

[^0] \\ \title{
Sock Assessment for \\ \title{
Sock Assessment for Tropical Small-Scale Fisheries
}
$\because \quad y$

Stock Assessment for Tropical Small-Scale Fisheries

Proceedings of an International Workshop Held September 19-21, 1979, at the University of Rhode Island, Kingston, R.I.

Conveners and Cochairmen

Philip M. Roedel
U.S. Agency for International Development

Saul B. Saila
University of Rhode Island

Edited by
Saul B. Saila anc: Philip M. Poedel

Steering Committee

Donald Bevan, University of W'ashington
Elmer Kiehl, U.S. Agency for International Development
Philip M. Roedel, U.S. Agency for Internātional Development
Brian Rothschild, Office of Policy Development, NOAA
Saul B. Saila, University of Rhode Island
Robert Wildman, Division of Living Ressurces, NOAA

Acknowiedgment

This conference was supported by the U.S. Agency for International Development, under Grant No. AID/ta-6-1404 to the University of Rhode Island.

Contents

v Preface
1 Report of the Steering Committee
14 The Workshop on Stock Assessment in Tropical Waters: Its Genesis, Rationale, and Objectives, Philip M. Roedel

21 Keynote Address, Arporna Sribhibhadh

Perspective Papers

27 Stock Assessment in Trupical Fisheries: Past and Present Practices in Developing Countries, John A Gulland

35 Stock Assessment Models: Applicability and Utility in Tropical Small-Scale Fisheries, John L. Munro

48 Economic, Social, and Cultural Aspects of Stock Assessment for Tropical Small-Scale Fisheries, Richard B. Pollnac and Jon C. Sutinen

60 Some Environmental Corisiderations for Stoik Assessment of Small-Scale Fisheries, Saul B. Salla

70 Predictive Stock and Catch Assessment for Decision-making in the Managernent of Tropical Small-Scale Fisheries, Karl F. Lagler

74 Small-Scale Fisheries-Politics and Unfulfilled Promise, C. Richard Robins

78 Perspectives on Minimal Data Requirements for Aquatic Resource Management in Developing Countries, Norman I. Wilimovsky

Experience Papers

89 Approaches to Some Problem Areas in Tropical Small-Scale Fisheries, James D. Parrish

103 Fishery Yields of Coral Reefs and Adjacent Shallow-Water Environments, Nelson Marshall

110 The Application of Hydroacoustics to Stock Assessment for Tropical Small-Scale Fisheries, Richard E. Thorne

119 Age and Growth Studies on Tropical Fishes, Edward B. Brothers
137 Use of Length-Frequency Data to Estimate Growth and Mortality Rates for Species Exploited by Tropical Small-Scale Fisheries in Pıerto Rico and Costa Rica, David K. Stevenson

154 A New Methodology for Rapidly Acquiring Basic Information on Tropical Fish Stocks: Growth, Mortaiity, and Stock Recruitment Relationships, Daniel Pauly

183 A Tentative Structural Modeling Approach to Some Aspects of Small-Scale Fisherie, Management, Saul B. Saila

Commentary
196
List of Participants

Preface

The U S Agency for International Development (AID), through the authority contained in the Foreign Assistance Act of 1961, awarded the University of Rhode Island a grant to sponsor a workshop on stock assessment for tropical small-scale fisheries. The Fisheries Division of AID, as well as agencies that are involved in the evaluation of its programs, had expressed the need for such a workshipp

The Fisheries Division organized a small steering committee, consisting of Philip Roedel, zhairman, and Donald Bevan, Elmer Kiehl, Brian Rothschild, Saul Saila, and Robert Wildman The role of the steering committee was to draft the terms of reference for the workshop, to provide guidance, and to formulate final recommendations from the proceeclings. A series of background papers and experience papers combined with active discussions was planned as the basis for the workstop

The objective, as written in the proposal to AID, was "to encourage dialogue between LDC fishery administrators, who must make the most of whatever information is availabie to them, and theoreticians, who can more effectively propose new approaches to assessment if ther are more aware of the practical problems which inhibit ciata collectiort and anal;'sis in the less developed countries (LDCs)"

John A Culland, a distinguished name among fishery scientists, who has ar, interriational reputation in the field of population dynamics and a deep understancing of the real problems faced by developing nations, agreed to participate in th:e workshop. The steering committee and URI adininistrators decided that it was an opportunity to bestow upon Dr. Gulland an honor he richly deserved, the award of an honorary degree, which was presented to him on the opening day of the workshop, September 19, 1979

The tribute by URI President Franik Newman reads as follows

[^1]

Report of the Steering Committee

Introduction

The Steering Committee of the liternational Workshop on Stock Assessment for Trupical Small-Scale Fisheries herein presents an integrated set of recommendatic ns for future research to the Joint Research Committee. These recommendations are based on the priorities identified by the workshop drafting committee and discussed and approved by the participants.

At the outset, the committee wishes to make clear that these recommendations relate to the problems of small-scale fisheries, as differentiated from those of capital-intensive, commercial, large-scale fisheries. We recognize that stock assessment problems exist for the pelagic and demersal fisheries of developing nations which are worked by modern industrial fleets or by both large and smallscale fleets. There are also problems of allocation of resources under the new regimes of extended economic zones (EEZs) which require the continued attention of national and international development assistance agencies. The committee recognizes the valuable work being done in these areas by the Food and Agriculture Organization (FAO) and the Development Program (UNDP) of the United Nations and by other rational and regional bodies. Although the workshop was concerned with the problems of small-scale fisheries, it is believed that some oi the approaches suggested in these recominendations will have utility far beyond ircpic:. small-scale fishery systems.

As the developing nations tuir, more and more to the sea for food supplies and export products, expansion of the coastal art sanal fisheries increases the threat of resource depletion. Resource assessment is a basic element of sound management policies which will permit sustained catches of fish at highest possible levels over time

Only recently has the role of artisan fisheries and fishermen received atten. tion. These fisheries supp..y much of the domesti-ally consumed protein in many of the less developed cuuntires ($1 D C_{s}$). Yet it is true that fishermen often represent the poorest of the poor in these countries. The problems of stock assessment within tropical small-scale fisheries are numerous and complex. The number of species harvested is very high. There are complicated interactions between species. There are no predictable growing seasons. Many of the tropical ecosystems are sensitive to perturbations. Management data collection is hindered by the numerous remote landing points and by the many diversified gears in operation. And while development assistance in this sector would appear to be a significant positive intervention both for the fishermen and for the consumers of their products, the information vital to management decisions does not exist, and there is no appropriate set of assessment methodologies. The scientific capital developed in relation to industrial, temperate, or cold water tisheries needs considerable adaptation and modification to be relevant and usable in multispecies tropical fisheries.

We feel that the recommendation included here represent the most promising approach to the development of new methods for stock identification and assessment, catch ard effort measurement, optimal biological and fconorric sus-
tainable yield estimation, and overall management of tropical small-scale fisheries.

Methodology

During the workshop, the participants divided into groups to consider the various aspects of stock assessment problems. These groups focused on data collection and analyses, information dissemination, survey techniques, decision processes, and productivity estimates. Specific topics were identified and developed for consideration by the workshop as a whole They were subsequently drafted and presented to the assembly for discussion and approval The Steering Committee integrated and categorized these topics. All of these activities are, in a sense, priority activities, since they were selected from numerous suggested solutions

Some items are clearly topics for "collaborative research"-i.e., research that is either basic, applied. or adaptive-and are of sufficient scope to require multi-institutional involvement. These topics are suggested as candidates for collaborative research support programs, since they would benefit from and be properiy pursued under arrangements between the research and development institutions of the United States and the developing country. Recognizing the particuiar ielevance of these topics to the Joint Resoarch Committee, the Steering Committee has set priorities for this group

There are research areas which are better pursuod in other than a collaborative mode. Inasmuch as they are directed at the same basic problems and because they can be carried out simultaneously and benafit the collaborative research, they are termed "suppnrtive research."

Activities which had merits recognized by the workshop but which are not strictly research have been termed "supportive development activities." Indeed, the supportive research and development activities $w . l l$ be found to be in some instances preconditions for the application of research results.

It is the feeling of the Steering Committee that the candidates for collaborative research have merit in ariy of a number of other research arrangements, but that the group would most appropriately be conducted in a collaborative mode.

The Steering Committee has rated the collaborative research topics on several bases. This evaluation relates specifically to the potential of the research itself and to the utility of the end products; that is, models, methodologies, techniques, etc. The committee examined the following:

1. Payoff. The anticipated benefis to accrue to developing nations given the success of the research anc its implementation in the L.DCs. This is a subjective estimate of the numbers of people, of countries, and of fisheries to which the research is relevant.
2. Transferability of Research Results. How easy or difficult it will be for the LDC to apply the methodologies developed by the research. it also considers the degree to which these methodologies can be generalized over environments.
3. Probability of Success. Whether the research is likely to produce usable results within a reasonable time frame and whether the resultant methodology
being applied will be successful.
4. Implementation Cost. The cost of utilizing the research results in terms of both labor and capital.
5. Technical Support and Scientific Personnel Necessary. The scientific infrastructure necessary for the prosecution of the research both within the U.S. and in the LDCs and for the implementation of the research product.

The committee considered other factors in assigning prioritiej. The duration of the research was examined as well as the estimated total funding. The committee was also cognizant of the fact that certain research areas, while having some relevance to tropical small-scale fisheries problems, have been primarily and/or are potentially recipients of funding from other sources on the basis of their general merits rather than on their relation to foreign assistance.

The Steering Committee recognizes the limitations and problems in applying subjective criteria in ranking the potential of research. However, this method was helpful in providing the required priorities.

Summary of Recommendations by Activity

I. General

Future appointments to BIFAD, JRC, and JCAD reflect AID's interest in and concern for fisheries and aquaculture (Topic 1)
II. Collaborative Research, First Priority (no ranking within priorities)
A. Comparative Studies-Productivity. Developm $n t$ of methods for predicting productivity from comparative studie: of environmental indices (Topic 2a)
B. Comparative Studies-Catch Development of assessment techniques from comparisons of data from experimental fishing, varying artisanal gears, areas, and intensities (Topic 2b)
C. Comparative Assessment Models. Evaluations of mathematical properties and limitations of alternative assessment models, and testing these in LDCs (Topic 3)
D. Policy and Decision-making Structures. Development and testing research metnodologies to examine existing policy formulation and decision-making structure (Topic 4a)
E. Biosocioeconomic Models. Construction, implementation, and validation of biosocioeconomic models applicable to policy formulation and decision-making (Topic 4b)
III. Collaborative Research, Second Priority
A. Data Analysis Systems. Development of algorithms and computer techniques for data analysis and transfer of these analysis systems to developing countries (Topic 5a)
B. Surveys-Direct Census. Research to determine environments where
counting procedures (observation, use of transects) can be standardized (Topic 6)
C. Surveys-Acoustics. Development and adaptation of acoustic survey techniques for relative biomass estimation in selected environments (Topic 7)
IV. Collaborative Research, Third Priority
A. Age and Growth Studies. Further research in microstructure analysis of tropical fish hard parts (Topic 8)
B. Surveys-Remote Sensing. Photographic, radiometric, and thermal infrared sensing of environmental phenomena coupled with capture or direct census surveys (Topic 9)
C. Surveys-Capture. Marking (or tagging), release, and recapture studies to determine optimum methodology (Topic 10)
D. Surveys-Eggs and Larvae. Appraisal of spawning biomass by sampling eggs and larvae (Topic 11)
V. Supportive Research Activities
A. Inventory of Exploited Resources. A compilation of resources exploited by tropical small-scale fisheries by habitat (T , pic 12)
B. Inventory of Human and Institutional Resources. A compilation of human and institutional resources in developing countries available for research in fisheries and aquaculture (Topic 12)
C. Inventory of Ecosystem Response. A compilation of existing materials on various ecosystem responses to habitat modifications (Topic 12)
D. Inventory of Life Histories A compilation of information on vital statistics and life histories of major species exploited in tropical smallscale fisheries (Topic 12)
E. Surveys-Efiort. The development and evaluation of techniques and training methods for aerial surveys of fishing effort (Topic 5c)
VI. Supportive Development Activities
A. Information Dissemination Development of cost-effoctive methods for greater dissenination of scientific information; e.g., liurary materials (Topic 13)
B. Training - Data. Developritnt of suitable training progbrams for LDC personnel in data gathering and analysis methods (Topic 5b)

Recommendátioñ by Topic

1. General

Recognizing that the United States Agency for International Development (AID) through the Title XII amendment to the Foreign Assistance Act now in-
cludes aquaculture and fisheries research, and development in its terms of reterence, and further recognizing that the Title XII program is directed by a Board of International Food and Agriculture Development (BIFAD) and Joint Research Committee (JRCj as well as a Joint Committee on Agricultural Development (ICAD), whose functions are to provide guidance ard advice, the workshop participants respectfully suggest that the membership in these bodies (BIFAD, JRC, and ICAD) reflect AID's interest and concern for fisheries and aquaculture in future appointments to these bodies.

2. Comparative Studies

Traditional resource assessment procedures which are used in developed, temperate-zone countries such as the U.S are aimed at estimating the biomass of individual stocks of fish which are available for harvest and/or the maximum quantities which may be harvested from these stocks while maintaining the resource and achieving the optimum economic and social benefits from it. There have been very few successful applications of these methods to tropical smallscale fisheries in the LDCs, given the great variety of species which are harvested and the general inadequacy of historical fishery statistics and biological information which is available. In many cases it is simply not feasible to collect, analyze, and interpret all the data required by conventional assessment techniques for species which are regularly harvested in tropical fisheries.

One alternative approach is to compare the yields obtained by different gears and with different fishing intensity in different unit fisheries in order to form development and management strategies based on the relative degree of resource exploitation in a range of situations. A second alternative is to conduct studies of vields obtained from different unit fisheries and the environmental features associated with each. This could lead to the developrnent of empirical models for predicting potential yields from some set of environmental variables. Such models have been successiully applied to predicting yields from inland lakes and rivers in North America and Africa. Either approach might best be applied to species assemblages rather than in individual species
a. It is recommended that research to develop methods for rapid assessment of stocks based on compardtive studies of environmental indices be initiated Such studies should involve a careful review of limnological studies, a careful description and classification of the environments of tropical srnall-scale fisheries in diverse locations, and a careful analysis of independent variables such as tidal amplitude, substrate composition, wave energy, temperature, salinity, tidal flushing, bottom topog:aphy, etc., in relation to some response variables; say, fish yields or standing stock estimates based on direct census techniques. Data would first be examined for postulated associations among variables. Then empirical prediction equations, modeling techniques, or classification techniques would be applied so that the environments could be grouped into categories which have relatively, similar yields. Confirmation and refinements of indices and the stock poieritial estimates derived therefrom would require further tests in the field. However, it should be recognized that this research would involve a diversity of environments as well as a number of disciplines. Further, it would be logically carried out in two stages: 1) data col-

lection and analysis, and 2) field testing, estimation, and modeling.
 The Steering Committee recommends this as Collaborative Research, First Priority.

b. It is recommended that studies comparing the performance of various small-scale fishing gear (traps, handlines, longlines, nets) be initiated. Such studies would be aimed at defining the fishing power of these gears in much the same way that characteristics relative to the effectiveness of bottom trawls have been evaluated in temperate-zone fisheries. Gear studies would have several objectives: 1) to select a standardized reference gear which could be fished in a uniform fashion in different locations to estimate stock densities directly, 2) to establish a basis for combining catch per unit effort data obtained from different gears fishec' in the same location, 3) to establish a correction factor which could be applied to historical catch and effort data to account for changes in gear efficiency. All three alternatives would facilitate the use of catch records for stock evaluations. Information on the cost-effectiveness of each gear type would also be useful in optimizing small-scale fishing practices Gear performance studies will require a carefully programmed series of experimental fishing surveys aboard a research vessel in a selected tropical developing country.

Once the performance characteristics of different gear types used in tropical small-scale fisheries are defined, catch and effort data can be assembled from relatively discrete but otherwise comparable fishing areas which are subject to gradations of fishing intensity and the data standardized. With such information, a relatively simple surplus yield model could be applied to estimating optimum levels of yield and effort. It should be quite practical to dpply this method to existing data at relatively little cost and obtain results within a year or two.

Another recommended comparative approach to stock assessment involves experimental fishing in an area that has not been fished or where fishing is minimal and where there are discrete replicate environments. By fishing such replicate environments with different intensities, an empirical model could be constructed which would directly relate yield capacity to effort. In addition, an experimental fishing program of this kind would provide valuable information concerning the biological response of fish populations to fishing

The Steering Committee recommends this as Collaborative Research, First Priority.

3. Comparative Assessment Mode/s

Fisheries models are attempts to provide quantitative descriptions of fisheries. The models to date have been used to inclp interpret data from a fishery and to test the effect of possible management policies. The conventional models are quantitative analyses of the assertion that population growth is the sum of recruitment and individual growth minus death. These models range from the simple logistic model stating that the rate of population increase is a quadratic function of stock size to complex, age-structured models. These have recently been expanded to multispec!es versions.

Conventional models require either a fairly extensive historical record of catch and effort data or comprehensive biometrical data on which to base
growth and mortality rate estimatf; They also require a number of sir.plifying assumptions, have traditionally been applied to single-species populations, and usually do not account for variations in re, iuitment Their afplication to the assessment of resources exploited by tropical small-scale fisneries needs to be critically evaluated More specifically, the common mathematical properties and possible limitaticns imposed on the utility of different conventional yield models in the tropical LDCs should be carefully andyred

There is a critical need to design alternative ajsessment models which are not subject to the same restrictive data requirements or assumptions, models which could be applied to existing information or which would require the collection of a minimuin amount of new information Suitable methodologies should be aralyed and empirically tested in oflected LDCs Ideally, these models waud be conceptualiy simple and rapidly applicable to the assessment of multispeces tropical fisheries, which utilize a variety of gedr types A a result, some fors of prectision would be expected New approaches might include the ese of tructural models involving graph theory, network analysis, a restructuring of stock production models, or a rigorous analysis of sizefrequency data to estimate growth arid mortality The objective of this work would be to provide first-approximation colutions to multispecies fishery estimation problems

The Steering Committee recommends this as Collaborative Research, First Prority

4 Policy Formulation and Decision-making

The matn purpose of stock assessment is to provide information that will assist in determu ing the optimal utilization of fisnery resources. However, the raw output of stock assessment will not be directiy useful in and of itself; it is only an imput to the decision-making process. To ensure that the data is used to its best advantage, it is necessary to understand the decision-making process in w'ich it is used Furthermore, it is necessary to provide models to assist the decision-n akers in understanding the ful! implication of their decisions on a wide range of issues. The main goal of research in this area should be to provide policy analysis studie's of management and development options for small-scale ih,heries Research in this area should focus on developing and testing methodologies to examine existing policy formulation and decision-making structures

Management and development objrctives and the strategies to achieve them are not determined in a vacuum. The existing political, cultural, and ecunomic institutions, as well as the state rr the fish stocks, the extent of current uti lization, and the level of harvest and ;rocessing technologies, play a very inportant role in determining these objectives. These features vary from country to country Therefore, before practical advice on which types of management and development regmes should be considered and before eva!uation of the effects of these regimes can take place. it will be necessary to understand the background information
a. Research should be initiated to analyze the process of policy formulation, tracing the policy process from formulation through implementation in selected LDCs. This will require the identification of key information inputs in the policy
tormulation and implementation process (e g, yields, income distributions, tech nology levels, price structures, cultural attributes, management and develop ment objectives). It will also be necessary to explore the full implications of al. ternative decision-making processes (modes) tor use by policy-makers of 1) stock assessment information, and 2) fisheries development and management strategies. Each should be examined for tisheries that are not exploited, are lightly exploited, and are heavsly exploited

The Steering Committee recommends this as Collaboratise Research, First Priority
b. It is further recommended that research be pursued to construci, opera tionalize, and validate biosocioeconomic motels of fishenes that are derectly applicable to the particular nature of the policy tormulation and detision-making structure of LDCs

A general model should be developed that would be adaptable to various structures Bioeconomic models for fisherites currently exist the research here will necessitate improving ar, i extending them, where necessary, to tit the particular problems of LDC's-espectally to include social and culturd! idactors the challenge will be to wake the models operational, ie, to define the critical elements so that tiley can be farly easily neasured Before the moth san be a useful tool they must be validated the models should be (apable of describing the operation of the fishery whin the policy formulation and d.amon-making stiucture ard w provide information on how management and deselopment strategies will affect such things as the economic effictency of the fleet and the processing sector, the distribution of income fiom the fishery, the she and the distribution of enforcement costs, existing social relationships, cultural values. job satisfactiol, and other such related items deemed important by the LDC

The Steering Comrittee recomerends thin as Collaborative Research, First Priority

5. Data Collection, Analyses, and Interpretations

The conventional method for analyang changes in fish stocks has been the use of catch and effort statistirs from the fishery it is a relatively cheap method, and if based on a large number of fishing units, the sample variance may be srnall. In tropical small-scale isheries, there may be several problems gathering and applying catch and effort data stch as those associated with a variety of gear, poor communicatioris. deverse landing sites, and an absence of data analysis methodologies. The need fo certain stanciardized meinodologies for data coilection and analysis is recograzed
a. The development of suitable algorithms and or computer programs for routine a nalyses of fishery data, and the development and transter of entire data analysis systems, including both hardware and software to developing nations through collaborative educational programs involving suitable personmel from the developing areas at institutions in the United States, are recommended Later, monitoring of the operations of the data analysis system. in the developing areas is vital until major difficulties in routine appications t, assessment problems have been resolved.

The Steering Committee recommends this as Collaborative Research, Second Priority
t In addition, there is a need to train local fisheris: ,ift. ers in the colleztion and analysis of diverse data necessary for effective management decisions to this end, it is recommended that a series of local oi regional workshops which train fisheries officers in such techniques be establ it id Mirimum data requirements include 11 vological data on dge, growth, we, weight, or mirphological teatures dssocided with sexual matirity, 2) catch-effort data including landings evaluation, gear types, hours fished, number of fishermen, effects of weather on etfo-: ett 3j istork al data on changes in lishing patteras over time based upon intervitw techniques 4) exial data in time devoted to fishing willingness to organize and cooperate, tesponse to innovations, etc, and 5) economic data on prices, costs, and earnings,

The steering Committee recommends this as an impontant Supportive Development Activity
c Surveys of fishing effort or intensity by aerial reconnaisadnce of hisiong areas mal :rove to be a low cost sampling technique Aerial photos can distinguish small fishing cratts and describe the distribution of fixed gears by show. ing the nu- dones and location of floats Transng films could be developed to tran surbe., i. in gear-type detettication An analysis of the benefits and costs of this method is worthy of invectigation

The Steering committee recommends this as an important Supportive ResearrhActivity

6 Direct Census Survey Techniques

Except for some unique stuations, such as in the case of anadromous fish and in some small aquatic environmients, it in not feasible to count all individuals in a population of fish it should be recognized, however, that precise direct counts of salmori and other migrating fishes have been made in some instances in large riverine systems when diumal and other influences have been suitably corrected

Underwater counting of fishes can be done by searching long narrow strips (transects) in which it is assumed that all fishes present are counted It appeas that the strips must be narrow and that the speed of the observer over the area must be slow The exact values of these parameters-to be used by divers, for example - are not known Some of the possible research areas for this kind of work includes repeateri series of transects in which some of the parameters ars veried and systematically studied.

Although it may seem somewhat esoteric as a direct census method, it should be eecognized that radio-equipped fish have been successfully tracked by suriace vessels and detailed daily, and other short-term movements have been successtully recorded the technology for this methodology is already well developed It remains to determine if or under what conditions it might be cost- effective for small-scale fisheries assessment,
it appears that many of the transect census methods (line transects, belt transects, strip transects) applied previously to plant, mammal, and avian populations hold considerable promise for small-scale fisheries assessment. A. careful
review of these methodologies, and suitable modifications to permit application to tropical small-scale fisheries, seem d^{2} sirable This could then be followed by a limited field program in suitable environments and with empirical testing of relevant methodologies

The Steering Committee recommends this as Collaborative Research, Second Priority

7 Acoustic Survey Techrique;

The application of acoustic techniques for abundance estimation of singlespecies pelagic marine fish and multispecies lake fish has been underway for approximately ten years. As a consequence, there is a wide variety of acoustic equipment and associated electronic devices available Typically, acoustic techniques cannot be used to identify speries directly. Thus, artive capture must supplement acoustic data

In a multispecies enviromment, acoustic techuques may be used to provide relative hiomass estimates. The potential of this method in the environmental regimes of tropical small-scale fisherie's in coastal areas and noncoastline shelf areas is considered to be high enough to justify collaborative research eftorts

Success of this research program will require a carefully structured group of U.S and LDC institutions, since acoustic stock estimation techniques involve a complete integiation of phiysical and biological factors

The first item ir the program would be an examination of the various tropical small-scale fisheries to maximize the probability of success of this application of acoustic techniques following this identification of the most likely environments, experiments employing minimal equipment sufficient to demonstrate the feasibility of specific acoustic techniques are suggested. These would be followed by more operational-sized assessments, which would ulimately be taken over by the developing countries involved in the project.

The Steering Commitiee recommends this as Collaburative Research, Second Priority

8. Age and Crowth Studies

The need for continued research support to develop further undersianding of the microstructure of hard parts (otoliths, scales) as a valuable tool in the critical determination of age and growth in tropical fishes is clear. To this end, a combined laboratory and field approach to consider various problems in the interpretation of growth records and the factors influencing them is desirable. The specific sequence of activities suggested for the project includes: a) a series of workshops to train technicians in the interpretation and use of the method and in providing needed instrumentation; b) an international research program to deal with all phases of the life history of fishes, but particularly with the younger stages (an effort should be rrade to integrate resultant age and growth data into a form applicable: to standard stock assessment methodology); and c) the development of a manual outlining methods, interpretation, and application of microstructure analysis.

The Steering Committee recommends this as Collaborative Research, Third Priority

9. Remote-Sensing Survey Techniques

Remote sensing provides relative measurements of selected environmental phenomeria These data may be used to indicite the probable presence of various fishes in all environmental regimes "Remute sensing" means that the sensor, and the human instrument, are above the air water intarface The most readily available instrument sensors are photographic, rediometric, and thernal infrared Earth-orbiting vehicles or geostationary satellites may be useful, but more investigation is required to confirm performance over small areas Remote sensors are generally most effective when airborne. Multispectral photography is useful to penetrate seawater (nine meters) and for investigating bottom features coral reefs, benthic flora, and sediment transport Radiometric and thermal measurements may be useful for examining upwelling. Optimum conditions for aircraft remote sensing are clear and calm weather Simultaneous observatior,; of the tish populations of interest and quarticative direct mfasurements of specific environmental parameters are necessary to normalize relative remotesensing data

It is important to recognize the exploratory nature of future research, since many of the tec rinological tools available for the job a re still being improved and their utility in detecting relativel: small-scale bological and physical phenomena necds to '- demonstrated This approach also requires reasonably accurate, short-term estimates of fish population, ize in areas where small-scale fisheries are detively pursued Appropriate methods for obtaining these estimates need to be developed Once they have been developed, however, the costs of implernentation would riot be very high. There is sufficient potential in the use of remote-sensing data for resource assessment of tropical small-scale fisheries to warrant furtherattention

The Steering Committee recommends this as Collabs ative Research, Third Priority

10 Capture Methods: Marking Studies

It is suggested that the use of tags or marks by mutilating some part of the body of captured fish and the subsequent recapture of these animals by various means can provide valuable information for stock assessment in all of the environments of tropical small-scale fisheries. However, there are a number of sperific problems involved in mark and recapture methods which are not as yet fully resolved The recovery rate of tagged or marked fish in tropical environments appears to be quite low on the basis of available evidence. Whether this is due to differential mortality, differential vulnerability of marked animals, loss of marks or tags, incomplete recovery or reporting, significant recruitment into catchable populations during the time recoveries are made, or some combination of the above is generally not known. Indeed, detailed studies on the types of tags or marks most suitable for these environments are still lacking. Research could be undertaken to resolve some of these questions. For example, a critical comparison of various available tag types for some of the important tropical species by suitable holding pen, aquarium, and limited field ctudies seems appiopriate. Following this initial work, detailed experiments designed io estimate population size, growth rates, survival rates, and movements of selected species
in representative environments could be undertaken. The information obtained from such studies would provide complementary information for other stock assessinent techniques which might be examined

The Steering Committee recommends this as Collaborative Research, Third Priority

11. Eggs and Larvae Surveys

These methods have been applied primarily to large fisheries, and the sampling effort required for successful estimates of spawning biamass is formidable. Indeed, the use of egg and laıvae surveys in small-scale fisherit: might test be applied to the detection and preliminary appraisal of fishery resuurces rather than for population dynamics studies Positive aspects of surve,: designed to estimate spawning binmass include the fact that samples contain not oniy eggs and larvae but also part of the prey and predators of the eggs and larvae When simultaneous measurements of the physical and chemical environment are made, trends of water movement can be estimated Spatial and temporal isolation over wide areas can be detected and can help define unit stock; Spawning distributions tell when and where fish will be concentrated for efficient capture Results can be used to montor changes in species composition Data can be used to forecast stuck size into the next season and the vear class strength of a species Information on new stocks with commercial potentid can also be provided

Major problems with successful execution of surveys stem from underestimation of necessary technical effort and from imprecise survey objectives. In fact, all the factors necessary to estimate spawning biomass from ichthyoplanktor survers are not known for most stocks at present to allow for any better than a preliminary estimate, and the cost of such surveys is high. The collaborative possibilities are numerous, but the costs very probably would be prohibitive

The Steering Committee classifies this as Collaborative Research, Third Priority

12. inventories for Stock Assessment

The need to prepare certain types of inventories of resources in tropical environments as a tramework for later collaborative research projects is recognized. Such inventories include but are not restricted to: a) an inventory of fishery resources by habitat for the developing nations with small-scale fisheries, b) an inventory of human and insitutional resources present in the developing countries which would be available for collaborative research; c) an inventory of the responses of various ecosystenis to habitat modification; and d) an inventory of the vital statistics and other data (og. life histories) of the major fish species which are a component of small-scals fisheries The Steering Committee recognizes the important work being done in this area by regioral and international bodies, and recommends further encouragement of this Supportive Research Activity

13. Information Dissemination

The inadequacy of existing library reference materials and the great value of timely published reports and information on fishery science and other disciplines related to stock assessment in many parts of the developing world are recognized It is therefore recommended that AID and other agencies concerned with aquatic science in developing areas assist in an analysis of methods for augmenting the supply and timely dissemination at suitable materials Some suggestions include initial collaboration with fishery scientists from developing nations to establish the nature of the information requirements, the form of the library materials required, and the means for cost-effective distribution on a broad scale the workshop recognized that while this is not collaborative research, the magnitude of the problem is great and suggests cooperation with internatioral agenc es such as FAO and UNESCO in alleviating it

The steering Committee recommends this important Supportive Development Actuvity.

January 7. 1980

Philip M Rordel, Charman

US Agency foi international Development
Washington, D C. 2n5.33
Donald Bevan
School of Fisheries
University of Washington
Seattle, Wash 98195
Elmer Kiehl
Board for International food and Agricultural Development
US. Agency for International Development
Washington, D C 20523
Brian Rothschild
Office of Policy Development
NOAA. Depariment of Commerce
Washington, D C 20235
Saul B Saila
Graduate School of Oceanography
University of Rhode Island
Kingston, RI 02881
Robert Wildman
Division of Living Resources
National Sea Grant Program
NOAA, Department of Commerce
6010 Executive Blvd
Rockville, Md. 20852

The Workshop on Stock Assessment in Tropical Waters: Its Genesis, Rationale, and Objec'ives

Philip M. Roedei, U.S. Agency for International Development

Genesis

The genesis of this workshop lies in two iritially unconnected shains ot events concerning technical assistance which came together a year or two age. One of these chains began in internatiorial fisheries circles, the other in U.S government circles, and at first the !atter had nothing whatsoever to do with fisheries.

The fisheries events camc about in part as the result of a shift in emphasis in FAO and various other dongrs from large-scale fisheries development that was generally capital-intensive to small-scale, labor-intensive fisheries projects designed to have a more significant and direct impact on poverty-stricken areas This shitt was coupled with the impact of zones of extended fisheries jurisdiction on developed and underdevelo, ed nations alike, and particularly with the often expressed needs of the lesser developed for managerial and scientific assistance in coping with these problems

The broad problem of fisheries development, erpecially small-scale fisheries in the LDCs, has, of course, received a lot of attention from fishery scientists and administrators for years, and there has been a giowing emphasis on and interest in stock assessment for small-scale fisheries in the tropical environment. Recent work done by the FAO Advisory Committee of $\overline{\text { xperts on Marine Rescurces Re- }}$ search (ACMRR) is a case in point. There are cther endeavors, some by participants in this workshop, and their experiences will be of particular value to these deliberations

As for the other chain, the workshop is a fourth- or fifth-generation product of an amendment to the U.S Inteinational Development and Fgod Assistance Act of 19\%5. This amendment added a new section, Title XIi-Famine Prevention and Freedom íiom Hunger, to the act, which was signed into law on December 20, 1975, as Public Law $94-161$. The chief objective of the amendment was to bring about a substantial exparsion of U.S. academic involvement to help solve food and nutritional problems in the developing world. As originally written, Title XII did not mention fisheries, but it was amended to do so before passage. The pertinent language in the act as passed reads, "The term agriculture shall be considered to include aquaculture and fisheries," and, "The term farmers shall be considered to include fishermen."

Title XII estabished a Board of International Food and Agriculture Development (BIFAD), arid one of its tasks was to give AID guidance with respect to the use of research funds, particularly for collaborative efforts involving joint operations by certain U.S. universities and by appropriate research institutes in the developing world. On the U.S. side, all Land Grant and Sea Grant universities are included, and there are provisions s.nder which others can participate. There was
established as well a Joint Researsh Committee (JRC) with the fenction of advising EIFAD and A:D on appropriate fields for collaborative research. *

In 1975, AIL decided, quite independentl, or Title XII, to revive its virtually dormant fisheries prcgram iRoedel, 1976), and fisheries was well enough reestablished in the agency to get the attentirn of the IRC when it was casting abol: for suitable sectors to consider for collaborative research support programs (CRSPs) AID had coritinued its support of URI in fisheries during the "dry years," Fiorr abcest 1970 to 1975; this was the agency's ority significant nonaquaculture fisheries projec: during that time
"Fisheries and aquaculture" was designated a high-priority area by the IRC, and a California firm, Resources Development Associates (RDA), was contracted late in $1977^{\prime \prime}$ to coordinate an initial review and analysis of LDC problem areas, inventory research capabilities and interests of United States universities, identify LDC institutions with current or potential capability to participate in collaborative research support programs (CRSPs), outline suggested research programs, develop funding estimates and a priority plan for accomplishment " The final report, from which the foregoing is quoted, was issued in August 1978 (Craib and Ketlor, 1978) It is this report, with its icientification of stock assessment as a key research area, that is directly responsible for the organization of this workshop It is the iatest product of the interaction of a global interest in tropical smail-scale fisheries and AID's interest in collaborative resedrch

The Steering Committee recommends this as an important Supportive Sesearch Activity

Rationale

Given the background recoed above, why the decision on the part of AID to go ahead with fisheries stock asbersment as a potent ial subject for collaberative resedreh' Are there not sectors other than finheries with greder (laim on AID', funds, and within fisheries are there not remedrchable areas of greater sgmafie ance and potental payoft than stock desemement"

[^2]The question regarding tisheries vis-a-vis other sectors was decided in general terms prior tc the RDA study, and it seemed to reflect a growing awareness on the part of the Congress and the Executive Branch of the useful role fisheries might play in foreign assistance The answer to the second question lies in the RDA report's emphars on the views of the developing countries, some 20 of which were visited during the course of the study. RDA's charter was basically to identify problems with solutions which would benefit small-scale fishermen and fish culturists and which inght ibe attaned through collaborative research support programs

The RDA report lists stock assessment as the top-priority subject for the fisheries people in the nations visited !t says. "The most frequently expressed and highest prority need was for assistance in the general area of capture fisheries stock and resource assessment. followed by fresh;brackish water aquaculture and fisheries administration/management" (page 12)

A prority problem area in this sense does not necessarily have at high a eating when analyzed as a candiuate for collaborative research. Thus, stork and resource dssessment as a topic for collaborative research received a relative prionty of tass 2 becaust many of the perceived needs were for training and direct technical assistance rather than for research per se. "Principles and mechanisms of pond culture" was the only subject in relative prionty 1 , and "t has already been selected to be the subject of a CRSP Whether stock assessment will become an additional subject rests in large degree on the recommendations. of this worksnop

Observations made by the author during the RDA study of African nations, including Guinea Busau, Ivory Codst, Ghana, Kenya, and Sudan, bore out and contributed to RDA's identification of stock assessment and population dynamics methodologies appropriate to small-scale fisheries in the developing world as a high-priority research topic. Comments were frequently made to the effect that, whatever the country, it had been studied to death and it was high time something practical was done. There is enough iruth in this for it to be kept in mind a: needs for more research are considered

The RDA report, which is the most pertinent background document for this workshop. has this to say regarding research needs generally:

One of the most critical needs expressed by the LDCs engaged in capture fisheries was for assessment of their fisheries resources Although these countries are generally aware of the extent and composition of their fisheries, there is a need for more precise and accurate information regaiding the identification of the fish stocks, the numbers of species involved, ther distribution in time and space and population dynamics

Within the field of stock assessme $7 t$, research is required in the following areas:

- development of rapid, simple methui's of assessment to be used either initially or as a means of monitoring the status of stocks under the impact of fishing.
- development of methods for assessment of multi-jpecies fisheries (e g, in the Culf of Thailand a single trawl haul may include 50 or more species of a total of about 200 demersal species which may enter the catch Many inland lake fisheries are similarly concerned with a large assemblage of species).
- development of methods to assess stocks which do not lend themselves to trawl survers (eg., those coral reefs or hook-and-line fisheries),
- development of stock assessment techniques for use in large rivers (particularly important in Africa and South America; ;
- development of methods to define the biological potertial of inland water, using environmental parameters

In addition to needs for resource stock assessment, the development of suitable techniques for obtaining basic catch data was given high prionty by the LDCs While a few of these countries compile catch and effort statistics, the greater majority do not. usuaily because they lack the necessary infrastructures or trined personnel or both A very basic need exists for unsophisticated techniques or nethods to obtain basic catch statistics as applicable 13 small-scale fisheries Accurate fisheries data is essential to the LDC, if they are to implement effective management and control of their fisheries [pages 60-61]
In its discussion of topics for collaborative research, the RDA report goes on to say

The ultimate objective of this research subject is to develop methods for assessing the condition of the fishery resources and the effects of fishing on it this th a fundamental area of research which is a necessarv prerequisite to the solution of nearly every other provlem of capture tisheries It is essential to know what stock are present, in what quantity, what is being caught and whether or not the catch is commensurate with the stock dvatable

Effective methods for doing this in LDC's do not now exist or are not directly applicable To restrict the scope to manageabie proportions, it might be necessary to confine the effort to a few spectes which are common to the LDCs of major interest

The researeh area which reeds to be addressed consists of four related subsets or projects

1 Stock Assessment Methods This involves tre development of means for identifying stock, determining quantities, and migratory bits, and may include natural mortality rates, growth rates. reproductive potential and other characteristics useful in analyzing and evaluating the potential of the fishery

2 Crtch and fffort Siatistics Methods for estumating the !andings and fishing effort which can be applied to IDC conditions and artisanal fishermen have to be devised

3 Determination of the Effects of Fishing, on the Resource i his concerns the development of techniques for evaluating the impact of fishing efforts on the condition of the fishery

4 Determination of Sustainable Yield Methods suitable to LDC application need to be developed which will provide a basis for management of the fishery [pages 99-100]
The RDA report was received by the $J R C$, which appointed a Fisheries and Aquacuiture: Task Force to analyze it and make recommendations for a course of action. In its December 27, 1978, report to the chairman of JRC, the task force said, in part:

The Task Force you appointed on Fisheries and Aquaculture to recommend follow up to the RDA report has met four times and presented reyorts at three IRC meetings for discussion We have proposed three activities in this area to help develop a col-labor-tive research prograrn

1. Fishery Stock Assessment

More simplified methodologies are needed to enable LDCs to evaluate their resource base, particularly in response to the new 200 -mile Extended Jurisdiction Zone. Current techniques used in the U.S are time consuming and expensive. Perhaps more appropriate technologies exist on the shelf or could be developed

We propose that a workshop be converied on this topic which would include approximately twelve to fifteen U.S. and six to twelve foreign participants. Background papers and literature reviews could be prepared in advance.

The group would address the development of new, or modification of existing, technology for identifying and assessing coastal fish stocks which can be harvested by fishermen in developing countries. These methods should provide a basis for increased harvest of existing wild populations of both freshwater and marine fish and shelifish. while at the same time accumulating baseline information for management and the development of a system for maintaining a sustanable harvest Significant modification of techniques developed for $U S$ domestic needs and some new research tor this sperific need will be required

The RDA report and the subsequent recommendation of the JRC task force stimulated the University of Rhode Island to submit a proposal to AlD for a workshop on stock assessment tor tropical artisand tisheries. The IRC endorsed the concept at its April 1979 meeting and gave its tacit approval to URI ds the logical institution to sponsor the workshop

Objectives

This workshop represents the agenc,'s response to the constantly recurring theme in the RDA report that a major requirement in the developing world is for resource asse;sment methodologies that can be applied to tropical small-scale fisheries. These nations need to answer fundamental questions about fisheries management such as: What is the nature and extent of each nation's living aquatic resources? Pre some or a!l of the resources peculiar to a given nation or are they common to several? Do they range beyond zones of extended fisheries jurisdiction? What is their species composition, their sustainable yield, their optiraum yield? What is the current rate of exploitation and how does it relate to biological and economic potentials and limits?

The agency recognized that the good methodologies available for assessment of large-scale fisheries - eg, the trawl fisheries of the Northern Hemisphere, the tuns fishery of the eastern tropical Pacific-are not suitable for direct transfer to artisanal tropical operations where the foheries are usually based on a multiplicity of species and are prosecuted by large fleets of small craft uperating out of a number of shore bases

What is needed is a workable system or systems that developing countries can either apply with their existing scientific complements or, barring the existence of such complements, train people to apply within a reasonable time. This may at first be nothing more than a quick and dirty means of getting first approximations of population size and dynamics, based upon data of at least some statistical validity The methodologies may be simple adaptations of existing techniques or they may represent totally new concepts

The work shop, in essence, is being asked to dddress these questions

- What do the developing countries need to know, and how do they get the information required, to harvest and manage the living aquatic resources available to them at an optimal level?
- What studies can be instituted within the framework of collaborative research in Title XII to help these nations carry out their management responsibilities with particular respect to small-scale fisheries in both salt water and fresh?

The workshop should use the term "stock assessment" broadly to include in-
ter alia the identification and delmeation of species and stocks, the measurement of stock abundance, the determination of the effects of fishing in multispecies fisheries, the collection of biological and economic intormation necessary for wise maragement, and the analysis and interpretation of the dat, to permit formulation of management plans

The agency expects the group to explore and emphanse the monative in considering

- new methods for stoch identification, stoch delinedtion, and determina tion of stock size.
- development of new methods for medsurement of atch and atch per unit effort.
- new methods for determanation of maximum bologitaliv sustanable vields:
- new methods for transtation of maximum sustainable vields to optimum vields, and
- use of new technologien in formulating management procedure

The work hop in reaching its conclusions must take due regard of

- pertinent activities under way or under consideration in other bodes.
- the amount of information that is really necestars:
- the costs of increasmg acturacy, remembering that the pertect solution is useless if one cannot afforci to apply it.
- the energy demands of alterna ive courses of action.
- three questions posed in the dratt report of the ACMRR committee that met in December 1978. 1 Are the administrators concern for intormation adt-quately communicated to scientists and technicians? 2. Does the information produced by scientists match the needs of the administrators? 3 Is the science that is required for decision-making produced on a reasonably cost-effective basis?
- the mores and the economics of the fishing societies which are aftected,
- the absorptive capacity for new programs in US universities and in developing countries - are there people to do the job?
- the short-, medium- and long-term prognosis for any research programs proposed, andeducated estimates of their cost

In summary, the agency expects the work shop to do the following:

- Primarily, define and describe the principal problems facing the developing world in obtaining, analyzing, and applying the basic data needed for stock assessment, and delineate specific topics for collaborative research in the context of Title XII which would have the best chance of providing the L.DCs with stock assessment methodologies suitable to their needs;
- Secondarily, identify problems requiring research in other than a collaborative mode for their resolution; and note problems not requiring research for their resolution that are identified during the course of the workshop;
- Finally, recommend a course of action to AID and BIFAD regarding collaborative research on stock assessment; and make any appropriate recommendations concerning AID's course of action regarding stock assessment in other than a mode of collaborative research.

This is a large order. but one with which the group participating in this workshop is well prepared to cope. Its collective wisdom can have a lasting impact on programs of technical assistance in fisheries, whether sponsored by the United States or by others. AID awaits its advice and counsel.

References

Agency for International Develrpment 1977. BIFAD. The first year, a progress report Washington, C.C., $246 \rho_{r}$.
Craib, Kenneth, and Warren R Ketler, eds. 1978 Fisheries and aquaculture: Collaborative research in the developing countric: Agency for International Development, Washington, D.C. $266 \mathrm{pp} .+3$ appendices
Roedel, Philip M. 1976. The bilateral assistarice program of the United States for smallscale fisheries. In: Economic State and Problems of Small-Scale Fisheries, Org. for Coop and Devel., Paris, pp. 96-104

Keynote Address

Arporna Sribhibhadh, Deputy Minister of Agriculture, Thailand

The economic and social development of the rural fishing and agricultural sectors has become a major concern of most developing countries in recent years. This roncern is shared by msty donor countries and international agencies, and they are ready to assist in national efforts to raise the living standards of ru:al populations. Until recently, however, mosi development programs in the fisheries sector have focused more on industrial level activities, with sizable investments going to ofishore fishing boats, harbors, cold-storage installations, marketing networks, and training facilities. Industrial development is relatively straightforward, since its goal, increased production, gives reasonable return on investment and can be more clearly defined than can those of rural development projects. The development process in the small-scale fisheries sector is infinitely more complex as a result of social and rultural considerations.

Until recent years, the small-scale fishermen enjoved a rather idyllic existence. Virtually all their economic needs were met very simply by bartering surplus fish catch for the basic staples they found necessary for life. They wer. adept at the skills of their thacie, such as boatbuilding, fishing gear repairs, and traditional methods of fish preservation. They had no competition in their exploitation of abundant fisheries resources. The social services that their urban cousins needed they neither required nor desired Their simple life-style had remained unchanged for generations

During the past two decades, however, this scenario has fast disappeared. Urban population growth has accelerated rapidly, necessitating that large quantities of food stocks including fishery products be transported to urban markets daily To meet these demards, large con.onercial fisheries have been developed, which in many instances compete with sinall-scale fishing operations for the same resources. Fish buyers have established themselves as the only marketing outlet for small-scale fishermen and have replaced the barter system with cash purchases In an effort to compete for the resources, the small-scale fishermen have had to adopt more sophisticated catching techniques which require capital investment in boat motors and fishing gear. Moreover, basic social services and modern living comforts are becoming available in many rural fishing communities In other words, the small-scale fisherimen in their communities have been caught in the plight: of progress.

It is generally recognized at present that the small-scale fishermen and their communities are at the bottom of the socioeconornic ladder in most countries. An acute need to improve their standard of living and quality of life is expressed and discussed in many meetings concerned with fishery development programs around the world. Although everyone agrees that it is desirable to give assistance to this sector and to raise their living standards, little actual assistance has been evident and very few of such programs are successfully applied and achieve their stated goais.

In the Southeast Asian countries that border the Bay of Bengal and the South China Sea, where some small-scale fisheries development projects have
been implemented, there are an estimated 3 million fishermen and their dependents, about 15 million people in all, who depend mainly upon fisheries for their livelihood While this large number of fishermen live at subsisterce levels, their total production of fish is very considerabie and their contribution to society is of great significance. Neverthe iess thear per capita production is much less than it could be This low production results in redured income to fishermen the situation is further agaravated by post harvest losses due to inefficient handing of catch on board, and inadequate processing, prestervation, storage, distribution, transport, and communications facilities All these result in avoidable loss of animal protein food, which is in short supply in these countries

In spite of several measures already introduced by governments in the region to improve the social and economic conditions of the small-scale tishermen, in some areas and in varying degrees they still suffer from low levels of real income, indebtedness, substanciard housing, malnutrition, and poor heath. In many cases, this stuation is also attributable to a combination of economic and technological considerations such as the remoteness of many rural villages, the lack of basic infrastructure facilities, the lack of alternative employment, the undvalability of credit, and in most cases the complete lack of base line datd upon which estimates of fishery resource potential can be based Although the conditions characterizing the small-scale fisheries vary from country to country in degree and emphasis, they are largely similar throughout the area, and thus the problemis and constraints of their development programs are alio similar

Dr Roedel mentioned earlier that assistance in the general ared of fish stock and resource dsessment was identified as the highest priority need of the developirg councries. This is true in the context of iishery development and management, but other priority needs prevail when the overall scheme to better the livelihood of the small-scale fisherman is considered Fxperience gained from some small-scale fishery development projects in Southeast Asia indicates clearly that profects "based more on optimism than on realism are doomed to failure, " because of the simple fact that in some areas there are not enough fish to develop a better fishery. On the other hand, how successful have our stock assessments been in connection with small-scale fishery development? In my opinion, we are yet to succeed

The nature of the subsistence fishery and fish stocks in the coastal tropical waters in which these fishermen operate make it very difficult, if not impossible, to obtain the conventionaily required information on captures as well as effort by traditional means. The initial failure is due to the lack of appropriate data and methodology at all levels. Attempts to estimiate evel, the preliminary standing stocks have not succeeded, resulting in a to al absence of guidelines for conservation measures in most national policias fr, ! ishery developmert. Perhaps one can search for and try some unconventional and untraditional alternatives. On the other hand, lack of stock assessment in many areas has proved to be no obstacle for development in fisheries My region is a case in point. The scir. its and administrators there are drifting farther apart. The scinntists seem not able to convince the administrators of the vital role that stock assessment plays in the essential understanding of the rational development of fisheries. The answer is that the estimates and the degree of expectation of the administrators
are both high enough to counter the scientists' requests for increased allocation in terms of manpower and budget for an effective assessment program. Moreover ample evidence shows that the weakness in analysis is due to the lack of objectively designed programs and the cost-effectiveness of information required, as well as the difficuity in obisining cooperative informants among the rural fishermen The proposed stock assessment programs presented to the administrators are also, in most rases, unacceptable in terms of the time frame needed. A post-mortem analysis of the status of fish stocks and fisheries is unproductive, as the recommendations for management are usually not adopted. The usually prevailing mode is to move development forward even though donor institutions or countries would require having such information on resources for their feasibility evaluations

What are the original sources of the communications gap that presently exists? In general, the administrators, in accordance with their nationa! policy, aim to expand fish production and incre ar the productivity of their fisheries with the reduction of cost perkilo of fish incs sad the planning scientists must not fall to relate these objectives to the activities of the administrators, since they cannot afford to separate themselves from such requiremeinis. Furthernore, all the capture fisheries are at a disadvantage when compared to agricultural sectors such as crops, livestock, and forestry funded at a comparable level Fishery scientists must be able to compete for support in their development programs. The above observations are not intended to rule out coastal stock asse'sments On the contrary, it is obvious that practical and effective solutions to the problems ard constraints facing developing countries, such as obtaining, analyzing, and applying the basic data needed for stock assessments, must be found if rational development oi small-scale fisheries is to be effective A means of bridging the communi(ations gap between scientists and administrators must also be realized in order to put stock assessment in fishery development and managenent in a proper perspective vis-à-vis other agricultural sectors The search for these 'solutions should be based on the essential understanding that fishery development is but one aspect in the overall development of the rural small-scale fishing community it involves biological as well as economic considerations in the exploitation of the fish stocks concerned. Development of the rural fishing community necessarily consists of irany aspects: social, cultural, and political, as well as biological.

