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PREFACE
 

This report is one of a series of publications which describe various
 

studies undertaken under the sponsorship of the Technology Adaptation
 

Program at the Massachusetts Institute of Technology.
 

The United States Deapartment of State, through the Agency for
 

International Development, awarded the Massachusetts Institute of Technology
 

a contract to provide support at MIT for the development, in conjunction
 

with institutions in selected developing countries, of capabilities useful
 

in the adaptation of technologies and problem-solving techniques to the
 

needs of those countries. This particular study describes research
 

conducted in conjunction with Cairo University, Cairo, Egypt.
 

In the process of making this TAP supported study some insight has
 

been gained into how appropriate technologies can be identified and
 

adapted to the needs of developing countries per se, and it is expected
 

that the recommendations developed will serve as a guide to other developing
 

countries for the solution of similar problems which may be encountered
 

there.
 

Fred Moavenzadeh
 

Program Director
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ABSTRACT
 

The infiltration losses along the streams of a basin are included
 

into the Instantaneous Unit Hydrograph (IUH). The IUH is derived as a
 

function of the basin geomorphologic and physiographic characteristics,
 

and the response of the individual channels to upstream and lateral in­

flows. This response is obtained by solving the linearized continuity
 

and momentum equations, including infiltration losses terms, for the
 

boundary conditions established by the definition of a linear system
 

reponse to an instantaneous unit input. A methodology is proposed for
 

the estimation of the parameters involved in the channel response. Based
 

on this result, a procedure is suggested to include infiltration losses
 

in the common linear reservoir representation of channel segments.
 

Comparisons indicate that this approximation is adequate.
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Chapter 1
 

INTRODUCTION
 

1.1 Motivation
 

Recently, methodologies have been proposed to relate river response
 

to basin geomorphology (Rodriguez-Iturbe and Valdes, 1979), which are use­

ful in the estimation of the hydrologic behavior in regions with sparse
 

or no data. The Instantaneous Unit Hydrograph, IUH, is interpreted as the
 

probability density function (PDF) of the travel time spent by a drop to
 

reach the outlet of the basin, which is function of the geomorphology
 

quantified by the Horton numbers, and the response of individual channels,
 

assumed to behave like linear reservoirs. This IUH is called the Geomor­

phologic IUH.
 

In its derivation, the Strahler's channel ordering scheme is used,
 

which allows to express the cumulative density function (CDF) of the time
 

that a drop takes to travel to the outlet of the basin. In their study
 

it was assumed that no infiltraiton occured in the channels. Later
 

Kirshen and Bras (1982) studied the importance of the linear reservoir
 

assumption for channel response. They used a general linear solution to
 

the one dimensional equations of motion in wide prismatic channels as
 

given by Harley (1967) to obtain the theoretical linear response function
 

(the IUH) as a function of several physiographic factors (slope and
 

Froude number) and the parameters required for linearization. The compar­

ison of the hydrographs produced using the exponential assumption
 

(Rodriguez-Iturbe et al., 1979) and those using the linearization proced­

ures of Kirshen and Bras (1982) showed significant difference in the shape
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of the hydrographs. However, no definite conclusion were obtained from
 

their study. Again the effect of infiltration losses in the channel
 

was not considered.
 

1.2 Scope of Study
 

The main topic to be addressed in this work is to include the chan-"
 

nel infiltration losses in the equations of motion. The goal is to ob­

tain a physically based response for individual channels, which could
 

be incorporated in the geomorphologic theory. This will allow the veri­

fication of the linear reservoir behavior assumption adopted by
 

Rodriguez-Iturbe and Valdes (1979).
 

Chapter 2 of this report reviews the most important aspects of the
 

theory of the Geomorphologic, IUH. Chapter 3 presents the derivation of
 

two analyt.cal expressions of the approximate linear response of a channel
 

with infiltration losses due to upstream and lateral inflows, respectively.
 

These responses, which describe the movement of the flood wave along the
 

channel, are interpreted in this study as the PDFs of the time a drop
 

spends travelling to reach the outlet of the channel. Three PDF's are
 

then used in Chapter 4 to obtain the IUH and discharge hydrographs of
 

three basins: Morovis and Unibon in Puerto Rico and Wadi Umm Salam in
 

Egypt. The results are compared to equivalent GIUH using the exponential
 

assumption but also accounting for infiltration losses. Chapter 5 presents
 

the summary and conclusions.
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Chapter 2
 

THE GEOMORPHOLOGIC IUH
 

2.1 Introduction
 

The so-called Geomorphologic Unit Hydrograph, (GIUH), developed re­

cently by Rodriguez-Iturbe and Valdes (1979), and further studied by
 

Gupta et al., (1980), give; an analytical expression for the response of
 

a basin in terms of its macro-catchment characteristics, or catchment geo­

morphology. The GIUH uses the exponential distribution to represent the
 

travel time in individual channels. The Instantaneous Unit Hydrograph
 

(IUH) is interpreted as the probability density function (PDF) of the
 

travel time of a drop of water landing anywhere in the basin. The geo­

morphology is quantified by the Horton's numbers, which involve parameters
 

that affect the basin response, such as areas, stream densities and
 

lengths of the channels.
 

This chapter summarizes the derivation of the geomorphologic unit
 

hydrograph. For further details, the reader is referred to the original
 

papers or to Kirshen and Bras (1982). The original GIUH will later be
 

compared to a result that uses an analytical channel response based on
 

the equations of motion for unsteady flow including the infiltration
 

losses in the channels.
 

2.2 The IUH and its Probabilistic Interpretation
 

In linear system theory, the response of a continuous system to an
 

arbitrary input is defined by the convolution equation:
 

Q(t) = i(T)h(t-T)dT 
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In hydrology, Q(t) is the discharge at time t and i(t) is the intensity
 

of the effective precipitation as a function of time. The function h(t)
 

is the characteristic response of the basin and is usually called the
 

Instantaneous Unit Hydrograph, since it is the response to an instantan­

eous impulse of unit volume applied uniformly over the basin. In other
 

words, this is the distribution of the unit volume at the outlet of the
 

basin. The IUH has units of inverse time; its possible values are non­

negative, by definition its area is equal to 1. The above proper­

ties are similar to those of probability density functions. Indeed,
 

Gupta et al., (1980) prove the common hypothesis that the IUH is the pro­

bability density function of the time that an individual drop of water,
 

falling at a random point in the basin requires to travel to the outlet
 

of the basin.
 

2.3 Structure of the Drainage Network
 

Throughout many years, the effect of climate and geology on catchment
 

topography produces an erosional pattern which is characterized by a net­

work of channels. Horton (1945) proposed a method for classifying streams
 

by an ordering scheme and postulated two empirical laws: the law of
 

stream lengths and the law of stream numbers. Strahler (1957) proposed
 

a similar ordering scheme, that has one to one correspondence with
 

Horton's scheme. It is illustrated in Figure 2.1, and the procedure is
 

as follows:
 

1. Channels that originate at a source are defined to be first 

order streams. 

2. When two streams of order i join, a stream of order itl is created. 
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Trapping state
 

Third order basin with Strahler's ordering scheme
 

(From Rodriguez-Iturbe and Valdes, 1979)
 

Figure 2.1
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3. 	 When two streams of different order join, the channel segment
 

immediately downstream has the higher of the orders of the two
 

combining streams.
 

4. The order of the basin, 1, is the highest stream order.
 

The quantitative expressions of Horton's laws are:
 

Law of stream numbers: %= Ni
 
Ni+i
 

Law 	of stream lengths: RL = L 

Schumm (1956) proposed a Horton-type law for drainage areas: 

A1 

Law of stream areas: R = -
A A­

where Ni is the number of streams of order i, Li is the average length of
 

the sub-basin of order i.
a stream of order i, and Ai is the mean area of 


RB, RL, and RA represent, respectively, the bifurcation, length and area
 

ratios, which are characteristics of the geomorphology of the basin. For
 

natural basins the normal values are between three and five for RB, between
 

1.5 and 3.5 for RL, and between three and six for RA.
 

2.4 	 Derivation of the Geomorphologic Unit Hyd',ograph
 

A drop of water, travelling throughout a basin can make transitions
 

from streams of lower order to streams of higher order. Assume a third
 

order basin (.=3). The drop, falling randomly on the basin may follow
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a finite number of paths to reach the outlet. In terms of the different
 

orders, streams and areas, the paths may be characterized as:
 

= a(1) + r(I) + r(2) + r(3) * OUTLETsI 


+ r(I) 4 r(3) + OUTLET
= a(1)
s2 
 (2.2)
 

a(2) + r(2) + r(3) + OUTLET
s3 = 


s= = a(3) + r(3) + OUTLET
 

where a(i) defines the area contributing to streams of order i and r(i)
 

represents a stream of order i.
 

All possible paths fall into one of the above sequences. Figure 2.2
 

is a representation of the basin in terms of all alternative paths.
 

From now on, it is assumed that the time that a drop spends as
 

There­
overland flow is negligible (Rodriguez-lturbe and Valdes, 1979). 


fore, the probability that a drop reaches the outlet at a given time 
is
 

a function of the probability that a drop initially falls in an area
 

draining to a channel or order i(i1,..., ), the transition probabil­

ities to channels of higher order, Pij, j=i+l,...,R, and the PDF 
of the
 

time spent in a channel of the corresponding order.
 

(1980), the cumulative density function
According to Gupta et al., 


of the time that a drop takes to travel to the outlet of the basin 
is
 

given by
 

(2.3)
P(TB 4 t) = P (Ts 4 t) P(s) 

sES 

where P(.) represents the probability of the event given in parenthesis, 

is the travel timeTB is the travel time to the outlet of the basin, Ts 


through a path s, belonging to S, the set of all possible 
paths.
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/3
2 

s4 s2
 

OUTLET 

Basin representation in 
terms of alternative paths
 

Figure 2.2 
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The travel time, Ts, in a particular path, a(i) + r(i) +...+ r(Q) + 

OUTLET, where i E{I,...Sl}, must be equal to the sum of travel times in
 

the elements of the path:
 

(2.4)
T =T + ... + T 
s r(i) r(n) 

where Tr(i) is the travel time in a stream of order i. It was assumed
 

that Ta(i) = 0. Given that there exist several streams of a given order,
 

Tr(i) may be considered an independent random variable with a given pro­

(i)
 
bability density function, f T (t), so that the cumulative density func­

tion Ts is the convolution of the individual cumulative density functions,
 

F T(t):
 

FT(t) = FT (t)*...*F T(t) (2.5)
 

where * indicates the convolution operation.
 

