$$
\text { PN-AAL- } 388
$$

## CIRCULAR CONCRETE IRIR|GATION TURNOUT: <br> DESIGN AND CONSTRUCTION HANDBOOK NO. 1 <br> Water Management Synthesis Project



# CIRCULAR CONCRETE IRRIGATION TURNOUT: DESIGN AND CONSTRUCTION 

Thomas Trout, W. D. Kemper, and Hatiz Sadrul Hasan

## Handbook No. 1


#### Abstract

Prepared in cooperation with the United Stater Agenes for  reported opinioms, comelasoms or reammendations ate thene of the athon fomtracho and not those of the funding ageney or the   condorsement $b:$ Nal aber ather prodact not mentoned.




## WATER MANAGEMENT SYNTHESIS PROJECT

Agricultural \& Irrigation Ingineering
Utah State University
I.ogan, Utah

## ACKNOWLEDCMENTS

The structures desciibed in this report were developed during the Water Management Research Project that was carried out by the Government of Pakistan and Colorado State University and funded by the U.S. Agency for International Development, contract \#All)/ta-C-1411.

Intial development at the Mona Reclamation Experimental Projeet was administered by the Wiater and Power Development Abthority, Chief Engineer Mohd. Ashraf and Projed Director Mohd. Mtnir. Later refinements were tested by the (On-Farm Whater Management Development Projeet under the ditection of Mohd. Sadiq Chema. The development involved cooperative efforts of the imovative mandfacturer, Pakistani engineers and farmers, and expatriate enginering advisers from (SU and the U.S. Soil Conservation Service.

Assistance in the refinement of this manual was given by Caroll A. Hackbart, U.S. Soil Conservation Service; A.R. Robinson, consultant; Kern Stuler, Utah State University; Cary Cerig, Department of Industrial Sciences, CSU; (iil Corey, USAID; and Wayne Clyma, Water Management Synthesis Project (o-director. Their help is greatly appreciated.

## FORWARI)

Circular ©oncrete Irrigaton Turnoun: Design and Construction is the first handbook of what is to be a series of handbooks on techologies for improving irrigation water management around the world.

The purpose of this handbook is to provide the necessary information for the design, construction and use of an irrigation channel turnout. The structure was developed and used suceessfully in Pakistan. We believe the improvement of farm conveyance channels is an important ned around the world, and the successhat adoption of this s:ructure, where appropriate, will help in meeting this need.

We woth appreciate hearing from you concerning your experiences in using the handbook and structure. Information about other technologies that have been successful under the particular conditions in your country are weleomed also. Additional copies w this handbook are avalable from the Water Management Symbesis Project.

Our sincere desire is for better water management worldwide in the future.

# Wayne Clyma and lack Keller, Co-Directors 

Water Management Synthesis Projeet

## TABLE OF CONTENTS

Section Page
1 INTRODUCTION ..... 1
2 DEVELOPMENT OF CIRCULAR CONCRETE TURN- OUTS ..... 3
The Need for Improved Control Structures in Pakistan ..... 3
Development of Circular Concrete Control Stinctures ..... 5
3 FABRICATION OF CIRCULAR CONCRETE TURNOUTS ..... 9
Preparing the Forms ..... 9
Preparing the Conicrete ..... 16
Casting the Panc: ..... 16
Casting the Lid ..... 21
4 CIRCULAR TURNOIT PANEL INSTALLATION ..... 27
Choosing the Proper Lid Size ..... 27
Placing the Pancls ..... 29
Turnout Installation Structures ..... 30
Brick masonry installations ..... 30
Precast concrete slab installations ..... 33
Concrete pipe installations ..... 36
5 ALTERNATIVES TO THE BASIC CIRCULAR CON- CRETE TURNOUT DESIGN ..... 40
Lid or Sealing Surface Materials Other than Concrete ..... 40
Other Turnout Lid Shapes ..... 41
Appendix
1 CONCRETE FOR SMALL JOBS ..... 45

# CIRCUIAR CONCRETE IRRICATION TURNOUT: DESIGN ANI) CONSTRUCTION 

Thomas Trout, W. D. Kemper, and Hafiz Sadrul Hasan'

## SECTION 1

## INTRODUCTION

On most of the over 200 million heelares of irrigated land in the world, water is carried from canals, tanks, or wells 10 individual fiedds through earthen channels or watercourses. (on many oi these small irrigation conreyance systems, farmers dired the wate through chamels by buidding and breaking carthen dams and caiting holes in the banks with a spade. The result of this process is water loss dae on weak, porous chame banks and poor water control, demerioned channels in junctions where soil is borrowed, and a tired farmer.

Rescarch into the causes of low irrigation efficiencies in Pakistan showed that improved conteyance chamel water control structures are very important for improsing on-farm water management. Irrigation chandel check and turnous stoctures were developed to rednce chamed deteriomation and water losses, and to make the irrigators work easier. The circular concrete turnous which evolsed from this need, shown in Figure 1.1, prowed to be successful and have become very popular with the farmers. About 30,000 of these structures had been installed by Jme. 1981, and mote than 30(0,0)() installa-
tions are planned in the following three years. This manual describes the development and fabrication of these structures.

No irrigation turnom will be appropriate for erery situation. This circular concrete turnoun was designed for a specific type of system. For example, it was designed for a rotational distribution sybem and cannot casily be used to divide wate in a branching, constant-low shatem. The deseription of the development of the structure (Section 2) will indicate in use and how irrigation structures for other needs might te developed. Seetion 5 suggests some altemative desiens. Farm Irrigation Structures by A. R. Robinson (1982) descrites exeral other tepes of turnouts as well an gives a general oversiew of the use and fabrication of small irrigation stimetures.

If the circular concrete turnout does meet or can be adapted to a particular sysem's nech, the photographs, drawings, and step-by-step design and labricalion procedures presented in Sections 3 and + will help engineers and small manofactares fabricate and install it.

[^0]

Figure 1.1. Circular concrete irrigation channel turnout struc-
tures developed in Pakistan.

## SECTION 2

## DEVELOPMENT OF CIRCULAR CONCRETE TURNOUTS

The original development of the circular concrete turnout for use in the Indus Basin will be described to indicate the process of designing an irrigation structure to fulfill a specifie need, and to point ont the important design factors lo be considered.

## The Need for Improved Control Structures in Pakistan

In Pathistan, the tradimional means of directing water thromph farm lesel conbeyance ststems is by building and biraking carthon dams and cutbing holes in chamel banks. This process mats in water forses, deteriorated Hambels, poon witter control. high bator requifemems, and dispules betWen farmer. Whenerer carben check dams are buill, wil is borowed from He adfacent chamad banks or fiedds.
 pond with than wall, a shown in Ityme 2.I. Thin wil bomosing often crates contlict with the farmer who (0) $n=$ the adjacem land. Fon if adjacem wil ma't bormwed for building dams, it is often satmated from leakage hmoush the low, namme bants. When the dams are apened, much of the somil moces awal! and is deposited in the chamel downotcam where it must be deamed and periodically.

The process of building and breaking dams reguires sereral minules. In the small irrigated basims where total irrigation times ate only one or lwo hours, this time can be a significant portion of the farmer's water turn.

The emall basims are errigated through culs in the bants. Becaluse of low gradients in many of the systems, lwo or more cust are made for each o. 1 100.4 ha plot. The result is hundreds of old refilled cum in a watercourse sestem - an atreage of 5 per 100 on of channel.

Each cut, like the one shown in Figure 2.2 , is a potential leak and weak place that could wash out, especially in clay soils that shrink on drying or in noncohesive, sandy soils. The potential for washonts and breaches cause diligent farmers to spend much time walking the channels checking for breaks. Also. because of the difficulty in determining whether a break was aceidental or purposeful (water staling), disputes between suspectire farmers are common. and powerfal farmers eatn often "borrow" water al wit. All of these factors indicate the potential in Patintan for reducing waler losses, labor inpuls, and disputes between farmers whin improsed water control stratures.

Cillivable land in the Indus Basin is more plemiful than water to irrigate. During certain times of the sear, water supplies are aculely deficiem. Consequently, the marginal salue of wate tends to be high and a reduction of water losses is exonomicalls desimble. Water losser also comtribute lo waterloge ing and alinit? problems in many arcas. the bight schedule necessary for dowble cropping resula in periods of babor hortage when the salue of labor reguired for imbation is high. Improsed impeation vinubures conseguenty have potential comomic benefits from boob water and labor sad. ings.

The branching waterourse conreyancessstem are operated on a steice turn rotation. Water flows down the main channels and is diserted into each of the branches weekly. Structures installed at these junctions would be used. regularty. Howerer, due to the small fich simes (aberage sime 0.2 hat) and the large number of field turnomes required, permanem structures for each fick is of questionable eeonomic benctit.


Figure 2.1. A deteriorated watercourse junction with enfarged sections and thin banks due to building and opening earthen cheek dams.


Figure 2.2. Water leakage from a poorly closed turnout cut.

Therefore, a decision was made to install permanent improved structures at the junctions which are used weekls. but not at indisidual lied monous. These functoms are the areas wheremajor chammel deterioration ocerars. Ahhough canvas dams and siphon lube would be economial all lied turnous if hated by sereral farmers, the Pahistani lamers sere not willine to cooperatively we such portable structures.

## Development of Circular Conerale (ountrol Siructures

All of the water that emers a watercourse is wed by une farmer at a lime and lamery larm are rotated on a repular xheduke. Ditivion of water is coldom donce and in o! secondary importance comserpmats. control stracture which omls onctate completely open of doned liere aespired.

Arcrave land surface aloper in the Indas Basin atc small. Consequemly. "ateroume dammet mus be buile wih small vopes. and the head loses dotop
 - Hacturn minimised. Duc or the vall
 (以) from cach math dranmel. Now at
 deros the main bramen to redieco atater homed the turnous. Therefore.

 cmmalating part or the individuel head losere and mathent the minmization of these lower expectally importimb.
likewinc. water fowing to atisen fiedd will How pat © nown lo uphrami bramehos. I cakater from cath tmonol comalatioly decreases the thos at the liedd. Ithos. minimising kakage from cach tmmon is ley imporam.

Cement, sand, and bricks are readily awailable in Pakistan and are cheaper than most other constrution materials. Concrete fabricators are located in coery fown and brick masons live in every village. Unlike steel and wood, concrete and brick masonry hate prattically no rewe value and thes stahing is not a problem. For these reasons, check and turnoun desigus were adapted (o) these matrerials.

