Feasibility Study of

The Rehabilitation and Expansion

Of The

MISR SPINNING AND WEAVING COMPANY
 Mehalla El Kubra, Egypt

For

Agency for International Development
Departmeni oi State
Washington, D.C.

By

KURT SALMON ASSOCLATES, INC.
Management Consultants
Atlanta, Georgia

Agency for International Developrsent
Department of State
Washington, D.C. 20523

Gentlemen:

We are pleased to present this report on a study of the technical and economic feasibility of the rehabilitation and expansion of the Miss Spinning and Weaving Company of Mehalla El Kubra, Egypt.

The study basically concludes that an investment program of $\$ 95,660,000$ (U.S. dollars) and $\$ 38,200,000$ in local Egyptian currency over the next three years is technically and economically feasible. This report contains the findings, observations and analyses supporting this conclusion.

The study team wishes to express its sincere gratitude and appreciation for the superb assistance and cooperation of Dr. Ghoroury, the chairman of the company, and his staff during the onsite portion of the study. Without the long hours and diligent effort on the part of the company's management during the team's work in Egypt, this study could not have been completed within the time limits imposed and in the depth required.

The conduct of this study for the Agency for International Development was both professionally rewarding and personally satisfying. We appreciate the opportunity afforded us to provide this assistance.

Respectfully submitted,

KURT SALMON ASSOCIATES, INC.
RHHinck
JDJohnson
GL'lurbyfill
GAVercaemert
FHWood

FOREWORD

This report on the study of the rehabilitation and expansion of the Misr Spinning and Weaving Company of Mehalla El Kubra, Egypt, is divided into the following four parts:

Part One	-	Executive Summary
Part Two	-	Detailed Analyses of Proposed Investments
Part Three	-	Recommended Technical Assistance
Part Four	-	Financial Analysis

For those wishing only an overview of the study, Part One is recommended. For those wishing an overview plus the financial analysis, Parts One and Four are recommended. Part Two contains the technical evaluations and individual project estimates. Part Three outlines suggested technical assistance programs and some general observations for management.

Throughout the report, the terms Misr Spinning and Weaving Company and Mehalla are used interchangeably to identify the company.

OVERALL TABLE OF CONTENTS

PARTS

ONE EXECUTIVE SUMMARY
I. Study Objectives, Scope and Procedure
II. General Description of The Company
III. Summary of Proposed Investments
IV. Summary of Proposed Technical Assistance
V. Summary of Financial Analysis of Recommended Investments
VI. Conclusion
TWO DETAILED ANALYSES OF PROPOSED INVESTMENTS
I. Cotton Spinning
II. Cotton Weaving
III. Rehabilitation of Existing Cotton Equipment,
IV. Twisting and Sewing Thread
V. Cotton Dyeing, Printing, Finishing
VI. Wool Mill
VII. Apparel
VIII. Power Plant
IX. Foundry and Workshops
X. Materials Handling
XI. Fire Protection and Fire Fighting
THREE RECOMMENDED TECHNICAL ASSISTANCE PROGRAMS AND GENERAL OBSERVATIONS
I. Recommended Technical Assistance
II. General Observations
FOUR FINANCLAL ANALYSIS

PART ONE

EXECUTIVE SUMMARY

TABLE OF CONTENTS

PART ONE

EXECUTIVE SUMMARY

Section Page
I STUDY OBJECIIVES, SCOPE AND PROCEDURE 1
A. Objective of The Study 1
B. Scope of The Study 2
C. Study Procedure 2
II GENERAL DESCRIPTION OF THX COMPANY 4
A. Brief History 4
B. Products 4
C. Physical Size and Structure 5
Exhibit I - Plan of The Complex 7
D. Position Within the Textile Industry 8
E. Financial Position 8
F. Personnel and Management 9
G. Equipment 10
H. Environment 10
I. Rationale for Rehabilitation and Expansion 10
III SUMMARY OF PROPOSED INVESTMENTS 11
A. Introduction 11
Exhibit II - Summary of Proposed and Suggested Investment Plan 12
B. Brief Description of Proposed Investments 18
IV SUMMARY OF PROPOSED TECHNICAL ASSISTANCE 17
V SUMMARY OF FINANCLAL ANALYSIS OF RECOMMENDED INVESTMENTS 18
A. Introduction 18
B. General Background 18
C. Economic Justification 19
VI CONCLUSION 21

TABLE OF CONTENTS (CONTINUED)

Appendix Page
1 Summary of Investment Plan - Yarn Mill No. 7 22
2 Summary of Investment Plan - Cotton Weaving 23
2 Summary of Investment Plan - Warping and Slashing 24
3 Summary of Investment Plan - Equipment Rehabilitation - Cotton Mills 25
4 Summary of Investment Plan - Twisting and Sewing Yarn Konufacturing 26
5 Summary of Investment Plan - Cotton Dyeing and Finishing 27
6 Summary of Investment Plan - Wool Mill, Yarn 28
7 Summary of Investment Plan - Wool Mill, Weave and Finish 29
8 Summary of Investment Plan - Apparel (New Apparel Unit Plus Equipment Replacement) 30
9 Summary of Investment Plan - Power Plant 31
10 Summary of Investment Plan - Foundry and Shops 32
11 Summary of Investment Plan - Materials Handling 33
12 Summary of Investment Plan - Fire Protection 34

SECTION I: STUDY OBJECTIVES, SCOPE AND PROCEDURE

A. OBJECTIVE OF THE STUDY

The basic objective of this study was to determine the resource requirements in equipment, materials and manpower to rehabilitate and expand the Misr Spinning and Weaving Company locatod in Mehalla El Kubra, Egypt (A.R.E.).

Within this orerall objective, the following specific items were to be accomplished:

1. Determination of the technical feasibility of a rehabilitation plan prepared by the Misr Spinning and Weaving Company.
2. Determination as to whether the equipment proposed in the rehabilitation plan was suitable for the planned products, sufficient for the projected volumes and balanced adequately for the planned product mixes.
3. Determination as to whether projections for supervision, labor complements and skill requirements were realistic and adequate.
4. Datermination as to whether utilization of current and proposed space was efficient and adequate.
5. Determination of the adequacy of auxiliary facilities and equipment including boilers, power generating plant, fire fighting and fire protection equipment, workshops, and materials handling.
6. Development of recommendations for alternative equipment, quantities, and plant layouts where these were beligred to be advantageous.
7. Development of recommendations for technical assistance where such assistance was deemed necessary to ensure optimum results from the proposed expenditures.
8. Development of cost estimates for proposed equipment and technical assistance.
9. Development of an economic analysis of the proposed rehabilitation program.
10. Preparation of this report covering the findings, recommendations and conclusions.

B. SCOPE OF THE STUDY

The scope of the study included the following:

1. Cotton system yarn spinning for cotton and cotton/synthetic fiber blend yarns.
2. Weaving of cotton and cotton/synthetic fiber blend fabrics.
3. Dyeinz, printing and finishing of cotton and cotton/synthetic fiber blend fabrics.
4. Woolen system yarn spinning.
5. Worsted system yarn spinning.
6. Wool weaving.
7. Woolen and worsted yarn and fabric dyeing and finishing.
8. Garment manufacturing.
9. Power station and boilers.
10. Workshops.
11. Materials handling.
12. Fire protection.

The scope of the study did not include an analysis or evaluation of current or projected markets or cuarket potentials, and it was assumed that the market plans supplied by Misr Spinning and Weaving Company were valid.
C. STUDY PROCEDURE

The procedure used in conducting the study was generally as follows:

1. A team of five consultants visited Misr Spinning and Weaving Company in Mehalla El Kubra during the first three weeks in March.
2. During the visit, the team did the following:
a. Interviewed key management and supervisory personnel.
b. Visited the individual manufacturing units to observe current operating conditions.
c. Obtained historical and current data on operating performances and costs.
d. Obtained sales, product and market data and projections.
e. Reviewed the "Study on Prospective Extensions and Renewals" of Misr Spinning and Weaving Company presented to A.I.D. dated January 1976.
f. Discussed the rationale of the proposed rehabilitation plan in detail with management of Misr Spinning and Weaving Company.
g. Developed logical alternatives to the propesed plans with management of Misr Spinning and Weaving Company.
h. Reviewed tentative conclusions with management of Misr Spinning and Weaving Company.
3. Upon returning to the United States, the team did the following:
a. Analyzed production requirements, capacities and balance of the manufacturing units involved in the proposed rehabilitation project.
b. Developed equipment requirements.
c. Obtained estimated equipment prices.
d. Performed an economic analysis of the proposed project.
e. Prepared this report on the findings, conclusions and recommendations.

SECTION II: GENERAL DESCRIPTION OF THE COMPANY

A. BRIEF HISTORY

Misr Spinning and Weaving Company is one of the world's largest textile complexes concentrated in one location. The company's foundation was authorized in 1927 with an initial capitalization of EE 300,000 . Today the capitalization is $£ E$ 4,000,000. Production started in 1931 with cotton spinning and weaving. Subsequently, woolen spinning and weaving production was started in 1939 and ready-made garment production in 1957.

During the early period of the company's history, concentration was devoted to introduction and acceptance of the company's products in the domestic market. During World War II, the company benefited from the reduction of imported textiles to further expand and solidify its position in the domestic market. About 1950, the company began to export its products and exports today are an important contributor to the company's stiles and profits.

The nationalization of the company was started in 1961 and completed in 1963.
B. PRODUCTS

Today, the Misr Spinning and Weaving Company is a rertically integrated textile company, from fiber to finished products. The primary products currently produced are as follows:

1. Cotten Yarns

Coarse, medium and fine counts. Greize, mercerized, bleached and dyed. Singles, doubled and cabled. Used for weaving, knitting, sewing thread and fish nets.

2. Cotton Fabrics

Fabrics of various widths, constructions and weights for apparel, industrial uses and home furnishings. Greige, piece dyed, yarm ayed and printed.
3. Woolen, Worsted and Wool Blend Yarns

Yarns for weaving and knitting.

4. Woolen, Worsted and Woolen Blend Fabrics

Yarn dyed and piece dyed for use in apparel.

5. Ready-made Garments

Incinding shirts, pajamas, trousers, work suits, military uniforms, aprons, shop soats and other miscellaneous apparsl products.
6. Home Furnishings

T'owels, blankets, tablecloths, napkins, sheets and pillowcases.
Cotton/wool, gauze bandages and surgical dressings.
In 1975, the company produced approximately 34,800 tons of cotton yarn, 141 million meters of cotton fabric. Approximately 41 million meters of the fabric were dyed and 57 million meters were printed. Approximately 1,880 cons of woolen and worsted yarns and $2,880,000$ meters of woolen and worsted fabrics were produced. Blanket production was approximately $\mathbf{7 0 , 0 0 0}$ units and approximately 6 million units of apparel and textile consumer products were fabricated.

C. PHYSICAL SIZE AND STRUCTURE

The company covers an area of approximately 640 acres. Within this complex are located the following manufacturing facilities:

Cotton System Spinning Plants - 6
Yarn Twisting Unit - 1
Central Slashing Department - 1
Waste Plant - 1
Cotton Weaving Sheds - . 13
Integrated Cotton Bleaching, Dyeing, Printing
and Finishing Plant
Woolen Plant Comprising Woolen and Worsted Spinning, Weaving, Dyeing and Finishing - . 1
Cotton Wool Plant - 1
Apparel Plant - $\quad 1$

In addition to the manufacturing units, the company is virtually self-sufficient as to its auxiliary needs. Within the complex are located the following service facilities:

1. A water plant with a canacity of 48,000 cubic meters per day.
2. A power station capable of producing 50,000 kilowatts with boilers capable of producing 400 tuns of steam per hour.
3. Mechanical, electrical and carpentry workshops for equipment maintenance and manufacture of spare parts.
4. ${ }^{2}$ wwo fire stations.
5. A training center.

In addition, the company maincains or supports numerous facilities for its employees. Among these are the following:

1. 1,800 dwellings.
2. Restaurant.
3. Athletic facilities for sports such as soccer, tennis, basketball, volleyball, swimming and diving, gymnastics.
4. Playgrounds.
5. Three cinemas.
6. Theatre.
7. Library.
8. Social club.
9. Two primary schools.
10. Secondary school.
11. A 257-bed hospital.
12. Cooperative societies for food, household appliances, cottage industries and poiltry raising.

A plan of the complex follows as Exhibit I.

MISR SPINNING AND WEAVING COMPANY, MEHALLA EL KUBRA, EGYPT

D. POSITION WITHIN THE TEXTILE INDUSTRY

In 1975, the company's position within the Egyptian public textile sector was as follows:

1. Irc/uced 15% of the sector's production value.
2. Accountad for $\mathbf{1 7 . 8 \%}$ of the sector's exports.
3. Accounted for $\mathbf{1 2 . 1 \%}$ of the sector's domesti) sales.
4. Accounted for 13.4% of the sector's total sales.
5. Employeả 12.4% of the sector's total employees.
6. Paid 15% of the sector's total wages.
7. 1975 sales volume of the company was £E $54,881,000$.

In 1974, textiles accounted for 47% of all of Egypt's manufactured exports.

E. FINANCIAL POSTHION

The company has a very strong financial position as exemplified by the following:

Current Assets at End of 1975	-	£E 41,995,000
Cash at End of 1975	-	$3,350,000$
Total Current Liabilities at End of 1975	-	$14,147,000$
Total Equity at End of 1975	-	$56,033,000$
Long-Term Loans at End of 1975	-	$3,329,000$
Range of Pre-tax Profit as \% of Sales		
for 1971-1975	-	13.7% to 24.8%

F. PERSONNEL AND MANAGEMENT

The company employs approximately 35,400 persons. In 1975,925 persons were hired and 1,067 persons left the company for all reasons; thus, the annual labor turnover was only about 3%. Over the next five years, 2,992 employees are expected to retire; approximately 8% of the current employment. In 1975 absenteeism averaged about 4% when military training and service and annual leave are excluded; the figure was about $\mathbf{2 5 \%}$ when these items were included.

The company's training center provides prevocational training for approximately 600 persons each year, vocational training for about 1,000 persons and various managerial, supervisory, productivity and cultural programs for another 2,400. Additional training is given to employees of other companies; amounting to about 1,200 persons.

Labor productivity improvement is one of the pressing needs of Misr Spinning and Weaving Company. With current laws making it difficult to zeduce the work force, and with only about 8% of the employees expected to retire within the next five years, the improvement of labor productivity is one of management's most difficult and challenging tasks.

The 42 managers of the company range in age from 40 to 59 and in experience from 18 to 41 years. All of the managers have college degrees or vocational diplomas. Five of the managers have received additional education in the United Kingdom and one in the United States. Women hold several key management positions.

The managerial staff, for the most part, appear to be capable and dedicated. The esprit de corp among the managerial group appears to be very high. The top management leadership is outstanding.

To aid management in planning and control, the company has a 32 K , ICL 1903 S computer. Currently, the computer performs the functions of payroll, invoicing, inventory accounting (other than raw materials), quality control, cost analysis and job costing for the workshops. Future planned applications are for production planning, color matching and pattern grading.

G. EQUIPMENT

The company has a wide range of equipment - from old and obsolete to modern. The equipment has been purchased from many countries - the United States, the United Kingdom, Eastern Bloc Counkies, Western Europe and Japan. Because of the variety of equipment and the country of origin, availability of the required foreign exchange for spare parts has, at times, necessitated the manufacture of spare parts by the company. In some cases, particularly with the more modern equipment, this has resulted in less than optimum quality of spare parts, leading to excessive downtime and relatively low efficiencies.

H. ENVIRONMENT

For a manufacturing complex as large as the Misr Spinning and Weaving Company, the grounds and facilities are exceptionally well maintained. The environment is considered by management in its investment and expansion programs and the overall environment of the complex is relatively clean.

I. RATIONALE FOR REHABILITATION AND EXPANSION

The basic rationale for rehabilitation and expansion is the attainment of a good financial return in order to ensure the future viability and profitability of the company. The following are the keys to the attainment of a good return on the proposed investments:

1. Increased labor productivity.
2. Increased machine efficiencies.
3. Increased capacity for producing quality yarns for export.
4. Increased ability to produce blended yarns and fabrics.
5. Improved ability to apply new fabric finishes in order to achieve better grades of fabrics.
6. Increased ability to produce quality ready-made garments suitable for export.
7. Increased efficiency of the woolen and worsted operations.
8. Increased capacity for weaving wider fabrics.
9. Upgrading of the power plant to ensure sustained and continuous low cost power.

SECTION III: SUMMARY OF PROPOSED INVESTMENTS

A. INTRODUCTION

In Part Three of this report is a detailed description of the proposed investments. Where these differ significantly from those originally proposed by Misr Spinning and Weaving Company in their "Study on Prospective Extensious and Renewals," presented to A.I.D. in January, 1976, the rationales for the new proposals are described. In most instances, the proposals in this report were discussed in general terms with Mehalla management while the study team was in Egypt.

In Exhibit II, which fo: 10 ws , is a table summarizing the original Mehalla investment proposals and those recommerded as a result of this study.

EXHIBIT II
SUMMARY OF PROPOSED AND SUGGESTED INVESTMENT PLAN

Item No.	Investment Plan	Foreign Exchange in US \$	Local Currency in US \$	Total US $\$$	Foreign Exchange in US $\$$	Local Currency in US \$	Total US $\$$	Original A.I.D. Request Ref. Annex 13
1.	Cotton Yarn Mill 7	13,560,300	3,633,000	17,183,300	20,423,000	7,891,500	28,314,500	Table 1
2.	Cotton Weaving	18,099,200	, 1,538,400	19,637,600	12,253,740	2,546,800	$14,8: 00,540$	Table 2
3.	Rehabilitation Cotton Equipment	Not Requested			1,386,750	180,500	1,567,250	None
4.	Twisting and Sewing Thread				875,250	118,000	1,994,250	None
5.	Cotton Finishing	Not Requested$9,082,880$		8,082,880	9,156,210	7,942,869	17,099,079	
6.	Woolen and Worsted	17,258,000	384,600	17,642,600	12,106,716	3,762,486	15,869,202	Tables 6-12 Table 13
7.	Apparel	2,564,000	, 680	2,564,000	12,106,716	$3,762,486$ 351,942	$15,869,202$ $3,662,468$	
8.	Power Station	6,758,000	2,564,000	9,322,000	10,763,000	8,829,500	3,602,468	Table 13
9.	Fcundry and Shops	880,000	-	880,000	878,000	169,800	1,047,800	Table 5
10.	Materials Handling	1,000,000	-	1,000,000	2,440,000	330,400	2,770,400	Table 14
11.	Fire Protection	1,000,000	-	1,000,000	344,000	44,700	388,700	Table 14
	Subtotal	70,202,380	8,120,000	78,322,380	73,937,192	30,169,497	104,106,689	
	Freight + Insurance Import Duties Clearing + Local Transport. Erection	7,020,000	-	7,020,000	Included in Individual FIans Included in Individesé Piens Included in Individual Pians Included in Individual Pians			
		,020,000	9,346,000	9,346,000				
		-	1,756,000	1,756,000				
		377,000	690,000	1,067,000				
	Grand Total Before Contingencies Contingencies (15.5\% Mehalla/	77,599,380	19,912,000	97,511,380	73,937,192	30,169,497	104,106,689	
	10\% KSA)	12,038,000	3,028,000	15,066,000	7,393,719	3,016,950	10,410,669	
	Inflation (15\% After Contingencigs)	-	-	-	12,199,637	4,877,867	17,177,604	
Total With Contingencies and								
	Inflation	89,637,380	22,940,000	112,577,380	93,530,548	38,164,414	131,694,862	
	Proposed Technical Assistance				2,105,000	-	2,105,000	
	Total				85,635,548	38,184,414	133,799,962	

From this exhibit, it may be seen that the total U.S. dollar requirements, before contingencies, were $\$ 77,600,000$ in Mehalla's original proposal and $\$ 74,000,000$ as recommended in this report. Mehalla added 15.5% for contingencies and, in this report, 10% was added for contingencies and then 15% was provided for inflation. The resulting U.S. dollar requirements become $\$ 89,600,000$ and $\$ 93,500,000$ respectively. To the basic investment requirements, $\$ 2,105,000$ of technical assistance has been recommended in this report; making the U.S. dollar requirements $\$ 89,600,400$ as proposed by Mehalla and $\$ 95,600,000$ proposed in this report.

Local currency requirements as oiiginally proposed by Mehalla were $\$ 22,900,000$ and, as proposed in this report, are $\$ 38,200,000$. The difference in these figures is attributable primarily to an attempt in this study to quantify all expected local currency expenditures, to significantly higher construction costs than projected by Mehalla and to a higher contingency plus inflation factor.

The total estimated project costs, U.S. dollars and local currency expenditures expressed in U.S. dollars, are $\$ 112,500,000$ for the original Mehalla proposal and $\$ 133,800,000$ proposed in this study.

B. BRIEF DESCRIPTION OF PROPOSED INVESTMENI'S

In Appendices I through XIII at the back of this section are summaries of the proposed investments. A very brief summary of these proposed investments, more fully described in Part Two of this report, follows.

1. New Cotton Yam Spinning Mill

A new yarn mill for producing medium counts including polyester/cotton blends is proposed. The proposed mill would have 54,078 ring spinning spindles. The plant is proposed in order to create additional capacity for producing medium count yarns, to provide ability to spin polyester/cotton blends, to promote yarn exports and to balance future increase of weaving capacity. It is recommended that no existing yarn spinning be closed at this time. A new, airconditioned plant will be required.

2. Cotton Wuaving

The scrapping of 456 old looms and the addition of 670 new looms is recommended. In addition, two new warpers and three new slashers are recommended. Auxiliary equipment such as Unifils, knotting machines, shearing machines and plaiting machines are recommended.

The proposed investments will meet 1980 production requirements, will expand capacity of the most profitable products and will avoid new building construction.

3. Rehabilitation of Existing Cotton Equipment

It is recommended that investment be made in U.S. supplier produced original spare parts in order to overhaul certain looms, manual winders and combers, the objective to be improved productivity and quality on a more economical basis than replacing the equipnent.
4. Twisting and Sewing Thread

New twisting and mercerizing equipment is recommended in order to replace some older twisting equipment, expand capacity and permit manufacture of sewing thread for the garment plant and for possible external sales.

5. Cotton Dyeing, Printing and Finishing

A variety of equipment is recommended for the cotton dyeing, printing and finishing plant. The basic objectives of the recommended equipment are to add capacity for projected increase in volume; to permit dyeing and finishing of a higher volume of cotton/polyester fabrics; permit mercerizing a greater portion of the production; allow for printing of wide sheeting; and improve overall quality levels.

The major items of aquipment recommended include a rope bleaching range; one open width bleach range; two chain mercerizing units; one caustic recovery unit; one Thermosol range; two roller screen print machines; one steamer; one washing range; two batching tenters; three stenters; four calenders and two calender presses; one curing oven and one curing range.

6. Wool Mill

Recommended investments in the wool mill include new woolen spinning equipment, new worsted spinning equipment, three new warpers, new weft winding equipment, 151 new looms and new fabric finishing and inspection equipment.

The objectives of the wool mill investments are to expand capacity, replace obsolete equipment, improve quality and provide newer finishing technology to permit special finishes to be imparted to the fabrics.
7. Apparel

The recommended investment for apparel manufacture consists of a new apparel unit of 435 sewing and finishing machines plus auxiliary equipment and the replacement of 430 sewing and finishing machines. In addition, a technical assistance program is recommended to ensure the proper start-up and development of the new sewing unit. The new unit will be housed in an existing building.

The apparel investment program has as its objectives the expansion of capacity, the improvement of quality and the increase of labor productivity.

8. Power Plant

The recommended investment for the power plant is for one 20 Megawatt turbine generator and one 150 tons per hour bniler; plus controls, water treatment plant, cooling tower and accessories.

The objectives of this investment are to provide additional power and steam capacity for expanded spinning, weaving, dyeing, finishing and increased aircouditioning; to update existing equipment; to ensure continuity of power and steam supply.
9. Foundry and Shops

Investments recommended here include a new foundry, new heat treatment equipment, new forging equipment and modern measurement equipment.

The basic objectives of this investment are to improve the quality of the cast iron used to make replacement parts.
10. Materials Mandling

A study of the overall materials handling system is recommended in order to determine the feasibility and economic justification of a mechanized materials handling system. Contingent upon the results of such a study, estimates have been included for a mechanized system of handling yarn, warp beams, loom beams and cloth rolls.

The objectives of the investment are to reduce labor requirements and costs, improve flow of materials to reduce bottlenecks and downtime and reduce incidence of product damage due to handling.

11. Fire Fighting and Fire Protection

Two new fire trucks, one with a 75 -foot extension platform and smoke detection equipment is recommended.

The objective of this investment is to improve fire detection and fire fighting capability.

SECTION IV: SUMMARY OF PROPOSED TECHNICAL ASSISTANCE

To aid in ensuring the proper selection of equipment and the attainment of the forecast return on the proposed investments, several technical assistance programs have been recommended. These are described more fully in Part Three of this report. Following is a list of these recommended programs and the estimatod cost of each:

Technical Assistance Program		Estimated Cont
Master Development Plan (CPM and PERT)	-	\$ 70,000
Materials Handling Study	-	165,000
Development of Equipment Specifications	-	60,000
Bid Evaluations	-	120,000
Survey of Cotton Spinning and Weaving	-	50,000
Waste Reduction and Control Programs		50,000
- Cotton Spinning	-	160,000
- Cotton Weaving	-	200,000
Production Control Programs		
- Cotton Spinning	-	120,000
- Cotton Weaving	-	140,000
Cost Reduction Programs		
- Cotton Spinning	-	400,000
- Cotton Weaving	-	400,000
Engineering of Warping and Sizing	-	60,000
Start-up Assistance in New Yarn Mill	-	160,000
Total Estimated Cost	-	\$2,105,000

These assistance programs would be spread out over a period of about three years. While some are directly connected to the proposed project expenditures (Master Development Plan, Equipment Specifications, Bid Evaluations, New Plant Start-up Assistance, Materials Handling Study), others concern existing operations and their effect on the overall project. The implementation of these programs should more than pay for their costs through cost reductions over and above the cost reductions of the proposed investment program. More importantly, perhaps, they would provide Mehalla staff with training in modern textils management techniques and the application of these techniques to attain results which can be extended to other areas of the company and applied to expanded operations in the future.

Industrial engineering and analytical operator training are emphasized in these proposed technical assistance programs. These are functions in which Mehalla is relatively weak and which are fundamental to the attainment of high levels of productivity; one of the key challenges facing Mehalla's management.

SECTION V: SUMMARY OF FINANCIAL ANALYSIS OF RECOMMENDED INVESTMENTS

A. INTRODUCTION

In Part Four of this report is a financial analysis of the proposed investment program. This analysis contains:

1. A review of the recent financial performance of the company.
2. Profitability by major product group.
3. Review of proposed investments.
4. Projected sales volume increases.
5. Projected future profits.
6. A cash flow analysis to determine Mehalla's ability to repay the proposed loan.
7. Comments on contingencies, inflation and subsidies.

Following is a brief summary of the financial analysis.

B. GENERAL BACKGROUND

Based on original purchase price, 54.2% of present equipment is 12 or more years old. The original cost of Mehalla's equipment was $\$ 68,492,000$.

Assuming a 10% inflation rate, the current replacement cost of equipment over 12 years old is estimated to be $\$ 116,000,000$. Pre-tax profits for the five years, 1971 through 1975, ranged from 13.7% to 24.9% of net sales and averaged 18.1\%. Without subsidies, the operating profits for this period averaged 12.8% of net sales. This is substantially better than most U.S. textile firms.

An analysis of the operating profits of the major product groups indicate that all are profitable; with cotton yarns showing the greatest profitability, followed by wool fabrics and garments.

As noted earlier in this section, the proposed investments amount to $\$ 95,600,000$ (U.S. dollars) and $\$ 38,200,000$ in local currency; or a total of $\$ 133,800,000$. Assuming that these investment programs are fully implemented by 1980, they should increase sales volume (based on current prices) from an estimated $\$ 147,500,000$ in 1976 to $\$ 199,700,000$ in 1980; an increase of $\$ 52,200,000$, or $\mathbf{3 5 . 4 \%}$.

C. ECONOMIC JUSTIFICATION

Based upon the proposed investment program, an increase in annual operating profits (before taxes, interest and subsidies, but including depreciation) of $\$ 17,761,000$ are projected. Based upon an estimated project cost of $\$ 104,100,000$ (U.S. dollar requirements and local currency requirements, before contingencies and inflation), this would result in a 17.06% return on the project cost. Using an "average" investment figure of $\$ 52,000,000$ over the straight line depreciated life of the equipment, the economic return on the investment would be 34.12%.

A cash flow analysis indicates that sufficient cash flow will be generated during the period 1976 through 1979 to cover the estimated $\$ 30,300,000$ of local costs of the project; that sufficient cash flow will be generated to cover both interest payments and the loan repayments; and that additional cash flow of $\$ 250,000,000$ will be generated over the loan repayment period to provide for further equipment replacement, expansion and increased inventories to propery service increased sales.

The above analysis is based upon the estimated project costs without a contingency factor and ignoring possible inflation. Allowing 10% for contingencies would reduce the economic return on the "average" investment from 34.1% to 29.8%. It has been assumed that increased costs caused by inflation will be passed on to customers, therefore maintaining projected profit margins. Additionally, the rapid escalation of equipment costs is an additional factor supporting the proposed investments.

The above analyses assume that Mehalla management will be able to staff the expanded operations with the existing work force. However, if present labor productivity levels are not improved and, assuming that one-half of the manufacturing wages vary with volume, labor costs would increase by 17.7% (one-half of the projected sales increase of 35.4%). Basad upon the 10% contingency factor and an inability to increase labor productivity, the economic return on the "average" investment would be 19.1%.

A reasonable assumption is that the return on the "average" investment will be between 19.1% and 34.1%; the midpoint figure of 26.6% may be the most reasonable projection.

Currently, Mehalla pays about 40% of the world's prices for its cotton. Should the Egyptian government require that they pay $\$.30$ to $\$.45$ per pound more for this cotton, this would reduce the projected cash flow over the 16 -year period, 1976 to 1991 , from $\$ 250,000,000$ to about $\$ 100,000,000$ to $\mathbf{\$ 1 5 0 , 0 0 0 , 0 0 0}$ after debt repayment. This assumes no export subsidies. 'This analysis indicates that the project would be viable even if cotton prices were increased.

SECTION VI: CONCLUSION

The proposed investment program for the Misr Spinning and Weaving Company appears to be economically sound. The company's past and projected financial performance indicates that the proposed loan and interest can be repaid from funds generated by the company. The proposed investment program will help ensure the future viability and profitability of the company; enabling the company to protect the employment of thousands of persons, to supply the local market with competitively priced textile products, and to increase exports and bring foreign exchange currency into the economy.

There are several key factors which bear on the company's ability to achieve optimum results from the proposed investment program. Among these are the following:

- The attainmeni of improved labor productivity in order to staff the expanded operations with the current work force.
- The ability to improse product quality, particularly for exports.
- The continuation of the strong, effective leadership presently being given to the company.

APPENDIX 1

SUMMARY OF INVESTMENT PLAN - YARN MILL NO. 7 NEW YARN COUNTS - MEDIUM COUNTS - 54,000 SPINDLES

Item

No. Description

1. Processing Equipment CIF Value
2. Import Duty on 1. (12\%)
3. Clearing iocal Transportation + Erectios
4. Auxiliary juipment + Accessories CIF Value $1,742,000$
5. Imiport Duty on 4.
6. Clearing + Local Transportation for 4.
7. Spares (5\%), Including Duty (12\%)
8. Electrical Substation, CIF + Distrihution + Installation + Duty
9. Airconditioning Equipment, CIF + Installation + Duty

Subtotal Equipment Installed
10. Construction 22,880 Sq. Meters at 220

Total Investment (Excluding Working Capital)

Estimated Costs

Foreign	Local	
Exchange	Currency	Total
in US $\$$	in US $\$$	US $\$$

$\$ 15,137,000$
$\$ 1,816,500$
1,816,500

152,000 152,000
304,000

1,742,000
209,000
209,000
9,000

848,000

985,000
785,000
200,000

$$
\begin{array}{lll}
1,850,000 & 380,000 & 2,230,000
\end{array}
$$

$\$ 20,423,000 \quad \$ 2,857,500 \quad \$ 23,280,500$
$5, \mathbf{5 , 0 3 4}, 000 \quad \mathbf{0} 4,000$
$\$ 20,423,000 \quad \$ 7,891,500$
$\$ 28,314,500$

APPEN̈DIX 2
 SUMMARY OF INVESTMENT PLAN - COTTON WEAVING

APPENDIX 2A

SUMMAARY OF INVESTMENT PLAN - WARPING AND SLASHING

Hem	Description	Exchange in US \$	Currency in US \$	$\begin{aligned} & \text { In } \\ & \text { US } \$ \end{aligned}$
1.	Processing Equipment - CIF Value	\$608,440		\$608,440
2	Import Duty on 1. (12\%)		\$ 72,800	72,800
3.	Clearing and Local Transportation and Erection	20,500	112,000	132,500
4.	Auxiliary Equipment and Accessorias	Included in Item i .		
5.	Import Duty on 4.	Included in Item 2		
6.	Glearing and Local Transportation for 4.	Included in Item 3.		
7.	Spares (5\%) Including Duty (12\%)	30,500	3,700	34,200
8.	Electrical (Renovation and Connection Only)		5,000	5,000
9.	Airconditioning	None		
	Subtotal Equipment Installed	\$657,440	\$193,500	\$850,940
10.	Construction (Updating Only) Estimated		12,000	12,000
	Total Investment (Excluding Working Capital)	\$657,440	\$205,500	\$862,940

APPENDIX 3
SUMMARY OF INVESTMENT PLAN EQUIPMENT REHABILITATION (COTTON MILLS)

Item No.	Description	Foreign Exchange in US \$	Estimated Cost	
			Local Currancy in US \$	Total in US \$
1.	Equipment + Accessories CIF			
	Value(1)	1,386,750		1,386,750
2.	Import Duty on 1. (12\%)		166,500	166,500
3.	Clearing + Local Transportation			
	+ Erection		14,000	14,000
4.	Auxiliary Equipment + Accessories		Not Applicable	
5.	Import Duty on 4.		Not Applicable	
6.	Clearing + Local Transportation for 4.		Not Applicable	
7.	Spares Including Duty		Not Applicable	
8.	Electrical	, N	Not Applicable	
9.	Airconditioning		Not Applicable	
	Subtotal Equipment Installed	1,386,750	180,500	1,567,250
10.	Construction		Not Applicable	
	Total Investment (Excluding			
	Working Capital)	1,386,750	180,500	1,567,250

(1) Essentially no equipment but original spares.

APPĒN̄ḊIX 4
 SUMMARY OF INVESTMENT PLAN . TWISTING AND SEVING YARN MANUFACTURING

$\begin{aligned} & \text { Item } \\ & \text { No. } \end{aligned}$	Description	Estimated Cost		
		Foreign Exchange in US \$	Local Currency in US \$	Total in US \$
1.	Equipment CIF Value	825,000		825,000
2.	Import Duty on 1. (12\%)		99,000	99,000
3.	Clearing + Local Transportation + Erection	9,000	9,000	18,000
4.	Auxiliary Equipment + Accessories		Included in 1.	
5.	Import Duty on 4.		Included in 2.	
6.	Clearing + Local Transportation for 4.		Included in 3.	
7.	Spares (5\%) Including Duty (12\%)	41,250	5,000	46,250
8.	Electrical (Connection Only)		6,000	6,000
9.	Airconditioning		None	
	Subtotal Equipment Installed	875,250	119,000	994,250
10.	Construction		None	
	Total Investment (Excluding			
	Working Capital)	875,250	119,000	994,250

APPENDIX 5

SUMMARY OF INVESTMENT

COTTON DYEING AND FINISHING

Item No.	Description	Foreign Exchange in US \$	Estimated Cost	
			Local Currency in US \$	Total in US \$
1.	Processing Equipment + Accessories CIF Value	8,557,206		8,567,206
2.	Import Duty on 1. (12\%)		1,026,865	1,026,865
3.	Clearing + Local Transportation + Erection	85,572	85,572	171,144
4.	Auxiliary Equipment and Accesories		Included in	
5.	Import Duty on 4.		Included in	
6.	Clearing and Local Transportation on 4.		Included in	
7.	Spares (6\%) Including Duty (12\%)	513,432	61,612	575,044
8.	Electrical (Renovation \& Connection) Estimate		171,144	171,144
9.	Airconditioning (Updating Only) Estimate		Not Applicable	
	Subtotal Equipment Installed	9,156,210	1,345,193	10,501,403
10.	$\begin{aligned} & \text { Construction } \\ & \text { (} 33,100 \text { Sq. Mtrs. Avg } \$ 154 / \text { Sq. Mtr.)(1) } \\ & (6,882 \text { Sq. Mtrs. at } \$ 218 / \text { Sq. Mtr.)(2) } \end{aligned}$		$\begin{aligned} & 5,097,400 \\ & 1,500,276 \end{aligned}$	$\begin{aligned} & 5,097,400 \\ & 1,500,276 \end{aligned}$
	Total Investment (Excluding Working Capital)	9,156,210	7,942,869	17,099,079

(1) Building to be started early 1978, complated mid 1979.
(2) Building presently under construction.

APPENDIX 6
 SUMMARY OF INVESTMENT - WOOL MILL - YARN

Estimated Cost in US $\$$
Foreign
Exchange Local Total

1. Processing Equipment and Accossories - CIF Value

- Raw Wool Scouring
- Worstad Spinning
- Woolen Spinning
- Bulking, Reeling, Winding

Subtotal
2. Imf srt Duty on 1. (12\%)
3. Clearing and Local Transportation and Erection
4. Auxiliary Equipment and Accessories
5. Import Duty on 4.
6. Clearing anc' Local Transportation on 4.
7. Spares (8%) Including Duty
8. Electrical (Renovation and Connection) Estimate

122,320
61,160
Included in 1.
Included in 2.
Included in 3.
489,272 58,713

30,580
9. Airconditioning (Updating Only) Estimate

Subtotal Equipment Installed
6,727,492 884,361
7,611,853
10. Construction (6,000 Sq. Meters at $\$ 167$)(1)

Total Investment (Excluding Working Capital)
6,727,492
1,886,361
8,613,853

APPENDIX 7

SUMMARY OF INVESTMENT - WOOL MILL - WEAVE AND FINISH

Estimated Cost in US $\$$
Foreign
Exchange Local Total

Processing Equipment and Accessories - CIF Value	
- Weaving and Preparation	2,996,370
- Wool Dyeing and Finishing	1,591,510
- Inspection and Finishing	215,000
Subtotal of 1.	4,802,880

2. Import Duty on 1. (12\%)

576,346
3. Clearing and Local Transportation and Erection 96,056 48,028
4. Auxiliary Equipment and Accessories Included in 1.
5. Import Duty on 4.

Included in 2.
6. Clearing and Local Transportation on 4.

Included in 3.
7. Spares (10%) Including Duty (12\%)

480,288
57,635
8. Electrical (Renovation and Connection) Estimate

192,116
9. Airconditioning (Updating Only) Estimato

Not Applicable
Subtotal Equipment Installed
5,379,224 874,125
6,253,349
10. Construction (6,000 Sq. Meters at $\$ 167$)(1)

	$1,002,000$	$1,002,000$
$5,379,224$	$1,876,125$	$\mathbf{7 , 2 5 5 , 3 4 9}$

(1) $\mathbf{5 0 \%}$ of total $\mathbf{1 2 , 0 0 0}$ square meters to be built for wool mill to be completed mid-1978.

APPENDIX 8 .
 SUMMARY OF INJESTMENT PLAN - APPAREL NEW APPAREL UNIT PLUS EQUIPMENT REPLACEMENT

		Est. Cost in US \$		
Item		Foreign	Local	
No.	Descriṕtion	Exchange	Currency	Total
		in US $\$$	in US $\$$	US $\$$

1. Equipment CIF Value
2. Import Duty on 1. (12\%)
3. Clearing + Local Transportation + Erection
4. Auxiliary Equipment + Accessories
5. Import Duty on 4.
6. Clearing + Local Transportation for 4.
7. Spares (5\%) Including Duty (12\%)
8. Electrical
9. Airconditioning

Subtotal Equipment Installed $10,763,000$
10. Construction $\mathbf{3 , 0 0 0} \mathbf{~ S q}$. Mtrs at 1,200 (Estimated)

Total Investment (Excluding Working Capital)
$10,153,000$

102,000

508,000
$10,763,000$
(1) Includes $\$ 500,000$ for turbine foundation.

Item

No. Description

1. Equipment + Accessories CIF Value 793,000
2. Import Duty on 1. (12\%)
3. Clearing + Local Transportation + Erection
4. Auxiliary Equipment + Accessories
5. Import Duty on 4.
6. Clearing + Locrll Transportation for 4.
7. Spares (5\%) Including Duty (12\%) 40,000
8. Electrical (Connection Only)
9. Airconditioning

Subtotal Equipment Installed
10. Construction

Total Investment (Excluding Working Capital)

Est. Cost in US \$

Foreign	Local	
Exchange	Currency	Total
in US $\$$	in US $\$$	US $\$$

793,000		793,000
	96,000	96,000
45,000	64,000	109,000
	Included in 1.	
	Included in 2.	
	Included in 3.	
40,000	4,800	44,800
	5,000	5,000
	None	

878,000
169,800
1,047,800

Nona(1)

169,800
1,047,800
(1) Machinery foundations included in item 3.

SUMMARY OF INVESTMENT PLAN - MATERIALS HANDLING MATERIALS HANDLING SYSTEM

Description	Est. Cost in US \$		
	Foreign Exchange in US \$	Local Currency in US \$	Total US \$
Materials Handling System			
(Includes \$220,000 Spare Parts)	2,420,000		2,420,000
Import Duty		290,400	290,400
Clearing + Local Transportation + Erection	20,000	40,000	60,000
,			
Total Investment	2,440,000	330,400	2,770,400

APPENDIX 12

SUMMARY OF INVESTMENT PLAN - FIRE PROTECTION NEW FIRE TRUCKS AND FIRE DETECTION EQUIPMENT

	Estimated Cost in US \$		
	Foraion		
	Exchange	Loced	Total
Two Fire Trucks Plus Fire Detection Equipment (Including Spare Parts at $\$ \mathbf{2 8 , 0 0 0}$)	344,000	-	344,000
Import Duty	-	44,700	44,700
Total Investment	344,000	44,700	388,700

PART TWO

DETAILED ANALYSES OF PROPOSED INVESTMENTS

TABLE OF CONTENTS

SECTION I

COTTON SPINNING

Section Page
A. Pres $n t$ Conditions and Market Potential 1
B. Present Equipment 4
C. Capacity Production Balance and Efficiency 6
Exhibit I - Cotton Yam Production and Consumption 8
D. Quality and Waste 10
E. Labor and Productivity 13
F. Current Cost 14
Exhibit II - Summary of Cost Structure, Cotton Yarn Manufacturing, Cost/Kilogram in Milliemes 15
G. Future Requirements and Development 18
Exhibit III - Summary of Actual and Projected Yarn Requirements 20
Exhibit IV - Summary of Yarn Requirements for Weaving Plan 22
H. Development Plan Analysis 23
I. Suggested Revised Development Plan in Cotton Spinning 26
Exhibit V - Cotton Spinning, Product Mix, Revised Developmeñí Plan 28
Exhibit VI - Summary of Yarn Requirements, Mill No. 7 30
Exhibit VII - New Yarn Mill Processing Equipment and Estimated Cost 31
Exhibit VIII - Detail and Cost of Recommended Auxiliary Equipment and Accessories, New Yarn Mill 33
Exhibit IX - Summary of Investment Plan - Yarn Mill No. 7, New Yarn Counts, Medium Counts 34
Exhibit X - Labor Complement, New Yarn Mill Project 36
Exhibit XI - Summary of Investment Evaluation - Cotton Spinning 40
J. Balance After Implementation 41
K. Technical Assistance 42

TABLE OF CONTENTS (CONTINUED)

Appendix Page
1 Equipment Summary - Yarn Manufacturing Plant, Mill No. 1 43
2 Equipment Summary - Yarn Manufacturing Plant, Mill No. 2 44
3 Equipment Summary - Yarn Manufacturing Plant, Mill No. 3 45
4 Equipment Summary - Yarn Manufacturing Plant, Mill No. 4 46
5 Equipment Summary - Yarn Manufacturing Plant, Mill No. 5 47
6 Equipment Summary - Yarn Manufacturing Plant, Mill No. 6 49
7 Mehalla Weaving Production Plan, Fabrics Sold in Greige 50
8 Mehalla Weaving Production Plan, Fabrics for Bleaching 51
9 Mehalla Weaving Production Plan, Fabrics for Printing 52
10 Mehalla Weaving Production Plan, Fabrics for Dyeing 53
11 Weaving Production, Miscellaneous Fabrics 54

SECTION I: COTTON SPINNING

A. PRESENT CONDITIONS AND MARKET POTENTILAL

The six existing cotton spinning units total close to 280,000 spindles. This represents one of the world's largest concentrations of cotton spinning capacity, in a single location. A summary of the equipment complement is listed in the appendices.

Basically, over 70% of the yarns produced are used in the Mehalla weaving mills while the remaining 30% are sold in the domestic and primarily in the export markets.

At an overall average yarn count of approximately Ne 21 , the daily production slightly tops the 100,000 kilograms. Actual yarn counts range from Ne 8 to Ne 160.

Most of the yarns are manufactured from Egyptian cotton. Blends of polyester and cotton are being processed on a small scale and with only relative success.

The major asset of Mehalla's cotton spinning operation is the use of Egyptian cotton, which has outstanding spinning characteristics and which is presently available at very low prices.

Three of the six existing spinning mills are processing coarser count yarns up to Ne 20 and averaging Ne 15. In volume, these three mills account for over $\mathbf{7 2 \%}$ of the production and they contribute to approximately 42% of Mehalla's cotton yarn exports.

The export yarns, in the coarse counts, range from Ne 8 to Ne 20 . Two-thirds of these yarns are plied and Ne $12 / 2$ seems to be the most popular count, representing one-third of the coarse count export volume. Apparently these export yarns are used mainly for industrial purposes, Western Europe being an important customer.

Coarser cotton yarns are the easiest to produce and countries such as India and Pakistan market these yarns at extremely competitive prices. However, Mehalla's coarser yarns apparently command a better price than average, particularly for industrial uses, because of their excellent strength characteristics.

These coarse carded cotton yarns are manufactured from Dandara or Giza 72 or Giza 66 fibers, whose Pressley index typically exceeds 93,000 pounds per square inch. In comparison, similar yarns in the United States would be manufactured from U.S. cotton averaging a Pressley index of 80,000 to 85,000 . As a result, Mehalla is marketing coarse cotton yarns with a break factor of 2,600 to 2,800 , whereas comparable good quality coarse carded yarns in the United States would not exceed 2,000 to 2,300 . The ability to produce premium yarns made from local raw materials represents a valuable asset for the Egyptian cotton industry in general and for Mehalla in particular.

Two of the six yarn mills produce medium counts, ranging from Ne 20 to Ne 50 and averaging Ne 31. One mill produces fine counts up to Ne 160 , averaging Ne 65 . The medium counts represent approximately 20%, while fine counts take only some 5% of the total production volume.

Although almost 45% of the production of fine counts is exported, mainly as plied yarns and apparently at very good prices, the future for these exports seems less promising than for medium and heavy count yarns. In 1975 fine yarns, Ne 50's and up, accounted for 14% of Mehalla's cotton yarn export volume in weight and over 30% in value.

The following factors may limit the future export potential of fine cotton yarns:

1. A considerable portion of fine cotton yarns has traditionally been shipped to the eastern communist bloc. Developments in political relationships between Egypt and these countries may adversely affect future trade relations, including Egyptian yarn exports.
2. Finer cotton yarns are practically all combed, high quality yarns, used in the manufacturing of high quality fabrics. The quality as well as the manufacturing cost of these end products depends largely on the quality of the yarns used. For this reason the manufacturers of fine quality goods prefer to have better control over the quality of their end products and they generally produce their own yarns. Usually they resort to imports only for limited quantities or to relieve temporary bottlenecks.

However, the Egyptian cotton spinuing industry is uniquely privileged to produce such fine yarns in that some of the locally grown varieties of cotton have the appropriate physical characieristics to produce fine and very fine yarns of high quality. As a matter of fact, most producers of fine cotton yarns all over the world use Egyptian cotton and for some varieties, such as the Giza 45, Egypt is practically the sole supplier. With only a few exceptions, cotton

fibers produced in most countries average approximately 1" to 1-1/4" in staple length, 3.8 to 4.8 in micronaire and 70,060 to 85,000 in Pressley index. As a comparison, the Giza 45 variety yields a fiber of 3.2 to 3.3 micronaire, $1-19 / 32$ " staple length and an average Pressley index of 109,000. Yarns produced from Giza 45 fiber typically attain a break factor in excess of 2,800. Another Egyptian cotton variety, frequently used in fine combed yarns, is the Menoufi with an average micronaire value of 3.6 to 3.8, staple length of 1-1/2" approximately and 100,000 Pressley index. Yarn counts up to 100 's can be spun from Menoufi fiber, although in that case the average number of fibers in the yarn section is not more than $\mathbf{4 5}$ and this would be considered the practical limit.

Whether or not it would be more advantageous for Egypt to market this precious fiber either as a raw material to foreign spinners or converted into high quality fine yarns depends on a number of factors which generally exceed the scope of the present study.

Based on historic data and considering the available low cost labor in Egypt, it would appear, taking into account possible future limitations, that the existing export potential for fine yarn offers an economically desirable opportunity for Egypt. As a result, it is considered worthwhile to endeavor preserving or expanding if possible the exports of fine yarns at least as long as present economic and social conditions prevail.

Recognizing the smaller contribution in the overall cotton yarn export volume by the finer yarns, 14% in weight compared to 44% for medium counts and 42% for heavy counts, and possible future limitations of the export potential toward certain areas and marketing problems in other areas, it would appear more desirable to focus on sales yarns in the medium and heary count ranges. .Medium and heavy yarns combined take 86% of the volume of cotton export yarns in weight and approximately 70% in value.

In recent years Mehalia's cotton yarn exports have steadily declined from 10,000 tons in 1968/1971 to slightly over 5,000 tons in 1975.

Gradual increase in weaving capacity and apparently deteriorating conditions of the spinning capacity are quoted as the main reasons for the decline of cotton yarn exports.

In some instances we were able to ascertain evidence of growing difficulty to comply with average standards of either machine productivity or quality. Typical examples are the poor mechanical conditior of the pickers in Mill 1 and of the Leesona rotoconer winders in Mills 1, 2 and 4. In other instances, excessive waste levels appear to contribute to higher yarn consumption. This is particularly apparent in warping, slashing, pirn winding and in some weave sheds.

Whatever reason explains the general down trend in export sales of yarns, it represents a serious loss in earnings potential for Mehalla and every possible effort should be directed toward correcting any factor which tends to limit yarn production. Beside generating valuable foreign exchange for Egypi, export of cotton yarns yields a substantial profit. Financial analyses indicate that total manufacturing cost in 1974/1975 of these yarns was less than 55% of the net sales price. This highly favorable situation is to a large extent the result of the low prices paid for the raw cotton. Under the present set of conditions, cotton yarn spinning is the most profitable of all Mehalla's activities and export of cotton yarns contributes significantly to the overall financial performance.

Based upon the 1974 figures, cotton yarn exports, in spite of some decline in volume (8,300 tons), still represent approximately 50% of the value of all exports or actually $£ E 10,254,000$ on a total of $£ E 21,304,000$ export value. In 1975 cotton yarn exports declined further to 5,200 tons and the value of export yarns $£ E 6,776,000$ represents only 41% of a total export value of $£ E 16,548,000$. The considerable reduction in the total volume of exports from 1974 to 1975 is due primarily to the decrease in yarn sales.

In 1974 cotton spinning contributed $\operatorname{EE} 6,193,590$ to an overall gross profit of £E $14,182,352$, which represents 43.6% of the total.

B. PRESENT EQUIPMENT'

The conventional spinning capacity is distributed over six plants and consists of 275,040 ring spinning spindles. In addition, a separate condenser plant produces waste yarns and consists of eight cards and 3,520 spindles.

A summary of the equipment complement in each of one of the six plants is listed in Appendices 1 through 6. Plants 1, 2 and 4, with a total of 130,572 spindles, are designed as coarse mills and produce carded yarns up to Ne 20 's averaging approximately Ne 15 . Mills 1 and 2 were built in 1948 and Mill 4 in 1958. The equipment in all three mills is characterized by slow speeds, particularly in carding, drawing and spinning and by small package sizes. As a result, the existing equipment is less productive and more labor intensive compared to more recent conventional yarn manufacturing equipment.

The productivity of the cards has been improved through the use of hard wire card clothing, but the conversion has not been completed yet and some cards still use the flexible wire type clothing. The performance of the spinning has also been improved through modernization of the drawing systems in 1962.

Considering the age of the machines and the problems or sometimes the impossibility of securing original spare parts, the equipment is generally in fair mochanical condition.

Over the years Mehalla has visibly given much attention to maintenance, but the unavailability of original spares appears to have been a serious handicap in the past. The two areas most affected in that respect are the pickers and the cone winders. The quality of locally manufactured spares is not always appropriate and one of the main problems seems to be the weakness of the castings. At the time of our visit, only two of the eight pickers in Mill 1 had the automatic doffing system in operative condition. As a result of this situation, it is difficult to control the weight of the initial yard of each picker lap, which in turn causes more rejects and consequently more waste.

The situation in winding is somewhat different. The parts required for these machines are more sophisticated and more difficult to produce locally, because of narrower tolerances and higher quality raw materials required. As a result of the unavailability of these parts, the rotoconers operate with excessively worn old parts which in turn affects production and quality. Excessive horizontal play of the spindle combined with worn winding drums does not allow proper construction of the cone, which ultimately results in slower machine speeds or causes waste at the next process because of difficulties in unwinding the improperly constructed package. Lack of pressure or irregular pressure on the cone makes it impossible to reach the full size and the proper density of the cone. This is a serious problem and adds to the risk of cones being damaged or collapsing during handling, transportation or subsequent unwinding.

Unequal sizes of cones cause problems in warping and increase the volume of creel ends which requires more rewinding and adds to the overall waste.

Most of these detrimental effects (with regard to production, quality and waste in the blow room in winding and in some other areas such as roving) could be substantially reduced and in some cases totally eliminated by using original spares. The investment in these spares is likely to be paid off in very short periods, at least in such areas as the blow room and the winding department through higher production, better quality and less waste.

In spite of these problems and consequently lower performance, the heavy yarn mills contribute considerably to the company's profits. For that reason (although these units are practically depreciated completely) we feel that it would be difficult to economically justify discarding one of the plants and replacing the lost capacity by a new mill. On the contrary, if additional yarn capacity is really needed (which would already seem desirable at least to
promote exports), we would prefer at this point in time and for as long as current conditions and cost structures prevail to add the necessary spinning capacity for exports and eventually for weaving without scrapping any of the existing spinning capacity.

Mills 3 and 6 produce medium counts carded and combed cotton and cotton polyester yarns (Mill 6 only). Mill 5 produces tine counts of combed cotton, mostly plied yarns.

Mill 3 was started in 1951 and modernized in 1961. Mill 5 started operations in 1958 and Mill 6 is the most recent and went on stream in 1970.

Polyester/cotton blends are spun in Mill 6 in limited quantities. Airconditioning is available but without refrigeration. As a result it is difficuit to maintain optimum conditions, particularly with regard to relative humidity, for efficient spinning of synthetic/cotton blends.

As for the heavy yarn mills, the equipment in the medium count and fine count mills is relatively well maintained except in a few areas where original parts have become a critical issue. This seems to be the case for the Whitin combers in Mill 5.

Basic speeds and machine productivity in Mills 3 and 5 are not significantly higher than in the older heavy yarn mill. In Mill 6, the most recent, basic productivity levels are much lower than those of comparable equipment, available at the time of purchase in 1969. Delivery speeds of the Textima drawing frames in Mill 6 are quoted 125 meters per minute while similar machines from different suppliers in 1969 would achieve 200 to 220 meters per minute. Equally, spinning spindles are operating at 9,000 RPM while we would expect 11,000 to 12,000 RPM maximum practical speeds on equipment of that vintage.

C. CAPACITY PRODUCIION BALANCE AND EFFICIENCY

The following table indicates the theoretical capacity of each mill and the theoretical yarn count for which its equipment is balanced:

Mill No.	Capacity Kg./Hour	Theoretical Average Ne	Remarks
1	1,080	15.76	
2	1,091	15.72	Coar._
3	333	30.60	Coarse
4	945	15.47	Medium
5	214	64.98	Coarse
6	502	31.00	Fine
Total	4,165	21.24	Medium

Based upon 325 working days, annual capacity would be 32,487 tons.
The condenser plant has a practical capacity of approximately 150 kilograms per hour, at an average count of Ne 7.8.

Including the condenser mill capacity, the overall spinning capacity attains 4,315 kilograms per hour or, on a three-shift basis and for 325 days annually, the rated capacity would be 33,657 tons per year.

In 1975 the yarn mills operated 354 days to produce enough yarns for sales and for the weaving, which operated on a 324 -day schedule. Total production of cotton yarns during 1975 equalled $34, C 05.2$ tons or $4,096.6$ kilograms average production per hour. This reflects an apparent utilization factor of the available capacity equal to 96.86% adjusted to take into account differences of actual yarn counts compared to theoretical.

Exhibit I indicates individual mill performances.

EXHIBIT I

COTTON YARN PRODUCTION AND CONSUMPTION - 1975

Mill	$\begin{aligned} & 1975 \\ & \text { Prod. } \end{aligned}$	1975 Avg.	Avg. Actual	Theoretical Belance		Apparent Utilization Factor
				For Avg.	At	Adj. To
		Prod.	Count	Count	Capacity	Theoretical
No.	Kg./Year	Kg./Hour	Ne	Ne	Kg./Hour	Avg. Ne

Production

1	$8,703,893$	$1,024.5$	15.90	15.76	1,080	.957
2	$9,097,873$	$1,070.8$	16.10	15.72	1,091	1.005
3	$2,546,153$	299.7	31.80	30.60	333	.935
4	$7,813,349$	919.7	15.40	15.47	945	.969
5	$1,792,275$	211.0	63.40	64.98	214	.962
6	$4,189,804$	493.2	31.70	31.00	502	1.005
Subtotal	$34,143,347$	$4,018.9$	21.46	21.24	4,165	.975
Condenser	661,829	77.9	7.80	7.80	150	.519
Grand Total	$34,805,176$	$4,096.8$	$21.19(3)$	20.77	4,315	.9686

| | Tons per | Averaga
 Count |
| :--- | ---: | :--- | :--- |
| Uses | Year | Ne |

(1) Single spun count based on 9976 projected mix.
(2) Estimated.
(3) Difference from average produced count may reflect different counts in carryove, inventories and also the fact that weaving averages are based on 76 projected mix.