The probability of a given path s is:
 

(2.6)
P(s) = 0i • Pij ... Pk S 


a drop falls in an area draining to a
where Oi is the probability that 


stream of order i and Pij is the transition probability from streams of
 

order i to streams of order j. Rodriguez-lturbe and Valdes (1979) show
 

that the initial and transition probabilities are functions only of the
 

Table 2.1 gives tle expressions for a basin
geomorphology of the basin. 


of order 3.
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Table 2.1
 

Initial and Transition Probabilities
 
for a Basin of Order 3
 

2
 

1 R2
 
A
 

3 2 

02 
0 RB 

RA 
R+ 2RE -2RB 

2 
A RA(2RB-l) 

3 2 
0RB -B3 RB+ 2 RB 

3 RA 2
A RA(2RB-l)
 

2 2 

S+22P1 2 

2 

13 2 

1 2S --

P23 1 
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Now that Equation 2.3 is fully defined in terms of geomorphologic
 

parameters and the PDFs of the travel time in the different 
streams, the 

geomorphologic IUH is obtained by calculating the derivative 
of 

P(TB < t): 
dP(TB5t) 

dt
 
h(t) 


'it 

= (T (t)* ...*f 01 (t)P(s) (2.7) 

Rodriguez-lturbe and Valdes (1979) argue for an exponential 
behavior
 

a given order:
of the travel time in individual channels of 


-Xit(i) 

(2.8)


f T (t) Xie 

where
 

(2.9)
i= v/Li 

They use the assumption that for a given rainfall-runoff 
event the vel­

ocity at any moment is approximately the same throughout 
the whole drain­

the hignest order, they
 age network (Pilgrim 1977). For the stream of 
 (SI) 
prefer to modify the exponential assumption, such that 

f T (t) becomes:
 

fT(t te (.0 

where
 

XQl M2 XS 

a basin of order 3. Remember-

The following results correspond to 


ing the possible paths in a basin of this order and 
their corresponding
 

probabilities, Equation 2.7 is:
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h(t) = 0 P1 f(;) (t)*f(2)(t)*f(3 )(t) + 0 Pi f(?? (t)*f(3)(t) 

+)Gf(2)(t)*f(3)(t) + e f£3 (2.11) 
2 T T3 T 

(1) (2) (3) 

where f T (t) and f T (t) are given by Equation 2.8, whereas f T (t) is 

given by Equation 2.10. These convolution operations can easily be per­

formed using Laplace transforms:
 

6 je ~ = ~ (2.12) 

* *2 
f X*2 = (2.13) 

(s+l))2 

Then,
 

3- 2 
h(t) =0 P1 2 f 1s+2 

1S+ 2 (s+ ) 2 

+ 

+ 

1P3-r 

'el{ 

"---2 (s+A2') 
3 

2} (214 

(s+X3 ) 
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and after some calculations of the inverse Laplace transforms, the final
 

expression for the geomorphologic IUH is:
 

1t
12t
 
h(t) = 0IP 12 123 e 2 + e
 

(A- 3 ) (X2- 1) (X2- 3 ) 2 (I 1 -A 2 ) 

-At
 
[2X3-X- 2 + (A1- 3) (X2-3)t]e 
 } 

(X-*2 (X2_X*)2 
+ 	 3 2 *2
 

-XAt , 1 t
 

+ 2e01- [l-(X3- 1 )t]e3
 
1 1313 * 2
 

+ 	 32.11 03 


(X3 -X2 ) 

The GIUH, h(t), can be convoluted with a specific rainfall event
 

in order to get the discharge hydrograph. Under the as-umption that the
 

effective rainfall can be represented by an event with constant intensity
 

ie during a period te, an analytical expression for the discharge hydro­

graph is obtained as follows:
 

The expression for the rainfall event is given by:
 

i(t) = ie[u(t) - u(t-te)] (2.16)
 

where u(t) is the unit step function. Given that the operation involved
 

in Equation 2.1 is a convolution, the Laplace transforms can be used
 

again to calculate Q(t). The Laplace transform of i(t) is:
 

-t s 

(2.17)
fl(t)} 	 1-e e 

s e 
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Therefore,
 

A*2 -t s 

-i 1= 2 A3 1-ee

SP s+sA 2(s+*)2 ej
 

3
 

X X*2 -ts 
+ 3 lee }
1 I13X1l(SA*) 2 s ej 

*2(+ 3 -tS 
1 3 
 e
1-e
+ 2 
 2
S+2 (S+*)e s ej 

3 

X*2 1 tes 

+___0 3 - e } (2.18) 

After some manipulations, the expression for the discharge hydrograph
 

becomes: 

P1X*2 0P *21P12232 P1 3x1 it
i 

l
Q(t) e + e3 -l1-e u(t-te)} 

1A2i +3) L 

3 3 2_13 _
 

+Abiei I- t ­ (t-t 
2 -AX(3) (A-A2 ) ( 2 )f2- L 

"bi 1(1A1 2 -A51 2 - 1 13 13 2 233beL (x11- )2(X )2i-) (( 2-X*) 

{ - -X2 t_[l-X 2 (t-te)u } 

" A3bi * + + * + 0 1 - (t+l)e +u(t-t313) (e2-A3) (Xi-X3) (A2-X3) 3 e 

-(t-t e )  , 1(t-re) } 

+ e 3 u(t-t e) + X3(t-t)e 3 e u(t}-t) (2.19) 
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, t and te are given in hours,
where A3 is the area of the basin in km
2
 

ie in cm/hr and b is 1/0.36 in order to obtain Q(t) in m
3 /sec.
 

2.5 The Peak and Time to Peak of the IUK
 

The most important characteristics of the IUH are its peak, qp, and
 

time to peak, tp, the shape being less critical and adequately represented
 

by a triangle. Unfortunately, the sum of exponential functions in the
 

IUH expression (Equation 2.15) does not lend itself to mathematical 
mani­

pulation in order to obtain the maximum of the function. Therefore, from
 

regression analyses, Rodriguez-Iturbe aud Valdes (1979) obtained 
the fol­

lowing expressions for qp and tp:
 

(2.20)
q 1.31 0.43 

v
p =L 

0.55
 
03 (2.21)
ff R[A)
tp 0.44L i -0.38 


where LR is the length in km of the highest order stream and v is the
 

are given in hours and
peak velocity of the response in m/s; tp and qp 


With the definition of these two parameters,
inverse hours, respectively. 


the revision of the geomorphologic theory of the instantaneous unit hydro­

graph has been completed.
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Chapter 3
 

THE RESPONSE OF A CHANNEL: INFILTRATION LOSSES EFFECT
 

3.1 Introduction
 

Calculating the course of a flood wave is known in hydrology as
 

flood routing. There are several flood routing procedures. They differ
 

in the nature of the governing equations used to describe the wave move­

ment, and on the assumptions and approximations introduced. In this
 

chapter, an approximate linear solution to the one-dimensional unsteady
 

flow equations in a wide rectangular channel (including infiltration
 

losses) will be found. The solution will correspond to initial conditions
 

imposed by the definition of the IUH. The first result is the response
 

channel to an instantaneous input at the upstream end. From this solu­

tion, the response to an instantaneous uniform input along the channel
 

will be derived.
 

3.2 Linear Solution to the Equations of MotihLi
 

The one-dimensional equations of motion for unsteady flow in a wide
 

rectangular open channel including infiltration losses are given by:
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Continuity:
 

1 (qt (3.1) 
+ =-qj (x, 0 

ax 

Momentum:
 

av + mv + . L v q t(x,t0 = S S (3.2) 

5x g ax g at gy o f 

where 

- 2 ]
 
g 
 = gravitational acceleration [LT
 

-
11
v mean velocity [LT
 

y depth [L]
 

q vy = discharge per unit width [L
2T-1]
 

= slope of the channel bottom
So 

Sf = friction slope 

x = space coordinate, measured downstream along the channel [L] 

t = time coordinate [T] 

-
ql(x,t) = infiltration rate [LT I 

The Chezy formula is used to describe the frictional effects,
 

- V2 
(3.3)
Sf ­

where C is the Chezy coefficient.
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Eliminating the velocity from the momentum equation, retaining q and
 

y as the dependeut variables, differentiating Equation 3.1 with respect to
 

x and Equation 3.2 with respect to t and combining them with Equation
 

3.3, the following second order partial differential equation of motion
 

results:
 

2 2 2
 

(gy -q -a& gy3 . 3 
2x 2 

-
y atax at2 C2 at 

3(Soy x 2) qI(x.t) 

"+3gy2 so- 'Y) + 3gy2 (So - ay) q (xt) 

3x axc ax I 

- 2yqi(x,t) a (3.4) 

The above equation is highly non-linear. Its linearization is per­

formed according to the following definitions and assumptions:
 

+ >> 6qq qo 6q qo 
(3.5) 

>> y Yo + 6y YO 6y 

where qo and yo are a reference discharge and a reference depth, and 6q
 

and 6y are perturbations about these values. Substituting Equation 3.5
 

into Equation 3.4 and eliminating any second order differential terms
 

(perturbations are here assumed small), the linearized equation of motion
 

is:
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2 ~ 22
3 2 2" 62qy 3S 
o o ax 0o2o at 2 3tg ax 

3_g3 acgg - 2 
aqat 0 L axL 

+ 3gSoy2 [qI(xt)]
L - 2 Y[qI(x't)]L at 

where C has been assumed constant and equal to the value corresponding to
 

the reference state, i.e.,
 

qo0
C 

C1/2 3/2
 

0 0 

and [I]L is the linearized expression of the argument, given the specific
 

representation of the infiltration losses. An adequate representation of
 

these losses [Burkham (1970a, b)] is:
 

= Kqa
ql(x,t) 


where a is about 0.8. For tractability reasons it is assumed here that a
 

is equal to 1, and then the dimension of K, the infiltration coefficient,
 

is L-1 . Therefore,
 

[ql(x,t)]L = K(qo + 6q) (3.7)
 

K 36q
q (x,t) (3.8) 
L ax 

Introducing Equations 3.7 and 3.8 into 3.6, the linearized equation
 

of motion becomes:
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2- oox '2 3gSoy o0
(gy 0-q2) x2 -2q0y xtx2'--'- Y2 at2 - 00a

2 36 

0-' 3gSoY 2 Kqo 

0qo t 0 0 ax 0 0 0 

-3gy 2 S2 3 = -(gy3 - q2).K 3--q + 

2
+ 3gSoy K~q - y° Kqo36 (3.9) 

For given initial and boundary conditions, analytical solutions of
 

this equation may be obtained. In this study, the interest is on the
 

response of a channel to a drop entering anywhere along its length.
 

This will be found by first using the response of the channel to an input
 

at its most upstream point.
 

