 19<br>.21          | .20<br>.22         | .073<br>.081       | 12.5<br>13.8      |
|                      | POSTALIDIS O-M-                            | ,                                    |                          |                        |                      | ÷.,                   | <u>.</u>               |                       |                    | 1.1.               | 3 <b>* 1</b><br>1  | -,<br>-           |
| _                    | BOS TAURUS. Cattle                         | 1                                    | е <sup>3</sup>           | . '                    | , ·                  |                       | ,                      | (+)                   |                    | ,                  |                    |                   |
| 7<br>8               | —livers, fresh                             | 5-01-166                             | 28.<br>100.              | .01<br>.04             | -                    | .01<br>.04            | .23<br>.82             | .20<br>.72            | .10<br>.35         | -                  | '<br>(             | 6.1<br>21.9       |
| 9<br>0               | —lungs, fresh                              | 5-07-941                             | 21.<br>100.              | .01 <sup></sup><br>.06 | -                    | .01<br>.03            | 15<br>.69 #            | .07<br>.33            | .15<br>.69         |                    | .089               | 1.0<br>4.6        |
|                      |                                            |                                      | · ,                      |                        | ,                    |                       |                        | ~ '                   |                    | ,                  | . ,                |                   |
| 1                    | DAUCUS SPP. Carrot                         | 4-01-145                             | 12.                      | .05                    | <b>3</b> U.          | .02                   |                        | .33                   | .12 * '            | 100                |                    | • •               |
| 2                    | -roots, fresh                              | 4-01-145                             | 12.<br>100.              | .40                    | .50                  | .20                   | .04<br>.35             | .33<br>2.80           | 1.04               | .02<br>.17         | -                  | 1.2<br>10.4       |
|                      | HORDEUM VULGARE, Barley                    |                                      |                          |                        |                      |                       |                        | х к.,                 |                    | . '                |                    |                   |
| 3                    | –grain                                     | 4-00-549                             | 88.                      | .04                    | .16                  | .14                   | .34                    | .41                   | .03                | .15 `              | .087               | 7.9               |
| 4                    |                                            |                                      | 100,                     | .05                    | .18                  | .15                   | .38                    | .47                   | .03                | .17                | .099               | 9.0               |
| 5                    | -hay, sun-cured                            | 1-00-495                             | 87.                      | .20                    | ,<br>                | .16                   | .23                    | 1.03                  | .12                | .15                | .058               | 21.2              |
| B                    |                                            |                                      | 100.                     | .23                    | -                    | .18                   | .26                    | 1.18                  | .14                | .17                | .066               | 24.3              |
| 7                    | -straw                                     | 1-00-498                             | 91.                      | .27                    | .61                  | .21                   | .07                    | 2.16                  | .13                | .16                | .060               | 4.9               |
| 8                    |                                            |                                      | 100.                     | .30                    | .67                  | .23                   | .07                    | 2.37                  | .14                | .17                | .066               | 5.4               |
|                      | MEDICAGO SATIVA, Alfelfa                   |                                      |                          |                        |                      |                       |                        |                       | ۰ <u>ـ</u>         |                    | 2                  |                   |
| Ð                    | -fresh                                     | 2-00-196                             | 24.                      | .48                    | .11                  | .07                   | .07                    | .51                   | .05                | .09                | .032               | 2.4               |
| 6                    |                                            |                                      | 100.                     | 1.96                   | .47                  | .27                   | .30                    | 2.09                  | +                  | .37                | .133               | 9.9               |
| 1                    | -hay, sun-curad, sarly bloom               | 1-00-059                             | 91.                      | 1.28                   | .34                  | .30                   | .20                    | 2.29                  | .13                | .25                | .146               | 9.9               |
| 2                    |                                            | · · · · ·                            | 100.                     | 1,41                   | <b>.</b> 38 '        | .33                   | . <b>22</b>            | 2.52                  | 14                 | .28                | .161               | <sub>/</sub> 10.9 |
| 3                    | -hay, sun-cured, midbloom                  | 1-00-063                             | 91.                      | 1.28                   | .34                  | .29                   | . <b>.22</b> ·         | 1.55 ×                | . <b>11</b>        | <b>.26</b> ·       | .327               | ,<br>11.8         |
| 4                    | ,                                          | 1                                    | 100.                     | 1.41                   | .38                  | .31                   | .24                    | 1.71                  | · .12              | .28                | .360               | 13.0              |
|                      | PASPALUM NOTATUM. Bahiagrass               | ;                                    |                          |                        | 1                    | · ·                   | · · · ·                |                       | 1.                 | ,                  | •                  |                   |
| 5                    | -fresh                                     | 2-00-4-4                             | 30.                      | .14                    | - '                  | .07                   | .06                    | .43                   | <del></del>        | <b></b> ` '        | <u> </u>           | -                 |
| <b>,</b>             | ~ <sup>(</sup>                             | r (                                  | 100.                     | . <b>.46</b>           | -                    | .25                   | .22                    | 1.45                  | <u>`</u>           | ••                 | <b>-</b> , ·       |                   |
| ı                    | PRUNUS AMYGDALUS. Almond                   | т.<br>П. Б.                          |                          | . 1                    | ~                    | ~                     |                        |                       |                    |                    | ,                  |                   |
| ,                    | -hulis                                     | <b>4-00-359</b>                      | 90.                      | .21                    | -                    | -                     | .10 🦾                  | .47                   | -                  | .10                | <b>_</b>           | -                 |
| ) J                  | ,                                          |                                      | 100.                     |                        |                      | · ,                   |                        | .53                   |                    | .11                |                    | ,                 |

.

| TABLE 5.4 Exan    | ple Table with Internation | al Feed Names | Only, Listed Alphabetically. | Data Expressed (1) As Fed |
|-------------------|----------------------------|---------------|------------------------------|---------------------------|
| (2) Moisture Free | · , , , ·                  | · · ·         |                              |                           |

| Entry<br>Num-  | ۰ ۲۰۰۰<br>۲۰۰۰<br>۱۰۰۰                                                                | Interna-<br>tional<br>Feed | Dry<br>Matter | Cel-<br>cium   | Chlo-<br>rine  | Magne-<br>sium        | Phos-<br>phorus        | Potas-<br>sium   | So-<br>dium          | Sul•<br>fur        | Co-<br>bait    | Cop-<br>per  |
|----------------|---------------------------------------------------------------------------------------|----------------------------|---------------|----------------|----------------|-----------------------|------------------------|------------------|----------------------|--------------------|----------------|--------------|
| ber            | International Feed Name                                                               | Number                     | (%)           | (%)            | (%)            | (%)                   | (%)                    | (%)              | (%)                  | (%)                | (%)            | (%)          |
| 01<br>02       | Alfalfa, meal dehydrated, 17% protein                                                 | 1-00-023                   | 92.<br>100.   | 1.40<br>1.52   | .47<br>.52     | .29<br>.32            | .23<br>.25             | 2.39<br>2.60     | .10                  | .22<br>.24         | .302           | 9.7          |
|                | -                                                                                     |                            | 100.          | 1.42           | .52            | .32                   | .20                    | 2.00             | .11                  | .24                | .329           | 10.6         |
| 03<br>04       | Bean, seeds, navy                                                                     | 5-00-623                   | 89.<br>100    | .16<br>.18     | .06<br>.06     | .13<br>.15            | .52 '<br>.59           | 1.31<br>1.47     | .04<br>.05           | .23<br>.26         | -              | 9.9<br>11.0  |
| 05<br>06       | Cassava, common, tubers, dehydrated                                                   | 4-09-598                   | 88.<br>100.   | .25<br>.28     | -              | -                     | .17<br>• .19           | .23<br>.26       | -                    | -                  | _              |              |
| 07<br>08       | Cattle, huttermilk, dehydrated<br>Dried Luttermilk, feed grade                        | 5-01-160                   | 92.<br>100.   | 1.33 °<br>1.44 | .40<br>.43     | .48<br>.52            | .94<br>1.01            | .83<br>.90       | .83<br>.90           | .08<br>.09         |                | 1.0<br>1.1   |
|                |                                                                                       |                            | 4             | •              | · · · ·        |                       | , , ,                  | 1                | ~                    | 、 , <b></b>        |                |              |
| 09<br>10       | Cereals, screenings                                                                   | 4-02-156                   | 90,<br>100.   | .33<br>.37     |                | .12                   | .35<br>.39             | .30<br>.34       | .40<br>.45           |                    | -              | -            |
| 11<br>12       | Corn, dent yellow, aerial part without ears without husks, sun-cured (stover) (straw) | 1-28-233                   | ,85.<br>100.  | .49<br>.57     | <b>-</b> ,     | .34<br>.40            | .08<br>.10             | 1.24<br>1.45     | .06<br>.07           | .15<br>.17         | _<br>_         | ∖ 4.3<br>⊼1  |
| 13<br>14       | Oats, cereal by-product less than 4% fiber<br>Feeding Oat Meal; Oat Middlings         | 4-03-303                   | 91.<br>100.   | .07<br>.08     | .05<br>.06     | .14<br>.16            | .44<br>.49             | .50<br>.65       | .09<br>•.10          | .22<br>.24         | .045<br>.049   | ` 4.4<br>4.8 |
| 15<br>16       | Poultry, feathers, hydrolyzed                                                         | 5-03-7 <del>95</del>       | 91.<br>100.'  | .25<br>.28     | .28<br>.30     | .20                   | . <del>68</del><br>.72 | .28<br>.31       | <del>69</del><br>.76 | 1.47<br>1.61       | .043<br>.047   | 6.4<br>7.0   |
| 17             | Rape, seeds, meal solvent extracted                                                   | 5-03-871                   | ,<br>91.      | .61            | <b>.</b> 10    | .55                   | .95                    | 1.24             | .09                  | 1.14               | <b>.</b> –     | -            |
| 18             |                                                                                       | ,                          | , <b>100.</b> | .67            | · <b>.11</b>   | .60                   | 1.04                   | 1.36             | .10                  | 1.25               | -              | -            |
| 19<br>20       | Safflower, seeds                                                                      | 4-07-958                   | 94,<br>100.   | .24<br>1.29    | -              | .34<br>.36            | .63<br>.67             | .74<br>.79       | .06<br>.06           | -' '<br>- '        | · — `          | 10.0<br>10.7 |
| 21<br>22       | Soybean, seeds, heat processed                                                        | 5-04-597                   | 90.<br>100.   | .25<br>.28     | -              | .21<br>.23            | .59<br>.66             | 1.70<br>1.89     | .28<br>.31           | .22<br>.24         | -              | 15.8<br>17.6 |
| 23             | Soybean, straw                                                                        | 1-04-567                   | 88.           | 1.40           |                | .81                   | .05                    | .49              | .11                  | .23                | -              | -            |
| 24             | -                                                                                     | 1                          | 100.          | 1.59           | -              | .92 -                 | .06                    | ,56              | .12                  | .26                | <b>—</b>       | -            |
| 25<br>26       | Trefoil, hay, sun-cured                                                               | 1-05-044                   | 92.<br>100.   | 1.57<br>1.70   | -              | .47<br>.51            | .25<br>.27             | 1.77 \<br>1.92 - | .06<br>07            | .23<br>. <b>25</b> | .102<br>.110   | 8.5<br>9.3   |
| 27             | Wheat, grain, hard red winter                                                         | 4-05-268                   | · 88.         | .04            | .05            | .11 °                 | .38                    | .43              | .02                  | .13                | .141           | 4.8          |
| <b>28</b>      | ,                                                                                     | 1                          | 100.          | <b>05</b>      | . <b>.06</b> , | .13                   | .43                    | .49              | .02                  | .15                | .160           | 5.4          |
| 29'''<br>30''' | Wheat, straw                                                                          | 1-05-175                   | 89.<br>100.   | .16<br>.18     | .28<br>.32     | ,⊖.11<br>- <b>.12</b> | .04<br>.05             | 1.26<br>1.42     | .13<br>.14           | .17<br>.19         | .040<br>.045 - | 3.2<br>3.6   |
| 31<br>32       | Wheatgrass, crested, fresh                                                            | 2-05-429                   | 39.<br>100.   | .18<br>.45     | <b>-</b> ',    | .11<br>.28            | .07<br>.19             | <b>_</b> `., '   | <u> </u>             | · <u> </u>         |                | -            |
| 33<br>34       | Yeast, torula, dehydrated                                                             | 7-05-534                   | .93<br>100.   | .50<br>.54     | .02            |                       | 1.59                   | 1.90             | .04                  | .55                | .030<br>.032   | 13.4<br>14.4 |

