

$P N-A A K-217$

VOLUME II (APPENDICES)

RERUBLIC OF THE PAMLIEINES

 \title{FEASIBILITY STUDY
 \title{
FEASIBILITY STUDY TECHNICAL FINAL REPORT
} TECHNICAL FINAL REPORT
}

WATER SURPIY

hisamis octiomme JANUARY 1976

FOHEMORD

Folume II (Appersitces) of the Technical Final Report for
 Sfudy contains detailed information relating to several ohapters of Volume I. The appandices may oither pertain to more than one chapter of Volume I or to specific sections of a chaptor.

Appendices A, $B y$, C and 1 refor generally to several ohapteare of Volume I. Appendix A, Dasign Criteria, is fundamental to studies in all chaptors of tha Techaiosl Report. Appendix 3 , Basis of Cost Eatimatas, has bsen used in tho proparation of cost oalculations in Chapters VIII and IX. Appendices C and Dare related to Appendix B and to the constmaction of the recommeded plan described in Chapter IX.

The other appendione refer to apecifio chapter gections in Volume I. Tho appendioes are numbered aocording to the ohaptor and secticin to which they rafer. Thus, Appendix VIIImD refers to Chaptor VIII Seotion D of Volume I. The figures and tables are nambered consecutively after the chapter and section designation.

TABLE OF CONTENTS

Appendix	Title
A	design criteria
B	BASIS OF COST ESTIMATES
c	CONSTRUCTION MATERTALS AND METHODS
D	OUTLINE SPECIFICATIONS
Chapter IV	EXISTING WATER SUPPLY FACILITIES E. Computer Studies
Chapter VII	Water resources A. Water Well Data
Chapter VIII	ANALYSIS AND EVALUATION OF ALIERNATIVES C. Water Treatment Alternatives D. Distribution System Alternatives E. Water Resources Conservation Measures
Chapter IX	DESCRTPTION AND COST OF THE RECOMMENDED PLAN C. Distribution System Growth
Chapter X	ECONOMIC FEASTBILITY ANALYSIS C. Economic Benefits
Chapter XI	FINANCIAL FEASTHILITY ANALYSIS B. Development Costs C. Operating and Naintenance Costs E. Funds for Capital Development F. Loan Arrangement and Agreement

APPENDIXA

DESIGN CRITTERIA

APPENDIX A DESIGN CRITERTA

TABLE OF CONTENTS
Suh-Title Page
Coneral A-1
Study Area A-1
Population Projactions A-1
Land Use Projections A-1
Pressure Zones A-1
Unit Watcer Demands A-2
Unaccountable Water A-2
Total Supply A-3
Demand Variation A-3
Population and Demand Distribution A-3
Existing Water System Analysis A-3
Computer Studies for Future System A-4
Plpes A-7
Recomnended Pipe Materials A-8
Pipe Cleaniny and Lining in Place $\mathrm{h}=8$
Valves A-8
Fire Hydrants A-9
Flow Meters A-9
Plumbing Code A-10
Distribution Storage Tanks A-10
Booster Pump Stations A-11
Water Quality Criteria A-12
Surface Water Sources A-13
Hydrological Studies A-13
Raw Nater Pump Stations A-14
Starinc of Source Development A-15
Surveys A-15
Grouniwater-Springs A-15
Groundwater Wells A-16
Water Treatment Works A-17
Thpes of Water Treatment Plants A-18
Cost Estimates A-26
Economic Cost Comparison A-27

APIENDIX A
DESIGN CRITERIA

General

The following may be considered as design criteria for the long-range facilitios for water supply purposes. However, in view of scarcity of funis and financial feasibility, the oriteria for the initial and emercency stage may be of somewhat lower quality. Oluyj irea

The study area will be determined for the present and future water service area of the water district. General topography, natural barriers, municipal boundaries, zoning plans will be taken into account in the determination of the future service area limits.

Population Projections

The total service area population would be projected on the bases of separate projections for the core city or poblacion and for the barrios within the present and future service areas. Transient populaiion such as students, tourists, refugees, will be included in these estimates.

A percentage of population served will be estimated for the present and future systems. This estimation of percentage population cursently served in the study area will be based on number of piped water connections and averace number of jeople per urban household as obtained from the official census books. In the estination of future population served, cost and availability of the water from sources other than the water district would be considered.

Land Use Projections

Residential, institutional, industrial, commercial and pub?ic areas within the water service area will be designated either from the existing master development or zoninc plans of the community or from data on other cities with similar characteristics. A projeciion of the land use pattern for the study area will be shown on a map and summarized in a table.

Pressure Zones
Depending on general topography of the water service area there may be one or more service pressure zones in the water dis-

> tribution system. The maximum difference in ground levels in any pressure zone will not be more than 50 meters.

Separate supply lines from the source will be provided for each zone where economically feasible.

Unit Water Demands

a. Domestic: Average per canita domestic water consumption will be estimated for the study area. Past water distriot records and records from similar cities will be used for early estimates. When using the water district records, the actual metered customersand borrowers would be considered separately. For borrowers, an averace unit consumption of 20 lpod shall be assumed. However, the final estimates will be based on actual field measurements. Field measurement will be done by direct meter reading her isolatirg certain service area sections which will represent different economic classes of customers. This measurement will bs conducted in areas which have adequate supply.

Unit domestic consumption will be increased by 1 to 2 per cent ezoh year to account for economic growth within the community.
b. Institutional and Conmercial: Institutional and comnercial water demands will be estimated as a percentage of domestic demand based on available past records of the water districts or similar cities. If no records are available a unit flow of $5 \mathrm{clim} /$ day per eross hectarewill be used in the estimates for this purpose.
c. Inductrial: At present, there is no heavy induitry in the study areas. However, available zoning plans designate areas for future heavy industrial develepments.

Past records on the water consumption of existing light industrial establishments will be studied to estalbish unit flows required per unit area. If no record: are available, a unit flow of 10 cum/day/ha (gross) will be used in the e:ilimates.
d. Parks, golf courses: ilater demands for the public parks and golf counses will be cstinated from the past records.

Unaccountable Nater
With a review of the available water ai:strist records or con-

$$
A-2
$$

sumption pattern in :imilar cities, a tentative percentage of the total supply requirement will be established for unaccountable water for the early studies. The final estimate of unaccountable water will be based on actual field measurements. Unaccountable water may include waste and unrecorded usage. It is assumed that the amount of unaccounted-for-water will be reduced gradually with the implementation of stared improvements to the system.

Total Supply
A total of various water demands and unaccounted-for-water will be the total water supply requirement for the study area. If there is more than one pressure zone in the study area, the required supply in each pressure zone will be estimated.

Demand Variation

Maximum daily and peak hourly demands in each study area will be estimated from the available records for service areas with adequate supply. If no data are available the demand factors would be obtained from other similar areas. An attempt will be made in the field to record hourly fluctuations for a minimum period of 24 hours for checking these assumed values.

For preliminary studies a maximum-day to average-day ratio of 1.2:1 and a peak-hour to averaje ratio of 1.5:1-2.0:1 will be used.

The present and future projected water demands will be tabulated.

Population and Demand Distribution

The study area will be divided into several sub-areas representing different population densities and demand patterns. Locations of the existinz larce demand customers (e.g., industry, military base, university campus, airport, etc.) and their water usages would be obtained through the water district records or field measurenents. With these data, a demand load distribution will be made for the existing and future water distribution systems.

Existing Water System Analysis

After gathering all pertinent daja, the existing system will be analyzed through a computer program. All the pipelines, 100 mm and larger, wisl ve included in this studj. Regular and large demands will be distributed at relevant nodes of the system skeleton.

Averafe-day demands will be included in computer input data. Demand. factors will be applied for maximmoday and peak-hour flow conditionc. Akout 5 per cent of unaccountable water will be allocated to transmission lins and the remainin unaccountable water will be evenly distributed in the distribution system. The primary system (pipeline 4-in and larger) will be checked for only peak hourly demand condition to find out about areas with capacity shoriage and low pressures. Any high level area which is being served by a booster station would be studied separately after establishing its hydraulic grade line (HGL).

If there is a storage tank floating in the system, the water level in the tank will be assumed to be at the middle of the operational storase portion, during peak hourly demand condition. In the computer application of the system, either the input flow or HGL at the source will be fixed. The following " C " values will be used for pipe friction losses. -
a) Asliestos Cement Pipe

Size (mm)	$100-150$	$200-300$	$350-500$
"S" value	100	110	120

b) Cast Iron Pipe

Size	(mm)	100-150	200-300	350-500
4te:	new	100	110	120
	10 years	90	100	$110^{1 /}$
	20 years	80	90	10; ${ }^{1 /}$
	30 years more	70	80	$100^{1 /}$

The internal distribution system would be checked for fire flow plus maximum-day demand. After computing the node pressures in the primary system for the maximum-day demand, a typical commercial residential area will be cheoked for fire protection. A fire flow demand of 15 lps (liters per second) will be applied at each one of two adjacent hydrants.

Computer Studies for Future System

The proposed system will be studied for the design year 2000

$$
1 / \text { Subjeot to field verification. }
$$

$$
A-4
$$

first and the ecoromy of construction stagine for 1990 shall be ohecked speciaily for supply, treatment and transmission facilities.

A system skeleton will be prepared for each pressure zone. Future pipelines will follow existing roads or proposed roads as much as possible. The maximum spacing between feeder main lines will not exceed 1,000 meters. For strengthening the syatem hydraulically all the pipelines will be looped as much as practical and economically feasible. The primary system which will be checked hydraulically first will include (200 mm) and larger pipelines. The projected average day demand loads will be distributed at nodes. For computer input, the pipe data will include a pipe number, connecting node numbers, diameter, length and " G " value; the node data will include a node number, ground elevation, and average day demand for the design year.

The maximum hydrostatic pressure in the system will not exosed 70 meters. If the existing water supply facilities were to be used, the pre-esteblished HGL elevation would be evaluated carefully for deciding whether to continue to use them or to phase them out.

If a feasible storage tank site can be located in the system, a system input at a rate of maximum-day demand will be required. If no storage tank site is available then the system input will be at a rate of peak hourly demand. (In the case of well supply this means the total safe yield f'rom the wells has to meet peak hourly demands.)

In the proposed system asbestos cement, oement lined cast or ductile iron, cement lined steel or prestressed concrete pipe will be used. The following "C" values will be applied throughout the studies:

A field cleaning and lining of existing large size mains will be considered as part of the improvement program. An operational storage volume of $15-20 \%$ of maximum-day demand at the design year will be provided (19% for Ozamiz and Clarin). The maximum operational level fluctuation in the tank will be 7 meters. If there is more than one storage in the system the operational volume required at each site will be determined through computer analysis.

$$
A=5
$$

Well pump capacities will be based on an evaluation of the pumpine test of the well for yield and drawdown. In determinine pump head characteristice the estimated minimum water level in the well, head losses through suction pipe assembly axid the head required in the system would be investigated.

Booster pumps will be selected either to meet peak-hourly demands if there is no distribution storage or to meet maximum daily derands if there is an adequate storage. Each booster zone would be studied separately. The primary system (pipes 200 mm and larger aize) will be checked for:
a) Peak-hour demand condition by applying a demand factor of $1.5-2.0$. (For this condition it will be assumed that the system storage tank level is $2-3 \mathrm{~m}$ below the overflow elevation. The selected pipe sizes will be adequate for not creating a pressure less than 14 m at any point of the primary system).
b) Minimum flow plus tank filling if the storage tank site is looated too far from the demand center. (The minimum flow is 30 per cent of the averuge daily demand).

The internal distribution network will be checked for fire flow plus meximum-day demand, at least at two typical areas: (1) a high value commercial area (for a fire flow of 20 lps from each of two adjacent hydrants); (2) a residential area (for a fire flow of 10 lps from each of two adjacent hydranta).

Computer runs will be repeated with revised pipe sizes until the system meets the design criteria.

Special effort will be made to utilize all or portion of the existiné facilities as muoh as feasible. Data whioh would be required on the existing facilities for this purpose are as follows:

Supply facilities : HGL elevation and variation Flow input capacity

Pipelines : sizes, locations,"C" values
Pump Stations : pump curves, rated head and discharge values, HGL elevations on the suction and discharge sides, pump age, condition

Storage Tanks : overflow elevation, side water depth, operational depth, type, condition

Wells : safe yield, water level

$$
A-6
$$

Hycrants
Valves : check valves, closed or throttled valves

Pines

In evaluating and selecting the pipe :naterial for use in the mroposed improvement procram of the study area waterworks systen, orreful consiceration should be given to the following:
a. The pine strencth to resist both internal and external pressures;
b. Service life of the pipe material (resistance to corrosion, exosion and disintegration);
c. Sipe laying and jointing (simplicity, rellability);
d. Operation and maintenance problems; and
e. Economic ounsideration

Pressure class requirement for major transmission lines will be investicated on a pipeline profile. Working pressures will include additional allowances for surces and water hammer. Minimum pressure class of pipe will not be less than $7 \mathrm{~kg} / \mathrm{sqcm}$.

Generally, concrete pipe and cement-lined pipe have a better average coefficient of friction than unlined cast iron, ductile iron or steel pipe.

Because of the brittleness of the material, the use of cast iron pipe and ashestos cement pipe is generally limited to the smaller sizes. In addition to the inability to take large bending loads, with brittle pipe, sudden failures can occur and discharge large volumes of water that not only cause extensive damage, but may slso put the water system out of operation for a long period.

A high sulfate content of the soil will limit the use of concrete or asbestos cement pipe or require special protective coating. When the sulfate concentration in the soil exceeds 0.5 per cent (or $300 \mathrm{mg} / \mathrm{l}$) unprotected concrete pipe should not be used. Many types of soil can be corrosive to ferrous metal pipe. A corrosion survey along the pipeline routes will be necessary to locate extremely corrosive areas so that suitable types of pipe material and protective systems can be selected.

A minimum trench width of 0.60 m would be specified for new pipelines. Trench width will increase with the pipe size as shown in the following formula:

$$
\text { Trench Width }=0.50+D(\mathrm{~m})
$$

The minimum cover on a pipe shall be 0.60 meters. If there is a traffic load, the minimum cover shall be increased to 0.90 m . If this can not be accomplished, the pipe shall be encased in concrete.

Recommended Pipe Materials

A final pipe selection can be based on economic cost comparison, which may be made among tine recommended pipe materials for the required service and capacity as shown in the following table:
Pipe Material $\quad \frac{\text { Diameter (mm) }}{10-100150-400450-600700-1200} \frac{\text { Dervice }}{\text { Distribution Transmission }}$

Prestressed Concrete Steel	-	-	x	-	x
Cast Iron	x	x	-	x	x
Ductile Iron	\underline{x}	x	x	x	x
Asbestos Cemont	x	x	-	x	
Polyvinyl Chloride				x	
or lolyethylene pipe ${ }^{3} \mathrm{x}$	-	-	-		

Pipe class should be in accordance with the required operen tional pressures in the system.

Pipe Cleaning and Lining in Place

It is possible to increase capecity of old transmission and distribution pipelines by 20 to 50 per cent with cleaning and lining prucess. This is specially true where extensive internal scaling has occurred in the pipeline. Experience shows that cleaning and cement lining in place of 150 mm diameter and larger water mains are more economical than installine new mains to obtain the same capacity increase. Therefore, cleaning and coment lining in place will be included in the improvements program where extensive capacity losses in the water mas are observed.

Valves

To isolate and drain pipeline sections for test, inspection, cleaning and repair a number of valves are generally installed in the line. The most conuonly used valves are gate and butterily valves followed by check, cone valves, blow-off and air relcase valves. Despite the wide rance of designs, all valves have only one purpose: to slow down or stop the flow of water. In a distribution system, large numbers of shut-off valves (gate and butterfly) are utilizec. Gate valves are more applicable to pipe sizes up to 300 mm in ditmeter. For larger si\%e pipelines butterfly

[^0]$$
A-8
$$
valves will be used.

Valves in a distribution system sill normally be located at street intersections. The valve spacing in high consumption areas would be closer than low co:usumption areas. A maximum valve spacing of 300 to 500 m wili be considered in preliminary layouts. However, the finzl determination will depend on judgement of conditions in a particular system.

Valves shall be ecuipped with handlever, handwheels, chains or hand, phematic or electric operations.

The minimum worling pressure of valve will be in accordince with the serivice requirements. Viave design anci manufacture will conform to the curront AWilA or ASTM specifications.

Fire Hydrants

Fire hydrants will be locatec. at street intersections as much as possibiee Spacing and sizes will be as follows:
a) High value resicential, ommercial and industrial areas:

Spacing : 150 mp maximun
Connecting pipe size : 100 mm , minimum in looped systems 150 mm , minimun in dead-end syetems
Hose outlet : $1 \times 60 \mathrm{~mm}(21 \mathrm{i}$-in $)$
Pumper outlet : $1 \times 100 \mathrm{~mm}(4$-in $)$
b) Normal single family residential arcas:

$$
\begin{array}{ll}
\text { Spacing } & : 250 \mathrm{~m}, \text { miximum } \\
\text { Comnecting pipe sice }: 100 \mathrm{~mm}(4-i n) \\
\text { Hose-Fu:nner outlet } & : 1-100 \mathrm{~mm}(4-i n)
\end{array}
$$

The exterior surface of fire hydrant will be painted for protection and easy locatior.

Flow Meters

A. Differential Head Meters

The flow of fluid through a constriction in a pressure conduct results in lowering of pressure at constriction. The drop in piezometric head between the undisturbed flow and the constriction is a function of the flow rate. The venturimeter, flow nozzle and orifice meter are constriction meters which make use of this principle. The head loss through a venturi-

$$
A-9
$$

meter is considerably less than for the other two types of meters. Pitot tubes and pitometers nay also be typed as differm ential head meters.

B. Mechanical Meters

Mechanical meters are widely used in water distribution systems. Two types of mechanical meters in comman are positive diaplacement and propeller meters. The positive displaoement type meters are more acourate in measuring amall flows. This type of meter is not recommended, however, for waters having fine particies as it is likely to become inoperative due to ologging.

Plumbing Code

The Philippine National Plumbing Code shall be applicable.

Distribution Storage Tanks

Distribution storage tanks are used to provide storage volume to meet iluotuations in water use, to provide fire atorage, and to stabilize presaures in the diatribution system. The tank in relam tion to the service area, should be located as much on the opposite site from the source as poseible; on the other hand, the tank locam tion should not be too rar away from the demand center. A storage tank is normally looated at a sufficiently high point so that water level in the tank can control the hydraulic grade line and fluotuate with the variation of system demand. A tank refills when the demand is low and feeds ints the system when the demand is high. With an adequately sized storaged tank it is possible to have supply and transmission faoilities operating, more or less, at a steady rate which is normally to be around maximum daily demand for the design year.

The total effective atorage volume required in a service zone should be at least equal to the required operational storage. Fire and emergency storage may be provided if economically justified. As mentioned previously, the equalizing or operational volume is to be equal to 15 to 20 per cont of the maximum daily demand in any design year. A maximum side water depth (or level fluctuation) of 7 m will be assumed for the operational storage.

The maximum hydrostatic pressure in any pressure zone in the distribution system should not exceed 70 meters. The tank overfiow elevation, therefore, will be set at a level which will be a maximum of 70 m higher than the lowest ground level in the service area. A storage tank can be a ground type, elevated $0:$ a stand-pipe, all

$$
A-10
$$

covered. A tank shape can be rectangular or circular. Roof slab of a tank will be supported on interior columos. The tanks are normally construoted from reinforced conorete or steel. Reinforced concrete tanks would have less madistenance oosts and also will not require foreign exchange.

Piping in a tank will consist of incoming flow pipe, overflow and drain pipe, and outgoing flow pipes. From those, all of the pipes, with the exception of overflow pipe, are valved.

For large cities within a same pressure zone there may be a need for more than one tank site. In this case volume distribution at each site can be determined through conputer analysis. Sufficient lend should be taken for the tank site to accommodate short-term as well as future storage units for the service area.

Booster Pump Stations

A pump atation structure and related piping will be designed for a period of 25 years. On the other hand, the equipment including pumps and motors shall be designed for about 15 years.

Selection of pumpe will be based on system-diacharge curve. With development of composite pump curve for the number of existing and proposed pumpe at a station and application of this curre on the systems, the head-disoharge curve indioates rated flow and head for the puspe. Where pump is pumping directly into distribution system, the systim curve shall be studied through computer analysis.

To prevent excessive pressures in the pumped supply system (specially during minimum demand periods), pumps will be selected with a shut-off head which will not be greater than the rated head more than 10 per cent.

If the water has to be pumped through a long transmission line before it reaches the distribution system, an econciiical study may be necessary before deciding on pumping head versus transmission pipe size. In this study, pressure limitation in a distribution system has to be taken into account. If there is an adequate stom rage in the system, the pump station can be designed for the maxiwan daily demands estimated for a particular dosign year.

If there is no feasible site available for a storage tank, pump stations will have to be designed for peak hourly demands.

The total design head of a pump should include static head and dymamic head whioh consists of friction and turbulence losses in suction and discharge piping.

$$
A-11
$$

Pump drive will be either an electrical motor or a diesel engine. Economy and practiciality of electric or diesel power will have to be aiudied for the study area.

Electricity is 480 volts, three-phased with 60 egcles. Local needs for additional power transmission line and a substation will have to be investigated.

In addition to inanual start-stop, each pump station shall be equipped with high pressure sensing device to automatically stop the pump on a high discharge or low suction pressure. For proper operation, maintenance and safety of a pump the followine equipment generally provided on the discharge line are: shut \rightarrow ff valve, check valve, surce relief valve, pressure eace, flow meter and air and anti-vacuum valve.

Each pump station should have a superstructure constructed from locally available material to help provide security from thinft and vandalism and to minimize the noise problem in residential areas.

Surficient land should be taken for a pump station to accommodate short-term as well as future facilities.

Pumps are to be constant speed single stage, horizontal or vertical centrifugal type. The minimum number of pumps in any station will not be less than two. Pump ratings, make and model in the system will preferably be the sane for simplification in operation and maintenance. A stand-by capacity equal to the larcest pump in a pump battery will be desirable for assuring the firm capacity of the station even when one pump is out of service. Where electricity is not reliable, consideration should also be given to having one of the larger pump motors close-coupled with a diesel or gas driven engine. By this, at least part of station capacity will be available in the event of power failure.

Nater Quality Criteria

The water provided by a public water supply system should be free from substances hermful to human health and should be of the highest quality that is economically feasible. An acceptable water should have the following general qualities:
a. Water should be free from pathogenic organisms and at all times free from suspicion of being a means of conveying disease;
b. Toxic substances in the water should be below the concentration that would be injurious to health.
c. The water should be free from encrusting or corrosive properties and should be clear, colorless, tasteless and odorless.

Maximun acceptable concentrations of scme of the most significant constitugnts of water, as established by the Philippine National Committee on Drinking Water Standarcis, and by the World Health Organization (WHO) are to be used as guideline.

Surface dater Sources
The treatment of water from a surface source must be economically feasible and should meet the current requirements of Philippine Drinking jater Standards wit.. respect to bacteriological, phyaical, chemical and radiolocical qualities.

The quantity of water at the source(s) shall be adequate to supply or supplement the water demand of the service area at least until the year 2000.

Hyàronorical Studies

Daily or monthly streams flow records, if available, should be used in the safe yield estimates. If stream flow recurds are not, available, correlations with similar basins with longer period of records, based on draintece areas, should be made. Recommendam tion should be made for the establishment of stream gauging stations for use in design. for extension of stream flow records for a longer period, rainfall-runoff conrelations san be used. The minimum recorded flow minus riparian rights would give the minimum amount of water available from a particular suurce for the study area. This minimum flow rate will be compared with the estimated total eross water demand in the stucly area to decide whether any impcuniment is needed and when needed. Without a need for impoundment reservoir a water diversion and intake structure would be required for the supply. If an impoundment is necessary to meet the demand an invest. igation will havs to be carried out on possible dam sites. Dam sites can be located, first, on 1:59,000 topomaps. As a result of a preliminary field investigation coverine area geology, accessibility and major relocation due to reservoir impoundment, some of the sites can be eliminated. For the selected sites mass inflow curves will be plotted covering at least one sienificant dry period. Mass in ilow curve should be adjusted for evaporation and riparian rights. Demand lines drawn tangent to the high points of the mass curve represent rate

$$
A-13
$$

of withdrawal from the rowarvoit. issuring the reservoir to be Nill khorever a lemand line inversects the mass curve, the maximum departure between the demand line ani the mass curve represents the net reservoir capacity required to satisfy the demand. Usually some volume in the reservoir, which may be also called doad volume, ie allocated for siltation.

In order to determine the basic dam height, areamolume curves are drawn up for each feasible dan site. From thess curves a dam height can be selected which would create enough volume of reservoir to satisfy the demari and deack volume requirements. Estimated reservoir volume will be increased by 25% for supply safety. In some cases one stream may not yield sufficient quantity of water. Then it will be necessary to look into other river basins or ground water, for supplementary supply.

In other cases the same stream may be considered for multipurpose basin development including power, irrigation and navigation. This will require close cooperation with the other authorities to make sure that adequate amount of water will be availablo for municipal usace. In accordance with the governmental requirements in the Philippines any proposed dam 60 m or higher must be communicated to the National Power Corporation.

Raw Water Pump Stations

Location, arransement, type of equipment and strusture are important aspecte of a pump station to be investigated in the design. Befors deciding on a raw water pump station, an economical cost comparison will be made for gravity flow though a tunnel alternative if area topography is suitable. A raw water pump station usually requires an appreach channel, intake structure which will be equipped with stop logs, bar screen anil control gates, and pump wet well.

The gtation will oe designed for the maximum daily demand in the design year. Pumps will be capable of delivering the design flow at tne maximum head which is the sum of differential static head, suction lift (if any), and suction and discharge head losses. Selection of pumps in the station will be based on the application of pump curves on syatem head-capacity curve.

Electric motor or diesel encine driven vertical turbine pumps will be used for the raw water pumpage.

Stacing of Source Development

Mhrine source development studies a demand versuss supply chart will be prepared to show a timely staging of Tacility construcition. A demand-supply chart will include the supply from the existing sources which, in some cases, may be phased out ir economically justified, following the development of new sources.

The stacing of construction will be in accordance with the following demand conditions:
Facility
Dams
Water Treatment Plant
Diversion and Intake
Transmission Lines

Deriand
Average-Day Haximum-Day MaximummDay
a) Peak-Hour if no distribution storage
b) Maximum-Day if there is an adequate storage

A sufficient time shall be allowed for planning, design and construction of future facilities.

Survey:s

Water quality surveys are impontant as they would indicate cost of treatine the proposed source of water. Water samples will be taken from all the sources and laboratory analysis will be made. Toposraphical surveys at 1:2000 scale will be required at dam sites for facility layouts.

Groundwater-Sprines

Springs car: be developed as gravity or pumped supply. In both cases sufficient period of flow measurements will be needed for determining the minimum yield. The yield of some springs may be increased by direct pumpace; however, before doing this a careful evaluetion of aquifer and rechargo area should be made to avoid possible damace to the spring. The major works needed for spring development would be constmuction of a collection chamber with necessary piping arrancement. Water quality must be checked to see whether any treatment would be required; the most likely quality problem with spring water beine either excessive hardness, or iron and manganese. The spring reoharge area must be protected from pollution.

In the construction staging of spring development, the measured minimum yield should meet the maximum daily demand of the study area, if adequate storafe is provided for peak-hour demands. With no storage in the distribution system construction staging shouid correspond with peak-hour demands.

Groundwater Wells

All the available data pertinent to existing wells in the study area will be collected and evaluated for the purpose of determining well and aquifer parameters including water table elevations, well yields and drawdowns, well geometries, interm ference between wells, and water quality. Ir addition, geologic, hydrologic and meteorologic data will be evaluated with informan tion on current withdrawals to estimate recharge to aquifere and to estimate the overall safe yield of the source.

In many cases, it may be necessary to construct and test several wells to obtain the necessary data. Test well sites and depths will be chosen to provide data on unexplored important sections of the aquifer. For each test well, a minimum nunber of two observation wells would be desirable.

Based on available information and test well results, the aquifer coefficients will be estimated. With this and hydropeolopical appraisal of the area, practical design yield, well si\%e, depth and spacing can be planned. Water quality analysis will indicate treatment recuirements of the source.

Construction stasing of welle should follow the same criteria as explained for spring development.

Water, in ceneral, has to be pumped from a croundwater well with the exception of flowine artesian wells with adequate yield. Fumps normally used for this purpose are either multi-stage vertical turbine pumps which are shaft driven by motors or encines located on top of well o: submersilile pumpe in which the pumps and electric motors are combinud in one unit. placed below the water surface of the well. The pump bowls may be set at approximately $5-10 \mathrm{~m}$ below the lowest anticipated pumpint level. The lowering of the water table in a civen aquifer and the specific capacity of the well must be taken into consideration when calculatine the anticipated ultimate pumping level.

Where the source of electric power is not reliebly, diesel encines will be consiciered for pump drive units, Pumping head will be determined by pumping level in the well and minimum pressure requirements in the distribution systern durine peakhour demands or by tank filline operation durinfs minimum hour demands.

Water Treatment Works

Objectives of Water Treatment. In the design of water treatment plants, the provision of safe water is the prime soal. the treated water must be clear and colorless and pleasant to the taste. Nater quality obtained at the plant shoulc be preserved in the distribution system. The control point for the determination of water quality is the consumer's tap and not the outlet of the treatment plant. Another basic objective is that water treatment be accomplished usine facilicies that are reasonable with respect to capital and operating costs. In plant deeign the various alternatives will be investisated includinど plant performance and cost studies.

Ceneral Desien Consideratione. Where previous experience with treatment of the same or similar source is lacking, special studies would be necessary for design purposes. These opecial studies may include tests conducted in the laboratory, in existine plants or in pilot plants. The rated or nominal design capacity of the treatment plant will be the maximum daily water demand of the system for the design year. Using water demand projections, a logic:al program for development of treatment facilities may be established. Decision will have to be made about which units to be built initially for ultimate needs or to provide for development in stages. The following are factors which have a bearing on the period of design of treatment facilities: (1) the useful life of facilities, (2) the ease of extension, (3) the rate of growth of the service area, (4) the rate of interest on the loan, (5) the change of purchasing power during the debt period, and (6) the performance of facilities during the early years.

Pumping station and chemical building structures are to be constructed for ultimate capacity; pretreatment and filter facilities are to be built in staces as the need develops.

For operational safety, even in the initial stage of construction, none of the importart units such as flocculation, settling and filter basins is to be less than two. Stand-by units will be pro-

$$
A-17
$$

vided for specially when the plant treats a water that is highly contaminated.

An evaluation of available sites will be made to determine the most favorable location for the plant. An accurate estimate of the area required for the ultimate development of the site is specially important.

In plant sizing and layout, the following points will be conaidered:
(1) Frequency of basin cleaning, leneth of filter runs and effluent quality will be carefully evaluated.
(2) An economic but durable construction: outdoor type filters can be adopted in the Philippines. Construction items will be selected for a minimum service period of 50 years.
(3) The smallest number of units that is feasible will be chosen, but the number will be sufficient to provide stand-by capability.
(4) Operation of filters, flocoulators and chemical feeding oquipment requires the most attention of operators. It is therefore desirable to arrange the plant so that these functions are close together, rather than widely. separated.
(5) Chemical feed lines are to be as short and direct as reasonably possible. For this reason, it may be necessary to place the rapid mix basin in the chemical building.
(6) Chemical handlins and feeding system will be simplified.
(7) Unessential instrumentation will be avoided.

Thpes of Water Treatment Plants

The quality of raw water varies greatly from source to source. Accordinely, the type of treatment to produce a safe and palatable water will vary. The World Health Organjzation has established treatnent requirements in relation to the coliform bacterial content of raw water.

Application of treatment methods in relation to raw water characteristics is shown in Appendix Table A-l.

Classification of treatment plants according to raw water quality is a useful guide to the designer. However, such classification is not a substitute for encineeriny studies insluding, in some instances, experimental and pilot plant work as the basis for plant design.

In a modern conventional plant, rapid mixing, flocculation, sedimentatior, filtration and chlorination are omployed to remove color, turbidity, tastes and odors, and bacteria from surface water supplies. Bar racks and coarse screens are provided if floating debris and fish are a problem; aeration is beneficial and economical for treatment of tastes and odors; presedimentation would be reguired if the water is highly turbid.
'Nater filters can be designed hydrâulically as slow or rapid, dependines upon the rate of flow per unit of surface area. The processes of a treatment plant are briefly explained in the following sections.

Aeration. Aeration is used to reduce the concentration of taste and odor producing substances in the water and to remove iron and mancranese fron the water by oxidation. Aeration can be accomplished by waterfall aerators, spray nozzles, cascades, multiple trays, diffusion of compressed air through the water, and mechanical aerators. Approximate area requirements for different types of aeration are shown in the following table: .

Area Requirement

Tyye of Aeration	sqm per 1,000 cum/day
	2.50
Spray	1.25
Multiple Tray	1.25
Cascade	1.75

Inclusion of aeration process can be useful and econonical in the treatment of :round water which has a high content of carbon dioxide, iron and manganese and hydrocen sulfide.

Mixinte Coagulation of particles in the water with the addition of chemicals is accomplished during mixing processes. Where only a coagulant is used or where sequence of application

APPFITDIX TABLE \& 1

APPLICATION OF TREATMANT METHODS 4

is not critical, chemical mixine may be obtained by injection of chemicals into a point of hich velocity flows, such as the suction of a low-lift pump, a parshall flume, or a hydraulic pump. In other cases power may be put into water to secure mixing either by mechanical agitators or by use of gravity in baffled basins. The rectangular baffled basins are usually designed for horizontal flow with a detertion time of 60 seconds at the design flow. Basirs with mechanical agitators may be designed for a detention time of 30 seconds. Design of mechanical rapid mixing basin is based on the rate of power input into the water as measured by the velocity gradient. Because the best velocity gradient may vary from time to time at given location, variable speed equipment is desirable for agitators. Power requirement is about i.3 hp per 10,006 cumd flow. A recent trend in chemical mixing favors use of inmine blenders.

Coagulation and flocculation are greatly influenced by physical and chemical oharacteristics of water, including particle size and-concentration, pH , water temperature, exchenge capacity and electrolyte concentrations. The beham viour of water to be treated in a proposed plant can be best determined by: (1) laboratory testing using "jar test" technique, followed by laboratory filtration or (2) pilot plant.

The sequence of addition of chemioals for coasulation is often important and multiple points of application of the chemicals are therefore required. The chemicals ordinarily used are a pH-adjusting compound, such as lime or an acidic substance, the coagulant (normally aluminum sulfate or a ferric compound), and a coagulant or flocculation aid. Prechlorination treatment is commonly applied to water before or after a coagulant. Activated carbon for taste and odor control is usually applied at raw water intake to provide sufficient period of detention time.

Flooculation. Flocculation process follows chemioal mixing. Detention time used for the design of flocculation basins will be 60 minutes. To increase floc strength, usage of chemical agents such as activated silica and polyelectrolytes may be considered. For the provincial areas in the Philippines non-mechanical type of baffled flocculation basins may be economical. A distinct advantage of baffled flocculation basins is elimination of short oircuiting of flow. However, the mixing intensity in this type of basin is dependent on flow rate.

$$
A-21
$$

The easiest way to manage flocculated water is to build the flocculation and sedimentiation basins integrally, with a permeable barfle discharging the flocoulated water into the sedimentam tion basin to assure uniform horizontal and vertical distribution of settling tank influent.

Sedimentation. This process usually finds application in two principal ways in water treatment: plain sedimentation and sedimentation following coagulation and flocculation. Plain sedimentation is usually used to reduce heavy sediment loads prior to complete treatment; therefore it is often referred to as presedimentation.

Sedimentation following chemical coserlation and flooculan tion is used to remove color and turbidity by addine coagulants, and to remove hardness by adding lime and soda ash. This type of sedimentation follows presedimentation (if used) and aeration and precedes filtration.

In the design of sedimentation tanks, ideally, four zones are considered:
a) an inlet zone to provide smooth transition from the influent flow to the uniform, steady flow desired in the settling zone. In general, the flocculation and settline basins are located in the same rectangular tank to eliminate the need for a channeJ. inlet.
b) a settling zone to provide tank volume for settling, free from the other three zones.
c) a sludge zone to receive the settled material and prevent it from interfering with the eedimentation of particles in the settling zone.
d) an outlet zone to provide smooth transition from the settling zone to the effluent flow. The water level in settling tanks is usually controlled at the outlet. Basin outlets are often of $\mathrm{v}-$ notch weir type, and these are quite often provided with means for vertical adjustment to aid in control of the overflow.

Most sedimentation tanks used in water purifioation today are of the horizontal flow type. The other types are known as upward-flow solids contact units and upward-flow sludge

$$
A-22
$$

blanket type clarification basins. Because of simplicity in constmuction, operation and maintenance the rorizontal-flow trpe basins are expected to be applicable in the Philippines.