Thus, a structure was desired which:

1) need operate primarity motaly open or ctosed.
2) minimize water lathater, especially when used as a turnour,
3) does not callese high head loss. especially when med as a check.
f) can be comstructed locally from concrete and or hrick masomry, illid
4) is simple to axe, durable, and inexpersive to construct and imstall.

Bared on the potemial economic benctits. these reguirements of the phesical vilom, and he !eiven material protemes. concreve pathels with cir-
 masomes imstallatom wem developed to laltill the combol stacture needs. Becalle check, and lumoms in the rotaiomad dismbution wistem function Whe vathe, cone desimn was used for both wractures. The low head loss reguirement for check stacture call be allained by wing later diameter gates for chects. ()nly if the siac and weight of the lid becomes mawidher mus special checks be desimned. Ihe term "lumont" will be wed to deseribe the structure which is need for both purposes.


Isometric View


Cross Section
a. Initial design with square sealing surface and one handle.

b. Improved design with rounded sealing surface.

c. Ïinal desith ith thicker lid lip.

Figure 2.3. Evolution of circular conerete turnoul design.

The cirenlar shape of the turnont lid was initially chosen because round forms for casting the gates could easily be made on widely available lathes. The round lid shape is also structurally strong. Becalase the strmetures freeboard requirement opresent overlopping is me by the staionary pand rather than the lid, the siec (and conse(fuents, weight) of the lid can abo be minimized to only that cross-sectional area reguired for the llow of water.

Eyperience with the structares revaled an additional adantage of the circolar shape. Siln shtern acemolated on the botwon portion of the seali:ge surface of an open formon pancl and inweted with the complete seating of the lid. allowing , ignilicant leakage. Wioh round lid, has , ill can be casily cimosed of smooblad out hy rotating the lid in the patnel.

A lims, circular lids and frames were cial wibl simple spuare scating surfacce, a blown in Hente 2.3a. Experience with this design showed that chippleng of the spuate comers was a problem. Hhe desi!n war innsequent! moditied by rounding the sealing sur1:ces, ar, hown in ligure 2.3h. This imporement mot only reduced the chippine prohlem bur abo distribued the impact force durb!e dosing cembly atome the whake of the ceating surface, reducine: benaber of the lid and panel. The momded lif also allowed the lid os sipe eaty imo the pance the groove coullime from the romading at the foom of the gate allowed fatmers to aptor mand to the joint to sop any water lathage, alboweh refinement of the fabrianton proces made this extra elforl manceconary in mon cabes.

The bigecos adamtage of the circular hape and rounded eating surface was realized during the improvemen of the fabricalion of the structure Eary
panels and lids were cast separately from individual forms. However, the precision required to achieve a perfect fit between the lid and frame could not be achieved and the monouts leaked. Rubber gaskets were attached of the lids of some turnome to stop the leakage. Experience howed that this was not a desirable solution because the gaskets occasionally loosencd, deteriorated over time and or were laken by village boys 10 be used in sling shots. A turnout with a remoed or bad gaske leaked much more than one with no gastien.

Nter some experimentation, the fabricator diseovered that he comad achieve a leak-free lit between the lid and frame by using the pancl as the form in which he cast the lid. He cas the pancl with a precision metal form. let it harden, for a day, applied oil to the mating sealing surface, and cast the lid directly in the panel. The sil presented the lid concrete from bonding to the patael, and the lid could be separated from the pane atior hardening.

The sealing surfaces were still slightls rough and the fit very tish, wafter the curing, the lid was "ground" in its pancl be turning it hath and forth while pouring water oter in. This grinding loosened the fit, woothed the sealinge surfaces, and in, ured that the lid woudd fit in the patal in any position. The result was a totally hak free, contrete-on-concrete scal.

Becaluse of the density of conerete. the weight of the lids of larger gates made them difficult to handle. This weight was reduced by aboum one-third by casting the lids over an inserted howl, resulting in the concate hape shown in Digute 2.3/. Due to the inherent stratural strength of the round shape, this redaction in conctete does not significantly reduce the stength of the lid.

Imitialls，one handle was plated in the cente of the lid as illustrated in 1－igure 2．3a．Byprience yoon showed that the heay lide were cosiser whandle with two handles near the edges．Ihis change made it much eavier to open the lid agams the hedrostatic presume of the water in a fall chammel，and wo motac it ance in place to insure atood seatine and or remone silt．The double handers atho allowed for the ase of a
 ad theough the handlen，of open the tate agams the bedrostatic prenture Such a lever with a hook on the botom could be lesed woper or ceal a large lid from abose the structure

Once a leath－free gate was developed． additional work imotsed impron ing the durability of the lamoun．The mon common beahage problem imolsed chipping and bratime the vule lip on we lids．The lip sa redempuce and vernghemed by mathim！it hicher and


It was decided that the critiand parn． the lid and patnel．＂ould be prame all a contal location where standand method could be upestied and high quality imbure！．Ihe pamolverocat in a thape which could be catily tramportad m lied she＂and matalled into vrlatum appoprialle tor cath
 ab．amoter commatos in kemonal



The vectiliations incladed man ond： dimensond．bul athe wembly and darabilis．（oncrete mise cioment Water ratios．and remborement wers yecificel：is bere misme method． shration，amd ammer meder water for at

each lot was broken to insure that the concrece was sulficienty strong．

Av，a result of this quality control， prexem wamaterate that less than $10^{0} 0$ of the lids or patmed will need to be replaced cach year．Most of this breakiage is calused by the farmer＇s misuse of the stratures．His finameial inscrament in the structures would pro－ habis reduce abose and breakage．

Ihis exolmionary development resuled in an inexpensise，durable， water contol structure adapted to the neede of Pakistani irrigators．The gatce has cery low kakage－much lower than expeded from a concremen－concrete seal It is structurally strone and call be make in ans sie ol achice a required head los．It in locally made from local－ Is asailable materiats that hase limbe likehond of being volen，and from a material which has an indefinite life in
 and is devienced to minimise the dif－ fichlice wih in weight．It is also 4p cilically dexismed for a mational ir－
 acembaty diside flow or regulate が，

Ihe dedopmemt proces involsed the patient intration of the farmer． H心 lathikator，and the engine（Only W！en the enyince tindervod the prac－ lacal prowhilition and limitations of the
 atd omk when the thricater wem 6
 When his prodnch．Was real improwe ment powihle．Ihomen these thres ＂ohbuy toweller to build and wat （losem of dexima，bable tumomb were delchocd，and atcomimuine to be im－ prosed．

## SECTION 3

## IFABRICATION OF CIRCUIAR CONCRETE TURNOUTS

The circular turnouls, as shoma in Fig. 2.3, atre componed of a pancl and a round lid. both cabs in rembored concrete. the critical poraion of the strenow in the caling vatace bewem the lid and pathed. Dian untace mast be preciseIs shaped and vomothed to imsilte ataimst keakaye and durable to reduce dhipping and beatales. This surface is

 acommend d damemsum for the seal ing vertacis. A. is indicatcol, later diamemer lumoms, hould be thicher lo

 pepariay be requited lomm and the rembermben rad, mivin! the ontrere. ansing the pame cantine hac lid in he
 the caling , mitac.

## Preparing the forms

 are repuited for castin! circulat son


1) a patach oume lorm.
2) a ceparator tin!
3) a panc! ring form.
4) a comsen hatc and woolen dish. and
5) a lid rin! form.

Figumes 3.2 and 3.3 illavatac Hase forms and the ir placoment. ()f he face only the panct ring form is of critical whate and dimentoms. Ihis lommdere mince the shape of the seatines viltace of the patal

The patm num lotion simply abos w Trame which comans the panco con

sions of the pancl. It can be constructed of wood or metal. The outside panel dimensions, and thas the form inside dimensions, should be determined by the sype of installation and the difficulIs and sper of tamsport to the stite for ceample, it the turnout is to be se into a brich masomey imsallation smacture, the pance should be sized to fil comeniently into the masons. The panel s.bould also include sulficion frechoard al the wo to prevent wertopping and may be extmed at the botom and or sider lo cotca a buricd culloff wall. If mamport ! 1 the ste is difficult af costIf, the ste of the pance should be mimimised to reduce weight and mampori cos. The widh of concrete in the patel should not be reduced to less Han 10 coll an any poins or brathate in tramsit could beconte a problem. The height of the fom should be equal to the desired hatane of the pand.

Ihe cpatator ring cepatate the conacte of the patme from the motar which is used on the seating surface. It hould be viced such that 2103 cm of yater is lef bewwen it and the pand bing form. By making the ring conical in thape as shown in ligute 3.2 , the solume of mortar requited is reduced, He cemonal of the fom in easer, placement of the pand reinforement rod is casier, and the strength of the stracture is increaned.

Such a conical form can be made by culling a curved stap of thin sheed metal 6 pereent wider than the desired pancl hichncs. I (cmb), with a length, 1.nl:

$$
\begin{equation*}
1(111) 3.14(1) \cdot 0.71 \cdot+1 \cdot 8 \tag{I}
\end{equation*}
$$

where 1 ) is the pand openine diameter (em). The radius of the ouside curve of the stap, $R$, should be:

R(cill) 1.4(1) (1) 0.71 • 4).

a. Diameters Larger than 45 cm

b. Diameters Smaller than 45 cm

Figure 3.1. Full scale drawings of the sealing surface eross sections for circular concrete turnouts.


Figure 3.2. Forms required for casting circular concrete lurnout pancls.


Figure 3.3. Forms required for casting circular concrete turnout lids.

This will result in a conical form with a $20^{\circ}$ stan from vertical, a diameter at the bottom 4 cm larger than the pancl opening dianter, and an is cm allowance to overlap the wo ends. Figure 3.4 illustrace such a stap and Table 3.1 lind smap dimensiom lor different sice turnoms. Sheet metal can wten be bated by joming several shorter cursed straps into the longer one reguited.

The pane ring fom hould be cast from mild steed or alumimum (to reduce weight) and then machined in a lathe to the requited diameder and dimensions. This ring will have an outer surface
shape similar to the desired outer surface of the turnout lid, and will look like a lid with the center removed.
figure 3.5 shows ring form cross sectons for the tumout dimensions shown in Figure 3.1. The lip at the top of the form round the edge and ereates a groove at the from of the pance. The thictines of the ring shouk be sultiocient 10 insure rividity without being too heary to handle. A thickness of 1.5 col at the narowest part (botom) should be sulficient. The imber ring surface can be tapered upward, as shown by the dashed lines in Jigure 3.5 to reduce the weiph.