3.3 Channel's Response to a Pulsed Upstream Inflow
 

The purpose of the derivation of the response of a channel to a drop
 

entering anywhere along its length is its posterior utilization in the
 

geomorphologic IUH. Therefore, the response of the channel will be ob­

tained for using boundary conditions implied by the definition of the
 

IUH:
 

= 6q(O,t) (t) 

where 6(t) is the delta function: 

Before the application of the delta function, the flow is in steady 

state. It may be expressed as (see Appendix A): 

-q(x,t) = qle Kx t 4 0
 

where qj is the flow at x=0. Then, in terms of the linearization scheme,
 

there exists a perturbation about qo. Recalling Equation 3.5a and the
 

above expression, 6q(x,t) is:
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-Kx
 

6q(xt) = q(x,t)-q o = qle - qo t 4 0 

As explained in Appendix A, the reference flow qo is assumed equal
 

to qj. Therefore, the initial conditions for solving Equation 3.9 are:
 

-Kx 
Sq(x,0) = qoe - qo
 

and 
Dq(x,t) =0 
at
 

't=O
 

The solution of Equation 3.9 is based on the Laplace transform
 

Harley (1967), O'Meara (1969), Dahl (1981), and Kirshen and Bras
method. 


(1982) among others, have used the Laplace transform method to solve
 

problems of unsteady flow in open channels. A detailed description of
 

the solution procedure is presented in Appendix A. The solution has the
 

following form:
 

= qoe Kx qo + w(xt)e-Kx
6q(x,t) 


The first two terms of the above equation correspond to the value of
 

the perturbation before the application of the delta function, and the
 

third term represents the effect of the latter, which is the main interest
 

Therefore, the net response of the infiltration channel to an in­here. 


stantaneous input at its most upstream point, at time t and at a distance
 

x is:
 

-

h(x,t) = w(x,t)e Kx
 

or,
 

h(xt) = exp(-px)6(t-x/c 1 ) 

A I [d ((t-x/c 1)(t-x/c 2)
) /a] u(t-X/cl) (3.10) 

((t-X/C)(t-x/c2))1+ exp(-rt+zx)(d/a)x 
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1 

where
 

gy (1-F )
 

c1 = v0 + (gyo)
 

c2 v - (gyo) 

d CL-a
 
4
 

2+F2 F2
S 

b 0 o K o
 

y v 2 2 v 2
o o (+F 1o-F,
 
0 0 

K2 3 So 1 22
 
c - -+-K +
4 2 yo 1-F2 4 - 22


Y0 1 
 0
 

S 2-F
 
o 0 _3 F K
 

2y (1+Fo)F 2 o +
 

r So + -~o
K (1-F)

3 
 2
 

v 2v 2 0
 

S
0 K 3 KF2

2y° - 2 o
 

0
 

q.
 

V= Y reference velocity

Yo
 

v
 
F0 y0 reference Froude number
 

II[e] = first order modified Bessel function of the the first kind. 

u(.) - unit step function. 
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This solution is valid for Froude numbers less than 1. For Froude
 

numbers between 1 and 2 the first order modified Bessel function of the
 

first kind, I[.], will change to the first order Bessel function of the
 

first kind, J[-], whose solution will contain imaginary terms, implying
 

oscillations iii the discharge and water surface.
 

It is important to note that when K=0, Equation 3.10 reduces to the
 

same solution obtained by Harley (1967) and used later by Kirshen and
 

Bras (1982).
 

For a fixed value of x, the area under h(x,t), denoted Ah, is equal
 

-Kt
 
to e , as it is shown in Appendix A. It represents the fraction of the
 

perturbation that reaches point x. By definition of the delta function,
 

I-Ah is the fraction of it that infiltrates along the interval [0, x];
 

if K = O, All = 1. In the special case in which x=L, where L is the
 

length of the channel, h(L,t) will be referred to as the upstream inflow
 

IUH and will be denoted as:
 

u(t) = h(Lt) (3.11)
 

If I is the infiltrated percentage of the flow in a channel of length L,
 

the infiltration coefficient may be expressed as a function of I and L:
 

K = - ln(l-I/100) (3.12)
L
 

As a result, for a given value of the infiltration coefficient, the
 

losses will be larger as the length of the channel increases.
 

Figures 3.1 to 3.4 show the upstream inflow IUH for different infil­

tration losses and different characteristics of the channel. The slope
 

of the bottom of the channel and the reference depth and velocity were
 

chosen such that the implicit Manning's roughness coefficient was between
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0.030 and 0.065, a reasonable range for natural channels. As it can be
 

seen, the reduction in the value of the peak is almost proportional to I,
 

and the time to peak does not change. If the length of the channel is
 

increased by a factor of two, as it is the case in Figures 3.1 and 3.2,
 

the form of u(t) changes from a very rapid response to a relatively slow
 

one, indicating that the wave was attenuated in the second half of the
 

channel. Kirshen and Bras (1982) give a physical interpretation of Equa­

tion 3.10: the first term represents the dynamic component of the wave
 

and occurs at time t=L/cl, time when the wavefront, moving with a dynamic
 

propagation speed cl= vo + (gyo) , reaches the downstream end of the chan­

nel; the second term, constitutes the kinematic component, whose center
 

of mass is moving with a mean velocity equal to 1.5vo, indicating that it
 

dissipates slower than the dynamic component. As one could expect, both
 

components are affected by infiltration losses. Looking at the expression
 

for the parameter p in Equation 3.10, if Fo is less than 1/3, the infil­

tion reduces the dynamic part of the response. For Fo greater than 1/3
 

the dynamic response is enhanced. Given the complicated expression for
 

the kinematic component, no general relationship with K can be inferred.
 

Finally, note that in order to make the values of I equal, the cor­

responding values of K in Figure 3.2 had to be reduced to half of those
 

in Figure 3.1.
 

The response of the channel to an instantaneous input at its most
 

upstream point h(x,t), can be interpreted as the conditional PDF of the
 

time that a drop entering at the upstream extreme of the channel spends
 

travelling a given distance x, fTIX(x,t). This PDF is a mixed type dis­

tribution: a continuous part defined by h(x,t) itself, with an area
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equal to e-Kx and a discrete part given by a spike at infinity with 

a value of -eKx. Formally, 

h(x,t) 	 t > 0
 
x 
 = 00(313

i [PTIx(X't) = 1-e t 
f TjX Kx 	 (3.13) 

The continuous part involves the travel time of those drops that
 

reach point x, whereas the spike represents the travel time that a drop
 

reach x(i.e., the
that infiltrates along the interval [0,xI takes to 

The probabilisticinfiltration event constitutes an absorbing state). 


interpretation of the upstream inflow IUH, u(t), where x=L, beomes:
 

(3.14)
f (tUP h(Lt) t >0 
T Pu(t) - 14K L t = 00 

U
 

Figure 3.5 shows fT(t). 

3.4 The Lateral Inflow Response
 

Recalling 	the derivation of the geomorphologic IUH, the PDF of the 

a drop entering anywhere in the channel and travelling totravel time of 


for the
its outlet is required. Kirshen and Bras (1982) derived this PDF 

This section will present its derivationcase of no infiltration losses. 

considering these losses. 

For a given channel of lengUth L, the landing spot y of the drop must 

be between 0, the upsrcam end, and L, the outlet of the channel. The 

Is the same for all y within the in­probability that the drop lands at y 

terval [,L]. Let x-L-y be deffned as the distance between the landing 

spot and the outlet. Therefore, the following 'IF of x m.y be estab­

lished:
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(3.15a)
f LW 
0 otherwise
 

In the previous section, the conditional PDF of a drop's 
travel time
 

along a given distance x, fTIX(xt), was given. The interest here is the
 

the
 
PDF of the travel time of a drop landing anywhere along the 

length of 


channel, which is given by the unconditional PDF corresponding to fTIX(x,t),
 

r 
denoted fT(t):
 

fr(-t) = fT x(xt)fx(x)dx 

or using Equation 3.13: 

( 0h(xt)fx(x)dx t > 0 
4(t)i= ~~~~xd (3.15b) 

= t Co 
oPTIx(X,t)fx(x)dx 


In the above equation, the first term constitutes the continuous
 

r 
part of fT(t), and the second one the discrete part with a spike at
 

r 
infinity. Introducing Equation 3.15a, fT(t) becomes:
 

t > 0h(x,t)dx 

(3.16)


fr M 


t dx
T PTTLJIX t = 
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Evaluation of the first term of this equation, in which h(x,t) is
 

given by Equation 3.10, yields:
 

r(t) ro h(x,t)dx = gl(t) + g2 (t)(3.17) 

0 

where
 

) exp(-pclt) t < L/cI
 
(3.18)
g1 (t)= . C 1/	 1 

0 	 t > L/c1
 

and
 

(da1(xp(-rt) fL 11 1 [dA(Ct-X/Cl1)Ct-x/C 2
) )A/ a ]
 

92(t) = da xexp(zx) . dx (3.19)
 

o 	 ((t-x/c )(t-x/c 2))
2
 

t < L/c I
Li= 	c 1t 

where 


L 	 t > L/cI =L
 

Since a closed form solution of the above integral does not exist, it
 

must be evaluated numerically.
 

On the other hand, the second term of Equation 3.16 is:
 

1 o 	PTIX(t,x) dx
 

IL 	 (1- K x ) dx = 1 -(1-eKL) (3.20)
 

T fo KL
 

Therefore,
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http:g2(t)(3.17


r(t) t > 0 
fr(t) (3.21)
fTT 

where Equations 3.18 and 3.19 define the expression for r(t). Figure 3.6
 

shows this PDF. The continuous part involves the travel time of a drop
 

that enters the channel anywhere and reaches the outlet, while the value
 

of the spike is the probability that a drop landing anywhere infiltrates
 

before the outlet. The area under the continuous part, Ar, is equal to
 

(1-e-Kl)/KL, as it is proven in Appendix A. This quantity added to the
 

value of the spike at in'inity results a total area of 1, a property of
 

any probability density function. Besides, Ar represents the fraction of
 

the water that enters along the channel and reaches the outlet.
 

