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ABSTRACT
 

The Instantaneous Unit Hydrograph (IUH) is derived as a function of
 

the basin's geomorphological and physiographic characteristics. Inherent
 

in the basin IUH is the response of the individual channels composing the
 

basin. The response of the individual channels is derived by solving the
 

continuity and momentum equations for the boundary conditions defined by
 

the IUH. Both the effects of upstream and lateral inflow to the channels
 

is taken into arccount in the derivation of the basin's IUH. The time to
 

peak and peak response are used as a basis for comparison between the re

sults produced by this model and those produced by a model where the chan

nel's response is assumed to be an exponential distribution. The compari

sons indicate that if the approach taken in this paper is indeed accurate,
 

for example, the assumptions used do not invalidate the model, then the type
 

of channel response used for the basin's IUH is significant, and future ef

forts must be directed towards parameter estimation.
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Chapter 1
 

INTRODUCTION
 

1.1 Motivation of Study
 

Many regions throughout the world lack the hydrologic data required
 

for a detailed analysis of a basin's response to rainfall. Typical
 

examples of this situation are the many wadis, or ephemeral streams, in
 

Egypt. These basins respofd'to sporadic rainfall events, frequently
 

causing considerable damage to villages and other developments in their
 

surroundings. Effective planning and protection of these, and similar,
 

sites require estimates of expected discharges from rainfall events of
 

different magnitudes. Traditional estimation techniques are not
 

feasible due to the lack of available hydrologic data. Limited
 

watershed data is available from aerial photographs or survey maps.
 

Both climatic and physiographic factors influence runoff from a
 

drainage basin. The climatic factors include the effects of various
 

forms and types of precipitation, interception, evaporation and
 

transpiration, all of which exhibit seasonal variations in accordance
 

with the climatic environment. The physiographic factors include the
 

basin's and channels' characteristics. Geometric factors such as size,
 

shape, slope, orientation, elevation and stream density; and physical
 

factors such as land use and cover, soil type and topographic
 

conditions, characterize the basin. The channels are characterized by
 

the channels' slope, roughness, length, and the size and shape of the
 

channels' cross section.
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Common practice in applied hydrology is the upe of linear systems
 

theory to determine the discharge from a river basin. The response of a
 

continuous linear system to an arbitrary input, I(t), is the result of
 

the familiar convolution equation,
 

Q(t) - fJ I(r)h(t-T)dT 

In hydrology, Q(t) is the discharge at time t and I(t) is the effective
 

precipitation rate as a function of time. The function h(t) is the
 

characteristic response of the river basin and is commonly called the
 

Instantaneous Unit Hydrograph (IUH). If the IUH is known, it is then
 

possible to obtain the discharge hydrograph corresponding to any
 

arbitrary rainfall input. The functions I(t) and h(t) can be regarded,
 

respectively, as the integral expressions of the climatic and
 

physiographic factors that govern the discharge from the river basin.
 

Linear system theory, as represented by the convolution equation,
 

has also been used to study the behavior of particular channels within a
 

basin. In that case the input becomes upstream inflows and/or lateral
 

flows from adjacent overland segments.
 

Various conceptual models have been proposed to delineate the IUH
 

of channels and basins. One of the simplest conceptual channel IUHs
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results from the assumption that a channel or basin behaves like a
 

linear reservoir. A linear reservoir is defined by its storage
 

discharge relationship which is given by
 

S(t) = KQ(t)
 

where S(t) is the storage in the reservoir at time t, K is a
 

proportionality constant-and Q(t) is the discharge from the reservoir.
 

In essence, the storage in a linear reservoir is proportional to the
 

discharge.at all times. By solving the continuity equation for an
 

instantaneous input of unit volume (Dirac Delta function) the resulting
 

IUH is given by
 

h (t) 1 -t/K= 1 e
 
c K
 

A popular conceptual model of a basin results by suggesting a
 

configuration of n linear reservoirs operating in series. 
 The output
 

from each upstream reservoir being the input to the one immediately
 

downstream. 
 Such a model is shown in Figure 1.1. The functional form
 

of the model is obtained by carrying out the convolution operation n
 

times; the result of the first convolution being the input for the
 

second convolution and so on. The results for an instantaneous input at
 

the first channel is the Nash model which is given by
 

14
 

http:discharge.at


h tIL -t/k h .I() -t/k hn (t)=ie-/k 
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( 

Q01 t): JI(T)hI(t-T)dT
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~~~~Qnlt)= 

0 

o 	 O lln~~-d 

Figure 1.1: 	 Schematic representation of a basin modeled as a series
 
of n linear reservoirs.
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1 tn-iI1 -t/KhBMt) = E r(n) e 

where r(.) - Gamma function
 

K - time constant of the linear reservoirs
 

n = number of linear reservoirs added in series
 

In contrast to the pfevLously stated conceptual model, recent
 

studies by Rodriguez et al. (1979) and Gupta and Waymire (1980)
 

demonstrate that the basin's hydrologic response can be determined from
 

the basin's geomorphologic structure. The technique utilizes easily
 

accessible geomorphologic and geometric basin parameters to obtain an
 

analytical expreriion of basin response. These parameters relate to the
 

seeral physiographic factors which affect discharge such as basin area
 

and stream density. The model assumes that the individual channels
 

behave as a linear reservoir, and using concepts from probability theory
 

and geomorphology an expression is derived for the basin's response.
 

This work will study the importance of the linear reservoir
 

assumption for channel response in the geomorphologic IUH theory. In
 

doing so, use will be made of a general linear solution to the equations
 

of motion in wide prismatic channels as suggested by Harley (1967).
 

These results yield the theoretical linear response function (IUH) of a
 

channel as a function of several physiographic factors (slope and Froude
 

number, F) and the parameters required for linearization. The
 

determination of the basin's response will be based on the recent work
 

by Rodriquez et al., and Gupta and Waymire.
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1.2 Scope of Study 

A major focus of the forthcoming analysis is the relationship
 

between runoff and the geomorphology of the basin, and thus Chapter 2
 

describes recent developments in hydrogeomorphology. The concept of the
 

geomorphologic IUH is presented along with an analytical derivation of
 

the basin IIJH used to determine the discharge hydrograph. An example of
 

the geomorphlogic basin IUH is presented using the assumption that the
 

channels respond as linear reservoirs.
 

Chapter-3 presents a linearized solution to the continuity and
 

motentum equations for the boundary conditions imposed by the definition
 

of an IUH. The solution defines the upstream inflow IUH for the indi

vidual channels and is used to determine the lateral inflow IUH which
 

accounts for an input occurring anywhere along the channel. A sensi

tivity analysis is performed on the input par3meters and reference
 

parameters used for linearization.
 

Chapter 4 presents the basin IUH obtained using the theory of the
 

geomorphologic IUH presented in Chapter 2, where the channel response
 

functions are as derived in Chapter 3. Both the upstream inflow and
 

lateral inflow channel IUHs are used to enhance the hydrogeomorphology.
 

A sensitivity analysis is performed on the input parameters..
 

Chapter 5 presents the discharge hydrograph determined in accordance
 

with the IUH theory where the basin IUH is as derived in Chapter 4.
 

Several hypothetical streams are used as input. Hydrographs for different
 

basins are presented and compared to the time to peak and peak discharge
 

determined by a rainfall-runoff model. The hydrographs are also compared
 

to hydrographs determined using the assumption that the individual channels
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respond as linear reservoirs, i.e., the channel IUH is given by the
 

exponential distribution.
 

Finally Chapter 6 presents conclusions and recommendations for
 

further research on the subject of determining runoff from ungaged river
 

basins.
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Chapter 2
 

THE GEOHORPHOLOGIC IUH
 

The ultimate aim of this study is to derive an analytic expression
 

of the basin response in terms of the basin's geomorphological
 

characteristics and channel properties which affect runoff. This
 

chapter will outline the recent deve-opments by Rodriguez et al. (1979)
 

and Gupta and Waymire (199O)'in hydrogeomorphology to estimate basin
 

response. T:e technique presented utilizes easily accessible
 

geomorpholegic and geometric basin characteristics to obtain an
 

analytical expression of basin response. Several :olicepts are utilized
 

throughout, such as the quantitative analysis of a drainage network in
 

terms of Horton's empirical laws and the idea of the ILH as the
 

probability density function (pdf) for the travel time of a drop of
 

water landing anywhere in the basin. Inherent in the expression is the
 

response of the individual channel, the channel's IUH. This will be the
 

subject of the subsequent chapter.
 

2.1 Quantitative Analysis of a Drainage Network
 

The quantitative analysis of channel networks began with Horton's
 

(1945) method of classifying streams by order. Strahler (1957) revised
 

Horton's classification scheme such that the ordering scheme is, unlike
 

Horton's, purely topological, for it refers to only the interconnections
 

and not to the lengths, shapes or orientation of the links comprising a
 

network. A hypothetical channel network with Strahler's ordering scheme
 

is presented in Figure 2.1. The ordering procedure is based on the
 

following r..Iez:
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Figure.2.1: 	 Third order basin with Strahier's ordering
 
system (from Rodriguez et al., 1979).
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i) channels that originate at a source are defined to be first
 

order streams;
 

ii) when two streams of order w join, a stream of order w+l is
 

created;
 

iii) 	 when two streams of different order join, the channel segment
 

immediately downstream has the higher of the orders of the two
 

continuing streams;
 

iv) 	 the order of the basin is the highest stream order, W.
 

The first step in drainage network analysis is the counting of the 

streams of each order, Nw , w=l,2,...,W. This is followed by the 

determination of each stream length, L , and stream area, A , i = 1, 

Nw, w=l, ..., W, where Aw is the area of runoff contributing to the 

ith stream of order w and its tributaries of lower order. (Note: AW. 

is the area that drains directly into the ith stream of order w plus the 

area contributing from the stream's tributaries). Figures 2.1 and 2.2
 

present the necessary information for the analysis of a drainage
 

network.
 

Given the ordering scheme, Horton demonstrated several empirical
 

laws; the law of stream numbers, and the law of stream lengths; Schumm
 

(1956) proposed a Horton-type law for drainage areas, the law of stream
 

areas. The law of stream numbers states that the total number of
 

streams of different orders in a given drainage basin closely
 

approximates an inverse geometric series in which the first term is
 

unity and the ratio of the series is the bifurcation ratio, RB. The
 

quantitative expression of the law is given by:
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Figure 2.2: Verification of Horton's law of stream numbers.
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W 1-(W)+ ... (1 (2.1i)
" 
Wj NW = RBB % B 

W=I1
 

For a given river basin, the law is easily verified by constructing 

a plot of the log of number of streams, Nw , versus stream order, w. The 

plot should be a straight line with very little scatter as shown in 

Figure 2.2. The anti-logarithm of the slope of the line is R . Another 

interpretation of RB is obtained from Equation 2.1. -From the equation 

we obtain 

N= Ww w=l,2,... ,W (2.2) 

and therefore
 

NW_ 1 R B (2..3) 

which shows that RB is the number of streams of order W-1. By
 

substituting the result of Equation 2.3 in Equation 2.2 and rearranging
 

the expression, the following is also obtained:
 

Nw-

RB = N 
w
 

We can therefore interpret Horton's law as ascertaining that the ratio
 

Nw-i for w= I.,W approaches a common value given by RB The concept 

N ,... a a 
w 
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of the laws of stream lengths and stream areas is the same as the law of
 

stream numbers, the ratios of the series being the length ratio, RL and
, 

thr. area ratio, RA$ respectively. RL and RA are calculated using the 

following quantities: the average stream length of each order, L , is 

given by: 

Nw
 

L = -- L.
 
w Nw i=l wi
 

where L is the length of a stream of order w, and the average stream
wi
 

area of each order, Aw is given by
, 


N 
w 

w N w i w .i
 

where A is the area contributing runoff to a stream of order w and,its
wi
 

tributaries. For example, iis the total area of the basin. The
 

quantitative expressions of Horton's laws are summarized below:
 

Law of stream numbers: N = RB
 
W 

w
 

Law of stream lengths: = RL
 
T 
w-1
 

Law of stream areas: w = RA
 

W-1
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Empirical results ii.icate that for natural basins the values for
 

RB normally range from 3 to 5, for R from 1.5 to 3.5, and for RA from 3
 

to 6 (Smart 1972). In this study the geomorphologic characteristics,
 

RB, R, and RA will be the daqcriptive parameters of the basin on which
 

its response will be based.
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2.2 Probabilistic Interpretation of the IUH
 

By definition the IUH is the response to a unit volume of water
 

instantaneously but uniformly applied to a basin. Its volume (the area
 

under the curve) is equal to 1. The abscissa has units of time and the
 

ordinate units of inverse time. All of the properties are similar to
 

those commonly attributed to a probability density function (pdf). In
 

fact, Gupta and Waymire (1980) clearly prove that the IUH of the basin
 

is the probability density function of the amount of time that an
 

individual drop of water, starting at a random point in the basin, takes
 

to travel to the outlet of the basin. A similar interpretation is valid
 

for the response function of a single channel. The channel IUH gives
 

the probabilistic distribution of the travel time of. a drop randomly
 

entering at a point along the channel.
 

The next section will present how the desired pdf, or basin IUH,
 

can be obtained from the geomorphologic laws of the basin. The
 

development follows Gupta and Waymire's (1980) work as well as
 

Rodriguez et al. (1979). The travel times in a channel are assumed to
 

be exponentially distributed. The subsequent chapter will suggest a
 

different form for the channel IUH.
 

2.3 Derivation of the Geomorphologic IU
 

In order to determine the basin IUH, let's consider the input as a
 

unit volume composed of an infinite number of drops. The following
 

analysis will focus on the travel of one drop, chosen at random, through
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the basin. The drop travels throughout the basin making transitions
 

from streams of lower order to those of higher order. A transition can
 

be referred to as a change of state where the state is the order of the
 

channel where the drop is traveling. Rodriguez et al. (1979) agreed
 

that the tra-el of the drop through the river basin can be modelled as a
 

semi-Markov process. The process is semi-Markov because the time
 

between transitions is dependent on the state presently occupied.
 