Although no specific research was done in the scope of this study to determine precise reasons for the losses, it would appear from observations and discussions with management, that a significant part of the 3.14% apparent activity loss is due primarily to excessive waste and poor mechanical condition of some equipment. As indicated in Exhibit I, the low performance of the condenser mill (by the utilization factor of 51.9\%) is due to a large degree to voluntary stoppages of the machines at shift changes. The reasons for this practice hava not been analyzed but it seems that this situation developed many years ago and it may have been the result of overcapacity. The extent of the activity loss due to this phenomenon could not be determined, but based on observations and discussions with management it may account for $\mathbf{1 5 \%}$ to 25% of the unutilized capacity.

Exhibit I also indicates that Mills 2 and 6 showed the best performance in 1975. The latter is relatively new, while the former is one of the oldest with equipment in relatively poor condition and without adequate climatic controls. The overal utilization factor for the regular spinning mills, without the condenser mill, is $\mathbf{9 7 . 5 \%}$.

To some degree occasional unbalance may also have contributed to lower utilization. Eventual unbalances may occur for several reasons, mainly because of occasional changes in the product mix, differences in yields or qualities of the fibers processed, but also because of poor mechanical condition, resulting in lower speeds. This may have been the case in Mill 3 (which in 1975 showed the lowest performance) before the installation of the last autoconers.

In general, the spinning mills seem in fair balance for the presently processed product mixes and average yarn counts. The use of rigid card wire allows slightly higher doffer speeds, increasing the card capacity proportionally without affecting the quality of the carding process. As a yesult there is no danger for bottlenecks in carding at present and a substantial margin is available. The condition of the rotoconer winders is seriously deteriorated and affects their efficiency. However, the addition of autoconers in recent years has relieved the potential bottlensck in winding caused by the eroding mechanical condition of the original manual winders. The processes of drawing and roving generally do not present any real bottlenecks at the moment. How/ver, the condition of the drawing and roving equipment in the coarse yarn mills is poor and speeds are slow. It is doubtful that the production of the existins machines in drawing and roving could be increased without creating quality problems and generating additional waste. We believe that the only danger for unbalanced conditions in the cotton yarn spinuing is in the coarse yarn drawing and roving processes. If, in the future, any major shift towards heavier yarn counts occurs, drawing and roving may not be able to absorb the additional volume which would be required to fully operate the available spinning capacity.

Any project for additional spinning capacity should take into account this weakness and sufficient flexibility should be built in to eventually cope with or at least minimize the effects of such a situation.

D. QUALITY AND WASTE

As mentioned elsewhere, the main asset of the cotton spinning operation is the availability of high quality raw materials. Staple tength, strength and fineness of the Egyptian cotton represent for the local spinners a distinct advantage over almost any other cotton spinner in the world. This applies particularly to export yarns but it also means an opportunity to produce above average yarns for the local weaving mills.

Nep counts in carding range from 8 to 30 on the average per 100 square inches. Ovei 25 is considered high. Typically, the slower operating and older Platt cards achieve much better nep counts than the faster Textimas. For the longer and finer Menoufi fibers, the Textima cards typically produce twice as many neps as the Platt cards. For coarser and shorter fibers the difference is somewhat less.

Typical break factors are as follows:

60's Combed Weave Yarns from Giza 68 and Menoufi	-	2,850
30's Combed Weave Yarns from Ashmouni	-	2,350
24's Combed Knit Yarns from Ashmouni	-	2,225
14's Carded Weave Yarns from Dandara	-	2,050

Uster variation (U\%) is approximately average except in Mill 5 where average standards seem difficult to reach, probably because of the poor mechanical condition of the combers.

Quality control is done on a daily basis by a special laboratory within the spinning department and includes all conventional tests such as picker lap weight, sliver weights, nep counts, Uster variation of sliver and yarn, yarn strength and variation as well as machine settings and yields. In addition, a central quality control office monitors the activities of the departmental quality control laboratories, sets the standards, controls qualities of incoming materials and outgoing products. The central department keeps records and develops statistics.

Usually standards for quality and waste are based on accumulated past averages.

The effectiveness of the central quality control office on the day-to-day operation seems more theoretical than practical. However, the departmental quality control laboratory appears to be in control of the situation although a considerable amount of time is devoted to generating records and statistics which may not always achieve full effectiveness or sometimes duplicate other reports.

Based on the records of the quality control laboratory and on observations in the plants, the quality of the yarns produced is generally satisfactory in spite of some older equipment. Generally strength is very good, variation coefficients are good and appearance is above average. It is likely that lower grade raw materials could yield similar results if some of the equipment were updated or replaced with more modern technology.

Waste levels, as reported by the central quality control office, average as indicated in the following table:

Item	Average Maximum \%	Average Minimum \%	Average Standard \%
Card Sliver	1.20	. 40	1.00
Drawing Sliver	. 55	. 30	. 45
Roving Sliver	2.60	1.21	1.43
Subtotal Reworkable			2.88
Mill Sweepings	2.35	1.09	1.47
Flat Card Strips	4.00	3.00	3.50
Card Undercasing	2.00	1.50	1.75
Subtotal Soft Reworkable(1)			6.72
Spinning	. 77	. 55	. 87
Winding	2.33	. 83	1.10
Subtotal Hard Nonreworkable			1.77
Total Nonreworkable Average			8.49
Total Reworkable Average			2.88
Grand Total Average			11.37

(1) Not including noils from combing: $\mathbf{1 5 \%}$ to 20%.

Substantial variations occur from one mill to the other and from one period to the next. The general averages of strips and card undercasing are relatively low and reflect the overall cleanliness of the stock processed.

Practical averages seem to be higher and the recorded figures do not include rejected picker laps, which are returned to the blending operation immediately. On the other hand, waste at winding averages 1.1% which is substantially higher than expected reflecting probably the poor mechanical condition of the old manual winders.

The waste figures computed in the spinning department for December 1975, including noils from combing, indicate the following total percentages:

Actual
4.08\%
14.99%
Standard
Reworkable
Nonreworkable
12.89%

The excess waste above standard levels in late 1975 is ascribed by spinning management, at least partially, to the use of lower grades of cotton. It may partly also be explained by the continuous pressure to increase spinning production in order to meet weaving and export needs and by the poor mechanical condition of some equipment.

The reworkable waste is put into bags per category and sent to the condenser mill where it is blended with raw stock and noils to be converted into coarse yarns, Ne 7-10.

A part of the nonreworkable waste is used to produce hydrophylic material (surgical cotton wool) and the remaining portion is sold.

In summary, it would appear that substantial savings are possible through waste reduction. The key element to achieve lower waste levels seems to be the maintenance of some equipment with original spares, particularly winders. Better quality, particularly of combed yarns in Mill 5, would aiso appear possible through improving the mechanical condition of the Whitin co nbers by using original spares.

Waste handling and control procedures are elaborate and labor intensive. Their effectiveness may be improved and for that purpose we would suggest baling all waste per category by press instead of packing manually in bags.

E. ILABOR AND PRODUCIIVITY

The payroll in the spinning department included an average of 7,265 employees (up from 6,794 in 1971), although production was slightly down in volume but approximately equal when adjusted for the actual yarn counts produced.

Average overall labor productivity from opening through winding equals 1.69 kilograms per man-hour (down from 1.89 in 1971). These figures compare rather unfavorably with almost any country in the world. To illustrate this point, the following table indicates the averages in selected typical areas all over the world:

		Average Kilograms/
Country		Man-hour
Turkey	-	4.0
European Common Market	-	10.0
Hong Kong	-	4.5
Pakistan	-	2.5
United States	-	18.0
Tunisia	-	4.5

Although older machinery is responsible to some degree, the very low productivity achieved by Mehalla, in conparison with most other countries, is mainly the result of excess staffing. The effects of overstaffing at present are partly offset by equally very low wage rates. However, wage increases are bound to occur in the future and the intensity of the increases will probably be in proportion with the degree of economic expansion. The latter seems to be very rapid, if present tendencies prevail. As a result it would appear doubtful that Mehalla can maintain much longer the present profitable cost structure in cotton spinning on the basis of new technology alone.

In 1974 profits on yarn sales totaled in excess of £E 6 million, while labor cost equalled close to £E 2.7 million. If wages were doubled, much of the present profits would be wiped out and the profitability of the cotton spinning (which is now the company's main asset) would be seriously in trouble. If we consider that cotton prices are kept at artificially low levels, it is easy to understand that labor productivity may well be the most significant factor in years to come.

The average wage rate increase for the last four years equals approximately 9% per year. The accelerated pace of development of the Egyptian economy, as well as the worldwide inflationary trend since 1974, beside the fact that Egyptian wage rates are very low compared to most other countries, may be
the most determining factors in dramatically lifting wage rates during the next few years. A 20% por annum average increase would result in doubling the present payroll in less than four more years. This means that even before the benefits of new equipment would be in full effect increased labor cost could dramatically reduce the profitability of the company if no action is undertaken to improve labor productivity. Under the present circumstances, it would appear difficult to dismiss any workers, but hiring could be significantly reduced or even completely stopped. In case no more hiring would be considered and the present rate of turnover, although low and apparently less than 2%, would continue, increased wages could be offset to a lenge extent by increased productivity.

In summary, labor utilization, productivity and wage rates will be determining factors in the company's overall profitability.

New equipment in itself will improve profit potential bui without better labor productivity, it is doubtful that the company could remain profisable in the long run.

Comparative labor productivity will bs discussed further in connection with the cost structure in subsection F.

The present labor force in cotton spinning, including 7,265 employees, represents $\mathbf{2 0 . 5 \%}$ of total labor employment of the complex.

F. CURRENT COST

Based upon 1974 actual figures, the cost structure of the cotton spinning is broken down in Exhibit II.

The average total manufacturing cost of all yarns spun in 1974 equals $£ \mathrm{E} .516$ per kilogram of which $£ E .365$ or 70.7% is represented by raw materials and £E .077 or 14.9% by labor.

Further analysis indicates (as illustrated in Exhibit II) that the cost structure is quite different depending on the yarn count and also on other factors, some of which may increasingly affect the companje's ;rofitability in the future.

Fiber cost obviously differs greatly depending on the yarn count and the finer the yarn count, the more expensive becomes the fiber component. The average fiber cost per kilogram for coarse yarns equals $£ E .351$, for medium counts £E .385, and for fine counts $£ \mathrm{E} .487$ per kilogram of yarn.

EXHIBIT II
SUMMARY OF COST STRUCTURE - COTTON YARN MANUFACTURING
COST/KILOGRAM IN MILLIEMES

Although labor rates are low, the labor component is not negligible and its impact on total manufacturing cost is considerably higher for medium and especially for fine counts.

The average labor cost for all mills equals $£ E .077$ per kilogram of yarn which represents 14.9% of the total manufacturing cost. However, for fine counts the labor cost per kilogram is more than three times higher and represents 25.0% of total manufacturing cost.

For medium count yarns two distinctly different situations occur in the two mills which produce these counts. Mill 3, except for winding, is equipped with older, more labor intensive machinery, while Mill 6 is more modern and the basic technology in this mill (although perhaps not the best available) is far less labor intensive inainly because of higher speeds and larger packages. Labor cost in Mill 3, the older operation, is almost twice as high per kilogram yarn produced as in the more modern Mill 6; £E. 137 per kilogram in Mill 3, compared to $£ \mathrm{EE} .072$ per kilogram in Mill 6. In the older mill, labor cost represents 21.2% of total manufacturing cost while in the more modern mill it only represents 12.4%

With regard to the profitability of the medium count mills, increasing labor rates will have a more detrimental effect in the older mill than in the more modern one. It also appears from Exhibit II that the future profit potential, in the perspective of growing labor cost, is much more vulnerable in the case of the older medium yarn count mill than in the coarse count mills, in which labor cost is less than half and only 13.3% of total manufacturing cost.

To illustrate this point, let us assume for the purpose of comparison, that labor rates double. In the coarse mills and the modern medium count mill, the total manufacturing cost would increase 12% to 13%. In the older medium count mill, the additional labor cost would represent 21.2% of the present total manufacturing cost which is now already 11% higher than in the more modern mill.

As a result, we would recommend that these cost aspects and the higher vulnerability of Mill 3 be given serious consideration in planning of future modernization or expansion.

Other cost factors (such as spare parts and maintenance) also contribute to higher cost in the older mill. Only two areas achieve more advantageous cost figures in the case of the older medium count mill - depreciation and power consumption. The higher investment in more modern equipment logically requires proportionally higher depreciation. In this case, the depreciation in the more modern mill is approximately 50% higher and equals $£ E .045$ compared to EE .031 per kilogram. Power consumption is slightly higher, EE .007 per kilogram of yarn produced, which is the effect of faster, more energy consuming machinery.

However the additional depreciation and power cost does not offset the lower labor cost in the more modern mill and the net gain in total manufacturing cost (compared to the older mill) is approximately 11%.

For the same yarms in the United States, total present labor cost, including fringes for yarn manufacturing from opening through winding in a conventional, modern ring spinning operation, would typically amount to $\$.22$ per kilogram, based on an average yarn count of Ne 21. This compares with £E .077 or .20 per kilogram at Mehalla in 1974. Labor cost in 1975 increased approximately 9.2%. Present labor cost in Mehalla would average $\$ 21.84$, or would be approximately equal to present U.S. labor cost. Basically, in Mehalla labor rates are ten times lower than in the U.S., but labor productivity is equally ten times lower than the U.S. average. However, to make a meaningful and fair comparison of labor productivity, it should be based on similar equipment in both cases. This is rather hypothetical since some of the older equipment used at Mehalla is not used any more in the United States. Because of a very competitive market and high wages in the U.S., the equipment must produce at an average high level of labor productivity, otherwise manufacturing cost would be excessive. As a result, nonconverted cards, small packages and low speeds, as in drawing at Mehalla, could not be maintained in operation in a profitable mill under U.S. conditions.

In any case, under the present set of circumstances Mehalla's labor cost on a per kilogram basis is approximately equal to the U.S. average. As we demonstrated (in medium count spinning), one of the two mills is much more labor intensive and does not achieve average labor cost standards. As wages are expected to rise at an accelerated pace, the contribution to overhead and profits of that particular mill (Mill 3) will decline much faster than in the case of the other mills, including the coarse count mills (1, 2 and 4).

G. FUTURE REQUIREMENTS AND DEVELOPMENT

The present situation with regard to cotton spinning is characterized by the following main features and constraints:

1. Available spinning capacity was utilized in $1975 \mathrm{a}^{\prime}$ approximately 97%. More yarns are needed for exports and for futare increasing weaving requirements.
2. The spinning mills are in reasonable balance for the present product mix. Even if some minor changes of this product mix occur, the effect on the overall balance is likely to be neutralized, because of the great variety of styles and the size of the operation. However, any major shift towards heavier yarns would result in bottlenecks in the drawing and roving processes but not in carding. This is not likely to occur for domestic needs of yarn, either sales or weaving yarns. A shift to coarser yarns may happen due to shanging export requirements.
3. Although theoretically Mill 6 has capacity to produce the increasingly popular polyester/cotton blends, it would appear that the real capability to produce these yarns at the desir d quality levels is limited mainly by the following factors:
a. Insufficient control of relative humidity - no refrigeration.
b. Inexperience in the marketing and processing of quality blends.
c. Lower quality performance of the equipment in certain areas such as carding and drawing.

The real strength of Mehalla's spinning operation is the ability to produce high quality cotton yarns from the local raw materials. However, we recognize the need to be prepared for spinning of quality blends with polyester. In addition, the economics of spinning polyester/cotton blends at Mehalla do not appear as attractive as spinning of cotton yarns. However, that condition may evolve when Egypt produces the polyester fiber locally which is planned for the near future.

1. Labor productivity is extremely low and wages continue to rise. Both these elements represent a serious threat to the future profitability of the cotton spinning operation, which at present makes significant contributions to Mehalla's profits.
2. For the time being, all six spinning mills are profitable and contribute to the overall performance. However, in the perspective of increasing labor cost, some equipment will become obsolete in the future. A master plan should be prepered outlining objectives, timing and cost for future modernization and for expansion.

In summary, the equipment (relatively modern in some plants) is generally of older concept and of less productive technology. Under the present configuration of raw material cost, labor cost and depreciation schedules, the spinning mills are very profitable. However, the present favorable situation is likely to erode in the future, primarily because of increased labor cost and possibly because of increased fiber cost.

On the other hand, the present demand for yarn is strong and likely to continue along the same lines in the foreseeable future. Raw material consumption is expanding into the synthetic fiber area and prospects are real for further growth. It is difficult to estimate the future polyester consumption in a given time frame, but gradual increase is expected over the next few years and particularly when local production of polyester comes on stream.

Based on projections of future needs in weaving as well as for domestic and export sales, Exhibit III summarizes the future yarn requirements.

EXHIBIT III
 SUMMARY OF ACTUAL AND PROJECTED YARN REQUIREMENTS(1)

Year		Yarn Requirements - Tons/Year				
	Exp. Million Meters/Year Cotton Fabrics	Cotton Weaving(4)	Other Internal Uses(2)	Export Sales	Domestic Sales	Total
1975	140.5	24,835	300	5,453	4,214	34,802
1976	148.5	26,249	300	7,000	1,650	35,199
1980(3)	163.0	28,812	350	12,000	1,000	42,162

Projected figures are:

(1) Based upon unchanged product mixes and same yields as 1975.
(2) Mainly blanket weaving Nie 20/2.
(3) After completion of project.
(4) Based upon apparent overall yield of 95.36% for weaving yarns in 1975.

As mentioned earlier, yarn requirements are calculated on the assumption of constant product mix. Based on past performance and considering the wide variety of styles as well as the size of the operation, it does not seem likely that major shifts would occur in the near iuture, except perhaps in the use of polyester fiber. If adequate spinning capacity is made available, an increasing proportion of polyester would not materially affect the weaving operation, nor the balance between weaving and spinning. Therefore, we ieel confident that the production projections are realistic and can be used as e basis for projections and estimates of equipment requirements with a reasonably small chance of error.

Exhibit IV summarizes the yarn requirements for weaving as per Mehalla's weaving plan for 1976 which is based on the same product mix as 1975, but the volume is somewhat larger. The yarn quantities in the summary of Exhibit IV have been converted into yarn requirements at winding by applying a factor of .9536, which is the overall yield factor from yarn to fabric in 1975. These converted figures are used in Exhibit III. The summary of Exhibit IV is extracted from the detailed spread sheets attached in Appendices 7 through 11.

EXHIBIT IV

SUMMARY ME HALLA YARN REQUIREMENTS
FOR WEAVING PLAN - 1976

Sec. Designation
I. Fabrics Sold in Greige
II. Fabrics for Bleaching

94,860

184,080

103,920

12,030(1) $1,080 \quad 1,085 \quad 2,165$
Va. Miscellaneous Fabrics

Subtotal
\b. Towels and Napkins

Total $456,840 \quad 38,917 \quad 38,105 \quad \mathbf{7 7 , 0 2 2}$
(1) 1,860 meters of the 12,030 metar/day have wool warp yarns. These fabrics may be considered for weaving in the wool mill in future projections; present projections in cotton mill used only for calculation of constant product mix.

Mehalla's projections for weaving have been established at 148.5 million linear meters in 1976 and 163.0 million meters in 1980. As indicated in Exhibit III, we have further anticipated 12,000 tons per year of yarns for export in 1980, which is the objective Mehalla considers equivalent to the maximum potential.

Projections of domestic sales yarns have been scaled down to 1,000 tons per year by 1980, on the basis that yarns appear more profitable to be sold as fabric rather than as yarn, at least in the free domestic market where the domand for fabrics is estimated to remain strong and prices attractive.

As a result, the yarn requirements for 1976 are set at $\mathbf{3 5 , 1 9 9}$ tons, slightly higher than the 34,802 actually used in 1975 . For 1980, the requirements would reach 42,162 tons per year which is approximately 3,500 tons more than Mehalla's projections based upon the original expansion plan. In the next paragraph, we will analyze the expansion plan and examine how to implement these objectives in the most economical way.

H. DEVELOPMENT PLAN ANALYSIS

Effective management of a large textile complex (as Mehalla) is a very complicated equation. Optimum utilization and proper upkeep of the available capacity and production facilities is one of the key functions to maximize profits. On one hand, management has to constantly scrutinize the markets, domestic and Ioreign and anticipate shifts and changes in product mixes and styles. On the other hand, the production facilities have to remain adequate for the desired styles and qualities, while maintaining potential to generate reasonable profit margins.

In order to achieve these goals, we believe that it is indispensable to establish a master plan of investrents based upon realistic projections of volume, cash flow, profit margins, social objectives and harmonious development of the company for at least 10 years ahead.

If the presently considered investments are not or cannct be integrated in a realistic long-range development plan, they will fail to achieve their optimum potential, whatever the present outlook for immediate benefits may be. We therefore have studied in as much detail as possible, considering the limited time frame of this evaluation, the basic strategy of each one of the requested investments and also of some additional ones, as commented upon in other parts of this report. When the final decisions are made, we suggest that Mehalla examine these strategies and adopt a master plan for investments, based upon these strategies or revised ones, recognizing that investment decisions are long-range bearing and must be compatible with the best long-range interests of the company, of the employees and of the country.

With regard to the cotton spinning, Mehalla's original plan consists of building new capacity for approximately 13,000 tons of coarse yarns per year and discarding Mill 2 which produced approximately 9,100 tons of coarse yarns at full capacity in 1975. The net result would be a gain of 3,900 tons of annual capacity, based on the present annual working schedule of 354 days. The product mix in cotton yarn production would shift slightly to the coarser yarns and the average count would decrease to approximately 19.21 down from 21.2.

1. It is not clear that the shift to a coarser average would balance the actual yarn requirements, even considering doubling last year's export sales from 5,000 to 10,000 tons and assuming that the 5,000 tons additional export yarns would all be 12's counts. In the latter extreme case, the average count required for weaving and export sales combined would still be slightly finer and be equal to Ne 19.7 approximately.
2. The estimated investment required in equipment would amount to $\$ 13,560,300$ according to the projections in Table 1 of the original A.I.D. request. The incremental capacity would only be 3,900 tons per year. As a result, the investment required per ton incremental capacity would equal $\$ 3,477$. Considering that Mill 2 is still proftable, discarding at this point in time would seem premature and could not be justified economically.

If the capacity of Mill 2 is further used and the new mill is built in addition, the cost in equipment per ton incremental capacity would decrease from $\$ 3,477$ to $\$ 1,045$. For a coarse yarn mill, the latter would be a much more economical proposition.
3. Keeping Mill 2 operative and building additional caparity, as suggested in the preceding point, for more coarse yarns would shift the average yarn count further to the coarse side. The total capacity would equal $35,000+13,000=48,000$ tons per year and the average count would also be in the order of Ne 19.70 . In an extreme favorable case, assuming the need for 7,000 tons additional export yarns of mainly 12 's average, the actually produced average yarn count of Ne 19.70 would be acceptable. According to Mehalla's estimates, the maximum export potential is 12,000 tons per year and this limit would be reached by adding 7,000 tons to the present 5,000 tons of exports.

Exhibit III indicates that by 1980 , beside 12,000 tons for export, another 28,812 tons per year of yarns would be required for weaving; and total yarn requirements would then equal 42,162 tons per year. To absorb another 5,900 tons, if spinning capacity is allowed to increase to 48,000 tons per year and yarn sales potential does not exceed 12,000 tons, weaving capacity would have to be raised from 163 million to 196 million
linear meters per year approximately, or 33 million meters per year extra weaving capacity would have to be added. This extra incremental capacity would require approximately 1,000 new looms in addition to the 996 presently planned new looms necessary to meet the production objectives of 163 million meters per year by 1980 (assuming also discarding of an equal number, 996, old looms).

We do not believe that it would be wise to increase reaving capacity in such a large proportion within a rather short time frame. Adding looms would require new construction, while the existing buildings are generally in good condition and sooner or later more than 40% of the present weaving equipment (which is over 20 years of age) will have to be replaced.

When the replacement occurs, the available construction (eventually with some minor adjustments and updating of airconditioning installations) would be perfectly convenient for new weaving equipment. However, the same existing floor space would be suitabie for more weaving capacity, up from 60% to 100% more than the presently installed capacity, depending on which technology would be selected. To be logical, weaving expansion should be balanced with proportionally increased finishing capacity as well as with spinning capacity. Also, the market should be able to absorb the additional production.

For all these reasons, the target of 193 million meters to balance 48,000 of yarns seems excessive at this time and would require additional investment in new construction. This would be less desirable, considering that most of the existing buildings may be used at very low additional cost to install 60% to 100% more weaving capacity than presently in operation in a not too distant future.

In summary, the alternative approach to keep Mill 2 in operation and add 50,000 new spindles for 13,000 tons per year additional coarse yarns does not seem desirable because excessive investments would be required in weaving and finishing initially, while an opportunity exists to create additional woaving capacity at lower cost in existing buildings, whenever the present equipment has reached the limit of its profitable lifetime. Considering approximately 40% of the existing equipment is over 20 years old and wages are increasing rapidly, some equipment could reach that limit in a foreseeable future.

In this case, a master plan for future development would be desirable to warrant harmonious growth compatible with market demands, availability of capital as well as with social and other objectives of the company.

In conclusion, we would not recommend the construction of a new coarse yarn mill at this time and we would equally not consider discarding an existing profitable mill.

In order to provide the 42,162 tons of yarns required for the overall projections as indicated in Exhibit III, we would recommend the construction of a medium count mill, approximately 6,000 tons per year capacity, capable of producing carded and combed yarns, cotton and polyester blends. If the average yarn count of the new mill equals Ne 30 , the overall average count would shift slightly from Ne 21.2 to Ne 22.70 ; the shift towards finer yarns would be more desirable than towards coarser yarns.

If some volume of polyester/cotton blends is to be considered, finer yarns will obviously prevail in that portion. On the other hand, a shift of export yarns toward coarser counts is still a strong possibility. For that reason, we believe the new mill should have enough flexibility to quickly shift to coarser yarns if the need arises.

To build in the necessary flexibility for that purpose, it would be sufficient to overequip slightly the carding, drawing and roving sections, bearing in mind that the cards could run at higher speeds when shorter, coarser fibers are processed for coarser average yarn counts.

In the next subsection, we will devoiop the idea of a new medium count yarn mill and examine the implications of such a decision on the overall spinning operation.

I. SUGGESTED REVISED DEVELOPMENT PLAN IN COTTON SPINNING

1. Scope

As a result of the analysis in previous paragraphs, we have concluded that a new medium count yarn mill is the most economically viable proposition for present expansion, while all other yarn mills axe kept in operation as long as they are profitable.

The previous analysis also indicates that priorities in future rehabilitation or modernization of the equipment of cotton spinning may have to be shifted to the older medium count Mill 3, rather than to one of the coarse count mills because the profit potential of the older medium count yarn mill appears considerably more vulnerable to future increased labor cost than any other mill in the complex.

Exhibit V summarizes a typical revised product mix for a medium count yarn mill including, at the lower end of the spectrum, some 24's carded yarns which are popular exports for knitting and at the other end, some 40^{\prime} s, 50 's and 60 's, poly/cotton blends, to be plied and converted into sewing threads.

The product mix of the new spinning project, as outlined in Exhibit V, is based on projections of practical requirements, including polyester/cotton yarns. The volume of the new spinning plant approximately balances future needs and is adequate to accommodate the available floor space of approximately 22,800 square meters which corresponds to two adjacent blocks right behind spinning Mill 6. The new project is called Mill 7.

Approximately one-third of the 707 kilograms per hour scheduled production is composed of polyester/cotton blended yarns, while 300 kilograms per hour or 42% are carded cotton yarns and 180 kilograms per hour or 25% are combed cotton yarns.

EXHIBIT V
 COTTON SPINNING - PRODUCT MIX - REVISED DEVELOPMENT PLAN

Ne	End Use	Kg./Hour Required	Materials	Twist Factor	Estimated Spindle RPM	M/Min	Expected Efficien. \%	Expected Gr. per Sp. Hour(1)	Spindies Required
24	Weaving/Knitt.	150	Carded Cottion	3.9	11,000	14.61	90	18.66	8,039
24	Weaving/Knitt.	100	Poly/Cotton	3.9	10,500	13.95	90	17.82	5,612
30	Weaving/Knitt.	150	Carded Cotton	3.9	12,000	14.26	90	14.57	10,295
30	Weaving/Knitt.	50	Poly/Cotton	3.9	11,500	13.66	90	13.95	3,584
30	Weaving/Knitt.	30	Cembed Cotton	3.8	12,000	14.63	91	15.11	1,985
40	Weaving/Knitt.	150	Combed Cotton	3.8	12,500	13.20	92	10.34	14,507
50	Weaving/Knitt.	35	Poly/Cotton	3.8	12,000	11.33	93	7.18	4,875
40	Sewing Thread	14	Poly/Corton	3.4	12,000	14.16	92	11.10	1,26;
50	Sewing Thread	14	Poly/Cotton	3.4	12,000	12.67	93	8.03	1,743
60	Sewing Thread	14	Poly/Cotton	3.4	12,500	12.05	94	6.43	2,177
		707		-					54,078

(1) Including average estimated contraction of 3.5\%.

The overall average yarn count of the suggested new Mill 7 is Ne 32.18 , while the overall average yarn count of the produced yarns, without the sewing yarns, equals Ne 31.05 (as indicated in Exhibit VI).

Exhibit VI summarizes the yarn requirements for the program of Mill 7.
One additional feature of the projected new spinning capacity is the flexibility to produce a wide range of yarns, eventually different from the scheduled average count. It is indeed possible to design the necessary equipment complement to accommodate the available space and to allow sufficiant flexibility for considerable deviation from the projected average count, in case the need for such deviation arises.

As indicatei' in Exhibit V, a total of 54,078 spindles would be required to produce 707 kilograms of the given product mix per hour. If, for any reasion, the yarn requirements would shift towants heavier counts, more prodiction would be necessary in the preparation. The suggested equipment complement, as indicated in Exhibit VII, provides the necessary flexibility to eventually allow a significant shift of the average yarn count without seriously affecting the balance.

EXHIBIT VI

SUMMARY OF YARN REQUIREMENTS - MILL NO. 7

Type of Yarn	Kg./Hour Required						Weaving 8 Knitting Total Kg.	Sewing Thread Total Kg.
	$\begin{aligned} & \hline \mathrm{Ne} \\ & 24 \end{aligned}$	$\begin{aligned} & \mathrm{Ne} \\ & \mathbf{3 0} \end{aligned}$	$\begin{aligned} & \mathrm{Ne} \\ & 40 \end{aligned}$	$\begin{aligned} & \text { Ne } \\ & 50 \end{aligned}$	$\begin{aligned} & \mathrm{Ne} \\ & 60 \end{aligned}$	Total		
Weaving/Knitting								
- Carded Cotton	150	160				300	300	
- Combed Cotton		30	150			180	180	
- Poly/Cotton	100	50		35		185	185	
Sewing Thread								
- Poly/Cotton			14	14	14	42		42
Totals	250	230	164	49	14	707	665	42
Average Yam Count $=$ Ne 32.18 Overall				(Ne 31.05 Without Sewing Thread)				
$250 \times 24=6,000$						0 x	$24=6,0$	
230×30	6,900					0x	$30=6,900$	
164×40	6,560					0x	$0=6,000$	
$49 \times 50$$14 \times 50$	2,450					$5 \times$	$0=1,7$	
	840							
$707 \times 32.18=22,750$						5 $\times 31$.	$5=20,6$	

EXHIBIT VII

NEW YARN MILL PROCESSING EQUIPMENT
AND ESTIMATED COST

Process	Estimated Kg./Hour Req'd.	Est. Number Required			FOB Cost/ Machine \$	Total FOB Cost \$
		Machines	Deliveries/ Machine	Total Deliveries		
Opening	750	2 (1)			\$473,000	\$ 946,000
	170	1 (2)			140,000	140,000
Carding	845	48	1	48	46,000	2,208,000
Predrawing	350	3	2	6	29,500	88,500
Lap Forming		3	1	3	36,600	109,800
Combing	,	16	2	32	32,500	520,000
Blending	245	3	2	6	22,500	67,500
First Drawing	735	7	2	14	29,500	206,500
Second Drawing ,		7	2	14	22,500	157,500
Roving		12	96	1,152	49,000	588,000
Spinning	707	123	440	54,120	48,400	5,953,200
Winding		23	50	1,150 ${ }^{\circ}$	110,000	2,53u, 000
Total Yarn Mfg. - FOB \$						\$13,515,000
Seaworthy Packing and Freight and Insurance						1,622,000
Total CIF						\$15,137,000
(1) Lines cotton. (2) Line p olyester.						

Assuming, as an example, that for some reason all yarns to be spun are 24's, in that case the spinning capacity would rise to approximately one ton per hour. It would still be possible to prod uce the required open stock with the three available opening lines and if all stock were cotton, the two cotton lines will eventually suffice, assuming relatively clean stock is processed.

In the total number of 48 cards is included a portion which is based on lower speeds to accommodate finer micronaires and longer staple. In addition, an overall allowance in capacity of 10% has been added. Sliver weights at the drawing and roving processes could be increased to accommodate higher production of coarser yarns, if the need arises.

In summary, the suggested equipment complement is designed and is suitable to balance future projections in yarn requirements to accommodate eventual fluctuations in average yarn counts and also to produce polyester/cotton yarns.
2. Cost

Exhibit VIII summarives suggested auxiliary equipment and accessories. The estimated CIF cost of processing equipment, auxiliary equipment and accessories is listed in Exhibits VII and VIII, and totals $\$ 16,879,000$. A summary of the investment plan is listed in Exhibit IX. The total investment required, including construction, is estimated at $\$ 28,314,500$; $\$ 20,423,000$ of this total is foreign exchange including all equipment, freight, erection and spares.

Based upon the foreign exchange portion, which is basically the installed cost of all equipment, the investment per annual ton incremental capacity in cotton spinning equipment amounts to $\$ 3,403$. The investmert per annual ton incremental capacity for a heavy yarn mill would be substantailly less and in the order of $\$ 1,200$ (freight erection included). However, the medium yarn count mill has a potential and flexibility to satisfy Mehalla's yarn requirements much more effectively than a coarse yarn mill.
EXHIBIT VIIIDETAIL. AND COST OF
RECOMMENDED AUXILIARY EQUIPMENT ANDACCESSORIES - NEW YARN MILL
Estimated
FOB Cost
Auxiliary Equipinent (Including Spares)

1. Waste Collecting for Blow Room and Card Room \$ 56,000
2. Baling Press for Waste 26,000
3. Scales 4,500
4. Card Maintenance Shop and Tooling 18,000
5. Spinning Frame Maintenance Shop and Tooling 16,000
6. Two Lift Teucks 36,000
7. Laboratory Equipment and Instruments 62,000
8. Handling and Transportation Equipment 14,000
9. Compressors and Cleaning Equipment 32,500
10. Traveling Overhead Cleaners for Spinning 148,000
11. Thermosetting for Blended Yarns 220,000
Subtotal FOB \$ $\$ 633,000$
Accessories
12. Cans for Carding, Drawing, Roving $\$ 210,000$
13. Bobbins for Spinning, Roving, Combing and Winding 460,000
14. Tools and Initial Supplies of Card Wire, Cots, Aprons, Travelers, Tape, Small Mechanical and Electrical Spares 252,000
Subtotal FOB \$ \$1,555,000
Seaworthy Packing and Freight and Insurance \$ 187,000
15. Grand Total CIF \$1,742,000

EXHIBITIX
 SUMMARY OF INVESTMENT PLAN - YARN MILL NO. 7 NEW YARN COUNTS - MEDIUM COUNTS - 54,000 SPINDLES

$\begin{aligned} & \text { Item } \\ & \text { No. } \end{aligned}$	Dascription	Estimated Costs		
		Foreign Exchange in US \$	Local Currency in US \$	Total US \$
		-		
1.	Processing Equipment CIF Value	\$15,137,000	-	\$15,137,000
2.	Import Duty on 1. (12\%)		\$1,816,500	1,816,500
3.	Clearing + Local Transportation + Erection	152,000	152,000	304,000
4.	Auxiliary Equipment + Accessories CIF Value	1,742,000		1,742,000
5.	Import Duty on 4.		205,000	209,000
6.	Clearing + Local Transportation for 4.		9,000	9,000
7.	Spares (5\%), Including Duty (12\%)	757,000	91,000	848,000
8.	Electrical Substation, CIF + Distribution + Installation + Duty	785,000	200,000	985,000
9.	Airconditioning Equipment, CIF + Installation + Duty	1,850,000	380,000	2,230,000
	Subtotal Equipment Installed	\$20,423,000	\$2,857,500	\$23,280,500
10.	Construction 22,880 Sq. Meters at 220		5,034,000	5,034,000
-	Total Investment (Excluding Working Capital)	\$20,423,000	\$7,891,500	\$28,314,500

3. Expected Performance

A new modern mill would have potential to achieve better productivity and higher quality than either one of the existing medium ciunt mills. Larger packages and chute fed cards would also account for lower waste levels.

A most significant savings potential exists in labor cost. In order to illustrate this point, we have developed in Exhibit X the labor complement required to operate the new mill. Three different levels of productivity have been considered:
a. No improvement in compariscon with the existing situation. In that case, it is assumed that the workers' activity is equal to the present average in Mills 3 and 6. As indicated in the first column of Exhibit X, 846 workers would be necessary. Overall labor productivity would be improved in comparison with Mills 3 and 6 because of faster more automated machinery and less handling required.
b. Target level. The level of productivity Mehalla should strive to achieve and which we feel is attainable through sound engineering without putting unnecessary strain on the system. In that case, 499 workers would be required.
c. Ideal level. Productivity level achievable through sound engineering and substantial improvement in motivation and reduction of present absenteeism rates. At this level, which compares to somewhat less than half the U.S. productivity, 403 workers would be required.

```
EXHIBIT X LABOR COMPLEMENT' NEW YARN MILL PROJECT (MEDIUM COUNTS - 54,000 SPINDLES)
```

Process	Staffing Required for Three Shifts At Levels of Labor Productivity		
	Prasent	Targat	Ideal
Direct and Indirect Variable Labor			
Opening	32	15	
Carding	17	10	20
Combing	59	36	20
Drawing	64	36	15
Roving	66	28	16
Spinning	262	181	163
Winding	159	107	100
Subtotal	659	413	334
Indirect Fixed Labor			
Opening	20	8	
Carding	27	13	. 15
Combing	21	10	7
Drawing	16	6	4
Roving	12	8	6
Spinning	30	14	12
Winding	35	12	10
Clerks	3	3	3
Utility Workers	6	2	2
General	17	10	10
Subtotal	187	86	69
Grand Total	846	499	403
Overall Labor Pro'suctivity			
Kg./Man-Hour	2.51	4.25	5.26

Exhibit II indicates that actual labor cost per kilogram in the two comparable existing Mills 3 and 6, producing similar yarns of the same average count, is as follows:

Mill No. 3	-	137 Mill./Kg.
Mill No. 6	-	072 Mill./Kg.

The figures in Exhibit II are based on 1974 cost and performance. To make the comparison meaningful, we will use the same hasic average labor cost, including fringes, of EE 379 per year and per worker.

At the different productivity levels, labor cost in the new plant would be as follows:

At Present Level of Labor Activity	-	053 Mill./Kg.
At Target Productivity	-	$031 \mathrm{Mill} . / \mathrm{Kg}$.
At Ideal Productivity Level	-	$025 \mathrm{Mill} . / \mathrm{Kg}$.

Assuming the target level of productivity would be achieved, the net gain in labor cost (compared with the best of the existing mills) would be 041 milliemes per kilogram, which is a saving of more than 58% of the present labor cost.

Spare parts and maintenance cost would also be less and could be as low as 011 milliemes per kilogram of yarn produced, as compared to 024 in Mill 6.

Power consumption is estimated somewhat higher than for Mill 6, including refrigeration. Depending on actual consumption of the airconditioning installation, the power cost is estimated at 038 to 040 milliemes per kilogram as compared to 034 in Mill 6.

Depreciation at the present rates of 6% for equipment and 2.5% for construction would increase from 045 milliemes per kilogram to 096 milliemes per kilogram, or a net loss of 051 milliemes per kilogram, compared to Mill 6. This increase in depreciation charges would be totally offset by lower labor cost and less maintenance expenses.

The actual overall manufacturing cost in the new mill is expected to be somewhat lower than in Mill 6, considering all cost factors, including lower waste levels. However, the new mill would offer other intangible benefits, such as better quality yarns, particularly polyester/cotton blends. The differential in manufacturing cost between the new mill and the existing mills would gradually increase as labor cost rises.

4. Additional Opportunities

The creation of the new mill presents to Mehalla an excellent opportunity to improve overall productivity in cotton yarn manufacturing.

The following action plan is submitted for consideration by Mehalla management. If implemented, the benefits. would be in addition to the expected performance, as described in a previous paragraph. These additional benefits are not reflected in the financial statements and would mean extra contribution and higher levels of profit than those expected in the financial analysis (summarized in Part Two of this report).
a. The labor required for the new mill may be drawn from the existing excess in the other six mills. A thorough reorganization of all six mills would be necessary and considerable effort and tact may be required to convince the workers and to implement the plan without any disruption. It would be a first step in improving the present overall labor productivity of the complex and it would avoid hiring new employees. The potential savings are estimated in excess of $\$ 500,000$ per year at present labor cost.
b. The actual output of the existing cotton spinning operations could be improved to some degree, waste levels could be decreased and in some cases better quality could be achieved through the use of original spare parts. The poor mechanical condition of some machines, such as Leesona cone winders and Whitin e. mbers, contributes seriously to lower production, bad qualits and excess waste. In Section III dealing with machinery rehabilitation, we demonstrate that the payoff by overhauling such equipment with original paris may be less than one year, in some cases, based upon saving of ouly one percent of the processed materials. We believe, however, that a complete evaluation of all areas contributing to lower performance, would yield substantial opportunity to improve production and quality, by updating equipment with original parts. In some instances, the cost of this program may even be lower than when locally manufactured parts are used.

Conservative estimates indicate that 1% to 2% higher production could be expected in the existing plant, through a combination of factors including waste reduction (in some cases better quality and higher output of some machines) by an adequate updating program using original parts

If only 1% could be added to the present production, it would mean some 350 adiditional tons of yarn available per year, worth approximately $\$ 1,000,000$ at current prices.
c. Other substantial savings are possible through implementation of improved procedures and controls. As commented elserhere, other areas which offer considerable potential for cost reduction are the handling of materials in-plant and particularly between plants aud also the handling and control of waste. Material handling problems have been dealt with in Section X of this report. In order to permit better waste control and handling procedures, a waste press has been included in the auxiliary equipment of the new yarn mill.

An evaluation of the cost reduction potential is recommended followed by adequate implementation procedures.

5. Summary of the Project Evaluation

Exhibit XI briefly summarizes the project evaluation and indicates the requested compared to the recommended, investment in equipment at FOB prices, as well as the justification for the expenditures.

EXHIBIT XI

SUMMARY OF INVESTMENT EVALUATION - COTTON SPINNING

Mill: Cotton Yam Mill No. 7
Department: Cotton Spinning
A.I.D. Request Reference: Annax 13, Table 1

Item	Quantity	A.I.D. Request Value FOB £E	A.I.D. Request Value FOB US \$
Cotton Yarn Spinning Mill	1	5,297,000	13,560,300

(As described in Annex 13, Table 1 of A.I.D. request equipment and accessories and spares.)

U.S. Manufacture:' of Desirable
Equipment

Estimated Cost FOB - US \$
17,627,000

Recommend:

For creation of additional cotton spinning capacity in the medium yarn count range:

1. To promote yarn exports which traditionally have been one of the company's most profitable activities. Target for exports - 12,000 tons per year. Exports $1975 \mathbf{= 5 , 3 0 0}$ tons.
2. To balance future increase of weaving capacity.
3. To improve flexibility and to add appropriate facilities for spinning of polyester/cotton blends. For the same reason we have included airconditioning with refrigeration.

J. BALANCE AFTER IMPLEMENIATION

As outlined in Exhibit III, projected yarn requirements by 1980 (after the impiementation of the present investment programs), would equal 42,162 tons per year, including 12,000 tons for export. The available capacity would include the existing six mills and the nevy Mill 7 and would approximately equal:

		Tons/ Year
Existing Mills	-	35,000
Now Mill 7	-	6,000
Total	-	41,000

The deficit of approximately $\mathbf{1 , 1 0 0}$ tons could be compensated in several ways:

1. Less exports: 10,900 tons instead of the projected 12,000 tons.
2. Purchase of yarn: 1,100 tons per year.
3. Improved perficrmance of the existing plants resulting in a conservatively estimated net gain of 350 tons of yarn per year and reducing the deficit proportionally.
4. Improved yield in weaving from the present 95.36% to a conservatively estimated level of 97% and resulting in savings of some 500 tons of yarn per year.

In conclusion, the deficit of $\mathbf{1 , 1 0 0}$ tons per year in yarn manufacturing capacity could be compensated to a large extent, if appropriate action is timely initiated. A minimum of 850 tons is expected to be saved eventually and we believe that this conservative estimate could be exceeded to make up the total deficit. As a result, we world consider the projected balance reasonable and plausible. It should be pointed out that this balance is based on the same working schedule of the past years, including 354 working days per year, while the weaving projections are based on the normal weaving schedules including only 325 days per year. On the other hand, all computations are based on the 1975 performance and the overall utilization factor during that period was down to .9686 as indicated in Exhibit I. If the plants can be fully utilized in the future, the utilization factor would be equal to 1.0 and about 1,000 tons per year additional yarns would be available, or the work schedule could be reduced by 10 or 11 days in the year, to produce the required quantity of yarns.

K. TECHNICAL ASSISTANCE

Unlike the garment cperation, Kurt Salmon Associates believes Mehalia has the fundamental capabilities and experience to implement the new cotton spinning project.

However, to capitalize on existing opportunities in the new as well as in the older operations, KSA feels that some technical assistance may be required on one hand to speed up and properly structure the new project and on the other hand to improve the performance of existing operations.

The following is a broad outline of estimated investment requirements for technical assistance in the scope of new and existing operations over the next three to five years:

Specification Write-up (All New Projects Combined)	-	$\$ 60,000$
Bid Evaluations (All Projects Combined)	-	120,000
Survey of Existing Spinning Operations	-	50,000
Waste Control Program	-	160,000
Production Control Program	-	120,000
Cost Reduction Program (3 Years)	-	800,000
Monitoring and Start-up New Yarn Mill	-	160,000
Total	-	$\$ 1,170,000$

As indicated in subsection I, potential savings in labor cost in the new mill, if all necessary workers are transferred from other units, would exceed $\$ 500,000$ per year and savings of 1% in waste in all mills would yield approximately $\$ 1,000,000$ additional contribution to overhead and profits. These benefits are estimated conservatively and if full scale action is undertaken as it is assumed in the overall scope of the seven-point assistance program, as listed above, substantial higher benefits may be expected. The actual scope of some of the programs listed can be determined only after an appropriate survey has been conducted and therefore the quoted figures should be used as guidelines only.

APPENDIX 1

EQUIPMENT SUMMARY

PLANT - YARN MANUFACTURING DEPARTMENT - MILL NO. 1 (AVERAGE NE 15)

Process	Make	Year	No. of Machines	Del. per Machine	Total Deliveries	100\% Kg. RPM, PP Mitr. per Range	Hour, in. Typical	Expect Averege Eff. \%	Remarks
Opening 4 Lines, 8 Pickers Ne . 0013 ($455 \mathrm{Gr} . / \mathrm{M}$)	Platt	49	8	1	3	200	200	70	Automatic Fiecce Cutting Cut of Order
Carding (12" Cana) Ne. 12	Statt	49	245	1	245	5.9-8.2	5.9-8.2	80	5.9 = Floxiblo Wire 8.2 = Rigid Wire
Drawing - First Ne. 12	Platt	48	28	4	112	54	54	75	3 Over 4
Drawing Fin. Ne. 12	Platt	48	28	4	112	54	54	75	30
Roving $\mathrm{Ne} 1.00 \mathrm{TPl}=1.00$ $\mathrm{Ne} 1.25 \mathrm{TPI}=1.13$	Platt	48	28	120	3,360	510	510	80	
Spinning	Platt (Zinser Drawing) Saco Lowell Textima Tantra	$\begin{aligned} & 48 \\ & 51 \\ & 69 \end{aligned}$	$\begin{array}{r} 103 \\ 20 \\ 6 \\ 1 \end{array}$	$\begin{aligned} & 380 \\ & 240 \\ & 416 \\ & 360 \end{aligned}$	$\begin{array}{r} 39,140 \\ 4,800 \\ 2,496 \\ 360 \end{array}$	$4,500-8,502$ $4,000-5,000$ $4,500-8,500$	$\begin{aligned} & 8,500 \\ & 4,500 \\ & 8,500 \end{aligned}$	$\begin{gathered} 86-88 \\ 89 \\ 89 \end{gathered}$	Ne 10-24-60.8 MM Ne 7-10-63.5 MM No 24-50 MM Not Operative
Tctal					46,796				
Cone Winding	Leosona	48	13	120	1,560	400-600	550	70	Actual Eff. 60\%

```
APPENDIX 2
EQUIPMENT SUMMARY
PLANT - YARN MANUFACTURING DEPARTMENT - MILL NO. 2 (AVERAGE NE 15)
```

'rocess	Make	Year	No. of Machines	Del. per Machine	Total Deliveries	$100 \% \mathrm{Kg}$ RPM, P Mtr. per Range	Hour, in. Typical	Expect Avarege Eff. \%	Remarks
Ppening									'
Lines, 8 Pickers le 0013 ($455 \mathrm{Gr} / \mathrm{M}$)	Platt	49	8	1	8	200	200	70	
arding to . 12 (1200 Cans)	Platt	49	210	1	210	7.5	7.5	80	All Rigid Wire
$\begin{aligned} & \text { Irawing - First } \\ & \text { le. } 12 \end{aligned}$	Platt	48	28	4	112	54	54	75	3/4 Zinser Converted
rawing Fin. le. 12	Platt	48	28	4	112	54.	54	75	3/4 Zinser Converted
oving $\text { e 1.00 TPI = } 1.00$									
e 1.25 TPI $=1.13$	Platt	48	28	120	3,360	510	510	80	4/4
Jinning	Platt Textima	$\begin{aligned} & 48 \\ & 69 \end{aligned}$	$\begin{array}{r} 116 \\ 6 \end{array}$	$\begin{aligned} & 380 \\ & 416 \end{aligned}$	$\begin{array}{r} 44,080 \\ 2,496 \\ 46,576 \end{array}$	$\begin{aligned} & 5,000-8,000 \\ & 4,500-8,500 \end{aligned}$	$\begin{aligned} & 8,000 \\ & 8,500 \end{aligned}$	$\begin{gathered} 86-88 \\ 90 \end{gathered}$	Ne 12-22-50.8 MM Ne30-50 MAM
Winding	Leesona Schlafhorst	$\begin{aligned} & 48 \\ & 48 \end{aligned}$	$\begin{array}{r} 13 \\ 1 \end{array}$	$\begin{array}{r} 120 \\ 96 \end{array}$	$\begin{array}{r} 1,560 \\ 96 \end{array}$	$\begin{array}{r} 400-600 \\ 400-600 \end{array}$	$\begin{aligned} & 550 \\ & 550 \end{aligned}$	$\begin{gathered} 60-67 \\ 75 \end{gathered}$	Actual Eff. 60\% Rewind Dyo Packagos
Total					1,656				

> APPENDIX 3
> EQUIPMENT SUMMARY PLANT - YARN MANUFACTURING DEPARTMENT - MILL NO. 3 (AVERAGE NE 30)

Process	Make	Year	No. of Machines	Del. per Machine	Total Deliveries	$100 \% \mathrm{Kg}$ RPM, P Mtr. per Range	our, in. Typical	Expect Average Eff. \%	Remarks
Opening									
3 Lines, 6 Pickers	Saco Lowell	51/68	4	1	4	188	188	75	Non-Automatic Doff
Ne. 0013	Platt	51	2	1	2	200	200	70	For Mill No. 2
Carding									
Ne. 15	Platt	48/58	120	1	120	4.1-4.8	4.1-4.8	84	Rigid 4.8; Floxible 4.1
Predrawing Ne .15; Ne 17	Hartford	63	6	4	24	117	117	80	3 Passes
	Textima	71	2	2	4	260	200	80	2 Passes
	Textima	71	6	2	12	260	200	80	1 Pass; Cans 40 CM
Lap Forming	Hartford	63	3	1	3	46	46	75	
Na.0098	Textima	71	3	1	3	43	43	75	
Comber (Typical 30\% of Production Combed)									
	Hartford	63	9	2	18	120	120	85	N0.15-20 Kg/ Mechine Hour
	Textima	71	12	2	24	Nips/Min. 180	180	85	No. 17 - $15 \mathrm{Kg} /$ Mechine Hour No. 15 - 25 Kg/ Machine Hour
Drawing - First									
Ne. 15	Ingolstadt	51	16	5	80	43	43	80	3/4
Drawing - Fin.	Ingolstadt	51	16	5	80	43	43	80	3/4
Stubbing									
Ne 1.25	Platt	61	16	120	1,920	510	510	81	Zinser Converted
Roving									
Ne 3.00	Platt	61	20	168	3,360	890	890	72	Zinser Converted
Spinning	Platt	51	26	416	10,816	7,000-9,000	9,000	89	
	Platt	48	62	380	23,660	6,000-9,000	8,000	89	Ne 24-40; 50.8 MM
	Platt		1	60	60				
	Polish	71	1	384	384		8,000	90	Ne 30
	34,820								
Winding	Schlafhorst	70	12	50	600	400-1,200	800	65-70	Autnconer

```
    APPENDIX }
        EQUIPMENT SUMMARY
    PLANT - YARN MANUFACTURING
DEPARTMENT - MILL NO. 4 (AVERAGE NE 15)
```

2rocess	Make	Year	No. of Machines	Def. per Machine	Total Deliveries	100\% Kg RPM, PP Mtr. per Range	four, in. Typical	Expect Avarage Eff. \%	Remarks
3 Pening									
\| Lines, 8 Pickers									
3arcing									
Ne. 13	Platt	58	260	1	260	6.0	6.0	80	Rigid and Floxible
Jrawing - First									
de. 125	Ingolstadt	57	25	6	150	43	43	80	3/4
Jrawing - Fin.									
de. 125	Ingolstadt	67	25	6	150	43	43	80	3/4
Toving									
le. 8	Ingoistadt	58	20	96	1,920	600	550	80	4/4
;pinning	Ingolstadt	58	100	372	37,200	4,500-8,000	8.C00	89	Ne 8-20, 55 MM
Vinding	Schlafhorst	70	9	50	450	400-1,200	800		Autocongs
	Leesona	48	5	120	600	400-600	550	65	Autoconer

APPENDIX 5
EQUIPMENT SUMMARY
PLANT - YARN MANUFACTISING DEPARTMENT - MILL NO. 5 (AVERAGE NE 60-65)

APPENDIX 5 (CONTINUED)

Process	Make	Year	No. of Machines	Del. par Machine	Total Deliveries	, RPM, P Mitr. per Range	cour, Min. Typical	Expect Average Eff. \%	Remarks
								,	
Doukling	Schwaiter	58	12	64	768	300-500	400	76	
Twisting	Allma	58-60	54	416	22,464	7,000-8,600	8,000	85	Ring 50.8 MM
Rewinding	Schweitar	58	12	48	576	400-600	500	65	
Hankwinding	Schweiter	68	6	48	288	200-600			For Mercerizing Dyaing

```
APPENDIX. 6 EOUIPMENT SUIMMARY PLANT - YARN MAÑÜ̈́,ACTURING DEPARTMENT - MILL NO. 6 (AVERAGE NE 30)
```

Process	Make	Year	No. of Machines	Del. per Machine	Total Deliveries	$100 \% \mathrm{Kg}$ RPM, PP Natr. per Range	Hour, Min. Typical	Expect Average Eff. \%	Remarks
Opening 2 Lines, 4 Pickers Na .0014.00185	Herpeth	69	4	1	4	$\begin{aligned} & 252 \\ & 190 \end{aligned}$	$\begin{aligned} & 252 \\ & 190 \end{aligned}$	$\begin{aligned} & 85 \\ & 85 \end{aligned}$	Cotton Polyester
Carding N3. 13-15	Textima Platt	$\begin{aligned} & 69 \\ & 48 \end{aligned}$	$\begin{array}{r} 48 \\ 8 \end{array}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{array}{r} 48 \\ 8 \end{array}$		$\begin{array}{r} 19.5 \\ 13.5 \end{array}$	$\begin{aligned} & 85 \\ & 85 \end{aligned}$	Cotton Carded Polyester
Predrawing Ne. 15	Textime	69	6	2	12	140	140	80	Comised Cotton + Portion Cotton in Biends
Lap Forming	Textirna	71	3	1	3	46	46	75	
Combing	Textima	71	12	2	24	$\begin{aligned} & 180 \\ & \text { Nips/Min. } \end{aligned}$	180	85	
Sliver Blending	Toyota	73	1	2	2	190	190	80	
$\begin{aligned} & \text { Drawing - First } \\ & \mathrm{Ne} .15 \cdot .17 \end{aligned}$	Textima	69	14	2	28	125	125	80	
$\begin{aligned} & \text { Drawing - Fin. } \\ & \text { Ne .15-. } 18 \end{aligned}$	Toxtima	69	14	2	28	125	125	80	
Drawing	Textima	71	4	2	8	100-370			Out of Order
Roving Ne 1.0-1.25-1.50	Textima	69	14	120	1,680		800	77	
Spinning	Textima	$\begin{aligned} & 69- \\ & 73 \end{aligned}$	$\begin{array}{r} 316 \\ 8 \end{array}$	$\begin{aligned} & 420 \\ & 416 \end{aligned}$	$\begin{array}{r} 48,720 \\ 3,328 \\ 52,048 \end{array}$	$\begin{aligned} & 8,000-9,000 \\ & 8,000-9,000 \end{aligned}$	$\begin{aligned} & 9,000 \\ & 9,000 \end{aligned}$	$\begin{aligned} & \mathbf{8 8} \\ & \mathbf{8 8} \end{aligned}$	Ring 50 Mm
Winding	Schlafhorst	69	16	50	800	400-1,200	800	60.75	Autoconer -)

ATHENIX 7
mhalla weavmo phoo: anowrian - tys
FADNICE EOLD IN OREICR

MEHALLA WEAVING PRODUCTION PLAN - 1978

FABFICS FOR BLEACHING

Itam	Style	Grape Whth (CM)	Prof. Moters par Day		per Mater Woft	${ }_{14}^{\mathrm{Kg}}$	$\begin{aligned} & \text { Day War } \\ & 20 \end{aligned}$	${ }_{30} \mathbf{R e q}$	$\begin{gathered} \text { Mined } 1 \\ 24 \end{gathered}$	$\begin{aligned} & \text { Fabr } \\ & 16 \end{aligned}$	$\begin{gathered} i c-N_{s} \\ 60 \end{gathered}$	40	Total Kg/Day Ware in Febric	14	20	$\begin{gathered} \mathrm{Kg} / \mathrm{Dm} \\ \hline 0 \end{gathered}$	$\begin{gathered} \text { Woft } \\ 18 \end{gathered}$	16	40	60	10	Totel KgiDay Weft in Febric
1.	91/69	102	1,860	89.6	85.5	167							167	159								150
2	91/64	87	4,170	78.4	72.9	319							319	304								304
3.	91/64	140	2,220	122.9	117.4	273							273	281								261
4.	2290	87	18,450	78.4	63.4	1,410			:				1,410	1,170								1,170
5.	49/63	150	4,320	114.1	108.9		493						403		470							4,400
6.	49/63	168	900	121.6	116.1		109						109		105							106
7.	49/63	142	2,400	108.4	103.5		260						260		248							248
8.	49/63	127	4,740	96.7	92.6		458						458		439							439
9.	49/53	86	9,810	73.3	70.0		718						718		687							687
10.	Sebsa Sh	203	840	197.0	174.8	165							186	147								147
11.	Satan St	153	2,790	150.6	133.0	420							420	420								420
12.	Sabas Sh	245	1,800	237.8	210.8	428							428	380								380
13.	Gauze 1068	98	5,040	24.3	18.2			123					123			97						97
14.	Gauze 1884	97	19,290	36.7	31.6				708				788				610					610
15.	Dabalarz 22	$8 \times$	1,500	76.6	73.0					115			115					110				110
16.	Gauze 76/60	106	3,480	9.6	8.1						34		34						28			28
17.	Voile 366	145	2,100	48.8	36.7						103		103							77		77
18.	Voile 366	99	1,620	32.7	25.1						53		63	-						41		41
19.	Tab. Cloth	192	120	213.0	233.6	28							28								28	28
20.	Tab. Cloth	168	180	182.4	204.4	34							34								37	37
21.	Ter. Towel	72	890	146.0	41.7	145							145					41				41
22.	2215	128	1,470	59.9	41.4			88					88			61						81
23.	433	98	2,560	37.3	29.5							95	96						75			75
24.	Ter. Towol	181	330	333.9	93.2	110							110					31				31
26.	Ter. Towal	65	330	134.0	31.9	38							38					11				11
28.	Sabae Sh	183	1,560	184.9	157.5	257							257	246								246
			88,860			3,792	2.039	211	708	115	190	95	. 7.150	3,087	1,948	168	610	193	103	118	65	6,283

arpenolxs
mehalla weavaie proouction PLan - toje
FABRICE FOM PGINTINE

Artenotix 10

FABRics foll dyeino

APPENDIX 11
WEAVING PRODUCTION PLAKH - 1976
MISCELLANEOUS FABRICS

Itam	Style	Graige Width (CM)	Proj. Meters per Day	Grams per Linear Mater		Kg./Day Warp Required - Ne				Total Kg./Day Warp		Kg./Day Weft Required - Ne			28/2	Total Kg./Day Weft
				Warp	Weft	18	30		20		18	30	10	14		
1.	Tick 720	140	1,650	182.2	94.6	301				301	156					156
2.	Tick 720	160	660	208.2	108.2	137				137	72					72
3.	Check 555	96	3,810	52.2	54.4		199			199		207		-		207
4.	Denim 1488	101	1,260	179.7	118.5			226		226			149			149
5.	FI 1392	97	2,430	80.0	126.3				194	194				307		307
6.	Popl 2209	97	360	63.4	51.9		23			23		19				19
7.	Wool Army	140	1,860	-											175	175
			12,030			438	222	226	194	1,080	228	226	149	397	175	1,085

TABLE OF CONTENTS

SECTION II

COTTON WEAVING

Section Page
A. Present Conditions and Market Potential 1
B. Present Equipment 3
Exhibit I - Present Cotton Loom Capacity 5
C. Capacity Production Balance and Efficiency 6
Exhibit II - Production Summary - Cotton Weaving Mills - 1975 7
Exhibit III - Weaving Production Plan - 1976 9
Exhibit IV - Actual and Projected Weaving Program - Basic Data 11
D. Quality and Waste 14
E. Labor and Productivity 16
F. Current Cost 17
G. Future Requirements and Development 19
H. Proposed Development Plan 20
Exhibit V - Mehalla's Original Loom Replacement Plan 21
Exhibit VI - Suggested Replacements of Existing Looms 23
Exhibit VII - Actual Weaving Capacity and Projected Future Requirements 25
Exhibit VIII - Suggested New Cotton Weaving Equipment Plan 27
Exhibit IX - Suggested Investment - New Cotton Weaving Equipment - List of Equipment and Estimated Cost 28
Exhibit X - Summary of Investment Plan - Cotton Weaving 30
Exhibit XI — Suggested Investment - Additional Warping and Slashing 32
Exhibit XII - Summary of Investment Plan - Warping and Slashing 33
Exhibit XIII - Summary of Investment Evaluations - Looms 36
Exhibit XIV - Summary of Investment Evaluation - Loom Accessories 37
Exhibit XV - Summary of Investrient Evaluation - Weaving Preparation 38
Exhibit XVI - Summary of Investment Evaluation - Complementary Equipment 39
Exhibit XVII - Summary of Investment Evaluation - ClothRoom Equipment40
I. Technical Assistance 41

TABLE OF CONTENTS (C̃ONTINUED)

Appendix Page
1 Equipment Summary - Central Department - Warping 43
2 Equipment Summary - Central Departmeht - Slashing 44
3 Equipment Summary - Central Department - Pirn Winding 45
4 Equipment Summary - Cotton Weaving - Weaving 46
5 Cotton Weaving Program - List of Fabric Constructions 47

SECTION II: COTTON WEAVING

A. PRESENT CONDITIONS AND MARKET POTENTIAL

The cotion weaving department produced, in 1975, a total of $140,500,000$ linear meters.