The term r(t) may be interpreted as the lateral inflow response,
 

i.e., the response of the channel to an instantaneous input at every
 

point along its length. As a result, an individual wave will be origin­

ated at each point. The total response due to the wave fronts is given
 

by Equation 3.18. This response is zero after t=L/cl since at this time
 

all the wave fronts, travelling at the dynamic velocity cI = vo +
 
*1 

(gyo)-', have reached the outlet of the channel. The total response due
 

to the wave bodies is given by Equation 3.19. In this equation, for
 

= 

t 4 L/cI , the upper integration limit is L1 c1 t, which means that
 

waves originating between the outlet and L1 can contribute to the re­

sponse at the outlet at time t; however, those waves starting beyond L1
 

cannot yet contribute. For t > L/cl, all waves are contributing to the
 

response and the upper limit changes to L1 = L. Figure 3.7 shows the rel­

bodies to the lateral inflow
ative contributions of wave fronts and wave 


response, for a fixed value of the infiltration coefficient.
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Similarly to the upstream inflow response, if I is the infiltrated
 

percentage of the flow in a channel of length L, the corresponding infil­

tration coefficient can be expressed as an implicit function of I and L
 

(see Equation 3.21):
 

-KL
1- e

KL = /-I/100 (3.22)
 

Plots of r(t) for infiltration losses of 0, 1U and 30 percent, and
 

different characteristics of the channel are presented in Figures 3.8 to
 

3.11. As it can be observed, the ordinate of each curve starts at the
 

corresponding value of cl/L (see Equation 3.17), independent of the in­

filtration losses. Figures 3.8 and 3.9 correspond to a very steep channel
 

(the reference Froude number is 0.95), for two values of its length, i.e.,
 

1 and 2 km. respectively. In both the response is very fast, and a high
 

percentage of the drops respond before t=cl/L; for I=0, the shape of the
 

response is basically rectangular; however, as I increases, it tends to
 

decay. Figure 3.10 shows the responses for a channel of lesser slope with
 

a length of 1 km. and reference depth and velocity of 1.0 m and 1.5m/s.,
 

respectively. In this case, they follow closely the shape of an expo­

nential decay. Finally, in Figure 3.11, the lateral inflow responses
 

are plotted for a longer channel and less rapid reference flow. Their
 

shape lie between that of Figure 3.10 and those of Figures 3.8 and 3.9.
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The fact that the ordinate of r(t) starts at the value cl/L, inde­

pendent of I, along with the shape similitude, in some cases, of the lat­

eral inflow response with an exponential decay, suggests a modification
 

to the linear reservoir response, assumed in the geomorphologic IUL by
 

Rodriguez-Iturbe and Valdes (1979). In order to take into account the
 

infiltration losses the following distribution time in channels may be
 

assumed:
 

re(t) = pe- )t (3.23) 

where, 

c
 

and X is computed such that the are under re(t) is 1-1:
 

c 1
 

=
X L(1-I/100)
 

Figures 3.12 to 3.17 present some comparisons between the linearized
 

solution r(t), and the exponential approximation re(t), of the lateral in­

flow response. Figures 3.12 and 3.13 show the comparison for a channel
 

with a length of 5 km, a bottom slope of 3 m/km and reference depth and
 

velocity of 1 m and 1.5 m/s, respectively. Infiltration losses of 0 and
 

30 percent are used, respectively. As can be seen, the linearized solu­

tion responds slower at the beginning, but after approximately 0.2 hours,
 

it becomes faster. In the case of the infiltration losses of 30 percent,
 

the two curves are closer than for zero losses. In Figures 3.14 and
 

3.15, the responses are plotted for the same channel but with a length of
 

1 km only. The comparison shows similar results as before, but now the
 

curves are much closer. Figure 3.1b plots r(t) and re(t) for the same
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channel of Figure 3.8 with no infiltration losses, whereas Figure 3.17
 

presents the comparison for the channel of Figure 3.9 with 1=30 percent.
 

In general, the shorter for channel and the bigger the losses, the simi­

larity of r(t) and re(t) increases.
 

3.5 Summary
 

This chapter presents the derivation of two analytical expressions
 

for the approximated linear response of a channel with infiltration los­

ses. The first one corresponds to the response to an instantaneous in­

put at the upstream of the channel, denoted u(t). The other response
 

constitutes that to an instantaneous input originating anywhere along
 

the channel, r(t). Both of the-m are functions of the infiltration coef­

ficient, the channel slope and length, and the reference depth and velo­

city. From the characteristics of r(t), a modification to the conceptual
 

linear reservoir response, was proposed in order to take into account
 

the infiltration losses.
 

The responses, which describe the movement of the flood wave along 

the channel, are interpreted as the PDFs of the time that a drop spends 

travelling to reach the outlet of the channel. These PDFs will be, used 

in tile next chapter to determine the IUll and the discharge hydrograph of 

a given basin.
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hapter 4 

THE BASIN IUH AND DISCHARGE HYDROGRAPH
 

4.1 Introduction
 

Chapter 2 presented the derivation of the geomorphologic IUH, and
 

the ;sulting expression for the discharge hydrograph when the GIUH is
 

convoluted with a rainfall input of constant effective intensity and
 

given duration. In Chapter 3, a physically based linear channel respone
 

was obtained from the equations of motion for unsteady flow, including
 

infiltration losses. The response of the channel was interpreted as the
 

probability density function of the amount of time that aa individual
 

drop of water takes to travel to the outlet of the channel. This chapter
 

utilizes this PDF, which is more physically based than the linear reser­

voir assumption, in the expressions for the geomorphologic IUH.
 

4.2 The Basin IUH and Discharge Hydrograph-Linearized Solution
 

Equation 3.21 gives the analytical expression for the PDF of the 

' ravel time needed by a drop entering anywhere along the channel to reach 

r 
the &Atlet,fT(t), which results from the linearized solution of the
 

r 
equations of motion. Replacing fT(t) in Equation 2.11, the IUH becomes:
 

h(t) 0I f r T1)(t)*fr( (t)*fr(3) (t)+ 0 P fr(1) (t),fr()()
 

h1t 12 fTtf T~t* T 1 1 3 fTt T T)
 

r(3)(t) + 03fr(t) (4.1) 
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the solution of this equation may be calculated
As in Equation 2.11, 

r(i)
 

t) is (see
using Laplace transforms. The Laplace transform of f 


Equation A.23):
 

i x 
rrLL 

B L 
ie j (4.2)~i 

where
 

+ Ki (4.3)
Bi = -(ai s2 + bis + ci) + eis + fi 

In the above expressions, the subscript i indicates the order of the
 
u 

channel, W(x, s) is the Laplace transform of fT(t), L is the length of
 

the channel, K is the infiltration factor, a, b, c are defined in Equation
 

3.10, and e and f are:
 

V 
0 

e2
 
gyo (1-F0)
 

K So 1
3
 

where the right hand side parameters have been defined previously. Pro­

ceeding in a similar manner as in Chapter 2, the basin IUH is then:
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h(t) = j eBf 1__ 2"L..iJ 1 eB3 L_3_0I (eB 1i
Ol2r 1LI(B BLl LeBi°L i,!''>
2L2 BJ3Ll3k 

+ 1 {*t 2 B2BL2_1 ) 31L (eB3L3_l } 
+ 03 /l B l(e3L3_) (4.4)} 

Unfortunately, the above equation cannot be solved analytically, and a
 

subroutine (IMSL, 1980) is used to solve it numerically. The same occurs
 

with the discharge hydrograph Q(t), which results from the convolution of
 

h(t), as given by Equation 4.4, with a rainfall event, represented by Equa­

tion 2.16. The corresponding expression for Q(t) is
 

-
Q(t) I {Bi B2 L2 eIPI2A3 1 jeLlI 

tes
B L 


b L B3L3 s e 

L e-tS_bA B 

+ 2A3 -L1 2L B 2 L 2 i 1 BL3 3_1 1ee ie 

.- t S 

+ 3 3. { eB3L3_I1 l-e- } (45) 
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where A3 is the area of the basin, te is given in hr., ie in cm/hr. and
 

3/sec.
b is a conversion factor equal to 0.36 in order to obtain Q(t) in m


the following sub-
Before further discussion of h(t) and Q(t), 


section deals with the estimation of the parameters involved in Equation
 

4.4.
 

4.2.1 Parameter Estimation
 

In order to calculate the IUR derived from the linearized solution,
 

for a given basin, two sets of parameters must be estimated: parameters
 

representing the physiographic characteristics of the basin and individual
 

channels, and parameter representing the dynamic component of the response.
 

The physiographic characteristics of the basin are expressed in
 

The characteristics of the
 terms of the Horton's numbers, RA, RB and RL. 


The average
individual channels are lumped according to stream order. 


channel length and the geometric mean of the slope are used to represent
 

the channel's physiographic characteristics. All the above parameters may
 

be estimated easily from topographic maps, aerial photographs, or satel­

lite imagery.
 

and the infiltration
The reference depth yo, reference velocity vo 


factor, K, represent the dynamic component of the response. These para­

the order of the stream, and their
 meters, are also lumped according to 


estimation may involve field inspections and some engineering judgement.
 

on Manning's
Following is a proposed procedure to estimate yo and vo based 


= 

equation, and on the expressions cI = v o + (gyo)" and Fo vo/(gyo )'-:
 

59
 



1. Fro visual i spection, estimate, for each order stream i, the
 

average Manning's roughness coefficient n and the Froude number
 

under steady state conditions, Fo .
 

2. 	 Using the estimated values of So for each order, calculate the
 

respective values of the ce erity of the wave flood as
 

-= n3 g2 1.5
 
3 Fo3 
 2 (1+Fo)/S° 	 (4.6)
 

3. 	 Calculate yo and vo for each order stream.
 

= 	 (4.7)yYo- 1l 2
 

g(l+F0 )
 

cF o 
v - o0 (4.8) 

o 	 I+F 
0
 

where g is the gravitational acceleration in m/sec
2 , and the units of c1
 

and vo are m/sec, and yo is given in m.
 

The procedure can be modified slightly, in case another estimate
 

of the celerity of the wave is available. In step 2, instead of calcu­

lating cl, Equation 4.6 can be solved for Fo by trial and error.
 

If one assumes that cI is related somehow to the specific rainfall
 

event for which the IUH is being calculated (greater the intensity, greater
 

the velocity of the flood wave), then there does not exist an unique IUH
 

This means that the nonlinearities present
characteristic of the besin. 


in the rainfall-runoff process are reflected in such a way that the IUH
 

would be a function of both the rainfall input and the geomorphology, as
 

Rodriguez-Iturbe et al., (1982) recognize. However, no attempt is made
 

here to relate the celerity of the flood wave to the rainfall input char­

acteristics.
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Finally the infiltration factor, K, may be estimated from iso­

lated streamflow measurements performed in reaches where no inflows from
 

tributaries are present. From these measurements, the percentage of the
 

to ob­flow infiltrated can be evaluated and introduced in Equation 3.12 


tain an estimate of K.
 

4.2.2 Hydrographs for Three Basins
 

In this sub-section the IUlis and discnarge hydrographs for three
 

basins are presented. The first two correspond to sub-basins of the
 

Indio basin, located in Puerto Rico, namely Morovis and Unibon basins,
 

which have been studied in the context of the geomorphologic IUH by Valdes
 

For these basins Rodriguez-Iturbe
et al., (1979) and Kirshen and Bras (1982). 


et al. (1979) give the parameters and the discharge hydrographs resulting
 

from a kinematic wave rainfall-runoff model. Some of these results will
 

be used to check the hydrographs obtained here. Figure 4.1 shows the gen­

eral layout of the Morovis and Unibon basins.
 

