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1 Introduction: Objectives and Scope 

This is one of a series of Technical Bulletins issued by the World Fertility Survey with tile 

objeciive of illustrating applications of statistical methodology to various aspects of the 

analysis of sample survey data, and in particular of WFS data. 

The present bulletin is concerned with tile estimation and interpretation of sampling 

errors of survey estimates. Consideration is also given to the question of presentation of 

sampling errors in survey reports in a way which facilitates their proper use by researchers 

in the interpretation of substantive results, as well as in sample design and evaluation. 

It has been a long-standing practice of the WFS to encourage and assist participating 

countries in publishing detailed sampling error estimates along with substantive results 

of the survey. Considerable effort has been made in this direction. For example, the 

WFS 'Data Processing Guidelines' ( 1980) contain recommendations on how to code 

the sample structure to e,,sure that sampling errors can be computed, and provide detailed 

specification of survey variables and sample subclasses for which computation of sampling 

errors is recommended. The WFS has developed (and distributed at a nominal charge) a 

package program, CLUSTERS, suitable for routine and large-scale coiipatation of 

sampling errors for descriptive statistics from complex samples (Vernia and Pearce 1978). 
Comparative ar'alysis of sampling errors from a number of fertility surveys has alsc been 

undertaken (Kish, Groves and Krotki 1976; Verma, Scott and O'Muircheartaigh 1980). 

Consequently, practically all First Country Reports of WFS surveys include detailed 

sampling error estimates, and many provide excellent examples of procedues fo,' esti­

mation, presentation and interpretation of sampling errors. 

Drawing on this work, the present bulletin aims at providing more systematC.c and 

detailed guidelines on computation, presentation, interpretation and use of san:plilig 

errors. Section 2 defines sampling error, placing it in the context of tihe total survey 

error, and considers why it is useful to compite sampling errors. It also provides a simple 
exposition of the interpretation and use of sampling errors, with illustrations. This section 

is directed specifically to the general user of survey results who, in reaching conclusions 

from the survey, must take into account the quality of the data and the associated 

margins of uncertainty, including those due to sampling variability. 

The next three sections are directed specifically at the statistician and subject matter 

specialist responsible for the production of survey reports; these sections should also 

be useful in enhancing the understanding of the general reader of survey reports. Section 

3 describes practical methods of computing sampling errors. The emphasis is on general 

and simple procedures which provide reasonably good approximation in diverse situ­

ations and hence are suitable for routine and extensive computations. The context here, 

as elsewhere, is that of a large-scale, single-round survey, with a probability sample and 

complex design, aimed at providing a variety of descriptive statistics of the type en­

countered, for example, in WFS First Country Reports (WFS 1977). Section 4 explores 

patterns of variation in sampling error results, across sample subgroups and across sub­

stantive variables, in the light of theoretical and empirical considerations. Trhe objective 

is to illustrate how information on sampling errors may be summarized, and also extra­

polated to subclasses, variables and samples other than those for which actual compu­

tations are perfomnmed. Section 5 provides guidelines on presentation of sampling error 

results for different types of users: the general reader and user of survey results, the 

subject matter speciaist engaged in primary and secondary analysis of the survey data, 

and the sampling statistician interested in evaluating the design used for guidance in 
designing other, future samples. 
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Finally, a brief oLtline of tilepackage program ('LUSTERS is provided in appendix A. 
The availability of this package is one of the factors which have made it possible for 
most WFS First Country Reports to include information on sampling errors, and organi­
zations undertaking other survTys may profitlaly utiliie tile package for tilesame 
purpose. 

Tie bulkctin has a itual objective: to provide a step-by-step guide oilhow to compute
and utilize sampling errors for diverse statistics, and at the same time to ,'nhance the 
reader's appreciation of the nature and significance of errors or uncertainties inherent 
in the sawpling process. The emphasis of tilediscussion is on its possible relevance to 
practical suhvey situations rather than onl theoretical refinements. Specialists may regard
some of tIe 'uatcrial included as common kllowledlge availhble m many excellent text­
books; however the document is aimed at a wider body I'ofsurvey practitioners a:nd 
users of survey data who have to take many decisions without being themselves expert 
sampling statisticians. 



2 The Significance and Interpretation of Sampling Errors
 

2.1 INTRODUCTION 

It is widely recognized as good practice for survey reports to include detailed information 

on sampling variability of the survey estimates. Cross-tabulations of the data from large­

scale multi-purpose surveys generally involve numerous estimates over diverse subgroups, 
each with its associated sampling error. This section is concerned with the basic question: 

how the general reader and practical user of the survey results can utilize information 

on sampling errors in interpreting the .substanrivesurvey results and in drawing inferences 

from the survey. 

lFrrors in su rveys arise from nutmerous sources and sanmlpling error is just one corn­

ponent of error. 'Io alppreciate its significance, it is important to place it in the context 
of the total error. Section 2.2 outlines a typology of survey errors and defines exactly 

%%fhat component of the total error is referred to as the 'sampling error'. In this context, 

the remainder of section 2 deals with tihe practical question: what can the user of survey 

results do with the information ott sampling errors? Section 2.3 discusses the significance 

of sampling error in surs'ey dtCsigll ;nlld tie interpretation of Survey results, and sections 

2.4 and 2.5 des,.ribe And illustrate how infortuation on sampling error may be inter­

pretCd as margins of uncertainty in the estimates obtained from a sample survey. 

2.2 SAI'LIN(I RRUR ANI) tiIIIA.R StR\'.Y FRRORS 

The objective of a sariple survey s to make estimates or inferences of general applica­

bility for a population. on the basis of' otmervations iade on a limited nunber (salmple) 
of units of tthe popr!ltion. We may deline 'error' as the difference between the (usually 

unknom)nt actual po(pulation value anit thic vlhc estimated from the observed sample, 

ant %C h,.'-ad catcgories ot crror Vertmta 1)S91a). First, errors arise fromwe%()istitruliI. 
tile tact thal what is observed or mteasurel departs fronm what it is intended to neasure 
in the surv, . Such errors ofl imeuasureoent centre ott the substantive content of the 
survyC. : definition of tile survcy ohiectives. their tqperationalization into a coherent and 

conmsistentt set ot Loestr'., tile iterpretatioti and commitlrunication of these to tire re­
spoidertl the roprindcnt*, ,ibilitv and will ingnues to Irovide the informiation sought, 

tihe ultility ,t rec rting, cditing aii! coding tle rleSt mses, etc. 

Seconili\ . ,rmi r, orc triol th,- proces (d extrapolatiotn ol the results front the ob­
served Ulllt to the etiire >,tIUdy toitMlatiolt. t h.s C errors cenlre on the process of sample 

design Allid d. will prcewitLc'n there no od tmteasurctentsAlt'l %k be it ire errors 
involved In the milt, t ilu.l\ eniiumcr:tcd. It is iniportamit to deline this second group 

At errors snLL_ ,mplm '£ongerir. which is a cotipoiciet (i it. is sietivitnes confused with 

the grou p as a v,htlc. 

To draw iii1criIL.C trn aitnplc survey about the population under study in anr 

ohIcctivc niaimier. It ik nce-o ir , to hnave it probability sample: that is, it is necessary 

for the relalive chlaice ,I bemlrr sclectcd into the satmmtple to he kmtuown and non-zero 
for each tlit iii the [ptlt ioi. 

lEen when the ;tiiplc is diC,id!nct I1reh. Irrohrability sanple, the above conditions 

nmay Ie violated in practice due to) tlecCt, III StIpic implementatiom. Operationally, 
a sample is selected froti a fraie which explicitly or implicitly provides a list, and the 
sample design provides ,pecific rules and prrocedures for samtiple selection from this list. 
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However, it may happen that not all units in tilestudy population are included in -he 
operational sampling frame (non-coverage); or some units may be duplicated in the 
frame, increasing their chance of selection into the sample: or there may be insufficient 
information for unique definition and identification of units in the field, or ambig'iities 
in the correspondence between uits of sampling and units of enumeration; or sample 
selection may not be exec-ited as intended or designed; or information may not be 
obtained from all the units specified as belonging to the sample (non-response). As a 
consequence of factors such as these, the sample structure can be distorted by some 
units being entirely excluded or selected With probabilities different from those required
by the sample design. These errors of sample implementation (as well as any deliberate 
departures from probability sampling) can result in known or unknown biases in esti­
mates obtained from the survey. 

Errors of measurement and errors of sample itnpleuentation are collectively termed 
non-sampli-ig errors. As sketched above, these arise from a wide variety of sources and 
affect the survey results in i iflcrent an d complex ways (for a detailed discussion, see 
United Nations I982). As distinct from these, the sampling 'rror is inherent in the 
process of statistical estima'ion of population parameters from results obtained on a 
probability sample Of the population. A sample design specifies rules by which units 
from the population are to be selected for enumieration and rules for the estimation 
of population paraoelers; even in the absence of mteasureiment and inplemnentation 
errors, repeated applications of the same design would result in different estimates 
depending on tileactual units which happened to be selected. The sampling error of an 
estimator is a measure of its variahility undei the theoretically possible repetitions of the 
survey in the absence of non-sampling errors. 

In general, tileeflect of aniv particlar source of error (sampling or niin-s:onpling) 
on aggregate survey results can Ih e decomposed in to two co iponen ts:rariable error 
and bias. This distinction is based ol the pIossibility. in principle, of repetitii of the 
survey under thie same conditions. Somie oflthe colditiOnS uTnder which the survey is 
taken lay be colsiilerCd C'.1tial to its Lesigln ald operation: for example, the general 
social colditions, chiaraic:eristics of the populjflon enumerated, quality of the sampling 
frame available, nature xad complexity if the information sought, or the type of' survey 
staff and other facilitic avi..laffe. Ili addition to the essential cmlfditiMis, survey results 
are also influenced hy transient Or chance f:ictr1. such as the particular units selected 

the sample. theinto i particular field and olice staff used, iir tileconditionis under which 
a particular interview is coiucteCd. ()in Can cceive iOt tile survey being repeated tinder 
the given essential coulditions; if this were d(one, different repeiitions wuld still give 
different resulls duc to the arying impiiact of chance factors. file variable coutmpftonent 
of the erriir mc.asures the variability betweCn dilicrnt estimitafes made Iruout such hypo­
thetical repltition, if the survey. [tie average of all possile repetitioms is the expected 
alli tinder gl"i'll lltal cumidition . [lie ditlerem ,_echetween this expectedtllt' Vs iir 

average value and tile (Icsrcd poputlatlll valtu is the bias ilansen. lurwit/ anfd lershad 
1901 ).More sinuply, btt appruximately, bias is ti cunstlfant cittpoilent if"error which 
has the same effeL t url aiy ref etitiont Oif the survey (Kish I ),5:5 17). 

Varialle error mticasurcs s.arlttjtn between estimates friiom different repetitioim, tlder 
tilesante essential cuu,cfitions. Ifc pssible repetitioms may be conmsidered tio be made 
ip Of two 'layers': repeated oubcrvatiolls over a fixed s;ampule of andtullits; repetitin 
of the survey over differcnt samlcs. Me asurontent variance, oir r.stponsc variance, is a 
mneastre of tfie variability of' repeatedimteasurements iiver fhe sam samplc iof units; the 
variability ot tie average iir expected vahC oi these meIsurlellts over dillifrent saimples 
is the sampling variance. 

In short, sampling variance is intended to measure the ,'ariabifity between estimates 
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from different samples, to the exclusion of variable errors and biases resulting from the 

processes of measurement and sample implementation. (However, as explained in section 

3. estimates of sampling variance in practice often include some contribution from other 

sources of variability, such as response variance.) 

Finally we may note that the sampling 'mean square error' iscomposed of the sampling 
variance plus the square of the sampling or estimation bias. hFilelatter bias is defined as 

the difference between the expectet' value of an estimator and the population parameter 

being estimated, ill tile absence of mcasuretent errors and sample implenentation 

errors. This bias is purely a statistical property of the estimator used, and with reasonable 

sample size and design can usually be avoided through the use of proper estimation pro­

cedures, such as by appropriately weighting sample values to compensate for differences 

in probabilities of selection. It is in this sense that most estimates considered in WFS 

First Country Reports are 'unhiased' (see, for example. Central Bureau of Statistics, 

Indonesia. I978: 131 ). lowever, in certain situations the estimation bias may become 

serious, as in the case of rtio estimates front clustered samples with very unequal cluster 

sizes, as described in section 3. 

2.3 SIGNIFICANCI OF SAMPLING ERRORS 

In interpreting information on sampling errors, the reader has to bear in mind that 

they represent only one component of the total survey error. For estimates based on a 

relatively small sample sizt. this component may be the dominant one; however, in 

other situations, non-sampling errors, particularly systematic biases, may be nuch more 

important. In surveys with considerable rates of non-response, refusal, response error, 
listing error, etc. it is not always easy to decide how inuci attention should be given 

to sampling errors. Some survey statisticians give the impression of being exclusively 

concerned with the saiiipling errors, which are often easily computed, and ignoring the 
possibly more sitif cani, but 4,ftcu unknown, nton-sallipling errors. Such all orientation 

is obviously not delensible. ()[n the other hand. it is equally meaningless to declare that 

in general non-sampling error is predominantly ior' important than sampling error since 

the latter increases progressively as the size uIt tile population subgroup under consider­

ation diminishes. Thus in a small enough subgroup, the sampling error is almost certain 

to outweigh tie non-sa iiipling error. 

It is important to appreciate the signifimcace of information on sampling errors. As 

all experienced statistical organi/atioin has noted (Yugoslavia Federal Statistical Office 

1)78): 

Only al'ter ears (,t e\perecl)c mili a variety (of surveys have we conic to a firm opinion thiat 

sanpling errors hat, an rtctwtttmal raltic. Data frimn a sanple survcy inmg]li e, at least it) prin-

CiplC, aMyiin.- ss I 'e. \ 'elClt ,andl"useless'. An i!nspCctl(ll theliiagniitude ti" sampling errorst o 

for various characterislics it t i level f1the country as a slw)le is well as its subdivisions is the first 

step in passim! judniucni i)mit di place (I the survey bet een ihese e\trenmes. Therefore, in order 
to establish the asis It)[ the Cv%.ihhillhll pru)cess (d the sample strsey dala, infornmation about the 

inaenitude ot sarriplintv errrs ,rhuld be osidered as aln idiopcisibl' part each sample stvey 

report. 
Needless t.) soi., a kim lte&c , sI l i err,,rs 1 f' the inforlmation neededis no) lr-c than a part 

f(or the evaluation process. 
At its subseqi entii slces this prucess has 1() 1'0 bia e.theCl LMlCi.l]WliltC) C'.Ct, :3 cLwmeral study 

il the preca tionary ilcasuires taken il the helid. etc. tIl mc cr. all these adititn al steps have a very 

limited value unless tthey are clilllhiild it II inlriml in iliOji samplinge errors italics in the original.1 

lo the above .(insideration of orientation it miust he added that infmormation oil the 

magnitude of sampling errors is essential ill decidinig the degrec of' detail with which 

tile survey data may be nieaningfilly classified. In a fertility survey, for example, 

II 



interpretation of survey results generally requires very detailed classification of tile
data by demographic characteristics such as age, marriage duration or parity, and by thesocio-economic background characteristics of tie respondent. [ven tor a sample of afew thousand respondents, the sample categories being compared and contrasted can
rapidly become very small. Roughly speA:kitg. while the magnitude of lion-sampling
bias in a eategory is more Or less independent of its sample size, its sampling variance
tends to increase with decreasing sample size. (onsequently the sampling error can betit,: predominant, or at least a significant, part of' tire total error for uiariy small categories 
and comparisons of substantive interest. 

Sampling error information is also essential for saIlple design and evaluation. Of course sample design is severely constrained bIy a variety Of practical considerations
such as the availability of sainpling framres, fieldwork arrangements, tile survey time­
table, requirements of supervision and control, and, above all, the survey budget. (SeeW[:S, 'Manual on Samplel)csign' ( 1975) for a useful exposition of the factors involved 
in tile choice of sample design for fertility and similar surveys. ) Slatislical efficiency
is just one of tile factors involved although one which cannot be ignred. While prac­
tical constraints define, however narrowly, tile class o fersibhe designs, choices have tobe InaLe within tllose o the basis If tliciericy i) telims of costs aid variances. Some 
of the obvious questions tonbe considered relate t(o SaiIlple size. albocation, clustering
and stratification. For Lxarrple: 

" Was (is) the sample size appropriate? Did the presence of large sampling errors pre­
clude important survey Objectives being met? Or alternatively, could a smaller sample
have met these objectives better, perhaps by permitting a greater control of non­
samplirig errors? 

* Was tile sample allocated appropriately heteen difterent reporting domains? Was
tile miinimunm sample allocated to ainy domain large enough to meet the survey ob­jectives'? flow did any disproportiorate allocation affect tile efficiency of tire overall 
design? 

* Was the degree 01 clustering of sample units too high, or too low, on tile basis of its
effect on costs, virianLces and control of non-sairpling errors? flow much (ost andtrouble was saved by introducing audition:a sampling stages, and what was their 
contribii ti l to the iotitI sampling error? 