The states of the process are defined to be the overland region or
 

stream of order i where the drop is located at time t. The set of
 

states will be denoted by A = (l,2,...,W+1). The travel of a drop is
 

governed 	by the following rules.
 

Rule 1: 	 When the drop is still in the overland.phase, the
 

state is the order of the stream to which the Land
 

drains directly.
 

Rule 2: 	 The only possible transitions out of state w are those of 

the form w + j for some j > w, j = w+l, ...,W+l. 

Rule 3: 	 Defining the outlet as a trapp .igstate, W+l, the final
 

state of the drop is W+l, from which transitions are
 

impossible.
 

The above set of rules defines a finite set of possible paths that
 

a drop falling randomly on the basin may follow to reach the outlet.
 

For example, suppose that the basin of interest is of order 3 (see
 

Figure 2.1), then the path space, S = (SlS2,S3,S4) is given by
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path S1 : 91 1 + 2 + 3 - 4
 

path S 2 : 0 1 + 1 + 3 + 4
 

path S3 : 82 + 2 + 3 + 4
 

path S4 : 93 + 3 + 4
 

where i=1,2,3 are as previously defined, 4 represents the basin outlet
 

and 9i represents the overland phase. Figure 2.3 is a convenient
 

schematic representatiorFof all the alternative paths, the numbered
 

circles representing the elements of a given order.
 

Following Gupta et al. (1980), the cumulative density function of
 

the time a drop takes to travel to the basin outlet is given by
 

P(TB < = I P(Ts t)p(s) (2.4) 

scS 

where P(.) stands for the probability of the set given in parenthesis;
 

is the time of travel to the basin outlet; Ts is the travel time in a
TB 


particular path s; p(s) is the probability of a drop taking path s; S is
 

the set of all possible paths that a drop can take upon falling in the
 

basin.
 

The travel time, T , in a particular path, a0 + a1 + ..
s + ak' 

ai(l,...,W+l) , must be equal to the sum of travel times in the elements 

of that path; 

T = T + T + ... + T (2.5) 
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3 OUTLET 

Figure 2.3: Schematic representation of the possible paths for
 

a drop falling in a third order basin.
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where T is the travel time in an overland region or stream of order
 a.
 
1
 

ai,aie(l,...,W+l) and k is the number of transitions that the drop
 

undergoes. Given the many streams of given orders and their various
 

properties, T must be a random variable with a given probability
a.
 
1
 

density function fai(t). Furthermore, there is no reason to suspect
 

that the T are anything but independently distributed random
ai
 

variables. The probability density function of T must then be the
 

convolution of probability density functions, f (t), corresponding to
.ai
 

the elements of path s. The cumulative density of Ts is similarly the
 

convolution of individual cumulative density functions, Fait).
 

Therefore,
 

P(Ts < L) = Fa(t)*ra (t)*...*Fa(t) (2.6) 

where a0 + aI + ... t ak is path s and * stands for the convolution
 

operation. For example for path s2' 91 + 1 + 3 + 4, P(Ts2< t) is
 

given by:
 

P (Ts2< t) = J j Fj (t')Fl(t"-t')dt'F3 (t-t")dt"
 

= Fi(t)*Fl(t)*F 3 (t) (2.7)
 

where F'(t) represents the probability function corresponding to the
 
1
 

time the drop spends in the overland region draining into streams of
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order 1. Equation 2.7 says that the probability that a drop travels
 

path s2 in a time less than time t is given by the probability that the
 

drop travels from the overland region to the first order channel in a
 

time less than t'; times the probability that the drop travels through
 

the ist order streams in time t" - t'. where t' can range from 0 to t";
 

times the probability that the drop travels through the 3rd order stream
 

in the remaining time given by t - t", where t" can range from 0 to t.
 

The average time that t'he drop spends as overland waiting time can
 

be inferred.from Fi(t); however, this time will be considered to be
 

negligible when compared to the overall time that the drop spends in the
 

basin. Rodriguez et al. (1979), justify the relative insignifiance af
 

the overland waiting time by the following explanation:
 

The importance of the overland waiting time appears to be
 
rather smaller than that of the stream waiting time under the
 
framework of analysis taken in this paper. When one considers
 
drops traveling through a stream of order w, most of them will
 
come from the two streams of order w-l, which make up for the
 
stream in question, or from tributary streams which drain along the
 
route of our stream of order w. The only drops affected by
 
overland waiting time will be those draining directly by overland
 
flow into the stream of order w. These drops are in number
 
considerably fewer, in general, than the above ones, and thus we
 
feel that in average terms the mean waiting cime in state w will be
 
the streamflow waiting time. Only for streams of order 1 would one
 
expect that most of the drops, except for channel precipitation,
 
are affected by overland waiting time; because of the smaller size
 
of the order 1 areas, this time is nevertheless considered to be of
 
minor importance in the overall IUH.
 

The above assumptions simplify equations 2.5 and 2.6 to:
 

T = T aI + ... + T (2.8)s ak
 

P(T <t) = Fa(t)*Fa(t)* ... Fa(t) (2.9) 
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0 

The probability of following a given path s, p(s), is a direct
 

consequence of the Markovian nature of Strahler's ordering scheme and is
 

given by:
 

p(S) = 0a0(0) Pa0a1 Pa1a2 Pak-lak (2.10)
 

where 0 (0) is the probability that the d:op starts its travel in an
 
a0 

overland segment draining into a stream of order a0 ; Pa a.is the 

transition probability from streams of order a. to streams of order aJ. 

Remember path s is a0 + a + a2 + ... + ak, where aic(l,...,W+l) and 

ak will be equal to the state which represents the outlet, W+1. The 

reader should also note that due to rule 1, a drop initially falling in 

an area which drains to a stream of order i, goes to a stream of order 

i, thus a0 = a1 = i and pa a = 1. Also the transition probabilities 

PW-lW and pWW+I are equal to 1. 

Rodriguez et al. (1979) show that the initial probabilities, 

(0) and the transition probabilities, paa are functions only of the
 

geomorphology and geometry of the river basin. Only general expressions
 

for 8a(0) and paia will be presented in this paper, and the reader
 

should refer to Rodriguez et al. (1979) for a more detailed discussion.
 

The physical interpretation of the probabilities is as follows:
 

0w(0) = total area draining directly into streams of order w
 
w total basin area
 

(2.11)
 

number of streams of order i draining into 
steams of order J 

Pij = total number of streams of order i (2.12) 
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The transition probabilities can be derived as a function of RA and
 

RB using the following general expression given by Gupta and Waymire
 

(1980):
 

(Ni - 2Ni+ I) E(j, W) 2Ni+ 1 
Pij W + Ni 6 < i < j < W 

I E[k,W] Ni 
k=j (2.13) 

where 6 1 if j = i+l and 0 otherwise. E[i,W] denotes the meani+ 1j
 

number of interior links of order i in a finite network of order W, an
 

interior link being the segment of the channel network between two
 

successive junctions or between the outlet and the first junction
 

upstream. The cxpression is given by
 

(NJ 1 - 1) 
E[i,W] = Ni n 2N - 1 i = 2, ... $ W 

J=2 	 1(2.14)
 

Similarly, the probability that a drop falls in an area of order w is
 

derived using the following general expansion
 

N A
 01(O) = 	1_1
 

11
 

(2.15)
 

N w-1
 
o (0)= [ - w - I AJ(N pj/ IN ) w = 2, ..., W 

j=l1W 
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Table 2.1 presents a complete list of the initial and transition
 

probabilities for a 3rd order basin. As can be observed, all the
 

probabilities are functions of only RA and RB. Appendix A presents a
 

summary of the theoretical development of these probabilities.
 

The probability function for a drop's travel time in a basin, 

P(TB < t), is now fully defined in terms of the geomorphologic basin 

properties and the probability functions Fai (t), corresponding to the 

travel time of a drop in a given channel, T . As previously stated,a.
 
I 

the IUH is.defined to be the pdf of TB, and therefore
 

dP (TB < t)
 
dthB(t) 


f a (t) ... *fa (t) p(s) (2.16) 

where fa(t) is the pdf of the travel time, Tai.
 

In summary, the IU is a function of the probability that a drop
 

initially falls in an area which drains to a channel of order w, the
 

transition probabilities to channels of higher order, w+j (j=l, ...,
 

W-w), and the pdf of the time spent in a channel of a given order. The
 

initial and transition probabilities are functions of the basin's
 

geomorphologic characteristics, RA and RB. These transition
 

probabilities provide a probabilistic description of the drainage
 

network and a link between quantitative geomorphology and hydrology.
 

The next section presents an example of the geomorphologic IUH.
 

The input parameters and mathematical computations will also be
 

presented so that the reader can gain a better understanding of the
 

geomorphologic IUH.
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Table 2.1 Initial and transition probabilities for a 

3rd order basin. 

9 

92(0) 

2(0)-2 
R RA 

2RB+ 
RA 

2 RB2 RB 
A-2 -1) 

G(0) 

P 12 

RB2 

S -. RB(R+2+ 

1l--- 2 
A RA(2% 

B + 2RB - 2 

2 R 2 - RB 

- 1) 

P13 

2RB -oUB +2 
22 BR 
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2.4 Example of the Geomorphologic IL
 

As the example, consider a basin of third order, and assume, as is
 

commonly done in hydrology, that each channel responds as a linear
 

reservoir. The response for a stream of order w is therefore given by
 

-Ywt 

fw(t) = yw e (2.17) 

The parameter yw is the mean travel time of a drop in a stream of order
 

w, and can be considered to be equal to the mean travel velocity of any
 

drop in the basin, divided by the average stream length. Thus
 

V 

L 
w 

where V = averzge flow velocity 

L = average length of streams of order w. 
w 

The response of each stream of order w is now defined. The basin
 

response is determined using Equation 2.16:
 

hB(t) = I fal(t)*f (t) ... f (tp(s) 
sES 1 2 k 

The derivation of a closed form solution for the basin response is
 

greatly simplified by the use of Laplace transform techniques. The
 

Laplace transform of the convolution operation is the product of the
 

Laplace transform of each function within the integral, so that if the
 

product of the Laplace's can be inverted, a closed-form solution can
 

easily be obtained. For the example, the Laplace of the channel
 

response is given by
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L[f(t)] = Yw 	 (2.18) 

Recalling that there exists four possible travel paths for a drop
 

falling on a third order basin, the hB(t) is derived as follows:
 

hB(t) = 	P(sl)f1 (t)*f 2 (t)*f 3 (t) + P(s2 )f1 (t)*f 3 (t) +
 

P(s3)f2 (t)*f 3 (t).+ p(s4)f 3 (t)
 

P(sl}L-l [l _yY sY 3	 sy3-- +
2 _ ] + P(s2)L-l Iyl

1 SY1y2 Y3 SY3
2 +Y 

P(s3)L-l s-y2 y 3 I+ P(s4)L- 1 [ y3 (2.19) 

p3) [ ~ 2 S~ 3 4 1 s+y3 

Evaluating the inverses and substituting the probabilities for each path
 

yields:
 

hB(t) =
 

t +(yl-Y2 )e-Y 3 t
 
+ (y3-Yl)e-Y 2 t 

(y 2 -Y3)e-Yl 
1 (O)p I 2 y l y 2 y 3 [ (y 2 -yl) (y 2 -Y 3 ) (Y3 -Yl) 	 ] + 

[ e - y	 +Sl(0)Pl3YlY3 [e - e-Y 3 t +2(0) Y3 2 t - e-Y3t 
Y3 -pYl 	 Y3 - Y2
 

3
 

93 (0)Y 3 e
 

(2.20)
 

where P1 2 ' P 1 3' 01(0), 02(0) and 03(0) are defined in Table 2.1. 
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For the example assume that the geomorphologic parameters of the
 

basin are as follows:
 

RB = 4.0, RA = 5.6v RL = 2.8
 

L = 1.56, = 4.38, L3 12.25 Km
 

=A1 3.3, 2 18.4, A3 103.0 Km 

The mean flow velocity will be assumed to be 2 m/sec which gives the
 

following result for each yw:
 

Yl = 4.62/hr Y2 = 1.64/hr Y3 = 0.59/hr. 

A plot of the response of each channel is presented in Figure 2.4.
 

As can be observed, the area under each response is one. Figure 2.5
 

shows the basin IUH as given by Equation 2.20. Notice that the IUH does
 

not start at zero. A discussion of this will be deferred until later
 

but the reader should note that it differs from the results of Rodriguez
 

et al. (1979) which argued that it should start at zero and devised a
 

scheme to force the result to do so.
 

The previous results depend on the exponential assumption for the
 

channel IUH and on the "dynamic" parameter which takes the form of a
 

velocity required to compute mean travel time. Notice that following
 

Rodriguez et al. (1979) it was assumed that this velocity is the same
 

for streams of all orders. Next chapter will suggest a different form
 

for the channel IUH and a somewhat different parameterization.
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Chapter 3
 

THE RESPONSE OF A CHANNEL
 

3.1 Introduction
 

Flood routing procedures provide a means of estimating the shape
 

and timing of a flood wave as it progresses along a channel. The
 

procedures are classified according to the following criteria: the
 

physical principles and equations used as the theoretical basis for
 

flood routing, methods used for solving the basic differential
 

equations,'specific assumptions and approximations used in treating the
 

flood wave movement, the type of problem to be solved. In this chapter
 

the one-dimensional equations of motion for unsteady flow of an
 

incompressible fluid, in a wide and uniform rectangular channel, will be
 

solved for the conditions imposed by the definition of an IUH. The
 

mathematical treatment of problems concerning unsteady flow is difficult
 

due to the many variables that enter into the functional relationships,
 

and closed form solutions cannot generally be derived for the relevant
 

nonlinear partial differential equations.
 