The third basin is Wadi Umm Salam, also studied by Kirshen and Bras
 

(1982). This is a sub-basin of Wadi Abad, one of the largest wadis in
 

Upper Egypt. Wadis like Wadi Umm Salam are subject to occasional flash
 

floods, which cause damages to the downstream villages. Usually there
 

are no rainfall or streamflow measurements at any location within the wadi.
 

Thus, the geomorphologic IUH constitutes a useful tool to estimate the
 

discharge due to specific storms in these wadis. In concept, only a
 

topographic map or aerial photograph, estimation of the storm charcteris­

tics, and perhaps a field inspection are required. Figure 4.2 presents
 

the general layout of Wadi Umm Salam.
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MOROVIS BASIN
 

,
UNIBON 

I
BASIN 


Figure 4.1 
General layout of Morovis and Unibon basins
 

Figure 4.2 General layout of Wadi Umm Salam
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TABLE 4.1
 

Comparisons Between the Rainfall-Runoff Model and the
 

Linearized Solution
 

Linearized
 

Model Solution
 
Rainfall-Runoff 


Basin ie te Qp Tp Qp Tp
 
(m3/s) (hr)(cm/hr) (hr) (m3/s) (hr) 

2 103 2.2 103 1.5

Morovis 	 3 


3 3 112 3.u 106 1.5
 

1.6
3 188 2.0 181
Unibon 	 3 


3 3 194 3.0 183 1.7
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Figures 4.3, 4.4, and 4.5 show the IUHs for the above basins using
 

different combinations of the infiltration losses in the channels. Each
 

figure contains the information on the values of I and the physiographic
 

characteristics of the basin and the channels. The values of vo and yo
 

were estimated according to the modified procedure proposed in sub-section
 

4.2.1, assuming a velocity of the wave flood of 3 m/sec. and an estimated
 

value of the Manning's coefficient of about 0.067 for Morovis and Unibon
 

(very steep channels, presumably with big rocks in the bed), and about
 

0.045 for Wadi Umm Salam. The responses of Morovis and Unibon are very
 

similar, Morovis responding faster. The response of Wadi Umm Salam is
 

slower, since it is not as mountainous as the others. The effect of the
 

infiltration losses is clearly illustraced with the differences in the
 

height and area under the IUHs.
 

Figures 4.6 and 4.7 present the discharge hydrographs for Morovis
 

and Unibon basins when the IUHs of Figures 4.3 and 4.4 are convoluted with
 

an effective rainfall of 3 cm/hr intensity and a duration of 2 hours.
 

Similar hydrographs were obtained for a three-hour assumption. Table 4.1
 

compares the main characteristics of the discharge hydrographs obtained
 

here for the Unibon and Morovis basins (I=0 percent) and those obtained
 

by Rodriguez-Iturbe et al., (1979) using a rainfall-runoff model. As it
 

can be seen, the agreement in the peaks is good, although in the case of
 

Unibon, the peak velocity given by the rainfall-runoff model was 4 m/sec,
 

greater than the 3 m/sec used for the velocity of the wave in the linear­

ized solution. It is important to note that no adjustement of the linear­

ized solution hydrographs, modifying vo and yo, was made. This means that
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if the estimation of n was correct, the proposed procedure to estimate
 

vo and Yo is adequate.
 

There are no rainfall-runoff results in Wadi Umm Salam to which the
 

hydrographs obtained here can be compared. However, Figures 4.8 to 4.11
 

present the hydrographs corresponding to rainfall with a return period
 

of 100 years, for storm durations of 2.0, 1.5, 1.0 and 0.5 hours, and in­

tensities of 1.8, 2.4, 3.7, and 7.3 cm/hr respectively (Kirshen and Bras,
 

1982). Again, the effect of the channel infiltration losses is signifi­

cant.
 

An interesting exercise would be the comparison between the IUHs and
 

discharge hydrographs obtained by Equations 4.4 and 4.5 and those produced
 

by Equations 2.15 and 2.19. However, these comparisons would be valid
 

only for I=0 percent. Therefore, Equations 2.15 and 2.19 must be modified
 

slightly to allow comparisons for I greater than zero. This is done in
 

the next section.
 

4.3 Linearized Solution vs. Exponential Assumption: A Comparison
 

Equations 2.15 and 2.19 give the IUH and the discharge hydrographs,
 

when the linear reservoir assumption is used to represent the behavior of
 

the channels forming the drainage network. These expressions are valid
 

when no infiltration losses are considered. However, in Chapter 3, a mod­

ification to the linear reservoir response was proposed to account for
 

infiltration. It is given by Equation 3.23. Its probabilistic interpre­

tation is:
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-lt 

fMMf(-) = PT:t) l-(le -KL )/KiLi = o (4.9) 

where, 

ci
 

S- (4.10)
Li
 

and 

cli 


X Li(l-IiL i100) (4.11)i 

Rodriguez-Iturbe and Valdes (1979) used Equation 2.10 to represent
 

the PDF of the travel time in the streams of highest order. This equa­

tion also has to be modified for infiltration losses, i.e.,
 

f(I2) M = S eS -K L t>0(4.12) 
PT M = 1-(-e L/KL t = Coa 

where the following criteria are used to calculate pS and Xp
 
(M)
 

- The mean waiting time of the continuous part of f T (t) as given by
 

Equation 4.9 must be equal to the mean waiting time of the continuous
 

(Q)
 
part of f T (t) as given by Equation 4.12 (this was the criterion used
 

by Rodriguez-Iturbe and Valdes, 1979):
 

=fte Rt dt P2 t2eQ dt 

or
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*2
 
iQ (4.13) 

2 *3 

(M)
 
- The area under the continuous part of f T (t) as given by Equation 4.9
 

must be equal to the area under the continuous part of f T (t) as given
 

by Equation 4.12.
 

110 e t dt tee*lJ 

or
 

PQl IISI*2 (4.14) 

* *2 
Then, from Equations 4.13 and 4.14, p, and XQ may be calculated as: 

* = 2X 
(4.15)
 

*2 .411 (4.16)
 

Therefore, the expressions for the IUH and the discharge hydrograph
 

with the modified linear assumption which takes into account infiltration
 

losses in the channels are (third order basin):
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-At 	 -2t
 
*2 e 	 e

h(t) = ll2lj2 3 * + * 2
( 1 3) 2-(A1) (X2-x) (Xi- 2 ) 

t
E2X3-X1-X 2+(X i- 3 ) (x2- 3) t ]e 3 

2+ (x -) 2 (A2 -A) 

-At * -Akt 

*2 e3
 
+ 113 	 * 2

(A3 -Ai) 

-2t * -* t 
*2 e -[i-(X3-A 2)t]e
 

+ *2 32
3 (A3-A	 2 ) 
*3 

3+ te3 	 (4.17)
 

and,
 

0 P *2 e p i9* Xt x(t 
Q(t) = b X*2)2 X - ) XJX) i 2I t3 1{-e u t-t 

1 3 2 1 [A (1)]
"b ClPI2pI]p2p3 + 2P13 ] fl 2[-t_[eXl(t-te)1 

2 2 *2	 22 3P 1 3P 2r­
-A~iA2-)2(AIA -- 2 )A 2 +(A 3 -A 2 )2A 2 t - l i:2tte]e)}
 

A3 bie 2-X + * -)2l- lu(t-te)
 

*2 * 	 *2 *2 
A3bi * 2 -	 * 2 * X* *1_O2U213+ 	A bi[12123 1 2I331(2A 3 -1-1 2 ) 1P13 3 


x3) ( 2- 3 )A3 (A1-x3)x (X2 -3) xJ
 

{l_ X3t _,e3 (t-t e)7 .utt~ 

+ A 1bi 	 13 1 3 3 1112123 1 (2 2" A - * * + 	 + * + 0 -(t+l)e 

1 3 1' 	 -3(tte3u2 -t3 

+ -+ 	 e (t-t )e 3 u(t-te ) (4,18), 

+ -3e u(t-te) + X 3 t e 
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Figures 4.12 to 4.15 show some comparisons between IUHs based on the
 

linearized solution (Equation 4.4) and IUHs based on the modified linear
 

reservoir assumption (Equation 4.17). Figures 4.12 and 4.13 correspond
 

to Morovis and Unibon basins for the case of no infiltration losses. As
 

it can be seen, the linearized solution is "more rectangular" than the
 

exponential, which is smoother, but in general terms, the agreement is
 

good. Figures 4.14 and 4.15 show the IUH's for Unibon basin and Wadi
 

Umm Salam, when the percentage of infiltration losses are 15, 10, and 5
 

percent for streams of order 1, 2, and 3 respectively. The Unibon results
 

show a better agreement than Wadi Umm Salam. Figures 4.16 to 4.19 present
 

comparisons of discharges from the three basins studied here. As it is
 

shown in these figures, both solutions give similar hydrographs, in terms
 

of shape, peak discharge and time to peak, which permit conclude that
 

both the linearized solution and the exponential assumption yield similar
 

results.
 

4.4 Linearized Solution lHydrographs. Another Basin Representation
 

Kirshen and bras (1982) used the PDFs of the travel time needed by
 

U 

a drop that enter the channel at its most upstream point fT(t) and any­

r 
where along its length, fT(t), to improve the representation of the basin
 

by increasing the possible paths that a drop can take to reach the outlet
 

of the basin. Referring to Figure 2.1, the flow contributing to some
 

higher order streams is in part due to flow from the junction of two
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Characteristics! 

Order 

RRS.O0 

IM,' 

1 2 3 

0.0 0.0 0.0 
Llnear;zed solution 

Exponential assumption 

R133.20 RL"2.70 

Order 

Yo(m) 

vo(m/s) 
F. 

So(m/km) 
L (kim) 

. 

0.25 

1.47 
0.94 

71.90 
1.10 

2 

0.30 

1.31 
0.76 

32.10 
3.00 

3 

0.30 

1.34 
0.78 

39.20 
8.00 

p(sV)0.35 

p12=0.85 p13-0.15 

-&1-0.41 *&2-0.29 -&3-0.30 

p(s2)=0.06 p(s 3 )=0.2 9 p(s4)=0.30 

Figure 4.12 
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UNTGON GAREIN 

Basin ;uh -exponentIa I linearized solut;on 

(Basin representation .)
 

Characteristics'
 

IMA)
 

Order 1 2 
 3 Order 2
1 3
 

0.0 0.0 0.0 Y0 (m) 0.24 0.28 0.37
 
(D Linearized so!uL.on Vo (m/s) 1.50 1.40 1.25
 

Exponential assurnpt;on 17 0.98 0.85 0.66 
So (m'km) 82.70 46.60 23.30

Rn'S.60 Ra=4.00 RL-2.80 (km) 3.10
L 1.10 8.60 

p12-0.79 p13-'0.21
 

&1X'0.51 &2-0.31 
 &3-0.18
 
p(s )--0.40 p(s2)'0.1.L, pfs3)=0.31 p(S4)=0.I8
 

Figure 4.13
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UNISON BnSIN 

exponential vs Ilnear;zed solution 

(Basin representation 1) 

Character;stucs! 