Figure 3.4. Definition sketch lor sheet metal strap used to make the separator ring.

Table 3.1. Strap shapes to make conical separator rings with 8 cm overlap allowance at the end.

| Turnout <br> Diameter <br> $(\mathrm{cm})$ | Pancl <br> Thickness <br> $(\mathrm{cm})$ | Strap <br> Width <br> $(\mathrm{cm})$ | Strap <br> Length <br> $(\mathrm{cm})$ | Strap Outer <br> Curve Radius <br> $(\mathrm{cm})$ |
| :---: | :---: | :---: | :---: | :---: |
| 30 | 5.0 | 5.3 | 126 | 56 |
| 35 | 5.0 | 5.3 | 142 | 62 |
| 40 | 5.0 | 5.3 | 157 | 69 |
| 45 | 6.5 | 6.9 | 176 | 78 |
| 50 | 6.5 | 6.9 | 192 | 86 |
| 55 | 6.5 | 6.9 | 208 | 93 |
| 60 | 6.5 | 6.9 | 223 | 100 |

Either a full wooden pattern, or a simple shee metal pattern shaped like the cross sections shown in Figure 3.5 can be used to cast the ring. The crosssectional pattern, when atached to a metal rod of the proper lengeth and rotated in a circe in the casting sand will create the proper shaped mold. Gither pataern mast be increased in size 0.5 em alone the ounside surface to allow for shrinkage and machining of the casting. This allowance is shown by dashed lines in ligure 3.5.

Snce the casting is cool, the ous side surface shombe be machined in a lathe to the proper whape. This shape ees be checked by a shee metal pattern shaped like the desised panel sealing surlace cross section (see lig. 3.1). Handles should be attached to the top of the finished ring to matie it casier to use.

To increase the interchangeability and thas the replaceability of tarnout lids, all pancl ringe forms of the same size should be made precisely the same shape and diameter. This implies that one shop should make all forms of a given sice from one pattern, and all turnout fabricators must then buy their forms from the authorised maker.

By casting the tmonem lid over a conves plate or imerted bowl, its weight will be reduced. These plates should be aboun $2^{1}: \mathrm{cm}$ thinner in the ember than
the total lid thickness, or about $31 / 2 \mathrm{~cm}$ thick for the large diameter turnouts and $21 / 2 \mathrm{~cm}$ thick for the smaller diameters. The diameter of the plates should be about 6 cm less than the turnont opening diameter. The plates can be made from pounded shee metal in the same way metal bowls are made, or they can be cast in plaster and then coated by a substance which will not adhere to eoncote. The conves plates can then be attached to the center of round, flat wooden disks of 1.5 cm thicknes for large diameter or 0.8 cm for small diameter turnouss to redace lid thickness at the edges. Figure 3.6 gives dimensions for these plates and disks.

The final form required is a form to shape the top of the lip of the lid. The form eontains, the lid eonctete umtil it hardens and results in rounded corners and a groove beween the lid and panel. ligure 3.7 gives shapes and dimensions for lid ring cross-sections for He two lurnout cross-sections shown in Figure 3.1.

The eross-sectional shape of the lid ring form is not critical. It can be cast and machined on a lathe as ithe pand ring form was made, or it call be fabricated from shee metal or stragint stock such as angle iron. It must be sufficiently rigid to maintain a circular shape.


Figure 3.5. Panel ring form cross-sectional shapes.


Figure 3.6. Cross-sectional view of convex plate and wooden disk on which turnont lids are cast.


Figure 3.7. Cross-sectional shape of lid ring form.

## Preparing the Concrete

To increase durablity, a rich conerete mixture should be used. A cement:sand:gravel ratio of $1: 2: 3$ (volumetric) is recommended. The sand and gravel should be clean (without fine particles such as silt). Dirty sand or gravel must by washed. The sand and gravel should be evenly graded. Gravel aggregate size should not exeed 1.5 cm for the larger diameter turnouts and 1.0 em for the smatler size turnouts.

Clear water with low salt content should be used. As a general rule, water used in conerete should be drinkable. As dry a mixture as can be casily placed in the forms: should be used, since the drier the mixture, the higher strength the concrete. The water:cement ratio bould not be more than 0.5:1 or about 25 liters ( 6.6 gal) of water per 50 kg bag of een ent od achieve adequate strengt? concre e.

The concrete must be mixed in a mechanical miser for at least three mimutes and should be mixed no more than 1': hours (1 hour in hot climates) before it is poured. The mixed cement should not be left in the hot sum or it will hegin to harden. Appendix I gives additomal instructions on choosing, proportioning and mixing concrete materiats.

The mortar used along the sealing surfaces should have a rich cement: sand ratio of $1: 1$. It also should be made with clean sand and water, thoroughly mixed as dry as is workable. and not left to stand longer than 11: homes under mederate temperatures.

## Casting the Panel

The pance outer form and separator ring should be placed on a hatd, level surface. Newspaper lad on the cabsing
surface before placing the forms will prevent the concrete from sticking to the surface. A light coat of grease or oil on the forms will aid their removal, if sticking is a problem.

Two bars of preformed $3 \mathrm{~mm}(1 / 8$ inch) reinforcement rod (rebar) should be placed between the two forms. The rebar should follow the outside perimeter of the pancl about 2 cm inside the outer furm as shown in Figure 3.8. The rebar should be pre-bent to the proper shape and wired or welded together, as shown in Figures 3.9 and 3.10 .

The conerete is then poured between the two forms and worked into place (Fig. 3.11). As soon as the concrete will roughly maintain its shape, the separator ring should be removed. If the conctere mixuture is dry enough, this, can be done immediately. Do not allow the concrete to set up too long or the mortar will not adhere to it well.

After the separator ring is removed, place two rebar rings, shown in Figure 3.8, on the inside edge of the conerete and plaster over with mortar (Fig. 3.12). When sufficient mortar has been applied the proper amount will be determined with experience) place the pancl ring form on the panel and work it, by rotation, down umtil it rests on tine bottom surface (Fig. 3.13). No spaces hould remain between the ring form and mortar or the ring most be removed and more mortar added. Remove excess mortar around the form and vibrate the concrete to remove air bubbles, inerease the density and strength of the mixture, and improve ihe bonding between the mortar and eonerete. The vibration can be done on a platform vibrator (a platorm which vibrates at a high frequency) or with a flexible shati probe vibrator (shown in lig. 3.17).



Cross Section

Figure 3.8. Reinforcement rod placement in the circular concrete turnouts.


Figure j.9. Shaping the reinforcement rods for the panel.


Figure 3.10. Welding the reinforcement rods for the panel.


Figure 3.11. Placing the concrete between the outer panel form and separator ring. Notice the newspaper laid below the forms and the rebar placement.


Figure 3.12. Placing the panel rebar rings and plastering the sealing surface with mortar.


Figure 3.13. Placing the panel ring form in the panel to shape the mortar. Notice the handles on the ring.

Normally, the forms should not be removed for 24 hours until the concrete has partially hardened or set up. However, because of the expense of the ring forms, it is desireable to reuse them as often as possible, and thus to remove them as soon as possible. If the vibrated mixture is sufficiently dry, the ring can be removed after a few minutes without the mortar settling or sluffing. This process can be aided by sprinkling cement on the surface of the pancl to absorb any excess water. The ring must be removed very carefully to avoid disturbing the shape of the sealing surface, or leaving the surface rough. A twist of the form will make removal easier. As
soon as the ring is removed, it can be wiped clean and reused.

The freshly cast panel must remain undisturbed for the next 24 hours while it begins to harden. The fresh concrete must not dry out if the cement is to set up properly and reach its potential hardness. The initial 48 hours are critical in this curing process. The panels should, therefore, not be set in direct hot sunlight; and in hot, dry climates, must be sprinkled often and/or covered with moist cloth or a mulch such as straw to retard evaporation.

## Casting the Lid

After the panel has initially hardened (about 24 hours), the sealing surface should be coated with a light layer of used motor oil, as shown in Figure 3.14. The oil will allow fresh mortar to be placed against the sealing surface without adhering. Let the oil soak in for a short time and wipe off the excess oil to insure that the excess does not cause cavities on the lid sealing surface. The wood disk and convex plate can then be placed in the center of the opening. If the plate is made of porous material, it must also be oiled.

Apply a 2 or 3 cm layer of mortar to the panel sealing surface. Embed two rings of rebar in the mortar (see Fig. 3.8). Be sure the rings are not closer than 1 cm to the surface of the panel. Pour the remainder of the lid half full of concrete and place the remaining 3 rebar rings in the concrete (Figs. 3.15 and 3.16).

Place the lid ring form on the panel. Then fill the panel and ring form level full with concrete and vibrate the mixture as shown in Figure 3.17.

After vibration, the handles should be inserted into the lid about 6 cm from the outer edge. The handles can be made from 1 cm diameter rebar cut in about 35 cm lengths and bent in a U-shape, as shown in Figure 3.18. The bottom 2 to 3 cm of each leg of the handle should be bent towards the center of the lid to help anchor it. The two handles can be pushed and tapped into the lid with the assistance of a small hammer, as shown in Figure 3.19. The handles should extend about two-thirds the way into the lid.

An alternative means of installing the lid handles is to weld or wire them to the rebar and thus place them with the rebar. The concrete is then poured around the handles.

After casting is compete, the lid should be kept moist for curing as has been done with the panel. After the lid has hardened sufficiently to move without danger of damage, ( 24 hours in a hot climate, up to 48 hours in cool weather) the panel and lid should be submerged in a pond of water for at least 7 days, and preferably 14 days (Fig. 3.20). Submerged curing will greatly increase the strength of the concrete.


Figure 3.14. Oiled panels with the convex plate inserted, ready for casting the lids.


Figure 3.15. Pouring concrete for the lid.


Figure 3.16. Placing the lid rebar.


Figure 3.17. Vibrating the lid with a probe vibrator.


Figure 3.18. Handle shape for the turmont lid.


Figure 3.19. Inserting the handles into the lid. Notice the lid ring form.


Figure 3.26. Curing the pancls and lids in a pond for at least seven days.

Alter curing, the lid can be separaled from the pane by tapping from the back wath a rubber malles. If looseninge the lid is difficult, the removal can be tried after miathardening, but before curing, and the pancl sealing surface call be silued betler.
 tid remoned, the xatme verface of the lid and pand hould be promed amooth.
 Wratatin! the lid hach and lorth in the panct while vowly pouring water owe Whe lid. The water lubricatc the cealling anface to mate lurnin! casier and ow "anh anat the das which restin trom the !!matm! If the lid turn uncomb in He pand, has indicats that the patmel ting form is wimped or wherwise oulwifound and mat be coplacd.