We are interested in a flood routing procedure to determine the
 

response of a channel, or equivalently the pdf corresponding to the time
 

of travel of a drop, chosen at random, in a stream of order w. The
 

solution procedure we will use is based on the linearization of the
 

continuity and momentum equations as proposed by Harley (1967). The
 

channel's response to an input at the channel's most upstream point will
 

be derived, and from this closed form solution, the channel's response
 

to a uniform input along the channel's length will be obtained.
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3.2 Linear Solution to the Equations of Motion
 

The one-dimensional equations of motion for unsteady flow in an
 

open channel without lateral inflow are given by:
 

Continuity: h + = 0 	 (3.1)
ax at
 

Momentum: ly + X v + 1 -v S-(
ax g ax g at 0 f 	 (3.2) 

where 	 g = gravitational acceleration
 

v = mean 	velocity
 

y = water 	depth
 

q = vy = discharge per unit width
 

S = slope of the channel bottom
o 

Sf = friction slope
 

x = space coordinate, me.asured along the channel axis
 

t = time coordinate
 

The frictional effects will be described by the Chezy equation,
 

thus:
 

2
 
Sf = v
 

C2R
 

where 	 R = hydraulic radius
 

C = Chezy coefficient
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which for a wide rectangular channel yields:
 

v 2S f = 2
 
C y 

The momentum equation can be rearranged to be a function of only 

two dependent variables, y and q, by substituting the relation for v: 

v = q/y. Substituting the.expression for Sf and rearranging yields: 

+(gy3 _ q2) 2Z 2yq 32 - -----) (3.3) 

agy aqx +y gy (so CCy23)yq~ at 3 

Combining the continuity and momentum equations, which are two first
 

order partial differential equations in a and y, to give a single second
 

order equation in the same two dependent variables q and y, requires
 

differentiating Equation 3.1 with respect to x, and Equation 3.2 with
 

respect to t. Assuming the Chezy coefficient to be a constant, the
 

result is:
 

g ax a
(gy3 _ q2) 2 2 _2yq ax t22 0•x a
ax 


+ I2 q - 2( axIZ- hay )q (3.4) 

The above equation is highly non-linear. In order to linearize Equation
 

3.4, the following equalities and assumptions are established:
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q = q0 + q qo > > 6q 

(3.5)
 

+Y YO 6y Yo >> 6y 

where q0 and y0 are the steady state reference parameters and 6q and 
6y
 

are perturbations about these values. In other words, the steady state
 

uniform flow is perturbed by an input whose response is given by small
 

deviations or perturbations from the steady state reference values.
 

Substituting Equation 3.5 into 3.4 and elminating less significant
 

terms, yields the following linearized equation in terms of 6q:
 

_-yao2o ~ &q(gy3o-q2)D26 2qooq6q _ g 

C2
0.a2 - 0 t2 0 oax 0 at
 

(3..6)
 

The value chosen for the Chezy coefficient is that at steady state, thus
 

assuming that Sf Z S at steady state yields:
 

2 
C2 Vo0 

yoSo 

Substituting the above expression into Equation 3.6 and expressing the
 

result in terms of y0 and va yields:
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(gyo v ) a.x2 _ 2v 0xata a t2ax 39S kq v Soaat (37) 

The above linear equation can now be solved for various initial and
 

boundary conditions. The analytic solution of Equation 3.7 is the
 

response of the channel to an input causing a small disturbance of the
 

initial and boundary conditibns.
 

In this study we are interested in the response of a channel to a
 

drop landing anywhere along the channel's length. We will first
 

consider the response of a channel to an input at the channel's most
 

upstream point, and then generalize the results such that the point at
 

which the input occurs is random.
 

3.3 Channel's Response to an Upstream Input
 

The previous section presented a partial linear differential
 

equation (3.7) dependent on the perturbation 6q. This section will use
 

this equation to determine the response of a channel to an input at its
 

most upstream point. The implied upstream boundary condition is
 

6q(O,t) = 6(t) 
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where 6(t) is the dirac delta function which represents a pulsed
 

upstream inflow.
 

One'initial condition is given by
 

6q(x,O) = 0
 

which means that there exists no perturbation about the reference
 

discharge prior to the application of the input. The other initial
 

condition is:
 

86q(x,t) 0
 
at t=O
 

Harley (1967) solved Equation 3.7 with the above conditions and
 

obtained:
 

6q(x,t) = 6(t - x/c1)exp(-px) + 

1l[2h'(t-X/Cl)(t-x/c2)]
 
exp(-rt+zx)(X/C u (t-x/cI)dt 

1/c-c 2)h V(t-x/c1 )(t-x/c 2 )
 

(3.8)
 

where 6q(x,t) is the response of a channel to an instantaneous input at
 

the channel's most upstream point, with parameters
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C v + -y1 0 0 

C2 = v+ gyo 

0o 2-F 
P 2y ° F(I+F) 

Sovo 2 + F2
S 

S0 F2 

2
0 
2Yo 

S v (4-F 2 ) (IF 2 ) 

0 

I = modified bessel function of order 1 

u(-) is the unit step function
 

A detailed description of the solution procedure is presented in
 

Appendix B. Also presented is the calculation of the area underneath
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the curve, 6q(x,t). The area is proved to be 1, which is a property
 

of any pdf.
 

Equation 3.8 is the response of a channel to an instantaneous
 

upstream input and can be interpreted as the pdf corresponding to the
 

travel time of a drop landing at the channel's most upstream point, and
 

travelling a distance downstream given by x. Recalling the derivation
 

of the geomorphologic IUH, the pdf of the travel time of a drop falling
 

anywhere in the channel and travelling to the outlet is required. This
 

pdf will be referred to as ra(t), where ai is the order of the channel
 

where the drop is travelling. The next section presents the derivation
 

of ra1 (t) as a function of the upstream input, 6q(x,t).
 

3.4 	 The Lateral Inflow Case: the pdf of Travel Time of a Drop
 

Entering the Channel Anywhere Along its Length
 

The definition of the geomorphologic IUH as the pdf of a drop's
 

travel time in a basin or order w requires the pdf of a drop's travel
 

time in each stream of order ai,(ai = 1,...,W). We are interested in
 

the travel time of a drop landing anywhere in the channel and travelling
 

to the channel's most downstream point.
 

The landing spot, X , of the drop must belong to the interval 
_ai
 

Z = 	(x: 0 < x < L ) where L is the mean channel length of order ai; 

therefore the pdf, f (x), must be 0 outside of Z. Furthermore since
 
a
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the drop is equally likely to fall in any equal subinterval in Z,
 

regardless of the location of these subintervals in Z, it follows that
 

fx (x) must be constant throughout Z. Since the pdf, f (x) must
ai a
 i
 

integrate to 1 over the interval Z, fx (x) is given by:
 
ai
 

~- _-ai 

f (x) 
ai 

-

a 

0 otherwise 
(3.9) 

The distribution of the random variable X is called the uniform

ai
 

distribution on the interval (0,La).
 

The previous .,ection presented the pdf, Sq(x,t), which
 

corresponds to a drop's travel time over a distance x. Since the drop
 

that we are interested in will fall anywhere on the channel, it will
 

travel a distance anywhere between Laj to 0 to reach the channel's most
 

downstream point. Therefore the determination of the pdf of the drops
 

travel time, rai(t), requires that each point of landing be considered.
 

Since there are an infinite number of landing points, in order to obtain
 

the pdf, rai(t), of the drops travel time in a channel of order ai, we
 

must integrate the upstream inflow IUH, 6q(x,t), over all possible
 

travel distances x. This operation yields:
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ra (t) = -1 6q a(xt) dx (3.9) 

aiLa 

where 6qa (x,t) is the upstream inflow IUH defined by Equation 3.8 with
 

parameters corresponding to those of a stream of order ai. The pdf,
 

r (t), corresponds to a drop landing anywhere along the channel's
 

length and will be referred to as the lateral input lUll. The response
 

of a drop entering at the channel's most upstream point will be referred
 

to as the upstream input IUH and is defined as:
 

ua (t) = 6qai(L , t)
 
i 1
 

Substituting in the expression for 6qa (x,t) into Equation 3.9,
 

the following integral is obtained:
 

ra (t) j-ai 6(t-x/cl)exp(-px) +
 
aj 0
a 1
 

exp(-rt+zx)(x/cl-x/c2)h 11[2 (t-xc 1 )(t-x/C 2 ) u(t-X/C)dx 
V(t-x/c 1 ) (t-x/c 2 ) 

(3.10)
 

where all the parameters correspond to those of a channel of order ai .
 

The integration of the first term in equation 3.10 (see Appendix B,
 

Section B.4) yields,
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cl
 
- exp(-ptc1) 
ai 

A closed form solution to the second term integral cannot be found. The
 

rearranged expression for r (t), shows that the upper limit of
ai
 

integration for the second term is dependent on the time, t,
 

cl
 
ra(t) - exp(-ptc1 )
 

ai
 

a 	 Il[2h (t-x/c l ) ( t - x / c 2 ) ] 
+ 	 exp(-rt+zx)(x/c1-x/c2)h [h- (t-x/c1)(t-xfc 2) dx 

0 / (t-x/cl) (t-x/c 2 ) 

(3.11)
 

where
 
C1t for t < L i/CI
 

ai 
L t > L i/C
 

a a, 1
 

Since a closed form solution to the above integral does not exist, the
 

integral must be evaluated numerically.
 

Up to now, this chapter has presented the derivation of r (t)
a.
1 

based on the 	equations of motion. Inherent in the parameters of r (t)
a. 
1 

are the physiographic factors relating to the channel's characteristics,
 

which affect the discharge from the channel, and therefore the basin.
 

The next section of this chapter will present a physical interpretation
 

of r (t)and u (t).
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3.5 Physical Interpretation of u (t)
(t) and rai-


Examination of the parameters of Equations 3;8 and 3.11 indicates
 

that the channel responses will be significantly influenced by the
 

Froude number. Actually the solution is valid only for a Froude number
 

less than 2. In most regions, the Froude number is usually less than 1
 

which corresponds to subcritical flow. A Froude number greater than 2
 

indicates that a bore will form and, as indicated by Equation 3.8, the
 

solution breaks down. For Froude numbers between 1 and 2 the first
 

order modified Bessel function of the first kind, I[.], will change to a
 

first order Bessel function of the first kind, J[']. The solution will
 

contain imaginary terms which imply oscillations in the discharge and
 

water surface.
 

A plot of uai(t) for channels with all the same characteristics 

e:cept for channel length, is presented in Figure 3.1 The spike given 

by the first term of Equation 3.8 represents the dynamic part of the 

wave and occurs at time x/c At that time the wavefront, moving at the 

dynamic propagation speed, cI = v0 + gjYo , reaches the outlet. The 

magnitude of the spike is influenced by the parameter p and provides an 

indication of the dissipation of the wave along a distance x. The 

magnitude of the spike can be interpreted as the following ratio: 

ai 


exp(-px) =volume under the head of the 
wave
 

total volume of the complete wave
 

where
 
S
 o 
 2-F
 

P = F(l+F) x = channel length
 

51
 



I'1 60 

Parametersi
 
±0kM	 ~~tool 

L.. .10 k. 	 ' 2 .0 m/sec 

;.j 	 SO .O3m/km 
F O.64 

v 1.20 
tn
 
C

g00
0. 

20 km
 L 0.80_ 

0 
-0.60 	 30 km 
(C: 	 40 krn 

E 0.40 

L 0.20 

0. D ""---'0.00. 

O.0 	 1.00 2.00 3.00 4.00 5.00 6.00
 

time [hours]
 

Figure 3.1: Upstream inflow response for different channel lengths.
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The term p lumps the flow characteristics into one parameter, as p is a
 

function of S0, YO and F which are interdependent parameters in the
 

sense that changing one parameter causes at least one of the other
 

parameters to change. For example increasing S0 , incvreases v0 , which
 

increases F, and assuming y0 is unchanged, one cannot concludewhether p
 

increases or decreases.
 

The second term of Equation 3.8 represents the kinematic part of
 

the wave which dissipates more slowly than the dynamic part. The
 

dynamic wave travels at the speed vO + /g-Yo whereas the mean velocity
 

of the center of mass of the kinematic part is 1.5 yo. This is ob~tained
 

from the expression of the time lag, tL, which is the interval between
 

the centroid of effective rainfall and that of direct runoff. In
 

Appendix B tL is shown to be
 

tLx 1.5 v (3.12)tL " 
0 

The kinematic wave velocity is always smaller than the dynamic since
 

vo// -gy (the Froude number) is always less than 1 for the cases
 

considered in this study.
 

In contrast to the upstream inflow IUH, uai(t), the lateral inflow
 

IUH, r (t), exists for all time. The response at t=O, is given by
 

- = v (3.13) 

ai ai
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wherec v + g-Y is the dynamic velocity of the wave. The
0 0 

numerator represents the steady state reference condition, and since
 

there is a I/L chance that the drop will land at the outlet, the
ai
 

initial response is given by the above expression.
 

Consider the response r (t) as the summation of two terms,
a. 
I 

c/L exp(-pcIt) t La /c1
 

ai 0 t > 
-

L-a Ic 

Cltl 

er 1H(x,t)dx t,<La/cl1
-rt 


0 
r2(t) = 

(3.19)
 

e rt H(x,t)dx t > Lai/c1
 

0 a
 

where
 

11 [Ph V(t-x/c1)(t-x/c 2)]
H(x,t) = ezx (x/c1 - x/c 2 )h 

, (t-x/c1 ) (t-x/c2 ) 

r (t) can be interpreted as the channel's response to an input
ai
 

consisting of an infinite number of waves originating at each point
 

along the channel. The response due to the wave fronts and to the
 

bodies of the waves originating along the channel, are given by the
 

Equations 3.18 and 3.19, respectively.
 