* In terr.s Ofttheir -,anpling error, what were the imost critical sariables ,n deterinining 
sainiple siLe Adrrf ILsi'l" 

(enerally the practical cthitranmts ar,' not rigorously binding in the sense of corn­
pletely determining the sample desi,,n; daa relating to sampling errors and costs provide,
at least in primiple the dccisive evidence on important aspects of design such as tiose
noted above. I' urtherirorc. c.en 1in tIhe ajh'ence of dfata oil costs, considerable progress
can ' miade by look*in in;it impling errors alone. Ifhis is illustrated by an evaluation of 
samriplirig errors from WI S uveys ,,.hiji concluded that 'perhaps there has been toostrict an adhererice to iropnnrionAl *oll't.It beteelnel f ial Ioli. . . llo f Iohe iioreheterogeneous, large countries .. gr'atC Cphil.,lrs shouhld have beer given to urvey
estimates at tile sunnational level'. I'urthier 'it is p,,ss:ble that tile W[S has erred in ihedirection of over-scattered sanple designs. ( crtamnly In soUic countries the use of mnore
heavily clustered samniples would have been imore econinnnncal' ( Vernna 9 a). 
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2.4 INTERPRETATION OF SAMPLING ERRORS 

In section 2.2 the concept of sampling error was defined in terms of variability between 
estimates from different samples. Inl this section measures of sampling error such as 
variance, standard error and confidence intervals will be defined and interpreted more 
precisely. 

Suppose that Ys is a certain quantity such as a mean estimated from a particular 

sample s (it is assuned throughout for conveLn:ence that no measurement or other non­

sampling errors arc present). Different samples would give different values of Ys; the dis­
tribution of y from all possible samples (with given design and selection probabilities) 
is called its sampling distribution. The sampling disiribution of Ys is the th-eoretical dis­

tribution of the estimate over all possible samples, each sample weighted by its pro­

bability of oc--urrence. P,. depending upon the sample design applied to a fixed population 
of characteristics. The expected value of the estimate is the mean of the sampling dis­

tribution: 

E(y-) = P, (2.1) 
S 

where : is the sum over all possible samples. 
S 

The variance of is measured by the square of the difference between a sample 

estimate Ys and its expected value over all possible samples, E(), averaged over all 
possible samples. ic 

Var(- I Pr ~ - 1,i) (2.2) 

The standard error, o0., is the square root of the variance. The sampling distribution 

represents the random luctua tions of due to the specific sample design, and thiss 


variability is measured by the standard error. 

In a practical situation, rsults from only one sample are available. Ilowever, inherent 

in a properly designed probability sainple is the ability to provide estimates of the sam p­
ling error from the results of the one sample that is available. This is because the ob­
served variability between units within a sample carl provide an estimate of variability 
between different samples. It should be appreciated that the estimated standard error, 
say se (0). from a pairticular sample does not measure the actual deviation -I-( , ) of 
that particlat sample mean from tileexpected value; rather it is aii estimate of a para­
rnete O. of t sampling distribution of this deviation. In fact it is not necessary for 

y5 and se l ) to be estimates from the same data. 

Inferences trom saimple surveys are made in terms of probability intervals, usually 
confidence intervals. Ilhcse intervals are defined on tile basis oft iesampling distribution 
of , (ic the dist-ihution of the estimates YS obtained from all possible samples with 
given design anO selection probabilities). In many practical situations this distribution 
is approximat,-ly normal. For values of'Y distributed normally around their mean E(y) 
with standard deviation uj. the probability 1 of Y'being in the interval ± t times the 
standard error oileither side of the expected value. iethe interval E(y) ± t u ,is given 
by the following table: 

t 0.67 1.00 1.64 1.96 2.58 3.00 3.29 

0.95 0.99 0.997 0.999P 0.50 0.68 0.90 
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For example, 68 per cent of sample estimates Ys are expected to lie within the range
E( ) ± o0; similarly 95 per cent lie within the range E( ) ± 2 •o approximately. 

In practice we interpret such an interval as follows. The estimated confidence interval 

Ys ± t • se ( ) (2.3) 
contains the expected value E() with probability (or confidence) P, where, for the 
assumed normal distribution, the relationship between t and 1Pis given by the above 
table. 

As noted above, in many practic'd situations the sampling distribution of Y' is ap­
proximately normal. Just how good that approximation is depends on the underlying 
distribution of the characteristics of the population nd on the sample design. The 
approximation improves with increasing sample size and, for most samples encountered 
in practical survey research, the assumption of normality leads to errors that are small 
compared to other sources of error. Note that the fact of this approach to normality
of the sampling distribution of large samples does not depend Oi the normality of the
distribution of elements in the population. The distribution of many characteristics 
in the population is, in fact, far from normal. For example, the number of children 
ever born to married woiien in a cross-sectional survey may be highly skewed to the 
left; however the mheasts estimated from different samples of reasonable size are likely 
to be aplroximately normally distributed around the cxpected value. 

For clustered samples based on a small number of clusters (say less than about 30),
it is more appropriate t, use the Student t-distribution , with 'degrees of freedom' (df) 
e ulial to 

I ah I) = a, -ll, 

h h 
where ah1 is the number of clusters in stratum Ii and 2 the sum over all II strata, ie di is 

equal to the total number of clusters less the n umber of strata. For example, for a sample
of 20 clusters with 2 selections per stratum from 10 strata, 

df = 20 -- 10 = 10 

and the confidence intervals are 

t(df= 10) 0.70 1.05 1.81 2.23 3.17 3.96 4.59

P) 0.50 0.68 0.()0 0.95 0.99 0.997 0.999
 

Compared with the norial distribution (which corresponds to infinite ol), the above 
distribution gives aIhroader interval (ie a larger value of t in equation 2.3 for the same 
level of confidence), I1,r example the 95 per cent Of confidence interval is T, ± 2.23 
SE(y), compared with , 1.( SF1(y) for the normal distribution. This difference is 
larger at higher values Of t. 

Some statisticians preler to mublish information on sampling errors in terms of the 
standard error, to permit the reader to construct intervals and make inferences according 
to his needs. IHowever, for the general reader it is more useful to know the range within 
which the true' value of' interest can he expected to lie with a certain level oh confidence. 
While different levels of confidence imty be chosen for different purposes, a commnuon 
and convenient criterion (followed, for example, in most WFS First Country Reports) 
asserts that the population value to be estiiMted from the sample lies within a range 
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twice the standard error on either side of the sample value. This can be asserted with 

a high (95 per cent) level of confidence, ie one can say that the chances are only one 

in twenty that the true value is outside this range. For example, if the observed sample 

mean for a variable is 3.5 and the estimated standard error is 0.2, then for practical 

purpose-, apart from non-sampling errors and other biases, the true population value of 

interest lies in the range 

3.5 ± 2(0.2) = 3.1 to 3.9 

with 95 per cent confidence. 

The question of whether or not two subgroups of the sample differ significantly in a 

particular characteristic can be dealt with in a similar way. One first obtains the observed 
error of the differencedifference, found in tilesample; one tlhcn estimates the standard 

and this leads to the 95 per cent confidence limits for the difference. If a difference of 

zero would fAl outside these limits, then it can be said that the hypothesis of no dif­

ference is rejected with 95 per cent confidence, or, in other words, that the groups differ 

significantly. 

As an example, suppose that two group means are being compared: 

Group I observed mean = 3.5 

Group 2 observed mean = 3.0 

Observed difference: 3.5 --3.0 = 0.5 

Suppose tilestandard error of the difference is estimated at 0.15. Then one can assert 

(with 95 per rent confidence) that the true difference is in the range 

0.5 ± 2(0.15) = 0.2 to 0.8. 

and the obshrved difference is said to be 'statistically significant', because we have more 

than 95 per cent confidence that it is not zero. 

For a lucid discussion on the use and misuse of tests of significance in social research, 

see Kish 15l9). 
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3 Procedures for Estimation of Sampling Errors 

3.1 INTRODUCTION 

Practical methods of computing sanpling errors need to ; general enough to cover 
the complexities and variations which frequently arise in sample designs for large-scale 
surveys. Tile estination procedure must take into account tile sample structure, in 
particular its clustering and stratification. At the same time tie procedures should be 
simple enough to provide easy conputatic nal formulae so as to permit, economically,
the detailed computations required for the numerous estimates produced by the survey. 

In a multi-stage design, each stage of selection makes a con tribution to the total 
sampling error. The contribution of the first stage results from tie fact that only some 
of the first-stage, or primary, sampling units (PSUs) in the population are taken into the 
sample. 'File contribution of the second stage results from the fact that only some of tire 
second-stage units (SSUs) fron within the selected PSUs appear in the samlple, and so 
on. For sample design and for the evaluation of sample designs, decomposition of the 
total sampling error into its components according to sampling stages (along with in­
fornation about costs, etc) may I-e required, lowever, as a guide for orientation towards 
and interpretation of survey results, the user requires information oil the overall uiagni­
tude of tile sampling error, without requiring its decoiiposition into contributions of 
individual stages. This section describes practical metliods for estimating tile overall 
sampling error for complex samples. 

The essential procedure for estiiating sampling errors for coiiplex samples is illus­
trated by the use of siiple replica tes or interpenetrating samples first introduced by
Mahalanobis (I 144). If the sample is divided into independent subsaniples or repli­
cations, each of exactly the saie design, then each of the stihsaniples yields a valid 
estimate of tie population parameter of interest. A measure of variability among the 
replications provides an estimation of the sampling variance. For example, if the sample
is divided into c independeit re lications, and yj is tile estimate of a saiiple total froiii 
replication i, then time estimated variance of the averaged estimate of tile total 

S= Z y1/c 

is 

var (3.1) 

The use of inlerpeuct rating s;!iples provides atn easy and convenient method of 
estimating variance, irrespective (i the complexity of the design within any replication.
Essentially the samime approach is used for estimating saiipling errors for other complex
sample designs. For example, cach independently selected prinu, ry sampling unit (PSU)
from a stratun can provide a valid estimation for tile stratun, so that a measure of vari­
ability among the PSUs within strata provides an estimate of the sampling variance. 
The procedure is described in detail in tire remainder ,)f this section. 

3.2 A PRAC(TIA(L Mi[TIIODIOF (CM). 'IN(; SAMPLING ERRORS 

Under certain assumlptions, usually not too restrictive in practical situations, sampling 
errors for a variety of statistics, such as proportions, means, ratios and their differences, 
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over the total sample as well as over diverse subclasses, can be obtained on the basis 
of values totalled at the level of primary sampling unit, ic on the basis of PSU totals. 
The sample design and selection within individual PSUs may be complex and differ 
from one PSU to another, without affecting the form of the variance estimation to be 
described btlow. The method takes into account the components of' variance firom all, 
including the second and subsequent, sampling stages, even though no explicit refcrence 
appears in the computationalliormulae to an ' stage beyond the firit. Essentially this is 
because the variance contributed by the later stages is reflected in the observed vari­
ation among first-stage units. A review of practical methods of computing sampling errors 
is provided by Kalton (1977). 

The basic assumptions required are (a) that two or more PSUs :ire drawn from each 
stratum, and (b) that these selections are drawn independently of one another, with 
random choice and with replacement. These conditions are seldom satisfied exactly 
in practical sample designs; however, as described later (section 3.3), they are reasonably 
well approximated in many situations. 

Suppose that the total sampling frame is divided into a number of strata, that lPSUs 
are selected independently with replacement from each stratum, and that a subsample 
is selected in each selected PSU, in whatever way, so as to give a final sample of ultimate 
units. 

Let yhj be the value for ultimate unit j in PSU i from stratum h and let whi be the 
weight associated with the unit (introduced to compensate for unequal probabilities of 
selection, differential non-response, etc). Then 

Yhi= Yj "Whij 	 (3.2) 

is the appropriately weighted estimated total for the sample selected from PSU i, scaled 
in such a way that 

Yh = 	 jyt and Y =ZYh (3.3) 

are the estimated stratum total and sample total, respectively. The variance of the totals 
is estimated as 

var (Yh) = ah I yh - h Ya-)hh 

ah - a I yj
 

and 	 (3.4) 

var(y) = var(Yh) 
h 

where ah is the number of IPSUs selected from stratum b. The reader may note that the 
above is analogous to the formula for estimating the variance of a sample total for a 
stratified random sample. 

Variance of Ratios 

Generally, 	sample surveys are used to estimate ratios (rather than totals), of the form 
ZWhiJ Yhi Yhi NYh y 

r .. (3.5) 
ZWhj Xhlj Z Xhi Z ×Xh x 

For examplc, in a sample of women Yhij might be the number of living children to woman 
j (in PSU i, stratum h), anu xhij her total number of children ever born; then the ratio r 
estimates the proportion of surviving children. 
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Ordinary means and propottions are just special cases of ratios. In a mean, the de­
nominator is simply a count variable, ie, xhij = I for all ultimate units concerned. For 
a proportion, in addition the numerator is a dichotomy, with YhiJ = i or 0 depending 
on whether or not the unit possesses the characteristic whose proportion is being esti­
mated. Since ratios and their differences are commonly encountered estimates from
sample surveys, it will tobe useful list formulae for the estimation of their variance. 
For a detailed treatment with numerous numerical illustrations, see Kish and Hess (1959). 

The variance of a ratio r, to a certain degree of approximation (see below), is 

varCr) = - [var (y) + r2 var(x)- 2r coy (x, y)] (3.6) 

1'here var (y) is given by equation 3.4, with a similar expression for var (x), and the 
covariance is 

cov(xy) ah- Yh ' Xht - xh (3.7)h Iah'_Iah ) 

The same expressions can be used to compute the variance of r over a subclass of the 
sample: any units not belonging to the subclass are simply ignored. 

Frequently the denominator is a count variable, so that x is the total sample size. 
The terms var (x) and coy (x. y) appear in equation 3.6 because of variation in cluster 
sizes.' Apart from its contribution to var (r), the variation in cluster size also affectsthe statistical bias in the ratio estimator. It has been shown that the bias relative to thestandard error is less than the coefficient of variation of x, ie 

cv (x) = V r(x)/x = se (x)/x 

and decreases with the number of sampling units. In a well-designed sample, with little
va-iation in cluster size, the bias is usually negligible. However, for subclasses which 
dic not form explicit strata for sample selection, the effective cluster size may vary
greatly, as may be the case with very small or ill-distributed subclasses of the sample.
For a stratified clustered sample, cv(x) is estimated by 

C2 X)= I ry ah x,_ Xh\1
 
x h ah - ah/J
 

Variance of the Difference between Two Ratios 

Turning now to the difference of two ratios 

r-r = -Y- y (3.8) 
x x 

its variance is given by 

var (r - r') = var r) +var (r') - 2 coy (r, r') (3.9) 

where the variance terms are given by equation 3.6, and 

cov(r,r') = I [cov(y,y') -r.r'cov(x,x') r cov(y'x ) ,-r'cov(yx) 

with cov(x, y), etc defined as in the form 3.7. 

The term 'cluster size' is used here to refer to the number of ultimate sampling units selected in
the PSU. 

18 



A difference of ratios can arise in a number of ways. One may compare, for example, 
two different characteristics (y and y') over the same sample (x = x'). The most common 
situation, however, is the comparison of the same characteristic (same variate in the 
numerator) between two subclasses of the sample defined in terms of different categories 
of the same characteristic in the denominator. The classes are usually mutually exclusive 
but not necessarily exhaustive, for example, comparison of mean age at marriage among 
two age groups of women, eg 25-34 and 35-44, or comparison of the proportion of 
children dead between urban and rural women. The same computational formulae apply 
in different situations. The covariance term in equation 3.9 arises because the same 
ultimate units appear in both ratios or because the units come from the same sample 
clusters. The statistical bias in (r - r')can become large in relation to N/var (r - r ) if the 
covariance term is large and positive, or if the biases in r and r' are very different. 

Other Functions of Ratios 

By introducing the transformation 

Zhij = - (yhij - r xhi) (3.11) 
x 

equation 3.6 can be expressed more simply as 

var(r) = I [ zi (3.12)
h h - J ah)] 

where 

Zhi wjjl *zhj yjlh-r , Xhi and Zh = Zh =Yh- r Xh , 

and 

z zh = y-r'x = 0 by definition. 
h 

In fact equation 3.12 holds for the iatio of two ratios, the product of two ratios, and 
for the difference or any linear combination of ratios, with appropriately defined vari­
able Zhij. 

For a difference of two ratios r" (r - r'), equation 3.12 gives var (r - r') with 
1 I
 

zhij y(Ybjr xhi) -- - rxhj)
- (Yhij 
x x 

(3.13)ui
tZh
_tlj) 


Similarly for the sum of two ratios r" (r + r'), we have 

I I 
Zhij = ..(yhio -- rxli,) ' (ylij - r x1,11 ) x x 

= (Zhl, + zil) (3.14) 

The generalization of the above to any linear combination of ratios is straightforward. 

For the ratio of two ratios (double ratio), r"= r/r', we have 

zhij = --( hi - " z'id) (3.15) 
r
 

and for the product of two ratios, r"= r , r' 

Zhij = (r' Zhij + zhij) (3.16)r 
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An example of a double ratio is a 'relative fertility rate'. A fertility rate is itself a ratio,
the numerator consisting of the number of births to a specified category of women 
during a specified interval of time, and the denominator being tbe number of person-years 
of exposure to childbearing for those women during the same interval. One might be 
interested in the distribution of fertility rates for different ages, or different categories
of some kind, rather than their absolute values. The distribution is given by the 'relative 
fertility rate', ie the fertility rate of any category (such an age grouL))as divided by the 
overall rate. This is a double ratio. 

An example of the product of two ratios is provided by age-specific fertility rates
computed from combined data coming from a household survey and a fertility survey 
of a sample of ever-married women, as described in section 4.7 below. 

3.3 APPLICATIONS TO PRACT"FICAL )ESIGNS 

The simplified variance estimation procedures described above are based on the assump­
tion that two or more PSUs are selected independently and with replacement from each 
stratum. Frequently, actual designs do not satisfy these conditions exactly, and certain 
approximations are involved in fitting the model to them. 