The concern of fishery scientists should not be limited to fish stocks. They must be constantly aware and not lose sight of the eventual goal, which is to see that these small-scale fishermen and their families gain a better liselihood and that they are able to live with dignity and without hunger.

BLAMO PACE

Perspective Papers

Stock Assessment in Tropical Fisheries: Past and Present Practices in Developing Countries

John A. Culland, Food and Agriculture Organization of the United Nations

Introduction

Stock assessment has been perceived by many developing countries as one of their priority needs. In setting this priority, the emphasis has been on the output from stock assessment studies as they are used in making decisions concerning the management-and, more particularly, the rational development-of their small-scale fisheries. The actual detailed processes of stock assessment, as generdlly understood by fishery scientists, especially those in the academic communities of both the developing and developed worlds-i.e, calculation of growth patterns, mortality rates of different species of fish, etc-are in themselves of rather less priority except in so far as they are an essentia: part of the production of advice to policy makers

In discussing past and present practices, it is therefore convenient to distinguish four stages in the provision of advice the collection of basic statistical and smilar data, biological studies (growth or migration, for example), sock assesment sensu striciu (that is, evaluation of vield curves, sustanable yields, etc); and the provision of advire to the policy makers, such as investment planners

Statistics

Collection of statistics from scattered small-scale fisheries is not easy. In mpay cases, the procedures used are similar to those used in industrial fisheries - a flow of information, purporting to represent the total catch, on a daily or weekly basis, from small landing places to proviricial centers and so on to the central authority, which subsequently arrives at a figure for the annual catches of the country. This system is recognized to be far from reliable. Most sources of error-false reporting to avoid the attention of the tax authorities, omission of many catches because they do not pass through even the smallest of formallanding places or fish markets - will result in an underestimate of the total catch To correct for this, some authorities, as in the Philippines in respect to the so-called municipal fisheries (from vessels of under 3 gross tons), use a factor deduced from a review of the likely sources of error to multiply the number obtained to arrive at a more reasonable figure.

Apart from being unreliable, this approach is also expensive. An alternative is to use sampling procedures (Bazigos, 1974). This requires first a careful frame survey (which needs to be repeated at intervals) to obtain a complete enumeration of all the landing places. These are then sampled, usually through stratified and multistage sampling processes, so that only a small proportion of the total is actually recorded. This is used in India, and has also been introduced, with FAO assistance, to a number of African and South American inland fisheries. It does
require careful planning and proper training and supervisins, of the staff involved, but with these provisos can provide good results. Further, provided the work is properly carried out, it is possible to determine confidence limits within which the true values-say, of the total catch-probably lie. This is valuable, because for most purposes quite rough estimates, possibly within ± 10 percent, are quite adequate, but it is seldom known whether the figures avallable in the usual official statistics are as close as this to the real figure

Little attention is paid in general to the collection of effort statistics in the conventional itock assessment sense Records, usually on an annual basis, often consist of the numbers of fisherrien and the number of vessels (powered or unpowered, classed accordin: io type of gear used). This information is collected at the local level and normally summarized using the same channels as the catch data While not the most usfful information on fishing effort, in many smallscale fisheries in the developing world the fishing practices (type and size of gear used, amount of fishing dore per year) do not in general change much from year to year There are exceptions, for example, in river and river-floodplain fisheries the effort is largely governed by water level and the avility of fishermen to cope with high water levels. Thus, with few exceptions, the catch per fisherman, or similar simple index, can be used as a satisfactory inde: of year-to-year changes in stock abundance, at least within the range of operations of the fishermen Changes in availability-eg, the extent to which the fish migrate inshore-may mean, however, that the local abundance may bear quite a variable relation to the abundance of the stock as a whole

Biological Research

This has generally been patterned on biological research in developed countries Indeed, in many countries, notably in Africa, most of the research in the past has been carried out by expatriate staff, who have tended tc have a back. ground of academic scientific training in marine or freshwater biology rather than in fisherifs per se. Similarly, much of the graduate or post-graduate training received by local scientists outside their country (and many countries do not yet have adequate facilities within the country) has tended to be in "pure" sciencefor example, in fish biology rather than in fishery biology

There have been notable exceptions and the situation is improving Nevertheless, the work in fish biology, both marine and fresh water, in developing countries has not on the whole been closely directed to obtaining the sort of information ,equired for stock assessment purposes. This seems to be particularly true in some of the countries that have large research staffs engaged in fisheries problems; in such countries there may be an impressive bulk of information and scientific publications on classical aspects of the biology of numerous fish species (not always those of major economic importance), but not much that can be immediately used to help advise the authorities as to whether or not catches can be increased.

One problem is that it is not clear what biological information is required to assess the multispecies stocks of tropical waters. Certainly to follow for each species the classical procedures adopted for the major species (cod, salmon, etc.) of temperate waters - to estimate growth, mortality, etc - would be hope-
lessly time-consuming and prohibitively expensive if applied to all species, even if this were not in many cases impracticable because of the difficulty of telling the age of most tropical species. Some analytical, specific work of tris kind is needed to urderstand and quantify the population characteristics and biomass turnover of tropical finfish or other species groups still poorly investigated even in higher latitudes (cephalopods, penaeids, shellfishes, etc.)

The problem of what data should be collected and what lines of study pursued is discussed further in the next section It may be noted here that two possible approaches to assessing the stocks are: 1) the estimation of the general level of biological production (and hence of the proportion that could be available for regular sustained harvest), and 2) the establishment of some relation between the amount of fishing and certain characteristics of the stocks

The first could demand a variety of different types of observation, ranging from the physical and chemical characteristics of the water body, through examination of the phytoplankton (and other plants in tresh waters) and zcoplankton, to the detailed biology of the fish themselves. The second approach traditionally involves locking at either catch per unt effort (or some other measure of abundance) or the size or length composition data, and hence deriving some measure of total mortality In addition, in the multispecies situations typical of most tropical fisheries, including those of interest to sriall-scale f sheries, monitoring of the species composition (as far as possible of the stork rather than of the (atches) is likely to be valuable.

Stock Assessment and the Provision of Advice

These two stages can well be treated together at present. The level of both activities in most areas has been relatively low, and the lack of progress in one field discourages activity in the other. Because there is no good assessment of the state of the fisheries and of the possibilities for increasing catches, fishery administrators charged with developing national policy toward small-scale fisheries are not in the habit of turning to biologists for advice (The fact that fishery administrators in developing countries are now placing high priority ori stock assessment work, as shown by the arrangements for the present workshop, does not mean that they have been using stock assessment data or that they know where to get such advice.) Conversely, because until very recently there has been little clear demand for or use of stock assessment data, scientists have not paid much aitention to carrying out assessments.

Fishery scientists have not been encouraged to pay more attention to making assessments by the typical career structure of the discipline. As elsewhere, success in developing countries within the scientific community largely depends on published papers. Stock assessment, except where there is a long series of detailed data - which is the case in few, if any, small-scale fisheries - does not lend itself to scientific papers of the traditional kind. Most assessments - and, still more, the advice coming from them concerning tropical small-scale fisheries - will normally be i series of "best guesses" and attempts at a balance of probabilities. These, if phrased properly, can be extremely useful to policy makers, but they are not the stuff on which scientific reputations are normally built.

Another problem is that, even when a formal research institute exists, it will be small in Jeveloping countries. This means that each individual scientist has to handle many research topics, as well as administrative tasks, and has little time to work on any one problem for an adequate time

Here it is worth noting the past practice of stock assessment in developed countries. The factors mentioned in the previous paragraph, which act against the involvement of scientists in stock assessment studies, used to be equally applicable in these countries. Apart from a number of original studies of a few individual stocks (notably. Beverton and Holt's study of North 「ea plaice), set out as much to demonstrate the new methodologies as to provide current advice on the state of the fisheries, stork assessment as part of national programs tended to be neglected. Two things have changed this. First, the need 'or the growing number of regional commissions to have up-to-date advice available at their annual meetings provided a great spur to assessment activity, whether by the commission staff itself (1-ATTC, for instance) or by national scientists whose activities were coordinated by a commission (ICNAF. ICCAT, etc.). Even though it is only recently - and then to a large extent as a result of the extension of jurisdiction which took most of the management responsibilities away from the commissions - that these assessments were used to implement effective mandgement measures, the results of the assessment studies themselves have been of a high quality, and should be a cause of satisfaction to those responsible for setting up and running these bodies

The other impetus for increased assessment work has been the growing requirement at the national level for explicit statements concerning fishery resources as part of the development of national management plans. These often arise (the United States Fishery Conservation and Management Act is a good example) as a result of the changes in jurisdiction resulting from the new law of the sea

The first of these factors does not affect small-scale fisheries. CECAF the FAO Commission for the Eastern Central Atlantic Fisheries) and, to a lesser extent, some of the other FAO regional fishery bodies, which between them cover most of the developing world, are becoming fully engaged ir, the rarge of stock assessment work (compilation of regional statistics, meetings of wo king parties, preparation of reports, to the commission and member governmenis, etc.) typical of the longer established bodies. This work has mostly been done for the largescale industrial fisheries (mainly, those carried out by long-range vessels from outside the region), rather than for the small-scale fisheries and the resources which support them

There are good reasons for this. Each of the big resources may be exploited by two or more coastal states as well as by ships from d dozen nonlocal countries. They are therefore a direct international responsibility. The resources at interest to small-scale fisheries are of interest to only one country, and often only of localized interest even within that country. Further, the large-scale fisheries involve large-scale decisions - investments of tens of millions of dollars in new vessels; internationai licensing agreements, etc. - which are likely to require a fairly formal and detailed decision-making process, with a review of what is known about the resource an important element in this process. (However, this does not necessarily have to be the case; a surprising number of important deci-
sions have been taken without a careful examination of resource data Subsequent history suggests that this is often not a very sensible procedure)

The development of small-scale fisheries, on the other hand, has seldom involved big decisions Growth is normally a slow, organic process, with the traditional methods gradually modified to take advantage of for example, modern synthetic materials The most dibrupt changes have often come from outside decisions to build d new road, say. thus giving access to new markets for the produce from small-scale fisheries in the big cities Such formal decisions seldom call for explicit information on the state of the resources. An exception has been the construction of big hydroelectric or irrigation dams with dssociated manmade lakes behind them These, and some other large-scale modifications in the environment, have provided the impetus tor careful reviews of the fishery situation, including the assessment of existing stocks in the pre-impoundment or early post impoundment stages in African mian madelakes

This situation is now changing It is becoming more widely recognized that, it the benefits ot development are not to be concentrated in the better-off sections of the community, and if some of the harinful effects of development (for example, ever greater drift to the large cities and their surrounding slums) are to be avoided, greater and more explicit attention needs to be paid to the poorer people, including the small-scale fishermen. This recognition is partly reflected in well-meaning resolutions at appropriate international conterences it is also resulting in the formulation of large-scale projects, financed by various international and national agencies, for developing small-scale fisheries. These reauire advice about the resources before a decision on the details of the projects can be made - for example, it would be worse than useless to encourage the increased catching power of a group of fishermen by financing the purchase of outboard motors if the resources are already fully exploted Those responsible ior such projects are finding, however, that information on the resources is not readily available in most cases

This rather black picture of the state of stock assessment work in many small-scale fisheries should not detract from the very real progress that has been made in some areas, particularly in the inland fisheries of Africa Some of this work has used the traditional stock assessment techniques (analysis of CPUE data, calculation of yield per recruit from growth and mortality estimates), but fresh approaches have been developed, including the ultimate in simplification proposed by Graham (1958)

Improvement in technology has allowed the use of acoustic methods to become almost routine for surveving pelagic fish, and these are widely used in FAO projects. While they are mainly concerned with large industrial-scale fisheries, they can be used to assess some resources of interest to small-s cale fishermen or to both small-scale and industrial fisheries

Of wider interest have been the attempts to establish general formulas relating potential yield to simple characteristics of the body of water concerned. The original concepts developed from lakes in North America have been extended to lakes and river basins in ífrica (Henderson et al., 1973; Welcomme, 1974 and 1975). Also, the simple estimation of potential yield has been expanded, by a study of the number of fishermen per unit area, to provide an assessment of the likely level of exploitation. For African lakes it seems that when the intensity of
fishing rises to one fisherman per square kilometer of lake, the lake becomes fully exploited, and no further increase in catch can be expected by increasing the intensity beyond 1 to 15 fisherman km^{2} (see Henderson and Welcomme, 1974, Fig 2, p. 8)

This approach has been less widel, used in the sea, partly because the sea does not offer such neat and clearly defined replications of approximately similar situations as lakes do The yield per unit area of reeffisheries in the Caribbean has already been examined These tend to an asymptote in areas which seem to be heavily fished A broadly similar figure of a maximum yield of around 5 tons km^{2} of reef was found, using the same approach, for the reef fisheries in the western Indian Ocean (Mauritius, Seychelles, Kenya, and Tanzania). Off West P.frica (the CECAF area), though greater attentiun has been paid to the large offshore stocks exploited mainly by long-range vessels, progress has also been made in assessing inshore stocks. Apart from the use of traditional methods (e.g., CPUE), examination of ecological indices, especially the intensity and duration of upwelling and the nature of the bottom, has proved useful

Considerable progress has been achieved in the Far East, largely through the initiative of the FAO/UNDP South China Sea project. This project has organized a number of workshops to 155 sess different groups of resources. These assessments have largely consisted of detailed catch and effort data, which is available at various local and provincial offices

The general experience of FAO has been to confirin the need for a combination of different approaches. Both the analysis of catch and effort data and the interpretation based on ecological indices need to be supported by some examination of more detailed aspects of the populaton dynamics of at least a representative sample of the species involved. The ecological approach and the estimation of yield from information on unexploited biomass require some idea of turnover rate or longevity of the various species of fish. Similarly, it would be unwise to rely on a decrease of CPUE (or an absence of such a decrease) as an indication of the presence (or absence) of heary fishing unless there was other evidence of changes in the population structure-e.g. a decrease (or not) in the proportion of larger animals or, better, an increase in total mortality rate.

Discussion

This brief review of past and current practices of stock assessment of the small-scale fisheries of developing countries suggests that the supposition on which the workshop is based is correct. On the whole, the people making decisions on the development of these fisheries (using the term "development" in a general sense to denote any improvement in the fisheries and in the benefits received by the fishermen, rather than in the narrower sense of just increasing the total catch) do not have sufficient information on the resources, their potential and their state of exploitation, to make rational plans for such development.

The reasons for this are many, but they can, for the purposes of this workshop, be divided into three groups:

1. Appropriate techniques do not exist to assess many of the stocks, especially when many species occur.
2. Techniques exist, but the countries concerned are not able to apply them.
3. There is no structure within the country to ensure that the results of stock assessment, even when the relevant studies have been carried out, are made available to, and are used by, those making decisions.

Development of new stock assessment techniques, as well as the adaptation of existing techniques used for large-scale, temperate-water fisheries to the different conditions of small-scale tropical fisheries (many species, short life span, lack of age data, etc.) are discussed by other contributors to the workshop, and need not be expanded upon here.

Similarly, the transfer of knowledge is a problem that has been discussed before at length. The advantages and disadvantages of different approaches sending expatriate "experts" to developing countries for shorter or longer periods; fellowships or similar medium-term or long-term training in developed countries; training courses in the recipient countries; provision of manuals, textbooks, and other written material-have often been talked about Though the matter may not have been resolved by these discussions, it seems unlikely that much can be added here. However, it may be useful to distinguish two different situations. At one extreme are the large countries (Brazil, India, possibly Nigeria) whose small-scale fisheries, and the actual or potential supply of scientists, are important enough to expect that eventually they will establish their own seltsufficient program of assessment. At the other extreme are the small countries (the Caribbean island states, most countries in the Culf of Cuinea, the small Arab states in the Culfs, etc.), which cannot be expected to command the expertise to make their own assessments within any reasonable time. Their fishery departments are very small, and in the smallest countries there may be only a couple of men to handle all fishery problems, from economics to the improvement of net design. For the latter class- whit in in the short run, may include a majority of developing countries - improving the application of existing assessment methods will encompass arrangements for continuing assistance (possibly through regional or subregional cooperation) in the actual work of assessment, as well as the transfer of knowledge of how such work can be done.

Possibly, the most important reason for poor assessment studies, and poor use of any results of studies that are in fact carried out - and this is a reason that is often overlooked - is the absence of a structure or of administrative arrangements within a country (or external agencies, purporting to provide aid to the country) linking those responsible for scientific studies with those making decisions about development and' andgement. Assessments, however precise, accurate, and detailed, are of no practical value unless they are actually taken into account in reaching decisions of some kind (subsidizing the import of outboard motors, prohibiting mechanized fishery within two miles of the shore, and so on). Conversely, even poor assessments if used properly can improve decisions that might otherwise be reached on a blind guess--or, more often, assumptions about the resources that are favorable to the action being considered. Further, using assessments can provide the best possible incentive for improving them

A structure that would link the scientist with the decision-maker would also help overcome the biggest obstacle to better assessments. This is lack of resources, particularly in the collection of basic data (catch statistics, etc.). Even with the most efficient statistical design, collection of data is not cheap, and administrators will not be willing to allocate the necessary funds unless they clearly understand how important it is for their own work.

Acknowledgments

I would like to thank my colleagues, I. Kapetsky, J.-P. Troadec, and S.C. Venema, for valuable comments and suggestions in the preparation of this paper.

References

Bazigos, G.P. 1974. The design of fisheries statistical surveys-inland waters. FAO Fish. Tech Paper 133, 122 pp
Graham, M 1958. Fish population assessment by inspection Spec Publ Int. Comm Northw Atl. Fish 1:67-68
Henderson, H F , and R L. Welcomme. 1974 The relationship of yield to morpho-edaphic index and number of fishermen in African inland fisheries. CIFA Occas. Paper 1, 19 pp
_ . R.A. Ryder, and A.W. Kudhongania, 1973. Assessing fishery potentials of lakes and reservoirs. J Fish Res Bd Can 30(12)Pt 2: 2000-2009
Welcomme, R.L 1974 Some general and theoretical considerations of the fish production of African rivers CIFA Occas. Paper 3
—. 1975 The fisheries ecology of African floodplains. CIFA Tech. Paper 3.51 pp

Stock Assessment Models: Applicability and Utility in Tropical Small-Scale Fisheries

John L. Munro, University of Papua New Cuinea

Abstract

Problems of applying conventional stock assessment models to multispecies tropical small-scale fisheries are outlined. It is concluded that at the present time empirical Schaefer-type biomass production models are the only mearis available for assessing such fisheries but that there are strict limitations to the usefulness of such models.

The enormous problems of parameter estimation and the unknown effects of complex cominunity interactions limit the utility of the Beverton and Holt type of models Nevertheless, such models provide valuable insights into the dynamics of the constituent species.

Parameter estimations based upon simple measurements such as length frequencies, mean lengths or weights, and upon generalized interrelationships of basic parameters are advocated they should be more closely investigated in order to test thr degrees of accuracy which are attainable.

The effects of selective and nonselective exploitation patterns upon community structures are considered, and the effects upon harvests are described

A set of carefully planned and executed research programs on selected small-scale fisheries could provide solutions to many of the problems which have been identified.

Introduction

The problems of stock assessment in tropical small-scale fisheries mostly relate to the fact that such fisheries are based upon a multitude of species, many of which are exploited by a variety of techniques to whirh the various species are differentially vulnerable. Instances in which a single species is overwhelmingly dominant in a tropical small-scale fishery are exceedingly rare (e.g., the Barbadian flying fish fishery) and need not claim further attention here.

A number of recent reviews (FAO, 1978; Stevenson and Saila, 1977) have been made of the models which are presently available for assessing multispecies stocks, and Pope (1979) has most recently formulated a multispecies model founded upon the basic logistic model of Schaefer (1954, 1957). Multispecies versions of the Beverton and Holt (1957) model, such as that of Andersen and Ur\sin (1977), have also been developed, but the feasibility of actually applying such complex models to the fisheries is not yet apparent.

This paper is an attempt to evaluate the relative utility of the available models when applied to tropical small-scale fisheries, and to identify specific factors which might limit their usefulness, including problems of parameter estimation. For the purposes of this discussion, trupical small-scale fisheries are defined as those fisheries which operate without the assistance of unified or integrated distribution and marketing organizations, and in which the fisherman
most often retains a portion of his catch for his own use and sells the remainder directly to the consumer or to an individual vendor. Fishing methods can be extremely diverse and the landings may be dispersed over a great lenyih of shoreline.

Conventional biological and statistical exercises therefore become extremely difficult to implement For example, landings made at a village beach after an overnight trip in a Western Pacific reef fishery might incti.te handline, gill net, spear or spear gun, and troll catches. Several sizes of hooks and/or mesh might be employed, and all fish from all sources are stored in a single icebox (if such a luxury is available)

Additionally, artisanal and subsistence fishermen often have a fund of knowledge of fish behavior, migrations, and general ecology which enables them to switch their attention from one habitat to the next in order to capture the most readily available species. This will result in the sudden absence of a species from the landings - not because the species is unavailable but because a different species is more readily available

In other situations, fishing might cease entirely, despite favorable conditions, because abundant supplies of some terrestrial crop have become available and rendered fishing uneconomical. Alternatively, fishing might simply cease because the fisherman's lat ir is required elsewhere. Where fishermen have become indebted to middlemen or traders, large portions of the landings might be concealed in order to a void demands for debt repayment.

In all instances where biological or statistical sampling is done at a village level it is necessary to have local agents or to get to know the fisnermen on a personal level in order to gain their confidence. This is a time-consuming process often prohibitively so

One other feature of such fisheries which is not always recognized is that the conventional economic restraints on overexploitation might be absent or become operative only long after the largest (and often the most valuable) organisms, which mature at relativaly large sizes, have reached a severe state of biological overfishing. This ever.cually results in reductions in recruitment and a decline in volume, quality and value of the catch. Under such circumstances, it is entirely possible to render extinct the most sought-after or most vulnerable species

The foitgoing remarks apply to the fisheries prosecuted by the overwhelming majority of individual fishermen and fisherwomen in the world and to fisheries which probably produce much more than half the worid harvest of marine product for direct human consumption. The amount of scientific attention directed loward these tropical fisheries (with the notable exception of African freshwi ter fisheries) has been negligible.

Models

Only two basic nodels exist for the assessment of fish stocks; viz., the empirical Schaefer production model (1954, 1957) and the analytic constantrecruitment Beverton and Holt model (1957). All other models are merely permutations, variations, simplifications and/or improvements of the basic material. With very few exceptions, application of the models has been directed
toward stocks of individual species and it is only comparatively recently that serious attention has been directed to multispecies fisheries.

The FAO Expert Cons Itation on Management of Multispecies Fisheries (1978) considered some aspects of multispecies stock assessment using the Gulf of Thailand trawl fishery and the trawl fishery of the Ceorges Bank-Cape Hatteras part of the International Commission for Northwest Atlantic Fisheries area as prime examples Neither of these is a "small-scale" fishery, but they differ in regard to numbers of species, diversity of fishing methods, and the difficulties involved in assembling catch and effort statistics

In cases where catch statistics exist, the simplest assessments of multispecies fisherie; have been based upon the combination of the available catch statistics and treatment of the entire community as a single stock. This has worked surprisingly well, and FAO (1978) cites examples from the trawl fisheries on Georges Bank, in the northeastern Pacific, and in the Gulf of 1 hailand. Either linear or semilogarithmic regressions of catch per unit effort against effort have been employed

Munro and Thompson (1973) applied a semilogarithmic regression to catch statistics for the caroe-based Jamaican near-shore fishery (Fig. 1). In this particular case, no annual statistics were available, and the analysis was bised upon a sample survey conducted by the Jamaican government during 1968 Catch rates expressed as $\mathrm{kg} /$ canoe/year were regressed semilogarithmically against fishing intensity (canoes/unit area) for various sectors of the island shelf which were subjected to different fishing efforts. The inherent assumption in this "model" is that the different areas are ecologically similar and originally supported fish communities of similar composition and biomass.

These biomass-production "models" are purely empirical, and the yield curve is obtained by simply multiplying values along the x and y axes. The FAO Expert Consultation on Management of Multispecies Fisheries (1978) speculated on possible reasons for the relatively good fit of such "models" and, while not reaching any definite conclusions, suggested that "total biomass does react in a simpler way to overall fishing effort than does the biomass of individual stocks" and pointed out that species interactions must be implicit in such a response to fishing

Pope (1979) has expanded upon earlier considerations of interspecific interactions in exploited communities and has described a new multispecies model which is founded upon the basic premises of the simple parabolic Schaefer model but allows for the effects of predation and competition on all ihe component species There is, apparently, no theoretical limit to the number of species which can be treated by the model, provided that the necessary parameters can be estimated. However, parameter estimation for individual species may not be necessary, because the model shows that the yield will be at a maximum when the combined catch per unit of effort of all component species is reduced to one half of the initial catch, per unit of effort, provided that no stock becomes zero.

In the latter context it is also most important to note that Beddington and May (1977) have shown that, as a result of chance environmental fluctuations, the variability in population size will increase as harvesting effort increases, particularly at levels of exploitation beyond that which will produce maximum sustainable vields. The right-hand arm of any yield curve therefore becomes pro-

gressively less reliable as effort increases, and there is a danger of extinction of species which are at a temporarily low level of abundance. Beddington and May (1977) point out that the erfects are more pronounced under a constant yield strategy (i.e., a quota system) than under a constant effort strategv, and it is, perhaps, fortunate that quotas are one of the management tools which are least likely to be used in tropical small-scale fisheries.

An arlcitional poi : that is made clear by Pope's model is that the sum of yield: from two inter، _ung stocks which are simultaneously exploited is always less than the sum which might be obtained from the stocks if they did not interact Similarly, Shirakihara and Tanaka (1978) concluded that in the case of competing speries such as Scomber japonicus and Cololabis sarra, 'the MSY level for each species based on the single species theory could 'se quite erroneous:."

The only alternative to models of the Schaefer type appears to be that of making estimates of the population parameters of the component speries (or at least of the dominant species) in a fishery, applying the Bever:on and Holt model (1957, 1964) or one of its successors (Gulland, 1969) and summing the resulting yield curves. The calculations present very few practical problems provided there is access to minimal computer iacilities

However, a simple summing of component yield curves must largely ignore the possibility of changes in the parameters in response to community interactions, because such changes cannot be calculated at the present time. The theoretical basis for detailed analysis of multispecies analytic models a!ready exists (e.g., Andersen and Ursin, 1977), as does the computing techriology. All that is lacking are estimates of the parameters.

Figure 1. (A) Semilogarithmic plot of relationship between catch in 1968 of demersal and neritic pelagic species per unit of effort ($\mathrm{kg} / \mathrm{canoe} / \mathrm{yr}$) and fishing intensity (canoes $/ \mathrm{km}{ }^{2}$) for shelf areas adjacent to the Jamaican parishes of St. James (SI), St. Mary (SM), St. Ann (SA), Trelawney (T), and Hanover (H) on the north coast; St. Thomas (ST) and Pordand (P) at the eastern end of the island, Westmoreland (W) at the western end; and for the South Jamaica Shelf (SS) Trelawney is excluded from the regression (B) Regression line of Figure 1A translated to terms of annual yield per unit area (thousands of $\mathrm{kg} / \mathrm{km} / \mathrm{mr}$) relative to fishing intensity (canoes $/ \mathrm{km}^{2}$) Actual yields and fishong intensities (1968 statistics) for shelf areas adjacent to Jamaican parishes and for the South Jamaica Shelf are also included (abbreviations as given for Figure 1A). (From iMunro and Thompson, 1973)

Applicability of the Models to Tropical Small-Scale Fisheries

In applying either the Schaefer or the Beverton and Holt models, it is necessary to make certain bland a ssumptions even when the models are applied to single-species stocks In applyitig the models to multispecies stocks, very serious problems can arise. For example, Pope (1979) shows that there are no serious objections to the empirical Schaefer-type multispecies assessments which have been done for the fisheries of the Gulf of Thailand and the Jamaican shelf. However, both assessments will become inapplicable if any species is extinguished or if there is any major change in fishing technique or in the mesh sizes used This is because the composition of the exploited community is a function of its original composition, of the lengths or ages at first capture, and of the
catchability of each of the component species. To take an extreme example, a very large increase in mesh size at a given level of effort would result in a cirop to zero of the fishing mortality of all small species, while the abundances of those species would rise to some equilibrium level. The large species would continue to be harvested, but the recruitinent rate of each of them might change radically. For example, some of the small predators previously held in check by large predators or by fishing might now increase in abundance and prey heavily upon juveniles of large species and adversely affect recruitment. Alternatively, recruitment of large species might be enhanced as a result of maturing and spawning before recruitment. The permutations are clearly endless, but the point remains clear: the only management measure which can be effected on the basis of a Schaefer-type assessment of a multispecies stock is an adjustment of fishing effort. The effect of any other alteration of fishery parameters must be separately assessed by means of an analytic model

The analytic Beverton and Holt mcjel assumes that recruitment is unaffected by fishing effort, something which is patently untrue at high levels of exploitation. In conventional single-species assessments, this problem, and the problem of fluctuations in recruitment, are circumvented by expressing yield estimates in terms of vield/recruit. However, this cannot be done if the Beverton and Holt model is afplied to a multispecies fishery in which the yield curves of individual species are summed.

In such a case, recruitment (R) must be iricorporated into the calculations, because it is the proportion of recruits of each species which determines the magnitude of the vields. Absolute estimates of recruitment are not essential, and an index of recruitment can be used instead (Munro, 1974). However, evidence is, accumulating that coral reef fish communities which are reputedly "stable" can have substantial variations in annual recruitment of individual species (Russell et al, 1977). There is not yet any information on the degree to which tropical food fish stocks may be subject to variations in recruitment, but there is every likelihood that the same variability will be encountered

If analytic models of any sort are to be used for the assessment of smallscale multispecies fisheries, it is vitally important that a better understanding of the biology of the constituent species, and of the factors which affect the basic biological and fishery parameters, be achieved. Most important of all, we need to know how the exploitative process affects the composition and productivity of the exploited community. The parameters which might be affected include the natural mortality rate (M) and the recruitment rate (R). It is also conceivable that catchability (q), length anu/s age at recruitment (I_{r}, t_{r}) lergth and/or age at maturitv ($I_{\mathrm{m}}, \mathrm{t}_{\mathrm{m}}$), fecundity (e), and condition factor (a) could be affected. Clearly, the growth parameters of the von Betalanffy growth, formula $\mathrm{k}_{\mathrm{k}} \mathrm{L}_{\infty}$ and/or W_{∞}, t_{0}) could be affected if selective fishing induced changes in the composition of the community and changed the amount of food available to a competitor or predator.

In the latter context, attention should be drawn to the work of Pauly (1978a, 1979), who argues very cogently that growth rates in aquatic animals are primarily a function of relative gill-surface area and of temperature, and that it is the availability of oxygen to the tissues which imposes the primary limitation on the growth of aquatic animals. An important corollary of Pauly's theory is that
food is seldom a limiting factor in the natural aquatic environment. However, this does not mean that food might not become limiting in an altered community or environment, or that growth rates might not improve under reduced population densities as a result of reduced intra- or interspecific aggression and increased feeding on available foods. Nevertheless, if true, this contention means that numerous cherished ecological concepts will have to be discarded.

Natural mortality rates (M) are affected by changes in the abundance of major predators. Munro (1974a, 1974b) found some evidence of reduced natural mortality rates in exploited communities and found very high mortality rates of most species in unexploited communities. Indeed, the total mortality rates in some species appeared to be lower in the exploited areas than in unexploited areas (Fig. 2) Munro (1974a, 1974b) therefore calculated mortality rates in exploited areas to be $M=M_{x}+g P$ in which M_{λ} is mortality from causes other than predation, P is the relative biomass of predators, and g is the amount of mortality generated in the prey population by one unit of biomass of predators. Pauly (1978 b) has argued that natural mortality is a function of $K, \mathrm{~L}_{\infty}$, or W_{∞} and temperature for a large variety of fishes. However, this would imply that mortality is independent of the abundance of predators, and it is not clear how the two above-mentioned cases can be reconciled.

Figure 2. Theoretical interrelationships between natural mortality rate (M), fishing mortality rates (F), and total mortality rate (Z) which will exist if natural mortality rates in an exploited community decline as a result of concurrent exploitation of predatory species. (From Munro and Thompson, 1973.)

Recruitment is the parameter in which the causes of changes are most difficult to identify. In the absence of good biological information, it is also difficult to ascertain whether changes in the composition of catches are a result of en-
hanced recruitment or of simple increases in biomass as a result of changes in the longevity of prey species. For example, in both the Georges Bank area and the Culf of Thailand the relative abundance of squids has increased with increased fishing effort (FAO, 1978; Pope, 1979). Has this ircrease been brought about because of decreased predation upon prerecruit squid or has recruitment remained constant and the biomass increased as a result of improved longevity (decreased predation upon adults) and/or reduced competition for food?

Additionally, it is important to note that the ecological effects of e:ploitation upon a community are deternined by the method(s) of exploitation : nd the selectivity of the method(s). For example, in the Jamaican fishery it has been argued (Munro, 1974a) that the exploited reef fish community contains a complete spectrum of species, ranging from predators such as sharks, mainly piscivorous species such as groupers, snappers, and jacks, invertebrate feeders such as grunts, squirrel fish, and trigger fish, to herbivorous species such as surgeon fish and parrot fish Most species are resident on the reef from a very small size and are liable to predation by larger fishes throughout their lives, but the likelihood of death by predation decreases with increasing size Predatory species are themselves liable to predation throughout their lives, the only likely exceptions being the largest sharks. The position of a fish in the trophic structure is therefore largely determined by its size. The same argument could be applied to almost any other tropical aquatic community. Most speries contribute to the biomass of predators in accordance with their numbers, average size, and proclivity to piscivery. All species form part of the pool of prey in accordance with their numbers and average size.

If the foregoing arguments are accepted, it follows that the effects of exploitation must depend upon the selectivity of the fishing techniques. For example, Antillean fish traps are the predominant gear in the Jamaican fishery, followed by handlines. Nets of various types are relatively unimportant Both the traps and the handlines tend to select the piscivorous species, such species being most prone to taking a baited hook or entering a trap to feed upon previously captured prey species. The groupers, for example, thus suffer a relatively greater catchability (q) in the overall fishery than do, say, the surgeon fishes. The biomasses of both groupers and surgen fibhes will therefore decline in response to increases in fishing effort, but the numbers of surgeon fishes will not decline as rapidly as those of the groupers. The predators will be of smaller average size, and the survival of the largest members of the prey population may be differentially improved. if the size at recraitment to the fishery $\left(I_{r}\right)$ is less than the size at first maturity (1 m), significant effects upon recruitment may result. This pattern of exploitation may eventually result in the elimination of the predatory species as significant components of the catches.

In contrast, a fishery which is selective for the smaller members of the community will have very different effects. Examples might be the Gulf of Thailand trawl fishery (Pauly, personal communication) or the subsistence fisheries in some areas on the south coast of Papau New Guinea. In the Gulf of Thailand trawl fishery, the small-meshed trawls may be avoided to some degree by the larger, swifter, predatory species. In certain Papuan fisheries, small-meshed $(6.35 \mathrm{~cm})$ monofilament floating gill nets are the most favored gear, and are fished day or night by setting the nets over seagrass beds or close to reefs and
driving fish into the nets. The nets are highly selective for the smaller in-vertebrate-consuming members of the reef community, such as mullids. nemipterids, and small lethrinids, and for small neritic pelagic species. The larger pelagic species (Spanish mackerel, tuna) and benthic predators (snappers. groupers, jacks) are not often captured Under the circumstances outlined above, the small-sized species are subjected to their normal, high, natural mortality rate plus fishing mortality, and the stock biomass declines rapidly. The predators suffer reduced food supplies and reduced growth rates and might even enjoy enhanced recruitment as a result of decreased predation on their early life stages Selective exploitation of this sort can result in a seriously reduced harvest

For example, Marten (1979) has shown that there is an inverse relationship between the abundance of Tilapia spp and of Bagrus domac in various parts of Lake Victoria Munro (1967) showed a similar relationship between the annual abundances of Tilapia and Sarotherodon spp and the abundance of predatory Hydrocbonus bittatus (tiger thah) in each preceding vedr in an African reservoir fishers Order-of-magintude difterences result in each case

Saila and Parrish (1972) have used graph theory to demonstrate that highlevel predators contribute more to community stability than do low-level predators This is because high-level predators will "elect" (Ivlev, 1961) to consume the most abundant prev, and thus tend to fiatten out chance variability of populations Selective exploitation of high-level predators (e.g. the Jamaican fishery) will therefore lead to high yields but greater instability. Selective fishing for prev species in the Gulf of Thailand may well account for the stability of the composition of the stocks (eg, FAO, 1978, Fig 5), but this may be achieved at the cost of lower total production.

There is no method whereby the factors discussed in the preceding pages can all be incorporated into present analytic models. While the analytic models remain useful in achieving an understanding of single-species fisheries, they do not at the present time provide accurate assessments for multispecies fisheries in temperate regions, let alone those of the tropics.

Data Acquisition

The most basic deficiency of the Schaefer-type production models lies in the very sparse statistical data upon which any conclusions must be based. Detailed annual catch and effort statistics are probably prohibitively expensive, and thus unwarranted for most tropical small-scale fisheries. However, welldesigned sample surveys administered periodically by trained teams might do much to remedy the situation and provide a data base upon which fishing intensity surplus yield curves (Munro, 1974b) might be based.

Pope (1979) has advocated the use of research vessels to provide standardized catch per unit effort data, and there appears to be every reason to encourage fisheries agencies to undertake routine test fishing in order to accumulate such basic information. Standardized fishing programs conducted in conjunction with periodic sample surveys of tropical small-scale fisheries could provide a wealth of information. However, a major problem in some small-scale fisheries may be the stability of the fishing effort. In such cases, recourse to the
method of Munro and Thompson (1973) in seeking ecologically sirailar areas with differing fishing intensities may be the only solution.

In the case of analytic models, there are a number of opportunities for parameter estimation which have not yet been fully utilized and which might assist in some measure in compensating for the dearth of estimates avallable for the species comprising the tropical multispecies stocks. Possibly the most significant of these is the Beverton and Holt (1956) formulation

$$
\mathrm{Z}=\mathrm{K}\left(\mathrm{~L}_{\infty}-\overline{\boldsymbol{l}}\right), \overline{\boldsymbol{l}}-\boldsymbol{l}_{\mathrm{C}} \text { or } \frac{L}{\mathrm{~K}}=\left(\mathrm{L}_{\infty}-\overline{\boldsymbol{l}}\left(\overline{\boldsymbol{l}} \cdot \overline{\boldsymbol{l}}_{C}\right)\right.
$$

in which Z is the coefficient of total mortality, K is the coefficient of growth, L_{∞} is the asymptotic length, \bar{l} is the mean length of all fishes which are fully recruited to the fishery, and l_{c} is the length at which full recruitment is attained The parameters \bar{l} and I_{C} are easily derived from any reasonably based representation of the annual average length composition of a stock. The growth parameters, K and L_{∞}, can be derived from separate growth studies, or if such estimates are not available, reasonable estimates of L_{∞} can be deduced from records of the largest fishes captured (Taylor, 1958). Thus, given a reasonable set of length-frequency data, total mortality, Z, can be estimated. If no estimate of K is available, at least an estimate of Z / K can be obtained If different levels of fishing effort, f, have prevailed in two or more years or in two or more areas, estimates of M / K can be derived

In unexploited areas, fishing mortality is zero and $Z / K=M / K$. This procedure was followed in assessing the mortality rates in Jamaican reef fisheries (Munro, ed., 1973-78). This immensely useful formulation warranted only a brief note in the early edition of Ricker (1958) and is omitted entirely from the latest version (Ricker, 1975). It has been utilized by only a handful of investigators (Kipling and Frost, 1970; Le Guen, 1971; Munro and Thompson, 1973). Ssentongo and Larking (1973) have more recently derived a very similar formulation

Pope (1979) examined the possibility of deriving mortality estimates from the length distributions of various species taken by research trawlers in the Culf of Thailand and concluded that it was not possible. However, it is not clear whether the length distributors shown were representative of the annual average length distributions or why, in some cases, it was not possible to estimate mortality rates.

A second approach, which appears not to have been utilized by anyone other than myself, is to derive estimates of mortality rates from the mean weight of individuals in the catch. The formulation (Culland, 1969)

$$
\bar{W}_{c}=W_{\infty} \sum_{0}^{3} \frac{U_{n} Z e^{-n K\left(t_{c}-t_{o}\right)}}{Z+n K}
$$

shows that the mean weight $\left(\bar{W}_{\mathrm{c}}\right)$ is a function of the asymptotic weight (W_{∞}), the growth rate (K), the total mortality rate (Z), anc the relative age at entry to the exploited phase ($\mathrm{t}_{\mathrm{c}}-\mathrm{t}_{\mathrm{o}}$).

If the growth parameters (K, W_{∞}, and t_{0}) and the age of first capture (t_{c}) are kriuwn, then curves or tabulations showing the relationship between \bar{W}_{c} and Z can be prepared and estimates of Z can be derived from the observed mean weights of individuals in the catch. If data on mean weights is systematically col-
lected over a full year, this must surely be a most accurate statistic. Nevertheless, it never appears to be utilized for anv fishery assessment. Why not?

Finally. Pauly (1978a, 1978b, 1979) has used multiple regression techniques to derive a set of empirical formulas which interrelate mortality rate to growth parameters $\left(\mathrm{K}, \mathrm{L}_{\infty}\right.$, or $\left.\mathrm{W}_{\infty}\right)$ and water temperatures in one instance, and in another relate growth rates to relative gill size and water temperatures. The theories put forward are bound to generate much discussion, but it is clear that certain fundamental generalizations underlie many of the parameters which fishery biologists seek and that these generalizations could easily be utilized at least to set bounds for unknown parameters and permit trial assessments to be made for numerous stocks

Alternatively, Marten (1978) has proposed a yield per recruit model which circumvents the problems of age and growth rate estimation by assuming linear growth of the exploited phase and a growth span of unity. Such radical departures from conventional techniques must be examined to ascertain their general utility and to determine whether they can be adapted for multispecies stock assessment

Research Requirements

The greatest obstacle to small-scale fishery assessments is the remarkable lack of reliable estimates of fishery and biological parameters with which the population modelers can test their theories. The reasons for this state of affairs are obvious Few of the third world countries have or can afford to purchase the expertise which is necessary to investigate the immense complexities of their smatl-scale fisheries, and until recently international organizations and granting agencies have preferred to direct their attention and funds elsewhere. It is perhaps opportune to note here that, at the present time, about 95% of all fisheries funding in the tropical Western Pacific is devoted to tuna The impact of the tund fisheries upon the indigenous people of the region can be described as trifling, at best More money and more effort are essential if we are to understand the problems of small-scale fisheries

One of the stated objectives of this workshop is to "delineate specific topics for collaborative research ... which would have the best chance of providing the less developed countries with stock assessment methodologies suitable to their needs." A long-term commitment to a study o! harvesting strategies and assessment techniques directed at the most complex and extensive of all fish communities, those of the coral reefs of the Indo-Pacific region, would lead to the greatest insight into the complexities of multispecies stock assessment techniques

References

Andersen, $K^{\prime \prime} P$, and E Ursin. 1977. A multispecies extension to the Beverton and Holt theory of fishing, with accounts of phosphorus circulation and primary production. Medd Dan Fisk. - Havunders. (Ny Ser) 7:319-435

Beverton, RJH., and S J. Holt 1956. A review of methods for estimating mortality rates in exploited populations, with special reference to sources of bias in catch sampling. Rz.pp P-v Reun. Cons Perm Int Explor Mer 140 67-83
Beve:ton. R JH, and S J Holt 1957 Or the dynamics of exploted fish populations. Fish. Invest Lond 2(19), 533 pp .
Beverton, R JH, and S J Holt 1964 Tables of yield function; for fishery assessment. FAO Fish Tech Paper 38, 49 pp
Beddington, JR, and RM May 1977 Harvesting natural populations in a randomly fluctuating environment Science 197 463-465
FAO. 1978 Some scientific problems of multispecies fisheries. Report of the Expert Consultation on Management of Multispecies Fisheries, Rome, 20-23 Sept. 1977. FAO Fish. Tech. Paper 181, 42 pp
Gulland. J A. 1969 Manual of methods for fish stock assessment. Part 1. Fish population analysis FAO Manuals in Fisheries Science 4, 154 pp
Ivlev, V. 1961 Experimental ecology of the feeding of hishes. Academic Press, New York.
Kipling, C, and W Frost 1970. A study of the mortality, population numbers, year-class strengths, production and food consumption of pike, Esox lucius L , in Windermere, from 1949-1962 I. Anim Ecol. 39:115-157
Le Cuen, J-C 1971 Dynamique des populations de Pseudotolithus (Fonticulus) elongatus (Bowd 1825). Poissons-Sciaenidae Cah. ORSTOM, Ser. Oceanogr 9: 197-201.
Marten G G 1978 Calculating mortality rates and optimum yields from length jamples. J. Fish Res Bd Can 35: 197-201
Marten. G G 1979 Predator removal Effect on fisheries yields in Lake Victoria (East Africa) Science 203 646-648
Munro, JL 1967. The food of a community of East African freshwater fishes. J. Zool, Lond $151389-415$.
Munro, J L, ed 1973-78. The biology, ecology, exploitation and management of Caribbean reef fishes Scientific report of the ODA/UWI Fisheries Ecology Research Project, 1969. 1973 Res Rep Zool Dept., Univ. West Indies 3 (PartsI-VI).

Munro, JL 1975a The biology, ecology, exploitation and managernent of Caribbean reef fishes Part Vm Summary of biological and ecological data pertaining to Caribbean reef fishes Res Rep. Zool Dept, Univ. West Indies 3, 24 pp
Munro, J L. 1975b The biology, ecology, exploitation and management of Caribbean reef fishes. Part VI Assessment of the potential productivity of lamaican fisheries. Res. Rep. Zool. Dept, Univ West Indies 3, 56 pp .
Munro, I L, and R Thompson 1973. The biology, ecology, exploitation and management of Caribbean reef fishes Part II. The Jamaican fishing industry, the area investigated and the objectives and methodology of the ODA/UWI Fisheries Ecology Research Project. Res Rep Zool Dept, Univ. West Indies 3, 44 pp.
Pauly, D 1978a A preliminary compilation of fish length growth parameters. Berichte Inst f Meereskunde (Kiel) 55, 200 pp
Pauly, D 1978b. A discussion of the potential use in population dynamics of the interrelationships between natural mortality, growth parameters and mean environmental temperatures in 122 fish stocks ICES, C.M. 1978/G:21, 36 pp (mimeo.)
Pauly, D 1979. Cill size and temperature as governing factors in fish growth. A generalization of Von Bertalanffy's growth formula. Berichte Inst. f. Meereskunde (Kiel) 63, 156 pp .
Pope, J. 1979. Stock assessment in multispecies fisheries, with special reference to the trawl fishery in the Gulf of Thalland. South China Sea Fisheries Development Coordinating Programme. Fish. Tech. Paper SCS/DEV/79/19, 106 pp.
Ricker, W.E. 1958. Handbook of computations for biological statistics of fish populations. Bull. Fish. Res. Bd Car. 191, 382 pp.

Ricker, W E. 1975. Computation and interpretation of biological statistics of fish populations. Bull. Fish. Res Bd. Can. 191, 382 pp.
Russell, B C., G.R.V. Anderson, and F.H. Talbot. 1977. Seasonality and recruitment of coral reef fishes. Austr. J. Mar. Freshw. Res 28:521-528.
Saila, S.B., and JD. Parrish. 1972. Exploitation effects upon interspecific relationships in marine ecosystems. Fish. Bull., U.S. 70(2): 383-393.
Schaefer, MB 1954 Some aspects of the dynamics of populations important to the management of the commercial marine fisheries. Bull. Inter-Am. Trop. Tuna Comm. 1: 26-56.
Schaefer, MB. 1957. A study of the dynamics of the fishery for yellowfin tuna in the eastern tropical Pacific Ocearı. Bull Inter-Am. Trop. Tuna Comm. 2.245-285.
Stevenson, D., and S B Saila 1977. Yield models and tropical artisanal fishery development International Center for Marine Resource Development, University of Rhode Island, State-of-the-Art Paper, 31 pp
Shirakihara, K, and S. Tanaka. 1978. Two fish species competition model with non-linear interactions and equilibrium catches. Res. Popul. Ecol. 20:123-140.
Ssentongo, G.W., and P.A Larkin. 1973 Some simple methods of estimating mortality rates of exploited fish populations. J. Fish. Res. Bd. Can. 30:695-698
Taylor, C.C. 1958. Cod growth and temperature J. Cons. Int. Explor. Mer 23:366-370.

Economic, Social, and Cultural Aspects of Stock Assessment for Tropical Small-Scale Fisheries

Richard B. Pollnac and Jon G. Sutinen, University of Rhode Island

Introduction

In his paper, Dr. Roedel presented a set of issues related to stock assessment for consideration during this workshop. The aim of this paper is to help define, from a social science perspective, the nature of those issues.

First and foremost, under Title XII the ultimate test of any research and development program for tropical small-scale fisheries is the extent to which it improves the well-being of small-scale fishermen and increases fish consumption among the malnourished segments of the population. It follows, therefore, that stock assessment involves a number of economic, social, and cultural considerations as well as the conventional biological and ecological ones.

This paper is divided into two major sections. The first presents an economist's perspective on the issues, while the second concentrates on social and cultural aspects of stock assessment issues.

Economic Aspects

The Information Systems Paradigm

The information systems paradigm developed by Bonnen (1975) addresses an analogous set of issues in agricultural economics. According to this paradigm, the problem of small-scale fisheries development can be viewed as a fundamental problem of information processing. Before it can te solved, there must be a solution to the associated problem of an implicit information system. That is, solving the problem of fisheries development requires making decisions, and making decisions requires information. Providing information depends upon devising a system in which data are collected, analyzed, and acted upon by decision-makers.

Every decision requires an understanding of some part of reality (see Fig. 1). Since reality is too complex for a complete understanding, a set of theoretical concepts is typically developed to explain reality in a manner that is appropriate for the problem at hand and capable of being grasped by the human mind. Since concepts cannot te measured directly, they are operationalized by devising a set of variables (empiricaily observable phenomena) which correspond to that pait of reality under study. The identified phenomena are then observed and the variables measured. The resulting set of measured variables represents the data output. At this point, there is a "data system," since data are not information (see Fig. 1).

Figure 1

To generate information, the data are subjected to analysis and interpretation for a particular decision-making context. That is, data must be given form and meaning in order to become information useful for decision-making.

Esiablishment of such an information system, of course, must be preceded by a process of analytical inquiry. That is, a body of theory is operationalized, matched with data, and the resulting analytical framework is tested, refined, and retested. Through repetition of both the analytical and the empirical processes, reliability is enhanced. In fact, three types of reliability can be identified: measurement reliability, operational reliability, and conceptual reliability.

For present purposes, there should be an assessment of the measurement, operational, and conceptual reliability of the approach used to generate information on stock assessment. An inadequacy at any one stage can cause a breakdown in the information process. The following questions should be asked:

1. Where are the gaps; where is the information system breaking down?
2. Is the theory inadequate?
3. Are operationalized concepts lacking?

4 Is measurement poor?
5. Has the analytical framework been suitably tested and refined?
6. What is the nature of the information to be provided decision-makers?

The information system can also be viewed as a producing system, one that supplies information to decision-makers. The worth of any information system, of course, is properly judged by its contribution to the dec:sion-making process that it is supposed to serve.

At the abstract level, the nature of the data desired by decision-makers is derived from 1) the natuie of the problem of fisheries development which they face, and 2) the nature of the decision-making process actually in effect. If the exact nature of the problems of fisheries development and of the decisionmaking process were known, the needed set of information could be "derived."

Decision-making and Fisheries Development

Rationality as used in the social sciences is the process of selecting the best possible alternative, given relevant preferences and constraints. A rational decision-making process for fisheries development would proceed as follows:

First, an inventory is taken to identify all salient facts and constraints that are expected to govern the seiection of means to achieve an identificd set of objectives

Second, the development potential of the fishery is assessed and a variety of actions which can achieve the development objectives is identified

Third, a set of possible projects is designed and evaluated for their expected social benefits (in terms of the objectives) and costs.