Horizontal-flow tanks may be either rectangular or circular in plan. Circular horizontal-flow tanks are usually center feed type with radial flo:v. In a rectangular tank the flow lines are parallel and all in one direction. The flow usually enters one ond of the tank through a nerforated or diffusion wall, travels the leneth of the tank, and then exits over some type of effluent woirs the choice of rectangular or circular horizontal-flow type is umually based on designer's preference and site limitations. Many sedmentation basins are equipped with mechanical equipment for the continuous removal of settled solids.

The standard approach in designing a sedimentation basin is to satisfy design criteria that have been arrived at through experionce with full-scale plant operations and from pilntplant research. Raw water quality varies from one source to another, therefore, only tentative design criteria can be established for preliminary lesign works.

The tomperature of the water, the snecific gravity of matem rials in suspension, and the size and shape of the suspended p;...: ?ns influence sedimentiation process. Experience has shom arst hreher tank overflow rates can be used in warm waters. A particle with hischer specific gravity will settle faster. The time of retention in the sedimentation tank is important, because loner time permits more floc contacts and, hence, more floc growth.

The purpose of the settiline tank is to hold the water for a period of time during which the velooity of flow through the tank has been creatly decreased to allow sedimentation to occur. The main cheracteristics of sedimentation tank involvad include the tank surface area, which is dependent on the surface overflow rate, the tank depth, which is dependent on the detention time, the velocity of flow through the tanks, which is a function of the cross-sectional area of the tank, which in turn is a function of the length/width ratio of the tank, its surface area, and depth.

Preliminary design parameters of settling basins are show in Appendix Table Am.
design paraienters of setiling basins

Raw Water	Treatment	$\begin{aligned} & \text { Overflow Rate } \\ & \text { (cum/day/acu) } \end{aligned}$	Detention Time (hr)	Velocity Through Hasin m/min	Tank Depth \qquad (四)
Surface	Alum floc 9	25-50	2-4	0.15-0.50	3-4
	Ferrous floo 9	30-50	2-4	0.15-0.50	3-4
Surface or ground	Lime softening	40-60	1-3	0.20-0.60	3-4
	Without aubsequent filtration	10.20	8-12	0.05-0.20	4-5
	Plain sedimentation	100	1-4	0.3-1.0	3-5

Rectangular tanks can be constructed with practical lengths up to a maximum of about 80 meters. Generally, a length to width ratio between $3: 1$ to $5: 1$ is used. Rectangular tanks will have a minimum depth of about 2.5 m and a recommended depth range from 2.5 to 5 meters. Where area is available, the shallower depthe, are preferable. In addition to the caloulated settling basin, a provision for inlet, outlet and sludge collection zones, will be made.

The number of tanks to be provided is determined by the total flow, desired degree of flexibility of operation, and economy of design. A minimum of two basins mast be provided. In larger plants, the number of units provided may be determined by the maximum practical size of a single tank.

The calculated width or diameter of a tank would, later, be adjusted to the next standard size of tank, for whioh meohanical collectors are available, and for rectangular type the length would be adjusted accordingly. Basins not provided with sludge removal oquipment will be made deep enough to provide sufficient volume of sludge storage oapacity. Typical basin outlet overflow rates are shown in Appendix Table A-3. In reotangular tanks, the overflow weir length required oannot usually be obtained with a single weir across the end of the tank. The required length is usually provided by a weir extension in the third outlet of the tank.

With subsequent filtration.

$$
A-24
$$

APPENDIX TABLE A-3
TYPICAL WEIR OVERFLON RATES

Type of Treatment	Weir Overflo \qquad
Light alum floc	150
(low turbidity water)	
Heavier alum fioc	200
(higher turbidity water)	
Heavy floc from lime softening	g 300

If gravity discharge of the sludge from the mechanically cleaned sedimentation tank is not feasible, sludge punps of sufficient capacity must be installed.

Filtration. The goal of water treatment is to obtain the greatest clarity (or lowest turbidity) of the filter effluent. Water filtration is a physical and chemical process for separating suspended and colloidal impurities from water by passage through a porous medium, usually a bed of single or multi-layer granular material.

Filtration may be olassified hydraulically as slow or rapid, depending upon the rate of flow per unit of surface area. Slow sand filters operate at a rate as high as $9 \mathrm{cum} / \mathrm{day} / \mathrm{sqm}$, and rapid or high rate filters operate as high as $20 \mathrm{cum} / \mathrm{hr} / \mathrm{sqm}$. One of the principal drawbacks to the use of slow sand filters is the large land area required. Another is the difficulty of getting gnod results under all raw water conditions. Slow sand filters are cleaned by scraping a surface layer of sand and washing the rem moved sand and returning it to the bed. Algae growth is another problem with slow sand filters specially in bot climates. As slow sand filters require minimur amount of mechanical equipment it may be considered in the provincial areas of the Fhilippines where plenty of land is available and when it is justified economically.

In the design of new plants, the gravity rapid filter with coarse-to-fine media (dual media) is the obvious choice for the great majority of installations. The best example of this is the coal-sand filter with a coarse coal layer of about 18 in deep above a fine sand layer of about 8 in thick. The filter

$$
A-25
$$

media are supported by an underdrain system. The most important function of the filter underdrain is to provide uniform distribution of backwash water. It also serves to collect the filtered water. With many types of filter bottoms or underdrains, a supporting bed of gravel is used to keep the sand out of the underdrain and olearwell during filtration and to assist in uniform distribution of washwater during cleaning of beds. A gravel depth of 12 in is usually adequato. The silica sand used in the finter media is specified to have an effective size of $0.35-0.50 \mathrm{~mm}$ and uniformity coefficient of about l.?. Crushed anthracite coal has a specific gravity of 1.5 , as compared to 2.65 for silica sand. Effective sizes of coal up to 0.7 mm are used in filters.

Efficiency of dual media filters can be increased by the use of polyelectrolyte filter aid in small dose, usually $0.01-0.05 \mathrm{mg} / \mathrm{l}_{\text {. }}$.

Warm water is easier to filter than cold water. Filtrability is the most important property of the applied water. Pilot plant studies are strongly recommended in preparation to filter plant design not only for filtrability of raw water and filter design but also for the measurements of wash rates and expansion required to fluidize the proposed bed.

The usual number of filter units is four, except in small plants where it may be two. The maximum size of individual filter units is governed principally by the rate at which washwater must be supplied and by problems in securine uniform distribution of washwater that increase with larger areas. The largest filter unit normally employed is about 200 sqw. A unit of this size would be divided into two units of equal size, so that each half could be backwashed separately. For the preliminary design a filtration rate of $10 \mathrm{cum} / \mathrm{hr} / \mathrm{sqm}$ will be used.

Filters are usually laid out side by side in rows along one side or along both sides of a pipe gallery. One end of the row of filters should be kept unobstructed to permit future expansion. In proposed plants in the Philippines the filter tops will be open as there will be no freezing problem. Clearwell storage will be located not underneath the pipe gallery but in an area adjacent to the filter basins.

Depth of water over the filter media for warm water may be about 1.5 meters. This much of adequate water depth above the media would reduce the possibility of air binding during loss of head operation.

Filter backwashing is done to remove from the bad all of the foreign material collected in the bed during the preceding filter run. In warm climates a maximum upward backwash flow of $50-60 \mathrm{cum} / \mathrm{hr}$ /aqm must be provided. Hastewater from backwash is colleoted in washwater troughs and conveyed into a waste drain.

Filters are equipped with a means of controlling the rate of flow through each bed.

Baoterial removal by filtration is never 100 per cent, and the filtered water must be chlorinated for satisfactory disinfection. Provisions should be made to chlorinate filter influent and offluent.

Appendix Table A-d shows the recommended yelonitiag for water filtration units:

APFENDIX TABLE A-4
RECOMMENDED VELOCITIES FOR FILTRATION URITS

Location	Velocity (u/seo.
Influent	1.0
Effluent	1.5
Backwash	3.5
Waste	2.0

Cost Eatimates

The oonstruction cost estimates of proposed improvements will be based on projeoted July 1976 unit prices. The estimates will show foreign and looal cost components of the projeot oost. Construction cost projeotions will be made for all iteme which will be included in a water supply project. When using a souroe information outaide the Philippines necesbary adjuatment will be made to refleot the looal labor cost. All estimates will be based on an exchange rate of $P 7$ to 1 US dollar. It will be assumed that no customs duty will be charged on itema imported for pablic water aupply projeote. Separate oost indices for looal and foreign cost componente will be developed. Cost tablea will be prepared to show a breakdown of the estimated oonstruation cost for major items.

$$
A=27
$$

The total project cost of any alternative soheme will be computed in the following manner:

1. Construstion Cost: A
2. Engineering and Contingencies
0.25A

Sub-total B
3. Land Cost C

Sub-total D
4. Administrative and Legal Fees: 0.03 D

Sub-total E
5. Interest Durin: Construction (at 12\%) F

Total Project Cost G
Economic_Cost Comparison
In the determination of the least cost water supply scheme present worth cost comparison will be utilized. The present worth cost estimates will be based on the following criteria:

Base Year: 1976
Discount Rate: 12\%
Service Life of Facilites:
a) tructures and Pipelines: 50 years
b) Hechanical Jquipnent: 25 years
c) Land: infinite

Total project cost will include construction cost, engineering and contingencies, land cost, administrative and legal fees and interst during construction. Present worth of capital costa will be calculated backward from completion time of construction.

Construction period will be estimated on the basis of similar type of facility construction in the Philippines.

Annual costs will include personnel, power, chemicals, and maintenance costs. These estimates will be carried out for the years 1975, 1990 and 2000. Present worth cost of annual expenditures will be based on gradient series at 12\%. interest rate.

Cost of any facility to be replaced during design period (1975-2000) will be included in the present worth cost analysis.

$$
A-28
$$

Ho escalation factor will be applied to July 1976 prices as all of the schemes will be ajfeoted in the same rate.

Salvage value of a facility will be estimated by uaing linear depreciation fer its value thrcughout its service life.

Economic comparison of altsrnative schemen and seleotion of the least cost scheme will be based on present worth of net disbursements during the period of 1976-2000.

$$
A-29
$$

A PPENDIXB

BASIS OF COST BSTIMATES

TABLE OF CONTENTS

Sub-Title Page
General B-1
Tams and Appurtenances B-2
Tunnels B-2
Deep Wells B-2
Deep Well Pumps and Pumphouses B-7
Kater Pump Sta ions B-7
Water Treatment Plants B-7
Water Mains B-7
Booster Pump Stations B-8
Ground Storage Reservoirs B-8
Cate Valves B-8
Butterfly Valves B-11
Miscellaneous Valves B-11
Firg Hydrants B-11
Service Connections B-11

APPENDIX B

BASIS OF COST ESTIMATES

General

Cost data refer basically to estimated construction costs, which inolude all materials and labor, together with some allowance for related miscellaneous work and contractor's overhead and profit. The cost data have been converted to unit prices in table or ourve form for easy application during feasibility studies. In developing the eatimates, data and information from various sources include ing local engineering consulting firms, materials and equipment manufacturers and suppliers, and construction contractors have been utilized. In some cases, prioes and cost estimates frow the Onited States, modified and adjusted to suit local conditions, were also used. The cost figures have been projeoted to prices likely to prevail in July 1976.

Construction costs undergo short and/or long-term changes refleoting fluctuation in the local (national) economy and world prices. In the United States, construction oost trends are printed weekly in the Eingineering News Record (ENR) and used axtensively as a guide for construction cost projeotions. Based on price movements of structural steel, portland cement, lumber and common labor, and beginning with base of 100 in 1913, this inder has risen steadily and had a value of about 2,100 in mid-1974.

Cost analysis includes the development of construction oost indices (CCI) for local and foreign exchange component (FEC) of the oont. Price indices furnished by the Department of Eoonomic Research, Central Bank of the Philippines (CBP) were applied to labor (unskilled and skilled), local materials, contractor's overhead, and profit. The CBP Consumer Price Indices for all items were applied to the labor and profit components of construction work. For local materials, the Retail Price Indices for constraction materials were used. For imported mechanical and transportation equipment the ENR cost index was adopted. The reaulting projections to July 1976 are shown in Appendix Figures B-1 and B-2.

The unit costs which are developed for this study are for construction costs only. The total project oost would include other items as surveys and engineerinc, contingencies, land and easement cost, administrative and legal costs, and interest during construction. The projeot cost is the sum of construction cost, 25% engineering and contingencies, land cost, 3% administrative and legal costs, and 12 per cent interest during construction.

Dama and Appurtenanoes

Dans and appurtenances are special structures and as muoh, they must be treated individually in developing estimates for construction costs. Unit costs for items of work that mormally enter into the construction of earthfill dams and appartonanoes are listed in Appendix Table B-l. Application of the uadt oost to estimated quantities for a given dam project will yeld eatio mates of the construction oost for the projeot or omponenta thereof.

Tumnels

The constriotion costs of tunnels are heavily dependent on a large number of variables. Among these are the typas of rook or other material encountered, the physical or atruotural defeots of the rooks, the extent to which water is present in the forman tions along the route of the proposed tanel, length of tunnel to ibe driven, the size and shape of tumel, the method of attaoline the tunnel headinge or faoes, method of drilling (conventional vie machine), ventilation and dust control requiremente, the molanc operation employed, timbering, eteel aupports and reak bolts required, deaign and thiokness of conorete lining, the skill and ability of workmen, and the knowledge and experieno of their supervisors. Reasomably accurate construction oosta of tunnels are difficult to estimate, more so in the absence of cost data on existinc installations. Reliable estimates can be made only after thorough investigaticn of the tunnel route by boringe, geologionl studs and consultation with specialists in tunnel construction. The unit price approach, i.0. cost per unit longth of tunnel, to tunnelling cost astinates is risk and can reanlt in mubtantial arrorbe.

For the purposes of this atuds, estimating prioes develeped ifor twmels are those for component or appurtonant work for tuanelw IIfing rather than for the completed tunnel. The cost figures are uperented in Appendix Table B-2. Construction oost for each trinnel iprojeot mat be estimated individually.

Paep Wel1s

- Cokt data for deep woll construction are presented in Appendir Hipure B-3. The costs are based on actual costs, isid prices, and contract prices for deep wells.

The ostimating prioes inolude materials and labor coste and rase fior non-gravel packed wells with parforated oasing in lien of aivell soreon. Costs of materials are based on the use of imperted

NOTE :

```
BASE YEAR IS 1913, WITH
CONSTRUCTION COST INDEX = 100
```


NOTE :

```
BASE YEAR IS 1965, WITH
CONSTRUCTION COST INDEX = 100
```


NOTES:
I. COST INCLUDES MOBILIZATION AND demobilization, drilling, casing, screen, developing and grouting.
2. FOREIGN EXCHANGE COMPONENT IS ABOUT 25% OF TOTAL COST.
A. Dam Embankment

Item	Unit	$\begin{gathered} \text { Unit Cost } \\ \text { (July 1976) } \\ (P) \end{gathered}$	Remarks
Mobilization	L.s. ${ }^{2}$	300,000	
Clearine and Grubbinis	ha	1,500	Under mater add 15\%
Common Exeavation	cum	16	Under water add 15\%
Hard yan Excavation	cum	20	Under water add 15\%
Fook Sravation	cum	25	Under water add 15\%
Rockfill for embankment quarry excavation	cum	65	
Hauling and Placement	cum/km	8	
Placement of coarse agregate	cum	12	
Placement of fine augregate	cum	12	
Impervious earth core			
haulind	cum/km	8	
placement	cum	7	
Backfill			
dunup	cum	8	
compacted (machine)	cum	60	
Crushed rock	cum	50	material
Riprap (placement)	sqm	30	
Steel sheet pile in place	ton	10,000	
B. Roads			
Common Bxcavation for Roads	cum	4	
Road Embankment	cum		placement and compaction
${ }^{\text {l Foreign exchange component of dams and appurtenances is } 30 \% \text { of }}$ total construction cost.			

$$
B-3
$$

APPENDIX TABLE B-1 (Continued)

Maoadam Pavement	sqm	20
Bituminous Surface	sqm	27

C. Spillway

Excavation
Concrete (Plain)
neinforced Concrete
cum $\quad 900$
D. Miscellaneou:

Generators
25 kw
50 kw
100 kw
250 kw
Structural Steel
Sluice Gates
Miscellaneous

L.S.	3,000
L.S.	10,000
L.S.	15,000
L.S.	20,000
ton	8,000
L.S.	50,000
I.S.	10% of Total

APFENDIX TABLE B-2
TUNNEL CONSTRUCTION COST 3 ESTIMATES
(July 1976 prinas)

Item Mumber	Nork Descrintion	Foresen Exchange Component (\% of total)	Total Unit Coot - (noeon)
A. Items with Unit quantitien			
1	Open Exaavation		
	a) Rook	45	25/00m
	b) Hard Pan	45	20/00xs
	o) Soil	40	16/oum
2	Tunnel Excavation	50	100/0rm
3	Thnnel-Corscreta Lining	10	600/0um
4	Tunnel-Steel Supports	30	(See page 6)
5	Rock Bolts	20	(See page 6)
6	Grout ing	10	(Soe page 6)
7	Drainage and Ventilation		(See page 6)
8	Misoollaneous	20	(See page 6)
9	Cofferdam and General Dowatering	- 17	(See page 6)

${ }^{3}$ Does not include encineoring and contincenoies, land cost, administrative and legal fees.

$$
B-5
$$

```
APFENDLX TABLE FMQ (Contlnued)
```

B. Unit Prices Variable With Tmanel Insicio Diameter (All unit pricas in pesoli por meter of tunnel)

Itera Number	Work Description	Tunnel diameter (m)				
		2.5	3.0	4.0	5.0	720
4	Stoel Supporte ${ }^{4}$	800	900	1,100	1,300	1,550
5	Rock Rolts ${ }^{4}$	350	400	450	500	550
6	Grouting 4	400	500	650	800	900
7	Mrainage and Ventilation	500	550	600	650	650
8	Miscollanecus	500	600	750	900	1,000

C. Estinated Lump Sum Cort For Corferdam; Channels and Ceneral Dewaterimg.

Drainage Area ot liver (Bakm)	Esíimated Cost $\mathbf{P} \times 10^{6}$
$40-50$	2.0
$50-100$	3.0
$100-200$	4.0
$200-500$	4.5
$500-800$	5.0

D. Mobilization and Demobilization $=P 200,000$
${ }^{4}$ For required length only.

$$
B-6
$$

Schedule 40 blaok iron pipe casing. Labor costs include mobilization and demobilization charges, drilline, installation of casing; perforating, developing the well, test pumping, well disinfeotion, and grouting the upper 15 to 30 m of the well.

Duep Well Pumps ard Pumphouses

Construction cost estimates for deep well pumps and pumphouses are shown in Appendix Figure B-4. The estimates in Appendiy Figure B-4 are based on the use of diesel encine driven deep well turbine pumps and include discharge piping and valves, controls, miscella neous materials, and installation. The pumphouse is assumed to be constructed of masonry or cast-in-place reinforoed concrete walls and roof of wooden members and corrugated galvanized iron roofing sheets. Alternatively, cast-in-place reinforced conorete flat slab roof may be employed. Costs do not include the cost of the land and other site improvements.

Water Pump Stations

The cost curves which are shown in Figure B-5 are for a pump station adjacent to a river or lake. The cost of this type of pump station includes an approach channel, intake structure and a pump wet well. A superstructure for housing pump, motors and controls and necessary pipine is also included. Cost of land, power transmission and substation, and access road must be added to the cost obtained from Appendix Figure B-5.

Water Treatment Plants

Numerous water treatment plants with various capacitias have been built in the United States. Therefore, it was possible to develop cost curves for the treatment plants based on plant capam cities to use in the preliminary cost estimates. However, it was necessary to modify U.S. costs to reflect differing construction oosts in the Philippines. The resulting construction costs are shown in Appendix Figure B-6. Costs related to land purchase, access road and power facilities will have to be added to the costs obtained from these curves.

Water Mains

Cost studies have been made on pipes of various materials including cast iron, asbestos cement, steel, ductile iron and pre-stressed concrete. The unit cost of pipelines is based on the assumption that all pipes will be locally manufactured. The estimated unit in-place costs based on lower limit of cost envelope,

$$
B-7
$$

are presented in Appandix Tables B-3a and B-3b. The costs include pipe, fittines, jointine materials, excavation, pipe bedding, baokfill, laying and jointing, concrete thrust blooks, pressure and leakage testing, disinfection and flushing, pavement replacement, clean up, traisportation, continfencies, and contractor's overhead and profit. Cast iron pipe costs assume AhWA class 150 pipe with inside cement linins; outside tar coating, and bell and spigot lead caulked joints, Costs for asbestos cement pipe are for Class 25, 1SO R160 speoifications, with sleeve-type coupling joints. Costs for steel pipes are based on pipe with a wall thickness of 0.25 inch, with inside cement lining and outside double-enamel coating.

Booster Pump Station

Cost curves for booster pump stations are shown in Appendix Figure B-7. Development of these curves is based on available local information and US costs with some adjustment for the labor component, Booster pump station costs include pumps and motors, necessary controls, piping and a superstructure. Depending on location of the pump station, cost of access road, power transmission line and a substation and land would have to be added to the costr obtained from this curve.

Ground Storage Reservoirs

Constmiction oost estimates of ground storage reservoirs are presented in Appendix Figure B-8, including steel, reinforced ooncrete and prestressed concrete tanks. The costs for steel and reinforced concrete tanks are based on updated costs of actual construction in the past in the Philippines and in other parts of the world.

For tanks constructed of prestressed concrete, the costs were based on prices of similar tanke constructed in the United States adjusted to reflect looal prices of materials and labor and on the assumption that local expertise, equipment and facilities for such construction are available. At present, prestressed concrete tanks are not constructed in the Philippines.

Tank costs include ordinary piping, valving, and tank aocessories such as vent, aocess manhole, ladder rungs, eto. The costs do not include special valves and controls, land taking and access road.

Gate Valves

Gate valves up to 600 mm diameter can be manufactured in the Philippines. Unit costs for gate valves are based on the prices of locally manufactured valves. However, studies indicate that the prices of imported (U.S.) gate valven conforming to AWWA Standard 0500 are only slightly higher than the locally manufactured valves. The in-place estimating prices for gate valves up to 300 mm diameter are shown In Appendix Table B-4. The unit prices include a locally manufactured cast iron valve box and cover.

NOTE :

I. COST INCLUDES PUMP AND ENGINE DRIVE, CONTROLS, VALVES, FITTINGS, PUMP HOUSE, and installation.

APPENDIX FIGURE B-4 DEEP WELL PUMP

CAPACITY, THOUSAND CUMD

CAPACITY, MGD

NOTE :

I. COST INCLUDES CHEMICAL MIXING,

FLOCCULATION, SETTLING BASINS;
RAPID SAND FILTERS; CHLORINATION ;
SITE WORK ; STRUCTURES AND EQUIPMENT.

WATER TREATMENT PLANT CONSTRUCTION COSTS (JULY 1976 PRICES)

APPENDIX TABLE B-3a
 ESTIMATRED UNIT COSTS FOR PIPELINES IN PLACE5
 JULY 1976

$\begin{aligned} & \text { Diameter } \\ & (\mathrm{mm}) \\ & \hline \end{aligned}$	Peso Component \qquad ($P / \mathrm{m})$	Foreign Exchange Component ($\$ / n$)	Total (r / m)
100	94	3.7	120
150	140	5.7	180
200	190	10.0	260
250	330	14.3	430
300	400	21.4	550
400	530	35.7	780
450	640	65.7	1,100
500	740	80.0	1,300
600	900	90.0	1,530
800	1,090	111.4	1,870
900	1,605	108.0	2,360
1,200	2,000	183.0	3,280
1,350	2,660	295.7	4,590
1,500	2,890	337.0	5,250

$5_{\text {The above unit costs are used in the alternative studies. }}$

$$
B-9
$$

APPENDIX TABLE B-3b

ESTIMATED UNIT COSTS FOR PIPBLINES IN PLACE ${ }^{6}$
 July 1976

$\begin{aligned} & \text { Pipe } \\ & \text { Diameter } \\ & (\mathrm{mm}) \\ & \hline \end{aligned}$	Feso Component \qquad	Foreign Component	$\begin{aligned} & \text { Total } \\ & (P / \mathrm{m}) \end{aligned}$
100	113	4.5	145
150	190	7.8	245
200	263	13.8	360
250	350	17.9	475
300	436	23.4	600
350	429	44.4	740
400	505	52.1	870
450	586	60.6	1,010
500	650	67.1	1,120
600	802	79.7	1,360
700	976	89.1	1,600
750	1,103	92.4	1,750
800	1,160	97.1	1,840
900	1,336	112.0	2,120
1,000	1,468	123.1	2,330
1,050	1,575	132.1	2,500
1,100	1,657	139.0	2,630
1,200	1,757	160.4	2,880

[^1]$$
B-10
$$

APPENDIX TABLE B-4

ESTIMATED IN-PLACE COSTS ${ }^{\prime}$ OF GATE VALVES, BUTTERFLY VALVES

Inside Diameter (mn)	Item	In-Place Cost P/unit
100	Gate Valve	F 2,040
150	Cate Valve	2,800
200	Gate Valve	4,310
250	Gate Valve	5,780
300	Gate Valve	7,240
300	Butterfly Valve	7,400
350	Butterfly Valve	9,400
400	Butterfly Valve	12,000
450	Butterfly Valve	16,300
500	Butterfly Valve	19,300
600	Butterfly Valve	45,200
750	Butterfly Valve	75,600
900	Butterfly Valve	113,000

7 a) Include valve box and cover of each item given.
b) Costs are for July 1976.
c) Gate valves are locally manufactured items.
d) Butterfly valves are imported items.

Butterfly Valves

Current local practice uses butterfly valves instead of gate valves for sizes 400 mm and larger. Butterfly valves are not manufactured in the Philippines and therefore cost data for this type of vaive are based on the assumption that these valves will be ireported. The unit in-place costs are given in Appendix Table B-4.

Miscellaneous Valves

Miscellaneous valves employed in water supply systems include check valves, pressure reducing valves, altitude valves and surge relief valves. Except for small size check valves, none of these valves is manufactured locally.

The unit costs are based on the assumption that all materials to be used, except the valves themselves, are locally menufactured.

The costs of altitude and pressure reducing valves include an isolation valve (gate of butterfly depinding on size) before and after the main valve and a valved by-pess line of the same diameter as the main line. The costs of surge relief valves include a shutoff valve (gate or butterfly) preceding the relief valve. All unit costs include all fittings, connections, and miscellaneous materials.

Fire Hydrants

The unit in-place costs for fire hydrants assume the use of dry barrel, compression type, traffic model hydrant with $2 \frac{1}{2}-1 n$ hose connection and one 4 -in pumper connection. The cost figures are shown in Appendix Table B-5 and include fire hydrant, gate valve, tee filling, jointine materials, concrete thrust blocks, miscellaneous materials, and installation. All materials are assumed to be locally manufactured.

Service Connections

Cost data for service connections developed for this work are for two types of service lines. In the first type, the service line consists essentially of flexible polyethylene (PE) plastic pipe without a "gooseneck". The other type consists of a service line made up of GI pipe and employs a PE plastic pipe gooseneck.

The unit in-place estimating prices for service connections from $\frac{1}{2}$ in to 2 in are shown in Appendix Table B-6. The cost figures

APPENDIX TABIE B-5

FIRE HYDRANTS

Size (inlet oonnection)	In Place Cost) (f)
100 mmn	7,900
150 mm	8,800

APPENDIX TABLE Bmb
ESTIMATED INIT CONSTRUCTION COSTSIO FOR HOUSE SERVICE CONNECTIONS

Diameter (in)	PE Pipe Service Connection (F)	GI Pipe Service Comnection (F)
	366	414
$\frac{3}{2}$	399	494
$\frac{3}{4}$	509	606
1	706	855
$1 \frac{1}{4}$	872	1,068
$1 \frac{1}{2}$	1,260	1,462

9a) Costs are for July 1976.
b) Hydrants are locally manufactured.
10. a) Above costa are for July 1976.
b) Costs do not include ourb stop, ourb box and cover, water meter, and surface or pavement replacement.
c) All materials are locally manufactured.
are based on the assumption that all materials and components of the sexvice connection would be locally manufactured. The unit costs also assume connection to asbestos cement water distribution mains and include a service clamp in all cases.

Not included in the unit costs are curb atops, curb boxes, and water meters. The in-place prices of these items should be added to the tabulated unit costs should it be desired to include them in the installation and estimating prices.

A PPENDIXC

CONSTRUCTION MATERIALS AND METHODS

APPENDIX C CONSTRUCTION METHODS AND MATERIALS

TABLE OF CONTEANS

Sab-Title
General C-1
Factors Affeoting Construotion C-1
Construction Materials and Methods for Waterworks Projects C-3
Sand and Gravel C-3
Cement C-3
Reinforcing Steel C-4
Concrete C-4
Asbertos Cement Pipe C-4
Cast Iron and Ductile Pipe C-6
Steel Pipe C-8
Prestressed Concrete Pressure Pipe C-9
Plastic Pipe C-9
Valves and Fire Hydrants C-11
Water Service Lines C-12
Water Meters C-13
Construction Methods for Water System Components C-13
Deep Wells C-14
Water Main Construction Procedures C-14
Pipe Cleaning and Lining C-19
Pipe Cleaning in the Philippines C-23
Tunnel Construction Methods C-23
Pumping Stations C-24
Raw Water Pumping Stations C-25
Water Storage Tanks c-25
Water Treatment Plants c-26
smmedic 6

General

The conetroction of water supply system components such as source of ampily facilities, transmission mains, treatment and Gutribution arfam woxs requires a wide range of bonstruction poocduros and spocific materisls designed for each purpose, Oonctwotion my vasy from the laying of mall underground pipelines to the constridion of relatively large structures including ths constriction of huildings. installation of complicated mechaaical and ciectrioal gcuipment, orcavation of all types, construction belod ereund level, pavement removal and replacement, and a host of other types of construction dependine on the nature, magnitude and complexity of the waterwocks project. This chapter descuben curtain materials and methods of importance in obtaining the class of ornetruction needed to carry out the intent of preliminary designe Construction mett be such that proper and economical operation is assured in order to protect the large inveetment that must he made to achieve the goal which is to make an adequate supply of safe and potable water available to the people.

Factora Affocting Construction

Factore affecting the factlity and cost of construction of witer gystem components include climate and weather conditions, avallability of construction meterials, availability of skilled and compon labor, apecial construction equipment requirements, exiating developments, ank soil conditions.

The climate of the ara will incluence the construction methode to be uced ancl the speed with which work can proceed. For example, protracted periods of intense rainfall will caune interruption and delay in construction work and may require whoring or bracing trenches for water mains to prevent their collapse and trench dewatering facilities. Adverse weather conditione will also affect the logistics of construction as the delivery and transportation of materials may be prevented or delayed.

A signiticant climatic factor in many parts of the Philippines is the irequency of tropical cyclones. An average of 19 tropical cyclones form in or enter the Philippine area of responsibility amually, Some areas in the Philippines are more susceptible to tropical. cyclones then others. Aside from preventing prosecution of the work, tropicel cyclones may also inflict significant damage on work already completed or in progress.

$$
c=1
$$

Other physical factors that could greatly affoct the congtruotion of water system facilities, partioularly water distribution main construction procedures, are the width of streets; presence or abm sence of sidewalks, curbs, and gutters; traffic density; and other exiating or proposed underground atilities.

Soil conditions are expected to vary for different aress and from place to place in auy given area. Pertinent soil information for the construction of the varions composents of the water system improvements should be gathered and evaluated in order that any epeoial oonstruction problgie or requirement oan be properly determinod and provided for. For example, soils with high sulfate oontent way eliminate consideration of asbestos oesent pipe for mater mains. In cases where transmission and distribution mains are to be laid in anstable soils, across streams, swamps, or marshlands, the soil conditions should bs thoroughly checked that they can withstand the load, or the pipeline materials and joints should be seleoted and designed with provision for any exoessive settlement that may ocour.

There is a large reservoir of lebor and skills in the Philippines to aarry out the vast oonstruction work involved in water supply system development or improvement. It may be necessary, however, to bring in to the project area certain technioal persennel and apecialists to supervise the work and installation, and to inge truot in the maintenance and operation of complicated items of mahinery and equipment.

In some large Philippine cities, there may be local construction oontractors with the competence and resources to undertake all or portion of a waterworks project. In the eveat that looal oonstruction expertise and capability are not available or are defioient in some respeots, several Metropolitan Manila - based construotion firms can be utilized for any and almost all of the work needed for water sapply projects.

Other typen of work require the use of apecialized equipment not only because it is virtually impossible or extremely diffioult to acoomplish the work with human phwer but also for faster, more efficient, more econowical, and better quality of work. In general, however, the use of equipment-intensive construction procedures for waterworks improvements in the Philippines should be avoided if possible. Common construction equipment such as truoks, oranes, eto., may be ivailable in some projeot areas. Governmentmomed oonstruotion equipmant for infrastruoture projeots assigned to highway regional or district offices way be available for use by private contractors on a rental basis.

Fristing and proposer dervelopasites in a projact aroa would norm mally oreate some problens with respeot to the oonstruction of water supply facilitieso For scouory and ease in construotion, the implementation of waterworks projects must be planned with due omsideration of other utilitias and publio works construction programs.

In axy canatruotion worky materialy and precoduree are twe of the most importand items agided for the suocemaful prosecution and completion of the project. Kany construction materiala and prom codures are common to several types of sonstruotion. Others are more apecialized in nature and apply only to cortain types of struotare or work. in the following sections ers digonesed some of the mem terials and pronedures shat are norwally needod and employed in the construotion of water supply systiens. Infosmation is presented an materials that go into ouncrote work, various pipe materials and valves, fire hydrante, service linesp prapgy and wator metern. With the expasing activitiee and programs in water aupply dovelopmeat in the Philippinem, the engineering and conetruction of large oapacity water supply works, such af transaission tumnels, mater maine, water treatment pients, punping stations, and storage rem sorvoirs are expeoted to increase. Gommon practioem in the construotion of these faoilities aye disousged briefly in this report.

Sand and Cravel

Sand and gravel may be needed in large quantities in a water mupply development project ares for use as conorete aggregates, pipe vedding, road surfacting, eto. Thavailability of the material: in the amounts noeded within reasonable hauling distance to a prom ject area could add matorially to the construction oosts. In any water mupply feasibility study and construotioa program, invertigutim should be oarried out to looate sourcas of sand and grevel and dom termine thedr euitability for the various works.

Cemont

Coment is manufactured in large quantities in the Philippines and in recent years has boen one of its export produotsio an of 1974, there wre 18 operating cement planta in the Philippinen, 11 looeted in lusom, two in the Visevas, and five in Kindanao. The majority of the existing cernent plants started original eperation or underwant expension within the last decade. In sdaition, 24 oement prom

$$
c-3
$$

jectis were registered with tha Becuritios and Exomang Commisaion. The operating plants have a total capacity of 173.4 willion bagy or' cement of 43 ke oach. Total production in 1.974 amountod to about 85 million bags, or about 3.6 midion metric tons, of which approximately 20 per oent was axported.

No aertous or speoial problem is likely to arise with raspect to oement requirenontis of caly water supply groject in the Philippinese

Retnforoins Steol

For reinforced conorete oanstruction, ateel reinforcing baras are fabricated by 27 ates. mills in the comatry. Reported productIon of reinforcing steel of the platiss for 1974 amounted to 240,000 metric tons. Steel manufacturing normally conforms to ASTM standarde. Roinforcing bars in aizes from 6 to 25 ma are reedity available. For the larger aizes, bans are availabie in plain and deformed sections.

Conorete

From the foregoing, it oan be concluled that all the principal materials needed for good quallits concrete oan be furniahed frow local (Philippine) sources. The quality of concrete needed for the various components of the develapment plan will have to be deternined during the final design stage of the project.

Asbostos Cement Pipe

Asbentos cement pipe was first made in Europe in 1913, and was introducad in the United States in 1929. However, ite extensive use for water system piping in the Pailippines etarted only in the sarly sixtius.

Asbestios cement pipe is manufactured from simplo ingredients: asbestos fiber, silioa sand, and ossent. Aobestos fibers make up the smallest percentage of the total volunse of pipe material ingrediente but their high tonsile properties add significantly to the overall pipe strength. The amount of sach element used varies but 1s usually in the following rengess asbestos, 15 to 20 per oent, silica, 32 to 34 per cent, and oement, 48 to 51 per cont. By virtuo of ita methods of mamufacture, asbestos cement pipe is smooth on the outside, and duc to the polished mandrel used in its formation, it mormally has a very smooth interior bore. Therefore no coatings of any kind are used. Because of its chemical oomposition, a巨bestos cement pipe is not easily affected by corrosive waters; however, it requires a special outaide coating for soils with high sulfate
content. With its smooth bore, it has a high "C" value at installam tion that can be expected to remain high throughout use. The low content of uncombined calcium hydroxide ensures that the leaching effects of soft waters will be at a minimum. Purchasers may specify a limit for uncombined calcium hydroxide. Disadvantages of this pipe inolude low strength, brittleness, disintegration, leakage, and low ductility.