(1)Sampling without Replacement 

In most practical situations it is preferable to select PSUs without replacement (ie with­
out allowing any unit to appear more than once in tilesample), since the resulting vari­
ance may be somewhat smaller than that obtained using salpling With replacement.
Consequently, the procedure described above for wit li-replacement sampling would 
tend to overestimate the variance of a without-replacement sample. IHowever, taking
this feature of the design into account would require additional computation of other 
components of' the variance and the use of complicated forl:,lae. 

Fortunately in most situations the overestimation involved is entirely trivial; when 
that is not tie case, a better approximation is often provided by introducing the 'finite 
population correction' (I fhll)into eq nation 3.4, ic 

yI Yvar tyh) = h 
~an
 

where fl, is the overall sampling fraction in stratum It.
 

(2) Systematic Sampling 

Systematic sampling2 serves as a practical and convenient method of selecting units 
from an ordered list 4Otcn tle ordering for selecting PSUs is geographical, as is the case 
in moSt WFS samples 'Ftie combined effect of ordering and sele':ting by applying a 
constant interval to the list can be seen as introducing 'implicit' stratification, with one 
random selection from each implicit stratLurn. To corripu te the variance it is usual to 
imagine the implicit strata grouped in pairs to give 'pseudo-strata' and to regard each pair
of adjacent selections as having been drawn independently front asingle pseudo-stratum.
This procedure, called the collapsed strata technique, may overestimate the variance of 
the systematic sample. In mrrost practical situations, the overestimation is unimportant
and is preferable to sacrificing tileconvenience (and probably somewhat lower variance) 
of systenratic sampling. 

2That is,selection from alist at a fixed interval, with arandom start. 
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Often systematic sampling is done within explicit strata. in this situation, the pseudo­

strata formed by collapsing implicit strata should be created in such a way as not to cut 

across the original explicit strata. Pairing of implicit strata will create a problem if there 

is an odd number to be dealt with; in this case one of the pseudo-strata can he made 

with three PSUs. Other variants of the above scheme are possible. In place of comparing 

L PSUs in L/2 pairs, the variance may he estimated by taking L-I successive differences 

among the J. units (ie taking the difference between PSUs I and 2, between 2 and 3, 

between 3 and 4, etc). 

(3) Single Primary Selection per Stratum 

To achieve an efficient sampling design, explicit stratification is sometimes carried to a 

point where only one PSU per stratum is selected into the sample. The Malaysia Family 

and Fertility Survey provides such an example among WFS surveys: here the rural sector 

was divided into 70 strata and one PSU per stratumu, was selected. 

The situation ill this case is similar to that in systematic sampling. An exact measure 

of variance must be abandotned in favour of an approximation based on the collapsed 
strata techniq tie, in which tile actual strata may ie paired so that each of the resulting 
psetudo-strata is assumed to have a pair of' independent selections. (Alternatively, one 

may use L-I linked comparisons among L PSUs.) To reduce tile overestimation of the 

variance involvCl. (itc Shluld pair strata which are most alike. This pairing has to be toile 

otn time basis of likeness between strata and not between the PSUs which happen to be 

selected: otlherwise the variance may be scrioluslyv Underestimated. This situation differs 
trot pairing it a s.,stemlttic samptl)le in that no obvious criterion (such as position ill an 

ordered list) may exist ior determining the most aplpropriate pairing, thus requiring 

explicit examination of characteristics of individual strata. For this purpose inftormatiotn 
on these characteristics, perh lps on tite basis of criteria used for stratification, must be 

compn1iled at tile timle 0f sampling atd preserved. This is by no means an automatic process, 
as was demttonstrated l.K the difficultics experienced in co)puting sampling errors for 
tile abVeHc-ttlent tt0ed sturvey in Malaysia. 

(4P Grouping of PSUs 

In samilples injvolviIg large nIUttbers of IPSUs with small samples selected per PSU, one 

may, tor convenience and econmomyn . grou)p PSUs appropriately to fortn psemId-PSUs 
tuir the puirpos of comtiputitg sammpling errors. If the groupitng of' PSUs is done ott a 

randomti basis within cach stratum separately), the oerestinttaln oft i tie variance itt­

volved in thveabove pIocedtrc is kept stmall. 'wo exatttlelCs of this teclIIitltle applied 
to WrS samttles ;ire tht., tilhlbing. 

t 	 Ill cerlail casCs SUCh 1. Nepal and malaysia, although tile rural sampleC eml)yCl 

a titlti-stage desig, lln the urban sector househoMlds were selected directly using 

single-stag,.- rantllti or systematlic sampling. To cotmpute samnplitg erro-rs for the 
total sample in a colmvetmiett llatiner, tile Urbat satmiple households could be grouped 

randomly inti) I)SeuldoClusters similar in size to the actual clusters iii the rural sector. 

Ittis proiedure is sinmitInr to tile tolt4will'. Suppose that tile itlls inI a simple random sample are 
grtiiped at randoim into 'pscutdt'-SUs'. Valatnce rti te actual random amllple ilay be estimlatet 

reasonably %%cll hy treatil , the sample usif it %%ere a clustered sample wilh lthe radim groups ot 
ultialnte units as actual PtSUs. This is because tile 'clu,,ters' fbrmted tv randtot grouping of elements 

are expected to htve /ero imitracluster correlation (see p 29 belhw) so that tIhe expected value of tlhe 

c lttted variance is approxitmtately time sattle as that t'r time simple ralndomm samiple. 
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(b) The sample for the Sri Lanka Fertility Survey employed a large number (750) of 
clusters many of which were very small (a few actually contained no completed
interviews). The Lusters containing fewer than five interviews were grouped together 
to yield a total of 606 pseudo-clusters which were then used for variance compu­
tation. 

(5) Effective Sampling Stages 

It is useful to clarify certain ambiguities which may arise in the concept of 'sampling 
stages', and which concern the procedures for computing sampling errors. Multi-stage
sampling or clustering is introduced to save costs of (a) travel and supervision, and (b)
sample frame construction, listing and sample selection. The second consideration may
be particularly important in situations where the available sampling frame does not 
provide area units of sufficiently small size for efficient (cost effective) sample design.
For example, it has been a common practice in WFS surveys (Turkey, Indonesia, Senegal, 
Syria) to select area units in a number of 'steps' proceeding from larger to smaller cate­
gories of units, but not in such a way as to produce an additional clustering of the smaller 
units. The objective of introducing these steps was to limit the work necessary for con­
structing the sampling frame. Any clustering of the smaller units was avoided by selecting
only one unit from each larger unit selected (Verma 198 1a). For example, in one samp­
ling domniin of the Turkish Fertility Survey, a number of localities (towns) were selected 
with probabilty proportional to size (PPS); within each selected locality, ward maps
and population data were compiled and updated where necessary, and one ward was 
selected with PPS; each ward was napped in greater detail, divided into segments and 
one segnment selected with PPS; finally within each selected ward households were listed 
and sampled with appropriate probabili ties (11ace:eppe Institute of Population Studies 
1980). The procedure reduced enormously - in fact, made feasible - the work necessary 
to costruct a frame of segments, but the expected sample outcome in no way differed 
from what it would have been had segments been selected directly from a frame of 
segments (actually non-cxisten'l. The sample described above is effectively a twvo-stage
sample, at least as concerns the sampling errors: segments being the first or primary 
sampling units, and housCholds the second or ultimate stage units. The earlier stages 
or steps not resulting in additional clustering of the sample arc not relevant in the context 
of sampling error estimation. 

(6) 'Self-Representing' Units 

The term 'self-representing PSUs' is sometimes used to refer to area units which appear

in the sample 
 with certainty. This situation has arisen in several WFS surveys, particularly
 
in the Latin Aimerican re.gion. It usually happens when a certain 
 type of unit referred 
to in the SJmn)! desig is nuch larger in population size in one sampling domain (say
the urban sector) comppared to the same type of unit in another (say the rural domain).
Consider, for example. a rulti-stage design inwhich counties forn the first-stage units 
to be selected with 'l'S, districts within counties form the second-stage units, and house­
holds within districts tormn the third or ultimate stage units. Suppose, however, that some 
of the counties are so large that they are taken into the sample with certainty and that 
within each a sample of districts is selected dir-ctl ,. The description of such counties 
as 'self-representing PIs', though cormmon, i.imisleading and shotild be avoided. It is 
more appropriate, and necessary tor sanpling error computation, to describe each such 
county as a strultm, from which (in the above exa mple) a two-stage sample is selected,
with districts as the I'StIs, and households a,the SSUs.The other, 'non-self-representing' 
counties belong to the sampling domnain with ia three-stage design: counties as PSUs, 
districts as SS Us and households as the ultimate stage units. 
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(7) Coding of Sample Structure 

Appropriate coding of the sample structure, preferably on the micro-level data files 
resulting from the survey, is an essential requirement to ensure that sampling errors 
can be computed properly, taking into account the actual sample design. This is not 
always done, as for example Kish et al (1976) found ir, their attempts to compute samp­
ling errors for archived survey data in the United States. Information on strata, PSUs 
and sample weights, etc should be defined and coded in the firm required for sampling 
error computation. For the computational procedurez described in this section, this 
would require the following as a minimum. 

(a) 	 Identification of PSUs as they are to be used for computation, taking into con­
sideration the points made in (4) to (6) above. 

(b) 	 Definition of effective strata, ensuring that at least two PSUs are present in each 
stratum. In samples with systematic selection of PSUs, or when only one PSU is 
selected per stratum, appropriate 'collapsing' or pairing of strata would be required, 
as explained in (2)-(3) above. In such a case, the pseudo-strata so defined should 
be separately identified and coded. 

(c) 	 Information on sample weights, if applicable. 

Information o:i various sampling stages (units selected, sampling fractions, etc) 
will be necessary if the total sampling variance is to be decomposed into its components 
according to sampling stage. 

3.4 SAMPLING :IRRORS FOR COMI'LEX STATISTICS 

Tle procedures outlined in section 3.2 fall in the class of methods called 'Taylor ex­
pansion meth od'. This is the approach followed in the WFS package program CLUSTERS 
for computing sampling errors for ratios and certain differences of ratios (Verma and 
Pearce 1978 sce annex I). 

Nkune rical proccd ures for computing variances of other more complex statistics 
using the la\1or cxpinsion method have been developed (see for example Tepping 
]96s: WIArufl I O] l: Woodruff and Causey 1976). Basically the method produces 
all estimate tl the variance of a statis'ic based on variances of tie linear (first order) 
terims ft tIe li. hr ,,rics Cxpansion o.' the statistic. Suppose wc wish to estimate the 
variance (,f an ctimmator / which itself is i function of linear estimators (such as sample 
totals) t k . 11"he '.,m he ,ll"wn that, if the sample is sufficiently large for the Taylor 
approximmation t) be %Ai. the variance of z is approxinated by lhe variance of a linear 
comubinatitn of' the /k's. IC 

var( 	,) = var (YElk '/k} (3.17) 
k 

in which fte dk are the partial ierivatives oh z with respect to Zk, dk = DZ/aZk, and are 
treated as emntanlt%iii eqlattion 3.17. 

As an illust ration, consider the ratio z = z/z, of' two sample totals Z, and z. We 
have 

d'z I 	 Z z 
. .. . . d2 = - ­

oz, Z, ;Z,Z, 
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so that, from equation 3.17, 

var(z) var(dz, +dzz,) = d var(z)+d var(z 2 )+ 2dId 2 eov(z 1 ,z 2 ) 

=-;Ivar(z I) + Z2 •var(z.,)-- 2z • oy(zl, z,)I. 

This is the same expression as equation 3.6 above, with z, = y and = x.z2 

The procedure for computing var(z) is considerably simplified by introducing the
variable (Woodruff 1971): 

Zhij Z dk * Zk.hij (3.18) 
k 

where, as before, h1,i. j stand for stratum, PSU and ultimate unit respectively. For ex­
ample, for the ratio z= i //, considered intihe
above illustration
 

I
 
Zhiij = --(1l.hij --Z 2,hij)


Z,
 

which can be seen to be identical to equation 3.11, with zi = y and z,= x.
 
Similarly one can 
easily derive equations 3.13- 3.16. Equation 3.18 also provides thebasis for estimating sampling errors of complex statistics in complex samples, such as 

coefficien ts in a regression equation. 

Two other commonly used methods for estimating variances of complex statistics arethe balanced repeated replications (BRR) and jackknife repeated replications (.IRR)
methods These met oiLs are based on the concept of replications described in section 3.1.Essentially, with the BRR method a replication consists of a random half of the totalsample, and estimates the variance of the entire sample. With the JRR method, a repli­cation is made up of a random half of one strattum plus the rest of the sample; andconseqtuently, each replication measures the variance contributed by a single stratum.l:mpirical illustrations of the use of thiese methods for computing sampling errors forcomplex statistics from complex samples are given in Kish and Frankel (1974). 

3.5 VAIRIABILIY OF VARIANCE IESTIMATI-S 

It is important to realize that variance estimates from a sample are themselves subjectto variability, particularly for samples based ol relatively small mnmher of PSUs. Asnoted by Kish t al (I1976: I)), 'sampling theory, and experience with many and re­
pealed computitioms, teach us not to rely on the precision of individual results, even
 
when these are based on samples with 
a large number of elements'.
 

The precision of variance estimates 
 is a coiimplex subject. For reasonably large samples
with good control to elimnnate cxtrLliie variations in cluster size, a useful approximation

to the coefficient of variation of a variance estimate is (Kisli 1965: 28 - 91): 

cv 2 =2/df, 

where df is the degrees of frecdomm, approximately equallint, the number of PSUs, lessthe number of strata. For example, when two PSUs are selected from each of If strata 
(the common paired selection model). 

df = (211--It1) = I1. 

so that 
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CV = \/2 _H.
 

Thus, for a sample with 100 PSUs from 50 strata,
 

cv = /2-/50 = 0.2, 

while with only 25 PSUs (from 12 or 13 strata) 

cv = 	 0.4. 

3.6 	 CONFOUNDING OF SAMPLING AND RESPONSE VARIANCES IN
 
COMPUTED SAMPLING ERRORS
 

In estimating sampling variance from equations such as 3.2-3.4, the element values 

(Yhij, Xhij) are meant to be free from non-sampling variability, ie they are the expected 
values for particular elements obtained by all possible measurements under the same 
essential conditions (see section 2.2). In practice, a particular survey yields only a single 
:_t of observed values, resulting in some degree of confounding of sampling and non­
sampling variance in the usual estination of the former. 

In explaining this confounding, it is useful to distinguish between two components 
of response (or other measurement) variance: correlated response errors and uncor­
related response errors. Each interviewer, supervisor or coder, etc may have his own 
bias, which affects all the interviews which make up his workload. In so far as individual 
survey workers have different average effects on their respective workloads, they intro­
duce errors which are correlated for all interviews within their individual workloads. 
In addition to these correlated errors, there may be chance factors which affect responses 
obtained from individual respondents independently of the particular survey worker 
involved. These are uncorrelated response errors. (For a fuller account see Hansen et al 
1961 .)
 

From a singlt survey, there is no way to separate out the confounding of uncorrelated 
(or simple) response errors from the usual estimation of sampling errors. This would 
require at least two independent measurements on each respondent (for a description 
of methodology and application to WFS data, see O'Muircheartaigh and Markwardt 
1981, 	 and O'Muircheartaigh 1982). 

The relation of correlated response errors to tile usual estimates of sampling errors 
is more complex. Ini a sense, survey workers impose their own 'clustering' on the sample 
of observations because of their individual biases. In so far as this clustering coincides 
with the geographic clustering of the sample itself and diffe~rent fieldworkers are em­
ployed in different PSUs in each stratum (as for example will be the case if fixed enuime­
rators aie used, one for each sample cluster), then tile utsual estimate of sampling error 
fully includes the contribution of correlated response errors due to interviewer bias. 
The situation with most WFS surveys is rather different. Usually interviewers are or­
ganized in teams of four or five who share work in each PSU, and each team completes 
fieldwork in a number of PSUs. usually covering all PSLs in a stratum. With such an 
arrangement, tie estimated sampling errors in tile nain do not include the contribution 
of correlated response variance due to the interviewer effect. Simple response variance 
is of course included as always. 

25 



4 Patterns of Variation and Portability 

4.1 OBJECTIVES OF INVESTIGATION 

For a number of reasons it is useful to investigate the patterns of variation of sampling 
error results across variables, across sample subclasses and across surveys, and to relate 
these patterns to the structure of the sample. These reasons are discussed below. 

(1) Extrapolation of Computed Results 
Generally the estimates of interest from a ;ar-e-sca;e multi-purpose survey are too num­
erous for sampling errors to be computed for all of them. For example, the detailed 
cross-tabulations recommended for WFS surveys run into thousands of cells (WFS 1977).
Ideally, the user of survey results needs to be able to obtain at least an approximate
value of the standard error not only for the estimate in any cell of the detailed tabu­
lations, but also for differences and distributions across cells. This can only be achieved 
by providing some means of extrapolation of errors from computations for selected 
%ariables and sample categories, to other variables and categories for which actual com­
putation was not performed. This requires a study of the patterns of variation of sam pling 
errors across variables and subclasses. 

This may he particularly relevant when ail survey estimates have to be reproduced
for a number of reporting domains. Lxanples are WFS surveys in Fiji, where the entire 
set of tabulations is repeated for two ethnic groups and of course for tie total sample;
and Turkey and Indonesia where a substantial number of tables are repeated by region
and type of place of residence. In view of the greatly increased n umher of survey esti­
mates involved, extrapolation of sampling error results across major reporting domains 
becomes necessary. 

A similar consideration is often involved in repetitive surveys with the same or similar 
design and content. Under such conditions, the standard error or some statistic derived 
from it may be relatively stable from one survey to the next, so that once the variance 
pattern is established in the beginning, it can be utilized to predict sampling errors for 
subsequent roUnds. 