Basically, the cotton weaving products are distributed into tive different channels. The next table summarizes a typical breakdown of the distribution per channel based on 1975 figures.

	1975 Ouantity Lin. Meters	\% of Total	Number of Greige Styles (Approx.)
Channel	$40,000,000$	28.5	(Mostly Greige)
Exports	$15,000,000$	10.7	2
Military Fabrics	$35,000,000$	24.9	7
Ration Fabrics	$20,000,000$	14.2	20
Internal Garments	$30,500,000$	21.7	60
Free Domestic Sales			
Total	$140,500,000$	100.0	

The production objectives for 1980 are set at 163 million with the following approximate distribution breakdown:

	1980 Quantity Lin. Meters	\% of
Channel		Total
Exports	$55,000,000$	33.7
Military Fabrics	$15,000,000$	9.2
Ration Fabrics	$40,000,000$	24.6
Internal Garments	$23,000,000$	14.1
Free Domestic Market	$30,000,000$	18.4
Total	$163,000,000$	100.0

Of, the five distribution channels, the third one is the only nonprofitable. Ration fabrics are those fabrics which have to be sold in the local market at controlled, artificially low prices. The Egyptian government imposes quotas for production and marketing of ration fabrics to each producer each year. Annually, the quotas assigned to each mill are revised; and they are distributed according to cajacity remaining after deduction of exports and military fabrics.

In 1975, the government had determined that the total volume of rationed fabrics to be marketed by all the local producers was 280 million meters. After deduction of exports and military fabrics totalling 55 million meters, the quota assigned to Mehalla for 1975 was 41% of remaining capacity or 85.5 million meters $\times .41=35$ million meters, which represents 12.5% of the country's overall requirements of ration fabrics.

The production of 15 million linear meters per year of military fabrics in $\mathbf{7} 975$ represents some 80% of the country's requirements; and consequently Mehalla is the most important supplier of fabrics to the military establishment.

According to Mehalla's projections, military fabrics and sales to the free domestic market are assumed to remain fairly constant from 1975 to 1980. The percentage of ration fabrics is also expected to vary slightly, and increasing consumption may require a small upward edjustment from 41% to 43% of remaining capacity after deduction of exports and military fabrics.

The main thrust is aimed toward exports with an expected increase from 40 to 55 million meters per year from 1975 to 1980 . This may be an optimistic projection; but, on the other hand, the expected increase in consumption of fabrics for local manufacturing of garments from 20 to 23 million would appear conservative. As indicated in Section VII, which deals with the garment project, production of garments and internal consumption of fabrics could be considerably increased if proper implementation procedures and training methods are used to operate the planned new production facilities. It further appears that the local free market is not likely to be saturated in the near future because of continuously growing demand. In addition, that particular segment of the market is also very profitable.

Mehalla probably focusses as much as possible on exports because of the subsidies and hard currency contribution and because export quantities reduce the unprofitable ration fabric quota. Even if Mehalla's export projections would appear somewhat optimistic, we feel confident that other profitable marlet segments, in particular local garment manufacturing and the free domestic market, would take over any excess unsold on the export market. We therefore believe Mehalla's production estimates for 1980 are realistic and can be used as a sound basis for equipment requirements.

B. PRESENT EQUIPMENT

Cotton weaving preparation is centralized in one single department, while the 4,854 looms presently in operation are distributed over 13 sheds. Pirn winding is centralized also, but weaving Mill 5 has its own pirn winding (con-automatic looms).

The equipment complement in warping, slashing, pirn winding and weaving is summarized in Appendices 1 through 4.

1. Cotton Weaving Preparation

Fourteen warpers are installed, of which one is sectional. One warper is over 20 years old but still in relatively satisfactory condition if operated at lower speed (300 meters per minute).

Four narrow warpers, 18 years old, are also in satisfactory condition and operating at 400 meters per minute. Tha semaining eight warpers are less than five years old. Two of these eight, oì Polish construction, apparently do not meet modern quality requirements, mainly because the brakes and warp stop motions are not reliable. They also operate at lower speed (300 meters per minute). The more modern warpers operate at 500 meters per minute and could theoretically be sped up. Higher speeds may not be recommendable at present because of poor yarn packages delivered by some of the manual winders in the spinning operations.

Twenty-two slashers are installed, of which 15 are 26 years old. All except the t^{2} wo most recent ones are designed with air drying facilities which are less economical than the more modern can drying equipment.

1,820 pirn winding spindles are installed and 480 additional spindles are on order. Some machines, representing 852 spindles, are 20 years of age and have apparently not been maintained with original parts, resulting in very poor mechanical condition.

2. Weaving

Of the 4,854 looms presently in operation, 1,906 or approximately 40% are 20 years old or older. Some 700 looms are equipped with Unifil winders and 240 are manual looms. The remaining looms have rotary batteries (or magazines for four box looms).

The width distribution of the existing looms, broken down in three categories, is as follows:

\cdots	Reed Space Centimetars	100\% Available Picks per Hour ($\mathrm{x} 1,000$)	\% of Total Picks
Catogory			
1	Up to 120 CM	26,298	53.3
2	120-200 CM	21,207	43.0
3	Over 200 CM	1,832	3.7
	Total	.49,337	100.0

A detailed breakdown of the available pick capacity and width distribution is summarized in Exhibit I.

As noted in yarn manufacturing, some of the older equipment is seriously deteriorated and in poor mechanical condition because of lack of original spares. Some looms can be updated again if original parts are available; but others, particularly the narrow Northrop dobby looms, could apparently not be reconditioned at any economical cost.

EXHIBIT I

PRESENT COTTON LOOM CAPACITY

100\% Loom Picks per Hour (x 1,000)
Available

Shed No.	Number of Looms	PPM	Reed Width (CM)	Un to 120 CM Narrow		Over 200 CN Wide
1	448	180	$\cdot 102$	4,838		.
2	96	182	; 02	1,048		
	300	180	176		3,240	
3	600	182	82	6,552		
4	48	110	270			317
	54	120	220			389
5	168	180	107	1,815		
	72	180	114	778		
68	52	142	162		443	
	2	110	216			13
	24	112	177		161	
	40	115	177		276	
	32	164	116	315		
	72	135	127		583	
	18	115	183-193		124	
	24	160	72	225		
	24	125	177		180	
	24	105	112	151		
	12	120	260			87
	12	105	112	76		
	12	126	117	91		
	6	130	132		47	
	12	140	102	101		
	36	93	305			201
	120	168	107	1,210		
7	432	176	102-107	4,562		
8	336	173	112	3,488		
	48	150	152		432	
	42	143	177		361	
9	72	191	330			825
10	480	177	130		5,098	
11	240	156	180		2,246	-
12	800	167	140		8,016	
13	96	182	102	1,048		
Total	4,854			26,298	21,207	1,832
Total Loom Picks par Hour Available (x 1,000)					49,337	
Total Loom Picks per Hour Available \%				53.3\%	43.0\%	3.7\%

C. CAPACITY PRODUCTION BALANCE AND EFFICIENCY

1. Weaving

In 1975, the cotton weaving department produced 140,326,000 linear meters of fabric at an overall efficiency of 71,94\%. Actual efficiencies varied greatly from one shed to another as indicated in Exhibit II.

The best performance was achieved in Mill 9 by the Sulzer looms with 89.73\% average efficiency; and the worst performance, 59.06%, was registered in Mill 7, equipped with narrow Northrop cam looms, built in 1951. Incidentally, the third best performance was achieved by the old 1936 manual Butterworth looms in shed .5, topping an average of 85% efficiency for the year, 1975. On the other hand, the recent Textima looms in sheds 11 and 12 barely reached the overall average.

In comparing the present loom complement, as summarized in Appendix 4, with the average number of looms in operation in 1975, as indicated in Exhibit II, it appears that some fundamental changes have taken place, although the overall capacity has practically remained at the same level. In summary, 300 new Picanol medium width looms have been added in shed 2, while some 315 narrow Northrop looms have been taken out of shed 7. The total loom complenent has decreased from an average of 4,875 in 1975 to 4,854 at present; but, considering that 300 new Picanols would achieve better efficiency and are wider than the discarded looms, the overall capacity may have increased only slightly, compared to the average of 1975.

EXHIBIT II
 PRODUCTION SUMMARY
 COTTON WEAVING MPLLS - 1976,

Mill	Days Wurked	Average Number of Looms	Million Picks Produced	Total Meters Produced (Thousands)	Average Efficiency Percent
1	324	448	21,744	12,525	60.29
2	324	148	7.520	4,315	80.63
3	324	600	40,345	19,726	80.72
4	324	102	4,732	2,344	87.43
5	324	240	17,154	13,035	85.25
6	324	518	22,973	12,268	71.80
7	324	747	34,117	17,259	59.06
8	324	426	22,640	10,384	69.66
9	324	73	16,957	7,170	89.73
10	324	480	30,222	13,268	75.11
11	324	325	15,459	7,401	72.06
12	324	672	35,674	16,425	72.03
13	324	96	6,283	4,107	81.06
Weaving E:.perimental Section			219	96	
	324	4,875	276,039	140,326	71.94

2. Prriduct Mix

A wide variety of styles are processed in the fotton weaving department; but, apparently, the product mix remains fairly constant. Appendices 7 through 11 of Section I summarize the complete product inix and the yarn requirements based upon the 1976 production program. It has been stated bry Mehalla management that this product mix is fundamentally the same as in 1.975 and that only minor changes have occurred in the past few years.

As a result, we have taken the 1976 projected mix as a base, and all future projections are developed on the assumption that the product mix will not significantly change in the foreseeable future. Considering the fairly stable market position as commented upon in subsection A and the large variety of styles in the product mix, we believe that the assumption of a constant product mix is reasonable and that possible error is within acceptable limits.

Greige widths vary from 72 centimeters to 245 centimeters (for sheets). The major portion of the fabrics are woven in widths from 72 to 106 centimeters, and the average greige fabric is 101.84 centimeters ride.

Other characteristics of the product mix are as follows:

As indicated by Exhibit III, the total available capacity in loom picks does not correspond with the projected production in terms of width. The product mix contains 81.1% of the fabrics in greige widths below 109 centimeters. The looms adequate to weave these fabrics with reed widths up to 120 centimeters only represent 53.3% of the available capacity. This means that a substantial portion of the narrower fabrics are woven on looms with excessive reed space or in multiple widths on the wide loom. Although it is unlikely to occur, as previously stated, this situation could become critical if a major shift would occur toward wider fabrics.

EXHIBIT III

WEAVING PRODUCTICN PLAN - 1976

PROJECTED DISTRIBUTION OF GREIGE WIDTH VERSUS ACTUAL LOOM CAPACITY AVERAGE FABRIC WIDTH(1) $=101.84$ CM GREIGE

Gralge Fabric Width (Cintimeters)	Projected Production of Fabrics(1)			Loom Capacity Avalieble	
	Moters per Day of 24 Hours	\% of Total	Reed Width (CM)	100\% Loom Picks per Day of 24 Hours	\% of Total Picks
Less Than 80	76,280	16.7			
80-, 89	101,490	22.2			
90-89	135,840	29.7	72-102	392,304,000	33.1
100-109(2)	56,880	12.5	103-120(3)	238,848,000	20.2
Total Up To i09(2)	370,470	81.1	Up to 120(3)	631,162,000	53.3
110-168	77,850(6)	17.0	120-200(4)	508,968,000	43.0
168-245	8,520	1.9	Ovar 200	43,988,000(6)	3.7
		-			
Totals	466,840	100.0		1,184,088,000	150.0

(1) Exclusive of towsls but Including towoling fabrics (for apparel).
(2) Maximum actual 106 CM.
(3) Maximum actual 117 CM.
(4) Maximum actual 193 CM.
(5) Approximately half of wide loom capacity is used for multiple width narrow fabrics.
(6) Approximately equally divided in fabric widths 110-149 and 150-168 CM.

In case the average greige width increases, even without changes in fabric construction, the available loom capacity may be able to accommodate while spinning would not be able to produce the necessary yarms. An increase of 10 centimeters in the average greige width would result in an additional yarn consumption of some 2,500 tons per year. Mehalla should be aware of this situation and be prepared to adjust spinning capacity if the average width ever becomes wider.

The basic data and yarn requirements in connection with the present and future weaving projections are summarized in Exhibit IV.

It should be pointed out that the yarn quantities listed are those in the fabric and that the listed linear meters do not include towels and napkins, to avoid confusion. In this way, we conform with Mehalla's method of reporting towels per kilogram and napkins in units separately from the regular fabrics. As a result, our overall figures are consistent and comparable with Mehalla's projections.

The balance with spinning has been discussed in Section I, which teals with cotton spinning. We concluded that there would be no significant imbalance to meet the projected volume of 163 million meters per year in 1980, provided the product mix remaius unchanged.

To meet production requirements of $148,500,000$ meters in 1976 , the available loom capacity should operate at an average efficiency of 74.27%. This target efficiency is up 2.3% compared to the 1975 performance, but we believe it is a reasonable goal and it can be achieved easily. The key to improved loom efficiency is essentially maintenance and specially original spare parts as well as good quality shuttles and pirns.

EXHIBIT IV

ACTUAL AND PROJECTED WEAVING PROGRAM - BASIC DATA

Year	Days of Operation	Actual or Projected(1) Lin. Metars	Gralge Average Grams per Meter	Avg. Daily Production					
				Linear	Picks in Fabric	Average Eff.	Yarn Rec Kiloyram	iremen of Yarn	per Day Fabric
				Mioters	1000	Percent	Warp	Woft	Totul
1976	324	140,500,000	168.65	433,642	849,938	71.84	38,167(4)	35,916	72,072
1976	325	148,500,000	166.65	456,840	895,669	74.27(3)	38,101(4)	37,833	76,834
1980(2)	325	163,000,000	168.55	601,538	883,016	76.00	41,835(4)	41,535	83,370

(1) Based upon same product mix of 1975 and same avarage yield and pickage.
(2) After project.
(3) Calculated - based upon available dally picks in single fabric $=\mathbf{1 , 2 0 5 , 7 6 0}$ per day taking into account multiple width vreaving on the Sulzer looms.
(4) Excluding wool warps for 1,860 metors per day in 1975 and 1976; 1,966 meters in 1980.

3. Weaving Preparation

The 13 available direct warpers operate at a combined speed of 5,500 meters per minute as indicated in the equipment summary in Appendix 1.

At 100% efficieicy and for an actual yarn count of Ne 18.62 and an ayerage of 470 ends par warp, the combined production of the warping derariment equals:
$(4170 \times 5,500 \times 60) /(18.62 \times 1.7 \times 1,000)=4,900$ Kilograms per Hour

Total warping requirements equal 1,700 kilograms per hour at present and will increase to approzimately 1,870 kilograms per hour by 1980.

The operative time required to warp the 1980 requirements equals:

$$
(1,870) /(4,900)=.38 \text { Hour per Hour }
$$

Otherwise stated, the necessary average efficiency to warp the 1980 required volume is 38%.

We would expect under typical conditions an average of 40%. We doubt, however, that under the present circumstances Mehalla would achieve that goal. The main reasons are the poor mechanical condition of the two Polish warpers and the fact that winding bobbins are very uneven, resulting in excessive creeling and recreeling. If the winders in spinning are updated, this condition may substantially improve; and the danger of developing bottlenecks in warping may be eliminated. If the need arises, the average number of ends may also be increased to 500 .

The 2,300 available pirn winding spindles, (including those on order) as listed in Appendix 3, operate at a combined speed of $1,172,400$ meters per minute.

For an average actual yarn count of Ne 14.88 , the total production of the pirn winders at 100% efficiency equals:

$$
(1,172,400 \times 60) /(14.88 \times 1.7 \times 1,000)=2,780 \text { Kilograms per Hour }
$$

Total present weft requirements equal approximately 1,665 kilograms per hour, including some 375 kilograms per hour for the Sulzer looms and the looms equipped with Unifils, Actual pirn winding requirements equal:

$$
1,605-375=1,290 \text { Kilograms per Hour }
$$

If the new looms are equipped with Unifils, no additional pirn winding would be required by 1980. The operative time required to wind on pirns 1,290 kilograms of weft equals:

$$
1,290 / 2,780=.465 \text { Hour per Hour }
$$

Otherwise stated, tine necessary average efficiency of the pirn winding to process the required volume is $\mathbf{4 6 . 5 \%}$.

Under normal conditions, we would expect an average efficiency of 75%. Taking into account the poor mechanical condition of some older pirn winders, the average afficiency achieved by Mehalla may be somewhat lower, but we do not believe that under the present circumstances any bottleneck should develop.

In slashing the 22 slashers total a theoretical drying capacity of 3,860 kilograms per hour, which approximately corresponds to the weight of yarn that can be dried from a saturation of 110% to a dry state of 7% remaining moisture.

The total yarn requirements at the slashing process by 1980 equal 1,850 idilograms per hour. The operative time required to process these quantities equals:

$$
1,850 / 3,860=.479 \text { Hour per Hour }
$$

Otherwise stated, the necessary average efficiency of the slashing department to meet all requirements by 1980 equals 47.9%.

We would expect under normal conditions an average efficiency of approximately 50%, but we believe that the poor mechanical condition of the older machinery and equally of the more recent Polish slashers would not permit the attainment of an average efficiency of 50%. As a result, bottlenecks may occur in the slashing department.

D. QUALITY AND WASTE

1. Weste and Quality Performance

Based upon the data collected for 1975, the overall yield factor in cotton weaving averaged .9536 for the ofitire year from yarn to greige fabric. No reliable breakdown was reported for weft and warp yarns.

Overall waste figures computed by the central quality control department indicate the following waste averages per process:

Warping	$.5 \%$
Sizing	$.8 \%$
Weaving	1.5%
Subtotal	2.8%
Cloth Room	$.2 \%$
Overall Total	

Typically, we would expect an overall total waste percentage from yamn to greige fabric of 2.0% to 3.0%, but the overall yield factor of .9536 would indicate that the real waste levels are higher and average 4.64% or 1.5 times the recorded quantities.

According to the official statistics computed by the central quality costrol department and based upon actual weight of waste materials in ench weaving shed, percentages vary widely from one shed to the other. The best performance is reported by the Sulzer looms in shed 9, attaining an average low waste level of $.5 \%$. Among the worst performers are older sheds, such as 1 and 7, but also shed 11 which is equipped with recent Textima looms. We believe one of the reasons for the excessive waste levels in shed 11 is the poor design of the warp beam. The barrel diameter is only four inches (usually 5 to $6-1 / 2$ inches), and the flanges are sheet metal made. As a result, it is difficult to unwind on the loom the last 20 to 50 meters of the warp yarns; and sheet metal flanges are subject to warping, resulting in uneven building of the selvages at the slashing process. These iactors may also be instrumental in lower machine efficiency.

Another critical area for potential high waste levels is the warping. As mentioned elsewhere, excessive recreeling of the warpers is necessary because of uneven packages from winding.

Reportedly, approximately 8% creel ends have to be rewound. Under normal circumstances, we would expect 3% to 4% and a maximum 5% of the yarns introduced into warping being recreeled. This situation is still more critical because the creel ends are returned to one of the spinning mills for rewinding purposes. The additional handling and transportation to and from the spinning mill make controls less effective and are a potential source of errors and pussible mixing of yarn counts as well as yarn wastage. We would recommend that these procedures be reviewed to improve effectiveness and to reduce waste. As an immediate measure, we suggest the purchase of a 120 -spindle manual winder, which we have included in the package for new equipment. This winder would be used in the warping department for creel ends.

The brakes on the Polish warpers are inoperative. As a result, the warp beam does not stop timely upon an end down; and the tail of the broken end usually disappears in the beam.

The braking systems of these warpers are of an older design; and, based upoi our experience, they are inefficient and difficult to maintain. Lowerer, we believe that the building of quality warp beams is essential for thu efficiency and quality of all further processes.

Conservatively estimating that the lack of proper brakes causes $\mathbf{. 5 \%}$ additional waste and reduces weaving efficiency by 3%, a slow warper producing an average of 125 kilograms per hour, beside causing lower quality fabrics, adversely affects the profit potential in the following manner (based upon average yarn prices of $\$ 2.50$ per kilogram and fabric contribution to overhead and profit of $\$.05$ per meter):

Loss of Materials (.5\%)	$125 \times .005 \times 2.5$	$=\$ 1.56$ per Hour
Loss of Efficiency (3\%)	$\frac{125 \times .03 \times .05}{} \times 2.13$ per Hour	
Total	.088	$=\$ 3.69$ per Hour

The total annual potential loss represents at least:

$$
3.69 \times 7,800=\$ 28,782
$$

The cosi of a new warper of 50% higher capacity than the Polish warper is estimated at $\$ 68,000$. Taking into account ahipping and installation cost, the new warper would be paid off in approximately 2.5 years. Considering the very reasonable payoff and the many intangible benefits, including lower operating cost and better quality production, we would recommend replacement of the two Polish warpers by two new ones. As a result, two new warpers have been included in the suggested equipment package.

2. Waste and Quality Control

Procedures and controls relative to waste and fabric quality are very elaborate. Exxcept for exports, we question their real effeci:iveness.

Quality standards are relatively high for export fabrics but very low for domestic products. Many of the older looms would not be in a position to produce fabrics meeting export quality standards, but they generally meri domestic standards. We would not recommend, at this point in time, discarding any looms on the basis of not meeting domestic quality standards; but the quality criterion may become essential if exports are to continue expanding.

E. LABOR AND PRODUCTIVIT'Y

The average labor complement in cotton weaving during 1975 includes 7,794 employees, up from 6,859 in 1971, while production was down from 145 million meters in 1971 to 140.5 million in 1975.

The labor productivity in 1975 of the cotton weaving operation averaged 13,700 picks per man-hour, compared to 16,000 picks per man-hour in 1971. The significant downward trend of the labor productivity in this short time span can hardly be explained completely by the deterioration of the loom condition through lack of original spares, since two new mills, 11 and 12, have come on stream in the meantime, while some older looms have been discarded. We assume that overstaffing is the main cause of the low productivity performance.

Compared to other countries, the overall productivity of the Mehalla cotton weaving operation is relatively low but not in the same proportion as in spinning, the technology of the equipment used in weaving being generally less outdated than in spinning.

The following table summarizes average labor productivity figures in a few selected cuuntries:

	Averege Picks per
Country	Man-Hour
Turkey	22,000
European Common Market	60,000
Hong Kong	$-26,500$
Pakistan	$15,400$.
U.S.A.	100,000

We did not analyze actual loom stops; but, from data collected at the responsible department, it would appear that the number of warp stops varies widely, depending on yarn couns, fabric construction and operative conditions. Typically, the better performing styles may attain two warp stops per loom hour, while others may be as high as six warp stops per loom hour. From our observations, we suspect that the overall level of warp stops could be soinewhat reduced by improving the quality of warping and slashing.

In 1974, the cotton weaving operation contributed £E 4.8 million to a total of £E 14.1 million gross profit. T'otal manufacturing cost was approximately 80% of sales. As for the cotton spinning operation, rising labor cost may significantly erode the profit potential of the cotton weaving operation in the foreseeable future if no action is taken to improve labor productivity.

F. CURRENT' COST

Based upon 1974 actual figures, manufacturing cost in cotton weaving for the average fabric is typically structured as follows:

	Milliemes per Cost Element	\% of Total Conversion
Auxiliary Materials		Cost
Labor and Fringes	004	8.7
Spare Parts	023	50.0
Maintenance	005	10.9
Power	005	10.9
Depreciation	002	4.3
Other Overhead	002	4.3
Total	005	10.9
	046	1 nn n

Total conversion cost (excluding raw materials) in cotton weaving would average £E . 046 or $\$.118$ per linear meter of fabric produced. Taking into account 9.2% increase in wages in 1975, the total actual cost would equal approximately £E . 048 or $\$.123$ per linear meter. Typically in the U.S.A. present conversion cost may be closer to $\$.14$ per linear meter, but the average greige width would be around 120 centimeters instead of 101 centimeters as at Mehalla.

Interest charges, sales and administrative charges account for another £E . 013 per meter, which represents approximately 22.5% of conversion cost.

Spare parts and maintenance cost account for $£ \mathrm{E} .010$ or $\$.02 \mathrm{~S}$ per meter. In the U.S., spares and maintenance would be in the order of $\$.010$ to $\$.015$ per meter ($\mathrm{EE} .004-.006$). Mehalla's excess maintenance cost may reflect to some degree the lack of effectiveness of local spare parts manufacturing.

Assuming straight replacement of an old loom by a new loom, we would expect labor cost and maintenance to decrease while depreciation on a per metar basis would increase. If no changes in staffing are made, the average increase in output through higher speeds and better efficiency is estimated at 25% on a per loom basis. As a result, new looms, producing identical products, would achieve labor savings of EE .00575 per meter; and the average labor cost would decrease from £E . 023 to .017 per linear meter.

On the other hand, for the new loom, the expected depreciation charges would be higher and are estimated as follows:

1. For the loom:

$$
15,000 \times .06 \div 30,000=\$.03 \text { per Meter or } £ E .0117 \text { per Meter }
$$

2. For new construction, if any:

$$
200 \times 15 \times .025 \div 30,000=\$.0025 \text { per Meter or } £ E .001 \text { per Meter }
$$

Equipment and Building $=\$.0325$ per Meter or $£ E .0127$ per Meter
Without new construction at conservatively estimated installed cost of new looms and using the same depreciation rates as for the old equipment, depreciation charges would increase fr m EE .002 to $£ E .0117$, representing an increase of approximately EE .010 .1 total depreciation charges per linear meter produced. If new construction has to be considered, the excess depreciation would equal EE .011 per linear meter produced.

In summary, the increase in depreciation charges is approximately double the gain in labor coot. As a result, replacement of older profitable weaving equipment on the basis of cost reduction could not be justified under the present cost structure.

Maintenance of production equipment varies widely from shed to shed. The average cost per loom equals $£ E 223$ per year, including maintenance wages, oil and lubricant, spares and local workshop orders. Shed 9, Sulzer equipped, averages fE 394 per loom year; shed 1 remains slightly below the ayerage with EE 207 per loom year; shed 13 is at £E 257 per loom year and sheds 11 and 12 (Textimas) are at EE 190 per loom and per year; shed 5 , equipped with the oldest looms (1936) has an excelient maintenance performance on a per loom basis with £E 170 per year.

G. FUTURE REQUIREMENTS AND DEVELOPMEINT'

Mehalla's projections for growth in cotton weaving capacity, from the present 141 million meters per year to 163 million meters in 1980 , seem reasonable. Although Mehalla counts primarily on increased export sales, the domestic demand is likely to remain strong in the foreseeable future; and local consumption of fabrics for garment manufacturing may also exceed the preliminary estimates.

The same basic principles would apply as we outlined in the discussion of cotton yarn spinning development. Most important is the design of a long-range maste: plan which would take into account the overall development of the integrated opsration from spinning tirrough garment manufacturing for the best interest of the company, the employees and the national economy.

Any new acquisition or expansion should be part of this plan and should be compatible with those interests.

As a first step in elaborating the master plan, we would like to summarize an operating strategy for cotton weaving development, as we perceive it at present, in the best interest of all concerned.

1. Cotton weaving should not lead spinning and should not develop at a faster pace than spinning in order to avoid unnecessary strain on yarn production, which could result in cancelling profitable export yarn sales.
2. Replacement of older profitable looms on the basis of reduced manufacturing cost does not seem justitisable undor the present operating conditions. Only those looms, whose efficiency is much lower than average, may eventually be replaced if the cost to recondition them would be excessive.
3. The payoff on new weaving equipment, including new construction, is still less attractive and should be avoided because of higher depreciation and also because existing buildings may be used to install 60% to 100% more capacity when older equipment is discarded in the future.
4. New investments in weaving should be taking into account possible shifts in the product mix toward more profitable fabrics such as finer poplins, dobby patterns, ducks, more mattress ticking and bedspreads.

As a result, the future production objectives of 163 million meters per year should be reached by discarding a ninimum number of existing looms, by concentrating on the more profitable styles and by avoiding new construction.

H. PROPOSED DEVELOPMENT PLAN

1. Weaving

Present Mehalla's plans call for replacement of 996 looms as listed in Exhibit V.

Most of these looms are indeed relatively old and in poor mechanical condition. Particularly, the looms in positions $1,3,4,5,6$, and 8 are performing at low levels of efficiency; and reconditioning them would either be impossible or extremely expensive and is estimated to cost over 60% of the replacement cost. As a result, the investment in reconditioning would be difficult to justify economically; and we agree that these looms should be discarded.

EXHIBIT V
 MEHALLA'S ORIGINAL LOOM REPLACEMENT PLAN

Shed No.	Make	Number of Looms	Reed Width	Remarks	Position
7	Northror	' 240	102/107	Cam	1
7	Northrop	192	102/107	Cam (Poplin)	2
6.	Northrop	32	117	Dobby	3
6	Northrop	24	72	Terry Plain	4
6	Northrop	34	178	Dobby and Plain	5
6	Northrop	32	107	Dobby	6
6	Northrop	12	117	Heavy Duck	7
6	Northrop	6	132	Plain	8
6	Northrop	88	107	Dobby	9
13	Draper	96	102	Plain	10
5	Butterworth	240	102/115	Plain	
	Total	996			

However, we would doubt that discarding the looms in the other positions could be economically justified for the following reasons:

- Position 2-192 Poplin Looms in Shed 7

These looms have been maintained as much as possible with original parts, and they are in satisfactory mechanical condition.

- Position 7-12 Heavy Duck, Hand Change Looms

They are the only heavy duck looms in the company. They produce profitable fabrics at high levels of efficiency, and replacement would seem premature at this point in time. .

- Position 9-96 Draper Looms in Shed 13

These looms are now operating at approximately 80% efficiency. Maintairing them with original spares should allow continuation of the present profitable condition in the foreseeable future.

- Position 10 - The Old 1936 Butterworth Looms in Shed 5

These machines are classic examples of depreciated, efficient and low cost operating equipment, whose replacement could not be justified on an economical basis. The quality performance may not be very impressive; but, if the same fabrics, mostly ration fabrics with no profit potential, had to be woven on new equipment, the company would have to sustain serious additional losses for which any new investment wouid be unjustified.

In summary, the suggested loom replacement plan consists of 456 machines as listed in Exhibit VI.

EXHIBIT VI
 SUGGESTED REPLACEMENTS OF EXISTING LOOMS

Capacity in Number of Picks
per Hour ($\mathbf{x} 1,000$)

After considering discarding these 456 looms, projections for new capacity have been developed on the basis of 163 million meters per year output of an unchanged product mix by 1980. Assuming 325 working days in the year, the 1980 projected volume would correspond to a daily production of 501,538 linear meters.

It is further assumed that the 456 discarded looms were operating at an average efficiency of 60% while the new looms will be operating at an average of 80%.

After discarding 456 looms, which were operating at lower than the average estimated efficiency of 75%, it is logical to assume that the remaining looms will operate at a higher average performance level. The weighted average efficiency, based on 75% overall performance before discarding the $\mathbf{4 5 6}$ looms would equal 76.52% after discarding. As a result, we will assume that the remaining looms are operating at an average of 76.52% after discarding the 456 worst ones, while the average operating efficiency of any new weaving capacity is estimated at 80%. Exhibit VII summarizes these computations:

ACTUAL WEAVING CAPACITY AND PROJECTED FUTURE REQUIREMENTS

Year	'Days of Operation	Actual or Projected Lin. Mtrs. per Day	Total Picks in Fabric per Day (000)	Avg. Eff. \%	Cepacity Required to Produce Actual or Projected Lin. Mtrs. Picks (000) per Exy	Capacity Available Picks (000) per Day Before Projecr	Incremental Capacity Required Plicks (000) per Day
1875	324	433,642	849,938	71.94	1,181,454	1,181,454	None
1976	325	456,840	895,569	74.27	1,205,760	1,205,760	Nons
1980	325	501,538	983,015	76.52	1,284,651	1,096,032(1)	188,619(2)

(1) After taking out 456 looms representing $4,572,000 \times 24=109,728,000$ picks per day.
(2) $188,619,000$ picks per day would be required as incremental capacity at the average projected efficiency of 76.52%. However, now looms are expected,to reach at least 80%, while the scrapped looms contributed only at an estimated 60%. As a result, scrapping 9.2% of the total pick capacity Is reflected by an efficiency increase of the remaining looms from $\mathbf{7 5 . 0 0}$ to 76.52 . It is further assumed that 75% was reached before 1980 due to improved maintenance mainly through original spare parts. At 80%, the incremental capacity required would be 180,414,000 picks per day.

The next step is to determine how many looms are required to provide the incremental capacity and to break down the sew capacity in narrow and wide, cam, dobby and jacquard, single shuttle and box looms.

In order to increase the flexibility of the existing cotton weaving operation, we have suggested a diversified set of 670 looms, totalling a capacity of $7,620,000$ picks per hour or $182,880,000$ picks per day, or two million picks per day in excess of the calculated requirements at 80% efficiency.

Bearing in mind increasing capacity in the more profitable fields, we have suggested 368 dobby looms and 32 wide jacquard looms as well as 34 new duck looms. Although the suggested loom complement is subject to minor adaptations, we believe that it achieves three important objectives:

- Increase Mehalla's capacity to 1.63 million meters per year.
- Diversify Mehalla's product mix into the more profitable sityles.
- No additional new construction is required.

The detailed breakdown of the suggested new cotton weaving equipment plan is summarized in Exhibit VIII.

The estimated cost of this equipment complement and its accessories is listed in Exhibit IX.

EXHIBIT VIII
SUGGESTED NEW COTTON WEAVING EQUIPMENT PLAN

	Number	Expected	Liable Reed Width	Capacity in Number of Picks ($\mathbf{x} 1,000$) per Hour Up to 200 CM Over 200 CM Plain Dobby Jacquard			Total Sapacity 1,0.00 Picks	Number of Looms			Remarks Typical Uses of Fabric(1)	
Item	of Looms	PPM	(CM)				\cdots -	1×1	4×1	4×3		
1.	292	200	132	3,504			3,504	292				Poplins
2.	220	190	132		2,508		2,508	220				Light anc Modium Twills
3.	12	200	112	144			144	12				Duck Looms
4.	16	190	132	182			182	16				Duck Looms
5.	6	190	152	63			69	6				Duck Looms
6.	16	170	178	163			163	16				Bottom Weights
7.	72	165	178		713		713	72				Fancy Twills
8.	4	160	172		38		38		4			Tabiectoths
9.	12	160	220			115	115	12				Ticking
10.	8	156	220			74	74		6	2		Tablecloths
11.	8	155	245			74	74	8.				Bedspresds
12.	4	150	245			35	36		2	2		Upholstery
Total	670			4,062	3,259	299		654	12	4		
Total Picks per Hour $\times \mathbf{1 , 0 0 0}$				7,321		299	7,620	,				

(1) Provided only as a guideline.

EXHibitix
SUGGESTED INVESTMENT - NEW COTTON WEAVING EQUIPMENT
LIST OF EQUIPMENT AND ESTIMATED COST

Itan	Number of Looms	Decription of Looms	Usable Reed Spece (CM)	Plain	Dobby	deequard	1 Shuttio	4×1	4×3	Undill	Extimated FOB Coat pir Unt \$	Total Estimeted Coat FOB
1.	292	Single Shuttio Cam Loom	132	x			x			x		
2.	220	Single Shuttie Dobby Loom	132		x		x			x	$\$ 7,200$ 9,000	$\$ 2,102,400$ $1,890,00011$
3.	12	Duck Loom	112	x			x			x	8,200	108,400
4.	16	Duck Loom	132	x			x			x	8,400	rer,400
5.	6	Duck Loom	152	x			x			\times	8,800	134,400 62,800
6.	16	Single Shuttie Cam Loom	178	x			x			x	8,800	52,800 120,800
7.	72	Single Shuttic Dobby Loom	178		x		x			x	8,100 8,800	129,800 705,60011
8.	4	Dobby Box Loom	178		x			x		x	11,500	706,60011 $46,000(1)$
9.	12	Singlo Shuttio Jacquard Loom	220			x	x				10,700	46,000(1)
10.	8	decquard Box Loom	220			x		x	x		10,700 12,750	128,400
11.	8	Single Shuttle Jacquard Loom	245		\sim	x^{-}	x				10,900	102,000 87,200
12.	4	decquard Box Loom	245			\cdots		x	x		13,000	52,000
	670	Total Looms										\$ 5,618,800
13.	634	Unitils										
14.	32	Jecquard Hends - 1,248 Hooks									2,200	$163,200$
15.	634 32	Sets of Acsestories for Cam and Dobby Looms.										1,574,800
16.	32	Sets of Accessories for Jecquard Looms										131,200
		Subtotal Looms F.O.B.										\$ 8,882,800
17.	18	Knotting Mechines with Accuscrins										
18.	2	Sheering Mechines with Accesmories									18,000	342,000
19.	2	Plaiting Machines with Accoscories									88,000	178,000 54,000
20.	3	Inspection Mschines with Accessories										42,000
		Subtotal F.O.B.										\$ 9,403,800
21.		Senworthy Packing, Froight and Insurance										860,000
22.		Grand Total CIF Value										\$10,446,800

(1) Inctuding dobby.

The summury of investments in Exhibit X indicates that the total estimated CIF cost equals $\$ 10,446,800$; and the total investment, excluding working capital, is estimated at $\$ 13,937,600$.

This is substantially lower than the original estimates which were over $\$ 17,000,000$ for equipment only. In addition, the original plan would have required construction of approximately 10,000 square meters at an estimated cost of $\$ 2,000,000$.

Including freight, erection, duty, spares and accessories, the original plan would have required a total investment in excess of $\$ 23,000,000$ while the actual potential would not have been greater than with the suggested plan.

EXHIBIT X

SUMMARY OF INVESTMENT FLAN - COTTON WEAVING

2. Weaving Proparation

As we stressed earlier, the weaving preparation is very critical with regard to quality and performance of the subsequent processes and particularly weaving.

In the original request, crily two new slashers were included. We believe at least one is needed to relieve potential bottlenecks and the other one to replace inadequate equipment. A new modern can slasher would replace the present capacity of 2.5 of the three Polish slashers. It would save at least five operators and consume only 60% of the steam now required by the Polish slashers. We may further assume that the quality of the warps would be increased and waste would be reduced. The cost of a new slasher is slightly under $\$ 100,000$, but the payoff would be less than three years, considering only these elements at conservative estimates:

$$
\begin{array}{lrr}
& \text { Per Year } \\
- & \text { Labor Savings } & \$ 5,000 \\
- & \text { Steam Savings } & 5,800 \\
- & .5 \% \text { Less Waste } & 24,500 \\
& \\
\text { Total } & \$ 35,300
\end{array}
$$

In order to build in more flexibility, we suggested one of the slashers be equipped with warp dyeing equipment.

In warping, no new equipment was requested, and apparently no potential bottlenecks exist. However, as we discussed in subsection D, we would recommend replacement of the two existing Polish warpers, mainly for quality reasons. The payoff would be less than 2.5 years as demonstrated in the same subsection. Further improvements in warping are possible, and we also suggested a 120 spindle manual winder to rewind creel ends.

Exhibit XI summarizes the suggested investment plan in warping and slashing, while Exhibit XII is a recap of the capital required and estimated at $\$ 862,940$, of which $\$ 657,440$ is foreign exchange.

EXHIBIT XI

SUGGESTED INVESTMENT - ADDITIONAL WARPING AND SLASHING

Process	Number of Machines	Description	Estimated F.O.B. Cost in US \$	
			Per(1) Machins	Total $\$$
Warping	1	54" Wide Beam $40^{\prime \prime}$ Diameter Including Creol 544 Ends	\$68,000	\$ 68,000
	1	72" Wide Beam 40" Diamater Including Creel 544 Ends	76,000	76,000
	64	Beams for Warpers	660	42,249
Rewinding	1	Manual Cone Winder 120 Sp.	31,200	31,200
Slashing	2	12 Can Slashor - 16 Stands in Creel, 2 Size Boxes - 60"	96,000	192,000
	1	18 Can Slasher - 16 Stands in Creol and Dye Box	132,000	132,000
		Subtotal		\$541,440
		Seaworthy Packing, Fraight and Insurance		65,000
		Grand Total CIF Value		\$606,440

(1) Complete including normal accessories but no spares,

EXHIBIT XII

SUMMMARY OF INVESTMENT PLAN - WARPING AND SLASHING

3. Additional Opportunities

In Section III, we discuss the upgrading of certain machinery including existing Draper and Crompton looms with original spares. We refer to that section for more details. In the scope of the cotton weaving plan however, we consider updating these looms at an estimated cost per loom from $\$ 900$ to $\$ 2,800$ as a very productive investment. As a result of this investment, representing on the average less than 10% of the replacement value of the loom, we expect to gain efficiency increases at least from 65% to 75% and more. Such increases represent an additional 15% output above the present performance.

4. Expected Performance

The suggested investment in 670 new looms, in updating some existing coms and in new warping and slashing equipment would not require any additional labor nor any additional construction. It would further include the following benefits:

- Average expected loom efficiency would rise from 72% in 1975 to over 76.5% in 1980.
- Annual production is expected to be increased from 148 million meters in 1976 to 163 million meters in 1980.
- Overall yield from yarn to fabric is expected to improve slightly over the 1975 level of .9536 because of reduction in waste, particularly in the warping and the slashing processes.
- Greige goods quality should improve through better slashing.
- Although the product mix remains basically unchanged, additional flexibility has been added in the areas where the profit potential seems to be the greatest, such as:
- Slasher dyeing.
- Weaving of jacquard patterns in bedspreads and ticking material.
- Weaving of ducks and dobby fabrics.

The incremental weaving capacity created through the implementation of this project equals $163-148.5=14.5$ million meters per year for a total investment of approximately $\$ 14$ million. On a marginal basis, the depreciation per incremental meter produced would be:

$$
(14,000,000 \times .06) / 14,500,000=\$.0579 \text { or } £ E .23 \text { per Meter }
$$

The marginal depreciation of £E .023 per meter is substantially higher than the present average of $£ E .002$ per meter; but, for the incremental production, no additional labor is required which eeprosents a saving of EE 023 per meter practically equivalent to the increase in marginal depreciation. On balance the new equipment, beside considerable intangible benefits, improves the profit potential of the company even before taking into account the effects of better quality and reduced waste levels. As for the cotton spinning, further potential exists to reduce the labor cost if proper reorganization is implemented.
5. Summary of the Project Evaluation

Exhibits XIII through XVII summarize the project evaluation relative to the cotton weaving and accessory equipment. They indicate the requested compared to the recommended investment in equipment at F.O.B. prices, as well as the justification for the expenditure.

EXHIBIT XIII

SUMMARY OF INVESTMENT EVALUATIONS - LOOMS

Mill - Cotton Weaving

```
Department - Weaving
A.I.D. Request Reference - Annex 13, Table 2
```

Ouantity Item

996
Looms with Unifil
Spares
Total
U.S. Manufacturer of Desirable Equipment

Estimated Cost F.O.B. - US \$
A.I.D. Request Value F.O.B.
EE US $\$ \mathrm{l}$

5,313,000 13,601,280

- 796,950 2,040,190

6,109,950 15,641,470

Yes

9,771,080

Recommended:

Installation of $\mathbf{6 7 0}$ looms only based upon the following strategy:

1. Investment in weaving should not result in unbalance with spinning nor in reduction of yarn exports.
2. Instead of discarding 996 looms, we would recommend at this time considering only 456 looms. The others can be updated at moderate cost and with excellent payoff. (See updating program.)
3. Meet production targets of 163 million meters per year in total, based on present product mix.
4. Expand capacity primarily in the most profitable areas such as dobby weaving, mattress ticking, bedspreads, and ducks.
5. Avoid additional new construction as much as possible. On the basis of the suggested program, no new construction is required to meet the production targets.

EXHIBIT XIV

SUMMARY OF INVESTMENT EVALUATION - LOOM ACCESSORIES

```
Mill - Cotton Weaving
Department - Weaving
```


A.I.D. Request Reference - Annex 13, Table 2

Ouantity	Item	A.I.D. Request Value F.O.B.	
			US \$
18	Knotting Machines	90,000	230,400
	Spares	13,500	34,560
	Total	103,500	264,960
		-	
U.S. Manufacturer of Desirable Equipment		Yes	
Estimated Cost F.O.B. - US \$		376,200	

Recommended:
For replacement and additional capacity. Actual prices appear higher than originally estimated by Mehalla.

EXHIBIT XV

SUMMARY OF INVESTMENTT EVALUATION - WEAVING PREPARATION

Mill - Cotton Weaving
Department - Weaving Preparation
A.I.D. Request Reference - Annex 13, Table 2

Quantity Itam

A.I.D. Request Value F.O.B. EE US \$

2
Sizing Machines

200,000
512,000
Spares
30,000
76,800
Total
230,000
586,800

U.S. Manufacturer of Desirable Equipment

Yes

Estimated Cost F.O.B. - US \$
568,500

Recommended:

To install 2 regular sizing machines and one sizing machine with separate dye box for warp dyeing. In addition to the requested program, we recommend two new warpers and a 120 -spindle cone winder for rewinding creel ends. We would consider discarding the present Textima warpers and slashers on the basis of low quality performance, high cost to operate and maintain, as well as excessive wastage of yarn. Individual machine prices appear lower than originally estimated by Mehalla. The proposed investment would permit Mehalla to substantially improve the quality of weaving preparation, which is a prerequisite to efficiency and quality of weaving. In addition, controls would be more effective and waste levels, which now appear excessive, could be substantially reduced.

EXHIBIT XVI

SUMMARY OF INVESTMENT EVALUATION - COMPLEMENTARY EQUIPMENT

> Mill - Cotton Weaving

Department - Weaving
A.i.D. Request Reference - Annex 13, Table 2

Ouantity Item

Complementary Equipment (Airconditioning Substations, Etc.)
U.S. Manufacturer of Desirable Equipment

Estimated Cost F.O.B. - US \$

A.I.D. Request Value F.O.B.	
£E	US\$
-	
500,000	1,280,000

Yes

0

Recommend:

The newly suggested cotton weaving investment plan does not require new construction although it is designed to meet the $\mathbf{1 9 8 0}$ production objectives of $\mathbf{1 6 3}$ million meters per year. As a result, we have recommended updating only existing buildings, electrical installations and existing airconditioning equipment. For these investments, only local currency would be required.

EXHIBIT XVII

SUMMARY OF INVESTMENT EVALUATION - CLOTH ROOM EQUIPMENT

Mill - Cotton Weaving
Department - Cloth Room
A.I.D. Request Reference - Annex 13, Table 2

Ouantity	Itam	D. Request Value F.O.B.	
		EE	US \$
2	Shearing Machines	30,000	76,800
2	Plaiting Machings	12,000	30,720
3	Inspection Machines	3,000	7,680
	Total	45,000	115,200

U.S. Manufacturer of Desirable Equipment
 Yes

Estimated Cost F. O. B. - US \$
299,200

Recommended:

For additional capacity and improved quality of these operations. Individual prices of machines appear higher than originally estimated by Mehalla.

I. TECHNICAL ASSISICANCE

We believe Mehalla has the fundamental expertise and experience to implement the new cotton weaving investment plan with some help from the suppliers. However, to fully capitalize on existing opportunities, it would appear desirable to include some form of technical assistance for the main purpose of reducing cost through better controls, quality improvements and reduced waste levels. It would also be advisable to design a master plan for future development of the company, including the establishment of criteria, objectives, cash flow projections and budgeting. Cotton spinning, weaving and finishing being a major activity of Mehalla, this would be a good place to start. The plan should also be managed on a continuous basis, and the necessary organization to assure continuity should also be examined and laid down.

The following is a broad outline of estimated investment requirements for technical assistance in the scope of the new and continuing operations:
Design and Initial Implementation of the Company's Master Plan for Fu'ture Development $\$ 70,000$
Engineering of Warping ard Sizing Processes 60,000
Waste Control Program 200,000
Production Control Program 140,000
Cost Reduction Program (3 Years) 400,000
Total $\$ 870,000$

Basically, the engineering of warp and sizing processes would be aimed at improving quality of the sized beams introduced into weaving. Improving the quality of sized warps would have a beneficial effect on weaving efficiency. For each percent additional weaving efficiency, the estimated annual savings, based on average contribution to depreciation and profits of $\$.05$ per meter of fabric woven, would amount to:

$$
1,630,000 \times .05=\$ 81,500 \text { per year }(\mathcal{E} E 31,786)
$$

The waste control program would aim at reducing and controlling waste in all processes, but the specific objective would be to increase the overall weaving yield from yarn to fabric from the present level of .9536 to .9700 , which is a conservative objective. This would save some 500 tons of yarn per year, worth well over $\$ 1,000,000$ ($£ \mathrm{E} 390,014$).

The actual scope and potential savings of some of the proposed technical assistance programs can. be determined only on the basis of an appropriate survey; therefore, the quoted figures should be used as guidelines only.

APPENDIX 1
EQUIPMENT SUMMARY
PLANT - CENTRAL DEPARTMENT
DEPARTMENT - WARPING

Process	Make ${ }^{-}$	Year	No. of Machines	Del. per Machine	Total Deliveries	$100 \% \mathrm{Kg}$./Hour, RPM, PPM \& Mtr. per Min.		Expect. Average Eff. \%	Remarks
						Range	Typical		
Warping (Direct)	Reiner								
		46	1	1	1	300-600	300		560 Ends
	Schlafhorst	71	1	1	1	300-600	500		Double Croel 608 Ends
	Schlafhorst	72	1	1	1	300-600	500		560 Ends
	Schlafhorst	74	4	1	4	300-600	500		560 Ends
Warping (Sectional)	Polish	70	2	1	2	300-400	300		600 Ends
	Barber	68	4	1	4	300-800	400		540 Ends
	Polish	72	1	1	1	80600			676Ends
			14						

Process	Make	Year	No. of Machines	Del. per Machine	Total Deliveries	$100 \% \mathrm{Kg} / \mathrm{Hour}$, RPM, PPM \& Mtr. per Min. Range Typical	Rated Drying Capac. Kg./Hr.	Remarks
Slashing	Hibbert	62	2	1	2	8.30	120	Heas Stock 180 CM
	Hibbert	49	14	1	14	8.30	120	$\begin{aligned} & 12 \times 110 \mathrm{~cm} \\ & 2 \times 180 \mathrm{~cm} \end{aligned}$
	Poland	76	3	1	3	10-30	140	180 CM
	Sucker	72/73	2	1	2	20-125	700	200 CM
(Reconditioned)	Hibbert	49	1	1	1	$8 \cdot 30$	120	110 CM

		APPENDIX 3 EQUIPMENT SUMMARY PLANT - CENTRAL DEPARTMENT DEPARTMENT - PIRN WINDING							
Process	Maka	Year	No. of Machines	Del. per Machine	Total Deliveries	100\% K RPM, Mtr. p Range	lour, lin. Typical	Expuct. Average Eff. \%	Remarks
Pirn Winding	Schlafhorst	55	13	36	468	400-550	500		
	Schlafhorst	65	16	24	384	400-550	500		
	Schlafhorst	71	4	36	144	500-600	550		
	Hacoba	49	5	40	200		300		
	Schweiter	71	5	48	240	600-600	650		
	Schweiter	73	3	48	144	500-600	550		
	Schweiter	75	5	48	240	500-600	650		
	Total Installed				1,820		\bigcirc		
	Schweiter	76	10	48	480	500-600	650		On Order
					2,300				

> APPENDIX 4
> EQUIPMENT SUMMARY
> PLANT - COTTON WEAVING
> DEPARTMENT - WEAVING

[^0](1) Terry.