Asbestos cement pipe whioh has been used for over a decade for water mains in the Philippines is widely accepted in this country and often has been the pipe material of choice for small sizes (80 mm to 300 ma) primarily beoause of its relative economy compared to rem rous pipes. The pipe is produced by two manufacturers with factories in Metropolitan Manila, and under the trade name Eternit and Italit, respectively. Pressure pipe is readily available in sizes from 80 mm to 600 mm for rated working pressures up to 130 mm . Pipes are generally manufactured acoording to ISO R-160 specifications and supplied in 4-meter lengths. A significant feature of asbestos cement pipe manufactured under the ISO specifioations is that the required test presm sure is only twice the rated working pressure.

Inquiries as to whether asbestos pipe conforming to AWWA standard C-400 can be manufactured by the local plants revealed that the pipes can be manufactured but at higher costs than ISO pipes because of the stringent requirements of the AWWA standard. For example, the AWWA standard requires a hydrostatic test pressure of $3 \frac{7}{2}$ times the rated working pressure.

The AHWA standard covers two types of asbestos cement pipe: Type I - for use where contact with aggressive waters and/or soils with sulfate content is not expected, and Type II - for use where contact with aggressive waters and/or soils with sulfate content is expected to oocur. The standard limits the unoombined calcium hydroxide (free lime) for Type II pipe to one per cent. To meet this requirement, the local manufacturers indicated that the cement to be used might have to be imported if locally produced cement would not prove suitable. For Type I pipe, there is no prescribed limit for uncombined calcium hydroxide.

Locally produced asbestos cement pipes are normally joined with a coupling of the same composition and strength as the pipe and joints are sealeí with double "0" rubber rings. Mechanical joints (Gibault joints) for joining asbestos cement pipes, or asbestos cement-to-oast iron pipe are also produced locally.

In recent years a question has beon raised with respect to the possible health hazard that may be associated with drinking water whioh has flowed through asbestos cement pipe. In an offort to determine the scope of the problem, the A/C Pipe Produoens Association (U.S.) oontraoted with the American Water Works Association Research Foundation to study the problem of asbestos in water, specifically with relation to the use of asbestos cement pipe. One conclusion of the recently completed study is that though asbestos in water has become a potentially serious health hazard the proper use of asbestos oement pipe for water does not pose a hazard to bealth by reason of ingestion of asbestos fibers. Highlights of the other findings and conclusions of the study are:
(1) Asbestos can oause granulomatous and fibrotio reactions in the lungs but there is no evidence that it does so in the gastro-intestinal tract.
(2) The general prevalence of asbestos in soil results in its presence in most waters of lake, river, and well origin, and in distribution systems whether fabricated of asbestos cement or other materials.
(3) Asbestos oement pipe systems have serviced large populations for 40 or more years in Europe and the United States with no apparent increase in peritoneal mesotheliomas among he publio during thiv period despite the fact this tumor has been the focus of great interest among the pathologist for the past 10 years.
(4) No firm evidence shows that the proper use of asbestos oement pipe poses a hazard to health by reason of ingestion of asbestos fibers. Calculations comparing the probable ingestion exposure in occupational groups to that likely to occur as a result of incestion of potable water from asbestos cement pipe systems suggest that the probability of risk to health from the use of such systems is small appreaching zero.

Based on the above, it is safe to assume that asbestos cement pipe is still an acceptable material for conveying and distributing public water supplies.

Cast Iron and Duotile Iron Pipe

General. There are two types of cast iron available for water systems: gray cast iron and ductile iron. Gray cast iron has a history of use that dates back more than 300 years. Ductile iron was developed in 1948, and its use has been inoreasing since 1960.

Gray oast iron has charactiristics of long-life, toughness, imperviousness, and ease of tapping, that are provided by the chenioal oomposition of the metal. Carrying oapacity is ensured by proper lining.

The produotion of gray cast iron pipe consists of melting the metal in a furnace (oupola), the addition of suoh other materials as needed for the final desired composition, and the actual casting, usually by a centrifugal process. As a molten iron is withdrawn from the cupola to a lade, small amounts of graphite and ferrosilicon are added to adjust the carbon and silicon content; this ie termed inoculation. The arsounts of oarbon, silicon, manganese, etc., although small, materially affect the stivacture of the iron. Each of the chemicals added is controlled in smounts to produce the desired qualities in the castings.

In gray cast iron, the major part of the carbon content ocours as free carbon or graphite in the form of flakes interspersed through out the metal. An appreoiable volume of graphite flakes makes gray cast iron more resistant to corrosion than the purer forme of iron because graphite does not corrode. Graphite in cast iron also affecte the machinability of the pipe, that is, it makes the pipe more easily tapped and threaded for insertion of a corporation cock.

Cast Iron P1pe. Cast iron pipe has been used for water supply systems in the Philippines for more than half a century. Prior to the introduction of asbestos cement pipe, cast iron dominated the market for water supply piping. Until looally manufactured cast iron pipe became available in the 1950's, all cast iron pipes used were imported.

At present, centrifugally cast iron pipe is maufactured by the Filipinc Pipe and Foundry Corporation and marketed under the trade name "Silva Pipes". This company's plant is located in Mandaluyong, Rizal and has an annual capacity of about 33,000 metrio tons. Pipes are centrifugally cast in metal molds and are available in sizes from 150 to 600 mm unlined or oement lined. The pipe is manufactured with bell and spigot ends for leadcaulked joints. Bell and spigot iron pipes are made in conformance with (U.S.) Federal Specification. or AWWA Standards. The Silva plant also manufactures oast iron fittinga, and Gibault joints for asbestos cement pipe to oast iron pipe,

Duotile Iron P1pe, Ductile iron pipe is stronger, tougher, and more ductile than gray cast iron, Its characteristios are due to the configuration of the free carbon or graphite in the iron. Duotile iron is defined as cast iron with graphite in spheroidal (nodular) form. It is produced by adding an inooulant, usually magnesium, to molten iron.

$$
c-7
$$

Ductile iron is chemically akin to gray cast iron of low phosphorous and low sulfur content, the latter obtainod by demulfurizing in the oupola. Magaesium can be added, after the removal of sulfur, in a post-inoculation treatment, with a vilicon-base magoom aium alloy.

Dactile iron pipe is centrifugaily cast in the amemanner an gray cast iron, but the melting and inoculation phase of the prooess ia more complex; the oasting phase is the same. At present, this type of pipe is not marufactured in the Philippines.

Steel Plpe

Early use of steel pipe for carrying water was in large, long, and exposed transmission lines in relatively dry areas where corrosion was not a problem. Other applications in other areas more oommon as coal-tar coatings boome avaijiable. Steel pipe is need in the Philippines in many distribution and transadeaion lines as woll as in inplant aystems. The American Water Worke Asaociation (AHWA) has prearibed standarde for steel pipe for use in water eystems. The Local Water Utilities diministration (UUA) of the Philippines has adopted (U.S.) Foderal Speoifications SS-P-385a äated Jamary 31, 1964 and mondent 1 dated Fobruary 27, 1968, with some modifications thereof, as its standards for ateol pipe and specials.

As desoribed by AWHA Standards, there ars two typen of eteel water pipe: fabricated, electrioaliy welded ateel pipe and milltype steel pipe: Both typee may be coated and linede

Pabrioated eleatrically inided pipe may be produced by autom matio welding machines or by manual operations. ANWA Standard C201 gives detailed apeaifioations for this type of pipen uillm type steel pipe may be furnace welded (contimuous butt-woldod or furnace butt-welded), electrioally welded, or ceanleas, airla Standard C2O2 sets forth the epeoifioations for mill-type steel pipes. An AWWA committee has been working to combine the abowo two standards into a single standard.

Large and gaall diameter steel pipen are manufactured ia the Philippines. The International Pipe Jrdustries Corporation with plant in Pasig, Rizal manufactures spixal welded pipe from 100 to 1,200 ma dismetor. As of January 1975, this plant had a oapacity of 15,000 metric tons per year but was undergoing expansion to double its present oapacity. Plpe oan be mamufactured and oement lined acoording to AWWA Standarde C2O2 and C2O5, renpeotively.

Five other plants produce small size pipe from 10 to 200 mm diameter. Both black and galvanized iron pipe can be produced according to ISO or ASTM Standards. In 1974, the total production of these five plants amounted to 31,600 metric tons.

Prestresged Concrete Pressure Pipe

There are four usual types of concrete water pipe, classified according to the method of reinforcement. These types are: cylinder, not prestressed; steel cylinder, prestressed; non-cylinder, not prestressed; non-cylinder, prestressed.

AVWA has set forth design requirements for the first three types of pipe including minimum wall and lining thickness, reinforcing spacing, and oore coat thiokness speoifioations.

The steel cylinder, not prestressed concrete pipe is covered under AlW. A Standard C300.

The prestressed concrete embedded oylinder pipe consists of a water tight steel oylinder, steel joint rings, a conorete core, high tensile wire reinforcing and a cement-mortar or concrete coating. Rasiging in diameter from 16 to 144 inches, it is considered highly suitable for major water supply and transmission lines. This type of pipe is also recommended for unusually high pressure distribution lines. AWWA Standard C3Ol covers this type of pipe.

The non-cylinder, not prestressed reinforced concrete pipe is normally produced in diameters from 600 to $3,500 \mathrm{~mm}$. It is a verm tically cast pipe with dense concrete walls reinforced by one or more steel cages. AWWA Standard covers this type of pipe.

The fourth type of conorete pipe (prestressed, non-cylinder type) is not covered by AWWA Standards. This pipe consists of a concrete core manufactured by centrifugation, both longitudinally and circumferentially prestressed by high tensile wire, and protected by a dense coating of premixed cement-mortar.

Although prestressed conorete pipe is not yet manufactured and used in the Philippines, it is recommended that this type of pipe, where it is applicable, be considered in the final desien of facilities. Unofficial information has revealed that two Philippine companies are planning to put up factories to manufacture prestressed concrete pressure pipes.

Plastio Pipe

Plastic pipe as a commercial product was first intoduced in Germany in 1930 and in the United States in 1940. Polyvinyl chloride (PVC) was the first type produced. Later came cellulose acetate

$$
c-9
$$

butyrate (CAB) and polyvixyledine ohloride (Saran). Volume produotion of pipe began in 1948, when polythylene (PE) was accepted for various water uses.

Early production of plastic pipe was in sizes below 50 mm , and most of the plastio pipe sold was for service lines and household plumbing systems. As developments in the plastics industry progressed, larger pipe sizes became available, and plastio pipe is today used for water distribution mains in many localities throughout the world, as well as for services and in plant piping systews.

There are about a dozen plastic materials that are, have been, or may be used in water sy日tems. Only three, however, are in common use: PVC, PS, and ABS (Aorylonitrile Butadiene Strynene). ABS has been used primarily for drainage, waste, and vent (DNV) pipe and fittinge for interior application. ABS has been popular a few yeare ago for water systems, but because it has only half the available hoop stress of PVC when subjected to internal pressure, the latter product is considered to be a better material for water lines.

Available U.S. standards for the manufacture of plastic pipe for use in water systems include ASTM, Department of Commerce, Commercial Standards, and USASI Standards.

PVC and PE pipes for use in water systems are manufactured in the Philippines. A PVC plant in Iligan City supplies most of the raw materials for PVC pipe to the local manufacturers. PVC pipe is available in sizes from 10 to 300 mm in 3 to 6 m lengths and standard thermo-plastic pipe dimension ratio (SDR) from 9 to 32.5 . The SDR is the ratio of pipe diameter to wall thickness. In the case of ABS and PVC pipe, the outside diameter is used; for PE, the inside pipe diameter is used. The SDR and hydrostatic desien stress of the pipe affects its pressure rating which is defined as the estimated maximum operating internal pressure at which the pipe oan function without failure.

Classes of PE pipe available include Medium Density, Schedule 40; and High Density, Schedule 40, 80 and 120. Pipe sizes are from 10 to $40 \mathrm{~m}, 60 \mathrm{~m}$ rolls for aizes 40 to 60 mm , and 25 to 30 m length for pipe 75 to 300 mm in diameter.

To date, plastic pipe has not been used extensively in the Philippines for water mains, Limited oxperience with PVC pipe water mains used in a high pressure distribution system has not been satisfactory because of frequent failures and leakage particularly at the joints. One problem that has discouraged or deterred some engineers to speoify PVC pipe is the non-etandardization of fittings and connections among local plastic pipe manufactureria.

$$
c=10
$$

Thus, a project becomes a captive market for a particular brand of pipe onoe the project starts to use the particular brand.

Plastic pipe materials acceptable to IWUA are PVC, PE, and PB (Polybutylene) and tentative standards therefore have been adopted by this organization. PB pipe, however, is not currently manufaotured in the Philippines.

Valves and Fire Hydrants

Gate Valves. Gate valves for water aystems are normally of the double-disc type, with parallel bronze-mounted seats, cast iron body, gate rings, wedges, and a non-rising stem with or without handwheel, or outside screw and yoke (OS \& Y) type. Valves used for small lines (100 mm to 300 mm) in distribution systems are frequently furnished with an operating nut and installed with a valve box extending to the ground eurface, providing accessibility to the operating nut. For valves, 400 mm or larger, which are in general power operated, vaults with manhole access are generally provided to facilitate operation and maintenance. Also valves larger than 400 mm are often equipped with smaller by-pass valves, to reduoe the pressure differentials and the power required during opening and closing operations. Gate valves for water service are covered by AWWA Standard C500. At present, most of the gate valves used in the Philippines are imported mostly from the U.S. or Japan. Valves up to 300 man diameter conforming to AWWA requirements, however, can be manufactured in the Philippines.

Butterfly Valves. In recent years, butterfly valves have been increasingly used for water systems. Advantages of this type of valve are: driptight shat off, little maintenanoe, low head loss, small space requirement, reliability, and generally less oxpensive than gate valves, particularly of the larger sizes. The AWWA has two standards for butterfly valves: AWWA Standard C504 which covers rubber-geated valves from 100 to $1,800 \mathrm{~mm}$ dianeter for pressures up to $10 \mathrm{~kg} / \mathrm{cm}^{2}$, and AWWA Standard C505 whioh covers metal seated valves from 100 to $1,800 \mathrm{~mm}$ dianneter for pressures up to $15 \mathrm{~kg} / \mathrm{cm}^{2}$.

Butterfly valves are not currently manufaotured in the Philippines.

Air Velves, Air valves should be installed at high points in transmission lines, to permit the esoape of air when the pipeline is being filled and to admit air when the pipe line is being emptied for maintenance or repair. It is usual to install air valves of the automatic type which open to release air accumulating during normal operation of the pipeline.

$$
c-11
$$

Blow-off Valves. Blow-off valves are generally installed at low points of transmission pipe lines and at low points and deadends in distribution systems to provide an outlet for removing sediments that may accumulate in those places. Ordinary gate valves may be used for this purpose, with provision for conveying the water and sediments "blow-off" to a suitable point of discharge.

Kisoellanoous Valves. Miscellaneous and special valves for water systems include cheok valves to permit only one dircotion flow of the water, surge relief valves for surge and water hammer proteotion, altitude valves for controlling watex levels in reser. voirs and/or pump operations, and pressure reducing or regulating valves for dissipating excess pressures. None of these valves is manufactured in the Philippines.

Fire Fivdrants. Fire hydrants that are in common use in Philippine towns and cities are of two types. One is a wet barrel type consiating of a 60 mm or 75 m riser pipe, usually GI pipe; a 60 or 75 mm GI tee or 90° elbow; and a 60 mm fire hose valve. A shut-off valve is generally installed between the hydrant and the water main to whioh it is connected. This type can be fabricated and assembled in the field, or in the shop ready for installation and connection to the water main.

The other type of hydrant is similar to that commonly used in European and North American oommunities. This hydrant is a dry barrel type, with compression type main valve, 100 mm or 150 mm inlet connection, and one or two 60 mose outlets and one 115 mm pumper oonnection.

The first type of hydrant has a disadvantage in that unless sufficient pressure in the main for the fire flow can be provided, it will not be effective for firemighting. For this reason the second type of hydrant appears to be advantageous.

Water Service Lines

Water services or service are pipes of usually amall diameter that run from distribution mains or branch mains to customer premises. The water eervice connection is usually attached to the street main by means of a corporation stop which may be inserted while the main is in service and under pressure. Where the service connections are expected to be larger than 50 mm in diameter, tees, wyes or special branches are instelled, along with the water main oonstruction. Ordinarily, water service to the customer's premises is turned on or off at a curb stop, accessible through a curb box. Various pipe materials have been and can be used for the service

$$
C=12
$$

lines. Nourflexible materials require a flexible "gooseneck" connection to the corporation cock. Cooseneck connections may be lead, copper, or flexible plastic.

At present, galvanized iron pipe is used in the Philippines for most water service connections. Galvanized iron pipe has a relatively short life because of its susceptibility to the corrosive action of soil on the outside and the water inside the pipe. The use of plastic pipe material for service connections may reduce this corrosion problem to a minimume

Water Meters

Any modern water supply aystem should be equipped with the proper type of water meters so that the water produced and delivered can be accurately measured. Key locations in the system, at supply sources, treatment plants and pump stations should be provided with venturi tubes, orifice plates or other iypes of meterini devices. Because suoh metering devices are not currently manufacturod in the Philippines, those items will have to be imported.

Every service connection to a distribution system should be equipped with a meter to reduce wastage and to obtain the proper billing. Small-aize turbine type water meters are manufactured by the Liberty Manufacturing Corporation in the Philippines. Another local company, Domingo S. Jose, Ince, is in the prooess of putting up a factory to manufacture various sizes of meters under the trade name "KIMMON" under license by the Kimmon Manufacturing Company Ltd., a Japanese firm. Kimmon water meters of the turbine or rotary piston type are available in small sizes 10 to 50 mm . Propeller type meters up to 400 mm are also manufactured by Kimmon plants in Japan.

In recent years, locally manufactured meters have been the most commonly used meters for service connections. Limited information indicates that these meters can be expected to function satisfactorily for only about one year after installation and have poor registration capability. Improvements in the characteristics and performance of these meters are obviously desirable.

Construotion Methods For Water System Components

In the precedine seotions, common construction materials for waterworks have been briefly discussed. The remainder of this report will be devoted to a general description of construction practices for deep wells, tunnels, water treatment plant, water mains, pumping stations, and storage reservoirso

$$
6-13
$$

Doep Wells

Water wells have long been used in the Philippines as sources of public and private water supplies and for small and large quantities of water. Wells that have been used for piped public water systems are generally of the drilled well type and capable of supplying several tons or humdred of gallons of water per minute. at present there are about half a dozen competent and experienced deep well drilling contractors in the Philippines. Present practice of deep well oonstruction in the Philippines is normally by the peroussion (or cable tool) or rotary method. Specifications usually call for the contractor to submit a wall log. In unconsolidated formations, the well is usually cased with imported Schedule 40 black iron pipe. A telescoping casing employing two pipe sizes is commonly installed. As a rule, no well screen is used principally beoause of its high cost. Openings from the aquifer(s) to the well are provided by perforations in the casing. The perforations can be made in the field. Gravel paoking around well soreens or perforations is very rarely practiced.

After the installation of the well oasinf, the well is developed. Local well drilling contractors employ development methods such as pumping, surging and bailing, and development wit compressed air.

Test pumpinc follows well development. The purpose of test pumping is to provide information of the yield and capacity of the well, which in turn helps in determining the capacity of pumping equipment. Water level measurements are taken during pumping (drawdown measurements) as well as after the pumping test is completed (well recovery). Common practice is to apecify a 24-hour or 48-hour pumping test.

Water Main Construction Procedures

Water mains are generally installed to a definite alignment and grade. In the Philippines where freezing is not a problem, the depth of cover over the pipe specified usually depends on the surface load conditions. The minimum cover for the aliguments which are subject to traffic 10 ads is 90 cm . For the areas with no traffic loads a minimum cover of 60 cm may be used. Trenches may be dug manually or with excavation machinery.

Trenches are excavated an shallow as possible but still provide enough depth for surface loading. Deep trenches are avoided since they usually require shorine and bracine and, therefore, are costly.

$$
c-14
$$

Trench Widths. Sufficient trench widthe are provided to permit installation of the pipe, with room for the workmen to make up the joints and to tamp backfill under and around the pipe. Trench widths are governed by type of soil, pipe size, and excavating equipment. For asbestos cement and concrete pipes, unnecessarily wide trenches are avoided to minimize excessive backfill loads on the pipe. For asbestos cement pipe, the following widths are used:

Pipe Diameter (mm)
100
150 or 200
250 or 300
350 or 400

Trench Width Minimum	(cm) Marimum
45	70
50	80
60	90
75	100

For cast iron pipe 100 to 450 mm in diameter, the trench width is the diamoter plus 40 cm ; for the larger pipe up to $1,500 \mathrm{~mm}$ in diameter, the width is the pipe diameter plus 45 cm .

Wide trenches for small diameter pipe are avoided, particularly in hard clay soils. Otherwise, the weight of backfill beoomes out of proportion to the beam strength of a small pipe.

Where pipe is to be laid on a curve, it utilizes the available defleotion characteristics of the joint. Many joints have an inherent ability to be deflected to some small degree, permititing pipe to be laid on a long-radius curve. For pipe laid on a curve, the trench width is somewhat wider than normal.

Excavation. Whether excavation is done manually or by machine, the excavated material is piled on one side of the trench at a distance away from the trench sufficient to prevent excavated material from rolling back into the trench and also to provide room for walking alung the trench. In concested areas, it is usually necessary to haul and stockpile the excavated material temporarily at some other location and excavated material suitable for backfill operations. Material unsuitable for backfill is disposed off the site.

Sheeting and Bracinf. The need for sheeting and bracing to protect against cave-in depends on soil conditions and trench depths. They are installed where required not only to prevent delay in pipe layint but also to protect the workmen and the public.

Pipe Bedding. All types of pipe are bedded or supported properly at the trench bottom. Pipe is laid directly on the trench bottom if the bottom has been levelled properly. For greater load bearing ability by the pipe, the trench bottom is shaped to match the exterior circumference of the pipe. Care is taken to prevent voids or high spots under the pipe. High spots are shaved off, and voide filled with well tamped soil. For trenches in rock, unsuitable soil, or soft or wet soil, special bedding is provided. This is specially important for $A C$ and CI pipes because of their lower tensile strength and brittleness.

For formations of rock or unsuitable soils, the trench is excavated to a depth of about 15 cm below the grode line of the pipe bottom, and the overexcavated material replaced with sand or good soil free of clods, levelled and tamped to grade.

Joint Holes. Provision is made in thes trench to permit proper jointing of the pipe with the type of joint employed. For asbestoscement pipe laid directly on the trench bottom, a coupling hole about 8 cm deep and 15 cm longer than the coupling is dug at the joint location. For cast iron pipe joints of the bell and spigot type which are made with lead caulking, the trench must be excavated wider and deeper at the joint location sufficient to provide room for the caulker to work.

Strinsing, Laying anc Jointing Pipe. To avoid unneoessarily handling, pipes and fittings and other arcessories are placed as near as possible to their final looation in the line, with due regard to safety requirements. Pipes are placed as close to the trench line as possible and on the side opposite where the excavated material is to be piled. Asbestos cement pipe is usually not strung in advance of laying and jointing operations but is delivered from storage to trench as needed.

The procedure for layinc pipe and making up pipe jointe varies with the type of pipe material and type of joint. For asbestos cement pipe, general procedures are given in AWHA Standard C60; which are followed in the Philip ines. The laying and jointing of cast iron and steel pipes conform with applicable portions of AWWA Standard C600, C603 and C206, Federal Specifications and in accordance with the recommendations and directions of the pipe manufacturers. As part of the final design, detailed specifications are included in the jointing procedures for all types of pipe to be installed. Furthermore, to have trouble-free ser:ice from a pipem line the resident inspector insists on strict compliance with the specifications and construction drawings.

$$
c-16
$$

Leakage and Pressure Tests. All pipelines are subjected to leakage and hydrostatic tests. Such tests are usually done after the trench has been partially barkfilled. Test procedures and requirements, allowable leakage, etc., vary with the type of pipe and joint. Procedures and requirements for asbestos cement pipelines and cast iron pipelines are specified in relevant abWA standards.

Backfilling. Backfilling is an important part of $2 r o p e r ~ p i p e-~$ line installation and is given considerable attention. Backfilling is usually a two-step procedure consisting of partial backfilling before leakage tests and completing the backfill after the tests. Select backfill material is placed at both sides of the trenoh uniformly for the full trench width up to the horizontal centerline of the pipe. The backfill material usually is tamped by hand under and on each side of the pipes to proville a void-free support.

Where visual inspection during leakage tests is not required, backfill is placed to the depth indicated above and then a cushion of backfill material, hanc-placed and lamped, is added to cover the pipe to a depth of 30 cm .

Where visual inspection is required, joints are left exposed or covered only by a relatively shallow layer. After leakage teste are completed, the exposed joints or couplings are covered with hand placed material to a depth of 30 cm .

The remainder of the backfill material is deposited in the trench by hand or machine in layers and tanped. This backfill should be good soil free from rocke, debris, clods and other unsuitable materials.

Disinfection. All newly installed or repeired water mains are cleaned and disinfected before they are accepted and placed into service. The main is first flushed clean of foreign matter at a scouring velocity of at least $0.75 \mathrm{~m} / \mathrm{sec}$. The flushing may be done after the pressure tests.

Suggested disinfection procedures are as described in AWWA Standard C601. The usual disinfectants are chlorine, calcium hypochlorite or sodium hypochlorite solution or chlorinated lime solution. The disinfecting solution is applied at one extremity of a pipe section and drains at the opposite extremity of a properly segregated section. The rate of application gives a uniform dose of at least $25 \mathrm{mg} / \mathrm{l}$ at the end of the section being treated. The average contact period is 24 hours and should produce not less than $10 \mathrm{mg} / 1$ at the end of the line after the contact period. If ahorter contact periods are used, the chlorine concentration is increased to 50 or $100 \mathrm{mg} / \mathrm{l}$.

Water Service Connections. Components of a customer's service connection include a connection to the main (corporation cook), ourb stop or turn-off valve and box, and the line itself. The service connection may be installed when the water mains are laid. Installam tion operations consist of trenching, main tapping, layine the line, installing the valves, and backfilling.

The trench may be dug by hand or by small backhoe. When dug by hand, the width must be sufficient to accommodate the digger. The trench bottom should be relatively flat and on the necessary grade. Special bedding is not required unless the soil is corrosive In nature and the pipe is not corrosion-resistant. Where the service line is made under a pavement, the pavement is removed and replaved after the installation is completed.

Methods for tapping service lines to mainis vary depending on the service line size and material. Where the size and the wall thickness of the main are sufficient to provide adequate full threads for the corporation cock, small-size service lines are connected to the main by direct drilling, tapping, or by other method, and insertion of the corporation cock into the main. If the main is under pressure, the tapping, drilling, and insertion operations are done with a special tapping devioe. This operation is known as a wet tap.

If the pipe wall is too thin for direct tapping or will not provide the required number of full threads, service clamps are used. In such cases, drilling is done through a oorporation cock that has been sorewed into the service clamp. For connecting larger servioe lines, tees, wyes or special branch connections and larger drilling machines are used.

Laying the service line involves not only the laving of the pipe on the tronch bottom but the installation and connection of the curb stop and box near the property line, and the connectica of the line to the corporation cock and sometimes to the shut-off valve or meter in the customer's premises. Where water meters are set outside the building, the operation is frequently done as a part of the service line installation operation. When the final connection is completed, the installation is tested under pressure.

Backfilling of trenches may be done manually or by machine. In either case, large stones or boulders is not placed directly on the line. Backfilling without tamping is usually done to some reasonable level above grade to allow for settlement. In areas to be paved or repaved, the backfill is tamped to at least 90 per cent of the compaction value of the surrounding areas, then allowed to stand with temporary pavement for at least three months before permanent pavement is replaced.

$$
c-18
$$

Pipe Cleaniny and Lining

General. Although pipe cleaning and lining per se may not be considered part of construction but rather of maintenance and rehabilitation of existine pipelines, many water system development projects in the Philippines will include such work as part of the initial water supply improvement program.

Pipe cleaning is the process of removing corrosion deposits and slimes from the inside of pipelines. The primary objective of pipe cleanine is to increase the carrying capaoity of a pipeline, which has diminished because of deterioration effects and, if possible, restore the carrying oapacity of the pipe close to its original capacity.
lining refers to the process of placing a protective coating on the inside of a pipeline that has been cleaned. Lining of the pipe in-place after the line has been oleaned not only prevents recurrence of internal surface deterioration but also eliminates red water and stops leakage. Cleaning without lining is effective, but there can be no assurance that the pipe's carrying capacity will remain at its improved level for very long because cleaning does not remove the causes of pipeline deterioration. Cleaning alone is an expensive means of maintaining carrying capacity. -

Cleaning. Three basic techniques are used for in-place pipeline cleaning. These are (1) drag, (2) hydraulic, and (3) mecham nical. The choice of methods depends on the pipe diameter, water volume and pressure available, length of pipe to be cleaned, amount of enarustation or sediment, ease of access, distance between accoss points, provisions for disposal of wastewater from cleaning operam tions, and other local conditions.

1. Draf Cleaning. Drag cleaning is usually limited to pipe diameters of 100 to 600 mm . The cleaning equipment is pulled by a power winch through a line that has been removed from service. The method utilizes a spring-steel oleaning tool that is composed of a series of scrapers, followed by an assembly of tight-fitting squeegees. As the tool moves through the line, accumulated deposits are loosened by the scrapers, and then mechanically removed by the squeegees. The separate drag operations are repeated until the pipe wall is clean. Access opanings are made in the pipeline at intervals of 90 to 150 m depending on pipe size, line configuration, and condition of pipe.
2. Hydraulio Cleaning. The hydraulic method of pipe cleaning is most practical in long, comparatively straight runs of transmission or arterial mains. The method requires an adequate supply of water at a given pressure. The volume of water available and the required presel: depend on pipe size. The greater the volume of water available, the lower the pressure required.

The tool used in the hydraulic cleaning process consists of spring scrapers so arranged that part of the water pushing the tool is released through it to flush the scrapings and debris ahead of it. The tool usually travels at a rate of 10 to 30 m per minute. The travel speed is controlled by regulating the rate of discharge of wastewater at the end of the pipe zun being cleaned.

The operation begins by cutting out a section of the pipe, inserting the tool, replacing the removed section, and making up the joints. At the diecharge end of tiic run, a cut is made into the pipe and a special line attached to discharge the wastewater and debris above ground for ultimate disposal to sewers, storm drains, or acceptable runoff areas. If the tool cannot be discharged through the disoharge line, it is stopped in the main and a cut is made in the pipe to remove it. Hydraulic cleanine is relatively rapid, effective, and economical.
3. Mechanical Cleaninc. In pipelines greater than 660 man in diameter, hydraulic cleaning becomes less practical, and mechanical cleaning is used. Mechanical cleaning is accomplished by an electrically-driven end manuallyoperated machine with rotating scraping blades which remove tuberoulation, debris, and existing coatings by a honing action. These machines are driven by an operator who actually observes and controls the entire cleaning operation.

Lining. There are three methods of applying cement-mortar lining to pipelines in place: (1) centrifugal method, (2) reinforced centrifugal method, and (3) mandrel procass.

1. Centrifugal Process. After the pipe has been cleaned, access openings are cut every 150 to 200 m (less in small pipes where bends occur). Bends cannot be negotiated in 100,150 or 200 mm pipe sizes. After placement, the lining in these diameters may be troweled; for pipes above 200 mm diameter, troweling is always done to provide a smoother finish and the extra carrying capacity that results.

$$
c-20
$$

The field equipment for centrifugal lining includes a variable speed wincly for pulling the lining machire with its mortar hose and electric cable through the pipe; an electric generator to supply power to the winch and to the revolvine head that dispenses the mortar; a speciallydesigned mortar mixer of the capacity needed to ensure ample mixing time; and a feeder to pump the mortar to the lining machine.

The lining material is usually a $1: 2$ portland cement mortar, and the volume of mortar applied to the wall is controlled by the travel speed of the machine. A lining thickness of 5 to 20 mm is common on cast iron pipelines, but it may be as little as 3 mm . The thinner the lining, the smaller the reduction of the original crossmectional area of the pipe. Thin coatings may be sufficient in smaller pipelines. The thickness of lining for steel pipe lines depends on age, plate thickness, and condition of the metal.

In large mains that contain few service taps or lateral connections, all openings are plugged prior to lining and opened after lining by men working in the pipe. In lines below 400 mm diameter, where men cannot work, very little restar is thrown into lateral openings, and any obstruction at the corporation cook is removed by blowing out the service line before the moltar sets completely.

Small mains tapped for service lines are usually bypassed by a temporary absve ground line to maintain customer servioe.

The cost of centrifugal in-place lining depends on a number of factors, principally: pipe diameter, pipe length, condition of the line, plan and profile of the line, bends, location and type of valves, length of section that can be removed from service during the operation, by-pass requirements, depth and type of soil cover, access, and traffic problems. The greater the length that can be lined at one time, the greater the production rate and the lower the cost.

Centrifugal in-place lining is applicable to pipe sizes up to $3,650 \mathrm{~mm}$. One of its advantages is that the line can be placed in service 24 hours after the lining process. The process has also been used on newly-installed steel pipelines.
2. Reinforced Lining When pipelines of 600 mm or greater diameter are badjy deteriorated, it may be desirable to reinforce the cement-mortar lining. This reinforcing process consists of three steps: first, a course of mortar one-half the final lining thickness is placed by centrifugal machine, without troweling. Next, spirally wound reinforcing rod is placed. (The rod spacing depends on pipe size and strength requirements of the equivalent steel area. The size of the rod varies with the size of the pipe and the required reinforcing.) After the steel rod is placed, a second course of mortar is spun into place to the final desired thickness. The spiral rod has two advantages over prefabricated cage steel: it requires less steel, and it conforms to the inside contour of the line.
3. The Tate Process. The mandrel process, commonly known as the Tate process after its Australian inventor, cleans and scours out encrustation from the pipe, then lines the pipe with cement mortar. An advantage of the Tate process is that road opening is kept to a minimum. Only two major digging operations take place at both ends of a 90 m section of main, and only small openings are required to disconnect and temporarily bypass service connections. The exact locam tion of each service conneation is obtained by electrifyins the household system and sweeping the "live" area with a detector which tells the operator through headphones where the connection is located. Customers surfer only little inconvenience, with full service restorable in 24 hours.

The Tate process can be described briefly as follows: At both ends of a 90 m section, a hole is dug and a 1 m length of main is cut and removed. Flexible steel rods to which a wire rope is attached are pushed through the main from one end and drawn out from the other. An assembly of coil scrapers and steel brushes to scour the pipe, and rubber force cups to clean and dry it, is connected to the wire rope and this is pulled through about 90 m section of main from six to 12 times, until it is completely clean. A special cement-mortar mixture of a relatively high initial water-cement ratio is then introduced into one end of the seotion and drawn by suotion along the 90 m length of main. A "cement gun" which spreads the mortar evenly over the walls of the cleaned pipe is then drawn through by winch. A smooth lining approximately 3 mm thiak is left in the main, excess water escapes through the rear of the "gun", and the surplus mortar is removed and used to put a matoh-

$$
c=22
$$

inc 3 mm lining in the 1 m lencth cut from the main at the start of the operation. This section is reconnected, the road surfaces at the opening are repaired, and the crew moves on to the next section to be cleaned and lined.

Pipe Cleanine in the Philippines

Until recently, pipe cleaning and lining in place have not been practiced in the Philippines. The Metropolitan Waterworks and Sewerage System (MSSS) has included these activities as part of its improvement prociram. A New Zealind-based company which can undertake these types of work ie currently available locally. This firm employs the Tate process of in-place cleaning and linine.

Tunnel Construction Methods

Tunnels for water transmission lines may be constructed by conventional or machine tunnelline. Conventional tunnelling in rock formation involves the cyolioal repetition of the following operations: drilling, blasting, loading, and removal of excavated materials; installation of primary supports where necessary; and the mixing, hauling, and placing of conorete to form the secondary linine. It if sometimes desirable to defer the installation of the secondary lining until driving operations have been completed or are remote from the lining operations.