(2) Summarization for Presentation 

While it is desirable to provide the user of survey results with all the required inform ation 
on sampling errors, it is necessary to do so in a way that is convenient for tie user and 
that does not obscure the substantive results, which are after all of ptimary interest. 

This presents a similar problem to that discussed in (I). [sen if the sampling errors 
for all tie publi',,ed estimates we,€ -om1puted, it would not be feasible to publish them: 
they would double tileVOlumie of the tables in the report, even without considering the 
sampling errors of ,i]Jerenccs. It is s',sential to provide the user with sone simple way
of compt,ting approximate sampling errors for any estimates and differences in which 
he may be interested. Once again, this implies sonic means of extrapolation and this,
in turn, requires a knowledge of the patterns of variation of sampling errors. 

(3) Smoothing of Computed Results 

As noted earlier, sampling errors computed from sample data are themselves subject 
to considerable variability, particularly for samples based on relatively small numbers 
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of PSUs. In fact it may often be preferable to use results appropriately averaged over 

a number of computations, rather than to rely on the precision of individual compu­

tations. 

(4) Sample Design and Evaluation 

Apart from indicating tie precision of existing survey estimates, the objective of sampling 

error computation is to evaluate how a particular design has fared and to provide data 

for designing future samples. For this, it is necessary to explore patterns of variation 

of sampling errors as related to important features of the sample structure, such as 

clustering, stratification and weighting. In fact, as will be seen later, the relationship 

between sampling errors and sample structure is useful also in tile extrapolation, sum­

marization and smoothing of computed results within a given survey. 

For the various reasons stated above, it is necessary to combine somehow the results 

from computations for different variables and subclasses on the basis of which patterns 

of variation can be established more clearly. Pooling of results for different variables 

is more problematic (Kish et al 1976), but perhaps also less critical since the number of 

variables involved is usually substantially smaller than the number of subclasses of interest, 

since the sample can be divided into subgroups in numerous ways. In any case, it is 

important to recognize that, while smoothing, pooling and extrapolation of computed 

sampling errors is often necessary and desirable, there are isks involved in doing this. 

Excessive or careless application of these procedures can hide actual variation, 6istort 

the result and mislead the user. Tie only guarantee against this is to base extrapolation 

and smoothing on an extensive and wide variety ofactual computations, covering many 

variables and subclasses of different types, and to check how well the smoothed results 

fit the actual computations. 

4.2 PORTABILITY 

The Concept 

To meet the requirements for extrapolation, summarization and smoothing of computed 

results, it is necessary to search for portable measures of sampling variability. The term 
'portability', ntroduced by Kish, refers to the possibility of carrying over from one 

subclass to another, from one variable to another or from one survey to another, the 

conclusions drawn regarding the sampling error. To illustrate the concept, suppose that 

a number o" self-weighting simple random samples (SRS) of different sizes are drawn 

from a poUpution to measure the same set of variables. The variance of an estimated 
l-f 

mean for a sample of size n is u ,which is estimated by 
n 

sr2 . .1- " 2 say (4.1) 

L / /2 

While the standard error varies inversely as n /2, the standard deviation, o,is the same 

for different samples. It measures the root mean square deviation of individual values 

yj from the mean and is portable across samples. 

Different measures are portable to different degrees. The standard error is specific 

to the estimate for which it is computed, and its magnitude depends upon a number 

of lactors such as: 

I b'heliture of the estimate; 
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2 its units of measurement (scale) and magnitude; 

3 its variability in the population; 

4 the sample size; 

5 the sample design (clustering, stratification, weighting, cluster size, etc); 

6 the nature and size of the sampling units; 

7 for sample subclasses, their nature and distribution across sample clusters. 

Standard errors (se) com1puted for one statistic can, at best, be imputed directly only
to essentially similar statistics, hased on samples of similar size and design. Various 
derived measures of se are introduced to control, ie to reduce, the effect of some of the 
above factors, and hence enhance the portability of the measure across subclasses, vari­
ables and sample designs. In the exampl.. given above, the effect of sample size (n) was 
controlled by introducing u in place of the actual se. 

Zarcovich (1979) illustrates in detail with practical examples how the L:.timated 
coefficient of variation (standard error divided by the mean, se(y)/ ) can be stable 
across a number of repetitive surveys with similar design, size and content, thus elimi­
nating the need for fresh calculations in each survey round. This measure controls for 
factor 2 ahow'. namely for tunits of measurement and magnitude of the estimate. 

More widely 

and rate of homogeneity (roh) described below.
 

mwo use ful and used measures of' portability are the design factor (deft) 

Design Factor (deft) 

An extremely Useful measure in this connection is the design factor (deft), 4 defined 
as the ratio of the estimated standard error for the actual design (se) to tle estimated 
standard error for a simple random sample (SRS) of the same size (sr): 

deft = se/sr (4.2) 

This measure is more portable than se, since it does not depend upon factors which 
affect both se and sr in the same way, factors such a,; units of nieasurement, magnitude
of the estimate, its variability in the population, and above all, sample size. Deft depends 
upon other factors such as the nature of the estimator, sampie design. and type and size
of sampling units. Deft iS a summary measure of the effects of departure of' the actual 
sample LCsign Irom SRS. It is a comprehensive fac,,r which attempts to summarize 
the effect of' variou, c0 )It)lCxitics in the design, cspci.-;y those of' clustering and strati­
fication. It may include even the effect of ratio or regression estimation, of double 
sampling and of varied sampling fractions. [or these reasons many samplers include the 
ratio se/sr as a routine item in the output (if variance colmlputations. 

To estimate deft from a sample it is necessary to estimate both se and sr. As descriled 
in section 3, se for multi-stage complex sariple designs can, in many practical situations,
he estimated simply from quantities aggregated At tile level of PSUs, without explicit 

We use the term 'flesinlr factor to mcan the rmuiio ot actual standard error to SRS standard error;
the term 'desivn etlecil' Wdtd) is normall ued tur the ratio ti" the varian :s.
 

de-f deft - se'/sr; 
 ' . 
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reference to subsampling procedures within PSUs. An equally convenient result of samp­

ling theory is that, in many practical situations, the sampling error corresponding to an 

SRS can be estimated from a complex sample simply by ignoring the complexity of the 

actual design. For example, for the ratio r defined in equation 3.5 the SRS variance 

is approximately 

sr2 (r) = _nI .(W h i j• zhil)/ZWhiJ, With Zhi j = Yhij - r , xhij (4.3)'n-I 

even though the actual observations (Yhij, XhIJ) are from a complex sample rather than 

from an SRS. 

Rate of Homogeneity (roh) 

For a given variable and a given number and type of clusters and subsampling procedure 

used, the value of deft tends tW increase with increasing cluster size. To control this 

effect, Kish (1965) introduced a synthetic measure roh (rate of homogeneity) defined as 

deft 2 = I +(b- I)roll (4.4) 

where b is the average cluster size. The model is based on the concept of intraclass cor­

relation which measures the degree of correlation between members of a cluster. Equation 

4.4 has been developed for self-weighting samples in the absence of extreme variation 

in cluster sizes. Rob is a synthetic measure introduced with the aim of measuring the 

average degree to which values of a particular variable are homogeneous within PSUs, 
relative to that variable's overall variability. 

The following illustration may clarify the relationship of deft and roll to cluster size 

b. Suppose that a two-stage sample of size n = 2500 is drawn by selecting 49 clusters, 

and by selecting at random an average of b = 51 ultimate units per cluster. Assume that 

for a particular variable deft2 = 2 for this sample; in other words, the variance of the 

SRS of the same size. The implication isclustered sample is twice as large as that of an 


that an SRS of size n' = n/deft 2 = 1250 would have given the same sampling precision.
 
on(It is important to realize that the above statement is true only for estimates based 

the total sample; as discussed later, defts can be much smaller for subclasses.) The implied 

value of roll for the variable is 

deft 2 -l I 
roll =- - -= 0.02 

b-I 50 

Now suppose that, retaining the same number of clusters, the average sample per 

cluster is reduced to b = 26. One expects roll to be unchanged (ic it is portable between 

the two samples) because the nature of the sampling units and the sampling procedure 

have not changed. The design effect becomes 

deft 2 = + 0.02(26- I) = 1.5 

In the above sense, roh removes lhe effect of b in deft, and is a more portable measure. 

However, it should be emphasized that roh is specific to a particular variable, sample 

design and type of sampling unit. Note that for the simple random sample, halving tile 

sample size doubles the sampling variance. For the clustered sample in this example, 

The relative bias involved in this procedure is approxinmately (deft' -- 1)/n, which is negligible in 
most situations with reasonably large sample size. In fact this procedure can be used to estimate the 
effect on sampling error of particular features such as stratification or additional area stages, by 
repeating the calculation ignoring that particular feture of the design. Illustrations are provided in 
Verna et al (1980). 
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halving the sample size (but retaining the same number of clusters) increases the variance 
by a factor of only 1.5. 

4.3 MODELLING OF SAMPLING ERRORS FOR SUBCLASS MEANS 

The measures deft and rohl provide empirically useful means of modelling sampling 
errors across diverse subclasses of a sample. In this section we consider how, for a given
substantive variable or group of similar variables, standard errors of ratios, means and 
proportions for subclasses (se,) may be related to those for the total sample (set). When 
considering subclasses instead of the entire sample there are three important points 
to bear in mind: 

I 	 In so far as a subclass is spread evenly over all sample clusters, the effective cluster 
size (ie sample size per PSU) is reduced compared with that for the total sample,
the reduced figure being roughly proportional to the subclass size. 

2 	 However, this is not the case for subclasses which are confined to a subset of sample
clusters. Furthermore, the estimates of varince tend to be less stable in this case since 
they are based on only a subset of the PSUs. 

3 	 In any case, subclasses are rarely uniformly distributed, so that the coefficient of
variation of cluster size tends to be higher for a subclass than for the total sample. 
This would tend to increase not only the error variance bit also the bias in ratio 
estimation. 

The variation of sampling error with subclass size is therefore related to how evenly
the subclass is distribu ted over sanpl)le clusters. In this respect it is useful to distinguish
three types of subclasses (Kish et al 1976). First, certain classes such as groups defined 
in terms of demographic characteristics (age, sex, marriage duration, etc) tend to be 
more or less uniformly distributcd geographically across the whole population, and
hence across the sample clusters. These may be called cross-classes. At the opposite
end we have geographic classes which are completely segregated into separate clusters, 
ie a whole cluster either belongs or does not belong to the subclass. Examples are regions, 
or urban-rural domains, of a country. Other classes, such as particular ethnic, occupa­
tional or other socio-e,:onomic groupings, while less well distributed than cross-classes, 
are not as completely segregated as geographic classes. For example, higher educational
 
groups, and even more so, non-farming occupations tend to be clustered in, though

not confined to, urban areas. 
These are termed mixed classes. 

Sampling Errors for Cross-Classes 

For a given variable we may expect the subclass design factor, defts, to be smaller than
 
total sample deftt, since 
 the effective cluster size decreases proportionately with de­
creasing cross-class size. For small cross-classes in a self-weighting sample, the effective 
sample would tend towards SRS, ie deft, would tend towards unity. Taking account of
the above effect, one might attempt to give a more precise expression to the relationship
between sampling errors for subclasses and the total sample by adopting a model based 
on equation 4.4. Thus 

(defts - 1) roh - I) 

(deftt - 1) roh t (bt- I)	 (4.5) 
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For a cross-class we assume roll. = roht so that the right-hand side becomes 
b-1 

bt -I 

which may be approximated by Ms, the size of the subclass in proportion to the whole 
sample, provided that bs is substantially greater than I. Thus 

defteft - 1) (4.6) 

According to the model the departure of deft, from unity is proportional to the size 
of the subclass relative to total sample size. For very small subclasses deft, tends to 
1.0, ie the effective sample tends to SRS. 

The model needs to be modified for samples which are not self-weighting. While 
the effects of clustering and stratification tend to disappear for very small cross-classes, 
the effect of sample weighting tends to persist. When population variances and sample 
weights are uncorrelated, deft will be found to be greater than 1.0 even for very small 
subclasses; the effect )f unequal weights (uncorrelated with the population variance) 
is to Multiply [he variance of all estimates by the factor (Kish 1965) 

L = n1 ' (4.7) 

where n is the number of units with weight w,. It is found in practice that deft for 
very small cross-classes (and also for differences between such subclasses, see section 
4.4) tendis to the value L 1/2 in accordance with equation 4.7. Table I, from Verma 
et al (1980,. demonstrates this on the basis of a very large number of computations. 
The design factors shown are averaged values over groups of similar variables. These 

groups cover most of the estimates of substantive interest from the WFS individual 
questionnaire. The groups are: (a) seven variables concerning nuptialiti', such as age at 
marriage, marital and exposure status, marriage dissolution and re-marriage; (b) eleven 
fiertility anll related variables, such as number of children ever born, tie number cur­
rently living, measures of fertility in specified periods, birth intervals, duration of breast­
feeding: (c) six variables concerning fertility preferences, such as SIn preference, the 
desire to stop childbearing, the additional number of children wanted and the total 
desired fammi ly size: (it) four variatles concerning the knowledge of various methods 
of contraception; and (e) ten variables concerning contraceptive use, by specified method 
and timing of use. The row 'effect of weighting' is L 112 computed from equation 4.7 
(equation 6.1 in the source being quoted), and the agreement betwCen this and the 
computed deft is very close indeed. Thus it is convenient to define an adjusted design 
factor deft' excluding the effect of weighting equation 4.7, ic as 

deft = se/sr = Ll 2 deft' (4.8) 

This allows an expression of the form of equation 4.6 to relate deft, to deftt for non­
self-weighting samples also. Hence we can write standard errors for the total sample 
(se t ) and for a subclass (se,) as: 

2 
se 

andand 
= 

n 
2 

Lt deft t "  for the total sample, 

(4.9) 

se = s L, deft. 2 for the subclass. 

To relate se. to set, we relate the subclass value to the total sample value for each of 
the three quantities on the right-hand side of equation 4.9. 
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Table I 
 Deft values for small selected subclasses and subclass differences, compared to estimated increase in standard Lrror due to departure from self-weighting
 
Country Indonesia Sri Lanka 
 Bangladesh 
Domain Urban Rural Total Urban Rural Totala Rural Total 
Effects of weightingb 1.06 1.12 1.18 1.19 1.09 1.11 1.00 1.06 
Subclass/diffctence2 (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (1)Subclass 15 1.9 1.4 1.1 3.1 2.2 2.5 2.6 1.9 2.1 1.5 1.0 1.1 1.7 1.1 1.0 1.7 1.1 1.1 2.4 2.1 

Deft by rariablegrou1pd 
Nuptiality 1.07 1.01 1.04 1.19 1.14 1.13 1.25 1.20 1.21 1.17 1.19 1.23 
 1.02 1.05 1.08 1.07 1.08 1.09 0.99


1.00 1.15 1.16 1.21 1.21 1.21 1.26 
1.05Fertility 1.03 1.05 1.2(0 1.16 1.17 1.05 1.06 1.13 1.10 1.09 1.12 1.00 1.05Preferences 1.02 1.02 1.06 1.21 1.19 1.25 1.25 1.23 1.29 1.19 1.15 1.26 1.07 1.07 1.10 1.13 1.10 1.12 0.99 1.04
KnowlIedge 1.23 1.10 0.96 1.20 1.11 1.12 1.27 1.17 1.21 1.24 1.20 1.25 1.14 1.08 1.08 1.16 1.09 1.16 1.04 1.09Use 0.99 1.02 1.08 1.11 1.14 1.07 1.15 1.19 1.13 1.16 1.14 1.24 1.02 1.06 1.08 1.06 1.08 1.12 1.04 1.04Average deft (all variables) 1.05 1.04 1.03 1.16 1.15 1.16 1.21 1.20 1.21 1.19 1.16 1.23 1.05 1.06 1.09 1.09 1.09 1.12 1.01 1.05 

alncludes the small 'estate' domain.

blncrease in standard 
error due to departure from self-weightin- within country or domain estimated from equation 4.7 (equation 6.1 in Verma et cl 1980).

C(1): Subclass 'age 45 -49'.
 

(2): Difference between subclasses ",Le 35--44- and 'age 45-49'.
 
(3): Difference between subclasses 'marriage 
 duration 0-4 years' and 'marriage duration 5-9 years'.


dFor fuller details, see text p 31.
 
NOTE: Fo- differences, b is defined as half the harmonic 
mean of bs for the two subclasses.
 
Source: Verma et al (1980)
 



For a cross-class, well distributed over the population and hence over sample clusters, 

we have the following relationships: 

1 	The deft values are related by equation 4.6, namely 

2
deft'* = I + (deft' 2 
- I) M 	 (4.10) 

where deft' is defined by equation 4.8. 

2 It is reasonable to assume 

L, = Lt(4.11) 

since the relative allocation among domains (nh in equation 4.7) for the subclass will 

ingeneral be similar to that for the total sample. Table Idemonstrates this. 

3 lowever tilevalues of standard deviations, s,and st,may differ considerably for 

the following reasons. Subclasses of interest usually correspond to cross-classifications 

introduced to control for factors correlated with tilesubstantive variable being estimated. 

For example, to compare mean fertility among different educational groups, data may be 

classified by age, so as to control for agt. differences in the educational groups being 

compared. Due to the strong relationship between age and fertility, subclasses defined 

in terms of age may divide the sample into somewhat more homogeneous groups of 

fertility than the total sample. More importantly, the mean value of the fertility measure 

could differ appreciably from one age group to another. 