The मurpore of andine the lid and pand in tho vep wibl mortan new to the calling vertaco is at that latge at?
 -andace and interlere wh the grinding
 nation medhod caln be developed which acomplishe the same smooth surface.
 does hot catme problems, the stactus conde be cast entiacly of conctex.
simplifying the process and reducing both labor and material costs.

After the casting and grinding process, the lid and panel should have a precisely mated smooth, and leak-free joint which will remain sound for several years with normal use. Once the fabrication process is comablished and standardized, all lids made in panchs cast from the same mold should be interchangeable, and if the mold making is standardised, all lich should fit in any pand of the same diameter. This standardiation is stongly recommeraded becallse:

1) lids and pancls oftherwise need to be marked in patis and always rannported and uned together.
2) adjoining lumout and check strucmates call vhare the same lid, and
3) if a lid breaks (which is the most common lys ol breakage a replacemem lid can be purchased "ibhout nceding to remose and coplace the panct.

The lurnout panels and lids are now ready whe tramported to the fied siles for installation (lig. 3.22).


Figure 3.2!. Grinding smooth the sealing surfaces of the lid and panel by rotating ithe lid in the panel while pouring water over it.


Figure 3.22. Turnout fabricator Hafiz Sadrul Hasan with finished circular concrete turnout panels ready for transport to the sites.

## slecTION 4

## CIRCULAR TURNOUT PANLI. INSTALIATION

## Choosing the Proper Lidi Siza

The proper diameter of the gate will depend upon the water flow rate and the allowable head loss. When water flows through a constricion, it speeds up, then slow down, and part of the Flow is bem or redirected to pass through the combtriction. These changen catase the encrey of the water to be reduced, watly walting in the depth of bow (or more specilically, clevation of the water harface downtreatmbeng less than the elevation ahead of the constriction, Thas water surface elevation drop is called head loss, and depend. both on the amount of bending of the water flow or hape of the cembetriction, and upon the amount the fow wosto is increased, hem sowed down.

As long as the circular oritices are flowing foll, the shape factor will be relatively constant, and only the velociIV Factor ined ie comsdered. Since head low is a lumetion of the spatare ot the relocits, the relatively shan wedocits wf low in the chame abowe and below the sate ant be comsidered sero (whid will result in a whaly hish cromate ol the rue head los). Thas, head bow Though a cimbar gate can be relatedon the arerage blocity of fow hatoblta gater, which is the ratio of the flow bate to the gate cross-sectional anca.
(iatm lowing lall ad at: whomerod circulat orifices, and the incad loss cath be costmathed by the cquation:

$$
\|\binom{ 1}{1}\binom{1}{2} \quad \begin{gather*}
1  \tag{3}\\
1 \\
2
\end{gather*}\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)
$$

where: If the head los (m).
(• an orifice discharge confficicm.

> 1 = the flow velocity (misec),
> $\therefore=$ the cross-sectional area of the gate ( $\mathrm{m}^{2}$ ), and
> $g \quad$ the acceleration of gravity
> $(9.9 .81 \mathrm{~m}$

For circolar eonerete thrnouts, the coefficient, ( $;$, is about (0.8. Sinee area is equal to the gate diameter spatared times one-fourth of pi (a) (and converting to more comvenient mits):

$$
\begin{array}{lll}
1 / 291 & (1):  \tag{4}\\
1 / 2,
\end{array}
$$

| where: | "1 head loss (cm), |
| ---: | :--- |
|  | () flow rate |
| (liters per second - Ips), |  |
| and the gate diameter (cmin). |  |

Figure 4.1 graphically shows this relationship berweon gate sise flow rate, and head how. Notice in laquation + that head lom: is imeremy related to turnour dianmer or the marth power. Becalase of this, an incrabse in gate diametor camsen a much larew decrease in the head las. I or example, a 10 percont inctane in :ate diameter results in a 30) percem dercase in head hass.

These calculations ansmme that the gate is submered. If the gate fows less tham abour 80 perecon full, the head loss will increase due to the decreased flow eross-sectional area. fom full 1080 percent full, head low doe , not increase became the dfecte of the small decrease in crosescedional area in oftise by the lack of flow constriction at the top.


Figure 4.1. Head loss through circular concrete turnouts of various diameters. D. flowing
full, assuming a submerged orifice coefficient of 0.8 .

Determination of allowable head loss depends upon the available chamel slope. Wiah small availahle chamel slopes, head lose in structure leaves less energy to mowe water down de channels and rexults in a need for larger channets. The cost of the larger channel must be batanced against the wos and mote dalicult we of later vatures.
 by Trout and Kemper (l9x()) ©phain in detail how lo devign irrigation channels considerin! vracture head lower.

If chanmel shome ane !erame than 0.001 in ith, whelume head low is not a cribal facm amd $/ /$ balus of 6 cm or moreper victum are aceptable. (are , hould be latem it voluture with high head low are ned, beame hish head low will semb in latbulence below the tarmoul. I arbulence call canse erasion
 intallatioms.

A, "as membonde shather bead lowis mote atital in check urachures becatoe water mat fow thongh ceremal dects and the clesation draps would be patally cumalatise for example. in a ryparal camben chamm hoilt on a

 head low mond ammatively incocase the thes dephtion 10 cm . Iteretome it mat be de mahle wasen dheck trace um: on he later dhan momouns A
 that lid. cammo be imterhaned. In a
 anc lid can be wed for hoth the chace
 be upen and the other whed

If chamed hoper are too vep and catace eroston, the head low callsed by
checks can be used to dissipate some of the excess energy. By using ligure 4.1 , the size of gate that will ereate a desped fall in the water |ex of a given flow can be determined. Installing gater his! so that they fow only partally fall call also ereate exta head loss. The flow depth thromgh a circular sate fowing partiall! full (asomming free or critical fows can be calculated from ctrentar weir formala (130, 1976) of detemm-
 openinss smats be placed at this depth below the desien upacam water , me face clevalion. Ho downlacian lane of the stacture hould be at the bedat the downstram dhand bed. A. metl. tioned. if hith head hames ate encaled, crosion profection downstamen of the gate mus he prosided.

## Placing the Panels

The turnous and check gatce should be installed at ant angle of 60 10 6.5 from the horimontal (or abour 2 sertical to 1 horizomtal). Lia bachwards slope is ullficien to prevem the lid fome sip. pin!e out of the pand. The bop of the "peaing homble biandalled athoun the lead of the "ater sulace of lizhty !heher. Invalling the sate higher han this lead will revull in a patially full gatc and hish head low lowallins: hoser will whmerse the lid and make
 prexure mone dimatat He botam of the lid thould now be imatled bewo than the bomom of the hamed baved vilu deposition on the xablin! surface. If new chanmel are beine derighed, the stacturs, hould be eumesed in. In ex isting chamels, they än he matalled a-


[^1]


The panel outer dimensions should be sized to fit easily into the installation structure. The top of the installed panel should be 2 to 4 cm below the top of the walls of the installation structure and the channel bank tops. The turnout will thus act as an emergency overflow preventing bank washouts in case the depth of flow into the channel gets too high. Accidental spillage will run into branch channels rather than onto fields.

## Turnout Installation Structures

The precast turnout panel must be installed in some type of structure for support, to prevent water from washing under or around it, to provide a channel for water to pass through the bank, and to prevent erosion. In lined ditches, the installation for a turnout might only consist of a lined outlet through the bank (Fig. 4.2). In earthen channels, the installation, such as that shown in Figure 4.3, will need to be more elaborate to provide all of the requirements listed above.

The type of instaliation structure chosen will depend upon local availability and cost of materials, skilled and unskilled labor availability, and remoteness of the field sites from fabrication centers. If transport costs are low, the efficiency and quality control achievable by precasting structures at central locations might be preferable. If inexpensive building materials such as brick or stone and cheap labor (both skilled and unskilled) are available at or near the field sites, constructing installations at the sites may be desirable. Several types of installation designs will be described here.

## Brick masonry installations

In Pakistan, due to the wide availability of inexpensive fired brick from local kilns and the presence of masons in every village, brick masonry structures were used to install the tur-
nout panels in both earthen and lined watercourses. Samples of these structures are shown in Figures 1.1 and 4.3. The standard design for these structures is shown in Figure 4.4.

The installation is a short channel which forms an outlet through the bank with a single brick base and a double brick wall. The panel is attached to the front of the channel section. In smaller watercourses, walls one brick thick are sufficient to support the earth fill. Single brick walls higher than 6 courses (layers) are not recommended. The width and depth of the channel depends upon the flow rate and turnout size. The width should be a little wider than the panel hole diameter. The height should be equal to the design height of the watercourse channel.

The structure length depends upon the erosiveness of the soils and the amount of head loss through the turnout. The head loss causes turbulence and determines the erosive potential of the water. The length should be the minimum required to prevent erosion, In the design shown in Figure 4.4, the side walls are reduced to single brick thickness at the back and stair-stepped down. This reduces costs and increases the flow width, thus reducing flow velocities and erosion. The design also allows a smoother transition to the downstream trapezoidal earthen channels.

With proper compaction of the backfill soil around the structure, leakage under or around the turnout would not be a problem in most soils. However, in Pakistan, compaction was often not sufficient and leakage did occur. The leakage was difficult to detect and stop and sometimes led to bank washouts. This lack of compaction is partially due to the inability to compact the soil around a newly constructed structure because the mortar is not hardened and the walls are weak, and the failure to return to the site to do the compaction later.


Figure 4.2. Turnout panel installed in a lined channel.


Figure 4.3. Circular concrete check and turnout installed with brick masonry in an earthen channel.


Figure 4.4 Brick masonry installation for panel furnouts. Dimensions shown are for 50 em diameter turnouts and should be adjusted for other sizes.

If leakage is a problem, cutoff walls must be built around installations in earthen channels. These one brick thick walls extend out about 30 cm from the stowlures. They can be attached near the center and thas bured in the bank as shown in Figures 1.1 and 4.4 , or at the from near the panel as shown in Figure t.3. Where a clack and wne or two turnous ate installed worther, we fromeoner: whe strmbures are joined as hown in ligute 4.3 and no sutot

 chande where the limeng pateme bakay

The mathatom ate made be a catatine the , ile and compating the arth hed, layin! the foot, then supporting the womon mad at the proper locatam. of entanom, ame clevation. and ontatheting the manory stheture around it, ar is hemy done in bigure 4.5.