APPENDIX 5
COTTON WEAVING PROGRAM
LIST OF FABRIC CONSTRUCTIONS

Style Number	Greige (CM)	Warp x Woft Ne	Construction Ends x Picks (CM)	Exclusive of Sizing Gr. Weight per Linear Moter		
				Warp	Woft	Total
91/54	87	14×14	19.0×19.0	76.4	72.9	149.3
1212	80	20×8	19.0×16.5	49.2	101.9	151.1
2290	87	14×14	19.0×16.5	76.4	63.4	139.8
934	102	18×18	19.0×17.5	69.7	61.3	131.0
1393	80	20×8	19.0×17.0	49.2	105.0	154.2
1873	137	30×18	53.0×28.4	156.6	133.5	290.1
Drill Meh.	162	14×10	35.0×20.5	262.4	205.1	467.5
928	140	24×10	17.3×16.5	65.3	142.7	208.0
49/53	150	20×20	23.5×23.5	114.1	108.9	223.0
49/63	160	20×20	23.5×23.5	121.6	116.1	237.7
Drill 825	154	30/2 $\times 24 / 2$	41.5×21.0	275.6	166.5	442.1
Drill 2236	161	40/2 $\times 40 / 2$	41.5×23.0	216.1	114.3	330.4
Drill 2239	150	30/2 \times 30/2	41.5×23.0	268.5	142.0	410.5
Drill Meh.	76	14×10	35.0×20.5	122.9	98.3	219.2
Sat 1484	75	$24 / 2 \times 10$	37.5×19.5	151.7	90.3	242.0
Drill 2212	78	20×12	34.0×20.5	85.8	82.3	168.1
Fl 1286	80	20×10	22.5×19.5	58.2	98.4	154.6
Sabsa Sheet	203	14×14	21.0×19.5	197.0	174.6	371.6
Sabaa Sheet	245	14×14	21.0×19.5	237.8	210.8	448.6
Sabaa Sheat	183	14×14	21.0×19.5	177.6	157.5	335.1
Sabaa Sheot	168	20×20	23.5×23.5	127.8	122.0	249.8
Flan. 1219	73	14×14	17.0×15.0	57.4	48.3	105.7
Gauze 1884	97	24×18	14.0×9.5	36.7	31.6	68.3
Bat, Rabeh	87	30×30	23.5×23.5	44.1	42.1	86.2
Popl. Nassem	86	18×18	23.0×20.5	71.1	60.5	131.6
Dabalan 22	88	16×16	21.5×21.5	76.5	73.0	149.5
Gauze 1068	98	30×30	11.5×9.5	24.3	19.2	43.6
Gauze 76/60	106	50×40	7.0×5.0	9.6	8.1	17.7
Batista Rabih	87	30×30	23.5×23.5	44.1	42.1	86.2
Voile 366	145	50×50	26.0×20.5	48.8	36.7	85.5
Tablecloth	192	14×10	24.0×19.7	213.0	233.6	446.6
Tablectoth	168	14×10	24.0×19.7	186.4	204.4	390.8
Dobby 1434	140	30/2 $\times 14$	35.0×20.5	211.4	126.6	338.0
84/53	138	12×10	17.0×13.5	126.5	115.1	241.6
1823	154	50×50	35.0×31.5	69.8	60.0	129.8
Flan. Misr	80	30/2 $\times 8$	19.0×16.5	65.6	101.9	167.5
Flan. Dobb.	80	20×10 (Soft)	22.5×19.5	58.2	96.4	154.6
Tube 1459	110	24×24	41.5×43.3	123.1	122.6	245.7

APPENDIX 5 (CONTINUED)

Style Number	Greige (CM)	Warp x Weft No	Construction Ends x Picks (CM)	Exclusive of Sizing Gr. Woight per Linear Metor		
				Werp	Weft	Total
Terry Towal	72	14×16	23.5×15.0	146.0	41.7	187.7
Torry Towel	59	14×16	23.5×15.0	122.4	34.2	156.6
Ticking Cloth	140	18×18	36.2×19.7	182.2	84.6	276.8
Ticking Cloth	160	18×18	36.2×19.7	208.2	108.2	316.4
Tablecloth	173	30/2 $\times 30 / 2$	33.0×33.0	246.3	235.1	481.4
Bashkir	125	20×16	25.5×13.0	103.1	62.7	165.8
Jacq. Towel	60	24/2 $\times 10$	23.0×15.5	114.9	57.4	172.5
Jacq. Towel	55	24/2 $\times 14$	23.0×15.5	130.2	37.6	167.8
Jacq. Towel	83	20/2 $\times 10$	19.0×15.0	194.8	76.9	271.7
Jacq. Napkin	50	40/2 $\times 40 / 2$	31.0×33.0	50.1	51.0	101.1
Terry Towel	161(+55)	14×16	23.5×15.0	447.9	125.1	573.0
Terry Towel	60	$24 / 2 \times 14$	23.0×15.7	142.1	41.6	183.7
555 Check	96	30×30	25.2×27.5	52.2	54.4	106.6
Sabaa Sheat	245	14×14	17.7×19.7	200.4	212.9	413.3
Dobby 1568	97	18×12 (Soft)	26.5×13.5	92.4	67.4	159.8
Flan.	79	30/2 $\times 10$ (Soft)	19.0×16.5	64.7	80.5	145.2
Duck 712	106	12/2 $\times 12 / 2$	15.7×14.2	179.5	155.0	334.5
Duck 117/57	104	$7 / 5 \times 7 / 5$	13.0×5.6	624.9	257.0	881.9
Duck 71/60	92	15/3 $\times 15 / 3$	19.0×73.8	228.2	156.8	38\%1.0
Duck 104/53	105	12/3 $\times 12 / 5$	18.2×9.9	309.1	267.5	576.6
Flan.	80	30/2 $\times 8$	19.0×20.5	65.6	126.6	192.2
Poplin 2257	98	40×40	43.0×28.3	68.2	42.8	111.0
Poplin 1822 (Mix)	100	40×40	43.0×28.3	69.6	43.7	113.3
Leno 1823 (Mix)	103	50×50	35.0×31.5	46.7	40.1	86.8
Heika 1636	96	30×30	30.0×30.0	62.1	59.3	121.4
Denim 1488	101	20/2 $\times 10$	27.5×19.0	179.7	198.5	298.2
Flan.	97	20×14	25.5×29.5	80.0	126.3	206.3
Voile 366	99	50×50	25.5×20.5	32.7	25.1	57.8
Twill 1668	91	30×16	25.2×24.5	49.5	86.1	135.6
Dobby 413	86	30×24	37.0×23.5	68.6	52.0	120.6
Poplin 2209	97	30×30	30.3×26.0	63.4	51.9	115.3
Wool 525	98	$30 / 2 \times 8$	19.0×15.8	80.3	119.6	199.9
Leno 875	97	60×60	34.0×32.2	35.6	32.2	67.8
Duck 1677	119	18×10	16.5×11.0	70.6	80.9	151.5
107/59-	128	24×12	16.5×17.5	57.0	115.3	172.3
Grey 1287	94	14×8	19.0×16.0	82.6	116.1	198.7
738 Grey	142	4×4	10.2×9.5	234.3	208.3	442.6
97/55	142	8×8	13.0×9.5	149.3	104.2	243.5
49/53	142	20×20	23.6×23.6	108.4	103.5	211.9
49/53	96	20×20	23.6×23.6	73.3	70.0	14.3

Style Number	Groige (CM)	Warp x Weft Ne	Construction Ends x Picks (CM)	Exclusive of Sizing Gr. Waight per Linear Moter		
				Warp	Woft	Total
2232	98	20×16	19.0×18.5	60.3	70.0	130.3
Wool 7500	140	20/2 $\times 28 / 2$		140.0	160.0	300.0
2068	96	20×14	16.5×13.5	51.3	57.2	108.5
1270	97	30×24	30.0×26.0	62.8	64.9	127.7
75/60	96	30×30	32.0×31.5	68.3	62.3	128.6
107/59	103	24×12	16.5×17.5	45.8	92.8	138.6
91/54	102	14×14	19.0×19.0	J9.6	85.5	175.1
Sabaa Sheat	153	14×14	21.3×19.7	150.6	133.0	283.6
20/58	160	16×16	23.5×22.5	152.1	145.1	297.2
Reps 1333	96	20×8	30.7×13.8	95.4	102.3	197.7
Batist Żehour	98	40×40	28.0×26.8	44.4	40.6	85.0
1268	102	24×24	23.5×23.5	64.6	61.7	126.3
49/53	127	20×20	23.6×23.6	96.7	92.6	189.3
2215	128	30×30	21.7×15.7	59.9	41.4	101.3
Dobby 2085	97	30×30	33.0×23.0	69.0	46.0	115.0
433	98	40×40	23.5×19.5	37.3	29.5	66.8
2277	102	10×10	16.5×16.5	108.9	104.0	212.9
Mouftakher	83	12×12	19.5×16.0	87.3	68.4	155.7
Shoet 1213	88	20×14	17.5×17.0	49.8	66.0	115.8
443	137	12×12	17.0×16.5	125.6	116.4	242.0
114/69	160	24×8	19.0×19.0	82.0	234.7	316.7
91/94	140	14×14	19.0×19.0	122.9	117.4	240.3

TABLE OF CONTENTS

SECTION III

REHABILITATION OF EXISTING COTTON EQUIPMENT

Section Paga
A. Scope 1
Exhibit I - Recommended Spares for Rehabilitation of Equipment 2
B. Rationale and Expected Benefits 3
C. Suggested Investment 4
Exhibit II - Summary of Investment Plan, Equipment Rehabilitation (Cotton Mills) 5
Exhibit III - Summary of Investment Plan Evaluation 6

SECTION III: REHABILITAI'ION OF EXISTING COTTON EQUIPMENT

As discussed in various instances in Sections I and II, we believe that some older equipment can be rehabilitated and can continue to perform properly and economically in the foreseeable future.
A. SCOPE ${ }^{\prime}$

The possibility of updating, rather than discarding, certain machines has been examined from an economical as well as from a technical viewpoint in the cotton yarn and weaving mills.

The list of parts recommended is not exhaustive and is mainly centered around U.S. made equipment. In other areas partial or complete rehabilitation may be a feasible and economical proposition and should be considered whenever the question is raised whether or not the equipment is to be discarded.

Exhibit I indicates the machines in the cotton mills for which rehabilitation is recommended within the scope of the present project and also the estimated cost per ïächine.

The program basically involves 894 looms, 3,570 manual winding spindles and 144 combing heads.

					No. Units	Rec. Sp
Mill No.	Machine	Make	Year	Unit	Considered	Per Unit

Weaving 2	Loom 40"	Draper $\times 2$	1948	Machine	96	\$ 900	\$ 86,400
Weaving 3	Loom 32"	Draper $\times 2$	1948	Machine	600	400	240,000(1)
Weaving 6	Looin 72"/74"	Crompton	1959	Machine	12	1,800	21,600
Weaving 6	Loom 76"	Crompton	1953	Machine	6	2,800	16,800
Weaving 6	Loom 44"/50"	Crompton	1959	Machine	84	1,750	147,000
Weaving 13	Loom 40"	Draper $\times 2$	1948	Machine	96	900	86,400
Spinning 1	Winding	Leesona	1948	Spindle	1,560	116	179,400
Spinning 2	Winding	Leesona	1948	Spindle	1,560	115	179,400
Spinning 4	Winding	Leesona	1948	Spindle	450	116	61,750
Spinning 5	Combing	Whitin	1958	Head	144	1,750	252,000

Subtotal
(1) Looms have been updated partially in 1975 for an approximate average cost of $\$ 500$ per loom.

B. RATIONALE AND EXPECTED BENEFTIS

1. The looms in weaving shed 3 were partially rebuilt last year. As a result of an investment of approximately $\$ 500$ in original spares per loom, efficiency was improved from 65% to 80%. New looms of the same size would cost approximately $\$ 10,000$ to $\$ 12,000$ installed, with accessories and spares, but they would not produce significantly more. The investment to recuperate 15% of the possible production, or to gain 23% over past performance, costs 5% of the investment that would be required in new equipment. It is true, however, that new equipment may achieve better quality but in the case of Mehalla, except perhaps for exports, better quality would not yield additional income. We recommend increasing the investment in parts to $\$ 900$ for this type loom and from $\$ 1,800$ to $\$ 2,800$ for the wider Dobby and Jacquard looms as listed in Exhibit I.
2. Rehabilitation of the Leesona winders is a different perspective. In this case, the expected benefits are waste reduction and improved quality.

As commented on in Section I, the poor mechanical condition of these winders contributes to uneven sizes and badly constructed bobbins as well as low performance of the winder and higher maintenance cost. However the condition of the bobbin is very critical for the performance at subsequent processes. We estimate that the 8% creel ends in warping could be reduced to 5% and that at best 1% yarn would be saved from being wasted, if an estimated amount of $\$ 115$ were invested in original parts per spindle.

Taking into account only the potential savings of 1% in less yarn waste at $\$ 2.5$ per kilogram average and assuming an average spindle production of one kilogram per hour, it would take 4,600 hours or less than eight months, three-shift operation, to pay off the investment in original parts.
3. The Whitin winders would have to be replaced on the basis that the produced slivers do not meet the quality specifications. A new machine, composed of eight heads, would cost (installed) approximately $\$ 40,000$ or $\$ 5,000$ per head. We believe that the existing machines can be rehabilitated to meet quality specifications for $\$ 1,750$ or one-third of the cost for new equipment.

C. SUGGESTED INVESTMENT

Exhibit I indicates the breakdown of recommended spares and cost. The total CIF value is estimated at $\$ 1,386,750$.

Exhibit II summarizes the investment plan. Including duties and the cost of overhauling, the total investment would amount to $\$ 1,567,250$.

Exhibit III is the summary of the investment plan evaluation.

EXHIBIT II
 SUMMARY OF INVESTMENT PLAN EQUIPMENT REHABILITATION (COTTON MILLS)

Item No.	Description	Estimatad Cost		
		Foreign Exchange in US \$	Local Currency in US \$	Total in US \$
1.	Equipment + Accessories CIF			
	Value(1)	1,386,750		1,386,750
2.	Import Duty on 1. (12\%)		166,500	166,500
3.	Clearing + Local Transportation			
	+ Erection		14,000	14,000
4.	Auxiliary Equipment + Accessories		Not Applicable	
5.	Import Duty on 4.		Not Applicable	
6.	Clearing + Local Transportation for 4.		Not Applicable	
7.	Spares Including Duty		Not Applicable	
8.	Electrical		Not Applicable	
9.	Airconditioning		Not Applicable	
	Subtotal Equipment Installed	1,386,750	180,500	1,567,250
iv.	Coustruction		Not Applicable	
	Total Investment (Excluding			
	Working Capital)	1,386,750	180,500	1,567,250

(1) Essentially no equipment but original spares as per Exhibit III.

EXHIBIT III

SUMMARY OF INVESTMENT PLAN EVALUATION
Mill: Cotton Spinning and Weaving
Des_artment: Winding, Combing, Weaving

		A.I.D.	A.I.D.
		Request	Request
Item		Value	Value

Equipment not included in original A.I.D. request.
U.S. Manufacturer of Desirable
Equipment

Estimated Cost US $\mathbf{\$ -}$ - FOB
1,260,750

Recommend:

To rehabilitate certain looms, the rotoconer winders and the Whitin combers with original spares. The objective is to improve production and quality. The investment required has a good payoff and is moderate considering the altarnative of replacing the equipment.

TABLE OF CONTENTS

SECTION IV

TWISTING AND SEWING THREAD

Section Page
A. Present Conditions 1
B. Suggested Investment 1
Exhibit I - Suggested Investment, Twisting and Sewing Yarn Manufacturing 3
Exhibit II - Summary of Investment Plan, Twisting and Sewing Yarm Manufacturing 4
Exhibit III - Summary of Investment Plan Evaluation 5

SECTION IV: TWISTING AND SEWING THREAD

A. PRESENT CONDITIONS

In the production program of the new yarn Mill 7, as described in Section I, a small volume of 42 kilograms per hour of yarns is included for the purpose of manufacturing sewing threads, in view of the expansion of the garment factory and eventually for sales.

Capacity for twisting these yarns would theoretically be available in the twisting department and no request was submitted by Mehalla in the original A.I.D. write-up for additional twisting or further processing equipment of sewing threads.

Although we do not anticipate any serious bottlenecks in the twisting department, we realize that some of the equipment is in very poor mechanical condition. We therefore suggest consideration be given to adding some twisting equipment in order to update the present operation and eventually to replace some of the existing machines which are in very poor mechanical condition.

B. SUGGESTED INVESTMENT

It would probably be appropriate to consider two for one twisters. To our knowledge, this type of machine is not manufactured in the United States and we have based our estimates on conventional ring twisters. Not all of the suggested twisting equipment should necessarily be installed in the twisting department. As a matter of fact, we believe it would be more adequate to install a part of the new twisters in Mill 7 to process the required volume of yarns for sewing threads. In this manner controls may be easier and more effective.

Yarn mercerizing equipment is equally not manufactured in the United States and our cost estimates are based on prices quoted in the U.S. by European suppliers.

Exhibit I describes the suggested investment and lists the estimated cost.
Exhibit II summarizes the investmint plan. The total investment, excluding working capital, is estimated at $\$ 994,250$ of which the foreign exchange portion equals 8875,250 .

Exhibit III is a summary of the investment plan evaluations and compares the originally estimated FOB cost with the suggested. In this case, no equipment had been included in the original request and the reasons why we believe it should be included are summarized again at the bottom of the exhibit.

EXHIBIT' 1
 SUGGESTED INVESTMENT
 TWISTING ANJD SEvING YARN MANUFACTURING

Item No.	Description	Estimatad FOB Ccst in US riallars	
		Per Unit	Total \$
1.	12 Twisters 4" ${ }^{\text {cioing, }} 200 \mathrm{Sp}$. Each(1)	36,000	432,000
2.	10 Reeling Machines Cone to Hank	6,000	60,000
3.	Yam Mercerizing Equipment(2)	88,000	88,000
4.	8 Winders Hank to Cone, 12		
	Spindies Each	9,000	72,000
	Subtotal Machines		652,000
5.	Accessories for 1. to 4.		98,000
	Subtotal Equipment + Accessories		750,000
6.	Seaworthy Packing + Freight + Insurance		75,000
7.	Grand Total CIF Value		825,000

(1) Based on three creel packagss/spindle - creel included.
(2) Apparently not available from U.S. sources.

EXHIBIT II

SUMMARY OF INVESTMENT PLAN TWISTING AND SEWING YARN MANUFACTURING

Item No.	Description	Estimaterd Cost		
		Foreign Exchange in US \$	Local Currency in US \$	Total in US \$
1.	Equipment CIF Value	825,000	-	825,000
2.	Import Duty on 1. (12\%)		99,000	99,000
3.	Clearing + Local Transportation + Erection	9,000	9,000	18,000
4.	Auxiliary Equipment + Accessories		Included in 1.	
5.	Import Duty on 4.		Included in 2.	
6.	Claaring + Local Transportation for 4.		Included in 3.	
7.	Spares (5\%) Including Duty (12\%)	41,250	5,000	46,250
8.	Electrical (Connection Only)		6,000	6,000
9.	Airconditioning		None	
,	Subtotal Equipment Installed	875,250	119,000	994,250
10.	Construction		None	
	Total Investment (Excluding Working Capital)	875,250	119,000	994,250

EXHIBIT III

SUMMARY OF INVESTMENT PLAN EVALUATION
Mill: Yarn Manufacturing
Department: Twisting

		A.I.D. Request	A.I.'D. Request
Item		Value	Value
Item	Ouantity	EE	Us\$

Equipment not included in originai A.I.D. request.

U.S. Manufacturer of Desirable	Yes - Twisters
Equipment	No - Yarn Mercerizing

Estimated Cost US \$ - FOB
787,500

Recommend:

To install new twisting equipment partially; to add capacity and partially to replace some older frames which are inadequate for quality reasons and uneconomical because of excess maintenance and/or low speeds and small packager. Sewing thread manufacturing is suggested as additional capacity to supply yarns for the garment manufacturing expansion and eventually for sales.

Yarn mercerizing equipment is included although it does not seem to be manufactured in the United States.

TABLE OF CONTENTS

SECTION V

COTTON DYEING, PRINTING, FINISHING

Section Paga
A. Present Conditions 1
B. Planned Expansion 2
Cotton Finishing - Current and Projected Production 3
Cotton Finishing - Major Processes and Projected Annual Production for 1980 5
Summary of Investment - Cotton Dyeing and Finishing 10
Summary of Investment Plan Evaluation 11

SECTION V: COTTON DYEING, PRINTING, FINISHING

A. PRESENT CONDITIONS

The current volume of the cotton dyeing, printing and finishing plant is approximately $128,000,000$ meters per year. The plant, including making up (inspection and packing), has 2,302 employees. As in many departments at Mehalla, the labor productivity is below that which is possible considering the overall conditions. Machine productivity seems reasonable except for excessive stoppage at shift changes. This seems to be a tradition that has been established and needs to be corrected; particularly in view of the relatively low labor costs compared to the high equipment investment in the dyeing and finishing operations. The plant now runs seven days per week on many operations vacation weeks excluded.

The primary strength of the plant appears to be the enthusiasm and technical competence of the current management. They are aware of many areas of potential improvement; including the major areas of labor productivity, machinery productivity and improved quality.

An obvious weakness of the plant has been in maintenance of equipment. This probably has been due to conditions outside the control of plant management; largely due to a lack of spare parts. Because of inadequate maintenance over the years, some of the equipment has reached such a condition that replacement is more economical than repairing.

Due to the difference in fabric construction, types of chemicals and dyestuff used, etc., a meaningful comparison of costs was not possible.

Compared to textile industries in other countries, this department probably rates as favorably as any in Mehalla.

The plant is equipped to produce a wide variety of cotton textile fabrics. It is anticipated that the small volume of cotton/polyester fabrics now produced will incraase significantly; mostly for local consumption. All of the current production is for local consumption. Current production quality is not suitable for export to the Western world due to both greige and finished quadity levels.

B. PLANNED EXPANSION

1. Genaral Plan

The planned expansion is based on an increase in the total volume of production as well as a shift in products.

The following table details the current production levels of the plant and the projected production after completion of the investment programs. This table is detailed into certain categories which are most important to the specifications of the equipment required. These categories are by width ranges, whether cotton or cotton/polyester, and the manner in which the color is imparted to the fabric.

From this table it can be seen that the significant changes in this overall program include the following:
a. Increase in total finished goods from $127,716,000$ meters to $142,000,000$ meters annually.
b. A general shift to wider fabrics.
c. A significant increase in polyester/cotton production, from a mix of mostly all cotton.
d. A significant decrease in printed fabrics with yarn dyed and fabric dyed production absorbing this decrease as well as the total increase in overall volume.

COTTON FINISHING
CURRENT AND PROJECTED PRODUCTION M METERS/YEAR

(1) Drill $=\mathbf{1 0 , 0 0 0}$ of $\mathbf{1 1 , 0 0 0} \mathrm{P} / \mathrm{C}, \mathbf{6 , 0 0 0}$ of $\mathbf{6 , 0 0 0}$ cotton.

In order to indicate the required volume of production from certain major processes, the following table has been constructed. The basis on which certain recommendations are made was dependent on the information in this table.

For bleaching and dyeing, this table includes the desirable method of bleaching but, as pointed out later, all methods may not be practical for all bleaching and dyeing exactly as listed in this table.

In addition to certain equipment replacements due to the condition of equipment and availability of spare parts, the equipment requested in dyeing and finishing will provide the following:
a. Allow dyeing and finishing of the . significantly higher level of cotton/polyester fabrics.
b. Allow for mercerizing a greater portion of the production for higher quality fabrics.
c. Improve overall quality levels. :
d. Allow the higher levels of production projected.
e. Allow printing of wide sheeting.

COTTON FINISHING
MAJOR PROCESSES AND PROJECTED ANNUAL PRODUCTION FOR 1980 ANNUAL PRODUCTION IN M METERS BY WIDTH IN CENTIMETERS

	Polyestor/Cotton				Cotton				Total			
Width Range in CM	$\begin{aligned} & \hline \text { To } \\ & 100 \end{aligned}$	$\begin{aligned} & \hline 101- \\ & 160 \end{aligned}$	$\begin{aligned} & \hline \text { Over } \\ & 160 \end{aligned}$	Total	$\begin{aligned} & \hline \text { To } \\ & 100 \end{aligned}$	$\begin{aligned} & 101- \\ & 160 \end{aligned}$	$\begin{aligned} & \text { Over } \\ & 160 \end{aligned}$	Total	$\begin{aligned} & \text { To } \\ & \text { T00 } \end{aligned}$	$\begin{aligned} & 101- \\ & 160 \end{aligned}$	Over 160	Total
Rope Bleach	-		-	-	85,000	13,000	2,000	100,000	85,000	13,000	2,000	100,000
Open Bleach	8,000	12,000	-	20,000		6,000	5,000	11,000	8,000	18,000	5,000	31,000
Current 2-Box Bleach -	-	-	-	-	8,000	3,000	-	11,000	8,000	3,000	6,00	11,000
Chain Mercerize	8,000	12,000	-	20,000	32,000	11,200	-	43,200	40,000	23,200		
Chainless Mercerize	-		-	-	33,000	4,200	_	37,200	33,000	4,200	-	37,200
Pad Roll Dye Systam	-	-	-	-	-	-	3,000	3,000	-	-		
Thermosol Dye	7,000	11,000	-	18,000	-	-	3,000	3,000	7,000	11,000	3,000	18,000
Continuous Dye Range	-	-	-		14,000	6,000	-	20,000	14,000	6,000	-	18,000 20,000
Pad - Dry on Cans	-	-	-	-	5,000	6,000	-	5,000	5,000	6,000	-	20,000 50,00
Jigger Dye	-	-	-	-	10,000	2,000	-	12,000	10,000	2,000	-	12,000
Brush, Equalize, Batch	4,000	1,000	-	5,000	47,000	6,000	See Tenter	53,000	51,000	7,000	-	58,000
Roller Print	4,000	-	-	4,000	40,000			40,000	44,000	-	-	
Screen Print	-	1,000	-	1,000	7,000	6,000	2,000	15,000	7,000	7,000	2,000	16,000
Steam	4,000	1,000	-	5,000	30,000	4,500	2,000	36,500				
Wash	4,000	1,000	-	5,000	30,000	4,500	20,000	36,500	34,000	5,500	2,000	$\begin{aligned} & 41,500 \\ & 41,500 \end{aligned}$
Flash Age	-	-	-	-			-			-		
Bake (Pigment Prints)	-	-	-	-	12,000	1,500	-	13,500	12,000	1,500		$\begin{array}{r} 5,000 \\ \mathbf{1 3 , 5 0 0} \end{array}$
Finish on Tenter	8,000	12,000	-	20,000	93,000	22,000	7,000	122,000				
Heat-Set on Tentar	8,000	12,000	-	20,000	3,00	22,000	7,000	122,000	101,000	12,000	7,000	
Optical on Tenter	1,000	,		1,000	-	-	-	-	8,000	12,000	-	20,000 $\mathbf{1 , 0 0 0}$
Pre. for Print (Sheeting)	-	-	-	-	-	-	2,000	2,000	1,00	-	2,000	2,000
Baking 1	8,000	12,000	-	20,000	9,000	6,000	-	15,000	17,000	18,000	-	35,000
Schreiner Cal.	-	-	-	-	20,000	4,000	-	24,000	20,000	4,000	-	
Regular Calender	-	-		-	53,000	18,000	7,000	78,000	53,000	18,000	7,000	78,000

2. Recommended Equipment and Costs

In addition to the notes regarding reasons for recommendation on the individual equipment requested elsewhere in the report, certain explanations for some major processes are necessary.

a. Bleaching

It appears that the requests for bleaching equipment have not been evaluated carefully enough to make final investment decisions. The request for bleaching equiyment included:
(1) A rope bleach range.
(2) A two-stage addition to the current open width range.
(3) Some capacity for bleaching in a pad roll system requested in the dyehouse.

Foints to be considered regarding these requests include:
(1) Such a significant portion of the production is shifted to polyester/cotton and is anticipated by Mehalla to require oven width bleaching.

- Little, if any, additional rope bleaching capacity would be required.
- The open width ra'ge as proposed might not be able to handle all of the projected polyester/cotton heavy cottons and yarn dyes anticipated for the range.
(2) There is a possibility that much of the polyester/cotton goods could be rope bleached if heat-set in the greige.
(3) A final decision in favor of a pad roll system, depending on the number of units purchased, could eliminate the need for either the rope bleach range or the open width range.
(4) The technique used in the United States to rope bleach wide sheetings for dyeing should be studied further.

After much consideration and believing that this need must be studied further before final decions are made, for budgeting purposes, the following assumptions were made:
(1) A rope bleach range has been included in the equipment costs.
(2) A complete, rather than a partial, open width range has been included in the equipment costs.
(3) The pad roll system for dyeing and bleaching has not been included. This system is not available from U.S. equipment manufacturers.

With this budget for equipment, a number of options are open. Examples, but not all inclusive, are:
(1) Full rope bleach range and partial open width as requested. This anticipates heat-setting a significant portion of the polyester/cotton in the greige. The reduced cost of the partial open width range and the lower cost of heat-setting on special equipment compared to that of the stenter method could be applied to a pad roll system for dyeing and additional open width bleaching.
(2) Do not add a rope bleach range (anticipating a significant portion of the polyester/cotton could not be heat-set in the greige); but add a full (four-stage) open width range and possibly the partial range open width range. The difference in cost could be applied to the pad roll system for dyeing and additional bleaching.

In summary, the complete rope range and complete (four-stage) open width range included in the equipment costs cover more capacity and a greater cost than necessary for these machines alone. The exact manner in which the best overall decision can be made must be studied further.

b. Mercerizing

A chainless mercerizer was requested for mercerizing wider sheeting or two widths of narrow labric. The chainless mercerizer is not made in the United States and the necessity of mercerizing wide sheeting is certainly questionable as it is seldom done in the United States. Also, quality problems can arise when running a large percentage of two narrow widths and a smaller percentage of a wide fabric subject to creating streaks due to wear on the roller.

For these reasons, the projection is based on two chain mercerizers, which are made in the United States, rather than the one requested. This will sllow sufficient capacity at higher quality but does not provide for the wide sheeting.
c. Other Equipment, Not Requested

During the analysis, several pieces of equipment were requested by Mehalla in addition to those in the original A.I.D. request. Those recommended and included as additions to the original are:
(1) A wide roller screen print machine.
(2) Mangles for the present drying ranges.
(3) A curing oven for pinpoint prints.
(4) Dry cans to replace those on the washer in printing which are in poor condition.
(5) Singers to xeplace those currently inoperative in the bleach lines.

Notes are included on the individual sheets for each piece of equipment which indicates, if recommended, the basis on which the recommendation was made.

It is anticipated that after expansion the labor force will be increased from 2,302 employees to 2,346 employees through better utilization of labor during and following the expansion.

The total investment for this department is estimated as follows:
Avail. in US $\$$

Rope Bleach

Open Width Bleach $\quad 1,366,660$
Mercerizing
Caustic Recovery
Thermosol Range
Yarn Dyeing
Color Preparation

Rotary Screen Printing

Roll Back Greige
Washing Range
Brushing, Equalizing, Batching
1,366,666
Mercerizing 909,500
700,000Yarn Dyeing631,30042,000
Stenters
Stenters
Calender Press 824,000 824,00052,340Roll Back Greige687,886

Grinding Machines 16,800

Steamer
Steamer 251,450Washing RangeCalenders301,740
Baking Oven for Resin Finish 438,000 145,000299,600
Engraving 260,000
Making Up

- Piece Wrapping 38,000
- Inspection and Plaiting 156,874
- Heat Stamping 26,500
Mangles(1) 54,000
Curing Range for Pigments(1) 96,000
Dry Cans(1) 214,000
Singers(1) 66,000
Basic Equipment Costs (Exclude Spares) CIF 8,557,206
The original request had estimated a cost of $\$ 8,650,240$ for dyeing, finishing and making up. A small part may not be readily available in the United States.
(1) These were not included in the original A.I.D. request.

SUMMARY OF INVESTMENT

COTTON DYEING AND FINISHING

Item No.	Description	Estimatad Cost		
		Foreign Exchange in US \$	Local Currency in US $\$$	Total in US $\$$
1.	Processing Fquipment + Accessories CIF Value	8,557,206		8,557,206
2.	Impori Duty on 1. (12\%)		1,026,865	1,026,865
3.	Clearing + Local Transportation + Erection	85,572	85,572	171,144
4.	Auxiliary Equipment and Accesorios		Included in	
5.	Import Duty on 4.		Includer in	
6.	Clearing and Local Transportation on 4.		Included in	
7.	Spares (6\%) Including Duty (12\%)	\513,432	61,612	575,044
8.	Electrical (Renovation \& Connection) Estimate		171,144	171,144
9.	Airconditioning (Updating Only) Estimate		Not Applicable	
	Subtotal Equipment Installed	9,156,210	1,345,193	10,501,403
10.	Construction			
	(33,100 Sq. Mtrs. Avg \$154/Sq. Mtr.)(1)		5,097,400	5,097,400
	(6,882 Sq. Mtrs. at \$218/Sq. Mtr.)(2)		1,500,276	1,500,27e
	Total Investment (Excluding Working Capital)	9,156,210	7,942,869	17,099,079.

(1) Building to be started early 1978, completed mid 1979.
(2) Building presently under construction.

SUMMARY OF INVESTMENT PLAN EVALUATION

Mill: Cotton Dyoing and Finishing Department: P'eaching

A.I.D. Request Reference: Annex 13, Table 3

Item	Ouantity	A.I.D. Request Value £E	A.I.D. Request Value US \$
Rope Bleaching Range	1	350,000	897,436
U.S. Manufacturer of Desirable Equipment	Yes		
Estimated Cost US \$ - FOB			1,366,666

Recommend:

See notes in finishing discussion.

Complete Rope Bleach Range Including Singe, Desize, 4-Sta天e 믹ach, Scutchers and Dry Cans - Full Instrumentation 1 1,301,587
Seaworthy Packing, Inland Freight 65,079
Total 1,366,666

Bleaching Department (Continued)

A.I.D.
Request
A.I.D. Value £E ValueOuantity
Item

	A.I.D.	A.I.D.
	Request	Request
	Value	Value
Ouantity	EE	US \$

Samdo Perble Open Width Bleach Range 2
300,000 769,231
(Mehalla personnel stated this was intended as two boxes to add to present open width bleach range.)
U.S. Manufacturer of Desirable Equipment Yes
Estimated Cost US \$ - FOB 818,550
Recommend:
See notes in finishing discussion.
Complete 4-Storage Open Width Bleach
Range, Including Singe, Desize, Scutchers and Dry Cans 1 765,000
Seaworthy Packing, Inland Freight 53,550
Total 818,550

Bleaching Department (Continued)

Itam	Ouantity	A.I.D. Request Value £E	A.I.D. Request Value US \$
Chain Mercerizing Machine	1	150	
Chainless Mercerizing Machine	1	250	
Total		400	1,025,641
U.S. Manufacturer of Desirable			
Equipment	$\mathrm{Y}_{\text {es }}$		
Estimated Cost US \$ - FOB			909,500
Recommend :			
Replacing one chainless mercerizer capacity.	ndition and	wing inc	mercerizin
Complete Chain Mercerizing Units to $\mathbf{1 6 0}$ CM Cloth at $\$ 425,000$	2		850,000
Seaworthy Packing, Inland Freight			59,500
Total			909,500

Bleaching Department (Continued)

Item	Ouantity	A.I.D. Request Value EE	A.I.D. Request Valua US $\$$
Complete Unit of Caustic Recovery	1	500,000	1,282,050
U.S. Manufacturer of Desirable Equipment	Yes		
Estimated Cost US \$ - FOB			700,000
Recommend:			
To save in cost of caustic used. Estimate 1-1/2 to 2 years' return on investment.			
Complete Unic, Including Structural Strel 1 665,000			
Seaworthy Packing, Inland Freight			35,000
Total $\mathbf{7 0 0 , 0 0 0}$			

Mill: Dyaing end Finishing
 Departznent: Dyeing

A.I.D. Request Refirence: Annex 13, Table 3

Item	Ouantity	A.I.D. Request Value EE	A.I.D. Request Value US $\$$
Complete Pad Steam Range (This Was Requested From Mehalla as Being a Continuous Thermosol Dyeing Range)	1	80	205,128
U.S. Manufacturer of Desirable Equipment	Yes		
Estimated Cost US \$ - FOB			613,300
Recommend:			
To allow dyeing of polyester/cotton fabrics for the projected volume.			
Complete Thermosol Range	1		590,000
Seaworthy Packing, Inland Freight			41,300
Total			631,300

Dysing Department (Continued)

		A.I.D. Request Value	A.I.D. Request Value
Item		Luantity	LE

Recommend:

See finishing discussion - not recommended for budget purposes.

Dyaing Department (Continued)

Item	Ouantity	A.I.D. riequest Value £E	A.I.D. Request Value US \$
Yam Dyeing Machine	1	20,000	61,282
U.S. Manufacturer of Desirable Equipment	Yes		
Estimated Cost US \$ - FOB			42,000
Recommend:			
To allow dyeing of polyester/cotton in small quantities for sewing thread.			
Dye Machine for Yarn Capacity 125 Pounds	1		40,000
Seaworthy Packing, Inland Freight			2,000
Total			42,000

Dyaing Department (Continued)

Itern	Quantity	A.I.D. Request Value EE	A.I.D. Request Value US $\$$
Yarn Mercarizing Machines	. 2	50,000	
Continuous Yarn Drying Machine	1	50,000	
Total		100,000	256,410

U.S. Manufacturer of Desirable

Equipment

Estimated Cost US \$ - FOB

Recommend:
Request cancelled by Miehalla. Letter of credit already opened.

Mill: Dyeing and Finishing
Department: Color Preparation

A.I.D. Request Reference: Annex 13, Table 3

Item	Ouantity	A.I.D. Request Value EE	A.I.D. Request Value US \$
Double Jacquard Color Prep., 800 Lit.	4	12,000	
Double Jacquard Color Prep., 500 Lit.	2	4,000	
Color Container Washing Machines	2	5,000	
High Speed Stirrers	2	10,000	
Total		31,000	79,487
U.S. Manufacturer of Desirable			
Equipment	Yes		
Estimated Cnst US \$ - FOB			52,340
Recommend:			

First item cancelled, requested by Mehalla. Loc. opened others for replecement and addition.
Double Jacquard, 500 Lit. at $\$ 2,170$ 2 4,340
Color Container Washing Machines at $\$ 10,000$ 2 20,000
2 24,000Subtotal48,340
Seaworthy Packing, Inland Freight 4,000
Total 52,340

Mill: Dyeing and Finishing

Department: Printing

A.I.D. Request Reference: Annex 13, Table 3

Item	Ouantity	A.I.D. Request Value £E	A.I.D. Request Value US \$
Rotary Screen Printing Machine	1	100,000	256,410
(This was changed to two roller screen machines - ona of $\mathbf{1 6 0}$ centimeters and oise of $\mathbf{2 8 0}$ centimeters to print either wide or narrow goods.)			
U.S. Manufacturer of Desirable Equipment	No		
Estimated Cost US \$ - FOB			687,886
Recommend:		$'$.	
To incraase the volume of roller screen print fabrics and to allow printing of sheeting.			
Roller Screen Print, 160 CM Completa Range	1		260,218
Roller Screen Print, 280 CM, Complete Range	1		390,506
Subtotal			650,724
Seaworthy Packing, Inland Freight			37,162
Total			687,886

Printing Department (Continued)

Item	Ouantity	A.I.D. Request Value EE	A.I.D. Request Value US \$
Roll Back Greige Machine	1	10,000	25,641
U.S. Manufacturer of Desirable Equipment	Yes		
Estimated Cost US \$ - FOB			13,000
Recommend:			
For use in rolling back greige for light fabrics.			
Rolling Unit	1		12,000
Seaworthy Packing, Inland Freight			1,000
Total			13,000

Printing Departmerit (Continued)

A.I.D.
Request
A.I.D. Request Valus £E US $\$$Ouantity
Grinding Mischines 2 5,000 12,821
U.S. Manufacturer of Desirable Equipment Yes
Estimated Cost US \$ - FOB 16,800Recommend:To replace manual sharpenirig of blades in roller printing.
Grinding Machines (at \$8,000) 2 16,000
Seaworthy Packing, Inland Freight 800
Total 16,800

Printing Department (Continued)

A.I.D.	A.l.D.
Request	Request
Value	Value
£E	US $\$$

U.S. Manufac.urer of Desirable Equipment Yes
Estimated Cost US \$ - FOB 251,450
Recommend:
One machine only needed with projected decrears in printing.
Sieamer to $\mathbf{2 6 0} \mathbf{C M}$ 1 235,000
Seaworthy Packing, Inland Freight 16,450
Total 251,450

Printing Department (Continued)

Itam	Quantity	A.I.D. Request Value £E	A.I.D. Request Value US \$
Complate Washing Range	1	100,000	256,410
U.S. Manufacturer of Desirable Equipment	Yes		
Estimated Cost US \$ - FOB			301,740
Recommend:			
For replacement of machine in poor condition and support capacity projected.			
Complete Washing Range to $\mathbf{2 6 0}$ CM	1		282,000
Seaworthy Packing, Inland Freight			19,740
Total 301,740			

Printing Department (Continued)

Item	Ouantity	A.I.D. Request Value £E	A.I.D. Request Value US \$
Brushing, Equalizing, Batching	2	100,000	256,410
U.S. Manufacturer of Desirable Equipment			
Estimated Cost US \$ - FOB			299,600
Recommend:			
For replacement of equipment in poor cond			
Batching Tenters, Complete (at \$140,000)	2		280,000
Seaworthy Packing, Inland Freight		.	19,600
Total			299,600

Mill: Dyeing and Finishing
Department: Finishing

A.I.D. Request Reference: Annex 13, Table 3

Item	Ouantity	A.I.D. Request Value £E	A.I.D. Request Value US \$
Stenter Machines, Width 300 CM	2	350,000	
Stenter Machines, Width 130 CM	2	250,000	
Total		600,000	1,538,461
The request was changed from the $\mathbf{3 0 0}$-centimer machines to $\mathbf{1 8 0}$ centimeters.			
U.S. Manufacturer of Desirable Equipment$Y_{e s}$			
Estimated Cost US \$ - FOB			824,000
Recommend:			
Only 180-centimeter machings be installed to replace one machine and add capacity; two machines for finishing, one for heat-setting sufficient.			
Stenters for Finishing, 180 CM at $\mathbf{\$ 2 4 0 , 0 0 0}$			
Stenter for Finishing or Heat-Set, 180 CM	$*$		290,000
Subtotal			770,000
Seaworthy Packing, Inland Freight	',		54,000
Total			824,000

Finishing Department (Continued)

Item	Ouantity	A.I.D. Request Value £E	A.I.D. Request Value US $\$$
Calender Press	2	50,000	128,205
U.S. Manufacturer of Desirable Equipment	Yes		
Estimated Cost US \$ - FOB			148,000
Recommend:			
For replacament of equipment in p			
Calender Press at \$70,000	2		140,000
Seaworthy Packing, Inland Fraight			8,000
Total			148,000

Finishing Department (Continued)

Item	Ouantity	A.I.D. Request Value £E	A.I.D. Request Value US \$
Calender With 7 Bowls, 300 CM	2	100,000	
Shreiner Calender, 250 CM	1	50,000	
Calender With 7 Bowls, 130 CM	2	50,000	
Total		200,000	512,820
U.S. Manufacturer of Desirable			
Equipment	Yes		
Estimated Cost US \$ - FOB			438,000

Recommend:

Five-bowi calender available in U.S. For same purpose as seven-bowl calenders. Recommend all wide calendors to run one or two strands.

Five-Bowl Calender, 260 CM at $\$ 115,000$	3	345,000
Schreiner Calender, 260 CM	1	$\mathbf{7 0 , 0 0 0}$
Subtotal		415,000
Seaworthy Packing, Inland Freight	23,000	
Total		

Finishing Department (Continued)

		A.I.D.	A.I.D.
		Request	Request
		Value	Value
Item	Ouantity	£E	US $\$ 0$

Baking Oven for Resin Finish $1 \cdot 50,000$ 128,205
U.S. Manufacturer of Desiral: io Equipment Yes
Estimated Cost US \$ - FOB 145,000
Recommend:
To allow finishing of polyester/cotton.
Curing Ovan 1 135,000
Seaworthy Packing, Inland Fseight 10,000
Total 145,000

Mill: Dyaing and Finishing
Department: Engraving

A.I.D. Request Reference: Annex 13, Table 3

Item	Quantity	A.I.D. Request Value EE	A.I.D. Request Value US \$
Horizontal Coppar Depositing Unit	3	10,000	
Barrel Chrome Depositing Unit	1	2,000	
Step and Repeat for Film, 180 CM	1	15,000	
Schreiner Roller Engraving - 250 CM	1	5,000	
High-Speed Printing Cabinet	1	1,000	
Total		33,000	84,615
Added During Visit To Mehalla: Camera for Photo Engraving Reproduction	1		
U.S. Manufacturer of Desirable Equipment	Yes		
Estimated Cost US \$ - FOB			260,000
Recommend:			
To allow preparation of rollers in Mehalla.			
As a Group as Listed			250,000
Seaworthy Packing, Inland Freight			10,000
Total			260,000

Mill: Dyeing and Finishing

Department: All

A.I.D. Request Reference: Annex 13, Table 3

		A.l.D. Request Value	A.l.D. Request Value
Item		Quantity	£E

U.S. Manufacturer of Desirable

Equipment

Estimated Cost

Recommend:
Mehalla dropped request as letter of credit already opened.

Mill: Dyaing and Finishing
Department: Making Up

A.I.D. Request Reference: Annex 13, Table 3

Item	Ouantity	A.I.D. Request Value £E	A.I.D. Request Value US \$
Piece Wrapping Machine	1	12,000	30,769
U.S. Manufacturer of Desirable Equipment	$Y_{\text {es }}$		
Estimated Cost US \$ - FOB			38,000
Recommend:			
To replace manual wrapping.			
Automatic Wrapping Machine	1		35,000
Seaworthy Packing, Inland Freight	, \cdot		3,000
Total			38,000

Making Up Department (Continued)

Itam	Ouantity	A.I.D. Request Value EE	A.I.D. Request Value US $\$$
Slitting for Circular Knitting	1	9,000	
Inspection for Knitted Fabrics	1	-7,000	
U.S. Manufacturer of Desirablo Equipment			

Estimated Cost

Recommend:

No. Mehalla dropped request as need not now anticipated.

Making Up Department (Continued)

A.l.D.	A.I.D.
Request	Request
Value	Value
EE	US $\$$

Inspection and Plating, 260 CM	1	7,000	
Inspection and Pluting, 130 CM	5	21,000	
Total		28,000	72,795

Estimated Cost US \$ - FOB 156,874
Recommend:
For increased production levels.
Inspection and Folding Group for Double/Double 1 35,374
Inspection and Folding for Narrow
Fabrics at $\$ 22,700$ 5 113,500
Subtotal 148,874
Seaworthy Packing, Inland Fraight 8.000
Total 156,874

Making Up Department (Continued)

A.l.D.	A.I.D.
Request	Request
Value	Value
£E	US $\$$

U.S. Manufacturer of Desirable Equipment Yós
Estimated Cost US \$ - FOB 26,500
Recommend:
For automatic labeling.
Heat Stamping Machine $1=$ 25,000
Seaworthy Packing, Inland Freight 1,500
Total 26,500

Mill: Dyaing and Finishing

Department: Bleaching

A.I.D. Request Reference: Not Applicable

		A.I.D.	A.I.D.
		Request	Request
		Value	Value
Item	Ouantity	. $£ E$	US

Estimated Cost US \$ - FOB 54,000
Recommend:As requested in addition to the original request. Mangler for current dry can ranges inbleaching.
Sets of Manglers to $\mathbf{2 6 0} \mathbf{C M}$ at $\mathbf{\$ 2 5 , 0 0 0}$ 2 50,000
Seaworthy Packing, Inland Freight 4,000
Total 54,000

Mill: Dyaing and Finishing

Department: Printing
A.I.D. Request Reference: Not Applicable

		A.l.D.	A.I.D.
		Request	Request
		Value	Value
Item	Ouantity	EE	US $\$$

U.S. Manufacturer of Desirable
Equipment
Yes
Estimated Cost US \$ - FOB 96,000

Recommend:

Curing oven for pigment prints.
Curing Range
1
90,000
Seaworthy Packing, Inland Freight 6,000
Total 96,000

Mill: Dysing and Finishing Department: Printing

A.I.D. Requect Reference: Not Applicable

		A.I.D.	A.I.D.
		Request	Request
		Value	Value
Item	Cuantity	£E	US $\$ 0$

U.S. Manufacturer of Desirable
Equipment

Estimated Cost US \$ - FOB 214,000

Recommend:
Dry cans to replace can sets on current washers which are in poor condition.

Set of Dry Cans, 228 CM Face $1 \quad 40,000$
Sets of Dry Cans, 135 CM Face at $\$ 32,000 \quad 5 \quad 160,000$
$\begin{array}{lll}\text { Subtotal } 1 & \mathbf{2 0 0 , 0 0 0}\end{array}$
Seaworthy Packing, Inland Freight $\quad 14,000$

Total 214,000

Mill: Dyoing and Finishing

Department: Printing

A.I.D. Request Reference: Not Applicable

		A.l.D.	A.I.D.
		Request	Request
		Value	Value
Item	Cuantity	£E	US $\$$

U.S. Manufacturer of Desirable Equipment Yos
Estimated Cost US \$ - FOB 66,000
Recommend:
Singers to replace unoperable equipment on two bleach ranges.
Singes at $\mathbf{\$ 3 0 , 0 0 0}$ 2 60,000
Seaworthy Packing, Inland Freight 6,000
Total 66,000

TABLE OF CONTENTS
 SECTION VI
 WOOL MILL

Section Page
A. Introduction 1
B. Yam 1
C. Weaving and Finishing 8
Summary of Investraent - Wool Mill - Yarn 18
Summary of Investraent - Wool Mill - Weave and Finish 19
Summary of Investrnent Plan Evaluation 20

SECTION VI: WOOL MILL

A. INIRODUCTION

The wool mill is a rather complex operation. It includes processes logically found in textile operations engaged in manufacturing a broad range of products normally produced on these manufacturing systems. These processes include:

- Scouring of wool.
- Carbonizing of wool.
- Combing of wool (and recombing).
- Wersted yam - drawing, spinning and twisting.
- Woolen yarn - carding, spinning and twisting.
- Weaving of fabrics - including preparation.
- Finishing - including fabrics as well as dyeing tops, fiber and yarn.
- Sales yarn finishing - bulking, reeling, balling.
- Fabricating of blankets.

The major departments excluded from the request for equipment included:

- Carbonizing of wool - There equipment and capacity are still considered adequate.
- Combing and recombing of wool - where a significant portion of the production is purchased in dyed tops and an increase in capacity is not projected in relation to an increase in production.

The present conditions and expansion plans are covered in two sections following:

- Yarn - including scouring, worsted yarn, woolen yarn, and sales yarn finishing.
- Weaving and finishing - including weaving, finishing and inspection.
B. YARN
I. Present Conditions

The present equipment covers a range from new equipment (worsted spinning and rewinding) to very old and outdated equipment (woolen carding and spinning). Between these extremes, there are varying degrees
of adequacy for other types of equipment. In some instances, the equipment has not been adequately maintained; and the overall condition has reached a stage that it is more feasible to replace than attempt to repair.

The yarn operations included here currently have a total of about 1,467 employees. The plant now runs about 340 days per year, but certain operations do not run three shifts.

The strength in the organization appoars to be in overall technical knowledge and the ability to keep an operation of such complexity and diverse levels of equipment conditions functioning at a reasonable level of efficiency.

With the exception of the newer machines, the condition of the equipment is poor. This, of course, has an important beaining on product quality, machine efficiencies and labor productivity.

The yarn ininishing department, although a small part of the total, appeared to have an extremely low level of labor productivity.

The total cost figures available indicate that the cost of yarn manufacturing is very high, and the products probably would not be competitive in a free market. Both raw material and manufacturing costs appeared high.

2. Planned Expansion

The planned expansion of this area includes significant increases in the production of yarns for weaving as well as some increase in sales yarns from both the woolen and worsted systems.

As can be noted in the report, certain equipment is recommended for replacement while a considerable portion of the equipment is for expansion. Most of the production is planned for the local market.

It is anticipated by Mehalla management that the expanded yarn operation would require 1,704 employees compared to 1,467 at present.

A summary of the equipment and costs recommended for yam is listed below, followed by a discussion of each of these areas.
Raw Wool Opening, Scouring, Drying $\$ 232,950$
Woolen Mill 4,101,600
Worsted Mill 1,597,550
Yarn Finishing (Bulking, Reeling, Unwinding) 183,800
Basic Equipment Costs - CIF
(Excludes Spares) $\$ 6,115,300$

a. Raw Wool Scouring

The current equipment is very old and in poor condition. Current production rate is now about 50 kilograms per hour. The anticipated requirements for the projected sales are about 100 kilograms per hour. The equipment recommended here is based on a capacity considerably in excess of the requirements; however, it is the typical standard unit for which the cost would be no more than that which would be incurred in designing a custom unit for less capacity.

The estimated cost for this equipment is $\$ 232,950$ compared to the estimate of the original request of $\$ 307,692$.

b. Worsted Spinning

This investment relates primarily to an increase in projected sales in both worsted yarns and worsted fabrics. The exception to this will be noted in assembly winding where equipment is also included for the woolen nill plied yarns and for replacement of assembly winders in the present worsted mill.

The expansion to 550 tons was compared to present and projected sales, and the equipment recommended covers such an expansion. The following briefly summarizes the comparison of current and projected anles:

	Currant Tons per Year	Projected Tons per Year	Difference

For the overall capacity, an indicated excess of 7% from the recommended equipment will exist against projected increases in sales:

$$
(550-418) / 1,898=7 \%
$$

However, for several reasons, the mill as requested for the 550 ton capacity is recommended:
(1) Even as a unit of this sire is relatively small and, being reasonabiy balanced, to reduce the size further -ould result in a poorer balance and a less economical unit.
(2) There is an overall shift to a slightly finer yarn count, from $1 / 26.8 \mathrm{Nm}$ to $1 / 28.2 \mathrm{Nm}$, which would offset a portion of the indicated 7\% excess capacity.

In total, the equipment for this unit was estimated in the suggested investment at $\$ 1,923,000$, while the closer evaluation indicates an investment for the 550 ton unit as summarized below. All equipment included is available in the United States.

CIF Costs

Mixing Gills
Drawing Gill Boxes
\$44,100
Roving Frames 107,100

Spinning Frames 106,450

Assembly Winding
814,200
Ring Twisting 144,000

Cone Winding 298,200 53,500
$\$ 1,597,550$

3. Woolen

The woolen equipment is for replacement and expansion of the current operation. The proposed size of the unit was to produce 950 tons per year compared to the present 350 tons per year. Current sales figures indicate current production at nearer 450 tons per year, and the forecast production indicates sales yarn and woven fabrics at nearly 1,100 tons per year. The investment has been based on the higher figure.

The replacement of the major equipment in this department is for updating the carding and spinning equipment which is old, in poor condition and generally outdated. The total volume of the proposed plant was based on the following yarns and fabric requirements:

	Tons per Year	Maters
Sales Yarns		
- Carpets	100	3.5
- Caps	50	10.0
Blankets	406	2.5
Woven Fabrics	530	$6,6.5,2 / 10,2 / 13.5$

Considering waste between spinning and sales, the mill requirements were based on producing over 1,200 tons per year at spinning.

Replacement equipment has been included in the waste and blending areas to support the requirements. In addition to twisting requirements for the plied woolen yams (2 frames), a third large ring frame was included for twisting the coarse hand knitting, worsted yarns. Assembly winding equipment for the woolen plied yarns was included in the worsted mill.

A summary of the recommended equipment costs for this department is:

Abstract

Available in U.S. Hard Waste Opener $\quad \$ 95,000$

Rag Cutting 33,000 Wool Blending and Oiling 160,000 Card Clothing Mounting $\quad 15,500$ Woolen Carding $1,905,006$ Woolen Spinning $\quad 1,582,400$ Woolen Twisting $\quad 274,700$ Cone Winding 36,000 $\$ 4,101,600$

The original suggested investment for this department was $\$ 4,820,000$.

\section*{4. Yam Finizhing}

The volume of production through his unit will not increase as significantly as the production of fabrics in the wool mill. With the introduction of the Hacoba yarn relaxing system, which is not available from a U.S. manufacturer, the requirements of reeling will be reduced significantly. The basis of equipment requirements are noted on the tables for each individual piece of equipment. In all instances, the equijument has a capacity somewhat in excess of the average requirements; but this will allow flexibility due to the seasonal nature of this sales yarn business.

The projected volume of sales yarns used in this equipment justification is as follows:

Type and Nm.	Fiber	Tons Year	Final Put-up	Processes in This Department (1)
Hand Knit				
3/14	Blend	50	Balls	2, 3,4
3/14	Wool/Acrylic	50	Balls	2, 3,4
3/14	High Bulk Acrylic	50	Hanks	1
2/10	Wool/Nylon/Rayon	30	Hanks	2
Coarse Machine Knit				
2/14	Wool/Nylon/Rayon	40	Cones	Ners
2/20	Wool/Nylon/Rayon	60	Cones	None
Fine Machine Knit				
1/40	Wool	110	Cones	None
2/36	High Bulk Acrylic	150	Cones	1
2/44	Normal Acrylic	30	Cones	None
Carpet				
3.5	Wool	100	Hanks	2,3
Caps				
10		50		None

(1) Processes

		mary of	sper Year	
	1	2	3	4
			Rewind	
	Hacoba	Skein	Skeins	Ball
	50	50	50	50
	150	50	50	50
		30	100	
		100		
Total Tons/Year	200	230	200	100

Note:
All coarse machine knit is top dyed or undyed. All fine machine knit is undyed. Cap yarn is undyed.

A summary of cost of recommonded equipment for buiking, recling, and unwinding is as follows:

Continuous Yarn High Bulking	$\$ 106,000$	
Hank Reels		$\$ 13,400$
Hank Unvinding Marchines		19,400
Hand Kuitting Baling Machines	$\mathbf{4 5 , 0 0 0}$	
	$\$ 151,000$	$\$ 32,800$

$\$ 183,800$

The original suggested investment for this depatment totaller £E 165,500 or US $\$ 423,000$.

C. WEAVING AND FINISHING

1. Prosent Conditions

The woolen weaving operation produces at a very low level of efficiency and results in low labor productivity. The quality from weaving is very poor, and only through a disproportionate level of mending labor does a relatively satisfactory quality fabric result.

The low weaving efficiency results from poor to marginal yarn quality, poor warp and filling preparation and extremely poor condition of the looms. While the looms are from 15 to 30 years old, it is not unusual for such looms properly maintained to produce at reasonable levels of productivity. The current condition of the looms probably resulted from a period of time during which foreign exchange for replacement parts was unavailable. A general lack of proper maintenance is also considered a contributing cause of the present conditions.

The warp and filling preparation equipment also is in bad condition, probably for reasons similar io those for looms. This contributes to the low efficiency and quality of production from the looms.

The finishing plant has a wide variety of equipment for finishing the woven fabrics. This plant also has facilities for dyeing yarns, loose fiber and tops (including backwashing). The dye plant typically operates only one shift. Generally speaking, the operation hen very low labor productivity. Management attributes their inability to significantly improve productivity to the lack of planning of an even flow of goods through the processes.

Fabrication of blankets is also a part of this operation; and, again, labor productivity is very low.

The plant has the technical knowledge to handle the wide variety of products now produced and planned for the future.

The indicated cost of the products appears quite high compared to world prices; and, based on present operations, the plant could not be competitive in world markets.

The departments included in weaving and finishing have 1,855 employees.

2. Planned Expansion

The planned expansion is to increase the fabric production by 36% in terms of total linear meters and over 40% in square meters due to wider average cioth widths. Blanket production is projected to more than double with an increase of 113%.

Management projects a labor complement increase from 1,855 to 2,111 or 14% - under the proposed equipment replacements.