| Nomor                      | Nama-Nama limlah                                                                                                        | Nomor Bahan                                                     | Behan                          |                   | Ekstrak                         | Serat          | Betn                               | Protein       | Protein<br>Digestible |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------|-------------------|---------------------------------|----------------|------------------------------------|---------------|-----------------------|
| Antrian<br>Entry<br>Number | Nama-Nama Bahan<br>Makanan Internasional<br>Scientific Names                                                            | Makanan Ternak<br>Internasional<br>International<br>Feed Number | Kering<br>Dry<br>Matter<br>(%) | Abu<br>Ash<br>(%) | Eter<br>Ether<br>Extract<br>(%) | Kasar<br>Crude | Nitrogen<br>Free<br>Extract<br>(%) |               | Sepi<br>Cattio<br>(%) |
|                            | ACHATINA FULICA.<br>Bekicot, keong, daging keong, tanpa                                                                 |                                                                 |                                |                   |                                 |                |                                    |               |                       |
| 0001<br>0002               | rumah, kering, digiling<br>Snail, African, giant, meat,<br>dehydrated                                                   | 5-29-337                                                        | 86.<br>100.                    | 7.2<br>8.4        | 6.1<br>7.1                      | :              | 26.5<br>30.8                       | 44.0<br>51.2  | -                     |
| 0003<br>0004               | Bekicot, keong, keseluruhan keong,<br>dengan rumah, kering, digiling<br>Snail, African, giant, whole, meal              | 5-12-355                                                        | 86.<br>100.                    | -                 |                                 | -              | -                                  | 28.0<br>32.6  | ' -<br>-              |
| 0005<br>0006               | NNANAS COMOSUS.<br>Nanas, limbah pengalengan nanas, kulit<br>dan sumbu buah, basah<br>lineapple, process residue, fresh | 4-26-968                                                        | 12.<br>100.                    | •5<br>4•3         | .2<br>1.7                       | 1.7<br>14.5    | 8.9<br>76.1                        | .4<br>3.4     | 1#<br>8#              |
| 0007<br>0008               | NNIHAL.<br>Darah hewan, kering, digiling<br>Animal, blood, meal                                                         | 5-00-380                                                        | 86.<br>100.                    | 4.6<br>5.3        | 1.1<br>1.3                      | •5<br>•6       | 3.0<br>3.5                         | 76.8          | -                     |
| 0009<br>0010               | Tepung daging, sisa daging, digiling<br>Animal, meat, meal rendered                                                     | 5-00-385                                                        | 86.<br>100.                    | 2.8<br>3.3        | 7.2<br>8.4                      | • 5            | 16:9<br>19.7                       | 58.6<br>68.1  | 42.8+<br>49.8+        |
| 0011<br>0012               | Tepung daging dan tulang, kering,<br>digiling<br>Animal, meat with bone, meal rendered                                  | 5-00-388                                                        | 86.<br>100.                    | 25.5<br>29.7      | 8.4<br>9.8                      | 1.4<br>1.6     | 4.0<br>4.7                         | 46.7<br>54.3  | 42.3+<br>49.2+        |
| A<br>0013<br>0014          | RACHIS HYPOGAEA.<br>Kacang tanah, bagian aerial, dewasa,<br>tanpa biji/kulit, segar<br>Peanut, fresh, mature            | 2-03-637                                                        | 35.<br>100.                    | 3.9<br>11.1       | .8<br>2.3                       | 8.0<br>22.7    | 17.2<br>48.9                       | 5.3<br>15.1   | 3.8*<br>10.7*         |
| 0015<br>0016               | Kacang tanah, bagian aerial, dewasa,<br>tanpa biji/kulit, kering<br>Peanut, hay, sun-cured, mature                      | 1-03-623                                                        | 86.<br>100.                    | 10.6<br>12.3      |                                 | 25.8<br>30.0   | 34.7<br>40.3                       | 12.6-<br>14.7 | 8.3*<br>9.6*          |
| 017<br>018                 | Kaoang tanah, butiran kering,<br>ekstraksi mekanis, digiling<br>Peanut, kernels, meal mechanical<br>extracted           | 5-03-649                                                        | 86.<br>100.                    | 6.2<br>7.2        |                                 | 11.0<br>12.8   | 18.0<br>20.9                       | 48.4<br>56.3  | 40.0+<br>46.6+        |
| 019                        | Kacang tanah, butiran kering,<br>ekstraksi solvan, digiling<br>Peanut, kernels, meal solvent<br>extracted               | 5-03-650                                                        | 86.<br>100.                    | 6.2<br>7.2        | 2.4                             | 11.0<br>12.8   |                                    | 48.4<br>56.3  | 40.5+<br>47.1+        |
| 021<br>022                 | Kacang tanah, butiran dengan kulit,<br>lemak penuh, kering, digiling<br>Peanut, kernels with coats, ground              | 5-03-652                                                        | 86.<br>100.                    | 2.3               | 42.9<br>49.9                    | 2.4<br>2.8     | 11.9<br>13.8                       | 26.5<br>30.8  |                       |
| A1<br>023<br>024           | RTOCARPUS ALTILIS.<br>Daging buah, segar<br>Breadfruit, fruit, fresh                                                    | 4-10-619                                                        | 31.<br>100.                    | 2.0<br>6.5        | 1.8<br>5.9                      | 5.5<br>17.9    | 16.2<br>52.8                       | 5.2<br>16.9   | 3.6 <b>*</b><br>11.6* |
| 025<br>026                 | Sukun, daging buah sisa dari buah,<br>kulit dan pulp, segar<br>Breadfruit, pomace, fresh                                | 4-1353                                                          | 13.<br>100.                    | 1.5<br>11.2       | .6<br>4.5                       | 2.4<br>17.9    | 8.0<br>59.7                        | .9<br>6.7     | .3#<br>2.2#           |
|                            | Sukun, daging buah pomance tanpa kulit<br>segar                                                                         |                                                                 | ** *                           | ,                 |                                 | •              | د                                  | ,             |                       |
| 027<br>028                 | Breadfruit, pomace without peelings,<br>fresh                                                                           | 4-12-352                                                        | 15.<br>100.                    | 1.2               | 2.0                             | 1.4<br>9.3     |                                    | , 1.7<br>11,3 | 1.0*<br>6.4*          |
| A1<br>029<br>030           | RTOCARPUS HETEROPHYLLUS.<br>Nangka, bagian aerial, daun, segar<br>Jackfruit, leaves, fresh                              | 2-27-195                                                        | 16.<br>100.                    | 4.0<br>25.0       | .7<br>4.4 2                     | 3.2<br>20.0    | 6.1<br>38.1                        | 2.0<br>12.5   | 1.4#<br>8.5#          |
| 031<br>032                 | Nangka, bagian aerial, daun, kering<br>matahari<br>Jackfruit, leaves, sun-cured                                         | 1-29-632                                                        | 86.<br>100.                    | 21.8<br>25.3      | 3.8 1<br>4.4 1                  | 17.0<br>19.8   |                                    | 10.5          | 6.5 <b>*</b><br>7.5*  |