Normal procedures for constructing pood guality brich masomer should be followed. A $1: 3$ cementsand ratio hould be wed. The and and water should be dean. The brick , hotild he
of good quality. In hot, dry climates, the bricks should be soaked before construction and the structure kept wet for two or three days after completion for curing. This can be accomplished by spreading a layer of loose soil or mulch on the structure and wetting it down.

If bricks are not casily avalable or are expensive the structures can be made from soilecoment blocks, sone masonts, precest eonerest bioks. of poured-in-phe contete The last of these altematios con ploside the mos!
 pety. Conote man of : ? : mopme hone ate valicime! oe man imatia tions. Rewadles o! the materats, the instathatin sandu: homblollow the bask deamg given in i"gura 4.4.

## Precast concrete slat imsallarions:


#### Abstract

एrevaime insiallation structures saves lime in the field and iesults in more unform quality. Figures 4.6 thromgh 4.9 show some precast installations for canthen channels tested in Pakistan. Comerally the installation is cals in wo or mome pices for easien thamport. The parts should be casy 10 asombic in the Tick.




Fgure d.s. Hrach manonry installations being comstracted.


Figure 4.6. Precast concrete slab installation.


Figure 4.7. Concrete pipe installation with front panel.


Figure 4.8. Concrete pipe installation with collar.


Figure 4.9. Half pipe installation with front panel and trapezoidal gate.

Figure 4.6 shows a concrete slab installation composed of a bottom and two sides which support the front panel. Suggested dimensions of the components to be used with a 50 cm diameter turnout are given in Figure 4.!0. Smaller structures can be used with smaller turnouts. The side walls are slanted outward to merge more easily with trapezoidal channels. The walls are angled outward toward the back to increase the cross-sectional area and reduce flow velocities and erosion. The front panel is enlarged to extend into the bed and banks of the earthen channel and serve as cutoff walls. Because soil can be compacted around the structure immediately, the problem of leakage around the structure can be reduced. For two or three adjoining rructares, one side of the front panel of the second and third structure should be formed as shown by the dashed lines in Figure 4.10, so that it can lay up against the adjoining panel.

Grooves are cast onto the back of the panel and top of the floor section to hold the walls in place. These grooves can be made without weakening the slabs by laying a board which is a little wider than the thickness of the walls in the proper position on the surface of the freshly poured slab, and trowelling concrete up against the edges of the board. This will result in a groove such as that shown in Figure 4.10 cast onto rather than into the slab. No additional fastening other than the grooves should be required.

The slabs should be ce.st as thin as possible in order to reduce weight and handling difficulties. Three to four centimeters should provide sulficient strength if the concrete work is of good quality. The slabs must be reinforced to prevent damage while in transit.

## Concrete pipe installations

Figures 4.7 and 4.8 show two precast installations made from reinforced concrete pipe. These structures are most applicable for turnouts through earthen banks or to combine á check structure with a culvert or channel overpass. The pipe replaces the outlet channel that passes through the banks. An advantage of the structure is that, because it is buried in the bank, it does not interfere with human or animal movement along the banks and can be adapted to channels where mechanical cleaning is used. A disadvantage is that, to reduce weight and cost, the pipe's cross-section is generally small and exiting water may flow fast enough to cause erosion problems. It is also bulkier and more difficult to transport to remrnte sites.

Two types of pipe installations are shown. In Figure 4.7, the turnout frame is cast into a panel that is then attached to the front of a pipe. The panel is enlarged to serve as a cutoff wall and cast in a round shape so that it can be rolled to the site. The end of the pipe is cast with a $30^{\circ}$ angle at one end so that the panel, when attached to it will sit at a $60^{\circ}$ angle along the channel bank. This angle is formed by placing an elliptieal ring with the long outside diameter (axis) 15 percent longer than the short axis, (which is equal to the outside diameter of the pipe) inside the easting cylinder. If the pipe is cast in a 2.4 m (8 fi) spin mold, two 1.2 m pires, each with one angled end, can be made if the elliptical ring is inserted in the center of the mold.

The ciameter of the pipe must be as large as, or large: than, the diameter of the turnout. Larger pipes will cost more and be more difficult to transport, but will cause less erosion. The length must be sulficient to pass through the channel bank.


Figure 4.10 Precast concrete sab installation for panel larbouts. Dimensions shown are for a 5 (0) diameter burnout.

In the concrete pipe installation shown in Figure 4.8, the turnout frame is cast or inserted directly into the end of the pije, while a collar through which: the pipe is inserted serves as the cutolf wall. The pipe is made with a 30 bend near the front. This bend is made by casting the pipe in lwo pieces, each with a 15 angled end. When one of these $1 \mathbf{w o}$ pipe pieces is rotated 180 with respect to the other, the ends match ereating a 30 bend in the pipe. They can then be attached with morkar and steel mesh reinforcement. The angled end are formed using the same ape of elliptical insent in the mold as described earlier, exeept the long axis is only 3 : percent longer than the shont axis. The casting process is illustrated in Figure 4.11

An additional installation option using reinforced concrete pipe is to use a half pipe as shown in Figure 4.9. This installation is especially useful if the turnouts flow only half full or if rectangular or trapezoidal turnouts are used. The half pipe is manufactured by placing two straight sheet metal insert strins longitudinally in the mold cylinder opposite each other.

The installation structure used in a given location will depend upon available resources and conditions. Many types and designs of structures in addition to those mentimed are possible. The installations deseribed and piclured in this section can most effectiveIs be used as a source of ideas from which structures adapted to local condilions and resources can be developed.


Figure 4.11. Illustration of method to make 30 bend in a conerete pipe for a pipe imstallation.

## SRCTION 5

## AITERNATIES TO THE: BASIC CHRCUIAR CONCRETE TURNOUT DESICN

During the derelopment of the circular contere tarmont bractures. exeral atternatice lid and frame designs were build and sested. Nhometh these Nere determined nod to be bey for Pakistan comditions, boes might be desirable mader wher comditoms. or pise des for momed addptatome for wher colimomerns. Iher ate Howdore bretly demabed howe NI batiations anc haved on the pathel and
 mildin! matmial. Ihe satiations hatl imb lwa calle entre: those which me matterakother ham conctere tor the lid or seatmes suffor and whations from the cmeulat dape.

## Sid or Scaling Surface Materiats Oher than Conerete

I ater commele lid atc heaty. This limin the practical ite of cirulat con cote lamoms, mates me of the pates mone difliculs, and inctease chippin!
 blater the patmel an imallation stace
tare The use of lower weight lids in thus advantageotis.

Becatmse the frame is rigid, the cir cular lid needs litue vractural rigedits. The hedrostatic prestate of the water hold the lid limels in the onomd liame. In fact, llevible lids can be casier to apen becalse one vile can be hem lan ward to her watmer leath blombith and
 smple shee metat, plastic, on liherolas dish wibl hatler can be used in cont cote patned, with the squate sealine sum bace (ripure 5.1 ). Ihe sumbers of both the lid and intere liame mon be ber
 free seak were mol atmaned in l'ahistals.

A similat alternatise would be fo form al rigid liberolam lid on lia the curver sealin! suldace fame. The cas combere sealin! ablace could be wed as the mold for the liberelawtormure: good tit. Onc dexien for unch a lid is hown in Ifeme S. 2 . An deflectom in the lid would actually seal the lid mere behtly agams the pand sealine surface.


Figure S. . Shere metal, plastie, or tiberghass disk lid in a direular concrete panel.


Cross Section

Pigare 5.2. Malded liberglass lid for the circular conerete panel.


Cross Section
Figure 5.3 . ( ircular turnom with ruhber tire sidenall sealing surface.
laty in the development of circulat concrete manoms, leakate was a pro blem. Theretore, !levible insern bath as
 bate sere weded. Ihese wot the form

 the sidewall wif a wed mbher time and mate the pand. the yon? rablace mater mosed leak-prool at lome as the were imdet, hul dembomed gmeth of were lom lowe. The hand mbher ceat wer men Hexible combh m de!omin w me?ulat hapes and ther leathed mosen the concrete panel surtace wa; wooth and matom. The mbher ashers, conecially lhe mbler life videwall desibn hown ia foume 5.3. swhened the impaed of the lid on the panel and reduced chipping. Rubber !anter could ato the used with the medal or tibergas lids dencribed above.

## Oher Turnout Iid hhapes

The primaty disadtantate of the circalar turnous is that the lid must be opened from in from agame the hedrostatic pressure of the water. I id that can he remoned from abose or sled on rumber, whoul liftime the lid offor the frame comed thas be casier of remose figume $5 .+105.7$ how seremal anch gates.

Figume 5.t hows a raperoidalshaped conctete lomong gate. The gate can be remosed fom atooce, and is has easier to remose. Howerer, it is harder to chose while water is flown?! becatuse
the lid iends to be pusted though the opering or weded crooked asaine the frame. Now, sile which deporit on the
 rombd openims: and if mot remosed. callsces incomplere downe and venili. cant kakiape Making the lid, in a comscimentar shape so they can he rotated cant whe this sils poblem. The raperaidal lad in heasor than a circulat lid for a s!isen low ancabecanse it mon
 vide a frectorad. Somiciredar lid are cen hearier due whe wdel hop widh repuited to athere the satme flow area. Thus the taperoidal and semicioular shapes atre belter sumbed to smaller flows.

The maperoidal lid, shown in mome detail in foure 5.8 , is cab in a precision mold machined in a milling machine. The modes ate thas more expensive hatn circular molds. Hhe trame is then cast aromad the preats lid -as the dir. cular lids were cast in their pancl - to in sume a good lit. Howerer, the sealing surfaces cammat be monand medher. and thas kend to be rougher.

The rectanmbar slidin! rarmon shown in ligut 5.5 is very cily 10 use. The lid mever has a be lifted of remosed from the frame. This large side lids can he wed if low head loss is requied or if the llow depths are latere. The lid catl be pimed on oblerwise fastened at amy chation aliowing fows to be divided or flow depths repulated.


Figure 5.4. Trapezoidal concrete turnout.


Figure 5.6. Circular rotating turnout with half-circle cutoul.


Figure 5.5. Rectangular sliding turnout.


Figure 5.7. Large circular rotating turnout with halfcircle cutout.