The current and projected sales of woven fabrics from the wool mill are as follows:

| | Typical
 Construction
 Ends | Picks
 (Annual Sales) | |
| :--- | ---: | ---: | ---: | ---: | ---: |
| | | Projected | | Current

a. Weaving and Preparation

(1) Preparation

Warping is performed on sectional warpers. There are currently two modern machines which handle a majority of the production. Three older machines should be replaced. It is recommended that three machines be acquired to replace the older machines and provide for the increase in capacity (machines not available in the United States).

The condition of the weft winding equipment is such that it must be replaced, and this replacement is recommended.

Provisions have also been made for warp trucks to improve beam handling and knotting machines to improve the handling and cost in the department.
(2) Weaving

Some finalization of exact equipment may be required, particularly if shuttleless looms could be better justified for certain fabrics. (Consideration of shuttleless looms will require finishing differences and customer acceptance must be determined.)

For purposes of determing the costs of the recommended looms, the following assumptions were made:

- That 40 of the present 166 looms, for fabric, be retained and overhauled. For calculation purposes, assumed 5% lower operating efficiency than the new looms. An estimated cost for spare parts of $\$ 3,000$ per loom CIF is included.
- That 30% of the fabric looms be included as capable of weaving pick and pick fabrics. These were assumed to be W-3 PAPA looms operating at 125 picks per minute.
- The remaining cost of looms for fabric would be based on C \& K Model C-10 looms at a speed of 150 ricks per minute.
- The 9 current blanket looms would be retained.
- The new blanket looms assumed to be C \& K Model C-10 at 130 picks per minute.

Calculations to determine number of looms required using formulas:

And

(Neters Required per Yew)/(Mitwes/Loom/Year) = Loome Required

For Woolen and Worsted:
Assume the 40 looms to be retained are operated on worsted fabrics at 125 picks per minute and 65% efficiency.

For Looms Retained
$\frac{125 \times 60 \times 24 \times 325 \times .65}{48 \times 39.37}=20,122$ Motera/Loom/Yowr

For New Looms

	Totad Meters	30\% for PAPA	Remain. for Other Than P\&P
Woolen	810,000	243,000	867,000
Worsted	3,300,000	900,000	2,310,000

For Blankets

```
Production from current 9 looms to be ratsined in 180,000 motire per year.
320,000 - 150,000 = 170,000 Moter for Now Loome
130\times60\times24\times325\times.00
(170,000)/(28,491) = 6.41 Loome Required (Use 7)
A summary of new looms recommended is as follows:
```


For Fabrics:

```
\begin{tabular}{lll} 
C-10 & 78 & All Dobby \\
PAPA & 56 &
\end{tabular}
```


For Blankets:

C-10
74 Jaquards, 3 Dobbies

Provisions have also been included to equip 60 additional looms for selvage name weaving.

A summary of the costs as detailed on the indiviciual equipment sheets is as follows:

CIF CIF
Not Available Available in U.S. in U.S.
Blanket Looms
(Including Accessories) $\$ 132,336$
Wide Looms (IncludingAccessories, OverhaulParts, Name Weave) 2,432,214
Weft Winding 148,720
Warp Knotting 42,000
Drawing-in 36,000
Sectional Warping \$205,100
$\$ 205,100$\$2,791,270
The original suggested investment for this department was\$7,820,000.
The equipment requested in this department is to round out the capability of the new capacity and, in some instances, replace current equipment which is in poor condition, improve quality, and allow newer finishing technology and special finishes. The basis on which the equipment is recommended is noted on the individual sheets for each type of equipment.

b. Wool Finishing

Abstract

A summary of the recommended equipment costs for this department is:

c. Inspection

This portion of the request covers various types of equipment as detailed and recommended on the individual equipment request sheets:

	Not Available in U.S.	Available in U.S.
Inspection Machines		$\$ 37,100$
Rolling Machine		47,000
Sewing Machines/Scissors		9,900
Measuring and Cutting		15,000
Testing Apparatus	$\$ 53,000$	53,000
	$\$ 53,000$	$\$ 162,000$
		$\$ 215,000$

The original suggested investment for this department was $\$ 256,000$.

SUMMARY OF INVESTMENT - WOOL MILL - YARN

Estimated Cost in US \$
Foreign
Exchange Local Total

1. Procossing Equipment and Accessories - CIF Value	
- Raw Wool Scouring	232,950
- Worsted Spinning	$1,597,550$
- Woolen Spinning	$\mathbf{4 , 1 0 1 , 6 0 0}$
- Bulking, Reeling, Winding	$\mathbf{i 8 3 , 8 0 0}$
Subtotal	$6,115,900$

2. Import Duty on 1. (12\%) 733,908
3. Clearing and Local Transportation and Erection 122,320 61,160
4. Auxiliary Equipment and Accessories Included in 1.
5. Import Duty on 4.Included in 2.
6. Clearing and Local Transportation on 4. Included in 3.
7. Spares (8\%) Including Duty 489,272 58,713
8. Electrical (Renovation and Connection)
Estimate 30,580
9. Airconditioning (Updating Only) Estimate Not Applicable
Subtotal Equipment Installed 6,727,492 884,361 7,611,853
10. Construction (6,000 Sq. Meters at $\$ \mathbf{1 6 7}$)(1) 1,002,000 $1,002,000$
Total Investment (Excluding Working Capital) 6,727,492 1,886,361 • 8,613,853
(1) $\mathbf{5 0 \%}$ of total $\mathbf{1 2 , 0 0 0}$ square meters to be built for wool mill to be completed mid-1978.

SUMMARY OF INVESTMENT - WOOL MILL - WEAVE AND FINISH

Estimated Cost in US \$ForeignExchange Local Total

1. Processing Equipment and Accessories - CIF Value

- Weaving and Preparation 2,996,370
- Wool Dyeing and Finishing $1,591,510$
- Inspection and Finishiny 215,000
Subtotal of 1. 4,802,880

2. Import Duty on 1. (12\%) 576,346
3. Clearing and Local Transportation and Erection 96,056
48,0284. Auxiliary Equipment and AccessoriesIncluded in 1.
4. Import Duty on 4.6. Clearing and Local Transportation on 4.Included in 2.Included in 3.
5. Spares (10%) Including Duty (12%)480,28857,635
6. Electrical (Renovation and Connection)
Estimate 192,116
7. Airconditioning (Updating Only) EstimateSubtotal Equipment Installed5,379,224 874,1256,253,349
8. Construction (6,000 Sq. Meters at $\$ 167)(1)$ 1,002,000 1,002,000
Total Investment (Excluding Working Capital) 5,379,224 1,876,125 7,255,349
(1) $\mathbf{5 0 \%}$ of total $\mathbf{1 2 , 0 0 0}$ square meters to be built for wool mill to be completed mid-1978.

SUMMARY OF INVESTMENT PLAN EVALUATION
 Mill: Wool
 Department: Proparation

A.I.D. Request Reference: Annex 13, Table 12

Mill: Viool
 Department: Preparation

A.I.D. Request Reference: Annex 13, Table 14

Item	Quantity	A.I.D. Request Value £E	A.I.D. Request Value US \$
Weft Winding Machines	5	115,000	294,872
U.S. Manufacturer of Desirable	Yos		
Equipment			
Estimated Cost US \$ - FOB			148,720
Recommend:			
For Replacement of Equipment in			
Very Poor Condition			
Machines of 12 Spindlies Each	16	7,920	126,720
Auxiliaries			7,000
			133,720
Seaworthy Packing, inland Freight			15,000
			148,720

Mill: Wool
 Depr tment: Weave

A.I.D. Request Reference: Annex 13, Table 12

Mill: Wool
 Department: Weave

A.I.D. Request Reference: Annex 13, Table 12

Item	Quantity	A.I.D. Request Value £E	A.I.D. Request Value US \$
Warp Knotting Machines	2	13,000	33,333
U.S. Manufacturer of Desirable			
Equipment	Yes		
Estimated Cost US \$ - FOB			42,000
Recommend:			
To Allow Tying of Warps Not Now			
Machines with Framos	2	19,000	38,000
Seaworthy Packing, Inland Freight			4,000
			42,000

Mill: Wool
 Department: Weave

A.I.D. Request Reference: Annex 13, Table 12

Mill: Wool

Department: Weave

A.I.D. Request Reference: Annex 13, Table 12

Itam	Ouantity	A.I.D. Request Value EE	A.I.D. Request Value US \$
Wide Looms	225	2,700,000	6,923,077
U.S. Manufacturer of Desirable			
Equipment	Yes		
Estimated Cost US \$ - FOB			2,432,214
Recommend:			
To Replace Current Looms in Very Poor Condition and Add Capacity - 82"			
Dobbies - C-10	78	11,603	905,034
Dobbies - PAPA	56	12,780	715,680
			1,620,714
Auxiliaries			453,400
			2,074,114
Seaworthy Packing, Inland Freight			154,100
			2,228,214
Allowance for Selvage Name Weave	60	1,400	84,000
Allowance for Parts To Overhaul	40	3,000	120,000

Mill: Wool

Department: Wool Scouring
A.I.D. Request Reference: Annex 13, Table 7

Mill: Wool

Department: Worsted

A.I.D. Request Reference: Annex 13, Table 8

A.I.D.	A.l.D.
Raquest	Request
Value	Value
£E	US $\$$

| Mixing Intersecting Gills | 40,000 | 102,564 |
| :--- | :--- | :--- | :--- | :--- |

U.S. Manufacturer of Desirable Equipment Yes
Estimated Cost US \$ - FOB 44,100
Recommend:
For Increased Worsted Capacity
Two Gills for Blencing and Preparation of Top - Ball Creel 1 20,000

- Can Creal 1 19,00039,000
Cans and Auxiliary Equipment 3,00042,000
Seaworthy Packing, Inland Freight 2 2,100

Mill: Wool
 Department: Worsted

A.I.D. Request Reference: Annax 13, Table 8

Item	Ouantity	A.I.D. Request Value £E	A.I.D. Request Value US \$
Drawing Gill Boxes	4	50,000	128,205
U.S. Manufacturer of Desirable			
Equipment	Yes		
Estimited Cost US \$ FOB			107,100
Recommend:			
For Increased Worsted Capacity			
Breaker Gill (Pin Drafter with Levellar (1 Delivery)	1		32,000
Intermediate (2 Delivery)	1		28,000
Finisher (4 Delivery)	1		27,000
			87,000
Cans and Auxiliary			15,000
			102,000
Seaworthy Packing, Inland Freight			5,100
			107,100

Only 3 machines are required with the number of deliveries as proposed.

Mill: Wool
 Department: Worsted

A.I.D. Request Reference: Annex 13, Table 8

Item	Ouantity	A.I.D. Request Value £E	A.I.D. Request Value US \$
Roving Frames	2	55,000	141,026
U.S. Manufacturer of Desirable			
Equipment '	$Y_{\text {es }}$		
Estimated Cost US \$ - FOB			106,460
Recommend:			
For Increased Worsted Capacity			
Machines - 48 Spindles	2	45,000	90,000
Bobbins and Auxiliary			9,000
			99,000
Seaworthy Packing, Inland Freight			7,460

Mill: Wool
 Department: Worsted

A.I.D. Request Reference: Annex 13, Table 8

Item	Cuantity	A.I.D. Request Value EE	A.I,D. Request Value US \$
Ring Spinning Frames	10	450,000	1,153,846
U.S. Manufacturer of Desirable			
Equipment	Yes		
Estimated Cost US \$ - FOB			844,200
Recommend:			
For Increased Worsted Capacity			
Ring Spinning Frames at 360 Spindiles Each			
Based on 3-1/4" Gauge	11	64,800	712,800
Auxiliary - Bobbins, Cleaners, Etc.			72,000
			784,800
Seaworthy Packing, Inland Freight			59,400
			844,200

Mill: Wool
Department: Worsted

A.I.D. Request Refarence: Annex 13, Table 8

Item	Ouantity	A.I.D. Request Value £E	A.I.D. Request Value US \$
Assembly Winding	4	40,000	102,564
U.S. Manufacturer of Desirable			
Equipment	Yes		
Estimated Cost US \$ - FOB			144,000
Recommend:			
Increased Worsted Capacity, Woolen Plied Yarns, Replacement of Current Assembly			
60-Spindle for Increase in Worsted 60-Spindle for Replacement of Current Worsted	2	27,600	55,200
	2	27,600	55,200
30-Spindle for Woolen Spinning	1	15,000	15,000
			125,400
Auxiliary - Trucks			12,000
			137,400
Seaworthy Packing, Inland Freight			6,600

Mill: Wool

Department: Worstad

A.InD. Request Reference: Annex 13, Table 8

		A.l.D. Request Value	A.I.D. Request Value
Item	Cuantity	fE	US \$

Used 5 frames rather than 4 because of overall increase in percentage of plied yarns in projected program compared to current.

Mill: Wool
 Department: Worsted

 A.I.D. Request Reference: Annex 13, Table 8

 A.I.D. Request Reference: Annex 13, Table 8}
$\left.\begin{array}{lccc} & & \begin{array}{l}\text { A.I.D. } \\ \text { Request }\end{array} & \begin{array}{l}\text { A.I.D. } \\ \text { Request }\end{array} \\ \text { Value }\end{array}\right)$

Mill: Wool-
 Department: Woolen Mill

A.l.D. Request Reference: Annex 13, Table 9

		A.I.D. Request Value	A.I.D. Request Value
Item		Cuantity	£E

Not recommended. Mehalla deleted after reconsideration.

Mill: Wool
 Department: Woolen Mill

A.I.D. Request Reference: Annex 13, Table 9

Item	Ouantity	A.I.D. Request Value EE	A.I.D. Request Value US $\$$
Hard Waste Opener	2	74,000	189,744
U.S. Manufacturer of Desirable			
Equipment	Yes		
Estimated Cost US \$ - FOB			95,000
Recommend:			
For Replacement of Older Equipm Condition. 1 Machine Sufficient for			
Waste Card/Garnett Machine	1		91,000
Seaworthy Packing, Inliund Freight			4,000

Mill: Wool

Department: Woolen Mill

A.I.D. Request Reference: Annex 13, Table 9

Item	Ouantity	A.I.D. Request Value £E	A.I.D. Request Value US \$
Rag Cutting	2	20,000	51,282
U.S. Manufacturer of Desirable			
Equipment	Yes		
Estimated Cost US \$ - FOB			33,000
Recommend:			
Only One Machine Needeci for Requirements			
Waste Cutting Machine	1		30,000
Seaworthy Packing, iniand Freight			3,000

Mill: Wool

Department: Woolen

A.I.D. Request Reference: Annex 13, Table 9

		A.I.D. Request Value	A.l.D. Request Value
Item	Cuantity	EE	US \$

A.I.D. Request Reference: Annex 13, Table 9

Item	Ouantity	A.I.D. Request Value £E	A.I.D. Request Value US \$
Card Clothing Mounting	2	5,000	12,821
U.S. Manufacturer of Desirable Equipment	Yes		
Estimated Cost US \$ - FOB			15,500
Recommend:			
For Use with New Cards			
Card Clothing Mounting Equipment	1 Set		14,000
Seaworthy Packing, Inland Freight			1,500

Mill: Wool
Dopartment: Woolen Mill

A.I.D. Request Reference: Annex 13, Table 9

Itam	Ouantity	A.I.D. Request Value £E	A.I.D. Request Value US \$
Woolen Carding Engines	5	800	2,051,280
U.S. Manufacturer of Desirable			
Equipment	Yes		
Estimated Cost US \$ - FOB			1,905,000
Recommend:			
To Replace Current Cards in Poor Condition anid Increase Capacity			
Cards	5	360,000	1,800,000
Accessories			$20,000$
			1,820,000
Seaworthy Packing, Inland Freight			85,000
			1,905,000

Mill: Wool

Department: Woolen Mill

A.I.D. Request Reference: Annex 13, Table 9

Item	Ouantity	A.I.D. Request Value £E	A.I.D. Request Value US \$
Woolen Ring Spinning Frames	6	545,000	1,397,436
U.S. Manufacturer of Desirable Equipment	Yes		
Estimated Cost US \$ - FOB			1,582,400
Recommend:			
To Replace Mule Spinning - Coarse at $5^{\prime \prime}$ Ring, 6-1/2" Gauge; Fine and Medium at 4-1/2" Ring, $6^{\prime \prime}$ Gauge			
Frames at 120 Spindles for Coarse Counts	2	115,000	230,000
Frames at 160 Spindles for Fine \& Medium	8	145,000	1,144,000
			1,374,000
Accossories			137,400
			1,512,400
Seaworthy Packing, Inland Freight			70,000
			1,582,400

Mill: Wool
Department: Woolen Mill
A.I.D. Request Reference: Annax 13, Table 9

		1	
Item	Quantity	A.I.D. Request Value EE	A.I.D. Request Value US \$
Woolen Twisting Frames	6	300,000	769,231
(Request was said to include capacity for twisting 3/14 from worsted mill also one of the recommended machines is for this purpose.)			
U.S. Manufacturer of Desirable			
Estimated Cost US \$ - FOB			274,700
Recommend:			
Machines at 144 Spindles Each Accessories	3	79,200	$\begin{array}{r} 237,600 \\ 24,000 \end{array}$
			261,600
Seaworthy Packing, Inland Freight			13,100

Mill: Wool

Department: Woolen Mill

A.I.D. Request Reference: Annex 13, Table 9

Item	Ouantity	A.I.D. Request Value £E	A.I.C. Request Value US \$
Cone Winders	3	30,000	76,923
U.S. Manufacturer of Desirable			
Equipment	Yes		
Estimated Cost US \$ - FOB			36,000
Recommend:			
Machines of 80 Spindles Each	2	15,000	30,000
Auxiliaries			3,000
			33,000
Seaworthy Packing, Inland Freight			3,000
			36,000

Mill: Wool
Department: Bulking, Reeling, Unwinding, Etc.
A.I.D. Request Reference: Annex 13, Table 10
A.I.D. A.I.D.

Request	Request
Value	Value
£E	US $\$$

Continuous Yarn High Bulking Machine 1 . 50,000 128,205
U.S. Manufacturer of Desirable Equipment No
Estimated Cost US \$ - FOB 106,000
Recommend:
To Allow Mehalla To Market High Bulk
Yarns Under the Hacoba Trademark
32 Deliveries Hacoba High Bulk with
Compatible Winding Spindles - Including Auxiliaries, Seaworthy Packing and Freight 106,000

Average Requirements = 200 Tons per Year at 7,800 Hours = 26 Kilograms per Hour Depending on yarn counts, capacity is typically over $\mathbf{5 0 \%}$ more than requirements projected.

Mill: Wool
 Department: Bulking, Reeling, Winding, Etc.
 A.I.D. Request Reference: Annex 13, Table 10

Item	Quantity	A.I.D. Request Value EE	A.I.D. Request Value US \$
Hank Reels	6	60,000	153,846
U.S. Manufacturer of Desirable			
Equipment	$Y_{\text {es }}$		
Estimated Cost US \$ - FOB			13,400
Recommend:			
	1		
To Replace Older Equipment in Poor Condition			
Machines of 18 Deliveries with Creel	2	6,000	12,000
Seaworthy Packing, Inland Freight			1,400
			13,400
Average Requirements $\mathbf{=} \mathbf{2 3 0}$ Tons per Year at $\mathbf{7 , 8 0 0}$ Hours $\mathbf{= 3 0}$ Kilograms per Hour			
Actual Capacity for 36 deliveries is more than twice requirements for typical yarns averaging 4.5 equivalent meters.			

Mill: Wool Department: Bulking, Reeling, Unwinding, Etc. A.I.D. Request Reference: Annex 13, Table 10

Itam	Ouantity	A.I.D. Requast Value £E	A.I.D. Request Value US \$
Hank Unwinding Machines	3	15,000	38,462
U.S. Manufacturer of Desirable			
Equipment	Yes		
Estimated Cost US \$ - FOOB			19,400
Recommend:			
To Replace Older Equipment in Poor Condition			
Machines at 12 Spindles Each	2	9,000	18,000
Seaworthy Packing, Inland Freight			1,400

19,400

Average Requirements $\boldsymbol{= 1 0 0}$ Tons at $\mathbf{7 , 8 0 0}$ Hours $\mathbf{= 1 3}$ Kilograms per Hour
Actual capacity for $\mathbf{2 4}$ spindles is more than twice requirements for typical yarns of 3/14 Nm.

Mill: Wool
 Department: Bulking, Reeling, Unwinding

 A.I.D. Request Reference: Annex 13, Table 10| | | A.l.D.
 Request
 Value | A.I.D.
 Request
 Value |
| :--- | :---: | :---: | :---: |
| Item | Quantity | £E | US \$ |

Average Requirements $\boldsymbol{= 1 0 0}$ Tons at 7,800 Hours $\mathbf{= 1 3}$ Kilograms per Hour

Actual capacity for 20 units is significantly higher than requirements for the typical yarn of $\mathbf{3 / 1 4} \mathbf{N m}$.

Mill: Wool

Department: Bulking, Reeling, Unwinding

		A.I.D. Request Value	A.I.D. Request Value
Item	Quantity	£E	US \$

Not Recommended for Volume Involved and Recommendation

Mill: Wool
Department: Inspect

A.I.D. Request Reference: Annex 13, Table 11

		A.I.D. Request Value	A.I.D. Request Value
Item	Quantity	£E	US \$

Recommend:

For Replacament of Current Manual Machines and for Increased Production

Machines - 180 CM (Greige)	4	5,500	22,000
Machines - 250 CM (Greige)	1	6,600	6,600
Machines (After Dry)	1	5,500	5,500

34,100
Seaworthy Packing, Inland Freight $\quad 3,000$

Mill: Wool

Department: Inspect and Finish

A.I.D. Request Reference: Annex 13, Table 11

Item	Ouantity	A.I.D. Request Value £E	A.I.D. Request Value US \$
Detensioning Machine	1	5,000	12,820

Not recommended. Request deleted by Mehalla.

Mill: Wool
Department: Inspect and Finish

A.I.D. Request Reference: Annex 13, Table 11

Itam	Ouantity	A.I.D. Request Value £E	A.I.D. Request Value US \$
Rolling Machinas	2	10,000	25,641
U.S. Manufacturer of Desirable			
Equipment	Yes		
Estimated Cost US \$ - FOB			47,000

Recommend:

To Double Cloth Before Inspection

Machines for Doubling	2	22,000	$\mathbf{4 4 , 0 0 0}$
Seaworthy Packing, Inland Freight		$\mathbf{3 , 0 0 0}$	

Mill: Wool
Departriént: Inspect and Finish

A.I.D. Request Reference: Annex 13, Table 11

Itam	Quantity	A.I.D. Request Value £E	A.I.D. Request Value US \$
Sewing Machines	3	5,000	12,821
Scissors	6	2,000	5,128
			17,949
U.S. Manufacturer of Desirable			
Equipment	$Y_{\text {es }}$		
Estimated Cost US \$ - FOB			9,900
Recommend:			
For Increased Production of Blankets (Sewing Machines) For Increased Production (and Replacement) Blankets (Round Knives)			
Zigrag Sewing Machines Round Knives	3	2,000	6,000
	6	400	2,400
			8,400
Seaworthy Packing, Inland Freight			1,500
			9,900

Mill: Wool

Department: Inspect and Finish

A.I.D. Request Reforence: Annex 13, Table 11

Itam	Ouantity	A.I.D. Request Value £E	A.I.D. Request Value US \$
Massuring and Cutting	2	25,000	64,103
U.S. Manufacturer of Desirable			
Equipment	Yes		
Estimated Cost US \$ - FOB			16,000

Recommend:

Only One Machine (Mehalla Agreed) for Rolling Cloth for Garment Factory

Rolling Machine 14,000
Seaworthy Pecking, Inland Freight 1,000

Mill: Wool

Department: Inspect

A.I.D. Request Reference: Annex 13, Table 11

Item	-	Ouantity	A.I.D. Request Value £E	A.I.D. Request Value US $\$$
		,		
Testing Apparatus		1	35,000	89,744
U.S. Manufacturer of Desirable				
Equipmer:		$\begin{aligned} & \text { Yes } \\ & \text { No } \end{aligned}$		
Estimated Cost US \$ - FOB (Estimate 50\% Available in U.S.)				106,000

Recommend:

For Improved Measurement and Control of Quality
Details of each piece of equipment not possible to evaluate and all will not be available inU.S.
Various Equipment for Testing 100,000
Seaworthy Packing, Inland Freight 6,000

Mill: Wool

Department: Dyaing and Finishing

A.I.D. Request Reference: Annex 13, Table 6

Itrm	Ouantity	A.I.D. Request Value £E	A.I.D. Request Value US \$
Jigger	1	15,000	
Centrifuge	1	5,000	
Sewing Machines	2	3,000	
Calender Dryer	1	10,000	
Hank Dyeing	1	15,000	
		48,000	123,077

Recommend:

Not recommended. The above listed items were deleted for the following reasons with Mehalla's agreement.

Jigger - To be secured from group of jiggers already ordered for cotton finishing.
Centrifuge - Letter of Credit already opened.
Sewing Machines - Letter of Credit already opened.
Hank Dyeing - Not needed with inclusion of Hacoba continuous relax machines for which hank dyeing machines were used for bulking.

Calander Dryer - Had been requested based on inaccurate tachnical information.

Mill: Wool
Department: Dyaing and Finishing

A.I.D. Request Reference: Annex 13, Table pi

Item	Ousntity	A.I.D. Request Value £E	A.I.D. Request Value US \$
Singeing Machine	1	50,000	128,205
U.S. Manufacturer of Desirable			
Equipment	Yes		
Estimated Cost US \$ - FOB			86,250
Recommend:	;		
For Special Finish Characteristics to with Significantly Increasing Volume	ol Fabrics		
Combination Plate and Flame Singer	1		80,000
Seaworthy Packing, Inland Freight			6,250

Mill: Wool
 Department: Dyaing and Finishing

 A.I.D. Request Reference: Annex 13, Table 6

 A.I.D. Request Reference: Annex 13, Table 6}

Item	Ouantity	A.I.D. Request Value £E	A.I.D. Request Value US \$
Padding Mangle	1	15,000	
Thermosetting Machine	1	100,050	
		115,000	294,872
U.S. Manufacturer of Desirable			
Equipment	Yes		
Estimated Cost US \$ - FOB			278,500
Recommend:			
For Increased Drying Capacity and T	Olyester		
Padding Mangle	1		40,000
Drying Stenter with Thermosat Unit	1		215,000
			255,000
Seaworthy Packing, Inland Freight			23,500
			278,500

Mill: Wool
Department: Dyeing and Finishing

A.l.D. Request Reference: Annax 13, Table 6

$\left.\begin{array}{lccc} & & & \begin{array}{l}\text { A.I.D. } \\ \text { Request } \\ \text { Value }\end{array}\end{array} \begin{array}{l}\text { A.l.D. } \\ \text { Item } \\ \text { Request } \\ \text { Value }\end{array}\right)$

Recommend:

For Improved Quality on Fabrics Needing Open Scouring

Mill: Wool

Department: Dyeing and Finishing

A.I.D. Request Reference: Annex 13, Table 6

A.I.D.	A.i.D.
Request	Request
Value	Value
£E	US $\$$

Jat Dyeing Machines 2
40,000 102,564
U.S. Manufacturer of Desirable Equipment Yes
Estimated Cost US \$ - FOB 86,000
Recommend:
Only One Machine Required for Knitted 100\% Synthecic Fabrics and Increased Capacity of Woven Blends (Mehalla concurred with only one mechine, two tubes.)
Jet Dyeing - Two Tube 1 80,000
Seaworthy Packing, Inland Freight 6,000

Mill: Wool
 Department: Dyaing and Finishing

 A.I.D. Request Reference: Annex 13, Table 6

 A.I.D. Request Reference: Annex 13, Table 6}

		Al.D. Request Value	A.I.D. Request Value
Item	Quantity	EE	US \$

Recommend:

For Replacement of Old Equipment in Poor Condition and for Increased Volume
Backwasher with Dryer 1 55,000
Allowance for Gilling 1
25,00080,000
Auxiliary Allowance 5,000
85,000
Seaworthy Packing, Inland Freight

- Backwasher 7,000
- Gill 1,200

Mill: Wool
Department: Dyaing and Finishing

A.I.D. Request Reference: Annex 13, Table 6

Item	Quantity .	A.I.D. Request Value £E	A.I.D. Request Value US \$
Combined Sce: ring and Milling	1	8,000	20,513
U.S. Manufacturer of Desirable			
Equipment	No		
Estimated Cost US \$ - FOB			70,000
Recommend:			
Combined Scour and Mill	1		70,000

Mill: Wool
Department: Dyeing and Finishing

A.I.D. Request Reference: Annex 13, Table 6

Item	Ousantity	A.I.D. Request Value £E	A.I.D. Request Value US \$
1			
Large Size Milling	2	20,000	51,282
U.S. Manufacturer of Desirable			
Equipment	Yes		
Estimated Cost US \$ - FOB			168,000
Recommend:			
For Increased Production of Fabrics Requiring Milling			
Larga Size Milling	2	79,000	158,000
Seaworthy Packing, Inland Freight			10,000

Mill: Wool

Department: Dyeing and Finishing

A.l.D. Requast Reference: Annex 13, Table 6

Itam	Ouantity	A.I.D. Request Value £E	A.I.D. Request Value US \$
Centrifuge	2	3,000	7,692
U.S. Manufacturer of Desirable Equipment	Yes		
Estimated Cost US \$ - FOB			22,860

Recommend:

For Increased Volume

Centrifuge $-\mathbf{4 8}^{\prime \prime}$ Diameter	2	10,880	21,760
Seaworthy Packing, Inland Freight		1,100	

Mill: Wool
Department: Dyeing and Finishing

A.I.D. Request Reference: Annex 13, Table 6

Item	Ouantity	A.I.D. Request Value £E	A.I.D. Request Value US \$
Ultraviolet Inspection	1	2,000	5,128
U.S. Manufacturer of Desirable Equipment	Yes		
Estimated Cost US \$ - FOB			6,500
Recommend:			
For Pre-inspect before Final Finish to Improve Overall Quality			
Ultraviolet Inspection Machine	1		6,000
Seaworthy Packing, Inland Freight			500
			6,500

Mill: Wool
 Department: Dyeing and Finishing A.I.D. Request Reference: Annex 13, Table 6

For Special Finish. Price Based on Rotary Crab in U.S.

Rotary Crab wizh Tenter $1 \quad 50,000$
$\begin{array}{ll}\text { Seaworthy Packing, Inland Freight } & \mathbf{5 , 0 0 0}\end{array}$

55,000

Mill: Wool
 Department: Dyeing and Finishing

A.I.D. Request Reference: Annex 13, Table 6

Mill: Wool
Department: Dyeing and Finishing
A.I.D. Request Reference: Annex 13, Table 6

A.l.D.	A.l.D.
Request	Request
Value	Value
EE	US $\$$

1
10,000
$\mathbf{2 5 , 6 4 1}$
U.S. Manufacturer of Desirable Equipment Yes
Estimated Cost US \$ - FOB 39,000
Recommend:
More Stable Machine for Napping of Synthetics
24-Roil Napper - 108" 1 35,000
Seaworthy Packing, Inland Freight 4,000

Mill: Wool
 Department: Dyeing and Finishing

A.I.D. Request Reference: Annex 13, Table 6

Item	Quantity	A.I.D. Request Value £E	A.J.D. Request Value US \$
Relaxing Machine	1	5,000	12,821
U.S. Manufacturer of Desirable Equipment	Yes		
Estimated Cost US \$ - FOB			72,000

Recommend:

For Continuous Relaxing of Fabrics. To Handle Increased Volume.

Machine for 72" Fabrics $1 \quad 67,000$
Seaworthy Packing, Inland Freight $\quad \mathbf{5 , 0 0 0}$
Mill: Wool
Department: Dyeing and Finishing

A.l.D. Request Reference: Annex 13, Table 6

\(\left.$$
\begin{array}{lclc} & & \begin{array}{l}\text { A.I.D. } \\
\text { Request } \\
\text { Value }\end{array} & \begin{array}{l}\text { A.I.D. } \\
\text { Request }\end{array}
$$

Value\end{array}\right]\)| US \$ |
| :--- |

Recommend:

For Replacement of Atmospheric Loose Stock Machine for Quality Dyeing of Synthetics
High Temperature Dyeing Machine 1,000 Pound Capacity 1 85,000
Auxiliary 10,00095,000
Seaworthy Packing, Inland Freight 5,000
100,000

Mill: Wool
Department: Dyeing, and Finishing
A.I.D. Request Reference: Annex 13, Table 6

		A.I.D.	A.I.D. ${ }^{\prime}$
		Request	Request
Item	Value	Value	
		Quantity	£E
		US $\$$	

High Pressure Dyaing Machine 1
45,000 115,385
U.S. Manufacturer of DesirableEquipmentYes
Estimated Cost US\$ - FOB 118,000
Recommend:
Combination Dyeing Machine for Loose Wool or Tops for Quality Dyeing of Synthetics
High Temperature Dyeing Machine 600 Pound Capacity 1 85,000
Loose Stock Carriers 3 Cans 3,000 9,000
Top Carriers 3 6,000 18,000112,000
Seaworthy Packing, Inland Freight 6,000

Mill: Wool

Department: Dyeing and Finishing

A.I.D. Request Reference: Annex 13, Table 6

Item	Quantity	A.I.D. Request Value £E	A.I.D. Request Value US \$
Hank Drying Machine	1	60,000,	153,846
U.S. Manufacturer of Desirable			
Equipment	Yes		
Estimated Cost US \$ - FOB			35,000

Recommend:

Continuous machine not recommended but two chambers for hanks and loose wool in addition to present capacity.

Drying Chambers	2	15,000	30,000
Seaworthy Packing, Inland Freight		5,000	

35,000

Mill: Wool
 Department: Dyeing and Finishing

A.I.D. Request Reference: Annex 13, Table 6

A.I.D.	A.l.D.
Request	Request
Value	Value
£E	US $\$$

Permanent Setting Machine : 1 100,000 256,410
U.S. Manufacturer of Desirable Equipment Yes
Estimated Cost US \$ - FOB 78,200
Recommend:
Full Decater To Replace Current Machine of Small Capacity and Poor Condition
Full Decater - Complete 1 66,000
Aprons - 400 Yards Each 2 3,600 7,200
73,200
Seaworthy Packing, Inland Freight 5,000

Mill: Wool
 Department: Dyeing and Finishing

A.I.D. Request Reference: Annex 13, Table 6

Item	Ouantity	A.I.D. Request Value £E	A.I.D. Request Value US \$
Continuous Crabbing	1	50,000	128,205
U.S. Manufacturer of Desirable Equipment	Yes		
Estimated Cost US \$ - FOB			171,000
Recommend:			
For Higher Production Projected			
Continuous Crab	1		160,000
Seaworthy Packing, Inland Freight			11,000

TABLE OF CONTENTS

SECTION VII

APPAREL

Section Page
A. Purpose and Scope 1
B. Prosedure 1
C. History 2
D. Current Importance 2
E. Current Equipment 3
Exhibit I - Sewing Machine Inventory 6
Exhibit II - Recap of Sewing Machine Age. 8
Exhibit III - Sewing Machines/Spare Parts Cost/Maintenance People 9
Exhibit IV - Machine Speeds 10
Exhibit V - Machine Suitability 11
F. Current Products - Projected Products 12
G. Current Volume - Projected Volume 13
Exhibit VI - Garment Production - 1975 14
Exhibit VII - Projected Volume - Without Project 16
Exhibit VIII - Projected Volume - With Project 18
Exhibit IX - Available Square Footage 20
H. Current Employees 21
Exhibit X - Garment Factory Personnel 22
Exhibit XI - Garment Factory Absenteeism 24
I. Current Costs 25
Exhibit XII - Breakdown of Current Costs 26
Exhibit XIII - Preliminary Cost Estimates - New Garments 27
J. Primary Problems 28
Exhibit XIV - Stoppage in Sewing Due to No Fabric 29
Exhibit XV - Garment Factory Material Returns 30
Exhibit XVI - Garment Quality 33
K. Proposed Investment 36
Exhibit XVII - Suggested Equipment for New Factory 40
I. Anticipated Results 43
Exhibit XVIII - Estimated Cost Reduction 44
Exhibit XIX - Estimated Savings Potential 45
M. Technical Assistance - New Factory and Reorganization 47Exhibit XX - Summary of Investraent Plan - ApparelNew Apparel Unit Plus Equipment Replacement54

SECTION VII: APPAREL

A. PURPOSE AND SCOPE

The purpose of this section is to evaluate management's plans regarding:

- The updating of equipment used in the present operation.
- Formation of a new factory to produce additionai workers' suits plus denim and summer leisure suits.

The scope is limited basically to apparel (confection) cutting, sewing and finishing although there will be some comments regarding cloth received by the factory.

B. PROCEDURE

1. Initial plans for expansion and rachinery replacement previously prepared by Mehalla personnel were received and reviewed.
2. A tour of the present facilities and new building which is under construction was made.
3. Meetings were held with Mehalla personnel to further discuss the current situation as weil as replacement and expansion plans.
4. Mehalla personnel were requested to gather certain historical data on items such as equipment, standard costs, labor turnover and absenteeism, quality, volume, productivity, layouts, etc. Upon receipt, these were studied and evaluated.
5. Each garment factory (floor) was visited to form conclusions concerning equipment, operating conditions, personnel and control procedures.
6. Further discussions were held with company, factory and sales management personnel to develop a broader understanding of the operation and plans for the future.
7. Preliminary conclusions were discussed with management, and a basic strategy for modernization and expansion was outlined, recommended and agreed upon by management.
8. Samples of garments to be made in the new factory were obtained and later analyzed in order to determine equipment requirements.
9. All data was reviewed and analyzed; suppliers were contacted for equipment prices; conclusions were reached; and, finally, this section of the report was prepared.

C. HISTORY

Briefly, this factory was started in late 1955 in another part of Egypt with 24 machines. It grew to about a 300 -machine operation by 1961 and was relocated to Mehalla in 1968. Since that time, it has grown to about 1,400 machines and produces more than six million garments annually.

D. CURRENT IMPORTANCE

Currently, the apparel operation is a vital part of the company as indicated by the following:

- Apparel manufacturing employs 2,542 people or 7\% of the total company personnel.
- In 1975 the factory used 22 million meters of cloth made by the company or over 15% of the total fabric production.
- Sales in 1974 were 6,5S0,000 Egyptian pounds or 13.5% of total sales, and for the first six months of 1975 apparel sales amounted to 14.9% of the total.
- Apparel gross margin for 1974, was $1,466,000$ pounds or 10.5% of the total, and in the lirst half of 1975 this figure increased to 16% of total gross margin.
- Operating profit was 954,000 pounds (8.3% of total) in 1974 , and this increased to $\mathbf{1 5 . 6 \%}$ of total company profits for the first half of 1975.

These statistics take on a special significance when it is recognized that the operation is located in one building, that the capital investment for a garment factory is very low relative to a textile operation, and that the value added to the raw material is increased by fabricating the cloth produced into garments.

E. CURRENT EQUIPMENT

Exhibit I is the present sewing machine inventory list. Recapping this in Exhibit II, we see:

- Only 18% are less than five years old.
- 35\% are 20 years old or more.
- 47\% are 10 years old or more.
- 82% are 5 years old or more.

During the last five years, both the spare parts and maintenance costs have increased disproportionately to the number of machines as shown in Exhibit III. While inflation probably accounts for the increase in spare parts cost, machinery age and condition have probably caused the major portion of the 60% increase in maintenance personnel.

Exhibit IV is a summation of random machine speed checks made on some or the more prevalent types of equipment. This shows that no machines were running at the speed at which a modern piece of equipment would be operated. While machine speed is of little importance on many jobs, it is critical on others. The newer equipment should be operated at or near its rated RPM; however, age of machines prohibits this in many instances.

More important than machine speeds is the fact that on many operations the proper type machine is not available. Examples are:

1. Sleeve joining and topstitching being done with a single needle lockstitch versus safety stitch or felling.
2. Pocket hemming and banding with lockstitch versus chain stitch.
3. Side seam, inseam and seat seam operations performed with lockstitch versus chain stitch, safety stitch or felled seams.
4. Crotch pieces attached with lockstitch versus safety stitch.
5. Patch pockets creased by hand versus with a macbine.
6. Belt loops stitched down with lockstitch versus bartack machine.

Using the correct machine in these examples would mean automatic productivity increases ranging from $2-1 / 2 \%$ to $7-1 / 2 \%$ based on normal machine delay allowances only. For instance, the delay allowance normally added to operating time for a single needle lockstitch machine is $12-1 / 2 \%$ and for a single needle chain stitch the allowance is $7-1 / 2 \%$. The 5% point difference should be translated into 5% more production.

Aside from incorrect machine types and slow machines, there is an almost complete lack of modern labor saving attachments such as.

1. Undertrimmers for automarically cutting top and bottom threads.
2. Other thread chain cutters such as inipact cutters, automatic chain cutting feet and air operated side cutters.
3. Automatic needle positioners.
4. Air operated stackers for small parts and certain assembly operations.
5. Folders for jobs like hemming pockets, hemming shirts, attaching sleeve facings and attaching center plaits.
6. Automatic button feeders.

Use of the correct machine would also result in better quality on jobs like these:

1. Better appearance at seat seam, inseam and side seams where these are now stitched and restitched. The same for shirt seams which could be safety stitched or felled.
2. Use of bartack machines would add strength to belt loops and pockets.
3. Chain stitch seam for seat seaming would give elasticity which the present lockstitch cannot provide.
4. Guides, folders, etc. would give more uniformity and better appearance of patch pockets, center plaits, pocket facings, etc.

To put this in perspective, we observed 1,425 of the 1,447 machines and asked ourselves the quastion: "Considering age, condition, speed, attachments, type machine for the job, etc. is (1) this machine now right or can it be made right with little trouble or cost; or, (2) should it be replaced; or, (3) is some major attachment, effort or cost needed to make the machine right?" The results are shown in Exhibit V. What this says, in effect, is that a factory set up today to procuce the same mix of quality products $: 5$ a competitive price would not use 610 (42\%) of the present machines and another 650 (45\%) would require varying degrees of cost to make "right."

Obviously, this particular analysis is somewhat subjective as time did not permit a thorough study and payout analysis for new equipment on all jobs in each of the factories - which should be done. prior to ordering equipment. However, in order to approach overall replacement costs realiztically; one can look at several points on the scale:

1. At the high end, assume replacement costs for the 610 machines and for one-half the 650 ; or, replace 935 machines (65%).
2. Discount any costs associated with the 650 machines and replace 610 (42\%).
3. Assume that, in the final analysis, the cost equivalent would be for 50% of each category; or, $610+650 \times 50 \%=630$ machines (44%).
4. Assume replacement of 75% of the $\mathbf{6 1 0}$ and cost equivalent for 25% of 650 ; or, 620 machines (43%).
5. And, finally, at the lowest conceivable point on the scale, assume cost justification for 50% of 610 and 25% of 650 ; or, replace 468 machines (32\%).

At this juncture, we should emphasize one major point. Nevs equipment will help increase productivit. and earnings, lower costs and improve quality on individual jobs. This, however, does not mean that there will be corresponding improvements in plant-wide produetivity, costs, earnings and quality. In fact, really worthwhile improvements within an individual production line may not be realized by the replacement or addition of individual pieces of equipment. As will be discussed later, very little equipment can be justified unless accompanied by a plan of total reorganization.

EXHIBIT I

SEWING MACHINE INVENTORY

1
Type and Make
Single Needle Lockstitch
Textima 8332/6
"•
94
Téxtima 8332/003
Textima 8332/005 313
Textima 8332/035 16
Textima 8332/605 21
Nauman 8331/6 14
Pfaff 463-6 76
Pfaff 463-431 4
Vertas 8352/2 4
Brother DB2-B751 22
Durkopp 207-5 2
Singar 195-K1 24
Singer 421-12 95
Singar 451-K1 3
Singer 451-K105 161
2-Needle Lockstitch
Pannonia V1201 3
Pannonia V1213 3
2-Needle Chain Stitch (Off-Arm)
Brother DT6-925 19Singer 231-426
2-Needle Chain Stitch (F?atbed)
Brother DT2-96217
Singer 147-1001
Singer 147-101 9
Overedge
Textima 8514/09
Juki MO-352 2
Juki MO-804 2
Singar 460/21 11

EXHIBIT I (CONTINUED)

Type and Make
Safety Stitch
Textima 8514/153 16
Textima 8514/154 55
Pfaff 1422
Number of Machines by Age (Years)
$\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 10 & 15\end{array}$ 20
Button Sew
Singer 175-60 15
Durkopp 5661
Pfaff 3300-1Pfaff 3300-9584
Brother BQ1-911 11
Lewis 200-1 11
Juki MB-3721
Buttonhole
Singer 71-101 11
Pfaff $3114-1$
Pfaff 3114958
Juki LBH-761
Reace 101Minerva4
Brother DL1-8122
Durkipp 551-2W 3 2
Reace S-2 12
Miscelloneous
Singer 300W205 1
Pannonia (2-Needle Belt Loop) 3
Singer (Blindstitch)
Singer (Blindstitch) 4 3Singer (Bartack)5
1
2
Total $\begin{array}{llllll}219 & 6 & 13 & 27 & 499 & 179\end{array}$ 501
Grand Total 1,447

EXHIBIT II

RECAP OF SEWING MACHINE AGE

Number Number
rf Years of
Old
$\left.\begin{array}{rrr}1 & 219 & 15.1 \% \\ 2 & 6 & .4 \% \\ 3 & 13 & .9 \% \\ 4 & 27 & 1.9 \% \\ 5 & 499 & 34.5 \% \\ 10 & 179 & 12.4 \% \\ 15 & 3 & .2 \% \\ 20 & 501 & 34.6 \%\end{array}\right\} 47.3 \%$

1,447

EXHIBIT III
 SEWING MACHINES/SPARE PARTS COST/MAINTENANCE PEOPLE

$\left.\begin{array}{lccc} & \begin{array}{c}\text { Number of } \\ \text { Productive } \\ \text { Sewing } \\ \text { Machines }\end{array} & \begin{array}{l}\text { Cost } \\ \text { of(1) } \\ \text { Spare } \\ \text { Parts }\end{array} & \begin{array}{l}\text { Number of } \\ \text { Shop and } \\ \text { Maintenance }\end{array} \\ \text { Year } & \text { Personnel }\end{array}\right\}$
(1) Cost in Egyptian pounds.

EXHIBIT IV

MACHINE SPEEDS

$\left.\left.\begin{array}{lcc} & \begin{array}{l}\text { Present } \\ \text { Machine } \\ \text { Speeds } \\ \text { (RPM) }\end{array} & \begin{array}{l}\text { Possible } \\ \text { Machine } \\ \text { Speeds }\end{array} \\ \text { with Modern }\end{array}\right\} \begin{array}{l}\text { Equipment } \\ \text { (RPM) }\end{array}\right\}$
(1) When equipped with thread trimming device.

EXHIBIT V

MACHINE SUITABILITY

Factory	1-Needie Lockstitch	Food-Off Arm Fall	2-Needle Chain Stitch	Overiock	Safoty Stitch	Tacker	Buttonhole	Button Sow	Other	Total
O.K. As Is										
1	15			2		5	11	15		
2	21		9	9	1		8	8		
3			5	2	2		18	15		
4 and 5	1		1			3	8	6		
	37		15	13	3	8	45	44		$165{ }^{\prime}$

Replace

1	384	19	5	8		2	6	3	
2	45	15	9	5	15				
3	19	4	2	2	63		2		
4 and 5		9	2	1			2	3	810

Major Cost

1	19
2	204
3	222
4 and 5	205

650

F. CURRENT PRODUCTS - PROJECTED PRODUCTS

The multi-story factory consists essentially of four production floors plus one floor for miscellaneous functions. Products made or services performed on these floors are:

Fioor

1 Military Suits and Uniforms
2 Pajamas, Bed Sheets and Towels
3 Shirts
4 Uniforms
5 Administrative, Training, Patternmaking, Marking, Main Shop, Trim and Parts Storage

Other products include jeans; drill trousers, jackets and lab coats; wool trousers, suits and lah coats; aprons; head covers; and undershorts.

Mehalla management expects to continue manufacturing these products in the present facility and, in the adjoining facility nearing completion, to produce aciditional workers' suits; additional jeans and/or a denim leisure type suit; and a new summer leisure suit.

The desirable construction and quality features of each were thoroughly reviewed with management; hut, without going into all the details, the garments are to be made basically as follows:

1. Workers' Suit

Very much like the current model including a button Ily; although a zipper fly may be added at a later date. The major difference is that safety stitch seams are to be used wherever feasible on both tops and pants.

2. Denim Suit

Tops to have cuffed long sleeves, three patch pockets, two-piece vented back, felled seams and no lining.

The pant is to be a basic western type jean but with a button fly. There are to be patch back pockets, either patch or swing front pockets, major seams (yoke, seat seam, side seam and inseam) are to be felled, and the band is to be two-needle chain stitched with belt loops.

Most machinery for the tops unit is versatile enough to be easily converted to make jeans should the jacket prove not to be marketable for some reason.

3. Summer or Leisure Suit

To be made of lighter weight, more expensive fabrics in either short sleeve or cuffed long sleeve. It is to be unlined with many of the same features as the denim suit; the major difference is that scams will be safety stitch type rather than felled.

Pants are to be the so-called casual type with a lined right fly; zipper, hook and eye closure; set-in back pockets; pressed open seams; chain stitched seams; taped crotch and overlocked fabric edges.

Here a comment concerning the new products - denim suits and summer suits - is in order. Both of these are commonly called leisure suits; and this has recently been one of the fastest growing segments of the clothing industry. On the one hand, the trend seems to be toward more casual or informal dress, especially as inflation continues to increase the price of tailored clothing. On the other hand as wortress become more affluent, they tend to dress up; and the price of leisure suits such as those planned may well be within the reach of many.

It appears, therefore, that management's plan to enter this market is sound; and the greatest words of caution would concern themselves with the manufacturing aspects - low costs, higí productivity and good quality.

G. CURRENT VOLUME - PROJECTED VOLUME

1. Current

Production figures for 1975 as summarized in Exhibit VI show:

$$
\begin{array}{lll}
\text { - } & \text { Total Units } & \mathbf{6 , 5 2 2 , 2 0 6} \\
\text { - } & \text { Export Units } & 35 \% \text { of Total } \\
\text { - } & \text { Shirts and Pajamas } & 59 \% \text { of Total } \\
- & \text { Shirts, Pajamas and Drill Suits } & 74 \% \text { of Total }
\end{array}
$$

Total units produced have increased by 20% since 1972; but the product mix has remained relatively stable with siiirts, pajamas and drill suits consistently accounting for 70% to 75% of the total volume.

EXHIBIT VI
GARMENT PRODUCTION - 1975

Article	Units Produced		
	Local Market	Export	Total
Shirts	895,651	1,470,944	2,366,595
Pajamas	808,059	660,996	1,469,055
Drill (Workers) Suits	993,011	7,970	1,000,981
Jeans and Drill Trousers	79,982	114,640	194,622
Drill Jackets	4,577	-	4,577
Drill Lab Coats	15,493	-	15,493
Aprons	170,180	-	170,180
Head Covars	1,006	-	1,006
Wool Suits	63,001	-	63,001
Wool Trousers	135,411	-	135,411
Wool Lab Coats	593	-	593
Other	1,100,692	-	1,100,692
Totals	4,267,656	2,254,550	6,522,206 (1)(2)

(1) Actual figure - 6,000,000 units used in Mehalla study dated January, 1976 - was based on projected volume.
(2) Compares to production of 5.4, 6.0 and 5.5 million units in 1972 1974.

2. Projected

Management has estimated that without the project there will be a 1% drop in volume every other year beginning in 1978. Using actual versus projected 1575 volunce as the base and using one-half of one percent (.005) per year rather than the 1%, we have shown in Exhibit VII the results of this loss. On this basis the volume would drop to 6.2 million units by 1985 , and the cumulative loss would be $1,448,103$ units.

With the present product mix, each machine currently produces about 4,500 units per year. This projection means, therefore, the loss of production from seven to eight machines per year either through scrapping the machines or through additional downtime of only 2.4 minutes per day per machine. Considering the fact that 501 machines (35\%) are at least 20 years old, this loss does not seem unreasonable. If anything, the projection may be optimistic.

EXHIBIT VII

PROJECTED VOLUME - WITHOUT PROJECT

With the project, management anticipates a 1% loss in 1978 then expects to regain this plus 750,000 new units by 1979 . The volume of the new units (as described previously) is planned to be:

	Units per Year
Workers' Suits	350,000
Summer Suits	200,000
Denim Suits	200,000
	750,000

With a 15% allowance for spare machines and 325 working days, the units would be set up for $1,237,707$ and 707 units (tops and bottoms) per day, respectively.

Except for the new units in the new factory, management made no projection for a volume increase. In other words replacement equipment alone was not expected to yield any increased volume over the base year (1975). This is probably realistic since, as was mentioned earlier, new equipment may help on an individual job but will not necessarily improve overall production.

If total plant reorganization accompanies the introduction of replacement equipment, however, it is just as realistic to say that the base volume level can be maintained with fewer operating personnel and less cost; or, there can be a sizable increase in volume with the same number of people.

Assuming sales could support this additional volume, the estimated buildup and total increase might appear like that shown along with other projections in Exhibit VIII. From this we see that plant reorganization with replacement equipment could add over nine million units in the 10 -year projection period.

EXHIBIT VIII
 PROJECTED VOLUME - WITH PROJECT

In looking at the feasibility of volume projections, the space requirements must aiso be considered. Each floor of the present building contains approximately 44,562 square fest $-178,248$ for the four production floors. Cutting, elevators, rest rooms, etc. would reduce this to 115,980 square feet or 61.1 square feet for each of the 1,897 production operators requiring a workplace.

The adjoining building now under construction has 24,354 square feet per floor or $97,416 \mathrm{~s}_{\text {_ _are }}$ feet on four floors. Current plans, however, do not provide for total usage of this space for cutting, sewing and finishing; and this should not be necessary.

Plans for the new factory do call for using 58,081 square feet, which is one existing floor plus just over one-half of one of the new floors. Deducting requirements for cutting, rest rooms, etc., 42,514 square feet would remain. At a desirable 80 square feet per workplace, this would mean there is space for 531 workplaces. Requirements for the new factory call for only 435 machines plus about $\mathbf{2 5}$ additional workplaces.

As can be seen in Exhibit IX, even if the 460 workplaces were added (as opposed to reorganization for higher productivity), this expansion will provide a higher, yet potentially more productive, square footage area per workplace. It must be concluded, therefore, that manufacturing space will be adequate.

It also appeared that "outside" storage areas for both piece goods and finished products were adequate to handle the increased volume. By better utilization of floor space and air rights - tighter aisles and adding bins to the top of existing ones - it was estimated that one-third more piece goods and up to one-half more finished products could be stored in the existing space.

EXHIBIT IX

AVAILABLE SQUARE FOOTAGE

		Planned	
	Prasent	Using Only 1/2 of Each Now Floor	$\begin{aligned} & \hline \text { Using } \\ & \text { 3-1/2 + } \\ & \text { Full Floors } \end{aligned}$
Present Square Feet/Floor	$\begin{array}{r} 44,562 \\ \times 4 \end{array}$.	
	178,248		
Less Cutting, Etc.	62,268		
Available Space	115,980	115,980	115,880
Now Space - Part Floor	-	13,519	13,519
Now Space - 3 Full Floors	-	-	73,062
Now Space - 50\% of 3 Floors	-	36,531	-
Total Available Spacs	115,980	166,030	202,561
No. of Workplaces Required	1,897	1,897 to 2,357 Max.	1,897 to 2,357 Max.
Square Feet/Workplace	61.1	70.4-87.5	85.9-106.7

H. CURRENT EMPLOYEES

The apparel factory personnel are shown in Exhibit X which foliows. From this we see a total of 2,542 pecople. It is significant to note that there are 147 people listed in the supervisory category; or, one supervisor for every 17 to 18 people. In reviowing the working papers from which this data was extracted, it was also significant to note that in sewing and finishing the number of workers per supervisor ranged from under 12 up to 19 and averaged 14.9. This is about half the number that could be expected in a more productive and efficient operation. A ratio of $1: 30$ in a staple shop is not at all unusual.

It should also be noted that the number of assistants is extremely high. While they do perform productive functions, one of two things would happen to most of them in an updated or newly buili factory - either the need for them would be eliminateci through the use of modern equipment and techniques; or, hopefully, they would be transferred to machines so that their efforts would be more productive. Through total reorganization this number could probably be reduced to about one-third the present requirement.

EXHIBIT X

GARMENT FACTORY PERSONNEL

Exhibit XI shows absenteeism for the garment workers for two months in 1975 and 1976. This indicates that absenteeism is high at 10% to 14%; but, when annual holidays are considered, the rate is not unduly high.

No new operators have been hired since 28 June 1975, and 87 people have resigned or have been terminated between that date and 9 March 1976. This indicates that about 10 people per month (120 per year) are leaving; and, based on the current total employment of 2,542 , the rate would be just under 5%. While this is unusually low, there are many reasons for it, and we are in accord with the policy of no new hires since even this attrition will gradually help ease the current problem of being overstaffed for the volume produced.

EXHIBIT XI

GARMENT FACTORY ABSENTEEISM

I. CURRENT COSTS

Exhibit XII shows the breakdown of costs for three garments plus the average for eight of the more popular styles currently made. From this we see that labor costs as a percentage of total cost range from $\mathbf{1 0 . 5 \%}$ to $\mathbf{1 5 . 6 \%}$ and average 12.7\%. This checks with the profit analysis (exhibited elsewhere in the report) which indicates that 1974 labor cost was 13.0% and for the first half of 1975 it was 14.7% of total gannent production cost. If calculated on the sama basis as shown in Exhibit XII, these would drop to 12.0% and 13.6%, respectively.

Preliminary cost sheets for the new garments havs ciso been prepared using the same format. This is shown as Fxhibit XIII, and here we see that the labor cost percentages have dropped due mainly to the much higher priced fabric planned for the summer leisure suits.

In the development of these costs, three points become obvious:

1. Even though a small part of the total, labor costs for future new garments could be developod in a more accurate and systematic manner.
2. Since labor costs are relatively small, the need to closely examine expenditures for replacement equipment becomes critical. Labor saving equipment must be justified by an acceptable payback before equipment is ordered.
3. Increased fabric costs for the new garments seem to make it mandatory that strict quality control measures be instituted.