1

TABLE 5.5Example Table with Scientific Names Listed Alphabetically, followed by Indonesian Feed Names andInternational Feed Names. Data Expressed (1) As Fed (2) Moisture Free

x

## Least Cost Ration System (Beef) USU - Animal Science Department John Butcher Ration - April 26, 1978

١,

#### Ration Restrictions

| Animal Type                | ,  | Steer  |
|----------------------------|----|--------|
| Weight                     | kg | 318.2  |
| Gain                       | kg | 1.23   |
| Maximum dry matter 'ntake  | kg | 8.30   |
| Net energy for maintenance | MJ | 26.750 |
| Net energy for gain        | MJ | 23.548 |
| Total Net Energy           | MJ | 50.298 |

ć k

## Ration Requirements

.

| ltem               | More than<br>(%)          | Less than (%) |
|--------------------|---------------------------|---------------|
| Crude protein      | 11.11                     | 17.00         |
| Digestible protein | 7.10                      | 12.00         |
| Crude fiber        | 8.00                      | 40.00         |
| Calcium            | 0.43                      | 1.23          |
| Phosphorus         | 0.31                      | 0.41          |
| Roughage           | <b>10.00</b> <sup>1</sup> | 100.00        |
| Dry matter         | 35.00                     |               |
|                    |                           | ۳.<br>۲       |

# Feeds Considered During this Formulation

| ·                                                 | · As is                      | Dry             | Dry             | Restrictions          |                   |  |
|---------------------------------------------------|------------------------------|-----------------|-----------------|-----------------------|-------------------|--|
| Feed                                              | Cost<br>\$/mton <sup>a</sup> | Cost<br>\$/mton | Matter<br>(%)   | (%)                   | (%)               |  |
| Corn, silage, 30% dry matter                      | 23.10                        | 82.80           | 27.90           | 10.00 LT <sup>b</sup> | 0.00 <sup>d</sup> |  |
| Alfalfa, silage                                   | 18.70                        | 66.08           | 28.30           | 0.00                  | 0.00              |  |
| Alfalfa, hay, sun-cured, midbloom                 | 58.30                        | 65.36           | ′`8 <b>9.20</b> | 0.00                  | 0.00              |  |
| Wheat, soft white winter, grain,<br>Pacific coast | 107.80                       | 120.86          | 89.20           | 0.00                  | 0.00              |  |
| Barley, grain                                     | 114.40                       | 128.54          | 89.00           | 0.00                  | 0.00              |  |
| Corn, dent, yellow, grade 3, 669 G/L              | 108.90                       | 126.63          | 86.00           | 0.00                  | 0.00              |  |
| Urea, 45% nitrogen 281% protein equivalent        | 192.50                       | 192.50          | 100.00          | 0.90 LT               | 0.00              |  |
| Salt, NaCl                                        | 28.60                        | 28.60           | · <b>100.00</b> | 0.25 EQ <sup>C</sup>  | 0.00              |  |
| Limestone, ground                                 | 49.50                        | 49.50           | 100.00          | 0.00                  | · 0.00            |  |
| Bordens supplement                                | 253.00                       | 253.00          | 100.00          | 0.00                  | 0.00              |  |

та н

1.4

| Feed Composition                          |                                                                                                                  | n i              |                                   |                |               | t _     |        |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------|----------------|---------------|---------|--------|
|                                           |                                                                                                                  | Dig.             | Crude                             | Cal-           | Phos-         | , , .   | Ŷ      |
| <b>F</b> 1                                | د<br>تو                                                                                                          | Protein          | Fiber                             | cium           | phorus        | NEm     | NEg    |
| Feed                                      | ۰<br>                                                                                                            | (%)              | (%)                               | (%)            | . (%)         | (MJ/kg) | (MJ/kg |
| Corn, silage, 30% dry ma                  | itter                                                                                                            | 4.90             | 26.30                             | 0.28           | 0.21          | 6.516   | 4.135  |
| Alfalfa, silage                           |                                                                                                                  | 15.78            | 28.90                             | 1.40           | 0.32          | 4.723   | 1.684  |
| Alfalfa, hay, sun-cured, r                | nidbloom                                                                                                         | 12.10            | 30.90                             | 1.35           | 0.22          | 5.178   | 2,465  |
| Wheat, soft white winter<br>Pacific coast | , grain,                                                                                                         | 8.60             | 3.00                              | 0.14           | 0.34          | 8.980   | 5.932  |
| Barley, grain                             | ŕ                                                                                                                | 9.80             | 5.60 <sup>°</sup>                 | 0.09           | 0.47          | 8.899   | 5.848  |
| Corn, dent, yellow, grade                 | 3, 669 G/L                                                                                                       | 7.60             | 2.30                              | 0.02           | 0.29          | 9.523   | 6.182  |
| Urea, 45% nitrogen 2819<br>equivalent     | 6 protein                                                                                                        | 243.80           | 0.00                              | 0.00           | <b>0.00</b>   | 0.000   | 0.000  |
| Salt, NaCl                                | , <u>-</u> ,                                                                                                     | 0.00             | 0.00                              | 0.00           | м <b>б.00</b> | 0.000   | 0.000  |
| Limestone, ground                         | ر<br>بر                                                                                                          | 0.00             | 0.00                              | 33.84          | 0.02          | 0.000   | 0.000  |
| Bordens supplement                        | e s s e t<br>s                                                                                                   | 0.00             | 0.00                              | 31.00          | 18.00         | 0.000   | 0.000  |
| ì                                         | - · · · · ·                                                                                                      | · · ·            | ية مانية.<br>مانية مانية<br>مانية | , , , ,<br>, , | ÷ 15          | ,<br>,  |        |
| Feeds Rejected from Soli                  | , i                                                                                                              |                  | ,, ``                             | ,              |               |         |        |
| reeus Rejecteu jiom bou                   | <i>Ă</i> IIÔN                                                                                                    |                  | ر در                              | 4              | (             |         |        |
|                                           | · · ·                                                                                                            |                  |                                   | Present        | Feasible      |         |        |
| Feed                                      | -                                                                                                                |                  | - '                               | Cost           | Cost          |         |        |
|                                           | J                                                                                                                |                  |                                   | \$/mton        | \$/mton       |         |        |
| Barley, grain                             |                                                                                                                  | ي را<br>د        | Ť                                 | 114.40         | 108.46        |         |        |
| Corn, dent yellow, grade                  | 3, 669 G/L                                                                                                       | ,                | 'n                                | 108.90         | 107.66        |         |        |
| Alfalfa, silage                           |                                                                                                                  | •<br>• • • • • • | ь<br>1                            | . 18.70        | 15.65         | ۶.      |        |
| Urea, 45% nitrogen 281%                   | protein equivalent                                                                                               | · · · · .        |                                   | 192.50         | 136.22        | , -     |        |
|                                           | a and a second |                  | ,<br>,                            | ,              | <i>,</i> .    |         |        |
| Final Solution                            | (r. 3. s.                                                                                                        |                  |                                   | •              |               |         |        |
|                                           | `3_;*                                                                                                            |                  |                                   |                |               |         |        |
| ,<br>                                     | •<br>• • • • • •                                                                                                 | Feasible C       | ost Range                         |                |               |         |        |
| 1                                         |                                                                                                                  | \$/mton          | ι τ                               |                | 4             | •       |        |
|                                           |                                                                                                                  |                  |                                   | As Fed         | Dry           | As Fed  |        |
| eed                                       | • •                                                                                                              | Low              | High                              | (%)            | (%)           | (kg)    |        |
| Corn, silage, 30% dry mat                 | ter                                                                                                              | · , *            | 23.95                             | 37.603         | 15.850        | 12.088  |        |
| Alfalfa, hay, sun-cured, m                | idbloom                                                                                                          | 53.17            | 60.43                             | 11.221         | 15.122        | 1.356   |        |
| Vheat, soft white winter,                 | grain, and a                                                                                                     | 103.84           | 108.97                            | 50.798         | 68.457        | 6.140   |        |
| Pacific coast                             | · ` · ~ .                                                                                                        | • •              |                                   | A 455          |               |         |        |
| alt, NaCl                                 | ،<br>ب                                                                                                           |                  |                                   | 0.172          | 0.259         | 0.020   |        |
| imestone, ground                          | 2                                                                                                                | 0.29             | 274.00                            | 0.125          | 0.189         | 0.015   |        |
| ordens supplement                         | 1 y y 1 y                                                                                                        | 45.34            | 1220.86                           | 0.081          | 0.123         | 0.010   |        |
|                                           | TOTALS                                                                                                           | ,                |                                   | 100.000        | 100.000       | 12.088  |        |

# TABLE 5.6 An Example of A Computerized Diet (Continued)

.