Iigure 5.8 . I raperoidal concrete pand turnout.
 mond $\operatorname{ll}$ (9) made that did mon leath. It the lid on pand is vishthe watped or has






 ponton cat onti. He lid meser meod lo be remomed lown the patcel. hat onls Hollace st that the opera hall totates


 (all whl: he wed lom mblumely mall



 (inde diameder) Howese, vinco the lid

 diameter lid inhich is matlled hs imed

ning. Since the circular rotating lid is never remosed, chipping and breakage is not a problom: aldhu!! commal "carm! and loosemin! of the sealin! surtace could be a pohlem.

The rotatine burnowt are cant in the same way as the resulan ciralan tor-
 aas into the lid and later momened. I ip cxamding owe the coper of the lid (Fibures. (6) can be cas into be panclow imsure that the lid is neser temesed or tulal.

 dean of the saticts of tmonols that ate pominte. Becallac they were nor boy for Pahistan condigions docent mean they ambl work in dillocm (mstammems. Hes insead hould indicate the impor lamce of modet amdine local mood and
 valinty the newh. and then pationds following thaneh the development and labrication process matil a peod.


## APPIENDIXI

CONCRE:IE: FOR SMAII, JORS

PORILAND CEMENT HI ASSOCIATION

## Concrete for Small Jobs

Concrete is a widely used building material around the farm and home. Foundations, walls, sidewalks, patios, steps. floors, and driveways are built by homeowners every where. Concrete has several desirable properties that make it a versatile and popular building material. Freshly mixed concrete can be formed into practically amy shape. Hardened conerete is strong and durable.
The layman often confuses the words "cement" and concrete." Cement is the fine powder sold by building materials dealers in bags. It should be called by its more exact name, "portland cement," to differentiate it from other kinds of cements used for other purposes, such as, for example, masonry cement. Concrete is the mixture of two components, paste and rgeregates. Paste is composed of portland cement, water, and air. Aggregates are ment minerals such as sand, gravel. and crushed stone.
During mixing, the cement and water form a paste that coats the surface of every piece of aggregate. Usually within two to three hours after mixing, a chemical reaction starts between the cement and the water. As this chemical reacfion progresses, the cement paste hardens gradually and the concrete is said to set. Finally, the cement-water paste will harden much like glue and bind the aggregates together to form the solid mass that is concrete.

Although ready mixed concrete is widely used for large construction jobs, it is not always practical to use ready mixed conerete on small jobs. In some cases, the amount of concrete you require may be less than I cu.yd., which is less than most ready mix producers will supply. And in some areas there is no ready mix plant. your own conercte may be the only practical solution. This is hard work but it has the advantage of low eost, and the amount of concrete mixed can be adjusted to suit your own work pace.

Quality conerete costs no more to make than poor con-
greater durability. The rules for making good concrete simple

1. Use proper ingredients.
2. Proportion the ingredients correctly Measure the ingredients aceurately.
Mix the ingredients thoroughly.

## CHOOSING THE INGREDIENTS

Portland cement is not a brand of cement but a type. Most portland cement is grey in color. However, white portland cement is manufactured from special raw materials that produce a pure white color. It can be used instead of the normal grey portland cement, but it is higher in price, which may restrict its use to decorative work and other special jobs.
You can buy portland cement in bags at your local building materials dealer. In the United States, a bag weighs 94 lb . and holds 1 cu.ft. in Canada, a bag weighs 80 lb . and holds about ' cu.ft.
Cement in bags should be stored in a dry location, prefrably on raised wooden platforms. Sometimes when bags have been stored for a long time, the cement in the lower part of a pile develops warchouse pack, that is, the cement appears to be hardened around the edges of th. bags. You catl usually correct this by rolling the bag on the floor. To avoid warchouse pack, bags should not be stacked more Hhan seven high.
Cement suitable for use in concrete should be free-flowing. The presence of lumps that camot be pulvenzed readily between youn thumb and finger ind eates that the cement has absorbed moisture. Such cement should never be used for important work, but when the lumps have been sereened out through an ordinary house sereen. It can be used for certain minor jobs such as setting fance posts.

Water for making concrete can be almost any natural water that is drmkable and has no pronounced taste or odor. Although some waters that are not suitable for drink-
ing will make satisfactory concrete, to be on the safe side, use only water fit to drink.

Air is also an important ingredient for making good conerete. In the late 1930's, it was discovered that air in the form of microscopic bubbles evenly dispersed throughout the concrete improved its durability and virtually eliminated sealing due to freeze-thaw and de-icer salt action. Concrete containing such air bubbles is called air-entrained concrete.

Ilardened conerete usually contains some water. When this water freezes, it expands, causing pressure that can rupture (seale) the concrete surface. The tiny air bubbles act as reservoirs or relief valves for the expanding water, thus relieving pressure and preventing damage to the conorete.

Air entrainment is most important for concrete exposed to alternate eycles of freezing and thawing or use of deicers. In cold climates, and even in mild climates that have several cyeles of freezing and thawing each year, it should be used for all exterior concrete work, including driveways, sidewalks, patios, and steps.

Air entrainment also has other advantages. For example, the tiny air bubbles at like ball bearings in the mix, increasing its workability, with the result that less mixing water is required.

To create the tiny air bubbles in air-entrained conerete, chemicals specially made for this purpose, called air-entraining agents, are added to the mixing water. Building materials suppliers sometimes carry air-entraining agents. Ready mix plants stock them for their own use and would probably sell you a small quantity. The amount to be added to the mix depends on the brand of air-entraining agent. This information can be obtained from the building materials supplier or the ready min producer.
There is another method of obtaining air-entramed concrete. To save you the trouble of buying and measuring an arrentraming agent (and eliminating a possible error in dosage), many cement manufacturers market portand cements that contain an interground atr-entraming agent. These cements are identified on the bag as "air-entraining" and are available from the same suppliers that sell regular portland cements.
Aggregates are mimerals such as sand, gravel, and crushed stone that make up 60 to 80 pereent of the volume of concrete. They act as an ment filler material to reduce the amount of cement required in concrete. Without aggregates, conerete would be very expensive. Furthermore, without aggregates, concrete would shrink a great deal upon drying and this would lead to excessive cracking. Aggregates restrain the shrinkage that occurs when concrete hardens.

Aggregates are divided into :wo sizes, line and coarse. Fine aggregate is always sand, and coarse aggregate is usually gravel or crushed stone.

Natural sand is the most commonly used line aggregate: however, manufactured sand, made by ernshing gravel or stone, is also available in some areas. Sand should have particles ranging in size from $1 / 2$ in. down to dust-size particles small enough to pass through a No. 100 mesh sieve ( 10,000 openings to the square inch). Mort y sand should
not be used for making concrete since it contains only small particles.

Gravel or erushed stone are the most commonly used coarse aggregates. They should consist of particles that are sound, hard, and durable, not soft or flaky, with a minimum of long, sliver-like pieces. Particles should range in size from $1 / 4 \mathrm{in}$. up to the maximum size used for the job. The common maximum sizes are $3 / 4,1 / 2,3 / 4,1$, or $11 / 2 \mathrm{in}$. Generally, the most economical mix is obtained by using the largest-size coarse aggregate that is practical or available. Coarse aggregate up to $11 / 2 \mathrm{in}$. in size, for example, may be used inl a thick foundation wall or heavy footing. In walls. the largest pieces should never be more than one-fitth the thickness of the fimished wall section. For slabs, the maximum size should not exceed one-third the thickness of the slab. If concrete is to be placed around reinforeing bars or pipes, the maximum size of the aggregate should not be more than three-fourths of the clear space between the bars or pipes, or between the form and the pipe or bar closest to it.

Al! sizes of aggregates may not be availabie locally, but within the above limitations, try to use the largest-size aggregate readily available.

Both fine and coarse aggregates for making concrete must be clean and free of excessive dirt, clay, sitt, coal, of other organic matter such as leaves, roots, etc. These foreign materials will prevent the cement from properly binding the aggregate particles together, resulting in porous concrete with low strength and durability.

If you suspect that the sand contains too much extremely fine material, such as clay and silt. cheek its suitability for use in making concrete by the so-called silt test (Fig. 1). Fill an ordinary quart canning jar or milk botsle to

Fig. 1. Silt test being made in a quart canning jar.



Fig. 2. Well-graded aggregates have particles of various sizes. Shown here is $11 / 2 \cdot \mathrm{in}$. maximum-size coarse aggregate. Pieces vary in size from $1 / 4$ to $11 / 2$ in.
a depth of 2 in . with a representative sample of the sand in question. The sample should be taken from at least five different locations in the sand pile and thoroughly mixed together. Add elean water to the sand in the jar or bottle until it is about three-quarters full. Shake the container vigorously for about a minute. Use the last few shakes to level off the sand. Allow the container to stand for an hour. Any clay and silt present will settle out in a layer above the sand. If this layer is more than in Im . thick, the sand is not satisfactory unless the clay and silt are removed by washing.

Good fine and coarse concrete aggregates have a fuli tange of sizes from the smallest to the largest, but no excess amount of any one size. The big particles fill out the bulk of a concreti mix and the smaller ones fill in the spaces between the larger ones. Aggregates with an even distribution of particle sizes are said to be well graded (Fig. 2). Such aggregates produce the most economical and workable concrete. Mixtures of fine and coarse aggregates taken direedy from gravel banks or stone erushers usually contain an excess of sand in proportion to coarse material. Before using this material in concrete, it should be sereened and recombined into properly graded fine and coarse aggregates.

Buy fine and coarse aggregates separately from a reputable buidding materials supplier. If there is a ready mix producer in your area, it is preferable to purchase aggregates from him. He will make sure that the aggregates you buy have the eorrect sizes and are suitable for making concrete.

Store aggregates on a clean, hard surface, if possible, and not directly on the ground Apart from wastage of materal, ground storage may cause contamination with mud and dirt. It is good practice to cover aggregate piles to prevent them from becoming wet in case of rain. Do not use the bottom layer of an uncovered aggregate pile, as this patt is usually saturated with water and may contain an accumulation of dirt washed through from higher layers.

## PROPORTIONING THE INGREDIENTS

In concrete, the cement and water form a paste that surrounds every piece of aggregate. Within a few hours, the
 tion hetween cemtent wid water. As hyd dathon oceuts, the: paste binds the aggregate together into a strong, durable. solid mass.