The first term is zero after L /c1 as all the wave fronts have
 

responded. Recall that r (t) is the pdf dorresponding to the time at

ai
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which a drop, falling anywhere in the channel reaches the channel 

outlet; therefore the possible times at which a wave front could rcich 

the outlet is between times 0 and L /c1 where c1 is the dynamic wave 

front velocity (c= Vo + /g/y). For example, consider the two extreme 

cases: case (i): the drop lands at x=0; case (ii): the drop lands at 

x = L . In the first case the wave front would reach the channel 
a. 
1
 

outlet at t = L /IC and in the second case at time 0. These two cases
 

establish the time intervai during which wave fronts reach the outlet.
 

The abrupt change in slope at t = Laai /c1 is due in part to the fact that
 

all wave fronts have responded so that ra1 (t) equals zero.
 

Concerning the second term, the limit of integration changes as the 

limit cannot exceed the distance travelled by the body of a wave. The 

first limit, clt, for t< La./c1, represents the distance from the most 
1
 

downstream channel point, to the point where a wave can originate and 

contribute to the response at time t. Those waves originating beyond
 

distance c1 t have not yet contributed to#the response at the end of the
 

channel. For t > La./c 1 all waves originating along the channel are
 
1
 

contribu to the response, and the limit changes to L , which is the 
ai
 

greatest distance a wave will travel to reach the most downstream point.
 

Plots of ra1 (t) for channels of different lengths, are presented in
 

Figure 3.2. As can le observed, the ordinate of each curve starts at
 

C11;a., remains relatively constant and then rapidly decreases at time
 
1 

L /c. The abrupt change in slope the time t = LaC 1 is due to the 

previously mentivied facts concerning the response of the wave fronts
 

and wave bodies. The response due to wave fronts and wave bodies are
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Figure 3.2: Lateral inflow response for different channel lengths.
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plotted separately in Figures 3.3 and 3.4 for channels of length 10 and
 

20 km. As can be observed, the longer the channel, the less significant
 

are the effects of the wave fronts, vice versa for shorter channels.
 

3.6 The Effect of the Input Parameters on the Channels' Response
 

As previously presented, both the upstream and lateral input
 

channel IUHs are expressed as functions of the channels' physiographic
 

characteristics, and the reference parameters, v and yo. This section
 

will present a sensitivity analysis in order to determine che effects of
 

the input parameters on the shape of the upstream and lateral input
 

IUHs.
 

3.6.1 The Upstream Input Channel IUH
 

The upstream input IUHs for different parameter sets are presented
 

in Figures 3.5 to 3.6. Figures 3.5.and 3.6 have channel lengths of 10
 

to 20 km, respectively. The channel IUH in Figures 3.5.1 and 3.6.1
 

have the same velocity (v ), and Figures 3.5.2 and 3.6.2 have the same
 

Froude num.er (F). As can he observed the translation of the IUH is
 

affected by both a change in velocity and Froude number. A more
 

interesting observation is that the attenuation is relatively
 

independent of the velocity for a given F. For in Figures 3.5.2 and
 

3.6.2, the IUHs have the same F and different velocities, yet the
 

attenuation of the wave is approximately the same in each case.
 

For a constant velocity, the reference parameter, YO, determines
 

the Froude number, and for these cases of constant velocity, the time to
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peak and peak response both increase with decreasing y0 and increasing
 

F. The time to peak is influenced by the dynamic wave speed, C1 ; c1
 

decreases with y0 and thus the time to the initial response, X/c V
 

increases, and the time to peak occurs later for cases where y is
 

smaller. The peak response also increases. Even though the time to the
 

initial response is delayed, the greater F implies a faster response
 

once the channel begins to resp9nd.
 

The effect of the channel's slope on the upstream input channel.
 

response is exhibited in Figures 3.7.1 and 3.7.2. For each case the
 

velocity and Froude number are equivalent. In Figure 3.7.1 the slope
 

ranges from 0.15 to 0.35 m/km, but the overall change in the IUH is
 

negligible. However, in Figure 3.7.2 the slopes vary by factors of 10,
 

and the variation in the IUHs is signficant between the different cases.
 

Thus the slope must be within a reasonable range of the actual slope.
 

3.6.2 The Lateral Input IUH
 

In contrast to the upstream input IUH, the lateral input IUH is
 

only significantly dependent on the refer-nce velocity, v0 . The lateral
 

input IUH is presented in Figures 3.8 and 3.9, where 3.8 and 3.9 have
 

channel lengths of 10 and 20 km respectively. Figures 3.8.1 and 3.9.1
 

have the same velocity, and Figures 3.8.2 and 3.9.2 have the same Froude
 

number. The insignificance of F can be observed in Figures 3.8.1 and
 

3.9.1. In these Figures the Froude number ranges from .45 to .90, yet
 

the responses are similar. The significance of v can be concluded by
 

observing the difference between the responses presented in Figures
 

3.8.2 and 3.9.2.
 

61
 



1.00
 
Parame ters:
 

' /,o 1.M
 
L V,- 2 m/sec

'0.8 
 x- 20 km
 
L0.130 
 F- 0.64 

C
 
0
 cM0.60 so". 0.35 rn/km 

L o: 05 /km
 

0 0.40 so. 0. rn/km
 
4_
 

C 

E

6 0.20 

L 
Jj
 
01

C.
 
o 0.00 1 

0.00 0.50 1.00 1.50 
 2.00 2.50 3.0.0 3.50 4.00
 
time [hours]
 

Figure 3.7.1: Upstream inflow response for different channel slopes.
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Figures 3.10.1 and 3.10.2 present the difference in the lateral
 

inflow IUH due-to changes in the channel slope. In Figure 3.10.1 the
 

slope ranges from 0.15 to 0.35 m/km, with the steepest channel
 

responding the fastest. In Figure 3.10.2, the slopes vary by factors of
 

10, yet the responses are quite similar. Compared with the other
 

parameters, the channel IUH is the least sensitive to the slope
 

parameter.
 

3.7 Summary
 

This chapter presented the Jerivation of analytical expressions for 

the response of a channel. The channel responds according to where the 

input originates along the channel. The response to an input at the 

channel's most upstream point is denoted by ua. (t), and that to an input 

originating anywhere along the channel by r (t). The responsesa. 

describe the flood wave's movement along the channel as the pdfs
 

corresponding to the time a drop, whose travel begins in the channel of
 

order ai, takes to reach the channel's most downstream point. Inherent
 

in the pdf is the physics of the flood wave movement as functions of
 

channel slope, acceleration due to gravity and the reference parameters,
 

v and y. The expressions for ua(t) and ra(t) and their
 

corresponding Laplaces are summarized below.
 

ua(t) = 6(t-x/c1)exp(-px) +
 

11 [2hV(t-x/Cl1 )(t-x/c 2) ] 
exp(-rt+zx)(x/cl-x/c2)h u(t-x/cI)
 

V(t-x/cl1)(t-X/C2 )
 

(3.20)
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L[ua(t)] = exp[(-Vas2+bs+c +es+f)La] (3.21) 

a 

r (t) = (3.22) 

aJ. 

ert H(xt) dx t > /C1 

0 

where
 

2)h I[2h' (t-x/c1)(t-x/c 2 ) ] 
H(x,t) = eZX(x/c1-x/c

V (t-x/c1)(t-x/c2)
 

L[r a (t) [exp(L (-/as2+bs+c +es+f))-i]

Ta (-V as2+bs+c +es+f)
 

a. 
1 (3.23) 
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The following chapter will present several geomorphologic IUH's,
 

and a sensitivity analysis will be conducted to decipher the significant
 

parameters which influence the shape of the IUH. The results will be
 

summarized in terms of the time to the peak response and the peak
 

response of the basin IUH.
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Chapter 4
 

THE RESPONSE OF A RIVER BASIN
 

4.1 Introduction
 

The ultimate aim of this study is to determine the runoff from
 

ungaged river basins. Estimation of runoff is based on a wide variety
 

of approaches, both empirical and theoretical. This study specifically
 

investigates a theoretical approach which focuses on thd relationship
 

between runoff and the physiographic and geomorphologic characteristics
 

of the river basin.
 

The response of a channel has been derived as a function of its
 

physiographic characteristics and the origin of the input. This chapter
 

presents how both the upstream input response, ua (t), and the lateral
 
i
 

input response, ra (t), are used to determine the basin IUH. A sensitivity
 
i
 

analysis will illustrate how the channels' physiographic and the basin's
 

geomorphologic characteristics affect the shape of the basin IUH.
 

4.2 The Basin Instantaneous Unit Hydrograph
 

The upstream input and channel responses discussed in the previous
 

chapter can be used to enhance the hydrogeomorphologic theory. Referring
 

to the hypothetical basin presented in Figure 2.1, the flow contributing
 

to some higher order streams is mainly due to flow from the intersection
 

of the lower order tributaries which form these higher order streams.
 

Streams of this type respond according to the upstream inflow channel
 

response. River basins with bifurcation ratios approximately equal to
 

2 would have streams where most of the contributing flow is from the
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upstream lower order channels and where there are few tributaries
 

contributing along the stream.
 

Basins with bifurcation ratios much larger than 2 will have high
 

order streams heavily dependent on lateral tributaries inflows. The
 

lateral inflow stream IUH would then be important in these cases.
 

Differentiating between the possible configurations of the streams
 

(e.g., whether the lower order streams flow into the higher order
 

streams' most upstream point or along the streams' length) requires
 

reevaluating the possible paths a drop can take.
 

According to Strahler's ordering procedure, two streams of lower
 

order combine to form a stream of higher order, thus the paths containing
 

a transition of the form, ... i + i+l ..., can be further divided into
 

two paths. One path represents those drops that enter along the channel
 

laterally, and the other path represents those drops that enter at the
 

channel's most upstream point. 
For a third order basin, the possible
 

paths are:
 

Sl: Ol + rl + + r 4r 2 + r 3 


S2: el + rl + U2 + r 3 + r 4
 

+
S3: el + rl + r 2 u3 + r 4 

84: e1 + rl + r 3 + r4 (4.1) 

s5: 02 + r 2 + r 3 + r 4 

S6: 82 + r 2 + u 3 + r 4 

s: 03 + r 3 + r4 

S8: e1 + r I + u 2 + u3 + r 4 
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where ei (i=l, ... , W) refers to the overland phase, ri refers to the 

drop entering anywhere along the channel's length, ui refers to the 

drop entering at the channel's most upstream point, and rw.j+refers to1 


the basin outlet. In order to account for the additional paths, the
 

transition probabilities previously presented need to be modified and
 

the transition probabilities of the form ri + ui+l and ui + ri+l need
 

to be determined.
 

Two streams of order i-are required to form a stream of order i+l,
 

thus the probability of a transition from a stream of order i to the
 

upstream point of a stream of order i+l, is the fraction N
 
i.
 

Using Equation 2.13, the transition probabilities are given by:
 

(Ni - 2Ni+1 ) E[J,W] 

Prr 1 i < j <l (4.2) 
ij w 

E E[k,W]Ni 
k=j
 

2Ni+l 

Pr u 1 < i < W (4.3) 
i i+1 Ni 

Pu r = Pr r 1 <_i <W (4.4) 
i i+l i i+l 

Pu u = Pr u 1 <i < W (4.5) 
i i+l i i+l 
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where Pr r is the transition probability for a drop going from a stream
 

ij
 
of order i to a point along a stream of order J, Pr u is the
 

i i+l
 

probability that a drop from a stream of order i goes to the upstream
 

a stream of order i+l, and E[k,W] is given by Equation 2.14.
point of 


A drop following this path travels along the stream that forms the
 

stream of higher order. Transition probabilities of the form
 

Pu r and Pu u are equivalent to Pr r and Pr u
 
i i+l i i+l
 i i+l i i+l 


respectively, as the drop's transition from a stream of order i is
 

independent of where it originally entered the stream of order i.
 

Taking into account the 8 paths, the initial and transition
 

probabilities for a 3rd order basin are presented in Table 4.1 as
 

The result that the transition probabilities
functions of RA and RB. 


of the form, Pr u , are always equal to 2/RB is a consequence of
 

i i+1.
 
stream numbers. The transition probabilities account
Horton's law of 


for the fact that the lower the bifurcation ratio, the greater the
 

number of streams which respond according to the upstream input channel
 

response. For as RB decreases, Pr u and Pu u increase, and the other
 
i i+l i i+1
 

(J>i), decrease;
transition probabilities of the form, Pr r and Pu r 

ii ij
 

thus paths defined by one or more upstream inflow channel responses will
 

have more influence on the overall basin IUH, in accordance with the
 

basin's configuration.
 

The more detailed classification of the paths requires two types
 

of pdfs for a drop's travel time in a stream of order ai. Recall that
 

the expression of the basin response function is given by:
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Table 4.1: Initial and transition probabilities
 
for a 3rd order basin.
 

g (0) R2 R-2
 

R B RA
 

R R + 2R - 2R
 
°2(°)= A RA (2RB - 1)
 

e3(o=A RA (2 RB )
RB 0R B + 2RB - 2RB
 

S3 =1 - -A- 2(0) 

A RA(2RB - 1) 

(RB - 2RB)
 

Pr1r2 RB(2RB-1)
 

2
 
Pr1u2 RB 

2
 
Pry R 3RB +2

Pr13' RB2RB71) 

Pr2u 3 RB
 

Pu2r3 = Pr2r3 

PU2 u3 " Pr2u3 
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hB(t) - E fa (t)* ... * fa t)p(s) (4.6) 
1 k
 

scS
 

where fa (t) represents the pdf of travel time for a drop travelling a
 
i
 

a stream of order ai . Depending on the particular path, fa (t) will be
 
i
 

defined as ra (t), if the dtQpenters laterally along the stream, or
 
i
 

Ua (t), if the drop enters at the most upstream point of the stream.
 
i
 

The expressions for ua (t) and ra (t) are given by Equations
 
i i
 

3.20 and 3.2z, respectively. Substitution of the expressions into 

Equation 4.6 for each path given in Equation 4.6 leads to an extremely 

complicated expression for which no closed form numerical solution 

exists. Noting that the Laplace of a convolution operation is the 

product of the Laplaces of each term, Equation 4.6 can be more readily 

solved using Laplace transform techniques. The Laplace of the expression 

representing a path in Equation 4.6 is given by the product of the 

Laplaces of fa (t), ai - a1 ... ak , and is inverted numerically using 
i
 

a mathematical routine available on the Honeywell 6180, Multics operating
 

system. (See Crump, 1976, for details concerning the mathematics.)
 