# TABLE 5.6 An Example of A Computerized Diet (Continued)

|                            |                                         | - · · · · · · · · · · · · · · · · · · · |
|----------------------------|-----------------------------------------|-----------------------------------------|
| Dry Matter and Cost        |                                         |                                         |
| Dry matter                 | 66.19 %                                 |                                         |
| Cost/metric ton as fed     | 70.30 US\$                              |                                         |
| Cost/metric ton dry matter | 106.22 US\$                             |                                         |
| Cost/day                   | 84.984 US¢                              |                                         |
| Cost/kg gain               | 69.247 US¢                              |                                         |
| . · · · ·                  | $\boldsymbol{\zeta}_{i}$                |                                         |
|                            |                                         |                                         |
| Dry Matter Composition     | • • • • • • • • • • • • • • • • • • • • |                                         |
|                            |                                         |                                         |
| Net energy for maintenance | 7.962 MJ/kg                             |                                         |
| Net energy for gain        | 5.087 MJ/kg                             |                                         |
| Crude protein              | 12.70 %                                 |                                         |
| Digestible protein         | 8.49 %                                  |                                         |
| Crude fiber                | 10.90 %                                 |                                         |
| Calcium                    | 0.446 %                                 |                                         |
| hosphorus                  | 0.321 %                                 |                                         |
| alcium/phosphorus ratio    | 1.39                                    |                                         |

<sup>a</sup> mton = metric ton

<sup>b</sup> LT = less than

<sup>C</sup> EQ = equal to

<sup>d</sup> This column is used for more than MT

Figures

PREVIOUS PAGE BLANK

| Laboratory Sample 1             | No             |  |
|---------------------------------|----------------|--|
| Project No.                     |                |  |
| Leader                          |                |  |
| Date of Collection:             | Year/Month/Day |  |
| Place of Collection             |                |  |
| Sample Description <sup>a</sup> |                |  |
|                                 |                |  |

p

Initials of person doing work<sup>b</sup>

<sup>a</sup>Sufficient data should be put here to give the chemist an idea of what kind of a sample is being analyzed, and to complete the description required on the source form.

<sup>b</sup> The workers initials appearing in this form should be listed in a bound book with full name and address.

FIGURE 3.1 Feed samples should be labeled with ... this information.

Previews fase 

# INTERNATIONAL SOURCE FORM FOR COMPOSITION OF FEEDS

Read instructions before filling in form. Please print.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Source Form No. 1                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| ORIGIN OF DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CARD 10 10                         |
| Project No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |
| Country United States                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    |
| State Hawaii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20                                 |
| Laboratory name Department of Anima                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sciences 22                        |
| Address Honclulu, Hawali 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6822                               |
| Sample No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24                                 |
| ORIGIN OF SAMPLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |
| Date originally collected: Year: 1966 Month:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Day: 30                            |
| Country United States                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 36                                 |
| Climatic zone or fishing area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 39 44                              |
| State, Province or Department Hawaii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 46                                 |
| County Honolulu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 48                                 |
| Bibliographic No. author, year, reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 51                                 |
| Sherrod, L. B. S.M. Ishiza-Ki                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    |
| 1966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |
| Proc Western Sec Am Soc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | An Sci vol 17                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |
| DESCRIPTION OF FEED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    |
| Class category: Dry forage (cut and cured) Forage graz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | zed Cut and fed green Silage Other |
| Scientific name: Genus PENNISETUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |
| Species and variety CLANDESTINUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |
| Author's common name for scientific name KiKUYU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GRASS                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |
| Parts of plant, animal or other feed product Acrial P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | drated                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | us growth                          |
| No. of crop or number of cut <u>Regrowth</u><br>Grade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | éarly vegetative                   |
| Plant cross                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IFN 58                             |
| Additives: Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 65                                 |
| Weight in (check one) ang g kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 69                                 |
| Weight per metric ton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 73                                 |
| Season dry wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 74                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 77                                 |
| Fertilizer yes   no   unknown    <br>DIGESTIBILITY TRIAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 78                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CARD 30 10                         |
| N//G=E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |
| Breed Hampshire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sex Wether 15 18                   |
| Age: Years / Months / Weeks /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    |
| lumber of animals used for digestibility determination of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |
| Physiological state: non-pregnant v pregnant 1st 2/3<br>losing wt v maintaining wt gaining wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | pregnant last 1/3 36               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | fattening 37                       |
| lactating laying eggs working very thin thin thrifty fat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 38                                 |
| Very thin thin thrifty fat<br>Percent of test ingredient in ration fed (100.0% dry matter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | very fat 39                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40 1                               |
| Ad libitum feeding 1. / Controlled fooding 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |
| Feed fed alone V Feed not fed alone, digestibility b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 42                                 |
| Feed fed alone         Image: Peed not fed alone, digestibility to the second seco | by difference 43                   |
| Feed fed aloneVFeed not fed alone, digestibility toMethod:Total feces collectionIFeces indicatorFeces indicatorength of trial:Preliminary days7Collectiondays7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | by difference 43                   |
| Feed fed alone         Image: Peed not fed alone, digestibility to the second seco | by difference 43                   |

FIGURE 3.2 This source form may be used to describe the feed sample and record data for card formats