The quality of the concrete is directly related to the qually of the cememt paste. The quality of the paste, in turn, is directly related to the amount of wator mixed with the cement. If too much mixing water is used, the paste will be thin and diluted, making the concrete weak and porous. As the amount of water is reduced, the strength of the paste increases, making the concrete stronger and more durahle.

To find the correct amount of mixing water, use the proportions given in Tables 1 or 2 as a starting point. These proportions may not always give a workable mix with your aggregates. However, simple adjustments in the mix ean be made, as will be explained in Adjusting the Trial Batch on page 7.

The values in Table I should be used if you are measuring your materials by weight. Measuring by weight rather than by volume is recommended for reasons that will be explained in Measuring the Ingredients, page 4.

The proportions in Table 1 are based on use of coarse aggregates consisting of gravel. Gravels are more or less smooth and rounded, while erished stone aggregates are rougher and more angular. Angular particles produce mixtures that are a little more difficult to work than mixtures with rounded particles, hence a little less crushed material must be used in each cubic foot of concrete to obtain the same workability. Accordingly, when using erusted stone, reduce the value for coarse aggregate in Table I by 3 lb . and increase the value for sand by 3 lb .

The weights of material given in Table I will make a 1 -cu.ft. batch. This is about the right amount for hand mixing. For machine mixing, multiply the values in Table I by the capacity of the mixer. For example, if your mixer capacity is 3 cu.ft. and you are making airentrained concrete with 3 -in. maximum-size gravel aggregate, you would weigh out $25 \times 3=75 \mathrm{Ib}$. of airentraming cement, $42 \times 3$ $=126 \mathrm{lb}$. of sand, $65 \times 3=195 \mathrm{lb}$. of gravel, and $10 \times 3=$ 30 Ib . of water. If you are using erushed stone of the same size, weigh out 3 lb . per cubic foot more sand, or $45 \times 3=$ 135 lb . of sand instead of 126 , and 3 lb . per cubic foot less coarse aggregate, or $62 \times 3=186 \mathrm{lb}$. of crushed stone instead of 195 Ib . of gravel.

The proportions given in Table 2 are by volume or parts and can be measured in pails. cans, or any other sturdy container. An ordmary galvanized steel water pail makes a convenient batching container

Estimating quantities needed. Before getting down to the job of measuring and mixing, you will need to know just how much eement, sand, and coarse aggregate to buy for your project. To do this you will first have to estimate the amoumt of concrete your project will require. Use the following simple formula, which works for any square or other rectangular-shaped area.
$\frac{\text { Width (ft.) } \times \text { Length (ft.) } \times \text { Thickness (in.) }}{12}=$ Cubic feel

Table 1. Proportions by Weight to Make $1 \mathrm{Cu} . \mathrm{Ft}$. of Concrete

|  | Air-entrained concrete |  |  |  | Concrete without air |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| size <br> coarse aggregate, in | Cement, Ib. | Sand, Ib. | Coarse aggregate, lb. | Water, Ib. | Cement, Ib | Sand, Ib. | Coarse aggregate, Ib. | Water, Ib. |
| $1 / 8$ | 29 | 53 | 46 | 10 | 29 | 59 | 46 | 11 |
| $1 / 2$ | 21 | 46 | 55 | 10 | 27 | 53 | 55 | 11 |
| 1/4 | 25 | 42 | - 65 | 10 | 25 | 47 | 65 | 10 |
| 1 | 24 | 39 | 70 | 9 | 24 | 45 | 70 | 10 |
| $11 / 2$ | 23 | 38 | 75 | 9 | 23 | 43 | 75 | 9 |

- If crushed stone is used, decrease coarse aggregate by 3 lb . and increase sand by 3 lb .

Table 2. Proportions by Volume

| Maximum size coarse aggregate, in. | Air-entrained concrete |  |  |  | Concrete without air |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Cement | Sand | Coarse aggregate | Water | Cement | Sand | Coarse aggregate | Water |
| 1/6 | 1 | 21/4 | $11 / 2$ | 1/2 | 1 | 21/2 | $11 / 2$ | 1/2 |
| 1/2 | 1 | 21/4 | 2 | $1 / 2$ | 1 | 21/2 | 2 | $1 / 2$ |
| \% | 1 | 21/4 | $2^{1 / 2}$ | $1 / 2$ | 1 | 21/2 | 21/2 | $1 / 2$ |
| 1 | 1 | 21/4 | 21/4 | $1 / 2$ | 1 | 21/2 | 21/4 | $1 / 2$ |
| 11/2 |  | 2 $1 / 4$ |  |  |  |  |  |  |

For example, a 4 -it. thick patio slab, 12 ft . wide and 15 ft . long, would require: $\frac{12 \times 15 \times 4}{12}=60 \mathrm{cu} . \mathrm{ft}$. of concrete. A wall 3 ft . high, 10 ft . long, and 8 in . thick would require: $\frac{3 \times 10 \times 8}{12}=20 \mathrm{cu} . \mathrm{ft}$.

The amount of concrete determined by the above formula does not allow for losses due to uneven subgrade, spillage, etc., so add 5 to 10 percent for such contingencies. In the case of the wall, the total amount of concrete required would be $20+(0.10 \times 20)=22 \mathrm{cu} . \mathrm{ft}$.

The quantities of material to buy can be caleulated by multiplying the number of cubie feet of concrete ( 22 in this example) by the weights of materials needed for $1 \mathrm{cu} . \mathrm{ft}$., given in Table 1. Assuming the wall will require air-entrained concrete and the maximum size of available aggregate to be \% in., the quantities of material needed sould be as follows:

$$
\begin{aligned}
& 22 \times 25=550 \mathrm{lb} . \text { of centent } \\
& 22 \times 42=924 \mathrm{lb} . \text { of send } \\
& 22 \times 65=1,430 \mathrm{lb} . \text { o! gravel }
\end{aligned}
$$

Since it is generally impossible to recover all of the material, a 10 percent allowance should be made to cover normal wastage. It is preferable to have some material left over than to run the risk of being short of material near the end of the job.

The quantities of material needed should therefore be increased to:
$550+(0.10 \times 550)=605 \mathrm{lb}$. of cement
$924+(0.10 \times 924)=1,016 \mathrm{lb}$. of sand
$1.430+(0.10 \times 1.430)=1,573 \mathrm{lb}$. of gra
Since a U.S. bag of cement weighs 94 Ib., you will need

10 buy $\frac{605}{94}=6.4$ or 7 bags. $\Lambda$ Canadian bag weighs 80 lb .. so you will need $\frac{605}{80}=7.5$ or 8 bags il you buy your cement in Canada. If airentraining cement is not available, you will also need to obtain an air-entraining agent.

Aggregates are sold by the ton (2,000 lb.) or by the cubic yard ( 27 cu.ft.). Quantities of aggregates can be converted from pounds to cubic yards, or vice versa, by assuming a value of 90 lb . per cubic foot for the weight of sand and 100 lb . per cobic foot for the weight of coarse aggregate. Accordingly, $1,016 \mathrm{lb}$. of sand contains $\frac{1,016}{90}=11.3$ cu.ft. of $\frac{11.3}{27}=0.42$ cu.yd., and 1.573 Ib . of gravel con$\operatorname{tains} \frac{1.573}{100}=15.7 \mathrm{cu.f1}$ of $\frac{15.7}{27}=0.58 \mathrm{cu} . \mathrm{yd}$.

## MEASURING THE INGREDIENTS

Ingredients must be measured aceurately to ensure production of umiform batches of quality concrete. Ingredients may be measured by weight or by volume.

Measurement by weight is recommended because it is more accurate and hence produces greater uniformity from batch to batch. Also, it is easier to make adjustments in mix proportions when measuring by weight. A common bathroom seate is aecurate enough for weighing the materials. Lach ingredient should be weighed in a separate container. Three- to five-gallon galvamized steel pails or buckets are suitable. Remember to "tero" the seale with the empty contamer on it. After weighing each ingredient once, mark
the level of the material inside the contamer. Subsequent batches may be measured by using this mark. The seale will no longer be required except to check the marks agamst the weight of material once or twice a day, or when the moisture content of the sand has changed.

Although less aceurate, measurements may be made by volume if no scale is available For example, a $1: 21 / 3: 3$ concrete mix from lable 2 would be batched by measuring out I pail of cement, $2 \frac{1}{4}$ pails of sand, 3 pails of coarse aggregate, and $1 / 2$ pail of water. Take care when batching by volume not to overload the mixer. This will reduce mixing efficiency.

Adjusting for water in the sand. Dry sand is rarely available for concrete work. Sand used on most jobs contans some moisture which must be accounted for as part of the miximg water.

The proportions given in Table I are based on wet sand (Fig. 3), which is the condition of sand usually available, When squeezed in the hand, wet sand forms a ball and leaves no noticeable moisture on the palm. Damp sand (Fig. 4) falls apart when squeezed in the hand. Vers wet sand (Fig. 5) forms a ball when squeezed in the hand and leaves noticeable moisture on the palm. This is the condition of sand exposed to recent rain.

If you are using damp sand, decrease the quantity of sand given in Table I by I Ib, and increase the quantity of water by I Ib. If your sand is very wet, increase the quantity of sand by 1 lb . and decrease the quantity of water by 1 lb .

The proportions given in Table 2 also are based on wet sand, but measurement by volume involves too many maccuracies to justify making corrections for the moisture in damp or very wet sand. For example, moisture in sand catuses in increase in volume known as bulking. The extent
of butking depends on the amount of moisture in the sand and its fineness. Dry sand can bulk to $\mathrm{I} 1 / 4$ times its volume when wetted. Accordingly, if you are measuring by volume, try to use wet sand.

## MIXING THE INGREDIENTS

Proper mixing is an essential step in making good concrete. It is not sufficient merely to intermingle the ingredients. They must be thoroughly mixed so that cement paste coats every particle of line and coarse aggregate in the mix. Concrete may be machme mixed or hand mixed.

Machine mixing. The best way to mix concrete is with a concrete mixer. It ensures thorough mixing of the ingredients and is the only way to produce air-entramed conerete.

Small mixers from $1 / 2$ - 10 6-cult. capacity can be rented of purchased. For extensive work around the home, it might pay to purchase a mixer. For the oceasional small job, however, it is preferable to rent a mixer from your local rental service store or yard.

Mixers are powered by gasolme or electricity. The gaso-line-powered mixer is more versatile in that it can be operated anywhere. The electric-powered mixer is quieter and simpler to operate, but requires an electrical outlet.