The next section will present examples of the geomorphologic basin
 

IUH and will discuss the effect of the geomorphologic parameters and
 

the reference parameters, YO, vo, and So, on the shape of the IUH.
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4.3 	The Effect of the Input Parameters on the Basin IUH
 

The basin response is expressed in terms of the channel responses
 

and the geopmorphological parameters, RA, RB, and RL. This section will
 

demor.-trate how the initial response, hB(O), time to peak, tp, and the peak
 

response, qp, vary due to both changes in the geomorphologic parameters
 

and in the reference parameters vo, yo, and So . The analysis will use
 

a third order basin for the case study.
 

4.3.1 	 Geomorphologic Parameters
 

Examples of the geomorphologic basin IUH are presented in Figdres
 

4.1 to 4.3. In all cases the linearizing velocity is 2.5 m/sec for all
 

streams, and the linearizing depths are 0.80, 0.85 and 0.95 meters for
 

streams of order I through 3, respectively. First order streams are
 

2.78 	km in length, implying a small basin. Average channel slope is
 

0.3 m/km. The figures differ only in the geomorphological parameters.
 

The time to peak, tp, peak discharge, qp, and initial response, hB(O),
 

are summarized in Table 4.2.
 

The significant difference in all three basin IUHs presented in
 

Figure 4.1 is due to the shorter distance a drop must travel to reach
 

the basin outlet as RL decreases. The cases with the shorter higher
 

order streams have greater peaks and the time to peak occurs earlier.
 

Obviously the shorter distance a drop has to travel to reach the outlet
 

the faster the response, and thus this change in the IUH as RL decreases.
 

As can be observed in Figures 4.2 and 4.3, the time to peak, tp,
 

is insensitive to changes in RA and RB for a given RL, and only the
 

initial response hB(0), and the peak, qp, vary. Recall that for a
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Figure 4.1: Basin IUHs for different length ratios, RL.
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Table 4.2: Characterisitics of the basin IUH for different
 
geomorphological parameters.
 

Figure RA RB RL hB(O) tp qp
 

-
hr - I hr hr 

6.0 4.0 1.5 0.75 0.35 1.35
 
4.1 6.0 4.0 2.0 0.42 0.61 0.82
 

6.0 4.0 2.5 0.27 1.31 0.58
 

3.5 3.0 2.5 0.05 1.36 0.75
 
4.2 4.0 3.0 2.5 0.20 1.36 0.68
 

5.0 3.0 2.5 0.40 1.36 0.58
 

5.0 4.0 2.5 0.07 1.36 0.66
 
4.3 5.0 3.5 2.5 0.24 1.36 0.62
 

5.0 3.0 2.5 0.40 1.36 0.58
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3rd order basin there exists 8 possible paths that a drop can take.
 

Each path response is a function of the individual channel responses,
 

both upstream and lateral input responses, which compose the path.
 

(See equations 4.1 and 4.6 for the list of possible paths and the
 

general expression for the basin response.) The relative contribution
 

of each path response is given by the probability of each particular
 

path which change only with RA and RB; thus the change in the basin
 

IUH1's shape.
 

Figure 4.2 presents the basin IUH for different values of RA As
. 


RA decreases the peak increases and the initial response decreases. A
 

decrease in RA implies that the area draining into lower order streams
 

increases, thus thern is less probability for a drop to drain directly
 

to the highest order stream, which is the only stream contributing to
 

the initial response) and so the initial response decreases. Physically
 

the increase in the peak can be attributed to the fact that more drops
 

are entering the mainstream from the lower order streams, and thus the
 

peak is greater as more drops coincidentally reach the outlet. The
 

increase in peak can also be understood exploiting the property that
 

all IUHs must have a volume of 1. If the initial response decreases,
 

then one way of preserving an area of 1 is to increase the peak.
 

The basin's response to decreasing bifurcation ratios, RB, is
 

opposite to that for decreasing area ratios, RA The smaller RB implies
. 


that the basin has few lower order steams in comparison to the higher
 

order streams. Thus the initial response is greater for smaller RB as
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most drops drain directly to the highest order stream. The peak
 

increases with RB as there exists a greater number of contributing
 

streams to the mainstream.
 

The behavior of the initial response due to different values of RA
 

and RB is also depicted in the initial probabilities given in Table
 

4.1. As can be determined, the greater RA or the smaller RB, the
 

greater 03 (0) and correspondingly a greater initial response will
 

result. The initial response is due to path s7, which is plotted in
 

Figure 4.4.
 

In some cases, path s7 has a significant effect on the overall
 

shape of the basin IUH. As can be observed in Figure 4.4, there is a
 

higher initial response, and then the response rapidlydecreases,
 

remains relatiiely constant and then gradually decreases. The dominance
 

of path s7 is reflected in the less well defined peak for higher RA or
 

lower RB. In some cases the probability of path s7 is so high that the
 

basin IUH decreases immediately after the initial response, as does
 

path s7 . Several cases where this occurred are shown in Figures 4.5,
 

4.6 and 4.7. The corresponding parameters and path probabilities are
 

presented in Table 4.3. This type of behavior would occur for basins
 

which have most of the tributaries to the main channel in the upper
 

regions of the basin. 'Tusinitially the basin responds according to
 

the highest order stream's response, leading to a sharp rise and fall.
 

As the upper tributaries response reach the outlet, this basin IUR
 

again increases.
 

The extent of the initial decrease is dependent on the length of
 

the first order streams and RL. Figure 4.5 corresponds to a case
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Table 4.3 Parameters Corresponding to Figures 4.5, 4.6, and 4.7:
 

Stream Characteristics:
 

YO 


m 

1st order streams 0.80 
2nd order streams 0.85 
3rd order streams 0.90 

Difference between figures:
 

T (km) 
Geomorphological Parameters
 
RA; RB; RL 


Initial Probabilities:
 

61(0); 82(0); 03(0) 


Transition Probabilities: 

Pr r Pr u 
1 2 1 2 

Pr u Pr r 
13 23
 

Pr u Pu r 

23 23
 

Pu u 
23 

Path Probabilities:
 

P(Sl); P(S2) 


p0 3 ); P(s4) 


P(s5); P(S6) 


P(s7); P(S8) 


C 

m/sec m/km m/sec ml/2/sec 

Vo So F cI 


2.5 0.3 0.89 5.30 161
 
4.5 0.3 0.87 5.39 156
 
2.5 0.3 0.84 5,47 152
 

Figure 4.6 Figure 4.7 

15 15 

5.0; 3.0; 2.0 4.0; 3.0; .2.5 

Same as 0.56;0.26;0.18 
Figure 4.5 

Same as 0.20; 0.67 
Figure 4.5 

0.13; 0.33 

0.67; 0.33 

0.67 

Same as 
Figure 4.5 

0.04; 0.12 

0.07; 0.07 

0.09; 0.18 

0.18; 0.25 

Figure 4.5 

2.8 


5.0; 3.0; 2.0 


0.36;0.29;0.35 


0.20; 0.67 


13; 0.33 


0.67; 0.33 


0.67 


0.02; 0.08 


0.05; 0.05 


0.10; 0.19 


0.35; 0.16 
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where L = 2.8 kin, and Figures 4.6 and 4.7 correspond to ca, i where 

=LI 15 km. In each of these cases the IUH initially decreased.
 

Figure 4.8 presents a case where LI = 2.8 km, and the geonorphological
 

and reference parameters are the same as those in Figure 4.7, yet
 

there is no initial decrease in the iesponse.
 

4.3.2 The Reference Velocity, v., Reference Depth, y., and Slope, S.
 

For the following examples, the reference velocities and slopes
 

for each order stream are assumed equal. These assumptions are obviously
 

not true for all basins, especially in mountaineous regions, but they
 

are used to reduce the number of parameters.
 

Figure 4.9 shows three possible responses of a basin with RA
 

4.0, RB = 3.0, RL = 3.5, and 1 2.78 km. Linearizing velocities are
 

3.0, 2.5, and 2.0 m/sec with Froude numbers being kept relatively
 

constant (i.e., linearizing depths increase with velocity). As the
 

reference velocity increases, the initial response and peak response
 

increase. Table 4.4 presents the parameter used to calculate each
 

response.
 

Figures 4.10 and 4.11 present several basin IUHs for different
 

reference depths and slopes, respectively. The difference between the
 

parameters is quite substantial, 1 meter for the reference depths, and
 

a factor of 10 for the slopes. Comparing Figures 4.9, 4.10, and 4.11
 

and recognizing that representative slopes can be obtained from
 

85
 



0.45-
Parameters"
 

0.40 	 v 3.0 m/sec RA,"4.0
 
Rq-" 3. 6
RL - 3. 5 

0.35 	 V,2.5 m/sec
 

L 
-C 0.30
 

o 0.25 	 v.- 2.0 m/sec
 
L) 
C 

0.20_
 
CU 

L 0.15 
C 

tn0.10_
 

0.05
 
0. 050 

0.00 	 1.00 2.00 3.00 4.00 5.00 6.00
 

time Lhoojrs]
 

Figure 4.9: Basin IUHs for different reference velocities, v. 

0.70
 

Parameters!

yO0.80. 0.85, 0.90 RR=5
 

1 9 0 0.60 y- . . 1.85, 	 R6-4.0 1.90 	 RL-2.5
 
'I 

0.50
 
L 

-0.40
 

C
 
0
 
c . 30 
q) 

L 

c 0.20
 

(U 

.0 0.10 

0.00 _.
 

0.00 	 0.50 1.00 1.50 2.00 '2.50 3.00 3.50 '4.00
 
time [hours]*
 

Figure 4.10: Basin IUHs for different reference depths.
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Table 4.4: Parameters for Figure 4.9
 

Case YO F
v0 So r c1 C
 

m m/sec m/km km m/sec ml/2/sec
 

1st order streams 1.1 3.0 0.3 2.8 6.3 0.91 165
 
2nd order streams 1.6 3.0 0.3 9.7 7.0 0.76 136
 
3rd order streams 2.1 3.0 0.3 34.0 7.5 0.66 119
 

1st order streams 0.7 2.5 0.3 2.8 5.1 0.95 172
 
2nd order streams 1.0-. 2.5 0.3 9.7 5.6 0.80 144
 
3rd order streams 1.5 2.5 0.3 34.0. 6.3 0.65 117
 

1st order streims 0.5 2.0 0.3 2.8 4.2 0.90 163
 
2nd order streams 1.0 2.0 0.3 9.7 5.1 0.90 115
 
3rd order streams 1.5 2.0 0.3 34.0 5.8 0.52 94
 

Geomorphlogical Parameters: RA=4.0 RB= 3.0 RL-3.5
 

Initial Probabilities: 61(0)=0.56 02(0)=0.26 e3(0)=0.8
 

Transition Probabilities:
 

Pr r =0.20 Pr u =0.67 Pr r -0.13 Pr r =0.33
 
12 12 13 23
 

Pr u '0.67  Pu r =0.33 Puu "0.67
 
23 23 23
 

Path Probabilities:
 

12  
p(sl)-0.04 P(S2)= 0. P(s3)=0.07 P(s4)0.08
 

P(s5)-0.09 P(s6)=0.17 P(s7)=0.18 P(s8)=0.25
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topographic maps, one can conclude that the basin IUH is most sensitive
 

to the reference velocity. Thus the reference depths and slope can be
 

approximated, but a procedure must be developed to determine the refer

ence velocity.
 

4.4 	Summary
 

The basin IU is now fully defined in terms of the basin's
 

geomorphological and channel's physiographic characteristics. The
 

actual configuration of the streams which compose the basin is accounted
 

for by the initial and transition probabilities which are dependent on
 

the geomorphological parameters. The probabilities determine the
 

relative contribution of each path, where the paths are indicative of
 

tributaries joining a stream at its most upstream point or along the
 

streams' length.
 

The input parameters required to determine the basin include RA, 

RB, RL, and for each order stream, the average length, slope, reference 

velocity and depth. A sensitivity analysis showed that the basin IUH 

is most sensitive to the velocity. 

The next chapter will present a means to estimate the velocity 

given the previously mentioned parameters and the properties of the storm. 
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Chapter 5
 

THE DISCHARGE HYDROGRAPH
 

5.1 Introduction
 

For a given drainage basin the discharge hydrograph due to a given
 

period of rainfall reflects all the combined physical characteristics of
 

the basin plus the surrounding hydrometerological effects. For the model
 

presented in this work, the basin IUH reflects the effects of the basin's
 

physiographic and geomorphologic characteristics on the runoff, and the
 

the time distribution of the effective rainfall reflects the hydro

meterological effects. These effects are combined through the.convo-lu

tion equation which determines the discharge.
 

As an example, consider a storm of constant intensity, i, for a
 

duration, td, with a uniform spatial pattern over the catchment. Thus
 

the time distribution of effective rainfall is given by:
 

I(t) - i{u(t) - u(t-td)} (5.1) 

where u(t) - 1 if t>0 and 0 otherwise. 

The discharge hydrograph is given by: 

t 
0(t) - f i(t-T)hB(t)dT (5.2) 

0 

which for the I(t) given inEquation 5.1, can be divided into two components:
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t 
0(t) = f ihB(t)dT t<td (5.3), 

0 

t 
0(t) = f ihB(T)dT t>td (5.4) 

t-td
 

In this work the effective rainfall will be assumed to be uniform in
 

space and in time as implied by Equation 5.1.
 

This chapter presents the discharge hydrographs for several different
 

basins. Prior to presenting the hydrographs, a way to calibrate the
 

model and estimate the input parameters is suggested. The peak discharge,
 

0p, and time to peak, Tp, are used to compare the discharge hydrograph 

with the results of a rainfall-runoff model. The hydrograph is also 

compared to the hydrograph determined using the assumption that the
 

channels respond as linear reservoirs..
 