| Check an wanted    | CARD 4                                              | د<br>۱<br>۱۰<br>۱۰                    |                                         |           |                 |                    |          |                    |             |     |     |          |                                                                                                                                              |               |            |         |            |      |
|--------------------|-----------------------------------------------------|---------------------------------------|-----------------------------------------|-----------|-----------------|--------------------|----------|--------------------|-------------|-----|-----|----------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------|---------|------------|------|
| ua iyyaaa          |                                                     |                                       |                                         |           |                 | Anal.<br>Code Unit |          |                    | · · · · · · |     | ige | n<br>ent |                                                                                                                                              |               |            |         |            |      |
|                    | Proximate Principal                                 | roximate Principal Code Unit Quantity |                                         | F         | Factor Cod      |                    |          | Method of Analyses |             | 001 | aur |          |                                                                                                                                              |               |            |         |            |      |
| 4                  | Dry matter of sample<br>on "as fed" basis           |                                       |                                         |           |                 |                    |          |                    | < 1         |     |     | T        | 1                                                                                                                                            | 1             |            |         |            |      |
|                    | BASIS OF DATA <sup>†</sup>                          |                                       |                                         |           |                 |                    |          |                    |             |     |     | ·        |                                                                                                                                              |               |            |         |            | _    |
|                    | As fed                                              | 102                                   | %                                       | <b>T</b>  | -               | <del> </del>       | η        |                    | T           | Т   | -   | -+       | 1                                                                                                                                            |               |            | - 1     | -+         | 1    |
|                    | Partially dry                                       | 102                                   | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | +         | +-              | <u>+</u>           |          | ╀                  | ╋           | ╇   | ╋   | -+       |                                                                                                                                              |               | +          | _       | -          | -1   |
|                    | Dry (100.0% dry matter)                             | 103                                   |                                         | 17        | 0               | 1                  | c        | -                  | ┢           |     | ╋   | +-       |                                                                                                                                              |               |            | -+-     | +          |      |
|                    | Ash                                                 | 105                                   | %                                       | ť         | 19              | 6                  | -        | +-                 | ╢           |     | ╋   | +        | Assoc. Official Agr. Chem. 1960                                                                                                              | ┝╌┝           | ╉          | -ł      | +          | -    |
| -                  | Protein                                             | 109                                   | %                                       | 12        | 0               |                    |          | ┼╴                 |             | ╈   | ┢   | +-       | Kjeldahl                                                                                                                                     | Fr            | 7          | 7       | +          | 2    |
| -                  | Nitrogen                                            | 212                                   | %                                       | 1         | 3               | 3                  |          | $\uparrow$         | Τ           | T   | t   |          | do                                                                                                                                           | ┝╼╄┙          | 4          | -       | -          | 꾁    |
|                    | Ether extract                                       | 107                                   | %                                       |           | 3               | Ĩ                  |          | ┢                  | T           |     | t   | -        | Assoc, Official Agr. Chem. 1960                                                                                                              | 5             | 5†         |         |            | 6    |
| 4                  | Crude fib <del>er</del>                             | 106                                   | %                                       | 2         | 5               | 6                  |          | Τ                  |             |     | Γ   |          | Weende                                                                                                                                       |               |            | 6       |            | 6    |
| -                  | Nitrogen-free extract                               | 108                                   | %                                       | 4         | 0               | 9                  |          |                    |             |     | Γ   | Ι        | By difference                                                                                                                                | Ĩ             |            | 7       |            |      |
| —                  | ORGANIC MATTER, ETC                                 |                                       | <b>.</b>                                | 1 -       |                 | í                  |          |                    |             |     |     |          |                                                                                                                                              |               |            |         | - 4.3      | وليت |
| 2                  | Organic matter                                      | 110                                   | %                                       | 19        | 0               | 4                  | 1        |                    | L           |     |     |          | By difference (total minus ash)                                                                                                              | 6             | 6          | 0.      | . '        | 7    |
| $\left  - \right $ | Cell contents<br>Cell walls (neutral                | 328                                   | %                                       | <u> </u>  |                 |                    |          | _                  |             |     | Ļ   |          | Van Soest J Animal Sci. 26.119-128 1967                                                                                                      |               |            |         |            |      |
| H                  | detergent fiber)                                    | 329                                   | %                                       |           |                 |                    | L        | L                  |             |     | L   |          | Van Soest J Assoc Official Anal.<br>Chem 50 50, 1967                                                                                         |               | 1          |         |            |      |
|                    | Cellulose                                           | 330                                   | <u>%</u>                                | ₽_        | <u> </u>        |                    | _        |                    |             |     | Į_  | -        | Van Soest J Assoc. Official Anal.<br>Chem. 51, 730, 1968                                                                                     |               |            |         |            |      |
| $\left  - \right $ | Fiber, acid detergent                               | 273                                   | <u>%</u>                                | -         | <u> </u>        | _                  |          |                    |             |     | Į_  | +        | Van Soest J, Assoc. Official Anal.<br>Chem. 51, 730, 1963<br>Van Soest J, Assoc. Official Agr.<br>Chem. 46, 829, 1963<br>Chem. 46, 829, 1963 |               | $\bot$     | +       | _          |      |
|                    | Lignin, acid detergent                              | 270                                   | %                                       | <b>.</b>  |                 |                    | L        |                    | -           | +-  | ┢   |          | Chem 46 829 1963                                                                                                                             | $- \parallel$ | +          | _       | _          | _    |
|                    | <i>In vitro</i> dry matter<br>digestion coefficient | 916                                   | ł                                       |           |                 |                    |          |                    | ι_          | 1   | I_  |          | Tilley and Terry J British Grassi Soc.<br>18 104 1963                                                                                        |               |            |         |            |      |
|                    | ENERGY                                              |                                       |                                         |           |                 |                    |          |                    |             |     |     |          |                                                                                                                                              |               |            |         |            |      |
|                    | Gross energy (GE)                                   | 421                                   | MJ/kg                                   | 1         | 8               | I                  | 3        | 3                  | 1           | T   | 1   |          | Bomb calorimetar                                                                                                                             | 1             | 515        | 21-     | 18         | 51   |
|                    | Digestible (DE)                                     | 422                                   | MJ/kg                                   | H7        |                 | 2                  |          |                    |             | +   | ┢─  | +        | Harris Natl. Acad. Sci. Natl. Res<br>Council pub. 1411, 1966                                                                                 |               | ᆥ          | 카       | 4          | 2    |
|                    | Metabolizable (ME)                                  | 423                                   | MJ/kg                                   | ŕ         | Ē               |                    | ŀ        | Ľ                  | ┢           | 1-  | ┢   | +        | do                                                                                                                                           |               | ╋          | +       | ┽          |      |
|                    | Metabolizable (ME <sub>n</sub> )                    | 424                                   | MJ/kg                                   |           |                 |                    |          | h                  | 1           |     |     |          | do                                                                                                                                           | +             | ╈          | +       | +          | -1   |
|                    | TDN                                                 | 429                                   | %                                       |           | 5               | 6                  | 6        |                    |             |     | 1   |          | Biological                                                                                                                                   |               | ╋          | +-      | +-         | 1    |
|                    | MINERALS                                            |                                       |                                         | •         | - 244           |                    | <u> </u> |                    |             |     |     |          |                                                                                                                                              |               |            |         | _          |      |
| 1                  | Calcium                                             | 530                                   | %                                       |           | 0               | 3                  | 2        |                    |             |     |     |          | Chemical 🔲 Atomic 🗹 Spectrographic 🗌                                                                                                         | Τ             | Т          |         |            | 1    |
| 14                 | Magnesium                                           | 533                                   | %                                       |           | 0               | 3                  | 5        |                    |             |     |     |          | Chemical 🔲 Atomic 🖌 Spectrographic 🗍                                                                                                         |               | 1          |         | ╈          | 1    |
| 4                  | Phosphorus                                          | 534                                   | %                                       |           | 0               | 3                  | 0        |                    |             |     |     |          | Chemical 🖉                                                                                                                                   |               | <u>ן</u>   |         | ן          | 1    |
| 4                  | Manganese                                           | 542                                   | mg/kg                                   | 2         | 0<br>3          | 3                  | 1        |                    |             |     |     |          | Chemical 🔲 Atomic 🛃                                                                                                                          |               |            | Τ       | Τ          |      |
| <del>- 1</del>     | VITAMINS                                            |                                       |                                         |           | tt              |                    |          |                    |             | ·   | a — |          |                                                                                                                                              |               |            |         |            | _    |
| H                  | Carotene<br>Riboflavin                              | 647                                   | mg/kg                                   | L         |                 | _                  | A        |                    |             |     | _   | _        | Assoc Official Agr. Chem. 1960                                                                                                               |               |            | $\perp$ | _          | 1    |
| H                  |                                                     | 652                                   | mg/kg                                   |           | 2               | <u>u</u>           | 4        |                    |             |     | -   |          | do                                                                                                                                           | $\perp$       | -          |         | ╧          |      |
|                    |                                                     | 653<br>OTH                            | mg/kg                                   |           |                 |                    |          |                    |             |     |     |          | do                                                                                                                                           |               |            |         |            | J    |
|                    | OTHER ANALYSES AND                                  | 539                                   | mg/16                                   | 51        | -               |                    | 3        |                    |             |     |     | 51       | (use two lines if necessary)<br>Atomic absorption                                                                                            | <del></del>   |            |         |            | -1   |
|                    | Potassium                                           |                                       | mg/16                                   | 2         | 0               |                    |          |                    |             |     | -   | ┝        | do                                                                                                                                           |               | +-         |         | +          | -    |
| V                  |                                                     | 532                                   |                                         | 2         |                 | 0<br>0             |          |                    | -           |     |     | ┤──╢     | 40                                                                                                                                           |               | +-         | +       | +-         | -    |
| 2                  |                                                     |                                       | mg/Kg                                   |           | 4               | ă                  | -        | 8                  |             |     |     |          | Chemical                                                                                                                                     |               | ┿          |         | ╋          |      |
|                    |                                                     |                                       | 9/169N                                  |           |                 | <u> </u>           | -        | 3                  |             |     | -   |          | Chromatography by gas                                                                                                                        | +-            | ╋          | +       | +-         | -    |
| 2                  | Fatty acids                                         | 210                                   | %                                       |           |                 |                    |          | B                  |             |     | -   |          | do                                                                                                                                           |               | ╉          | -       | ╉          | -    |
| -                  | Linoleic                                            | 248                                   | gfattyacil/                             |           |                 | $T^{\dagger}$      |          | 6                  |             |     |     |          | do                                                                                                                                           | +-            | ╋          | ╉       | +          | -    |
|                    |                                                     |                                       | 100 g fat                               |           |                 |                    |          |                    |             |     |     |          |                                                                                                                                              | 1-            | $\uparrow$ | ╈       | +          |      |
| L                  | Stearic                                             |                                       | g fattyaced                             |           |                 |                    |          | 2.                 |             |     |     |          | do                                                                                                                                           |               | ╋          | +-      | +-         | 1    |
| Ц                  |                                                     |                                       | 100 g fat                               | $\square$ |                 |                    |          |                    |             |     |     |          |                                                                                                                                              |               | T          | ╋       | $\uparrow$ | 1    |
| $\left  - \right $ |                                                     |                                       |                                         |           | $ \rightarrow $ | _                  | -        | _                  |             |     |     |          |                                                                                                                                              |               | Ι          | Ι       | T          | 1    |
| H                  |                                                     |                                       |                                         | _         | _               | _                  |          |                    | _           |     |     |          |                                                                                                                                              | T             | Γ          |         | Γ          | 1    |
|                    | + Eor a list of other analyzes and                  |                                       |                                         |           |                 |                    |          |                    |             |     |     |          |                                                                                                                                              |               |            |         |            |      |

<sup>†</sup> For a list of other analyses and other digestion coefficients see Table 3.9.

10, 21, 22, 24, 30 and 4 (see back of page).

1092

| PLANT PROTECTION                          |            | CARD 24 (cont.) |
|-------------------------------------------|------------|-----------------|
| Pesticide (brand) Kelthane PPS            | 1 1        | . 35            |
| Class of pesticide In secticides          | ,          | 38              |
| Form of pesticide fine sprav products     |            | 39              |
| Active ingredients %                      |            | 40              |
| Application method fine spraving          |            | 42              |
| Application type <u>acria (</u> )         |            | 43              |
| Unit for pesticide g/ha                   | kg/ha i/ha | 44              |
| Pesticide quantity in relation to unit    |            | 45              |
| Number of applications                    |            | 51              |
| Days between last upplication and harvest |            | 53              |
| Pesticide in diet unit (check one)        | mg/kg g/kg | 56              |
| Quantity of pesticide in relation to unit |            | 57              |
| Daily intake of pesticide (mg)            |            | 63              |
| Feeding period, days                      |            | 68              |
| Weight of animals at beginning (kg)       |            | 71              |

## SUPPLEMENTARY INFORMATION ABOUT FEEDS

|         | ,             |
|---------|---------------|
|         |               |
| ,       |               |
|         | <del></del>   |
|         |               |
|         | ,<br>,        |
|         |               |
|         |               |
|         |               |
|         |               |
|         |               |
|         | <u> </u>      |
|         | ۰,            |
|         | ويورجعونك فتر |
|         | • • • • •     |
|         | `             |
|         |               |
|         |               |
|         |               |
|         |               |
| er er e |               |
| , K ,   |               |
|         |               |
|         |               |
|         | ······        |
|         |               |
|         | ٠,            |
|         |               |
|         | · ·           |
|         |               |
|         | ,<br>,        |
|         | <u> </u>      |
|         | ·             |