Fourth, the project or set of projects with highest net benefiis is selected for implementation

Fifth, the project is monirared and evaluated during implementation for the actual net social benefits realized from the project(s).

To the extent that this process is followed, one could derive a set of "information demands" at each stage. Quite clearly, it appears that information on stock assessment would be involved at almost every stage

To some extent, this process is followed in practice. However, those who have studied decision-making behavior in other contexts have found that rational decision-making is rarely used (Simon, 1979; Kinreuther, 1974; and Da\%, 1971). In the real world of incomplete and imperfect information, of severe time constraints and conflicting objectives and interests, it becomes impossible to behave in a fully rational manner. Thus, the decision-making process is only partially rational. In order to derive the information demands needed, the actual decision-making process used in fisheries development must be learned

Here is a set of possible decision-mating modes that may apply to fisheries development, each of which could imply different information characteristics and most ce:tainly would imply a different analytical framework:

1. Safety principals

a. Decision-makers seek to minimize the probability that some set of variables (e.g., catch and employment) will not fall below some given
"disaster" level over time.
b. Decision-makers seek an "optimum" yield, but it is subject to the constraint that the probability of disaster (e.g., overexploitation) is below a certain level (cg, 15\%)

2. Maximin

Decision-makers select the best of all possible worst cases. More precisely, they maximize minimum benefits that can be obtained with some given level of probability

3. Satisficing

Decision-makers set an arbitrary level to be attained (e.g., of catch or income)

4 Cautious Suboptimizing

Decision-makers move in the right direction, but no further than some distance percerved as "sate"
These are some of the fartially rational decision-making modes The point is that each mode demands different intormational input, the fully rational node being the most demanding Until the actual decision processes are known, social scientisis cannot supply intormation that effectively serves fisheries develop- ment

Some Characteristics of a Stoch Assessment Information System for Fisheries Development

What should the nature of a stock assessment information syitem for fisheries development and management bee What would an appropriate analytic alfamework for it be? What part or parts of reality need explanation?

The reality of the fohery and related eectors is vast and complex the fishery is composed of everal components and is interconnected with other, nonfishery se, tors (seee Appendix) Constructing a metamodel of this larger systern, if not inteasible, is surelt impractical it seems more reasonable, insteded to focus on the closely related resource and apture subsectors of the small-scale fishery-to think in term, of an analytical framework that provides decision-makers with information on thest subsectors alone

The part of reality focused on involves both the fishery resource and its habitat, as weil as man's exploitation of the resource Like the fishery resource, man's behavior is conditioned by his environment, an environment that consists of social, cultural, economic, and related elements. It seems clear, therefore, that in order to provide useful, reliable information to decision-rawers, a stock assessment information system should take into account all of these elements of reality as well as the nature of the decision-making process used

The implications of such a biosocioeconomic approach ma; be quite significant for the study of stock assessment issues. Among other things, this implies 1) an integrated, interdisciplinary conceptual framework; 2) a joint effort to systematize the collection and analysis of data on the behavior of the fishery resource and the human sectors; and 3) a study and evaluation of the decisionmaking environment that exists. These seem to be some of the conditions necessary for an effective information system.

Social and Cultural Aspects

Beyond the economic and information system aspects, however, there are other social and cultural variables which impinge upon and can affect the relative effectiveness of stock assessment models. For example, many techniques rely on catch and effort statistics or return of tagged fish. Both of these types of data dre practically impossible to obtain without the cooperation of the fisherrien It is important to note that the need for this basic type of catch data was stressed in a report by Resources Development Associates (Craib and Ketler, 1978) Further, even information concerning the types of fish caught and utilized is so minimal in some regions that research preliminary to actual stock assessment could be rather costly. The biologist should use the rather considerable knowledge of local fishermen to provide guidelines to facilitate acquisition of data concerning identification of fish stocks, the number of species involved, and aspects of their distribution and numbers

Obtaining Data from Fishermen

The importance of using the proper approach for obtaining data from fishermen can be illustrated by an experience of one of the authors. In a recent fisheries research project, the fisherman himself was a crucial link in obtaining data about the small-scale fishery. The fisherman is often the only person who can supply certain information, since much of his work is conducted away from shore and not easily observect. This separation trom land-based society has given him a worldwide reputation for secrecy and deception. His cooperation in providing data is essential. I! was therefore necessary in this project to determine the attitudes, beliefs, and values that fishermen held concerning some of the questions that they were being asked. Attention was focused on an economic questionnaire which included catch and effort questions, since data concerning income is often the most difficult to elicit

Experience indicated that the most effective situation for obtaining attitudes of fishermen was in small, natural, interacting groups, when fishermen gather together to discuss football games, women, etc. In such small groups, fishermen feel they have the support of companions and are more likely to speak their minds. When spoken to individually, they may acquiesce to what they think the interviewer wants to hear.

The anthropologist and his research assistant were rather familiar faces among the fishermen. They became part of such a group and gradually turned the conversation around to the economic and biological research which was being conducted. They asked the fishermen what they thought about the catch and effort questions, and invariably the fishermen said they didn't like them. They were afraid that the information was going to be used 1) for taxes, 2) to close the gulf or areas of the gulf to fishing, and 3) to prohibit the use of nets in the gulf. When asked if anyone had told them why the data were being gathered, they said no. When the potential benefits of the research program were explained to them, the attitude of the entire group changed. The fishermen said that since they had been afraid the data were to be used against them, they had not always told the truth when responding to questions The fact that they admitted lying indicated that the interviewing technique along with a full explanation of the purpose of
the data gathering was an important element in gaining their cooperation The fishermen themselves even went on to suggest that there should be some way of informing all the fishermen of the potential benefits of the research. They said they had simply been questioned with little or no explanation, and that they were reluctant to cooperate in research they didn't understand

The inspectors who had been interviewing the fishermen were alse, intervewed, and it was discovered that they had a limited understanding of the reasons for gathering the data. After being read a list of potential uses of the data, they said they wished that they had known them beforehand They went on to say that when fishermen would press then for an explanation, they would fabricate some sort of reason, not knowing if it were true or false

Neither fishermen nor inspectors had problems in understanding various goals of the research. This indicates that full explantions of programs should be provided to fishermen and ail inspectors

This example indicates that proper communication of purpose can play an important role in obtaining data from small-scale fishermen. It also shows that severa' appeits of the communication process have an effect on the evaluation and a capitance of a data-gathering effort.

The communication event entails several important components (Hymes, 1964d!. 1) the participants - senders, receivers, interpreters, spokesmen, etc ; 2) the channels- the spoken word, newspapers, pamphlets, wall posters, etc.; 3) the codes-the ianguage (national, local dialects, etc.), or a combination of language and illustrations; 4) the setting - formal meeting, on the heach, etc ; 5) the message form-salesman's pitch, sermon, informal chat, etc.; and, finally, 6) the topic - here, information enncerning the need for data collection from smallscale fishermen It is important to note that the above components of a communication event form an interrelated whole, a system. For example, the relative social status and familiarity of the sender and receiver dictate message form and code in many socitties. Familiar message forms or codes may be taken as insulting when used by strangers. The characteristics of the receiver may also dictate the channel and code. It is obvious that written messages or the national language cannot be used with people who have only a rudimentary grasp of reading or the national tongue. One must become sensitive to the structure of communication events within the local groups of fishermen, either through extensive exposure or through the use of a good local-level assistant

Turning to the participants in the communication event, let us focus first on the sender of the message. Rogers and Shoemaker's (1971) extensive review of the literature concerning communication and the transfer of innovations suggests that individuals most likely to communicate effectively with small-scale fishermen will be those who have empathy with the fishermen and can identify with them and who are credible in their eyes. This suggests that reasons for data gathering should be transferred through local opinion leaders.

Barnett (1953), however, cautions that prestige is not a good means of identifying opinion leaders who will be effective within specific domains, because the prestige rating of a person may vary from context to centext. For example, an opinion leader with regard to net fishing may not be an opinion leader tor trap fishing.

Rogers and Shoemaker (1971) present a number of attributes associated
with opinion leaders Nevertheless, even within a specific domain it is difficult to identify an opinion leader with only the use of identifying characteristics such as social status. degree of social participation, mass media exposure, etc 11 is often necessany to rely on sociometric techniques (Menzel and Kat 2,1956 ; Lionberger and Copus, 1972) If for some reason (e g, the presence of opinion leaders with a rested interest in the status quo) it is not advisable to work through opinion leaders, the change agent should try to inform as many concerned individuals as possible

Turning to communication channels, those most likely to result in effective, credible message delivery to the small-scale fishermen should be used Knowledgeable individuals within the society can be consulted (e g. marketing specialists), or opinion survers of attitudes, beliefs, and values concerning the various channels can be conducted sometimes this must be done on a trial and error basas Neveitheless, even when an effective medium has been isolated, its sucess often depends on wher factors For example, Sinha and Mehta (1972) note that the surces of instructional television in India often depends on the faralters motivation io (hange Rogers and Shoemaker (1971) cite numerous studies which indicate that although the mass media (e g, radio, newspapers, television) are important for imparting information, interpersonal channels are important for persuasion The; iridicate that the mass-media channels are more effective anong peasants in lesser developed countres when used in combinatron with interpersonal channels in organized small groups of individuals who regularly meet to attend and dincurs mass-media programs

Although it is obvious, it must be noted that the degree of functional literacy must be determined before written mass-media channels can be considered a viable diternative Additionally, and less obviously, if pictures formi an important part of the communicative event, target group familiarity with the interpretation of two-dimensional pictorial material should be taken into consideration (Hutson, 1967)

Use of proper code is also an important consideration, and it is not as simple as merely selecting a language with which the target group is familiar In bilingual contexts, one language may have more prestige than another (Lambert et al., 1960. Rubin, 1968) or usage may be situationally dependent. For example, Rubin (1968) reports that use of Guarani or \subseteq panish in Paraguay depends on the location, degres of formality, intimacy, seriousness of the situation, and sex of participants Even when only one language is spoken, there may be different codes which signify degree of respect, social class, and other variables. Brown and Ford (1961) clarified the extent to which degree of intimacy and status affect direct address usage in American English. Further, Geertz (1960) indicates that Javanese has three levels of speech, including honorifics which are related to the participants' age, sex, kinship relation, occupation, wealth, education, religious commitment, family background, social setting, the content of the conversation, the background of social interaction between the speakers, and the presence of a third person. The foregoing are not isolated examples. Such variance in language usage uccurs in many societies around the world (Burling, 1970; Hymes, 1964b), and failure to adhere to these usually unwritten rules may lessen the credibility of a message

It should be noted that strict adherence to the foregoing precautions will
not necessarily guarantee adequate communication. As one sensitive change agent noted. "We spoke the same language, but we didn't communicate" (Weller, 1965) Recent psycholinguistic research (Pollnac, 1975a, 1975b; Szalay et al, 1972) has shown a significant degree of variability in semantic structure which could impede effective communication Wallman (1965) indicates that in Basutoland the failure of a number of development schemes can be attributed to semantic problems in the communication of measurement Catch and effort statistics rely heavily on communication of measurement (amounts caught, time spent, etc.), hence, efforts must be made to understand the meaning of medsurement and the different systems of quantification used by the local fishermen. Pollnac (1974) demonstrates a fair amount of semantic variability with respect to food plants among the Baganda, and argues that agricultural change agents must become senstitive to variability in the semantics of agriculture if they are to communicate effectively with various sectors of the population. Names for fish sometimes wary from one area of the coast to another. Additionally, some ish have different names at various stages of the growth cycle in some regions (Pollnac, 1979); therefore, attempts to question a fisherman concerning species X may result in responses of different types in different regions. Data gathered without an understanding of this linguistic phenomenon would surely result in unurual size distributions for the fishery biologist to analyze

The setting of the communication, like the channel, depends upon determining the most effective technique among the small-scale fishermen. As was noted above, however, the setting may affect the code used as well as the message form In our society, a sermon is not the proper message form to be used between friends at a party. Situational constraints such as these operate in other societies in contexts which the investigator may not be aware of without previous research. For example, in much of the world schooling is associated with children If communication of reasons for data collection is held in a schoolroom setting with a student-teacher message form, adults in such societies may be reluctant to attend (Foster, 1973)

Examination of aspects of obtaining information from fishermer has identified three areas where prior planning could be of great aid in increasing the reliability of data collected directly from small-scale fishermen. First, communications must be developed to obtain the cooperation of the fishermen. Second, since systems of quantification may vary greatly from society to society (Reed and Lave, 1979; Zaslavsky, 1973; Guy and Cole, 1967), local systems must be determined and understood to insure proper question form and interpretation of responses concerning quantities. Finally, systems for naming fish vary not only between languages but within languages. Sometimes a given name will refer to a specific species only during a certain stage of the growth cycle or will be applicable only along certain r egions of the coast; hence, great care must be taken to determine the exact referent for all fish names used in data collection schemes.

Data That Can Be Provided by Fishermen

Most local fishermen have been interacting with the sea for a long time. In their attempts to wrest a living from it, they have made infet:nces from their
observations, and constructed taxonomies and theories concerning the marine environment and its flora and fauna Although some of the conclusions they have drawn regarding explanations for observed phenomena may not be adequate, their observations of correlations and variability within the sea are usually accurate, since their livelihood deper us on the abill to locate fish of specific types. Anthropologists have been investigating this ty " of "folk science" for a number of years (Tyler. 1969), and their findings indicate that taxonomies and beliefs concerning flora and fauna in the immediate environment of primitive and peasant farmers and fishermen are exceptionally complex and detailed. This "folk science," or ethnoichthyology, can save the fishery biologist a great deal of preliminary work in his attempts to census the fish populations in various parts of the world

All fishermen have names for the types of organisms they capture What is surprising is the number of marine orgarisms which are recognized and named by local fishermen For example, Anderson (1967) reports over 400 marine organisms named and recognized by Hong Kong boat people Cordell (1972) lists over 140 fish named by estuarine canoe fishermen in northeastern Brazil; Morrill (1967) has found 51 named varieties among small-scale fishermen of the Virgin Islands; and Pollnac (1979) reports 122 different categories of tish named by the small-scale fishermen of the Gulf of Nicoya, Costa Rica. All of these taxonomies are relatively complex and hierarchically organized. The elicitation of adequate taxonomies is not a simple matter (Tyler, 1969), but, once obtained, they can be used in further research to: ?) determine the number of types harvested and utilized; 2) obtain specimens for scientific investigation; and 3) collect further data concerning distribution and behavior.

Since a fisherman's livelihoud depends on his ability to find fish, fishing communities have observed fish behavior and developed locally appropriate systems for locating fish according to physical features in the marine environment, the moon position and phase, the tides, the time of day and year, and various meteorological phenomena. Once again, anthropologists have provided illustrations of these folk scientific systems (Cordell, 1972, 1974; Forman, 1967) This type of information can be of use to fishery biologists in the structuring of sampling techniques for maximum efficiency. For example, information regarding the location, behavior, and temporal variability of stocks will permit the use of sampling techniques (e.g., stratified cluster sampling), which will'save both time and effort and will result in more reliable data Additionally, the scientist's knowledge at least of what the fishermen know and believe will enhance his credibility in their eyes and probably result in their being more likely to cooperate in the future.

Finally, in many societies longitudinal data on fish stucks are not available In these communities, oral histories concerning catch and effort should be obtained from local fishermen. A sampling of such histories can be obtained and compared to assess their reliability (Young, 1966). The general trends which can be derived from such data, although not as detailed as one would like, are better than no historical data at all and, if care is taken, can be quite reliable.

The fishermen possess a system of knowledge concerning local species of fish that can be of considerable use to fishery biologists in identifying stocks, framing questions corcerning the stocks, deriving general historical trends of
catch and effort, and designing sampling frames for stock assessment. The intelligent use of this information can save a great deal of time and effort on the part of the fishery biologist and, in the process, result in enhancing his credibility in the eyes of the local fishermen

Conclusions

The interrelationships between stock assessment and selected aspects of ecuromic and anthropological information, and dàia collection and analysis techniques, have been examined Several of the speakers who proceeded us noted the importance of these interrelationships, and we hope that our observatrons will stimulate further discussion and research on these matters

References

Anderson, E 1967 The ethnoichthyology of the Hong boat people. Ph D. Dissertation, Univ of Calif, Berkeley
Barnett. Homer C 1953 Innovation McGraw Hill, New York.
Bonnen, J T 1975 !mproving information on agriculture and rural life Am J. Agric. Econ 57 753-763
Brown, Roger, and M Ford 1961 Address in American English. J. Abnorm Soc. Psych. 62.175-385

Burfing, Robbins 1970 Man's many voices Holt, Rinehart, and Winston New York
Cordell, fohn (1974 The lunar tide fishing cycle in north eastern Brazil Ethnology 13379.92
 Bracil Ph I) Dirseftation. Stantord University
Crab, K. ind W Ketler, eds 1978 Fisheries and aquaculture: Collaborative research in the develcping countries Agency for International Development, Washington, D C
Crutchfield. I A. UA Lawson, and C K Moore 1974 Legal and institutional aspects of fisheries development-Malaysia SCS/74/WP/2, South China Sea Fisheries Development Coordinating Programme, Manila
Day, RH. 1971 Rational choice and economic behavior. Theory and Decision 1:229-251
Douret. FI, C, K Moore, and A Labon 1974 . Institutional and legal aspects affecting fishery development in selected countries bordering the South China Sea. SCS/DEV;73/9. South China Sea Fisheries Development Coordinating Programme, FAO/UNDP, Rome
Forman, S i 1967 Cognition and the catch The location of fishing spots in a Brazilian coastal village Ethnology 6-417-426
Foster, G 1973 Traditional society and technological change. Harper and Row, New York
Gay, J., and M Cole 1967. The new mathematics and an old culture Holt, Rinehart, and Winston, New York
Geertz, Clifford. 1960 The religion of Java The Free Press, Clencoe, III.
Hudson, W. 1967 . The study of the problem of pictorial perception among unacculturated groups Intern J. Psych 290 -107

Hymes, D. 1964a. Introduction: Toward ethnographies of communication. American Anthropologist 66(6) Pt. 2:1-34.
_1964b Language in culture and society. Harper and Row, New York
Kunreuther, H. 1974 . Economic analysis of natural hazards in natural hazard perception and choice, G.F. White, ed., Oxford University Press, London
Lambert, W.E., R C. Hodgson, R C. Cardner, and S Fillenbaum. 1960. Evaluation reactions to spoken language I Abnorm Soc Psych 60.44-51
Lionberger, Herbert F, and G Copus 1972. Structuring influence of social cliques on farm-innovation-seeking relationships with agricultural elites and non-elites in two Misscuri communities," Rural Sociology 37:73-85.
Menzel, Herbert, and E Katz 1956 Social relations and innovation in the medical profession The epidemiology of a new drug. Public Opinion Quarterly 19:337-352
Morrill, Warren I 1967 Ethnoichthyology of the cha-cha Ethnology 6•405-416
Polinac, R 1979 The ethnoichthyology of small-scale fishermeri of Puntarenas, Costa Rica I: Taxonomy, Anthropology Working Pa, ier 34, University of Rhode Island, Kingston

1975a cogntive varabilits and its soctocultural correlates among the Baganda thos 3-22-40

1975 b Intracultural variabilts in the structure of the subjective color texicon in Buganda Americant thologist 2.89-109
_- 1974 Intracultural varabilits in the conceptualization of food plants among the Baganda In. Psychocultural Change in Modern Buganda, M Robbins and P Kilbride, eds., Makerere !nstitute of Social Research, Kampala
Reed, H, and I Lave 1979 Arithmetic as a tool for investigating relations between language and culture American thnologist 6:568-582
Rogers, E, anc F. Shoemaker 1971 Communication of innovations, 2nd Edition The Free Press, New York
Rubin, Joan. 1968 Bilingual usage in Paraguay In: Readings in the Sociulogy of Language, Joshua A Fishman, ed, Mouton and Co. The Hague
Simon, A A 1979 Rational decision-making in business organization. Am. Econ. Review 1979.493-513

Sinha, B P., and P. Mehta 1972 Farmers need for achievement and change proneness in acquisition of information from a farm-telecast Rural Sociology 37:417-427
Szalay, L., D Lysne, and J Bryson 1972 Designing and testing cogent communications. J Cross Cultural Psych 3 247-258
Tyler, S A 1969 Cognitive anthropology Holt, New York
Wallman, Sandra. 1965 The communication of measurement in Basutoland Human Organization 24:236-243
Weller, Jack E. 1965 Yesterday's people: Life in contemporary Appalachia. University of Kentucky Press, Lexington.
Woodland, A.C. 1976. Report of the workshop on the legal and institutional aspects of fishery resources management and development, April 1976, Manila. SCS/76/CEN/3, South China Sea Fisheries Development and Coordinating Programme, Manila.
Young, Pauline V. 1966 Scientific social surveys and research, 4th Edition. Prentice-Hall, Inc., Englewood Cliffs, NJ.
Zaslavsky, C. 1973. Africa counts: Number and pattern in African culture. Prindle, Weber, and Schmidt, Boston.

Appendix

The Fishery and Related Sectors

In fiost LDCs, the fishery typically consists of two sectors: 1) a small-scale fishery sector that uses low-level technology generating low incomes and producing fish for local human consumption; and 2) an industrial fishery that is capital-intensive, producing higher incomes for a relatively small number of people, and products for export or industrial use The small-scale fishery can be separated into four levels, or subsectors: 1) the resource and its habitat; 2) capture or harvesting; 3) processing, distribution, and marketing; and 4) consumption. These levels are convenient divisicns for a variety of analyses

The industrial fishery sector is related to development of the small-scate fishery in a number of ways The industrial fishery may dominate and negatively affect the small-scale tishery Conflicts can arise over exploitation of the same or interdependent fish stocks (as in the South China Sea), or where the by-catch of the industia! fleet dominates the local fresh tish market (as in Central America)

The agricultural sector intluences small-scale fisheries development as well Many, if not most, f;shing farnilies also raise crops and livestock In some areas, fishing is viewed as the employment of last resort, where people fish only when farming is not feasible (e.g. East Afica) The agricultural sector may dorninate the regional distribution and mark ating network, and thereby define the possibilities for expanding the distribution and marketing of fish

Similarly, the existing infrastructure detines the possibilities for expanding the smallscale fishery if port facilities and harbors have not been developed to support the general economy, it is unlikely that small-scale fishery needs will justify their construction The same is true for roads and other major components of the physical inirastructure

Institutions and laws can also bre critical to the realization of the potential for fisheries development since implementation of development projects typically rests with LDC institutions, the structure, organization, and legal power of fisheries administration and related agencies determine the efficacy of anv development program Other institutional and legal aspects which condition the process of fisheries development include interagency conflict and coordination, credit, and subsidy and training programs (see Doucet et al., 1974, Crutchfield et al , 1974; Woodland, 1976)

To be effective, development pianning must account for all aspects of the fishery and related sectors. If the problem of fisheras development is not addressed in this holistic manner, links necessary for successful development can be overlooked. Such oversights account for a large proportion of the failures in fisheries development efforts

For stock assessment purcoses, however, one may wish to focus exclusively on the resource and capture sectors of the smal!-scale fishery.

Some Environmental Considerations for Stock Assessment of Small-Scale Fisheries

Saul R. Saila, University of Rhode Island

Introduction

Definition

What are small-scale fisheries? It seems that a clear and universally accepted definition is not yet at hand. However, Sutinen (1976) has defined a smallscale fishery system as consisting of two segments: 1) the resource and its environment, and 2) man and his environment. He further indicated that the resource consists of a very large number of species, usually found in shallow tropical or subtropical waters (estuaries, reefs, shelf areas, lagoons, etc) Man's relationship to the resource consists of harvesting, processing and marketing, and/ or consuming it Harvesting usually takes place from small boats (often nonmotorized) which have been built from indigenous materials and designs the fishing gear is often simple, consisting of fixed nets or traps, hook and line, and simple towed gear The processing and markeing is variable, with most fishermen selling their catch on the beach or in port for cash. The above concept of a small-scale fisheries system is in keeping with the FAO (COFI; 74/9) objective and definitions, which suggest that small-scale fisheries in developing areas must be treated as part of the overall rural cevelopment. However, development in the sense of increased production of fish could well not be a primary objective of this development. The Committee for Inland Fisheries of Africa (CIFA) has also stressed the concept of an integrated FAO approach to the development of artisanal fisheries, which explicitly considers the social and economic aspects of the fishing community. Rothschild (1973) has outlined certain broad questions of strategy in fishery management and development into which the above concepts seem to fit rather well

If we accept, for the present, the above-mentioned broad concepts and objectives of small-scale fisheries, then it seems apparent that the traditional methodologies of fisheries stock assessment are only a part of this system, and, furthermore, some of the traditional objectives and methods of stock assessment may be open to question as applied to small-icale fisheries.

Conventional stock assessment is concerned with problems of estimating the important parameters (growth, mortality, recruitment) of fish populations and using these estimates to determine the total catch, and how the catch and catch per unit of effort vary with changes in the pattern of fishing. Before population theory can be applied to a particular fishery, it is necessary to determine to what extent the population and the fishery based on it can be reated as a unit system. The usual models of stock assessment work (either the dynamic pool model or the stock production model) are single-species mode!s based on the concept of a unit stock. Pauly (1977) has recently reviewed tropical multispecies stocks and managerial models with emphasis on demersal fisheries. In materiai which follows, it will be demonstrated that tropical small-scale
fisheries consist of a very large number of species, that many tropical fisheries (especially reef and lagoon fisheries) explott relatively local stocks in relatively fragile environments, and that the nature of recruitment and other parameter estimates are atficiently unique in the tropics to raise serious questions about the direct application of conventional stock assessment methodology for management purposes in tropical small-sale fisheries located in reet and coastal areds

The definitions of Clark and Lackev (1974) are recommended as usetul in forming a babis tor considering small-scale tisheres Fisheries are defined as sustems consisting of aquatic biota the aquatic environment, and man, interacting through time and space fisherie, management, of which stock assessment is a part, is the scernce of making and mplementung decisions to maintain or alter the structure, dyndmics, and interactions of isheries components to acheve specific human objectives More recently, Lackey (1979) has proposed an equation as a basic theory of fisheries, stated as

$$
Q_{m a x}=f\left(X_{1}, x_{2} \quad, x_{m} \mid Y_{1}, Y_{2}, \quad, Y_{n}\right)
$$

where
Q is some measure of societal benefit. X is a management decision variable, and
Y is a management constraint variable
The vertical line reads "given that." The theory states that the greatest societal benefit (Q) from a fishery can be realized by minipulating a series of decision variables (X 's) given a set of constraint (Y 's). Controlled or partially controlled decision variables (X 's) include manage,ment techniques (such as size or gear limits, environmental stabilization or improvensent, etc.). Noncontrolled decision variables are random, or dependent on other factors. These include weather effects or industrial development. It is clear from the above that Q is not simply a measure of yield but may involve many additional components. The objectives of fisheries stock assessment must be clearly stated, be specific, and be quantifiable by some means to be effectively evaluated

The complexity of small-scale fisheries as systems to be managed seems clear from the above material. How to model and quantify the activities associated with management in the context of small-scale fisheries remains to be further resolved.

Objectives

The objectives of this repoit are to consider some aspects of the management of small-scale fisheries as defined above, by briefly reviewing some features of the physical environment and biology of small-scale fisheries (especially as related to reefs and adjacent areas), and providing some suggestions for future studies which take environmental considerations into account. Much of the material which follows relates primarily to reef and estuarine environments, rather than to tropical continental shelf environments and their fisheries, which Pauly (1979) has recently described and which have somewhat different management requirements.

Environments of Small-Scale Fisheries

Ceneral

Most small-scale fisheries are located in tropical or subtropical regions. However, much of the available limnological and oceanographic information concerning the environments of fisheries is from temperate regions. The temperate region of the oceans corresponds to a band of westerlies where there are strong winter storms. These strong winds induce a major current, the West Wind Drift. Extensive mixing occurs, and a marine food chain which includes large fish populations is supported in this region. In contrast, there is a monsoon circulation, which is especially well developed over Southoast Asia and India, which results from warming and cooling of the Asian land mass. The effect of the monsoon climate on fisheries is not as well understood. It appears that there are some fundamerital differences, in both marine and freshwater environments and their living resources, between tropical and temperate regions. These should be carefully considered in attempting to as ess fish production and in developing management strategies. Some of these erivironmental conditions have been analyzed by Weber (1976), who demivisi, ated that the major spawning activity of tropical fishes in monsoon climates can be induced 1) by strong wind and heavy rainfall, and 2) by low values of water temperature and salinity. However, not all species are affected similarly. Furthermore, details concerning the physical environment of many tropical fisheries are still lacking. Some of these environments and their properties will be briefly mentioned in the context of fisheries assessments.

Diversity and the Environment

The high diversity of tropical fish communities has been of considerable ecological interest for some time. The current ecological concensus is that any community is an equilibrium community of numerous species whose coexistence is explained in the theory based on Lotka-Volterra competition and predation equations (Goel et al., 1971). Recently, Sale (1977) has questioned this and proposed a new concept of the dynamics of reef fish communities which emphasizes environmental changes and patch structure of the reefs. He makes two predictions concerning reef fish communities which are considered very important to any stock assessment or management scheme for small-scale fisheries in these areas. The first of these is that, at the level of the species, reef fish rommunities have an unstable structure; i.e., the species composition of the fish di a given site will not tend to recover following a disturbance (removal or addition of fish). His reasoning is that the relative abundance of the species of a guild (those species having similar environmental requirements) is largely the result of chance recruitment of young which will change from time to time. Thus, the selective removal (by fisiiing, for example) of one or more species of a guild may not be followed by recovery of the original species composition of that site. Sale's second prediction is that the diversity of reef fish communities is directly correlated with the rate of small-scale unpredictable disturbances to the supply of living space.

Both hypotheses lend themselves to empirical testing. The first can be tested by carefully monitoring selective fishing activity over a reef area and comparing
the original species composition with that which follows the cessation of fishing activity. The second hypothesis can be tested by comparing diversity in sheltered and exposed areas, or by manipulating natural or artificial habitats.

If the stochastic nature of recruitment and replacement of species within guilds were adequately demonstrated for tropical reef fish communities, this would have profound effects upon stock assessment models and management methods. For example, data on species guilds, rather than on ind'vidual species, might be used in models which treat interactirig groups. This would immediately bring parsimony into the models Second, the concept of species diversity as an index of exploitation or perturbation effects would have to be re-examined. Third, controlling and mandenating fish communities by habitat modification would have a high probabiliv of success in these areas.

In summary, the hupothesis put forth by Sale should be tested adequately. If shown to be correct, it would be important to recognize the stochastic nature of the tropical fisheries system (the chance interactions of predators, prey, and the environment). It would then become necessary to describe the dynamics of populations living in randomly fluctuating environments Reed (1978) has contributed to this possible solution by developing a stochastic harvesting model based on a discrete-time Markov population model Further work in this area is clearly required if the stochastic nature of tropical fish communities is demonstrated by future empirical studies. Also, the accepted concepts of diversity and stability would need to be revised in this event

It should be recognized, however, that Sale's hypotheses are based on data consisting of relatively small species, and the utility of the hypothesis for harvested species of larger size remains to be tested as well.

Iropical Estuaries

Rodrique: (1975) stated that tropical climatic conditions reflected in estuarine hydrodynamics create situations that clearly differentiate tropical from temperate estuaries. Unfortunately, there is considerably less information available on tropical than on temperate estuaries. Saila (1975) has summarized some aspects of fish production and cropping in estuarine systems; his review was restricted primarily to temperate regions but had some reference to tropical lagoons

It is apparent that tropical estuaries can be characterized by their peculiar hydrographic regime dominated by the seasonality of river flow with a concomitant salinity regime and with uniformly high temperatures. Tropical estuarine biotic characteristics inclurie a significant effect from organic matter derived from bordering vegratica including mangroves, and from certain regular migratory events by sal: biota

From a fisheries point of view, it should be recognized that a substantial part of the fisheries (especially crustacea) is dependent upon the migratory movements of populations between the sea and tropical estuarine waters. This estuarine dependence has been demonstrated for the white shrimp (Penaeus setiferus) in Texas estuaries by Wey nouth et al (1933) and by others (Baxter and Renfro, 1967; Christmas et al., 1966) for U.S. Gulf Coast areas. It is important to note that similar behavior has been described for other penaeids, such as

Peneaus schmitti in Venezuela and Penaeus duoderum in Dahomey. West Africa, as cited by Podriquez (1975)

It has also been demonstrated that a substantial proportion of the estuarine waters of many large tropical rivers is located outside the mouth of the estuary. Since tropral oceanic waters are low in productivity, it is worth noting that future fisheries developments of various kinds (including small-ucale fisheries) might be considered in the relatively richer estuarine areas

In general, the fishes and important invertebrates of tropical estuaries are nearer their tolerance limits of high temperature than those in more temperate areas. This suggests that organisms in tropical estuaries may be considerably less tolerant of thermal loadings than temperate estuarine forms. In addition, it appears that physical modification of tropical estuaries may have serious consequences to fisheries which are estuarine-dependent in some life history stage, since the uniformly high temperatures and the salinity associated with river flow would be altered by such modifications

Coral Reets

The diversity of fish on tropical coral reefs is probah!y higher than that of any other marine ecosystem. The total number of species for a coral reef is variable, and the range has been estimated from about 320 species for a small island like Barbados in the West Indies to about 600 to 800 for a Caribbean continental fauna to over 2,000 species for a large island or continental barrier reef in the Pacific (Emery, 1978).

Topographic relief on coral reefs is very high There appear to be differences in the growth of coral reefs, typified by the atoll and continental barrier forms, but the elements of constri:ction are essentially similar. Reef topography may be an important determinant of fish communities and needs further study.

Because of the large variety of habitats, the problem of describing the nature of reef fish populations by depth regions is not straightforward. However, Emery (1978) has attempted this, and the following is adapted from his analysis:

Zone 1 Shallow, Wave-Torn Area

Presence of two fish types: those which utilize obstructions to water movement and take cover in areas of reduced flow (typical families include blennids, clinids, gobies, scorpaenids, gobiesocids), and those which are highly active and utilize waves and lateral flow to move over the reef top (these free swimmers include kyphosids, acanthurids, and some pomacentrids; also, some carangids and sharks forage in the bubble zones).

Zone 2. Depths from 2 to 30 Meters
a. There is a large variety of fish taxa, mostly large species groups, schooling or aggregated.
b. The richness of fauna reaches a peak at 5 to 20 meters and is significantly reduced at depths of much more than 30 meters
c. Diversity is lower by night than by day.
d. Representative families include a antha ids, labrids, chaetodontids, pomacentrids, and scarids.

In reef areas, the free-ranging individuals are often predatory and of large size.

The significant features of the life history of coral reef fisher have been summarized by Sale (1978). They suggest that reet fishes are limited by suitable living sf ice; are sedentary as adults, produce frequent clutches of pelagic larvae over extended breeding seasons; and are widely dispersed as larvae, which opportunistically colonize vacant patches of habitat Stock assessment models of reef fisheries should take these characteristics into account

There seems to be a relatively close coupling between physical oceanographic processes near reefs and the biota of reefs Since the larvae of reefdwelling fishes appear to be advected to the reef area after spawning, which takes place outside the reef, the presence of gyres and the nature of water sirculation are important considerations in the management of reef communities for example, attificial reats might be optimally sted if proper data on physical oceanographic processes were avalable. In addition, the coral reef environment is considered to be tarly vulnerable to degradation and change by man Some evidence for destruction of coral areas by silting is available in the literature, and the recovery of damaged coral areas appear to be very slow, ranging from a decade to more than 30 yedrs

Inland Waters

Welcomme and Henderson (1976) and Henderson (1976) have summarized the state of assessment of fish resources of inland waters in developing areas. Their summary statements indicate that these food fisheries (primarily in tropical and subtropical regions) are extremely diverse in species and that production in these environments is highly variable. The fisheries appear to be considerably more changeable than had been previously supposed Comparative studies among diverse fisheries and performance monitoring as means for developing rational management plans are suggested.

It has been recognized for some time that measuring the performance of inland food fisheries is difficult because of the dispersal of fishing units and the methods of marketing and disposal of the catch. A demographic approach has been adopted by FAO, based on frame survers of fishermen and their oquipment and a stratified random sampling of catches at known intervals. This approach is considered reliable and of widespread applicability to small-scale fisheries throughout the world. The methodology is clearly describeci by Bazigos (1974).

The use of morphoedaphic indexes, based on limnological parameters of lakes, has been summarized by Ryder et al. (1974). Cood correlations between index values and lake productivity have been demonstrated for a wide latitudinal range, merely by adjusting a proportionality coefficient in the index term. For comparative purposes, in small-scale fisheries of reefs, lagoons, estuaries, and shallow inland areas, it seems that an approach somewhat analogous to the above for estimating fishery potentials for those areas may be of considerable utility. The possibilities for developing such index terms should receive further study.

Henderson and Welcomme (1974) have utilized the number of fishermen per unit area as an index of fishing intensity, and they have made inferences from
this material to indicate how close the observed yields are to estimated potentials. Again, this approach seems to have utility, and some work similar to this has been initidted regarding tropical island fisheries by Munro

Yields of river fisheries have diso been studied by means of certa!n morphoedaphic features. One of the best postulated associations appedrs to be that betiveen river drainage area and annual catches trom relatively large river sbstern (Welcomme, 1978) A recent summary of the turopean method of fish harvent prediction in tluval svstems has been given by Kobling (1978) It seems that the method, with some further elaborations, has the potential utlith of the lake morphoedaphic index described previously

Weleomme and Henderson (1976) have revewed mans appects of inland water management for fisheries A brief summary of their work suggest that

1 Water use requirements (other than fisheries) mun be conselered with lisherien need This implies that models of these shetems mut be broad emough to embrace these alternativen

2 There dppedra to be a general respone of that communtien to foheng or significant enveromental manpulation thas mantented by daplatement toward smaller, tater-growing, bort-lived speecte,

3 The dechion-making proceses in inland tishertes often involve quentions of policy and alternative allocation of resourcer Such questions can only be examined in a management context which includes soctoeconomic ds well as biologic al variables

Habitat Modification

Tropical freshwater and marine habitats and ecosystems may possibly be manipulated as part of a management strategy for small-adale finheries of which stock assessment forms a part In traditional marine fisheries, it is rarely possible to exert ary sugificant influence on the habitat or the unexploited biota The only eatimated parameters which are manipulated in these fisheries are size at first capture (sbe limits or mesh regulations) and fishing effort in view of the fact that certan tropical fisheries are pursued over relatively small geographic areas which contain indigenous fauna, it seems desirable to know more about the aquatic environments and trophic webs in tropical latitudes. espectially exploitation effects and effects of environmental changes

It should be recognized that habitats of tropical fisheries can often be enhanced. Artificial reefs and other man-made structures have been used for centuries to enhance fistiong. Ino (1974) has provided a historical review of artificial reef activities in Japan using a diversity of materials. In general, the installation of artificial reets is recognized as an important step in the development of coastal fisheries Their role includes providing habitat for certain organisms, nursery areas, and fishing grounds In the same artificial reef conference, Fast and Pagan (1974) have indicated that the biomass of artificial reefs in Puerto Rico was substantially higher than that of natural reefs, although the number of species was slightly smaller. There is a real need for further work on habitat manipulation to maintain and/or improve small-scale fisheries by enhancing desired species or total fish production

Sorrie interesting initial developments relating to the colonization of de-
faunated natural reefs and the factors affecting species assemblages on reefs have been described by Nolan (1975).

Tropical Fishery Resource Characteristics

General

Johannes (1978) has recently reviewed some reproductive strategies of marine fishes in the tropics. His major conclusion is that temperate zone models of reproductive strategy are inapplicable in the tropics. He indicates that intense predation exerts heavy selection pressure on fishes living in coral reef, mangrove, or seagrass communities. These fishes spawn at times and locations which favor offshore transport of pelagic eggs and larvae to reduce predation. However, there is a requirement for larvae to return to shallow areas when ready to colonize postlarval habitats This is done by concentrating spawning at times when prevailing winds and currents are weakest, thereby reducing transport losses. In addition, spawning appears to be concentrated in areas of gyres, which favor return to the natal location. Lunar and monsoon-related reproductive activity appears to be common. From the above, it is concluded that there is a relatively close coupling of meteorological and physical oceanographic phenomena with the breeding biology of tropical fishes. This has been indicated by Weber (1976), who suggested specific temperature and salinity influences of monsoon conditions. Erdman (1976) has provided an extensive review of the spawning patterns of Caribbean fishes, and concludes that individuals of many marine species spawn year round, with seasonal peaks once or twice a year. The year-round spawning activity of East African ieef fishes has been recently documented by Njioka (1979), who draws conclusions very similar to those of Erdman.

Summary

1. A small-scale fishery has been operationally defined as a system consisting of the biota, the aquatic environment, and man, interacting through time and space. Management in this context consists of maximizing societal benefits subject to certain decision variables and constraints, including environmental constraints. This implies a broad operational definition, of which siock assessment forins a part.
2. The apparent coupling between physical environmental conditions and the reproductive activity of tropical fish seems to be strong, and should be recognized in assessment methodologies.
3. There is some evidence that the nature of species replacement within species guilds in tropical fisheries is stochastic. This implies that changes in indices of species diversity may be of limited value, and that vital statistics and assessment methods might be applied to species groups (guilds) rather than at an individual species level.
4. Tropical estuaries have been shown to be different from temperate estuaries, with possibly more significant consequences resulting from perturbations to tropical fisheries which are estuarine-dependent.
5. Cora! reefs and coral reef fisheries are uniquely characterized by op-
portunistic colonization of a limited habitat by almost continuous input from dispersed early life history stages
6. The concept of morphoedaphic indices, adapted from inland fisheries, is suggested as having utility for stock assessments in small-scale marine fisheries in coastal areas.
7. Habitat modification seems feasible for some tropical small-scale fisheries as a management and assessment tool and needs further empirical study.

References

Baxter, K N. and W C. Renfro 1967 Seasonal occurrence and size distribution of post lar. val brown and white shrimp near Galveston, Texas, with notes on species identification. Fish. Bull., U S 65(1) 149-158
Bazigos, C.P. 1974 The design of fisheries statistical surveys-inland waters FAO Fish. Tech Paper 133, 122 pp
Christmas, I Y, C Cunter, and P. Musgrave 1966 Studies of annual abundance of post larval penaeid shrimp in the estuarine waters of Mississippi, as related to subsequent commercial catches Culf Res Rep 2(1):177-212
Clark, R D., and R.T. Lackey 1974 Managing trends in angler consumption in freshwater recreational fisheries Proc 28th Ann Conf. Southeast. Assoc Game Fish Comm, pp 366-377
Erdman, D S 1976 Spawning patterns of fish from the northeastern Caribbean CICAR Symposium, pp 145-169
Emery, A.R. 1978 The basis of fish community structure; marine and freshwater comparisons Env Biol Fish 3:33-47
Fast, D.L, and FA. Pagan 1974. Comparative observations on an artificial tire reef and natural patch reets off southwestern Puerto Rico In Proceedings of Artificial Reef Conference, TAMU-SC-74-103 49-50
Coel, N S, S C Maitra, and EW Mentrell 1971 On the Volterra and other nonlinear models of interacting populations. Academic Press, New York
Henderson, H F 1976. Approaches to the assessment of fish resources in the inland waters of developing countries. In: Proc of the Intern Sem. on Fish. Res and Their Management in Southeast Asia, K. Tiews, ed, German Foundation for International Development and FAO, pp. 89-94
_ , and R. L. Welcomme 1974 The relationship of yield to morpho-edaphic index and number of fishermen in African inland fisheries. CIFA Occas. Paper 1, 19 pp
Ino, T. 1974 Historical review of artificial reef activities in Japan. In: Proceedings of Artificial Reef Conference, TAMU-SC-74-103:21-23.
Johannes, RE 1978 Reproductive strategies of coastal marine fishes in the tropics. Env. Bioi. Fish. 3:65-84
Köbling, A. 1978. The European method of fish harvest prediction in fluvial systems. Env Biol. Fish. 3:249-251.
Lackey, R.T. 1979. Options and limitations in fisheries management. Environmental Management 3(2): 109-112.
Nolan, R.S. 1975. The ecology of patch reef fishes. Ph.D. Thesis, Univ. of California, San Diego, 230 pp .
Njioka, R.M. 1979. Observations in the spawning seasons of East African reef fishes. J. Fish. Biol. 14:329-342.
Pauly, D. 1979. Theory and management of tropical multispecies stocks. ICLARM Studies and Reviews 1, ISSN 0115-4389, 35 pp.

Reed, W.1. 1978. The steady state of a stochastic harvesting model. Matt. Biosciences 41:273-307.
Rodriquez, C. 1975. Some aspects of the ecology of tropical estuaries. In: Tropical Ecological Systems, F.B. Golley and E. Medina, eds., Springer-Verlag, New York, pp. 313-333.
Rothschild, BI. 1973. Questions of strategy in fishery management and development. J. Fish Res. Bd Can 30:2017-2030

Ryder, R.A., S R. Kerr, K H Loftus, and H.A. Regier. 1974. The morphoedaphic index, a fish vield estimator - review and evaluation. J. Fish. Res. Bd. Can. 31:663-688.
Saila, S.B 1975 Some aspects of fish production and cropping in estuarine systems. In: Estuarine Research, Vol 1, L. Eugene Cronin, ed., pp. 473-493.
Sale, P.F. 1977. Maintenance of high diversity in coral reef fisi communities. Am. Nat. 11i:337-359
1978. Coexistence of coral reef fishes - a lottery for living space. Env. Biol. Fish. 3:83-102
Sutinen, J C 1976. A research program related to the development and management of small-scale fisheries in developing countries. In: Economic State and Problems of Small-Scale Fisheries, CECD, pp 114-123
Weber, W 1976 The influence of hydrographical factors on the spawning time of tropical fish In Proc of the Intern. Sem. on Fish. Res and Their Management in Southeast Asia, K Tiews, ed, German Foundation for International Development and FAO, pp. 269-281
Welcomme, R L 1978 Fisheries ecolog, of flood plain rivers. Lengman, London.
—_ and HF. Henderson 19\%'. Aspects of the manageme. tof inland waters for fishemes FAO Fish. Tech. Paper 161, 36 pp.
Weymouth, F W., M.J. Linder, and W.W. Anderson. 1933. Prelimii:ary report on the life history of the common shrimp Peneaus seiiferus (Linn.). Bull U.S. Bur Fish. 48:1-26.

Predictive Stock and Catch Assessment for Decisionmaking in the Management of Tropical Small-Scale Fisheries

Karl F. Lagler, University of Michigan

Although fishery scientists generally agree that knowledge of stock size is a basic predictor of potential catch, "stock assessment" means different things to different fishery scientists. The meanings and applications range from theoretical and dynamic to empirical and practical.

In North America and in developing countries of Africa and Southeast Asia, the time frame of investigation and the need for immediate prediction have led to the use of standing crop as the basis for the prediction of yield, or vice versa. At least loosely, "standing crop" is an expression of potential for annual production of finfish and, within limits of accuracy that are often determinable, is something that can be learned with reasonable rapidity for many habitats. In many of the situations in which the need for prediction has arisen, there are no catch, biological, or population data on which to base a dynamic, conventional model approach. An empirical estimate or one based on an existing index (even though it may need to be adapted for use) has proven to be the quickest, even if not perhaps the best, means to an end.

In one early study (Lagler and Ricker, 194j), a mark and recapture method was used to estimate standing crop by species in an oxbow lake in southwestern Indiana. It was a sport fishery, and the parallel catch data were obtained by a complete rreel census at the sole point of fishing access to the lake. In order to relate catch to standing crop by species, estimates of stock size required to provide different levels of yield in terms of quality of angling success were derived.

Allowing that stock size is a determinant of yield and, further, allowing that to obtain a given yield a predictable size of stock should be maintained as a management objective, Lagler and deRoth (1953) undertook to determine minimum stock of largemouth bass required to provide one legal-sized (ten-inch) individual for each hour of angling. This study was done on two artificial ponds of about 4 ha each in size and drainable by gravity. The standing crops of bass in each of the ponds were determined by draining the ponds through inclined-plane screen traps (Wolf, 1951) and returning the bass to the ponds. Separate, complete sport fishing catch statistics were kept for each pond. These indicated that about 100 legal-sized bass per hectare would enable realization of the one-keeper-per-sportfisherman-hour objective.

In Southeast Asia in 1964, the absence of catch statistics frustrated attempts to relate standing crop (as determined by chemofishing) to catch in swamps of central Thailand. By 1966, the government was gathering catch and standing crop statistics on a number of swamps and reservoirs. On one of the reservoirs, shallow $410 \mathrm{~km}^{2}$ Nam Pong in the northeast, standing crops as determined by quadrat chemofishing have ranged around $300 \mathrm{~kg} / \mathrm{ha}$, and have yielded some $2,000 \mathrm{mt} / \mathrm{annum}$. It is interesting that the reported harvest of this multispecies fishery has remained relatively constant for the past decade, while the number of
artisanal fishermen has increased from some 1,000 to 8,000 ! It is also interesting that the annual catch has fluctuated only little in spite of some change in species composition of the catch. Inasmuch as stock and catch deterr:ine carrying capacity in terms of the number of fishermen at any prescribed level of earnings, the foregoing data enable planning and managernent based on clesired income level for the fishermen. In the 1979 economy, this body of water might support only about 2,000 fishermen, or about one-fourth of the present number Sociopolitical conditions have prevented management of the resource on the basis of a desired income level.

Stock (standing crop) assessment in various inland, estuarine, and coastal habitats was performed by a variety of means throughout the Lower Basin of the Mekong River in Laos, Thailand, Cambodia, and Viet Nam (Lagler, 1976). Employed principally were measured trawlings, beach seinings, and chemofishing quadrats. Bottom trawls were used in the mainstream Mekong at various water levels and in inshore waters to depths of some 30 m of the South China Sea, including the area of the seasonally differing plume of the Mekong River. Riverine otter trawling was by shrimp try-net, and in the South China Sea by commercial otter gear. Coupled with existing reported values for catch, human consumption, and population, and adjusted by application of the FINS model of the U S Fish and W:Idlife Service, estimates of standing stock gave catch estimates of 500,000 metric tons (mt) for the Lower Mekong Basin, the upstream zone contributing $95,000 \mathrm{mt}$; the existing reservoirs, $13,000 \mathrm{mt}$; the downsiream freshwater, $236,000 \mathrm{mt}$; and the brackish water, estuarine, and inshore coastal waters, $156,000 \mathrm{mt}$. These values were used to predict an overall loss of between 32,000 and $48,000 \mathrm{mt}$, with a 1975 value of between $\$ 5$ and $\$ 6$ million, when the planned extensive water resource development and management plans for the basin are implemented These losses could, of course, be more than offset by effective fishery management and the development of additional aquaculture. The social costs of the losses in catch and of the shift of the concentrated areas of fish production in the basin to future reservoirs upstream were of course pointed out.

In Africa, mostly in the years spanning 1966-71, prediction of fishery yield potential of new man-made lakes was repeatedly required by governments for decision-making on investments for research, development, and management. In the early part of this period, it became the responsibility of FAO to provide future catch estimates to such governments as Egypt for Lake Nasser, Nigeria for Lake Kainji, Chana for Lake Volta, Ivory Coast for Lake Kossou, and, later, Zambia for the Kafue Corge Dam Reservoir. Of the foregoing, except for the Kafue lake, all were desk-top estimates drawing on general knowledge and, for Lake Nasser, on the recorded catcin from the reservoir itself, which was already onethird filled by its coffer dam. For Lake Kossou, the estimate was based on experience with another, smaller impoundment in the country. All of the estimates served their purpose in predicting the approximate scale of the fisheries and in helping the governments to obtain UNDP research and development support for them. It is interesting that none of these estimates has really been proven wrong, except for Lake Volta. On this lake (and, subsequently, on other African lakes), FAO's fishery statistician Ceorge Bazigos developed a frame survey and sampling program. His system estimated the annual catch to be some $40,000 \mathrm{mt}$, in contrast to a $20,000 \mathrm{mt}$ prior estimate. Later, colleagues in FAO (Henderson and

Welcomme, 1974) improved the precision of yieid estimates and fisherman carrying capacities (effort) by adaptation of existing catch data and temperate-water morphoedaphic indices of Ryder (1965) and others.