Order 1 2 3 Order 1 2 

15.0 10.0 5.0 Y.(m) 0.24 0.28 
0 Linearized solut-on v0 (m/s) 1.50 1.40 
4 Exponential assurnpt;on F. 0.98 0.85 

S.(m/km) 82.70 46.60 
RAS.60 Ra-4.00 RL-2.80 L (kin) 1.10 3.10 

p12"O.79 p13 -0.21 
-(-*1-0. 51 -&2-0.31 -&3-0.18 

p(sl)=O.4-O p~s2)=O.11 p(53)=0.31 p(S4-) G.18 

3 

0.37 
1.25 

0.66 

23.30 
8.60 

Figure 4.14 
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WADI UMM S.RLAM
 

Basin ;uh- exporena! vs !Inear;zed solutior
 

(9asi6 representat;on 1)
 

Character;st ics!
 

Order 1. 2 3 Order 1 2 3 

15.0 10.0 5.0 yo(m) 0.39 0.40 0.&1 
a) 	 Llnear.;ed solution VO (m/S) 1.05 1.01 0.98
 

ExponenLal as.umption F. 0.54 0.51 0.4.
 
S. (m/km) 8.00 7.00 6.50
 

R,-5.00 R-4.00 RL-2.80 L (km) 1.30 3.60 10.00
 

12 0 79  0 2 1
 p - . p.3- .
 

-&1-0.64 -&2'0.30 -&3-0.06 

p(i;2 )=0. 14.  
p(S1)0.50 p(s3)-0.30 p(s4)0. 6
 

Figure 4.15
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MOROVIS BASIN
 

D Ischarge hydrograph exponent Ia! vs IInear!ized so Iut IanI~s)
 

(Basin repre~sentation 1) 

Character is i cst 

-3.0 cm/hr t-2.0 hr A13.0 km 2 

Order 1 2 a Order 1 2 3 

10.0 10.0 10.0 y.(rn) 0.25 0.30 0.30 
D nearized solution v-x(M/S) .47 1.31 1.34. 

Exponential assumpion 0a 0.94 0.76 0.7 
S,(m/km) 71.90 32.10 39.20
 

RAS5.0 Ri3.20 RL 2.70 L (ki) 1.10 3.00 8.00
 

p12-0.85 p1 3'O.iS
 

p(sl)=0.35 p(s2)-O..6 p(s3)O.29 p(s4)0.30
 

Figure 4.16
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UNIBON B9SIN
 

D;scharge h;dr'ograph- exponential vs linearized -soution
 

(Basin represertation 1)
 

Character;st;cs
 

1-3.0 cm/hr 
 c-2.0 hr- A-23.0 km2
 

Order 1 P 3 Order 1 2 3 
10.0 10.0 10.0 YU(m) 0.24 0.28 0.37 

L;near.zed soluton 
Exponent;al assumpt;on 

vo(m/s 
F. 

11.50 
0.98 

1.40 
0.85 

1.2S 
0.66 

RR5.60 Ria"4.00 RL=2.80 
S0 (m/km) 
L (kin) 

82.,'U 

1.10 
46.60 
3.10 

23.30 

8.60 

p12-0.79 p13 -0.21
 
"&1-0.51 
 &2- U. 3L -&3=0.18
 

P(sl)'0.40 p (s2)­ o .l1 pt3)r0.31 p(s4)> 
 ..
L8
 

Figure 4.17
 

84
 

http:pt3)r0.31
http:P(sl)'0.40
http:p13-0.21
http:p12-0.79


0 100­
150 

// 
o 0O0__ 

50 

0 ,. 2 3 5 

Time Chr] 

WqDI UMM SqLRM 

DIscharge hydrograph - exponenta ! vs I inearized soIution 

(Basin representation 1) 

Char ac ter; s cs' 

1-3.7 cm/hr t-1.0 hr P-39.0 Krm
r2 

IM,' 

Order 1 2 3 Order 1 2 3 

10.0 10.0 10.0 Y,0 (M) 0.39 0.'LO 0.41 

Linearized solut.on v.(m/.) 1.05 1.03 0..98 
Exponential assump ton F. 0.54 0.51 0.49 

So (m/km) 8.00 7.00 6.50 
RA5.00 R9 -4. 0( RL 2.80 L (kin) 1.30 3.60 10.00 

p12 G.79 p1 3 -0.21 

-&.0.64 -&2-0.30 &3=0.06 

p(s1)30.50 p(s 2 )-O.14 p(s3)-0.30 p(s 4 )V0.O06 

Figure 4.18 
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W.DT UMII SHLAM 

Discharge hydrograph -. exponentla! vs I inearized so'ut;,on 

(.8as;n representation 1) 

Char dc.C: *c k s 

oo2.4 cm/hr t-1.5 hr q-39.0 km2 

Order 1 2 3 Order 1 2 3 

10.0 10.0 lO.b V, (m) 0.39 0.40 0.41 
Q ,L;nearized solut;on v0 Cm/s, L.U5 1.01 0.98 

Exponent;al ausumptlo.n F, 6.54 0.51 0.49 
So (m/kml 8.00 7.00 6.50 

RA-S.00 RSB4.00 RL 2.80 L Ck-rn) 1.30 3.60 10.00 

p12-0.79 p13 -O.21 

• .e-U:[J.64. e".30 -3=0.06 

pC')~..0 (.<).' p~n 3 .40.30 p frt4)=0.J#3 

Figure 4.19 
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Streams of this type respond according
two streams of one order lower. 


to the upstream inflow response. Therefore, the transitions may be dif­

ferentiated in two: one representing those drops that enter along the
 

channel laterally, r(i), and one representing those drops that enter at
 

Then, for a third order basin, the pos­the channels upstream end, u(i). 


sible paths are:
 

sI = a(1) + r(1) + r(2) + r(3) + OUTLET
 

+ r(1) + u(2) + r(3) + OUTLET
= a(1)
s2 


s3 = a(l) r(1) r(2) * u(3 ) * OUTLET
 

s4 = a(1) r(1) + r(3) + OUTLET
 

= a(2) , r(2) ' r(3) . OUTLET
s 5 

u(3) + OUTLET= a(2) > r(2)s 6 


s7 = a(3) * r(3) * OUTLET
 

s 8 = a(1) + r(1) + u(3) + OUTLET 

Figure 4.20 schematizes these paths. In order to account for the addi­

tional paths, the transition probabilities previously presented need to
 

be modified. They are given in Table 4.2.
 

the expressions for h(t) and Q(t) is straigthforward.
The extension of 


Following the definition of h(t) (see Equation 2.7) and Q(t), the summa­

tion over the eight possible paths of the convoluted terms can be easily
 

written in a similar way as Equations 4.4 and 4.5, by using the modified
 

u(i)
 
transition probabilities of Table 4.2 and the Laplace transform of fT (t):
 

UM = e (4.19)
 

where Bi has been defined in Equation 4.3 and Li is the length of the
 

stream of order i.
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OUTLET 

Basin representation 

in terms of alternative Paths
 

Figure 4.20
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TABLE 4.2
 

Transition Probabilities for a Third Order Basin-Basin
 

Rerresentation 2 (from Kirshen and Bras, 1982)
 

r 2 -( -2RB) 

r1r2- RB( 2 RBl)2 


P 2rfU2 
 RB
 

Rj 3RB+2
P 
*rr3 RB(2RR-1)
 

RB-2
 

r2r3 
 RB
 

2 

r2u3 RB
 

P =P
u2r3 r2r3
 

P
 
u2 u3 r 2 u3
 

P 



Figures 4.21, 4.22, and 4.23 present the IUlls resulting from this
 

new basin representation. As it can be seen, their shape is very unusual
 

for an instantaneous unit hydrograph. The response of the main paths can
 

be determined from the figures.
 

However, when the discharge hydrographs are calculated and compared
 

to those with the exponential assumption (Equation 4.18), the results are
 

surprising (see Figures 4.24 to 4.31). They are very similar in the
 

cases of Morovis and Unibon basins; for Wadi Umm Salam, the peak discharge
 

is almost the same, although the time to peak is delayed in the ]1earized
 

solution with respect to the exponential assumption.
 

A general conclusion from this chapter can be drawn: given that the
 

linearized solution of the respcnse of the channels is more physically
 

based than the linear reservoir assumption, and given that the comparisons
 

of h(t) and Q(t) evaluated with both of them, gave good results, then the
 

use of linear reservoir assumption seem to be good and easy to use approxima­

tion in the h(t) and Q(t). It should be added that although the linearized
 

solutions were obtained assuming small perturbations, the use of the results
 

was accordingly limited. This follows general hydrologic practice.
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Basin, iuh 

MOROVIS BASIN 

For diFerent ;nF;ltration 

(Basin representation 2) 

losses 

Character IStl cs 

IM,) 

Order 1 2 3 Order 1 2 

0.0 0.0 0.0 Yo(m) 0.25 0.30 
10.0 10.0 10.0 vO (m/s) 147 1.31 

E9 15.0 10.0 5.0 F0 0.9 . 0.76 
S0 (m/km) 71.90 32.10 

RA;-S.00 R13-3.20 RL-2.70 L (km) 1.10 3.00 

*&1-0.41 -&2-0.29 -&3-0.30 

prir2-0.22 prlu2-O.63 prir3-0.15 pr2r3-0.37 

pr2u3-0.63 pu2r3-0.37 pu2u3"0.83 

p(sl)=0.03 p(s 2 )=O.10 p(s3)=0.06 p(s4)=0.06 

p(s5)=0.11 p(s6)=O.i8 p(s7)=0.30 p(s8)=0.16 

3 

0.30 
1.34­

0.78 
39.20 

8.00 

Figure 4.21 
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UNISON BASIN
 

BasI n Iuh for df
reren 
 : nfi I raLion losses 

(Basin represental;on 2) 

Character istIcs
 

I(M) 

Order 
 1 2 3 
 Order 1 2 
 3
 
0D 0.0 0.0 O.C Y0 (m) 
 0.24 0.28 

16 10.0 10.0 IO.6 

0.37 
vo (m/s) 1.50 1..0 1.259 15.0 10.0 5.U F, 0.98 0.85 0.66 

So (m/km) 82.70 46.60 23.30

RA-5"60 Re"4.00 
 RL-2.80 
 L (kin) 1.10 3.10 8.60 

-&1-0.51 
 e-2=0.3. 
 -&3-0.1O 
prlr2-0.29 
 pr.Lu2.-0.50 
 prlr3-0.21 
 pr2r3-0.50
 

pr2u30.50 pu2r3-'0.50 pu2u3-0.50
 
p(sl)=0.07 p(s2)-O.13 p(s3)=0.07 
 p(s4)=0.l1.
 
p(sS)=0.16 p(s6).-1-..6 p(s7)=0.18 
 p(s8)=O.13
 

Figure 4.22
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W.IDI UMM SALAM
 

Basin luh For dIFFerent InFlltratIon losses
 

(easin representation 2)
 

Characteristics!
 