In the machine tinnelling method, a tunnel excavating machino would be employed at one tunnel face simultaneously with conventional tunnelling at the other face. There are many variations of mechanical rock excavators; most adopt the aame principle in which the machine bores a pilot hole into which an expanding "packer" is placed to form an anchor by which the machine pulls itself forward, enabling a larger rotating cutter head to bore the tunnel. The cutter head may be moved forward from 0.5 to 1.2 m within the frame by hydraulic jacks. When the cutter has been advanced to its full distance, the cutter head is retracted and then the frame is pulled forward and locked in place ready to begin the next advance. The cutter head is fitted with teeth or rollers which cut or spall the rock faces as the cutter head revolves. Cutters must be replaced frequently dependine on the hardness of the rook beinf excavated. Thunel excavations are normally electrically powered. Excavated material ia pioked up by a series of revolving buckets, discharged into a belt conveyor and carriod to rail haulage trucks. A tunnel driven by a mechanical excavator has a smooth bore as contrasted to a jagged, broken rock surface that results from conventional tunnelling methods.

The average rate of tunnelling by either conventional or machine tunnalling would depend on the nature of the materials and conditions encountered. Higher rates can be obtained with a high degree of meohanization and a carefully organized and executed procedure. On the other hand, conventional tunnellint; although it may be slower, will require less foreign exchange costs.

Pumping Stations

General. Water supply pumping stations may be classified into raw water pumpine stations, deep well pumping stations, and booster pumping atations. The latter mayr be installed as part of a treatment plant or part of the water distribution system.

Centrifugal and turbine-type pumps are the most oommonly used pumping units in waterworks applications. Prime-movers may be electric motor, diessl engine, gas engine, or other suitable energy source which can develop the required power. Because of their relatively low oost compared to other types of prime movers, electrio motors are the favored type where electric power is available at reasonable costs. Dual drive pumps can be used for operation by electric motor or by engine.

Pumping installations are usually housed in a structure that will provide protection from the elements and security from theft, tampering, etc. Each station is provided with the necessary suotion and discharge piping and valving, controls, and a metering system with suitable indicating, totalizing and recording facilities. Attention is also given to water hammer.

The structure which will house the pumps and appurtenant equipment is constructed from locally available masonry, wood and reinforced concrete materials. In some installations, deep well pumps equipped with weathc. proof motors are not provided with pumphouse. The interior flaned pipes and valves are made from locally available valves and cement-lined steel or oast iron pipes, wherever possible.

Deep ivell Pumpes. Two types of deep well pumps in common use are the deep well turbine pump and the submersible (or submergible) deep well pump. The first type consists of impellers in series installed below the minimum expected water level during pumping. Each impeller is encased in a housing or bowl and is called a stage. The number of stages necessary for any given installation depends on the head that each stafe can develop at a given pumping rate and on the total pumping head. Power is transmitted to the impellers through suitable shafting from a prime mover usually installed at the ground aurface.

The submersibie deep weil pump is usually equipped with an electric motor drive. In this type the motor is installed in the well itself.

Booster Pumping Stations. The most widely used type of pump for booster pumpine stations, whether in a treatment plant; or in a distribution system, is the centrifugal pump. A centrifugal pump consists essentially of a rotating impeller which draws water into a center and a stationary casing which guides the water into the discharge outlet. Advaniages of the centrifugal pump incluad ease of operation and repair, low starting torque, increase output with pressure drups or vice-versa, and smooth flow and uniform pressure.

In the Philippines, the manufacture of centrifugal pumps and motows is still in its infancy. For most waterworks projects, it, is anticipated that pumping units will be imported items. If and when Philippine-manufactured equipment with the capability, efficiency, and quality desired become available in the future, local product should be considered in the final design and consm truction phases.

Raw Hater Pumping Stations

Raw water pumpinc stations, as used herein, are intended to mean pump installations that draw water from a surface source such as a spriné, river or lake. Such pumpine stations are similar in many respects to booster pumping stations but may include some features and facilities not normally needed in booster stations such as intake screens, protection against flood waters, etc.

Water Storage Tanks

In the Philippines, water storage tanke, both elevated and ground tanks, are usually constructed of either cast-in-place reinforeced concrete or of steel. Prestressed concrete tanks, although gaining in use and popularity in other countries, have not been used in the Philippines. The relative economics between reinforced concrete and steel tanks depends somewhat on the tank size and tower height for elevated tanks. Generally, in the larger sizes, reinforced concrete tanks are more economical than steel tanks unless steel plates and other foreign-made components can be imported taxfree. In smaller sizes, the construction costs of steel tanks are comparable to that of reinforced concrete. However, maintenance costs of steel tanks are generally higher. This factor can make the total annual costs of steel tanks greater than those of reinforced concrete tanke.

Water Treatment Plant

Water that is to be used for drinking and puhlic water supply purposes must satisfy certain minimum quality requirements with respect to safety, potability, etc. The water is subjeoted to treatment to upgrade its quality if it does not meet prescribed or desirable standards. As a general rule, all water from surface sources such as rivers, streams and lakes should as a minimum be given "complete" treatment to minimize the risk from water-borne diseases.

Modern "complete" water treatment plants employ the processes of flocculation, sedimentation, filtration, and disinfection. Other additional treatment may be given depending on the quality of the raw water and other factors.

The construction of a modern water treatment plant providing at least complete treatment or its equivalent wi三l require the building of several components utilizing a multitude of skilled tradesmen versed in certain specific fielcis. The major construction fields which must be utilized to build the treatment plent include:
(1) General construction consisting of all earthwork, reinforced concrete work, civil works, and building construction.
(2) Mechanical work consisting of installing pumps, motors, treatment plant equipment such as mechanical feeders, sludge collectors, emergency generators, and other process mechanical equipment. Also, all large size flanged pipes and valves required within the plant may be installed by this specialty.
(3) Electrical work consisting of ceneral wiring of the entire plant for lighting and power. The furnishing and installation of simple controls, instmmentation and communications equipment may also be included as part of the electrical works contract. Where such equipment are complicated and extensive, it may be desirable for this work to be undertaken separately from the general electrical work.
(4) Pipeline and plumbing works includine pipine for the in-plant water system, sanitary sewers, storm drains, and buildine plumbing.,

With good construction supervision, all these construction work oan be done by qualified Philippine contractors. Spocial material and equipment for the plant will have to be imported.

$$
c-26
$$

APPENDIXD

```
OUTLINE SPECIFICATIONS
```

Sub-Title Pare
Spring Intake Structure D-1
Hydraulic Control Structure D-1
Dams and Appurtenances D-1
Diversion Dans D-2
Access and Service Roads D-2
Water Transmission Pipelines D-3
Water Treatment Plant D-4
Administration Building D-4
Well Construction D-5
Flow Meters (Mainline Meters) D-6
Deep Well Turbine Pump D-6
Submersible Deep Hell Pump D-7
Diesel Engine D-8
Diesel Generator Unit D-9
Chlorination Systen D-9
Installation of Equipent - Ceneral D-10
Booster Pmp Stations D-11
Storage Tanks D-11
Distribution System Piping and Components D-12
Pipe Cleaning and Linins D-12

APPEHDIX D
OUTLINE SPECIFICATIONS

Spring Intake Struaiture

All aprinc intake structures shall be constructed of rem inforced concrete. The intake structure shall be of a sise sufficient to capture the maximum apring flow. The apring intake may be circular, rectangular or of other suitable shape. It ahall be covered and provided with outlet pipe(s) and valve(s), overflow(s), vent(s), drain(s), covered acceas manhole(s) and other nocessary appurtenances and site works. The intake facility ahall also include a weir or other suitable device for flow mearuremonta; security fencing; chlorination facilities (if necossary); general site improvement including drainage facilities for possible aurface runoff; and an all-weather access road. Reinforced conorete conmtruotion, piping, fittinge, valves, and all other materials and attendant work shall conform to LMUA Siandards. (The water dietrict shall aqquire ownership of the intake structure site.)

Eydrenlic Control Structure

Hydraulio pressure oontrol structurea on transmisesion lines for dissipating excess energy shall be impact type in which presture dissipation is accomplished by the impaot of the incoming jet of water on a vertioal baffle and by eddies or turbulenoe forsed from the directional change of the jet after it atrikes the baffle. Tha hydraulic control chamber shall be constructed of reinforoed concrete and shall be covered. It shall be designed such that it can handle the design meximum flow. The chamber shall be provided with the necsesary piping, overflows, and other protective devices. Th work shall include general site improvement and security fencing, if necessary. (Owership of the land on whioh the control chamber will be built shall be acquired by the district.)

Dans and Appartenarices

The construction of dams and appurtenances shall be performed by firms and personnel experienced in this line of work. Ten Contractor shall fumaiah plant and equipment whioh will be offioiont, appropriate and large enough to secure a matiafactory quality of work and a rate of progress which will insure the oomplotion of the work within the stipulated time.

The dan construction will inolude the main dan atruoture, upetream and downtream cofferdams, tunnels, diveraion channels and spillway.

The soned embankent dam will consist of a vertical core protected by filter and transition zones, and rolled rook-fill mhells. The upstrean face of the dan is proteoted by riprap against wave action.

Materials for the dams shall be as designed and specified and shall be obtained from designated borrow areas, excavations, or manufactured from rock obtained in required excavations.

The areas to be occupied by the requirod permanent construetion and the surfeces of all borrow pits shall be oleared of all trees, stump, exposed roots, brush, rubbish, and othor objeotion able matter. Froavation shall be made to the specified lines, crades, and dimansione. All necessary precautions mall be takon te preserve the naterial below and beyond the established lines of all exoavation in the soundeat possible conditien, $4 l$ aroavar tions for embankent and structure foundations shall be made in the dry.

The diveraion tunnel shall be comorete lined. The portal structure will be provided with a slot for installation of etop loge for closure of the tunnel. The apillway will oonsist of an ungated overflow concrete structure and a conorete lined okute.

The raw wator intake will be multi-ported and ahall be congtructed of reinforoed concrete.

Diversion Dams

The oonstruction of the diversion dam shall be performed by firms and porsonnel experienced in this line of work. The Contraotor ghall exorcise care to preserve the natural landsoape and shall oonduct his construction so as to prevent any unneceseary destruotion, scarring, or defacine of the natural surround-: inge in the Ficinity of work.

The Contractor shall construct \because aintain all necessary cofferdans, ohannels, flumes, drains, sump, aad/or other temporary diversion and protective works; shall furnioh all materials required therofore; and shall furnish, inetall, maintain, and operate all necessary pumping and other equipment for removal of water from the various parts of the work free from water.

All concrete work sha? 2 be in accordance with WUA atandard specifications and cupplementary specifications.

Locons and Servioe Roads

The construction of acoess ancí service roads to water supply facilitiee shall imolude all necessary olea:ing and grubbins, orcavation, fill and backfill, roadbed preparation, installation of
base course, surface finish or paving, bridgen, and all drainage structures and facilities. The work will involve inprovement and/ or extension of existing roads and the oonstruction of new aocess and service roads.

All roads shall be constructed in conformity with the speoified lines, sections and grades. Materials and their installation ghall be in accordance with the latest revision of the Bureau of Publio Highways Standard Specifications for Highways and Bridges, local requirements, and supplementary specifications.

Water Transmission Pipelines

Raw and treated water transmission pipelines may be oonstructed of cast iron, ductile iron, asbestos cement, steel or preatressed concrete (with ateel cylinder) pipe. Soil and corrosion atudies shall be conducted prior to the final selection of pipe material. The transmission lines shall be equipped with all necessary valves and appurtenances such as shut-off and sectioning valves, air/ vacrum and air release valves, blow-offs, inspeotion manholen, expansion joints, flexible couplings, anchorages, thrist blocking, and surge arresters.

Pipe, fittings, valves, other materials and installation, jointing, testing and disinfaotion shall be in accordance with INUA Standard Specifications, where such specifications are applicable to the particular material or work. Available Standard Specificationg of LNUA include those for cast iron, asbestos cement and steel pipus; gate and batterfly valves; blow-offs; air valves; and work relating to their ingtallation.

Duotile iron pipe shall be manufactured in aocordance with AWWA C151 "Ductile Iron Pipe, Contrifugally Cast in Metal Molde or SandLined Moldg". Fittings shall be either cast iron or ductile iron conforming to AWHA CllO "Gray Iron and Dructile Iron Fittinga, 2 in through 48 in ". All pipe and fittings shall have a cement mortar lining and bituminous real coat on the inside in accordance with AWHA ClO4 "Cement Mortar Lining for Caat Iron and Dactile Iron Pipe and "rittingan.

Prestrasged concrete cylinder pipe shall conform to AWNA C301, "Reinforced Conorete Water Pipe-Steel Cylinder Type, Preatressed.. Pittings ghall conform to the specifications for onst iron, ductile iron, or steel pipe.

In general, all piping shall be designed for a minimus workint pressure of $10.5 \mathrm{~kg} /$ sqom $(150 \mathrm{psi})$. The preasure oinas of ifting

$$
D-3
$$

couplinge, special castings, and valvea shall be at laast aqual to the pressure class of the pipe to he inctalled. Jointa shail have the same or greater strength than the connecting pipe.

Shut-off and seotioning valvea shall be either gate valves or butterfiy valvea, depending on the aize and other factors. A gufficient number of air valves shall be provided to insure full protection of the pipeline.

011 pipelize installation shall be in atriot conformanoe with applicable AWHA and/or LWUL Standards and with the respeotive manufacturer's inatructions and recomandations.

Water Treetioent Plant

Water treatment plants designed to provide complete treatment would generally inolude facilitien for ohemical mixinc, flocoulation, eedimentation, rapid sand filtration, post ohlorination, ohemioal torege, baokwashing, treated water storage, and waste wahbwater and sludge diaposal.

Chemical mixing ahambers, flocculation and sedimentation tanke, filter boxes and treated water storage tanks shall be constraoted of reinforced concrete.

Filter materials shall consist of filter mand and anthraoite conforming with apecified requirements with respeot to composition and grading. For each filter unit there ahall bo ingtalled the necessary oontrol valves, rate of flow controller, loss of head gage, flow meter and recorder.

Ingtrumentation ahall include suitable equipeent to vary ahemical peod rates in proportion to flow.

Concrete work, yard and in-plant piping, and painting work shall be in accordance with LWUA Standard Speoifications and aupploaentary ajecifications.

Piling (if required), etruotural eteel, arohiteotural works, instrumentation and eleotrioal works, mechanical equipment, and all other iteme not covered by LNOA Standards shall be constrroted an speoified.

Adminietration Duilding

The construction of administration buildings shall be of the materiala and workanmip called for in the drawinge and apeoifiontious. The administration building will generally oonaist mainly
of officos but may inolude a water analysis laboratory, meter testing and repair shop, general work shop, and storage facilities. Itens of work shall inolude site preparation; foundations; conarete and masonry work; roofing and metal work; carpentry and joinery; plumbing, ventilation, and air-conditioning systems; lighting and power systems; architectural and other special finishea;painting work, landscaping and general site improvement work. Applicable LWUK Standard Specifioations shall be employed in the construction work.

Hell Construction

Deep woll construction shall include the furnishing of all materials (except those that may be furnished by the Owner), equipment, tools, labor and all appurtenances and incidental work for construction of the deep wells. The work shall include drilling; installation of temporary casing, conductor pipe, well soreen; developing and testing of the well; gravel paoking; grouting, weil completion and disinfection; and site work and clean-up.

The well shall be drilled using the cable tool (Percusaion) and/or rotary process, or other process acceptabla to and approved by the Engineer. Well casing and/or conductor pipe shall be of the iiameters, materiale and class specified, or better.

For gravel packed wells only clean, washed gravel composed of well rounded partioles and of specified grading shall be used. The procedure to be enployed shall be as approved by the Fhagineer.

The topmost 12 n of the annular space between the conductor pipe and hole shall be filled with cement grout. The mixtures, method of mixing, and consistency of grout shall be as approved by the Engineer.

Developing of the well shall be done with care and by methods that will not cause damage to the well or sarse adverse subsurface conditions that may destroy barriers to the vertioal movement of water between aquifers. Upon completion of well development, test puaping shall be done in accordance with a test procedure that will be furnished to the Contractor by the Engineer. The puap shall be operated continuously for specified durations and pumping rates.

Immediately following satisfaotory construotion and developaent samples of the well water shall be colleoted and analyzed in a laboratory acceptable to the Owner.

$$
D-5
$$

After completion of all construction, development, tenting and related work at each well site, all equipment and residual materials ahall be removed from the site. The aite shall then be restored to a condition as nearly as possible to that whioh exiated before tice well construction work, unless otherwise spocified.

Flow Meters (Mainlino Meters)

Flow meters for mainlines shall be differential pressare type, propeller meters, or other suitable and acoptablo dovices. Differential pressure type meters may be venturi tabes, Dall flow tubes, orifices or nozzles. The flow meter shall inolude witable instrumentation for remote indicating, recording and totalling. Flow meter and accessories shall be products of reputable manufaoturers that have manufactured such devices for fluid measurement for at least five years.

The venturi meter tube shall be of standard or lons form design, the included angle of the outlet cone being approximately 8° - $\mathbf{1 0}^{\prime}$. The tube shall have a body of high tensile gray iron or close grain, high tenaile iron. Both inlet and throat ahall have integrally cast annular pressure chambers with multiple even apaced vents comunicating with the interior of the meter tube.

Propeller type meter shall have the same nominal inaide diameter throughout its length to offer minimum obstruotion to the flow. The meterhead shall be connected to the tube by meang of a flanged conneotion, designed for easy removal from the tabe for inspeotion and repair. The meter shall be furnished with a propeller of plastic or other suitable material mounted in the meter tube. The meter shall register within 2 per cent of the true flow of water at all flowe within the minimum and maximum rating. The propeller type meter shall conform to AWWA C704-70 MStandard for Cold Water Xoters - Propeller fype for Main Line Applications".

The flow meter shall be designed for a minimum working pressure of $10.5 \mathrm{~kg} / \mathrm{oa}^{2}$ (150 psi). Range of flow will be apeoified by the purohaser. Hhis shall be flanged 250 ib Amorioan Standard unleas otherwise speoified.

Deep Hell Thrbine Pump

Deep well turbine pamp shall be water lubricated, line shaft vertical turbine pump, electric motor or diesel engine driven or both (dual drive), as required. Pump characteristios and operating
conditions will be specified for each partioular installation. Pump shall conform to ANSI B58.1 - 1971 (AHWA E101 - 71) "American Mational Standard for Deep Well Vertical Turbine Pumps - Line Shaft ard Submersible Types". Diesel engine and accessories shall conform to "he apeoifications for diesel engine, except as modified herein.

For motor-driven pump, the motor shall bo full voltage atarting where the electric power system capacity and regulationg permit; otherwise the motor shall be star-delta starting. The motor shall be vertioal hollow-shaft squirrel cage induction type complying with ANSI 050.2. The notor ahall be of ample size to drive the prap oontinuously over the specified range at the ambient temperature without the load exceeding the service factor. Motor operating characteristios (voltage, phase, frequency, speed) and control and proteotive devices shall be as specified. A suitable base of high grade oast iron or fabricated ateel chall be providad for mounting the meter, and with discharge elbow having abovemground discharge outlet with companion flange.

With an engine drive, the power shall be applied to the pump shaft through a right angle gear set. The horizontal shaft shall be conneoted to the engine by a flexible-shaft ooupling.

Pump bowls, impellers, pump shafts, line shafts, discharge column assembly, suction pipe and strainer shall conform to ANSI B58.1-1971.

A suitable air line of galvanized iron pipe or copper tubing of sufficient length to extend from the surface to the top of the bowl assambly shall be furnished with altitude gage reading in meters and connections for air pump.

The pump and prime movers shall be products of reputable manufacturers which have been regularly engaged in the mamufacture of these equipment for the last five years. The manufaoturer shall, if required, furnish a sworn statement that the equipment furnished and installed comply with the requirements of the applicable standards and the specifications. The equipment manufacturer/supplier shall furnish the services of competent personnel to supervise the installetion and testing of the equipment. Spare parts, operation and maintenance manuals shall be provided. The pump oquipment and controle shall be housed in a suitable permanent atructure that provides protection from the elements, damase, or vandalism.

Submersiblo Deep Well Pump

Submersible deep well punp shall conform to ANSI B58.1-1971 (AFWA E1Ol - 71) "American National Standard for Deep Well Vertioal Turbine Pumpe - Line Shaft and Submersible Types". Operating conditions and requirements will be speoified for each particular installam tion.

The motor shall be of the squirrel cage induction type, suitable for across-the-line starting and shall be capable of reducedvoltage starting. It shall be capable of continuous operation under water at the specified conditions. Motor operating characteristics (voltage, phase, frequency, speed and control and protective devices) shall be as specified.

Submersible oable, surface plate, strainer, discharge pipe, pump bowls, impellers shall oomply with the requirements of current ANSI B58.l.

The pump and accessories shall be products of reputable manufaoturers which have been regularly engaged in the manufacture of these equipment for the last five years. The manufacturer shall, if required, furnish a sworn statement that the equipment furnished and installed comply with the requirements of the applicable standards and the specifications. The equipment manufaoturer or supplier shall furm nish the services of competent personnel to check the installation and testing of the equipment. Spare parte, as specified, and operation and maintenance manuals shall be be furnished.

Diesel Engine

The engine shall be of the vertical in-line, or V-type multioylinder, full diesel, meohanical injecticn, heavy duty rating type. The engine may be either two or four atroke cycle and shall have specified rotative speed and piston speed. It shall be a model which has been in satisfactory operation in similar service at the same or higher rating and speed for at least five (5) years. The engine's continuous duty rating, after deducting power consumed by all engine-driven auxiliaries, shall be not less than the horsepower required to operate the driven equipment at its speoified full rated load. The engine rating shall be adjusted for operation at specified conditions of elevation and ambieat temperature.

The unit shall be furnished for battery starting. Starting shall be accomplished by a 12 or 24 volt electric starter, as recomended by the manufacturer, which shall be capable of withstanding five (5) minutes' continuous cranking.

The diesel engine shall be furnished with complete fuel systen, lubrication system, governor, safety devices and controls, engine instrumentation, cooling system, exhaust system and accessories as will be speaified. Accessories to be furnished include starting battery, autematic battery charger, manufacturer's standard spare parts, detailed operating and maintenance manuals and parts lists; complete set of gaskets and spare set of matched ∇-belts, and one spare set of fuel injoators.

$$
\text { D - } 8
$$

Diesel Generator Unit

The diesel generator unit shall be complete with excitation system, controls, steel subbases, exhaust silencer, fuel system and all essential and desirable auxiliaries for a complete installam tion. The unit shall be arranged for manual pushbutton starting and stopping and manual transfer of load to the unit whon it has attained rated frequency and voltage. The engine-generator set shall be a factory assembled unit especially designed for operation on No. 2 diesel fuel oil.

The engine generator set shall be the standard product of a manufacturer regularly engaged in the production of this type of equipment. The diesel engine and accessories shall be as specified under Diesel Engine. The diesel engine shall be arranged for direct connection to the alternating current generator.

The generator shall be especially designed for direct connection to the diesel engine and shall be for the specified phase, frequency, and voltage. Tropical insulation with fungus protection shall be provided. Each unit shall be properly screened to prevent the entrance of rodents. The complete generator unit shall be free from oritioal speeds and torsional vibration that will endanger its satisfactory operation, or cause undue vibration in any part of the equipment, throughout its entire operating range of speed and load.

The generator control panel shall be either shock-proof mounted on the generator unit or a free standing enclosed unit for floor mounting adjacent to the generator unit. It shall have at least the following instrumentation and equipment: AC voltmeter, AC ammeter, frequency meter, indicating $K N$ meter, combination ammeter-voltmeter phase selector suitch, 3 pole line circuit breaker of suitable amperage, anci elapsed running time meter.

Chlorination System

C:lorine gas, in 150-1b cylinder or ton containers, whichever is mcat suitable for the particular installation, shall be amployed in ail chlorination stations. (Hypochlorite solutions are an acceptable substitute.) Chlorine solution shall be added to the water to be treated through chlcrination equipment and accessories specifically designed and suited for the purpose.

Chiorinators shall be the vacuum operated, solution feed type which meter the chlorine gas under vacuum and dissolve it in water forming a concentrated solution that is then injected into the water. Direct feed chlorinators will not be permitted.

Chlorinators may be direotly mounted on 150-lb oylinder or ton container, wall - or floor-mounted unitu Models of a design that permit enlarging the capaoity by replacement ot: the flow meter will be preferred to those with fixed maximum ocpaoity. The ohlorinators ahall also be of s Anetisn that will permit either manual or automatic operation, the latter with the wile of auxiliary equipment. At least two units shall be provided and installed, one serving as stand-by. The completed installation shall include all necessary piping, valves, controls and eowessories in.... cluding chlorine scales, gas masks, and gas leak detection and alarm systems.

Chlorinators and accessories shall be housed in a separate building or rooms specially designed for the equipment and their functions. (The aite for the chlorination facilities shall be aom quired by the district and necessary improvements and protective features shall be incorporated.)

Installation of Equipment - General
Special care shall be taken to ensure that all equipment are installed in proper alignment and level. This applies to, but is not limited to, pumpe, drive units, gears, sluice gates, mechanical, electrical, instrumentation and communications equipaent, and their appurtenences. Equipment contractors will be required to supply the necessary anchor bolts, drawings and templates of anchor bolts.

The gezeral and equipment contractors shall be responsible for the equipment they supply. They shall use only competent personnel and appropriate equipment necessary to properly align, level and secure equipment in place.

The installation of the major equipment specified in the Contract shall be performed under the supervision of competent reprem sentatives of the manufacturers. The manufacturer's representative shall not only supervise the installation of the equipment, but shall also supervise the adjustments and testing of the equipment to insure that it will operate in a satisfactory manner as apecified or intended. These representatives shall also instruct personnel and mechanios of the Owner in the operation, care and maintenance of the equipment. Complete sets of operating and maintenance instructions shall be furnished as required.

The Contractor shall subwit a certificate from the mampacturer stating that the installation of the equipment is satiafactory, that the unit is ready for operation and that the operating personnel have been aufficiently and thoroughly instruoted in the proper operam tion, lubrication and care of the unit.

Installation of deepandil vertical tarbine punps is partioularly critical if long servica-irue life is to be expectad. Installution should ouly be done by experiencod personnel followine specifications of ANSI B5S. - - 1771 (AFHA E1O1-71) and paying particular attention to etraightness of line shafts and proper aligsment of all paris.

Booster Pump Stations

Booster punp stations finail bs designed and constructed to comply with establistsd criteria and stanciards of the LHUA as well ae other requirements paculiar to each sito. Booster pump facilities will generally conaist of puaphouse, puiji, vnita, suction and discharge piping, control valves, gauges, flow meter and roconder, control ard protective equipment, site werks aril security fenoing.

Pump units shall be cantrifugal, turbine, or submersible typo. Centrifugal and turbine type puraps shall be either eigotris motor or diesel engine driven. Subiwersible booster puxps shall be motor dri.ven. Each purp sinall have optimum efficiency at the specified duty point. Motors for electrioally driven pumps chall lus of adequate horsepower for the full operatine range if the pump.

Storage Tanke

Elevated and s-ound atorage tanks shall be gererally oonatruoted of reinforcod concrete. For amall capacity elevated tanks, steel tanks on steel towers may prove to be more coonomioal and should be given conaideration in the final design phase. Ground tanks may be circular, rectangular or other shape acceptable to an? approved by the Omer. Tanks shall be designed in accordance with applicable national and local etructraral and sanitary codes. It shall be structurally sound with ample provisions for wind and/or selemio stressea. Conorete and reinforced concrete work including waterproofing, disinfection, painting, and all other incidental work shall be in strict compliance with LhUA Standard Spocifications ane suppianiontary Spacifications. All tanks intended for storing potable water shall be covered and watertight. Jor both elevated and ground tanks, available LHUA atandard tanks shall we used to the fullest extent possijle. Necessary piping, valves and acoessorien for operation, maintenance and safety shall be provided. Piping ahall include inlet-outlet, overflow, drain, end vent. Shut-off valves, oheck vaives, automatic flow control valves, water level indioators and instrumentation, shall be provided as required.

$$
D-11
$$

Distribution Systom Plping and Components

Gnmal requirements with respeot to materials, installation and wher appurtenant work f'or water transmission pipelines are appilicable to distribution system pipelines. Other distribution sycieij ;mpunentis, irciudine fire hydrants, service connections and customer water meters, shall be installed according to LHUA standard details and standard specifications.

Pipe Cleaning and Lining

tipe cleaning and lining shall include all materials, labor, equipment and all incidental work necessary to clean and line the interior of pipelines in-situ and restore the pipelines in eervios. The work shall be performed by trained workmen under the superviaion of personnel experienced and competent in this particulce 之ine of work.

Interior lining shall be cement mortar. The interior of pipes to be lined nhall be thoroughly cleaned of all rust, incrustation, dirt, oil and grease and other foreign matter. Neoessary repairs, including replacement, shall be made to pipe sections that have suffergd severe deterioration and/or corrosion. Any section of pipe that shall be oleaned and lined shall be restored to service in as short a time as possible, preferably within 24 hours.

All work shall be performed in accordance with AWWA Standard C602-67, except as may be mudified in the specifications. The work shall include all exoavation and backfill; installation and removal of temporary by-pass pipes, service conneotions, plugs, olosure pieces; making and closing required access openings; surface reatoration; clean-up and disposal of debris and other waste materials.

APPENDIX TO CHAPTER, IV

SYSTEM DATA
OZAMIZ CITY EXISTING SYSTEM PK-HR(RESERVOIR AND PUMP FLOWS UNKNOWN)
TNPUT AND OUTPUT IN LPS
NO OF NODES 63
NO OF PIPES 92
MAX NO OF ITERATIONS 20
PEAKING FACTOR 1.00000
ALLOW P-DROP FR/STATIC - PCT 50.0
STATIC HGL FOR P-DROP CALC 62.3
MAX UNBAL - LPS 0.10000
MAX ALLON VEL - HISS 3.000
MIN ALLOW VEL - MPS 0.400
MAX ALLON HL - MT/ 1000 MT 10.00
MIN ALLOW HL - MT/1000 MT 0.50
MAX ALLON PRESS - ATM 7.000
MIN ALLOW PRESS - ATM 0.700
NO OF HEADS TO BE READ 2
NO OF UNKNOWN CONSUMPTIONS 2
SUM OF FITXED DEMANDS 36.52
BANDWIDTH 10
ITER 1 UNBAL 11. 67 LPS
ITER 2 UNBAL 4.99 LPSITER 3 UNBAL 4.01 LPS
ITER 4 UNBAL 0.99 LPSITER 5 UNBAL 0.08 LPS
SOLUTION NO. 1 REACHED IN 5 ITHRATIONS0.0786 ImbaLance

PIPE DATA

$\begin{gathered} \text { PIPE } \\ \text { NO } \end{gathered}$	$\begin{aligned} & \text { NODES } \\ & \text { FROM-TO } \end{aligned}$		$\begin{gathered} \mathrm{DIA} \\ \mathrm{MM} \end{gathered}$	$\underset{\text { MTRS }}{\mathrm{L}}$	$\underset{\mathrm{C}}{\mathrm{H}-\mathrm{H}}$	K-VALUE	FLOW	$\begin{aligned} & -- \text { VEL-- } \\ & \text { MPS--CK } \end{aligned}$	- - HEADLOSS - . MT MT/1000 CK		
1	2	1	102	100.	100	0.3 .99501	0.74	0.0910	0.02	0.23	LO
2	2	3	152	90.	100	$0.498 \mathrm{E}-02$	1.35	0.07 L0	0.01	0.10	10
3	3	4	152	190.	100	$0.105 \mathrm{E}-01$	0.63	0.0310	0.00	0.02	10
4	7	6	102	194.	100	0.774 Em	0.42	0.0510	0.02	0.08	10
5	8	7	102	120.	100	$0.479 \mathrm{E}-01$	0.94	0.11 L0	0.04	0.35	10
6	9	5	102	212.	100	0.845 Em 01	0.97	0.1210	0.08	0.38	10
7	9	8	102	90.	100	0.3598 -01	2.71	0.3310	0.23	2.53	
8	7	10	38	200	80	0.143 E 02	0.08	0.0710	0.14	0.72	
9	8	10	102	248.	100	0.989E-01	1.41	0.1710	0.19	0.75	
10	11	10	38	234.	80	0.167 E 02	0.10	0.0910	0.25	1.09	
11	13	9	152	240.	100	$0.133 \mathrm{E}-01$	4.65	0.2610	0.23	0.95	
12	15	2	152	366.	100	$0.203 \mathrm{EmO1}$	3.29	0.1810	0.18	0.50	
13	16	17	152	465.	100	0.257E-0.1	2.61	0.1410	0.15	0.33	10
14	15	16	102	80.	100	$0.319 \mathrm{E}-01$	4.94	0.61	0.62	7.69	
15	14	15	102	110.	100	0.439 E -01	4.07	0.50	0.59	5.36	
16	13	14	102	163.	100	$0.650 \mathrm{~F}-01$	2.54	0.3110	0.36	2.24	
17	12	13	102	94.	100	$0.375 \mathrm{E}-01$	1.08	0.13 L0	0.04	0.46	L
18	12	65	102	190.	100	$0.758 \mathrm{E}-01$	1.43	0.17 LO	0.15	0.77	
19	65	11	76	114.	80	0.279800	1.01	0.2\% L0	0.28	2.50	
20	11	23	38	55.	80	0.394 E 01	0.19	0.16 L0	0.18	3.21	
21	22	12	102	45.	100	0.179 m 01	2.76	0.3410	0.12	2.62	
22	20	13	152	50.	100	$0.277 \mathrm{E}-02$	6.85	0.38 L0	0.10	1.95	
23	19	14	102	55.	100	0.219E-01	2.04	0.25 L0	0.08	1.49	
24	18	15	102	55.	100	0.219E-01	5.15	0.63	0.46	8.31	
25	19	18	102	110.	100	0.439E-01	2.36	0.29 L0	0.22	1.96	
26	20	19	102	160.	100	0.638E-01	2.62	0.3210	0.38	2.38	
27	21	20	102	54.	100	$0.215 \mathrm{E}-01$	1.84	0.23 L0	0.07	1.23	
28	21	22	102	46.	100	$0.183 \mathrm{E}-01$	0.40	0.0510	0.00	0.07	Lo
29	35	23	38	220.	90	$0.127 E 02$	0.25	0.2210	0.96	4.36	
30	25	22	102	100.	100	$0.399 \mathrm{E}-01$	2.55	0.3110	0.23	2.26	
31	26	21	102	100.	100	$0.399 \mathrm{E}-01$	2.43	0.30 L0	0.21	2.07	
32	27	20	152	100.	100	$0.554 \mathrm{Em-02}$	8.02	0.44	0.26	2.61	
33	29	19	102	150.	100	$0.598 \mathrm{E}-01$	2.45	0.30 LO	0.31	2.09	
34	28	18	102	150.	100	$0.598 \mathrm{E}-01$	3.22	0.39 L0	0.52	3.48	
35	26	27	102	54.	100	$0.215 \mathrm{E}-01$	0.74	0.09 L0	0.01	0.23	10
36	25	26	102	47.	100	0.187 [-01	0.90	0.11 L0	0.02	0.33	10
37	24	25	102	55.	100	0.219km01	1.36	0.1710	0.04	0.70	
38	33	24	102	50.	100	$0.199 \mathrm{EmO1}$	1.70	0.21 L0	0.05	1.06	
39	32	25	102	50.	100	$0.199 \mathrm{E}-01$	2.28	0.28 L	0.09	1.84	
40	31	26	102	50.	100	0.199E-01	2.48	0.3010	0.11	2.14	
41	30	27	152	50.	100	0.277 Em 02	7.64	0.42	0.12	2.39	
42	29	28	102	110.	100	$0.439 \mathrm{E}-01$	0.38	0.0510	0.01	0.07	10
43	31	30	152	54.	100	$0.299 \mathrm{E}-02$	0.00	0.0010	0.00	0.00	10
44	31	32	152	47.	100	$0.260 \mathrm{E}-02$	0.03	0.0010	0.00	0.00	L0
45	32	33	152	56.	100	0.310E-02	0.25	0.0110	0.00	0.00	LO
46	33	34	152	105.	100	0.581 Em 02	0.97	0.05 L0	0.01	0.05	L0
47	34	35	102	20.	100	0.798E-02	3.42	0.42	0.08	3.89	
48	35	36	102	520.	100	0.207E 00	1.77	0.2210	0.60	1.15	
49	37	34	102	50.	100	0.199E-01	2.68	0.3310	0.12	2.48	
50	38	33	102	50.	100	$0.199 E-01$	2.62	0.32 L0	, 0.12	2.37	