Predictions of the effects of the Kafue Gorge Dam on fish stocks and catch in the reservoir area, including the historically productive upstream Kafue River Flats, were based on detailed field studies from 1969-71 (Lagler et al., 1971). In this effort, the multispecies standing crop of fish was determined by chemofishing and beach seining of measured areas at floodwater to be some $96,000 \mathrm{mt}$, and at low water some $57,000 \mathrm{mt}$. The catch from this stock in the same year was only $7,850 \mathrm{mt}$, accounting for only a small fraction of the difference between the stocks of the two periods; the remainder went to natural mortality. The catch in any year proved to be predictable from the previous year's extent of area flooded (extent of floodwaters over the floodplain) or of the flood storage volume. The potential catch was shown to approximate three times the recorded harvest and was predicted to be little affected by future operation of the Kafue Corge Dam. With the dam in operation, the fishery, as in the past, could haivest annually on a sustainable basis at least a third of the exploitable standing stock as measured at the time of its high-water maximum.

Practical working predictions of potential catch can be derived from the behavior of comparable ecosystems, and indices such as those developed for certain freshwater systems need adaptation or development for rapid evaluation of small-scale fisheries of coral reefs, lagoons, bays, and other inshore tropical (and temperate) waters. Practical, simplistic methodologies have provided information adequate for decisions on management, not unlike the predictive indices of a patient's well-being that exist in the components of a routine human medical examination. Prior catch statistics continue to be most valuable in fishery predictions, quite like the question "How have you been feeling?" in a medical history. Expansion and improvement of systems for fishery catch statistics must be encouraged. For newborn fisheries, as in new man-made lakes and in unexploited habitats, there is no "medical history," and comparable water areas, existing or newly developed indices, and/or experimental fishing will have to be used as models Working catch/stock models should continue to find primary application to fisheries in various stages of development where population, catch, and effort data are available or can be deduced. As such, they are akin to the special tests that a medical practitioner may call for when a component of the routine physical exam turns up an "abnormal" condition. Special problems exist, of course, for stocks that are highly migratory, strongly multispecies (including species flocks for which eyeball identification of the individual species is not possible), or extremely slow-growing.

The foregoing perspective suggests that alternative, viable routines can be prescribed for predictive purposes adequate to basic fisheries management decisions.

Alternative and/or Complementary Stock Assessment Routines for Tropical Small-Scale Fisheries

The following outline is a brief compilation of possible methodologies:

1. Static Procedures*

a. Estimate catch potential from behavior of similar ecosystems for which data are available and simultaneously estimate the effort (or numbers of fishermen) that the stock can support
b. Estimate potential catch from measurement of standing crop (with variations perhaps allowing 30 to 50% of the stock to be available for annual harvest).
c. Estimate potential catch by application of existing, adapted, or newly developed indices-morphoedaphic for lakes, inundation zone extent or floodwater volume in large rivers, etc

2. Dynamic Procedures*

Use, adapt, or develop new models for maximum sustainable yield (e.g, Schaeffer, Beverton and Holt) when catch, effort, and supporting biological data are available or obtainable, as in ongoing fisheries

Initially, the use of static procedures is recommended Later, dynamic methods requiring more extensive data bases may be utilized

References

Henderson, H Francis, and Robin L. Welcomme 1974 The relationship of yield to morphoedaphic index and number of fishermen in African inland fisheries. CIFA Occas. Paper 1, 19 pp
Lagler, Karl F. 1976 Fisheries and integrated Mekong River Basin development. The University of Michigan School of Natural Resources, Ann Arbor, and United Nations Mekong Secretariat, Bangkok, Executive Vol., 333 pp., plus Appendix Vols. 1 and 2 , and Williamı E Ricker. 1943. Biological fisheries investigations of Foots Pond, Gibson County, Indiana Invest Indiana Lakes and Streams 2(1942) 47-72 , and Cerardus C. deRoth. 1953 Populations and yield to anglers in a fishery for largemouth bass, Micropterus salmoides (Lacépede). Papers of the Michigan Academy of Science, Arts, and Letters 38(1952) 235-253
, James M Kapetsky, and Donaid M. Stewart. 1971 The fisheries of the Kafue River Flats, Zambia, in relation to the Kafue Gurge Dam. Central Fisheries Research Institute (Chilanga, Zambia), FAO Department of Fisheries, FI: SF/ZAM II, Tech Rep 1, 161 pp
Ryder, R A. 1965 A method for estimating the potential fish production of North-temperate lakes. Trans. Am Fish. Soc. 94(1964): 214-218.
Wolf, Philip. 1951. A trap for the capture of fish and other organisms moving downstream. Trans. Am Fish Soc 80(1950) 41-45

[^3]
Small-Scale Fisheries - Politics and Unfulfilled Promise

C. Richard Robins, University of Miami

Background

Traditional large-scale commercial fisheries have received the attention of governments and private industry for a long time. Such fisheries have been variously studied, managed, and abused. Mechanisms exist to encourage the search for new resources and the development of new products. The fishery literature abounds with reports concerning all aspects of the field. Interest in small-scale and other supplemental fisheries has lagged, and development of such fisheries has been slow, often seemingly thwarted by groups who should be most supportive of them

The purpose of this paper is to analyze some problems associated with supplemental fisheries based on experiences in nations bordering the tropical Atlantic. What is related below is not new. Each member of this conference will be aware of most or all of the points raised. Were it not tor the fact that the problems remain, that progress is slow, and that attempts by fishery scientists to aid in research and education are uncoordinated and unsupported by political bodies, this report would be unnecessary.

Small-scale fisheries are important to the developing nations in that they enable the poorer people not only to catch food for their own table but to sell the excess catch and thus earn some income. They are labor-intensive, and this is important in lesser developed countries where unemployment is high, at least seasonally, and pay scales very low. The economic impact of small-scale fisheries is much higher than would be surmised from the size or value of the catch alone. The small-scale fisheries are also important in that they make additional food available. The products, both fresh and processed, can be used for domestic consumption, including the serving of tourists' desires, and they can be exported. If the catch is to serve more than family or local needs, it must be handled properly, transnorted to a plant, and processed.

The key problem is to develop fish-processing plants that are equipped to handle a wide variety of fish species and produce a considerable array of fishery products. At the Vikingos plant in Colombia, the mainstay of the plant is shrimp, but they routinely handle many fish species (including gobies, cusk-eels, eels, goatfishes, and many small species of seabasses, snappers, and porgies), and produce fillets, steaks, fish sticks, cakes, and meal in a variety of packages. Although Vikingos is based on a fleet of commercial trawlers, it utilizes the bycatch of the trawling fleet. Thus, the plant is a good example of what is needed if the produce from artisanal fisheries is to supplement in any meaningful way the nation's twtal yield in fish products both for domestic consumption and for export. In my view, too many plants are inadequately equipped and many are dependent on a single fishery and product, such as conch, lobster, or shrimp. Many are marginal cperations, and upgrading or renovation is based only on past
operating experience. Each product seems to be cost-accounted independently. There is little effort to integrate the fisheries either at the catch or product end.

The real promise of artisanal fisheries lies in combining the yield with that of traditional commercial fisheries and, by doing so, reducing costs while producing a useful product.

It does little good to train and equip the family fisherman or to encourage any type of smrall-scale fishery if the fisherman has no place to sell his catch at prices that are meaningful to him in terms of the local economy. As a fishery scientist interested in resource identification and in training programs, I am thwarted because, withoul some cooperative arrangement to finance a proper fish-processing plant, the proposals that I make are incapable of producing anything but frustration.

Perhaps the problem has been that we have tried to treat small-scale fisheries as different from other fisheries. How different are they? They are small scale, thev involve smaller investments in boats and fishing gear or other equipment. The catch (or culture) methods may be primitive and expensive; they involve a low yield-to-man-hour ratio. But they involve identification and harvesting of an aquatic resource, transporting it and handling it to insure a safe and useful product, and marketing or distributing that product-all familiar topics to the fishery scientist.

In identifying targets for small-scale fisheries, the fishery scientist should review all fishery resources, not just those that the local people have previously exported. Does it matter that Bahamians seem not to like octopus or squid? They could be trained to catch these cephalopods, and a good product could find a ready market abroad and in their own international hotels. Education may teach Bahamians to enjoy these products. Squid and octopus are sold in many Miami restaurants, where 20 years ago none was to be had. Nor is it just the Latin Americans who are buying them, though they did produce the market.

A second problem area that 1 see is the lack of integration of target species. Evaluation of a deepline fishery in the Bahamas is done independently of other fisheries. Why cannot a fisherman set his lobster traps and then proceed to the drop-off for deepline fishing instead of deadheading back to port or anchoring near the traps? In evaluating boat design for the lobster fisherman, no thought seems to have been given to dual or multipurpose boats. Many fisher that cannot be harvested profitably in their own right can provide added incentives and added profit margin when added to a more secure base such as lobster or conch. With rising tuel costs, such combined programs could be important in terms of yield per trip or per gallon of fuel. It could mean the difference between a losing, a self-supporting, or a profitable fishery.

Small-scale fisheries need economic protection. A small bay or gulf (like Uraba in Colombia) may harbor sufficient populations of shrimp and groundfish to sustain 3 to 5 small trawlers of the type used in Biscayne Bay, Florida, indefinitely. Yet one visit by a large commercial trawler could wipe out the fishery in a few nights. If a small-scale fishery is developed in areas like Uraba and support is given to local fishermen for boats and small trawls, then such areas must be excluded from fishing by others or the fishery will fail and the investment be lost. Just as riparian rights have been divided along European salmon streams, certain coastal areas deserve zoning.

Much of what has been said of sisiall-scale fisheries applies to the catch from recreational fisheries. Each year in the Bahamas, tons of tuna and tillfishes rot and are dragged back to sed brcause there is no way to utilize the catch. Elsewhere, in Kenya, for example, the anglers' catches are utilized and are a significant addition to the fish landings in that country.

Since most or all of the points being made are well known in fisheries circles, there is little point in pursuing details. Clearly, a major problem is one of communication. Those that cari make these fisheries work are the heads of government, the ministers, the leaders of the legislature. When I have had the opportunity to talk to such persons, I have found interest but no real knowledge of the detailed problems of sriall-scale fisheries.

A final problem that deserves discussion is the need to integrate development in coastal countries. Tourism, agriculture, industry, and fisheries are all subjects of intensive effort in the developing nations, usually by different agencies, and although the effort varies from nation to nation, the first three are being pursued on a larger scale than fisheries. These programs are often not compatible It does little good to develop coastal aquaculture or to encourage smallscale or large-scale fisheries if changing agricultural or industrial activities in the drainage basin pour chemicals, nutrients, and silt into the coastal waters, ruining fisheries or rendering the fish products unmarketable because of cheniicals taken up by the fish or shellfish. The coastal zone cannot be separated from the estuaries, the upstream drainage, and man's effect on them, since it is the coastal zone that is the recipient of runoff and its entrained materials. Hotels are built to attract tourists to places where the waste from expanding urban centers soon pollutes the waters. Coastal zone management has been a hollow concept in the developing world.

Also to be considered are riverine fisheries and freshwater aquaculture. Knowledge of fishes of the large rivers is elemeatary at best. Few large rivers have been surveyed in any systematic fashion. Preliminary analysis of catches in such areas is by category (e.g., catfishes, sharks) rather than by species. Little effort has been devoted toward identification of local culturable species. Rather, tilapias have been introduced everywhere, often to the detriment of the indigenous fauna Diseases of man and of fishes have been transported to other continents Expansion of fish ponds in Puerto Rico in the 1950s exacerbated the already serious blood fluke problem. The fisheries for freshwater and marine tropicals are seldom recognized as true small-scale fisheries. Well over $100,000,000$ fishes are imported to the United States annually. Large numbers go to Western Europe. These fisheries, their impact on the local economy, and their effect on fish stocks are largeiy unassessed and unmanaged. When one can sell a four-inch fish for $\$ 50$, one has a commercial species of the highest order.

Education and training are part of the package in the development of smallscale fisheries. Yet it must be recognized that when you train someone to repair outboard motors, etc., you provide him with a ticket to a job in industry or in another more lucrative government service such as transportation. Until the number of technicians is increased in an important way, the training of technicians in fisheries in developing nations is likely to be a continuing process.

In this overview, problem areas have been identified in order to broaden the view of this workshop. At some noint, it is necessury to depart from specific
discussions of fisheries problerns and to work with political leaders to assist not only in developing a small-scale fisheries plan for each nation but to participate in an integrated approach to coastal zone development and management.

Conclusions

1 Small-scale fisheries are bona fide fisheries involving the need for resourceidentification, harvesting, processing, marketing, and management
2. If small-scale fisher:es are to yield products that serve more than the local population, they must emphasize proper handling of catches, and provide refrigeration at local collection site: and transportation to processing plants.
3. Since small-scale fisheries can scarcely be expected to support processing plants, they will succeed when they can be tied to other fisheries, preferably with a lead product. In such cases, they will provide a diversity in products, a hedge against seasonal surges in the principal catch, and added economic benefits.
4. In each country, special attentior, should be given to combined fishing effort in which a boat sets its lobster traps or fish pots and then proceeds to fish in nearby deeper waters f fr fishes or squid during the night
5. Recreational fisheries and small-scale aquaculture are an integral part of small-scale fisheries in terms of storing, transporting, processing, and marketing catches
6. Integration of programs for fisheries development with those for industry, agriculture, and tourism is important if serious conflicts are to be avoided. Proper coastal zone management requires integrated planning.

7 . The aquarium fis'n industry is an important small-scale fisheries, although it is fundamentally different, since it involves the catching and transportation of live animals

Perspectives on Minimal Data Requirements for Aquatic Resource Management in Developing Countries

Norman J. Wilimovsky, University of British Columbia, Vancouver

Abstract

The central thrust of this paper is that most fishery planning and management is carried out on a piecemeal or fragmented basis, with the consequence that the data collected often are inadequate for the overall purpose of managing the resource Further, the data collected are ineffectively communicated. Minimal data requirements which might facilitate effective management, as well as a number of suggested areas of research, training, and cooperation, are suggested for the use of the international aid reminunity

Introduction

It has been argued that in the case of most aquatic resources sufficie lata are not avdilable for effective management, which in turn results in the nonmanagement (and, occasionally, mismanagement) of resources. A wide variety of causes have been cited to explain this state of affairs. The object of this presentation is to sukjest that obtaining adequate data for resource management depend; on an overall approach to the requirements of management instead of the piecemeal or partial approach to the problem so prevalent today. Further, areas in which minimal information could substantially improve management of small-scale fisheries are recommended. Some of the following material was developed with the aid of an award from the Izaak Walton Killam Fund for Advanced Studies, which I wish to acknowledge with gratitude

Some Basic Precepts

In meeting management goals it is apparent that the existing small-scale and artisanal fisheries must be upgraded but, insofar as possible, not enlarged. To avoid further hardship to the artisanal fisherman, any industrial fishery should evolve from the existing fishery and not be superimposed on it

Management may be defined as the function of planning, organizing, coordinating, directing, controlling, and supervising to reach a given result. It must be recognized at the outset that in frshery management value to society in the broad sense is the overall goal. This means that the short-term policy objectives should be consistent with the long-range societal goals, whether these be the acquisition of capital, maintenance of a protein base, raising of living standards, or some combination of these elements. Usually conservation, as manifested through the long-range maintenance of sufficient stock size of the aquatic resource, is inherent in any such principle.

Given policy goals and the strategic objectives which follow from them,
management is essentially a decision-making task The information, knowledge, and wisdom applied to decision-making are based on available data it should be recognized that data are no more than a representation of facts, and until processed, interpreted, and communicated, they do not represent information upon which decisions can be based The manner in which information is conveyed to the user essentially and effectively controls the degree to which one receives, understands, and accepts the inforration as knowledge. The abillty to use or apply knowledge in an inteligent manner through the use of judgment, insight, and experience, collectively termed wisdom, is not the subject of this paper

My definitions of these terms follow their usual use in the information science community

Management is perceived as a wide varietv of activities, depending on the client or user it is fundamental and essentral that management and planning proceed in a hierarchical fashion, defining the information requirements if the data are to meet the criteria of scope and relevance, timeliness, accuracy, and preccoon As an example, because the degree of uncertainty of each input element is deditive, if several elements contribute to a final decision which should be correct to ten percent, then each element must be collected with substantially less than ten percent error if the data are dependent upon a variety of sources which can oniv be collected at some gross level of measurement, the result will be accordingly affected ihe failure to look at the cost and benefit of incremental improvement of varying levels of accuracy on overall need results in programs in which some data are collected to several decimal places and then combined with ottor data comprised only of gross guesses. Unhappily, this is the usual case it is to be emphasized that these same statements relate to timeliness with equal if not more validity. However appropriate, knowledge unavailable for decision-mahing because it is still in the process of analysis is for all purposes uneless

The essence of the foregoing is that effective management requires an overall view of the information needed for decision-making, combined with a statement of acceptable levels of accuracy, precision, and timeliness for data acquisition Failure to do this can only result in incomplete, inadequate information, at costs which are not justifiable Such planning and management cannot take place in the vacuum of a single discipline. The development of a fishery from assessment of stock, catch, processing, and transport to marketing must be coordinated or there can be negative consequences, perhaps irreversible ones, for the fisherman and for national goals.

There is an urgent need for the application of sequential and other appropriate sampling techniques, whereby when the given level of precision is reached the program can be stopped Some information is required on a continuing basis, but in many other cases, through failure to express a desired level of accuracy and precision, data collection goes on "forever." The professed need for more study and data has contributed to the frequently existing credibility gap between the fishery scientist and the senior mianagers. It is important to know when to terminate a program in terms of return-on-data improvement

Four categories of management information can be recognized (examples given are from the biological area and could be expanded to any of the management components):

1. Immediate Management The monitoring of the activity agatast the objective or goal Primarily, this comprises the measurement of rates of removal by measuring effort and satch It is to be empliasized that the operative word here is "catch" and not "landings." This information requirement has a continuing need for data on an up-to-date basis
2. Safe-Fail Information. The ability to determine the state of the resource; when rapid cessation of an astivity should be enforced and alternative or contingency plans implemented The data required to monitor the state of the resource may include information such as stock size and extent of spawning, recruitment, mortaliy rates, and/or environmental factors such as pollution. Data acquisition usually requires some form of standardized survey approach. 1 distinguish between safe-fail and fail-safe in that the former allows one to recover to the original state, whereas the latter only assures that one does not get further into trouble iheir differ ing data requirements are substantial Both involve centinuous data acquisition programs
3. Remedial, Improvemert, and Enhancement Activities. Data which involve a wide variety of environmental technical information Data needs are usually intermittent and not required for an extended basis
4. Research and Development Data acquisition which covers the broad range of fundamental and applied research in fisheries, designed to solve problems existing within the previous three categories

The appropriateness of these categories becomes clear when the requirements of data in terms of relevance, timeliness, accuracy, and precision to information needs are ronsidered From a statistical viewpoint, the selection of data needs is particularly revealing in the manner in which these categories reflect a breakdown into enumerative and analytical components As the statistician Deming stresses, the confounding of these two data types in terms of predictive accuracy continues to elude many statistical texts

The key element of effective management is communication; ie, implementing the decision action, the ability to bring about change in a readily acceptable fashion This may be translated as the authority to act, the ability to act, the desire to act

Even under adverse conditions there is an overwhelming tendency to maintain the status quo rather than to make a decision for change. This frequent response is directly traceable to ineffectual communication of information and/or to the upgrading of knowledge to a poirt where the action is recognized as desirable. The issues involve clarity, ease of comprehension, and acceptability and credibility of the results. Ignoring these factors has often led to the collection of too many data in the context of need, which are frequently unorganized, inconsistent, and have no hope of reduction or interpretation. The inevitable consequence is that no use of them is possible in decision-making. It is a sad fact that many policy makers do not rely on their own organization's output to help with the requirements of decision-making arid managemen:

Communication of resource and monitoring infermation to the senior executive poses special problems. Relevancy, acceptability, and cost of uncertainty all need attention. Chernov, while at Stanfcrd, suggested a novel approach to multidimensional data with which we have been experimenting. His development makes use of the ability common to most humans of recognizing subtle dif-
ferences in the human face. This technique permits recognition of changes in the monitored information on environment and catch before they can be detected and demonstrated in a more conventional manner. More important, it allows an administrator to see in a single picture the overall weighted estimates rather than a single factor A number of formats including fish and invertebrates have been used in the hope that prompt information added to a :ime series of past performance would alert a manager to the state of any resource change.

The essence of the foregoing is that communication in a reliable and acceptable fachion is an inherent part of the data problem and that in general we have failed to demonstrate the cost of uncertainty in decision-making effectively. In particular, there should be more attention given to the feasibiiity of using natural and man-induced fluctuations in adaptive or experimental management. Only in fishery science is practical field implementation and testing of theory approached with such trepidation.

Opportunities for the International Aid Community in Assisting the Management of the Small-Scale Fisheries

Conversion of these principles to practical implementation is possible in a nuniber of ways Information needs in fisheries can be grouped into three broad (lasses 1) brologiral, 2) technological, and 3) institutional Examples from each suggest the basic data requirements

Approaches to Some Biological Questions

In the first category of information, a measure of fishing activity is the goal 1 © , effort, catching power, and catch are the minimal data ele:nents to be obtained to determine extraction rate Estimates of the number uf units of most umall-uedle gedar can be obtained through aerial reconnaissance. This is a costeffective method, permitting rapid acquisition of this information with high levels of accuracy The role of the international aid community could be to provide traning ilms and simulations in enumeration and recognition techniques, thus saving the time ordinarily needed by new observers to gain experience in recognizing anci counting gear type when using aircraft as a platform

The catch effectiveness of different gear types needs to be established regionally Information on small-scale and/or artisanal fishing power is extremely poor The estimates of catching power of some canoes and lift nets vary by more than two orders of magnitude Single or infrequently repeated studies would meet initial requirements These data applied to samples of the catch could be extrapolated to provide an estimate of total catch

Effertive sampling of catch poses a somewhat more difficult but not intractable problem involving the frame, frequency of sampling, and identification of catch both to species groups and to weight

While a long way from developing formalized models of tropical multispecies fisheries, it is clear that included in the information needed are data on composition of catch by species groups in relation to total effort. This requires knowledge of fish types, not necessarily to species but to general groupings. FAO and other agencies have made laudable efforts in terms of identifica-
tion and sampling manuals, but the presence of these guides in field stations is far too rare to make their use common. The international aid community could contribute significantly by developing training programs in improved sampling techniques, in identification of species groups, in weight and number estimation, as well as in the processing of basic sample data. This processing can be carried out intelligently by persons who have had no advanced training in mathematics or ichthyology; they only have to be aware of the meaning of each phase of the task. It would appear that there is ample skill at many regional headquarters to design the sampling programs but inadequate numbers of trained personnel to carry them out

In many areas, much greater use can be made of the catch of small fishes by processing them instead of disposing of them as trash. Implementation of new processing procedures depends on understanding the composition and relative abundance of the various types over the seasons. The primary information is obtainable on a one-time basis. As it is a common problem, a series of workshops with representatives from many regions might serve to facilitate analyses and collection of such data

Unfortunately, unlike many sampling programs, monitoring of the catch must be carried out on a continuing basis. Convincing bankers, administrators, and planners of the importance and fundamental need for programs to obtain such information in competition with more "visible" projects is one of the most challenging tasks facing the fishery manager today. Yet, thus far, there appears to have been no truly effective way to include data acquisition programs among the shopping lists so dear to some planners and some aid agencies.

Approaches to Some Technological Questions

Bettering catches requires development of a stable outlet for harvest. Processing and preparation relate directly to landing sites and physical facilities, particularly sanitation and icing. These in turn involve water and power. The final stage of distribution to markets involves transportation. The difficult task of integration is often made even more intractable by problems of local geography Nevertheless, there are challenging and exciting opportunities for the development of small, maintenance-free, refrigerated trucks, and ice plants of three to five tons for use in this capacity. The typical introduction of large industrial-scale plants, refrigeration units, and transportation systems is inappropriate to most small-scale fisheries.

Programs for improving basic fish processing often involve the installation of relatively complex fish dryers. Instead of this superimposition of technology, staged upgrading might be a better mode of progression. Plastic, two-layer Dibbs dryers, which only require the sun for energy, are low-cost, virtually maintenance-free, and would make available a means of upgrading dry fish products to all fishermen. In some areas, mechanical dryers have been proposed, and to cope with oil shortages, conversion to wood has been suggested. Yet, in many parts of the world wood is in limited supply and needed for cooking fuel. One might get the impression that the fishery scientist fails to communicate with the forestry scientist.

Approaches to Some Institutional Questions

The Development of Regional, Provincial, and Interprovincial fisherv Plans There is an urgent need for integrated fishery planning and management Io assist in the development of such plans, a series of workshops and tralming wer sions might be held for provincial tishery officials and reuponsble plannern (ow im prove their skills in these areds 1 mphasis should be plated on developmen a dalogue among various provincial planning groups while preparing a wothable. costeffective atrategic plan

Fffective Organization of Fishers Services. Many mprosements muht be w complished through the organization of twhery servicen on an operational bawh Thee neted to provide incentives for senoer sati to work in datant and daticult areas is paramount A cledr opportuntry exasts for the upgrading of thaters iner
 avoideng national and matutional barrere wouk! be to mathe use of a mobale traming base paralledng the concept of the hompital whe fope the would pre vide for the gredtert pomble fexblaty, but would be more expernse that holding localied traming bebsems The value of wewh programs and the adwantage of demontrating techomequen with modern gameng procedures were it. luatrated in a management worh hop recently apomored b) the Southeant Asid I ibherien Development and I conomic Commision (SI AIDE C) in the Philippines

Implementation of management decisom requares the strategic need of recognition and delegation of authority at the requinte political level. This implies adequate compensation for the fishery worker, who in many countries today must seek outside employment to make financial ends meet Critical mass funding for a few well-chosen projects in lieu of inadequate funding for a broad variety of programs is the hard solution necessary. The concept of critical mass cannot be overemphasized If adequate personnel and funding over sufficient time are not made dvailable to carry out a given task effectively, there is no point in its inauguration Further lack of authoritative management can only result in jurisdictional compettion and operational confusion. The leadership and necessary authority for such projects can only be developed on a regional basis.

New ways of communicating management concerns to the fishermen and the public should be explored. The misapprehension over the use of ice in many tropical countries is an area of communication in which the international aid community could play a fundamental role. Extension techniques such as the use of animated posters, an adult comic book approach, and similar media techniques might bridge the gap where local dialects prove a barrier to more usual but less effective comminication.

The yield of many net fisheries could be improved by changing lift frequency and mesh size Implementing any such modifications will require considerable extension and demonstration effort.

There is an urgent need to demonstrate publicly the detrimental effect of using fine-mesh material or "blue cloth" on the young of commercially important species. The feasibility of an exchange and/or subsidy program for replacing such gear should be examined

The apparent limitation on the dissemination of results of research, statistics, and raw data can be observed throughout the developing world. Both
governments and universities must take responsibility. No doubt this is often a consequence of the lack of funds for printing and insufficient copies available. but in many instances stocks of supplies remain uncirculated while obtaining cupies through normal channels is almost impossible. An open stance should be taken so that publications are widely disseminated throughout the region as well as "outside" to stimulate the exchange of information, criticism, and credit, and to test the veracity of results. The effect ori staff morale would be striking
Village Extension Programs. There is considerable scope for research on effective ways of training people, ranging from fishermen to distributors, in methods of gear improvement, fish handling, quality control, and the elements of practical economics and finance. In spite of the success of terrestrial agricultural extension programs, fishery extension has remained relatively weak in terms of effectiveness. A notable exception is the approach being taken by the Bureau of Fisheries in the Philippines, whose techniques deserve careful attention

It is important to re-emphasize that aid can be effective only in a participatory mode "Upgrading" should be the key word, not "superimposition" Involvement and participation in planning and in decision-making programs by people who are in authority to act is essential to any international aid activity In the broadest possible context, there is a need to stress the mantenance features of data acquisition programs, whether itiey arestatistical or mechanical This implies that the transfer of technology must involve understanding as well as operation. A fish dryer standing idle because of some minor mechanical flaw is no gift at all but a glaring demonstration of the ineffectiveness of a training program. Less obvious but more serious are the unrecoverable errors resulting from perpetuation of avoidable lapses in data acquisition

Special attention should he placed on the problems of size of financial assistance As FAO studies show, the minimum loan to fishermen is often too large to make it generally accessible to those who need it the most. Provision should be made for operaung loan funds, as distinct from capital funds. Loan programs should be directly facilitated at all stages by the responsible agency to prevent unfair advantage being taken of the fishermen Until training programs become effective, this will require that the bank negotiations, application forms, and transfer of funds be done for the fishermen for those living at the subsistence level, incremental loan payment is often a new concept.
Improving Fish Distribution and Quality. Computer simulation, econometric analysis, and lield trials should be made of a collector boat system to develop means of improving the quality of fish supply and income to primary fishermen The adopted system might include regular radio broadcasts and market posting of price information. This would contribute to better distribution of fish supplies and price stabilization, as well as directly contributing to the welfare of the primary fishermen The argument that communications are inadequate is not valid, one can g.' to the most distant village in Asia and learn the price of gold posted in Londor that morning. Until comparative data are available so that there is a choice among alternatives, waste in smal!-scale fisheries is likely to remain high

Provision for Regional Resource Libraries. The state of library reference services and materials in outlying areas is deplorable. Methods of bringing notice of perti-
nent literature to the field investigator is crucial Regional bibliographic facilities and their means of distribution need improvement urgently With a one-time effort, a substantial basic reterence library collection could be prepared in microform for the cost of a microtorm reader (battery-operated), the most distant field station could hive the tacilites of a central library. Because of the substantal, but one-time, task involved it might be desirable for several international ad organizations to mount a cooperative effort to support a contract with a firm which has access to large libraries for the micro-c arding of a fishery library base

Development of Data-Procesting Cornputer Programs. Because of the parallel nature of data reduction and analvsis, it would be feasible for the international aid community to support the development of a set of programs to handle common types of finhery data These programs should be independent of computer type, thoroughli tested, and written so that any future updates can be made and be completely transparent to the user At a minimum, there is an urgent need for regional dgreement on a vertes of editing and verification procedures to assure quality of input data However surprising, a co-equal need is to provide a series of test data so that those constructing their own analytical systems can be sure of consment and comparable results. This is a nontrivial matter.

Basic Understanding of Fishermen. While all the foregoing may perhaps be a useful start, there is a fundamental lack of understanding in the fishery management community of the nature of the participants of most fisheries. It is hardly possible to manage for societal long-term needs when so little is known about the innate behdvior of the primary unit Understanding is basic to communication. Both developed and developing nations have a poor record of success in convincing fisharmen of the value of management measures Some exciting work is being done by groups working at the University of Tokyo. and more recently at the Universities of Oregon and Rhode Island, on the acquisition of what is generally called in fishery anthropology an "ethnographic profile." (Better, more expressive terms, perhaps like those used in the field of ergonomics, are needed.) Knowing more of the behavior, perceptions, and desires of the fishermen could lead, or substantially contribute, to the elimination of this major gap in communication.

In many small-scale and artisanal fisheries, fishermen occupy a low position in the society of the region. Their $p \in$ rceived existence is in poorer terms than are other trades or professioris, perhaps in part explaining their dependence on mis.dlemen for a wide range of social support. A number of countries are devoleping programs which promote fisheries as a reputable occupation and emphasize the important role fishermen play in society. This is another area of anthropological research with significant practical potential. While the role of the middleman will never be eliminated, which is suggested as desirable by some national policies, increasing the earnings of fishermen while maintaining reasonably stable consumer prices will require a fundamental change in market infrastructure. This can only come about when small-scale fishermen reach an appropriate stage of sophistication a $\cdot \mathcal{d}$ self-esteem; again, a problem of effective communication.

The Utility of Isolated Data Sets

The literature of the optical industry implies and suggests the existence of a helicopter-borne high-power laser developed for the military which is capable of penetrating the sea to considerable depth. I.et us assume that a helicopter equipped with such a laser is available to the fishery manager and that he covers the sed ared of interest in the brief ume needed to fly over it - searching, apparently, can take place at high rates of speed. Knowing the distribution of the fish stocks and having a measure of mean density would allow the application of the usual familiar methods of aerial stock assessment

If the stock assessment data for any artisanal fishery of your choice were available, what would be the best way to handle it? How would management of small-scale fisheries differ from what is being done now? Is there any rational framework to form : basis for clear action and its implementation? Would the action be acceptable to the local people?

Fishery scientists may be seeking the wrong information or only part of the information needed If stock information is wanted, infrequent aerial surveys of gear, a series of measures of catching power, and a program of adequate sampling are all that are required for most small-scale fisheries and these are achievable today Would this information be sufficient to improve fisheries management significantly?

Probably not. While important in itself, stock assessment is only part of the answer; all the components of aquatic resource management need to be considered and upgraded more or less simultaneously.

Experience Papers

Approaches to Some Problem Areas in Tropical Small-Scale Fisheries

James D. Parrish, U.S. Fish and Wildlife Service, University of Hawaii

The problems facing development and management of tropical small-scale fisheries are many and varied. Often these include infrastructure, matters political and financial (especially relating to sources of capital and marketing options), and cultural attitudes This paper will be concerned only with the considerable biological problems in such a fishery. These tend to fall into two classes: those related to life history information (and the scarcity thereof) and those related to population and community dynamics.

Life History

A problem encountered continuously in tropical small-scale fisheries is a serious lack of the type of basic life history information that is well known for almost every species of any commercial importance in developed temperate fisheries. This information gap persists despite the fact that most of the tropical species in question have been fished locally for hundreds of years. It is fostered by 1) the multiplicity of species taken together in the fishery, 2) the historic shortage of trained fishery workers in the areas, and 3) the relatively small financial resources involved in the fishery.

In some cases, the very identification of the species as a recognizable, reproducing unit is so doubtful that it seriously hinders fishery analysis. This is particularly true among some of the scarids and carangids, both important food fishes in much of the tropics. For example, in Hawaii fishermen almost never attempt to distinguish among any of the scarids caught, and some basic taxonomic questions remain to be resolved among the economically important genera Caranx and Carangoides. Worse yet, even where good taxonomic distinctions permit relatively easy field identification, catch reports often lump related species grossly. In Hawaii, all species of scarids are reported together as "uhu," and 11 species of carangids are reported under the heading of "ulua." Neither the population parameters of individual stocks nor the nature of species interactions can be properly determined without better separation of biological entitie!. Both asperts of this problem should be responsive to vigorous application of existing capabilities, using standard methods.

Until recently, the problem of aging tropical species has been the source of more complaint than effort. Within the last few years, however, efforts on several fronts have produced encouraging results. Efforts have been made to collect adequate series of important species for length-frequency analysis. There are several somewhat successful examples in the extensive Jamaican work of Munro (e.g., 1974). Recent successful efforts include Muller's (1977) work on the anchovy, Stolephorus heterolobus, in Palau, and McMahon's (1975) work on the silversides, Pranesus insularum, in Hawaii. There has been renewed, serious work on the effective use of hard parts; eg., Munro (1974) on scales and otoliths of a
variety of Caribbean species, Sylvester (1969) on scales of several Hawaiian species, Stevens (1979) and Taylor (unpublished) on vertebrate of sharks, and Nagelkerken (1976) on scales of the grouper Petrometopon cruentatum

One of the most recent and promising aging techniques with hard parts is the reading of daily rings :mpressive success was snown by Ralston (1977) with the Hawaiian butterily fish. Chaetodon miliaris, and by Broihers et al (1976) with several tropical species The NMFS Honolulu lab has been operating a systematic program of this sort for several vears One result was to corroborate Mo Mahon's (1975) length-frequency results while aging a Central Pacific sardine and silversides (Hida and Uchiyama, 1977) Another was Struhsaker and U(hiyamia's (1976) work on the Hawailian nehu, Stolephorus purpureus. A recently completed study provided a growth curve for the goatfihh Parupeneus porphyreus (Morfitt, 1479) Aging is well along on the deep snapper Pristipomoides illamentosus, and all the other Hawallan commercial snappers appear to have readable otoliths Othe: epecies currently in the program tor aging include the carangids Seriola dumerili and tour loe al Decapterus specter. (aran ignobilis and Carangoides lerdau, the dolphin, Coryphaena hippurus, and the goattoh Parupeners pleurostigma Williams (personal communidation) m currently workingon aging the Marquesan sardine. Sardinella marguesensis. in Hawail In eew rases has it been positble to corrobordte results of daly rings with an independent method, but the otolith results in most cases are convincing, at ledst up to some maximum readable age For many specters such a maximum limitation may have to be accepted Although daily ring reading is slow and laborious, it appears io offer prospects lor aging many tropical specties

Because of the recent rapid progress made in iattered locations and the present pace of development, it seems important that an information exchange system be implemented so that fishery workers might be dware of recent results on spectes of interest and become knowledgedble enough in the techniquer to concentrate effectivelv on local species not previously analyzed

The growth curves and estimates of growth parameters, including L_{∞}, that these age estinates will permit are extremely important in all fishery analysis and management They also permit converting sizedt-recruitment and size-atmaturity data to age data In a few cases (e g. the extensive Jamaican studies of Munro, 1974), size-at-maturity is well known Very often it is not known even for important commercial species For example, in Ralston's (1979) analysis of the Hawaitan commercial bottom fishery, of 1.3 species treated individually, information on size-at-maturity could be found for only three Since a reasonable estimate is usually obtainable from sampling the catch, this important piece of management information should be collected in studies of all commercial species Size information is generally poorly reported in catch statistics. Catch reports often require only the weight of catch of a species. Even where the number of individuals is reported every fishery program should include sampling the catch for size distribution. Among other uses, this will ultimately provide a historical trend in the size of catch which may be important in assessing the effect of fishing. Even where a small-scale fishery has operated in an area for many years, often no better historicil data on trends in fish size exist than qualitative comments of fishermen ("They used to be bigger").

Fecundity is usually poorly known for most important species in tropical
.mall-scale fisheries (Munro's 1974 results are a refreshing exception) Its determination is complicated in mata wes by extended or multiple pawning seasons Nevertheless, useful data can be taken trom atch ampling or experimental thehing over a period of a wear or more and thrs would be inclurled in studies of thoe trabertes
 bhert arele the large number at epectes, dammbed sedsomal wes, and predommance of more or tempelage ege and lartat hate a redted a complex
 in terme of the dement or lite hatorn 1 arsal taxomom and edoge we certamls mator areator further studs and a hen emphame tor that etudy hould be

 mant demersal pee ien the hablat has a patial arrsing (apacity in terme of phescal methen that in normalls tulls wecuped Recrumemt occurs an in-

A more immedate goal is aredrominhe underatanding of the umang of reproductor in important upe ien limportas: progresh hab recently been made

 Spawning veduon for some vee ter mas be well known to twhermen be whe it produren ageregatoon or other thange in fish behavior that are important to ther ifherman a atch fohannen (1978 b) has discussed a number of mexpensive approachers to imall-sala fohers management based on predictable periodis palwning dggregations

Population and Community Dynamics

One approath to stock assessment that seems to hold promise in many tropical areas (much more so than in conventional, temperate situations) is direct, bisual enumeration. The basic method was perhaps first published by Brock (1954) and has subsequently been modified and used by many investigators for individua!' site studies, usually withecological orientation. Results depend upon divers spending fixed times or covering fixed transect distances underwater and recording the number (and sometimes size) of each fish species of interest seen The utility of the method is limited to shallow depths (practically speaking, < 100 feet) and :easonanly clear waters, to largely dernersal, de\%-visible species, and to substrate that is conducive to a reasonably uniform distribution of fishes at the meso scale. Fortunately, this combination of environinental conditions and economically important species occurs rather commonly in tropical coastal situations. Also, temperatures and sea conditions in tropical coastal areas are often redsonably benign for this man-in-the-sea approach

If the method is to be effective for stock assessment, personnel must be highly experienced in the use of SCUBA and in rapid sight identification of many
species in the water Euror due to individual observer bias cannot he pliminated or quantified entirely, but careful studies (eg. Nolan and Taylor, in press) sug. gest that such bias does not negate the results of well-executed transect censuses

Procedures inust be well standardized A field evaluation study of vistat census techniques was receritly conducted by the Hawall Cooperative Fishery Research Unit (Nolan and Taytor, in press) It stressed the lack of ctandardization among studies to date (Even within the local se entific community of Hawall. transects swum for direct abundance-per-unit-ared counts vary trom $25 \mathrm{~m} \times 10 \mathrm{~m}$
 that are largelv unstudied) (ho Unit study suggested a most efficient length of aboui 50 m tor the completely rocky subitrate ared in this length, 75% of all species present and vulnerable to visual census were identiffed, the density of total individuals was as great as tiat found by census of the entire area, and the number of uncommon species (<5 individuals in the sampling "universe") was as large as that found by census of the entire area Censuses which recorded only certain selected species took less than half the underwater time of all sprocies censuses, but were no more accurate in estimating population density of hose species No significant difference was noted betweer, population density or species composition when dong hand recording wernislape recording of d ta

The location ot census sites must be carefull seled ted so as whe representative of all the different important habitat typers werent the method appeare to be appropriate for most spectes of interest unls where the bottom ofter reasonably frequent elements of cover (eg. coral, rock, grass beds) Over featureless, open bottoms, fish density is so low and the probability of o currence of fish as infrequent groups is such that transects of reasonable size or length of time do not sample the distribution of tish orcurrence well. Within areas of frequent bottom cover, the habitat must stll be carefully assessed and census sites located appropriately A statistically adequate sample size is necessary. Little study has been done in this ared, but the Nolan and Taylor (in press) study indicated that dt least two replicates of the 50 m transects were necessary to estimate 85% of the species present An additional replicate added few species, if any.

In view of the uncontrollable variables in visual census work, there has been real concern over its accuracy; eg., the size of change in real abundance that is detectable In the Nolan and Taylor study, when a portion (25.30%) of the population of certain species was removed by spearing, observers using standard census techniques (and having no knowledge of the manipulation) were able to detect the changes in population consistently. This result gave credence tc seasonal variations in population estimates made on thes same transect lines and sounds a note of caution that even on tropical coral reefs, temporal (seasonal?) variation may have to be assessed before effects of exploitation can be well determined

Methods that rank fish species observed as a function of time rather than estimating numbers of individuals within a transect area have recently received attention (e.g., Jorns and Thompson, 1978). Nolan and Taylor (in press) evaluated such a species/time method versus their species/area (fixed transect) method simultaneously. They found that the species/time method detected 60%
more species (probably due primarily to the diver's freedom to cover a larger area). The species time method produced only a ranking of species by apparent abundance-no estimate of absolute abundance Several of the top-ranked (most abundant) sper ies by the species time method were alsi) among the most abundant peecies in area transects, but others were not, 1 e , some species that probably were widely different in abundance had equal rank by the spectestime method

There are a number of rather intensive current surver programs active in Hawail using visual underwater techniques to estimate relative and absolute dbundance (population density) A profect of the University of Hawail Marine Option Program has completed field survey, by both area transect and ipecies time methods, of several sites on Molokai Island and is analyzing the data (Sanderson et al, in preparation). The results should also be valuable in comparing the characteristics of the two methods Hobson $(1977,1979)$ is in the midst of a several-year study of Hawaii's uninhabited Leeward Islands, which consists of swimming area trarisects at several locations on each of several islands and reetsishoals in this group and using the results to describe community structure The author and Dr. Taylor are doing some area transect and species time census work in a few selected Leeward Islands sites to provide the necessary information on species populations to go with our trophic research. An environmental conaulinas firm, ALCOS, is implementing an extended series of transects locate whee ." ally around the various majo: Hawaian islands as part of a Cor of Enall , statewide coral reef inventory (AECOS, 1979a, 1979b) The 1 : wall DN.... if Fish and Game has done fish census work on a site-specific . in for man, ears, The most extensive effort at present is ir, the Leeward Islati.. . 1 H . fishery resource, in tiai et unexplonted areas (Hawaii Division of Fish and Game, 1978)

All these major census efforts, like all that have gone before them, are apparently limited in their present scope to determining tish areal dersity In the Division of Fish and Came surveys, data include estimates of fish length, and weight is estimated by the use of a formula of the form

$$
\text { weight }=A \text { (length }^{B}
$$

Average values of the constants have been calculated from collections over the years, and data are converted to pounds/acre of a species. The final step to making visual transect data meaningful in an assessment program to manage stock; would be to determine the extent of the bottom areas of each habitat type censused and use these areas to extrapolate the sample census results and thus estimate stock size Even good-quality charts are probably inadequate for this purpose unless most of the coastal hard bottom ared is extraordinarily well known to the researchers by sight However, high-quality derial imagery, together with reasonable ground truth diving observations, should be adequate The Corps of Engineers project in Hawail (AECOS, 1979a, 1479b) is producing imagery that appears to be satisfactory. The fish census data in the project are not sufficiently quantitative nor sufficiently extensive for rigorous stock assessment, but some further field work might make such an assessment feasible Perhaps the closest approach to full application of this technique so far is in the U.S. Peace

Corps-aided coastal fisheries stock assessment program (Biña et al., 1979; Carpenter, personal communication)

However well the work is done, assessment based on visual census will be biased in favor of demersal, substrate-oriented species, and will est imate pelagic species, especially the more surface-oriented types, poorly. It will also be poorer for schooling, species and will be inadequate for species that are highly crypicic by day As stated earlier, the method is limited to clear, shallow waters and gives poor results on fertureless bottoms. Nevertheless, it seems to have considerable potential for estimating sizes of some important tropical coastal stocks and has the significant advantage that stocks of a number of important, potentially interacting species in a community can be estimated together. The Nolan and Taylor (in press) results indicate that successive censuses are capable of indicating changes in stock size

Obviously, a major research effort is required to estimate the size of a stock, even for a relatively small island. However, good aerial imagery is becoming increasingly available in many areas If it must be generated from scratch, a onetime aerial survey is usually adequate and can often be done with relatively lowcost equipment (e g., light aircraft). The field work has two advantages. One is that workers gain a good first-hand idea of the quality of their data and the nature of the en:ironment, giving the program better real-time feedback than a surface sampling program usually receives. Second, the nature of the field work is such that high-quality, low-cost labor may be attracted to it. The participation in state census work by highly competent University of Hawaii undergraduates from the Marine Option Program is a case in point

At greater depths, stock size must be estimated by other, more conventional means. Although a continuum of depths occurs, in many tropical areas, particularly islands, the species of economic interest that commonly occur in water shallow enough for visual census are heavily concentrated in these shallower waters. Similarly, species that support a deep handline fishery are largely restricted to depths below pracical visual census limits. Thus, for purposes of stock size assessment, adults of the two depth groups may be considered to have reasonably discrete distributions. The deeper fisheries, it appears, contain species with less commercial potential; thus, conventional methods using catch St. tistics may be more appropriate. Traps and handlines are the major gear types used in nearly all small-scale deeper fishing operations. Space and hauling power requirements plus distance from shore iypically result in larger, more expensive-thus, fewer-vessels. It is therefore more feasible to get catch and effort statistics from this deeper fishery. In most small-scale developing fisheries, catch statistics range from nonexistent to mediocre. Prubably all need substantial improvement, especially in the area of effort. Where a deep-water commercial fishery does not exist, there is no alternative to an exploratory fishing program. Recent examples in areas that have iong had heavy shallow, inshore fishing include the surveys by 1) the Commercial Fisheries Laboratory, Department of Agriculture of Puerto Rico (continuing); 2) the Office of Marine Resources, Covernment of American Samoa (1967-70; Swerdloff, 1972); 3) the Aquatic and WIdlife Resources Division, Department of Agriculture of Cuam (1967-70; Ikehara et al., 1970); 4) the Honolulu Laboratciry, National Marine Fisheries Service, in the Leeward Hawaiian Islands (contint ing).

For fisheries emplojing relatively fewer and larger vessels in somewhat deeper water, semiconventional methods of population and yield analysis may be appropriate. There are still serious problems hindering reliable analysis. The nature of some of these and a measure of the success now obtainable are illustrated by the recent analysis of certain Pacific bottom fisheries by Ralston (1979)

The best data for this study came from tiawali, where over half a million monthly catch reports from individual fishermen were available through State Division of Fish and Game records. Fishermen legally required to report catch include full-time commercial bottom fishermen, full-time commercial fishermen who sometimes bottom fish, part-time commercial fistiermen, and "sport" fishermen for any incidental catch they sell It is generally believed that catches are grossly underreported (a common situation in tropical small-scale fisheries). Since the fishing groups mentioned fish and probably report differently, this makes the catch statistics problematical even as relative indicators. The numerous purely recreational fishermen do not re; ort their catches, and their unquantified impact is probably very substantial. Such a large recreational fishery is atypical in tropical small-scale systems, but this catch may be analogous to true subsistence fishing in less developed economies. Fishing effort data were so poor that the best measure of effort* used in yield analyses was number of fisherman months for the species; ie, the total number of monthly catch reports in which the species occurred

Species analyzed included right deep-water snappers, one deep-water grouper, two goatfishes, Seriola dumerili (Carangidae), and eleven other lumped species of carangids. Data extracted and summarized for all species included total annual catch, seasonal catch trends, areas of major catches, and principal gear types (dominated by handlines). For all species (or species groups), correlations were run on catch per unit effort versus effort In four cases, the correlation was significant at least in some geographical area. A standard Schaeffer stock production model produced a credible MSY estimate for only two species (or groups) in only part of the state.

In an effort to improve the reaiism of representing a multispecies fishery, six major species of broad distribution and high vulnerability to handling were treated as being fished for simultaneously; i.e., fishing effort expended on any one of these species during any month was considered imposed on the remaining five of these species. All except one, a minor species, produced credible correlations of CPUE versus effort. Fox's exponential surplus yield model was applied, and the resulting yield curves predicted MSY for five of the species. In the five cases, present fishing effort varied from slightly above to far above MSY

Ralston (1979) also examined the results of the new Samoan offshore fishery resuiting from the recent fishery development project based on introduction of powered dorins. The catch consisted mainly of snappers from six genera, two genera of groupers, and two genera of jacks.

Economically, the modernization program followed a sad but common pat-

[^4]tern: six years after the first dory was built, only one was still actively fishing All measures of effort (number of vessels in existence, number reporting, number of recorded vessel trips, and number of recorded botton fish trips) showed an increase from 1971 to a peak and then a declire to a 1977 low. However, some measure of fishing impact was possible Over a 17 -month period, an estimated total of $136,000 \mathrm{~kg}$ of bottem fish were landed Recorded catch rate dropped from 310 lb trip to 254 lb trip. Fishermen reported catch rates reduced as much as half and generally reported a decrease in the sue of fish taken The data were inadequate for yield analysis, but clearly the stock was significantly affected by the level of effort applied

In Guam there was no commercial bottom fishing Reasonably good data on catch quantity and gear thpe were available on a considerable sport fishery, with data well standardized for the period 1969-78. Nearly half the catch consisted of snapper species. The bigeve scad, Trachurops crumenophthalmus, comprised an average 12% of the catch and other carangids 9%, but both were highly variable between years. Squirrel fishes (8.5%) and groupers (7.2%) were present every year. Over the nine vears, catch showed some increase with effort, but not consistently. CPUE showed no consistent trend with time nor with effort. There was no indication of an effect of fishing on stock size. However, a separate experimental fishing program was implemented using a larger vessel both in coastal waters and on offshore banks the results at one small, isolated, submerged, oceanic pinnacle demonstrated a consistent and drastic decrease in CPUF orer the 16 -month term of the study for data on all species combined the major species were four deep-water Sriappers, one grouper (Epinephelus sp), and the' jack Caranx lugubris.

Where a truly diverse fishery occurs with strong interactions among species. adaptations of conventional unit stock methods have limited value. A number of thec-etical models of interacting species have been devised (e g. Laevastu and Favorite, 1978a, 1978b; Menshutkin, 1968, Parrish, 1975; Andersen et al, 1973) Although these models have considerable versatility in representing ecological processes and can handle rather large groups of species, a common problem is the large and detailed data base required. Some much cruder models that require less detailed data can give insights into the general behavior of multispecies systems (May et al., 1979, contains a recent discussion). However, it is not clear what sort of analytical approach provic'es useful realism at the proper cost in data requirements for small-scale fisheries.