Based on the suggested method to estimate the input parameters, an 

analysis of a basin inEgypt is presented. The basin consists of wadis 

which are valleys that remain dry except during the rainy season.. A 

description of the rainfall and basin characteristics will be presented.. 

5.2 Model Calibration
 

The parameters required to determine the hydrologic response o:
 

runoff from a basin can be divided into three classes: the parameters
 

representing the physiographic characteristics of the basin and individual 

channels, the dynamic component of the response, and those representing.
 

the input characteristics. This section will discuss the issues relating
 

to.the estitia'ion of these parameter sets.
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The physiographic characteristics of the basin are expressed in
 

terms of the geomorphological parameters, RA, RB, and RL, defined by
 

Horton's laws. The characteristics of the individual channels are lumped
 

according to the order of the channel. The average channel length and
 

slope for each stream order are used to represent the channel's physiographic
 

characteristics. Note that when calculating the average channel slope,
 

the geometric mean rather than the arithmetic mean, should be used. All
 

these parameters are easily accessible from a topographic map, aerial
 

photograph or satellite imagery.
 

The most 'difficult parameters to estimate are the reference depth
 

and reference velocity used to linearize the continuity and momentum
 

equations. Recalling the derivation of the upstream inflow IUH (see
 

Chapter 3), the IUH represents the perturbation about these reference
 

parameters (q = vy, thus 6q = v.-6y), which in an ideal situation
 

are the steady state conditions. In fact, due to the nonlinearities in
 

the rainfall-runoff process, there does not exist an individual,
 

characteristic basin IUH which when convolved with any given input will
 

produce a representative discharge hydrograph. The IUH is actually a
 

function of both the input and geomorphology (see Rodriguez et al., 1981),
 

and thus there exists no one set of steady state parameters, yo and vo,.
 

which can be used to represent a unique basin's IUH. Incorporation of
 

the storm effects into the IUH is beyond the scope of this work and the
 

procedure taken to estimate yo and vo is similar to the one used by
 

Rodriguez et al., 1979.
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In Rodrigiez's et al., 1979, work they used the peak velocity of
 

flow during an event to determine the parameter for the exponential
 

distribution, which was assumed to be the channels' IUH, In this work
 

there are two possible velocities which could be calibrated to the peak
 

velocity, the reference velocity, vo, or the dynamic velocity, cl, where
 

Cl a Vo + Vgyo. As will be shown in the following section, equating 

the dynamic velocity for each order stream to be approximately equal to 

the peak velocity, produces a representative hydrograph for several 

different storms. 

The following section presents the discharge hydrographs for several
 

basins and various storms. The hydrographs are calibrated as described
 

in this section where the peak stream velocity is that determined by a.
 

rainfall-runoff model for each particular storm.
 

5.3 	Discharge Hydrographs for Several Subbasins
 

In this section several discharge hydrographs are presented, and the
 

peak and time to peak are compared to that determined by a rainfall-runoff
 

model. The results indicate that equating the dynamic wave speed to the
 

peak velocity determined by the rainfall-runoff model produces peaks and
 

times to peak similar to those determined by the rainfall-runoff model.
 

In their paper, "Discharge Response Analysis and Hydrologic Similarity:
 

The Interrelation Between the Geomorphologic IUH and the Storm
 

Characteristics," Rodriguez et al., 1979, present the peak discharge,
 

0p, time to peak, Tp, and peak velocity, Vp, determined by a
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rainfall-runoff model of basins in Puerto Rico for several storms. They
 

used a rainfall-runoff model originally developed by Schaake (1971),
 

where every stream segment is modeled as an individual segment. The
 

model is based on the continuity equation and the kinematic wave
 

approximation to the equations of motion. Throughout this section the
 

results obtained from Rodriguez's et al. paper will be denoted by *p,
 

T' and vp, and are used to compare to the peak discharge, Qp, and
 

time to peak, Tp, determined by the discharge hydrograph where the dynamic
 

wave speed, ci, is set equal to vp.
 

The basins to be investigated are subbasins of the Indio River basin 

located in Puerto Rico. Each subbasin is of order three, as presented in 

Figure 5.1. The Unibon and Morovis basins are characterized by the 

following parameter sets, respectively: RA = 5.6, RB = 4.0, RL = 2.8, 

Lw = 8.6 kin, AW = 23 km2 , and RA = 5.0, RB = 3.2, RL = 2.7, LW 8 km, 

AW= 13 km2. The slope of each channel segment was obtained from 

topographic maps, and the geometric mean slope for each stream order was 

determined and is presented in Tables 5.1 and 5.2, along with the other 

input parameters and corresponding Q, Tp*and V*.
 

The discharge hydrographs corresponding to storms of 3 and 2 hours
 

durations with an intensity of 3 cm/hr are presented in Figures 5.2.1
 

through 5.5.1. The corresponding geomorphologic IUH used to determine
 

each bydrograph are presented in Figures 5.2.2 through 5.5.2. As can be
 

observed, the results are excellent and thus equating the dynamic wave
 

speed cl to the peak velocity provides a hydrograph whose Tp and Qp are
 

representative for these particular storms. However, there does exist
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Figure 5.1: Indio basin (Puerto Rico) with the Morovis and the
 
Unibon subbasins (from Valdes et al., 1979).
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Figure 5.2.1: Discharge hydrograph for Unibon basin.
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Figure 5.2.2: Geomorphologic IUlt used to determine hydrograph
 

in Figure 5.2.1.
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Figure 5.3.1: Discharge hydrograph for Unibon basin. 

0.90
 

0.80
 

-I0.70 
In 
LAL 

.c 0.60_ 

A 0.50 

C 
0 
a0.40 
tn 
0 
L 0.30_ 

C 

,n 0.20 
(0 

0.10

0. 00. 

0.00 0.25 0.50 0.75 1.O .1.25 1.50 1.75 2.00
 
time [hours]. 

Figure 5.3.2: Geomorphologic IlIA used to determine hydzograptk 
in Figure 5.3.1. 

97 



100 Morov;s SesInt
 
.00- Storm duration- 3 hours 

Storm.intensity- 3 cm/hr
 
90 


70
 

r 60
 

)o50 
L 

D40 
U 
u 30. 

20
 

10
 

0 IJ I £ I I I 4 8 

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 

time [hours]
 

Figure 5.4.1: Discharge hydrograph for Morovis basin.
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Figure 5.4.2: Geomorphologic IUH used to determine hydrograph
 
in Figure 5.4.1.
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Figure 5.5.1: 	Discharge hydrograph for Morovis basin.
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Figure 5.5.2: 	Geomorphologic IUH used to determine hydrograph
 
in Figure 5.5.1.
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Table 5.1: Parameters used to determine the discharge
 
hydrographs for Unibon basin.
 

Storm Properties: duration = 3 hours; intensity = 3 cm/hr 

Ranfall-runoff Results: r 4.1 m/sec; Q* = 194 d 3/sec; T* = 3 hours. 
p p p 

Stream Characteristics:
 

Vo Yo so L cI F 
(m/sec) (m) (m/kin) (kin) (m/sec) 

1st order stream: 0.80 1.00 82.7 1.1 3.8 0.36
 

2nd order stream: 0.90 1.13 46.6 3.1 4.1 0.38
 

3rd order stream: 1.00 1.20 23.3 8.6 4.3 0.38
 

Storm Properties: duration 2 hours; intensity = 3 cm/hr 

Rainfall-runoff results: v = 4.0 m/sec; 0 = 188 M3/sec; T* = 2 hours 

p p p 

Stream Characteristics:
 

YO vo So L cI F
 

(m) (ni/s ec) (m/kin) (kin) (m/sec) 

1st order stream: 0.50 1.25 82.7 1.1 3.5 0.56 

2nd order stream: 0.70 1.38 46.6 3.1 4.0 0.53 

3rd order stream: 0.80 1.50 23.3 8.6 4.3 0.54 

Geomorphologic Characteristics: RA = 5.6; RB = 4.0; RL = 2.8 

= Initial Probabilities: 01(0) = 0.51; 02(0) 0.31; 03(0) . = 0.18 

Transition Probabilities: 

Pr r =0.286 Pr u = 0.500 Pr r - 0.214 Pr r = 0.500 
12 12 13 23
 

Pr u =0.500 Pu r = 0.500 PU u = 0.500
 

23 
 23 23 

Path Probabilities: 

p(sl) - 0.073 P(s2) = 0.128 p(s3) = 0.073 p(s4) = 0.109 

p(s5 ) = 0.157 P(66) = 0.157 p(s7) - 0.176 P(s8) - 0.128 
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Table 5.2: Parameters used to determine the discharge hydrographs
 
for Morovis basin
 

Storm Properties: duration 3 hours; intensity = 3 cm/hr 

, , m3 * 
Rainfall-runoff Results: vp = 3.0 m/sec; Op = 112 m /sec; Tp = 3 hours 

Stream Characteristics:
 

Yo Vo So L F
c1 

(m) (m/sec) (m/kin) (kin) (m/sec) 

1st order stream: 0.34 0.85 71.9 1.1 2.7 0.47 

2nd order stream: 0.41 1.00 32.1 .3.0 3.0 0.50 

3rd order stream: 0.48 1.10 39.2 8.0 3.3 0.51 

Storm Properties: duration = 2 hours; intensity - 3 cm/hr 

Rainfall-runoff Results: v= 2.9 m/sec; 0 = 103 m3 /sec; T* = 2.2 hours 
p p p 

Stream Characteristics:
 

Yo Vo so L F
cI 

(m) (m/sec) (m/kin) (km) (m/sec) 

1st order stream: 0.34 0.90 71.9 1.1 2.7 0.49 

2nd order stream: 0.37 1.00 32.1 3.0 2.9 0.52 

3rd order stream: 0.44 1.10 39.2 8.0 3.2 0.53 

Geomorphologic Characteristics: RA = 5.0; RB - 3.2; RL - 2.7 

Initial Probabilities: 61(0) = 0.41; 92(0) 0.29; 03(0)-= 0.30 

Transition Probabilities:
 

Pr r = 0.222 Pr u = 0.625 Pr r 0.153 Pr r - 0.375 
12 12 13 23 

Pr u = 0.625 Pu r = 0.375 Pu u 0.625 

23 23 23 

Path Probabtlities:
 

p(sl) = 0.034 P(S2) = 0.096 p(s3) = 0.057 p(s4) = 0.063
 

p(s 5 ) = 0.110 P(S6) = 0.183 p(s7) - 0.297 PO8) = 0.160
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many combinations of yo and v° such that cl is equivalent to vp, and
 

for all the hydrographs, both vo and yo were varied until the peak and
 

time to peak given by the rainfall-runoff model were obtained. Obviously,
 

another parameter is needed to define the shape of the hydrograph and
 

corresponding IUH.
 

The Froude number is an indicator of the type of flow in free-surface
 

flow, and if used properly within this model could provide additional
 

information concerning the tow situation for different storms. 
 A detailed
 

study of the incorporation of the Froude number into the model calibration
 

is beyond the scope of this work; but given a Froude number, F, and
 

dynamic wave speed, cl, there would exist only one combination of yo and
 

vo satisfying F and cl and the IUH would be completely defined in terms
 

of three parameters. For the cases investigated in this work, the Froude
 

number was restricted to be less than 1.
 

Although the results of this section are encouraging, the mathematics
 

involved in the solution procedure are rather complex and may limit the
 

use of the model in practice. A common assumption by many hydrologists
 

is that the response of each channel is given by the exponential
 

distribution. Mathematically the exponential distribution is easier to
 

work with than the channel IUHs derived in this study, and the following
 

section compares the discharge hydrographs determined by the two different
 

types of channel IUHs.
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5.4 	 Comparison of the Discharge Hydrographs Determined Using Different 

Channel IUHs 

A common practice in hydrology is to assume that the channel's 

response is given by the exponential distribution, and in this section 

the discharge hydrographs determined using the response functions derived 

in this work, namely ua (t) and ra (t), given by Equations 3.20 and 3.22, 
i i 

and that determined using the exponential response function, Equation 

2.17, will be compared. 

The assumption that the channels' IUH is given by the exponential 

response functions limits the number of paths that a drop can take to 

reach the basin outlet as this type of channel IUH does not differentiate 

between the response for a drop entering at the stream's most upstream 

point and for a drop entering anywhere along the channel. The possible 

paths for a drop whose response is assumed to be an exponential distribution 

are given below as presented in Chapter 2: 

path sl: 61 + 1 + 2 + 3 + 4 

path s2: 02 + 1 + 3 + 4 

path s3: 03 + 2 + 3 + 4 

path s4 : 04 + 3 + 4 

where i + j represents a transition from a stream of order i to a stream 

of order J. Initial and transition probabilities are as given in Table 2.1. 

Both the basin IUHs used in this section to determine the discharge 

hydrograph are based on the theory of the geomorphologic IUH as presented 

in Chapter 2. The difference between the IUHs is in number of possible paths
 

that a drop can take to reach the channel outlet and in the response
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of the individual channels which are indicative of the drop's travel time
 

in a particular stream.
 

The basins to be used for the comparison are the ones presented in
 

the previous section, and thus only the discharge hydrographs using the
 

exponential assumption will be presented in this section. The dynamic
 

component, i.e., the velocity parameter, required for the exponential
 

distribution is determined as suggested by Rodriguez et al., where the
 

velocity is equated to the peak stream velocity associated with a particular
 

storm.
 