EXHIBIT XII

BREAKDOWN OF CURRENT COSTS

	1			
	Shirt	Pajama	Suit	Avorage of 8 Popular Garments
Salaries and Wages	\$. 469	\$. 472	\$.682	\$. 513
Maintenance	. 082	. 080	. 123	. 087
Depreciation	. 028	. 026	. 041	. 028
Interest	. 039	. 039	. 059	. 041
	\$. 618	\$. 617	\$. 905	\$. 669
Storage	\$. 010	\$. 010	\$. 015	\$. 010
General Expense	. 023	. 023	. 033	. 021
Welfare	. 031	. 028	. 046	. 031
	\$. 064	\$. 061	\$. 094	\$. 062
Administration	\$. 077	\$. 074	\$. 115	\$. 080
Sales	. 033	. 036	. 044	. 036
	\$. 110	\$. 110	\$. 159	\$. 116
Manufacturing Cost	\$ 792	\$. 788	\$1.158	\$.847
Fabric	1.746	3.361	4.277	2.856
Auxiliaries (Trim)	. 474	. 362	. 382	. 341
Total Cost	\$3.012	\$4.511	\$5.817	\$4.044
Wages and Salaries \% of Total Cost	15.6\%	10.5\%	11.7\%	12.7\%

EXHIBIT XIII PRELIMINARY COST ESTIMATES(1) - NEW GARMENTS

	1/2 Sleave Leisure Suit Top	Denim Jeans	Denim Top	Leisure Suit Pants	Long Sleeve Leisure Suit Top
Salaries and Wages	\$. 682	\$. 418	\$. 810	\$ 1.251	\$. 741
Maintenance	. 102	. 059	. 131	. 187	. 110
Depreciation	. 033	. 021	. 044	. 062	. 039
Interest	. 049	. 028	. 062	. 090	. 054
	\$. 866	\$. 526	\$1.047	\$ 1.590	\$. 944
Storage	\$. 013	\$. 008	\$. 015	\$. 023	\$. 015
General Expense	. 028	. 015	. 036	. 051	. 031
Welfare	. 039	. 021	. 046	. 067	. 041
	\$. 080	\$. 044	\$. 097	\$. 141	\$. 087
Administration	\$. 095	\$. 054	\$. 121	\$. 172	\$. 103
Sales	. 041	. 028	. 044	. 077	. 044
	\$. 136	\$. 082	\$. 165	\$. 249	\$. 147
Manufacturing Cost	\$ 1.082	\$. 652	\$1.309	\$ 1.980	\$ 1.177
Fabric	9.423	2.667	5.941	7.692	10.897
Auxiliaries (Trim)	. 703	. 490	. 164	1.477	. 487
Total Cost	\$11.208	\$3.809	\$7.414	\$11.149	\$12.561
Wages and Salaries \% of Total Cóst	6.1\%	11.0\%	10.9\%	11.2\%	5.9\%

(1) Cost estimatas by Mehalla management.

J. PRIMARY PROBLEMS

1. Piece Goods Availability and Quality

A summary of the stoppage reports for the sewing sections during December, 1975 is shown as Exhibit XIV; and this indicates lost time of 2.5% due to material not being available. At an average rate of 1.73 garments per hour per machine, the loss was 12,073 equivalent units during December alone $-144,876$ lost units if extended for 12 months at this rate.

We, of course, do not know all the reasons for this but suspect there is a breakdown in the production planning system or in the communications between mill and garment plant personnel. Obviously, the problem needs attention.

During our plant visits, we observed the following:
a. Weaving defects.
b. Fabric shading in both the length and width of individual bolts.
c. Plaids off - up to $3 / 4^{\prime \prime}$ difference from middle of piece to selvage edge.
d. Width variations within the bolt.

As a measure of these, data was gathered concerning returned material; and this is presented in Exhibit XV where we see that only 88% of the amount requested was received. Of this, 5.3% was returned as defective cloth or short ends.

In an effort to separate defective cloth from short ends, another check was run, this one covering 531,000 meters (about $8-1 / 2$ days of work). Here we found the following:

Meters

$\begin{array}{lll}\text { Short Ends Returned } & 25,992 & 4.9 \% \\ \text { Defective Fabric Returned } & 12,318 & 2.3 \% \\ & & 7.2 \%\end{array}$
Obviously, there is no such thing as 100% perfect fabric from any mill; but an awareness of the extent of the problem should lead to some improvement.

EXHIBIT XIV
 STOPPAGE IN SEWING DUE TO NO FABRIC (DECEMBER 1975)

Department	Machine Hours Available Stoppage Due During to No Fabric		
		Hours	Percent
Sewing 1	99,144	1,380	1.39\%
Sewing 2	58,968	1,703	2.89\%
Sewing 3	67,392	1,916	2.84\%
Sewing 4	27,648	542	1.96\%
Subtotal Sowing	253,152	5,541	2.19\%
Finishing 1	7,344	233	3.17\%
Finishing 2	3,888	165	4.24\%
Finishing 3	7,344	813	11.07\%
Finishing 4	1,296	227	17.52\%
Subtotal Finishing	19,872	1,438	7.24\%
Total	273,024	6,979	2.56\%

EXHIBIT XV GARMENT FACTORY MATERIAL RETURNS

Factory Number	Order Number	Ouantity of Material Ordered (Meters)	Quantity of Material Received (Meters)	Quantity Returned Rejects and Short Ends (Meters)	Percent Returned
1	1097	2,418	2,405	155	6.4\%
	1094	5,110	5,110	660	12.9\%
	1155	476,400	476,400	14,990	3.1\%
	1147	13,450	13,571	862	6.4\%
2	2120	19,771	19,702	894	4.5\%
	2121	12,900	12,840	623	4.9\%
3	3219	678,500	531,000	38,220	7.2\%
		1,208,549	1,061,028	56,314	5.3\%
			(88\%)		

2. Garment Quality

As shown in a previous exhibit, theze are 142 quality control supervisors, workers and assistants for the 1,897 sewing, finishing and pressing personnel, - or one quality control person per 13 operators. Unfortunately, the finished products are not reflective of this amount of effort; and management is not pleased with the overall quality level.

In examining quality control records as summarized in Exhibit XVI, several things stand out rather clearly. First, the number of seconds produced annually has been reduced drastically if the assumption is made that the quality standards have remained constant. Obviously, if the standards have been lowered, the number should drop; but, if the standards have been raised, then this improvement is noteworthy. Since the 1974 and 1975 December comparison go in the opposite direction, however, it is impossible to interpret the numbers accurately. Thus, when taken in total, an inconsistency would be indicated.

Perhaps of greater significance are the ztatistics relating to the three major products. Here we see a high number of rejects (5.6% to 9.5%) which must be repaired in order te make them first quality goods. More imp/rtantly, we see second quality goods ranging from 1.5% to 8.9% for these products; and these numbers $-1: 5 \%, 2.3 \%$ and 8.6% - must be compared to the $.6 \%$ seconds for all products.

This clearly indicates there is more than one quality level or standard existent in the factory - a condition that should be changed. While the construction quality can vary dependent on the garment, workmanship quality must be consistent. To attempt something other than this usually invites the lowering of quality for better grade garments and may increase the quality (and costs) on the less expensive garments.

Some of the specific quality problems noted in the garment factory include:
a. Parts that should have been numbered were not.
b. Cloth being dragged across the floor while spreadıng (laying up).
c. Uneven selvage edge on front side of lay.
d. Patch pocket placement being determined by "eyeballing" only.
e. Pocket corners not turned out.
f. Collar points not even.
g. Poor corners c n topstitched flaps.
h. Center plait being folded without benefit of notch.
i. Garments on the floor; being walked on.
j. Skipped stitches und open seamis being passed by supervisor.
k. Right fly lining being stitched from underneath side leaving crooked seam on cutside.

1. Too many thread enc's left on garments.
m. Etc.

As the company enters into the making of new garments of better construction and much higher priced fabrics; as they work to increase exports; and as the local market demands better quality, it becomes imperative that the above and other quality problems be dealt with effectively. The first step in this will be to change the mood and attitude of supervision, quality control personnel and operators to accept the fact that quality must improve and that within one building there can be only one level of workmanship quality. Once this is accomplished, an effective system to control and correct quality - as well as police - can be installed.

EXHIBIT XVI

GARMENT QUALITY

(1) Two-week period.

3. Productivity

Meaningful proluctivity recozds were difficult to obtain because of the manufacturing system and type records maintained. Actually, the records that are kept are fine, but there is a lack of errphasis on items such as standard dollars earned, makeup pay and other excesses, cost per unit produced, piecework efficiency and earnings, average hourly pay, etc. To briefly discuss the manufacturing system:

a. Piece Goods

As a general rule, cutting orders of substantial quantities are available; and piece goods for each floor are ordered one to two days in advance. There is sufficient space in the cutting departments for these quantities.

b. Cutting

Generally, there are ample production orders in the departments since most goods are cut to order. Each factory or floor has its own cutting department, including a full complement of equipment, operating personnel and supervision. While some goods come on rolls, most cloth is flat folded and generally spread face to face by hand by two people. There are a few pieces of spreading equipment in the factory; but, because of their condition, none were observed in operation.

Following spreading of the cloth, markers are laid out and dusted. Generally, the dust marks are then filled in by hand marking, and individual garment components are cut out using a straight knife. Many parts are then removed to another table where templates are placed on them, and the parts are then cut with a band knife. Individual plies of most parts are then hand numbered for cloth shading reasons.

In reviewing this procedure from a reorganization and updating point of view, the method of spreading should be changed so that one-man laying-up equipment is utilized; duplicated markers with solid lines should be considered for most products; and straight knife cutting (versus band cutting) should be used for all but the most critical parts - critical from a size or fit standpoint.

The amount of cut goods waiting for sewing ranges from 0-7 days with the norm about 3 days.

c. Sewing/Finishing

Some sewing lines or units are complete within themselves, but most floors have separate parts or preparation sections feeding the individual lines which in turn have varying numbers of operators dependent on the product being made. Finishing - bartacking, buttonhole, button sew, pressing and folding - is generally not considered to be a part of the line.

Line quotas have been established using time studied values; and, as is the inherent weakness in a line system, quotas must be based on the job requiring the most time. Actual production will also be dependent on this slow job or, in some cases, on the slowest operator in the line.

There are some advantages to this type system - the major ones being quick throughput time, a low amount of work in process and ease of supervision. The present system has some other major disadvantages, for example:

- Lines by their very nature preclude much that can be done to increase productivity through individual workplace "engineering" and through the use of individual incentives.
- Lines make it easy to hide or forget improvements that can be made. For instance on one style pajama, the present line production is set at 46 pajamas per hour based on the longest operational cycle time of .88 minute. The next longest cycle time is .72 minute. Should another machine be added to the first job making it in effect $.44+.44$ minute, the line quota could then be calculated on the .72 minute. Using the Mehalla formula for allowances, this would change the quota to 58 pajamas per hour - an increase in volume of 26% and a sizable productivity gain even with the additional operator.
- Absenteeism unduly affects line quotas as the syatem has a built-in quota reduction factor. For example, a line with ten operators and three assistants has a quota of 480 units per day.

If an assistant is out, the quota is automatically lowered by 1/13th to 443 units; and an operator's absence causes the quota to be reduced by $1 / 10$ th to 432 units. While there will always be absentees, there are ways to balance up rather than down.

Operators do work on incentive - group incentives for the lines and individual incentives for preparation. The assistants, supervisors, cutting personnel and other indirect labor have their pay tied to this incentive. Most operators appeared to be skilled, with good speed and good finger and hand dexterity; but the present incentive system imposes a ceiling of $\mathbf{1 2 5 \%}$ on production and earnings. The reasons given for this ceiling are that it helps prevent cheating (over-reporting the amount of work produced) and to help control quality. It may help the former, but ceilings often have little or no effect on quality. Unless quality is controlled with a certaiv discipline by supervision, an operator may simply hurry through her work, reach the 125% level and then spend the remainder of her time visiting with other employees. This does happen to some degree at Mehalla, and the extent of it can be judged on any day by going into the factory about 30 minutes to one hour before quitting time.

Obviously any system can be abused, but we believe there is a better production and incentive system for this type operation, and this will be discussed more fully when considering the new factory and updated equipment.

As a result of equipment problems discussed earlier, piece goods availability problems, overstaffing and the above problems, the productivity level is low. The best measure of this was found in comparing projections for the new factory if (1) it was set up using the line system and current procedures or if (2) it were set up as a modern progressive bundle system with engineered workplaces and methods and with the pro er procedures and controls. In this comparison the potential productivity increase ranged from 34% to 79% and averaged 53%.

K. PROPOSED INVESTMENT

It has been shown that there are many valid reasons for equipment replacement and modernization including:

- 35% of the machines are 20 or more years old.
- In the last five years, the number of machines has increased by 10% yet maintenance personnel have increased by 60%.
- Machine speeds are slow throughout the plant.
- There are very few labor saving devices on the machines.
- The correct type machine - from both a productivity and quality viewpoint - is not available for many jobs in the factory.
- At the very least, 32% of the machines would not be used in a reasonably modern factory.
- Additional downtime loss of only 2.4 minutes per day per machine or the annual loss of seven to eight machines would result in the loss of about 1.5 million units during the next ten years.

Although current labor costs average only $12 \%-15 \%$ of the total garment costs, apparel manufacturing is considered a labor intense and skill oriented industry as opposed to being machine oriented. Labor costs will undoubtedly become more important at the Misr Spinning and Weaving Company as wage rates increase. On the other hand, it is unlikely that machine running times will increase over the $15 \%-20 \%$ presently experienced on the company's products.

It therefore bears repeating that machines alone may do very little or nothing to improve overall productivity, costs or quality. These benefits are to be gained when the introduction of new equipment is accompanied by improvements in the production system, work handling techniques, operator training, proper incentives and sound operating procedures and controls. With this as a contingent factor, recommendations can be made concerning the investment.

As Phase I the new factory should be established, and this should be as modern and productive as possible. By so doing, it will be the training ground for management, industrial engineers and supervisors and will serve as a model or showplace for other operators in the plant.

The complete equipment requirements and costs for this factory are shown in Exhibit XVII and are summarized as follows:
435 Sowing and Finishing Machines \$ 924,304
Spare Parts (10\%) 92,430
Export Crating 21,750
\$1,038,484
Required Auxiliary Equipment \$ 194,712
Spare Parts 8,791
Export Crating 5,000
\$ 208,503
Total \$1,246,987

While specific needs will change due to changing style requirements, most of the listed equipment is versatile and should not become obsolete in the near term.

The required investment for Phase II (replacement equipment) is more difficult to calculate for these reasons:

- Some modern equipment with labor saving devices costs about twice as much as plain machines, yet we do not know how well they can be maintained by Misr Spinning and Weaving Company personnel. This, of course, can be judged in Phase I.
- At this juncture, the exact operations for which the machines are scheduled cannot be determined.
- Therefore, it is impossible to calculate an expected return on investment to determine if a particular machine is justified.

In their initial proposal, however, management requested 430 replacement machines; and from our direct observation we concluded that the equivalent of at least 468 machines should be replaced. Since this was somewhat subjective, we believe the purchase of 430 machines plus auxiliary equipment for reorganization is justified.

The investment for this is estimated to be:
430 Sewing and Finishing Machines $\$ 913,750$
Spare Parts (10\%) 91,375
Export Crating 21,500
Required Auxiliary Equipment, Parts and Crating 205,970
Total \$1,232,595

Technicai assistance costs for helping plan, set up, train the personnel and start the new factory plus helping reorganize the existing fastories are estimated to be $\$ 468,000-\$ 780,000$ or $\$ 694,000$ at midpoint. This is an integral part of both Phase I and II and is expected to be required over approximately a five-year period. Details of this technical assistance are outlined in a following section.

In total, then, the proposed investment for garment or confection manufacturing is:

New Factory
\$1,246,987
Existing Factories
1,232,595
Teshnical Assistance
624,000 (Midpoint)
Total
\$3,103,582

EXHIBIT XVII

SUGGESTED EQUIPMENT FOR NEW FACTORY

	Number Required	Price Each		Total Price
SEWING/FINISHING MACHINES				
Single Needle Lockstitch				
- With Chain Cutting Feet	6	\$ 1,049	\$	6,294
- With Edge Trim Knife	2	1,165		2,330
- With Undertrimmer	172	1,657		285,004
- Special for Hem Pants Bottoms	5	2,513		12,565
Two-Needle Lockstitch				
- With Undertrimmer and Reverse Feed	17	2,974		50,558
Single Needle Chain Stitch				
- Plain Machine	3	1,639		4,917
- Plain with Pedestal	4	1,560		6,240
- With Special Curtain Folder	1	1,699		1,699
- With Undertrimmer	7	2,099		14,693
Two-Needle Chain Stitch				
- For Zipper to Fly	1	1,820		1,820
- For Belt Loops, with Cutters	1	3,900		3,900
- For Hemming	2	1,820		3,640
Four-Needle Chain Stitch				
- For Banding	3	2,697		8,091
Blindstitch				
- For Loops w/Cutter and Folder	1	2,740		2,740
- With Needle Positioner and Trimmer (Hemming)	2	1,990		3,980
- For Curtain Band	2	1,656		3,312
Tackers				
- Loops and Pockets w/Air Lift and Air Siart	35	1,945		68,075
- For Tickets	2	1,765		3,530
- For Darts	3	2,505		7,515
- For Leather Label	1	2,605		2,605
- "U" Tack	1	2,505		2,505
- Reece S-2	1	2,745		2,745

EXHIBIT XVII (CONTINUED)

| | Number
 Required | Price
 Each | Total |
| :--- | ---: | ---: | ---: | ---: |
| Price | | | |

EXHIBIT XVII (CONTINUED)

OTHER EQUIPMENT Total
Cutting Tables -6 at $120^{\circ} \times 6^{\prime}$ at $\$ 2.93 / \mathrm{Sq}$. Ft.
Price
Cutting Table Track - 720 Lin. Ft. at $\$ 2.65 /$ Ft. 1,908Cutting Knives - 12 at $\$ 675$ EachDrills - 6 at $\$ 400$ Each2,400
Spreading Machines - 6 at $\$ 7,240+\$ 160$ Crating 44,400*
End Catchers - 6 at \$1,270 Each 7,620
50 HP Compressor - 2 at \$8,300 Each 17,800*
250 CFM Dryer - 2 at \$2,405 Each 4,810*
40 HP Lamson THD Model Vacuum - 2 at \$6,400 Each 12,800*
Cutting Room Feed Rail - 720 Lin. Ft. at $\$ 6.50 /$ Ft. 4,680
Feed Rail Plugs - 12 at $\$ 10$ Each 120
Flexipower - 3,820 Lin. Ft. at $\$ 5.60 / F t$. 21,392
Flexipower Plugs - 435 at \$20 Each 8,700
Band Slitter and Winder (One) 4,020
Chairs - 460 at $\$ 20$ Each 9,200
Job Clocks - 6 at $\$ 250$ Each 1,500
Master Time Clock (One) 500
Work Aids (Bundle Trucks, Clamps, Etc.) - 435 at $\$ 50$ Each 21,750
Water fountains - 2 at \$350 Each 700
" Z "' Nesting Trucks - 50 at $\$ 60$ Each 3,000
Hand Notchers - 6 at \$37 Each 222
Marker Duplicator (One) 4,195
Buttonhole Marker (One) 765
Long Arm Staplers - 6 at $\$ 37.50$ Each ' 225
Bates Type Numbering Machines - 12 at \$60 Each 720
Cleaning Guns - 2 at $\$ 70$ Each 140
Skids and Lift Jacks - 2 at \$150 Each 300
Tachometer (One) 88
Subtotal \$ 194,712
*10\% Spare Parts 8,791
Estimated Export Crating 5,000
Subtotal \$ 208,503
Total \$1,246,987

L. ANTICIPATED RESULTS

1. Cost Reduction

In analyzing and estimating labor costs for garments to be made in the new factory, the labor costs were compared to those estimated by management (as shown earlier). This comparison is presented in Exhibit XVIII, and it will be seen that savings estimates range from 25% to 44% for the new garments. Using the 25% as a minimum potential through the introduction of equipment and reorganization, there is a potential reduction of $\$.295$ per unit (weighted) for the new garments and $\$.128$ per unit based on eight existing garments.

In Exhibit XIX these cost reductions are extended to show potential savings of over $\$ 3$ million in six years. This projection is based on taking two years to pet the new factory up to expected volume and a gradual coverage of existing products over the following four years. For the existing factories, the projection is based on current volume.

It should also be noted that some portion of these savings would have to be passed on to the operators in the form of increased earnings.

EXHIBIT XVIII ESTIMATES COST REDUCTION

	Labor Costs			Percent Reduction
	Mehalla Estimate	Estimated in Modern Factory	Potential Reduction	
NEW FACTORY				
Workars' Suits	\$. 687	\$.513	\$. 174	25\%
Denim Jeans	. 418	. 287	. 131	31\%
Denim Tops	. 810	. 520	. 290	36\%
Leisure Pants	1.251	. 695	. 556	44\%
Leisure Tops	. 741	. 531	. 210	28\%
3 Suits (Weighted)	\$1.180	\$.885	\$. 295	25\%
EXISTING FACTORIES				
Average of 8 Garments	\$. 513	\$.385	\$. 128	25\%

EXHIBIT XIX
 ESTIMATED SAVINGS POTENTIAL

	Now Factory			Existing Factories (Present Volume)			
Year	Ertimated Volume	Estimated Savings at $\$ \mathbf{2 9 5}$ per Unit	Estimated Cumulative Savings	Estimated Volume Affected	Estimated Savings at $\$.128$ per Unit	Estimated Cumulative Snvings	Estimated Cumulative Sevings All Factories
1	375,000	\$110,625	\$ 110,625	-	-	-	\$ 110,625
2	750,000	221,250	331,87E	-	-	-	331,875
3	750,000	221,250	553,125	1,630,551	\$208,710	\$ 208,710	761,835
4	750,000	221,250	774,375	3,261,102	417,421	626,131	1,400,506
5	750,000	221,250	995,625	4,891,653	626,131	1,252,262	2,247,887
6	750,500	221,250	1,216,875	6,522,206	834,842	2,087,104	3,303,979

2. Productivity Increasa

Since the potential savings estimates shown in the foregoing range from 25% to 44%, the estimates of potential productivity increases must also be in a range -- in this case from 34% to 79% and averaging 53%. In order to be conservative, however, and because there may be unforeseen difficulties in achieving this, it cas safely be assumed that a productivity increase on the order of 30% to 35% can be achieved throughout the plant.

3. Production Increase

The new factory will be able to produce the 750,000 garments previously discussed. The only question is, "How long will it take to reach and maintain this level?" The answer depends on the technical assistance provided and the amount of time required to call in, build and traij the operating work force to a desired level of efficiency. We have estimated this will require two years.

Once accomilished and based only on the 1974-1975 profits of $\$.52$ per unit, this factory should make an annual profit contribution of at least $\$ 390,000$. We stress "oniy" and "at least" because the $\$.52$ is before taking the potential savings into consideration.

If sales can support increased volume that would be provided by the potential productivity increase, we have seen (Exhibit VIII) that an additional $9,016,867$ units could be produced during the next ten years.

At the $\$.52$ average unit profit experienced during the last year and a half, this would result in a total contribution to profit of $\$ 4,688,770$ during the ten years. Wage and other cost increases not offset by price increases would have to be deducted; but, when coupled with the savings potential, a sizable amount should remain.

4. Other Benefits

To keep the potential for cost reduction, savings, productivity increases, volume gains and additional profits in perspective, it should be remembered that without the project there will be a loss of production. As discussed earlier, this loss was conservatively estimated to be 1.,448,103 units during the next ten years. Again using only the $\$.52$ per unit and without accounting for decreased overhead absorption, the loss of profits on this many units would be $\$ 753,013$.

This loss compares, once the project is completed, to additional annual profits of at least $\$ 1,224,842-\$ 390,000$ from the new factory plus $\$ 834,842$ from the existing factories with no additional production.

Aside from the above benefits which should accrue to the company, the envisioned project will ailso provide:

- Better earnings for the employees.
- Better quality.
- Better competitive position in the export market in terms of costs and quality.

M. TECHNICAL ASSISTANCE - NEW FACTORY AND REORGANIZATION

We believe the foregoing shows that, while the proposed investment is feasible, an investment in equipment alone would be difficult to justify. The new fa ory shouid be set up in the best manner known, and the existing factories si suld then be reorganized or converted to emulate this model. The basic ol cetive should be a reduction in the total unit labor cost by improving prouctivity while increasing operator take-home pay and quality of the finished product.

These goals can be achieved, but a good deal of technical assistance will be required before the following changes and improvements are accomplished.

At the heart of the reorganization is a change from the present line system to what is called a mobile bundle unit (MBU). Essentially, a MBU is a production system based on a bundle as the unit of work and operations are divided for maximum efficiency. The job content of each operation is set for this efficiency without regard for the balancing required in a straight line. Work tables are designed for each operation, and specific handling methods are determined. Thus, each operator's earnings are dependent only on her -wn skill and the effort she puts forth.

Bundle storage is provided for on small ($2^{\prime} \times 2^{\prime}$) bundle trucks with casters, and these trucks serve as the pickup and disposal rack for each garment. On many front and back pants panels, the trucks are equipped with clamps to further facilitate the handling. Each mashine is powered by an individual motor, and each work table is located to permit minimum travel time to get and dispose bundles. The main advantages of this system are:

1. The unit production is no longer limited to the slowest operation.
2. The rigidity of the line system is eliminated, making possible maximum utilization of motion economy principles through table designing.
3. Work in process can be accumulated between each operation, permitting greater production flexibility.
4. Each operator can work as rapidly as he is able to without dependence on his co-workers.
5. It is possible to balance part-time jobs by transferring operators during the day.
6. It is possible to counteract the effect of absenteeism and turnover by transferring operators and by overtime to a greater extent than is possible in the straight-line system.
7. It is easier to expand or contract the unit size for changes in demand or in styles.
8. It allows individual incentives which are superior to group incentives.

The main disadvantages are:

1. It requires better supervision - better judgment and application of time.
2. Bundle handling is necessary.
3. It requires more work in process.
4. It requires a longer production cycle than a straight-line system.

For those garments planned and now made, we believe the advantages far outweigh the disadvantages.

As the first stap in the proposed conversion, an action plan should be developed, probably as a part of a detailed factory plauning report. This action plan should be a joint effort between management and the technicians; it should assign responsibilities and priorities; and it should include a timetable for completion of the various steps.

Although by no means complete and not necessarily in order, such a plan might include the following:

1. Develop complete action plan.
2. Start detailed factory planning report:
a. New factory -

- Garment specifications.
- Machinery specifications.
- Layout.
- Cost, volume and efficiency projections.
b. Existing factories.

3. Select management and engineers for foreign training and plant visits.
4. Trial patterns and samples.
5. Visit foreign factories and equipment suppliers.
6. Schedule new equipment trials.
7. Correct and finalize patterns; run final sample cuts.
8. Complete equipment trials and evaluation. Specify, order and schedule equipment delivery and setup dates.
9. Complete planning report.
10. Complete layout plans for new and existing factories.
11. Complete building construction.
12. Relocate existing factories.
13. Explanations to employees - short-range actions and long-term plans.
14. Review personnel procedures and finalize changes.
15. Design payroll system; initial training of management and clerks.
16. Select people for initial training.
17. Start supervisory training.
18. Begin training center.
19. $X \%$ of equipment and operators in new factory.
20. 100% of equipment and operators.
21. Review and update planning report and action plan for existing factories.
22. Specify, order, etc. equipment for existing factories.
23. New factory to $\mathrm{X} \%$ efficiency.
24. Start conversion of first existing factory.
25. Etc.

Although the above is important, the greatest value from technical assistance will come during the plant start-up and comprehensive cost reduction and quality improvement program. Some of the major elements of this include:

1. Organize or reorganize the factories into desirable units; consider combining the cutting rooms, parts sections, etc. Prepare layouts of these.
2. Specification of machinery, attachments and storage facilities if not accomplished in the planning report. Follow up on deliveries, setups and carpentry work.
3. Design and have printed bundle production tickets. These should be serially numbered to help prevent cheating and should provide spaces for each operator's clock number or initials to assist in quality control eiforts.
4. Complete design or revision of payroll system and train clerks. System to provide:
a. Gummed sheets for attendance, production and off-standard times as well as space for production tickets.
b. Simple yet effective and timely cost, production, efficiency and operating reports for management's use.
5. Revise materials handling and cutting procedures to support new system and layout.
6. Design improved workplaces to reduce handling times.
7. Introduce selected equipment, attachments and work aids such as thread trimmers and stackers meant to reduce labor content, job complexity and training times. Make certain these provide more consistent quality.
8. Standardize the method of handling at each operation and establish training curves for the jobs.
9. Train operators to use the new equipment, attachments and methods and motivate them to perform well.
10. Implement scientific training program. As discussed elsewhere, this is a formalized training approach designed to effectively fill vacancies, to upgrade capabilities, to retrain existing employees to improve their productivity and quality, and to assure that new operators are properly trained in the shortest possible time. This type training is especially useful on the more difficult jobs having longer leazning times, and these should probably be started early in the project.
11. Continuously try to simplify the make of the garment where this can be done without lowering the intrinsic value or appearance of the finished product.
12. Work measurement to develop standards for all operations and to equalize earnings opportunities. Individual incentives should be used throughout the factories, hopefully without a ceiling or maximum. Additionally, the quotas should be established using proper allowances for the job and machine - not just one allowance figure across the board.
13. Rate or quota installation and follow-up to prove the standards for each operation as installed. Of all the elements, this is the most time consuming; it is also the most important and is the key to success.
14. Design and install quality control procedures and train personnel.
15. Select and train utility operators and install utility and transfer incentive plans.
16. Since the operation is currently overstaffed, continuously work toward restructuring the organization to reduce indirect labor.
17. Formal training and development of management, staff engineers and supervision both in the factory and in classroom sessions. This is the second key to success, and topics should cover both the technizal and human relations aspects of their jobs. A short list of some of the items that should be covered includes:
a. Cost Controls:

- Payroll procedures.
- Cost reports.
b. Quality Control
- General considerations.
- Specific in-plant procedures.
- Quality specifications.
c. Engineering Techniques
- Capacity studies.
- Follow-up.
- Methods improvement.
- Quotas and piece rates.
- Slide rule use.
- Sewing equipment.
- Incentive plans.
d. Producion Flow
- Balancing.
- Productinn systems.
- Work in process.
e. Personnel
- Operator orientation.
- Operator training.
- Turnover and absenteeism.
- Handling grievances.
- Company policy.
- Safety.
- Maintaining morale.

18. Manualization of all procedures, operation bulletins, quality specifications, methods, time values and rates, workplace sketches, etc.

With these things in place and operating as they should, we are confident that the garment plant will continue to maintain or improve its vital position in the company.

EXHIBIT XX
 SUMMARY OF INVESTMENT PLAN - APPAREL NEW APPAREL UNIT PLUS EQUIPMENT REPLACEMENT

	Estimated Cost in US\$		
Description	Foreign Exchange in US\$	Local Currency in USs	Total US\$
New Sewing Factory Plus Equipment			
Replacement (CIF Value)			
[\$913,750 + \$21,500 $\times 1.10$ (Freight)]	\$1,028,776		
[\$924,304 + \$21,750 $\times 1.10$ (Freight)]	1,040,659		
.	\$2,069,434		\$2,069,434
Auxiliary Equipment plus Accassories	405,682		405,682
Spare Parts	192,696		192,596
Erection	18,814		18,814
Technical Assistance	624,000		624,000
Cearing, Local Transport Plus Local Installation	-	\$351,942	351,942
Total	\$3,310,526	\$351,942	\$3,662,468

TABLE OF CONTENTS

SECTION VIII

POWER PLANT

Section Page
A. Present Equipment and Capacity 1
B. Present and Projected Power Requirements 2
C. Investments 6
Exhibit I - Power Plant Current Investments 7
D. Current Cost 8
E. Proposed Development Plan 10
Exhibit II - Suggested Investment, Power Plant Equipment 12
Exhibit III - Summary of Investment Plan, F'ower Plant 14
Exhibit IV - Summary of Investment Plan Evaluation 15

SECTION VIII: POWER PLANT

The Mehalla complex includes a power generating plant which theoretically at least is capable of supplying all the power needs for the entire complex. Power from the grid (public supply) is also available through an inter-connection including switch-gear and a transformer substation 63,000/6,300 volts of 25 MVA capacity.

A. PRESENT EQUIPMENT AND CAPACITY

The power plant was erected in two stages and was started in 1948. Initially installed capacity was $20,000 \mathrm{KW}$, delivered by two turbogenerators of $10,000 \mathrm{KW}$ each, built by Metropolitan Vickers. Two standby units of 2.5 Megawatts each completed the initial generating section. In 1948 three oil-fired boilers, John Tompson, were erected foilowed in 1956 by a fourth one, oil-fired, John Tompson also, but convertible to coal. Each one of these four boilers, part of the initial stage, has a rated capacity of 45 tons per hour. The initial power plant was built on a 3,000 -square meter area, not including smoke stacks and cooling towers. Another 2,400 square meters were added for the second stage in 1959 to install two Skoda turbosenerators of 12,000 KW each, raising the total generating capacity to $44,000 \mathrm{KW}$. The second stage included two boilers BRNO, both oil-fired and each one of 110 tons per hour capacity. The connection to the grid was completed in 1965. Two diesel generators of 650 KW each are also installed as standby units.

In summary, the total installed operating capacity equals $44,000 \mathrm{KW}$ and 400 tons of steam per hour broken down as follows:

No. Units		Capacity/	Total
Installed	Make	Unit	Capacity

Power

2	Vickers	$10,000 \mathrm{KW}$
2	Skoda	$20,000 \mathrm{KW}$
	$12,000 \mathrm{KW}$	$24,000 \mathrm{KW}$
Total Operating Capacity		$44,000 \mathrm{KW}$
Standby Capacity		$5,000 \mathrm{KW}$
-Steam	$1,300 \mathrm{KW}$	

Steam

4	John Tompson	$45 \mathrm{Tons} / \mathrm{Hr}$.	$180 \mathrm{Tons} / \mathrm{Hr}$.
2	BRNO	$110 \mathrm{Tons} / \mathrm{Hr}$.	$220 \mathrm{Tons} / \mathrm{Hr}$.
	Total Rated Capacity		$400 \mathrm{Tons} / \mathrm{Hr}$.

The turbines operate at a pressure of 36 kilograms per square centimeter (512 pounds per square inch) and the super-heated steam enters the turbines at a temperature of $426^{\circ} \mathrm{C}\left(800^{\circ} \mathrm{F}\right)$. Each turbine consists of a high pressure stage, a speed wheel, a medium and a low pressure stage. The first extraction after the high pressure stage, at 9.0 kilograms per square centimeter (128 pounds per square inch and $260^{\circ} \mathrm{C}-500^{\circ} \mathrm{F}$), is discharged into the steam distribution ring and is used as processing steam in different parts of the complex, mainly in the finishing plants.

At the time of our visit, one of the two BRNO boilers was inoperative and under repair for leaks. The other BRNO boiler was reported to operate at less than 60% capacity because of potential mechanical problems at higher loads. One of the Vickers turbines was reported to develop mechanical problems with fixed blades, while one Skoda turbine was out of order and being repaired.

Many maintenance problems seem to have accumulated in the plant, seriously deteriorating the ability of the plant to deliver the desired capacity. The reasons for this development are not evident but we suspect that adequate maintenance has been difficult at some times in the past because of limited availability of hard currency to purchase original parts. On the other hand, it is possible that the BRNO boilers and the Skoda turbines are built with less expensive materials and therefore could be less durable.

Maintenance problems are further evidenced by the fact that four serious power failures occurred in the last two years resulting in complete black-outs for durations from 20 minutes to three hours.

The power generated by the altornators is delivered to the distribution switchboard at 3,600 volts and further delivered at that tension to the individual transformers of each production unit and in addition to one transforner of the municipality (230 and 550 volts).

B. PRESENT AND PROJECTED POWER REQUIREMENTS

The present average power consumption is estimated at $26,000 \mathrm{KWH}$ per hour and peak consumption at 29,500 . Since the complex includes very many individual consumption points, mostly operating in three shifts, the peak consumption is not significantly different from the average and approximately 15\% higher. Under the present circumstances, the power plant does not seem to be in a position to renerate enough steam to cover the peak requirements and a portion of the daily consumption is supplied by the grid.

The present power balance can be summarized as follows, for average and peak conditions:
AVERAGE
Production

- 3 Turbogenerators 25,000
Consumption
- Power Station Internal 1,500
- Plant 24,500
Total 26,000
Production
- Generators 25,000
- Grid 1,000
PEAK
Consumption
- Power Station Internal 1,500
- Plant 28,000
Total 29,500
Production
- Generators 25,000
- Grid 4,500
Total 29,500
For the day of March 8, 1976, which was considered a typical working day, the production records indicated the following figures:
Total Power Consumed in 24 Hours 624,100(1)
Total From Grid 79,500
Total From Generators 544,600
Average Hourly Consumption 26,004
Hourly Average Supply:
Generators 22,692
Grid 3,312
Total 26,004
(1) Includes 32,000 to the municipality.

Oniy three generators were in operation on March 8, 1976:

Two Vickers $\times 10,000$	20,000
One Skoda $\times 12,000$	12,000
Total Capacity in Operation	32,000

Average Load F'actor $=22,692: 32,000=71 \%$
The limiting factor to produce more power seems to be the steam production. One BRNO boiler being under repair and the other one operating at limited capacity, the 2 vailable quantity of steam would not exceed:

Tons/Hour

$$
\begin{array}{lr}
\text { Tompson Boilers, } 4 \times 45 & 180 \\
\text { BRNO, } 1 \times 60 & 60 \\
\text { Total } & 240 \\
& \\
\text { Assuming the average quantity of steam required for processing } 60 \text { to } 75 \text { tons } \\
\text { per hour and } 6.0 \text { kilograms are used to generate } 1 \mathrm{KWH} \text {, the steam balance } \\
\text { would be typically as follows: }
\end{array}
$$

Tons/Hour

Consumption Plant
 75

Consumption Power Generations, 25×6.0150
Total 225
These total steam requirements of 225.0 tons per hour are practically equivalent to the present capacity of 240 tons per hour. one BRNO boiler being out of order and the other one operating at limited load.

The estimated steam consumption of 6.0 kilograms per generated KWH could not be verified and seems rather high. This figure may be indicative of the present poor condition of the entire installation.

Future developments of the Mehalla plant are likely to require more power capacity. The new spinning plant (No. 7), including refrigeration, is estimated to consume $4,000 \mathrm{KWH}$ per hour. The presently considered expansions in wool and garment manufacturing may account for another $1,500 \mathrm{KWH}$ per hour.

In addition, when the present spinning and weaving equipment will be replaced by more modern equirment, it is reasonable to assume that labor cost will be cut dramatically, but also that power consumption will increase. In the absence of a master development plan, it is difficult to put forth any meaningful projections. However, if Mehalla's older spinning and weaving equipment is gradually replaced by more productive, less labor intensive, but more energy consuming, new equipment, it is reasonable to assume that the present consumption may increase by 50% in the next 10 to 15 years. This figure may even be exceeded in case more effective control of relative humidity and temperature is considered through refrigeration and heating of some plants in the future.

In summary, after implementation of the total project, presently under consideration, power requirements are likely to increase from an average of $\mathbf{2 6 , 0 0 0} \mathrm{KWH}$ per hour to 31,500. The future development in the next 10 to 15 years may add an additional 12,000 to $15,000 \mathrm{KWH}$ per hour to these figures.

Peak requirements seem to be approximately 15% over average. To cover peak loads and to average an economic load of the power generating facilities in the order of 70% of average requirements, the overall capacity of the rorver plants in 10 to 15 years ahead would have to be:

$$
(31,500+15,000) \div .70=66,428 \mathrm{KW}
$$

A capacity of $67,500 \mathrm{KW}$ would cover all needs if the present yarn and weaving plants were completely rehabilitated and power consumption increased close to 60% over present levels. In terms of development, this would mean an extremely fast evolution and would require such a large amount of capital that it is unlikely to happen. We believe that projections for active power generating capacity between 50,000 and $60,000 \mathrm{KW}$ would be realistic.

In the short term, we do not foresee the necessity of replacing any of the existing turbogenerators. However, to maintain the existing potential in fully operative condition, maintenance may have to be stepped up and as a result, significantly higher maintenance cost is to be expected in the next few years.

Remark: All boilers are presently oil-fired but plans call for future possi : 7 dual heating systems either oil or natural gas.

C. INVESTMENTS

Exhibit I summarizes a list of current investments, at cost, in the existing power plant. The figures are taken from Mehalla records.

The original investment, construction and equipment, per KW installed capacity, equals at cost:

$$
13,119,988 \div 44,000=\$ 298.2 / \mathrm{KW}(\text { (£E 116.3) }
$$

EXHIBIT I

POWER PLANT CURRENT INVESTMENTS

(AT COST)
Original Value
Item
No. Dessription £EAt Cost
US \$(1)

1. Construction (Including Cooling Tower) 1,690,000
2. Water Plant 600,000
Substation Grid 11,000
Subtotal 2,301,000 5,899,764
3. Two Vickers Turbines + Generators 668,000
4. Two Standby Vickers + Generators 166,000
5. Two Skoda Turbines + Generators 402,000
6. Two Sulzer Diesels + Generators 49,000
7. Four Tompson Boilers 673,000
8. Two BRNO Boilars 528,000
9. Water Pumping Equipment 330,000
Subtotal 2,816,000 7,220,224
Total Investment at Cost 5,117,000 13,119,988
(1) $£ E=\$ 2.654$.

D. CURRENT COST

Based on 1975 figures, the breakdown of the present operating cost is as follows:

£E per Year
Fuel (113,378 Tons x £E 7.5/Ton) 860,000
Labor285,440
Maintenance 67,000
Subtotal 1,212,440
Depreciation 226,485

- Building, 57,525
- Equipment, 168,960
Subtotal$1,438,925$
General \& Adm. (Estimated 10\%) 143,893
Total Operating Cost/Year (at 2.564) 1,582,818

1. Fuel cost to the Mehalla plant is extremely low. The current price per ton of fuel No. 2 is $£ \mathrm{EE} 7.5$ ($\$ 19.23$). On a caloric basis this would mean:
£E. 694 (\$1.78) per Million Calories, or £E. 176 (\$.45) per Million B.T.U.

For comparison the current cost of fuel No. 2 in the U.S. for industrial purposes is in the order of $\$ 2.00$ per million B.T.U. or more than four times the cost to Mehalla.
2. The labor complement to operate the power plant consists of 455 operators including maintenance crews and 16 supervisors. Approximately half the workers are assigned to the water plant and the boilers.
3. According to available records, maintenance costs have evolved in the last six years as follows:

Year	Total Cost of Maintenance	\% Increase Over Previous YE per Year
1970	12,000	
1971	15,000	25
1972	29,000	94
1973	45,000	55
1974	57,000	27
1975	66,000	16
Average	37,330	45

Maintenance cost is expected to increase dramatically in the near future. An extraordinary budget has already been earmarked for 1976 in the approximate amount of EE 136,000 including EE 76,000 for new stationary blades on one of the Vickers turbines (blades made by G.E.) and $£ E 50,000$ for new wood structure in one of the cooling towers.

In 1975 the total production of steam was $1,522,709$ tons and fuel consumption was 113,378 tons.(1) Fuel cost in 1975 at eE 7.5 per ton equals $\mathcal{E E} \mathbf{8 5 0 , 3 3 5}$.

The complex used $203,868,601 \mathrm{KWH}$ during 1975, broken down as follows:

KWH

Power From Generators	$190,494,601$
Power From Grid	$13,374,000$
Total Power Available	$203,868,601$
Consumption Generator Auxiliaries	$13,182,430$
Plant Consumption.	$190,686,171$
Total Consumption	$203,868,601$

Based upon 1975 figures, the cost per KWH generated by the power station and available at the main terminals for distribution is as follows:
(1) At a caloric value of $10,800 \mathrm{KWH}$ per kilogram of fuel, the actual overall efficiency of the boilers would only be 77.5%.

	Milliemes per KWH	Cents/ KWH
Fuel	3.34	.
Water	.17	.8575
Wages	1.35	.0436
Maintenance	.32	.3454
Depreciation	1.07	.0811
General \& Adm.	.68	.2741
		.1741
Total	6.93	1.7758

The cost to Mehalla of their own power is approximately 7 milliemes per KWH or less than $\$.018$ per KWH.

If fuel cost were at U.S. prices, the cost per available KWH to Mehalla would increase with approximately 11 milliemes. It would then be 18 milliemes per KWH or $\$.046$ per KWH.

Power supplied by the grid is available to Mehalla at a decreasing rate according to quantities consumed. In addition, an annual flat fee of $£ E 5.620$ per contracted KW of capacity. The decreasing rate scale starts at 10.103 milliemes for the first 1,000 hours x contracted KW. The next rate is 9.503 milliemes for 500 hours followed by 8.203 milliemes for the next 1,000 hours. All consumption in excess of 5,000 hours x contracted KW is charged at 4.603 per KWH.

Mehalla has requested a revision of this rate scale and apparently has been offered a flat rate of 7 milliemes per KWH. The matter seems to be under litigation.

E. PROPOSED DEVELOPMENT PLAN

Recognizing on one hand the increase in future power and steam requirements and on the other hand the urgent need to rehabilitate the existing installation, Mehalla had originally requested additional capacity for $20,000 \mathrm{KW}$ power generation and for 300 tons per hour steam production.

As indicated in subsection B. of this section, the average power consumption is likely to increase from the present $26,000 \mathrm{KW}$ to $31,500 \mathrm{KW}$ after completion of the present investment plans. In the next 10 to 15 years, if normal development continues, anothei increase in power requirements may be expected, estimated at 12,000 to $15,000 \mathrm{KW}$. As a result, the present planned addition of $20,000 \mathrm{KW}$ would appear reasonable.

As for steam consumption, it is difficult to predict future growth. Under the assumption that developments in steam requirements may be parallel to those for power, some 50% more than the present consumption would be needed in 10 to 15 years in addition to the $\mathbf{7 5}$ to 90 tons per day after completion of the present projects.

Total estimated maximum needs may be in the order of 120 tons per hour, 10 to 15 years after the present project. Finishing equipment is becoming more sophisticated, particularly with the increasing consumption of polyester. For certain applications, where higher temperatures are required, and where accurate temperature control is more critical, steam is gradualiy replaced by hot oil or gas. The evolution towards these more modern concepts of finishing may dampen somewhat the future steam requirements. On the other hand increasing need for controlled atmospheric conditions in spinning may tend to increase steam consumption for heating purposes in winter.

Assuming in the future similar operating conditions as presently experienced and full capacity utilization of the new turbogenerator at $20,000 \mathrm{KW}$, the maximum steam consumption of the turbine would be 120 tons per hour. As a result, 30 tons per hour would be available, at the very least, for processing purposes. It is more likely though that the turbine will not operate constantly at its full capacity and that the efficiency will be better than in the case of the existing installation, resulting in lower steam consumption per KWH. It is therefore reasonable to assume that on the average 40 to 45 tons per hour of steam will be available from the new boiler for use in the plant, to cover anticipated increase in consumption.

It would therefore not appear justifiable to add a second 150 -ton boiler at this time and we would recommend in the scope of the present project, only 150 tons additional steam generating capacity. In our opinion the addition of more capacity should depend on whether or not existing capacity has to be discarded. If the answer to that question is positive, the discarded capacity should be replaced and any new boiler should be installed in the same location as the discarded one. This would seem a logical approach, since the present steam requirements are met, fl; power generating and for processing with one BRNO boiler completely shut down and the other one operating at less than 60% of capacity. Before deciding to discard an existing boiler, every effort should be undertaken to assure that further repair is impossible or uneconomical.

Exhibit II summarizes the suggested equipment for the power plant expansion.

EXHIBIT II

SUGGESTED INVESTMENT - POWER PLANT EQUIPMENT

Itam No.	Description	Estimated FOB Cost in US \$	
		Per Machine	Total \$
1.	Turbine + Generator 20 M Watt	3,900,000	3,900,000
2.	Turbine Control Room	200,000	200,000
3.	Condenser + Deaerator + Pumps	250,000	250,000
4.	Water Treatment Plant (Additional)	250,000	250,000
5.	Cooling Tower	180,000	180,000
6.	Boiler 150 Tons/Hour Oil Fired Including Pre-heater + Controls, 60 Kilograms per Sq. Centimeter	3,600,000(1)	3,600,000
7.	Piping, Valves and Accessories	850,000	850,000
	Subtotal	9,230,000	9,230,000
8.	Seaworthy Packing + Freight + Insurance		923,000
9.	Grand Total CIF Value \$		10,153,000

(1) Gas fired would be $\$ 1,000,000$ less, approximately.

The price of the boiler is based upon classical tubular water pipe boilers, oil fired. The price would be substantially less for a gas fired unit. Although conversion to gas firing is being planned by Mehalla at some time in the future, we believe that the boiler has to be equipped to be able to use oil for added security in case gas supply is not available in time or is ncit continuous in the future.

Prices of boilers and turbines are based on an operating pressure of 60 kilograms per square centimeter which is significantly higher than the present 35 kilograms per square centimeter working pressure. It has been recognized that modern equipment is now available at higher pressures and up to 100 to 120 kilograms per square centimeter. At these high levels of pressure, efficiencies are somewhat better than at 60 kilograms per square centimeter and much better than at 36 kilograms per square centimeter. However, maintenance becomes increasingly critical at higher pressures and based on past experience, we would emphasize (in the case of Mehalla) easy maintenance rather than the latest refinement in fuel saving.

For the same reason we based boiler prices on conventional tubular boilers rather than on the so-called compact "package" boilers. A distinct advantage of the package boilers, beside lower cost, is the easy installation. We still feel that easy maintenance should be considered as a predominant criterion.

Exhibit III summarizes the investment plan.
The total estimated investment, excluding working capital, is in excess of $\$ 17,500,000$ or $\$ 880$ per incremental KW capacity. This is approximately three times higher than the investment per KW of the present installation. As a result, the cost per incremental KWH will rise by 2.14 milliemes for additional depreciation, but it will be somewhat lower in fuel consumption and maintenance. Also, we do not think that additional labor is required.

On balance, the high investment required to create additional power generating capacity appears economically justified. Power supplied by the grid at presently applicable rates would not be less expensive. The existing power facilities at Mehalla, if properly maintained, are a valuable asset and provide better protection against fluctuations or disruptions in power supply.

Exhibit IV summarizes the investment evaluation and indicates requested versus recommended investment in equipment at FOB prices.

EXHIBIT III'

SUMMARY OF INVESTMENT PLAN - POWER PLANT

Item No.	Description	Est. Cost in US \$		
		Foreign Exchange in US \$	Local Currency in US \$	Total US \$
1.	Equipment CIF Value	10,153,000		10,153,000
2.	Import Duty on 1. (12\%)		1,218,500	1,218,500
3.	Clearing + Local Transportation + Erection	102,000	1,950,000(1)	2,052,000
4.	Auxiliary Equipment + Accessories		Included in 1.	
5.	Import Duty on 4.		Included in 2.	
6.	Clearing + Local Transportation for 4.		Included in 3.	
7.	Spares (5\%) Including Duty (12\%)	508,000	61,000	569,000
8.	Electrical		Included in 3.	66,000
9.	Airconditioning		None	
	Subtotal Equipment Installed	10,763,000	3,229,500	13,992,500
10.	Construction 3,000 Sq. Mtrs at 1,200 (Estimated)		3,600,000	3,600,000
Total Investment (Excluding Working				
	Capital)	10,763,000	6,829,500	17,592,500

(1) Includes $\$ 500,000$ for turbine foundation.

SUMMARY OF INVESTIIENT PLAN EVALUATION

Mill: Power Plant

Department:

A.I.D. Request Reference: Annex 13, Table 4

Itam	Quantity	A.I.D. Request Value FOB £E	A.I.D. Request Value FOB US \$
Turbogenerator, 20 M Watt	1	1,200,000	3,072,000
Steam Boilers	2	1,200,000	3,072,000
Spares		240,000	614,000
Total		2,640,000	6,758,000
U.S. Manufacturer of Desirable			
Equipment	Yes		
Estimated Cost - FOB US \$			9,691,800

Recommend:

Install additional 20 M watt to provide additional capacity for future new spinning, weaving and possibly more airconditioning and more finishing. The new capacity would also permit updating of existing equipment. One large generator is recommended rather than two small ones because of more economical operation if at least 70% of its capacity can be used. This appears to be the case already under the present circumstances with 24 to 26 M watt average consumption.

However, two additional boilers, in our opinion, cannot be justified since one additional boiler of 150 tons would suffice, even with the BRNO boilers completely stopped, to provide all steam required for present and immediate future needs, including process steam: As a result, one 150 -ton boiler would permit updating or replasing of BRNO boilers.

TABLE OF CONTENTS

SECTION IX

FOUNDRY AND WORKSHOPS

Section Paga
A. Background and Present Conditions 1
B. Requested Investment 3
C. Proposed Strategy 3
D. Proposed Investment and Expected Results 5
Exhibit I - Suggested Investment 6
Exhibit II - Summary of Investment Plan 7
Exhibit III - Summary of Investment Plan Evaluation 8

SECTION IX: FOUNDRY AND WORKSHOPS

Mehalla has developed, in the past, an impressive central maintenance department including foundry, sheet metal, steel and wood workshops, as well as electrical repair facilities.

A. BACKGROUND AND PRESENT CONDITIONS

During past years, foreign exchange (and particularly hard currency) has been available in only limited amounts. In order to maintain the production equipment operative, Mehalla was forced, not always with the appropriate means, to manufacture a significant portion of the spares required.

Many efforts were devoted to becoming self-sufficient and in some areas relative success was attained. On balance, it appears that the spara parts manufacturing venture is not always desirable and in some cases it may add substantially to overall manufacturing costs. In Part Four, some thoughts on spare parts strategy are developed and we refer io this part of the report for further details.

At the present time, part of the tooling in the maintenance department is outdated, worn, or has become inadequate to fulfill its function and Mehalla is seeking to rehabilitate its potential to produce spare parts and to improve their quality.

Based upon recent figures, the annual output of the general maintenance department can be summarized as follows:

Tons/Year

Cast Iron 500
Casting of Copper Base Alloys 75
Castings of Aluminium Alloys 75
Steel Profiles and Parts 360
Sq. Mtrs./Year
Wood Consumption for Pirns 500
Other Wood for Parts 325
Other Wood for Export Cases 525

The mechanical shop produces some $1,400,000$ parts per year from the local castings and from other steel bases. This represents some 90% of all metallic spares required by the entire complex. In some areas where more sophisticated machines are involved, such as Sulzer looms, no attempts have been made to produce the spare parts locally and whatever foreign currency was available has been used to cover the spare parts needs for these particular purposes.

Beside 175,000 various wooden parts per year for spinning and weaving, the wood workshop produces an average of $1,500,000$ pirns per year and 17,000 cases for yarn exports. The latter may be discontinued if the use of cardboard for export packing is extended.

The central maintenance department employs 1,093 people including 64 supervisors, 712 skilled, 262 unskilled workers and 55 clerical staff.

One of the major weaknesses in the system is the quality of the castings. The parts fabricated frum the local foundry appear to be much weaker than the original parts and in some cases the parts made of these local castings break as fast as they can be produced. One typical example seems to be the gears of the automatic picker doffing systems in yarn mills 1 and 2. The quality of the castings is substandard apparently for a number of reasons:

1. Poor condition of the cupolas and absence of controls.
2. Inadequacy of the sand preparation unit.
3. Difficulties in obtaining the right types of pig iron, coke and sand.

In addition, there are no facilities available to convert greige cast iron into malleable cast iron.

Another fundamental weakness is the lack of adequate equipment for hardening and annealing. Additional strength, or desired wear characteristics, cannot be obtained for some steel parts without these processes.

Forging equipment is very old and appears limited in performance potential.
Appropriate tooling to calibrate measuring instruments seems to be lacking also.

B. REQUESTED INVESTMENT

As listed in Annex 13, Table 5 of the original request, Mehalla has proposed the following plan to rehabilitate the central maintenance department:

1. Replace foundry equipment and add capacity to convert greige cast iron into malleable cest iron.
2. Add heat treatment equipment.
3. Review equipment of wood workshop and add machinery to manufacture shuttles.
4. Install a laboratory for calibrating measuring instruments.

The FOB value of the equipment included in this original request was estimated by Mehalla at $\$ 880,000$.

In discussions with management during our investigation, additional requests were submitted for replacement of machine tools and existing forging equipment.
C. PROPOSED STRATEGY

As discussed in Part Four and in other parts of this repori, we do not believe that Mehalla should attempt to be completely self-sufficient in the manufacturing of parts. The primary objective of the company is supposed to be the production of textile products at the lowest cost and of the highest possible quality.

On the average, Mehalla consumes some 30,000 shuttles per year on less than 5,000 looms. This means shuttle consumption is in excess of six units per year and per loom, or shuttle life is two months approximately. Most of these shuttles are locally made in an allegedly specialized shop near Cairo and cost in the order of $\$ 10$ per unit.

The quality of the shuttles used in any weave room is a critical parameizr and has significant bearing on loom efficiency and fabric quality. From our brief observations, the shuttles used at Mehalla are the less expensive, low quality type which is generally acceptable for low speed looms but would be unsatisfactory for today's modern loom speeds. A high quality shuttle in the United States would cost $\$ 16$ to $\$ 20$, or twice the price paid by Mehalla; however, its lifetime under Mehalla's operating conditions is expected to be two to three times longer and its performance with regard to loom efficiency
and fabric quality would at least be equivalent or better. If Mehalla wanted to manufacture shuttles, it is doubtful they would be able to sुuarantee the same excellence in quality. Moreover, the wood would have to be imported as well as most of the accessories. In addition, many of the reinements which make a $\$ 20$ shuttle better than a $\$ 10$ one are patented and known only to the specialized manufacturers.

The successful producers of shutties practically all have a research team and they are able to constantly improve the quality of their product or to adapt it to new developments in machine design. Mehalla would not be in a position to duplicate these conditions and if they were, it would take years to acquire a comparable level of experience.

The same is true for pirns, of which the Mehalla complex uses $1,500,000$ per year, mostly made in Mehalla's wood shop. The wood and the rings have to be imported which substantially reduces the savings in foreign exchange and the benefits of fabricating pirns themselves. Reported average cost per pirn is £E. 12 or $\$.31$ per unit. The average cost of a high quality pirn in the United States would be in the order of $\$.50$, but its lifetime would probably be more than twice that of the pirns manufactured at Mehalla.

Both previous examples illustrate some of the common fallacies with regard to manufacturing of spare parts. Generally, the more sophisticated or the more precise a given part, the more difficult it is to duplicate and the more expensive and less effective local replicas become.

Considering the size and the vulnerability of the Mehalla operation and based on past history, it would seem logical and highly desirable to maintain a certain degree of self-reliance with regard to spare parts. Under the circumstances and considering the practicalities, we would recommend the following strategy relative to manufacturing of parts:

1. Spare parts should be acquired, whenever possible, from the original suppliers to the extent that foreign currency is available.
2. Government instances should be alerted if necessary, when spare parts shortages threaten to occur and should be made aware of the detrimental consequences in case no original parts can be secured timely. Budgets for foreign exchange requirements should be submitted to the proper authorities as early as possible.
3. Parts which are complicated or whose quality and tolerances have a significant bearing on machine performance or product quality, should not be included in local spare parts manufacturing programs.
4. Mehalla skould be self-reliant and equipped to adequately produce simple and current parts and accessories, based on quality castings and machining, including forging and heat treatments, when required or applicable.