There are two related research approaches that will provide important support for system models and data that are usetul in more intuitive management methods. One is basic trophic investigation of systems; i.e., determination (at least for important species at various life stages) of who eats whom and how commonly. Such studies will reveal whether predation exerts important effects on population control and, if so, how this is influenced by exploitation. For example, if wrasses eat goatfish eggs and man fishes goat fish but not wrasses, what is the effect on goatfish stocks? This approach will also reveal the identity of

[^5]limiting food resources if they exist and help predict how the food competition between species responds to exploitation oi one or more competitors Work in Puerto Rican coastal waters (Parrish and Zimmerman. 1977 and in preparation) comprised a pilot study of reef ish community trophics, including assessment of invertebrate tood supply This work is being contmued and expanded in Hawaii (Parrish and Tavlor 1978)

The other potentially valuable approach is direct. axperimental manipuldtion of virgin tish communities in the field Replicate communities in discrete habitat patches of manageable size could be studed in the pristine state and then fished for various species and at various levels of effort (including controls with no fishing) The :?opulation structure and trophic structure would be monitored at intervals. Among other advantages, this would provide opportunities of two kinds that almost never occur in commercial fisheries: 1) the opportunity to observe the baseline, pristine condition so as to assess clearly the eflects of fishing, and 2) the opportunity to control the type as well as the intensity of fishing (e g. experiments with top predator removal versus herbivore removal, etc.) Admittedly, the extrapolation of the small patch habitats to more extensive areas holds some uncertainty, but most fishery ared's studied are in fact a part of some larger range of the species involved Some suitable sites with adequate logistics still exist for this kind of field experimentation; eg., in the Pacific, Enewetak Atoll and a number ci the Leeward Hawatian Islands. Some work of this sort is planned in the latter area on a small scale (Parrish and Taylor, 1978).

Other Problem Areas

Ciguatera

The incidence of ciguatera poisoning from eating tropical food fishes (especially certain upper-level carnivores) is a major deterrent to further fishery development in many areas. Some examples are: 1) the exploratory fishirg program conducted in the U.S. Virgin Islands by the Caribbean Research Institute in the late 1960s (Caribbean Research Institute, 1969, 1970), in which the high occurrence of toxic tish presented a problem which "makes all others academic"; 2) the offishore dory fishery development in American Samoa, described above (Ralston, 1979), in which, for example, Lutianus bohar was one of the most abundant species caught but was not marketed because it is frequently toxic; 3) the current exploratory fishing program in the almost virgin Leeward Hawaiian Islands fishery. In the latter program, from a wide spectrum of species tested for toxicity, results ranged from 0 to 100% (moray eels) of specimens toxic. A number of valuable food species had fairly high incidence of toxicity; e.g, the jack, "Caranx ignobilis," 11\%; the amberjack, Seriola dumerili, 16\%. Some large wrasses such as Cheilinus species and even some herbivores (surgeonfish and parrot fish) tested positive.

Furthermore, outbreaks of ciguatera occur sporadically in long-establisked fisheries, producing economic depression concurrent with the pubiic health problem. A recent case was the sutbreak in the inhabited Hawaiian Islanas in 1978-79 (at least 30 documented cases as of May 1979). Several species were involved, especially Seriola dumerili. This species grows to 57 kg , but the reputa-
tion for toxicity of fish over about 10 kg makes them hard to markt Recently the Honolulu NMFS laboratory has been operating a program of testing for toxicity samples which fishermen wiuntarily supply from the market The pioblem is much more serious in some lesh developed, remote, oreanic islands, where endemic ciguatera serioush reduces comsumption ot the major avalable supplt of protein

Although ciguatera researeh hav been done arregularly over a number on years, two recent developments suggent that the time' is right for another con certed effort to understand the orgens and transmision of ciguatoxin well enough so that control-or at least detection prediction-will be porsible in a way that will have pratical benefits to fisheries the work of :Aokama at al (1977) provides a method for measurement of toxic ity levels in tish flesh without
 and mongoose tests) While the current Hokama radormmunodsal) is hardh a field technique, there is continuing progress toward a moditiodton that is relatively portable and simpler to apply the other key development is the discovery of a source organism for the toxin at the base ot the tood chan (Yasumoto et al. 1979) With the knowledge of at least one source ot toxn and the tools for effective detection in hand, a program of research to tie together the trophic ecology of egadera is certamly approprate and tamely This is particularly fitting. sunce some of the trophis relation hiph amorig fish species that are involved are likely to be important in understanding communty dynamics from a tish production persprectued

Introduction of Exotic Species

Fxotic tishes have been introduced into many areas of the world Otten the purpose is improvement of sport tishing or some nonfishery objective (eg, insect control, aquatic plant control, decorative value) freshwater introduction are most common, and there have been many such attempts for aquaculture or wild fishery enhancement Introductions to dugment widd marine tisherres are much less common, perhaps least of all into the diverse marine fish tauna of the tropics However, exotic introduction is a management tool-one that will be considered where local stocks are depleted - and its effects merit consideration

The experience of Hawaii is instructive. Its isolation by distance and prevalling current systems from the West Pacific faunal sources appears to have produced a relatively depauperate coastal fish fauna, with high endernism and a conspicuous lack of shallow-water groupers and snappers there is also a shortage of suitable baitfish to support the pole-and-line tura fishery for over 100 years, there have been attempts to fill Hawaii's perceived needs for additional aquatic animals by introduction of exotics - at least 70 species released to the wild as of 1968 (Kanayama, 1968). The success rate, in terms of nurnber of exotic species maintaining wild reproducing populations of any size, ha: been high - at least 51%, according to Kanayama.

Fully marine species have been introduced only since 1955, largely for food and sport, but also as tuna bait. The success rate has been lower-4 of $15(27 \%)$ The successful species, now regularly seen in Hawaiian waters, are the Marquesan sardine, Sardinella marquesensis (a baitfish); the grouper Cephalopholis
argus; and the snappers Lutjanus vaigiensis and Lutjanus kasmira. Another baitfisi) (Califorria anchovy), five other groupers, and one oth.er snapper were introduced during the same period. Results varied from no apparent reproduction to small populations that produce reegligible catches. The Marquesan sardine has so far not become sufficiently abundant to be a reliable bait, but it appears to be on the increase. Cephalopholis argus and Lutianus vaigiensis appear regularly in commercial catches and are well regarded, but they are not abundant enough to be important commercially. Lutjanus kasmira (popularly called "blueline snapper," or "taape") had been singularly successful ecologically. Its population has grown explosively, and it has spread tapidly throughout all the high islands of Hawaii. It has meved up the Leeward chain as far as Laysan Island (personal observation, June 1979). Catches have increased exponertially over the 11 years during which statistics have been kept, despite the fact that effort is rather desuitory. The market still appears to be unready to absorb nearly all that can be caught. This may be partly due to the relatively small size of most fish landed but probably mostly due to the common, illogical market resistance to an unfamiliar species (this snapper is highly regarded at the source locations in French Polynesia)

The population success of the taape is obvious. The problems for the fishery manager are: 1) the low success rate of introduced species in terms of effort to introduce, 2) the highly dynamic status of the successful population that makes any kind of conventional production/yield analysis very difficult, 3) the market acceptance prohlem and resulting uncertainty of fishing effort, 4) the lack of any capability to control range extension (if this were desirable), 5) a dearth of life history or ecological information or any sort of f:at.ery parameters from the source location, and 6) considerable uncertainty about the interaction developing with native species. Many of these problems would be common to most introductions in tropical coastal waters. It seems likely that the success rate would be lower in areas with more diverse native faunas

The question of interaction with native species is a critical one for any introduction If the exotic is a potentially important prey or an inferior competitor to local species, it will not succeed in significant numbers. If it is a potentially important predator or a superior competitor of local fishery species, its success is likely to be at the cost of existing native fishery resources. There appeai: to be a narrow range of situations in which a successful introduction can significantly increase fishery yields; namely, those situations in which the exotic can use largely unused local resources or use resources much more efficiently in terms of fish flesh productivity and does not have critical trophic or habitat interactions with native fishery species

In the case of Lutjanus kasmira, a current research project (Parrish and Oda, in preparation) is a beginning toward the analysis of trophic requirements and interactions. A broader study of life history, ecology, and the fishery is envisioned (Parris and Shang, 1978). Careful studies of this sort should always be done when any introduction is considered, to reduce the impact of problems (1), (3), (4), (5), and (6) above.

References

AECOS 1979a. Maui Island coral reef inventory. AECOS Report 200. Prepared for U.S. Army Engineer Division, Pacific Ocean Corps of Engineers, Honolulu, Hawaii, under contract In press.
—__ 1979b. Oahu coral reef inventory AECOS Report 149. Prepared for U.S. Army Engineer Division, Pacific Ocean Corps of Engineers, Honolulu, Hawaii, under corrtract In press.
Andersen, K.P. H. Lassen, and E. Ursin 1973. A multispecies extension to the Reverton and Holt assessment model, with an account of primary production. C.M. 1973/H.20. Interndtonal Council Exploration Sea, Pelagic Fish (Northern) Committee.
Biña, R.T., K. Carpenter, W. Zacher, R. Jara, and J. Lim. 1979. Proceedings 12th Annual Symposium on Remote Sensing.
Brock, V.E 1954. A preliminary report on a method of estimating reef fish populations J. Wild Manage. 18: 297-308.
Brothers, E.B., C.P. Mathews, and Reuben Lasker 1976. Daily growth increments in otoliths from larval and adult fishes. Fish. Bull. 74: 1-8
Caribbean Research Institute. 1969. Specidi report: Study of the fisheries potential of the Virgin Islands Virgin Islands Ecological Research Station Contribution 1, 197 pp.
1970. Special report: Exploratory fishing for a source of non-ciguateric sport and food fish Virgin Islands Ecological Research Station Contribution 2, 48 pp.
Erdman, D.S. 1967. Spawning seasons of some game fishes around Puerto Rico. 12th International Game Fish Conference.
__ - 1976. Spawning patterns of fishes from the northeastern Caribbean Puerto Rico Department of Agriculture Commercial Fisheries Laboratory Agricultural and Fisheries Contributions, Vol 8, No 2, 36 pp
Hawaii Division of Fish and Game 1978. Research proposal-Department of Land and Natural Resources, Hawaii Division of Fish and Game. The nearshore marine resources. In: Survey and Assessment of the Living Resources of the Northwestern Hawaiian Islands: A Tripartite Cooperative Agreement, Appendix F, pp. 25-32
Hida, T.S, and J H. Uchiyama 1977. Biology of the baitfishes Herklotsichthys punctatus and Pranesus pinguis in Majuro, Marshall Islands In: Collection of Tuna Baitfish Papers, R.S Shomura, ed, NOAA Tech. Rep., NMFS Circular 408:63-68
Hobson, E.S 1977 Reef community studies Unpublished manuscript, 2 pp.
1970. Fish communties in the Hawaitan Archipelago. A report on participation in the Northwest Hawaiian Islands Project Unpublished manuscript, 4 pp.
Hokama, Y, A.H. Banneer, and D B Boylan 1977. A radioimmunoassay for the detection of ciguatoxin. Toxicon 15:317-325
Ikehara, I.I., H.T Kamı, and R.K. Sakamoto 1970. Exploratory fishing survey of the inshore fisheries resources of Cuam Proceedings ?nd CSK Symposium, Tokyo, pp. 435-437.
Johannes, R.E. 197AA, Keproductive strategies of coasta! marine fishes in the tropics. Envir Biol Fish 7h 5-84

1978h Using knowledge of the reproductive behavior of reef and lagoon fishes to improve fishing vields. Proceedings Rockefeller Conference on Fish Behavior and Fisheries Management (Capture and Culture)
lones, R.S., and M I Thompson. 1978 Comparison of Flcrida reef fish assemblages using a rapid visual technique Bull. Mar. Sci. 28: 159-172.
Kanayama, R.K. 1968. Hawaii's aquatic animal introductions Proceedings 47th Annual Conference Western Association State Game and Fish Commissioners, pp. 123-133
Laevastu, T., and F. Favorite 1978a Numerical evaluation of marine ecosystems. Part 1. Deterministic bulk biomass model (BBM) NMFS Northwest and Alaska Fisheries Center Processed Report, 22 pp.

1978b. Numerical evaluation of marine ecosystems. Part 2. Dynamical numerical
marine ecosystem model (DYNUMES III) for evaluation of fishery resources. NMFS Northwest and Alaska Fisheries Center Processed §eport, 29 pp.
Miay, R.M., J.R. Beddington, C.W. Clark, S.J. Holt, and R.M. Laws. 1979. Management of multispecies fisheries. Science 205:266-277
McMahon, JJ. 1975. Estimation of selected production parameters for iao, Pranesus insularum insularum, in Kaneohe Bay, Oahu. M.S thesis, Univ. of Hawaii, 83 pp
Menshutk in, V.V. 1968. [Fish populations competition for food analyzed] Zool. Zhurnal 47:1597-1601. (English translation: JPRS 47, 345.)
Moffitt, R.B. 1979. Age, growth and reproduction of the kumu, Parupeneus porphyreus Jenkins. Final report, M.S projeci, Univ of Hawaii.
Muller, R.C. 1977. Some aspects oi the population biology of Stolephorus heterolobus from Palau. In: Collection of Tuna Baitfish, Papers, R S Shomura, ed, NOAA Tech Rep., NMFS Circular 408: 113-126
Munro, J L. 1974. The biology, ecology, exploitation and management of Caribbean reef fishes Part Vm Summary of biological and ecological data pertaining to Caribbean reef fishes. Scientific Rep. of the OD */UW' Fist, Ecol. Res. Proj. 1969-1973
—_ V.C Gaut R. Thompson, and P.H. Reeson 1973 The spawning seasons of Caribbean reef fishes. J. Fish Biol. 5:69-84.
Nagelkerken, W. 1976. Aging of the grouper Petrometopon cruentatum (Craysby) in Curacao Proceedings Association Island Marine Laboratories Caribbean 11:4.
Nolan, R.S., and L.R. Taylor, Jr. An evaluation of transect methods for fish census on Hawaiian reets. Fish. Bull. (In press)
Parrish, J.D. 1975. Marine trophic interactions by dynamic simulation of fish species. Fish Bull 73:695-716
-_ , and DK. Oda Diet study of the blueline snapper (tiape), Lutianus kasmira. Sea Grant project completion report. (In prepardtion.)
__- , and Y.C. Shang 1978. Investigation of the fishery for the introduced blueline snapFer (Lutianus kasmira) Fishery ecology, techniques, and economics. Proposal to Univ. of Hawaii Sea Grant Program.
, and L.R Taylor, Ir 1978. Trophic analysis of shallow-water fish communities in the northwestern Hawaiian Islands: Effects of natural and hurt. 1 predation. Proposal NI/R-4, Univ of Hawaii Sea Crant Institutional Program, Vol 2, op A-38-A-49.
, and R I Zimmerman. 1977. Utilization by fishes of space and food resources on an offshore Puerto Rican coral reef and its surroundings. Proceedings 3rd International Svmposium Coral Reefs, Univ. of Miami, pp. 297-304
__. Trophic relationships among fish and benthic invertebrate communities near an offshore Puerto Rican coral reef. (In preparation.)
Ralston, S.V. 1977. Age determination of a tropical reef butterflyfish utilizing daily growth rings of ntoliths. Fish. Bull. 74:990-994
1979. A description of the bottomfish fisheries of Hawaii, American Samoa, Guam, and the Northern Marianas. Report submitted to the Western + acific Regional Fisheries Management Council, Honolulu, 102 pp .
Sanderson, S.L. A.C. Solonsky, J.M. Burgett, J.A. Hirata, K.N Kadowaki, K I Kawamoto, DL. Kees, C.L Kleh, F.W. Rumbaugh, and V.M. Sanborn. A comparison of survey methodologies applicable to marine resource assessment studies National Science Foundation Student Originated Study Grant SPI 7905347. (in preparation)
Stevens, I.D. 1979. Ecology of Aldabran sharks. Final project report (Unpublished)
Struhsaker, P., and J.H. Uchiyama 1976. Age and growth of the nehu, Stolephorus purpureus (Pisces: Engraulidae), from the Hawaiian Islands as indicated by daily growth increments of sagittae. Fish. Bull 74:9-17.
Swerdloff, S.N. 1972. A determination of the feasibility of developing offshore commercial fishing in American Samoa Completion Report, H.8-0, Government of American Samod, 14 pp.

Sylt iter, I.R. 1969. Preliminary investigation of scales of selected Hawailan insiore fish inal report, M.S. project, Univ. of Hawaii.
Yasumoto, T., A. Inoue, R. Bagnis, and N. Garcon. 1979. Ecological survey of a dinoflagellate possibly responsible for the induction of ciguatera. Bull. Jap. Soc Scien. Fish. 45:395-399.

Fishery Yields of Coral Reefs and Adjacent ShallowWater Environments

Nelson Marshall, University of Rhode Island

Recently, S.V. Smith (1978) estimated that the fisheries potential of reef and adjacent shallow-water environments is about $6 \times 10 \mathrm{~kg} / \mathrm{yr}$, or about 9% of the present annual commercial ocean fish landings. The percentage would be considerably higher if one were to restrict the estimate to latitudes where reefs occur and still greater for regions cf reefs exclusively.

Also, although none of the yield information and appraisals thereof (for example, Gulland, 1972; Steverison and Marshall, 1974; FAO, 1978; and Munro, 1978a) suggest that the coralline areas can sustain yields comparable to those of the great fishing grounds of the temperate regions, these very extensive tropical environments are generally accessible to the small-scale fisherman (whose wellbeing is of special concern in this workshop) and occur in areas where the need for food is greatest. Furthermore, because many of these environments cannot be fished readily with large-scale gear, particularly trawls, they are often the exclusive domain of small operators.

> AB-Superecosystem of Coral Reef and Shallows ABC-Above System Plis Mangroves
> BC-Mangrove Plus Lagoon, Common on Western Shores

Figure 1. Composite of coral reets, adjacent shallows, and slope as a superecosystem.

This paper focuses on coral reefs, the adjacent shallows, olus the immediate slope beyond the reef, a composite which may function as a superecosystem (see Fig. 1). This is the environment Smith (1978) is apparently emphasizing; it is the environment Stevenson and Marshall (1974) had in mind; it is the environment involved in Culland's (1972) estimates for shelf areas of the Bahamas and the Caribbean; and much of Munro's work applies to such a composite system. Some confusion may arise in trying to exclude from this shallow-water environment the deep fishing banks not contiguous with corai coests, since exploratory fishing and the literature reporting thereon often reter to such banks, where large groupers and snappers are to be found. However, since some of these lie far
beyond the outer reef slope, Smith's (1978) assumption that deep-shelf demer:a! fishes derive much of their nutrition from the reefs does not seem altogether tenable. Fishing many of the deeper banks may be a bit beyond the operatirg capabilities of small-scale fishermen, and, thus, beyond the concern of this workshop.

The superecosystem of the reef and adjacent shallows is a feature amounting to considerably more than the reef per se, and in many locales coastal mangroves are a major interlocking component cf this system Further, there are many tropical areas in which the mangrove input may uvershadow that of the reef, and perhaps such areas are more akin to noncoralline shallows than to the environments where reefs are featured. In arbitrarily referring to the reef and adjacent shallows superecosystem, it is recognized that a further step in an exercise of this sort should be to differentiate between the potentials of environments with and those without a mangrove influence.

At one stage in exploring the reef-associated fisheries potential it was hoped that workers might agree upon a standardized classification of hahitat categories and could seek thereby to acquire comparable information. A habitat scheme was suggested by the present author, but other workers promiptly destroyed this attempt at an ecological taxonomy. They riddled it with exceptions, they suggested modifications so varied that common denominators were impossible No doubt some of them will even be reluctant to accept a discussion of the supposed overall average conditions as developed in this paper

Turning to the fisheries potential of this generalized superecosystem, it is immediately evident that, with the prevailing species diversity, single-species models do not apply. The next thing to try is the modeling of interacting species, then a consideration of the yields of multiple, interacting species. Actually, multiple interactions must be involved in almost every demersal fishery, but, practically speaking, this has been conveniently ignored where the harvest is focused on relatively few forms. On the other hand, in tropical areas, where the gear commonly used may take as many as 25 important species and several times as many more incidental, interacting forms, any approach failing to assess the overall potential would be very inadequate

Thinking of the overall potential, a simple first step is to blend the prospective yields into biomass and to consider an integrated harvestable yield or sustainable biomass harvest fron the superecosystem. For a first approximation of this integrated harvestable yield or potential sustained biomass of the reef/lagoon/mangrove (where it applies) superecosystem, interpretations based on basic ecology, on abundance observations, on catch data, and on catch observations have been consideied.

Abundance data are generally of little or no use for this purpose and can even mislead the unwary. Fish cluster in spectacular concentrations, and can exceed $300 \mathrm{~g} / \mathrm{m}^{2}$ in these environments (Stevenson and Marshall, 1974). Though such concentrations have been the focus of many significant studies of fish assemblages (not reviewed here), much of the work of this sort provides very little information on the overall adjacent areas required for the support of the biomass cbserved. Also, abundance or standing stock figures never provide direct production information, even though some fair guesses might be ventured, particularly if abundance information is available for the adjacent shallows as
well as for the reef. For example, one migit attempt to calculate yields by assuming that the growth and life span of the species of concern roproximate those known for related forms or, as Bayliss-Smith (unpublished ms.) has done, generalizations might be attempted from other work as to the yield level that is to be expected from a given fish biomass Finally, note must be taken of the frequent interest in using artificial reefs, sometimes rather elaborate in derign, to increase the abundance of fish. While one cannot deny some net inc rements from such practices, particularly since adequate space and cover are important for reef fish communities (5 ale, 1977), the basic supporting potential of the areas in question may be limiting, which means that artificial reefs may serve largely as attractants rather than as production systems

Attempts to apply a basic e ological approach to ascertaining the prospective biomass yield seek the answer to a simple ecological question; namely, what is the excess of production over respiration for the environments in question? For reat systems, this approach has attracted considerable attention, since the gross productivity of coral reefs and the grass flats in adjacent lagoons is about as high as any found in natural systems. A pioneering quantitative evaluation of reefs by Odium and Odum (1955) was followed somewhat later by the more comprehensive Symbios Expedition (Johannes et al, 1972), which showed one reef tract at tnewetak to be a slight net consumer, whereas another produced iwice its respiratory demands

As it sands, it is clear that data on net besic production will have to be far more extensive, with a consideration of influences not well understood as yet, betore such information is used for fishery evaluations. For example, ecological studies of thas sor re not taking into account the response of the ecosystem to harvesting practice In a table in f P Ot!um's (1971) ecology text showing entries both for the production inputs in long islased Sound and for the respiration demands, there is very little or no net production lf one were to consider the long liland Sound fishe: ies potential tiem sueh a tabulation, one would conclude that no harvests would be possible, yet the Sound in an ared from which great quantities, particularly of shelli ish, are harvested annually. Marshall (1970) went through a rather smmitar tally in making rough estimates of production and demand ior tour estuaries in southern New tngland, and arrived at demand thgures that required all the production estimated Knowing that these estuaries are harvested intensively and continue to sustain good yields of scallops and other shellish, as well as flounder, striped bass, and other finfish, he concluded that, when not harvested, any such system operates as a closed cycle and tends to consume its production, whereas harvests can often short-circuit such a closed cylte of production and respiration In essence, this means that a system must beharvested if one is to make an appraisal of its yield potential

Findiy, there th the consideration of atch data Intormation now avallable adds considerably to the summary of such data provided by Stevenson and Marshall (1974) Yields of tinfisn approaching or in some places even exceeding 2 tons km^{2} vi are on the high end of the spectrum, while yifelds far below this may represent erther underuthation or overfishing Perhap the best summary of (atches is in Table i of Munro's (1978 a) paper, which lists the greatest reported annual att hes from Caribbean and Bahamas stes in the period 1964-73 Another source is the surimary for the same areas offered in the report of an $H A O$ workshop (1978)

More important than the catch per se are the insights such information may give regarding yreld potential (see Table 1) Munro (1978a), using a surplus yield model based on extrapolations in which the number of canoes in the fishery differed from area to area, gives a figure of 4.1 tons $\mathrm{km}^{2} / \mathrm{Yr}$ as the maximum to be expected in managing present fishert practices off the south coast of jamaica in the Report of the FAO/IOP Workshop on the fishery Resources of the Western Indian Ocean South of the Equator (1979), catches from Indian Ocean sties are calculated against trap fishing intensity to suggest a potential harvest of 5 tons $/ \mathrm{km}^{2} / \mathrm{yr}$ Though the latter appraisal is based on sketctiy information, the iwo approaches reinforce each other They about equal the maximum yields Stevenson and Marshall (1974) had noted in reviewing the literature; they are roughly in accord with Culland's (1971) maxima, calculated from the tabulations presented, of 24 tons $/ \mathrm{km}^{2} / \mathrm{Yr}$ and 4 tom for the Bahamas and Caribbean sholf areas, respectively; and they are similar to the maximum reported by BaylissSmith in a comparison of four atolls and reef-bordered islands with Lakeba. Fiii, yielding about 4.4 tons $/ \mathrm{km}^{2} / \mathrm{Yr}$ (unpublished ms.)

Table 1. Estimates of potential fisheries yield of coral reefs and adiacent shallow water environments

Munro (1978) South of Jamaica	41 tons $/ \mathrm{km}^{2}$; yr -surpli- yield model from con current trap fishing intensities with some recognition of seme and gill net catches, ie, demernal plus neritic pelagic fishes :aken
FAO (1978) Western Indian Ocean	5 tons $/ \mathrm{km}^{2} \mathrm{yr}$-extrapolating from trap catch data different areas
Stevenson and Marshall (1973) Worldwide	47 tons $/ \mathrm{km}^{2} \mathrm{yr}$-highest yield found, presumabiy diverse gear aric for both demersal and neritic pelagic finfish
Gulland (1971) Caribbean	25 tons/ $/ \mathrm{km}^{2} / \mathrm{yr}$ for Bahamas, 4 tons for Caribbean presurnably involves diverse gear; abou: 80% neritic pelagic, the balance demersal
Bayliss-Smith (Unpublished) Pacific	44 tons $/ \mathrm{km}^{2} / \mathrm{yr}$-maximu. Iti yreld from four atolls and reef-bordered islands

The canoe fishery analyzed by Munro was largely a trap effort, but other gear, including seines and gill nets, were involved in the fishery, and he referred to the potential as including demersal plus pelagic neritic fishes. The FAO pro;ection was for traps only. The maxima mentioned by Stevenson and Marshall and Bayliss-Smith presumably included all fishes and Gulland referred both to demersal and to a component of pelagic neritic amounting to about 80% of the total. Apparently these projections generaily do not include living resources other than fishes. One should add the potential in lobsters shellfish, bêche-demer, turtles, etc, plus miscellaneous gleanings from off : he reef, which Hill (1978) notes, in a study on American Samoa, can be both hish and relatively noncompetitive with other production.

The consistency just reported is disrurated by the observations of $A C$ Alcala, who recorded yields approaching 15 tons $\mathrm{km}^{2} / \mathrm{yr}$ for two successive vears on the Sumilon Island Reserve in the Phlippines funghilished presentation dt the recent Pacific Science Congress") Seeking to recurale Alcala's observations, taken with considerable care, with the general vield levels apparent from other reports, three possibllites come to mird 13 a vield of 15 tons may represent a highly low alised stuation not whequatel. Aetaged out with due convideration of the atal support area involved, i) it would be a mistane to dssume that interpretatsons frow data walable phor to Alcala's work can be used to suggest a generaliat: wot the potential of reeth ard ferent shallow, and 3)
 veld potential, but one men ine aware of the eatreme variathlls, that might reflect different environmental situations Since almost all other reported atch records tall below the suggested potential of 4 to 5 tons, and ince the reef and reef flat areas of Sumilon Island are small and thus concentration effects might be expected. Alcala sobservations should probably be regarded as uncpe. ather than as an indoator of havent prospects in general

Thoush the data base in eketchy, the potential suagesened in Table 1 is improsive. 16 , it is not far betow the veld of some of the better temperate
 marine reourtes of reef and adjarent shallow can now be made whth added contidence By bleading area medsurements, a gemeralised value for potential, and a cound on site review of specific local conditions, one could offer a reasonible tirst apprasal for almost any ared Certamly one should be cauthous befire advising the local perople to count on harvest) as high as 4 tuns $/ \mathrm{km}^{2}$ yr of finfish alone, but along with such cation, the possibility of supplementary catches from other categories should be considered

Accepting that a finfish harvest of 3 to 5 tomes perkan can be expected annually from the superecosystem discussed, an obvious follow-up question is How does this relate to the standing stork?" Since, as noted, abundance survery have usually been carried out with a focus on the reet habitat, and have generally falled to relate population levels to the overall area of support, this question is not answerable at present Actually one might instead deal with the subject somewhat in reverse. That is, by using data from eisewhere in which vields and standing stock have been comparad, one might attempt a first-order apprarsal of the standing steins of the reefs and adjacent shallows

After a first appraisal, as suggested above, more thorough evaluations should be undertaken It is likely that reef habitats, may be unusually sensitive to fishing pressures (see Huntsman and Manooch, 1978, for a discussion of this). Obviously, one of the needs for ongoing management is to acquire more catch record data To the extent that good catch data become available, one can progress beyond verifying or modifying estimates of the overall potential made thus far and can turn to a consideration of the catch components As with temperate latitude fisheries, the average size in the catch is bound to decrease with ex-

[^6]panded fishing, but a pattern not as common to temperate regions is likely to unfold; namely, a shift in species composition. Thus, the management issues must forus not only on optimum yields but zlso on preferred species and size groupings In fact, the shift in species may be sufficiently disadvantageous as to suggest abstaining from fishing certain areas to :nable preferred species to repopulate Several observers, including lohannes (1978), have noted stuations in which native inhabitants have, under willage rulings, treditionally tosed off sections of reefs to realize recovery of populations in comments not altoget her facetious, C Lavett Smith has suggested (personal communication) rather diastic measures to decimate a fish population that is bidsed unfavorably and thereby to allow for the recovery of desired spectes The point to be made is that complex management problems are involved in taking the important next steps beyond apprasing the integrated harvest potential

To improve the first-order estimates of the overall potential, better and additional catch observations, plus more experimental fishing such as Munro (1978a and other reports) undertonk south of famaion would be verv wefol inere is also a need for greater claritv in gaihering and reporting atch data in order to remove ambiguties as to what catches are referred to, what areas are fished, what environments are involved, etc Admittedly, in practice there are many obstacles to achieving this objective Finally, epectal propects comparing the fishing impact on specitied areas should be undertahen One might run comparison experiments at Enewetak for example, where there are multor, fe, replicate coral knolls that have beeri untished since the atoll was used as a bomb te'st range a quarter of a century ago Munro (1978b) has pointed out that, unce Pacific reets and lagoons are generally environmentally discrete entites. an exponential surplus yield model could be derived if suitable catch records were obtained for a minmum of 30 such areas

References

FAO 1978 Report of the foint ineeting (1977) of the Western Central Atlantic Fishery Commission working party on assessment: of fish resources and working party on stock assessment of shrimp, and lobster resources FAO Fish Rep 211
FAO. 1979 Report of the FAO. IOP work shop on the fishery resources of the Westein Indian Ocean scuth of the equator Indian Ocean Programme Deve'opment Report 45, 102 pp
Culland, I A 1972 T'e fish resources of the orean Fishing News (Books) Lid. West Byfleet
Hill, R B 1978 The use of nearshore marme life as dood resource by American Samoans Pacific Island Studies Progiam. Univ of Hawaa, 170 pp (mimeo)
Hunisman. GR, and C S Manooch I:I 1978 Codstal pelagic and reef fohes in the South Atlantic Bight Marine Recreational Hisherie's 3. Froc 2 nd Ann Marine Recreational Fisheries Symp, pp 97106
Johannes, R F 1978 Traditural marine conservation methods in Oceania and their demise Ann Rev Er,3l Syst 9349 364
Johannes, RE, et al 1972 The reetabolism of come cord reef communities A team study of nutrient and energy flax at Eniwetok Bio-Science 22 5. 41.543
Marshall, N 1970 Food transter througn the low ar trophic levals of the benthic environment In Marine Food Chains, I H Steele, ed. Oliver and Boyd Edinburgh, pp 52-66

Munro, IL 1978a Actual and potential fish production from the coralline shelves of the Caribbean Sea In Cooperative Investigations of the Caribbean and Adacent Regions II. FAO Fish Rep 200. pp 301.321

Munro. IL 1978 b A method for the estimation of potential tish produ, livity of Western Pacific reets and lagoons Tenth Regional Techno al Meeting on tisheries So Pacific Comm
Odum, E P 1971 fundamentals of ecology. Irdf dition Saunders. Philadelphia
Odum, H T, arid t P Odum 1455 Trophic structure and productavis of a windward coral reef commumty on tniwetok Atoll f col Monogr 25291.320
Sale. P 1977 Mantenance of high deversity in coral reet commurities Am Nat 111337359
Smith. SV 1978 Coral reet area and the contributions of reets to proresses and resources of the world soceans Nature $273225-226$
Stevenson, $D K$, and N Marshall 1974 Ceneralizations on the fisheries potential foral reefs and adacent shallow-water ervironments Proc Second Intern Coral Reef Symp. pp 147.156

The Application of Hydroacoustics to Stock Assessment for Tropical Small-Scale Fisheries

Richard E Thorne, University of Washington

Abstract

Hydroacoustic techniques have potential application to stock assessment for tropical small-scale fisheries. The advantages of hydroacoustic techniques include independence from fishery catch statistics, favorable time scale, and high sampling power. A major disadvantage is poor species discrimination An approach used in a similar mixed-species assessment problem in the near-shore Southern California Bight is presented. Hydroacoustics was the primary sampling technique Subsampling for species identification was done by lampara seine. The advantages of this complementary technique approach to assessment problems are discussed

Introduction

The great variety and number of species which characterize tropical ecosystems appear to dictate a fishery management approach which differs from the classic single-species meihodology used for resource assessment in higher latitudes. In fisheries which explot a large number of species together in the same fishing areas, the data collection and analysis tasks involved in assessing each species separately would be beyond the capacity of the limited financial and manpower resources available (FAO, 1978)

Hydroacoustic techniques for resource assessment are relatively recent, and their use in resource surveys has increased considerably in the last decade (Thorne, 1977; Mathisen, 1975). Although most applications to date have been in predominately single-species environments, hydroacoustic techniques have favorable potential for assessment problems in tropical fisheries The advantages and limitations of hydroacoustic techniques and an example of an approach developed for a similar assessment problem are presented in this paper.

Principles of Hydroacoustic Assessment

About 1930, it was discovered that the ultrasonic depth sounder could also be used to detect fish, and subsequently it became widely used for fish detection and quantification. Although special research echo sounders and sonars and several types of automatic signal-processing systems have been developed for fisheries investigations, the basic part of most systems for acoustic surveys is still a standard depth sounder or a sonar (horizontally ranging echo sounder). Acoustic energy at a given ultrasonic frequency (usually 20 to 200 ktiz) is transmitted into the water in a cone-shaped beam. Echoes from discontinuities such as fish or the bottom are received by the transducer, amplified and displayed in some fashion.

Acoustic techniques are based on the fact that the amount of sound
reflected from fish targets is a function of their abundance. The speed of sound propagation through water varies with temperature, salinity, and depth, but is usually between 1,400 and $1,500 \mathrm{~m} / \mathrm{sec}$ A.s sound propagates, the sound intensity - that is, the energy per unit area in the sound wave-decreases because of geometric spreading and absorption. Thus, the sound intensity (l_{r}) at some range (R) can be described by the relationship

$$
\begin{equation*}
I_{r}=\frac{I_{1} 10^{-a \mathrm{R}}}{R^{2}} \tag{1}
\end{equation*}
$$

where l_{1} is the intensity at a unit range from the transducer (sound source), and -a is the attenuation coefficient, which is a function of the sound frequency and the water temperature and salinity

When sound strikes a target, the intensity of the reflected sound is proportional to the iitensity of the incident sound, that is,

$$
\begin{equation*}
I_{r}=k l_{1} \tag{2}
\end{equation*}
$$

where I_{r} is the reflected sound intensity a unit distance from the target, I_{i} is the incident sound intensity, and h is a constant dependent upon the reflective properties of the target

As the reflectied sound returns to the transducer, it is further reduced by geometric spreadirg and absorption The generalized expression for the echo intensity $l_{\text {e }}$ medsured at the transducer is therefore

$$
\begin{equation*}
I_{e}=\frac{k 1_{1} 10^{-2 a R} h^{2}(\theta, \phi)}{R^{4}} \tag{3}
\end{equation*}
$$

where $b^{2}(\Theta, \not \subset)$ is a factor for the transducte directivity pattern and the other symbols are ds defined above The factor for transducer directivity is equal to 10 on the acoustic axis and to less than 10 dt dl other angles. The equation is often expressed in decibel units, which measure ten times the ratio of intensities in logarithmic units, ie.

$$
10 \log _{10}\left({ }_{e} 1_{1}\right)
$$

In dec ibel (dB) units, the sonar equation $:=$

$$
\begin{equation*}
E L=S L+T S \cdot 40 \log R \cdot 2 a R+20 \log b(\theta, \varnothing D) \tag{4}
\end{equation*}
$$

where $L L$ is the echo level, SL is the source level ($10 \log I_{1}$), and TS is the target strength $(10 \log k$)

The target strength depends on the swe of the target and on its reflective characterstics. The target strength of fish is generally a function of size, but it varies between species (especially between those with and without a swim bladder) and is very dependent upon the a pect (orientation) of the fish.

There are basically two types of acoustic data-processing: 1) counting, and 2) amplitude measuring Counting techniques depend on resolving and
enumerating individual targets Amplitude-measuring techniques are based on the principle that the reflected sound intensity (arnplitude-squared) is, for a given size and species of fish, directly proportional to the fish abundance (assuming appropriate range corrections are made) The proportionality constant includes the acoustic system parameters and the mean fish target strength Within these two basic types, the analysis technique may utilize echograms, oscilloscopes, or more sophisticated, automatic signal-processing equipment.

Advantages of Hydroacoustic Techniques

The advantages of hydrodcoustics relative to other resource assessment techniques are 1) indepencience from fishery catch statistics, 2) favorable time scale, 3) relatively low operational costs, 4) low variance, and 5) capability for absolute population estimation.

Figure 1. Estimates of herring prespawners, spawning biomass, catch, and total stock biomass for the Gulf of Ceorgia sac-roe herring fishery at weekly intervals during 1976

Independence from fishery catch statistics allows application to unexploited or poorly exploited stocks. It also frees acoustics from the long lag times associated with catch statistics, leading to the second advantage. Unlike fishery catch statistics which are obtained only after the fishery harvest, hydroacoustic techniques can be applied prior to harvest. This feature is exploited in the management of herring stocks in Alaska and Washington. In these rases, acoustic surveys are conducted immediately before a fishery, and harvest quotas are established on the basis of them. The time scale for the management of the Gulf of Georgia herring stock in Washington is particularly impressive. Manage-
ment is conducted on a week-by-week basis during the period of the fishery An acoustic survey is conducted the first night of the week, the results are analyzed the next day, including establishment of a quota for the week, and the fishery is opened the following day. Figure 1 Illustrates the acoustic data, plus the weekly catch and spawning data which input to the management decisions

The short time scale is neressary for the Gulf of Georgia herring, an intense fishery on a migrating spawning population Surh a time scale is not necessary for tropical small-scale fisteries However, the scale is indicative of the minimal time and eftort required for hydroacoustic assessment and the lack of lag time compared to other techniques

As a result of the high sampling power and efficiency of hydroacoustic techniques, operational costs are relatively low the major operational costs are associated with ship time and manpower for data collection and analysis In all three categories, the costs are usually much lower than those assoc ated with exploratory fishing

The low variance assochated with acoustic terhniques is also the result of the high sampling tapabihis the sampling pure of hirdroacoubtic: on at least an order of magnitude- higher than that of explordtory fishing

The last advantage is the capability for absolute population size estimation This advantage is not paramount, since most techniques for fishery management are based on relative indices such as CPUE However, the capability for absolute estimates allows reasonably precise management without a historical data base, and ultimately leads to a much better understanding of production processes (Thorne, 1978)

Limitations of Hydroacoustics

The limitations of acoustic assessment techniques die: 1) poor species discrimination, 2) little or no sampling (apability near the bottom and the surface, 3) relatively high complexity, 4) high inttal investment, and 5) lack of biclogical samples

The partiton of acousticaliy derived bromash estimates into various species requires auxiliary information, which is usually obtained by subsampling with nets There are possibilities for hydroacoustic identification of species, or at least minimizing uncertainty so reliance on costly direct capture techniques is reduced Such identification depends on establishing species-specific distributional patterns Unfortunately, this establishment requires comparison of acoustically measured distributional patterns with net catches. Thus, as noted in Thorne (1976), "Species information must ultimately come from capture techniques-ironically, the same techniques whose glaring deficiencies made the potential of hydroacoustics so attractive in the first place."

Echo-sounding techniques are limited in their ability to survey near the surface and bottom of the water column and cannot resolve on bottom targets. The limitations near surface and bottom are a function of several parameters, especially pulse length. Boat avoidance is an additional complication for nearsurface fish. An example of this problem is illustrated by the echogram from a concentration of herring and juvenile pollock in southeastern Alaska (Fig. 2A). Even though those fish are supposedly "pelagic," they are distributed on and just
above the bottom with an unknown portion acoustically indistinguishable from the bottom Often this problem can be solved or minimized by taking advantage of diel vertical changes in distribution Figure 2B shows the same concentration of fish at night It is now completely pelagic and accessible to the hydroacoustic gear. Other approaches which can minimize this limitation include deep-towed transducers for better near-bottom resolution, sonars, and up-looking transducers for near-surface distributions.

Figure 2. Echogiams showing mixed laver of herring and juvenile pollock in Auke Bay, Alaska, lanuary 14, 1975, during aftcroon (A) and evening (B), depth scale in fathoms

A third disadvantage of hydroacoustic techniques is their relative complexity fishery management is generally the realm of biologists, who typically have difficulty with the mathematical, electronic, and physical concepts of hydroacoustic technique's Also, since acoustic techniques are highly specialized and comparatively recent, training in these concepts is not usually included in the education of fishery scientists. In addition, since knowledge of the hydroacoustic system pardmeters is critical for successful application, users of hydroacoustic techniques should have good access to hydroacoustic calibration facilities. As a result of this complexity and lack of understanding, there have been many misapplications of hydroacoustic techniques, prompting the statement in Thorne (1978) that "historically the biggest source of error is the result of biologists applying acoustic techniques without having the slightest under-
standing of them
The problem in dggravated in developing countreen where thater, mandgers often do not hate acen to ether the trameng of the support wher whe

 adentallatom in mont dae

An Approach to a Multispecies Assessment Problem

 deterences on obectaes One ot the objectise ot the emaronmental impact

 whore tish dementy and distribution (Thomds. 1974)
like troperal ecosystems, the nedr-shore ared of the Southern Calitornid Bight has high speries diversity However, the primary impact of the cooling systems is himited to a tow spere the The dssessment conditions are untavorable in several other aspects, including hallow water, wide variety of behavior patterns, near-surtace schooling fishes, and mixed-stze clashers

Resedrch was conducted during 1976-79 to develop an optimal set of techriques tor use in the fish entrapment studies Techniques, which were evaluated included commercial CPUE, various direct capture techniques, including lampara seine, horizontal and vertical gill nets, bottom and midwater trawls, acoustic techniques, and optical techniques CPUE was rejected because of lack of synopticity, variable selectivity, and large variance. All direct capture techniques were similarly rejected as the primary sampling tool because of variable selectivity and large variance. Optical methods were rejected because of limited and variable sampling power.

The need for high sampling power and detailed distributional information
dictated the use of hydroacoustic techniques However, since identification of echoes to a species level was required, a net sampling program was developed to subsample a portion of the targets this complementary technique approach minimized the major limitation of hydroacoustic techniques poor species discrimination the second limitation, poor near-surface and bottom resolution, was minimized by surveying at night with a relat. vely small versel and towing a near-surface transducer ahead of the boat from a boom projected from the bori Relegation of net capture techniques to a secondary ampling role limited the problems caused by low sampling power Considerably fewer samples were required for species composition than for density estimation In addition, simultaneous deployment of hydroacoustic and net sampling techniques provides information from which some aspects of net selectivity and efficiency can be evaluated

The research area is characterized by shallow water in which numerous size classes of each species are present Edch of the primary species is characterized by schooling habits. Several species are known or thought to exhibit movements daily or seasonally Most of the species exhibit marked diel shifts in behavior, generally schooling tightly during daylight and dispersing during periods of feeding at night. Several of the species are found throughout the water column. while o:hers are oriented primarily to the bottom They differ in size range In consideration of these behavioral and life history observations for the species of primary concern, optimal net sampling techniques were chosen to identify acoustic targets on the basis of the following chaiacteristics 1) to be able to fish the entire water column at the location of an observed acoustic target in the shortest period of time with the highest efficiency, 2) to have the ability to capture and retain the largest-size range of fishes with a similar catchability; 3) to have the ability to capture the largest variety of species with the least difference in catchability; 4) to be able to fish effectively over the widest variety of habitats; 5) to fish with similar power throughout various diel and seasonal periods; and 6) to be cost-eífective. Clearly, no existing single net sampling method possesses all these characteristics. However, the particular characternstics of the research area led to the choice of a lampara sein? as the primary net capture technique. Selectivity was a major factor in the choice In general, the least selective of fishing gear used in marine waters is the surrounding nets; i.e., purse ring and lampara seines. Their lovi selectivity results primarily from small mesh size. They are also relatively efficient for a large variety of species. The lampara seine probably requires the least amount of time of all the surrounding nets from deployment to closing on an observed fish target

The lampara net was selected as a gear type to subsample acoustic targets in the offshore study area for the above reasons. When fished properly, the lampara seine probably has the ability to capture a larger variety of species (highest relative efficiency) and a larger size range of individual species (lowest relative selectivity) than any other single net which could be deploved to capture acoustic targets located throughout the entire water column.

The complexity of the lampara seine makes description a difficult task However, the following data are pertinent to the net used in 1978. The net used for sampling the acoustic targets consisted of a 35 m corkline at the bunt of the net. The bag of the net measured 12 m deep and was consiructed of approx-
imately 1 cm stretched mesh. The thread of the net (the section around the bag which represents the initial pursing sections) was constructed of heavy material with an approximate mesh size of 2.5 cm . Attached to the sides of the bag (partidlly by the throdt) were two 85 m corkline wings which tapered into 100 ft rope leads. A large float was attached to the primary lead rope and the secondary lead rope was fixed to the boat the retrieval of the rope leads and wings way made with a dual-hydraulic drive system

Obviously, the choice of complementary capture gear depends on the particular characteristics and requirements of the study. The lampara seine met most of the needs of the fish entrapment studies, but it was necessary to complement it with gill nets, since the seine could not be deployed safely within 60 m of an intake structure and because information on the vertical distribution of specties was needed These particular requirements are not relevant to fishery management problems However, depending on the depth and vertical distribution, trawling technigues might be required either as primary or complementary capture techniques

Discussion and Conclusions

Far too often, fishery managers tend to evaluate management techniques in the framework of selecting the single best one. All management techniques have both advantages and limitations, and the relative weight of these varies with the specific circumstances Often the critical limitations can be minimized by using complementary techniques As hydro:coustic techniques develop and become better understood, their advantages relative to other techniques are becoming more widely appreciated, with corresponding increase in their use. All fisheries have specific management problems, and a best technique or set of techniques needs to be tailored to those specific needs The same is true of hydroacoustics as an assessment technique. Considerable tlexibility in the procedures is avalable to hest suit the characteristics of the fish stock. This flexibility includes the use of complementary techniques in order to minimize specific limitations. Often the greatest limitation of hydroacoustics is the poor species discrimination, and any application of hydroacoustics to stock assessment in tropical small-scale fisheries must account for this limitation either by management on a total biomass basis or by developing suitable complementary techniques.

Acknowledgments

Support for preparation of this manuscript was provided by the Washington Sea Crant Prograr. Sea Crant, an agency of NOAA, U.S. Dept. of Commerce, has actively supported research on hydroacoustic resource assessment techniques at the University of Washington. The development of techniques for the fish entrapment studies was supported by Southern California Edison.

References

FAO 1978 Report of the ninth session of the advisory committee of experts on marine resources research. FAO Fish Rep 206, 23 pp.

Mathisen. O 1975. Three decades of hydroacoustic fish stock assessment. MTS Journal $9(6) 33 \cdot 34$
Thomas, $C 1979$ The application of hydroacoustic techniques to determine the spatial distribution and abundance of fishes in the nearshore area in the vicinity of thermal generating stations Proc IEEE 1979 Conference on Engineering in the Ocean Environnent
Thorne. R 1976 Esho sounding and fish population estimation Proc. Ann Conf West Assor Ciame fish Comm 5, $257-264$

1977 A new digital hydrodcoustic data processor and some observations on herring in Alaska I Fish Res Bd Can $342288-2294$

1977b. Acoustic survevs In Survey Methods of Appraising Fishery Resources, A Saville, ed. FAO Fish Tech Paper 171, pp 20-39

1978 Investigations into the accuracy and precision of acoustic techniques for resource assessment Proc 93rdMeeting ASA.I Acousi Soc Am 64

Age and Growth Studies on Tropical Fishes

Edward B. Brothers, Cornell University

Abstract

Reliable age and growth data are necessary for the scientific management of fisheries. Comnon biological characteristics of tropical fishes, such as weakly expresse \dot{i} annual or seasonal cycles of growth and reproduction and their population structure consequences, have made age and growth rate determination difficult for many species. knowledge and experience gained from siudies on temperate fishes utilizing anatomical and statistical techniques can be successfully addpted to the tropics. However, due to the complexity of interpreting the significance of time markers in calcareous structures, or of unraveling population dynamics, this has proven to be a challenging and sometimes imprecise science. The advantages and disadvantages of different traditional aging methods are discussed, with particular reference to problems encountered in the tropics. Further improvements in the sucsess rate of these approaches will depend primarily upon the careful execution of already established procedures. a new technique which relies upon the existence of daily growth units (marks) in otoliths uffers a substantial al/antage because of its suitability for accurately aging at least the early stages of all marine and freshwater fishej. Under the proper circumstances, adult ages and growth rates can also be determined. Further research may help to increase its usefulness for the adults of more species. The importance of this technique is illustrated by examples of potential and realized applications of otolith microstructure data to studies of tropical fishes.

Introduction

Information on the age and growth of fishes is a central element in fishery management analysis. Growth rate data are essential for production estimates. Even preliminary studies may be useful in first identifying exploitaiole species. Age-specific parameters such as mortality and fecundity are the basis for fishery analysis using dynamic population models. Other types of information that can be obtained from detailed age and growth studies include description of the population structure, determination of the timing and frequency of spawning, individual and population growth responses to environmental changes such as population density or habitat alteration, and annual or short-term variation in recruitment success. These data, whether of a basic life history nature or directly applicable to fishery statistics, all greatly contribute to our understanding of the biology of fishes. Furthermore, in a more applied sense, we can oxtend this age and growth information to examine past responses and predict future changes in relation to a variety of exploitation schemes.