PIPE DATA

PIPE	$\begin{aligned} & \text { NODES } \\ & \text { FROM-TO } \end{aligned}$		$\begin{aligned} & \text { DIA } \\ & \text { MM } \end{aligned}$	$\stackrel{\mathrm{L}}{\text { MTRS }}$	$\begin{gathered} \mathrm{H}-\mathrm{W} \\ \mathrm{C} \end{gathered}$	K-VALUE	FLOW	$\begin{aligned} & \text { - VEL -- } \\ & \text { MPS - } \end{aligned}$	- HEADLOSS - - -			
NO			MT						/1000			
51	39	32		102	50.	100	0.199E-01	2.62	0.32 L0	0.12	2.38	
52	40	31	102	50.	100	0.199E-01	2.63	0.32 L0	0.12	2.40		
53	41	30	152	50.	100	0.277E-02	7.88	0.43	0.13	2.53		
54	41	40	102	54.	100	0.215E-01	0.53	0.06 Lo	0.01	0.12	10	
55	40	39	102	47.	100	0.187Em	0.21	0.03 L0	0.00	0.02	10	
56	39	38	102	57.	100	0.227E-01	0.15	0.0210	0.00	0.01	LO	
57	38	37	102	95.	100	0.379E-01	0.03	0.00 L0	0.00	0.00	L0	
58	48	37	102	52.	100	0.207E-01	2.79	0.34 L0	0.14	2.66		
59	47	38	102	55.	100	0.219E-01	2.70	0.33 L0	0.14	2.51		
60	46	39	102	55.	100	0.219Em01	2.69	0.33 LO	0.14	2.49		
61	45	40	102	55.	100	0.219E-01	2.46	0.3010	0.12	2.10		
62	44	41	152	55.	100	$0.3048-02$	8.68	0.48	0.17	3.03		
63	43	29	102	105.	100	0.419E-01	3.70	0.45	0.47	4.51		
64	42	28	102	105.	3.20	0.419F-01	3.41	0.42	0.41	3.87		
65	43	42	102	110.	100	0.439E-01	1.32	0.1610	0.07	0.67		
66	44	43	102	150.	100	0.598E-01	2.24	0.2710	0.27	1.78		
67	44	45	102	54.	100	0.215 Em 01	1.70	0.2110	0.06	1.06		
68	46	45	102	47.	100	0.187Em01	1.04	0.1310	0.02	0.43	10	
69	47	46	102	58.	100	0.23115-01	0.11	0.0110	0.00	0.01	L0	
70	47	48	102	85.	100	$0.339 \mathrm{Em-01}$	0.00	0.0010	0.00	0.00	L0	
71	49	48	102	160.	100	0.638E-01	3.15	0.38 L0	0.53	3.33		
72	50	47	102	156.	100	0.622E-01	3.19	0.3910	0.53	3.42		
73	51	46	102	158.	100	0.630E-01	3.91	0.48	0.79	4.99		
74	52	44	152	160.	100	0.886ㄴ-02	13.19	0.73	1.05	6.57		
75	53	43	102	164.	100	0.654E-01	3.69	0.45	0.73	4.47.		
76	54	42	102	170.	100	0.678E-01	2.68	0.33 L 0	0.42	2.47		
77	53	54	102	110.	100	0.439E-01	3.24	0.40 L0	0.39	3.52		
78	52	53	102	155.	100	$0.618 \mathrm{E}-01$	3.37	0.41	0.59	3.77		
79	52	51	102	100.	100	0.399E-01	2.98	0.3610	0.30	3.00		
80	51	50	102	55.	100	0.219E-01	3.75	0.46	0.25	4.61		
81	50	49	102	55.	100	0.219E-01	0.18	0.0210	0.00	0.02	20	
82	60	49	102	350.	100	0.140 E 00	3.76	0.46	1.62	4.64		
83	58	51	102	110.	100	0.439E-01	5.25	0.64	0.94	8.58		
84	57	52	152	110.	100	0.609Em02	20.38	1.12	1.62	14.71	HI	
85	56	53	102	110.	100	$0.439 \mathrm{Em-01}$	4.49	0.55	0.71	6.44		
86	55	54	102	110.	100	$0.439 \mathrm{E}-01$	0.04	0.00 LO	0.00	0.00	Lo	
87	56	55	38	108.	90	$0.622 \% 01$	0.40	0.35 L0	1.13	10.46	HI	
88	57	56	102	160.	100	$0.638 \mathrm{Em-01}$	5.49	0.67	1.50	9.34		
89	57	58	102	100.	100	0.3998 -01	5.62	0.69	0.97	9.75		
90	59	57	152	60.	100	$0.332 \mathrm{E}-02$	32.08	1.77	2.04	34.06	HI	
92	61	60	102	1100.	100	0.439 E 0	4.45	0.54	6.96	6.32		
93	64	61	152	1100.	100	$0.609 \mathrm{ib-01}$	4.45	0.2510	0.97	0.88		

NODE	$\begin{aligned} & \text { TABLE JV-E-3 } \\ & \text { NODE DATA } \end{aligned}$							
	GROUND	FLOH	$\begin{aligned} & \text { HGL } \\ & \text { ELEEV } \end{aligned}$	head	- - - - PRESSURE - - - -			
	LLEV			MTRS	ATM-	-Cl	DROP	
1	1.5	-0.74	2.280	0.78	0.08	L0	98.71	HI
2	1.5	-1.20	2.314	0.81	0.08	10	98.67	HI
3	1.5	-0.72	2.300	0.80	0.08	L0	98.69	HI
4	1.5	-0.63	2.294	0.79	0.08	LO	98.69	HI
5	1.5	-0.97	3.14 U	1.64	0.16	10	97.31	HI
6	1.5	-0.42	2.93 U	1.43	0.14	10	97.65	HI
7	1.5	-0.44	2.950	1.45	0.14	L0	97.62	HI
8	1.5	-0.36	2.99 U	1.49	0.14	L0	97.55	HI
9	1.5	-0.96	3.22 U	1.72	0.17	L0	97.18	HI
10	1.5	-1.60	2.80 U	1.30	0.13	IO	97.86	HI
11	1.5	-0.72	3.06 U	1.56	0.15	10	97.46	HI
12	1.5	-0.26	3.490	1.99	0.19	L0	96.73	HI
13	1.5	-0.74	3.144 U	1.94	0.19	10	96.80	HI
14	1.5	0.51	3.08 U	1.58	0.15	L0	97.40	HI
15	1.5	-0.99	2.49 U	0.99	0.10	IO	98.37	HI
16	1.5	-2.33	1.88 U	0.38	0.04	10	99.38	HI
17	1.5	-2.61	1.72 U	0.22	0.02	LO	99.63	HI
18	1.5	-0.42	2.95 U	1.45	0.14	10	97.62	HI
19	1.5	-0.67	3.16	1.66	0.16	10	97.27	HI
20	1.5	-0.39	3.54 U	2.04	0.20	10	96.64	HI
21	1.5	-0.19	3.61 U	2.11	0.20	LO	96.53	HI
22	1.5	-0.19	3.61 U	2.11	0.20	LO	96.54	HI
23	1.5	-0.44	2.88 U	1.38	0.13	10	97.73	HI
24	1.5	-0.34	3.870	2.37	0.23	LO	96.10	HI
25	1.5	-0.19	3.83 U	2.33	0.23	10	96.17	HI
26	1.5	-0.20	3.824	2.32	0.22	L0	96.19	HI
27	1.5	-0. 37	3.80 U	2.30	0.22	10	96.21	HI
28	1.5	-0.57	3.47 U	1.97	0.19	L0	96.76	HI
29	1.5	-0.88	3.48 U	1.98	0.19	10	96.75	HI
30	1.5	-0.24	3.92 U	2.42	0.23	10	96.01	HI
31	1.5	-0.12	3.92 U	2.42	0.23	10	96.01	HI
32	1.5	-0.12	3.92U	2.42	0.23	10	96.01	HI
33	1.5	-0.20	3.92U	2.42	0.23	L0	96.01	HI
34	1.5	-0.23	3.92 U	2.42	0.23	L0	96.02	HI
35	1.5	-1.40	3.84 U	2.34	0.23	10	96.15	HI
36	1.5	-1.77	3.24 U	1.74	0.17	10	97.14	HI
37	1.5	-0.13	4.044	2.54	0.25	10	95.82	HI
38	1.5	-0.20	4.04 U	2.54	0.25	L0	95.82	HI
39	1.5	-0.13	4.04 U	2.54	0.25	LO	95.82	HI
40	1.5	-0.13	4.04 U	2.54	0.25	L0	95.82	HI
41	1.5	-0.27	4.050	2.55	0.25	L0	95.81	HI
42	1.5	-0.59	3.880	2.38	0.23	10	96.09	HI
43	1.5	-0.91	3.950	2.45	0.24	10	95.97	HI
44	1.5	-0. 57	4.22 U	2.72	0.26	L0	95.53	HI
45	1.5	-0.28	4.16U	2.66	0.26	L	95.63	HI
46	1.5	-0.28	4.18 U	2.68	0.26	10	95.59	HI
47	1.5	-0.38	4.18U	2.68	0.26	10	95.59	HI
48	1.5	-0.36	4.18 U	2.68	0.26	LO	95.59	HI
49	1.5	-0.80	4.71 U	3.21	0.31	10	94.72	H1
50	1.5	-0.38	4.710	3.21	0.31	10	94.71	HI

```
TABLE IVmE-3 (Cmntimed)
NODE DATA
```

NODE	$\begin{aligned} & \text { GROUND } \\ & \text { ELEV } \end{aligned}$	FLOW	$\begin{aligned} & \text { HGL } \\ & \text { ELLEV } \end{aligned}$	$\begin{aligned} & \text { HEAD } \\ & \text { MTRS } \end{aligned}$	- - - PRENiJURE - - - -			
					AIM-	©K	DROP	
51	1.5	-0.56	4.97 U	3.47	0.34	10	94.30	HI
52	1.5	-0.85	5.27 U	3.77	0.36	10	93.80	HI
53	1.5	-0.93	4.68 U	3.18	0.31	L0	94.77	HI
54	1.5	-0.61	4.30 U	2.80	0.27	L0	95.40	HI
55	1.5	-0.36	4.30 U	2.80	0.27	10	95.40	HI
56	1.5	-0.60	5.39 U	3.89	0.38	10	93.60	${ }_{\text {HI }}$
56 58	1.5 1.5	-0.58 -0.37	6.89 U 5.910	5.39	0.52	10	91.14	HI
59	3.0	32.08U	5.910 8.93	4.41	0.43	10	92.74	HI
60	1.5	-0.68	6.34 U	4.84	0.57	L0	90.00	HI
61	3.0	$=0.0$	13.294	10.29	1.00	10	92.04 82.64	HI
64	3.0	4.45 U	14.26	11.26	1.09		82.64 81.01	HI
65	1.5	0.41	3.34 U	1.84	0.18	10	96.97	HI

APPENDIX TO CHAPTERVII

APPENDIX TABLE VII-ACl
WATER WELL DATA SCOMARY
OZAMIZ CITT-CLARTN AREA

Hote: All wells except MSO-23, ?4, 25, 27 and 28 were drilled by NWASA.

GEOLOGIC SECTION A-A'

LEGEND:

APPENDIX TO CHAPTER VIIJ

APPENDIX VIII-C
 WATER TRGATMRNT ALCMENATIVES

Analysis of water samples taken from the proposed apring sourans indicates that all the physical and chomical quality paxametars are within the aoceptable limits, with the exception of alightly aream sive iron ($0.55 \mathrm{mg} / \mathrm{l}$) in the Cooak Spring water. Water from mome of the oxisting wells also containo slightly excessiva ($0.85 \mathrm{~m} / \mathrm{l}$) iroth. Official records show the presence of water-borne diseeses in the area.

Surface waters, in ceneral, are of good quality, However, color, turbidity and bacterial removal will be necessary, particularly during rainy periods.

Feasibility of iron removal from the groundwater mources will be atudied. Otherwise, disinfection of water hy chlorination would be the only treatment required for the spring or well supplies. Alternative application points will be compared to obtain the most effective disinfection results.

Surface water would normally require provision of complete treatment facilities regardless of frequency of rainy periods. When water does not contain a high degree of color and turbidity, direct filtration followed by disinfection may be practiced.

Disinfection Alternatives

Disinfection of water supply may be accomplished through chemical application of ohlorine, iodine, ozone, ultrawiolet radiation and oxidizing agents.

Chlorination is a universal disinfection process used in most municipal mater systems. Chlorine, a potent oxidizing agent, destroys bacteria when mixed under certain time constraints and when applied in correct dobage.

Iodine has chemical properties that make it an effective agent against virus and certain bacterial cysts. Hosever, research indicates that iodine treatment in excess of three weeks may have detrimental effects upon individuals afflicted with thyroid diseases.

Ozone, a blue ges and active form of oxygen, is rated to be a more vigorous oxidizing agent than chlorine. This versatile element not only disinfects but also sterilizes. It also helps in oolor reduction, iron and manganese oxidation, taste and odor control.

Despite its impressive known qualitien, osone is jot to ashieve univernal aoceptance.

Ultramiolet radiation in another method of diainfoction appli-
 requiren considerable amount of power. Noreover; thif type of treatment requires high qualits water, otherwise the ultra-violet raye may be absorbed by substances present in the water supply.

The use of metal ions with bacterioidal propertien moh as copper, silver and mercury is limited by their cost, avalability and potential adverse health effects if not properly domed.

Bromine as a water disinfectant is oontly and coaroe. inouid bromine produces irritating fumes and onases aever burns.

Oxidizinc agonts suah as potassium permangenate and hydrogen poroxide have weak purifying qualities that require lons contact time and high domace.

The oconomios of diminfeotion nervos as an important, if not sole, basis for the selection of a treatment mothod suitable to a particular water system. Selection is not neoessarily based upon the cheapest method availeble but on ita dependability, offeotivaness, ruitability and reasonableness in cost, From this viewpoint, ozone and chlorine merit further consideration.

Orone, as earlier indicated, laoka extenaive practioal applioation but its versatility maken it advantageous over chlorine under oertain conditions. It can be more offective and economical when used for two or more stages of water purification. Whan taste and odor in water are organio, ozone may be an offeotive an ahlorine. When disinfection only is required or water supply ia olear, however, ohlorine will be much more economical.

Plant-scale studies on osonation show that it entaile bicer ospital investment than chlorination hy the ratio of 3 or 4 to 1 .

While ozone appears to be an offioiont disinfectant, its praotical application is supported with caroe data. This laves ohlom rine, a proven disinfeotant, as a more dependable mothod. Although considered a less rapid acent than osone, ohlorine fite well in larce water supply arateme.

Since the early $1990^{\circ} \mathrm{E}$, ahlorine has been widely used in weter treatment but recently in the United Staten, it has developed into a critical issue. Studies done by reguletory agencies revealed the
presence of cnncer-produoint ohlorine compounds in the drinkinc weter of everal cities in the castern part of the United Staten as result of treatinc river maters contaminated in cortain or canie and ohomionl mastes. The etudies indioated that through ohlorination, the hasard levels of mamado chomiosle and pestieides that pollute the river mourcen are increased.

Howaver, the oritical aspeot of chlorination does not apply to the whidy area at this period of ita development. Rivere are not cenerally contaminated iny agromindurtrial ahenioale, a condition forsseen to remain for quite some time.

APPENDIX VIII-D

DISTRIBUTION SYSTEM ALTERNATIVES

Caneral

The distribution system, in general, is composed of a network of distribution mains, internal distribution networks, storafe facilities, booster pump stations, booster chlorination stations, and appurtenances such as valves, fire hydrants, meters, and servioe connections. The distribution system conveys the water to the consumer. The distribution mains are the larger pipelines which take the water from the transmission lines to the demand areas. The internal network system consists of the smaller street mains which distribute the water to consumers along smaller streets of the city and subdivisions. Booster pump stations are required to raise water from lower pressure zonos to higher pressure zones where consumers are usually at higher ground elevations. The booster ohlorination etations are required at the fringe areas of the mater diatriot to keep the ohlorine residual at the desired concentration. The diftribution storage faoilities provide supplementary flows during the peak-demand periods. The tranemission lines convey the water to and from the storage facility depending on whether it is filling or emptying.

The valves are placed throughout the distribution aystem to beep amall eervice areas isolated hy olosing the valves at timen when maintenance is required. The fire hybrants are oomneoted to the distribution aystem at regular intervals depending upon the type of ares verved. The service connections convey the wator from the internal distribution syetem to the consumer. Metors are placed on the eorvice connection line to measure the amount of miter consumed by the oustomer. The components of the dietribution mostem desoribed above are illustrated in Appondix Figure VIII-D-1.

The major alternatives for the components of the diatribution surinem oan be grouped into tro aategories:
(1) Size and Stacing. For most components of the dintribution gystell it is possible oither to install the oapacity required for the design year or to stage the construction of the component by installins part of the required oapacity in an eariy construction phase and the remaining oapacity in a subsequent phame. mxamples would bes a 10,000 on etorage tank built in 1980 ier the design year 2000; or a 6,000 om storage tank built in is 980 and a 4,000 oum storage tank built in 1990. Instailing a amallor aise oomponent indtially ham the advantage of reduolng capital cost in the initial construotion period. Also, staging provides
flexibility as more data will be available at a later date and the assessment of population and economic growth may indicate a now looation is preforable to that originally planned. In any case, studies should be made to indicate the economic feasibility of staging.
(2) Looation. Sometimes, more that one location ardet for the construction of the distribution aysten component. In mome cseses, economic studies will aid in the colcotion of the most desirable site, and in other cases, practioal considoration and engincering judgement will be of primary importance.

Each component of the distribution systen and its respective altorm natives are disoussed in subsequent secticis.

Distribution Maina

The alternatives for distribution mains are location, size, ataging and the epaoing in the network. To avoid land costs and also to place the mains as close to the demand oenter as possible, the allgments for future distribution mains should be ohosen alons oxisting and planned road and atreet rightomof-way. Where the service area will extend to areas without planned or oxdsting roadways and etreets, the looation of the distribution mains is dotermined by topographic features. As muoh as possible, the distribution mains should be looped to avoid dead-end servioe areas; to minimize the number of concessionaires affeoted when valves are olosed for maintenance; and to provido adequate pressure at timea of maximua demand as the demand oan be cupplied from more than one direotion.

The distribution main network aystem is dosiened to provide a minimue pressure of 14 during peak-kpur conditions. The minimum aize of diatribution mains has boen taken as 200 me. In general, this size is large enough to provide adequate preasure daring peakhour and fire-flow conditions. In some residential areas, alternating 150 and 200 pipe sizes is adequate. Staging of distribution matns is economioa at lo-jear intervals in areal having wide utreote and low population densities. Howarer, in high-density areas having emall streets, it is usually preferable to avoid twostage construotion. There is limited apace for utilities in these areas and considerable disruption ocours when the etreet is excavated for the new water main. It is better to install the pipe gise required for ultimate design in these congeated areas so that these problems can be avoided.

It is desirable to maintain the marimum spacing for distribution mains at 1,000 meters. This will provide uniform size and apaing for

the internal mains as well as better pressure distribution throughout the system. A wider spacing of the distrjbution mains would require larger pipe sizes in the internal distribution network to wi intain sufficient pressures during firemflow and peak-hour periods.

It is not recommended that the minimum distribution main sizes be staged. However, larger mains can be staged in some instances. A required pipe size c. 250 mm for year 2000 demands can be conveniently stiged with one 200 mm line in Stage I and another 200 mm parallel line in Stage II. However, in Stage II an extra cost of 15 per cont may be included in the construction of the parallel line because of the problem encountered with interties to the Stage I line and safeguarding service connections and sometimes transferring the connections with the internal network. The economic evaluation of a two-stage versus onemstage construction of a 250 mm line is shown below:

EVALLATION OF DISIRIBUTION NAIN STAGING

Alternative	Construction \qquad	$\begin{aligned} & \text { Pipe } \\ & \text { Size } \\ & \text { (mm) } \end{aligned}$	Construction Cost ${ }^{1}$ $(\mathrm{p} / \mathrm{m})$	Project Cost (p / m)	Annual Cobt (P / m)	$\begin{array}{r} 1976 \\ \text { Capital } \\ \text { Cost } \\ (\mathrm{P} / \mathrm{m}) \\ \hline \end{array}$	Present Annual Cost (P / m)	Worth ${ }^{2}$ Salvage Value (ρ / m)	Net Cost (P / m
SinglemStage	12Rn	250	475	648	3	412	14	19	407
					Total				407
'Wo-Stage	1980	200	360	491	2	312	9	14	307
	1990	200	414	565	2	116	2	19	99
					Total				406

Comparison of the two alternatives shows that construoting two parallel 200 mm lines in each stage costs almost the same as a single 250 mm line in Stage I. In this case, it would probably be better to install a 200 mm line initially because of the lower oapital cost and added flexibilityo Similar calculations for staging a 300 mm line with parallel 250 mm and 200 mm lines indicate only slight savings with two-atage construction. Selection of distribution mains which should be staged must follow an analysis of the peak hour and fire flow conditions to be sure that the smaller line constructed in Stage I will be hydraulically adequate until the second line is installed.

The timing of the construction of the distribution main systems should be such that an attainable level of growth in the distribution

[^2]system is maintained. Areas having higher densities of potential oustomers should be connected in the early construotion periods beoause the cost per connection will be lower and more revenues will be generated. Also, extension of service to large demand oustomers such as industries and commercial areas would be desirable when a reliable water mupply is available. Service to this type of customer would have a positive impact on the economy of the study area.

Diatribution Storage Ranks

Distribution storage tanks provide supplementary supply during peakhor demand periods, during fire flow demand periods and during emergency periods when source supply is reduced. The reoomended diatribution storage volume is 15-20 per cont of maximum daily supply requiruments. The storage facility is designed to empty during peak-hour demand periods and to fill overnight during minimum demand periods. The storage tanks should be located as olose to the diemand oenter as possible and on the opposite side of the servioe area from the source. By locating the storage in this manner, the peak-hour pressures will be higher as the supply can be provided from two directions.

It is recomended that storage faoilities be constructed ongrade with an operational level fluctuation of 3 to 7 m . The storage ranks should be of reinforoed concrete and oovered to prevent contamination. Initially, adequate land area should be purchased so that the ultimate storage capaoity of the aite can easily be aocommodated. The storage faoility is designed and construoted in inorements so that the desired capaoity is available when needed. It has been observed that staging at 10 -year intervals is an eoonomically approm priate time inorement based on the discount rate used in this study.

For operational purposes the storage ovexflow levation should be the same elevation as the HGL control at the source. Locating the storage at the same elevation as the source is sound ongineering praom tice. The range of operating pressures within the distribution system is reduced. This keeps the pumping heads at booster stations and wells at more constant levels, simplifying operation of the pamp station. No maintenance of double-aoting altitude valves at the storage faoility is required unlike when the storage is at a lowar elevation than the source.

Tank filling will take place during the minimum demand periodse Amount and duration of minimum demand can be determined by 24 hhour consumption recorde. Since these data are not available, it is assumed that the minimum demand is about 30 per cent of the average
denand for a period of 8 hours. Assuming a tank with 7 m water depth the differential head between the source HGL elevation and the etorage tank is a maximum of 7 mon the tank is ampty and 3.5 when the tank is half-full. Because of this small hoad differential, care must be taken in choosing location and sise of the supply lines.

Placing the atorage KGL at an elevation lower than 70 m is not recommended because this will maan that areas at the extreme ends of the distribution system will have insuffioient pressures unless inordinately large distribution mains are provided. If locating the distribution storage tank at a lower elevation than the source is considered, a doublemating altifude valve must be placed on the supply line to the tank. The valve oloses when the water olevation in the tank reaches the overflow level and opens when the pressure drops in the distribution system, permitting water from the storage to enter system. If the valve is not maintained at all times, it could fail to operate properly and cause lower pressures in the distribution syatem permitting water from the atorage to enter the aystem. Because the storage is at an elovation less than the source, it is difficult to obtain the required flow from the storage during peak flow demands as mot of the supply will come from the direction of the source, the location of the highest HGL.

When suitable ground storage sites are not available, it is posm aible to utilize elevated storage tanks or standpipes. If possible, the overflow elevation should be the same as the HGL control on the source transmission line. The operational range of elevated storage way be reduced to 5 m . In the case of standpipe storage the volume lower than the top 7 m should not be considered as part of the oper ational volume. Economic studies oan aid in the seleotion of the best location. The present worth cost of the storage tunk and the storage transmisaion line for several alternative sites should be evaluated to determine the leastmoost alternative.

In some cases it is more economical to locate a portion of the distribution storage volume at the source HCL control. This reduces the pipe diameter required to fill the distribution storage tank located at the other end of the aystem. However, locating atorage at the source will mean that more supply must come from the source during peak-hour demend periods. Several alternative distribution and source storage schemes should be evaluated to determine the best apportionment of the required storage volume.

Intemal Network System

The internal network syatem is the network of pipes within the $1,000 \mathrm{~m}$ grid spacing of the distribution main network. The internal
network oonsists of pipe sizes usually of 150 mm or smaller diameter, valves, fire hydrants and service connections. The alternatives in the internal distribution network are dependent on the level of water service provided. A system designed for fire flow demands may require larger internal distribution pipes than a system designed only for peak hour demands. The fire flow requirements ares

Type of Area

Commercial, Industrial and High Value Residential

Single Family Residential

Pire Flow Demand

20 lps at each of two adjacent fire hydrante

10 lps at each of two adjacent fire hydrants

The internal network design is controlled by either of two conditions: peak hour demands with minimum main pressure of 10 m or fire flow demand coinoident with maximum-day demands with a minimum hydrant pressure of 7 meters.

In order to determine the reaponse of the internal network to several flow conditions, it detailed study of the intermal network was made. Comercial/residential areas in several oities in the Philippines were analyzed to determine a composite 100 ha area. A typical 100 ha area in the oore city or fringe of the core city has $8-12 \mathrm{~km}$ of roads and streets. Sinoe the internal network is installed along street rights-of-way, the total length of internal network pipe will also be 8-12 km for a 100 ha area. An average of $8-12 \mathrm{~km}$ per 100 ha area corresponds to $80-120 \mathrm{~m}$ of pipe per hectare served. The 80 m per hectare would be in less densely populated, high-value residential areas, and the 120 m per hectare would be in densely populated, mired residential and commeroial areas. The 80 m of pipe per hectare was used in the design study in order to evaluate the internal network under the most stressing conditions - less pipe per heotare will aause higher flows for the same areal demand. Three alternative internal network designs were studied. The three alternatives are show in Appendix Figure VIII-D-2 and listed below:

Alternative 1. All internal network pipe is 100 mm in diameter.

Alternative 2. All internal network rppe is 150 nam in diameter.

Alternative 3. The ratio of 100 mm pipe to 150 mm pipe is $3: 1$, i.e., $6,000 \mathrm{~m}$ of 100 mm pipe and $2,000 \mathrm{~m}$ of 150 mm pipe.

The three alternative systems were ovaluated by using the computer to solve for pressures and flows for varying population densities. The 100 ha area was assumed to have a mixed residential and comancial land use. The domestic flow requirement was assumed to be 175 lpod , and the commercial and institutional demand mas amsumed to be 10 per cent of the domestio demand. The unacoounted-for-mater was assumed to be 25 per cent of the area's total demand. The demand was applied uniformly over the entire area. The altemative networks were analyzed under peak hour condition (peaking factor of 2.0) and maximum day plus fire flow condition. The minimum pressure in the internal network is listed in Appendix Table VIII-mid.

APPENDIX TABLE VIII-D-1

MINIMUM PRESSURE IN ALTERNATIVE

INIERNAL NETWORK SYSTMM

Alternativo System	Minimum	Internal	Network Pressure (m) ${ }^{3}$	
	Population Denaity	Peak Howr	Commercial Pire flow	Residential
1-All	100/ha	11	7	11
100 mon Pipe	200/ha	10	$64 /$	10
	300/ha	$84 /$	$4^{4 /}$	8
25. - All	100/ha	11	12	
150 um Pipe	200/ha	11	11	
	300/ha	11	11	
35-Ratio	100/ha	11	8	
of 100 mm to	200/ha	11	8	
150 mm is 3.0	300/ha	10	7	

[^3]The data indicate that Alternative 1 can meet minimum pregsure requirments for all conditions for a population density of 100 people per heotare. However, minimum oriteria camot be maintained for higher densities. Alternative 2 meets the pressure oriteria for all population densities atudiod. Alternative 3 also satisfies the minimum criteria for all population densitiez gtaided.

The only difference between Altematives 1 and 3 is the two 150 mm lines which are plaoed in the middle of the 100 ha area. The two 150 mm lines add oonsidersble carrying oapacity to the isternal network as indicated by the data in Appendix Table VIII- D-1. Alternative 3 can meet minimum pressures during comeraial fire flow test. Even though a 150 mm fire hydrant might be conneoted to a 100 mpipe, it is possible to support the commercisl fire flow because water can be supplied from at least two direotions and the larger, supporting 150 mm main or distribution main is no more than 250 m away.

Other computer studies were carried out on Alternatives 1 and 3 by increasing the total lemgth of internal network pipe to $120 \mathrm{~m} / \mathrm{ha}$. The peak hour pressures were increased approximately 2 m as the peak hour flow was spread among more pipes. However, the fire flow pressures inoreased only alightly as the fire flow was applied to a much smaller area of the system.

The construotion costs for installing the internal network piping for each alternative, and several subalternatives of total intermal network piping are listed below:

Alternative	$\begin{aligned} & \text { Length of Pipe } \\ & \mathrm{m} / \mathrm{ha} \end{aligned}$	$\begin{aligned} & \text { Ratio of } \\ & 100 \mathrm{~mm}: 150 \mathrm{man} \end{aligned}$	Construotion Cost ($8 / \mathrm{ha})^{6}$
1-Al1	80	80:0	21,600
100 un Pipe	100	100:0	14,500
	120	12080	17,400
2-All	80	$0: 80$	19,600
150 Pipe	100	0:100	24,500
	120	08120	29,400
3-Mixed	80	60:20	23,600
100-150 mm Pipe	100	80.20	16,500
	120	100:20	19,400

[^4]Alternative 3 is $10-15$ per cent more than Altermative 1 and 45-50 per cent less than Alternative 2. Though Alternative 1 provides sufficient service for residential areas up to 200 people/ha, Alternative 3 is the recommended internal network system. Alternative. 3 cin meet minimum pressure requirenents for hicher density levels and during commercial fire flow conditions. This altermative can serve an area which is initially residential but gradually becomes oommercial without requiring reinforcement. Also, further tests indicate that Alternative 3 can meet minimum pressures up to 400 people/ha when $120 \mathrm{~m} / \mathrm{ha}$ of internal network pipe is required.

The minimum recomnended pipe size in the internal network is 100 mm . Smaller pipe would reduce peak hour pressures and would severely limit fire-fighting potential. Thouch pipes less than 100 mm are cheaper, the inctallation costs are not significantly less than that for 100 mn pipe. Also, the capaoity of smaller pipe is considerably less. The installation price per unit of capacity is shown in Appendix Figure VIII- D-3 for pipe sizes ranging from 50 to 350 mm . The curve turns upward very sharply for pipes smaller than 100 mm . On a capacity basis, the 75 mm pipe costs 80% more than the 100 mm pipe and is thus not recommended for internal network pipe.

Sticering of internal network pipes is not usually economical or praotical. Streets and utilities should be provided in aocordance with development and zoning plans. The internal network should be desiened with the ultimate plan of the area, fixinc the required demands and fire flows. Thus, the period for stacing to be economical would have to be 10 years or more.

The valves in the distribution main network and the internal distribution system should be spaced so that interruption in service due to maintenance would affect as few customers as possible. Fach internal network connection to a distribution main should have a valve so that repair to an internal main would not require closing of valves on distribution mains. High-demand areas should have more frequent valve spacing than low-demand areas. Valves should normally be placed at street intersections with a minimum spacing of 300 m to 500 m depending on the character of the area.

Pire hydrants will be nlsced at street intersections to permit quick location and enable fire-tighting in several directions. In high value areas, hydrants will be spaced a maximum oí 150 m apart with two outlets - $1 \times 60 \mathrm{~mm}$ hose outlet and a $1 \times 200 \mathrm{~mm}$ pump outlet. The hydrant will be connected to a main with a minimum diameter of 100 mm . In singlewfamily residential areas, hydrants will be connected to 100 mm mains and spaced a maximum of 250 m apart. The outlet will be oonnected to a $1 \times 100 \mathrm{~mm}$ pump or hose.

VIII-D-9

Customer service conneotions consist of a connection to the internal network main and a service line to the oustomer. The seryice line will be provided with a "gooseneck" for conneotion to the main and a service meter will be provided for continuous measurement of water provided to the oustomer. A valve should be inserted in the service ahead of the meter to enable the water district to terminate service when it beoomes necessary.

Booster Zone

Portions of the service area at elevations which are too high to be served from the same HGL control as the service area at lower elevations, must be served by booster pumpage. The booster pump station raises the HGL to sufficient levels to serve the concessionaires in the booster zone. A storage tank should be located in the booster zone to supply peak hour demand. The storage tank should be located on the opposite side of the booster zone from the booster pump station. The booster zone storage should have an overflow elevation no more than 70 m above the lowest ground elevation in the booster zone. The booster pump station should be designed to pump maximum day supply requirements.

Booster pump station should have at least two pumpe to permit maintenance without interrupting service. One of the units should be diesel powered to permit a minimum level of service during power shortages.

NOTE:
CAPACITY OF 100 MM PIPE TAKEN AS UNITY. CAPACITY CALCULATED USING SAME HEADLESS FOR ALL PIPE SIZES.

Hand Pump Wells for Urban Areas

An alternative to a piped water system in urban areas is hand pump wells (HPW). Under existing conditions in the Philippines, HPN will probably provide, at the pump, drinking water not significantly less safe than a piped water system. Water from the HPW may be contaminated while being carried from the pump to the point of use. In this respect, safety of the piped water is not guaranteed if also carried.

Benefits from personal and domestic hygiene occur from any water system in proportion to the amount used. This amount depende primarily upon the convenience with which water is provided. A HFN in the yard imenediately adjacent to the house, or in the house, will ordinam rily be found reasonably convenient to use.

Water from a HPN is ordinarily not used in adequate quantity to support a sanitary sewer system and would not otherwise be very helpful to public or neighborhood cleanlinesse HPN is, in this respect, inferior to a piped water aystem. This speoific advantage of a piped water system over HFW is less important if there is no sanitary sewer system, or if the urban area in question does not have the funds to provide private water-borne waste system as substitute for the public sanitary sewer system.

Similarly, vater from a good piped water system is ordinarily much more convenient and useful for non-essential uses than water. from a HPW. A hand pump well is much inferior to a good piped water system for fire prevention.

In summary, water supply from HFW does not have the advantages of a piped system installed in the house. Water from a convenient HFW (which means a HPG adjacent to the house) is usually preferable to water from a piped system located away from the house. A piped water supply not available continually during at least the day-time hours or available only at a distance from the house is generally inferior to a HFN located in the premises.

Therefore, the HPN may provide a valid alternative to the piped water system in certain urban areas if funds are not sufficient for a modern upgraded piped water service.

Types and Costs of HPW

Hand pump wells may be classified in two categories:

1. Water level high eaough for suction pump use (within 6 to 8 m below ground surface);
2. Water level too deep for suotion pump use (below 8 m).

The depth of well required to reach a good aquifer at any particular site is a critioal factor which influrnces costs.

High Water Level HFN

A high water level HPN includes the following oomponents:

1. A simple pitcher pump, which should be brass lined and connected to a 32 mm pipe. It may have a piston diameter between 60 to $100 \mathrm{~mm}\left(2 \frac{1}{2}\right.$ to 4 in$)$ and a atroke of 25 to 125 mm (3 to 5 in). Whatever the stroke and piston diam meter, replacement cup leathers must be readily available to the pecple using the pump. A PVC lining is acceptable instead of the brass lining.
2. A well soreen, commonly oalled a "well point" when used with a hand pump, as it commonly has a point on the end.
3. Calvanized steel pipe, of 32 mm (1 $\frac{1}{4}$) nominal diameter to connect the well screen in the aquifer to the pump.

A conorete or masonry platform may be provided around the pipe at the ground sarface. It is nct essential for sanitary purposes If the connecting pipe is 10 m long or more. When not essential, platforms are commonly left to the pump user to provide, and are therefore not an expeuse to the publio program. If a platform is provided, a short drain is usually also provided to carry wastem Water away from the immediate vicinity of the woll. .

The cost of a hand pump well is the cost of the materiale at site, plus the cost of labor of installation and the cost of super vision. The average cost of such a HFN will vary from Pl,000 (at 20 m depth) to $\mathrm{P} 3,000$ (at 75 m depth).

Deep Water Level HFW

A deep water level hand pump well should have the punping element, the pump piston, installed below the pumping water level.: If the pumping water level is at 15 m , for instance, the pump piston must be 15 m or more under ground.