Order 1 2 3 Order 1 2 3 

0 0.0 0.0 0.0 Yo(m) 0.39 0.40 0.41. 
A 10.0 10.0 10.0 V0 (mis) 1.05 1.01 0.98 

1.15.0 10.0 5.0 F, 0.54 0.51 0.49 
S,,(m/km) 8.00 7.00 6.50 

RA"S.O0 Ra"4.O0 RL-2.8G L (km) 1.30 3.60 10.00 

<1-0.64 -&2-0.30 e3-0.06
 

pr'.r2-0.29 prio2-0.50 prlr3-0.21 pr'2r3-0.50
 

pr2u3-0.50 pu2r30.50 pL12u3-O.50
 

p(sl)=O.09 p(r2)-0.16 p(s3)O.09 p(s-)=0.14
 

p(sS)=0.15 p(s6'O.05 p(s7)=0.06 p(s8)=0.16
 

Figure 4.23
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MOROVIS BASIN
 
Discharge hydrograph - e<ponentuaI vs IlInearIzed soIuti cn
 

(Basin representat;on 2)
 

Characterls;cs:
 

1-3.0 cm/hr 
 t-2.0 hr A-13.0 km2
 

IM,)
 

Order 
 1 2 
 3 
 Order . 2 
 3
 
0.0 0.0 
 0.0 Ya(m) 0.25 0.30 
 0.30
0 Llnear;zed solut;on vo(m/S) 1.47 1.31 
 1.34


Exponential assumption 
 P 0.94 0.76 0.78 
So (m/km) 71.90 32.10 39.20A R -S.00 Re-3.20 RL-2.7C L (kin) 1.10 
 3.00 .8.00
 

-&1-0.41 
 -&2-0.29 
 &3-0.30
 
prlr2=0.22 prtu2-0.63 
 prIr30.I5 pr2r3w0.37
 

pr2u3-0.63 pu2r3-0.37 
 pu2u3-0.63
 
p(sl)=0.03 p(s2)"'0.iO p(s3)=O.06 
 p(s4)=0.06

p(sS)=O.ti 
 p(s6 )r0.18 p(s7)=0.30 p(s8)=0.16
 

Figure 4.24
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MOROVIS BASIN
 

Discharge hydrograph - exponentiaI vs lInearIzed ;oIutIon 

(9asin representation 2)
 

Characterlstics!
 

1-3.0 cm/hr t'2.0 hr A-13.0 km2
 

I()
 

Order . 2 3 
 Order 1 2 3
 

15.0 10.0 5.0 Yv(m) 0.25 0.30 0.30 
( Linearized solution vo(m/s) 1.47 1.31 1.34 
1 Exponential assumption F° 0.94 0.76 0.78 

So(m/km) 71.90 32.10 39.20
 
S R -5.00 RB=3.20 RL-2.70 L (kim) 1.10 3.00 8.00
 

&1-0.41 e-20.29 -&3-0.30
 

prlr2=0.22 prlu2=0.63 pr1r3-0.15 pr2r3=0.37
 
pr2u3-0.63 pu2r3=0.37 pu2u3=0.63
 

p(sL)0.0.3 p(s2 )"O..10 p(s3)=0.06 
 p(s4 )=O.U6
 
p(sS)=O.I p(s6)rO.18 p(s0)=0.30 p(sB)=O.L6
 

Figure 4.25
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MOROVIS BASIN
 

Discharge hydrograph exponentIaI vs IInearIzed solution
 

(Basin representation 2)
 

Characteristics:
 

j-3.0 cm/hr t-3.0 hr A-13.0 km2
 

IM,' 
Order 1 2 3 
 Order 1 2 3
 

10.0 10.0 10.0 Y0 (m) 0.2S 0.30 0.30
 
( Llnearized solution V0 (m/s) 1.A7 1.31 1.34 

Exponential assumpt;on 
 F0 0.94 0.76 0.78
 
S0 (m/km) 71.90 32.10 39.20
 

A R -5.00 Re-3.20 RL-2.70 L (km) 1.10 3.00 8.00
 

01-0.41 
 e2-0.29 *&3-0.30
 
prlr2=U.22 prlu2-0.63 prlr3=0.15 
 pr2r3=0.37
 

pr2u3-0.63 pu2r3-0.37 
 pu2u3=0.63
 
p(sl)=O.03 p(s2)>'G.10 p(s3)=0.06 p(s4)=0.06
 
p(s5)=0.L1 pls6)=O.18 
 p(s7 )=0.30 p(s8)=O.16
 

Figure 4.26
 

96
 

http:p(s8)=O.16
http:p(s7)=0.30
http:pls6)=O.18
http:p(s5)=0.L1
http:p(s4)=0.06
http:p(s3)=0.06
http:p(s2)>'G.10
http:p(sl)=O.03
http:pu2u3=0.63
http:pu2r3-0.37
http:pr2u3-0.63
http:pr2r3=0.37
http:prlr3=0.15
http:prlu2-0.63
http:prlr2=U.22


200
 

150 

100
 

E 

0
 

0 __________ 

0 1 2 3 4 5 

Time Ehr) 

UNIBON BASIN
 

Discharge hydrograph - exponential vs linearized solution
 

(Basin representation 2)
 

Characteristics!
 

1-3.0 cm/hr t-2.0 hr A-23.0 km2
 

I(M) 

Order 1 2 3 Order 1 2 3 

0.0 0.0 0.0 Yo(m) 0.24 0.28 0.37 
( Linearized solutio.n vr(m/s) 1.50 1.40 1.25 

Exponential assumpt;on Fe 0.98 0.85 0.66 
So(m/km) 82.70 46.60 23.?0
 

RA-5.60 RS-4.00 RL-2.80 L (km) 1.10 3.10 8.60
 

01-0.51 -&2-0.31 -&3-0.18
 

prlr2=0.29 prlu2-0.50 prlr3-0.21 pr2r3a0.50
 

pr2u3=0.50 pu2r3-0.50 pu2u3-0.50
 

p(s )=0.07 p(s2)=0.13 p(s3)rO.07 p(s)=O.11
 

p(sS)=B.J.6 p(s6)=O.16 p(sT)rO.I8 p(si)=e.13
 

Figure 4.27
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UNIBON BASIN
 

Discharge hydrograph - exponential vs linearized soluclon 

(Basin representation 2)
 

CharacteristIcs
 

1-3.0 cm/hr t.2.0 hr A-23.0 km2
 

Order 1 2 3 Order 1 2 3
 

15.0 	 10.0 5.0 y0 (m) 0.24 0.28 0.37
 
0 	 Linearized solution v.(m/s) 1.50 1.40 1.25 

Exponential assumption F. 0.850.98 	 0.66
 
S,(m/km) 82.70 46.60 23.30 

RAS.60 Ra-4.O0 RL -2,80 L (kin) 1.10 3.10 8.60 

e-O.51 e2-0.31 03-0.18 
prlr2-0.29 pr-lu20.50 prlr3=0.21 pr2r'3=0.50
 

pr2u3-0.50 pu2r3-0.50 pu2u3-0.50
 

p(sl)=O.0 7 p(s2)' O..L3 p(s3)=O.07 p(54 )=O.1I
 
p(s5)'0..L6 p !6)10.16 p(s7)=O.18 p(S8)=O.13
 

Figure 	4.28 
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UNIBON BASIN
 

Discharge hvdrograph - exponent ;aI vs !InearIzed solutIon 

(eJs in representation 2)
 

Characteristics!
 

1-3.0 cm/hr t'3.0 hr q-23.0 km2
 

IM,'
 

Order 1 3
2 	 Order 1 2 


10.0 10.0 10.0 y0 (m) 0.24 0.28 0.37
 
D 	 Linearized solution v0 (m/s) 1.50 1.40 1.25 

Exponential assumpt;on Fa 0.850.98 	 0.66
 
S.(m/km) 82.70 46.60 23.30
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p(sS)=O.16 p(s6)O.16 p(s7 )O.18 p(sa)0.13
 

Figure 4.29
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Figure 4.30
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Chapter 5
 

SUMMARY AND CONCLUSIONS
 

5.1 Summary and Conclusions
 

The main topic addressed in this work has been the representation
 

of the channel infiltration losses in the geomorphologic IUH.
 

The response of the channel to an instantaneous input, considering
 

infiltration losses, was successfully obtained through the linearization
 

of the governing equations of motion. This response, physically based,
 

was then incorporated into the theory of the Geomorphologic Instantaneous
 

Unit Hydrograph to obtain the characteristics response of the whole basin,
 

which was compared with the one resulting when the response of the chan­

nel is assumed to behave like a linear reservoir, (exponential travel time)
 

modified for infiltration channel losses. Comparisons of the discharge
 

hydrographs indicate that the latter assumption is adequate and is a lot
 

easier to use. That may be considered a verification of the GIUH.
 

The value of the obtained linear changes response lies not only on
 

its use in the geomorphologic IUH theory but also in its potential in
 

traditional hydraulic routing applications. For the first time explicit
 

accounting of channel infiltration is made in an analytical physically
 

based linear model of channel response.
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APPENDIX A
 

ANALYTICAL LINEAR SOLUTION OF THE UPSTREAM CHANNEL IUH AND SOME
 

MATHEMATICAL PROPERTIES
 

A.I The Linearized Equation of Motion
 

The final expression of the linearized equation of motion obtaineA
 

in Chapter 3 (Equation 3.9) is:
 

y3_q2 326q -t2qy 2 6a _ a2 3g B y2 
~0- 0 ax2 oaxat 0 at2 a x 0x~ 

Sg 9-t Eli 0 0- -2Yy 2 o - 30 2) Ka_ax + 3gSy2 Kq0 

2
+ 3gSoy K6q - y Kq 36g (A.1)

0~ o~ 0at 

whore 6q represents the perturbation about the reference discharge qo.
 