The utility and importance of age and growth studies are beyond question; unfortunately, the means to effect them are far from standardized, and serious difficulties arise when one attempts to attain the higher levels of precision and accuracy needed for more detailed studies. In the case of small-scale fisheries in
tropical waters, the problems are greater, even for relatively gross estmaten of ege and growth This is dee to two factors the biological properties of tropical rishes (or, more appropratel), fishen in the tropics. Wo induate the role of environment) and the greater dificulte in obtaning larger representatioe samples and stathation for the ese finheries

It in not intended that this contribution atrie dh a inanual tor daing troperal fishes, rather, it is a reverw of the current status of our knowledge and methodology for the aging of fishes in general, with spectal reference to the tropics. This dencussion emphasizes the absumptions bata to eded method and then considers some of the ngnificant advantages and disadvantagen of the ditferent approathes A relatively recent development in aging studien in the analysin of otolith mucrostructure to obtain extemely detaled growth hasory information It is this method which otters the only true break through in the study of tropical fishes Appropriately, this ter hnique is revewed and dincussed in greater detal, with some brief examples of both realized and potental itudies Finally, there is a short section on important areds for future reseder h

There is a vast literature on age and growth determination for tishes Basically, the methodology falls into three types 1) dired medsurement of growth in certain individuals and extrapolation to the populatoon-e g, markrecapture studies or growth in continement. 2) statistical approaches based on measurements of large samples-eg, modal progresson in a time series of length-frequency histograns, and if aging individuals on the basm of regular periodic markers in hard structure, (usually calcifed), whe has exales, otoliths, and bones (anatome al method) Cood review of approachestorage fishen (an be found in Craham (1929), Menon (1950). Chugnova (1959), Tesch (1971), Weatherley (1972), and Ricker (1979) Several authors have dealt specifically with tropical fishes (Menon, 1953; DeBont, 1967, Fryer and Iles, 19\%2, and LoweMcConnell, 1975). The major subjects of discussion in most of these reviews can be classified into the following topics: 1) manual-style instructions on the mechanics of aging studies, 2) criteria for validating the ternporal significance of age markers, 3) exogenous and endogenous causes for the appearance of these miarks, 4) statistical treatment and mathematical models for data, and 5) numerous examples. Examination of these papers as well as of a great many specific publications on both trodical and temperate species reveals that there have not been any truly substantial or generally applicable improvements in the anatomical methods since their discovery at the end of the last century. Second, critical testing of the validity of annual or seasonal marks, particularly in tropical fishes, has often been ignored or only weakly attempted because of ihe success of these techniques in fishes of higher latitudes. Many workers seem to be satisfied with an assumption of analogy, or a sometimes biased view of less than convincing "corroborating" length-frequency analysis Finally, the weak or complex expression of age marks in many tropical species makes what in temperate fish is a subjective discrimination problem an even worse situation

Compared to temperate species, tropical fishes, both freshwater and marine, live in environments which on the average show less seasonal variation in such abiotic and biotic factors as temperature and productivity. To the extent that recognizable zones on scales or otoliths are reflection; of variations in growth rate in response to such factors, it is natural to expect that the marks
would be lea well developed or even abent in the tropks Many author, report that no edulh obsersable or interperetable marhs occur in the hard parts of a number of toped spectes Nevertneles, crillal andwh not onic of enwrononental parameters bu: aloo ht whit growth. edologh and behasor has

 woun examples ind lude the preder table cool moneoon ram period, alternationg with hotter and dres weather fhe efted of rebultant (haiger in temperature.
 (luding Cheter, (1931), Memon (1953), and Saropini (1957) small ditterence in

 Reproductive procores in the, whe substantal thite in nutritional and metabolic pathwa, (Weatherle:, 197.. Hes, 1974) wheth usually have resultant
 preceding gonad maturatoon, mat be expected to reault in dexermble marh on
 upectes with rentricted breeding sedsoms (seee Blacher, 1974, tor otolth examples), but the supposed greatly extended or evendedanal wawneng patterm of troper aithher led many workers to belleve that auch edtectis would not be seen In theיe fisher Howeder, hedonal pattern, of reproductoon are now very well documented in a wide variety of marme and treshwater specters (e g , Saropini, 1957, Hopson, 1965. Randall, 1961, Hyer and lles, 1972, I.owe-Mc Connell, 1975. and Ialbot et al, 1978) the occurrence of uale or otolith marhs has at least been , lonely correlated to reprodurtue artarty in wome trophal fishes (Holden, 1955. Garrod. 1959, H(, poon, 1965, Krhhayya, 1963, Poinsard and Troadec. 1966, and Pantulu, 1962) twen if an asedsonal pattern exats for the population as a whole, it is possible that individua! fish may show a regular cyele, which, if determined from gonad studies and reflected in alcitied structures, could also be ueed for aging

Thus, the major difficulty in directly aging tropical fishes is the evenness of growth processes throughout the year, a generaluation with more exceptions emerging, and one which may only be valid in comparison to certain highlatitude spectes Regular seasonal variability in reproduction, growth rate, feeding intensity, and movements is readily observable in the tropics. More detailed analysis of hard structures is needed to determine whether the fish are recording such changes. Otoliths of many of the species have arioverabundance of potentially decipherable marks; determining their significance is a major challenge for the future

The perplexing nature of marks in the otoliths, scales, and bones of tropical fishes is exacerbated by the equally great problems encountered in statistical approaches used either as serifying criteria or as alternate aging methods. The most significart of these complicating circumstances is that recruitment is typically extended over a long period in the year in many species. As noted above, this is made more probleniatical by the often irregular and incomplete sampling programs available to small-scale fisheries. Thus, the value of a major method of
analysis, the examination of length-frequency histograms, can be decreased because of the broad overlap of age classes, even in the voungest categories Further discussion of these statistical approaches is included in ihe following section

Review and Discussion of Methods

Time Markers in Calcified structures

For information on this welt-estableshed and widely practiced method, see the general reviews referred to earlier, as well as those on otoliths by Blacker (1974) and Williams and Bedtord (197i), and on bones by Menon (1950) Time markers of very short permidicity-eg, dally marks in otoliths-will be dis. cussed separately belon A wide variety of itructures in involved in this method. typically sades, otolths, and varous bones such as tin spmene, vertebral centra. cleithra, hypurals, and shull bones, The bask premese of this apporodech is that periodic changes in the growth rate of these structures (both in form-eg. (irculi spacing on sales-and or in composition-eg, hyaline and opaque anes of bones and otoliths) are retlections of (hanger in growth of the tish More specifically, the fish may be expertenting endogenous and or exogenounly induced cycles of somatic growth rate, or perhaps fast protem and calcium metabolism (protein and calsoum beang the major constituents of these strustures) The nature of the causative retatoonship between the ecology, behavior, and physiology of the fist and the cobererved marks is an emportant and continuing ared of investgation Potentally, expermental approaches combined with detailed structural and chemocal andures should yeld the greaterst mights (e g. references in Blacker, 1974, Simkiss, 1974, Bilton, 1974)

In spite of a number of contradictory results in the literature (only some of which are artifacts of termmology and methods), there still are generally observable patterns in the calcified structures of temperate fishes To summarize briefly, in bones and otoliths, fast or accelerating growth cones usually appedr as broad, opaque (optically dense) zones, while slow growth cones dre narrower and hyaline (more translucent). As pointed out by Mina (1968) and others, the terms "hyaline" and "opaque" are relative terms which refer to optical comparisons of adjacent material. Even under relatively low magnifications, these "major" zones, which are often demonstrated to be seasonal in occurrence (ie. one or two each per yeai), are seen to consist of a gradient of optical densities and are composed of a number of less distinct discontinuities defining "minor" hyaline or opaque areas. The significance of these minor zones is being elucidated in microstructural siudies (see below). In scales, slow growth zones are represented by more closely spaced circuli or sclerites or, in some cases, by irregular circuli and evidence of resorption.

The highly seasonal nature of growth and reproduction is accepted to be related in some way to the appearance of these marks. In many cases, this has been clearly demonstrated, and the marks are confidently used for age determination (well-executed recent studies involving subtropical or temperate families having representatives in the tropics include McErlean, 1963; Moe, 1969; Tong and Vooren, 1972; Johnson, 1972; Van der Waal, 1975; Warner, 1975;

Cambell and Collins. 1975; Powell, 1975; Gregory and low, 1976; and Davis, 1977)

There are a number of advantages to this widely used method It affords a relatively simple way to determine age of indwidual fish, thereby gaining intormation on intrapopulational variation as well as establishing population parameters trom representative samples A powerful application is the ability to retreve nistorial data from the growth records of individuals by back calculdtron (see below) This enables investigators to extend their growth studes into period, when population and environmenta! conditions may have been different, allowing, for example, tor the andysth of growth trends with respect to different thang presure finally, the method of age and growth determination is not as dependent upon extemsere representative sampling as some of the techniques that tollom

Age determmatien bl lime markery on (ald areoun atructuren b clearly the pretere d method the onls whatantal diaddantage is the difficulty of it application and the extreme (are and extensme study that may be necessary to eatablish in balidats in a particular bituation Once established, the amount of techoual will and eldborate equpment netesary can usually be kept to a
 nular accemory theck, the ee are fedture, whech mav be motaken for true annuat or other pereodic mark unlens carefull serutmered they corrempond to the menor hvaline and opague rone referred to above These ate esoory marks may or mat not be uneful for determining dge, but this can only be determined once callative tactore or pattern are entablished in many temperdte and tropual twhes it is noted that one of the hard parts, tither bones, sedtes, or otoliths, is the most readable it is not uncommon to find inconsistencies between count irom difterent etructures, particularly concerning the first tew annual or wednonal marks Oftern even the best of thene structures requires parstaking preparation in order to entance the visbblity of the marks finally, there can be a subatantal amount of subgectivity molved in discrin,inating what are considered to be the "true" lime inarkers for a number of reasons mentioned in the introduction, these problems are exaggerated in mont tropical fishes Many author, imply note that calcareous structures ewther have no discermble marks or do not show any decipherable pattern Therefore, it becomes extremely important to take gredt care to validate the periodicity of observed marks Graham (1929) and var Ooten (1929) were the first to clearly state a procedure for validating age marks These criteria have been further elaborated and used by many researchers However, too many studies, particularly in the tropics, have not followed or have been unable to follow the criteria in a rigorous manner

A revised list and brief discussion of types of validating criteria follows. Not all are applic able in every case, and some are better than others Several of them are, in fact, alternate aging methods (*) with which scale, bone, or otnlith derived ages and growth rates can be compared These will be discussed separately below

1. * Length-frequency analysis of a population sample, Peterson method.
2. Modal-progression analysis in a time series of population samples.
3. Comparison with growth rates derived from tag-recapture data or growth in captivity
4. Determination of the period and timing of mark formation This is usually carried out by a qualitative and quantitative examination of the margin of the scales, bones, or otoliths in samples taken at different times of the year. This may require special collecting efforts

5 Determination of the propcrtionality of growth of the aging structure and the length or weight of the tish Once a relationship is established and mathematically or graphically des:ribed, measurements to earlier formed time marks can be used to back-calculate the growth history of individuals. A growth curve constructed from these data should approximately conform to the curve derived from ages of tish at the time of capture

6 Comparison of ages derived from different structures; e.g. scales vs otoliths

7 Tag and recapture studies where the calcified structure itself is also marked, using hemicals such as ${ }^{45} \mathrm{Ca}$ (lrie, 1960), lead (Ickikawa and Hiyama, 1954), or tetracycline (Weber and Ridgeway, 1967; Jones and Bedford, 1968) Here the number of marks between the chemical tag and the margin is compared to the known elapsed time period. This is a powerful tool, but it requires a large effort in time, energy, and money An easier but relateó method simply compares the number of annual or seasonal zones on fish of known age This may be accomplished by tag and release where age is known (e.g, for young of the year) or by holding fish in captivity of some sort All of these techniques require relatively long periods of time before results are meaningful, and they are also subject to the various biases introduced by tagging and or artificial confinement Williams and Bedford (1974) and Poinsard and Troadec (1966) point out an analogous validating technique which relies upon recognition of unusual zones formed in particular years. These marks may be used as a reference point for subsequent counts
8. Comparison of the empirically derived growth curve to mathematical formulations such as the von Bertalanffy growth curve. This is only one of several possible comparisons (Ricker, 1979). All have different biological and nonbiological assumptions, and a particular one will usually tit the data better than others. However, wildly deviant empirical paiterns should be suspect

9 Correlation of the time of mark fo: mation with various exogenous and endogenous cycles such as temperature, salinity, rainfall, feeding intensity, condition, or reproductive activity. Correlation will not establish a causative relation, but this method will at least help to establish a biological basis for the observed periodically marked structures.

10 Establishment of objective criteria to discriminate marks; avoidance of bias by aging fish without knowing their size; and comparison between readers for consistency.

Criterion 4 is very important, quite straightforward, and gives unambiguous results when it can be properly applied Complications arise when the marks are found to be formed over a large part of the year or when different age or size classes form them at different times (e.g. Moe, 1969; Williams and Bedford, 1974). The apparent extended period of mark formation in tropical fishes can lead to ambiguous results, especially with small samples. Negative results by this test-i.e., determining that marks may be formed at any time of the year-do not necessarily eliminate the possibility of their being regular periodic markers

If it can be shown that the presence of the marks is related to some regular event in the life of an individual fish, such as spawning every four months, ihen these marks can be used for aging almoit as well as if all fish in the population were sunchronized

The studes on subtropical fishes referred to earlier provide excellent examples et the practical application of many of the above criteria A tew case studies involuing tropecal fishes include those by LeRoux (1961), Pantulu (1962). Krishnary (196 3), and Kutty (1971)

Length-Frequency Analysis

Under this heading are included at least three closely related methods which depend upon large, relatively representative population samples as their data base. As the sice structure of a sample is plotted as a length (or weight) frequency histogram, various peaks usually emeige which are taken to represent modal lengths of age classes There are statistical and computer techniques to help discriminate the modes by assuming that the total distribution is composed of a series of overlapping normal distributions (Harding, 1949; Cassie, 1954; McNew and Summerfelt, 1978; examples in Mathews, 1974; Skillman and Yong, 1976) When a single or combined sample is used, the technique is usually called the Peterson method Here assumptions are made on the time interval which separates different peaks assumed to represent age groups (Pauly, 1978) A modification involves sampling the same population serially (a problem di, cussed below) and then noting the growth of fishes as reflected in modal class progression with respect to time. Assumptions in this method involve decisions on which peaks should be interconnected; that is, which represent the same age class. Finally, in species where modes are not well developed, occasionally a dominant or scarce year class may act as a marker which can then be followed as the fish grow with time. Here one has to be concerned with the possibility that this age class may also exhibit somewhat abnormally fast or slow growth.

There are a number of assumptions and conditions which generally affect the usefulness of the above method. It works best when recruitment is restricted in time and when growth is relatively rapid throughout life, with a minimum of variability between individuals and age classes. Samples must be representative and unbiased with respect to the population in question; gear selectivity and fish movements altering availability will strongly affect the results.

The major advantage of length-frequency analysis is that it can be a relatively simple matter to obtain size data from many fisheries. Thus, the catch statistics thernselves can, under the right circumstances, form the basis for the age and growth analysis. This makes it easy and cheap, requiring no highly skilled technical personnel. There are several limitations, however, which arise when the fish biology and sampling schemes do not conform to the assumptions and conditions stated above. This is particularly true for tropical species

1. Breeding seasons tend to be prolonged over several months or more; thus, even the youngest age classes may not be easily separable from one another. Short life cycles complicate and telescope the distributions even further.
2. Older age classes tend to crowd and overlap as growth typically decelerates and variability within classes increases.
3. Individual variation, especially difierences between the sexes, may obscure modes if not taken into account
4. Dominant or variable age classes may introduce statistica! problems
5. The lower number of older fishes available (due to mortality) makes
6. Due to environmental or population changes, current age or swespecific growth rates determined from length-frequency analysis may not conform with back-calculated lengths from anatomically based aging
7. The method only allows a statistical characterization of a large sample, it does not work for individuals or :jmall samples
8. Samples are easily biased by gear and site selectivity and fish movements which may cause size or age clesses to appear and disappear, as, for example, in reproductive migrations

Despite all of these potentially complicating factors, these me hods are widely applied, commonly with good results However, the inferences made have not always been substantiated by other methods. A few examples of the use of these techniques for tropical fishes include studies by Sarojini (1957). Bennett (1961), Pantulu (1962), Longhurst (1905), Fryer and Iles (1972), and LeGuen and Sakagawa (1973). Olsen (1954) used length-frequency analysis and tagging data to age subtropical sharks, for which no direct aging rnethods worked. Many fishes, particularly in the tropics, are demonstrated to have a lunar or semilunar spawning and juvenile recruitment periodicity (Johannes, 1978). Thus, the minot peaks in recruitment may be followed to gain information at least on early growth. These cycles are probably the cause for at least some of the "minor modes" noted by several researchers (e.g. Randall, 1961; Feddern, 1965)

Tag-Recapture Studies

Fish can be marked in a variety of ways such as fin clipping, tatooing, attaching a variety of external and internal tags, and chemical exnosure (usually injection), which causes a mark to form on calcareous structures (see above). The measurement of fish length and/or weight at the time of release and then at recapture can provide direct information on the growth rate of individuals. These can later be applied to a mathematical growth description to provide estimates of age as well. The most important assumption in the method is that the presence of the tag or perhaps the tagging and capture procedures themselves do not affect growth rate. This may or may not be true, depending on the species, tvpe of tag, and other circumstances (e.g., Fryer and lles, 1972; Bardach and Menzel, 1957). In some cases, the method of capture, such as trapping, may bias results because of the amount of time certain fish spend in traps and because some ísh cannot feed while enclosed (Randall, 1962). Some other examples of tag-recapture studies on the growth of tropical or subtropical fishes include Olsen (1954), Randall (1961), and Joseph and Calkins (1969). As mentioned earlier, tagging studies incorporating a chemical marker on scales, bones, or otoliths are very valuable for verifying the time periods of natural mark formation.

There are a number of significant disadvantages to tag-recapture studies. These include the uncertainty of the effect of tagging on growth; the common occurrence of large measurement errors, especially due to the difficult and
usually different measuring conditions at release and recapture, resulting in "negative growth": the need to mark large numbers of fish in order to have sufficrent returns (more necessary and more difficult for older fish), the need for intenatve ettors, usually at great expense, the possibilty that long-term returns mas be necestan to show measurable growth and the difficulty of individually tagging smatland delicate fishe's, including young of the year of larger species in some' (ases, this latter problem has been circumvented by direct diver observation and medsurement of eedentary fihh (Allen. 1975, Cunderman and Popper (1975) took advantage of an accodental fish kill which dentroyed the fish fauna of a small reef in the Gult of Agaba Natural resettlement ocrured soon atterward during the normal sedsonal spawning peak Censusing over the following vear entablished early growth rates tor several of the more sedentary specte's bumbar experimental studies, may be carried out on natural or artificial reefs Although no tagging in necessary in surh methods, there is still a strong possibility of "abnormal" growthrates in these altered environments.

Fragmentary data from tagging studies or other growth stuaies can be used to entablish more complete growth curves and age estimates Growth data such ab length at t and $t+1$ are fit to a theoretical growth formula such as the von Bertalanfiy using Walford plots (Weatherley, 1974) In this case, a straight line is usually fitted to the points and the growth parameters are calculated The method force's a particular form of growth curve on the data, which may or may not be realistic

Rearing Experiment (Laboratory and Field)

It is practically possible to rear some species under seminatural conditions, ether in the laboratory or in some sort of enclosure in the field. The introduction of fish to natural or man-made bodies of water also falls into this category. In this manner, fishes of known age can be monitored to establish growth rates and to look for marks on calcareous structures. As in the case stated above, there is an almost certain departure from growth exhibited by fish in their natural, undisturbed environment

In Vitro Determination of Relative "Instantaneous" Growth Rates

Ottaway and Simkiss (1977) and Ottaway (1978) describe a radically different method which measures the rate of ${ }^{14} \mathrm{C}$ glycine incorporation by cells associated with isolated fish scales. This is a new technique which requires rather sophisticated procedures and equipment. Furthermore, this method appears to offer a way to determine only relative growth rate as yet, and is perhaps applicable solely within a species. There has not been any attempt to transform results into absolute growth rates. This work is mentioned here not only because of the promise it holds for determining growth rates but, more importantly, because of its potential usefulness in experimentation on the factors controlling scale growth

Otolith Microstructure

In 1971, Giorgio Pannella published a paper in which he re-examined the microstructure of fish ctoliths and came to the remarkable conclusion that the
finest lamellae of which they are composed are formed with daily periodicity The structures he described had been seen by a number of earlier workers (mos notably. Hickling, 1931). however. Parinella's careful analysis of recurient group ings or patterns of the fine growth increments stronglv suggested their true tem. poral signiticance A number of papers have since followed, reconfirming the presence of dally growth units by a variety of other means, in a wide sampling of species from many different habitats (Pannella, 1974, Ralston, 1976, LeCuen, 1976. Brothers et al. 1976. Struhsaker and Uchiyama, 1976. Taubert and Coble. 1977. Brothers and McFarland, 1979, and Brothers, unpublished observation) Many of the fish studied were larvae and fuventes of tropical spectes The reason for the interest in these tvpes of ishes is simple, the andyss of otolith microstructure offers the only way to determine directly the age of individuals in these categories, since they usually offer no other type of readily visible time marker in their otoliths or other calcareous structures.

The method of preparation for viewing daily growth units varies with the size of the otolith and its structural peculiarities Unlike traditional otolith studies, which almost always utilize the sagitta or saccular otolith, microstructure studies may often best be carried out on the other otoliths, particularly the utricular parr, or lapilli (Brothers, unpublished observation. Brothers and McFarland, 1979) Specimens may be viewed whole, ground and polished, or etched (for acetate replication and SEM) The basic and most generally useful technique iavolves direct viewing of ground otoliths with a high-quality compound light microscope at magnifications of about 250 to $1500 \times$. Very helpful accessories are television viewing systems and polarizing filters. These can greatly enhance image quality to make otherwise non-discernible features visible Semiautomated counting and measuring systems are also currently being developed (Methot, 1979)

Fundamental research on the occurrence and mechanism of daily growth unit formation has revealed that thev are usually present in the otoliths of all bony fishes, at least during the early life history (i.e, through the juvenile phase) In ontogeny, daily growth units may begin to form as early as the pre-hatching "embryonic" phase, or as late as volk absorption, depending upon the species The daily growth units themselves are usually simple bipartite structures (measuring from 0.25 to well over $25 \mu \mathrm{~m}$ thick), each composed of \boldsymbol{r} protein-rich and a protein-poor layer. Research in the laboratory at Cornell in'scates that in temperate stream fishes the protein-rich laver is deposited at right, under the direct influence of falling water temperatures. Daily growth units are more complex in some species or life stages, being composed of two to several subdaily growth increments formed over a 24 -hour period. In temperate stream fishes, temperature is the predominant factor in determining the time of formation, thickness, and overall protein content of growth increments, with food and light cycles having subordinate roles. Taubert and Coble (1977) have also implicated the importance of endogenous rhythms.

Two classes of information are available from the study of otolith microstructure: one is based on counts of daily growth units, the other depends upon detailed examination of the characteristics of each unit (Brothers, 1979). Count data yield ages in days. This method is based upon validating the existence of daily growth units, knowing the age at which growth units begin to form, and
determining that a complete time record is preserved in thit otolith. The latter condition appears to hold for the larvae and juveniles of most fishes, and may include the adults of some In the majority of fishes, however, once growth rates (both of the fish and of the otolith) begin to decelerate, daily growth units becorne propertionately thinner and also seem to be interspersed between growth interruptions of varying duration (see Parinella, 1971. 1974) Only under special conditions can the duration of the interruptions be determined The presence of growth interruptions therefore poses a serious problem to age determination by dally growth unit counts. For fishes which have strongly periodic growth, the growth interruptions are usual!y clustered in the slow growth (hyaline) zones of the otolith, however, clear exceptions to this occur (Brothers, personal observation) As a generalization, complete daily growth records in tropical foshes are usually present for at least the first 150 to 200 days; thereafter, the completeness and readability of the record depends upon the physical properties of the otolith and the biological characteristics of the species In some tropical fishes, apparently continuous dally growth records of two or more years are present Beyond this point, other types of longer-period otolith growth rhythms, which may also be apparent in the microstructure, such as lunar or spawning cycles, perhaps could be used for aging (Pannella, 1974); however, more research is required to evaluate the potential here

The second type of microstructure study involves, the thickness, protein content, and subdaily structure of individual dally growth units Such analysis yields additional information on the day-to-day ("instantaneous") growth, elivironmental conditions, and changes in the life history experienced by a fish Daily growth rates and back-calculations of growth history can be determined in a manner analogous to back-calculations using the traditional annual or semiannual zones

Validation of correct identification of daily growth units and demonstration of the existence of complete records are necessary because of the presence of complicating factors such as subdaily growth increments and growth interruptions Another assumption inherent in calculating instantaneous growth and back-calculations is that there is a precisely definable fish growth/otolith growth relationship, not only on a relatively coarse time and size scale, as in traditiona! otolith studies, but also on a daily basis. The following procedures are useful in increasing the reliability of microstructure studies

1. Determining the age at which daily growth unit formation commences is usually accomplished by laboratory rearing of eggs and larvae under close to natural conditions. Such studies are not essential for most applicaions, since the majority of tropical fishes have fairly rapid development times and daily growth units probably first appear within a week of fertilization. Thus, errors that may be introduced by not knowing the absolute age are small relative to the total counts of juveniles or adults.
2. Validation of the daily nature of the increments or units and the completeness of the record can be ascertained by a variety of approaches analogous to those used for validating seasonal or annual marks. Any other method that can be used to approximate age and growth-e.g., length-frequency analysis of new recruits, mark-recapture, lab rearing, known time of spawning, etc. - can be
helpful. Modifications of several methods presented earlier require additional discussion:
a Marginal Increment Under optimal circumstances of rapid growth, large, tasily visible growth increments, and availability of fish, specimens can be collected over a 24 -hour period, and the condition of the margin can be noted-ie, whether the protein-rich or protein-poor layer is being formed - and quaritifed Although thas has been acromplahed for a fen tropical and temperate spectes (Brothers, personal obervation). It in very difficule, and not possible or worthwhile for a rout one aging study
b Otolithe can be marhed in vivo in various ways, typically, by chemical infection such as with tetracyeline. The tish are then either held in the laboratory or externally tagged and released in the wild Subsequent ex. amination of the otolithe after a known period a an be compared to incerement counts
c In some cases, "natural" marks appear in the otoliths, usually as a result of phwisal variatoon in the environment: a g, thatp temperature fluctudtions or tidal cyeles Counting back from the margin to such marks can confirm the daily nature of growth units. This technique works if the date of the "disturbance" is known. Otherwise, one can simply look for consistencr between individuals, which would be evidence for regularity of growth unit formation but not necessarily for the period or the completeness of the record. Pannella (1971) used a modification of this method by counting increments between periodic marks (actually patterms of increment intensty and spacing) and then relating these counts to the duration of expected environmental (yeles; eg, lunar, seasonal, and annual
d Struhsaker and U(hiyama (1976) utilized a statistical approach by sampling a population, calculating a mean otolith age, and then resampling the same population to determine whether the mean otolitit age increase agreed with the known elapsed time period This method requires that there be no significant changes in the population composition between samples

Pctential of the Microstructural Method and Some Examples. In the course of the author's studies on tropical fishes, otoliths of approximately 200 species from over 65 families (see Appendix) have been examined Most of these were juveniles; however, many were adults. Validation was not rigorous for most of the species in this preliminary survey, but there is very good evidence that confirmed daily growth units were present and correctly discriminated in sevaral species. The otoliths of all species had analogous microstructural elements assumed to be daily, pending further investigation Given this assumption, a general conclusion of the survey is that tropical fishes, both marine and freshwater, can be accurately aged by means of couits of daily growth units, from the larval at least through part of the juvenile stage. On the average, aging beyond 200 days is difficult; success is dependent upon the species involved, and further development or preparation techniques is required for many. Pannella (1974) has suggested the use of higher-order patterns (e.g., luriar rhythms) to help in age determination of adults. Although such patterns are sometimes visible, their appearance is often very irregular, inconsistent, and difficult to demon-
strate critically. Thuc they have very limited usefulness for aging the majority of tropical species. Of course, this is especially true for freshwater forms

A recent study by Brothers and McFarland (1979) illustrates the potential power of microstructure analysis. Juvenile French grunts (Haemulon flavolineatum) were aged and a growth curve was established for the first 100 days (other studies have extended it to over 300 days). Furthermore, examination of daily growth unit spacing and structure revealed discontinuities at certain ages that, when back-calculated to fish length, were found to correspond to observed size ranges undergoing ecobehavioral transitions in habitat, social behavior, feeding ecology, and diet. Work continues on back-calculating spaw/ning and settlement dates for new recruits, establishing evidence for a lunar periodicity in these activities.

Thus far, the most extensive completed or nearly completed studies on tropical species by other workers have centered on the families Cichlidae (Fagade, 1976; Taubert and Coble, 1977); Scombridae (A. Wild, I.A.T.T.C., unpublished manuscript); Engraulidae (Struhsaker and Uchiyama, 1976); Chaetodontidae (Ralston, 1976); Lutjanidae, Centropomidae, Carangidae, Haemulidae, and Holocentridae (Pannella, 1974); and Sciaenidae (Pannella, 1974; LeGuen, 1976). A number of other laboratories around the world have initiated otolith microstructure investigations as a routine procedure. There should be many studies on tropical fishes forthcoming in the near future.

Applications of Otolith Microstructure Data. The data are most easily applied to the accurate determination of age and growth rates of young fishes. Only fish size and daily growth unit counts are required. As mentioned earlier, given the proper validation precautions, the method can be extended to older individuals in a number of species. Where fisheries utilize juvenile fishes, these data are of direct interest to production estimates, hewever, most fishery analysis requires age and growth information on the entire life history of a species. Even when a complete adult microstructure (i.e., daily) record is not obtainable, growth patterns up to the point when the record becomes unreliable may be useful to project an expected adult growth rate and longevity. Observations on maximum sizes of individuals in combination with early growth curves and such tools as Walford plots may be useful to obtain a first approximation of the needed fishery statistics.

Complete, detailed age data may be used to determine spawning times and to reveal the presence of seasonality o_{i} periodicity in recruitment. With the proper sampling scheme, and knowledge of inicrostructural patterns corresponding to life history changes, the duration of the larval, planktonic, and/or pelagic phase of near-shore tropical fishes can be deisrmined. This is of great importance in understanding the recruitment dynamics of reef fishes, and particularly in evaluating whether local stocks are potentially st!f-sustaining or perhaps receiving substantia! input from other areas due to larval drift and water movements. Island fisheries would be especially interested in such information. Given a sufficient knowledge of liscal current patterns, information on the ages of newly settling larvae could even help to locate sites of spawning activity if this is unknown for certain species (especially migratory ones).

Back-calculations of growth history and instantaneous growth rates from
daily growth unit measurements can contribute substantial information on the ecology, behavior. and physiology of tropical fishes. The certain identication o spawning marks is also a potentially valuable toul. Published accounts of suct marks have not been ri ooously verified (Pannella, 1974; Fagade, 1976). Once we have a clear understanding of the exogenous and endogerious factors involved ir determining otolith microstructure, we should have a remarkably sensitive method for reconstructing the growth history of individual fish as well as for detecting environmental changes. For example, work on temperate stream fishes has demonstrated that the otoliths of some species act as daily, even subdaily, recorders of water temperciture and are responsive in different ways to mean daily temperature, rate of change, and range (Brothers, personal observation).

Recommendations for Future Research

In order to increase our information on the age and growth of tropica fishes, several lines of research should be followed. There is still a serious neec for well-controlled experimental laboratory and field manipulations of fishes tc determine the causative factors involved in the formation of all marks, subdaily to seasonal, in different calcareous structures. These studies should be correlated to anatomical, physiological, and biochemical investigations of calcification processes in fish.

Rigid adherence to careful analysis and validation of all aging techniques is an absolute necessity. General patierns can emerge only when misinformation and incompletely substantiated conclusions too prevalent in the literature are eliminated. For example, at the present time it is extremely difficult to distinguish a true difference in the timing of mark formation from a procedural artifact.

Understanding of the management of tropical fisheries will ultimately depend not only upon traditional fishery statistics but also upon a more complete appreciation of the biology of the species, particularly of their recruitment dynamics and the complexity of community interactions. The biology of the early life history of fish is now recognized as being of considerable significance to our understanding of the population biology of fishes (Hunter, 1976; also see Ehrlich, 1975, for coral reef fishes). We need to gain a better understanding of the ecology of these life stages. For example, to what local oceanographic conditions are the larvae subject? Otolith microstructure studies will be of major importance in answering many of the above questions; however, intensive physical and biological oceanographic research, as well as basic investigations on community ecology, are also required.

References

Allen, G R. 1975. Anemone fishes, 2nd Edition T.F.H. Publ., Jersey City, 351 pp.
Bardach, J E., and D.W. Menzel. 1957 Field and laboratory observations on the growth of some Bermuda reef fishes. Proc. Culf. Carib. Fish. Inst. 9: 106-112
Bennett. S. 1961 Further observations on the fishery and biology of "Chooday" (Sardinella spp) of Madapam area. Indian J. Fish. 8(1):152-168.

Bilton. H T 1974. Effects of starvation and feeding on circulus formation on scales of young sockeye salmon of four racial origins, and of one race of young Kokanee, Coho and Chinook salmon In: The Ageing of Fish, T B Bagenal, ed, Unwin Biothers Ltd, Surrey, pp $40-70$
Blackler, R W 1974 Recent advances in otolith studies. In Seà Fisheries Research, F.R Harden Jones, ed, John Wiley, New York, pp 57-90.
Brothers, E.B 1970, What can otolith rinicrostructure tell us about daily and subdaily events in the eariy life history of fish? Contrib ICE؟ Symporium on the Early Life History of Fish, Mar Biol Lab., Woods Hole, Mass, April 1979 (Ir press.)
Brothers, E B , and W N McFarland 1979 Corielations between otolith microstructure, growth, and life history transitions in newly recruited '-ench grunts (Haemulon flavolineatum (Desmarest), Haemulidae) Contrib. ICES Symposium on the Early Life History of Fish, Mar Biol Lab, Woods Hole, Mass., April 1979. (In press.)
Brothers, E.B.C P Mathews, and R. Lasker 1976. Daily growth increments in otoliths from larval and adult histies F ish. Bull, U.S 74 1.8
Cambell, C , and R A Collins 1975 The age and growth of the Pacific bonito, Sarda chilien. sis, in the Eastern North Pacific Calif. Fish and Came 61(4): 181-200
Cassie. R M 1954 Some uses of probability paper in the analysis of size frequency distributions. Austr J Mar Freshw Res 5 513-522
Chevey, P 1933 The method of reading scales and the fish of the intertropical mone Proc. Sth Pacif Scı Congr 5 $5817-3829$
Chugunova, NI 1959 Age and growth studies in fish. Izdatelstito Akad. Nauk SSSR, Moscuw 1959, IPST (OTS61-31036), 132 pp
Davis, T 1977 Age determination and growth of the freshwater catfish, Tandanus tandanus Mitchell, in the Ciwydir River. Australia. Austr J. Mar Freshw. Res. 28:119-137.
De Bont. A. 1967 Some aspects of age and growth of fish in temperate and tropical waters In: The Biclogical Basis of Freshwater Fish Production, SD Gerking. ed., Blackwell, Oxford, pp. 67-88.
Ehrlich, PR. 1975 The population biology of coral reef fish Ann. Rev. Ecol. and Sys. 6. 211-248

Fagade, SO 1977 Analysis of growth markings on the otoliths of three cichlids from Asejire Dam, Ibadan, Nigeria Unpublished M.S. thesis submitted to an otolith workshop held at La Jolla, Canf. July 1976
Feddern. H.A 1965 the spawning, growth and general behavior of the bluehead wrasse Thalassoma bifasciatum (Pisces, Labridae) Bull. Mar Sci latami) 15(4) 896-941.
Fryer. G , and ID Iles 1972. The cichlid fishes of the great lakes of Africa Oliver and Boyd, Edinburgh, 641 pp.
Garrod, DJ. 1959 The growth of Tilapia esculenta Graham in Lake Victoria. Hydrobiologica 12(4) 268-298
Graham, M 1929. Studies of age determination in fish. Part II. A Survey of the Literature. Fish Invest Lund, Ser 2, 11(3), 50 pp
Greg:ry. P.A., and T. low 1976. The validity of otoliths as indicators of age of petrale sole from California. Calif. Fish and Came 62(2):132-140.
Gunderinann, N, and D Popper. 1975. Some aspects of recolinization of coral rocks in Eilat (Culf of Aqaba) by fish populations after poisoning. Mar. Biol. 33:109-117.
Harding, J F. 1949. The use of probability paper fo the graphical analysis of polymodal frequency distributions I. Mar. Biol Assoc. 28: 141-153
Hickling, C F 1931. The structure of the otolith of the hake Quart J. Micr. Sci. 74:547-561.
Holden, MI 1955. Ring formation in the scales of Tilapia variabilis Boulenger and T. esculenta Graham from Lake Victoria Rep. E. Afr. Freshw. Fish. Org 1954/55, Appendix C, pp . 36-40
Hopson, A I 1965. Winter scale rings in Lates niloticus (Pisces: Centropomidae) from Lake Chad Nature 208:101? 1014

Hunter, J R. 1976 Report of a colloquium on larval fish mortality studies and their relations to fishery research January 1975 NOAA Tech Rep NMFS CIRC-395, 5, m
Ickikawa, R, and Y. Hiyama 1954. Scale growth and rate of the common goby assured by the lead acetate injection method Jap Jour Ich 3.49-52
lles, T.D 1974 . The tactics and strategy of growth in fishes. In Sea Fisheries Research, F R Harden Jones, ed, John Wiley and Sons, New York, pp 331-346
Irie, T. 1960 The growth of the fish otolith I Fac Fish Anim Husb Hirushima Univ. 3(1) 203-229
Johannes, RE 1978 Reproductive strategies of coastal marine fishes in the tropics Env Biol Fish 3(1) 65-84
Johnson, C K 1972 Biology and ecology of Callionymus belcheri (Pisces, Callionymidae) Copeia (3) 461-470
Jones, B.W., and BC Bedford 1968. Tetracycline labeling as an aid to interpretation of otolith structures in age determination-a progress report Intern Counc. Explor Sea, cm 1968/Cen II, Fish Lab, Lowestoff
Joseph, I, and T P Calkins 1969 Population dynamics of the skiplack tuna / Katsuwonus pelamis) of the eastern Pacific Ocean Bull Inter-Am Trop. Tuna Comm 13 1-273
K.rishnayya, C.C 1963 On the use of otoliths in the determination of age and growth of the Cangetic whiting, Sillago panijus (Ham Buch), with notes on its fishery in Hooghly estuary indian! Fish. 10(2) 391.412
Kutty. M N 1961 Scales and otoliths of the "koth" Otolithoides brunneus (Day) as age in dicators Indian I Fish 8(1) 145-151
LeGuen, J. 1976 Utilisation des otolithes pour la lecture de lage de Sciaenides intertropicaux marques saisonnières et journalieres. Cah. ORSTOM, Ser Oceanogr 14(4): 331-338
LeGuen, JC., and GT Sakagawa 1973 Apparent growth of yellowfin tuna from the eastern fitlantic Ocean Fish Bull, U S 71(1) 175-187
LeRoux, PJ 1961 Growth of Tilapia mossambica Peters in some Transvaal impoundments Hydrobıoiogica 18(1-2) 1世5-175
Longhurst, A R. 1965 The biology of West-African polynemid fishes. I Cons Int Explor Mer 30(1) 58-74
Lowe-McConnell, R H. 1975 Fish communities in tropical fresh waters Longman, London and New York, 337 pp
Mathews, C.P 1974. An account of some methods of overconing errors in ageing tropical and subtropical fish populations when the hard tissue growth markings are unreliable and the data sparse. In: The Ageing of Fish, I B Bagenal, ed., Unwin Brothers Ltd., Surrey, pp 158-166
McErlean, A I. 1963. A study of the age and growth of the gag. Mycteroperca microlepis Coode and Bean (Pisces: Serranidae) on the west coast of Florida. Tech. Ser Fla. St. Bd Conserv. 41:1-29.
McNew, R.W, and R C. Summerfelt. 1978. Evaluation of a maximum-likelihood estimator for analysis of length-frequency distributions. Trans Am. Fish. Soc. 107(5):730-736
Menon, M D. 1950 The use of bones other than otoliths in determining the age and growthrate of fishes J. Cons. Int Explor. Mer 16(3):311-335
—_ 1953. The determination of age and growth of fishes of tropical and subtropical waters. J. Bombay Nat. Hist Soc 51(3):623-635.
Methot, R.D., Jr. 1979 Spatial covariation of daily growth rates of larval northern anchovy, Engraulis mordax, and northern lampfish, Stenobrachius leucopsarus. Contrib. !CES Symposium on the Early Life History of Fish, Mar. Biol. Lab., Woods Hole, Mass., April 1979. (In press.)

Mina, M.V. 1968. A note on a problem in the visual qualitative evaluation of otolith zones. I Cons. Int. Explor. Mer 32(1):93-97.

Moe, M A , Ir 1969 Biology of the red grouper Epinephelus morio (Valenciennes) from the eastern Gulf of Mexico Fla Dept Nat Res Prof Paper Ser 10: 1-95
Munro, I L, V C Caut, R Thompson, and P.H. Reeson. 1973 The spawning seasons of Caribbean reef fishes / Fish Biol 5 69-84
Olsen, A.M 1954 The biology, migration, and growth rate or the school shark Caleorhinus australis (McLeay), Charcharhinidae, in South Eastern Australian Waters. Austr. J Mar Freshw Res 5(3) 353-410.
Ottaway. EM 1978 Rhythmic growth activity in fish scales. I Fish Biol 12615.623
Ottaway, EM, and K Simkss 1977. "Instantaneous" growth rates of fish scales and their use in studies of fish populations I Zool, Lond 181:407-419
Pannella, G 1971 Fish otoliths: dally growth layers and periodical patterns. Science 1.3. 1124

1974 Otolith growth patterns. An aid in age determination in temperate and tropical fishes In: The Ageing of Fish, T.B.Bagenal, ed, Unvin Brothers Ltd, Surrev, pp 28.39
Pantulu, VR 1962 On the use of pectoral spines for the cietermination of age and growth of Pangasius pangasius (Ham. Buch.) J Cons. Perm Int Explor Mer 27:192-216
Fauly, D 1978 A preliminary compilation of fish length growth parameters Berichte Inst f. Meereskunde (Kıel) 55, 200) pp
Poinsard, F. ard J Troadec 1966 Détermination de l'age parla lecture des otolithes chez deux espéces de Sciaenides ouest-africain (Pseudotolithus senegalensis C.V. et Pseudotolithus typus Blkr) J Cons Perm Int Explor Mer 30(3) 291-307
Powell, D 1975 Age, growth, and reproduction in Florida stocks of Spanish mackerel, Scomberomorus maculatus. Fla Mar Res Publ 5, 21 pp
Ralston, S 1976 Age determination of a tropical reef butterflyfish utilizing daily growth rungs of the otoliths Fish Bull, U S 74(4).990-994.
Randall. J E 1961. A contribution to the biology of the convict surgeon fish of the Hawaitan Islands Acanthurus triostegus triostegus. Pac Sci 15(2) 215-272

1962 Tagging reef fishes in the Virgin Islands Proc Gulf Carib. Fish. Inst. 14201.241

Ricker, W F 1979 Growthrates and models In: Fish Physiology, Vol 8, W 5 Hoar and D. J. Randall, eds, Academic Press, New York, pp 677-743
Saroimi, K K 1957 Biology and fisheries of giey mullets of Bengal Part 11 Biology of Mugil parsia Hamilton with Notes on Its Fishery in Bengal Indian \| Fish 4(2) 160-207.
Simkiss, K 1974 Calcium metabolism of fish in relation to ageing. In: The Ageing of Fish, T B Bagenal, ed. Unwin Brothers Lid, Surrey, pp 1-12
Skillman, R, and M Yong 1976 Von Bertalanffy growth curves for striped marlin, Tetrapterus audax, and blue marlin, Makaira nigricans, in the North Central Pacific Fish. Bull, U S 74(3) 553-566
Struhsaker, P, and) Uchiyama 1976 Age and growth of the nehu Stolephorus purpureus (Pisces, Engraulidae) from the Hawdian islands as indicated by daily growth increments of sagittae Fish. Bull, US 74(1) 9-17
Talbot, F H, BC Russel, and C R V Anderson 1978 Coral reef fish communities Unstable high diversity systems? Ecol Monog 48(4) 425-440
Taubert, B, and D W Coble 1977 Dally rings in otoliths of three species of Lepomis and Tilapia mossambica. J Fish Res Bd Can 34 332-340
Tesch, FW 1971 Age and growth In Methods for assessment of fish production in fresh waters, W E Ricker, ed, IBP Handbook 3, Blackwell Sci Publ, Oxford, pp 98-130
Tong. L.J, and C M Vooren. 1972 The biology of the New Zealand Tarakihi, Cheilodactylus macropterus (Bloch and Schneider) New Zealand Fish Buil 6, 60 pp
van Oosten. I 1927 Life history of the lake herring (Leucichthys artedi) Le Sueur of Lake Huron as revealed by scales with a critique of the scale method Bull Bur Fish Wash 44:265-428

Warner, R R 1975 The reproductive biology of the protogynous hermaphrodite Pimelometopon pulchrum (Pisces, Labridae) Fish. Bull, U S 73.262 .283
Weatherley, A H 1972 Growth and ecology of fish populations. Academic Press, New York, 293 pp
Weber, D D, and G J Ridgeway 1967 Marking Pacific salmon with totracycline antibiotics J Fish Res Bd Can 24(4) 849-865
Williams, T, and B C Bedford 1974 The use of otoliths for age determmidion. In: The Ageing of Fish, TB Bagenal, ed, Unwin Brothers L.td, Surrib, pp 114.:';

Appendix

Families of tropical fishes in which otolith microstructure has been examined and found to be suitable for aging investigations.

Acanthuridae	Clariidze	Lophiidae	Pleuronectidae
Anablepidae	Clinidae	Lutjanidae	Poeciliidae
Anguillidae	Clupeidae	Merluccisdae	Polynemidae
Antennaridae	Congridae	Mormyridae	Pomacentridae
Apogonidae	Congrogadidae	Mullidae	Pomatomidae
Atherinidae	Coryphaenidae	Nandidae	Scaridae
Aulostomidae	Cyprinidae	Nemipteridae	Scombridae
Balistidae	Cyprinodontidae	Nomeidae	Serranidae
Batrachoididae	Diodoitidae	Notopteridae	Sciaenidae
Blenniidae	Engraulidae	Ophichthidae	Scorpaenidae
Bothidae	Exocoetidae	Oryziatidae	Siganidae
Carangidae	Gasteropelecidae	Opistognathidae	Syngnathidae
Carapidae	Gob:idae	Ostraciontidae	Synodontidae
Centropomidae	Haemuliciae	Pempheridae	Tetraodontidae
Chaetodontidae	Holocentridae	Pantodontidae	Xiphiidae
Characidae	Labridae	Percichthyidae	Zeidae
Cichlidae	Leiognathidae	Plotosidae	

Use of Length-Frequency Data to Estimate Growth and Mortality Rates for Species Exploited by Tropical Small-Scale Fisheries in Puerto Rico and Costa Rica

David K. Stevenson, University of Rhode Is/and

Abstract

Length-frequency data collected aboard commercial fish trap vessels on the west coast of Puerto Rico during 1973-74 and from landings of a mixed-gear fishery in Costa Rica during 1976-77 were used to estimate growth and mortality rates required for the determination of maximum vield per recruit for individual species harvested by both fisheries according to a modified version of the Beverton and Holt vield model of particular relevance to the assessment of tropical fish populations. In both cases, growth rate estimation was based on modal size progressions and was impeded by 1) low sample size, 2) the "simple" size composition of observed polymodal frequency distributions, and 3) the overlapping of adjacent size groups in individual samples. Component size groups were separated by mathematical and visual means. Total mortality was estimated from growthi parameters and observed length data. Natural mortality rates could not be determined from available data in either study. Yield assessments were performed, however, using published natural mortality estimates.

Introduction

The dynamics of exploited marine fish populations have historically been evaluated by means of theoretically derived mathematical yield models in order to determine the maximum biomass of fish which can be extracted from a unit stock on a continual basis without depleting the population. Although recent developments in fishery science favor the use of the more versatile management objective "optimum yield" (Larkin, 1977; Roedel, 1975), an estimation of maximum sustainable yield (MSY) is still an important first step in designing effective management strategies for individual stocks.*

Historically, most of the basic fishery research and development of yield models has taken place in northern temperate waters and has been applied to relatively slow-growing, long-lived species. The widely used Beverton and Holt "analytic" model (1957) is no exception. This model is more powerful than other

[^7]models in the sense that it permits a more effective approach to management When size-selective gear is used, fishing effort and gear may be regulated independently to achieve MSY. At the same time, this model has more rigorous data requirements and is limited by assumptions such as const. nt mortality and growth, and the fact that the rate of recruitment to the exploited population is selưon known.

The original Beverton and Holt yield model has been modified (Holt, 1962; Kutty, 1970) for use with tropical fish populations by the substitution of sizedependent terms for age-dependent terms, and the use of exploitation rates ind mortality/growth ratios rather than individual estimates of growth, natural mortality, and fishing mortality. Beverton and Holt (1964) published a set of yield tables which permit the determination of yield per recruit relative to maximum yield per recruit* for known values of three parameters: 1) the ratio of natural mortality to growth (M / K) ; 2) the exploitation rate, or the ratio of fishing mortality to total mortality $(F / Z) ; 3)$ the ratio of the length-at-first-capture :o the theoretical maximum length attained by each individual in the population $\left(l_{c} / L_{\infty}\right)$

For tropical species which do not exhibit marked seasonal fluctuations in growth and thereiore cannot be reliat y aged by conventional techniques commonly applied to temparate species (e g, scale annuli), parameter estimation techniques and yield calculations based on size information represent an important step forward

Procedures have been developed for estimating instantaneous growth rates from modal progressions of individual size groups over time and for estimating total mortality from length data with known growth rates. In the studies reported on in ihis paper, growth was assumed to conform to the model proposed by Bertalanffy (1934)

$$
\begin{equation*}
l_{\mathrm{t}}=L_{\infty}\left(1-\mathrm{e}^{-k(t-t} \mathrm{o}^{\prime}\right) \tag{1}
\end{equation*}
$$

where $l_{\mathrm{t}}=$ the length of any f.sh at time (age) t ,
$\mathrm{L}_{\infty}=$ the theoretical maximum length attained by each fish in the population,
$k=$ the average instantaneous rate of growth,
${ }_{\mathrm{t}}^{\mathrm{o}}$ $=$ the theoretical time (age) at which growth begins
transformed to its linear regression form

$$
\begin{equation*}
\log _{e}\left(L_{\infty}-l_{t}\right)=\log _{e} L_{\infty}+k t_{0}-k t \tag{2}
\end{equation*}
$$

where $\boldsymbol{l}_{\mathrm{t}}=$ the mean or modal length of a given size group at time t as derived by Ricker (1975). In this procedure, the parameter L_{∞} can be derived by repeated trial-and-error regressions until the best least-squares fit is obtained, or it may simfiy be assumed to equal the length of the largest fish observed in the

[^8]catch as long as the larger fish in the population are retained by the sampling gear and as long as fishing pressure is not so intense that the largest fish have been selectively removed from the population. If the largest fish are not represented in the catch, theoretical maximum lengths can sometimes be obtained from the literature.

The tocal mortality rate Z as expressed by the negative exponential equation

$$
\begin{equation*}
N_{t}=N_{o} e^{-Z t} \tag{3}
\end{equation*}
$$

$$
\begin{aligned}
\text { where } N_{\mathrm{O}}= & \text { the number of fish in a given cohort born at time zero, } \\
& N_{t}= \\
Z= & \text { the number of fish in the same cohort alive at a later time } t, \\
& \text { an equation derived by Beverton and Holt (} 1956 \text {), in which }
\end{aligned}
$$

$$
\begin{equation*}
\mathrm{Z}=\frac{\mathrm{K}\left(\mathrm{~L}_{\infty}-\bar{l}\right)}{\bar{l} \cdot l_{\mathrm{c}}} \tag{4}
\end{equation*}
$$

where $l_{C}=$ the mean length at first capture,
$\bar{l}=$ the average length of fish captured larger than l_{c}.
For both growth and total mortality rate estimation, length data may be obtained directly from samples of commercial landings.