The essential materials of suoh a well would include:

1. A pump, or more properiy, a pump cylinder, whioh should be brass lined steel, of $57 \mathrm{~mm}\left(2 \frac{1}{4} \mathrm{in}\right)$ or $54 \mathrm{~mm}(2 \mathrm{~m} / 16 \mathrm{in})$
diameter. The cylinder should incluide the piston, of threem cup type, and the bottom valve assembly. The oylinder should connect on the top to 62 mm ($2 \frac{1}{2} \mathrm{in}$) diameter pipe and on the bottom to a 62 mm ($2 \frac{1}{2} \mathrm{in}$) diameter pipe.
2. The well screen, which will be the same as that of the pther wells described here.
3. Galvanized steel pipe of 62 mm ($2 \frac{1}{2}$ in) nominal diameter to connect the well screen to the pump cylinder and serves as well as casing.
4. Galvanized steel pipe of 62 mm ($2 \frac{1}{2}$ in) nominal diameter to connect the top of the pump cylinder to the discharge head.
5. A pump rod to connect the punp piston through the disoharge head to the pump handle. If the rod is not more than about 12 m long it may be of $11 \mathrm{~m}(7 / 16 \mathrm{in})$ steel. If more than about 12 m long the pump rod should be wood.

The average cost of an HPN will vary from $\mathrm{P} 2,500$ (at 20 m depth) to $\mathrm{P} 8,000$ (at 75 m depth).

Potential Application

In the five study areas, there are certain fringe areas 7 that oould potentially adopt the HFW as an interim measure for water supply until such time as the permanent conventional system extends towari those areas. The following table shows such areas and probeble per capita costs if a HFW were provided for each home:

$\begin{aligned} & \text { Water } \\ & \text { Distriot } \end{aligned}$	Community	Pumping Level (m)	Well Depth (m)	HPN Cost	$\begin{aligned} & \text { Pef Capita } \\ & \text { Cost } 8 \end{aligned}$
MOWD	Clarin	near surface	40-50	P2,000	7290
CNWD	Basud	3-6	20-60	P1,800	P60
MCWD	Liloan	8-15	20-30	P3,000	P430
MCND	Compostela	15	30-50	P4,400	P630

[^5]The HFW has a per capita cost which is $50-100$ per cent of the per capita cost of a piped water aystom. Because of the better level of service and fire-fighting potential of the piped water system, the HPV alternative is not recommended in areas where a piped water system is a viable alternative. Hence, those areas within the water district which have a population density of 100 people per hectare should be served by a piped water supply.

Additional Analyses of Storage Alternatives

In order to reduce transmission line costs associated with storace tanks described in Chapter VIII, additional storage tank alternative schemes were analyzed. These sohemes are described below.

ST - 1. All storage in the distribution system. This is the alternative associated with source/transmission alternative 2 disoussed in Section VIII-B. It consists of storage sites looated in Barrio Kalabayan and northeast of Clarin (gites 1 and 3).

ST - 2. Stage I storage ($1,900 \mathrm{cum}$) would be built along the source transmiseion line coming from Talibaksan and Bitoon Springs in Barrio Segatio. In 1989 the Stage II storage ($1,600 \mathrm{cum}$) would be built at the Kalabayan Site and no storage would be built at the Clarin site. This alternative oorresponde to 54 per cent of the storage being located at the souroe hydraulic gradeline control.

ST - 3. The Stage I storage plan is identical to ST-2 with 1,900 cum located at the souroe HGL control. In Stage $2,700 \mathrm{cum}$ of storage would be constructed at the Kalabayan site in 1989 and 900 oum additional storage at the source EGL control in 1994-95. For ST-3 80 per cent of the storage would be located at the source HGL control.

ST - 4. For this alternative, no storage would be looated in the distribution system. Consequently, 100 per oent would be located at the source HGL control.

The pipelines and storage tanks which were considered in the analyais of the storage alternatives are shown in Appendix Figure VIII-D-4. For each alternative, several oomputer runs were made to oheok peak-hour pressures and the storage fillis condition. The required pipe sizes and construction period for each alternetive are listed in Appendix Table VIII-D-2. The pipelines listed are only those which change with respeot to the alternatives. Those lines which are the same for all alternatives are not listed in the table, though included in the analysis. The storage volumes and construotion periods are listed as follows:

Site \quad C	Construction Period	Storage Sx-1	Volume ST-2	$\begin{gathered} \text { (cum) for } \\ S T-3 \end{gathered}$	Alternative ST-4
Source HGL (Segatio)	1981-82		1,900	1,900	$\begin{aligned} & 1,900 \\ & 1,600 \end{aligned}$
	1989-90				
	1994-95			900	
Site 1 (Kalabayan)) 1981-82	1,900	1,600	700	
	1989-90	900			
Site 3 (Clarin)	1994-95	700			

Each construction phase was assumed to be a 2-year period beginning in January of the first year and onding in December of the seoond year. Thus, all interest during construction was computed at 12 per cent for the 2-year period. Annual expenses were assumed to start at the end of the construotion poriod.

The summary of present worth analysis of each alternative is listed in Appendix Table VIII-Dh-3. The tabulation of present worth oost includes the pipelines whioh are different in the alternative schemes, the storage tanks, and those pipelines and distribution mains which are identioal for all alternatives.

From Appendix Table VIII-D-3, it oan be seen that the move storage which is located along the source transmission line, the cheaper the alternative. An explanation for this is that the Oreariz peak-hour supply comes from two direotions - Cocok and Regina Springs as well as Telibaksan, Bitoon, and Lower Dalingap Springs. Thus, Coook and Regina serve the same runotion as a storage tank by supplying peak-hour flow from a second direction. Though $5 \pi-4$ is the least oostly alternative, one significant drawback occura because of no distribution storage, that is, peak-hour service along the Kalabayan Road cannot be maintained. The service area along the road to Barrio Kalabayan is at higher ground elevations ($15-50 \mathrm{~m}$) than Ozamis City, causing peak-hour preseures to be low. Thus, having no distribution storage in Kalabayan prevents the water district from supplying concessionaires in this area without boostor pumpage.

Alternative $\mathrm{ST}-3$, whioh oosts 2 per cent more than $\mathrm{ST}-4$ in the present worth analysis, would enable the Water District to eerve the Kalabayan area without booster pumpage. At the same time the 700 cum of storage at the Kalabayan Site would make the service to Ozamiz City more reliable empeotally if a break occurs in one of the major transmission lines. The staging of storage in scheme ST-3 provides considerable flexibility to the water district in the period 19952000. Since 900 cum of storage would be construoted at that tine,
the Water District oan place all of the 900 oum or part of it in any of three locations - Kalabayan site, source site, or Clarin site. The choice of the location for the storage should be based on demand patterns and urban growth projections which will be more readily discernible in 1995. Therefore, alternative storage soheme ST-3 is recommended. The Water District can supply a wider area with gravity service, and the storage staging provides more floxibility in the period 1995-2000.

VIII-D-16

APPENDIX TABLE VIII-D-3
SUMMART OF PRESENT WORTH COSTS FOR ALIERNATIVE STORAGE SCHEMES

			Present Wor	orth of Net	Disbursement (p)	
	Alternative	Per Cent of Year 2000 Storage Located at Source Hydraulic Gradeline Control	Tranamission Lines in Appendix Table VIII-D-2	$\begin{gathered} \text { Storage } \\ \text { Tanks of } \end{gathered}$	Transmission Lines and Distribytion Mains	T Total
S	ST-1	0	P 8,831,000 P	- 832,000	P 9,601,000 P	P 19,264,000
$\stackrel{0}{0}$	ST-2	54	5,073,000	870,000	9,601,000	15,544,000
\sim	ST-3	80	4,534,000	826,000	9,601,000	14,961,000
	ST-4	100	4,193,000	856,000	9,601,000	14,650,000

[^6]
APPENDIX VIII-E

WATER RESOURCES CONSERVATION MEASURES

Alternatives available to counteract future (and present) water shortages consist of the following: roume of wastewater, decalting, prooipitation augmentation, land management, and dual plumbing system. These alternatives are discussed below.

Hastewater Reuse

One of the potential alternatives in meeting future water demand is the reuso or recyoling of wastewater (sewage). In Singapore, reolaimad wastewater is used in the cooling process in industries. A full-scale municipal reuse faoility in Windhoek in Southwest Africa built in 1969 provides a major source of potable water.

Reuse of wastewater can be accompliwhed in two ways: by natural self-purification which makes reuse possible for irrigation and reoharging of ground and surface waters, and by technologioal process. The technology of reuse involves treatment of used water supplies from the commanity for domestic, industrial, irrigation and other purposes.

Complex treatment prooesses are necessary to remove the objeotionable characteristios of wastewater and make it suitable for a particular use. There are three basic phases of treatment primary, secondary and advanced. One of these or all may be applied depending on the types of use and pollutants present in the wastewater.

Studiea on vastewater reclamation deal with enhancing its economio feasibility for large scale uge and technological expansion. Achieving these objectives will depend on several faotors.

It is teohnologically possible to produce water of any desired quality from any source. However, the controlling factor is e00nomics. For instance, because of its lesser solids content, wantewater reclamation is simpler than seavater desalting as an alternative eouroe of supply.

The feasibility of wastewater reclamation an a source of water supply will be limited in the study area since wastewater volumes are ourrently mininal, and future increases in sewage are expeoted to we slow.

Dagelting

Desalting is the process of converting seawater into fremh water. It involves removing substantial amounts of the ocean's salte and minerale.

There are three basic methods of desalting: distillation, freesing and eleotrodialysis, each with several variations.

Over 90 per cont of the present application of desalting is done by distillation. In this procese, meawater is evaporated and the vapor is condensed. Salt deposits form on the surface of the ovaporating equipment and the demalinated vater is the resultinc distillate. The least costly diatillation unit ueen solar eneres as heat source.

Electrodialyais obtains fresh water by using an eleotric ourrent to separate the ions of the contaminating ealts. In the process of freesing, ioc is formed from a saline solution and is melted to produoe fresh water. The melted $i 0 e$, however, sometimen has a alty taste.

In 1970, 33 amall-sized desalting plants were put in operation throughout the world, with a combined capaoity of 227,260 oumd. Kuvait has the largest plant with a 113,700 cumd oapacity surficient to supply a population of 150,000. Other plants are found in Netherlande, United States, Veneruela and Aruba.

For the most part, desalting is atill experimental. At present, it is not technically and economically feagible to convort meaningful amounte of seawater into fresh witor. All the processes have inherent defeots for ceneral use, including the problem of diaposing about 50 per cont of removed saits und minerals of the total treated seamater.

These processes are also oostly because they involve significant quantities of enerey. Wheread treatment of ordinary water supply oosts about 5 cents per 1,000 gallons of fresh water, deealtins costa mbout $\$ 1.00$ per 1,000 callons of desalited water. This cost covers only the plant itself and exoluder neceaskey trancaiseion facilities. (These are pro-eneres arisia costs.)

Precipitation Aurmentation

Rain can be artificially Induced to inorease water mupply (although it does not diminish the need to colleot it). The most common mothod of stimulatinc rainfall is clond eoeding.

The theory behind cloud seeding is that under cortain conditions, air containing mach moisture will not yield preaipitation that might possibly ocour because of the absence of partioles of dust, crystal or chemical droplets. In cloud seeding, such particles are artifioially implanted in aupersaturated olouds to stimulate rainfall. These partioles used in the mothod are called silver iodide crystals.

The costs of cloud seeding in 1971 ranged from $\$ 1.00$ to $\$ 2.30$ per acremfoot of additional run-off. This cost range, however, was derived from planning reports and as suoh, might not repreant aotual operations.

Cloud seeding does .ot always jield the desired offects of increased rainfall. Experiments show that the method also resulta in decreases in the amount of expected precipitation. These offects have not been sufficiently explained although a theory advanced if that the amount of rainfall depends on the types of oloud aystems being seeded.

Inoreases in precipitation do not necessarily produce propom tional increases in useble water supply. The opportunities to inorease precipitation depend on climatic conditions suoh that during the dry season, water supply increases are less frequent. Preoipitation augnentation encourages the growth of vegetation than can reduce usable water yield.

Land Mana rement

Land management oan affeot the amount and quality of water available for use. It is a method of both increaging and consarving water gupply.

Two potential teohniques of land management that apply to Philippine conditions are forest management and control of atreambank vegetation. Poreste impact upon water supply in a number of ways. They intercept rain from the surface of the leaves. They draw moisture from the soil and release it into the atmosphere ho transpiration. Through their roots, leaves and other parte, forests faoilitate the infiltration of precipitation into the soil. Ther also tend to shade the soil and slow dom wind velooity, thus, reduoing ovaporation from the soil surface. Any alteration on the amount and type of vegetation, suah as doforestation, will affeot water supply.

Phreatophytes or deep-rooted vegetation along the banks of canala and rivers consumes much water in their crowth. Eapecially in oases as whon preaipitation is low, this vecetation may reduo
the streamflow and the discharges of springs, Sometimes, it also tends to increase flood stages when it invades stream ahannels and reduces ohannel capacity. Phreatophytes are useful in the aense that they provide important wildife habitat; otherwief, they do not have food value. Based on these uses and effects on the water mapply, thoy have to be managed carefully as uprooting them in not necosm sarily the best answer to inoreasing water supply.

Dual Plumbine System

A relatively small inorement of the total public mater supply domande highly potable and olean water such as that required for drinking, coolin, bathing and washing clothes. It is possible, for instance, to use seawater for toilet flushing, waning streets, fire-fightinc. Where fresh potable water is in short supply, suoh as in Singapore and Hongkong, a dual system has demonstrated its offeotivity. For expmple, in Hongkonc during the eevere drought of cummer 1963, water servioe was rationed into the varioud oity aeotors 4 hours every 4 days. Dhtraneous usen of wator auah as toilet lushIng were therefore severely curtailed. In some of the highmise sovernment housing in Hongkons, dual plumbing systen has been need, with sea water for toilet flushinc.

There are two main objections that have been identified in tho use of dual system - cross-connections and associated cost. Dual water mupply aystem where one system delivers potable water and the other system furmishes untreated water can very well lead to water borne disease outbreaks. Where proposed, the dual water oupply system should have the non-potable supply olearly indioated and separated from the potable supply. Proper plumbing codes and supervision of plumbing installation could minimise this hoalth hasard.

If an existing system is to be replaced entirely by a dual systen, the cost may well be unreasonale. However, if the existing water supply pipinc ia retained for potable (drinkinc) ayotem and a new non-potable pipe network utilizinc sea water is added, there is a possibility that the economios may prove the dual syetem to wo worthwhile. Savings result where the non-potable aystem eerven high-rise multi-family dwelling units with hich popalation density. The inoreased cost resulting from the independent system may be offset by eliminating the need for developing new water re. sourcen and above all, rotaining high quality premivn water for domestic consumption. Aocordingly, the faasibility of the dual system has already been proven. Beowuse the potable water aystem will not We used for fire protection, its distribution syetem need not bo designed for high pressure otherwise required in a system with high fire demand.

APPENDIX TO CHAPTER IX

APPENDIX IX-C

DISTRIBUTION SYSTEM GROWTH

Gereral

It is necessary to projeot the growth of the distribution system in order to estimate the required expenditures for internal network piping, service connections, and requirements for fire hydrants. The projection of distribution system growth is based on (1) an apportionment of the population served into several sectors within the study area, (2) a gradual decrease in the number of people served at each conneotion and, (3) the number of connections anticipated per hectare of area served. Each of these items is discussed in detail in subsequent sections.

Population Served

The population served projections given in Chapter VI are divided into that of the present service area, 1990 service extension, and year 2000 service area extension. These areas were further divided into sub-sectors for apportioning the population served projections. The population served estimates for each subsector are given in Appendix Table IXCC-l. The present service area population in Appendix Table $I X-C=1$ was taken directly from Table VI-3. The method of apportioning the population served in Item B was first project the total population of the Clarin poblam cion and then apply the same percentage served factor which applies to the present service area (Ozamiz City poblacion). The Clarin Poblacion population was assumed to be 11\% of the 1990 service area popalation in 1980 , 10% in 1990 and 9% in year 2000. This reflects a trend of decreasing rate of growth in Clarin as compared to the increasing population growth of the area outside the poblacion in Ozamiz City. After determining the population served for Clarin, Items B-1 and B-3 (Table IX-C-1) were obtained by assigning approximately $75 \%^{\circ}$ of the remaining population served in the 1990 service area extension to Item B-1. The method is shown for 1980 belows

[^7]APPENDIX TABLE IX-C-1
POPULATION: SERVED APPORTIONMENT
TO SUB-SECTORS

Service Area/Sub-Sectior	Population Served in $\mathrm{Y}_{\text {ear }}$			
	1975	1980	1990	2000
A. Present Service Area 1. Ozamis CitymPoblacion	17,500	19,200	27,200	35,100
B. 1990 Service Area Extension				
1. Ozamiz City-Outside Poblacion		3,300	13,400	30,100
2. ClarinmPoblacion		3,400	4,900	6,400
3. Clarin-Outside Poblacion		1,000	4,500	10,000
C. Year 2000 Service Area Extension				
1. Ozamiz City-Outride Poblacion			3,000	7,900
2. Clarin-Outside Poblaoion				3,500
Total Population Served	17.500	26,900	53,000	23,000

B - 3. Population Served in Clarin

$$
\text { Outside the Poblacion }=4,300-3,300=1,000
$$

Fir Item C. 1 the 1990 population served was assumed to be entirely in the Ozamiz City area. For year 2000, 70\% of the served population in the year 2000 service area extension was assumed to be in Ozamiz City.

Number of Consumers Served per Connection

The present average number of oonsumers per connection in Ozamis City Poblacion is 10.8 according to interviews with concessionaires. Over the next 25 years, this number is assumed to decrease gradually because of (1) decreasing population growth whioh will reduce the number of people per household, (2) increasing economic growth which will enable more households to own or rent dwelling units; and. (3) more reliable water service and supply which will eliminate the practice of non-concessionaires "borrowing" water from concessionairea. The projected average number of consumers served per connection is shown in Appendix Table IX-C-2.

APPENDIX TABLE IX-C-2
PROJECTION OF NUMBER OF CONSUMERS SERVED PER CONNECTION

| | $\begin{array}{l}\text { Number of Consumers } \\ \text { Served }\end{array}$ | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Service Area/Sub-Sector | | | |
| Sonneotion | | | |$)$

The number of oonsumers per connection in the poblacion of Clarin is assumed the same as that for Ozamis City Poblacion. The concessionaires outside the poblacionas are assumed to have slightly less consumers per connection than those in the poblacionos.

Number of Connections Per Hectare

Projecting the number of concessionaires to be connected per hectare of area served enables the determination of the total number of hectares served. At present the MOWD serves approximately 165 heotares in and around the poblacion of Ozamiz City. There are 1,624 concessionaires or approximately an average of 10 connections per hectare. In the projections of number of hectares served in the poblacion of Ozamiz for the future, the total area remains constant and the number of connections per hectare increases. By year 2000 the number of connections per hectare will be approximately 27. A large portion of the increasing connections per hectare can be attributed to the likely construction of multi-family dwellings.

To determine the area to be served in the Clarin poblaoion the number of connections per hectare is acsumed. For example, it is assumed that initial service to the pollacion of Clarin will obtain an average of 8 connections per hectare. Thus the number of hectares in 1980 is celculated as follows:

> Number of Hectares Served $=$ Number of People Served
> Number of People per Connection \mathbf{x} Number of Connections per Hectare

$$
=\frac{3400}{10 \times 8}=42.5 \mathrm{ha}
$$

The 42.5 ha represents the net area served. This area should be increased by $20, \%$ to reflect the land which will be used for schools, churches, and other institutions. Thus the total area served in the poblacion of Clarin is approximately 50 hectares. As in the case of Ozamiz City, the area of the poblacion of Clarin is kept constant and the number of connections increases as the pqpulation increases. Thus in 1990 there will be 12.7 connections per heotare ($4,900 / 9 \times 43$) and in year 2000, 18.6 connecotions per heotare ($6,400 / 8$ x 43).

For the areas outside the poblaciones, it is assumed that the conneotions per hectare increase as the fringe areas around the poblacion of Ozamiz City and the poblacion of Clarin become more dense ly settled. In Ozamiz City the connections per hectare in the 1990 service area extension are assumed to be less than that for the present service area in the poblacion and more than that for year 2000 service area extension. 'The aame trend is maintained for the sub-sectors in the Kunicipality of Clarin though the number ef sonnections per heotare is slightly less than those in the corresponding sub-seotor of Ozamiz City.

The projection of area served is listed in Appendix Table IX-C-3. The service area is projected to increase from the present 165 ha to 290 ha by 1980,510 ha by 1990 , and 750 ha by year 2000.

Area Served by Internal Network System

The present area being served by the internal network system in Ozamiz City is approximately 70 ha which is less than the total service area of 165 ha . The reason for this difference is that many concessionaires are connected directly to the transmission lines and distribution mains. This practice enatles the Water District to serve more concessionaires than if no connections were permitted to the transmission and distribution mains. Thus, in Ozamiz approximately 95 ha is served in this manner. It is assumed that this practice will continue, and, therefore, the arta served by distribution mains and transmission mains is subtracted from the total servioe area to determine the area which will receive intermal network piping. It is estimated that 25 m can be served on each side of transmission lines and distribution mains. No servic弓 arca is attributed to those transmission lines passing through areas of very low density population. The areas to be served by transmission lines and distribution mains are listed below:

$$
\underline{1980} 11985 \quad 1990 \quad 2000
$$

Length (m) of transmission $10,000 \quad 6,000 \quad 4,000 \quad 12,000$ and distribution mains likely to support ooncessionaires
$\begin{array}{lllll}\text { Corresponding area (ha) } & 50 & 30 & .20 & 60\end{array}$
All of the present area of 95 ha served by transmission lines and distribution mains is not served adequately. It is assumed that as improvements are made, the 95 ha will be reduced to 30 ha and that 65 ha will be served with internal network. It is estimated that 60 ha currently served by internal network in the poblacion will require reinforment to improve the level of service in the high-value commercial area.

The expansion of the service area and the area served by internal network system is listed in Appendix Table IX-C-4. By 1990, the MOWD (Ozamiz and Clarin) will have extended the internal network system to an additional 220 ha and reinforced the 60 ha of the existing system. By year 2000,490 ha will have internal network piping. In order to manage the growth of the system and to obtain financing in approximately equal increments, the expansion of the internal network system is divided into five construotion periods between 1978 and year 2000.

$$
\begin{aligned}
& \text { APPENDIX TABLE IX-C-3 } \\
& \text { P?OJECTION OF AREA SERVED }
\end{aligned}
$$

Servioe Area/Sub-Sector
1990
2000

A. Present Service Area

1. Oxamiz City - Poblacion	11.6	165	18.3	165	26.6	165

B. 1990 Service Area Extension

1. Ozamiz City - Outside Poblacion 94655
2. Clarin - Poblacion 8 43 50
3. Clarin - Outside Poblacion 7
$18 \quad 20$

10

43	50
60	70

18
220260
18.6
$43 \quad 50$
$90 \quad 110$
C. Year 2000 Service Area Ertension

1. Ozamiz City - Outside

Poblacion
11
2. Clarin = Outside Poblacion.

Total $=$
290

36	45	12	90
	10	45	55
			750

		Area (ha) Served in				
		1275	1980	1985	1990	2000
A. Area Served by Transmission and Distribution Mains						
	1. Existing Mains	95	60	30	30	30
	2. New Mains		50	80	100	160
B. Area Served by Internal Network System						
	1. Existing System	70	70	70	70	70
	2. New System		110	220	310	490
c.	Total Service Area	165	290	400	510	750

The first three periods are 4-year intervals, the last of which ends in 1990. The final two periods are 5-year intervals with the last one ending in year 2000. The construction program for the internal networic is modified slightly from that shown in Appendix Table IX-C-4 in order to have contant level of growth. The recommended proerram is listed below:

Area of Internal Network Installed (ha)
Construction Period
Reinforcement
New Service Area
I. First Stage
$\begin{array}{lll}\text { A. } 1978-82 & 30 & 100 \\ \text { B. } 1982-86 & 30 & 100\end{array}$
C. 1986-90 - 100

Sub-total $60 \quad 300$
II. Second Stage
A. 1990-95 95
B. 1995-2000 95

Sub-total 190
Grand Total $60 \quad 490$

Since the Interim Report, the cost of internal network piping has been re-evaluated. The reinforcement of the internal network in the poblacion has been reduced in part because of field observations which found larger pipe sizes than were recorded eailier. For internal network in new areas, the ratio of total length of 100 m pipe to 150 mm pipe per hectare served was increased from 1.85 to 4.0 per heotare. Computer studies of internal network indicate that thie ratio of 100 mm to 150 mm pipe per hectare can maintain both peak-hour and firemflow requirements. The data listed in Table VIII-3 are used to compute the constmaction cost of the internal network.

Area Reoeiving Fire Proteotion

Beoause of the financial impact of the overall construction program on the conoessionaires in the service area, it is proposed that in Phases A and B of Stage I (1978-86) only the poblacion prea be provided fire hydrants. This will correspond to the 60 ha of the existing internal network whioh will be reinforced. Since this is a commeroial and high-value area, the hydrants will have 150 mm risers and be spaced at 150 m intervals. This can be accomplished at a conatruction cost of 95,000 per hectare.

The areas outside the poblacion will receive fire protection at later stages. The extension of fire protestion will gradually increase, so that by Stage II-B the installation of hydrants will correspond with the construotion of the internal network. The construction cost of hydrants in the less dense and lower valued residential areas is $\mathrm{Pl}, 600 /$ hectare. Also, in Stage II - Phase B allowanoe is made for upgrading fire protection in 50 ha of formeriy low-value residential area co highem-value area. The mohedule for fire hydrant construction is listed below:

Area to Receive Fire Protection (ha)
Construction Period
High-Value Area Residential Area

I. First Stage

A. 1978-82
30
B. 1982-86
C. 1986-1990

30
II. Second Stage
A. 1990-1995
B. 1995-2000

$$
\begin{array}{ll}
\\
50^{1 /} & 165 \\
165
\end{array}
$$

I/Corresponds to upgrading of areas provided with residential fire protection in earlier construction periods.

Number of Connections

The projection of the number of connections is obtained by dividing the population served in the sub-sectors by the average number of consumers per conneotion. The number of connections projected for each sub-sectors is listed in Appendix Table IX-C-5.

APPENDIX TABLE IX-C- 5
PROJECTION OF NUMBER OF CONNECTIONS

| | Number of Connections ${ }^{2}$ in |
| :--- | :--- | :--- | :--- | :--- |
| Service Area/Sub-Sector | $1975 \quad 1980 \quad 1990 \quad 2000$ |

A. Present Service Area

1. Ozamiz City-Poblacion 1,624 1,920 3,022 4,388
B. 1990 Service Area Extension
2. Ozamiz City-Outside Poblacion 412 1,787 4,300
3. Clarin-Poblacion $340 \quad 544$
4. Clarin-Outside Poblacion 125600 1,429
C. Year 2000 Service Area Extension
5. Ozamiz City-Outside Poblacion . 400 1,129
6. Clarin-Outside Poblaoion $\quad \overline{\text { Total (Rounded) }} \begin{gathered}\text { 1,624 }\end{gathered} \quad \overline{2,800} \quad \overline{6,350} \quad \underset{12,550}{ }$

The number of conneotions are projected to increase from 1,624 in 1975 to 6,350 in 1990 and 12,550 by year 2000.

[^8]It is necessary to project the number of conneotiuns between 1975 and 1978, the first year of the proposed First Stage improvements program. It is anticipated that the program to reduoe un-accounted-for-water (a part of the Early Action Guidelines) will make water available for consumption by new concessionaires. The total number of connections by 1978 is estimated to be 1,850 corresponding to approximately six connections per month over the next three years. This is within the realm of possibility for water district. Simply eliminating the estimated wastage at flat rate conneotions (Item 2.c of Table IV-5) will make available 410 oumd, which would be enough water for 380 concessionaires at the present leyel of consumption and estimated number of people per connection.

From 1978 to 1990 the number of connections is projected to increase at a constant rate during the three construction periods. A corstant rate is also projected for the two construction periods from 1990-2000. The projections are listed as follows:

Construction Period \quad\begin{tabular}{l}
Number of Connections

Per Construction Period

Total Number of

Connections 3
\end{tabular}

I. First Stage

A. $1978-82$	1,500	3,350
B. $_{\text {. }} 1982-86$	1,500	4,850
C. $1986-90$	1,500	6,350

II. Second Stage
A. 1990-95
B. 1995-2000

$$
3,100
$$

3,100
9,450
12,550
The cost of conneotions wiil be shared between the water distriot and the concessionaire. The cost of a 12 mm service connection is P366 based on 1976 cost estimates. The water district will pay onethird of the service conneotion cost and the concessionaire will pay two-thirds of the cost. The ooncessionaire will also pay for the Pl40 water meter (12 mm meter). The service connection costs are itemized below:
${ }^{3}$ Includes 1,850 connections in 1978 .

Itemized Cont (P)

A. Service Conneotion Line

1. Concessionaire
 244

2. Water District 122
B. Water Meter
3. Concessionaire 140

Total
506
The foreign exchange component of the service connection is asaumed to be 80 per cent of the cost of the meter - US $\$ 16$.

Existing Service Conneations
As described in Chapters IV and VI, many existing GS service lines are leaking and the stop-gap method of repair will not alleviate the problem. It is antioipated that the existing service lines will leak even more when the new improvements raise the pressures in the existing service area. Therefore, a sohedule for replacement for the existing service lines should be inoluded in the improvement program so that leakage in the existing sybtem can be reduced. During the first two nhases of tine Flirat Stage improvements the program should be concentrated in those areas where the fewest number of replaced servioe lines will reduce significantly the leakage. These areas should be identified in the leakage survey recommended in the Early Aotion Guidelines. The schedule of replacement is projeoted as followsi

Construction Period	Number of Existing Connections Repleoed Por Congtruction Period	Equivalont Annual Roplacement
I. First Stage		
A. 1978-82	200	50
B. 1982-86	300	75
C. 1986-90	400	100
II. Seoond Stage		
A. 1990-95	724	145

IX $-0-11$

The replacement program will be completed by 1995. The costs of the service line replacement are assumed to be the same as those for new service line installation described in the previous seotion. The costs of meters is not inoluded since they are included in the meter replacement schedules in the financial feasibility analysis.

Summary
The recommended improvement program for the distribution system has been presented in this section. For each component of the distribution system the recommended schedule of improvements and estimated costs has been itemized. The estimated construotion coats for all construction periods are listed in Appendix Table IX-C-6.

APMTidIX TABLE IX-C-6 SUMMARY OF DISTRIBUTION SYSTEM COSTS

Construction Period	Item/Deacription	Quantity	Unit Cost	Construction Cost (F)	$\underset{\text { F.E.C. }}{\substack{\text { IUSS }}}$

I. First Stage
A. 1978-8

Internal Network Reinforcement	30 ha	P16,600/ha	498,000	13,300
New Service Area	100 ha	P17,700/ha	1,770,000	52,200
Fire Hydrants 30 ha 150,000				
HighwValue Area	30 ha	P 5,000/ha	150,000	
Servioe Connections				
Replacement	200	P366	73,200	
New Connections	1,500	P506	759,000	24,000
Sub-total (Round			3,250,000	90,000

B. 1982-86 Internal Network

Reinforcement	30 ha	P16,600/ha	498,000	13,300
New Service Area	100 ha	P17,700/ha	$1,770,000$	52,200

$\begin{aligned} & \text { Fire Hydrants } \\ & \text { High-Value Area }\end{aligned} \quad 30 \mathrm{ha} \quad$ F 5,000/ha $\quad 150,000$

Service Connections			
Replacement 300	P366	110,000	
New Connections 1,500	P506	759,000	24,000
Sub-total (Rounded)		3,287,000	90,000

C. 1986-90 Intermal Network

New Service Area 100 ha P17,700/ha 1,770,000 52,200
Fire Hydrants
Residential Area 100 ha \quad 1,600/ha 160,000
Service Connections
Replacement 400
New Connections 1,500
Sub-total (Rounded)
Grand Total

$\begin{aligned} & P 366 \\ & P 506 \end{aligned}$	$\begin{aligned} & 146,400 \\ & 759,000 \\ & \hline \end{aligned}$	24,000
	2,835,000	76,000
	9,372,000	256,000

:PPENDIX TABLE IX-C-6 (Continued)
SIMMARY OF DISTRIBUTIUN SYSTEM COSTS

Construction
Period
:---:
:---:
Cost (5) F.E.C.