Generally, s, and st may be related on the basis of their relationship to their respective 

mans. For a dichotomous response leading to cross-classification of proportions (p), 

we have the well-known binonial expression, namely 

s2 p( I p) 	 (4.12) 

For means (in), it may be reasonable to assume the Poisson distribution 

(4.13)s i1 

Little (1978) notes that the above distribution is particularly appropriate for responses 

which are accumulated counts (such as cumulative fertility, ie children ever born). lie 

also suggests the following more general relationship. 

s2 iIn U 	 (4.14) 

where the exponent camay be estimated empirically by fitting the model to actual :om­

putations. With a > I , the variance would increase more rapidly with In than the Poisson 

distribution (eq uation 4.13); and conversely for a < I . a--- 0 corresponds to the asm,nip­

tion of homoscedasticity, ie s = constant and hence s2 = st in equation 4.9. 

To provide an illustration of the ideas developed so far, table 2 shows standard errors 

for a number of substantive ai-iables for the total sample of women and for a number 

of subclas;ses defined as age groups from the Turkish Fertility Survey (Ilaceteppe Institute 

of Population Studies 1980). A variety of subclass sizes are covered, and some of the 

subclasses are partly overlapping. For each variable, two rows are shown: (a) actually 
22 	 2

computed subclass variances, ses; and (b)se, predicted from total sample set using 
equation 4.9 on the assumptions that 

e 	 deft' and deftit are related by equation 4.10, since the age classes are more or less 
trup cross-classes; 
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Table 2 Comparison of (a) computed and (b) predicteda subclass standard errors for selected variables from the Turkish Fertility Survey
Subclass (age group) 15 19 15 24 20 24 15 34 25--29 25 34 30 34 35 -39 35--44 35-49 40-44 45-49 Total 
Sample size of subclassb 345 1156 811 2678 840 1522 682 644 1255 1753 611 498 4431 

Means 
A;.e at first marriage
(a) 
(b) 

C -

--
0.095 
0.091 

0.106 
0.113 

0.095 
0.091 

0(.144 
0.124 

0.132 
0.126 

0.099 
).097 

1.088 
0.086 

0.122 
0.129 

0.141 
0.142 

0.072 
-

Children ever born(a) 
(b) 

0.044 
(0.164 

0.039 
0.096 

0.055 
0.111 

0.053 
1.070 

0.071 
0.110 

0.072 
0.086 

0.109 
0.120 

0.134 
0.123 

0.117 
0(.093 

0. i1 
(1.081 

0.154 
0.126 

0.181 
0.138 

0.060 
-

Total number of 
children desired
(a) 
(b) 

)'roportions 

0.093 
(0.096 

0.050 
0.061 

0.055 
1.067 

0.043 
0.049 

0.049 
0.068 

0.052 
0.156 

0.079 
0.074 

0.111 
0.077 

0.079 
0.061 

0.067 
0.056 

1.076 
0.079 

0.087 
0.089 

0.045 
-

-ver heard of pill
(a) 

(b) 

Ever used any method 

0.025 

0.023 
0.015 

0.014 

0.016 

0.016 
0.009 

0.011 
0.013 
0.016 

0.010 
0.013 

0.015 
0.017 

0.018 

1.018 
01.016 
0.014 

0.015 
0.013 

0.020 
0.018 

0.023 
0.020 

0.010 
-

of contraception
(a) 
(b) 

0.024 
0.029 

0.017 
0.018 

0.020 
0.021 

0.015 
0.014 

0.020 
0.020 

0.018 
0.017 

0.024 
0.022 

0.022 
0.122 

1.019 
(1.018 

0.016 
0.016 

1.025 
0.023 

0.023 
0.025 

0.013 
-

Currently using a 
modern method of 
contraception
(a) 
(b) 

0.019 
0.024 

1.012 
0.013 

0.015 
0.016 

0.010 
0.009 

0.016 
0.015 

0.113 
0.011 

0.022 
0.016 

0.016 
0.016 

0.012 
0.013 

0.012 
0.012 

0.019 
0.019 

0.026 
0.026 

0.008 
-

3 For basis of prediction. see p 33.bThe actual sample base is smaller for a variable which does not apply to z.ll 
eNot defined. 

respondents leg the variable on current use of contiaception). 

Source: ilaceteppe Institute of Population Studies (1980) 



Table 3 Comparison between computed and predicted subclass standard errors for the estimated mean number of children ever born, by age group of women 

Age group 15-19 15-24 20-24 15-34 25-29 25-34 30-34 35-39 35-44 35-49 40-44 45-49 

Mean children ever born (in) 0.670 1.469 1.809 2.663 2.991 3.570 4.283 5.483 5.713 5.881 5.956 6.303 

Predicted se assuming ss = : t 0.164 0.096 ().111 0.070 0.110 0.086 0.120 0.123 0.093 0.081 0.126 0.138 
Predicted se assuming s- in 0.068 0.059 0.076 0.058 0.096 0.081 0.125 0.146 0.112 0.100 0.155 0.180 

Computed se 0.044 0.039 0.055 0.053 0.071 0.072 0.109 0.134 0.117 0.111 0.154 0.181 

Sottcc: Ilaceteppe Institute of Population Studies (1980) 



* L, Lt (which is defined to be I since the sample is self-weighting); 

* s2 .,sie standard deviations are assulned equal. 

The agreement between computed and predicted se s is generally good, except in the 
following cases: 

" for the vari:bble 'children ever born', the predicted values are substantially higher than 
the computed values for younger age groups (and therefore for women with lower 
mean number of children ever born), the opposite is the case for the older age-groups; 

* for the three proportions shown in the table, fhe discrepancy is generally small except
for tile agt group 15 - 1 ). that is, for the youngest women in the sample. 

These discrepancies are related to the assumption s2 s2 made in table 2. There is 
a notable variation in the mean number of children ever horn anong the age groups,
the mean increasing from 0.67 for the youngest group (aged 15 - 19) to 6.30 for the 
oldest (45-49). Assuming S2 in (e(luation 4.13), the agreement between computed
and predicted values is greatly improved, as slown in table 3. The agreement can be 
further improved by fitting equation 4.14 or a relation of the foirm 

s= .m1 1 (4.15) 

There is little variation by age in tle mean of the other two variables in equation 4.2, 
so that introducing equations 4.13--4.15 does not make much difference. 

Regarding the proportions in table 2, the 'correction factor' p( I - p), from equation
4.12, is rather insensitive to the value of p in a broad range around p = 0.5. The pro­
portions differ significantly froin the overall values only for the youngest age group;
using e(luation 4.12, the agreemert is considerably improved, as shown in table 4. 

Mixed Classes 

IlII so far as subclasses are unevenly distributed across sample clusters, the coefficient 
of variation of effective cluster size, and hence the variance (and bias) of ratio estimators, 
will tend to increase. ('onsequCntly the design factor for mixed classes is expected to 
decline less rapidly with decreasing subclass size than it does for the well-distributed 
cross-classes. In a study of the pattern of variation of design factor with subclass size,
Verma t'l a (,1980) propose the following model, generalized from equation 4.10 to 
fit mixed classes: 

deft I , (Ileft2 I).M( (4.16) 

where u is an cmpirically determined parameter expected to be iti the range 0 to I , with
 
values at the upper end corresponding to cross-classes, and at the lower end to segregated
 
Table 4 Standard errors for subclass aged 15-19: comparison between computed and predicted 

values fur proportions 

Predicted se, Computed 
Assuming s. - st Assuming s p (l - p) 

Proportion ever 
used contraception 0.029 0.024 0.024 

Currently using
modern method 0.024 0.018 0.019 
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or geographic classes. The model was tested on the basis of sampling errors computed 

for different types of variables over many subclasses from WFS surveys in a number of 

countries. This is a useful model for the survey statistician confronted with the task of 

summarizing and extrapolating sampling errors for subclasses, and it may be helpful 

here to sketch the procedure used for estimating a and to reproduce some of the results 

from the above-mentioned study: 

The simple model proposed above assumes that, for a given degree of cross-classedness, the sub­
stantive nature of the variable as well as that of the characteristic defining the subclass need not be 
considered. This, however, is most unlikely to be the case, and thus we estimated a separately for 
similar groups of variables within subclass groups of similar type and cross-classedness within each 
country. The estimation procedure is to minimize the sum of square.d deviations of the fitted front 
the observed value of deft s . 

Empirically we found that the goodness of fit improved considerably when the individual points 
were weighted by their relative sample sizes, namely Nl,; since the error in the estimation of deft, 
is inversely related to the sample size on which it is based, this transformation has the additional 
advantage of producing a more nearly homnoscedastic distribution for the disturbance (or error) 
terms. 

Thus the linear form of equation 4.16 front which a is estimated is 

y, = (I + a)x with y, = -In(M ds); x - In(M.), (4.17) 

where 

ds = (deft' 2 - l)/(deftt 2 
- I). 

The straight line, equation 4.17, is forced through the origin which corresponds to 

the total sample (M5 = I), giving 

I + a Y, - x/-x 

and a measure of goodness of fit 

R2 = I -EI(I +ds)x -ysl 2 /Z (y.-Y)2 .s 

R2Table 5, columns (5)--(6) show the measure and parameter a. Column (4) shows 

the number of cases (a 'case' = a variable estimated over a particular subclass) on which 

the estimate is based; as can be seen from this column, the estimation of a is based on a 
very large set of sampling error computations. The fit is reasonably good: in over 80 

R 2 R 2 per cent of the sets, exceeds 0.5, and for over 50 per cent, > 0.65. The groups 
of variables in table 5 are the same as described earlier for table I. Two groups of sub­

classes are considered: demographic subclasses (age, marriage duration, etc) which are 

more nearly cross-classes; mid socio-economic subclasses (groups by level of education, 
occupation, etc) which are mixed classes. As expected, a values are larger for the more 

well-distributed demographic subclasses. 

To relate the statdard errors se, and set, we refer back to equation 4.9. The standard 
deviations s. and st are related as already described by equations 4.12-4.15; and often 
it is reasonable to assume L, = Lt even for ill-distributed mixed classes, since the effect 
of weighting equation 4.7 is not sensitive to moderate changes in the nh values. How­
ever, for classes tending to be rather segregated (eg higher educational groups, usually 

concentrated in urban areas), it may be necessary to determine L, by using more ap­
propriate nh values in equation 4.7. 

Geographic Classes 

Subclasses or domains completely segregated into separate clusters and strata present 
no special problems, since one may compute sampling errors for each domain separately 
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Table 5 Pattern 	 of results for subclasses and subclass differences, by country, variable group and 
subclass group, averaged over selected variables and subclasses 

Subclass results Subclass differences 

deft' Ieft -
Country 	 Variable deftt Subclass deft, deft' I n. R' a de d deft' - I a

group' (1) typeb (2) (3) (4) (5) (6) (7) (8) (9) 
Mexico Nuptiality 1.39 Demo. 1.15 0.35 52 0.59 0.76 1.05 0.32 0.91 

Socio, 1.15 0.35 72 0.49 0.47 1.13 0.86 0.96 
Fertility 1.58 l)emo. 1.25 0.38 85 0.55 0.74 1.06 0.22 0.85 

Socio. 1.24 0.36 125 0.37 0.75 1.18 0.13 0.94 
Preferences 1.52 Denio. 1.20 0.34 33 0.66 0.67 1.08 0.38 0.88 

Socio. 1.22 0.37 45 (.39 0.73 1.18 0.80 0.93
Knowledge 2.81 Demno. 1.79 ((.32 31 0.85 0.87 1.08 0.08 0.60 

Socio. 1.73 0.29 36 0.77 11.85 1.46 (.57 0.82
Use 1.92 l)emno. t.38 0.34 65 01.71(0.94 1.10 0.23 0.79 

Socio. 1.37 0.33 91 0.77 (.93 1.23 0.58 (.92
All variables 1.70 l)emo. 1.29 0.35 - -- 0.80 1.07 0.22 0.83 

Socio. 1.28 0.34 - 0.75 1.20 0.69 0.93 
Thailand 	 Nuptiality 1.28 Demo. 1.21 0.73 28 0.71 0.45 1.1( (.45 0.98 

Soci(o. 1.2( 0.69 37 0.50 0.21 1.09 (.43 0.98 
Fertility 	 1.38 l)emo. 122 0.54 78 f).55 0,71) I.((8 0.34 0.90 

Socio. 1.25 ((.62 106 0.57 0.32 1.19 ((.74 0.96 
Preferences 1.37 Demo. 1.25 0.64 39 0.32 ((.16 1.(17 (.26 0.88 

Socio. 1.22 ((.56 57 0.53 ((.12 1.2(0 0.90 0.95 
Knowledge 2.48 Denio. 1.60 0.30 30 (;.68 1.14 1.02 0.03 0.65 

Socio. 1.61 ((.31 37 0.77 0.77 1.69 1.17 0.95 
Use 2.15 Demo. 1.46 0.31 68 0.87 (.94 1.(9 0.17 (.75 

S)ci). 1.45 (.30 80 0.86 (.81 1.2(( 0.40 0.90 
All variableN 1.65 Demo. 1.33 O.15 (.71 1.08 ((.22 0.85 

S cio. 1.33 (0.45 0.45 1.22 ((.64 0.95 
Bangladesh Nuptiality 1.22 DeCmo. 1.12 0.52 24 0.75 (.99 1.06 0.49 0.95 

Scio. 1.18 0.8(0 33 0.76 0.46 1.17 0.94 0.99
Fertility 	 1.12 Demo. 1.0(8((.65 23 0.44 ((.42 1.06 0.74 0.98 

Socio. (.12 l.((0 42 0.37 0.04 1.13 1.09 0.99
Preferences 1.21 )ei.o. 1.1 1 0.50 29 0.49 0.49 1.04 0.35 0.94 

Socio. 1.19 0.90 53 0.57 0.16 1.19 1.00 1.00 
Knowledge 	 1.66 l)emo. 1.28 0.36 35 (.81 (.93 1.07 ((.23 0.84 

Socio. 1.45 0.63 49 0.63 0.47 1.32 0.67 0.91 
Use 	 1.31 Denmo. 1.10 ((.29 43 (.77 (.75 1.03 0.29 0.92 

Socio. 1.20 (1.61 79 0.45 0.49 1.15 0.73 0.97 
All variables 	 1.26 l)emo. 1.12 (.43 -. .- 0.72 1.05 0.40 0.94 

S()cio. 1.2( ((.75 - - 0.32 1.17 ((.84 0.98
 
Indonesia Nuptiality 1.45 Deno. 1.29 
 (.60 44 0.53 (.66 1.22 0.74 0.95 

Socio. 1.29 0.6(1 68 ((.62 0.59 1.25 ((.84 0.97 
Fertility 1.41 l)enm . 1.29 ((.67 69 (.35 ((.46 1.21 0.70( 0.94 

S)cio. 1.29 0.67 112 0.62 (.44 1.25 0.84 0.98
Prefcrcnce. 	 1.55 Demo. 1.36 ((.61 41 0.59 (.65 1.23 0.60 (.91

Sci,. 1.34 0.57 64 (.67 0.59 1.26 (.74 0.95 
KnoN%lcd.,g'c 2.44 	 llcio. 1.69 (.37 36 ((.91 1.07 1.24 ((.29 0.74 

Socio. 1.79 (.44 57 (.94 ((.75 1.51 0.58 0.86-Use 	 1.7H lemo. 1.3 " ( .46 74 0.61 0.85 1.20 (.50 (0.87 
S, i I.5 (1.58 115 0.79 ().64 1.36 (.77 (.95

All vajriables 1.62 nemo. 1.37 (.54 (.74 1.21 0.53 0.90 
Socio. 1.39 11.57 - (.60 1.31 (.77 0.95 

aSame variables as table I. I(orfuller details, scc text )31. 
bSee text, p 37. For specification of the subclasses used, see Verna et al (198(), appendix. 
NOTE: deft for subClassCs, and deftt for totals 	 sample itt this table are defined according to equation
4.2 and not equation 4.8, iethe effect of weighitin has not been removed from the 'design factor' as 
defined here. 
Source: Vertna, Scott and O'Muircheartaighi(198(0): 452 
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using the same method as for the total sample. However, it is convenient to relate results 
for domains to those for the total sample, not only to economize on computation and 
presentation but also because results for individual geographic domains tend to be less 
stable, since they are based on a smaller number of PSUs than the total sample. 

In relation to the three components of equation 4.9 relating se, and set: 

I 	 Subclass and total sample standard deviations may be related as before, in accorc'ance 
with equations 4.12-4.15. 

2 	 The loss-factor due to weighting, L3, for the domain may substantially differ from 
Lt for the total sample; often L5 < Lt since weights are frequently introduced between 
domains with self-weighting samples within domains (a common example is the over­
sampling of urban areas, with self-weighting sample (L, = 1)within urban and rural 
domains separately). 

3 	 In so far as the sample design and cluster sizes are similar between different geo­
graphic domains, we expect the same deft values. Generally, however, sample design 
may differ from domain to domain, and a simple model relating domain deft' to 
total sample deft t is 

deft's 2 = I + c5 (deftt, - 1) 	 (4.18) 

vhere c, is a constant for the domain to be determined empirically by fitting the 

above relation to the computed deft' over a group of variables. 

Table 6 shows the results of fitting equation 4.18 to each of the 8 'type of place' 
domains from the Turkish Fertility Survey. The self-weighting sample consists of 215 
PSUs, so that individual domain results are based on a small number (average 27, range 
14 to 34) of PSUs, and hence have considerable variability. Each fit is based on sampling 
'rrors computed for 27 substantive variables covering a wide range of variable types. 

R2The goodness of fit varies from 0.1 to 0.6 with an average of around 0.3. Table 7 
compares computed standard errors for selected individual variables, with predicted 
values on the basis of the least squares fit to equation 4.18 and the relationships of 

equations 4.1 2-4.13 	applied to the pooled results for all variables. 