12

| QUALITY                                                     | CARD 21         |
|-------------------------------------------------------------|-----------------|
| Feed quality by class                                       | 12              |
| Degree of purity %                                          | 13              |
| Foreign material Weed Sceds                                 | 15              |
| SOIL                                                        | 1 * 2×          |
| Soil units <u>Calcic, LUVISO/S</u>                          | 17              |
| Soil texture class <u>Medium texture</u>                    | 19              |
| Soil slope classes                                          | 20              |
| Soil-pH                                                     | 21              |
| Water (type) <u>+urrow irrigation</u>                       | 24              |
| Irrigation plus rainfall (millimeters)                      | 25              |
| FERTILIZATION                                               |                 |
| N-fertilizer: ammonium sulfa-nitrate                        | 29              |
| quantity in kg per hectare 158                              | 31              |
| No. of days between last application and harvest50          | 35              |
| P-fertilizer: type <u>Super phosohate</u>                   |                 |
| quantity in kg per hectare                                  | 40              |
| K-tertilizer type <u>potassium sulfate</u>                  | 41              |
| quantity in kg per hectare                                  | 46              |
| Ca-fertilizer: type                                         | 50              |
| quantity in kg per hectare                                  | 52              |
| Organic manuring: type                                      | 56              |
| quantity in 100kg per hectare                               | 58 58           |
| Trace-elements-fertilizer: type                             | 62              |
| quantity in kg per hectare                                  | 64              |
| Mix fertilizer: type                                        | 67              |
| quantity in kg per hectare                                  | 69              |
| · · · ·                                                     |                 |
|                                                             | CARD 2 <u>2</u> |
| Height when cut (cm)                                        | 12              |
| Stubble height (cm) 8.0                                     | 16              |
| Storage facilityStack                                       | 20              |
| Kind of building material                                   | 22              |
| Kind of covering or lock <u>plastic sheet</u>               | 24              |
| No. of days stored <u>60</u>                                | 26              |
| Temperature in storage container (Co)                       | 30              |
| Humidity in container                                       | 33              |
| Light and air in container                                  | 35              |
| ·                                                           | 11              |
| POLLUTION                                                   | CARD 24         |
|                                                             |                 |
|                                                             | 12              |
|                                                             | 15              |
|                                                             | 18              |
|                                                             | 19              |
|                                                             |                 |
| Pollutant concentration                                     |                 |
| Intensity of traffic                                        | 23              |
| Time exposed to pollutant days 21                           |                 |
|                                                             | 31              |
| Damage symptoms on original material <u>healthy looking</u> | 34              |
| · J                                                         |                 |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ]<br>  V    | Dry Matte                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------|
| ingin of data Cerd 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10          | on "as fed" t                      |
| roject No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1           | Q7y Matte                          |
| country United States                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1           | arg mart                           |
| tate Hawaii 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1           | Basis                              |
| aboratory nome Department of Animal Science 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ]           | As fed                             |
| odress Hanolulu, Hewaii 96822                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>n</b>    | Portially dry                      |
| omple No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ]           | Dru (100.09                        |
| igia of sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -           | Proximat                           |
| ate originally collected: Year: /966 Month: Day: 30 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ] 🗂         |                                    |
| ountry United States 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 H         | Ash<br>Ci. Ji Elhar                |
| limatic zone or fishing area 59 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1  -        | Crude fiber                        |
| ate, Province or Department Howait 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1           | Ether extract<br>Nitrogen-fre      |
| ounty or District Honolulu 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1           | Nitrogen-fre<br>extrac             |
| terature reference No. 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1           | Protein                            |
| scription of feed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | J ↓         | Nitrogen                           |
| ass category: Dry forage (cut and cured) Forage grazed Cut and fed green Silage Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             | Nitrogen fa                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Organic (                          |
| I ENNIGE (WH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - Ц         | Organic ma                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . L1        | Cell content                       |
| uthor's common name for scientific nome KIKMYUGrass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . 🗆         | Cell walls (<br>detergent f        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . [1        | Cellulose                          |
| rts of plant, animal or other feed product Aerial Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | Cellulose                          |
| ocesses undergone before fed to animal Dchydrated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | Cellulose                          |
| age plant maturity or age of animol 21 days growth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | Cellulose<br>Fiber,<br>ocid deterg |
| o. of crop or number of cut Regrowth parly vegetative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - H         |                                    |
| ficial grade (nome and No.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | η H         | Lignin<br>Lignin,<br>ocid deterg   |
| ort name (filled in ot Feed Center)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1  -        |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ┝─┦         | Lignin, KM<br>in vitra dry i       |
| ant cross                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ,  -        | in vitro dry<br>digestion c        |
| 60 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | Per cent rum<br>(nylon bag)        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Energy                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ГЦ          | Gross energy                       |
| Veight per metric ton 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | Digestible                         |
| ason: dry wet 🔽                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ъ           | Metabolizab                        |
| asoni dry   / wat -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | N-equilibriu<br>metaboliza         |
| rtilizer: yes // no // // // // // // // // // ////////                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | NEm                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | N E goin                           |
| igestibility Trial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ц           |                                    |
| nimal: Kind                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | است.        |                                    |
| Breed Hampshire Sex wether 16 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | TDN                                |
| Animol requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u> </u>    |                                    |
| Age: Yeors Months Weeks 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>لا</b>   | Minerals                           |
| Number of minole used for disastibility determined the table to the ta | ┝━┥         | Calcium                            |
| Average weight of animals, ka                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\vdash$    | fron                               |
| Physiological state: non-presented to a research to 2/2 and the state of the state  | Ц           | Magnesium                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ш           | Phosphorus                         |
| actation lavia and washing 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\square$   | Potassium                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Sulfur                             |
| very thin thifty fat very fat 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - I         | Other Ana                          |
| Percent of test ingredient in ration fed (100.0% dry matter) 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Γ           | 5                                  |
| Ad libitum feeding Controlled feeding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1           | Code<br>eave blank                 |
| Feed fed alone / Feed not fed alone, digestibility by difference 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | +++                                |
| Method: Total feces collection Feces indicator 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ┝┥┝╴        | ┽╊╂                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>├</b> -┥ | ┉╪┈┟╴┠                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -  -        | <b>-┼</b> ╍┠──┣                    |
| Length of trial: Preliminory days 7 Collection days 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 11        | ( I I                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ┝╍┥┝╍       | ┽╾┼╾よ                              |
| Daily dry motter consumed kg 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                    |

from card formats 10, 30 and 4.