II. Second Stage

GISARIS OCCIDENTAL FUTURE TRANSMESTON LEMES GND fEEDER MAINS YR 2060

```
MPUT ANO OUTPGT IN LSS
':A OH NGDES 37
    OQFPIPES 57
    SX NO OF TTEDATIONS 20
    AKING FECTOR l.50050
\thereforeLLOW P-DROH FRISTATIC - PC: 50,0
    ATS:HOL FOR P-DFOP CALE 70.0
    AX UNBAL - LPS 0.10000
    AX \triangleLEOW VEL -MPS 30.300
    M ALLEH VEL - mos 0.400
    A ALLOWHE MrIOOOH 10.00
    N 4LLOW HL - M/1000 M 0.50
    AX ALLOW PRESS - ATM 7.000
    ON ALLOW DRESS - ATM 0.700
} OF HEAOS TO BE REAO 
```



```
:!m OF FIXED DEMANDS 292.95
    NDWIOYH 7
    FER L UNEAL G3.23 LPS
    FR 2 UNAML 50.50 LPS
1 ER 3 UNBAL 23.93 LPS
    ER 4 UNBAL. }%.08 LP
    ERR 5 UNBAL 0.g4 LPS
:ER 6 UNBAL 0.04 LPS
    HUTION NO. L PEACHEO IN E ITERATIONS
            0.0403 uNSALANCE
```

$\begin{gathered} P: P E \\ 10 \end{gathered}$	$\begin{aligned} & \text { NODES } \\ & \text { FROM-TO } \end{aligned}$	$\begin{aligned} & \text { OIA } \\ & \text { MH } \end{aligned}$	Mins.	$\begin{gathered} H-W \\ C \end{gathered}$	K-VALHE	FLOM	$\begin{aligned} & -V E-- \\ & 405-6-6 \end{aligned}$	$\begin{aligned} & -H E A D \\ & M T B T \end{aligned}$	$1000 \mathrm{ck}$
2	29	19 26u	20.00	110	0.2?7E-01	16.36	0.52	5.79	2.19
2	19	18200	900.	110	$0.1115 \cdots$	11.38	0.36 LO	1.00	1. 2.
3	18	17200	1550.	110	0.204E-01	39.82	1.27	18.71	11.34 Hj
4	17	16200	60.	110		41.75	1.33	8.05	12. E er
\because	16	3200	750.	110	0.925E-02	39.33	1.22	7.92	10.57 Hi
6	3	+ 153	5900	100	0.353E-01	14.5:	0.82	5.00	0.47
?	6	4200	920.	110	0.114F-01	18.26	0.56	2.46	2.63
8	6	7150	1100.	- 0	0.65 E-01	7.05	0.10 LO	2.44	2.22
9	7	815	3500	100	0.479E-0.	2.52	0.1410	0.26	0.33 L
10	9	8150	1700.	100	0.102 E 0	2.52	0.141 .0	0.56	0.33 Li
11	9	10.150	1220.	100	ก. $7: 0 \mathrm{OE}-01$	2.00	0.1110	0.26	0.22 id
12	11	10150	1.200	100	0.718E-01	4.83	0.2310	1.32	1.10
13	12	11195	700.	100	0.117--31	17.69	C. 59	2.38	3.41
14	14	12195	-	0	U.833E-02	41.99	1.41	8.44	16.89 Hi
15	29	19395	2650,	120	0.101E-02	106.92	0.87	5.79	24.2
16	19	18395	900.	120	0.344E-03	74.36	0.61	1.00	1.12
17	18	17261	1030.	110	0.557E-02	80.17	1.50	28.71	i1.34
18	17	5201	1200.	110	0.405E-02	72.83	1.36	11.39	C. 49
19	5	6200	650.	13	C.903E-02	33.08	1.24	7. 12	10.96
20	5	3150	750.	100	0.449E-01	12.17	0.69	4.58	6.12
21	3	21.50	200.	100	0.120E-02	20́cio	0.95	2.20	10.90 11:
2.2	20	2200	900.	110	0.111E.01	41.56	1.32	ii. 05	12.29
23	2	1200	-70.	110	0.45?E-02	31.29	1.00	2.69	7.26
24	1	4150	590.	100	0.353E-01	1.89	0.11 Lo	0.12	0.15
25	21	1150	1300.	100	0.777E-01	1.41	0.08 LO	0.15	0.11
26	20	16150	800.	100	0.478E-01	4.95	0.28 LO	0.92	1.15
27	27	$23-50$	1650.	100	0.987E-01.	16.33	0.92	17.39	10.54110
28	24	2.0150	2370.	110	0.113500	12.25	0.69	12.30	5.15
29	27	24150	500.	110	0.251E-01	18.40	1.04	5.51	11.02 ti
30	23	20150	420.	100	0.2E1E-01	4.60 .	0.2610	0.42	1.01
31	23	22150	$80^{0} 0$	100	$0.478 E-01$	7.21	0.41	1.80	2.32
32	25	20200	1100.	110	0.135E-01	40.42	1.29	12.83	11. 5 t ! !
33	13	28195	1600.	100	$0.267 F-01$	41.18	1.38	2t. 06	16.25
34	28	15195	900.	100	$0.150 E-01$	340ヶ\%	1.16	10.56	11.73113
35	15	8195	1150.	100	0.192E-01	17.28	0.58	3.75	3.26
36	29	19300	2650.	120	0.387E-02	51.88	0.73	5.79	2.18
37	19	18300	900.	120	0.131E-02	36.07	0.51	1.00	1.12
38	18	37261	2250.	110	C. $760 \mathrm{E}-02$	1.80	0.03 LO	0.02	0.02 16
39	39	37296	1850.	110	0.3うSE-02	50.4 .5	0.73	4.82	2.60
40	37	25200	750.	110	0.926E-02	50.04	1.57	12.95	1.7.31 115
41	25	38150	2150.	200	$0.129 t 00$	2.16	0.1210	0.54	0.25 L
42	24	38150	1000.	100	0.598E-01	0.41	0.02 L	0.01	0.01 l
43	22	21150	900.	100	$0.538 \mathrm{E}-01$	18.67	1.06	12.15	13.51 it:
44	5	30150	1500.	100	$0.897 \mathrm{E}-01$	11.53	0.65	8. 30	5.54
45	30	31150	800.	100	0.478E-01	2.31	0.13 Lu	0.22	$0.28: \%$
46	15	31150	1200.	100	0.718E-01	7. 52	0.43	3.01	2.52
47	15	32150	1200.	100	$0.718 \mathrm{E}-01$	i. 76	0.10 LO	0.21	0.1719
48	14	32150	1250.	100	0.7485-02	12.76	0.72	8.35	6.68
49	30	7150	1150.	100	0.688E-01	4.82	0.2710	1. 26	1.10
50	31	8150	1000.	100	0.598E-01	5.28	0.30 LO	i. 30	1.30

$\begin{aligned} & \text { IN } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { NODES } \\ & \text { FROM-TO } \end{aligned}$	$\begin{array}{ll} \mathrm{OI} \\ \mathrm{MM} \end{array}$	$\stackrel{L}{M T R S}$	$\frac{1:-4}{C}$	k-value	FLOH	--VEL-- $M P S--C K$	$\begin{gathered} -H E A D \\ \text { MT MT } \end{gathered}$	$\begin{aligned} & \text { LOSS-- } \\ & 1090 \text { ek } \end{aligned}$
i1	32	10150	800.	100	0.478E-01	10.62	0.60	3.80	4.75
32	33	14230	13500	110	0, 844E-02	65.65	12.58	19.57	14.15 HE
;3	29	$33<7 \mathrm{a}$	2150.	110	0.005E-02	$6 \% .37$	1.17	14.70	t. 34
\%4	13	34150	11.00.	100	0.658E-01	5.31	0.30 LO	1.45	1.22
is	3.4	35150	700.	1.00	0.419E-01	2.19	0.1210	0.18	0.3010
58	12	13150	1100.	100	0.658E-01	12.25	0.69	6.82	0.20
19	23	20100	420.	100	0.181600	1.58	0.20 LO	0.42	1. 01

NDOE	GKOUND ELEV	FLOW	$\begin{aligned} & \text { HGL } \\ & \text { EIEV } \end{aligned}$	HEAD MTRS	ATM--CK PCT DROP--CK		
1	1.8	-30.81	23.640	21.84	2.11	67.98	41
2	1.5	-26.97	26.324	24.82	2.40	63.7t	HI
3	2.0	-19.27	29.52 U	26.52	2.57	61.00	H1
4	1.5	-34.66	23.52U	22.02	2.13	67.85	HI
5	2.0	-10.05	33.114	31.11	3.01	54.26	HI
6	1.5	-13.78	25.98 U	24.48	2.37	64.26	HI
7	1.5	-9.34	23.540	22.04	2.13	67.83	HI
8	1.5	-10.32	23.284	21.78	2.11	68.21	HI
9	1.5	-1?. 70	?3.84U	22.34	2.16	67.35	HI
10	1.5	-17.44	23.5810	22.08	2.14	67.77	HI
11	1.5	-12.86	24.90U	23.40	2.27	65.84	HI
12	2.0	-12.05	27.29U	25.20	2.45	-2. 81	HI
13	1.5	-6.94	20.474	18.97	1.84	72.30	HI
14	8.0	-10.89	35.730	27.73	2.68	55.27	HI
15	10.0	-70.93	27.590	17.59	1.70	70.E9	HI
16	3.0	-8.37	36.450	33.45	3.24	50.08	H1
17	10.0	-5.43	44.490	34.49	3.34	42.51	
18	20.0	0.0	63.2015	43.20	4.18	13.55	
19	25.0	-12.15	64.214	39.21	3.80	12.87	
20	3.0	-12.35	37.370	$3 \cdot+37$	3.33	48.70	
2.1	2.0	-17.20	23.78u	21.78	2.11	67.96	HI
22	3.0	11.46	35.94U	32.94	3.19	50.84	HI
23	8.0	-2.93	37.794	29.79	2.88	51.94	H1
2.4	20.0	- -.74	49.67 U	29.67	2.87	40.66	
25	18.0	-7.45	50.204	32.20	3.12	38.08	
27	3.0	34.72	55.184	52.18	5.05	22.12	
28	15.0	-6.6.	38.150	23.15	2.24	57.91	H:
29	65.0	242.51U	70.00	5.00	0.43 LO	0.00	
30	5.0	-4.41	24.8011	19.80	1.92	69.53	H!
31	5.0	-4.55.	24.584	19.58	1.90	69.88	HI
32	6.0	-3.91	27.38U	21.38	2.07	66.50	HI
32	12.0	-1.72	55.304	43.30	4.19	25.35	
34	1.5	-3.12	19.02 U	17.52	1.70	74.42	HI
35	1.5	-2.19	1.8.85U	17.35	1.68	74.68	H!
37	30.0	-2.20	63.18 U	33.18	3.21	17.04	
38	18.0	-2.57	49.66 U	31.06	3.06	39.12	
39	63.0	50.454	58.00	5.00	0.48 LO	28.57	

```
Impur man dutput IN IpS
M唯 NODES 2?
#;OFRIPES ET
    AX NO IF ITEFATIONS 20
&:AKING FACTOK
ALLOW P-DROF FR;STATIC - OCT 50.0
-THTIC HG. FOR P-DROP CALC 70.0
#X UNBAL - LPS 0.10000
थAX A!:OM YEL -MPS 3.000
# ALLDH VEL - MPSS 0.400
\becauseK ALLOW HL .. M/1000 ! 10.00
N ALLOW HL - M/1000 M 0.50
.iO ALLCN PRESS . ATM 7.00N
:ON ALLOW PRESS - ATM 0.700
UGOF HEADS TO BE READ .?
MI OF UNKNGHN CONSUMPTIONS 2
& liA OF FIXED DEMANDS. 33.10
\becauseANOWIDTH 7
1.ER 1 UNBAL 33.91 LFS
:-ER 2 UNOAL 37.80 LPS
1.EF 3 UNBAL 9.5% LPS
: ER 4 UNBAL 1.98 LPS
; ER 5 UNBAL 1.05 LPS
    *EN 6 UNABAL 0.15 LPS
    :ER 7 UNBAL 0.00 IPS
SILUTICN NO, I QFACHED IN }7\mathrm{ ITERATIONS
        0.0029 UNBALANCE
```

$\begin{aligned} & \text { IPE } \\ & 10 \end{aligned}$	$\begin{aligned} & \text { NOOES } \\ & \text { FFG4BTD } \end{aligned}$	$\begin{aligned} & 0 i \alpha \\ & 0 \quad 1 M \end{aligned}$	$\frac{L}{M T R S}$	$\stackrel{H-W}{C}$	k-value
!	24	19200	2650.	110	$0.327 E-01$
.	19	18200	700.	110	0.111E-21
3	18	17200	1650.	110	0.20\% $5-01$
4	17	16200	050.	110	0.803E-02
5	16	3200	750.	110	0.920E-02
6	3	4150	590.	100	0.35jE-01
7	6	4200	920.	110	0.114E-01
8	-	7150	1100.	100	$0.6585 \cdot 01$
9	7	8150	800.	100	0.478E-01
10	9	3150	1700.	100	0.102 E 00
11	9	10150	1200.	100	0.718E-01
12	11	1-1 150	1200.	100	O.718E-01
13	12	11195	700.	200	0.117E-01
14	14	12195	500.	100	(0.833E-02
15	29	19395	2650.	120	$0.1015-02$?
16	19	18395	500.	120	0.344E-03
17	18	17261	1650.	110	0.557E-02
18	17	5261	1200.	110	O.405E-0?
15	5	6200	650.	110	0.803E-0?
20	5	3150	750.	100	0, 44, 0 - 01
21	3	2150	200.	100	0.120E-01
22	20	2200	900.	110	0.111E-01
23	2	1. 209	こ 70.	110	0.4.575-02
24	1	4150	590.	100	0.353E-01
25	21	1150	1300.	100	0. $7775-01$
26	20	is 150	360.	100	$0.478=-01$
27	27	23150	1650.	100	0.987E-01
28	24	20150	2370.	110	0.119890
29	27	24150	500.	110	0.251E-01
30	23	20150	420.	100	0.251E-01
31	23	22150	800.	100	2.478E-01
32	20	25200	1100.	110	0.136E-01
33	19	28195	1600.	-100	0.267E-01
34	28	15195	900.	100	$0.150 \mathrm{E}-01$
35	15	9195	1150.	100	0.192E-01
36	29	19300	2650.	120	0.287E-02
37	19	18300	900.	120	0.131F-0?
38	18	37×61	$2<50$.	110	$0.76 \mathrm{CE}-02$
39	37	39296	1850.	110	0.339E-02
40	25	37200	750.	110	0.926E-02
+1	38	25150	2150.	100	$0.129 E 00$
42	24	38150	1000.	100	0.598F-01
43	22	21150	900.	100	0.538E-01
44	5	30150	1500.	100	0.357E-01
45	30	31150	800.	100	0.4785-01
46	15	31150	1200.	100	$0.718 \mathrm{E}-01$
47	15	32150	1200.	100	0.718E-91
48	14	32150	1250.	100	$0.748 \mathrm{E}-01$
49	30	7150	1150.	100	0.6BSE-01
50	31	a 150	1000.	100	1).595E-01

-LUN --VEL-- -HEACLOSS--MPS-GCK MT MT/IOTO CR

35	0.14		0.50	9
3.4	0.12	1.0	0.11	0.12
6.57	0.21	10	0.65	0.40
5.71	0.18	10	0.20	0.31
7.20	0.25	10	0.35	0.48
2.97	0.17	10	0.26	0.45
2.40	0.08	Lo	0.06	0.06
1.81	0.11	10	0.22	0.20
0.89	0.05	L0	0.04	0.05
0.14	0.01	LD	0.00	0.00
0.53	0.03	10	0.02	0.02
0.90	0.05	10	0.06	0.0510
3.47	0.12	La	0.12	0.17
8.33	0.28	10	0.42	0.84
29.44	0.23	LO	0.50	0.19 LO
22.20	0.18	10	0.11	0.1510
13.23	0.25	10	0.66	0.40 LO
12.99	0.24	10	0.47	0.39
7.07	0.22	Lo	0.30	0.46
1.48	0.08	10	0.00	0.12 LO
1.85	0.10	10	0.04	0.19 L0
10.05	0,32	LO	0.80	0.89
5. 50	0.22	L. 0	0.15	0.40
1.57	0.05	10	0.08	0.14 L
1.22	0.07	L0	0.11	0.0910
3.16	0.18	10	0.40	0.50
$1 \div .76$	0.84		14.43	8.74
10.32	0.58		8.96	3.78
19.96	1.13		6.41	12.82
7.07	0.40	10	0.94	2.23
4.685	0.25	!-1	0.33	1.04
4.15	0.13	LJ	0.19	0.11
7.69	0.26	19	1.17	.0.73
6.36	0.21	Li)	0.46	2. 51
3.22	0.11	10	0.17	0.1510
13.80	0.20	10	0.50	0.1910
10.80	0.15	1.9	0.11	0.12
15.68	0.31	10	1.39	0.62
26.97	0.39	LO	1.50	0.81
10.63	0.34	Lis	0.74	0.98
7.97	0.45		5.01	2.180
8.49	0.43		3.14	3.14
4068	0.26	10	0. 94	1.04
2.44	0.14	1.5	0.47	0.31 LO
0.71	0.04	L'	0.03	0.031 .0
1.34	0.07	LO	0.11	0.0910
0.31	0.0?	LO	0.01	0.01 LO
2.53	0.14	10	0.42	0.33 iO
0.85	0.05	Lo	0.05	0.0410
1.04	0.06	1.0	0.05	0.06 Lu

PE	NODES FROM-TO	$\begin{aligned} & \text { QIA } \\ & \text { MM } \end{aligned}$		LTRS	$\begin{gathered} i+W \\ C \end{gathered}$	k-value	Flum	$\begin{aligned} & -V E L- \\ & M P S-\cdots C K \end{aligned}$	--HEATLASS-...			
0				MT MT					000	K k		
51	22	10	150		800.	$\therefore 00$	J.478F-01	2.06	0.12 L	0.18	0.23	10
52	33	14	230	1350.	110	D. $84 \times 4 \mathrm{E}$-0?	13.04	0.3110	0.28	30.3		
33	2.5	33	271	2150.	110	O.Dつ力E-02	12. 30	0.2310	0.74	0. 3.34	LO	
54	13	34	150	1100.	103	0.653E-01	1.06	0.06 LO	0.07	0.07	10	
55	34	35	150	700.	100	0.4195-01	0,44	0.3 ? L0	0.01	0.01		
58	12	13	150	1100.	100	0.653E-01	2.45	0.1410	0.33	0.31	10	
59	23	20	100	420	100	0.181500	2.43	0.3110	0.94	2.23		

TODE	GROUNO ELEV	FLOW	HGI. ELEV	$\begin{aligned} & \text { MEAT } \\ & \text { MTR-S } \end{aligned}$	ATM---CK	SSUMRE-mon-on PCT QROP...--CK
i	1.8	-6.16	67.930	66.18	5.41	2.96
2	1.5	-5.39	68.134	66.63	6.45	2.73
3	$\therefore 2$	- - . 8 ¢	6:amis	stos 17	-0. 4	2.69
4	1.5	-6.93	67.904	66.40	6.43	3.05
5	2.0	-2.01	6a.20u	60. 20	6.42	2.56
6	1.5	-2.76	67.50	6t. 46	6.43	2.99
7	1.5	-1.87	57.74 U	66.24	6.41	3.30
8	1.3	-2.60	6?.700	66.20	6.41	3.35
9	1.5	-2.55	6.7.71u	66.21	6.41	3.35
10	1.5	-3.49	c 7.6 .80	60.18	6.41	3.38
11	1.5	-2.57	67.740	Sč. 24	0.41	3.29
12	2.0	-2.41	$67.86 U$	65.86	6.38	3.15
13	1.5	-1.39	67.510	66.01	5.39	3.53
14	8.0	-2.18	53.234	60.28	5.84	2.77
15	10.0	-1. 59	67.87 U	57.87	5.00	3.54
16	3.0	-1.67	68.334	65.5う	5.34	2.20
17	10.0	-1.09	68.734	58.73	5.69	2.12
13	20.0	0.0	67.35u	49.39	4.78	1.21
19	25.0	-2.43	es. 500	44.50	4.31	1.11
20	3.0	-2.47	68.930	05.93	6.38	2.60
21	2.0	-3.45	08.101	6E. 10	t. 40	2.80
22	3.0	0.0	69.03 U	66.03	6.39	1.44
23	8.0	-0.59	69.97!	01.87	5.99	0.22
24	20.0	-1.15	77.89U	57.87	5.60	-15.73
25	18.0	-1.49	68.740	50.74	4.91	2.43
27	3.0	34.72	84. $=011$	81.30	7.87 HI	-21.34
28	15.0	-1.34	6.9.33U	53.33	5.16	3.03
29	65.0	59.98 BU	70.00	5.10	0.48 LO	0.00
30	5.0	-0.88	67.794	62.79	6.08	3.30
31	5.0	-0.91	67.770	02.77	6.08	3.43
32	6.0	-0.78	67.870	61.87	5. 99	3.33
33	12.0	-0.34	E9.cul	-7.26	5.54	1.27
34	1.5	-0.62	67.44!	65.94	6.38	3.74
35	1.5	-0.44	67.43 u	65.93	6.38	3.75
37	30.0	-0.4.4	68.001	38.00	3.58	5.00
38	18.0	-0.51	74.750	56.75	5.49	-9.12
39	63.0	-26.870	66.50	3. 50	0.341 .0	50.00 Hig

APPENDIX X-C
ECOMORIC BENEPITS

Inorease in Land Values

Appendix Table X-C-1 shows the present value of benefits asseciated with "increase in land value", based on the following assumptions:

1. In accordance with the staging progran of the oonstruction of facilities, the service grea was projected to increase annually by 27.5 ha from 1978 to 1980 , by 26 ha from 1981 to 1985, and by 30 ha from 1986 to 1990.
2. The 1975 land use distribution of 8 per cent comercial; 4 per cent industrial; and 88 per oont reaidential, was assumed to remain unchanged during the 13-sear projection period.
3. The 1975 costs of land are:

4. A disoount factor of 12 per oent was used to obtain the present day values of the benefits. This is believed to be the opportunity cost of oapital and is commonly used for public investment projects like water resource developent.

APPGIDIX TADVI X-C-1
 HICRTASF DI LAMD VALUES

- *Rzoalated ly 15 per cent every year.
**Discountel at 12 per cent.

APPEHDIX TABLS X-C- 2

HEALITH BCHICPITS

	Year	Projeot Area Population	Cost of Tine Lost Dee to D Illness*	Eoonomio Loss tue to Premature Death*	Cost of Medical Expense*	Total	$\begin{aligned} & \text { Escalated } \\ & \text { Total } \end{aligned}$	$\begin{gathered} 40 \% \\ \text { Reduotion } \end{gathered}$	Discount Factor**	Present Talne
	1978	79,943	P 27,380.50	P 192,303	P 95,492	P315,176	P 460,157	F 276,094	0.712	P 196,579
	1979	82,741	28,339	199,033	98,834	326,206	525,192	315,115	0.636	200,413
	1980	85,500	29,284	205,670	102,130	337,084	596,639	357,983	0.567	202,976
	1981	88,322	30,250	212,459	105,501	348,210	679,010	407,406	0.507	206,555
3	1982	91,236	31,248	219,468	108,981	359,697	769,752	461,851	0.452	208,759
\pm	1983	94,247	32,280	226,711	112,578	371,569	876,903	526,142	0.404	212,561
	1984	97,357	33,345	234,192	116,293	383,830	994,120	596,472	0.361	215,326
	1985	100,570	34,445	241,921	120,131	396,497	1,130,016	678,010	0.322	218,319
	1986	103,889	35,58?	249,905	124,095	409,582	1,286,087	771,652	0.287	221,464
	1987	107,317	36,756	258,151	128,190	423,097	1,459,685	875,811	0.251	219,829
	1988	110,858	37,969	266,669	132,420	437,058	1,660,820	996,492	0.239	228,197
	1989	114,517	39,222	275,471	136,791	451,484	1,887,203	1,132,322	0.205	232,126
	1990	118,400	40,552	284,811	141,429.	466,792	2,147,243	1,288,346	0.183	235,767
								207al		F2,798,869

Fiscalated by 10 per cent every year. *Hiscounted at 12 por cont.

PSRSONAL SATISFACTION BENHITS

Ieas	Sinved Pope	Ho. of Eloume holds	$\begin{aligned} & \text { Willinganeme } \\ & \text { to Pay } \\ & \text { P120,00/tw* } \end{aligned}$	\qquad	Disoount peotor*	$\begin{aligned} & \text { Present } \\ & \text { Velue } \end{aligned}$
1978	23,688	3,644	P437,280	P 550,973	0.712	P 392,293
1979	25,275	3,888	466,560	625,190	0.636	397,621
1980	26,900	4,138	496,560	705,115	0.567	399,800
1981	28,783	4.428	531,360	797,040	0.507	404,099
1982	30,798	4,738	568,560	904,010	0.452	408,613
1983	32,954	5,070	608,400	1,028,196	0.404	415,391
1984	35,260	5,425	651,000	1,165,290	0.361	420,670
1985	37.729	5,804	696,480	1,323,312	0.322	426,106
1986	40,370	6,211	745,320	1,498,093	0.287	429,953
1987	43,196	6,646	797.520	1,698,718	0.257	436,570
1988	46,219	7,111	853,320	1,928,503	0.229	441,627
1989	49,455	7,608	912,960	2,191,104	0.205	449,176
1990	53,000	8,154	978,480	2,485,339	0.183	454,817
				T0042		-5,476,736

[^9]
APPENDIX TABLE X-r,-4a
 SHORT-TERM EMPLOYMENP BENEFITS

Year	Cost of Skilled Labor	Cost of Unskilled Labor	Total Labor Cost	Escalated Total Labor Cost*	Discount \qquad	$\begin{aligned} & \text { Present } \\ & \text { Value } \end{aligned}$
1978	P14,200	P 205,500	P219,700	P320,762	0.712	P 228,383
1979	15,225	304,750	319,975	515,160	0.636	327,642
1980	35,025	478,750	513,775	909,382.	0.567	575,620
1981	16,825	336,750	353,575	689,471	0.507	349,562
1982	5,825	116,750	122,575	262,311	0.452	118,565
1983	8,925	179,000	187,925	443,503	0.404	179,175
1984	8,925	179,000	187,925	486,726	0.361	175,708
1985	8,925	179,000	187,925	535,586	0.322	172,459
1986	8,925	179,000	187,925	590,085	0.287	169,354
1987	17,050	339,750	356,800	1,230,960	0.257	316,357
1988	6,350	126,750	133,100	505,780	0.229	115,824
1989	6,350	126,750	133,100	556,358	0.205	114,053
1990	6,350	126,750	133,100	612,260	0.183	112,044
				TOTAL		P2,894,746

*Escalated by 10 per cent every year. **Discounted at 12 per cent.

APPENDIX TABLE X-C-4b

LONG-TERM EMPLOYMENT BEMSFITS

Year	Annual Salaries Under Present Staffing Arrangement*	Annual Salaries Under Proposed Staffing Arrangement*	Salary Differenoe	Discount Factor**	Present Value
1978	P179,735	F 335,527	P155,792	- 712	F 110,924
1979	197,708	373,509	175,801	. 636	111,809
1980	217,479	415,790	198,311	. 567	112,442
1981	239,227	462,801	223,574	- 507	113,352
1982	263,149	528,704	265,555	-452	120,031
1983	289,464	603,991	314,527	-404	127,069
1984	318,411	690,091	371,680	. 361	134,176
1985	350,252	760,480	410,228	- 322	132,093
1986	385,277	838,049	452,772	. 287	129,946
1987	423,805	919,134	495,329	. 257	127,300
1988	466,185	1,012,886	546,701	. 229	125,195
1989	512,803	1,116,200	603,397	. 205	123,696
1990	564,084	1,224,550	660,466	. 183	120,865
			TOTAL		P1,588,898

[^10]
Fire Protection Benefits

Since installation of fire hydrants will. be undertaken on a staggered basis over the projection period, the extent of fire protection was assumed to be directly related to the portion of the study area with fire hydrante.

In 1978-82, 30 high-valued hectares of the present service area will be installed with fire hydrants; in 1983-86, an additional 30 ha will be proteoted. From 1986 to 1990, 25 low-walued hectares will be covered every year. In the meantime, the service area itself was projected to increase by 27.5 ha every year from 1973 to 1980; by 26 ha every year from 1981 to 1985; and by 30 ha every year from 1986 to 1990.

The average annual loss due to fire in Ozamiz based on records of the fire department for the period 1972 to 1974 was Pl.243.million. In the absence of similar information on Clarin, it was assumed that fire damages there amorat to an annual average of $\mathbf{P 4 6 6 , 0 0 0 .}$ This was obtained by correlating the ratio of annual fire loss in Ozamiz to the number of dwelling units in the core oity (800) and applying the same ratio to Clarin which has about 300 dwelling units. Taken togather therefore, estimated annual loss due to fire in both Ozamiz and Clarin amounts to $\mathrm{Pl}, 709,000$.

Since Pl. 709 million represents damage to the entire study area and not the service area, only the oorresponding percentages of this amount each year were used, in aocordance with the fire hijdrant sohedule and yearly expansion of service area. The average annual loss due to fire in the portion of the service area with fire hydrants was determined in the following manner:

$$
\frac{\text { No, of heotares with ir etalled pire hydrante }}{\text { No. of heotares in servioe area }} \times \text { P1, } 709,000
$$

It was further assumed that the annual loss due to fire would be reduced by half with good, plentiful water supply. They were further discounted at 12 per cent to obtain their present values. The cinual loss in the suooeeding years up to 1990 was escalated by 10 per oent due to inflation. Appendix Table $\mathrm{X}-\mathrm{C}-5$ shows the computations of the fire protection benefits in ozamiz.

APPESDIX TABLE X-C-5
FIRE PROTECTION BEIIKPITS

Toar	Average Anmal Lose Dee to Pire	$\begin{aligned} & \text { Escalation } \\ & \text { Due to } \\ & \text { Inflatiog } \end{aligned}$	Redretion Dre to Projeot	Disoourut Peotor**	Fire Pretection Boneflty
1979	P 56,341	P 90,709	P 45,355	0.636	F 28,846
1980	88,397	156,463	78,232	0.567	44,358
1981	123,245	240,328	120,164	0.507	60,923
1982	153,503	328,496	164,248	0.452	74,240
1983	180,021	424,850	212,425	0.404	85,820
1984	203,452	526,941	263,471	0.361	95,113
1985	224,306	639,272	319,636	0.322	102,923
1986	242,986	762,976	381,488	0.287	109,487
1987	327,173	1,128,747	564,374	0.257	145,044
1988	403,412	1,532,966	766,483	0.229	175,525
1989	472,777	1,976,208	988,104	0.205	202,561
1990	536,157	2,466,322	1,233,161	0.182	225,668
				TOTAL	P1,350,508

[^11]$$
x-c-8
$$

Rodnotion of Fire Insuranoe Costs

Because of the unavailability of specific information, certain assumptions had to be made in order to quantify the benefit due to the reduction of fire insurance costs:

1. On the basis of field surveys, the number of dwelling units in the core city was estimated to be 800. Or these, it was assumed that only 9 per cent (72 units) were made of concrete and galvanized iron and are therefore considered insurable. This assumption was based on the 1970 Census on Housing whioh indioated that 9 per cent of the total number of dwelling units in the entire city of Ozamiz were made of concrete and galvanized iron.
2. It was further assumed that only 50 per cent of the 72 insurable dwelling units are actually insured, equivalent to 36.
3. The dwelling units were classified into 64 per oent residential and 36 per oent comoroial. The number of institutional and industrial establishments proved to be insignificant for further computations. This classification was based on the ratio of service connections by consumer oategory over the total number of connections. (Refer to Chapter IV, Table IV-3.)
4. Based on the projections in Chapter IV, the service connections in Ozamiz for all consumer categories are expected to increase by 3.4 per cent from 1975 to 1980 and 4.64 per cent from 1981 to 1990. It was assumed that the number of insured comercial and domestio units would increase at the same rates.
5. The assumed standard value per unit and the corresponding premium rate for buildings in provinolal areas (based on the general tariff rates set by the Philippine Insurance Rating Association) are as follows:

	Value/Unit		Pranium/Year	
	P	75,000		422.25
Residential	100,000	$1,250.00$		
Comeraial	100,000	$1,250.00$		
Industrial	100,000		500.00	

6. The level of fire insurance cost was derived by multiplying the number of insured dwelling units in the core ofty by their oorrasponding premiums and sumang their products.
7. It is probable that the level of fire insuranoe costs may be expected to be reduced by one-third beaause of an improved and plentiful water supply system and increased fire-fighting aapabilities.
8. With the development of the area, specifically its urbandzation, additional dwolling units made of stronger materials are expeot id to be constructed. Accompanying this activity, other fire protection techniques in building construotion would be coneidered. While premiun rates in general remain constant over a period of years, the quantification of the reduction of fire insuranoe costs from 1978 to 1990 is nevertheless presented in Appendix Table X-G-6 to illustrate the impaot of an improved water supply ayetem.

APPEMDIX TABLE X-C-6
REDUCTION OF FIRE INSURAFCE COSTS

Year	Level of Insurance Costa	Escalated Level of Insurance Cost	Roduction due to Proieot	Discount Feotor*	Present Valys
1978	28,056	P 40,962	P 13,517	0.712	F 9,624
1979	29,729	47,864	15,795	0.636	10,046
1980	30,151	53,367	17,611	0.567	9,585
1981	31,823	62,055	20,478	0.507	10,382
1982	32,668	69,910	23,070	0.452	10,428
1983	34,340	81,042	26,744	0.404	10,805
1984	36,012	93,271	30,779	0.361	11,111
1985	38,107	108,605	35,840	0.322	11,540
1986	39,778	124,903	41,218	0.287	11,830
1987	41,873	144,462	47,672	0.257	12,252
1988	43,968	167,078	55,136	0.229	12,626
1989	46,062	192,539	63,538	0.205	13,005
1990	47,735	219,581	72,462	0.183	13,261
			TOTAL		F146,915

*Esoalated by 10 per oent every year.
**Discounted at 12 per cont.

APFENDIX TABLE X-C-7
ECONOMIC COSTS
(in million pesos)

Year	Capital Expenditure	$\begin{gathered} \text { Annual } \\ \text { Oporating } \end{gathered}$	Depreciation	Discount Fector	Capital Expenditure*	Anman 1 Operatine	aprooiation*
1976	P 1.222	F. 315	P. 026	1.000	P1.222	P. 315	P.026
1977	2.679	. 349	. 032	0.893	2.392	. 312	. 029
1978	6.206	. 536	. 081	0.797	4.946	. 427	. 065
1979	8.283	. 588	. 164	0.71 ?	5.897	. 419	. 117
1980	6.539	1.045	. 283	0.636	4.159	. 665	. 180
1981	4.248	1.148	- 544	0.567	2.409	. 651	. 308
1982	2.623	1.085	. 634	0.507	1.330	. 550	. 321
1983	2.865	1.191	. 694	0.452	1.295	. 538	. 314
1984	3.154	1.511	. 758	0.404	1.274	. 610	. 306
1985	4.652	1.672	. 830	0.361	1.679	. 604	. 300
1986	8.464	2.057	-932	0.322	2.725	. 662	. 300
1987	9.451	2.366	1.112	0.287	2.712	. 679	-323
1988	5.038	2.651	1.312	0.257	1.295	. 681	. 337
1989	5.448	2.898	1.424	0.229	1.248	. 664	- 5
. 1990	3.393	3.353	1.546	0.205	. 696	. 687	- 317
			Sub-Total TOTAL		$\begin{aligned} & \text { P35.279** } \\ & \text { P47. } 308 \end{aligned}$	P8.464	P3.565

[^12]| Iten | Envien | $\begin{aligned} & (6) \\ & (G) \end{aligned}$ | 1976 | 1271 |
 yHincts ocgiomeal watrs dismice (WI2B0UT ESCALATIOM) | | | | | | 1984 | 1983 | 1986 | 1985 | 1988 | 1882 | 159 | Potal |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | I | 1000 | | | | | | | | | | |
| | | | | | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | | | | | | | | |
| Suree Derelogemat | 50 | 43 | 153 | 444 | 888 | t88 | 444 | - | - | - | - | - | - | - | - | - | - | 2817 |
| Scuree Freambealion Live | 50 | 26 | - | 171 | 745 | 1489 | 745 | - | - | - | - | - | - | - | - | - | - | 3150 |
| Iremaleaios lisem | 50 | 25 | 366 | 794 | 1588 | 1588 | 1588 | 794 | - | - | - | 186 | 1614 | 1614 | - | - | - | 10132 |
| Btorage Frak | 50 | 0 | - | 65 | 563 | 565 | - | - | - | - | - | - | - | - | - | - | - | 1195 |
| Distribution Masm | 50 | 23 | - | 109 | 236 | 471 | 471 | 576 | 464 | 455 | 455 | 601 | 626 | 798 | 798 | 798 | 399 | 7257 |
| Intersal Ifotwork | 50 | 19 | - | 169 | 336 | 672 | 672 | 841 | 672 | 672 | 672 | 807 | 605 | 537 | 537 | 537 | 269 | 7998 |
| Adelatotration malling ${ }^{2}$ | 50 | 43 | 4 | 431 | 481 | - | - | - | - | - | - | - | - | - | - | - | - | 956 |
| Sexrioe Connootion: | | | | | | | | | | | | | | | | | | |
| a) Piping | 50 | 0 | - | 40 | 48 | 158 | 158 | 158 | 158 | 158 | 158 | 858 | 158 | 158 | 158 | 158 | 158 | 1392 |
| b) Weicer | 15 | 100 | - | 22 | 22 | 71 | 71 | 71 | 71 | 71 | 71 | 71 | 71 | 71 | 71 | 71 | 71 | $\stackrel{ }{ }$ |
| Hraipment | 25 | 81 | 388 | 84 | - | - | - | - | - | - | - | - | - | - | - | - | $=$ | 472 |
| total Cost | | | 951 | 2337 | 4909 | 5902 | 4149 | 2440 | 1365 | 1356 | 1356 | 1823 | 3074 | 3178 | 1564 | 1554 | 897 | 36,865 |
| 1 and | | | 271 | $=$ | - | - | - | - | - | - | - | - | - | $=$ | - | - | - | 271 |
| Total Projeot cont | | | 1222 | 2337 | 4909 | 5902 | 4149 | 2440 | 1365 | 1356 | 1356 | 1823 | 3014 | 3178 | 1564 | 1564 | 897 | 37.136 |

 conte aperen eniforils daring the puriod of conatriotion.
${ }^{2}$ Inalace moter repalr facilition and laboratory equipanat.