D. PROPOSED INVESTMENT AND EXPECTED RESULTS

Based upon the strategy outlined in previous paragraphs, we would recommend the following investments be considered:

1. New cupola furnace of slightly higher capacity, completely equipped.
2. Induction furnace for conversion of greige cast iron to malleable cast iron.
3. Adequate equipment for heat treatment.
4. Replacement of the existing forging equipment.
5. Measuring and calibratioa equipment.

On the other hand, we would recommend against acquisition of any equipment to promote pirn and shuttle manufacturing or to expand the present machining facilities.

However, we would suggest maintenance of an appropriate capacity of machining facilities. The latter could be financed by regular budgets based on normal depreciation schedules and we would not recommend that these be included in the present project.

Exhibit I describes the suggested investment and cost. We included only one cupola stirnace but of increased capacity and with complete controls, rather than two smaller units. For annual requirements in the order of 500 to 1,000 tons, a single unit, capable of producing over 100 tons a day should be amply sufficient.

The price of the furnace for conversion of greige to malleable cast iron includes automatic handling and complete atmoipheric control, which should permit maximum quality.

Exhibit II summarizes the suggested investment plan and Exhibit III recaps the investment evaluation comparing FOB values of requested and recommended equipment as well as a brief summary of the justifications on which our recommendations are based. The total investment, excluding working capital, is estimated at $\$ 1,047,800$ of which $\$ 878,000$ is foreign exchange.

EXHIBIT I

SUGGESTED INVESTMENT - FOUNDRY AND SHOPS

Itam		Estimated FOB Cost in US $\$$	
		Per	
No.	Description	Unit	Total \$
Foundry			
1.	Cupola Furnace 5.5-7.0 Tons/Hr.	28,000	28,000
2.	Charger for 1. Complete	32,000	32,000
3.	Blower for 1.	8,000	8,000
4.	Accessories + Instrumentation for 1.	18,000	18,000
5.	Sand Preparation Station With Controls	50,000	50,000
6.	Shot Blast Cleaning Chamber Complete	22,000	22,000
7.	Induction Furnace for Malleable Steol(1)	58,000	58,000
8.	Analysis Lab Equipment + Testing Equipment	18,000	18,000
Heat Treatment			
9.	Box Furnace, Electrical, for Annealing	35,000	35,000
10.	Electric Furnace for High-Speed Hardening	55,000	55,000
11.	Electric Furnace for Case Hardening(2)	169,000	169,000
12.	Controls + Accessories	32,000	32,000
Forging			
12.	Drop Hammer Mechanical	12,000	12,000
13.	Pneumatic Hammer	36,000	36,000
14.	Drop Forging Hammer + Furnace	17,500	17,500
15.	Hot Circular Saw	4,500	4,500
16.	Controls + Accessories	4,000	4,000
Measuring			
$\begin{aligned} & 17 . \\ & 18 . \end{aligned}$	Calibration Lab for Instruments	68,000	68,000
	Various Instruments	22,000	22,000
	Subtotal		689,000
19.	Seaworthy Packing + Freight + Insurance		104,000
20.	Grand Total CIF Value		793,000

(1) Including controlled cooling.
(2) Elevator type, including protective gas generator.

EXHIBIT II

SUMMARY OF INVESTMENT PLAN - FOUNDRY AND SHOPS

Item No.	Description	Est. Cost in US \$		
		Foreign Exchange in US \$	Local Currency in US \$	Total US \$
1.	Equipment + Accessories CIF Value	793,000		793,000
2.	Import Duty on 1. (12\%)		96,000	96,000
3.	Clearing + Local Transportation + Erection	45,000	64,000	109,000
4.	Auxiliary Equipment + Accessories		Included in 1.	109,000
5.	Import Duty on 4.		Included in 2.	
6.	Clearing + Local Transportation for 4.		Included in 3.	
7.	Spares (5\%) Including Duty (12\%)	40,000	4,800	44,800
8.	Electrical (Connection Only)		6,000	5,000
9.	Airconditioning		None	
	Subtotal Equipment Installed	878,000	169,800	1,047,800
10.	Construction		None(1)	
	Total Investment (Excluding Working,			
	Capital)	878,000	169,800	1,047,800

(1) Machinery foundations included in item 3.

EXHIBIT III

SUMMARY OF INVESTMENT PLAN EVALUATION

Mill: Foundry and Shops
Department: Maintenance
A.I.D. Request Reference: Annex 13, Table 5

Item	Ouantity	A.I.D. Request Value FOB EE	A.I.D. Request Value FOB US \$
Equipment for Foundry Heat Treatment and Carpentry			
		343,000	880,000
U.S. Manufacturer of Desirable Equipment			
	Yes		
Estimated Cost - US \$ FOB			725,000

Recommended:

We would recommend the use of original spare parts to the maximum extent possible. However, based on past history and considering the size of the Mehalla operation, we recognize the necessity of self-reliance to some degree. We therefore suggest replacing the cupolas, sand preparation station and forging shop on the basis of inadequacy to produce quality parts at present. For the same quality reasons, we also suggest adding equipmant for hardening, annealing, and transformation of greige cast iron to malleable cast iron as well as calibration, and measuring instruments. On the other hand, we do not recommend investing in pirn or shuttle manufacturing on the basis of higher cost of these accessories when produced locally and lower quality than similar items acquired from specialized manufacturers.

TABLE OF CONTENTS

SECTION X

MATEFIALS HANDLING

Section Page
A. General Background 1
B. Present Conditions 2
C. Materials Handling Study 3
D. Estimated Cost of Materials Handling Study A
E. Order of Magnitude Cost of Improved Materials Handling System 5
Appendix
1 Misr Spinning and Weaving Company Complex 6
2 Analysis of Yam Movement 7
3a Materials Handling Equipment - Spinning 9
3b Materials Handling Equipment - Spinning 10
3c Materials Handling Equipment - Cloth to Inspection Department 11
3d Materials Handling Equipment - Cloth to Inspection Department 12
3e Materials Handling Equipment - Greige Cloth to Finishing 13
3f Materials Handling Equipment - Cloth Within Finishing 14
8g Materials Handling Equipment - Beams in Finishing 15
3h Materials Handling Equipment - White Cloth in Finishing 16
4 Weaving Mi>ls 17
5 Distance Between Weaving Mills and Sizing and Inspection 18
6 Number of Workers Engaged in Transport 19
7 Summary of Investment Plan 21
8 Materials Handling (Conveyors) 22

SECTION X: MATERIALS HANDLING

A. GENERAL BACKGROUND

The size and complexity of the Misr Spinning and Weaving Company requires that yam and cloth be moved among various facilities continuously. Particularly in the cotton operations where six spinning mills feed 13 weaving locations is the magnitude and complexity of the materials handling requirements a major area of cost and source of potential scheduling disruptions and product damage and soilage.

Currently, most of the yam movement is performed manually - individuals pushing and pulling yarn trucks among the various locations, often outside. About 1,500 persons are engaged in the movement of goods within the complex, with a to tal annual payroll in excess of $£ E 400,000$. About one-half of these are engaged in the movement of cotton yarn.

Currently, an analysis of the overall materials handling probiem at Misr Spinning and Weaving Company is being performed by company management; this function having been identified as one of high priority from the standpoint of improvement need and potential. Our opinion is that this function should receive priority due to the current cost of handling, the effect on production scheduling and the potential for product damage.

It is our recommendation that an overall study of the materials handling function be conducted. This study should include not only the physical movement of goods, but also the in-process inventory levels and physical storage and the coordination with production scheduling. The study should be conducted in three phases - an analysis and conceptual design phase, a detailed design phase, and an implementation phase.

In the remainder of this section, we review a cursory analysis of the current activities, outline the type study which we believe should be conducted, and estimate the time and cost of the study and the order of magnitude cost of an improved materials handling system.

B. PRESENT CONDIIIONS

From information furnished by the production general manager, a cursory analysis of the current materials handling work load and conditions was made. Concentration was given to spinning where the magnitude of the problem and opportunity for improvement are the greatest.

The following is a brief synopsis of the materials handling situation in spinning.

1. Spinning

A total of six spinning sheds and a condenser unit are supplying nine alternative locations with yarn (Appendix 1 presents a complex layout). There is a wide variation in the intensity of activity between locations, the greatest being between spinning and the warp shed, closely followed by export. Appendices 2 and 3 show an analysis of the movement and the ton meters moved per 24 hours are summarized below:

Move To	Ton Meters per 24 Hours	Tons per 24 Hours
Warp Shed		
Central Spooling	9,115	44.35
Spooling No. 5	5,487	20.95
New Spooling	1,532	2.50
Export	4,390	6.20
Twisting	8,506	20.50
Weaving No. 2	2,347	9.25
Weaving No. 8	180	1.00
Weaving No. 9	452	2.50
	663	3.50
Total		
		32,672

Three of the destinations - warp shed, central spooling and export account for 77% of the tonnage moved but only 71% of the ton meters.

The total number of trips made in 24 hours is 1,130 during which period nearly 440,000 meters are covered for an average 393 meters per trip.

2. Materials Handling Equipment

Yarn is moved from spinning to weaving, export, etc., on one of two types of manually moved trucks. There are 1,309 of these trucks and, as only 1,130 trips are made in 24 hours, this indicates a lag in process time. Appendices 3a through 3h are descriptions of the current materials handling carts and trucks.
3. Weaving

The magnitude of tine weaving activity is shown in Appendices 4 and 5. It may be seen that movement of warp beams from the sizing department to the weaving sections ranges from a distance of 30 meters up to 190 meters. Movement of greige cioth to inspection varies from a distance of 8 meters up to 690 meters.

Thus, while the magnitude of yarn movement is great, the movement of warp beams and cloth rolls covers considerable distances and the weights are substantial.
4. Personnel

The numbers of people engaged in material handling, by department, are shown in Appendix 6.

C. MATERIALS HANDLING STUDY

1. Analysis and Conceptual Design Phase

The analysis and conceptual design phase of the study should include the following:
a. Detailed flow chart of current material movement and in-process storage, including quantities and frequencies.
b. Detailed analysis of current materials handling costs, includiag labor, material, maintenance, equipment depreciation, inventory carrying costs, production disruptions, product damage.
c. Define the most efficient practical alternatives to improve the overall materials handling system.
d. Simulate the cost/benefits of the alternative systems.
e. Determine the most cost efficient and practical alternative.

2. Detailed Design Phase

The detailed design phase should include the following:
a. Development of detailed plans for the selected new systems, inclusive of equipment specifications, layouts, operation description, staffing and labor requirements.
b. Preparation of an implementation plan to ensure timely completion.

3. Implementation Phase

The implementation phase should include the following:
a. Solicitation of bids for new equipment.
b. Review of bids, selection of suppliers, ordering of equipment.
c. Development of supporting systems and controls.
d. Installation of new equipment, systems and controls.
e. Training of management, supervisors and workers in the use of the new equipment and supporting systems and controls.

D. ESTIMLATED COST OF MATERIALS HANDLING STUDY

The estimated cost of a materials handling study, as outlined above, is as follows:

Phases two and three of the study should be undertaken only ii the first phase clearly reveals that the cost/benefit relationship of an improved system is justified.

E. ORDER OF MAGNITUDE COST OF IMPROVED MATERIALS HANDLING SYSTEM

The type of systems which should be evaluated include in-ground tow conveyor, overhead conveyor and "driverless" tractor systems.

Assuming the cost/benefit relationship justifies such a system, the cost will likely be in the order of US $\$ 1,500,000$ to US $\$ 2,000,000$.

APPENDIX 1

MISR SPINNING AND WEAVING COMPANY COMFLEX

APPENDIX 2

ANALYSIS OF YARN MOVEMENT

Spinning Shed Number
Move to
No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 Condenser Total

Warp Shed

Tons/24 Hours	15.00	10.85	1.00	11,00	0.50	6.0	-	44.35
Trips/24 Hours	100	73	7	74	4	40	-	298
Avg. Waight/Trip (Kgs.)	150	150	143	149	125	160	-	149
No. Mtrs./Trip	80	60	180	294	500	600	-	-
Ton-Mtrs./Day	1,200	651	180	3,234	250	3,600	-	9,115

Central Spooling

Tons/24 Hours	5.00	12.25	0.50	1.00	-	1.00	1.20	20.95
Trips/24 Hours	34	82	4	7	-	7	8	142
Avg. Woight/Trip (Kgu.)	151	149	125	143	-	143	150	148
No. Mtrs./Trip	270	240	114	110	-	430	600	-
Ton-Mtre./Day	1,350	2,940	57	110	-	430	600	6,487

Spooling No. 5

Tons/24 Hours	0.60	-	-	2.00	-	-	-	2.50
Trips/24 Hcurs	4	-	-	14	-	-	-	18
Avg. Weight/rip (Kg.)	125	-	-	143	-	-	-	139
No. Mtrs./Trip	320	-	-	686	-	-	-	-
Tor-Mtrs./Day	160	-	-	1,372	-	-	-	1,532
New Spooling								
Tons/24 Hours	1.00	-	-	4.00	-	-	1.20	6.20
Trips/24 Hours	7	-	-	27	-	-	8	42
Avg. Weight/Trip (Kgs.)	143	-	-	148	-	-	150	148
No. Mtrs_/Trip	450	-	-	760	-	-	750	-
Ton-Mtrs./Day	450	-	-	3,040	-	-	900	4,380

Export Section

Tons/24 Hours	2.0	1.0	6.0	3.0	4.5	4.0	-	20.6
Trips/24 Hours	14	7	40	20	50	27	-	168
Avg. WeightTrip (Kgs.)	143	143	150	150	90	148	-	130
No. Mtrs./Trip	686	550	424	235	360	440	-	-
Ton-Mtrs./Day	1,372	550	2,544	705	1,575	1,760	-	8,506

Twisting

Tons/24 Hours	2.0	3.25	-	-	-	4.0	-	9.25
Trips/24 Hours	14	22	-	-	-	27	-	63
Avg. Weight/Trip (Kgs.)	143	148	-	-	-	148	-	147
No. Mtrs./Trip	516	380	-	-	-	20	-	-
Ton-Mtrs./Day	1,032	1,235	-	-	-	80	-	2,347

APPENDIX 2 (CONTINUED)

Spinning Shed Number
$\begin{array}{llllllll} & \text { Move to } & \text { No. } 1 & \text { No. } 2 & \text { No. } 3 & \text { No. } 4 & \text { No. } 5 & \text { No. } 6 \\ \text { Condenser } & \text { Total }\end{array}$

Weaving No. 2

Tons/24 Hours	1.0	-	-	-	-	-	-	1.0
Trips/24 Hours	7	-	-	-	-	-	-	7
Avg. Woight/Trip (Kgs.)	143	-	-	-	-	-	-	143
No. Mits./Trip	180	-	-	-	-	-	-	180
Ton-Mtrs./Day	180	-	-	-	-	-	-	180

Weaving No. 8

Tons/24 Hours	0.5	0.5	-	1.5	-	-	-	2.5
Trips/24 Hours	4	4	-	10	-	-	-	18
Avg. Weight/Trip (Kgs.)	125	125	-	160	-	-	-	139
No. Mtrs./Trip	490	360	-	18	-	-	-	-
Ton-Mtrs./Day	245	180	-	27	-	-	-	452

Weaving No. 9

Tons/24 Hours	0.5	-	-	1.5	-	1.5	-	3.5
Tripa/24 Hours	4	-	-	10	-	10	-	24
Agg. Weigh/Trip (Kgs.)	125	-	-	150	-	150	-	146
No. MAtrs./Trip	426	-	-	60	-	240	-	-
Ton-Mtrs./Day	213	-	-	90	-	360	-	663

APPENDIX 3 a

MATERIALS HANDLING EQUIPMENT

SPINNING

APPENDIX 3b
MATERIALS HANDLING EQUIPMENT
SPINNING

APPENDIX 3c

MATERIALS HANDLING EQUIPMENT CLOTH TO INSPECTION DEPARTMENT

APPENDIX 3d
MATERIALS HANDLING EQUIPMENT
CLOTH TO INSPECTION DEPARTMENT

MATERIALS HANDLING EQUIPMENT GREIGE CLOTH TO FINISHING

APPENDIX $3 f$
MATERIALS HANDLING EQUIPMENT CLOTH WITHIN FINISHING

MATERIALS HANDLING EQUIPMENT

BEAMS IN FINISHING

MATERIALS HANDLING EQUIPMENT
WHITE CLOTH IN FINISHING

APPENDIX 4
WEAVIME MILLS

	Muls															
-	1	2	3	4	5	Col. WHI L	$\begin{aligned} & \text { Duck } \\ & \delta \end{aligned}$	$\begin{gathered} \mathbf{S} \\ \hline \text { Dob. } \\ \mathbf{S} \end{gathered}$	$\begin{gathered} \text { Sturt. } \\ \mathbf{S} \end{gathered}$	7	8	0	10	11	12	13
Working Shifts	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Ineoming Yams in Kga, Daily	2,875	6,500	5,854	1,390	1,782	2,960	1,240	870	540	2.600	3,742	2,060	2,712	2,365	4,300	950
Incoming Bec:ar Dally	,															
- Beame Druwing	6	3	6	1	3	5	1	1	1	10	9	1	3	1		
- Beans Knotted	20	22	44	14	18	28	6	6	7	39	16	0	18	12	20	4
Insoming Spooled Weft Kg, Daily	3,210	5,800	4,860	1,200	1,640	1,740	070	850	460	2,400	4,085	1,760	28817	2,770	4,700	1,000
Cloth Length in Closh Bean/Mits.																
- Minimum	139	139	130	124	128	30	74	130	124	128	100	112	108	130	100	80
- Maxinam	167	180	167	130	280	280	139	167	139	167	185	130	130	260	180	120
Produced Cloth in Mtrs. Dally	41,560	40,650	E0,670	8,760	32,310	32,000	5,600	0,890	2,100	34,100	30,240	21,450	40,410	23,480	67,480	11,550
Avg. Waight of Cloth (For One Metw)																
Gm.	135	450	223	379	92	196	333	165	467	130	180	168	134	223	200	170
Working Widths of Cloth - CM																
- Minimum	78	73	75	183	86	80	00	83	226	60	08	96	96			
- Maximum	98	162	83	245	106	173	108	97	245	100	162	150	112	161	127	98

APPERDIK 5
 DISTANCE BETWEEN WEAVING MILLS AND SIZING AND INSPECTION SECTIONS

Weaving . MillsSizing

Sec. Meters

Insp.
Sec. Meters

1
160

120
120

140

180

30
80 240

7

8
100

110
150

190

160 300

13
120190

APPENDIX 6
 NUMBER OF WORKERS ENGAGED IN TRANSPORT

Number of Workers
SPINNING MILLS (COTTON)
Mill 1 198
MiHz 2 192
Mill 3 96
Mill 4 141
Mill 5 99
Mill 6 126
Condenser 93
Export 20
Subtotal 965
WEAVING MILLS (COTTON)
Mill 1 10
Mill 2 12
Mill 3 15
Mill 4 9
Mill 5 9
Mill 6 27
Mill 7 9
Mill 8 18
Mill 9 6
Mill 10 18
Mill 11 18
Mill 12 27
Mill 13 6
Warp Preparation Shed 15
Sizing 18
Spooling Shed 9
Inspection 57
Subtotal 283

APPENDIX 6 (CONTINUED)

Numbeis ofWorkers
FINISHING MILLS (COTTON)
Bleaching 18
Dyeing 23
Printing 18
Finishing 27
Engraving 1
Subtotal 87
WOOL MILLS
Spinning 131
Weaving 24
Finishing 28
Subtotal 183
GARMENT MILLS
Mill 1 12
Mill 2 6
Mill 3 8
Mill 4 4
Mill 5 8
Subtotal 38
Grand "otal 1,556

APPENDIX 7

SUMMARY OF INVESTMENT PLAN - MATERIALS HANDLING MATERIALS HANDLING SYSTEM

Description	Est. Cost in US \$		
	Foreign Exchange in US \$	Local Currency in US \$	Total US \$
		,	
Materials Handling System			
(Includes \$220,000 Spare Parts)	2,420,000		2,420,000
Import Duty	.	290,400	290,400
Clearing + Local Transportation + Erection	20,000	40,000	60,000
Total Investment	2,440,000	330,400	2,770,400

APPENDIX 8

Mill: Materials Handling (Conveyors)

A.I.D. Request Reference: Annex 13, Table 14

Item	Ouantity	A.I.D. Request Value 6E	A.I.D. Request Value US \$
Conveyors		390,000	1,000,000
U.S. Manufacturer of Desirable			
Equipment	Yes		
Estimated Cost US \$ - FOB			2,000,000

Recommend:

Feasibility, design and implementation, tachnical assistance for overall materials handling.
Criginal request did not specify type or quantity of equipment or system. Therefore, a detailed feasibility study of the overall materials handling within the complex is required in order to:

1. Determine the economic justification.
2. Spscify the required equipment if an improved system is found to be justified.

Technical assistance for materiais handling study $=\mathbf{\$ 1 6 5 , 0 0 0}$.
Estimated cost of new system (3,000 meters at $\$ 66,7 / \mathrm{metar})=\mathbf{\$ 2 , 0 0 0 , 0 0 0}$.

TABLE OF CONTENTS SECTION XI

FIRE PROTECTION AND FIRE FIGHTING

Section Page
A. Current Fire Protection and Fire Fighting Equipment and Personnel i
B. Incidence of Fires and Fire Truck Calls 2
C. Recommendation 3
Summary of Investment Plan - Fire Protection, New Fire ${ }^{\pi r}$ rucks and Fire Detection Equipment 6

SECTION XI: FIRE PROTECTION AND FIRE FIGHTING

A. CURRENT FIRE PROTECTION AND FIRE FIGHTING EQUIPMENT AND PERSONNEL

Currently, the fire protection and fire fighting system at Misr Spinning and Weaving Company consists of the following items:

1. Two water sources - an artesian well and an underground storage tank.
2. Two stationary pumping stations.
3. Three fire trucks:
a. One (1972) equipped with a four cubic meter water tank, four hoses, foam, CO_{2}.
b. One (1971) equipped with a six cubic meter water tank, eight hoses, foam, CO_{2}.
c. One (1958) equipped with four hoses and pump only.
4. Two fire stations.
5. 62 sprinkler system installations in manufacturing plants and enclosed warehouses.
6. One (1963) truck without pump.
7. Four (1972) tractors equipped with pumps.
8. Two (1946) four-wheel trailers.
9. Five (1973) portable gasoline engine pumps.
10. Two (1973) trailers for attachment to trucks.

The original cost of the current equipment listed above was approximately £E 861,000.

The current personnel complement for fire fighting and fire protection is as follows:

Number of
Persons
Fire Brigade of 36 Persons per Shift 108
Five Drivers per Shift 15
One Mechanic 1
One Chief 1
Maintenance 30
Engineer 1
Inspection 5
Pumping Stations - Two per Shift 6
Total Persons 167
B. INCIDENCE OF FIRES AND FIRE TRUCK CALLS
During 1975, the following were the incidences of fire truck calls:
January 17
February 25
March 16
April 14
May 24
June 32
July 25
August 30
September 17
October 15
November 21
December 16
Total 252
Average per Month 21

It was also reported that an average of 40 to $\mathbf{6 0}$ local small fires occur each month. These are primarily caused by overheated motors, faulty connections, electrical sparks, etc.

The last major fire occurred in an opin cotton storage area in 1971. The damage was estimated at $£ E 3,000,000$.

C. RECOMMENDATION

Because of the physical area and size of the Misr Spinning and Weaving Company; the number of persons employed and residing in the complex; the large investment in plant, equipment, raw material, work-in-process and inished goods; the age of some of the current fire fighting equipment; and the abrence of fire and smoke detection equipment; it is recommended that additional fire fighting equipment and fire detection equipment be purchased.

Because of the number of multi-story buildings on the complex (garment plant, offices, residences), it is recommended that a fire truck equipped with an aerial platform be purchased. In addition, one pumping truck is recommended in view of the age and inadequacy of one of the current trucks. Smoke detection equipment is recommended for the open cotton warehouses and the top floor of the garment plant because of their vulnerability to fires not easily detected.

Below is a general description of the items recommended, together with approximate costs:

1. One 75 -foot aerial platform, mounted on suitable chassis. Equipped with a 200 -gallon water tank, a 1,000-gallon per minute pump, a portable foam unit and dry chemical unit. Fully equipped with coats, boots, helmets, breathing equipment, ladders, etc.

Approximate Cost
US $\$ \mathbf{1 6 5 , 0 0 0}$
2. One pumper truck equipped with a 1,000 -gallon water tank, a 1,000 -gallon per minute pump, a portable foam unit, a dry chemical system. Fully equipped with hoses, boots, coats, helmets, breathing equipment, etc.

Approximate Cost US \$ 95,000
3. Initial spare parts for the above equipment.

Approximate Cost
US \$ 26,000
4. Smoke detector units for the fourth floor of the garment plant and for the open cotton warehouses.

Approximate Cost US $\$ \mathbf{3 0 , 0 0 0}$

Total Estimated Cost US \$296,000

Mill: Fire Fighting and Fire Detection A.I.D. Request Reference: Annex 13, Table 14

		A.I.D. Request Value	A.I.D. Request Value Item
	Quantity		

Additional fire fighting and fire detection equipment, two fire trucks and smoke detection units. To provide additional fire fighting capability, including capability for fire fighting of multi-story structures. To upgrade fire fighting capability. To add fim detaction units in open cotton warehouses and top floor of garment plant.

SUMMARY OF INVESTMENT PLAN - FIRE PROTECTION NEW FIRE TRUCKS AND FIRE DETECTION EQUIPMENT

PART THREE

RECOMMENDED TECHNICAL ASSISTANCE PROGRAMS and general observations

TABLE OF CONTENTS

PART THREE

RECOMMENDED TECHNICAL ASSISTANCE PROGRAMS AND GENERAL OBSERVATIONS

Section Page
I RECOMMENDED TECHNICAL ASSISTANCE 1
A. General Background 1
B. Apparel Technical Assistance 1
C. Summary of Proposed Technical Assistance Projects 2
D. Master Development Plan 2
E. Materials Handling 4
F. Equipment Specifications 4
G. Bid Evaluations 5
H. Survey of Cotton Spinning and Weaving 6
I. Waste Control Programs 8
J. Production Control Program 9
K. Cost Reduction Program in Cotton Spinning and Weaving 10
L. Engineering of Warping and Sizing 12
M. Start-up Assistance in the New Yarn Mill 12
II GENERAL OBSERVATIONS 13
A. Long-Range Planning 13
B. Analytical Operator Training 16
C. Industrial Engineering 20

SECTION I: RECOMMENDED TECHNICAL ASSISTANCE

A. GENERAL BACKGROUND

The proposed technical assistance programs have the following general objectives:

1. To aid in ensuring the proper selection of equipment.
2. To aid in ensuring timely, effective implementation of the rehabilitation and expansion program.
3. To aid in ensuring that the capital investments result in optimum returns.
4. To aid in achieving productivity and quality improvements and cost reductions over and above those attributable to the proposed capital investments.
5. To aid in establishing improved planning and control procedures to ensure continuing results from the rehabilitation and expansion programs.
6. To train personnel in modern techniques of textile management.

While all of the recommended technical assistance programs are deemed to be important to both the ensurance of the optimum results of the proposed capital expenditures and to the attainment of additional improvements, one particularly is connected intimately with the proposed investment programs and deserves special mention. This is the apparel technical assistance program.

B. APPAREL TECHNICAL ASSISTANCE

The apparel technical assistance program is described in detail in Section VII of Part Two. Apparel manufacturing is highly labor intensive; where machine productivity depends primarily upon the individual operators. Therefore, the production system, the work-in-process controls, individual workplace design, operator methods, operator and supervisory training and attention to individual motivation and activity level are more critical to overall productivity than equipment. The purchase of new equipment without the proper artention to these other aspects will not result in the desired levels of productivity and quality. For this reason, the apparel technical assistance program has been included as part of the capital investment proposals.

C. SUMMARY OF PROPOSED TECHNICAL ASSISTANCE PROJECTS

Below is a summary of the proposed technical assistance projects, excluding the apparel technical assistance which has been included in the overall apparel investment.

Program	Estimated Cost
Master Development Plan	$\mathbf{7 0 , 0 0 0}$
Materials Handling Study	165,000
Equipment Specifications	60,000
Bid Evaluations	120,000
Survey of Cotton Spinning and Weaving	50,000
Waste Control Program in Cotton Spinning	160,000
Production Control Program in Cotton Spinning	120,000
Cost Reduction Program in Cotton Spinning	400,000
Start-up Assistance in New Yarn Mill	160,000
Engineering of Warping and Sizing	60,000
Waste Control Program in Cottcn Weaving	200,000
Production Control Program in Cotton Weaving	140,000
Cost Reduction Program in Cotton Weaving	400,000
Total Estimated Cost	$\$ 2,105,000$

Following is a brief description of the scope of work envisioned in each of the proposed technical assistance programs.

D. MASTER DEVELOPMENT PLAN

The implementation of the proposed rehabilitation and expansion plan must be planned carefully and monitored effectively in order to ensure optimum results. Because of the complexity of the project and the interrelationship among manufacturing units, the sequence and timing of each element of the project bear on the overall results. For example, increased weaving capacity prior to the development of increased yarn supply could result in idle equipment; equipment procurement prior to completion of physical facilities could result in unnecessary capital being tied up; and equipment erection prior to personnel training could result in low equipment productivity.

It is recommended that a muster plan be developed, using the Critical Path Method (CPM) and that the plan be monitored frequently, ideally through the use of the Program Evaluation Review Technique (PERTT).

The general scope of work envisioned in this program is as follows:

- Development of a thorough understanding of each aspect of the program and the interrelationships of the individual projects.
- Development of a project "network," a graphical representation of the project plan, showing the interrelationships of the various activities.
- In conjunction with Mehalla management, determination of realistic time estimates for each element of the program.
- Review of the "network" for each individual project with the responsible Mehalla manager for that project.
- Obtainment of agreement of the elemental "network" and the overall project "network."
- Development of input requirements, frequencies and responsibilities for project status review and evaluation.
- Development of review and status evaluation procedures, including consideration of the use of Mehalla's computer.
- Training of several Mehalla personnel in the CPM and PERT techniques.
- Training of someone in Mehalla to act as overall project coordinator.
- Periodically monitoring the program and reporting of findings and recommended actions to Mehalla's senior management.

This assistance ideally should be provided by an individual or firm skilled in CPM and PERT techniques and with intimate knowledge of the textile and apparel industries. The assistance will require several months of on-site work at Mehalla at the very beginning of the project, followed by periodic visits to monitor the project throughout the duration of the project implementation.

The estimated cost of this assistance is $\$ 70,000$.

E. MATERIALS HANDLING

In Section X, Part Two, a study of the overall materials handling systems has been recommended in order to determine the economic justification for improved materials handling and, if justified, to specify the type of system which should be installed.

Because capital expenditures for improved materials handling should not be made until after a feasibility/conceptual design study has been undertaken, this study should be conducted as soon as possible. Different from the other recommended technical assistance programs, this study must be conducted prior to a final capital investment decision and development of specifications of equipment.

The general scope of work for this assistance is described in Section X, Part Two of this report. The assistance is suggested in tisree phases as follows:

Estimated Cost

Analysis and Conceptual Design Phase	$\mathbf{\$ 5 0 , 0 0 0}$
Detailed Design Phase	$\mathbf{4 0 , 0 0 0}$
Implementation Phase	$\mathbf{7 5 , 0 0 0}$

Total Estimated Cost
$\mathbf{\$ 1 6 5 , 0 0 0}$

F. EQUIPMENT SPECIFICATIONS

The development of equipment specifications is among the first steps in implementing the proposed project. The proper development of these specifications is vital to the success of the project. Mehalla management has considerable experience in developing equipment specifications; and, among the Mehalla management, there is a great deal of technical expertise.

However, there are several factors which suggest that assistance in the development of the equipment specifications is desirable:

1. The magaitude of the proposed investment will require not only the development of specifications for each individual major piece of equipment but also an overall review of the specifications, requiring knowledge of cotton, woolen and worsted systems of manufacture.
2. Since the specifications should be developed as soon as possible, outside assistance, unencumbered with daily managerial responsibilities, could serve to expedite the process.
3. Since U.S. equipment is involved, it would be highly desirable to have someone intimately familiar with U.S. equipment and U.S. equipment suppliers involved in the development of the specifications.

The general scope of work involved in this assistance is outlined below:

- Development of a thorough understanding of each project.
- Development of a thorough understanding of the end product specifications from each project.
- Development of desired capabilities, capacities, performance characteristics, flexibility and technical criteria for each major item of equipment.
- Preparation of written specifications for submission to potential suppliers.

All of this work should be done in conjunction with Mehalla management, working intimately with each key manager in the development of the specifications.

The estimated cost for this assistance is $\$ 60,000$.
G. BID EVALUATIONS

The objective evaluation of the bids and proper selection of equipment are fundamental to the success of the project. As with the development of specifications, outside assistance in the evaluation of bids by persons intimately familiar with the projects involved and with U.S. equipment could aid in ensuring proper selection as well as reducing the time of Mehalla management for this detailed work.

Tise gaxarai seupe of work involved in this assistance is as follows:

- Determination of bid evaluation criteria such as cost, guarantees, conformance to specifications, technical assistance, similar equipment in place, etc.
- Determination of value to be assigned to the various criteria.
- Detailed review of the bids in order to evaluate each according to the evaluation criteria.
- Discussion of bid review analysis with appropriate Mehalla manager.
- Preparation of written report on the evaluation of each major item of equipment.
- Review of final evaluation with senior Mehalla management.
- Determination of supplier or request for additional information or revised bids if required for final determination.

Ideally, this assistance should be provided by the same source which provided assistance in the preparation of equipment specifications.

The estimated cost for this assistance is $\$ 120,000$.

H. SURVEY OF COTTON SPINNING AND WEAVING

As pointed out in Sections I and II of Part Two of this report, cursory analyses permitted during the course of this study indicated that considerable potential exists for cost reduction in the existing cotton spinning and weaving operations through improved labor productivity, improved machine efficiencies, reduced waste levels and improved production planning and control. These? cost reductions could amount to several million dollars annually. Since the existing operations are intimately involved in the proposed project, their efficiency and costs are fundamental to overall project success. In order to identify and quantify the cost reduction potential and develop plans for improvement programs to achieve this potential, a survey of the existing cotton system spinning and weaving operations is recommended.

The general scope of work envisioned for this program is as follows:

1. Callection of data and information from each cotton system spinning and weaving unit on items such as the following:

- Product mix.
- Lot size.
- Machine speeds.
- Job assignments.
- Indirect labor complement.
- Supervisory complement.
- Package sizes.
- Waste levels.
- Quality levels.
- Running conditions (stop levels, ends down, etc.).
- Work-in-process levels.
- Productivity (machine and labor).
- Unit balance.
- Machine downtime.
- Elemental costs (raw materials, labor, overhead).

2. Interviews with manufacturing management.
3. On-the-floor observations and studies of major operations.
4. Development of cost, productivity, waste and quality performance for each unit.
5. Comparison of current performance with achievable performance levels.
6. Development of cost reduction potential in each unit by cost element.
7. Development of a cost reduction program plan detailing the following, by unit:

- Cost reduction goals.
- Programs required to effect the improvements.
- Techniques to be used.
- Mehalla staff required to implement the programs.
- Training required to prepare the Mehalla staff.
- Priorities and sequence of implementation.
- Estimated calendar time for each program.
- Outside assistance required.
- Estimated cost of each program.
- Estimated cost/benefit relationship from each program.

8. Preparation of a written report covering the findings, conclusions and recommendations.

The resulting report should form the basis for the decision to embark $\mathrm{a} a$ the improvement programs in the cotton spinning and weaving units described below. The survey would determine the feasibility and economic justification of these programs. While our cursory analysis indicates that the programs could result in substantial benefits, the proposed survey should be undertaken to verify this and to provide Mehalla management with a study of the economic justification and a plan of implementation.

The survey should be conducted by a firm or persons with in-depth textile experience and skilled in management techniques such as industrial engineering, production planning and control, waste and quality control.

The estimated cost of this study is $\mathbf{\$ 5 0 , 0 0 0}$.

I. WASTE CONTROL PROGRAMS

Assuming the economic justification for a program of waste reduction and control in the cotton spinning and weaving units is confirmed by the survey, the following general scope of work is envisioned. The scope of work, of course, would be defined in greater detail in the survey report.

1. Identification of current waste levels by process, type and cause.
2. Development of waste control reports by process, type and supervisory and managerial unit.
3. Development of corrective action to reduce waste created by improper machine settings, poor maintenance, improper handling, and operator created.
4. Conduct of supervisory and management training sessions on effect of waste on cost and profits and on theory and practical application of waste control.
5. Establishment of standard levels of waste by process, type and supervisory and managerial unit.
6. Follow-up with managers, supervisors, maintenance personnel and operators to ensure desired performance.

7. Examination of final product specifications and raw material input to determine potential for raw matorial savings through improved lay-down and blending techniques, blonding by micronaire, etc.
8. Development of overall, coordinated waste control reporting system including supervision, unit management, department management and summary and exception reports for top management.
9. Training of several key Mehalla personnel in waste control procedures and in monitoring the program to ensure continuing results.
10. Documentation of all techniques, procedures and controls and conduct of management seminars to ensure understanding and acceptance.

These programs should be conducted by a firm or persons with in-depth textile and waste control experience.

The estimated cos's of the technical assistance for these programs are $\$ 160,000$ for spinning and $\$ 200,000$ for weaving.

J. PRODUCTION CONTROL PROGRAM

Production scheduling and control at Mehalla are extremely complex, particularly in the cotton spinning and weaving area with its six spinning units and 13 weaving sheds. The development of an effective production planning and scherduling system can aid in ensuring no idle equipment time due to unavailability of stock, in reducing work-in-process and capital tied up in inventories, and in improving customer service. From observations made during this study, there were indications that a modern production control system is needed at Mehalla. With the modernization and expansion program, the need for such a system will become more acute.

The general scope of work envisioned for this assistance follows:

1. Review of current production planning, scheduling and control procedures.
2. Collection of information on production levels, product mix, work-in-process levels, raw materials inventories, finished goods inventories, throughput times, etc.
3. Identification of current responsibilities for production planning, scheduling and control and conduct of interviews with key personnel involved.
4. Description of current system, including inputs, outputs, frequencies, reports, controls and responsibilities.
5. Identification and quantification of improvement potantial in terms of reduced downtime, reduced work-in-process and improved service.
6. Conceptual design of improved system including general input-output requirements, responsibilities, portions to be computerized, etc.
7. Review of conceptual design with Mehalla management.
8. Detailed design of the improvid system, including programming specification.
9. Monitoring of Mehalla's programming staff and program testing.
10. Training of key users of the system.
11. Monitoring to ensure forecast results.

This assistance is estimated to cost $\$ 260,000$.

K. COST REDUCTION PROGRAM IN COTTON SPINNING AND WEAVING

Cost reduction prograrns in the cottcn spinning and weaving plants should be considered if the proposed survey of these operations indicates a desirable cost/benefit re'ationship. We are of the opinion that these programs can easily be justified. The programs would be cepecially timely in achieving increased labor productivity in order to ensure the ability to staff the expanded operations from the existing work force.

The gengral scope of work envisioned in the cost reduction programs is as follows:

1. Selection and training of $\mathbf{1 5}$ to 20 capable Mehalla employees in time and motion study, frequency checking techniques, work sampling procedures and basic principles of industrial engineering.
2. Taking one operation at a time, supervise and direct the engineering team to accomplish the following:

- Analyze methods and procedures.
- Improve methods and procedures.
- Determine proper job loads for direct labor through work measurement.
- Determine expected machine efficiencies.
- Determine proper indirect labor complements.
- Establish standards for machine speeds, package sizes, labor complements, machine efficiencies, productivity levels, and running conditions.
- Establish control reports for comparing actual performance to standard.
- Establish procedures for frequency checking running conditions.

3. Train two training coordinators, one for spinning and one for weaving, and 20 to 30 instructors in analytical training methods.
4. Supervise the implementation of analytical training programs for retraining employees in the improved methods.
5. Conduct management seminars on industrial engineering, analytical training and cost reduction.
6. Conduct supervisory development seminars to expose line supervisors to the basics of industrial engineering and analytical training and to develop involvement of the supervisors in the cost reduction programs.
7. Supervise follow-up, control and monitoring programs to ensure achievement of results and continuation of the improved performance.

In addition to the cost reductions which would result from these programs, they would provide the company with a trained group of work study and operator training personnel and industrial engineering and analytical training programs which could be extended into other areas of the company.

These programs would require several calendar years for completion, and the estimated cost is $\$ 400,000$ for spinning and $\$ 400,000$ for weaving.

L. ENGINEERING OF WARPING AND SIZING

The warping and sizing operatioss are centralized, and the quality of the sized beams has a significant effect on weaving efficiency. As pointed out in Section II, Part Two, one percent increase in wesving efficiency could resulf, in additional contribution of about $\$ 80,000$ per year. Therefore, it is recommended that an engineering program be conducted in this department, concentrating on improving the quality of the sized beams but also including methods improvement and development of standards for equipment productivity and labor.

The estimated cost of this program is $\$ 60,000$.

M. START-UP ASSISTANCE IN THE NEW YARN MILL

To ensure an effective start-up of the new yarn plant, a program of technical assistance is recommended. The program should include the following:

1. Development of standards for productivity, machine efficiencies, labor, waste and quality.
2. Development of control and reporting systems for productivity, machine efficiencies, labor, waste and quality.
3. Training of first-line supervision.
4. Implementation of an analytical training program for operating personnel.
5. Development of a schedule for machine erection, machine commissioning, personnel intake and training, and production buildup.
6. Overall coordination of plant start-up.

The estimated cost of this assistance is $\$ 160,000$.

SECTION II: GENERAL OBSERVATIONS

A. LONG-RANGE PLANNING

1. Introduction

During the course of this study, the desirability of the preparation of a formal long-range plan was noted. In view of the size, product diversity and complexity of the company, coupled with the dynamic nature of world textile markets and textile production and the rapid development and increasing cost of textile technology, the need for a formal long-range plan for Misr Spinning and Weaving Company is particularly acute.

2. Philosophy and Objectives

As the first step in the development of a long-range plan, it is suggested that management develop a clearly stated corporate philosophy. This should state the basic beliefs of management and what the company "stands for." It should place emphasis on those aspects of the company which management wishes to stress, for example, its people, product quality, product development, technological leadership, efficiency, customer service, etc. The philosophy should articulate the underlying mental attitude against which corporate objectives can be developed and within which management actions and activities will be taken.

Following the statement of corporate philosophy, a brief set of overall corporate objectives should be developed. These should include the following:

- Financial objectives.
- Market objectives.
- Growth objectives.

3. Market Plan

The marketing plan should form the basis of the overall long-range plan. This plan should look out into the future in a fairly definitive way for thrze years and in a general way for at least five years. The market plan should include at least the following:
a. Analysis of domestic market by major product group.
b. Analysis of export markets by major product group.
c. Analysis of major competitors domestically and in the export markets.
d. Analysis of the company's strengths and weaknesses in such areas as product design, product quality, product costs, and customer service.
c. Determination of percent of sales desired for domestic and export by major product group.
f. Three-year projection, by year, of sales volume, by major product group, and by country.
g. A more general projection for at least five years of sales volume by major product group for domestic and export sales.
h. Identification of areas of weakness and plans for improvement, for example, product development, sales force, product quality, etc.

4. Manufacturing Plan

The manufacturing plan should be developed from the marketing plan. Current manufacturing capabilities and capacities should be compared with the marketing projections. Requirements for additional capabilities or capacities should then be developed. Cost estimates for equipment replacement or additions should be prepared, together with a timetable for developing the required capabilities and capacities to meet the market projections. The manufacturing plan should include items such as the following:

- Projected product capabilities.
- Projected capacities by major product group.
- Projected space and equipment requirements.
- Plans for effecting productivity and quality improvements.
- Projected expenditures for plant and equipment.
- Projected labor requirements.
- Projected manufacturing costs.

5. Personnel and Management

Based upon the manufacturing plan, a management and personnel plan should be developed. This should include an analysis of personnel, supervisory and management requirements, taking into account anticipated turnover and retirements. Key management requirements should be noted and candidates for filling the requirements identified. Plans should then be developed for preparing the candidates to fill the identified positions.

Anticipated reductions in direct and indirect labor through technological improvements and productivity improvement programs should be developed and compared with anticipated requirements in new or expanded production units. Plans should then be developed for transferring and retraining these personnel.

6. Support Functions

To support the market and manufacturing plans, the support functions should develop plans for their areas of responsibility. These should include planning and control systems, quality control, maintenance and engineering, power and water, etc.

7. Financial Plan

Based upon the market, manufacturing, personnel and support function plans, a financial plan should be developed. This plan should include at least the following:

- Investment requirements.
- Projected changes in costs and expenditures.
- Cash flow projections.
- Pro forma profit and loss statements.
- Projected balance sheets.

8. Long-Ranga Planning Responsibility

Long-range planning should be the responsibility of the Chairman. It might be desirable to form a Long-Range Planning Committee consisting of the Chairman, Financial Director, Marketing Director and a senior manufacturing manager. This committea should develop a format for the plan elements, establish timetables for completion of each element and review and approve the elements and the final plan. Epin year, the plan should be updated.

The first year the plan is developed will be the most difficult. However, in view of the magnitude of the proposed expenditures and the work which has already gone into the analysis and development of these, it is suggested that serious consideration be given to the development of a long-range plan by the end of 1976.

B. ANALYTICAL OPERATOR TRAINING

1. Background

Textile and apparel manufacturers are faced with a severe shortage of skilled workers in most parts of the world. Due to the increased skill requirements in these industries, employee selection, training and retraining procedures demand intensive appraisal by manufacturers. These functions have assumed a new importance; and, in the majority of companies, the need to upgrade them has become critical. The traditional training procedures followed by most manufacturers have been unsystematic, increasingly expensive and generally ineffective.

A basic analytical approach to training has been used successfully in many industries since its development in Great Britain during World War II. Since the early 1960's, analytical training has given the textile and apparel industries a scientific, specialized and systematic approach to the task of training textile and sewing machine operators. As practiced, it combines basic industrial engineering with concentrated training teciniques to provide manufacturers with a highly effective means for both training new employees and retraining experienced operators whose performance is lagging or whose job content is substantially changed.

From our observations at the Misr Spinning and Weaving Company, it is our opinion that the application of analytical training to the training of employees in the proposed new manufacturing units and to the retraining of current employees could lead to significant improvements in productivity.

2. Objectives of Analytical Training

The underlying purpose of analytical training is to provide a company with the means to develop and improve human skills and performance rapidly and effectively. Providing good training and retraining for a company's employees is a humane and worthwhile project. To be successful in this development of operator skills, analytical training must be carefully planned, guided and controlled in order to achieve the following specific objectives:

a. Increased Produciivity

Increased productivity is realized by: .

- Training new operators faster.

- Raising the performance of experienced operators by retraining.
- Raising the performance of transferred operators (experienced operators who have been changed to a different job or product).
- Reducing labor turnover or failure rates, particularly among new employees.

b. Reduced Labor Turnover or Failure Rate

The turnover rate, or failure rate, in most companies tends to be highest during the learning period. Once a new operator achieves the performance level of the experienced operators, he or she tends to stay with the job except for mainly unavoidable causes and particularly upsetting circumstances.

Analytical training has its main effect on the inexperienced operator turnover, or failure, by helping new operators to gain job satisfaction and high performance and earnings in a much shorter time.

Control and reduction of unwanted turnover, or failure, during plant start-up or expansion is also of particular importance, since during expansion it is usually necessary to dip lower into the labor fool for new recruits or transfers; and the lower down the list of qualified prospects a company goes; the greater the need for intensified training.

c. Improved Quality -

Another aim of analytical training is the improvement or the quality of operators' work by the development of corroct job methods and skills. This is true not only with completely unskilled operators but also with experienced operators who may be highly productive but whose quality performance is poor.

In addition to the above, analytical training helps provide:

- Improved recruiting.
- Improved job methods.
- Improved supervision.
- Fixed overhead recovery.
- Increased plant flexibility.

3. Elements of Analytical Training -

Much of the success achieved with analytical training can be traced to two key elements:

- Complicated production operations are broken down to their smallest component skills through detailed scientific analysis so that they can be taught effectively through repetitive practice and a "rebuilding" of the components into the complete operation.
- The specialized analytical training technique is applied from an engineering perspective. Training specialists who are also experienced production engineers must design and install analytical programs to fit the particular conditions and requirements of the labor force, the individual plant and the particular product or products to be manufactured.

4. Method of Accomplishing Objectives

Some salient characteristics of the analytical training approach include:
a. Separate training centers in which trainees and retrainees can concentrate upon learning without the distractions of the production floor. These centers should be located within, or contiguous to, each major production unit.
b. Analysis of the operation to be trained isolates its various skill elements, which provide the basis for designing a series of training exercises. As the analytical training program develops, a resident training director begins to do this important work on his own, having developed the necessary skills for doing so during the initial start-up phase.
c. Basic skill exercises are practiced by the operator in short, repetitive exercises but at full production speed. As the trainess reaches a predetermined level of proficiency in each skill, he or she goos on to more difficult exercises. Gradually, skills are combined until the operator is practicing the entire operation.
d. Stamina buildup is achieved as the trainee progresses from short practice runs to longer and longer cycles, until he or she develops the stamina to perform the operation properly over a full day.
e. Training instructors work closely with the new operators, as well as with experienced operators undergoing retraining. Under the supervision of the training director, they provide constant instruction and follow-up to ensure that the training will last.
f. Selection and testing procedures must be modernized to give analytical training programs the best opportunity to succeed. In particular, proper testing of new recruits and retrainees makes it possible to match the abilities of an employee, such as finger dexterity or eye-hand coordination - with the physical requirements of a particular operation.

Obriously, one of the most important phases of the analytical training program begins with the search for and selection of the training director and instructors. The success of the training program depends upon these people since they are the ones who have the day-to-day contact with and responsibility for those being trained.

Their training is equally important and must be under the initial guidance of a graduate engineer specializing in textile/apparel training and with experience in the specific or closely allied product.

6. Results in Plants Using Analytical Training

Typical results achieved in plants using analytical training have been:
Keduction in Training Times
-Successful Trainees 69\%

- Unsuccessful Trainees 59\%
Reduction of Unearned Pay (or, Losses
Sustained Due to Guaranteed Wage)
- Successful Trainees 67\%
- Unsuccessful Trainees 54\%
Reduction of Replacement Costs 65\%
Productivity Increases Retrainees 32\%

An understanding of thess numbers can only lead one to the conclusion that other improvements must follow and that everyone involved must benefit. As mentioned earlier, some of the additional improvements take the form of such things as:

- Increased earnings.
- Overhead recovery.
- Reduced turnover.
- Improved quality
- Increased flexibility.
- Improved morale.
- Improved supervision.

C. INDUSTRIAL ENGINEERING

The industrial engineering function at Menalla is weak relative to the potential for cost reduction and overall manufacturing improvement. As pointed out several times in this report, one of the primary challenges to Mehalla management is to improve labor productivity. Industrial engineering can be the primary function for the development of productivity improvement.

It is recommended that additional emphasis be given to industrial engineering; that an effective industrial engineering staff be developed; that specific programs with quantified goals be planned and that the industrial engineering effort be measured against these goals.

As labor costs increase, the competitiveness of Mehalla way diminish unless considerable effort and attention is devoted to the improvement of productivity.

PART FOUR

FINANCIAL ANALYSIS

TABLE OF CONTENTS

PART FOUR

FINANCIAL ANALYSIS

Section Page
A. Currency Exchange 1
B. Age of Investment in Machinery 1
C. Company's Overall Profits (1971 - 1975) 2
Exhibit I - Cost of Sales 1971-1975 5
Exhibit II - Profit and Loss Before Taxes 1971-1975 7
D. Profit by Major Product Groups 8
Exhibit III - Profit Analysis by Product Groups 9
Exhibit IV - Profit Analysis by Product Groups, Fiest Six Months - 1975 10
E. Recommended Capital Expenditures 11
Exhibit V - Summary of Recommended Capital Expenditures (In US \$) 13
F. Sales Generated by Project 14
Exhibit VI - Estimated Sales Increases Under Project 1976 Versus 1980 (In £E) 15
G. Profits Generated by Project 21
Exhibit VII - Three-Year Comparative Operating Profit 22
Exhibit VIII - Depreciation Schedule for New Facilities (In US \$) 23
Exhibit IX - Increase in Net Prout (Before Taxes, Interest and Export Subsidy) 26
H. Cash Flow Analysis 27
Exhibit X - Schedule of Long-Term Debt and Interest Payments 28
Exhibit XI — Projected Profit After Taxes, Interest and Dividend 29
Exhibit XII - Cash Flow Analysis 30
I. Contingencies for Increases Costs 31

A. CURRENCY EXCHANGE RATE

The financial data for the Misr Spinning and Weaving Company used in this section of the report are based on the company's records which are stated in terms of Egyptian pounds. Corversion of these amounts has been made to U.S. dollars at a rate of US \$2.5CA yer one Egyptian pound.

B. AGE OF INVESTMENT IN MACHINERY

According to the records of the company, acquisitions of present machinery and equipment were made as follow:

Year	Current \quadAcquisition Cost (in 1,000's)				
	Age	EE	US \$	Annual \%	Cum. \%
1975	1	2,732	7,005	10.2	10.2
1974	2	1,089	2,792	4.1	14.3
1973	3	1,889	4,843	7.1	21.4
1972	4	1,141	2,926	4.3	25.7
1971	5	1,184	3,036	4.4	31.1
1970	6	3,211	8,233	12.0	43.1
1969	7	258	661	1.0	44.1
1968	8	206	528	. 8	44.9
1967	9	193	495	. 7	45.6
1966	10	51	131	. 2	45.8
1965	11	269	690	1.0	46.8
Before(1)	12+	14,490	37,152	54.2	100.0
Total		26,713	68,492	100.0	

The above table indicates that, based on equipment purchase prices, 54.2% of present machinery is 12 or more years old. The original cost of the pre-1965 equipment was US $\$ 37,152,000$.
(1) Based on an adjustment in acquisition costs made after the nationalization of the company on June 30, 1965.

Assuming an annual inflation rate of 10% in the 12 years between 1964 and 1976, the current replacement cost of present equipment over 12 years in age would be 313% of original cost of US $\$ 116,000,000(\$ 37,152,000 \times 3.13)$.

Based on the above, an expenditure in the range of $\$ 100,000,000$ for new equipment over the next three years would appear to be reasonable.
C. COMPANY'S OVERALL PROFITS: 1971-1975

To provide a base for evaluating the return on investment and cash flow that will be generated by new facilities acquisitions, the profit history of the company was analyzed for the five-year period (1971 to 1975).

Exhibit I (Cost of Sales, 1971 - 1975) details production costs for this five-year period. In summary, it shows the following distribution of major manufacturing cost categories over this period:

Cost Catagory	In 1,000 fer			1,000	
	Production	Production		U5	\% Of
	Departments	Service Depts.	Total	DJollarz	Total
Cotton	68,767	-	66,757	171,165	37.7
Wool and Synthetics	15,787	-	16,787	40,478	8.9
Chemicals	8,179	518	8,697	22,299	4.9
Fuel	450	4,747	6,197	13,325	2.9
Spare Parts	7,307	4,741	12,048	30,891	6.8
Packing	2,851	298	2,949	7,561	1.7
Total Material	101,131	10,304	111,435	285,719	62.9
Wages	39,088	10,689	49,777	127,628	28.1
Depreciation	7,661	3,210	10,871	27,873	6.1
Indirect Taxes	9,797	384	10,181	26,104	5.7
Other Expenses	793	1,408	2,201	5,643	1.2
Less Sales Credits(1)	(3,495)	(3,667)	$(\mathrm{7}, 162)$	$(18,383)$	(4.0)
Total	154,975.	22,328	177,303	454,605	100.0

Exhibit II (Profit and Loss Before Taxes, 1971 - 19'75) develops the before tax profits for this period.

In summary, these profits for the five-year period were:
(1) Sales of waste and services.

1971	1972	1973	1874	1975	E-Year Total
IN 1,000 £E					
37,317	39,336	40,983	48,749	54,881	221,265
32,010	33,074	33,933	34,852	42,241	176,110
5,307	6,261	7,050	13,897	12,640	46,185
888	984	1,004	984	853	4,794
1,802	2,334	2,403	2,823	2,710	12,072
2,636	2,943	3,643	10,090	8,877	28,289
3,107	1,907	1,183	1,269	775	8,241
502	528	1,187	766	506	3,490
6,246	5,378	6,013	12,125	10,258	40,020

IN 1,000 US \$

Not Stues	96,681	100,855	105,080	124,992	140,715	567,323
Cost of Sales	82,074	84,862	87,004	89,360	108,306	451,548
Gross Margin	13,607	16,053	18,078	35,632	32,409	115,777
Marketing Expense	2,228	2,523	2,574	2,523	2,444	12,292
Administrative Expense	4,620	5,984	6,162	7,238	6,948	30,952
Oparating Profit	6,769	7,546	9,340	25,871	23,017	72,533
Subsidies	7968	4,889	3,034	3,254	1,287	21,130
Other Income	1,290	1,354	3,043	1,984	1,297	8,948
Net Bofore Tax Profit	16,015	13,789	15,417	31,089	28,301	102,611

As a percent of net sales, the above represent the following:

Gross Margin	14.2	15.9	17.2	28.5	23.0	20.4
Markoting Expense	2.3	2.5	2.4	2.0	1.7	2.2
Administrative Expense	4.8	5.9	5.9	5.8	4.9	5.4
Operating Profft (Without Subsidies)	7.1	7.5	8.9	20.7	16.4	12.8
Subsidies	8.3	4.8	2.9	2.6	1.4	3.7
Operating Profit (With Subsidies)	15.4	12.3	11.8	23.3	17.8	16.5
Not Bofore Tax Profit	16.7	13.7	14.7	24.9	18.7	18.1

The above five years' average operating profit of 12.8% (or 16.5% after export subsidies) is substantially greater than experienced by the typical American textile firm. For reference, following are the percent of operating profits in 1974 for some large North American firms:
Burlington Industries 9.29
J.P. Stevens 7.29
WestPoint Pepperell 8.31
Springs Mills 9.02
M. Lowenstein 5.46
Dan River 5.09
Cone Mills 7.83
Cannon Mills 5.80
Collins \& Aikman 8.62
Dominion Textiles 12.07
Fieldcrest 6.93
Riegel Textiles 7.50

The relatively high operating profits of Mehalla reflect a basic ability to generate profits and cash flow needed to pay back borrowings required for a large capital improvement program. Mehalla's profits were attributable in part to the ability to purchase cotton at prices substantially below world market prices. Should this change in the future, the effect on the company's profitability would be quite significant. This is covered in more detail later in this part of the report.