In addition to the limitations imposed on the estimation of model parameters by tropical ecosystems and the unique features of many tronical fishery resources (e.g., a multiplicity of species, less predictable growth cy=les, prolonged and/or multiple spawning seasons, short life cycles, high growth and mortality rates), the assessment of populations harvested by tropical small-scale fisheries is complicated by the difficulties involved in collecting reliable data from a fishery which operates from, many remote shore bases and which may market only a proportion of the catch through normal channels, thus bypassing the usual data-recording system.

Research conducted in Puerto Rico during 1973-74 and in Costa Rica during 1976-78 was designed to test systems of data collection and analysis useful for the assessment of stocks harvested by tropical small-scale fisheries. The management objective was the determination of MSY by means of the modified version of the Beverton and Holt yield model. Parameter estimation techniques were primarily aimed at estimating the vital statistics (growth and mortality rates) required by the model from length-frequency data. In addition, a modest tag and recapture study was carried out in Costa Rica. Research was funded by the Agency for International Development through the International Center for Marine Resource Development of the University of Rhode Island. This paper briefly presents the results of these two studies and offers a critique of the methods used to collect and analyze the data.

Methods and Results

Puerto Rico

Growth and total mortality rates were estimated from length-frequency data collected aboard commercial fish trap vessels which operated on coralline offshore grounds on the west coast of Puerto Rico during 39 fishing trips made during three sampling periods in 1973 and 1974 . Over 10,000 le, gth measuremenis were collected (from two different mesh sizes) for ten species of reef fish which accounted for approximately 80% of the weight landed during the study period (fintish only). Instantaneous growth estimates were obtained for seven species from the length increments of individual size groups with the aid of a computerized maximum-likelihood estimation technique, which estimates the mean length of component size groups in a polymodal frequency distribution (Hasselblad, 1966; Tomlinson, 1971). Total mortality rates were estimated from observed length data and a priori growth estimates for eight species captured in both mesh sizes. For six of these species, natural mortality rates were estimated by the same procedure for lightly expioited populations on Pedro Bank, an offshore fishing ground located southwest of lamaica, by Munro and co-workers (see Munro, 1974) under the assumption that all mortality was due to natural causes

Yield evaluations were performed with the modified Beverton-Holt model (Beverton and Holt, 1964) for seven speries captured in the Puerto Rican trap fishery (Stevenson, 1978). The results showed that two species were slightly overexploited and five were underexploited, some of them significantly. Mesh size regulations which would theoretically increase the biomass yield of these species were not recommended, however, since the capture of a greater proportion of immature fish would significantly reduce recruitment.

Costa Rica

The growth and total mortality estimation procedures tested in Costa Rica were essentially the same as in Puerto Rico. There were, however, some important differences between the two studies. Length data were collected from commercial landings of the small-scale fleet which operates in the Culf of Nicoya, a tropical estuary on the Pacific coast of Costa Rica. Ihe most important species in the catch belonged to the family Scianidae (croakers or corvina). Over 40,000 length measurements were collected on a continual basis for one year (July 1976 to June 1977); five sciaenids and one species of mackerel accounted for 85% of the length data. Ari improved version of the computerized mathematical procedure for separating polymodal frequency distributions into component size groups (Yong and Skillman, 1975) was tested. Total mortality estimates were derived from the Beverton and Holt equation, but it was not possible to estimate natural and/or fishing mortality from the length data. No estimates of natural mortality were available from other sources for any of the species represented in this study, only for other species of the same genera.

Approximate growth estimates were derived for two sciaenid species from length data. Total mortalit/ rates were estimated for both sciaenids. A preliminary yield evaluation was performed for one species, using natural mor-
tality estimates for two other species of the same genus. It suggested that a 50% reduction in fishing effort or an increase of 20 cm in the size-at-first-capture would increase biomass yield by 9%

The resource assessment study conducted in Costa Rica was part of an interdisciplinary study which included analyses of the costs and earnings of the smallscale fleet, marketing efficiency, the quality and nutritive value of fish at different stages in the marketing process, anthropological and sociological aspects of the fishery, and the institutional policy-making framework of the country.

Discussion

Growth Rate Estimates

Efforts to estimate growth were based on the increments in the mean or modal lengths of individual size groups in length-frequency distributions compiled during defined sampling periods for given gear types and fishing locations (Fig. 1). Mean lengths were estimated mathematically by means of computerized maximum-likelihood techniques, and modal lengths were estimated directly from visual inspections of length-frequency distributions. The mathematical procedure programmed by Yong and Skillmanr (1975) is more objective, since it does not require any judgments about the number of cohorts in the data. Furthermore, this technique can be applied to shorter time series of length data: mean length estimation for each individual data set is more precise than visual estimationas long as sample sizes are sufficiently large and the overlap between adjacent groups is not extreme. As a general guideline, Cohen (1966) has reported that a minimum sample size of 400 was necessary for the separation of two groups in a single size-frequency distribution. For more than two groups, an even larger sample size is required.

Growth rates based on visual modal length estimates have been successfully estimated by a number of authors (Ommanney, 1949; Jhingran and Natarajan, 1969; Thompson ind Munro, 1974; Chapman and van Well, 1978). Since small sample size and overlap also create problems for visual modal length estimation, the use of longer time series permits the omission of poorly defined peaks during certain sampling periods and the estimation of growth rates even when the size increments during certain time intervals are negative. The establishment of guidelines for the estimation of "acceptable" modal lengths often removes some of the subjectivity associated with this procedure

Once mean or modal lengths have been estimated, cohort sequences must be identified. This process is much riskier when there are large time gaps between length samples

Finally, to estimate growth, "best guess" estimates of L_{∞} must be obtained from catch data or from published sources and Equation (2) solved repeatedly by tiial-and-error fits to the data using reined L_{∞} estimates until the best fit is obtained. Experience has shown, however, that unless a relatively long time series of length data is available, the iterative solution does not converge to a single L_{∞} estimate.

Most of the problems which hindered the estimation of growth rates from length data collected in Puerto Rico and Costa Rica involved the determination of reliable mean and modal lengths. In most cases, these problems were caused
by some biological feature of the exploited populations. A brief discussion of three of the major problems follows.

Figure 1. Schematic diagram showing series of steps leading to estimation of instantaneous growth rates from length-frequency data

Reduction of Sample Size by Cear and Location Effects. The number of modes and the approximate size range represented by each often varied in samples collected at the same time in differert locations or with different gears, thus eliminating the possibility of combining length data obtained from different sources and reducing sample sizes to such low levels for the less frequently sampled species that inean or modal lengths could not be reliably estimated.

This problem was expected for fish captured with size-selective gear (e.g., gill nets and wire mesh traps), but less so for fish captured in different locatıons

The effect of locations was not limited to depth differences. Length data for three reef species captured in 30 m with the same gear and over the same time period in Puerto Rico varied considerably over a distance of only five kilometers. The movements of reef fish have been reported by several authors to be very limited (Randall, 1962; Moe, 1972; Springer and McErlean, 1962), suggesting that small populations in separate locations may respond independently to variable fishing pressure in the separate locations. In the Gulf of Nicoya, annual length data for several species captured in contiguous zones with the same gear also varied considerably (Figs. 2 and 3), suggesting that even in estuarine waters with strong tidal currents fish do not move around a great deal and are therefore differentially vulnerable to variable fishing effort. In this example, Micropogon altipinnis were harvested by the small-scale fleet in both Zones 2 and 3, but aiso by shrimp trawlers in Zone 3.

In order to use length-frequency data for growth rate estimation, one must differentiate fish captured in different zones and with different gear types. Accurate data collection calls for a working definition of fishing zones based on lengths-at-capture by a given gear type. There is evidence that some demersal tropical fish populations may be composed of a number of site-specific subgroups For these species, growth rate estimation based on increments of individual size groups over time requires either a large amount of data collected from different locations or sufficient data from a very specific location. Only the former alternative is acceptable in the case of species being sampled for the first tifne, since the range of site-specific size variations will be unknown
"Simple" Size Composition. Length data collected for many tropical species in Puerto Rico and Costa Rica 'requently revealed the presence of only a few welldefined size groups. Data coliected over a size range of $30-120 \mathrm{~cm}$ for C ynoscion albus, for example, revealed cnly two or three dominant size groups, suggesting that the entire population in the gulf may be composed of less than four year classes (Fig. 4). Length data for smaller species exploited by small-scale fisheries in Puerto Rico and Costa Rica over a more reduced size range typically revealed even fewer size groups, often one or two. In cases where three or four size groups were sampled in a short size range, size variations were most probably caused by multiple spawning periods and/or differential growth of male and female fish of the same year class

The continual presence of a single size group in length-frequency data collected at different times during the year suggested that recruitment of young fish to the exploited population was constant as a result either of continual spawning or of immigration of young fish to the fishing grounds. Constant recruitment was not implied for any of the reef species captured in the Puerto Rican trap fishery, but was observed for at least one of the principal species captured in the Culf of Nicoya (Fig. 5). Growth could not be estimated from length data, which revealed no progression of modal lengths over time.

The use of size-selective gear contributed to the "simple" size composition of many length-frequency samples. If possible, gear such as gill nets or wire fish traps should not be relied on for length data. Since size-selective gear is common

Figure 3. Average annual length-frequency distributions for Micropogon altipinnis collected in $\mathbf{1 2 . 5 - 1 5 . 0} \mathbf{c m}$ mesh gill nets, Zones 2 and 3 in the Gulf of Nicoya, during the period July 1976-June 1977.

Figure 4 Monthly and bimonthly length-frequency distributions for Cynoscion albus collected with hooks, Zone 2 in the Gulf of Nicoya, during the period August-April 1977.

Figure 5. Monthl, length-frequency distributom tor Cynoscion squamipinnis collected in $75-875 \mathrm{~cm}$ mesh gill nets, Zone 2 in the Gulf of Nicoya, during the period August 1976June 1977
in tropical small-scale fisheries, however, it seems impractical to avoid sampling commercial catche, made with these gear types

Even wher reliable mean or modal length estimates can h." sbtained from size-frequency data collected over time, the presence of only a few size groups reduces the number of data sets from which an overall growth estimate is averaged for a given species. At the same time, if growth is relatively rapid, each si:e group may be represented in the data for only a few months; thus, growth rates will be based on a number of short-term modal progressions rather than on a few progressions which are based on a large number of length-at-time data. Growth
estimates based on short-term data are less reliable if there is any seasonal variation in growth. Moreover, data collected from size-selective gear which captures fish only at lengths near their theoretical limiting length $\left(L_{\infty}\right)$ will also produce unreliable growth est imates.

Figure 6. Monthly length-írequency distributions for Micropogon altipinnis collested in $12.5-15.0 \mathrm{~cm}$ mesh gill nets, Zone 2 in the Gulf of Nicoya, during the period July-November 1976.
"Overlapping" Size Groups. As was the case with low sample size, the greater the degree to which adjacent size groups in polymodal length-frequency distributions overlapped each other, the greater the error with which comporient mean or modal lengths were calculated, even for species which were sampled in abundance. For example, for mathematical mean length calculations performed with the computer from 1,853 length measurements of Micropogon altipinnis taken over a five-month period (Fig. 6), adjacent size groups overlapped to such a degree that the variances for individual mean length estimates were often ex-
cessive, producing unacceptable interval estimates of mean length (Table 1) Moreover, the high chi-square values indicated very little agreement between observed and predicted length frequencies. For some sampling intervals (July, in this example), use of Hasselblad's method led to more than one set of possible mean length estimates and no justifiable basis for selectirig one set over the wither

Month	XL_{1}		XL_{2}		XL_{3}		x^{2}	P
July	5672	± 104	6402	± 4.4	6837	± 42	712	020
	6317	47	6756	33	7198	66	1106	<0.10
Aug	4467	130	6421	34	-	-	22.91	<025
Sept	5321	100	6103	46	667.4	43	14.77	<0.05
Oct	5863	110	6427	37	6780	50	3.51	<0.75
Nov.	5414	160	6702	54	-	-	10.55	048

Table 1. Point and interval mean lengths for Micropogon altipinnis estimated from lengthfrequency data collected in 125.15 .0 cm mesh gill nets, Zone 2 in the Gulf of Nicoya, Costa Rica, during the period luly-November 1976 and analyzed by a maximum-likelihood procedure (ENORMSEP)

In fact, mathematical analyses of length data collected in Costa Rica were abandoned completely in favor of visual modal length determinations. Visual determinations of modal lengths were also hindered by the overlap problem, however, since two intersecting size groups can produce "false" lengthfrequency maxima. As a result, modal lengths were estimated only for those species with clearly defined size groups

Mean length estimates by means of computerized maximum-likelihood estimation were more successful in Puerto Rico. Although low sample sizes and overlap often produced wide interval estimates, the greater delay between samples (eight months and four months) resulted in size increments which in most cases produced mean lengths which were sigrificantly different. Only in the case of relatively slow growing species could growth be estimated from such widely separated sampling periods: instantaneous growth for six of the seven species studied in Puerto Rico was between 0.20 and 0.30 . Even in cases where mean lengths were mathematically determined, however, overlap frequently caused the "disappearance" of certain size groups at certain sampling times and reduced the data available for growth rate estimation.

Mortality Rate Estimates

A method for estimating total mortality which does not require a priori growth rate estimates relies on estimates of the relative abundance of at least two size groups in a given size-frequency distribution. Although the absolute age of these size groups need not be known, the time which is required for fish in group A to attain the size of fish in group B must be known. Furthermore, both
size groups must be captured beyond the selection range of the gear being used.
This parameter estimation procedure required the use of the same computerized polymodal frequency analysis procedure used to estimate mean lengths for growth rate estimation, and was hindered by the same problems Moreover. McNew and Summerfelt (1978) have reported that the maximumlikelihood estimation of relative abundance for individual size groups in a polymodal length-frequency distribution with the ENORMSEP program is subject to greater error than mean length estimation Also, since the "transition time" between size groups A and B must be known, this method is severely limited by the fact that male and female fish may grow at different rates and that some species may spawn more than once a year (Weber, 1976; Munro et al., 1973)

Tota' mortality rates were estimated from average annual length-frequency data for eight species captured in Puerto Rico and for two speries captured in Costa Rica by means of the Beverton and Holt t quation (4), usirg a priori L_{∞} and K estimatersand observed l, and l estimaten The parameter l, was defined as the lower boundary of the first length class that was 100% retained by the gear. le, the first distanct frequency maximum in the annual length-trequency distribution In those cases where the first mode was not very distinct, Z estimate, were repeated using twol, values

Beverton and Holt (1956) outlined a number of theoretical bases for estimating lishing (f) and or natural mortality (M) rates from catch samples in the absence of absolute age information These methods do require information on fishing effort The three essential requirements for obtaining these estimates are: 1) there must be changes in fishing intensity, either with time or in relation to the stock as a whole, or with the age of the fish; 2) these changes must be large enough to produce measurable changes in total mortality; and 3) the different fishing intensities must be known and expressed in standardized units so that they are proportional to the values of F that they generate. Estimates of F and M can be obtained under any of the following situations: 1) when fishing effort is stabilized at two different levels; 2) when fishing effort varies continuously with time; 3) when rishing effort varies with the age of the fish

Marten (1978) derived an equation for estimating total mortality implicitly from length parameters without requiring an a priori estimate of growth, and provided an example of how the natural mortality of the population can be estimated from differences in the total mortality rates of fish caught with variable fishing intensity in two different fishing zones. This approach requires that natural mortality and growth remain constant in both locations.

No estimates of natural or fishing mortality were obtained from length-frequency data collected in Puerto Rico or Costa Rica. The first two alternatives listed above require a longer time series of catch (weight or length) and effort estimates than were available in these studies and are complicated in situations where different gears are used to harvest the same species. The last alternative requires fishing effort to vary according to the age of tish captured by two different gears-e.g, as a result o: gear selectivity - and was tested with length-frequency data collected with gill nets of variable mesh size in the Culf of Nicoya with unsatisfactory results. For a gill net fishery, the method requires that: 1) two size groups be exploited selectively by one mesh size, while a third is exploited with 100% afficiency (i.e, probability of retention) by the same mesh; 2) the
same three size groups be exploted concurrently in a smaller-meshed net or by some reference gear (eg, a trawl) with 100% efficiency; and 3) two of these groups remain in the exploitable size range for three months or more

Due to the extremely simple size compocitions of the species samples in the gulf, these requirements were not met by any of the species studied In fact, this method has sery little application to any short-lived, rapidly growing tropical specie's, enpectially those captured with selective gear which may impose a iower and an upper limit to sizes-at-capture Also. the use of trawls as reference gears is severely restricted in areas of coral growth

Natural mortality rates which were used to determine maximum relative yield per recruit in Puerto Rico (Stevenson, 1978) were obtained from M / K eximates for presumably unexploited populations of the same species on Pedro Bank (see Munro. 1974) dter some adjustments in the original estimates had been made The probability, however, that unexploited populations can still be found is so bow and the costs of obtaning sufficient data from them are so high that this atrernative would eeem to hold very little future promise

Conclusions and Recommendations

The use of maximum-iikelihood estimation techniques with lengthfrequency data collected from small-scale fisheries in Puerto Rico and Costa Rica met with mixed success. Growth rates were estimated for six reef species in Puerto Rico sampled during only three sampling periods, and with intervals between samples of eight and four months. In Costa Rica, data were collected continuously over an entire yeai, but in very few cases were obvious modal progressions detected for the CC:.. Rican data, separation of individual size groups in polymodal length-frequency distributions with the ENORMSEP program was abandoned in favor of visual analyses, due to low sample sizes and extreme overlap between adjacent size groups. A promising recent contribution, which recognizes the need to make some initial judgments when analyzing mixed sizefrequency distributions, is an interactive computer program developed by MacDonald and Pitcher (1979).

Tropical fish pose special problems for growth estimation from modal size progressions, since spawning may be continuous or extended over several months, sometimes more than once a year. Reliable growth estimation is also more difficult for short-lived, rapidly growing tropical species, which may remain in the exploitable size range for only a few months at a time. This problem is magnified when length data are co!lected from size-selective gear.

The lack of reliable length-at-age data also limits the estimation of total mortality to species with known growth estimates, unless wider use is made of Marten's equation. The most promising simple way to estimate natural mortality may be to collect information on spatial or seasonal fishing effort variations and relate it to changes in total mortality. The fact that many tropical demersal species apparently move around so little means that greater attention must be devoted to collecting accurate information from a few carefully selected sites.

Despite the problems involved in the interpretation of size-frequency data, it is readily available, and fishery biologists will continue to make use of this source of information for determining growth and mortality rates of species ex-
ploited by tropical small-scale fisheries.
It is important to understand what the risks involved in using size-frequency data dre, so that maximum effort can be devoted to the collection and analysis of data for only those species whict stow some promise. Preliminary, short-term surveys of commercial landings are called for before major commitments of time, manpower, and money are made. Landings survers to collect lengthfrequency data should be combined with estimates of catch and effort information, thus increasing the overall chances of eventually estimating MSY. Landings surveys need to be complemented with basic life history studies, since so little is known about the tiology of mon spectes exploted by tropical small-scale fisheries

Finally, there is the question of whether unit stock models that require a great deal of information are useful tor assessing multispecies tropical fisheries. The future of stock assessment for these fisheries clearly demands either simpler models, which do not require so much or such high-quality information, or more comprehensive models, which will account for interspecies interactions and which will undoubtedly be even more data-intensive than unit stock models.

References

Bertalanffy, L von 1934 Untersuchmugen wber die Gergetslichkett des Wachstums I Allgemeine Cundlagen der Theore, mathematische und physiologische Cesetalichbeiten des Wachstums hei Wassertieren Roux Archiv fur Entwsckhungsmechanik 131.613-652
Beverton, R / H , and S / Holt 1956 A review of methods ior estimating mortality rates ir exploited fish pupulations, with special reference to sources of bias in catch sampling Rapp P-v Reun Cons Perm Int Explor Mer 140 (1):67-83
Beverton, RJH, and S I Holt 1957 On the dynamics of explorted fish populations. Fish Invest Lond (2) 19, 533 pp
Beverton, R J H , and S J. Holt 1964 Tables of yield functions for fishery assescment FAC Fish Tech Paper $38,49 \mathrm{pp}$.
Chapman. D W, and P van Well 1978 Growth and mortality of Stolothrissa tanganicae. Trans Am Fish Soc 107(1):26-35.
Coheri, A C 1966. Discussion of "Estimation of parameters for a mixture of normal distributions" by Victor Hasselblad. Technometrics 8(3): 445-446.
Hasselblad, V 1966. Estimation of parameters for a mixture of normal distributions. Technometrics 8:431-444
Holt, S I. 1962. The application of comparative population studies to fisheries t ology - an exploration In: The Exploitation of Natural Animal Populations, E.D. LeCren and M W Holdgate, eds., British Ecol. Soc. Symp. 2:51-71.
Jhingran, $V \cdot G$, and $A . V$ Natarajan. 1969. Derivation of average lengths of different agegrouns in fishes I Fish. Res. Bd. Can. 26:3073-3076.
Krishnan Kutty, M. 1970. The estimation of optimium conditions for regulating a fishery when growih and mortality rates are unknewn. Proc. Indian Natl. Sci. Acad 36, Part B, 1.21-32.

Larkin, P.A. 1977. An epitaph for the concept of maximum sustainable yield Trans. Am. Fish. Soc. 106(1): 1-11.
MacDonald, P.D.M. and P.j. Pitcher. 1979. Age groups from size frequency data: A versatile and efficient method of analyzing distribution mixtures. J. Fish. Res. Bd. Can. 36:987-1001.
Marten, G.G. 1978. Calculating mortality rates and optimum yields from length samples. J. Fish. Res. Bd Can. 35:197-201.

McNew, R W , and R C. Summerfelt. 1978. Evaluation of a maximum likelihood estimator for analysis of length-frequency distributions. Trans. Am. Fish. Soc. 107(5):730-736
Moe, M A. 1972 Movement and migration of south Florida fishes. Fla Dept Nat Res. Tech Ser 69, 25 pp
Munro, IL 1974 The biology, ecology, exploitation and management of Caribbean reef fishes Part V. The biology, ecology and bionomics of Caribbean reet fishes Part Vm Summary of biological and ecological data pertaining to Caribbean and reef fishes. Scientific Rep of the ODA/UWIFish. Ecol Res. Proi 19'99-1973, 56 pp
Munro, IL, VC Gaut, R Thompson, and PH Reeson. 1973. The spawning seasons of Caribbean reef fishes. I Fish Biol. 5:69-84.
Ommanney. F D 1949 Age investigations in Maurtius fishes Trans Roy Soc. Arts and Sci. of Mauritius, Ser C, $15 \cdot 38 \cdot 59$.
Randall. J.f 1962 Tagging reef fishes in the Virgin Islands. Proc. Gulf Caritb. Fish Inst. $14201-241$
Ricker, We 1975 Computation and interpretation of biological statistics of fish populations Bull Fish Res Bd Can 191, 382 op
Roodel, PM 1975 A summary and critique of the symposium on optimum yield In: Optimum Sustainable Yield as a Concept in Fisheries Management, Am. Fish Soc Spec Putl 9, pp 79-89
Springer, VG, and A I McErlean 1962 A study of the behavior of some tagged south Florida coral reef fishes An Midl Natur 67 386-397
Stevenson, D K 1978 Management of a tropical fish pot fishery for maximum sustainable vield Proc Cult Caribb Fish Inct $3095-115$
Thompson, R, and I L Munro 1974. The biology, ecology, exploitation and management of Caribbean reef fishes Part V The biology, ecology and bionomics of Caribbean reef fishes Part Vb Serranidae (Hinds and Croupers) Res Rep Zool Dept. Univ West Indies $3,82 \mathrm{pp}$
Iomlinoon PK 1971 Program name-NORMSFP Programmed by Victor Hasselblad In: Computer Prograns for Fish Stock-Assessment, N ' 1 Abramson, comp, FAO Fish Tech. Paper 101, 10 pp
Weber, W 1976 The influence of hydrographical factors on the spawning time of tropical fish In Pror of the Intern Sem on Fish. Res and Their Management in Southeast Asia, K Tiews, ed, Cerman Foundation for International Development and FAO, pp. 269-281
Yong, $M Y Y$, and $R \wedge$ Skillman 1975 A computer program for analysis of polymodal frequency distributions (INORMSF P), FORTRAN IV Fish. Bull., U.S. 73:681.

A New Methodology for Rapidly Acquiring Basic Information on Tropical Fish Stocks: Growth, Mortality, and Stock Recruitment Relationships

Daniel Pauly, International Center for Living Aquatic Resources Management, Manila, Philippines

Abstract

Comparative methods are presented which allow for quick and relatively reliable growth parameter estimates when growth data are not at hand. One of these methods involves the use of a newly developed "auximetric grid."

An empirical equation for the estimation of natural mortality of any fish stock, given a set of growth parameters, is briefly reviewed

The metiods are applied to data from the Culf of Thailand trawl fishery, and the mortality caused by this fishery is estimated

The equations and data needed to derive stock recruitment relationships given catch, effort, and fishing mortality data are staled, and stock recruitment relationships are given as examples which pertain to the false trevally Lactarius lactarius and to the Indian halibut Psetades erumei. In the latter fish, the demonstration is made that both recruitment and prerecruitment mortality, from 1960 to 1972, have been closely related to the size of the tota! demersal standing stock in the Gulf of Thailand

These various exercises are presented in order to demonstrate that an exhaustive analysis of the data available to date from tropical stocks and fisheries would contribute greatly to our understanding of the dynamics of tropical multispecies stock;

Introduction

The fishery biologist working in the tropics, except when working on pelagic fishes, such as the scombroids and some clupeoids, will generally be faced with several, if not all, of the following problems:

1. The fishery under investigation catches and lands a large number of species, and relatively few specimens of one single species.
2. There are no reliable catch, landing, and effort data available to assess the fishery, and especially no time series of such data.
3. There exists no suitable theoretical model into which these data could be plugged, even if primary data are available.
4. There are no funds, no scientists, no time available even to apply standard methods and to use standard models of stock assessment.

The irony is that whoever is facing these problems is still expected to generate figures for the various departments of fisheries. (See Marr, 1976, or Pauly, 1979c, for a review of problems occurring in tropical multispecies fisheries.)

The following are two temporary solutions to some of these problems

1. Better use can be made of the available data on the biology of tropical and other fishes
2. There is a need to use the data on the biology of tropical fishes (especially growth and mortality rates, as described herein) and the available catch per effort data generated by the lisheries in conjunction with the most sophisticated concepts now available for the investigation of temperate fisheries

Both of these points have been conspicuously ignored in the literature, with the result that the analysis of stock recruitment relationships in the tropics is still in its infancy, although data are available which can be used for this purpose (Pauly, 1979b). Only when such concepts are routinely applied will it become possible to develop and successfuily apply the sophisticated multispecies interaction models which are actually required and which have been, possibly prematurely, proposed (e.g. Pope, 1979) for the management of tropical multispecies stocks

The present contribution, therefore, has two aims: 1) to describe "short-cut" methods by which certain important parameter values can be generated, even when the commonly used primary data are lacking (this should illustrate Solution 1, above); and 2) to use the parameter values generated in (1) to demonstrate the existence of stock recruitment relationships in selected tropical stocks (this is meant to illustrate Solution 2, above)

The Analysis of Growth

For stock assessment purposes, growth is best expressed in terms of the von Bertalanffy growth formula (VBGF), which has the following form for length:

$$
\begin{equation*}
L_{t}=L_{\infty}\left(1-e^{-K\left(t-t_{0}\right)}\right) \tag{1}
\end{equation*}
$$

and for weight:

$$
\begin{equation*}
w_{t}=w_{\infty}\left(1-e^{-K\left(t-t_{0}\right)}\right)^{3} \tag{2}
\end{equation*}
$$

Actually, Equation (2) is the one that is most useful, since it expresses weight growth, and it is the weight of the catch we are interested in. Therefore, we need values of
W_{∞}, the asymptotic weight,
K, the stress factor,
and t_{O}, the origin of the growth curve, for each species of fish that we want to include in our stock assessments.

Values for the parameters can be obtained as follows:

1. Growth parameter values may have been published which pertain to the stock in question, or to a closely related one. Sources for such values are scientific journals, textbooks, and review papers, or lists of growth parameters that have been compiled especially for the purpose of assisting fishery biologists working in the field (e g., Pauly, 1978a, which covers more than 1,500 different stocks distributed over 500 species, over 100 of which occur in the tropics).
2. Another source of growth parameters is obviously the fishery biologist's
own work with length frequencies, scales, ocoliths, and the like. This method is most often time-consuming, and will have its limits when a multispecies stock composed of several dozens or even hundreds of species is invt stigated
3. Another method is to use what is presently known of the growth of fish in general to make reasonable estimates (or educated guesses) of the growth parameters of little-investigated stocks

It is the last method which will he discussed here Two approachers, adapted from Pauly (1979a), are:

1 to use the relationship between K and asymptotic size, and
2 to use an auximetric grid
It ras been noted by many authors that in a given fish species K increases as asymptotic size decreases, and vice versa; there has been, however, no attempt to quantify this effect. Using data from 126 species, distributed over 978 stocks, I have shown that, on the average,

$$
\begin{equation*}
\log K=a-2 / 3 \log W_{\infty} \tag{3}
\end{equation*}
$$

or

$$
\begin{equation*}
\log K=a^{\prime}-2 / 3 \log L_{\infty}^{3} \tag{4}
\end{equation*}
$$

The data used for the derivation of these relationships are given in Pauly (1979a), together with an interpretation of this result. While the interpretution need not concern us here, an example may be presented as to how this relationship may be used.

Chomjurai and Bunag (1970) presented tagging data on Scolopis cancellatus from which, using the method of Gulland and Holt (1959), I have extracted the following growth parameters:

$$
\mathrm{L}_{\infty}=20 \mathrm{~cm} \text { and } \mathrm{K}=1.33 .
$$

This provides us with an estimate of the intercept in Equation (4) of $\mathrm{a}^{\prime}=2.725$ As will be seen below, an estimate of L_{∞} and K in Scolopis taeniopterus is required As the latter species in the Gulf of Thailand reaches a size of about 28 cm (Boonyubol and Hongskul, 1978), an estimate of the asymptotic length may be obtained by means of the relationship

$$
\begin{equation*}
L_{(\infty)} \approx \frac{L \max }{0.95} \tag{5}
\end{equation*}
$$

which applies to fishes which reach a length of about 50 cm (see Pauly, 1979a, for reasons). Note also the coding of $L(\infty)$, to distinguish it from an estimate of L_{∞} as obtained from growth data; e.g., by means of a Ford-Walford plot. The use of Fquation (5) and $\mathrm{L}_{\mathrm{max}}=28 \mathrm{~cm}$ provides us with an estimate of $\mathrm{L}(\infty)=$ 29.5 cm , which, when used in conjunction with $a^{\prime}=2.725$ and Equation (4), gives an estimate of $K=0.6$, if it can be assumed that Scolopis cancellatus and Scolopis taeniopterus have similar growth patterns. This technique, which strictly speaking can be applied only within species, may be applied between species, if they are congeneric and ecologically similar, as is probably the case in the example here.

The second method-i.e., the auximetric grid-is related to the first method in that the relationship between K and asymptotic size is used, although in a slightly different manner. When the VBGF describes the weight growth of a fish
(stock) adequately, the growth rate $\left(\frac{d w}{d t}\right)$ at the point of inflexion of the growth
curve is given by

$$
\begin{equation*}
\frac{d w i}{d t}=\frac{4 \cdot K \cdot W_{\infty}}{9} \tag{6}
\end{equation*}
$$

(Hohendorf, 1966, Pauly, 1979a)
1 have defined

$$
\begin{equation*}
P \doteqdot \log _{10}\left(K \cdot W_{\infty}\right) \tag{7}
\end{equation*}
$$

and shown that, if W_{∞} is expressed in grams, and K in years, the value of P ranges in marine fishes between about -0.70 for small Myctophidae to 5.79 for the basking shark Cetorhinus maximus and about 6.20 in the largest of all fishes, the whale shark Rhincodon typus (Table 1). The interesting point is, however, that the value of \mathbf{P} is within species relatively constant, with values, for instance, of 3.4 to 35 in the cod Gadus morhua, 2.2 to 2.3 in the croaker Pseudotolithus elongatus, or 40 to 42 in the skipiack Katsuwonus pelamis. The character of P, which is in fact an index of growth performance, is best demonstrated by transposition of the concept into a special grid called the "auximetric grid" (from the Greek auxein, "to grow," and metron, "to measure"). The absissa scale of an duximetric grid consists of values of log K (on a yearly basis), with the range covered by both scales chosen in such a way that normal-sized commercial fishes appear near the center of the gioid (Fig. 1)

Table 1. Growth parameters and values of P in representative marine fishes from Pauly, 1979a).

Family	Species	w	K	P
1 Myctophidae	Notolychnus valdiviae	014	1.411	-0.70
2 Gasterosteidae	Apeltes quadracus	1.23	1.174	0.16
3 Cyprinodontidae	Cyprinodon macularius	0.538	3.391	0.26
4	." .,	0.703	2.995	0.32
5. Myctophidae	Myctophum punctatum	6.56	0.323	0.33
6 Cyprinodontidae	Cyprinodon macularius	0.710	3.223	0.36
7 Myctophidae	Benthosoma glaciale	5.72	0.45	0.41
8. Syngnathidae	Siphonosoma typhle	6.2	0.558	0.54
9 Sasterosteidae	Gasterosteus aculeatus	1.97	1.788	0.55
10. Myctophidae	Myctophium affine	9.0	0.42	0.58
11. Syngnathide.	Nerophris ophidion	5.46	1.052	0.76
12. Myctophidae	Scopelopsis multipunctatus	5.4	1.118	0.78
13. Macrorhamphosidae	Macrorhampnosus scolopax	21.7	0.36	0.89
14. Blennidae	Blennius pholis	54	0.30	1.21
15. Cottidae	Taurulus bubalis	102	0.230	1.37
16.	Cottus kessleri	118	0.197	1.37
17. Maenidae	Maeria smaris	117	0.218	1.41
18. Callyonimidae	Callyonymus lyra	52.5	0.49	1.41
in Sadidae	Trisopterus esmarkii	47.7	0.59	1.45
	Rhonciscus striatus	142	0.229	1.51
2 .- ? 2 ssidae	Cynoglossus macrolepidus	170	0.239	1.61
22. . alidae	Engraulis anchoita	212	0.230	1.69
23. Labridae	Sumnhndus melops	190	0.359	1.83

24. Notothenidae	Trematomus bernachii	309	0.29	1.95
25. Carangidae	Selaroides leptolepis	85	1. 155	199
26. Polynemidae	Polynemus heptadactylus	718	0.157	2.05
27. Sparidae	Dentex macrophtalmus	941	0.162	218
28. Scorpaenidae	Scorpaena porcus	869	0177	2.19
29. Zoarcidae	Zoarces viviparus	965	0203	2.29
30. Sciaenidde	Pseudotolithus elongatus	715	0.274	2.29
31. Scyliorhınidae	Scyliorhinus canicula	550	0.53	2.46
32. Leiognathidae	Leiognathus equulus	197	1884	2.57
33. I abridae	Labrus berggylta	3830	0.107	2.61
34	Tautoga onitis	2845	0.165	2.67
35 Scombridae	Rastrelliger kanagurta	117	5.16	2.78
36. Serranidae	Epinephelus guttatus	2089	0243	2.71
37. Mugilidae	Mugil cephalus	2078	0435	2.96
38. Pomatomidae	Pomatomus saltatrix	5808	0.197	306
39. Trichiuridae	Trichiurus lepturus	4663	0296	3.14
40 Gadidae	Pollachius virens	11331	0141	320
41 Scombridae	Sarda sarda	3434	0.693	338
42. Cadidae	Gadus morhua	16350	0.181	3.47
43. Acpenseridar	Acipenser stellatus	15675	0192	3.48
44. Lophiidae	Lophius piscatorius	53952	0.060	351
45. Serranidae	Roccus lineatus	17543	0.186	351
46 Scombridae	Auxis thazard	4394	0.829	356
47 Acipenseridae	Acipenser güldenstädti	97200	0.045	364
48. Scombridae	Euthynnus alliteratus	44869	0.164	3.87
49.	Katsuwonus pelamis	55200	0.179	3.99
50. Acipenseridae	Huso huso	149100	0.097	4.16
51 Scombridae	Katsuwonus pelamis	16000	0949	4.18
$52.15 t i o p h o r i d a e$	Tetrapterus albidus	861500	0026	435
53. Scombridae	Thunnus obesus	234961	0.114	4.43
54.	'. '.	165108	0.167	4.44
55. Istiophoridae	Istiophorus platypterus	36740	0754	4.44
56. Carcharhinidae	Prionace glauca	447750	0.091	4.61
57.	" "	738000	0.072	4.73
58.	Eulemia milberti	89190	0.610	4.74
59.	" ${ }^{\text {" }}$	99740	0.580	4.76
60. Scombridae	Thunnus thynnus	987388	0.067	4.82
61.	" ${ }^{\text {e }}$	504835	0.308	519
62. Lamnidae	Cetorhinus maximus	13820000	0045	5.75
63. Rhineodontidae	Rhincodon typus	60000000	0.025	6.20

Also, lines connecting same \mathbf{P} values are drawn at regular intervals of \mathbf{P}, and a base line selected (at $P=0$). On such a grid, the distance from a point representing a pair of growth parameters (W_{∞}, K) to the base line thus directly expresses \mathbf{P} (see Fig. 1). Figure 2 gives a representation of the range of \mathbf{P} (and W_{∞} and K) values cccurring in marine fishes (see Table 1). The grid may now be used to define taxa, such as families. Figure 3 gives an example of the definition in terms of growth parameters of the families Scombridae ($=$ Thunninae and Scombrinae) and Cyprinidontidae.

Figure 4, finally, shows the best use to which the auximetric grid can be put; namely, the definition of species by means of their growth parameters. As may

Figure 1. An auximetric grid. Plotted are the following parameter values: $W_{\infty}=55,200(\mathrm{~g})$ and $K=0.179$ for Katsuwonus pelamis, and $W_{\infty}=6.5 f$ and $K=0.323$ for Myctophum punctatum. (From Table 1.)

Figure 2. Defininion of the area of the auximetric grid that is covered by a representative selection of marine fishes. (Based on data of Table 1.)

Figure 3. Definition of two families of fishes (Cyprinidontidae and Scombridae) by means of the auximetric grid. Each dot represents one species. (Based on data in Pauly, 1978a.)
be seen from this figure, there is only a limited range of values that P can take in a given species. This results in an equally limited range of possible W_{∞} and K combinations. Thus, given the growth parameters of a series of fishes more or less closely related to those one is investigating, it is possible to select a most likely value of K from a reasonable estimate of asymptotic weight.

There are other uses to which the auximetric grid can be put (Pauly, 1979a), but its property of allowing for reasc nable estimates of K given W_{∞} is certainly the most interesting one as far as stock assessment in the tropics is concerned.

The methods outlined above to "guesstimate" the asymptotic size and the value of K in fish stock do not generate estimates of t_{0}; that is, of the "age" at the origin of the growth curves. There are cases, however, where an estimate of t_{0}, even a rough one, may be needed. In such cases, it may be helpful $!$, use the empirical relationship

$$
\begin{equation*}
\log =\left(-t_{0}\right)=0.3922-0.2752 \cdot \log L_{\infty}-1.038 \cdot \log K \tag{8}
\end{equation*}
$$

which yields rough estimates of t_{0}, for any fish, given a value of L_{∞} (in cm) and a value of K (on a yearly basis), and which was derived by Pauly (1979a) on the basis of 153 triplets of $\mathrm{t}_{0}, \mathrm{~L}_{\infty}$, and K values selected from a compilation of growth parameters (Pauly, 1978a).

Figure 4. Definition of some species of fishers by means of the auximetric grid Note that the W_{∞}. K combinations fit into ellipses, whose main axis should have a slope equal to -43. (Growth parameters from Pauly, 1978a)

Natural Mortality

Estimating the natural mortality of a given fish stock is generally extremely difficult (unless the stock is unexploited) and the lack of reliable estimates of this all-important parameter is one of the major stumbling blocks for fishery biologists attempting to perform stock assessments. This applies especially to the situation in the tropics where statistical data generated by the fishery cannot be used to estimate this parameter Luckily, it appears that M, the exponential rate of natural mortality, closely correlates with the growth parameters and to the mean habitat temperature of a given stock, to the extent that a knowledge of the asymptotic size of a stock, of its stress factor K, and of its mean habitat temperature is sufficient to obtain reliable estimates of M for any species of fish. The empirical reiatior, hip linking all these variables is, for length:

$$
\begin{equation*}
\log M=0 \text {. } K \cdot 0.1912 \cdot \log L_{\infty}+0.7485 \cdot \log K+0.2391 \cdot \log T \tag{9}
\end{equation*}
$$ and for weight

$$
\log M=0.1091-0.1017 \cdot \log W_{\infty}+0.5912 \cdot \log K+0.3598 \cdot \log T(10)
$$

where T is the mean environmental temperature, in ${ }^{\circ} \mathrm{C}$ (e.g., as read from an oceanographic atlas), while L_{∞} is expressed in $\mathrm{cm}(L t)$ and W_{∞} in g (live weight). These relationships were derived from 122 independent sets of L_{∞} (W_{∞}), K,, , and M values which had been compiled and/or salculated from

Iterature data Both relationships have coefficients of multiple correlation of R $=0.8$, and slopes all significantly $\neq 0$ (Pauly, 1978b) The relatively high vaiue of the coefficients of multiple correlation (with 118 dF and $\mathrm{p}=001$, a value of R $=0303$ would still be ignificant) suggests, in Idct, thet the estimater of M obtained by means of tquation (9) or (10) should be very reliable, enpectally since values of Al completelv oft the mark are virtually impossible las opposed to the situations, often arising, when Z is plotted on f, where impossible values of M, in(cluding negative ones, can easily occur, as shown by Ricker [1975, pp 172-174]) A biotogical interpretation of the empirically established relationships between M and the growth parameters and the habitat temperature is attempted in Paul (1978b) and Pduly (in press)

An mportant feature of the fact that reilable values of 11 can be obtamed independently of estimates of Z is that it becomes possible tos estumate f by subtraction (from Z) and or to extimate the catchability coetice ent q of a gear from a single value of Z with contemporary value of effort $S_{d y}$, for example, we know in 1978 the fleet of articanal crafts of country A consists of 520 unts tsimalar canors, all operating similarly) totaling 520×220 fishing daw per vedr $=114.400$ tishing days in that vear Say. also, that the mean value of Z for the stock exploited by thes fleet in 1978 was 080 Say, finally, that we know the growth parameter of the fish of this stock, and that they produce, wher combined with the medn annual temperature at the fishing grounds, a value of $M=035$, then F $=080-035$ With $\mathrm{F}=045$. it follows that

$$
\begin{equation*}
9=\frac{0+5}{114.400}=0.000004 \tag{11}
\end{equation*}
$$

This method for estimating \& is not new Ricker (1975) discusied its application to the arcto Norwegian cod (p p $172-174$) The point is that it can now be used as a routine method, since it is easier to estimate M than to estimate q

An application of this method may be demonstrated here Table 2 gives values of I_{∞}, K, and M for six species of fishes occurring in the Culf of Thailand, M being calculated from the L_{∞} and K values, a value of $\mathrm{T}=28^{\circ} \mathrm{C}$ and F quation (9). Also given is the selection factor (SF) of these six fishes, as given in Sinoda et al (1979), and the mean length at first capture (L_{1}) resulting from a 4 cm mesh size.

Boonyubol and Hongskul (1978, Table 8) give for these six species of fishes

Table 2. Values of constants used for computing values of F (Based on data from Faulv, 1978 8 and 1978 b) t_{c} refers t) the 40 cm meshes used by R V Pramong 2.

Species	\mathbf{L}_{∞}	K	M	SF $^{\text {d }}$	$\mathbf{L}_{\boldsymbol{c}}$
Nemipterus pernoii	28.9	046	0.87	3.0	12
Nemipterus japonicus	289	047	0.88	2.4	9.6
Scolopsis taeniopterusb	295	06	105	2.4	9.6
Selaroides leptolepis	20.0	1.16	1.85	2.5	10
Saurida undosquamis	40.0	1.00	1.45	3.6	14.4
Priacanthus tayenus	290	1.2	1.77	1.9	7.6

a From Tables 1 and 2 in Sinoda et al (1979)
b. See text for growth paramet.r estimates.
the mean length (\bar{L}) in the catch of R 'V Pramong 2 (which uses 4 cm meshes) in the years 1966 to 1976 (see Table 3). From the data in Tables 2 and 3, values of F, by year and species, can be obtained through the relationship

$$
\begin{equation*}
F=\frac{K\left(L_{\infty}-\bar{L}\right)}{\left(\bar{L}-L_{C}\right)}-M \tag{12}
\end{equation*}
$$

based on Beverton and Holt (1956). The resulting fishing mortality values are given in Table 4 Since we have fairly accurate effort data (SCS, 1978) for the Culf of Thailand demersal trawl fishery, we may also estimate the value of q, by species, and a mean value of \bar{q} pertaining to the whole fishery. We obtain in this manner a mean value of $\bar{q}=0.31$, when effort is expressed in millions of trawling hours (Table 4)

Table 3. Mean length of fishes ($\overline{1}$) caught by R, V Pramong 2 in the Gulf of Thailand (from Boonyubol and Hongskul, 1978, Table 8)

Species	1966	1967	1968	1969	1970	1972	1973	1974	1976
Nemipterus peronit	164	169	159	169	161	102	141	13.4	-
Nemipterus iaponicus	148	149	142	132	126	-	121	115	12.1
Scolopsistaeniopterus	146	158	151	142	155	128	110	110	124
Selaroides leptolepis	132	130	130	131	124	123	120	126	10.9
Saurida undosquamis	213	202	200	214	214	146	187	175	172
Priacanthustayenus	157	155	161	149	144	166	128	128	142

Table 4. Fishing mortality, by year and species, with estimation of a mean value for the catchability coefficient (q)

Species	1966	1967	1968	1969	1970	1972	1973	1974	1976	q
Nemipterus raron"	044	026	068	027	058	--	232	430	-	028
Nemipterus maponicus	039	036	062	117	167	--	228	342	228	0.29
Scolopsis taeniopterus	074	028	052	095	037	208	688	-	2.61	0.34
Selaroides leptolepis	062	086	086	073	182	203	279	145	-	029
Saurida cidosquamis	086	156	172	081	081	-	310	541	6.29	0.50
Priacanthus tayenus	020	028	005	055	081	-	197	1.57	092	0.17
Total Effort (f), million hours	208	280	350	360	380	719	994	606	$(9)^{\text {d }}$	-
Fishing Mortality ${ }^{\text {D }}$	064	087	109	112	118	223	308	188	279	-

That this estimate of \bar{q} is not unreasonable may be briefly assessed. SCS (1978) reports :hat a surface area of $0.0667 \mathrm{knf}^{2}$ is swept during one trawling hour. Hence, one million trawling hours sweep $66,700 \mathrm{~km}^{2}$, or 62% of the $106,800 \mathrm{~km}^{2}$ of inshore waters ($<50 \mathrm{~m}$ depth) in the Gulf of Thailand. If there were no escapement, the value of 0.62 would correspond to our value of \bar{q}. The value of

$$
\begin{equation*}
\frac{\overline{\mathrm{q}} \cdot 106,800}{66,700}=\frac{0.31}{0.62}=0.50 \text { or } 50 \% \tag{13}
\end{equation*}
$$

is thus an estimate of escapement. It will be noted that this value happens to be exactly the one commonly assumed for this kind of gear (SCS, 1978; Isarankura, 1971; Pauly, 1979c).

Stock Recruitment Relationships and Stock Interactions in Tropical Fishes

The estimation of \bar{a} given above, hence the availability of a set of fishing mortality data, in combination with the excellent catch per effort data given by the R/V Pramong 2 from the same area, make it possible to derive stock recruitment curves and to obtain evidence of species interactions of a very interesting kind. Pending a more comprehensive account (Pauly, in preparation), the method by which such relationships may be made visible is outlined here, in the hope that it may encourage colleagues to have a second look at what may at first sight appear to be inappropriate data. I have selected for this exercise the catch per effort data of R/V Pramong 2 given in Ritragsa (1976) for the total demersal stock, for the false trevally Lactarius lactarius, and the Indian halibut Psettodes erumei (Tables 5-7)

Table 5. Estimation of the total demersal standing stock size, per year, Gulf of Thailand, Thai inshore waters

	Virgin								
	Stock	1963	1966	1967	1968	1969	1970	1971	1972
Catch per Effo:t (kg/h) ${ }^{\text {a }}$	-	249	131	115	106	103	974	663	631
Effort (in million hours) ${ }^{\text {b }}$	0	0698	2078	2800	3500	3600	3800	b 200	7188
Total Catch (in thousand tons) ${ }^{\text {c }}$	0	278	436	515	594	593	592	658	726
Fisting Mortality ${ }^{\text {d }}$	0	022	064	087	109	112	118	192	223
Standing Stock (in thousand tons)	(1978)	1.264	681	592	545	530	502	343	325
a As given in Ritragsa (1976, Table 4)									
b As given in SCS (1978)									
$c=(c / f)$. f. (16), the latterfactor correcting for the different mesh suzes used by the commercia fleet (25 cm) and R V Pramong $2(40 \mathrm{~cm})$ (from Boonyubol and Hongskul, 1978)									
d Withq $=0$ 31, dsestimated in Table 4									
e Estimated by extrapolating to f plotted on effort	0 the	atura	logarit	ns of	1963	nd 1	stand	g sto	valu

The catch per effort (c/f) values were first converted to estimates ot annual catch (Y) by means of the relationship

$$
\begin{equation*}
Y=(c / f) \cdot f \cdot(1.6) \tag{14}
\end{equation*}
$$

where f is the effort as given in Table 5, and 1.6 is a factor correcting for the fact that the commercial fleet, by using smaller meshes than R/V Pramong 2, catches more per unit of effort (the area swept, however, is equal). The 1.6 correction factor is taken from Boonyubol and Hongskul (1978).

These estimates of annual catch were then used to estimate stock (B) for any given year by

$$
\begin{equation*}
\mathbf{E}=\frac{\mathrm{Y}}{\mathrm{~F}} . \tag{15}
\end{equation*}
$$

The results are given in Tables 5 through 7. However, stock recruitment analysis relates recruit numbers to parent stock size, not to overall stock size. It is thus necessary to reduce, in the cases of Lactarius lactarius and Psettodes erumei, the
overall stock size to the size of the standing stork of those fishes that have reached or are above the age at first maturity (t_{m}). The relationship between the total standing stock and the standing stock of (potential) parents is, for any fish species,

$$
\begin{equation*}
B_{p}=B \cdot m \tag{16}
\end{equation*}
$$

where B_{p} is the parent stock, B the totil stock, and m a correction factor which is, among other things, a function of fishing mortality. The value of m for any value of F may be computed from

$$
\begin{equation*}
m=\frac{e^{-Z r_{3}} 3\left(\frac{1}{Z} \cdot \frac{3 e^{-K r_{2}}}{Z+K}+\frac{3 e^{-2 K r_{2}}}{Z+2 K}-\frac{e^{-3 K r_{2}}}{Z+3 K}\right)}{\left(\frac{1}{Z}-\frac{3 e^{-K r_{1}}}{Z+K}+\frac{3 e^{-2 K r_{1}}}{Z+2 K}-\frac{e^{-3 K r_{1}}}{Z+3 K}\right)} \tag{17}
\end{equation*}
$$

$$
\begin{aligned}
\text { where } r_{1} & =\left(t_{\mathrm{c}}-\mathrm{t}_{\mathrm{o}}\right) \\
r_{2} & =\left(t_{\mathrm{m}}-\mathrm{t}_{\mathrm{o}}\right) \\
\text { and } \quad r_{3} & =\left(t_{\mathrm{m}}-\mathrm{t}_{\mathrm{c}}\right)
\end{aligned}
$$

The values of m computed by means of Equation (17) are given in Table 6 for Lactarius lactarius and Table 7 for Psettodes erumei. Both tables also give the parent stock size obtained by means of these values of m.