P $=1000$

Inelution Meter			1.00	1.	1.	51.40	1.57	1.73	1.90	2.09	2.30	2.53	2.74	2.96	3.19	3045		
souree Developement	50	43	153	497	1110	1243	697	-	-	-	-	-	-	-	-	-	-	3700
source frameleation lino	50	26	-	191	931	2085	1170	-	-	-	-	-						4377
Tremendeaiom Liser	50	25	366	869	1985	2223	2493	1374	-	-	-	471	4422	4777	-			19000
atorage Tank	50	0	-	73	706	791	-	-	-	-	-	-	-	-	-		-	1570
	50	23	$=$	122	295	659	740	997	882	951	1047	1521	1715	2362	2546	2753	1484	18074
Intersal Iotwork	50	19	-	189	420	941	1055	1455	1277	1405	1546	2042	1658	1590	1793	1853	1001	18145
Mdednietratiol Buildias	50	43	44	483	601	-	-	-	-	-	-	-	-	-	-	-	-	1128
Berrioe Conneotions																		
a) Piping	50	0	-	54	60	221	248	273	300	330	363	400	433	460	504	545	580	
b) Noter	15	100	-	25	28	99	112	123	135	140	163	180	195	210	227	245	264	2154
Erespement	25	81	388	24	-	-	\bigcirc	$=$	-	-	-	-	-	-	-	-	-	182
sotal cont			951	2517.	6136	8262	6515	4222	2594	2834	311?	4614	8423	9407	4990	5396	3337	73417
Send			$\frac{271}{1222}$															

									ditix tajle P山CE ivertas :a	xI-8-3 schedue zeo disinic								
							Cost Level $\times 1000)$		$\begin{gathered} \text { Secalat } \\ 1: x \\ \hline \end{gathered}$	$\begin{aligned} & \quad \text { Cod } \mathrm{Cos} \\ & 10001 \end{aligned}$	Fotal Book Value							
		Cor-		Replace-	Total		Con-			Con-	of kisters	-uu-	Ke:ire-		Annual	Cumu-		Net
	$\xrightarrow{\text { gev }}$ Cos-	rexte Flat		ment dee to Depre-	:onversion a=d Re-	Seu Con-	Veralon	Escalation	Hev Con-	rersiong and ine-	(Yr. End	${ }_{\text {lative }}^{\text {lapk }}$	Eents	Depre- clatie	Lepre- ciation	lative		
Year	gections	Frete	$\underline{\text { Ictal }}$	ciation	rlacezents	nections	placenerta	Prestor	nections	placezentis	Ret!rezent)	Talue	1ativel	Yalue	Expence	clation	ALPed	Motess
1976			1196	.				1.0	-	-	227					121	-	${ }^{106}$
1977	114	212	1522	80	292	22		1.12	25	62	321	227	+15:30	197	13	118	57	192
1918	114	214	$15 \leq 0$	80	294	22	56	1.25	28	70	412	314	$+15=45$	269	18	121	98	246
1979	375		2225	80	80	71	15	1.4	99	21	532	412	+15=60	352	23	129	120	343
1980	375	-	2600	80	80	71	15	1.57	112	24	668	532	+15-75	457	30	144	136	449
1981	375	-	2975	80	80	71		1.75	123	26	817	668	+15-90	578	39	168	149	559
1982	315	-	3350	80	80	71	15	1.9	135	29	981	817	+15=105	712	47	200	164	676
1983	375	-	3725	80	80	71	15	2.09	148	31	1160	981	+15:120	861	57	242	179	798
1984	375	-	4100	80	80	71	15	2.3	163	35	1358	1160	+15=135	1025	68	295	-198	428
1985	575	-	4475	80	80	71	15	2.53	180	38	1576	1358	+15=150	1208	81	361	218	1065
1986	375	-	4850	80	во	71	15	2.74	195	41	1812	1576	+15=165	1411	94	440	236	1207
1987	375	-	5223	80	80	71	15	2.96	210	44	2066	1812	+15=180	1692	109	534	254	1352
1988	375	-	5600	80	so	71	15	3.19	227	$4{ }^{4}$	2341	2066	+15=195	1871	125	644	275	1502
. 1989	375	-	5975	80	so	71	15	3.45	245	52	2638	2341	+15=210	2131	142	771	297	1677
1990	315	-	6950	80	BO	71	15	3.72	264	56	2998	2638	+15-225	2413	161	917	320	1816

Jcont of Mater = P190

APPTDIX FABLF XI_C-1

FROPOSTD ETAFFINS PLAT
LISACIS OCGDESTAL HATER DISTRICE

			$\begin{aligned} & \text { Pabbar of } \\ & \text { Positiong } \end{aligned}$	$\frac{78-79}{\operatorname{Sel} 19 a_{i c e s} A}$		$\begin{aligned} & \frac{81-82}{\text { Salarice } x} \\ & \text { Banefits } \end{aligned}$	10 Yunbor or Positions		$\begin{aligned} & \frac{19}{\text { musbar of }} \\ & \text { Positions } \end{aligned}$	$\frac{987-88}{\text { Smariona }} \begin{aligned} & \text { Bonofiti } \end{aligned}$	$\begin{aligned} & \text { Yranber of } \\ & \text { Pogitiopen } \end{aligned}$	$\begin{aligned} & 990-91 \\ & \text { Selarien } \\ & \text { Bonef } 1+E \end{aligned}$
$\begin{aligned} & \text { Genaral Xaraction'e } \\ & \text { Office } \end{aligned}$	1	23166	2	33977	2	45186	2	60138	2	79845	2	106345
edminietrative Dive	- 9	41128	7	76445	7	101664	8	159339	8	211585	8	281809
orfice of the chier Batineer	2	4325	3	33976	3	45188	3	60137	3	19845	3	106345
Produotion Division	8	28417	8	67106	8	89244	10	150882	10	191627	10	255230
Conatruction and Ind tenance Diviaion	- 8	29730	7	47451	8	68907	9	900728	9	133736	9	178125
Comercial Diviaion	- 15	\%2200	19	108612	19	144597	23	233087	23	309393	23	412084
Fotal Positions and Salaries	d 4	178966	46	367567	47	494786	55	764251	55	1006031	55	1339938

1/Fieonl fase 1976-77 ahove projeoted actinl salariea. Beorganization atarte in 1978.
2 Salarien abova above indiaste inoreages from ourrent leval and implies improved ceape temon/performano and ereator rosponaibilities.
3 al bosofite were eatinated at 17% of salerien with esonletion rato of 10% per anme.

APPISSDII TABLE II-C-2
service comiection schenule
MISARIS OCCDENTAL HATER DISTRICT.

[1808	1975	1980	1985	1990
Area Sorved (han)	165	290	400	no
Popalation of Served Arou	73,100	85,500	102,000	148,4
Population of Saryice Connectioms	11.500	26:900	40,000	23,000
HO. OP CONNECTICNS AND ANNUAL BLLLID CONSUXPTION (1000 oun)				
Domeatlo Moterod				
3/9n $\mathrm{eatar}^{\text {a }}$				
1/2" meter	841	1,610	2,771	3,932
3/4' ${ }^{\text {n }}$ moter	3	6	10	14
10 moter	2	4	7	10
Sab-total	846	1,620	2,788	3.956
Domestio Fiat Rate	163	-	-	-
Total Domatio	1,011	1,620	2,788	3,956
Commoraial Motored				
3/80 mor	-	-		
1/2m mortor	570	915	1,576	2,235
$3 / 4^{\prime \prime}$ motor	3	5	8	12
10 metar	2	3	5	7
Sabutotal	575	923	1,589	2,254
Comaralal Flat Rate	2	-	-	-
2otril Comercial	577	923	1,589	2,254
Indumirial Motored				
边	12	21	35	50
$3 / 4^{\prime \prime}$ moter	3	5	8	12
1" moter	2	3	6	8
Sab-totas	17	29	49	70
Industrial Fiat Eate	1	-	-	-
Total Indumtrial	18	29	49	70
Covernmontal/restitutional Metered				
$3 / 8^{\text {m }}$ metor	-	16	-	\cdots
1/2m mor	8	16	28	40
$3 / 4{ }^{-10}$ metor	3	6	10	15
10 motor	2	4	7	10
malce	1	2	4	5
Sab-total	14	28	49	70
Covt/Inet't Flat-fiato (Ludrants)	304/	\mathbf{x}	I	I
Total Cort/Ingt?	44	28	42	70
Motered Connections Flat Rate/defeotive metera/ hydrants	1,196	1,322	4,475	6,350
	454			
Total Sorvioe Cannoctians	1.650	2.600	4.475	6,350
Fotal Billed Consumption per yoar (1000_gum)	459	1.322	2.103	2,883
Motor Dondorrogiatration Onbllied Uee and Maston	25	28	34	
	286	318	385	454
Leatage	434	482	585	689
nllegal conneotione	25	27	34	40
Pablio Uae	12	13	16	18
Sotal Onbtiled Yater per year (1000 cum) 782		868	1.05A	1.241
		2.190	3.157	4.134

4/ Mrdranta Looluded (26)
5/histarioal

APPESDIX TABLE XIERE2 SCHETULE OF DEPRECIATION EXPRESES AND ACCUIDLATES DEPRECIATION
MISAMIS OCCIDRNTAL WATER DISTRICT
$(F \times 1000)$

Tear	Serrrice Life Category.			Total Annal Irsrec. Expenses	Accumiated Depreciation Prior Fear	Book Value of Assets Retired During the Fear				Net Acommiated Depreciation Kear Frad
	50 Irse	25 Trse	15 Irse			50 Yrse	25 Irse	15 Yrge	Total	
1976	12	-	14	26	300	-	-	15	15	311
1977	19	-	13	32	311	\cdots	-	15	15	328
1978	44	19	18	81	328	-	-	15	15	394
1979	122	19	23	164	394	-	-	15	15	543
1980	234	19	30	283	543	-	-	15	15	811
1981	486	19	39	544	811	\cdots	-	15	15	1340
1982	568	19	47	634	1340	-	-	15	15	1959
1983	618	19	57	694	1959	-	-	15	15	2638
1984	671	19	68	758	2638	-	-	15	15	3381
1985	730	19	81	830	3381	-	-	15	15	4196
1986	819	19	94	932	4196	-	-	15	15	5113
1987	984	19	109	1112	5113	-	\cdots	15	15	6210
1988	1168	19	125	1312	$62: 0$	-	-	15	15	7507
+989	1263	19	142	1424	7507	-	-	15	15	8916
1990	1366	19	161	1546	8916	-	-	15	15	10447

NORTCIG CAPIFAL RECDIREXEFTS TOR
Eriolving fusm for hes Conrexprons

18, 焉

18es	18.	1978	192	1980	981	1982	1983	1984	1985	1986	1987	1988	1989	1989
Heber of Iner Conneotiona	114	114	375	375	375	375	375	375	375	375	375	375	375	375
Priver Proving Cash	46	46	150	450	150	150	150	150	150	150	150	150	150	150
Marber of Inatalleat Plan edded	68	68	225	225	225	225	225	225	225	225	225	225	225	225
30. of Inotallment plaz Pasd	-	-	-	-	-	-	-	-	-	-	34	68	147	225
Total Paying Monthly Instaliment (Camalative)	68	136	361	586	811	1036	1261	1486	1711	1936	2127	2284	2362	2362
Mozthly Inotallmant Plan (esoalated)	P6.33	7.06	7.91	8.87	9.77	10.74	11.81	13.0	14.29	15.48	16.72	18.08	19.49	21.02
					$7 \times$	1000)								
Increment lddedl	5	6	21	24	26	29	32	35	39	42	45	49	53	57
Inoremant Dednotex	-	-	-	-	-	-	-	-	-	-	3	6	14	23
Gach Reooiptes														
Iump Sue Paymenta (encolated) Inutallmeat Paviente(comoletiva)	$\begin{array}{r} 22 \\ 3 \\ \hline \end{array}$	$\begin{array}{r}25 \\ 8 \\ \hline\end{array}$	$\begin{array}{r} 91 \\ 22 \\ \hline \end{array}$	$\begin{gathered} 102 \\ 44 \\ \hline \end{gathered}$	$\begin{array}{r} 113 \\ 69 \\ \hline \end{array}$	$\begin{array}{r} 124 \\ 98 \\ \hline \end{array}$	$\begin{array}{r} 136 \\ 127 \\ \hline \end{array}$	$\begin{gathered} 150 \\ 161 \\ \hline \end{gathered}$	$\begin{array}{r} 165 \\ 198 \\ \hline \end{array}$	$\begin{array}{r} 178 \\ . \end{array}$	$\begin{array}{r} 193 \\ 279 \\ \hline \end{array}$	$\begin{aligned} & 208 \\ & 320 \end{aligned}$	$\begin{aligned} & 225 \\ & 357 \\ & \hline \end{aligned}$	$\begin{aligned} & 242 \\ & 382 \end{aligned}$
Potal	25	33	173	146	182	221	263	311	363	416	472	528	582	631
Ammal Cosmeraotion Cort	55	62	$2 \cdot 8$	255	281	309	340	374	412	446	482	519	561	605
Yorking Capital Recaired	30	29	115	109	99	88	77	63	49	30	10	(9)	(21)	(26)
Omalativo Gapital Reqaireneate	30	59	174	283	382	470	547	610	659	689	699	690	669	643

[^13]APPENDIX TABLE XI- E-4
grial financing plan and debe service MISAMIS OCCIDEWTAL HATER DISTRICT
(P×1000)

$\begin{aligned} & \text { Fiscal } \\ & \text { Iear } \\ & \hline \end{aligned}$	Total Capital Expenditures	Cash Sources		Loan Disborsements and Debt Seryice			Interest	Total Debt Service
		Revolving Fand Revenues	Amount Disbursed	ontranding Debt Start of Year	$\begin{aligned} & \text { Anortized } \\ & \text { Daring } \\ & \text { Year } \\ & \hline \end{aligned}$	Outstanding Debt Year Fnd		
1976	1222	-	1222	-	-	1222		
1977	2679	25	2654	1222	-	3876	110	
1978	62.06	33	6173	3876	=	10049	110	110
1979	8283	113	8170	10049	-	18219	349 904	349
1980	6539	146	6393	18219	-	24612	1640	904
1981	4248	182	4066	24612	185	28493		
1982	2623	2.21	2402	28493	185	30710	2564	2400
1983	2865	263	2602	30710	185	33127	2764	-2949
1984	3154	311	284%	33127	381	35589	2981	2949 3362
1985	4652	363	4289	35589	381	39497	3203	3584
1986	8464	416	8048	39497	381			
1987	9451	472	8979	47164	939	55204	4245	$\begin{array}{r}3936 \\ \\ \hline 184\end{array}$
1988	5038	528	4510	55204	939	58775	4968	5907
1989	5448	582	4866	58775	1704	61937	5290	6994
1990	3393	631	2762	61937	1704	62995	5574	6994 7278

FORECAST OF CASH REDUIREMENT S MISAMIS OCCIDENTAL NATER DISTRICT

	1976	1980	1985	1290
Operating Cost	315	1045	1672	3353
Horking Capital	-	109	49	(26)
Debt Service	-	1640	3584	7278
Sub-Total	315	2794	5305	10605
Reserve Funds	9	84	318	1061
Uncollectiblea	6	56	106	212
Approximate Revemue Requirements (000)	330	2234	5729	11878
Eetimated No. of Connections	1414	2600	4475	6351
Ave. Annual Cost Per Connection	233	1128	1280	1870
Fst. Quantity of Billable Water (000)	632	1320	2100	2900
Ave. Cash Requirement per Billable Cum	. 52	2.22	2.73	4.10
Escalated Inoome of P440/Mo. Household	440	645	1030	1670
Proportion of Inoome of Low Income Household Devoted to Water, Assuming $20 \mathrm{cum} / \mathrm{mo}$ Consumption ($\%$)	2.36	6.9	5.3	4.9

APPEDDIX TABLS XI-S-6 CHIRTE UEIT FORRCAS
HSAKIS OCCIDEIFAI UATSR DISTRICT

[^14]MISAMIS OCCIDENTAL WATER DISTRICT:

Year	$\begin{gathered} \text { Rate/RU } \\ \quad P \end{gathered}$	Estimated shumber of R.U.R. (Yearly in 000s)	Income From Salea	Other. Income ${ }^{9}$ (000)	Total Income (000)
1976	1.00	691	691	21	712
1977	1.00	891	891	27	918
1978	1.00	1084	1084	33	1117
1979	1.90	1290	2451	74	2525
1980	1.90	1485	2822	85	2907
1981	1.90	1652	3139	94	3233
1982	2.50	1828	4570	137	4707
1983	2.50	2004	5010	150	5160
1984	2.50	2188	5470	164	5634
1985	3.20	2363	7562	227	7789
1986	3.20	2530	8096	243	8339
1987	3.20	2706	8659	260	8919
1988	4.50	2881	12965	389	13354
1989	4.50	3065	13793	414	14207
1990	4.50	3240	14580	437	15017

${ }^{9}$ other Income (derived from meter replacement chargen, oontingenoy foer of now connections, eervice fees, eto) eatimated juat about 3% of sales.

```
APPENDIX TABLE XI-E-8
FITHANCING PLAN AND DEBT SERVICE MISAMIS OCCIDESTAL WATER DISTRICT
(F×1000)
```

$\begin{aligned} & \text { Fiscal } \\ & \text { Yeay } \end{aligned}$	Total Capital Frpenditures	Cash Sources			Loan Disbursements and Debt Service			Intereat	Tota] Debt Seryi
		Revolving Fand Revempes	Oparating Income	Amount Digbursed	outstanding Debt Start of Year	Amortized Daring Year	Outstanding Debt Year End		
1976	1222	-	-	1222	-	-	122゙己	-	
1977	2679	25	-	2654	1222	-	3876	110	110
1978	6206	33	-	6173	3876	-	10049	349	349
1979	8283	113	-	8170	10049	-	18219	904	904
1980	6539	146	-	6393	18219	-	24612	1640	1640
1981	4248	182	-	4066	24612	185	28493	2215	2400
1982	2623	221	-	2402	28493	185	30710	2564	2749
1983	2865	263	-	2602	30710	185	33127	2764	2949
1984	3154	311	-	2843	33127	381	35589	2981	3362
1985	4652	363	-	4289	35589	381	39497	3203	3584
1986	8464	416	-	8048	39497	381	47164	3555	3936
1987	2451	472	-	8979	47164	939	55204	4245	5184
1988	5038	528	4510		55204	939	54265	4968	5907
1989	5448 3393	588	4866	-	54265	1574	52691	4884	6458
1990	3393	631	2762	-	52691	1574	51117	4742	6316

Farmiond of Finuctal shaticre

($F \times 1000$)

 Gasi fiol statecers MISMIS OCCIDEATLL MATER DISTRIOR $(\mathrm{F} \times 9000)$															
Sonsere of mute	1976	1971	1978	1979	1880	1981	[982	1983	1984	1985	1986	1981	1988	1989	1998
Het Imoome (Bafore Interent)	358	532	491	1739	1577	1555	2974	3342	3471	5352	5573	5775	9704	10506	
Depreointion	26	. 32	81	164	283	544	(10)	694	758 53	820 87	932 64	1112 51	1312 48	1424 41	$\begin{array}{r}1546 \\ 76 \\ \hline\end{array}$
Increase in Current Liab.	5	5	31	2	76	17	(10)	18	53						
Fotal Intersel Soarcen	389	569	609	1912	1936	2116	3598	4054	4282	6209	6569	6938	11064	11971	12552
Long Tara Dabt	1222	2654	6173	8170	6393	4066	2402	2602	2843	4289	8048	8979	528	582	631
Capital Contribatione	$\underline{-}$	25	33	113	146	182	221	263	311	363	416	472	528	582	631
Total External souroen	$\underline{1222}$	2672	6206	8283	6539	4248	2623	2865	3154	4652	8464	2451	528	582	631
Fotal Sourcos	1611	3248	6815	10195	8475	6364	6221	6919	7436	10861	15033	16389	11592	12553	13183
Apehtoaition of Punde															
Inventernt in Dtility Plant	1222	2679	6206	8283	6539	4248	2623	2865	3154	4652	8454	9451	5038	5488	3393
Interert on Dobt	-	110	349	904	1640	2215	2564	2764	2981	3203	3555	4245	4986	48884	4742 1574
Prinoipal lepaymant	-	110	34	204	,	185	185	185	381	381	381	239	939	1574	
Sotal Capital Charcom	1222.	3789	6555	9187	8179	6648	5372	5814	6516	8236	12400	14535	10945	11906	9709
Increcege in Carrent Aesote	109	II	59	411	119	91	359	135	131	523	171	158	1053	260	226
Potal Appliostiona	1331	2866	6605	9596	8298	6739	5731	5949	6647	8759	12571	14793	11998	12166	9935
Hot Inorchas (Decrease)	280	382	210	597	177	(375)	490	970	789	2102	2462	1596	(406)	387	3248
Cach at Dactaning of	20	300	689	892	1489	1666	1291	1781	2751	3540	5642	8104	2700	2294	2681
Cank it Ind of Pariod	300	682	898	1489	1666	1291	1781	2751	3540	5642	8104	9700	9294	9681	12929

APPTDII TABLE ILIER

MISuris occionitul katrr district
Iten 1976 197119781979 (FI1,000,000)

1ten	1276	1971	1978	1972	1980	1981	1982	1983	198	1985	1986	1987	1988	1989	1990
Averege Eat Fixed Macta in 8xerice	.82	1.78	4.06	8.26	13.80	22.67	29.56	31.64	33.92	37.03	42.71	50.64	56.67	60.55	63.48
Met Opareting Inoome	0.36	. 53	-49	1.72	1.55	1.51	2.90	3.23	3.31	5.14	5.27	5.35	9.13	9.75	9.97
mate ar reture (s)	43.9	29.7	12.1	20.8	11.2	6.7	9.8	10.2	9.8	33.9	12.3	10.5	16.1	16.1	15.7

APPENDIX XI-F-1

MEMORANDUM OF UNDERSTANDING

1. The Asian Development Hank (ADB) Appraisal Mission for the proposed Provincial Cities Water Supply Project (the Frojeot) visited the Misamis Occidental Water District (the Water District) on 24 October 1975. Subject to the approval of the Govermment of the Philippines, the Local Water Utilities Administration (LNUA) and the management of ADB, the following matters concerning the Projeot as related to the Water District are agreed upons

Scope of the Project

2. The part of the Project involving the Water Distriot (the Sub-Project) consists of:
(a) Development of the Cocok, Regina and Bitoon Springs together with improvements to the Talibaksan Spring to provide a reliable yield of 10,400 CND sufficient for the projected demand up to 1986. Treatment by controlled chlorination with all equipment provided with standby units.
(b) A $1,900 \mathrm{~m}^{3}$ oapacity storage tank.
(c) Transmission mains:- 250,200 and 150 mm dia. (Total length 15.2 km)
(d) Distribution mains:- 200 and 150 mm dia. (Total length 5.2 km).
(e) Internal network mains:-
(i) reinforcement:- 150 and 100 mm dia.
(Total Length 2.1 km)
(ii) extension:- 150 and 100 mm dia. (Total length 11.5 km)
(f) 17 fire hydrants.
(g) 1,500 new service connections and replacement of 200 existing connections.
(h) Administration building, meter repair, and laboratory facilities.
(i) Recruitment of consultant services as specified in paragraph 6(a) through (c) below.
3. The Sub-Project is at present estimated to cost P31,000 million.

Relending Arrangement

4. The relevant part of the proposed ADB loan will be relent to the Water Diatrict through the Government and LMJA. The Water Distriot should arrange with the Government and/or LWUA for the balance of funds required for the implementation of the Sub-Projeot. The ADB loan to the Government will be from the ordinary oapital resources of the Bank and extended at the prevailing rate of interest at the time of loan approval by ADB Board. The terms and oonditions of relending to the Water District would be the standard LWUA lending terms which are generally satisfactory to the Bank. The relending agreement shall be approved by the Bank.

Erecution of the Project.

5. LWUA shall be responsible for the overall implementation of the Project including procurement on behalf of the Water District. However, the Hater District shall retain ultimate responsibility in the carrying out of the Sub-Project and will work clobely with LNJA and the consultants. When appropriate, certain aspects of the Sub-Project may be implemented direotly by the Water District.

Consultants:

6. The consultants to be engaged by LWUA on behalf of the Water District shall look into, among other thinge, the following aspeots of the Projeot.
(a) Preparation of detailed designs, tender documents, assistance in the prequalification of tenderers and analysis of bide and recommendations for the award of contracts for the first oonstruction phase works as detailed by the consultants, Messrs. Camp Dresser \& McKee International Inc.
(b) Supervision of construction, installation, and commissioning of the supply source works, transmission lines and atorage tanks and the training of the staff of LWTA and the Water D?strict to carry out the functions for the extensions to the distribution and internal network mains after 1978, and the transmission lines after 1900.
(c) Development of appropriate leakage control, metering and data collection program including hydrological studies of existing and potential supply sources to establish their reliable yield and the training of the Water Distriot staff in these respeots.

Financial Measures

7. The Water District undertakes to:
(a) Appropriately adjust water rates with a view to cover all operating and maintenance expenser, debt amortization and a reasonable proportion of its capital expenditures program. The water rate is expected to be increased to $\mathrm{Fl} / \mathrm{com}$ (weighted average) per cubic meter by 31 December 1976.
(b) Obtain concurrence of LHUA and ADB prior to undertaking any major investment program outside the Projeot;
(c) Have its accounts audited annually by an independent auditor acceptable to ADB and submit its financial statements to the Bank for review.

Operations

8. The Water Distriot will:
(a) Establish leakage control and metering programs, and collection of other necessary data required for the operation and future development of the water syetem;
(b) Improve billing and collection procedures;
(c) Institute laboratory facilities for continuous water analysis;
(d) Maintain its water supply facilities in accordance with sound public utility practices;
(e) Not dispose of its assets required for its officient operation and implenentation of the Project without prior approval of LHUA and the Bank.

Lend and Nater Rights

9. The Nater District shall exert its best offorts to ensure that the necessary land, water rights, or other rights are obtained for the implementation of the Projeot and shall include in its quarterly reports to LWUA and the Bank a statement of the progress
made on the acquisition of land and water rights.

Ootober 24, 1975

MISAMIS OCCDDFNWAL WATER DISTRICT

By:
(SCD)
DR. SOLOMON J. GUTRNELA, M.D. (Chairman of the Board of Directors)

ASIAN DEVELLOPMENNT BANK APPRAISAL MISSION

By:
(SGD)
GERHARD H. KAHL (Mission Head)

REPUBLIC OF THE PHILIPPINES
MISAMIS OCCIDENTAL WATER DISTRICT
Office of the Board of Directors
CITY OF OZAMIZ

FXCERPTS FROM THE MINUTES OF THE SPECIAL MEETING OF THE BOARD OF DIRECTORS, MISAMIS OCCIDENTAL WATER DISTRICT, HELD AT OZAMIZ CITY, ON OCTOBER 20, 1975.

PRESENT:	Dr. Solomon J. Guimela	Chairman
	Dr. Jose P. Mefiez	Vice-Chairman
	Mr. J. Antonio Lim	Member
	Mre. Eufrocina Y. Tan	Member
	Engr. Violeta C. Calicinao	Ceneral Manager
	Atty. Yolando Villarus	Legal Counsel
ABSENT:	Dr. Oscar Renulla	Member

RESOLUTION NO. 100
WIEREAS, an ADB appraibal team is coming to Ozamiz Oity to confer with the Ceneral Manager and the Board of Direotors of the Misamis Occidental Water District regarding the comprehensive development of Ozamiz-Clarin Waterworks System, per Memorandum from the Ceneral Manager of LWUA;

WHEREAS, the purpose of the team is to finalize agreements which will be covered in the Memorandum of Understanding between $A D B$ and MOWD;

WHEREAS, the Board in meeting assembled, unaniqously
RESOLVED, as it doss hereby resolve to authorize the Chairman, Board of Directors, this District, to sign the Nemorandum of Understanding.

RESOLVED further to furnish copies of this resolution to the $A D B$ Team, the General Manager, this District; and files.

I hereby certify to the correotness of the above-quoted resolution.
(SGD) LIGAYA T. DONGGON
Seoretary
APPROVED:
(S由D)
SOLOMON J. GUIRNELA
Chairman

APPFNDIX XI-Fm2

LOCAL WATwR UTILITIES ADMINISTRATION

Asian Development Bank
P. O. Box 789

Manila, Philippines
Dear Sirs:
Re: Loan No. PHIs Provincial Citios
Water Supply Project - Allocations of
Proceeds of the Loen; Hitndrawals

1. We refer to Sections 3.02 and 8.01 of the Loan Agreement between the Republic of the Philippines (the Borrower) and the Bank of even date herewith and attach hereto a table showing an allocation of the proceeds of the Loan to which we request your agreement.
2. He confirm that the amount allooated to Category III includes the amount oI US $\$ 3,600,000$ for financing local ourrency expenditures. We understand thet the Bank will disburse in foreign currency the equivalent of 38% of each local currency payment mede by us under the contracts for the category, subject to the coiling of US $\$ 3,600,000$.
3. Some of the items included in Categories I to \mathbf{V} may be imported goors purchased from local suppliers or may be goods fubrionted by local manufacturers from imported components and raw materials. With respect to contracts involving any suoh looal procurement, we confirm that where evidence of the actual foreign exchange cost is not available, 45% of the contract prioe (or such other percertage as shall be agreed between the Bank and us from time to time) will apply for the purpose of withdrawals from the loan aocount under Section 3.03(a)(ii) of the loan Agreement in respect of such contracts. In support of applications for withdrawals in resm pect of the foreign exohange cost of such contracte, we shall supply a copy of the local supplier's invoice indicating, where possible, the origin of the imported items or goods, and evidence that payment has been made to the local supplier.
4. If the foreign exchange cost of the items in any of the Categories I to VII should increase, an amount equal to such increace will be reallocated by the Bank, at our request, to suoh Category from Category IX, subject, however, to the requirements for contingencies, as determined by the Bank, in respect of the foreign exchange cost of the items in the other Categories. If the foreign exchange cost of the items in any of the Categories I to VIII should decrease, the amount of the Loan then allocated to and
no longer reguired for, such Categrry will be reallocated by the Bank to Category IX.
5. On the basis of the attached Fable, the amounts to be allocated to the various Hater Districts for the Project would be as follows:
(a) Zanboanga City Water District: $\$ 4,036,000$ together with that portion of training progran attributable to it.
(b) Misamis Occidental Water District: $\$ 1,749,000$ together with that portion of training program attrjbutable to it.
(c) Butian City Water District: $\$ 2,953,000$ together with that portion of trainine program attributable to it.
(d) Camarines Norte Water District: $\$ 4,171,000$ together with that portion of training program attributable to it.

Accordingly, and subjeot to possible reallocation pursuant to param graph 4 above, the amount speoified above for the respective Water Districts will be made available to the Water Districts under the respective Relending Agreements referred to in Section 3.01(a) of the Loan Agreement.
6. Please indicate your agreement with the foregoing by signing the confirmation form on the enclosed copy of this letter and returning it to us.

Yours faithfully,
LOCAL HATER UTILLITIES ADMINISTRATION

By
Authorized Representative
CONFIRMED:
ASIAN DEVELOPRENT BANK

By \qquad

ALLOCATION OF PRCGEEDS OF LOAN
 (Provincial Cities Water Supply Project)

Caterory

I. Construotion Materials for Supply Source Works and Storage Tanks.
II. Pumps and Treatment Horks.
III. Pipelines including Fire Hydrants.
IV. Service Connections.
V. Administration Buildings, Office Equipment, Laboratory, Meters, Meter Repair Facilities, Leakage Detection Equipment and Vehicles. 507,000
VI. Consulting Services
VII. Training Program
VIII. Interest and Other Charges during Construction

2,700,000
IX. Unallocated

* 122,000
$1,551,000$
7,829,000
263,000
(U.S. Dollar Equivalent)

I.	Construotion Materials for Supply Source Works and Storage Tanks.	- 122,000
II.	Pumps and Treatment Horks.	1,551,000
III.	Pipelines including Fire Hydrants.	7,829,000
IV.	Service Connections.	263,000
V.	Administration Buildings, Office Equipment, Laboratory, Meters, Meter Repair Facilities, Leakage Detection Equipment and Vehicles.	507,000
VI.	Consulting Services	2,578,000
VII.	Training Program	200,000
VIII.	Interest and Other Charges during Construction	2,700,000
IX.	Unallocated	1,050,000
	Total	\$16,800,000

APPEMDIX XI-F-3

Schispule I

Desoription of the Project

The Projeot consists of the expansion and improvement of the water supply facilities of the four Water Districts to meot the requirements up to 1985, and the interim improvement and expansion of the existing water supply facilities and the detailed engineering design of a major water supply source for anothar Water District, all as described below:

1. Misamis Occidental Water Distriot

Devalopnent of existing and new supply sources to provide a total reliable yield of about $10,400 \mathrm{CDM}$; installation of new pumpe; provision of chlorinators with standby units; construotion of a $1,900 \mathrm{~m}^{3}$ capacity storage tank; construction of transmission, dis tribution and internal network mains, fire hydrants and service conneotions; provision of administration building, office equipment, laboratory, meters, meter repair facilities, leakage deteotion equipment and vehioles.
?. Butuan City Hater Distriot
Development of wells to provide reliable yield of about 11,400 CRD; provision of chlorinators with standby units; construotion of transmission, distribution and internal network mains, fire hyursats, and service connections; provision of administration building, office equipment, laboratory, meters, meter repair facilities, leakage detection equipment and vehiclee.

3. Zamboange City Hater Distriot

Construction of a new diversion dam, intake structure, fine soreen/grit ohamber, raw water transmission main; rejuvenation and extension of the existing treatment works up to a capacity of about 32,700 CRD including converting the existing sedimentation tanks into storage tanks; construction of transmission, distribution, and internal network mains, fire hydrants; piovision of service connectians, office equipment, meters, meter repair faoilities, leakage detention equipment and vehicles.

4. Camarines Noxte Water Diutriot

Development of existing and new supply sources to provide a total reliable yield of about $21,000 \mathrm{CD} ;$ provision of ohlorinators with standby units; construction of $1,000 \mathrm{~m}^{3}$ and $400 \mathrm{~m}^{3}$ capacity storage tanks; construction of transmission and intermal network mains; fire hydrants and servioe connections; proviaion of office equipment, laboratory facilities, meters, meter repair facilities, leakage detection equipment and vehicles.

5. Metropolitan Cobu Water District

Procurement and inatallation of chlorinators for exiating supply scurces; development of new wells and existing spring supply sources to provide a total reliable yield of about 35,000 CND construction of a new transmission main and improvenent of existing transmisaion mains; provision of fire hydrants and meter repair and laboram tory facilities; conduot of a leakage survey; and for the development of a major dam supply source, aoquisition of the necessary land, construction of a road to the proposed dam site, and provision of hydrological and meteorological study equipment and facilities.
6. Services of Consultants relating to (1) to (5) above.
7. Overseas Training Program for LWUA and Water District Staff.

The Projeot is expeoted to be completed by 30 June 1981.

SCHEDULE 2

Anortization Sahedule

Pavment of Principel (expressed in dollars)*
> $\$ 161,700$
> 168,800
> 176,200
> 183,500
> 19e,000
> 200,400
> 209,100
> 218,300
> 227,800
> 237,800
> 248,200
> 259,000
> 270,400
> 282,200
> 294,500
> 307,400
> 320,900
> 334,900
> 349,600
> 364,900
> 380,800
> 397,500
> 414,900
> 433,000

*To the extent that any part of the Loan is repayable in a ourrency other than dollars (see Loan Regulations Section 3.03), the figures in this column represent dollar equivalents determined as for purposes of withdrawal.

Payment of Principal (expressed in dollars)

1 March 1994
1 September 1994
1 March 1995
1 September 1995
1 March 1996
1 September 1996
1 March 1997
1 September 1997
1 March 1998
1 September 1998
1 March 1999
1 September 1999
1 March 2000
1 September 2000
1 Narch 2001
1 September 2001
\$452,000
471,800
492,400
513,900
536,400
559,900
584,400
610,000
636,600
664,500
693,600
723,900
755,600
788,600
823,100
859,100

Total
$\$ 16,800,000$
*To the extent that any part of the Loan is repayable in a currency other than dollars (see Loan Regulations Seotion 3.03), the figures in this column represent dollar equivalents determined as for purposes of withdrawal.

The following percentages are specified as the premiums payable on prepayment in advance of maturity of any part of the principal amount of the Loan pursuant to Section 2.05(b) of the Loan Regulations or on the redernption of any Bond prior to its maturity pursuant to Section 6.16 of the Loan Regulations.
Time of Prepayment or Redemption Premium
Not more than 3 years before maturity 1.50\%
More than 3 years but not more than
6 years before maturity 3\%
More than 6 years but not morethan 11 years before maturity4.5\%
More than 11 years but not more than 17 years before maturity 6%
More than 17 years but not more than 21 years before maturity 7%
More than 21 years but not more than 24 years before maturity 8%
More than 24 yeara before maturity 8.75\%

[^0]: 3 galvanized steel pipe.
 ${ }^{3}$ Service conneotions only.

[^1]: ${ }^{6}$ The above unit costs are used in the computation of capital costs.

[^2]: L1990 aonstruotion cost includes 15 per cent penalty.
 ${ }^{2}$ Discount rate is 12 per cent.

[^3]: 3Average pressure in distribution mains is 14 m.
 4/Lans pressure than the oriteria: Feak-hour minimum is 10 m ; 5 fire flow minimum is 7.0 moters.
 No residentisl fire test was analysed because the minisum prensure oriteria were satisfied in the commeraial fire teat.

[^4]: ${ }^{6}$ Coats do not include valves or fire hydrants.

[^5]: 7 Where groundwater conditions are favorable for HFW.
 8 Based on 7 persons per house.

[^6]: ${ }^{9}$ Pipelines whioh are the same for all alternatives.

[^7]: Fopulation of Clarin Poblacion $=.11 \times 38,500=4,200$
 B-2. Population Served in Clarin Poblacion $=.80 \times 4,200=3,400$
 Remaining Population Served $=7,700-3,400=4,300$
 B - 1. Population Served in Ozamiz City outside the Poblacion = . $75 \times 4,300=3,300$

[^8]: ${ }^{2}$ Data were obtained by dividing the popalation merved listed in Appendix Tabl. IX-C-1 by the number of consweere per conneotion from Appendix Table IX-C-2.

[^9]: Hecalated hy 6 par cent every year. *Hiscoount at 12 par cont.

[^10]: *Escalated by 10 per cent every year. **Discounted at 1; per cent.

[^11]: HEoalated by 10 per oont every ju ur. *\#Discounted at 12 per cent.

[^12]: *Discountece at 12 per cent.
 *Forelgn axchange component and makilled labor cost are atill axbject to shadow prioing to arrive at final total oconomio oesta.

[^13]: the last jur.
 Based on acmaption that inetalleant plase will be paid beok in 10 yeere.

[^14]: 41975 flace are aotual; 1980, 85 and 90 are extimated with the proportion or comneosions in each aize remaining constent.
 5rwportion of conemption based on Flow Belationship.
 6yand ca Fable TI-7.

 A $\%$ anfeotive gotore mare excludad from totel.