|                               |                                                                                               |          |                                       |              |                                                                                                           |            |                                           |             |               |              |               | ari'a     |                             |          |                  |            |                                          |                    |                                                       |          |                                              |               |                 |            |
|-------------------------------|-----------------------------------------------------------------------------------------------|----------|---------------------------------------|--------------|-----------------------------------------------------------------------------------------------------------|------------|-------------------------------------------|-------------|---------------|--------------|---------------|-----------|-----------------------------|----------|------------------|------------|------------------------------------------|--------------------|-------------------------------------------------------|----------|----------------------------------------------|---------------|-----------------|------------|
| 14                            |                                                                                               | -        | · · · · · · · · · · · · · · · · · · · |              |                                                                                                           |            | Anal. Digestion                           |             |               |              |               |           |                             | Ē        | ·                | . <u> </u> |                                          |                    |                                                       |          |                                              |               | Ane             |            |
| Matter                        |                                                                                               |          |                                       | Aetter<br>16 | Method of onalyses; if analysis was done<br>by another method put under other analyses.                   | •          | ode<br>ctor                               |             |               | ell,         |               | 5'        | Minerals                    |          | milligram per kg |            |                                          | , kg               | 9 Check method of analysis                            |          |                                              |               | cod<br>fecto    | le -       |
| s fed" basis                  |                                                                                               | ₀        | TI                                    | 15           | Above 105º C or in vocuum                                                                                 |            |                                           |             |               |              |               |           | Cobalt 534                  | •[       | T                | Ţ          |                                          |                    | Chemical Sp                                           | *        | trographic                                   |               |                 |            |
| Matter Ray                    | is ar                                                                                         | . 13/h   | iek                                   | Anah         | tical Data are Reported on This F                                                                         |            |                                           |             |               |              |               |           | Copper 531                  | ۶Ľ       |                  |            |                                          |                    | Chemical Atomic Sp                                    | -        | trographic 🗋                                 |               |                 |            |
| Check                         |                                                                                               |          |                                       | -            | NOTE: All analytical data on this sheet,                                                                  | except     | scept dry matter,                         |             |               |              |               |           | Fluorine 540                | ∘┟       | _                | -          | _                                        |                    | Chemical                                              |          |                                              | $\downarrow$  | -+              |            |
| sis one on                    |                                                                                               | 10       |                                       | 48 88<br>6   | must be expressed as indicated i.e.: as fed<br>dry(100 0% dry matter). Where analytica                    |            | portially dry,                            |             |               |              |               |           | ladine 541                  | ıĻ       | +                |            | _                                        |                    | Chemical Atomic Sp                                    | **       | trographic []                                | 4             | 4               |            |
|                               | 002 is partly on one basis and partly on another,<br>for each basis or convert to some basis. |          |                                       |              |                                                                                                           |            |                                           |             |               |              |               | <b> </b>  | Monganese 542               | ၩ┝       | +                | -+         | -                                        |                    | Chemical Atomic                                       |          |                                              | -             | +               |            |
| 11y dry<br>00.0%              | 003                                                                                           | _        |                                       |              |                                                                                                           |            |                                           |             |               |              | Molybdenum 54 | Г         | -+-                         | -        | -                | <u> </u>   | Chemical Atomic Sp<br>Chemical Atomic Sp | -                  |                                                       | +        |                                              |               |                 |            |
| notter)                       | 004                                                                                           | 110      | - <b>-</b>                            | 10           | Method of onalyses; if onalysis was done<br>by onather method put under other onalyses.                   | 6          | Anal. Digestic<br>code coeff.<br>factor % |             |               |              |               | $\vdash$  | Selenium 54<br>Zinc 54      | +        | ┥                |            |                                          | Chemical Atomic Sp |                                                       |          | ┿                                            | ╉             |                 |            |
| imate Prin                    | •                                                                                             | s<br>F   |                                       |              | Assoc. Official Agr. Chem. 1960                                                                           | 0          | Τ.                                        | $\vdash$    | $\neg$        |              |               | ۰         |                             |          | nilli            | y am       | per                                      | r kg               | Method of analyses; if an<br>by another method put un | nal      | vsis was done                                |               |                 | _          |
| fiber                         | 105<br>106                                                                                    |          | 21                                    |              | Weende                                                                                                    | 10         | +                                         |             |               | _            |               |           | Vitamins<br>Corotene 64     | ٦,       | Т                | T          |                                          |                    | Assoc. Official Agr. Ch                               |          |                                              |               |                 |            |
| extract                       | 107                                                                                           | ľ        |                                       | _            | Assoc Official Agr. Chem 1960                                                                             | 0          | 1                                         | 5           | 1             |              | 6             |           | Choline 64                  | - E      |                  |            |                                          |                    | Microbiological                                       |          |                                              |               |                 |            |
| en-free                       | 108                                                                                           |          | 10                                    | 9            | By difference                                                                                             | 0          | 1                                         | 5           | 7             |              | 5             |           | Folic Acid 64               |          |                  |            |                                          |                    | do                                                    |          |                                              |               |                 |            |
| •                             | 109                                                                                           |          | 20                                    | 8            | Kjeldahl                                                                                                  | 0          | 1                                         | 1           | 1             |              | 2             |           | Niocin 65                   | ٥Ļ       | _                | 4          | 9                                        | 8                  | da                                                    |          |                                              |               | _               |            |
| jen.                          | 212                                                                                           |          | 3                                     | 3            | do                                                                                                        | 10         | 1                                         |             |               |              |               |           | Pontothenic acid 65         | ۱Ļ       |                  |            | _                                        | _                  | do                                                    |          |                                              |               | _               |            |
| yen factor                    | 213                                                                                           |          |                                       | 15           | Write in factor to convert to protein                                                                     |            |                                           |             |               |              |               |           | Riboflavin 65               | ၩ┝       | -Ψ               | 2          | 0                                        | 4                  |                                                       |          |                                              | -+            |                 |            |
| nic Matter                    |                                                                                               |          | 1                                     |              |                                                                                                           |            |                                           | דידו        |               |              | -             |           | Thiomine 65                 | - F      | +                |            |                                          |                    | do                                                    |          |                                              | +             | -+              |            |
| ic matter                     | 110                                                                                           | ŀ        | 14                                    | 44           | By difference (total minus ash)                                                                           | -10        | ╨                                         | 6           | U             | •            | 4             |           | Vitomin E 65                | Г        | -                |            |                                          |                    | Chemical<br>Microbiological                           |          |                                              | +             | ╉               |            |
| ontents<br>alls (neutral      | 328                                                                                           | ╞        | ╋                                     | <b>-</b>     | Van Soest J Animal Sci. 26:119-128 1967<br>Van Soest J. Assoc. Official Anal.<br>Chem 50:50 1967          |            |                                           | $\vdash$    | -             |              | -             | L         | Vitamin 8 <sub>6</sub> 65   | υL       | -                | lU p       | er a                                     | L                  |                                                       |          |                                              | - <b>-</b>    |                 |            |
| gent fiber)<br>218            | 329<br>323                                                                                    | ⊢        | +                                     | 1            | Crampton J. Nutrition 15:383. 1938                                                                        |            |                                           | ┢─┤         |               |              |               | $\square$ | Vitomin A 639               | Т        | 7                | Ť          |                                          | Í<br>Í             | Chemical                                              |          |                                              | Т             |                 | _          |
| 7.e                           | 314                                                                                           |          | +                                     | 1            | Matrone J. Animal Sci 5:306, 1946                                                                         | +          | ┢                                         |             | -             |              | -             |           |                             |          |                  | U pe       | r kg                                     |                    |                                                       |          |                                              |               |                 |            |
| 214                           | 330                                                                                           |          |                                       |              | Van Soest J. Assoc. Official Anal.<br>Chem. 51-780 1968                                                   |            |                                           |             |               |              |               |           | Vitomin D2<br>and/or D3 660 |          |                  |            |                                          |                    | Biological (rats)                                     |          |                                              |               |                 |            |
| detergent                     | 273                                                                                           |          |                                       |              | Van Soest J. Assac Official Agr.<br>Chem. 46-829 1963                                                     |            |                                           |             |               |              |               |           | · -                         |          | IC               | Uρ         | er h                                     | 9                  |                                                       |          |                                              |               |                 |            |
|                               | 211                                                                                           |          |                                       | -            | Ellis J Animal Sci 5:285. 1946                                                                            |            |                                           |             | _             | _            | _             | _         | Vitamin D3 661              |          |                  |            |                                          |                    | Bulgics: (chicks)                                     |          | ·                                            |               |                 |            |
| detergent                     | 270                                                                                           |          |                                       |              | Von Soest J Alson Official Agr<br>Chem 46.829 963<br>Von Soest J Assoc Official Anal.<br>Chem 51.780 1968 |            | <b> </b>                                  |             |               |              |               |           | Amino Acids                 | r        |                  | - 1        | •                                        | T                  | Check method of a                                     |          | <u> </u>                                     | _             | -               |            |
| , KMnO4<br>3 drv matter       | 280                                                                                           | L        | _L_                                   | _ ا          | Chem 51:780 1968<br>Tilley and Terry J. British Grassl. Soc.<br>18:104-1963                               | - <b>i</b> |                                           | $\vdash$    |               |              |               |           | Alunine 76                  | 13       | $\dashv$         | _          |                                          | _                  | Amina ocid analyzer                                   | ╉        | Microbiological                              | $\rightarrow$ |                 |            |
| tion coeff.<br>Int rumen dige | 916<br>stion                                                                                  |          |                                       |              |                                                                                                           |            | -                                         | $\vdash$    | $\neg$        |              | -             |           | Arginine 76                 | - F      |                  | _          |                                          |                    | do                                                    | +        |                                              | -             | +               |            |
| n bag)                        | 930                                                                                           | kc       | ol per                                | r kg         | 48 hours                                                                                                  |            | L                                         |             |               |              |               |           | Asportic acid 76            | L L      | -+               |            |                                          | ┣-                 | da                                                    | ╉        |                                              | +             | +               |            |
| EY<br>energy                  | 421                                                                                           | 4        | 3                                     | 34           | Bomb calorimeter                                                                                          | <br>i      | Γ                                         | 5           | 5             |              | Q             |           | Citrulline 76<br>Cystine 76 | - r      | ┥                | -1         |                                          | ┢╌                 | do                                                    | ╉        |                                              | -             | +               |            |
| ible                          | 422                                                                                           | 2        | 44                                    | -2           | Harris Natl Acad. Sci Natl. Res<br>Cauncil pub. 1411 1966                                                 | +-         | $\uparrow$                                |             | •             |              |               |           | Cystine 76<br>Cysteine 76   | - F      | -†               | 1          | · ·                                      | <u> </u>           | do                                                    | +        |                                              |               | ┥               |            |
| olizable                      | 423                                                                                           |          |                                       |              | do                                                                                                        |            |                                           | ]           |               |              |               |           | Glutomic acid 76            | 1        | -+               | 1          |                                          | 1-                 | do                                                    | 1        |                                              |               |                 |            |
| ilibrium<br>bolizoble         | 424                                                                                           |          |                                       |              | do                                                                                                        |            |                                           | ]           |               |              |               |           | Glycine 77                  | 70       | 1                |            |                                          |                    | da                                                    |          |                                              |               |                 |            |
|                               | 426                                                                                           |          | _                                     |              | Lofgreen J. Animal Sci. 27:793, 1968                                                                      |            | ļ                                         | 1           |               |              |               | Ц         | Histidine 77                | n[       |                  |            |                                          |                    | da                                                    |          |                                              |               |                 | _          |
| ain                           | 427                                                                                           |          |                                       |              | do                                                                                                        | ⊥ -        |                                           | ļ           |               |              |               | Н         | Hydraxyproline 77           | 72       |                  |            |                                          |                    | do                                                    |          |                                              | _             |                 |            |
|                               |                                                                                               |          | •                                     |              |                                                                                                           |            |                                           |             |               |              |               | Н         | Isoleucine 77               | 73       | _                | _          |                                          | <u> </u>           | do                                                    | _        |                                              |               | $\rightarrow$   |            |
|                               | 429                                                                                           | 7        | 5                                     |              | Biological                                                                                                |            | <u>г</u>                                  | 7           |               |              |               | Η         |                             | 74       | _                |            |                                          | ┢                  | <u>4</u> .                                            | -        |                                              | +             | -               |            |
| rais                          | ~~ l                                                                                          |          | <u>د ام</u>                           | <u>.</u>     | Check method of analysis                                                                                  |            | I                                         | 1           |               |              |               | H         | •                           | 75       | -+               |            |                                          | ┝                  | da                                                    | +        |                                              | -+            | -               | _          |
| -                             | 530                                                                                           | 7        | Ţ.                                    | 22           | Chemical Atomic Spectrographic                                                                            | 7          | Γ                                         | 1           |               |              | ·             | Η         |                             | 76<br>77 | +                | 1          | •                                        | ┢                  | da                                                    | -        |                                              | -+            | $\neg$          |            |
|                               | 532                                                                                           | - 1      | 02                                    | .3           | Chemical Atomic Spectrographic                                                                            | +          |                                           | 1           |               |              |               | Η         |                             | 78       | $\neg$           | -1         | L                                        | †                  | do                                                    | 1        |                                              | -†            |                 |            |
| sium                          | 533                                                                                           | 6        |                                       | 35           | Chemical Atomic Spectrographic                                                                            |            |                                           | 1           |               |              |               |           |                             | 79       | _                |            |                                          | t                  | do                                                    |          |                                              |               |                 |            |
| 01/15                         | 534                                                                                           |          | ) 3                                   | 30           | Chemical 🗌                                                                                                |            |                                           |             |               |              |               |           | Threonine 78                | 80       |                  |            |                                          |                    | da                                                    |          |                                              |               |                 |            |
| um.                           | 535                                                                                           | 4        | 43                                    | 3 4          | Chemical Atomic Spectrographic                                                                            |            | L                                         |             |               |              |               |           | Tryptophan 78               | BI [     |                  |            | •                                        |                    | do                                                    |          |                                              | _             |                 |            |
| daalusas                      | 537                                                                                           | 4 04     |                                       | Dises        | Chemical                                                                                                  |            |                                           |             |               |              |               |           | Tyrosine 76                 | 82       | _                |            |                                          |                    | do                                                    | 4        |                                              | _             |                 | _          |
|                               |                                                                                               |          |                                       |              | tion Coefficients 1<br>Id Method of Anolyses. Use two lines if necessor                                   |            | nai.<br>ode                               |             | co            | stion<br>ef. |               |           | Valine 78                   | L.       |                  |            |                                          | L_                 | do                                                    | _        |                                              |               | . <u>.</u> .L   |            |
|                               |                                                                                               |          | _                                     |              | A Assoc. Official Agr. Chem. 1960                                                                         | 7. 10      | c1or<br>                                  | -т          | Ĩ             |              | -             |           | kind, late and when op      | polie    | id; if           | riga       | tian                                     | 01 1               | such as: Give complete<br>on-irrigotion, crop bodly   | e d<br>w | escription of fertili<br>eathered, condition | sof (         | sed, i<br>growl | ie.<br>Ih, |
|                               |                                                                                               |          |                                       |              |                                                                                                           | +          |                                           | $\vdash$    | +             | -            | -             |           | harvesting ond curing       | Pu       | no fi            | bac        | L of                                     | she                | et if necestary.                                      |          |                                              |               |                 |            |
|                               |                                                                                               |          |                                       |              |                                                                                                           | +          |                                           |             | +             |              |               |           |                             |          |                  |            |                                          |                    |                                                       |          |                                              |               |                 |            |
|                               |                                                                                               |          | • ·                                   |              |                                                                                                           |            |                                           |             |               |              |               |           |                             |          |                  |            |                                          |                    |                                                       |          |                                              |               |                 |            |
|                               |                                                                                               |          |                                       |              |                                                                                                           |            |                                           |             |               |              |               |           |                             |          |                  |            |                                          |                    |                                                       |          |                                              |               |                 |            |
|                               |                                                                                               |          |                                       |              |                                                                                                           |            |                                           | .↓          |               |              |               |           |                             |          |                  |            |                                          |                    |                                                       |          |                                              |               |                 |            |
|                               |                                                                                               |          |                                       |              |                                                                                                           | _          |                                           | $\mid \mid$ | $ \downarrow$ |              |               |           | <b>-</b>                    |          |                  |            |                                          |                    |                                                       |          |                                              |               |                 |            |
|                               |                                                                                               |          |                                       | •            |                                                                                                           |            |                                           |             | +             |              | _             |           |                             |          |                  |            |                                          | _                  |                                                       |          |                                              |               |                 |            |
|                               |                                                                                               |          |                                       |              |                                                                                                           | +          |                                           | $\dashv$    |               |              | _             |           |                             |          |                  |            |                                          |                    |                                                       |          |                                              |               |                 |            |
| -+                            |                                                                                               | <b>.</b> | • •••                                 |              |                                                                                                           | +          | H                                         | +           | -             | -+           | -             |           |                             |          |                  |            |                                          |                    |                                                       |          |                                              |               |                 |            |
|                               |                                                                                               |          |                                       | · · · · ·    |                                                                                                           | -J         | ليسما                                     | <b>L</b>    |               |              |               |           |                             |          |                  |            |                                          |                    |                                                       |          |                                              |               |                 |            |
|                               |                                                                                               |          |                                       |              |                                                                                                           |            |                                           |             |               |              |               |           | 1                           |          |                  |            |                                          |                    |                                                       |          |                                              |               |                 |            |