EXHIBIT:
COST OF SALES 1971 - 1976 (IN £E 1,000)

Cost Items

Production Department Costs

1. Cotton
2. Wool and Syrishatics
3. Chemicals
4. Fuel
5. Spare Parts
6. Packing
7. Total Material (1. - 6.)
8. Wages
9. Misc. Servicas
10. Depreciation - Building
11. Depreciation - Equipment
12. Indiract Taxes
13. Sutitutai (8. $\mathbf{- 1 2 . j}$)
14. Total Production Cost (7. + 13.)
15. Less: Waste Sales
16. Less: Service Sales
17. Nat Departmental Costs (14. - 15. $\mathbf{- 1 6 .)}$

Production Service Costs
18. Chemicals
19. Fuel
20. Spare Parts
21. Packing
22. Total Material (18. Through 21.)
23. Wages
24. Misc. Services
25. Depreciation - Building
26. Dapreciation - Equipment
27. Depreciation - Transport Equip.
28. Indirect Taxes
29. Subtotal (23. Througin 28.)

1971		1972		1973		1974		1975		5-Year Total	
Amount	\%										
13,325	42.7	13,615	39.9	13,406	39.2	13,255	35.6	13,166	32.4	66,757	37.7
2,347	7.5	3,046	8.9	2,822	8.3	3,670	9.8	3,903	9.6	15,787	8.9
1,317	4.2	1,451	4.2	1,409	4.1	1,678	4.2	2,424	6.0	8,179	4.6
72	. 2	81	. 2	81	. 2	95	2	121	. 3	8,170	4.6 .2
1,233	4.0	1,267	3.7	1,346	3.8	1,547	4.2	1,814	4.7	7,307	4.1
337	1.1	564	1.7	492	1.5	486	1.3	772	1.8	2,651	1.15
18,631	59.7	20,023	58.6	19,656	57.2	20,631	65.4	22,290	54.9	101,131	57.0
5,933	19.0	7,024	20.6	7,633	22.4	8,320	22.4	10,178	25.1	39,088	22.1
120	. 4	169	. 5	154	. 5	206	. 5	189	. 4	793	. 4
240	. 8	240	. 7	241	. 7	263	. 7	267	. 6	1,231	. 7
1,214	3.9	1,271	3.7	1,307	3.8	1,365	3.7	1,273	3.1	6,430	3.6
1,660	6.3	1,868	5.5	1,782	5.2	2,051	5.5	2,438	6.0	9,797	5.5
9,167	29.4	10,572	31.0	11,117	32.6	12,195	32.8	14,288	35.2	57,339	32.3
27,798 (346)	$\begin{aligned} & 89.1 \\ & (1.1) \end{aligned}$	30,595 (472)	$\begin{aligned} & 89.6 \\ & (1.4) \end{aligned}$	$\begin{gathered} 30,673 \\ (739) \end{gathered}$	$\begin{aligned} & 89.8 \\ & (2.2) \end{aligned}$	$\begin{array}{r} 32,826 \\ (705) \end{array}$	$\begin{aligned} & 88.2 \\ & (1.9) \end{aligned}$	$\begin{array}{r} 36,578 \\ (819) \end{array}$	$\begin{aligned} & 90.1 \\ & (2.0) \end{aligned}$	$\begin{array}{r} 158,470 \\ (3,081) \end{array}$	$\begin{aligned} & 89.3 \\ & (1.7) \end{aligned}$
(61)	(.2)	(83)	(.2)	(83)	(.3)	(51)	(0.1)	(136)	(.3)	(414)	(.2)
27,391	87.8	30,040	88.0	29,851	87.3	32,070	86.2	35,623	87.7	154,975	87.4

74	. 2	88	. 3	103	. 3	110	. 3	143	. 3	518	. 3
857	2.8	824	2.7	961	28	965	2.6	1,040	2.6	4.747	2.7
786	2.5	681	20	859	2.5	1,185	3.2	1,220	3.0	4,74\%	2.7
67	. 2	37	. 1	42	. 1	70	. 2	82	2	298	. 2
1,784	5.7	1,730	5.1	1,865	5.7	2,340	8.3	2,485	6.1	10,304	5.9
1,750	5.6	1,982	6.8	2,061	6.0	2,220	6.0	2,667	6.6	10,689	6.0
260	. 8	303	. 9	263	. 8	399	1.1	175	. 4	1,408	. 8
239	. 8	247	. 7	256	. 8	260	. 7	265	. 7	1,266	. 7
246	. 8	240	. 7	238	. 7	240	. 7	239	. 6	1,203	. 7
56	. 2	125	. 4	172	. 5	196	. 5	192	. 5	1741	. 4
67	. 2	62	. 1	81	. 2	90	. 2	94	2	384	. 2
2,626	8.4	2,949	8.6	3,070	9.0	3,414	9.2	3,632	9.0	15,691	8.8

EXHIBIT I (CONTINUED)

Cost Items		Amount 1971 \%		1972		1973		1974		1976		6-Ycar Total			
		Amount	\%												
	Total Production Serrice Exp. (22. +29.$)$			4,410	14.1	4,679	13.7								
31.	Less: Value of Internal Work Ordars	(501)	(1.6)	(457)	(1.3)	$\text { (} 5,065 \text {) }$	$\begin{array}{r} 14.7 \\ 1.6 \end{array}$	(468).	$\begin{aligned} & 15.5 \\ & (1.3) \end{aligned}$	6,117 (964)	15.1	25,995 (2943)	14.7		
32.	Less: Service Sales	(100)	(.3)	(140)	(.4)	(165)	. 6	(164)	(0.4)	(165)	(.4)	(724)			
33.	Net Production Service Costs (30. - 31. - 32.)	3,809	12.2	4,082	12.0	4,313	12.6	6,132	13.8	4,892	12.3	22,328	12.6		
	Total Manufacturing Cost (17. + 33.)	31,200	100.0	34,122	100.0	34,164	100.0	37,207	100.0						
35.	Less: Inv. Increase (Decrease)	(810)	(2.6)	1,048	3.1	231	$\begin{array}{r} \\ \hline\end{array}$	2,350	100.0 6.3	$(1,626)$	14.0)	177,303	100.0 7		
36.	Cost of Saides (34. - 35)	32,010	102.6	33,074	98.9	33,933	99.3	34,852	93.7	42,241	104.0	176,110	89.3		

EXHIBIT II

PROFIT AND LOSS BEFORE TAXES 1971 - 1975 (IN £E 1,000)

Cost Iterms	
1.	Gross Sales
2.	Loss Rejects
3.	Less Discounts
4.	Less Transportation Peid
6.	Less Gifts and Samples
6.	Total Deductions (2. - $\mathbf{6 .}$)
7.	Net Sales (1. - 6.)
8.	Cost of Sales
9.	Gross Margin (7. - 8.)
10.	Marketing - Salaries
1.	Marketing Commissions
12.	Marketing Other
13.	Marketing Total (10. - 12.)
14.	Administrative Salaries
15.	Administrative Depreciasion
16.	Administrative Other
17.	Administrative Total (14. - 16.)
18.	Operating Profit Before Subsidy (9.-13.-17.)
19.	Subsidies Recalved
20.	Operation Profit after Subsidy (18.+19.)
21.	Interest Received
22.	Interest Paid
23.	Net Interest Received (21. - 22.)
24.	Misc. Income (Net of Misc. Deductions)
25.	Net Before Tax Profit (20.+23.+24.)

$\begin{array}{r} 197 \\ \text { Amount } \end{array}$	1971	197 Amount	\%	1973		1974		1975		5-Yem Total Amount	
37,824	101.4	40,018	401.7	41,541	101.4	49,358	101.2	56,534	101.2	224,255	101.4
157	. 4	230	. 6	43	. 1	124	. 3	275	. 6	829	. 4
40	. 1	43	. 1	39	. 1	¢4				136	. 1
300	. 8	398	1.0	467	1.2	440	. 9	375	. 7	1,880	. 9
10	. 1	12	-	9	-	11		3	-	45	$\stackrel{-}{-}$
507	1.4	683	1.7	558	1.4	589	1.2	653	1.2	2,990	1.4
37,317	100.0	39,335	100.0	40,983	100.0	48,749	100.0	64,881	100.0	221,265	100.0
32,010	85.8	33,074	84.1	33,933	82.8	34,852	71.5	42,241	77.0	176,110	79.6
5,307	14.2	6,261	15.9	7,050	17.2	13,8:7	28.5	12,640	23.0	45,155	20.4
211	. 6	230	. 6	241	. 6	255	. 5	310	. 6	1,247	. 6
259	. 7	329	. 8	370	. 9	320	. 7	243	. 4	1,521	. 7
399	1.0	425	1.1	:93	. 9	409	. 8	400	. 7	2,026	. 9
869	23	984	2.5	1,004	2.4	984	2.0	953	1.7	4,794	2.2
1,409	3.8	1,885	4.8	1,908	4.7	2,087	4.3	2,025	3.7	9,314	4.2
55	1	60	. 1	63	. 1	63	. 1	66	. 1	307	. 1
338	. 9	389	1.0	432	1.1	673	1.4	619	1.1	2,451	1.1
1,802	4.8	2,334	5.9	2,403	5.9	2,823	5.8	2,710	4.9	12,072	5.4
2,636	7.1	2,943	7.5	3,643	8.9	10,090	20.7	8,977	16.4	28,289	12.8
3,107	8.3	1,907	4.8	1,183	2.9	1,269	2.6	8,875	16.4	28,289 8,241	12.8 3.7
5,743	15.4	4,850	12.3	4,826	11.8	11,359	23.3	8,752	17.8	36,530	16.5
206	. 6	205	. 5	265	. 6	280	. 6	324	. 6	1,280	. 5
16	. 1	100	. 2	123	. 3	107	. 2	183	. 3	529	. 2
190	. 5	105	. 3	142	. 3	173	. 4	141	. 3	751	. 3
313	. 8	423	1.1	1,045	2.6	593	1.2	365	. 7	2,739	1.3
6,246	16.7	5,378	13.7	6,013	14.7	12,125	24.9	10,258	18.7	40,020	18.1

D. PROFIT BY MAJOR PRODUCT GROUPS

To provide a further basis for evaluating the feasibility of new equipment purchases, we also analyzed cost of sales and profits by major product groups for the year 1974 and the first six months of 1975 (detailed information by product groups for the full year 1975 was not available at the time of this study). These analyses are contained in Exhibit III (1974) and Exhibit IV (six months' 1975).

In summary, these show the following percentages (of net sales):

Product Group	1974			6 Months 1976		
	Cost of Sales	Gross Margin	Operating Profit	Cost of Sales	Gross Margin	Operating Profit
Cotton Yam	54.3	45.7	37.8(1)	55.6	44.4	37.71)
Cotton Fabrics	79.2	20.8	13.0(1)	80.8	19.2	12.5(1)
Cotton/Wool	79.6	20.4	12.7	76.1	23.9	17.1
Garments	77.7	22.3	14.5	71.7	28.3	21.6
Carded Wool Yam	83.0	17.0	9.4	93.3	6.7	. 0
Worsted Wool Yam	83.1	16.9	9.1	89.4	10.6	3.8
Wool Fabrics	62.6	37.4	29.6	71.0	29.0	22.2
Total	71.5	28.6	20.7	73.8	26.2	19.6

The ratios are provided for reference only. They are not used in subsequent evaluations because transfers between areas are based on costs. They do, however, indicate all product categories involved in the proposed investment plan are profitable.
(1) The percents for cotton yarn and fabrics exclude export subsidies. In 1974, the subsidies amounted to a 6.9% of net sales for cotton yarn and 1.8% for cotton fabric. In the first six months of 1975, these subsidies amounted to 3.9% for cotton yarn and 1.0% for cotton fabrics. Overall, these subsidies amounted to 2.6% of total net sales in 1974 and 1.2% in the first six months of 1975.

EXHIBIT III

PROFIT ANALYSIS BY PRODUCT GROUPS - 1974
(IN £E 1,000)

Item

$\begin{aligned} & 1 . \\ & 2 . \end{aligned}$	Material Und (Incl. Spare Parts 8 Packlng) Transfers in Of Procmesed Material
3.	Departmental Wrow
4.	Departmental Servicas
6.	Deprecintion and Indirect Taxes
6.	Allocated Production Serrice Expence
7.	Subtotal (1.+2.+3.+4.+5.+6.)
8.	Lees Seles of Waste and Servicas
9.	Total Production Cost (7., -8.)
10.	Transfers to Other Departments
11.	Inveniory Build-up (Decreasc)
12.	Nat Selea
13.	Cost of Sales (9.-10.-11.)
14.	Grose Margin (12. - 13.)
15.	Marketing Exponses
16.	Administrative Expences
17.	Operating Profit (14.-15.-16.)
18.	Subsidies
19.	Operating Profit After Subsidies (17.+18.)

Totel $\underset{\text { Amount }}{\text { K }}$

Cotton	Cotton Spinning Fabrics
Amount	$\%$
Amount	

Cottond
Wool
Amount

Reedy-made Garments		Corded Wool Yen		Worsted Wool Yern		Woot Fabrica	
Amount	\%	Amount	\%	Amount	\%	Amount	\%
185	3.8	496	75.1	3,310	85.2	177	4.1
4,092	78.8	-	-	-	-	3,182	74.3
677	13.0	114	17.3	363	9.4	564	12.0
28	. 6	1	2		-	11	.3
58	3.1	30	4.6	227	5.8	74	1.7
156	3.0	39	5.9	181	4.1	290	6.8
6,193	100.0	679	103.0	4,062	104.5	4,288	100.1
-	-	20	3.0	176	4.5	5	. 1
6,193	100.0	659	100.0	3.886	100.0	4.283	100.0
-	-	568	88.2	2.573	68.2	971	22.7
69	1.3	3	. 5	172	4.4	665	15.5
6,500	1000	108	100.0	1,372	100.0	4,227	100.0
6,124	77.7	88	83.0	1,141	83.1	2,647	62.6
1,468	22.3	18	17.0	231	18.9	1,580	37.4
130	20	2	1.8	27	2.0	83	2.0
382	5.8	6	5.8	79	5.8	245	5.8
954	14.5	10	9.4	125	8.1	1,262	29.6
-	-	-	-	-	-	-	-
954	14.5	10	0.4	125	9.1	1,252	29.6

EXHIBITIV

PROFIT ANALYEIS BY PRODUCT GROUPS - FIRST SIX MONTHS - 1975 (IN EE 1,000)

	Tatal		Cotton Spinnirg		Cotton Fabrics		Cotton/ Wool		Ready-made Carments		Crerced Wool Yem		Wonted Wool Yern		Wool Fabrice	
Itam	Amount	\%	Anount	*												
1. Materiaks Uned (Incl. Spare Parts \& Paekinal	10,734	54.5	6,763	66.1	1,316	10.8	282	85.8	169	5.5	258	73.4	1,825	85.2	123	18
2. Tranafers In of Procmeed Material	-	-	-	-	7,099	58.1	-	05	2,239	77.5	26	73.4	1,020	6.2	1,808	71.5
3. Departmental Wages	4,788	24.4	1,606	15.5	2,077	17.0	75	16.9	427	14.7	71	203	217	10.1	32;	15.0
4. Dapartmental Services	125	. 6	9	. 1	81	. 7	2	. 5	29	1.0	-	2	1		3	. 1
5. Depreciation and Indirect Taxes	1,997	10.1	1,415	13.6	385	32	25	6.8	27	. 0	6	1.7	100	5.1	29	1.3
6. Allocated Production Service Expenae	2,480	12.6	058	83	1,260	10.3	48	11.1	74	26	19	5.4	81	3.8	139	8.4
7. Subtotal (1.+2.+3,+4.+5,+6.)	20,134	102.2	10,650	102.6	12,218	100.1	443	100.0	2,955	102.3	358	1008	2,253	104.2	2,179	100.0
8. Lees Selse of Weste and Seconds	431	2.2	266	2.6	6	. 1	-	-	67	2.3	3	8	90	4.2	-	
9. Total Production Cost (7. - 8.)	19,703	100.0	10,385 7,099	100.0	12,212	100.0	443	100.0	2,0965	100.0	340	100.0	2,143	100.0	2,179	106.0
11. Inventory Build-up (Decremen)	(72)	(.4)	7,099 396	68.4 3.8	1,866 (578)	15.3 (4.7)	18 (15)	(3.4)			302	86.5	1,238	57.8	373	17.1
	(72)	(.4)	396	3.8			(15)		18	6	(8)	(2.8)	163	7.1	i 35%	(1.7)
12. Not Sales	26,798	100.0	6,195	100.0	13,525	100.0	578	100.6	4,005	100.0	60	100.0	841	100.0	2.594	100.9
13. Cost of Sales (9.-10.-11.)	18,776	73.8	2,890	65.8	10,824	80.8	440	76.1	2,870	71.7	86	93.3	752	89.4	1,843	71.0
14. Grose Margin (12. - 13.)	7,023	26.2	2,305	44.4	2,601	19.2	138	23.8	1,136	28.3	4	6.7	89	10.6	751	29.0
15. Merkoting Expenses	443	1.6	88	1.8	223	1.6	10	1.7	66	1.6	1	1.6	14	1.7		
16. Administrative Expences(1)	1,355	6.1	263	5.1	684	5.1	20	5.1	202	5.1	3	5.1	43	5.1	131	5.1
17. Operating Profit (14. - 15. - 16.)	5,225	19.5	1,956	37.7	1,694	12.5	89	17.1	867	21.6	-	-	32	38	57	22.2
18. Subsidies	335	1.2	203	3.9	132	1.0										
19. Operating Profit After Subsidies (17.+18.)	5,560	20.7	2,159	41.6	1,828	13.5	99	17.1	867	21.6	-		32	3.8	6.7	222

(1) Administrative expenass used above beed on $1 / 2$ of total 1975 edministrative expenems.

E. RECOMMENDED CAPITAL EXPENDITURES

Exhibit V, Summary of Recommended Capital Expenditures, contains a summary of the various recommendations made in other sections of this report for equipment purchases and construction of new brildings. In brief, these are as follows by source (in US \$):

Area

Foreign	Local	
Exchange	Currency	Total

Cotton Yarn	\$21,956,240	\$ 8,096,150	\$ 30,052,390
Cotton Fabrics	22,138,710	10,584,519	32,723,229
Wool and Worsted Yarns	6,727,492	1,886,361	8,613,853
Wool and Worsted Fabrics	5,379,224	1,876,125	7,255,349
Garments	3,310,526	351,942	3,662,468
Total Production Depts.	\$59,512,192	\$22,795,097	\$ 82,307,289
Total Servim Depts.	14,425,000	7,374,400	21,799,400
Total Basi Project Costs	\$73,937,192	\$30,169,497	\$104,106,689

The crsts represent our best estimates as to the current prices of the recommended equipment and buildivig construction costs. To these we recommend that a 10% conlingency factor and a 15% inflation factor be added. 'The inflation facter is based upon the assumption that contracts for the equipment will be placed in two years and 7.5% inflation rate per year is provided for.

Applying these two factors, the total equipment and building costs would be:

	Foreign Exchange	Local Currency	Total

It is to be noted that Exhibit V includes an amount of $\$ 624,000$ for technical assistance for the garment plant. This is because productivity achieved in the garment plant will be related more to the technical aspects of the manufacturing system and to the individual operators than to the equipment itself. It is not a machine-paced operation as is generally the case in the spinning and weaving mills. As explained in more detail in the section of the report covering garments, it is essential that such technical assistance be made available concurrently with the installation of the equipment if desired production and quality levels are to be achieved. Therefore, this has been included as part of the cost of equipment for the garment area.

In other sections of the repist, we have also recommended that technical assistance be provided in the spinning, weaving and finishing areas. However, since these processes are basicaliy machine-paced, this assistance will not greatly increase machine production - mainly increase labor productivity, reduce waste losses and improve quality. Some of this assistance can be provided at a date subsequent to the installation of the equipment. However, we do believe the assistance should be provided within the scope of A.I.D.'s overall assistance program. Benefits from these assistance programs are not included in subsequent analyses, and the costs of these programs are assumed to be offset by cost reductions effected through the programs.

Adding the recommended technical assistance for spinning, weaving and finishing would bring the total A.I.D. commitment to:

Basic Project After Contingency and Inflation Factor

$\$ 93,530,548$
Technical Assistance

- Master Development Plan $\quad \mathbf{7 0 , 0 0 0}$
- Fquipment Specifications $\quad \mathbf{6 0 , 0 0 0}$
- Bid Evaluations 120,000
- Materials Handling Study $\quad 165,000$
- Survey of Cotton Spinning and Weaving $\quad 50,000$
-Waste Control Program Cotton Spinning $\quad 160,000$
- Production Control Program Cotton Spinning $\quad 120,000$
- Cost Reduction Program Cotton Spinning 400,000
-Start-up Assistance in New Yarn Mill $\quad 160,000$
- Engineering Warping and Sizing $\quad 60,000$
- Waste Control Program Cotton Weaving 200,000
- Production Control Program Cotton Weaving 140,000
- Cost Reduction Program Cotton 'V'eaving 400,000

Total Estimated Technical Assistance Cost \$2,105,000
Total Estimated US Dollar Project Cost
$\$ 95,635,548$

EXHIBIT V
SUMMARY OF RECONMENDED CATITAL EXPENDITURES
(IN US. DOLLARS)
(EXCLUDING CONTINGENGY ALLOWANCE AND INFLATION FACTOR)

(A)	(B)	(c)	(D)	(E)	(F)	(G)	(H)	(I)	(b)	(K)
	Now	Auxilimy		Depertmental Servica Equip.		Other Conts Related to Equip.		Bubld.	Totel Costs	
Arsm	Equipment	Acceseorive	$\begin{aligned} & \text { Spare } \\ & \text { Parts } \end{aligned}$	$\begin{aligned} & \text { Servic } \\ & \text { Foratign } \end{aligned}$	Equip. Loc:	$\begin{aligned} & \text { Redaten } \\ & \text { Forapn } \end{aligned}$	to Equis. Local	Conmer. Conts	Foralon Exchenge	Local Curroncy
Yam Mill No. 7	15,137,000	1,742,000	757,000	2,636,000	680,000	152,000	2,277,600	5,034,000		
Twisting and Sewing Yern	825,000	(17 B)	41,260	2,63,000	8,000	16,000	2,27,000	5,034,000	20,423,000	7,801,500
Update Winding and Comblom	-	-	657,090	-		-	85,650		657,890	85,650
Total Cotton Yam	15,962,000	1,742,000	1,456,240	2,635,000	686,000	161,000	2,476,150	5,034,000	21,056,240	8,096,150
Cotton Weaving	10,446,800	($\ln 8$ B)	1,044,500	-	184,000	105,000	1,502,300	655,000	11,506,300	
Warping and Slashing	606,440	$(\ln 8)$	30,500	-	5,000	20,500	188,500	12,000	657.440	$205,500$
Cotton Finlehing	8,557,206	(In B)	513,432	-	171,144	85,572	1,174,049	6,507,678	9,158,210	7,042,800
Update Looms		-	728,760	-	-	-	91,850	0.07,070	728,760	94,850
Total Cotton Fabrics	19,610,446	-	2,317,192	-	360,144	211,072	2,869,609	7,284,678	22,138,710	10,684,519
Wool Yarn Mils	8,116,900	(1 nB B)	489,272	-	30,580	122,320	863,781	1,002,000		
Wool Weave and Finich	4,802,880	(In B)	480,288	-	192,116	86,0<9	62,2000	1,002,000	5,379,224	$1,878,125$
Total Wool Mills	10,018,780	-	869,560	-	222,606	218,376	1,535,700	2,004,000	12,106,718	3,782,486
Now Sowing Factory	1,040,659	199,712	101,221	-	-	9,461	181,810			
Replice Sowing Equipment	1,028,775	205,670	91,375	-	-	9,363	170,032		1,335,473	$\begin{aligned} & 761,910 \\ & 170,032 \end{aligned}$
Technical Ascistance	-	-	-	-	-	624,000	170,032	-	1,350,473	170,032
Total Garments	2,069,434	405,682	192,696	-	-	642,814	361,842	-	3,510,526	351,842
Total Production Arome	48,560,660	2,147,682	4,935,688	2,636,000	1,168,840	1,233,262	7,323,581	14,302,678	60,512,192	22,705,007
Power Plint Equipment	10,153,000	-	600,000	-						
Foundry and Shops	793,000	-	40,000	-	5,000	$45,000$	144.800	3,000,000	878,000	$\begin{array}{r} 6,829,500 \\ 189,800 \end{array}$
Mataria'- Handing	2,200,000	-	220,000			20,000	350,400			
Fire Fighting Equipment	316,000	-	28,000	-		20,000	43,400		$2,40,00$ 344,000	$\begin{array}{r} 330,400 \\ 44,700 \end{array}$
Total Service Equipment	13,462,000	-	786,000	-	5,000	167,000	3,700,400	3,800,000	14,425,000	7,374,400
Total Project	62,022,660	2,147,682	5,731,588	2,635,000	1,173,840	1,400,282	11,092,831	17,802,676	73,037,192	30,160,497

F. SALES GENERATED BY PROJECT

Exhibit VI, Estimated Sales Increases Under Project, develops a comparison of estimated pre-project 1976 sales volume with that projected after the installation of the project has been completed in 1980. This exhibit shows:

Product Crreagory	In 1,000 EE			In 1,000 Us ${ }^{\text {c }}$		
	$\begin{aligned} & \text { Entiminted } \\ & 1978 \end{aligned}$	$\begin{aligned} & \text { Projected } \\ & 1900 \end{aligned}$	Inersame	$\begin{aligned} & \text { Entimatud } \\ & 1976 \end{aligned}$	$\begin{aligned} & \text { Projectud } \\ & 1900 \end{aligned}$	Increse
Cotton Yam	10,838	16,780	6,942	27,780	43,024	18,238
Cotton Fabrica	30,267	37,238	6,988	77,608	95,470	17,886
Cotton/Wool	1,064	1,084	-	2,728	2,728	-
Wool and Worsted Yarre	2,332	3,110	778	6,979	7,974	1,89\%
Wool and Worsted Fabriea	4,823	8,064	1,141	12,388	18,292	2,926
Garments	8,197	13,727	5,530	21,017	36,196	14,179
Total	57,521	77,880	20,369	147,484	189,684	62,200

This indicates the project will increase sales by 35.4% or $\$ 52,200,000$.
In developing the above projected increase, we have ignored the probability of increased inflation in order to provide a more realistic evaluation of the true impact the project has on sales. We have also ignored the possibility that production volumes may decline as machines become older as, theoretically, this may happen to all equipment. We believe ignoring these two factors provides a more realistic and conservative evaluation of the merits of the project.

In Exhibit VI, the unit sales estimates used are based on those provided by Mehalla management. In some cases, these vary from those contained in Mehalla's initial study. The variations are noted on the various pages of Exhibit VI.

The unit sales prices used in Exhibit VI are 1975 unit prices as provided by Mehaila. These 1975 prices are also used in the 1980 projection except, as noted, where a change in product mix is forecasted. Examples of the forecasted product mix changes are higher sales of suits and of cotton fabrics with more costly finishes.

EXHIBIT VI
ESTIMATED SALES INCREASES UNDER PROJEGT
1976 VERSUS 1980 (IN £E)
PRODUCT CATEGORY - COTTON YARN

Transaction

Export Seles	7,000	1,320	8,240	85.3	12,000	1,320	16,840	84.4	6,600	71.4
Domastic Sales	1,700	940	1,598	14.7	1,000	940	940	5.6	(658)	(41.2)
Total Sales	8,700	1,246	10,838	100.0	13,000	1,291	16,780	100.0	5,942	54.8
Estimated Internal Transfers	26,500				29,200					
Total Sales and Transfers	35,200				42,200					

Commerts:

(1) 1976 production units rapresent present production levels and sales.
(2) Projected production levels based on revised demand estimatas utilizing equipment that was originelly to be sernpped (projection of 42,200 tons compares with previous 1980 projection of 38,760 tons of production).

EXHIBIT VI (CONTINUED)
PRODUCT CATEGORY - COTTON FABRICS

Transaction	Estimated Sales Value of 1976 Production (At 1975 Prices)				Projected	Sales Value with Project (At 1975 Prices)			Incrosse (Decrease) in Sales Value	
			Sales Value		Units		Sules Value			
	$\begin{aligned} & 1,000 \\ & \text { Metars) } \end{aligned}$	$\begin{aligned} & \text { per } \\ & \text { Unit } \end{aligned}$	Value in 1,000 £E	$\begin{aligned} & \% \text { of } \\ & \text { Total } \end{aligned}$	(1,000 Moters)		$\begin{aligned} & \text { Value in } \\ & 1,000 \text { fE } \end{aligned}$	$\begin{aligned} & \% \text { of } \\ & \text { Total } \end{aligned}$	Amount	\%
Export Sales	45,000	218	9,810	32.4	65,000	248	13,640	36.6	3,830	39.0
Domestic Sales	83,500	245	20,457	67.6	85,800	275	23,595	63.4	3,138	15.3
Total Sales	128,500	236	30,267	100.0	140,800	264	37,235	100.0	6,968	23.0
Estimated Internal Transfers	20,000				22,800					
Total Sales and Transfers	148,500				163,600					

Comments:
(1) Production quantities used are same as used in original projection.
(2) Projected price increases on export and local sales represent shift to more costly finishes.

EXHIBIT VI (CONTINUED)

PRODUCT CATEGORY - COTTONANOOL

Estimated Internal Transfors

Total Sales and Transfers

Comments: No new equipment proposed for cottonhwool production.

EXHIBIT VI (CONTINUED)
PRODUCT CATEGORY - WOOL AND WORSTED YARNS

Comments:

(1) Internal transfers include blanket yarns of 190 tons in 1976 and 200 tons in 1980.
(2) Increass in units produced (from 1,880 to 1,930) over original estimate . represents current production level.
(3) Increase in projected units sold (from 2,850 to 2,984) represents greater projected internal use for garment production.

EXHIBIT VI (CONTINUED)

PRODUCT CATEGORY - WOOL AND WORSTED FABRICS

Transaction	Estimated Sales Value of 1976 Production (At 1975 Prices)				Profected Sales Value with Project (At 1975 Prices)				$\begin{gathered} \text { Increase } \\ \text { (Decrease) } \\ \text { in Seles Value } \end{gathered}$	
	Units Sold	Price	Sales Value Total Sales				5 Prices) Sales Value			
	Motars)	per	$\begin{aligned} & \text { Value in } \\ & 1,000 \text { £E } \end{aligned}$	\% of Total	$\begin{aligned} & (1,000 \\ & \text { Moters) } \end{aligned}$	per Unit	Value in 1,000 £E	\% of Total	Amount	\%
Domestic Seles - Fabric	2,410	1,850	4,458	92.4	2,335	2,220	5,184	86.9	726	16.3
Domestic Sales - Blankets	150	2,436	365	7.6	320	2,436	780	13.1	415	114.0
Total Sales	2,560	1,883	4,823	100.0	2,655	2,246	5,964	100.0	1,141	23.7
Estimated Internal Transfors	760				1,775					
Total Sales and Transfars	3,320				4,430					

Comments:

(1) Blankets represent $\mathbf{7 0 , 0 0 0}$ units at $5.221 /$ unit in 1976 and a projection in 1980 of 150,000 units at $5.221 /$ unit.
(2) Increase of 20% in projected price per mater of febrics represents combination of wider goods and more costly goods.

EXHIBIT VI (CONTINUED)

PRODUCT CATEGORY - GARMENTS

Total Sales and Transfars

Commants:

(1) Estimated 1976 sales of $6,522,000$ units represents actual current production levels (this corapares with $6,000,000$ used in original estimata).
(2) Projected 1980 sales represent $6,522,000$ units plus planned 750,000 now suits plus estimatad additional production of 450,000 units as a result of reorranization of present plant. These 450,000 additional units represent $1 / 2$ of indicated additional potential production. The total projected 7,772,000 units compares with original projection of $6,750,000$ units.

G. PROFITS GENERATED BY PROJECT

Exhibit VII, Three Year Comparative Operations Profit - 1973 to 1975, indicates that the 1975 operating profits (before interest, taxes, export subsidy and other income) were 16.4% compared with the threa-year average of 15.7% (8.9% in 1973 and 20.7% in 1974). In 1975, the "cost of sales" was 77.0% of net sales, slightly higher than the three-year average of $\mathbf{7 6 . 8 \%}$. This increase in cost of sales was offset by lower marketing and administrative costs which are mostly fixed and should be lower, percentagewise, as volume increases.

On the basis of the above, we have assumed that 1975 was a "normal" year and have used it as a basis for making projections as to the profits and cash flow that will be generated by the project.

Exhibit VIII shows that the annual cost of depreciating the new equipment and buildings will amount to $\$ 7,057,424$ (or $£ E 2,752,505$). The basic project costs, as detailed in Exhibit V, were used in calculating this amount.

EXHIBIT VII

THREE-YEAR COMPARATIVE OPERATING PROFIT - 1973-1975

		1973		1974		1976		Totel 3 Years	
		Amount	\%	Amount	\%	Amount	\%	Amount	\%
		IN 1,000 ¢E							
1.	Gross Sales	41,541	101.4	49,338	101.2	55,634	101.2	146,413	101.2
2.	Seles Daductions	658	1.4	589	1.2	653	1.2	1,800	1.2
3.	Not Sales (1. - 2.)	40,083	100.0	48,749	100.0	54,881	100.0	144,613	100.0
4.	Cost cf Sales	33,933	82.8	34,852	71.5	42,241	77.0	111,028	76.8
5.	Gross Margin (3. -4.)	7,050	17.2	13,897	28.5	12, 4,40	23.0	33,587	23.2
6.	Markoting Expense	1,004	2.4	984	2.0	953	1.7	2,941	2.0
7.	Administrative Expense	2,403	5.9	2,823	5.8	2,710	4.9	7,936	5.5
8.	- Operating Profir (5.-6.7.)(1)	3,643	8.9	10,090	20.7	8,977	16.4	22,710	15.7
		IN 1,000 US \$							
1.	Grows Seles	106,611	101.4	128,503	101.2	142,389	101.2	375,403	
2.	Seles Deductions	1,431	1.4	1,510	1.2	1,674	1.2	4,615	1.2
3.	Net Sales (1. - 2.)	105,080	100.0	124,993	100.0	140,715	100.0	370,788	100.0
4.	Cost of Sales	87,004	82.8	89,361	71.5	108,306	77.0	284,671	76.8
5.	Gross Margin (3. - 4.)	18,076	17.2	35,632	28.6	32,409	23.0	28,671 88,117	76.8 23.2
6.	Marketing Expense	2,574	2.4	2,523	2.0	2,444	1.7	7,541	2.0
7.	Administrative Expense	6,161	5.9	7,238	5.8	6,948	4.9	20,347	5.5
8.	Operating Profit (5.-6.7.)	9,341	8.9	25,871	20.7	23,017	16.4	58,229	15.7

(1) Operating profit before interest, taxes and export subsidies.

EXHIBIT VIII
DEPRECIATION SCHEDULE FOR NEW FACILITIES (IN US DOLLARS)

Area and Type of Facility	Capital Expenditure	Depreciation Percent	Annual Depreciation
Production Equipment			
- Cotton Yam	\$ 25,018,390	8	\$2,001,471
- Cotton Fabric	28,458,553	8	2,036,684
- Wool Mill	13,865,202	8	1,109,216
- Garments	3,662,468	5	183,123
Total Production Equipment	\$ 68,004,613		\$5,330,494
Service Equipment			
- Povier Plant	\$ 13,992,500	6	\$ 839,550
- Foundry and Shops	1,047,800	5	52,390
- Materials Handling	2,770,400	10	277,040
- Fire Fighting Equip.	388,700	10	38,870
Total Service Equipment	\$ 18,199,400		\$1,207,850
New Buildings			
- Cotton Yam	\$-5,034,000	3	\$ 151,020
- Cotton Fabric	7,264,676	3	217,940
- Wool Mill	2,004,000	3	60,120
- Power Plant	3,600,000	2.5	90,000
Total New Building	\$ 17,902,676		\$ 519,080
Grand Total - In US Dollars	\$104,106,689		\$7,057,424
Grand Total - In cE	40,603,232		2,752,505

Note: Depreciation percents are those presently used by Mehalla.

Using the data contained in Exhibit VII and Exhibit VIII, the projected increase in profits resulting under the project were calculated in Exhibit IX, Increase in Net Profit Between 1976 and 1980, using the following routine:

1. A "normal operating profit" for the 1976 estimated sales was developed using "normal" (that is, 1975) cost of sales, marketing expense and administrative expense percentages. This indicates an estimaied operating profit (before taxes, interest and export subsidies) of $\$ 24,186,000$.
2. Next, the "normal operating profit" for 1980 projected sales was developed by applying the same "normal" percentages. This profil amounted to \$32,747,000.
3. It must be recognized that, as a result of the project, certain costs will not rise proportionally with sales during this period. These exceptions, as noted in Exhibit IX, are:

a. Depreciation

Will rise from $£ E 2,226,000(\$ 5,707,464)$ to $£ E 4,534,000$ ($\$ 11,625,176$); an increase of 103.7% compared with the sales increase of 35.4\%.
b. Spare Parts Costs

We estimate will rise only 10% (as compared with the 35.4% sales increase) as a result of new equipment and spare parts purchases included in the recommended investment program.

c. Personnel

We have concluded that Mehalla's contention, as set forth in their proposal, that overall manpower levels will not increase with the project is a valid one. Current regulations of the Egyptian government do not easily permit terminations of personnel. This, coupled with an extremely low turnover rate, virtually makes the labor force "fixed" on the minimum side. Mehalla's management recognizes and acknowledges the fact that labor productivity is low and has instituted a "no-hire" policy. $\mathrm{T}_{\text {a }}$ acquisition of new equipment will provide an opportunity to make better use of this "fixed" labor force, using current personnel to staff the new and expanded manufacturing operations. We realize that this is not a valid conclusion under criteria used in the United States in making economic evaluations. Recognizing this, we have evaluated the impact that possible increases in personnel will have upon projected profits in subsection $I_{\text {., }}$ Contingencies for Increased Costs.
4. These "adjustments," amounting to a favorable profit adjustment of $\$ 9,200,000$, were applied to the nomal operating profit of $\$ 32,747,000$. This application resulted in an "estimated profit" of $\$ 41,947,000$ in 1980; an increase in operating profits of $\$ 17,761,000$, or 54.2% over estimated 1976 profits. This amount has been used as our base for making the economic evaluations set forth below.

The following yardsticks are provided as an indication of the economic justification of the project:

1. The annual 8 :ditional operating profit (before taxes, interest and subsidies, but including depreciation) of $\$ 17,761,000$ generated by the project is 17.06% of the estimated base expenditures of $\$ 104,106,689$. (Based on the inclusion of the $\$ 2,105,000$ proposed technical assistance expenditures, this figure is 16.7\%.)
2. However, since straight line depreciation is used, it must be recognized that the average investment over the depreciated life of the equipment will be only one-half of the initial purchase cost. On this basis, the economic return on the investmeirt is $34.12 \%(\$ 17,761,000 \div \$ 52,053,345)$.

EXHIBIT IX

INCREASE IN NET PROFIT (BEFORE TAXES, INTEREST AND EXPORT SUBSIDY)

BETWEEN 1976 AND 1980

	In 1,000 Egyptian Pounds				In 1,000 U.S. Dollars		
	1976 Estimate		1980 Projection				
	\% of Net	Total	\%	Total	1978	1980	Incresse
	Seles	Amount	Increasa	Amount	Extimate	Projection	in 1980
Not Sales	100.0	57,521	35.394	77,880	147,484	199,684	52,200
Normal Cost of Seles	77.0	44,291	35.394	59,967	113,562	153,755	40,193
Normal Gross Margin	23.0	13,230	35.394	17,913	33,922	45,929	12,007
Selling Expenso	1.7	978	25.394	1,324	2,508	3,395	887
Administrative Expense	4.9	2,819	35.394	3,817	7,228	9,787	2,559
Normal Operating Profit	16.4	9,433	35.304	12,774	24,188	32,747	8,561
Adjustments in Mfg. Cost	. 0	0		3,588	0	9,200	9,200
Estimatod Profit*	16.4	9,433		16,360	24,186	41,947	17,761

ADJUSTMENTS TO PROJECTED 1980 NORMAL OPERATING PROFIT TO REFLECT MANUFACTURING COSTS THAT WILL RISE MORE OR LESS THAN THE PRONECTED INCREASE IN SALES
 (IN 1,000 £E

Cost Elements	197\% Estimate	Normal 1980 Amount		Projected 1980 Amount		Inereases Over Normal	Decreases Over Normal
		\%	Total	\%	Total		
		Change	Amount	Change	Amount		
Depreciation - Present Facilities(1)	2,226	+35.384	3,014	-20.0	1.781		1,233
Depreciation - Now Facilities (2)	-	-	-	-	2,763	2,753	
Total Manufacturing Personnel(3)	13,500	+35.394	18,278	. 0	13,500		4,778
Spare Parts (4)	1,300	+35.394	1,760	$+10.0$	1,430		330
Totals						2,753	6,341
Net Adjustment Applied in "Nat Pro	Iculation	Above (in $£$					3,588

(1) It is estimated that depreciation on existing equipment will be reduced by about 20% over next five years dus to equipment baing fully depreciated or replaced.
(2) The annual depreciation on new equipment and buildings is calculated in Exhibit VIII as $\mathbf{\$ 7 , 0 5 7 , 4 2 4}$ (or 2,752,505 £E).
(3) As discussed in text, the basic economic justification evaluation is based on the assumption that no personnel in addition to existing manpower will be added to produce additional volume. The $\mathbf{E E} \mathbf{1 3 , 5 0 0 , 0 0 0}$ represent estimated 1976 labor costs for manufacturing wages including sorvice dapartments.
(4) Spare parts are included with the recommended equipment purchases. For this resson and berause newer equipmant will require fower parts replecement, it is estimated that spare parts cost will increase by only about 10\% while sales are increasing 35%. The estimated $£ E 1,300,000$ represont estimated 1976 costs for spare parts in process departments only (service departments excluded).

H. CASH FLOW ANALYSIS

A further evaluation of the economic justification of the project is provided by the cash flow analysis developed in Exhibit X, Exhibit XI, and Exhibit XII.

Exhibit X, Schedule of Long Term Debt and Interest Payment, shows the repayment schedule and annual interest charges during the years 1976 through 1991 in connection with the basic recommended A.I.D. loan of $\$ 73,937,000$ for this project and an outstanding loan of $\$ 14,500,000$ as of January 1,1976 .

Exhibit XI, Projected Profit After Taxes, shows the before and after tax profits that will be earned by Mehalla during the loan payback period (through 1991). In this calculation, the following items, which are estimated to be about 63% of pre-tax profits, represent the difference between the before and after tax profits:

1. The ir andatory purchase of government bonds.
2. So-called "dividends" which cover:

- Distribution to workers.
- Distributions to national and local welfare funds.
- Distribution to national textile organizations.

3. Actual income taxes.

Exhibit XII, Cash Flow, develops the cash flow that will be available to repay loans and make required capital improvements. Exhibit XII indicates the following:

1. During the years 1976 through 1979 , the Mehalla operations, with the added profits resulting from this project, will generate sufficinnt cash flow to cover the $\$ 30,325,936$ of estimated local expenses (building construction, import duties, local freight, and local erection costs) required to effect the recommended program.
2. Sufficient cash flow will be available to cover both interest payments and loan repayments.
3. In addition, on the basis of the estimated profits detailed in Exhibit XI, additional cash flow of $\$ 250,798,000$ will be generated over the loan repayment period (through 1991) to provide for further equipment replacement, expansion programs, and increased inventories required to properly service increased sales.

EXHIBIT X

SCHEDULE OF LONG-TERM DEBT AND INTEREST PAYMENTS

(IN U.S. \$1,000)

Year	Loens Required(1)		Principsl Repayment Schedule		Belance onLoans		Interest Payments(3)		
	Existing	New	Existing Loan	Now Loan (2)	Existing Loan	Now Loan	Existing Loan	Now Lam	Total
1976	14,500		3,479		11,021		1,276	0	1,276
1977		18,484	4,228		6,793	18,484	891	824	1,815
1878		48,069	3,787		3,006	66,654	490	4,257	4,747
1979		7,394	1,528		1,478	73,937	224	7,030	7,254
1980			487		991	73,937	123	7,384	7,517
1981			487		504	73,937	75	7,394	7,469
1982			439	4,640	65	69,297	28	7,162	7,190
1983			65	6,103	0	64,194	3	8,676	6,678
1984				6,613		58,581		6,138	6,139
1985				6,175		52,406		5,549	5,549
1986				6,792		45,614		4,901	4,901
1987				7.472		38,142		4,188	4,188
1988				8,218		29,924		3,403	3,403
1989				9,042		20,882		2,540	2,540
1990				9,945		10,937		1,691	1,581
1991				10,937		0		547	547
Total	14,500	73,937	14,500	73,937			3,110	69,694	72,804

(1) The existing loan of $\$ 14,500,000$ is the balance due on a previous loan. The new loan of $\$ 73,937,000$ to be made In connection with this project is assumed to be required as follows: 25\% in 1977, 65\% in 1978, and 10\% in 1979.
(2) The new loan of $\$ 73,937,000$ is scheduled for repayment on an amortizing basis over a 10 -year period starting In 1982. Amounts in this column represent approximate annual repayment amounts on an amortking basis.
(3) Interest is applied at $\mathbf{1 0 \%}$ of the average of the previous year's and current year's loan belance.

EXHIBIT XI
PROJECTED PROFIT AFTER TAXES, INTEREST AND DIVIDEND (IN 1,000 U.S. \$)

Year	Estimated Sales(1)	Normal Operating Profit(2)	Adjustments(3)	Adjusted Operating Profit(4)	Interest Payment(5)	Other(6) Income	Nat Before-Tax Profit(7)	Purchase of Gov'r Bonds (8)	Dividends and Taxesi9)	Net Profit After Taxes \& Bond Purch.
1976	147,484	24,786	-	24,186	1,276	1,200	24,110	723	14,466	8,921
1977	147,484	24,186	790	24,976	1,815	1,229	24,390	732	14,634	8,024
1978	152,704	25,043	(641)	24,402	4,747	1,258	20,913	627	12,548	7,738
1979	173,584	28,468	1,861	30,329	7,254	1,283	24,358	731	14,615	9,012
1980	199,684	32,748	9,200	41,948	7.517	1,312	35,743	1,072	21,446	13,225
1987	199,684	32,748	9,400	42,148	7.469	1,355	36,034	1,081	21,620	13,333
1982 1983	199,684	32,748 32,748	9,600	42,348	7,190	1,398	36,556	1,097	21,934	13,525
1983	199,684 199,684	32,748 32,748	9,800 10,000	42,548 42748	6,678	1,442	37,312	1,119	22,387	13,806
1984	199,684 199,684	32,748 32,748	10,000 10,200	42,748 42,948	6,139 $\mathbf{5 , 5 4 9}$	1,487 1,533	38,096	1,143	22,858	14,095
1986	199,684	32,748 32,748	10,200	42,948	5,549 4,901	1,533 1,580	38,932 39,827	1,168 1,195	23,359 23,896	14,405 14,736
1887	199.684	32,748	10,600	43,348	4,188	1,580	39,827 40,788	1,195 1,224	23,896 24,473	14,736 15,091
1988	199,68.	32,748	10,800	43,548	3,403	1,677	41,822	1,255	24,093	15,474
1989	199,684	32,748	11,000	43,748	2,540	1,727	42,935	1,288	25,751	15,886
1990	199,684	32,748	11,200	43,948	1,591	1,779	44,136	1,324	26,482	16,330
1991	199,684	32,748	11,400	44,148	547	1,832	45,433	1,363	27,260	16,810
Total	3,017,464	494,859	125,610	620,469	72,804	23,720	671,385	17,142	342,832	211,411

(1) "Estimated soles" ara based on applying 10% of projected increase (of $\$ 52,200,000$ as per Exhibit IX) in 1978, 50% in 1979, and 100% in 1980.
(2) "Normal operating profir" is the "normal operating profir" of 16.4% (based on 1975 results). This piofit is before application of interest, taxes and export subsidies.
(3) "Adjustmentr" are based on data developed in Exhibit IX. These are applied as follows:

In 1,000 Egyptian Pounds						
Year	Reduction in Prasent Depreciation	Depreciation ori Now Facilities	Personsed Savings	Spare Perts	Total	Total (1,000 us. ${ }^{5}$)
1977	+ 308	-	-	-	+ 308	+ 790
1978	+ 616	- 1,377	+ 478	$+33$	- 250	+681 $-\quad 641$
1979	+ 925	- 2,753	+ 2,389	+165	+726	+1,861
1980	+ 1,233	- 2,753	+4,778	$+330$	+ 3,688	$+1,061$ $+9,200$

After 1980 adjustment is increased $\$ 200,000(78,000 £ E)$ annually to reflect estimated further reductions in depreciacion on existing equipment.
(4) "Adjusted operating profit" reprosents expected annual profits before interest, taxes and export zubsidies. It is calculated as the "normal profit" plus "edjustments."
(5) Interest payments as doveloped in Exhibit X.
(5) Interest payments as doveloped in Exhibit X.
(6) Other income is primariy interest received on mandatory purchases of government bonds.
(7) "Net before tax profit" is "adjusted operating profit" plus "other income"" less "interest payments."
(8) Mandatory purchases of governments estimated at about 3% of "not before tax profits:"
(9) "Dividends and taxes" are income taxes and mandatory profit distribution, estimated as 60% of "net before tax profit""

EXHIBIT XII

CASH FLOW ANALYSIS
(IN 1,000 U.S. DOLLARS)

	Net After-Tax Profit(1)	Anmual (2)	Available	Capitan (4)	Reprymont	Cesh Availsble (6) for Dther Purposes	
Yesr	Pro	Depreciation	Funds(3)	Purchases	of Debt(5)	Annuad	Cumulative
1976	8,921	5,707	14,628	3,017	3,479	8,132	8,132
1977	9,024	5,423	14,447	9,061	4,228	1,168	9,300
1978	7,738	8,654	16,392	12,088	3,787	537	9,837
1979	9,012	11,910	20,922	6,034	1,528	13,360	23,197
1980	13,225	11,625	24,850		487	24,383	47,560
1981	- 13,333	11,425	24,758		487	24,271	71,831
1982	13,525	11,225	24,750		5,079	19,671	91,502
1983	13,806	11,025	24,831		5,168	19,663	111,185
1984	- 14,095	10,825	24,920		5,613	19,307	130,472
1985	14,405	10,625	25,030		6,175	18,855	149,327
1986	14,736	10,425	25,161		6,792	18,389	167,696
1987	15,091	10,225	25,316		7,472	17,844	185,540
1988	15,474	10,025	25,499		8,218	17,281	202,821
1989	15,886	9,825	25,711		9,042	16,669	219,490
1990	16,330	9,625	25,955		9,945	16,010	235,500
1991	16,810	9,425	26,235		10,9:17	15,298	250,798
	211,411	157,994	369,405	30,170	88,4:7	250,798	

(1) "Net after tax profit" (from Exhibit XI) represents profit after interest payments, other income, income taxes, mandatory distribution of profits, and mandatory purchases of bonds.
(2) Depreciation, as shown in Exhiblt IX, is applied as follows:

	1976	1977	1978	1979	1880
On Current Equipment ($\ln 1,000 \mathrm{fE}$)	2,228	2,115	2,004	1,892	1,781
On Now Facilities (In 1,000 £曰	-	-	1,371	2,753	2,763
Total (ln 1,000 £曰	2,226	2,115	3,375	4,646	4,534
Total (In 1,000 US \$	5,707	5,423	8,654	11,910	11,625

In 1981 and after, depreciation is reduced $\$ \mathbf{2 0 0 , 0 0 0}$ per year to reflect further reduction in depreciation on existing equipment.
(3) "Available funds" are funds avaliable to make capital purchases and repay loans. "Available funds" represent the "after tax profit" plus "depreciation."
(4) "Cepital purchases" are local expenditures of $\$ 30,169,497$, paid in $£ E$, recommended under project. They are appliod as 10\% in 1976, 30\% in 1977, 40\% in 1978, 20\% in 1979.
(5) "Repayment of debt" is per Exhibit X.
(6) "Cash available for other projects" are the funds available after local capital purchases in connection with the project and repayment of debt.

L CONTINGENCIES FOR INCREASED COSTS

The profit and cash•flow analyses set forth in the preceding paragraphs of this chapter are based on relatively optimum conditions - no overruns on the estimated capital expenditures, no inflation, the ability to maintain personnel requirements at present levels, and no increase in the controlled price of raw cotton.

However, it is also to be noted that these projections do not includa any provision for export subsidies which have been paid in the past years.

Deviations from the optimum conditions described above can have a detrimental effect on profits and cash flow as follows:

1. Contingency for Overrun on Capital Expenditures

We have recommended that the A.I.D. authorization for this project include a 10% allowance for contingencies. This would result in an increase in the estimated investment from $\$ 104,106,689$ to $\$ 114,517,358$ and an increase in annual depreciation of $\$ 705,752$ (from $\$ 7,057,424$ to $\$ 7,763,166$).

This would increase the average investment over the depreciated life of the new facilities to $\$ 57,258,679$ (one-half of original investment). Likewise, pre-tax profits generated by the project would be reduced by $\$ 705,742$ (the increased depreciation) to $\$ 17,055,258$. This would result in a decrease in the economic rate from 34.1% to $29.8 \%(\$ 17,055,258 \div \$ 57,258,679)$.

2. Inflation Contingency

In developing the economic evaluation, the effects of inflation on costs and profits have been ignored in order to provide a constant base of comparison. It is reasonable to assume that future increased costs caused by inflation will be passed on to customers, therefore maintaining projected profit margins.

In fact, the probability of continued inflation is an additional factor justifying the undertaking of the recomnended project at this time because it is only reasonable to assume that equipment replacement costs will be substantially greater in future years than at present.

3. Personnal Costs

In the basic evaluation we have accepted Mehalla's contention that overall manpower levels will not be increased by the project. However, a contingency should be provided to cover additional costs of personnel in the event Mehalla is unable to hold manpower requirements at present levels.

The basic assumption is that manufacturing wages for 1976 will be $\$ 34,614,000$ ($£ E 13,500,000$). A further assumption is made that approximately one-half of the wages are variable, subject to increase as volume rises. Therefore, it is assumed if present labor productivity levels are maintained, these wages will increase by 17.7%, which is one-half of the projected sales increase of $\mathbf{3 5 . 4 \%}$.

If this increase in manpower occurs, wages would be increased (and pro-tax profits decreased) by $\$ 6,126,678$ (17.7% of $\$ 34,614,000$.).

Such an increase would result in the following changes in the so-called economic rate of return:

	Rieturn Vs, Besia Investment			Returs With 10\% Cont. Allow.		
	Inweoment	Pro-Tax Profis Increme	\%	Invectrment	Pro.Tax Profit Increme	\%
No. Lebor Inersme	1852,063,346	\$17,767,000	34.1	587,268,679	\$17,050,288	298
17.7\% Lebor Incremen	62,053,346	11,634,322	22.4	67,260,870	10,928,860	19.1

Thus, it would appear that the economic rate of return on investment could vary between a basic 34.1% under optimum conditions, and 19.1% based on 10% overrun on project costs and continued low productivity of production workers. A reasonable assumption is that the actual return will be at the midpoint between these two extremes, or at about 26.6%.

4. Increasa in the Controlled Price of Cotton

At present, Mehalla is paying an extremely low price for Egyptian cotton as a result of government established price controls. It must be recognized that these controls may be lifted in the future and the local price allowed to reach a price comparable with worldwide prices.

Insofar as the economic evaluation of the recommended project is concerned, this contingency has been ignored.

However, such an increase in cotton prices will have a definite effect on the cash flow generated. While it is assumed that prices on sales to the local Egyptian markets would be increased to recover these increased material costs, it is highly improbable that these increased costs could be passed along to foreign customers.

Therefore, it is necessary to evaluate what impact such a decrease in profit margins on exports of cotton yarms, fabrics, and garments would have on after-tax profits and cash flow.

Exhibit VI contains a breakdown of projected sales under the project. This shows the following projection of cotton exports:
a. Of the 42,200 tons of projected cotton yarn production, it is estimated that 12,000 tons will be exported as yarn.
b. Of the projected production of cotton fabric of $163,600,000$ meters, it is estimated that $55,000,000$ meters (or 33.6%) will be exported. Therefore, it is estimated that 9,811 tons (33.6% of the estimated 29,200 tons of yarn used in weaving) will be exported as fabric.
c. Of the cotton fabric produced, $22,800,000$ meters (or 13.9% will be used internally for production of garments. This represents 4,059 tons (13.9% of the 29,200 tors used in weaving). Of the garment sales, it is estimated that $3,000,000$ units or 38.6% of the total projected units of $7,772,000$ will be exported. This represents 1,567 tons of cotton yarn (38.6\% of 4,059 tons of yarn transferred to the garment operation from weaving).
d. The above would indicate that the projected exports of cotton by Mehalla will be:

Metric Tons

As Yarn	12,000
As Fabric	9,811
As Garments	1,567
Total Exports	23,378

e. Adding a 10% waste factor (principally for loss in spinning operations), the projected annual requirements of raw cotton for exports would he 25,716 tons ($23,378 \times 1.10$).

At the present time, Mehalla is paying a price for raw cotton that is approximately 40% of the world price. If the controlled price of cotton to Mehalla is increased by the Egyptian government, it is possible that Mehalla may have to pay an additional amount for its cotton of between $\$ 660$ and $\$ 990$ per metric ton ($\$.30$ to $\$.45$ per pound). This wrould amount to between $\$ 16,972,560$ and $\$ 25,458,840$ increased costs (and decreased befora-tax profits) per year.

However, after-tax protits (and cash flow) would be reduced only hetween $\$ 6,279,847$ and $\$ 9,419,770$ annually after applichation oi $\mathbf{6 8 \%}$ for taxes, dividends and mandatory investments.

Over the 16-year period between 1976 and 1991, this would amount to a reduction in cash flow of between approximately $\$ 100,000,000$ and $\$ 150,000,000$. This is 40% and 60% of the projeqted cash flow of $\$ 250,000,000$ that is indicated as available aftar debt repayment in Exhibit XII, Cash Flow Andysis.

It is to be pointed out that the above, calculations do not provide for any government export subsidies suç , as are presently paid ($\$ 3,250,000$ in 1974 and $\$ 1,987,000$ in 1975). Undoubtedly, if the price for raw cotton paid by Mehalla were allowed to rise to worldwide prices, export subsidies of some sort would be continued. This would obviously improve the cash flow.

The above, however, does indicate that:the project would still be viable even if cotton prices were allowed to rise to natural levels and no export subsidies were paid.

[^0]: 1,906 of these looms ars 20 years of age or odder.