Application to a Subclass Defined in Terms of Several Characteristics 

In a multi-way cross-tabulation, a cell corresponds to a subclass defined in terms of a 
number of characteristiL's. Consider, for example, the mean number of children ever 
born, classified by worncn's age group, level of education and type of place of residence. 

Table 6 Fitting t1relation cluation 4.18 to each of the eight domains by type of place of residence 
in the Turkish Fertility Survey 

Dlomain, s 	 Metro- Lar Le Medium Small Towns Large Medium Small Total 
politn citics cities cities villages villages villages 

Average deft' 1.21 1.32 1.57 1.33 1.50 1.65 1.47 1.66 1.48 
stinated parameter c. (.39 (.64 1.25 (0.64 1.05 1.47 0.98 1.4d -

Goodness of fit, R' 0.1 1 (.26 0.37 0.28 0.19 0.56 0.22 0.29 ­

aAveraged over 27 variables (covering all the 5 groups defined in table 1),computed results for which 

treused to fit cquatio i 4.18 and llIeLC tO ctiii-ilate ',,for each domain. 
Source: Ilaceteppe Institute of Population Studies (1980) 
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Table 7 Comparison of (a) computed and (b) predicted staidard errors for geographic domains in 
the Turkish Fertility Survey 

Metro- Large Medium Small Towns Large Medium Small Total 
politan cities cities cities villages villages villages 

Domain 
Domain size (n,) 648 697 350 318 628 497 734 559 4431
Cluster size, b. 19.1 19.4 21.9 22.7 20.3 21.619.1 24.3 20.7
No. of clusters a, 34 36 16 14 31 26 34 23 214 

Variable 
Age at first marriage
(a) 0.190 0.170 0.247 0.238 0.221 0.211 0.148 0.218 0.072(b) 0.157 0.171 0.283 0.242 0.190 0.1700.233 0.219 -
Children ever born 
(a) 0.111 0.111 0.215 0.241 0.178 0.158 0.102 0.247 0.060(b) 0.114 0.121 0.207 0.196 0.165 0.213 0.162 0.204 -
Proportion who know
 
of pill

(a) 0.008 0.011 0.031 0.029 0.026 0.029 0.030 0.040 0.010(b) 0.011 0.016 0.029 0.028 0.026 0.036 0.028 0.039 -
Proportion currently
 
using contraception

(a) 0.018 0.020 0.038 0.024 0.032 0.028 0.016 0.014 0.008(b) 0.020 0.020 0.032 0.026 0.022 0.023 0.015 0.014 -

Source: llaceteppe Institute of Population Studies (1980) 

To estimate the sampling error for, say, urban women, educated to the primary level 
and aged 25--29, one may proceed as follows: 

I Using the empirically fitted relation, equation 4.18, for geographic classes, determine 
the design factor for the variable 'children ever born' for the urban domain from the 
design factor tor the total sample. 

2 Apply equation 4.16, for mixed classes, within the urban domain to estimate deft 
for the class 'urban women, educated to the primary level'. 

3 Within the above-mentioned class, apply equation 4.10 or 4.16 for cross-classes to
obtain (left for the subclass of ultimate interest. Finally, se, may be estimated using 
equation 4.9, with I-s corresponding to the urban domain and s. adjusted by equations
4.12-4 .15 as appropriate. 

As in the above example, it appears intuitively appropriate to proceed step by step

from characteristics defining geographic classes to 
 those defining mixed classes and
 
finally to cross-classes.
 

The following is a simple illustration of the extrapolation procedure described in this 
section. The example is adapted from an actual computation. 

Suppose that for a national sample of n = 5,000 women, the mean number of children 
ever born is m = 4.02, the computed design factor deft = 1.69 and the standard error 
se = 0.073. The sample is non-self-weighting with loss factor Lt 21 = 1.21 (equation 4.7).
Suppose that the objective is to estimate the standard error (se) for the subclass 'urban 
women who are literate and aged 20 29'. The sample weights are given to be less vari­
able within the urban domain, with L1 

2 = 1.09. 

40 



The observed means along with sample sizes for the relevant subclass are given in the 
first two columns of table 8. Figures given are in bold type. The remaining figures are 
computed from other data in the table. The values of c, and a are assumed to have been 
estimated by fitting the models described to a set of actual computations of design 
factors. 

The estimation procedure goes step by step from the total sample to the urban domain, 
to the urban literate subclass, and finally to urban literate women aged 20-29. Details 
are set out below. 

Total sample (1st line) 1.69 
Column (5) computed from equation 4.8: deft' = deft/L" 1.21 1.401.21 

Column (4) computed from column (5): deft'" - = 1.402 - I = 0.96 

2.97 
Colu:nri (R) computed from equation 4.9: se 5000 x '.21 x 1.40 = 0.071 

Urban domain (2nd line) 
Column (4) computed from equation 4.18: deft '2 

- I = 0.68 x 0.96 = 0.65 

Urban literate subclass (3 rd line) 
Column (3): loss factor uite to weighting, assumed same as whole urban domain, 1.09 
Column (4) computed fron equation 4.16: deft 2 

- 1 = 0.65 x 0.5/2 = 0.46 

Urban literate aged 20--29 subclass (4th line) 
Column (3 ): assumed same as whole domain, 1.09 
Column (4) computed from equation 4.10: dLft '2 

- I = 0.46 x 0.4 = 0.18 
Colunmn (5) computed from column (4): deft'= (0.18 + 1)1/2 = 1 .09 
Columrn (6) computed from equation 4.8: deft = L /2 - deft' = 1.09 x 1.09 = 1.19 
Column (7) computed from equation 4.13 using the value of s for the total sample: 

1"2 

(3.071 	 x 2.97 = 2.60 
1.02, 

2.60 
Column (8) Comlputed from equation 4.9 se - x 1.09 x 1.09 =0.154 

Table 8 lllustratim of extrapolation procedure for estimating sampling errors for subclasses 

Subclass 11 

(1) 

n 

(2) 

L' 

(3) 

(deft' 2 

(4) 

-- 1) deft' 

(5) 

deft 

(6) 

s 

(7) 

se 

(8) 

Assumed values 
of parameters; 
equations used 
(9) 

Total sample 4.02 5000 1.21 0.96 1.40 1.69 2.97 0.071 se from eq. 4.9 

Urban 3.68 2000 1.09 0.65 1.29 1.41 2.84 0.092 c, = 0.68; 
eq. 4.18 

Urban literate 3.82 1000 1.09 0.46 1.21 1.32 2.90 0.123 M,= 0.5, 
a = 0.5; eq.4.16 

Urban, literate 
and agcd 20- 29 

3.07 400 1.09 0.18 1.09 1.19 2.60 0.154 M,= 0.4; 
eq. 4.10 

NOTE: Figures given are in bold type. 
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4.4 SAMPLING ERRORS FOR SUBCLASS DIFFERENCES 

The variance of the difference between two means Ya and Yb is 
= 
var (Ya -Y b) var (6a)+ var (Yb) - 2 COv( a, b) (4.19) 

Except for the case when the two subclasses (a and b) come entirely from different 
PSUs, the covariance is generally positive, so that one can expect the inequality 

.21 2 <var ( a b) < [var (Ta) + var (Tb) ] (4.20)na nb 

where the first expression on the left is the variance of (Ta - Tb) for a random sample, 
and the expression on the right is that variance for the clustered sample disregarding 
the covariance term. In other words, the variance of the difference of two means from 
clustered samples shows the design effect of a positive intra-class correlation (deftd > I), 
but the effect is less than that for the separate means. This has been empirically demon­
strated in many computations (eg Kish and Frankel 1974). 

In a form similar to equation 4.9 we write 

var(-b) 2Ld deftdt (4.21) 
n, !
n b 

As was shown in table I, the eftect of weighting (Ld) tends to persist for differences
 
between subclasses. Column (7) of table 5 shows that even for fairly large subclasses
 
(most subclasses shown in the table are of size 1000-2000) the design factor, deftd,
 
for differences between subclasses is small, especially for the well-distributed demo­
graphic cross-classes; the values are somewhat larger for th, less well-distributed socio­
economic subclasses. (Note that column (7), headed 'deftd', in table 5 shows design 
factors unadjusted for weighting. For Mexico and Thailand, the samples are self-weighting 
(L 1 = I),and it makes no difference. For Bangladesh, L112 = 1.05 and lndone:ia Ldj = 
1.18. The deftd shown in column (7) may be divided by the respective Ld'2 to obtain 
deft as defined in equation 4.21. The average deft for all variables for the demographic 
subclasses is 1.00 for Bangladesh and 1.03 for Indonesia. For socio-economic subclasses, 
the values are higher.) 

The effect of the covariance term may be examin,d in terms of the following model 
based on equation 4.20. 

var ( a -- b) -= 2 [var (y,) + var ('b) (4.22) 

where generally 0 .3< I:0 = I whcn no covariance is present. Column (9) of table 5 
illustrates the 3 vducs estimnated (,,, tic basis of a large number of computations from 
WFS surveys. Generally 0 is in the range 0.9- 1.0 (ie02 0.8- 1.0); 0 values tend to be 
smaller for the well-distrihutcd dCn - graphic subclasses, and also for groups of variables 
with larger deft.
 

An alternative, but particularly
22 convenient form isas follows, Assuming s = sa 

= s2, 
say) and that the weighting factor (LIisthe same for the various subclasses and 

differences involved, we can write equation 4.20, using equation 4.10 with M = na/ns 

or nb/n, as follows: 

- - Ld <var(T'a-yb)<-- Ld I + 2.-- deftt - (4.23)
nd nd n 
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where nd is half the harmonic mean of subclass sizes na and nb, ie 

1 I 	 na - nb 
- +- or nd = 

nd n, nb na + nb 

Even for fairly large subclasses, the range between the lower and upper limits in 
equation 4.23 tends to be small, For example, if deft't2 = 2, Ld = I and na = nb = 0.2n, 

we have nd = 0.1n and equation 4.23 becomes 
2
2 S


10-S <var(Ta-b)< 12­

n 	 n 

If one takes var (Ta - Yb) to be in the middle of this usually small range, then 

var( a-b) ' 	 - . Ld 1 + -'_d(deft 2 1 (4.24) 
nd n / 

which is identical to the relation developed earlier, equations 4.9 and 4.10, with nd as 

the effective 'subclass size'. In other words, the variance of the difference between two 

subclasses is close to the variance for a subclass of size equal to half the harmonic mean 

of the two subclass sizes. If, for a particular variable and type of subclasses, the standard 

error can be reasonably approximated as a simple function of subclass size (as, for ex­

ample, is implied by equations 4.9 and 4. 10), then the same, functional relationship (or 

tabulated values) may be used for subclass differences, with n, as defined above, taken 

as the subclass size. 

4.5 DESIGN FACTORS FOR COMPLEX STATISTICS 

Subclass differences represent a basic measure of reiation between variables. Empirical 

findings about them lead to conjectures about design factors for other statistics that 

measure relations, such as regression coefficients. On the basis of semi-empirica! con­

siderations, Kish and Frankel (1974) conclude the following in relation to deft for an 

analytic statistic, say y, such as a correlation or regression coefficient: 

I 	 deft (y)> I. In general, design factors for complex statistics are greater than unity. 

Hence standard errors based on simple random sample assumptions tend to under­
estimate the standard error for complex statistics. 

2 	 deft (y) < deft (V). Design factors for complex statistics tend to be less than thos' 

for means, for a given variable and sample or subclass. The latter are more easily 

computed and tend to provide 'safe' overestimates for the former. 

3 	 deft (y) is related to deft (V). For variables with high deft (i), values of deft (7) also 

tend to be high. 

4 	 deft (f) tends to resemble deft (Ya - Yb), the design factor for differences between 
means. 

5 	 deft (y) tends to have measurable regularities for different statistics. 

Based un the above, the authors propose a simple model 

= deft2 (y) I + k(deft 2 CV) -1) 	 (4.25) 
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with deft (9") > 1 ; and k (0 < k < 1) being specific to a particular variable, type of sta­
tistic, and sample or sample subclass. 

4.6 EXTRAPOLATION ACROSS VARIABLES 

The discussion so far has considered the relationship of deft, (for a subclass mean, differ­
ence, or other statistic) to deftt for the total sample for a given variable. Generally, the 
relationships considered have been of the form 

deft, = I + ks(deft2 - I) (4.26) 

where k, is a constant or some function of subclass size and type. Consequently, the 
inferential path was from standard error (set) computed for the whole sample, to cor­
responding deftt, to dcft, and finally to se,. Given the definition of roll, equation 4.5, 
the above equation implies an assumption about the relationship of roht and rohs, such as 

deft, - I rolhs (1 - 1) 
ksd_ 2 

deftt - I roht(ht - 1) 

or
 
rollrolls = g., say, 


(4.27) 

even though roll has not been introduced explicitly into the models considered. To 
infer sampling errors from one variable to another, it is necessary to speculate explicitly 
on the likely roh values. The inferential path may be shown schematically as follows: 

Conmputed Inferred 

se 
 se
 

subclasses,
 
differences etc.
 

deft -- deft
 

variables I 
roll roll 

The basic assumption is that rob depends upon the nature of the variable, so that 
the relative values of' rob for two variables tend to persist as we move from the total 
sample to diverse subclasses and subclass differences, and possibly to oilier sample designs. 
Computed rob valuC. are offten unstable and such relationships hold only approximately. 
However, regular patterns ha ve been found in suitably averaged values. Kish et al ( 1976)
found some correspon d...uce between the type of variable and its ranking according 
to roll values. Vernia et a (I1980) found the ranking of median rolis for groups of sub­
stantively similar variables to be consistent across a lnumber of WFS surveys; furthermore, 
the ranking of surrevs in different countries by median roh was found to be consistent 
across different groups of variables. 
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4.7 SAMPLING ERRORS FOR FERTILITY RATES 

Computation of fertility rates from retrospective birth histories, for the total sample 

as well as for major domains, is an important objective of WFS surveys. Generally fertility 

rates are ratio estimates of tile form 

rate = " birth/f exposure (4.28) 

where the numerator is the accumulation (weighted if applicable) of births to a specified 

category of women during a specified time period, aid tire denominator is tile accutnu­

lated length of 'exposure' to ,hildhearing for the same category of women during the 

same period. 

With different definitions of exposure, time periods and categories of woien, various 

types of fertility rates can be defined (a detailed account is given in Verria 1980). To 

illustrate some issues relevant to sampling error, we will consider tile conventional age­

specific fertility rates (.ASIs. Here the births inl the rinierator arc classified according 
to tire period of occurrence (tihe one-year period prior to the interview, or specified 

calendar years, etc) and lie awe of tile mother at birth f tile child (20 24, 25 29, 
etc. The denormrinator is tile iriniber of person-years lived hy womrrerr (irrespective of 

Marital status) during tile specified period and at tire spCcified age. 

Ill W[S surrve\. two typcs of samiple have hen used IM tilte detailed ferti'ily inter­
view: (i) a sarrple 4f I 1 orien within given age limits, irrespective of mrarital status, 
and fhi a salmple of Wmoilern within given age limits c(ittired to wvomerln who are or have 

been irrarrictl. Ill tile corrrptrltioni of agc--,ecific rates Ir the second case, it is necessary 

to rdtUSt "expsuC"(equatiol 4.28) lo in1cluLC tire rcivr-rarried woIeri who have been 

XcItLrCd Iromr tire sample interviewed. I his can ie done (assumirig ino hirtlis to never­

married womeni) oil tile basis ot iriformrialiori or the proportion cvr-iarried frormr tire 
hus o'/rold interview, whinch precede',, aridlt rrls the hasis of selection for, the worlen's 

intcrview : 

rabitt I, ( proportion evtr married 

rt expo suree a, 
ever- frron hous,holid 
married interview 

or r = r' psay. (4.29) 

r is a product tif to)o r tios aid its variance is, approximately. 

' 2  var r) p2 %mar ,rt - var p) 1 21) r' covip, r' ) (4.30) 

hlie co..v;llice tcin ll ,llrrIr. bccause t is bhased on tihe same sarple as p (rrr ol a 
.tlbstdl el]lC it ). \' r.'r, kourmiL ;nll-\tore'It s-,amples frorrr WIS surveys iii (ColombiaI)f Il 

and Kenya. on the hasi, ,I v.lrclir varl r) a-, well ar vart r' ) aid varjp) cart le directly 

calculatel. lilet1 I i.n rmilld tie :)Varlalce termr not to be signilicant, srr that fron 
CqUtIIH ,-4.2') idan4,.1, 

%Ari i var)r I var Ip 

r r " 

Consider a fertility rate deLined for a short reference period, say one year. [or samnip­

hng, error purposes, the chanc of a womian having nmore than one hirth during this period 
is rigligible, so than the rate is equivalent to the proportom (d women having a birth 
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during the one-year period. elnce, assuming a self-weigliting sample, the variance of r 
may be written as: 

se2 (r)= (r( r) eft (4.31) 

where suffix I indicates a reference period of one year and el is the number of person­
years lived by the sample of women during the one-year reference period, which is 
approximately equal to n, the sample size. As the reference period is increased to, say, 
p years, Little (1982) suggests the following modification to equation 4.31: 

se2 (r) r(l r) (left 2( 
ep 

The design factor deft o tends to increase with increasing p; ep is the total number 
of person-years lived by the sample of women during the p years reference period, and 
approximately 

ep = p •n, that is, p times the sample size. 

b is the 'birth correlation factor' and represents departures from the binomial model 
= 
Ws r( I --r))which are not attributable to departures of the sample from simple

random sampling. The factor takes into account the correlation between births to an 
individual woman. lmpirically, the factor may not differ greatly from unity; Little 
reports average values betveen 0.Q)9 and 1.05 for p = 3 years. 
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5 Presentation of Sampling Errors in Survey Reports 

5.1 MODES OF PRESENTATION 

Even when suitable computer programs are available for extensiv computation of samp­

ling errors, their presentation in a suitable form remains a problem in large-scale, multi­

purpose surveys. Obviously the presentation with each and every survey estimate of its 

associated sampling error is out of the question, since that would double the size of the 

publication. Nor would such undige'ded presentation be useful, since results of individual 

computations are not always reliable, given the variability of sampling error estimates 

themselves. 