112

-

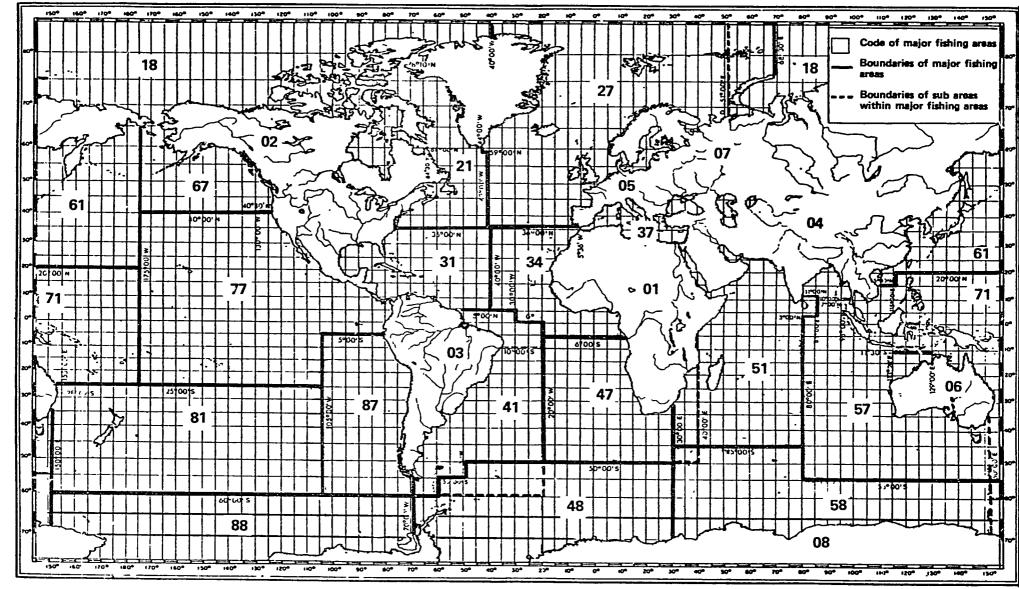



FIGURE 3.4 Map of fishing areas (the numbers on the map are the codes for fishing areas)

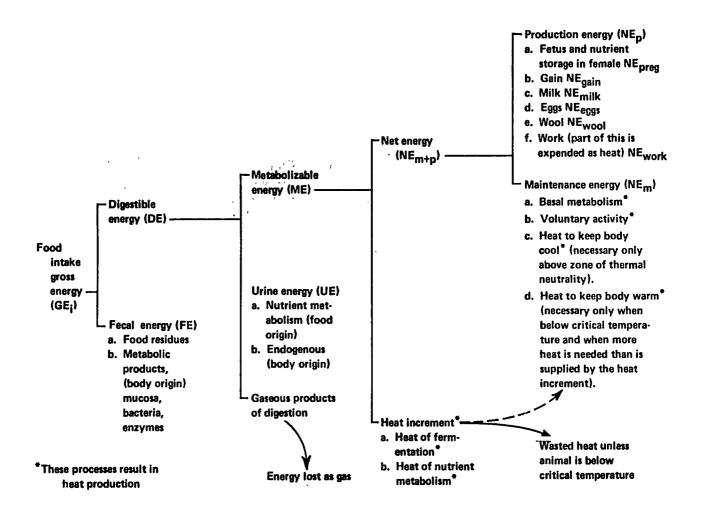
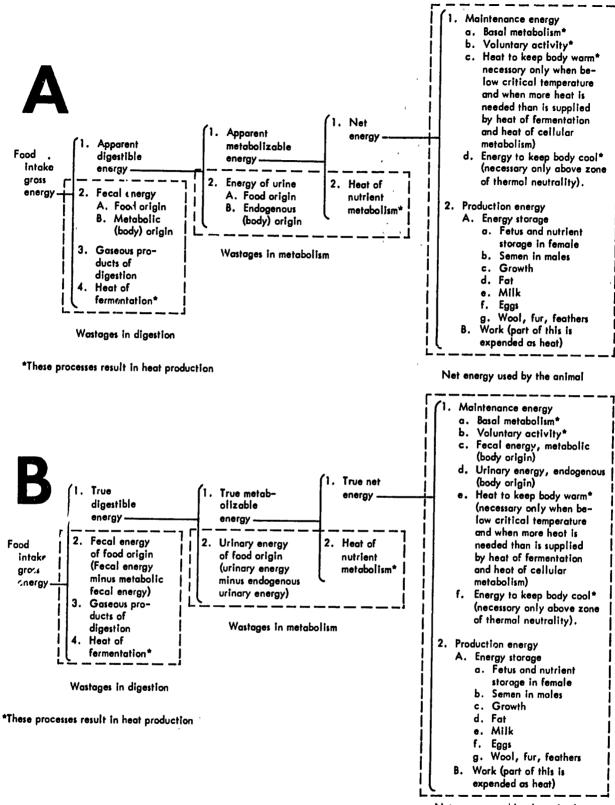




FIGURE 3.5 The partition of energy according to the conventional scheme.



Net energy used by the animal

FIGURE 3.6 The utilization of energy (scheme to show where various portions originate). Since some of the fecal energy is of metabolic origin and some of the urinary energy is of endogenous origin, the scheme shown in 3.6a has been modified to give Figure 3.6b. Since the metabolic energy and endogenous energy are part of the net energy requirements under this scheme, these items are shown as part of the maintenance energy.

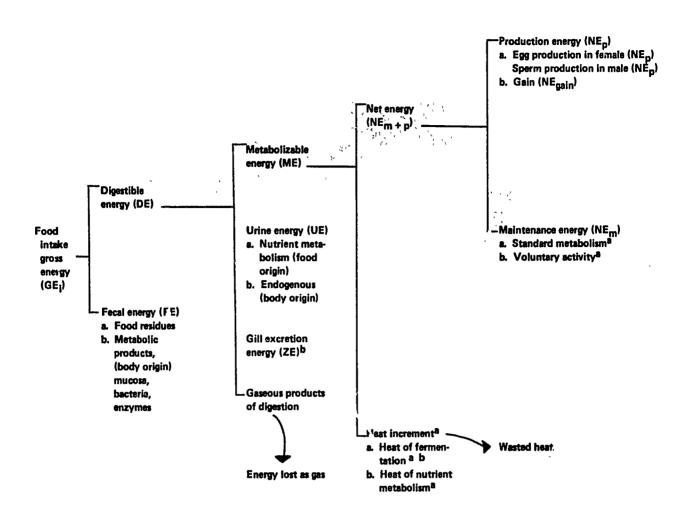



FIGURE 3.7 Conventional biological partition of feed energy in fish.<sup>1</sup>

- <sup>a</sup> These processes result in heat production.
- <sup>b</sup> Gill excretion energy could be partitioned into that of direct food origin and that of body origin.
- <sup>c</sup> For Salmonids: Due to low body temperature and short passage time, there is a limited opportunity for bacteria fermentation, therefore, gaseous products of digestion and heat of fermentation are so small they need not be considered.