The discharge hydrographs for different storms and corresponding
 

basin IUHs for Unibon and Morovis basins are presented in Figures 5.6.1
 

to 5.7.2 and 5.8.1 to 5.9.2, respectively. The peaks and times to peak
 

approximate those determined by the rainfall-runoff model, Qp and Tp,
 

presented in Tables 5.1 and 5.2. Comparing these discharge hydrographs
 

with those presented in the previous section, the peaks and times to peak
 

are approximately equal, but the majority of the hydrograph volume is*
 

positioned differently. As can be concluded by comparing the two different
 

types of basin lulls, the assumption of the exponential channel response
 

implies a much faster response than that determined by solving the momentum
 

and continuity equations. Thus although the peaks are almost equal for
 

each basin and for each storm, in the case where the exponential asusmption
 

is used, more of the total volume is discharged prior to the peak, whereas
 

for the cases where the response is that derived in this work, more volume
 

is discharged after the peak.
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Figure 5.7.1: Discharge hydrograph for Unibon basin using
 
exponential assumption.
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Figure 5.8.1: Discharge hydrograph in Morovis basin using
 
exponential assumption.
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exponential assumption.
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This discrepancy between the hydrographs' shape could be significant.
 

For example, in designing protective measures against floods, the hydrograph
 

shape provides useful information to the planner. The hydrograph shape
 

is a function of both the indivieual basin and the climate, and thus no
 

generalized conclusion can be made concerning the shape of all the
 

hydrographs for a particular basin. Nor can a conclusive statement be
 

made concerning the shape of all the hydrographs determined using a
 

particular channel IUH, as too'many factors, such as channel configuration,
 

channel slope and length, influence the shape of the hydrograph. This
 

work has focused on obtaining a basin IUH which is indicative of both the
 

basin's geomorphologic characteristics and the channels' physiographic
 

characteristics, and thus one would expect that the IUH derived in this
 

work provides more of a representative IUH for the particular basin than
 

that obtained using the exponentiL' assumption. However a more detailed
 

investigation is needed before such a conclusion can be made.
 

The next section presents a case study where the choice of the basin
 

IUH makes a significant difference in the discharge hydrograph.
 

5.5 Discharge Hydrographs for Wadi Um Salam
 

In the last few years, some areas close to the Nile Valley in Upper
 

Egypt have been subjected to occasional flash floods which cause considerable
 

damage to the villages downstream. At the the outlet of these wadis are
 

vast plain areas where villages have developed and people have cultivated
 

the lands from which they obtain their major source of income. The severe
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losses over the past few years has prompted the government of Egypt to
 

develop a master plan to provide protection to the surrounding villages.
 

The wadis are quite large in size and extend to the mountainous regions
 

alongside the Nile. Discharge estimates are obtained from the people in
 

the village or are estimated from the flood level water marks. The
 

rainfall for a year is obtained from stations located along the Nile.
 

Thus no rainfall measurements are available for locations within the
 

wadis, nor are direct measurements of the discharges. The model presented
 

in this work provides a feasible way to estimate the discharge due to a
 

given storm. With just a topographic map or aerial photograph and an
 

estimation of the storm properties, the discharge can be estimated.
 

As an example of the use of the model, Wadi Umm Salam has been
 

selected for study. Wadi Umm Salam is a subbasin of Wadi Abbad which is
 

one of the largest wadis in Upper Egypt. Wadi Abbad has an area of 5700
 

km2 . Its mouth is located to the east of the city of Idfu (see Figure
 

5.10) The basin extends up to the Red Sea mountains. Wadi Umm Salam is
 

located in the northern part of Wadi Abbad and has an area of 39 km2 , see
 

Figure 5.11.
 

The geomorphologic parameters corresponding to Wadi Umm Salam were
 

obtained from a topographic map, and are presented in Table 5.3, along
 

with the physiographic characteristics of the channels. The only rainfall
 

data available consists of the maximum daily rainfall at the city of
 

Idfu, for different return periods. For this investigation the maximum
 

daily rainfall with a return period of 100 years is used. No hyetographs
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Figure 5.10: A map showing the location of Wadi Abbad (Aswan
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Governorate) (from Mabarek P-t 


-
ill
 



kk 

424e 

/. ,o:... " .. 5 I.,.. 

... . . ... ,., ; .. . • .J} ,K ' ,, IA, .-. 
o /' EAa 5 4'-4/ /" 

43 425 . 

.. 2..... , ' . _ _ 
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Table 5.3: Characteristics of Wadi Umm Salam
 

Stream Characteristics:
 

YO Vo So L c1 

(m) (m/sec) (m/kin) (km) (m/sec) 

1st order stream: 0.60 0.55 8.0 1.3 2.98 

7.0 3.6 3.27
2nd order stream: 0.70 0.65 


10.0 3.55
3rd order stream: 0.80 0.75 6.5 


Geomorphologic Characteristics: RA = 3.1; RB = 2;4; RL = 2.8 

Initial Probabilities: 61(0) - 0.59; 62(0) 0.21; 03(0) - 0.20 

Transition Probabilities: 

= 0.833 Pr r = 0.061 Pr r =0.167
Pr r = 0.105 Pr u 

13 23
12 12 


Pr u = 0.833 Pur = 0.167 Pu u = 0.833
 
23 23 23
 

Path Probabilities: 

p(sl) - 0.010 P(S2) - 0.082 P(s3) - 0.052 p(s4) 0.036 

- 0.410P(s5) = 0.036 P(6) 0.178 P(S7) - 0.195 P(O8) 
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are available and thus the rainfall intensity is assumed to be constant
 

throughout the storm's duration.
 

The discharge hydrographs for storm durations of 2.0, 1.5, 1.0 and
 

0.5 hours are evaluated which for the total daily rainfall of 36.6 mm
 

(from Mobarek et al., 
March 1981) yields the following storm intensities:
 

1.8, 2.4, 3.7 and 7.3 cm/hr, respectively. Only the average stream
 

velocity of Wadi Umm Salam is available, and thus this velocity is used,
 

instead of the peak velocity, to determine the required input parameters.
 

The average ve-locity is determined from the estimated discharge to be
 

3.27 m/sec (from Mobarek et al., March 1981).
 

Using this average velocity, the total maximum rainfall with a 100
 

year return period, and the basin and channel characteristics, the
 

discharge hydrographs for 
 he different storm durations are determined.
 

(See Table 3.3 for a summary of the input parameters.) The discharge
 

hydrograph determined using the upstream and lateral inflow channel IUHs
 

derived in this work, and the hydrograph determined using the exponential
 

assumption for the channel response are both evaluated. The different
 

geomorphologic IU Hs and the associated discharge hydrographs are presented
 

in Figures 5.12 to 5.16 and Figures 5.17 to 5.21, respectively. Comparing
 

the two basin IUHs, Figures 5.12 and 5.17, the peaks are close, but the
 

time to peaks differ significantly. Similarly, comparing the two types
 

of discharge hydrographs for the same storm, the peaks are approximately
 

equal, but the basin IUH using the channel IUHs derived in this work,
 

produces hydrographs with significantly delayed time to peaks.
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Figure 5.12: Geomorphologic IUH for Wadi Umn Salam.
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Figure 5.14: Discharge hydrograph for Wadi Umm Salam.
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Figure 5.15: Discharge hydrograph for Wadi Umm Salam. 
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Figure 5.16: Discharge hydrograph for Wadi Umm Salam. 
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Figure 5.17: 	 Geomorphologic IUH for Wadi Umm Salam
 
using exponential assumption.
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Observing the overall shape of Wadi Umm Salam, shown in Figure 5.11,
 

the basin is rather pear-shaped and one would expect that for a uniform
 

rainfall over the whole basin, the initial response is due to the flow in
 

Then the flow from the lower order
the mainstream near the wadi's mouth. 


tributaries located in the upper regions of the basin begin to contribute
 

to the discharge at the outlet, and thus the long delay for the peak.
 

This type of behavior is also reflected in the low bifurcation ratio, RB,
 

of 2.4. For on the average there are less than 3 streams draining into
 

the next higher order stream, but 2 of these 3 are required to form the
 

stream of higher order. The transition probabilities, Pr u and
 
i i+.
 

are high and the upstream inflow channel IUR will contribute
Pu u , 
i i+l 

more to the overall basin IUH than the lateral inflow channel IUH. 

This example illustrates the major contribution of the channel IUHs 

derived in this work to the geomorphologic IUH theory. The exponential 

assumption of the channel response only considers the average travel time 

of a drop along the channel, but the travel time for a drop traveling 

along the stream which forms the higher order stream, is a lot greater 

than the average. Due to the concept of random channel networks, the use 

of the exponential distribution to represent the flow from tributaries 

which enter laterally along the channel is reasonable as there is an 

equal probability of the tributary entering anywhere along the channel's 

length and thus the drop's travel time can be represented by the average.. 

However, in cases where it is known that the tributary enters at a 

channel's most upstream point, a more representative channel IUH of the 
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actual travel time should be used. As presented in this work, the upstream
 

and lateral inflow channel IUHs provide additional information such that
 

the channel IUH can be chosen in accordance with the drop's path. 
Due to
 

the lack of actual rainfall-runoff data, no conclusion can be made as 
to
 

which model is more representative of the actual situation.
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Chapter 6
 

CONCLUSIONS AND RECOMMENDATIONS
 

6.1 Conclusions
 

The discharge from river basins is a function of both the particular
 

storm and basin characteristics. This work is based on the linear In

stantaneous Unit Hydrograph theory and the theory of the geomorphologic
 

IUH (Rodriguez et al., 1979). Modifications now make'the response of
 

channels of a given order dependent on the location of inputs. Responses
 

are derived for inputs occurring at the stream's most upstreampoint and
 

for inputs occurring anywhere along the channel's length. Both responses
 

were determined by solving the linearized continuity and momentum equations
 

for the corresponding boundary conditions. Inherent in these channel
 

responses are the effects of the slope, length, and stream velocity.
 

The comparison of the hydrographs produced using the exponential
 

assumption for the channel's response (Rodriguez et al., 1979) and those
 

using both of the channel responses derived in this work, indicate signifi

cant differences in the overall shape of the hydrograph. Although for
 

some cases the peaks and times to peak are approximately the same, the
 

volume of water discharged before and after the peak differs. In other
 

cases the peaks agree but the times to peak disagree. Due to the complex
 

relationship between the variables which influence runoff, no general
 

statement can be made concerning a relationship between the hydrographs
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produced using the different channel responses. However, it is to be
 

noted that the upstream and lateral inflow channel response functiois
 

are more representative of the actual flow situation.
 

This work is still fairly inconclusive since many experiments and
 

to be done. It is
attempts to calibrate known basin responses remains 


a careful look at the assumed time distributions is
apparent, though, that 


required. The whole issue of calibration methods will have to be revisited
 

if in fact the proposed methodology is believed adequate.
 

6.2 	 Recommetdations
 

Given the results present in Chapter 5, of foremost importance is the
 

estimation of the dynamic parameters Ahich influcnce runoff. Using the
 

given by a peak stream
exponential assunption, the dynamic effects are 


velocity. For the upstream and lateral inflow IUHs, the dynamic effects
 

are defined by the reference velocity, Froude number and dynamic wave speed,
 

cl; further research is needed to determine a relationship between these
 

three variables and the climatic properties of the region such that the
 

IUH is a function of both the physiographic -.nd climatic characteristics
 

of the area being investigated.
 

Further research on the influence of the overall drainage network on
 

the hydraulic factors which determine runoff is suggested. In particular
 

the effects of overland flow and infiltration should be investigated.
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Appendix A
 

SUMMARY OF THE THEORETICAL DEVELOPMENT OF THE
 
TRANSITION PROBABILITIES AND INITIAL PROBABILITIES
 

A.1 Transition Probabilities
 

The derivation of the tran.sition probabilities, pi, uses results
 

from Smart's(1968) random link length model. Referring back to Figure
 

2.1, an exterior link is a segment of channel network between a source
 

and the first junction downstream, and an interior link is a segment of
 

channel network between two successive junctions or between the outlet
 

and the first junction upstream. Smart (:968) assumed that the lengths
 

of interior links,in a given network are independent random variables.
 

The assumption implies that the distribution of interior link lengths is
 

independent of order or any other topologic characteristic. Smart also
 

used the assumption, originated by Shreve (1967), that all topologically
 

distinct networks with a given number of sources are equally likely. An
 

example of topologically distinct networks formed from 6 sources, is
 

presented in Figure A.l. Using these two assumptions and the conditions
 

imposed by Strahler's ordering scheme, Smart derived a general result
 

for the mean number of interior links of order w in the complete network
 

of order W:
 

w N - 1 
E[w,W] =N w a1 

wa=2 
2N 
Na-1 

w2.3....,W 

(A.l) 
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Figure A.l: Schematic diagrams of the 42 topologically distinct
 
channel networks with 11 links and 6 first-order
 
Strahler streams (from Shreve, 1966).
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where the order of an interior link is given by the order of the channel
 

of which the link is a segment. The mathematical development of
 

Equation A.l utilized concepts from probability theory and combinatorial
 

mathematics (Smart 1968). 

The transition probabilities are . ed as follows: 

= number of streams of order i draining into order j
 

Pij total number of stream of order i 

i = 1...,w (A.2) 

j = i+l, W+I 

By Strahler's ordering scheme two streams of a lower order are required
 

to form a stream of the next order, thus there exists N -2Nw+l streams
w 


remaining to be tributaries of streams of order w+l, ..., W. Since the
 

interior link lengths are independent of order and any other topological
 

characteristics the remaining Nw-2Nw+ streams join the higher order
 

streams of w+l, ... , W according to 

(N - 2Nw) number of links of order i 
w w+l) total number of links of order w+l,...,W 

i---w+l,... ,W (A.3) 

Combining Equations A.1, A.2, and A.3 yields:
 

(Ni - 2Ni+ I ) E[J,W] 2Ni+ 1
 

Pij W 
 Ni i+ij (A.4)
 
I E[k,W]N i
 

9=j
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where 6i+l is 1 if i+l1j and 0 otherwise As an example consider the
 

transition probability pI2 for a 3rd order basin.
 