Certain basic principles need to be observed in choosing tlie appropriate mode of 

presentation of information on sampling errors: 

I 	 Sampling errors must be presented in the context of the total survey error. The user 

should be mnade aware of the fact that sampling variability is jutst one, and not always 
the most significant, component of the total error. 

2 	 The information on sampling errors must not clutter the presentation of substantive 
results of the survey. The oibjeclive of providing this information is to elucidate the 
limits to the reliability of the substantive results and not to obscure them. 

3 [he presentation should be in a 'orn which facilitales and cncotvages tie proper 

interpretation and use of the information. It is better to provide approximate in,­
formation which is more likely to be applied than to provide exact information 
which is hard to use. 

4 \bove all. the mode of prescnhlttion in11tlthe dt-grec of detail given should suit the 

specific ieeds of particular catCgories of users. 

Several categories of uisers may be distin~guisht. The first is the gen'ralreader, perhaps 
with no special interest or expertise in survey imelthology or substantivC rescarch, 
who is interested in using the survey results for drawing hroaid conclusions and taking 
decisions. For this type of user. the informiatioin oil sampling variability sioulhl indicate 
the overall quality of the results (d the survey and their place within the wider hdy of 
related stalistic:il intoiuitinM. NlorC spCcifically, it should indicate ow suistaIItively 
significant Conclusions to hL' trdi\ n froim the survey may he aflected by the uicertainties 
iue to sai plill'ari bllit. 

"'The sctond cIeN1% IrStit .uhsVtafilt' tli(d'vsi engaged .., primary or s.coiidary 
all',ssis anid rep)rting of0 restults. IIls tpC Of User retiuires alccess to illioe detailed 

results, and wohld exlec:t (;itl not only direct estimates of samnplinig error 'or all 

major statistics, but also a 'general nldicaItio) of the magnitude (f sanpling erro to be 
expectetl for any statistic %% lie survey.hich may he! derived from 

The third category is the . niplin, stattia'uicmccrmel with e.valuating Ilile statistical 
efficiency )I the dlsigl adOptl ill ti,.iey. ()I with dLcsigling sammplCs hor future 

surveys. Ibis type of user is interested ill relaling it iilaguillde itd co[IIne)t IS o1' 
sampling error to fcajturcs of the sample dtesigh. 

Before comsideling the question tif pcseltatiti I) sltll dilifrcit types o users, it 

is useful to remark on tile genetal stralgy. Iven ,hll lilthe ill t)rlllahmn of samnpling 
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errors is presented in a summary form, it is desirable that this summarization should be 
based on xtensive computations.6 In a multi-subject survey, it is desirable to compute 

... Lisampling-errors for-many substantive. variables of-different- types.-A- very-widerange of­
values of standard errors and design factors is generally found for diverse variables within 
the same survey. As noted earlier, an empirical basis for averaging results across different
variables is generally much less certain than the averaging or modelling of variation 
across different sample subclasses for a given variable. Also, it is inadequate to single out
arbitrarily one or a few variables as 'critical' survey variables for sampling error compu­
tations. The range of variables selected for computation should parallel the important
aims of the survey, of its analysts and of its users (Kish et al 1976:2 . 

It is desirable to repeat the computations for major domains of the sample for which 
separate results may be required. This is specially important if (as often is the case) the 
sample design varies from one domain to another. Further, it is important to compute
sampling errors not only for the entire sample or its major geographic domains, but also 
for a range of subclasses and subclass differences. To generalize on the patterns of vari­
ation across subclasses, it is necessary to cover subclasses of different types, distribution 
and size. 

IH[ence the general strategy should be to compute sampling errors for all important
variables for the total sample, for each sampling domain, and for at least a moderate 
number of subclasses and differences. The larger the design factors (deft) for the total 
sample, the more important it is to investigate their variation for subclasses of diverse 
types and sizes. 

5.2 FOR THE GENERAL READER 

For the general reader, the focus should be on how information on sampling errors (or
indeed on any type of survey errors) affects the interpretation of substantively signi­
ficant results of the survey. As noted earlier, sampling error should be placed in the 
context of total survey error, and viewed as the lower limit of that error. It should 
be indicated how sampling error becomes the critical component of total error for small 
subclasses and subclass differences, and how their magnitude determines the detail 
to which the survey data may he meaningfully cross-classified. 

The text of a report presenting sampling error data should include a statement that
defines and interprets terms such as 'sampling error', 'standard error' and 'confidence 
interval', etc. as discussed in section 2 above. These concepts should be illustrated by
numerical examples. Gonzalez ei al (1975) provide examples of an introductory text 
which may be used for this purpose. Their paper discusses the presentation of sampling
and other survey errnrs at length, with many illustrations. 

For the general reader, the most useful form of presentation probably is to accompany
all Important estimates discussed in the text with their respective sampling error, specially
where the error may affect the substantive conclusions to be drawn from the surveys.
Sampling errors may be presented in different forms, for example: 

I as absolute values of the standard error (se); 

2 as relative values, standard error divided by the mean (se/7); or 

'Of course, in a multi-round survey, or in a series of similar surveys, tile stability of variance patterns
may obviate the need for detailed computations for each survey round (see, for example, 7arkovich:1979). Nevertheless, for the set of surveys as a whole, valid conclusions regarding the behaviour of
sampling errors can be based only on detailed computations at some stage. 
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3 in the form of probability or confide.ice intervals. 

The preference between absolute and relative se will depend upon the natu'e of the 
estimate. The same value of relative se may be applicable to a number of estimates, for 
example for aggregates that vary greatly in size or in unit of measurement. In such cases, 
it is economical, as well as more illuminating for the reader, to present relative se. 

Ilowever, absolute values of se are sometimes easier for the reader to relate to the 
estimate, especially in the case of proportions, percentages and rates. In any event, it is 
important to avoid ambiguity illpresenting standard errors for percentages: clear dis­
tinction needs to be made between the absolute nunber of' percentage points and the 
concept of relitive error in percentage terms. 

For example for a percentage p = 40 per cent and standard error se = 2 per cent, 
the relative error is 5 per cent, and should not be confused with thie absolute value of 
the standard error (2 per cent). 

'he presentation of'error in tile forin of probability intervals req uires a choice of tile 
confidence h'rt'l. Sone analysts prefer to give only the standard error (eg in parentheses 
following tileestimate in tiletext, or as at separate column in text tables), so that the 
user ca-l complDute whatever multiple of standard error is appropriate for thie desired con­
fidence interval. Ilowever, illguiding the user in the interpretation of results when issues 
of statistical significance arise, it is niore convenient to present the survey estimates 
directly in the forl of confidence intervals. Since there is no widespread agreement 
ol the appropriate choice of confidence interval (say, 90, 95 or 99 per cent), it is neces­
sary (a)to specify what confidence interval is being used, and (b)to tollow the same 
level throughout as far as possible in determining what is to be regarded as 'statistically 
significant'. The most conlmon practice, and that Used illVFS First Country Reports, 
is to use tie 95 per cent eonitdt'iice interval, ie 

estimate 1 2 •(standard error) 

It sho0uld be pOinlted out that to avoid comment when the observed difference is not 
"statistically significmt' is not always the appropriate solution: it nay reduce the at­
lention given to important results, or encourage an interpretation of 'no difference', 
or 'rit) when tire bad ot uncertainty is large and important couldchalnge', lifferences 
be present. Fothernuore. it is possible that significant results would emerge with less 
detailed classification td the ,airrptcii so, attention should be drawn to this fact. 

Ii ilraiiy SituatL otsI, t ,t.ien' to provide only apprtoxititate infornationIt r ol the 

muagnitude (fthe ,tatird crr'r. r1is %,orld be tile Clse, for example, when se (or relative 
S) hlas siliial viluc., f)r a t1riner of estimates, so that a single averaged value may 

suffice. Sittilarly, appuoxrriatc! reCs would suffice when sampling error is unimportant 
wkith respect to the rchtiorslipnhi;i iVng liscussCd. 

In such sitlualiots a siripIc stltcni ent, such as 'relative error of these estimates is ill 

tire range 5 per cent .. he Included in tire text, text tables or footnotes. Some­3 a' bly 

tincs, a little imore detailed rtrrtrri riraV be provided by indicating different ranges 
Or vaIues of se by dilerent syblll()IS, 1to .\allple Is ftollows: 

Relative standard error istmitcr 5 per JCint thcr\%isurlcs% iidicited. 
Relative error 5 I10per cent isindicated by oui asterisk *. 
Relative error 10 1I per cent is indicated by o ,a,,terisks**. 
Relative error --15 per cent is indicated by eclosing the estiia!-' inparentheses ( 

A simpler versiotn of this schene has been used in most WFS reports. "Iosave space 
and improve readh:tbility, the text or somuinary tables in these reports generally do not 
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indicate the number of sampIc cases on which estimates are based. As a safeguard to the 
reader, the following system has been used to indicate the range of sample size (rather 
than of the standard error directly) for cells of the text tabulations: 

* 	 Sample size (cell frequIcncy) > 50 unless indicated otherwise. 
* 	 If frequency 20 50, estimate enclosed in parenthes'..s ( ). 
* 	 If freq uency < 20, cstiral su,ppressed and replaced by anr asterisk*. 

It Should he p)oilitei Out that sutppression of sonic data cells in a table because the 
sampling error is too large fie cell size too snalil) is not in 	geieral a good practice. (In 
WFS reports, this is dore only for the text or summary tables, which are always ac­
conpanied by tile full set of detailed cross-tabulations from which they are de.rived.) 
Suppressing of individual cell values prevents tile user from combining categories of tie 
table. Moreovcr, results which may not be statistically significant due to large sampling 
error may still be rie.zMingful, foT example the fact that tile estimate is 'small' rather 
than *large'. Consider two groups of women with tle estimated mean numbe of children 
ever horn as 0.1 anid 0.2, aid with standard error of the difference as 0.1. The 95 per 
cent confidence interval of the difference is (6.2 -- 6.1) t 2(0.1), tMat is -- 0.1 to 0.3, 
so that the difference is not statistically significant at the 95 per cent level. Ilowever, 
the results are substarnti-.ely rieanintgful in that the difference is small, whatever its sign 
or exact nagnitii. 

5.3 FOR TIIl: SUBSTANTIVL ANALYSr 

The suhstantive analyst will generally req uire more detailcd information. lie or she may 
wish to go heyond tie text or text tables to look at the detailed tabulated data or to 
prodtrce ncw tabulations, and will expect to find riot only dirvct (cotriptted) estimates 
Of sampling errors for all major statistics, but also a general indication of the magnitude 
of standlard error to he expected for any estimate over any category of tile sam ple. These 
requiremlents suggest: 

I 	 A tabular presentation of conlpuled sampling error estimates for all important vari­
ahles ftor tile total sample, for major sampling iomoains, andi for a variety of suhclasses 
and suhclss dilferencCs. 

2 	 A graphic: or tabular presentition of approximate standard errors (or other ,ueasures 
of sauplinL error) tor it number of' variables as a function of sub!ass size. 

3 	 Similar informnatio for differences between subclasses. 

It may he necessary to produce suminaries like (2) antt (3) separately for different 
types of suhclasses (r for different satupling domains. The objective is to sunliniarize 
results froni d,t:riled computations, smooth oLt rarndom variability in cortiputed results, 
and provide a basis for extrapolation to statistics for which sampling errors have not teen 
coinputeid or tabulated. (>miparison If the averaged or smoothed results with those 
actually cunlMputCet piovides the user with an impression of the degree of reliahility of 
individual comnputations and of the goodriess of fit of the smoothed results. 

Fable 1) provides an illus.ratuon trulm 'he Indonesia Fertility Sure. It shows tile 
approximate variation of standard err(or by st h.dSS size, for each of tie imnportant 
survey variables. The table provides a good approxinmtion for cross-classes (such as 
age groups Of women ) anti for those subbclasses which are distributed over most sample 
clusters, even if not Uniformuly. Tie latter would cover most socio-econoniic subtclasses. 
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Table 9 Approximiate %aileof standard error. by .1riable nd subclK,,si/ (1n,). InneilIC.ja IFertility 1976Survey. 

1I 1\\iis)i.2[t itlCIiss Ni/e I11I 

Variable 

340 

50 

5 
1011 

ilt 

2010 

2101 

4(1) 

4111 

7110 

711 

100(1 

1001 

151() 

1501 

2111111 

2(o1 

3110 

30(1) 

5000 

5001 

7000 

> 7000 

Aeat miarriage 
I lrst marriage dissolved 

Remarried 

l\1tsCd 

,.53 
0l.0(810 

0.(05 

0.080 

11.410 
OI.IM(I 

(11 1 

fA )60 

11.311 
11.1145 

1.(135 

11.11411 

11.22 
1.113( 

01.025 

11.1(311 

11.17 
(1.125 

11.1120 

(1.4)22 

1.14 

0.0110 

(1.017 

11.118 

0.12 
11.1 7 

0,.0)15 

!1.1(16 

(.11 
(.014 

1.113 
(0.013 

(1.09 
0).1l3 

01.112 

0.012 

0.08 

O.011 

0.(1)9 

o.0(10 

(.117 
0.008 

0.008 

(.11(8 

(.06 
0.007 

0.007 

0.007 

Children e~Cr born' 
Birlh, i first 5 yCars 
1 irst birth inicr'al 

Births inpast 5 %cars 
('ICd birth intcrval 
()pen Iirth intersalb 

Months breastled 
P're,;n.nt 

1.450 

,).1l) 
2.35 

I.105 
4.35 

8.35 

((.98 
0.145 

0.3411 

1.121 
18(8 

0).125 

3.5 

5.90 
(.78 
1.1132 

l(.241 

0.1190 
1.31 

0.09011 

2.35 

4.7o 

0.52 
11.1(24 

0.180 
1.16110 0 
1).95 

11.115 
1.75 

3.54 

0.37 
01.018 

1 311 

0.051) 

((.72 

04.1151 

1.35 

2.71) 

((.28 
1.1113 

0.110 
().041 
((.61 

((.042 
1.1O 
2.25 

0.23 
(.101 1 

0.1190 
((.035 
(1.50 

(0.1135 

(.95 
1.9o 

O.2(1 
(I.(14)9 

(.080 
0.030 
0.44 

(.(3! 
(4.80 

1.65 

o.17 
0.00h18 

(1.1171 
0.025 
0.38 

((.(27 
o.65 

1.45 
o.14 
0.007 

(1.061 
(.021 
(.31 
((.022 

0.60 

1.20 

1.12 
((.1(416 

0.050 

0.017 
0.26 

0.018 

0.5(1 

1.05 
0.1(4 
0.005 

0.040 
(.015 
0.23 

0.(17 
0.45 

0.92 

0.09 
0.0(104 

\\.111Sno luMorWchildren 
Prefers b,\ 

I as child li\anted e
C d 

Additional number wanledd 

Desired laiily si/c 

0.080 

0.080 

1.0610 
1.265 

(.335 

0.061 
0.061) 

0.045 
0.190( 

(.260 

(.145 

(.4(45 

((.4(35 
0.140 

(.195 

.11135 
.1032 

(4.0425 
4). 105 

0.145 

(.1426 

01.124 

0.(19 
0.0810 

0.! Is 

0.1022 
1(.0120 

(,(.116 
0.(.07(0 

0.100 

1.020 

0.018 

0.113 
0.06(0 

0.185 

0.1116 

0.0114 

0.011 

0.150 

0.075 

0.1(15 

0.0113 

0.011) 
0.045 

0(.165 

1.113 

0.011 

(.1(48 
0.037 

0.0155 

(.110 
0.009 

0.007 
(.032 
(.145 

0.009 

0.1107 

0.1)06 
1.028 
0.040 

Kno%% Modern 1tlhod 
IAer used pill 

Fver used IUll 

Used anv method 
Used modern method 

Using folk met hod 
Using any method 

Contracepting and wanting 

((.0075 
0.1165 

(.14( 

0.080 
1.080 

(1.(0125 
1.1181 

0.080 

0.4)6(( 
0.050 

0.030 

.41611 
0.060 

0.020 

11,060 

0.06o 

((.1145 0.03(1 
0.(4 140030(1 

0.025 0.018 

1.145 0.035 

1.1145 0.035 

(1.014 0.01I0 

(.145 0.035 

0.045 0.035 

(.125 
(41.022 

0.014 

11.125 
1.025 

0.008 
0.025 

0.025 

0.020 
0.019 

4.1112 

0.1122 
(1.1122 

(.006 

(1.1)22 

(.122 

0.018 
((.017 

((.009 

0.020 
0.020 

0.005 

0.120 

0.020 

0.M115 
0.014 

0.008 

0.016 
0.016 

(.1114 

0.016 

0.016 

0.(14 
0.013 

0.007 

0.015 
0.015 

0.0)13 
(.1115 

(.1)15 

0.1112 
(.011 

0.007 

0.013 
0.013 

0.003 

0.013 

0.013 

0.011 
0.009 

0.006 

0.0!4 0 
0.010 

0.002 
0.010 

0.010 

0.009 
0.008 

0.005 

0.009 
0.009 

0.002 
0.009 

0.009 
no more chtildren 

, 

alor subclasses wvitl mean < 2.5. multiply shown value of se by 0.5. 
blFor variables 9' and "10. multiply shown value by 0.7 for subclasses withI or subclasses with proportion < 0.1. multiply shown values of se by 0.5. 

mean < 41.11. and multiply shown values by 1.3 for subclasses with mean > 45.0.dlIor subclasses with mean < (.5, multiply shown values of se by 0.5. 