Equation A.1 may be written as:
 

A D + B 6+ C '2 +D 2a + E + F6q + G = 0 (A.2) 
ax2 axat C t2
 

where ­
2
 

A = (gyo -vo ) D = 2Kvo - 2gSo/vo
 
2
 

B = -2vo E - (go -vo)K - 3gSo
 

C = -1 F = -3gSoK
 

G = -3gS0 Kqo0
 

Let the perturbation be related to w(x,t), a new variable, as
 

6q(x,t) - + [w(x,t) + eax (A.3) 

107
 



where a is a constant to be determined. Substituting Equation A.3 into
 

Equation A.2, the latter becomes
 

A- w + B---+ C 2 w + (cB+D) w+ (2A+E)W 
ax2 atax at2 t+ 2AE-5
2x 2G 

+ (a2A+aE+F)w + (a2A+aE+F) 2 = 0 (A.4) 

a is chosen such that
 

a2 A + aE + F - 0 

i.e, 

I{-K

From now on, it is assumed that a = -K, and therefore Equation A.4 

may be written as 

2 2 2 a 
Aaw+ B a + C -- + (D-KB)2
2 at
atax
ax


+ (E-2KA) Lw = 0 (A.5)
 

which is an homogeneous partial differential equation whose solution is
 

desired for the case of a pulsed upstream inflow.
 

A.2 Boundary and Initial Conditions
 

Before the application of the input to the channel, the flow is
 

steady state and the governing equation is:
 

ax = -q (xt) 

or specifically, 

dq = -Kq 

dx 
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where q is the discharge per unit width. Integrating from the upstream
 

point of the channel (x=0, q=ql) to an arbitrary point (x=x, q=q), the
 

solution for the steady state problem is:
 

-Kx
 
t 4 0 	 (A.6)
q(x,t) =qle 


The reference discharge q., around which the linearization is done,
 

state solution (Equation A.6)
has 	to be chosen according to the steady 


and, 	for a channel of length L, it could be the mean value, i.e.,
 

= q l-Xxe
1 jLo dx
qio 


However, for practical reasors, qo is assumed equal to ql" Therefore,
 

before the application of the input, the perturbation is q-qo. Figure
 

A.1 	shows the perturbations before and after the input is applied.
 

At x=O and t=O, a delta function is introduced into the channel,
 

= 6q(O,t) 6(t)
 

Replacing this expression in Equation A.3 and solving for w(U,t), 

= (A.7)w(Ot) 6(t) 


As noted above, prior to the delta function,
 

-Kx
 
= -qo 	 (A.8)
6q(x,0) qoe 


which implies that
 

0 (A.9)
w(x,O) = 


(A.10)[w(x,t)] = 

It=O 

Equations A.7, A.9 and A.10 are the boundary and initial conditions 

for solving Equation A.5 which will be done using Laplace transforms. 
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q 
6q(x1 t1 ) q(x 3 t 1 

ropagated input 

at t=t" 

qo=ql . . . - Reference discharge 

6q(x 4 , 0) 

Steady state flow-Kx 
q=qo0e7K (t<0) 

I 

xI 

I 

x2 

I 

x3 

I 

x4 x5 L x 

Reference discharge and propagated perturbation 

Figure A.1 
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A.3 Linear Solution
 

The Laplace transform with respect to y of w(x,t) is defined as
 

t {w(x,t) = W(Xs) = fe w(x,t)dt 

Taking the Laplace transform with respect to t on both sides of
 

Equation A.5 and using conditions A.9 and A.10, the following second
 

order homogeneous ordinary differential equation is obtained,
 

0-92W 	+D E + T W= 0 (A.I1)

2 
 axax


where
 

0-A
 

* 	 = Bs + E - 2KA
 

2
 
- Cs + (D-KB)s
 

The solution of this equation is:
 

-
W(xs)= Y1 expP(B 
s+E 2KA) + [Bs+E-2KA) 2 - 4A(Cs 2+(D-D.K)s)-] x1
 

2A (A.12)
 

2)s)
2 exp 	f-(Bs+E-2KA) - [(Bs+E-2KA) - 4A(CS +(D- .1
 

I e2A
 

where y1 and Y2 are constants to be determined using the boundary condi­

tion and some properties of the Laplace transform.
 

For any Laplace transform.
 

lim W(x,s) = 0
 
54W 

Therefore, as s tends to infinity the exponential part of the first
 

term in Equation A.12 tends also to infinity, and yhas to be set equal
 

to zero. On the other hand, the upstream boundary condition is a delta
 

11.1
 



function and, for this particular function, the Laplace transform is 1.
 

Then,
 

W(O,s) = - w(O,t) e == 6(t)dt I 

or
 

W(O,s) - Y2 exp(O8) Y2 = 1
 

and therefore,
 

W(xss) 	 - -4A(C 2+(D-KB)s)iexp) 	 [(Bs+E-2KA)2 
W(x,s) =expI
 

2A
 

or, 

W(x,s) - exp{-x(as2+bs+c) + exs+fx} (A.13) 

where 
B2-4AC 	 2BE-4AD
 

a 	-4Cb=
 

4A2 4A2
 

2
 
e -B
C (2KA-E)2 

4A2 2A 

2KA-E
 
2A
 

In order to obtain the solution of w(x,t) and therefore the solution
 

of 6q(x,t), it is necessary to calculate the inverse Laplace transform of
 

W(x,s). Following the same procedure used by Harley (1967), Equation
 

A.13 can be rewritten as:
 

W(x,s) - exp[-(a -e)xs-(b/2a -f)x] 	 (A.14) 

+ exp(exs+fx)[exp(-x(as2+bs+c)4)-exp(-bx/2a - a'xs)
 

Therefore,
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w(x,t) =6s'[W(x,s)] = exp[_(b/2a-_f)X]s{exp[- (a }
_e )x s 


2
exp(fx) 8{exp(exs) [exp(-x(as +bs+c -)-exp(-bx/2a-a2xs) ] } (A.15)
 

To evaluate the first term of the right hand side of the last equation,
 

the the translation formula is used:
 

-l[emSF(s)] = u(t-m)f(t-m)
 

where
 

0
u(t) = if t < 0
ul if t > 0 

For this particular case, 

m = (aA-e)x and F(s) = 1 

The inverse Laplace transform of F(s) = I Is f(t) = S(t) and then, 

exp [-(b/2ai-f)x]r-{exp [-a -e)xs ]}=
 

exp [-(b/2a -f)x] 6[t-(a -e)x]
 

For the second term of Equation A.15, Doetsch (1961), pp. 241, gives the
 

inverse Laplace transform of
 

exp[-x(as2+bs+c) I-exp(-bx/2a -a xs)
 

as
 

0 t < t < a x
 

II [dd-(t2ax2)I/a]
 

(d/a) x exp(-bt/2a) 2 2 t > a x
(t2-ax2) 
2


where
 

d (b/2)k-ac
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I,[-] first order modified Bessel function of the first kind.
 

Using this result and the translation formula again, the inverse
 

Laplace transform of the second term of Equation A.15 is
 

I [d2 ((t+ex)2-ax )-/a] 
exp(fx)(d/a) x exp(-b(t+ex)/2a) 2 2axe2 u t-((t+ex)2-ax2)
 

Finally, w(xt) is
 

w(x,t) = exp[-(b/2ai-f)x] 6[t-(a1-e)x] 

/ 2 
I [dl((t+ex) -ax )2/a] ex (.6
+exp(fx)(d/a) x exp(-b(t+ex)/2a) 2 u[t-(a -e)x] (A.16)
((t+ex)22-ax2)
((t+ex)2-ax2)
 

Recalling Equation A.3, 6q(x,t) is related to w(x,t) by
 

-Kx -Kx
 
6q(x,t) = qoe -qo + w(x,t)e (A.17)
 

The first two terms of the above equation correspond to the value of the
 

perturbation before the introduction of the impulse function (see Equation
 

A.8), whose effect is represented by the last term of Equation A.17.
 

Therefore, the channel response to an impulse function at Its most up­

stream point (x=0) including Infiltration losses is given by
 

-Kx
 
h(x,t) = e w(x,t) (4.18) 

or,
 

h(x,t) = exp[-(b/2a -f+K)x] 6[t-(a -e)x] 

I1 [di ((t+ex)2-ax2) /a] 
+ exp[(f-K)x](d/a) x exp(-b(t+ex)/2a) 2 2 u[t-(a'-e)xl
((t+ex)2-ax2)
 

(A.19)
 

After some manipulations, Equation A.19 can be expressed as:
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h(x,t) = exp(-rt+zx)(d/a) A lLd ((t-X / C l ) (t-x/c2) /a]
 
((t-x/c1 ) (t-x/e 2 ) )
 

+ exp(-px) 6 (t-x/c1 ) (A.20)
 

where,
 

1 
a - 2 2 

gy0(1-F0
 

c 1 v0 + (gyo 

c2 v0 - (gyo) 

d - ac

4 

F2
 2+F2
S 

b = - + K o

YoVo (1+F2)2 v lF2
 
0 0
 

2 s0 1 2
 
K 3 Ko 1 +90 1
 
4 2 yo1F2 4 y2 (1F22
 

S0 2-F 30 K 
KF + -­p = ­

2y° (1+F0)F o 2 

S_ + gS oF2 

v 2v 2 K 0o
 
0 0 

o K 3 2z 2= 2 2 oz 2 0 +- KF2 

q

0
 

0 YO
 

v 

0
F

0 (gyo)' 

115
 



A.4 Evaluation of the Area Under h(xt)
 

The area under h(x,t), keeping x fixed, may be obtained using the de­

finition of the Laplace transform. The Laplace transform of h(x,t) is
 

0W-St 

H(x,t) =T e h(x,t)dt (A.21) 

At s=O,
 

fH(x,O) = h(x,t)dt = Ah (A.22) 

which is the desired area. Introducing Equation A.18 into A.21,
 

-Kx 
 -st 
H(xs) = e e w(x,t)dt
 

J 
0 

-Kx 
= e W(xs) 

From Equation A.13,
 

-Kx 2 
H(x,s) = e exp{-x(as +bs+c)-+exs+fx} (A.23) 

At s=O,
 

-Kx 
H(x,O) = e exp{x(f-/W)} 

But
 

f = C 

Therefore, using Equation A.22
 

-Kx
 

Ahie
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A.5 Evaluation of the Area Under r(t)
 

If A is the area under r(t):
 
r 

r(t)dt
Ar 

From Equation 3.15
 

Ar = g. dt h(xt)dx
00 

The Laplace transform of r(t) is:
 

R~s) =t[r(t)l
 

(o -St

J e r(t)dt
0 

1 fdt e h(xt)dx
 

0 0 

Introducing Equation A.18:
 

R(s) = fdte e w(x,t)dx 

0 0 
i L -Kx0 -st 

1 dxe e w(xt)dt 

fo e W(xs)dx
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At s=0, A = R(O). Recalling from Section A.4 that W(xs) 1 for all x, 

Ar 
r 

= 
I 

L 

L -Kx 
] e 
o 

dx 

I 
KL 

-KL 
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