Using Equation A.1
 

(N1 - 1) 

E[2,W] N2 2N1 _ (A.5) 

and
 

a Na_-i1 
E[3,W] =N 3 11 2N - 1 (A.6)
 

a=2 a
 

N -I N -1 
=N 3 [2N -11 3 -

Recalling that N = 1 and substituting Equations A.5 and A.6 into A.4 

yields:
 

(N1 72N2 )N 2 +2 (A.7) 

P2 = (2N2 - I)N1 N1 

Substituting in the expression for RB:
 

RB= N
 
w 

and rearranging yields: -

R+2R 2
B 


P12 =R - 1) (A.8)B ( 2 RB 

Thus p 12 is only a function of the geomorphological parameter RB.
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A.2 Initial Probabilities
 

The derivation of the initial proabilities follows a similar
 

procedure as the transition probabilities. The initial probability for
 

a stream of order i is defined as
 

(0) =area draining directly into a stream of order w 
 (A;9) 

w =total area of the basin 

For w=l, the result is simply: 

01(0) = NA11 (A.lO) 

where A is the average area directly contributing to a stream of order
 

1, and AW is the area of the basin. For a third order basin, the above
 

is equivalent to
 

= 2 -2 (A.) 
(.1
l(O) RB RA 


where RB and RA are the bifurcation and area ratios. The derivation of
 

2(0) is a bit more complicated. Equation A.9 can also be interpreted
 

as
 

area of order w minus area of order w
 

(0) contributing directly to lower order streams (A.12)
w0 total area of the basin 

The area draining into the tributaries of the stream of order w is
 

determined by evaluating the average number of links of order i, for
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i=l,...,w-l, draining into streams of order w and then multiplying each
 

value by its corresponding average area :;f order i. For example
 

consider @2(0) for a third order basin. The number of streams of order
 

1 available to be tributaries of orders 2 and 3 is N - 2N and of
 

these the number going into second-order streams is written as:
 

2N number of links of order 2 

N _ 2' total number of links or orders 2 and 3 (A13) 

Substituting Equation A.1 and simplifying yields:
 

N2
 
(N1 - 2N2) 2- 1 (A.14)
 

2
 

Thus on the average a stream of order 2 has
 

1
 

(N1 - 2N2) 2N2 - 1 + 2
 

streams of order 1 that drain into it, where the second term represents
 

the two streams of order I which form this stream of order 2. The
 

average area draining directly into a second order stream is then
 

A-N 1 - 2N2 
A2 Kl[ 2N2-1 + 2] 

and
 

N2 NI - 2N2 
02(0) - [ A2 - A1 2N -11 2)] (A.15) 

A3 2 

Rearranging the above equation and substituting in RB and RA yields:
 

2 _ 2RB
3 + 

= R-(0)- (A.16)2 RA R2( 2RB - 1)
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N1
 
Noticing that the second term of A.15 is A N, P an equivalent


1 N 212~ neuvln
 

expression for 92(0) is
 

N2 - -N1'2 
92 (0) = - [A2 - -] (A.17)A3 N2
 

Generalizing the above result for all initial probabilities yields:.
 

N w-1 

0(0) = ![AK - I A (N.p IN) (A.18)w-2.' low1
w=2 , ....,W 

In summary,. the following general results determine the initial and 

transition probabilities: 

(Ni - 2Ni+1 )E[j,W] 2Ni+ j 
pij = W + Ni 6i+j -i<W 

Ij 
 E[k,W]N

i
k=j
 

N 11
0 (0) 


W-1
N 

-K[Nw(0) - I A (N PjIfN. w2 ,w

AWw J=l
 

where
 

N = number of streams of order w
 
w
 

A = average area draining into streams of order w.
 
w
 

The general results can then be rearranged to yield expressions in terms
 

of the bifurcation ratio, RB and the area ratio, RA.
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Appendix B
 

MATHEMATICAL PROPERTIES OF THE UPSTREAM AND LATERAL INPUT CHANNEL IUHS
 

Appendix B is divided into three sections. The first section
 

presents the solution of the linear partial differential equation given
 

in Chapter 3. The second section presents the proof that the area under
 

the upstream and lateral input response functions is one, the third
 

section presents the derivation of the time lag expression for 6q(x,t),
 

and the fourth section presents the evaluation of the first term of the
 

lateral inputc channel IUH.
 

B.1 Analytical Solution of the Upstream Input IUH
 

The linear partial differential equation to be solved is, as
 

presented in Chapter 3, Equation 3.7,
 

~2g~o a6g
 

aa 3g
(gy-v 2 2v ~ 4. - _0 0 ax axat t2 o ax v at (B.l) 

Taking the Laplace transform of each term with respect to t and imposing
 

the boundary conditions given in Chapter 3, yields
 

(gy -V2 2Q(x)s) - 2v s 'Q(x,s) 2
20 3ax ax s
 

3gS xQ(xs) + 2gSo sQ(x,s) (B.2) 
0 axv 
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where by definition
 

W 

Q(xs) f exp(-st) 6q(x,t)dt
 

0
 

is the Laplace transform of the output resulting from the unit impulse
 

of the upstream input. Combining similar terms in.Equation B.2 yields:
 

2 - 92(X-,) Q(X,) 22gS o I 

(gy - v° a (2vos + 3gS ) aQ(xS) (s 2+ - s)Q(x,s) = 0 
0 0 ax2 0 o1 ax v0 

(B.3), 

The above equation is a second order homogeneous ordinary differential 

equation in x, whose solution is of the general form.
 

Q(x,s) = O(s) expA(s)xl (B*.4), 

where 0(s) and, X(s) are unknown functions of s. 

The expression for X(s) is given by the characteristic equation. of 

B.3, which is: 
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2 
(2v s + 3gS /(2v s + - 4(gy -v 2)(S 2 + - s) 

[X(s) - 00 

2 (gY0 - V0 

3gvsogS) 2 2 gSo
 

3o2 2 2+ 2gSo 
[X(s) - (2v0s + 3gSo) + (2v0s + 3gS0)- 4(gy -v 0 )(S -v- s)] 

0 

-0 (B.5) 

Referring to Equation B.4, the general solution is: 

Q(xs) = 

C1 exp{[(2vos+3gS - 2V + 3gSo) - 4(gyo v)(s-+ -- W 

(2 0 0 vg o 

0 

(B.6)
 

For any Laplace transform,
 

lim Q(xs) = 0
 

s+O 

Thus C2 -0. 136
 



6q(O,t) - 6(t) 

which in the transform space is
 

Q(O,s) - L[6(t)] - 1 

Thus,
 

Q(Os) = C1 exp(O) - C1 = 1 

and
 

Q(xs) 

2 2 2 2gS0 

exp(2v 3gS - (2vs + 3gS) - 4(gy0 -v 0 )(s +--os)} 

(B.7)
 

The determination of 6q(x,t) requires the inversion of Equation B.7.
 

In order to simplify notation, Equation B.7 will be rewritten as:
 

Q(x,s) - exp {- x /as2+bs+c +esx+fx } (B.8) 

where the expressions for the constants are given below: 
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a1
 

gyo (-F 2 ) 

S9 

F
bo qo 
2 
(1-F 

+ 
2 ) 2 

S 
2C = 9- ( Too ) 2 IF 1 

v 
0 

gyo ( - F2 ) 

3 S 1 
f = -

2 yo (1 F2 

v 

F= 

Equation B.8 is now rewritten as a sum of Laplace transforms whose
 

inverses can be obtained from tables of Laplace transforms. Q(xs) is
 

rewritten as:
 

exp[-(a -e)xs- (b _ f)x] +2 a

exp[exs + fx] {exp(-x as'+bs+c ) exp( b - /l
2 F 

(B.9)
 

The inversion of.Equation B.9 requires the use of the shift formula:
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L" I - m s (e f(s)] = u(t - m) F(t-m) 

where
 

f(s) = eSt F(t - m) dt J 

0 t<0
 
u(t) = 

1 t>0
 

To determine the inverse of the second term of B.9, we also use the
 

fact that the expression
 

/2 -b
 
exp(- x as2+bs+c ) expC- x - VT xs) (B.10) 

.is given as the Laplace transform of
 

--
Vd/a x e::p(-

b 
b t) 

I 1[vd-d/7 
1 d 

2 

x-u(t  €,1 X) 

/ t 2 - ax2 

where 
(B.11) 

d = (b/2) - ac
 

The inverse of each term is derived as follows:
 

b 
exp[-(, - f)x] L- [exp(-(Va- - e)xs)] 

= exp[-( b - f)xJ u(t-(a- -e)x) F(t-(a- -e)x) 

= exp[-( b f)x]u(t-(V- -e)x)6(t-(a -e)x)
 
2/a

= exp[-(b - f)x] 6(t-(a -e)x) (B.12) 
2V
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L~r~ f If 2 -bL-[exp[exs+fx]{exp(-x as2+bs+c) - exp(- x - laxs)l] 

b i[/dV7a /t7 x)7- x2 

exp(fx)Id/a x exp(- ba(t+ex)) u(t+ex-r" x)
2at+ex)2 
- ax2 

(B.13)
 

The sum of the inverses can be rewritten as:
 

6(t - X/c1 ) exp(-px) +
 

exp(-rt+zx)(x/c1-x/c2)h V(t-x/c1)(t-x/c2 U(t-x/c1 )
u[2h 

V (t-x/c1)(t-x/c 2)
 

(B.14)
 

where
 

c= 1 =V + gyO
1 l a e 0 0
 

a-- 1e~
 

= 1 V -F 0
2 = 0 

b f o 2-F
 
2y F(1+F)
°
2Va 


b So o 2+F2
 
2a 2y F2
 ° 


be F
 

S
 
b e 2 o
2a y 0
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2 )
h -Soo (4-F (IF 

2a 2y° 2F2
 

2 (1-F2 /4)(1-F 2)
b 2 = o 

d - ac go '.4 
0 (1-F)
 

I[. ] = first order modified Bessel function of the first kind 

u(') = unit step function 

(t)
B.2 Area of 6q(x,t) and rai-


The following section presents analytical proofs that the area of
 

the pdfs, 6q(x,t) and ra.(t), are equal to 1.
 
1
 

B.2.1 Proof that the area of 6q(x,t) is 1
 

The area of 6q(x,t) equation B.13, is determined using the
 

6q(x,t) is a
definition of the Laplace transform and its moments. 


function of x and t, where x is the distance the drop travelled. In
 

this study x is the channel length, and the upstream response is written
 

as a function of t only .
 

The nth moment of a function around the origin is given by:
 

CO 
m'(t) = 0o 

f(t)tndt (B.15)n 


The nth derivative of the Laplace transform is given by
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dnQ (X,s) f0 (_t~)n e-st 6q(xt)dt
dsn 0 

. (_,)nl J tn e-s Sq(x,t)dt (B.16)
 

From B.16, at s - 0, 

dsn s-O - (-1)n G t 6q(x,t)dt 

=(-l) n mn(t) (B.17) 

Thus the area under 6q(x,t) is given by:
 

m (t) MO(tQ(x,s) ls=O 

Using Equation B.8,
 

;(t) = exp[x(-/a2+bs+c +es +)ls=0 

= exp[x(-C-+ f)] 

=1 (B.18)
 

as f = Ic (see Equation B.7). 
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B.2.2. Proof that the Area of r (t) is 1

ai
 

As in Section B.2.1, using the functional relationship between
 

moments and Laplace transforms, the area of ra(t) is given by:
 
i
 

L[rai(t)] Is=0 	 (B.19)
 

Substituting in Equation 3.15 into the above equation yields:
 

1 	 exp( (- as2+bs+c +es+f)) -1]s2x (Li- IS=0
 

ai
 

(B.20)
 

Since the denominator equals zero at s=O, in order to evaluate B.20,
 

L'Hopital's Rule is used, and the area of rai(t) is given by:
 

area of rai(t) 

(-/as+bs+c
2 (2as+b)+eexp(L
= 	 lim ai 

sO L [- (as2+bs+c)- (2as+b) + e] 

L (-/ b + es + fa. 

= 	 lime = 
s1O 
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B.3 Time Lag for 6q(x,t)
 

The time lag is the time between the centroid of the effective
 

rainfall and that of the direct runoff. For rainfall which is symmetric
 

with respect to time, the time lag, tL, is given by:
 

tL- oI QB(t)dt td (B.21)

LoQB(t)dt 2
 

where QB(t) is the outflow hydrograph and td is the duration of the
 

effective rainfall. The above-expression can be shown to be equivalent
 

to:
 

tL = Jth(t)dt (B.22)
 

where h(t) is the IUH.
 

Using the relationship between moments and Laplace transforE
 

L1ds (l)1 B2Is=0 -OtL = mI(t) = dQ(x,s) (B.23 

and substituting in the epxression for Q(x,s) (Equation B.8) yields:
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m(t) x(- (as 2+bs+c)-k(2as+b) +e)exp(x(-as+bs+c es+) 

+- e)ex ( " c - +)(1= x(- b + ee(' 

= x(-- -e)	 24)b _-e)(B. 
2Vc
 

Substituting in the expression for b, c, and e (Equation B.$) yields: 

x (B.25)t =M(t)
L 	 l 1.5v 0 

B.4 	 Evaluation of the First Term of Equation 3.10
 

The first term of Equation 3.10 is given by
 

_ ILai 6(t-x/c1)exp(-px)dx (B.26) 

T 0 
ai 

Since 6(t-t/c 1) is non-zero only for (t-x/c I) > 0, the upper limit of
 

integration is c1t, and Equation B.26 is
 

(B.27)
1 J 6J(t-x/c1)exp(-px)dx 

ai
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Upon a change of variables for yt-x/cl, dy - -dx/c , we obtain: 

1 J6(y)exp(-p(t-y)c1 )(-cl)dy (B.28)
 

ai
 

Simplifying B. 28 yields:
 

I I6(y) exp(-p(t-y)c)cdy (B.29)
 

ai.
 

Equation B.29 is only non-zero for y=O, yielding the following
 

expression for Equation B.26:
 

ex( t 1
1
 
-xp(-ptc I (B.30)
 

a i 
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