Sourc'. Central Bureau ot!Statistics (1978) 
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Table 10 For standard error (sed) of tile difference between two subclasses of size n, and n2, the 
appropriate sample base (nd1 ) to be used in table 9 

no (< n,)
100 200 400 600 1000 1500 2000 2500 3000 4000 5000 

100 50 - ­

200 70 1010 . . ...
 
4 0 0 80 1 3 0 20 0 - . ... ...
 
600 90 150 240 300 .. . . .
 . 

1000 90 170 290 380 500 - .. 
n, 1500 9(1 180 32(1 430 600 750 . . . . . 

2000 100 180 330 460 670 860 1000 - - - ­
2500 100 19( 340 480 710 940 1110 1250 - - ­
3000 100 190 350 500 750 1000 1200 1350 15(10 - ­
400( 1 N) 190 360 520 800 1090 1330 1540 1710 2000 
5000 101 190 370 540 830 1150 1430 1670 188(0 2220 2500 

1rocedure 
T estimatc sitandard Lrror btr tie difference in InICan/propurtion betwncc two subclasses of un­

weigited sample size i, and n, in i. , say) proceed as follows: 
Read coluin in table 10 nearest to n, and row nearest to ii,. The cIll ai the interscction of' these 
gives tie appropriate size 11dto be used, for tile Vivcni variable, in table 9. 
If only tile weighted subcla.% sizes are given, first use table I I to obtain the unweighted sizes n, and 
n,. 
Source: Central Itureaki of Statistics (19781 

The vatious footnotes to table 9 give very approximate adjustmients to be made if the 
value of ccrtain substantive estimatcs (nieans and proportions) for the subclass differs 
greatly from tile value for thie sample as a whole. Similar tables may be constructcd for 
each geographic domain of the sanple separately. 

In fact. table () also provides approximate values of the standard error for subclass
 
differences, using the approximation explained in section 4.4, that is, taking the ef­
fective sample size for a difference of two subclasses as half the harmonic mean of the 
tWo suhclass sizes. lahle 10 is used to0 determine the effective sample size nd for the 
difference of two sibchlasscs Of site nl and n,. Then this not is used in table 9 to estimate
 
tile !pproximate standard error for the difference.
 

For such infturmation it) he useful, tle user niust have access to sample sizes of indi­
vidual cells ill the detailed cross-tabulatiorns. This generally presents no special problem 
in self-%%c'liting samples. Ilowever, for weighted samples it is often not convenient to 
show hb th weighted and uweighlted frequencies. E'xact weighted frequencies are re­
quired to I)crtiit i11alaniation otf categories in the table, while Unweiglted frequencies 
are required only approximately. as an indication of' the sammpling error. When only one 
set Of freqnerticics can hbi sl wn, it is preterable to show the weighted frequencies. Tables 
showing the appro,\imt,I-orrcslhiideuce hetween weighted and unweighted frequencies 
for all iiajor sublass CtiicLlS anid dOliaisllia then he required. An example is shown 
in table I I. 

5.4 FOR TI: SA\M'LIN(, I IA I I' AN 

The sampling statistician is concerned with the statistical efficiency of the design adopted 
conipared to alternatives which could have bcen adoptc t , or more relevantly, that might 
he adopted in future surveys wili similar objectives. The type of infornation that is 
useful for sample design aid evaluation includes: 



Table 11 Factor by which weighted frequencies should be multiplied to obtain the corresponding 
unweighted sample size for various subclasses of the sample, by province and type of place of residence 

Subclass All Type of place Province a, 
Ja wa-B aIi Urban Rural Jawa Jawa Yogykarta Jawa Bali 

Bara I 1engab Timur 

All 1.00 2.04 0.81 0.73 0.76 3.53 0.70 4.83 
Age 

Under 25 1.95 2.06 0.77 0.70 0.74 3.56 0.70 4.77 
25-34 1.03 2.07 (.83 0.74 o(.75 3.53 0.70 4.86 

35-44 1.02 2.00 0.82 0.74 1.76 3.54 0.71 4.79 

45-49 0.98 2.00 0.79 1.76 0.80 3.46 0.69 5.00 
Years since marriage 
Under 10 1.04 2.09 (0.83 0.72 0.76 3.50 0.71 4.78 

10- 19 1.03 2.05 1.83 0.74 0.75 3.57 0.70 4.82 

20-24 1.00 2.04 1.82 0.71 0.76 3.46 0.71 4.95 

25 + 0.89 1.92 (.73 0.74 (1.76 3.52 0.68 4.92 

,.Ige at marriage 
Under 15 0.78 1.99 0.70 1.69 0.71 3.64 0.65 5.17 

15 19 0.90 2.02 0.82 01.71 1.73 3.66 0.69 4.82 

20 + 1.43 2.12 1.14 0.87 0(.89 3.46 0.77 4.85 

Level ofeducation 
No schooling 0.93 - - 0.65 0.71 3.63 0.65 4.81 
Primary incomplete 0.95 - - 1.73 0.75 3.49 0.71 4.88 

Primary completed 1.14 - - 0.79 OA2 3.37 0.81 5.()0 
Junior high + 1.73 - - 1.16 1.27 3.20 1.18 4.90 
lushand'soccupation 

Prof., admin, clerical 1.45 - - 0.94 1.06 3.46 0.87 4.93 
Sales, serv~ces 1.11 - - 0.79 ((.92 3.22 ((.85 4.59 

MNhnual 1.24 - - 0.80 0.97 3.26 (.84 4.77 
:irruiniig 0.83 -- - 0.63 0.65 3.68 (.62 4 S9 

' Factor for Jakarta for all subclasses = 2.76. 

NOTE:' "Means not tabulaled. 
Source: Central Bureau of"St:tislics 1978) 

1 	 betailcd information on standard errors and Iheir pattern of variation with subclass 

type and size, as descrihed in the previous section. 

2 	 Similar information on design factors. 

3 	 Information on rol values to permit extrapolation across variables and across designs. 

4 	 Information on the effect of specific features of the design, such as stratification, 

clustering of ultimate area units and of other highCr stage units, departures from 

self-weighting, etc. 

5 	 More generally, information on components of the sampling error for multi-stage 

designs. 

As noted in the introduction, sample design is severely constrained hy numerous 

practical considerations. Statistical efficiency is just one of the factors involved. Never­

theless, it is an important factor in making choices within the class of' designs permitted, 

however narrowly, by considerations of' practicality, quality control and cost. 
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Appendix A- A Brief Description of the
 
CLUSTERS Package
 

I INTRI OI)t 'ION 

One of the lail ohs)ltacles in compulting and presenting sampling along with sub­errors 
stailive survey iesilts lias been the nii-availahility of an adequate, efficient and easy­
to-Ilse comlputer soltw.e package for sampling error calculations. 1o rectify this 
situatil. WI S dfevloped, llid distrihuted for a nominal charge, a fairly modest, sinlle 
and last pxtckge cAlhd CLU H "1SII:RS.' Ilgepackage fIas facilitated the incltsionl ofl samp­
ling error result ii most WTS irt (Coulntry Reports. lowever, tfile usefulness of 
CI IlIRS 1 by no t . limited to WFS-type surveys. The f(lowing description 
of 	 tile Iaill leatures, (it the package is provided to encourage agencies engaged in sallele 
SlliVeys to tLitli/ tle plckaLe, and undertake roultille anid CxtelisiVe Coll)pltation ofS~lnllplinlg Clr(itS',. 

2 BASI( RIQt'I RI NI1I NI S IFOR A SolFTWAR IPACKAGE 

With (,I- SI 1-16, Ait Itteupt fhas heen muade to meet tile basic requiremnents for a general 
and widely tble ,owAre package for calculation of sampling errors for descriptive 
samiiple ,iuve.. I ht, qureiteut, can be oitlined as follows: 

I 	 Fhe plgitml stitld he able Ito lfandle, simply and cheaply, a large n111lht1r of vari­
.tbles ,, (1CItt llatnle sbcl ,-tsc,,. It slotuld not require tiler icl Ise of large computers
0l 	+thter '.ir sp,.'..itlizet tditltu.. 

2 	 Il rel itt(Jli I,) tte ,t',ll of%id ttrc ials betweell :)pOpMlationS, samttplinlg errors for 
,tlt feretoe,IL' It Pt srtlieltll als o,ee ( t lttlf aslis be rl puted. 

3 	 It s,mtl hv pi,,Ihl I- iept t, itt I tttplc way, the entire set oI Calculatiotns Ior 
dilleretit g-1gatLI t Ilitiittstritis, regions. tch ireakdowns arc often requhired 

,
10:r ',Ilt[ll it. C / rv lt%' L llt,+. , 

4 I l c ( I'iu tIltttIIPM iue)tie Itl"st take int,) IccoIllnt the IcIu l SA;ilple design, II
 

p~t I l lt r 
Ilie, e tc ,L ls I N Illg aid stl;' ificatio , whil influence fle !Xtellt of 
,atn pti_ ,vt-i,, l f. . .r. the pro.ter tm htMhltt lt he lintitef fto t partictLai samlple 
dc lgit. it 

, 

dt-md it , ->,ttlie ulttetl;tr ttodel, like 'paired selectin of prilary salp­
lintg 1N )~ t Ilt t' , l -t"-t, ' ) C 4+,[ ll Il . 

'qIt s [t tioldho. able , t'' l:'','l h e ld ld 

irii itt 

if inpult dl;it. %k ,iht )It 'ie v raw itiput tf:ta 


6 	 As iar as 0-h j, ill retiire arty particular arrangertletl of iorin 
is required, it is desirable that 

tlte s ttarc p t u'it dlit he thlc () httnfle this, withttut tile need to write 
;ptciAl prt'itit ' lJv114 , t i ortkme. 

7 	 Int aldfiti,m tj , ,utltti ! -t IttltltI irsl,.. it is list) fstlable that the prograln comlpute 
certain Wtttr ii .fl lIttiI. Sll it0t, t_1tef vilues rlulyitlSSt users to extrapolate 

('mlp t t I sollm 	 ttllL,t1I of(,ritidm -)I I'Vchtl SI d Satmpling.
Fhe i hll-;al t td u t'm-l i ts jf;tfuled Irm Verma 1978t. 1turther details are availtI,le in tie Users' 

\tautil I\Ietit die Par 1978). 
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to other variables and subclasses for the given sample and possibly also to f ,iure 
surveys. One of the objectives of calculating sampling errors is to provide informatioi 

for sampling statisticians attempting to design other studies uler similar survey 

conditions. 

3 MAIN FEATURES OF CLUSTF-RS 

a FORTRAN IV based software package (it also requires a standardCLUSTERS is 
sort program). It uses approximately 50 K bytes of core storage though if more is avail­

able for work areas, more calculations can be done in) one run of' tle proggram. Ilowever, 
50 K bytes is enough for an average number of variables anld subcl:sses. The package 

is not machine dependent, and has been installed ol a variety of machines (Ii:Nt 360/ 

370, ICL 2900, 1-113000, (DC 6000). 

Below the main features of (LUSTERS are summarized in relation to the basic re­

quirements discussed above. 

Handling of Different Variables and Sample Subclasses 

We note that subclasses for sampling error calculations tisually are defined inl leris of 

the characteristic used in the cross-classification of [he substantive results foil the 

surveys. Often the same system of cross-classification is relevant to all (or most )sulley 

variables. Variables like family size or prevalence of conltaceptive use may all be pre­

sented after classification of the sample by characteristics such as agC or socio-cCollOiiic 

background of the units of analysis. 

of these fealtures, 

in CLUSTES in terms of a rectalngular ,riable by subclki, nHltoix. S;iiiipling errulls 

are then computed over aitioiiiaiicAly over lie whole 

Making ulse con111111o11 the calclatiotoS be eIt.rIie'd .ilt spectit'lI 

for all v;kriables each subclass (',aid 
sample) in the .pecified set. In addition, (LUSl-ERS aittoiiatically omlllpil.s saimiplint' 

errors for eacti subclass, treating it ais a charactCristic dtist ribtled oCI Ihe ct 1irC sample. 

As an example, if .aninpling errors for 20 variables over 15 s;itil)tC ia-tllM ,Me to bC 

computed 1::typical WFS survey reqluirement ),it is to0t ice tssatI' h' S,!CciIy 2t) I 15 

300 'problens' sepa.ately, bill only 20 +-15 = 35 vari;ables and stibclm-.ses. 

Subclass Differences 

The sample subclasses for which sampling errors are to be Cited1ICtl can be specified in 

pairs. In that case CLUSTERS attOaticalV calculates the differemiec an1d its slandard 

error for each subclass pair. A given subclass may, if desired, appear ii miOre thai one 

pair; moreover the subclasses iii a pair need mnt niecessarily be noni-overlapping or ex­
haustive. 

Separate Results for Geographical Regions 

The entire set of calculations for variables over sample sucblasses anmid for differences 

between subclass pairs can be repeated for the separate geographical regions into which 

the survey universe may have been divided. This repelition is extremely straightforward 

from the user's point of view and does not involve Intuch alditional CollipUter tune. 
One restriction regarding this facility in (LiSTlRS is that the geographical regions 

must be non-overlapping and the sample must be selected independently within each 

region. 
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Sample Structu.e 

CLUSTIRS computes sampling errors taking inlto account tile actual sample design, in 
particular tile clustering and stratification of tile sample. The basic units involved in the 
computational foriiiulae are the primary sampling units (PSUs), i. the first or highest 
stage units selected into the sample. The procedure is roughly as follows: lor any vari­
able under stldy, a sunonatiOn {weighted if applicahle) is madc over file values o1' the 
variable for all individul csCs ObClongiiig to a particular sample subclass) iii each PSlI. 
The PSU totals are lien diTercnced lni m eiian (I t all sample PStUs within each stratuln 
according to formulae described in lie ['scrs' Manual. These differences are then squared 
and pooled over the whole sample (r over each geographical region, if applicable aniid 
divided hy all applopriate coistaiit to pitllice estilates ot saiiipliiig variitice. 

l:Ir a iilulti-sige Salllle, tie pro.cdlre does l(t split the o vearlvariance iiioseparate 
c0iiipolneils associated with lie intildu.l sStages. IlenCe all thai is retluired regarding 
specification of the sample struLcturC is aii identilicalioii t the I1S..;, stratum anld geo­
graphic region it applicable) lor cath inlividlual case fie each ultimate saipling unit).
One f lie noteworthy features of*(lIUASI"I-RS is the fair degree of flexibility regarding 
the lorll of this ideiitiication: restrtu'tring or recoilitg (d the inputl data is not normally 
required. 

Weighted Data 

(LUSTERS handles nonii-self-wCightig samples, iC s;mlples ill which ilte ultimate units 
need to he %%cighlted t ctipensate for diltereies ill probabililies 01f selectioit or f'r 
lefcots in sipe iiiiplemICntatioti, eg nlltl-respn(Inse. These saimnple weights may he scaled 
arbitrarily and speciticd .ither as a data field ol each individual record or simply in 
terms (f tle ideulilicanon cmt l eIcJi ()I the 'higlici stage' units imientiotied ill tile 
Ire\'ious pai agra ph. 

Recoding of Iiiput Data 

It is often necessary il) r cllt.e raw ilil)lt datla elore the required statistics like pro­
pInii1on1S. liealis, lr illi and their standard er)rs call be calculatCL. [or this purps()c,

(LISI FRS iludes a liited set (I recttitig facilities. These can define iew, variables
 
(i the basis I (mie rm(le inlputlldata fields. Ihough using these facilities is n()t always
 
the llost ecoiil dctllia ns relldig! variables, they are sittiple to use a di have bell

1')tllltl tll111e wutCiSA I . 

Derived Statistics 

Inl additIlb 1(I stitdalrd eCrIIS. (IA[S'lRS lili'tl two detived statistics,, namiely design 
factor (dlt) alod rate ()I 110ltillgeneiti I r hi . 'I he provide tle basis for generalizing
theC Ctiiled rCS' tol I tiir variahles amid .,bclasses t the I)tticular Sallple, all 
I)0Ssi My alSO ilIti0 r, i(4 l It.l'Sigls. 

4 1.I\ITAT(IONS 

The in liiitatinis f the package ire as liIlhws. 

I 	 It cannot handle hierarchical data files. Ilie file must be rectangular with no non­
nutiteric codes. 
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2 	 Analysis of variance into components attributahle to different sampling stages i.,not 
included. Ilowever, hy repeating the calculation, ignoring one or more higher st,.ges, 
the effect of those stages can he isolated approximately. For illustrations of this 
approach see Verma et al (I 980). 

3 	 ('LUSTIIRS is confined to descriptive statistics, such as proportions, percentages, 
mneals and ratios. I)ifferences ot"ratios ot' only a specific (but hy far the most con­
monly encountered) type are handled. I is assuNLed that the two ratios heing differ­
enced are defined hy the same pair (ui ulnerator and denominator) of* variables, hill 

over different suhClasses of the sample; the suhClasSes may ove.rlap and nee.'d not he 

exhaustive. The package does not handle more complex statistics such as general 
linear combinations of ratios, t)r(ducts or ratios of' ratios, nor of course, regression 
aMild correlation coetfficients, etc. 
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