Mixer sizes are designated according to the maximum concrete batch in cubic feet that cam be mixed efficiently. This is usually 60 percent of the total volume of the mixer drum. The maximum batch size is ustally sh won on an identification plate attactied to the mixer. For proper mixing, never load a mixer beyond its maximum batch capacity. The ehore of mixer size will depend on the extent of your project and the amount of concrete that you want to handle in any one batch. Keep in mind that to mix a I

Fig. 3 (lef1). Wet sand, which describes most sands, forms a ball when squeered in your hand, but leaves mon noticeable moisture on the palm. Fig. 4 (center). Damp sand falls apart vhen you try to squeeze it into a ball in your hand. Fig. 5 (1.eht). Iery wet sand, which describes sand exposed to a recent rain, forms a ball if spueezed in your hand and leaves moisture oa the palm.



Fig. 6. A workable mix contains the correct amount of cement paste, sand, and coarse aggregate. With light troweling, all spaces between coarse aggregate particles are filled with sand and cement paste.
cu.ft. batch of concrete you will have to handle 140 to 150 lb. of materials

For best results, load the ingredients into the mixer in the following sequence

1. With the mixer stopped, add all the coarse ageregate and half of the mixing water. If an airentraining agent is used, mix if with this part of the mixing water.
2. Stant the mixer, then add the sand, cement, and remaining water with the mixer rumning.
After all ingredients are in the mixer, continue mixing for at least three minutes, or until all materials are thoronghly mixed and the concrete has a uniform color.

Concrete should be placed in the forms as soon as pos-
sible after mixing. If the concrete is not placed within $11 / 2$ hours and shows signs of stiffening, remixing for about two mimutes may restore its workability. Diseard the concrete if after remixing it is still too stiff to be workable. Never add water: to comerefe that has stiffened to the point where

remixing will not restore its workabilits:

Mixing the trial batch. The proportions of sand and coarse aggregate from Table I are based on typieal gravel aggregates. If these proportions do not give a workable mix with your aggregates, an adjustment will be necessary. The socalled trial batch will enable you to make these adjustments

First make a batch of concrete using the proportions from Table 1. Discharge a sample of concrete from the mixer 'nto a wheelbarrow or onto a slab and examine it for stiffness and workability. If this sample is a smooth, plastic, workable mass that will place and finish well, proportions used are correct and need no adjustment. The suitability of the sample can be judged by working the concrete with a shovel and smoothing it with a float or trowel. A good. workable mix should look like the sample shown in Fig. 6. The concrete should be just wet enough to stick together without crumbling. It should slide down, not run off, a shovel. In a workable mix there is sufficient cement paste to bind the pieces of aggregate together so that they will not separate when the concrete is transported and placed in the forms. There should be sufficient sand-cement paste to give clean, smooth surfaces free from rough spots (called honeycomb) when forms are stripped. In other words, there should be just enough cement paste to completely fill the spaces between the particles of aggregate and to ensure a plastic mix that finishes easily.
lig. 7. This mis is too wet because it contains too little sand and coarse aggregate for the amount of cement paste. Such a mix would not be coonomical or durable and would have a strong tendency to crack.


Fig. 8. This mix is too stiff because it contains too much sand and coarse aggregate. It wouk' be difficult to place and finish properly.


Adjusting the trial bateh. It the trial batel is too wet. too stiff, too sandy, or too stony, it will be necessary to adjust the proportions of aggregates used in the mix.
If the mix is too wet (Fig. 7). it contains too little aggreqate for the amount of cement paste. Retum the sample to the trial batch, then weigh out about 5 to 10 percent mose sand and coarse afgregate, depending on how wet the mix is. Add them to the that bateh in the mixer and mix for at least one minute. If the mix is still too wet, add some more sand and enarse aggregate until the desired workability is obtamed. Record the total weight of added sand and coase aggregate. In subsequent batches, use the onginal quantities of aggregate, but reduce the amount of water by 1 Ib . for every $10^{\circ} \mathrm{b}$. of aggregate added to the trial batch.

If the mix is too stiff (Fig, 8), it contains too much aggregate. Reduce the amounts of sand and coarse aggregate in subsequent batches until the destred workability is obtamed. Record the new weights of sand and coarse aggregate, and correct the weight marks in the batch eans according to the adjusted weights. To save a trial bateh that is much too stiff to place, cement and water may be added in the proportion of 1 lb . water to 2 lb . cement. This will increase the amount of cement paste and make the concrete more workable. Never add water alone to a mix that is too stiff.

If the mix is too sandy (Fig. 9), decrease the amount of sand by 2 lb . and add 2 lb . of coarse aggregate. If it is still too sandy, leave out some more sand and add an equal weight of coarse aggregate in the next batch. Record the new weights of sand and coarse aggregate, and correet the weight marks in the batch cans according to the adjusted weights.

If the mix is too stony (Fig. 10), decrease the amount of
coarse aggregate by 2 lb . and add 2 lb . of sand. If it is still too stony, leave out some more coarse aggregate and add an equal weight of sand in the next batch. Record the new weights of sand and coarse aggregate, and correct the weight marks in the batch cans according to the adjusted weights.

Your adjusted trial batch proportions are your final mix proportions and need not be changed again for future batches as long as your sand and coarse aggregate remain the same. If the moisture content of your sand changes, due to raim, for example, adjust the quantities of sand and water as explained under Measuring the Ingredients, page 4.

Hand mixing. For very small jobs, where the volume of concrete required is less tham a few cubic feet, it is sometimes more convenient, though less efficient, to mix by hand.

Hand mixing is not vigorous enough to make air-entratined concrete, regardless of whether air-entraining cement or ant air-entraining agent is used. Hand mixing, therefore, should not be used for conerete that will be exposed to freezing-thawing or de-icers.

Hand mixing should be carried out on a clean, hard surface or in a mortar box to prevent contamination by mud and dirt. A concrete slab makes a good working surface. The measured quantity of sand is spread out evenly on the slab. Then the required amomet of cement is dumped on the sand and evenly distributed. Mix the cement and sand thoroughly by turning with a shorthandled, square-end shovel until you have a uniform color, free from streaks of brown and grey. (Streaks indicate that the sand and cement have not been thoroughly mixed.) Next, spread this mixture out evenly over the slab and dump the required quan-

Fig. 9. This mix is too sandy because it contains too much sand and not enough coarse aggregate. It would place and finish easily, but would not be economical, and would be very likely to crack.


Fig. 10. This mix is too stony because it contains too much coarse aggregate and not enough sand. It would be difficult to place and finish properly and would result in honeycomb and porous concrete.

tity of coarse aggregate in a layer on top. The materials are again turned by shovel until the coarse aggregate has been uniformly blended with the mixture of sand and cement. After at least three turnings, form a depression or hollow in the center of the pile and slowly add the proper amount of water. Finally, turn all the materials in toward the center and continue mixing until the water, cement, sand, and coarse aggregate have all been thoroughly combined.

Prepackaged mixes. Jobs small enough for hand mixing can usually be done with convenient prepackaged concrete mixes. Building materials suppliers, hardware stores, and even some supermarkets sell prepackaged concrete mixes. All the necessary ingredients portland cement, dry sand, and dry coarse aggregate-are combined in the bag in the correct proportions. Packages are available in different weights, but the most common sizes are 45 and 90 lb . A $90-\mathrm{tb}$. package makes $2 / \mathrm{cu}$ cft. of concrete. All you do is add water and mix. Directions for mixing and the correct amount of water to add are given on the bag.

To ensure that you get good quality from prepackaged concrete mixes, the American Society for Testing and Materials has adopted Specifications for Packaged, Dry, Combined Materials for Mortar and Concrete (ASTM C387). This specification covers the quality of the ingredients, the strength of concrete obtained with the ingredients, and the type of bag in which the ingredients are packaged. ASTM C387 also requires that prepackaged concrete mixes meeting this specification be so identified on the bag. To obtain a quality product, make sure the prepackaged mix you buy contains a statement on the bag that it meets ASTM C387.

If the concrete will be exposed to freeze-thaw or deicers, prepackaged mixes must be machine mixed and must be made with air-entraining cement, or an air-entraining agent must be added to the mixing water.

As pointed out above, prepackaged mixes are most convenient for the very small job requiring only a few cubic feet of concrete. However, for larger jobs up to 1 cu.yd. (27 cu.ft.), you would be wise to compare ti.e cost of using prepackaged mixes with the cost of buying the separate ingredients.

Cleaning the mixer. Soon after you finish using the mixer (before the concrete can harden), it should be thoroughly cleaned. To elean the inside of the mixer drum, add water and a few shovels of coarse aggregate while the drum is turning. Follow this by hosing with water. The thin cement film that builds up on the exterior parts of the mixer may be removed with vinegar. Concrete that builds up inside the mixer drum requires seraping and wire brusing for removal. Heavy hammers or chisels that might tear up the drum and blades should not be used. Remove stubborn buildup with a solution of I part hydrochloric acid (muriatic acid) in 3 parts of water. Allow 30 minutes for penetration, then scrape or wire brush and rinse with clear water.

Hydrochloric acid is hazardous and toxic and requires adequate safety precautions. Skin contact and breathing of fumes should be aroided. As a general precautionary rule, rubber or plastic gloves and chemical safety goggles should be worn. If the acid is used indoors, adequate ventilation should be provided. Follow the storage and handling precattions stated on the label of the acid container.

Dry the mixer drum thoroughly to prevent rusting and store the mixer with the opening of the drum pointing down. Do not apply oil to the inside of the drum unless the mixer is to be stored for an exiended period of time. Thoroughly wipe off the oil before using the mixer again, as it may adversely affeet the quality of the concrete.

The Portland Cement Association disclaims any and all responsibility for the application of the principles or procedures discussed in this publication or for the accuracy of the sources other than work performed or information developed by the Association.

Caution: Avoid prolonged contact between unhardened (wet) cement or concrete mixtures and skin surfaces. To prevent such contact, it is advisable to wear protective clothing. Skin areas that have been exposed to wet cement or concrete, either directly or through saturated clothing, should be thoroughly washed with water.

PORTLAND CEMENT HS ASSOCIATION

[^2]
[^0]:     Comservation Rewarch (emer, USD)A, ARS (former proferor, (SO); and Owner, New Masnain R. (`. ('. Produch, Sargodha, Pakinan.
    
    
    
     orado State liminersirs, Jorn Collim, Coloraco.

[^1]:    
     atath.

[^2]:    An organization of ceraent manufacturers to improve and eatend the uses of portland cement and concrete through scientific research, engineering field worh, and market development.