Finally, the number of recruits is computed by estimating the yield per recruit for each year and its corresponding level of F, and by dividing the yield per recruit into the catch, or

$$
\begin{equation*}
R=\frac{\text { annual catch }}{\text { vield per recruit }} \tag{18}
\end{equation*}
$$

Table 6. Data for the derivation of stock recruitment curve in Lactarius lactarius in the Gulf of Thailand, Thai inshore waters

	Virgint Stock	1963	1966	1967	1968	1969	1970	1971	1972

a Recalculded from Tables 5 through 13 in Ritragsa (197 h), which give (at (hrater of R:V Pramong 2
 fleet $\left(25^{5}(\mathrm{~m})\right.$ and R V Pramong 2140 cm$)$ (tron Boonvubol and Hongikul. 197 H$)$
c. Uaing the following parameter values $\mathrm{W}_{\infty}=193 \mathrm{~g} . \mathrm{K}=10 . \mathrm{t}_{\mathrm{o}}=0 \mathrm{I}, \mathrm{t}_{\mathrm{c}}=02$. and $\mathrm{M}=159$ Values based on Apparao. 1971, and Pauly. 197 Ha and 1979,
d F viunated by extrapolating tot $=0$ the natural logarithme of the 196 ; and 1966 standing stock values plested on ettort

- With $\mathrm{t}_{\mathrm{m}}=1$ vear

Table 7. Data for the derivation ot stock and recruitment data in Psettodes erumei, in the Culf of Thailand, Thai inshore waters.

	Virgin								
	Stock	1963	1966	1967	1968	1969	1970	1971	1972
Catch per Effort (kg/h) ${ }^{\text {a }}$	-	0211	0992	0.594	0.580	0.653	0.558	0.711	0.504
Catch (Y)(in tons) ${ }^{\text {b }}$	-	236	3298	2661	3248	3761	3392	7053	5796
$Y / R(i n g)^{C}$	-	301	32.6	29.5	26.5	26.1	25.4	18.7	16.8
K (in millions)	$(1.10)^{e}$	784	101	90.2	123	144	134	377	345
$\log _{e} R$	0.09	2.06	462	450	4.81	4.97	490	5.93	5.84
Standing Stock (in tons)	$485{ }^{\text {d }}$	1073	5153	3059	2980	3358	2846	3673	2599
m^{f}	0808	0.691	0469	0.365	0.282	0.271	0.252	0.093	0.059
Spawning Stock (in tons)	392	741	2147	1117	840	910	717	342	153

a. Recalculated from Jables 5 through 13 in Ritragsa (1976), which give catch rates of R/V Pramong 2 .
$\mathbf{b}=(c / f) \cdot f .(16)$, the latter factor correcting for the different mesh sizes used by the commercial fleet (25 cm) and R/V Pramong $2(40 \mathrm{~cm})$ (from Boonyubol and Hongskul, 1978).
c Using the following parameter values: $W_{\infty}=1100 \mathrm{~g} ; \mathrm{K}=0.3 ; \mathrm{t}_{\mathrm{o}}=-04 ; \mathrm{t}_{\mathrm{c}}=0.2$; and $\mathrm{M}=0.58$ (based on Kühlmorgen-Hılle, 1976, and Pauly, 1978a, 1979a)
d. Estimated by extrapolating to $f=0$ the natural logarithms of the 1963 and 1966 standing stock values plotted on effort
e Based on Equation (20) and the virgin stock estimate of 485 mt
f Witht m 2 years

The yield per recruit itself being estimated from

$$
\begin{equation*}
\frac{Y}{R}=F \cdot W_{\infty} \cdot\left(\frac{1}{Z}-\frac{3 e^{-K r_{1}}}{Z+K}+\frac{3 e^{-2 K r_{1}}}{Z+2 K}-\frac{e^{-3 K r_{1}}}{Z+3 K}\right) \tag{19}
\end{equation*}
$$

with r_{1} defined as above, the model being a simplified version (Jones, 1957) of the equation presented by Beverton and Holt (1957). The parameter values used for these computations are given in Tables 6 and 7, which also give the number of recruits estimated in this manner.

In the case of Lactarius lactarius, plotting R on parent stock size results in a typical "Ricker cuıve'" (Ricker, 1975); the freehand version seems slightly more realistic than the calculated curve (Fig. 5). (The curves differ somewhat from the one previously published [Pauly, 1979b], mainly because different catch data were used to estimate the numbers of recruits.) Quite clearly, the dramatic decline of Lactarius lactarius in the Gulf of Thailand, to a virtual disappearance from the catch (Hongskul, personal communication), is due io rec.uitment overfishing

In the case of Psettodes erumei, on the other hand, there is obviously no relationship hetween R and parent stock size (Fig. 6). This fish is one of the few whose catch did not decrease as fishing pressure increased. (See Pauly, 1979c, for a preliminary discussion of this feature.) However, plotting the natural logarithm of the number of recruits produced each year by P. erumei against the size of the total demersal standing stock (that is, all fishes and invertebrates with which P. erumei potentially interacts) provides a surprisingly linear relationship (Fig. 7), which may be described by the regression

Figure 5. Stock recruitment relationships in Lactarius lactarius from the Gulf of Thailand. (Based on data of Table 6.)

$$
\begin{equation*}
\log _{e} R=7.10-4.01 \mathrm{~B}_{\mathrm{T}}, \mathrm{r}=0.990 \tag{20}
\end{equation*}
$$

where R is the number of P. erumei and B_{T} is the biomass of the total demersal standing stock in millions of metric tons. Equation (20), in fact, expresses a "stock recruitment relationship," except that the stock in question is not the parent stock but the overall stock of potential competitors and predators. We may therefore call this type of relationship an interspecific stock recruitment relationship, as opposed to the normal intraspecific stock recruitment curve where the interactions occur within a single-species stock.

The interspecific stock recruitment relationship in Figure 7 suggests that the extraordinary resilience of this flatfish against a strong fishing pressure is due to the fact that P. erumei is an r-selected species, whose biomass was being kept at low levels in the virgin stock. As its predator diminished, however, recruitment to the stock of P. erumei increased rapidly, which allowed this fish to sustain the heavy fishing pressure. This confirms the pattern of stock interactions suggested in Pauly (1979c). The actual decrease in mortality of the prerecruits of P. erumei as the total demersal stock declined can even be demonstrated directly.

For the age $t=0$ (at which the eggs are shed) and the age $t_{C}=0.2$ years $(=$

Figure 6. Demonstration of the lack of a stock recruitment relationship in Psettodes erumei from the Gulf of Thailand (Based on data of Table 7.)

73 days, the mean age at first capture and recruitment), the natural mortality can be estimated for each year through

$$
\begin{equation*}
M_{d}=\frac{\log _{\mathrm{e}}\left(\frac{\text { recruits }}{\text { eggs produced }}\right)}{-73} \tag{21}
\end{equation*}
$$

which provides the mortality estimates of Table 8. These estimates can be transformed to estimates of the percentage of prerecruit dying per day through the relationship

$$
\begin{equation*}
\% \text { dying per day }=1 \cdot \mathrm{e}^{-M_{d}} \tag{22}
\end{equation*}
$$

(see Table 8). The values of M_{d} that were obtained range from 0.144 in the virgin stock to 0.052 in the exploited 1972 stock (Fig. 8). These va'...ns, incidentally, compare quite well with those given by Cushing (1976) for plaice (0.05) and haddock (0.10).

What is most striking, however, is the relationship of these computed mortality values to the biomass of the total demersal standing stock (Fig. 8). The points for eight different years (plus the point derived indirectly for the virgin stock) suggest a continuously decreasing prerecruit mortality as the total stock decreased, with the intriguing possibility that the prerecruit mortality of P.

Figure 7. The relationship between recruitment in Psettodes erumei and the size of the total demersal stock. (Based on data of Tables 5 and 7.)

Table 8. Data for the estimation of prerecruit mortality in Psettodes erumei.

Number of Recruits ($\left.10^{6}\right)^{\text {a }}$	Virgin								
	Stack	1963	1966	1967	1968	1969	1970	1971	1972
	110	784	101	90.2	123	144	134	377	345
¢\% Spawning Stock (in toins) ${ }^{\text {b }}$	196	370.5	1,073 5	558.5	420	455	358.5	171	76.5
Eggs Produced ($10{ }^{\mathbf{8}} \mathrm{c}^{\mathrm{c}}$	392	741	2,147	1,117	840	910	717	342	153
Exp Rate of Mortality (per day) ${ }^{\text {d }}$	0.144	0.125	0.105	0.098	0.089	0.088	0.086	0.062	0.052
Percent Dying (per day) ${ }^{\text {e }}$	134	11.8	10.0	0.3	8.5	8.4	8.2	6.0	5.1

a. From Table 7
b. 50% of parent stock size in Table 7.
c. With 200 eggs per \mathbf{g} of adult female, an assumed value based on plaice data (based on Table 59 of Bagenal, 1973)
d. From Equation (21)
e. From Equation (22)
erumei may be reduced to a negligible amount when all other fishes are removed (Fig. 8). Indeed, what may be occurring here is one of the first demonstrations of "density-dependent" mortality in the prerecruits of any tropical stock, along with one of the first demonstrations of stock interactions of this type.

Mortality in pre-recruit stages of Psettodes erumei

Figure 8. The relationship between prerecruit mortality in Psettodes erumei and the biomass of its potential predators. (Based on data of Tables 5 and 8.)

Conclusions

In the introduction, mention was made of the need for more thorough use of the data on the biology of tropical fish presently available. Also, it was contended that the combination of such biological data with the data generated by the fisheries themselves would alluw, at very little cost, for a greatly improved understanding of the dynamics of tropical multispecies stocks. The present exercise may be seen as an illustration of these two points.

References

Apparao, T. 1971. On some aspects of the biology of Lactarius lactarius (Scheider). Indian J. Fish. 13(1-2):334-349.
Bagenal, T.B. 1973. Fish fecundity and its relation with stock and recruitment. In: Fish Stocks and Recruitment, B.B. Parish, ed., Rapp. P -v. Reun. Cons. Perm. Int. Explor. Mer 164: 186-198.
Beverton, R.J.H., and S.J. Holt. 1956. A review of methods for estimating mortality rates in exploited fish populations, with special reference to sources of bias in catch sampling. Rapp. P.-v. Reun. Cons. Perm. Int. Explor. Mer 140(1):67-83.
1957. On the dynamics of exploited fish populations. Fish. Invest. Lond. (2)19, 533 pp.
Boonyubol, M. and V Hongskul. 1978. Demersal resources and exploitation in the Culf of Thailand, 1960-1975 In: Report of the Workshop on the Demersal Resources of the Sunda Shelf, Penang, Malaysia, 31 October to 6 November 1977, Part II, SCS/CEN/77/13, pp 56-70
Chomjurai, W, and R. Bunag 19\%0. Preliminary tagging studies of demersal fishes in the Gulf of Thailand In: The Kuroshio, A Symposium on the Japan Current, IC Marr, ed., East-West Center Press, Honolulu, pp 517-524
Cushing. DH 1976 Biology of fishes in the pelagic community. In. The Ecology of the Seas, D.H. Cushing and J J. Walsh, eds., Blackwell Scientific Publications, pp. 317-340.

Gulland, I A., and S I Holt 1959 Estimation of growth parameters for data at unequal time intervals J du Cons Perm Irt. Explor. Mer 25 (1):47-49
Hohendorf, K 1966 Eine Diskussion der Bertalanffy Funktionen und Ihre Anwendung zur Charakterisierung des Wachstums von Fischen Kieler Meeresforsch. 22:70-97.
Isarankura. A 1971 Ashessment of stocks of demersal fish off the west coast of Thailand and Malaysid IOFC DFV7:20
Jones, R 1947 A much simplified version of the fish vield equation Doc. No. P21, presented at the Lisbon Joint Meeting of Intern Comm Northw AtI. Fish Intern. Counc Explor. Sea and FAO, 8 pp.
Kühlmorgen-Hille, G 1976 Preliminary study ori the life history of the fiatfish Psettodes erumet In Proc of the Intern Sem on Fis'h Res. and Their Management in Southeast Asia, K Tifws, ed, Germa, ' oundatinn for Intemationa! Development and FAO, pp. 261-268
Marr, JC 1976 Fishery and resource mandgement in Southeast Asid RFF/PISFA Paper 7, 62 pp
Pauly, D 1978a A preliminary compilation of fish length growth parameters. Berichte Inst f Meereskunde (Kıel) 55, 200 pp
Pauly, D 1978b A discussion of the potential use in population dynamics of the interrelawonships tetweeri natural mortality. growth parameters and mean environmental temperature in 122 fish stocks Intern Counc Explor Sea, C M 1978/C. 21, Demersal Fish Cltee, 36 pp (mimeo)
Pauly. D 1979d Cill seze and temperdure as governing factors in fish growth: A generalization of von Bertalanffy' growth formula Berichte Inst f. Meereskunde (Kiel) 63, 156 pp
Pauly. D 1979b Biological overfishing of tropical stocks ICL.ARM Newsletter 2(3):3-4
Pauly, D 1979، Theory and management of tropical multispecies stocks: A review with emphasis on the Southeast Asian demersal fisheries ICLARM Studies and Reviews No. 1, International Center for Living Aquatic Resources Management, Manila, 35 pp
Pauly, D On the interrelationships between natural mortality, growth parameters and mean environmental temperature in 175 fish stocks I du Cons Perm. Int. Explor. Mer. (In press)
Pope, I 1979 Stock assessment in multispecies fisheries, with special reference to the trawl fishery in the Gulf of Thailand SCS/DEV/79/19. 106 pp.
Ricker, W E 1975 Computation and interpretation of biological statistics of fish populations Bull 1 ish Res Bd Can 191, 382 pp
Ritragsa, S 1976. Results of the studies on the status of demersal fish resources in the Culf of Thailand from trawling surveys, 1963-1972 In: Proc. of the Intern. Sem on Fish. Res. and Theil Management in Southeast Asia, K. Tiews, ed, German Foundation for International Development and FAO, pp 198-223.
SCS 1978 Report of the workshop on the demersal resources of the Sunda Shelf. Part I, SCS/CEN/77/12, 51 pp

Sinoda, M., S.M. Tan, Y. Watanabe, and Y. Meemeskul. 1979. A method for estimating the best cod-end mesh size in the South China Sea area. Bull. Choshi Marine Lab., Chiba Univ. 11:65-80.

Report on the Studies of Multispecies Systems in Fisheries

Veravat Hongskul, Bangkok Department of Fisheries

Introduction

Classical studies of fisheries dynamics deal mostly with single populations treated as if they existed independently. Fishery biologists have come to recognize, however, that in many situations the fish stock cannot be so treated To a steadily increasing extent, modern fisheries are concerned with harvesting a wide range of species living in the same body of water. The exploited populations of interest are interdependent with others (which may be either exploited or unexploited) through competition or predator-prey relationships. Any effect of exploitation on one stock may produce a reaction in another, resulting in readjustments in both populations, and invalidating the expected response to exploitation based on single-species dynamics

The management p:oblems arising from multispecies fisheries have been recognized Since yields of different species are maximized at different effort levels and it is impossible to adjust the fishing effort to each level to maximize the sustainable yield of all, some populations will be overfished and some underfished. In fact, it is likely that, in multispecies fisheries, species of lower productivity are progressively eliminated or pushed close to extinction as the fisheries harvest the more productive species to the level of their supposed maximum yield, as pointed out by Larkin (1977). The results of such changes on the stability of the fish community are virtually unknown at present, although the effects of the exploitation on species succession such as those in the Great Lakes (Smith, 1968) are expected

The extension of coastal state jurisdiction up to 200 miles added a further dimension to this complex problem. This action brought virtually all fish stocks within coastal state jurisdiction. The first paragraph of Article 61 of the Informal Composite Negotiating Text assigns the responsibility to the coastal states for determining the allowable catch of living resources in their exclusive economic zones. The problem of the principles that should be used in determining these allowable catches immediately arises. The uncertainty of the general applicability of the single-species models, the interactions among species, and also the influence of envirnnmental fluctuations are making it difficult, even for the developed coastal states, to estimate the sustainable yields from the multistock, multispecies, and multigear fisheries. Needless to say, the developing countries with less capacity in fishery science have greater difficulties.

Therefore, a study of the dynamics of the multispecies system becomes important to the developing countries, while at the same time being of considerable

[^9]value to fishery science in general. An André Mayer Fellowship was granted to the author by FAO with the objective "to study and develop models which would provide the basis for a good understanding of events in a multispecies community that occur under exploitation and for deeper and more fundamental study of the subject." This objective should be met by: 1) identifying the required statistics and other data necessary to undertake such studies; 2) identifying information on feeding habits and other behavior factors required to study the species within the system; and 3) developing suitable theoretical models which will take account of the direct effects of fishing on each species, and the interaction between species.

This report presents a critical review of the existing multispecies models, problems, and proposed program of field study that should be carried out in accordance with the terms of the assignment.

Multispecies Models

Despite the general concern, effort toward solution of what has been called the multispecies problem has been diffused and uncoordinated. While considerable work has been done on the single-species system, very little work of value has been undertaken on the effects of fishing en multispecies systems. In fact, there is little evidence of a generally recognized concept as indicated by recent meetings on the multispecies tisheries problems (Hobson and Lenarz, 1977; FAO, 1978). It may be because there are so many variations of the problems A large amount of recent literature on modeling abundantly demonstrates that a wide varietr of unexpected consequences can flow from what seem to be simple. management strategies for these fisheries.

The first attempt was made on the multistock problem by Ricker (1958) and later by Paulik et al. (1967) for salmon management where escapements were known and could be regulated. The application of their work to other species elsewhere is therefore limited. On the other hand, Rothschild (1967) and Pella (1969) suggested storhestic models for multispecies fisheries in which there is competition for fishing gear rather than among the species concerned, called the "technological interaction" by Pope (in press)

For the interspecific interaction which is the crux of this problem, Larkin (1956, 1963, 1966) pioneered the mathematical examination of the interactive relationships for two species, in the form of Lotkva-Volterra equations. Silliman (1969, 1975) employed these equations to investigate the interactions among species and the resulting yields from analog computer simulations. He suggested that the competition theorv may account for a substantial proportion of the variation in the Pacific alichovy bomass. Pope and Harris (1975) also explained the effect of interspecific competition between the South A.frican pilchard and anchovy stock coripiex based on a similar formulation. Many other attempts were made along these lines, although $f \in w$ were applied to the actual fishery situations. for example, Lord (1971) formuiated a general multiple-species production model with interspecific interaction terms and performed some mathematical analysis of the logistic form. However, there has been no attempt to apply the model to an actual fishery. Nevertheless, one important feature of such interacting population models emerged from these studies, as shown by

Pope (1973, 1976), Silliman (1975), and Horwood (1976). It is when two species are interacting that the total vield from an interactive system would be lower than the sum of the individual spectes MSYs. The maximum attainable vield, however, lies within a parabolic dome whose sides are defined by the loci of species mortality rates generated by the fories for highly interactive fisheries, the weld region is rather narrow and the toral yield is not much greater than that which would be achieved by the fishery for either species separately.

The third approach for the multispecies problem was taken by expanding the basic interactive model into the "whole system" or trophic-dynamic models. By identifving the appropriate trophic assemblages (e g. indirect indices of the degree of interaction and organization within fish assemblages, indices of feeding success, growth and fee ding relationships, metabolism, etc.), lood intake, and biomass, the models of tha energctics of the natural populations were constructed to predict the reactions of the system to changes in the structure of 'he populations and their environment Among these groups are those of Riffenburgh (1961, 1969), Carinkel (1967), Patten (1969), Parrish and Saila (1970), Faloheimo and Dickie (1970), Saila and Parrish (1972), Regier and Henderson (1973), Simin (1973), Stewart and Levin (1973), Hackney and Minns (1974), Parrish (1975), Jones (976). Andeisen and Ursin (1977), and more to come It is interesting to note that, while emphasis on the ecological approach is made and generally decepted, neady all of these models are still in the experimental stages with no applicability for the actual management or conservation of the species under study it is apparent that attempts have been made to deal with the problenis of energy flow and species diversity in natural communities. However, the problem of major concern to marine ecologists, as well as to marine fishery biologists, is how to quantify and analyze the complex patterns of passage of energy among fishes and other trophic levels in the marine environment. Testing such theores in a natural setting is also extremely difficult and suffers from lack of control on other exogenous tactors. This stage can be summarized by a quote from Patten (1969)

A defintive rationale for ecological modelling has not beet invented vet. There is littie dgreement about what constitutes a valid model since all modelling is abstraction and bologists are inclined to be concerned with realities Models having predictive and analytical capabilites with real world relevance are an ultimate goal, but until technical problems relating to the abstraction process are resolved the greatest value of dynami. ecological modelling is likel, to remain what it is at the present timeheuristis
Nevertheless, in the author's point of view, these attempts are encouraging evidence that the multispecies problem is increasingly well recognized and is aiready receiving much attention.

As a series of multispecies models were constructed and presented in the past decade, certain questions arose: What do we expect from these models? What would be the criteria for good models, academic as well as practical, for management purposes? It would be better to concentrate on the following questions to be asked of multispecies fisheries models:

1. Can an interdependent or interactive model be made to fit reality reasonably well?
2. If the fit in adequate, what are the extrapolations for abundance and

catches of species concerned?

3. What would be the mix of fishing efforts in these interactive fisheries that would, without upsetting the ecological balance, optimize a) the target species catch, and b) the combined species catcin?
4. For the possible mixes of \{ishing effort, what are the projected catches of the species concerned?
5. Can we affect population abundance generally by the control of fishing intensities?
6. If so, how delicate must this control be? For example, can we optimize catch while maintaining ecological balance or are we likely to upset the ecological balance with the slightest change in fishing intensity?

The closest model that can answer some of these questions is that of Andersen and Ursin (1977), which was used for multispecies fish stock assessment in the North Sea (Ursin, 1977). Regrettably, the great number of predetermined parameters required, as well as many that have to be obtained from simulations, make it less applicable to other fisheries, which have a short history of fisheries and fishery research

It is apparent that the success of multispecies models depends critically upon the quality of the data set on which they are based. The available data therefore dictate the choice and also the outcome of the models to be employed for a particular purpose. Lack of appropriate data at a number of levels of specificity and of temporal and spatial scope, for both strategic and tactical purposes, was pointed out as the main hindrance to progress in this field at both expert meetings on multispecies fisheries problems (Hobson and Lenarz, 1977; FAO, 1978)

With this fact in mind, the autho views the development of the multispecies models as five levels of progression, which are outline d in Table 1. At the most basic level, Level 1, only some exploratGiy work has been done, with little fishing, but crude estimates of the abundance and nature of the existing communities in the area, as well as of basic production, could be made to guide the fisherv development schemes. When the fisheries have been in existence for some time and catch and effort data become available from properly designed fishery statistic systems, the fishery scientists could progress to the second level, and estimate overall fish production and the optimum fishing effort required for management. Most of the fisheries of the world are still at this stage, with a greater or lesser degree of satisfaction. The use of surplus production models has been generally adopted for multispecies fisheries, with some adaptations to the catch-effort analysis to suit the particular characteristics of the fisheries under study (see Chikuni, 1976; Clark and Brown, 1975; Hongskul, 1975; Brown et al., 1976; Pinhern, 1976; Halliday and Doubleday, 1976; Boonyubol and Hongskul, 1978). Of course, the validity of the use of this model without a specific study of the interactions among the species presented in the area has heen criticized Nevertheless, as pointed out by Gulland (1976). the immediate day-to-day management needs are to determine what is happening; ie., what the net effects of changes in the amount of fishing (Including the indirect effects through interactions between species) are, rather than why and how these effects take place. The main problem lies in the refinement of catch per unit of effort analysis, particularly when the catchability coefficients change with the abun-
dance of stocks, as suggested by Fox (1974), Garrod (1976), anci Ulltang (1976, 1978).

Table 1. The development of multispecies models and their expectations at each progressive level.

Level Progression	Datarenuired	Expectation	
1 Exploratcry	Standing crops Primary production	Virgin biomass Potential yield Fish communities	
2	Production models	Catch/effort Fishing strategies	Overall MSY Optimum effort
3	Biomass models	Mortality rates Catchability coefficient Biological parameters	Species TACs Mesh regulations Effort regulations
4	Interactive models	Food web analysis Plankton analysis Life history	Management options [ffort control
5	Ecological models	All-level productivity [cological coefficients Energy transfer	Overall production Conservation

Among fisheries in temperate waters where aging of fish is possible, the use of Virtual Population Analysis (VPA) opens the door for the investigations on variations of fishing mortality rates with age, as well as on the catchability coefficients mentioned above These additional types of information lead to the third level of multispecies models, in which the changes in biomass of various species are investigated and related to the catches. The interspecific interactions might be revealed through the changes in the biomasses of interactive populations Some properties in the ecosystem such as replacement and species succession can be studied, as shown by Smith (1968) and Daan (1978). Moreover, even the effects of environmental fluctuations in fish production can be examined (Doubleday, 1976; Lett and Kohler, 1976). It is rather unfortunate for the tropical fisheries that this magic door remains closed to them because of the lack of suitable aging techniques.

While practicing the applications of multispecies models at Level 2 or 3 , another group of biologists may reach Level 4 by examining the interspecific relationships in the fish community. Analyses of plankton data and of early life histories are indispensable to the understanding of the role of interspecific in-
teractions, which occur more strongly during the larval stages than at other periods of life. The classifications of major herbivorous and carnivorous plankton, fish larvae, and juveniles according to their feeding habits will certainly throw light on the study of energetics in this ecosystem in the long run. For the adult fish, food web analysis, as presented by Maurer $(1975,1976)$ and recently by Crosslein et al. (1978), served as examples for this approach. In the short run, these studies are also of value in identifying and classifying the interrelationships among the major economically important species groups in the fisheries The economic consideration may also serve as one of the criteria in selecting groups for the study of interactions at this level.

Undoubtedly, it will take considerable time before one can gather enough information to investigate the dynamics of ecosystems. The details of Level 5 are beyond the scope of the present study. The only suggestion for the fishery biologists (not for management) is to keep a close watch on the advances in the field of ecosystem analysis so that releva.it information can be collected at the proper time Observations and experiments relevant to this aspect should also be encouraged for better understanding of the system under which the fisheries will be operated on a iong-term basis in the future.

Application to Tropical Fishery Management

While the fisheries in temperate zones consist of a few exploited populations that have a long history of fisheries research which provide enough information to experiment with multispecies models, tropical fisheries suffer from lack of data and numerous populations. The task of fisheries management in the latter case becomes much more complex because of the varied social, econonic, and political objectives that societies as a whicle can pursue. Unfortunately, most of the developing coastal states that have new responsibility for the conservation and management of fishery resources lie in the tropical region. The need for practical management schemes for these multispecies fisheries is therefore greater than ever

One must always bear in mind that management of tropical fisheries cannot wait for the better data and the research required by a refined model, since the fisheries are developing fast enough to overexploit the resources within a short period of time Experiences from the trawl fishery in the Culf of Thailand indicated that the MSY was attained within only five years after the beginning of the expansion of trawl fishing in the region. A similar phenomenon was observed in the scad (Decapterus spp.) fishery of Thailand. The fishery biologists are therefore assigned a difficult role in this dynamic situation; that is, to detect changes in the state of stocks and diagnose them, with an awareness of the time lags that are inevitable between the provision of advice based on scientific analysis and the enforcement of regulations as they are finally adopted by the fishery administration.

The difficulties of rational ranagement of these fisheries have been recognized. The increased expectations of the coastal states to develop or expand the fisheries in their newly acquired exclusive economic zones and to invest more heavily in fishing effort will eventually lead to a mutually destructive race for both biological and economic resources. The sophisticated multispecies
fisheries models will not serve the needs of fisheries authorities concerned. An alternative approach may be to cevelop a down-to-earth model for diagnoses of the state of the exploited stocks and advice on management measures such as effort control (direct or indirect) and control of the age or size at which thin are first exploted (eg, mesh size regulation in trawl fisheries)

For the study of multispecies fisheries at the initial stage, the production model as shown by Pope $(1975,1976)$ and Brown et al (1976) has the great advantage of simplicity The experiments by Silliman (1968) and Lett and Kohler (1976) as well as that of Doubleday (1976) also confirm the applicabilitr of this type of model to tisheries problems with multispecies interactions and environmental perturbations

Pope (1975, 1976) has extended this model into the mixed-species fisheries problem as already mentioned He shows that, if a multispecies fishery conformed to this model and it the development of fishing effor: on the system occurred with a constant ratio between the efforts on difterent species, the form of the yield curve for total catch would be a parabolic function of total effort. Theoretical consideration of two interacting fisheries, however, indicates that the overall MSY would be associated with a particular species composition and its achievement would depend on the composition of the actual catches being matched to the "optimal" species composition in other words, the general production model does not necessarily indicate the MSY ot a complex. The true MSY is only likely to be achieved by a very mixed-i.e., indiscriminate-fishery and will resuit in a progressive change in spectes composition in the multispecies system

While Pope's interactive production model deals directly with the multispecies fisheries problem and requires fewer parameters than would an analytical multispecies model (e.g., that of Andersen and Ursin), its use is limited in practice, since it still requires a considerable number of phr. meters for the nstock system, the parameters would be equal to $(n+1)^{2}-1$, which makes it rather difficult to apply to tropical fish communities. Pope (1977), however, suggested an approximation for managing multispecies fisheries where the parameter values are unknown by trying to achieve maximum yield by maintaining each species at about half the level of its unexploited biomass. In practice, this is equivalent to the strategy derived at Level 1 of the multispecies models described earlier.

Pope (1977) also proposed an alternative method to deal with a complex fishery by employing principal component analysis. He showed that tropiral multispecies fish stocks, at least in the Culf of Thailand, tend to support a fishing effort which is not very species-selective. Therefore, there is a tendency for fishing mortality rates to increase in a fairly constant proportion for each species. The conditions for an overall yield curve to be applicable are therefore broadly satisfied and the MSY given by an overall Schaefer curve can be used. A principal component analysis of demersal catch rates along the Indian Ocean coast of Thailand indicated similar results.
it is important to note that, without reliable estimates of catchability coefficients for the various stocks under exploitation or the estimates of fishing mortality rates of each stock, the application of multispecies fisheries models for management purposes is likely to remain at Level 2 for the time being. In the
meantime, however, biological investigations of feeding habits throughout the life history of major species, surveys on the abundance of plankton, eggs, and larvae, and so on should be encouraged so that a better understanding of the interrelationships among the exploited fish populations can be applied to higherlevel models in the future

References

Andersen, K P , and \mathbf{E} Ursin 1977. A multispecies extension to the Beverton and Holt theory of fishing, with accounts of phosphorus circulation and primary production. Medd Dan Fisk -Havunders (Ny Ser) 7:319-435
Boonyubol, M, and V. Hongskul 1978 Present status of demersal resources in the Gulf of Thalland and recommendation for effort control Marine Fisheries Division, Department of Fisherres, Thailand, 11 pp imimeo in Thai)
Brown, BE., I A Brennan, M.D Grosslein, E.G Heyerdahl, and R C Hennemuth 1976. The effect of fishing on the marine finfish biomass in the Northwest Atlantic from the Gulf of Maine to Cape Hatteras ICNAF Res Bull 12 49-68
Chikunı, S. 1976 Problems in monituring abundance in the multispecies and rnulti-gear groundtish fisheries in the Bering Sea FAO Fish. Tech Paper $155 \cdot 23-36$
Clark, S.H., and B.E. Brown 1975 Changes in biomass of finfish and squid from the Culf of Maine to Cape Hatteras 1963-74, as determined from research vessel survey data ICNAF Res Doc ($75 / 139$), Ser:al No 3692 (mimeo)
Daan, N 1978 A review of replacement of depleted stocks by other species and the mechanisms underlying such replacement. ICES, Symp Biol Basis Pelagic Fish Stock Mgt, Aberdeen, Paper 24, 29 pp (mimeo)
Doubleday, W G 1976 Environmental fluctuations and fisheries management Collect Pap Int Comm Northw. Atl Fish 1:141-150
FAO. 1978 Some scientific problems of multispecies fisheries Report of the Expert Consultation on Management of Multispecies Fisheries, Rome, 20-23 Sept 1977, FAO Fish. Tech Paper 181, 42 pp

1978a Report of the workshop on the demersal fisheries of the Sunda Shelf. Penang, FAO, UNDP South Ēhina Sea Programme, SCS/CEN/77/12
Fox, W.W, Ir :'17'4 An overview of production modeling. ICCAT, WTPD-Nantes/74/13, 14 pp
Carfinkel, D 1967 A simulation study of the effect on simple ecological systems of marking rate of increase of population density-dependent \mid Theoret Biol 14:46-58
Garrod, D J 1976 C.atch per unit of effort in long range North Atlantic demersal fisheries, and its use in conjunction with cohort analysis. FAO Fish. Tech. Paper 155:37-50.
Grosslein, M.D. R.W. Langton, and W.P. Sissenwine 1978. Recent fluctuations in pelagic fish stocks of the Northwest Atlantic, Ceorges Bank Region, in relationship to species interactions ICES, Symp. Biol. Basis Pelagic Fish Stock Mgt., Aberdeen, Paper 25, 52 pp. (mimeo)
Culland, I A. 1976 The scientific basis for the management of fisheries. In: Proc. of the Intern. Sem on Fish. Res and Their Management in Southeast Asia, K. Tiews, ed., Cerman Foundation for International Development and FAO, pp 155-168 ed 1977 Fish population dynamics. John Wiley and Sons, London.
Hackney, P.A., and C.K. Minns. 1974. A computer model of biomass dynamics and food competition with implications for its use in fishery management. Trans. Am. Fish. Soc. 103(2): 215-225
Halliday, R C , and W C. Doubleday. 1976. Catch and effort trends for the finfish resources of the Scotian Shelf and an estimate of the maximum sustainable yield of groundfish. ICNAF Sel Paper 1:117-128

Hobson, E S , and W H Lenarz. 1977 Report of a colloquium on the multispecies problem June 1976 Mar Fish Rev (9) 8-13
Hongskul, V 1975 Fishery dynamics of the northeastern Pacific groundfish resources Ph D Thesis, Unir of Washington, Seattle
Horn, HS 1966 Measurement of "overlap" in comparative ecological studies Am. Nat $100(914)+19-424$
Horwood, I W 1976 Interactive fisheries A two species Schaefer model ICNAF Sel. Paper 1151.155

Jones, R 1961 The assessment of the long-term effects of changes in gear, selectivity and fishing effort Marine Research, Scotland 2, 19 pp
.__ 1964 Estimating population size from commercial statistics when fishing mortality varies with age Rapp. P-v Reun Cons Perm. Int. Explor Mer 155 210-214
1974. Assessing the long-term effects of changes in fishing effort and mesh size from length composition data ICES, C M $1974+33,13 \mathrm{pp}$ (mimee)

1975 Estimating survival rates from length composition data (using two years data only) ICES,C M 1975/F 30, 16 pp (mimeo)

1976 An energy budget for North Sea fish species, and its application for fisheries management ICES, C M 1976/F 36

1976a Mesh regulation in the demersal fisheries of the South China Sea area. FAO, UNDP South Cuina Sea Programme, SCS/76/WP/34, 75 pp
Larkin. PA 1956. Interspecific competition and population control in freshwater fish. J. Fish Res Bd Can 13 327-342

1963 Interspecific competition and exploitation. I. Fish. Res. Bd. Can 20:647-678 1966 Explotitation in a type of predator-prey relationship. J. Fish. Res Bd Can. 23:349-356

1977 An epitaph for the concept of maximum sustainable yield Trans. Am. Fish. Soc 106 1-11
Lett, P F, and ACC Kohler 1976. Recruitment: A problem of multispecies interaction and envi:onmentai perturbations, with special reference to the Gulf of St Lawrence Atlantic herring (Clupea harengus härengus) J. Fish. Res. Bd. Can. 33(6): 1353-1371.
Lord, G 1971 Optimum steady state exploitation of a multispecies population with predator prey interactions. Univ. of Wash., Seattle, Cent. Quant. Sci. Paper 29:1-8
Mair, I C., G Campleman, and W R. Murdoch 1976. An analysis of the present, and recommendations for future fisheries development and management policies, programmes and institutional arrangements for the Kingdom of Thailand FAO/UNDP South China Sea Programme, SCS/76; WP/45.
Maurer, R. 1975. A preliminary description of some important feeding relationships. ICNAF Res Doc. 130, Serial No 3681 (mimeo.)

1976 A prelimınary analysis of interspecifis trophic relationships between the sea herring Clupea ha:engus L!nnaeus and the Atlantic mackerel Scomber scombrus Linnaeus. ICNAF Res Doc. $(76,121)$.
Paloheimo, J E, and L.M. Dickie. 1970. Production and food supply. In: Marine Food Chains, IH. Steele, ed, Oliver and Boyd, Edinburgh, pp. 499-527
Parrist., I.D 1975. Marine trophic interactions by dynamic simulation of fish species. Fish. Bull, U.S 73(4) 695-716.
, and S.B. Saila 1970. Interspecific competition, predation and species diversity. J. Theoret Biol $27: 207 \cdot 220$

Patten, B.C 1969. Ecological systems analysis and fisheries science. Trans. Am. Fish. Soc. 98(3): 570-581
Paulik, G. I. A S Hourstori, and P.A. Larkin, 1967. Exploitation of multiple stocks by a common fishery. J. Fish. Res. Bd. Can. 24(12):2527-2535.
Pella, J.J. 1269 A stochastic model for purse seining in a two-species fishery. J. Theoret. Bioi 22:209-226.

Pinhorn. A T 1976. Catch and effort relationships of the groundfish resource in Subareas 2 and 3 ICNAF Sel. Paper 1: 107-115
Pope. I C 1973 An investigation into the effects of variable rates of exploitation of multiple stocks by a common fishery In Symposium on the Mathematical Theory of the Dinamics of Biological Populations. Proc. Inst Math and lis Appl, pp. 23-24

1975 A note on the mixed species problem ICNAF Res Doc. 119. Serial No. 3620. (mimeo)
-_ 1976. The effect of biological interaction on the theory of mixed fisheries ICNAF Sel Paper 1 157-162

1977 Mixed fisheries theory FAO/UNDP South China Sea Programme (In press)
and OC Harris 1975 The South Afric an pilchard and anchovy stock complex, an example of the effects of biological interactions between species on management strategy ICNAF Res Doc 133, Serial No 3685 (mimeo)
Regier, HA, and HF Henderion 1973 Towards a brodd ecological model of fish communities andfisheries Trans Am Fish Soc 102(1) 56.72
Ricker, W F 1958 Maximum sustained yields from fluctuating environments and mixed stocks I Fish Res Bd Can 15991 1006
Riffenburgh. RH 1961 A system andysis of the arine ecology Bull Inst. Intern. Statist. 33:57-66
—1969 A stochastic model of inter-population dynamics in marine ecology. I. Fish. Res Bd Can 26 2843-2880
Rothschild, B.J 1967 Competition for gear in multıple-species fishery. I. Cons. Int. Explor Mer 21(1) 102-110
Saila, S B, and J D Parrish 1972 Exploitation effects ur.on interspecific relationships : marine ecosystems. Fish Bull, US 70 (2) 383-393
Silliman, R.P 1968 Interaction of food level and exploitation in experimental fish populations Fish Bull., U S 66:425-439
1969. Analog computer simulation and catch forecasting in commercially fished populations Trans Am Fish Soc 98(3) 560-569
__ 1975 Experimental exploitation of competing fish populations Fish. Bull NCAA: NMF 5 73:872-888
Smith, S H 1968 Species succession and fishery exploitation in the Great Lakes $/$ Fish Res. Bd Can 25:667-893.
Stewart, FM. and BR Levin 1973 Partitioning, of resources and the outcome of interspecific competition: A model and some general consideration Am Nat. 107:171-198
Timin, ME 1973 A multispecies consumption model Math Biosci. 16:59-66
Ulltang, \varnothing. 1976 Catch per unit of effort in the Norwegian purse seine fishery for AtlantoScandian (Norwegian spring spawning) herring. FAO Fish. Tech. Paper 155:91-101
__ 1978 Factors of pelagic fish stocks which affect their reaction to exploitation and required a new approach to their assessment and management. ICES Symp. Biol. Basis Pelagic Fish Stock Mgt. Aberdeen Paper 34, 40 pp. (mimeo.)
Ursin, E. 1977. Multispecies fish stock assessment for the North Sea ICES, C M. 1977/F:42, 19 pp. (mimeo.)

A Yentative Structural Modeling Approach to Some Aspects of Small-Scale Fisheries Management

Saul B. Saila, University of Rhode Island

Abstract

The concept of applying sig ad digraphs to the analysis of some types of fisheries problems is introduced. Two examples, based on the application of digraph methodology to fisheries problems associated with developing countries in tropical latitudes, are provided. The advantages and limitations of the method are demonstrated using these simple examples.

Iniroduction

The problems of managing tropical small-scale fisheries aprear to be especially difficult, due in part to the high diversity of species and fishing methods, and the paucity and low quality of data (both catcin statistics and the vital statistics of the important species). For example, Marr (1973) has pointed out that the past performance of fishery science in helping fisheries of Southeast Asia leaves something to be desired. Some of the data requirements for fisheries management and stock assessment for marine fisheries in developing areas have been summarized by Gulland (1976). Henderson (1976) has provided a review of approaches to the assessment of fish resources in inland waters of developing countries. From these reports it seems evident that there is still a need for exploring alternative management methodologies which are relatively simple "o apply but which provide useful initial information on which administrators could take preliminary management decisions. One of these alternative approaches is brefly introduced in this report

A class of mathematical modeling techniques called structural modeling has been developed to provide analytical tools for addressing holistic, partially specified, complex systems. One of these structural modeling techniques is graph theory, which is now being applied in social science, psychology, engineering, an f physics Roberts (1976) has developed and described in detail the idea of studying various biological, social, and societal problems by means of a geometric methodology which has been termed "structural analysis." More specifically, Roberts used the signed or weighed digraph as a mathematical model to describe and analyze some of the above-mentioned classes of problems. Jeffries (1974) has used digraphs to model and test for ecosystem stability. Saila and Parrish (1972) have applied graph theory to food webs, and Levins (1975) and Lane and Levins (1977) have evaluated system stability by loop analysis, which is also a structural modeling technique.

The objective of this report is to provide elementary applications of digraph methodology, with emphasis on the construction of signed digraphs and on the analytical assumptions us ed in drawing conclusions from these digraph models. It is hoped that these applications will provide some indication of the contexts in
which a digraph analysis might be usefully applied in developing fisheries and suggest further application of graph theory. Much of what follows has been freely adapted from the basic ideas and theorems put forth by Roberts (1976, 1978) and Jeffries (1974).

Digraph methodology is considered to be part of a geometric class of methodologies for analysing complex systems, as contrasted to the more conventional arithmetic methodologies. The latter deal with specific numeical values, tend to make precise time-specific predictions, and often seek to maximize or optimize certain specific quantities. The analytic (Beverton-Holt or Ricker type) and stock production (Schaefer type) models of fishery science are examples Ceometric methodologies, on the other hand, deal with shape and structure. They require less detailed input, and they make general predictions about qualitative trends. The specific time attached to a prediction is not considered as significant as the general nature of the predicted behavior Some examples of corclusions which are considered to be geometric in nature include: 1) a variable (the fishery) grows exponentially, 2) the level of the variable (the stock) shows damped oscillations; 3) the level of a variable (the stock) exhitits increasing oscillations: and 4) the system (fishery) is qualitatively stable; etc.

It is suggested that digraph methodology may be specifically useful in the carly stages of a research or management project in developing fisheries, where for a relatively small investment of time and resources the methodology may help identify important variables and alternative management options, and qualitatively evaluate these options. Digraph methodology seems especially appropriate for decision-makers, because the method is graphic and easy to interpret with relatively little formal background.

In general, the method attempts to relate geometric conclusions about pattern or shape to structural properties of complex systems. Other applications and developments in structural modeling include Kane (1971) and Kane et al. (1973) for management decision-making in other disciplines. The properties and limitations of several structural modeling techniques have been reviewed by Cearlock (1977)

Fishing Industry Model Illustration

Some elements of the fishing industry of Penang and Kedah, Malaysia, based on information obtained from Munro and Loy (1979) as well as some observations made during a visit to Malaysia by the author are utilized in the examples that follow. First, an attempt is made to model some of the factors leading to a stagnation in the number of traditional inshore fishermen in these areas. It should be appreciated that the material which follows is presented as an extremely simplified example for illustrative purposes, but one which is based on some elements of reality.

In this example, only five variables considered relevant to the problem of stagnation in the inshore sector are utilized. These are the population of traditional inshore fishermen (P), the demand for fish (D), the traditional inshore sector manpower input to the trawier fishery (TMI), the irishore sector manpower input into the traditional mixed fishery (IMI), and the catch per unit effort of fishes affected by the traviter fishery (Y).

A diagram is drawn in which each of these variables is represented as a point or dot. An arrow is drawn from point x to point y if a change in x has a significant effect on y. The result of the connections of the dots by lines is a diagram such as the one illustrated in Figure 1 for the example mentioned previously. It should be noted that Figure 1 was constructed under several assumptions: The trawl fishery is considered to be in a condition of high exploitation with a negative effect on CPUE of increased effort. The population of traditional inshore fishermen is assumed to be uncontrolled by any outside measure. The effect of the demand on CPUE is ignored but the effect of CPUE on demand is included.

Figure 1 has a sign (+ or -) on each arrow. A plus sign (+) means that a change in x has a augmenting effect on y The effect is augmenting if an increase in x leads to an increase in y and a deceease in x leads to a decrease in y. The effect is inhibiting if an increase in x leads to a decrease in y and a decrease in x leads to an increase in y. In Figure 1, for example, the arrow from P to D is + , because an increase (decrease) in population leads to an increase (decrease) in demand for fishing activity A digraph consists of n points or dots together with from zero to n^{2} connecting directed lines. The diagram in Figure 1 is termed a signed digraph for reasons indicated above. A signed digraph with n points may be associated with any $n \times n$ matrix, using the signs of the non-zero entries in the matrix

Figure 1. A simple signed digraph model of the effects of the trawl fishery on the population of traditional inshore fishermen based on some observations from a local Malaysiar fishery

It is useful to identify cycles in digraphs. Cycles are found by following arrows around until they return to the starting point. There are four simple cycles in this figure. They are: 1) P to D to $T M I$ to CPUE to $P ; 2$) P to D to $T M I$ to $P ; 3) P$ to D to $\mathbb{M I}$ to P; and 4) D to TMI to CPUE to D. A sign (+ or -) can be associated
with each cycle. The sign is plus (+) if there are an even number of minus signs on it, and negative (-) otherwise In Figure 1, (P, D, TMI, CPUE, F) and (P, D, IMI, P) are positive, and the simple cycles ($P, D, T M I, P$) and ($D, T M I, ~ C P U E, D$) are negative. Jeffries (1974) has more formally defined a "p-cycle" in a digraph as a set of p distinct points through which a circuit may be traced by following p directed lines.

Cycles in digraphs correspond to feediback processes, and the sign of a cycle gives the sign of the feedback For example, the sign of the longest cycle (P, D, TMI, CPUE, P) corresponds to positive feedback. An increase in the demand for fish leads, via this cycle, to increased manpower input for larger trawlers, to a decrease in the catch per unit effort in the demersal fishery, and to some decline in the pupulation of traditional tishermen in the inshore sector Further increases in the demand for lish lead to further pressures for change in the same direction, which is a loss of traditional fishermen in this case. The feedback loop (P, D, IMI, P) is also positive However, in this case the demand for fish leads to increased manpower requirements in the traditional mixed inshore fishery, which promotes an increase in the population of traditional inshore fishermen. The other two cycles have negative signs In a general way, too much positive feedback in a system can lead to rapid growth in a positive or negative direction, and it can cause instability in the system. Note that in this case the two positive cycles tend to offset each other somewhat, since one leads to continuous decline and the other to continuods growth These two processes operating simultaneously may account to some extent for the stagnation condition of the traditional fishery in this example The cycle ($\mathrm{P}, \mathrm{D}, \mathrm{TMI}, \mathrm{P}$) is negative, because the demands in manpower for the trawl fishery are generally not met by the traditional inshore fishermen. In this digraph, no effect of increased effort by the inshore sector on the catch per unit effort or demand for fish is postulated because of the more diverse nature of the inshore fishery. In a general way, negative feedback can be stabilizing

The construction of a digraph, such as the one illustrated in Figure 1, and the identification of cycles and their signs, is a simple example of model construction and analysis of the geometric type. The conclusions from such a model are purely qualitative in nature However, the understandin! and identification of feedback loops in such a model can lead to better understanding of some of the processes inducing stability or instability. Furthermore, if a signed digraph is regarded as a reasonable model for a system, and if it is desirable to explore potential strategies for modifying the system, then modifications of the signed digraph may help in discovering strategies to change the system. Changes in the signed digraph may include the addition or deletion of points (variables), the addition or deletion of arrows, and/or changes of sign. Each of these changes (alone or in combination) corresponds to a potential strategy. For example, deleting the arrow from TMI to CPUE is a strategy for dealing with the reduction in traditional inshore fishermen. It breaks up a positive feedback loop which is leading to increased losses from the inshore sector. This strategy corresponds to putting some constraints on the trawler industry by limiting expansion in the industry only to the point where negative effects on the CPUE are not significant. Another strategy would be to change the sign of the arrow from TMI to P. This would indicate that the recruitment of fishermen to the trawl industry takes
place only from the traditional instrore pool of fishermen instead of from outside sources.

Generally, a systematic analysis of various structural changes in a signed digraph leads to some nonsense strategies, or strategies which are impossible to implement, but it can also lead to potentially interesting strategies in some instances. For detailed analysis, the latter strategies should then be modeled using other, more rigorous techniques.

Structural Community Model

Jeffries (1074) has demonstrated that an ecosystem is qualitatively stable when it is possible to conclude that the system is stable on the basis of qualitative effects of member species on each other. He extended May's necessary but insufficient conditions for qualitative stabilit: to sufficient conditions using signed digraphs.

In the same report, Jeffries also defined a predation community, a concept believed by this author to be usetul in considering the effects of various exploitation strategies on localized multispecies fish populations, such as might be found in tropical latitudes. To effect some parsimony in the model, the term "species" is used very loosely in this report. It is applied both to individual species as well as to species groups (guilds), which are defined as groups which utilize similar environmental resources in a similar way. The guild concept has been defined and utilized by Sale (1975) in studying tropical reef fishes. In Jeffries' definition, if two species are involved in a 2 -cycle, using the previously given definition of cycles, and if the 2 -cycle involves a + line and a - line, then the species may be regarded as predator and prey. The species are then said to be related by a predation link. Associate with a fixed species all other species, if any, to which that species is related by predation links, and so on. The maximal set of all species so related to the first species and containing it is called the predation cormmunity. A single species not connected by a predation ink to any other species is also called a predation community, albeit a trivial one. In this manner, any digraph may be partitioned into predation communities. Jeffries (1974) has also detailed certain qualitative stability conditions for signed digraphs, and these are considered further by leffries et al. (1977), as cited by Roberts (1978).

In community ecology, a predation community has usually been represented by a system of ordinary differential equations of the form

$$
\begin{equation*}
\frac{d x_{i}}{d t}=\sum_{i=1}^{n} a_{i j} x_{i} \tag{1}
\end{equation*}
$$

where $a_{i j}$ is the community matrix, and where $(0,0, \ldots, 0)$ represent the equilibrium state of the population levels $\left(x_{i}\right)$. The variables $\left(x_{j}\right)$ represent the difference betweer, population levels and the given population levels at equilibrium. The matrix $a_{i j}$ is called stable if the real part of every ergenvalue of $a_{i j}$ is negative. Instead of performing this analysis, the results from Roberts (1978) are followed, and the stability of the community matrix described by Equation (1) is examined simply from a graphical analysis of the sign pattern of the matrix.

A simple predation community is illustrated in Figure 2. In this figure, the predation community is developed from some results of studies of demersal fish
resources in the Culf of Thailand (Ritragsa, 1976) and from the author's speculations concerning predator-prey relations in the fishery. The community utilized for this figure contains four species groups and man as a predator. The squid population is assumed to be very lightly exploited, with the result that it is not self-regulating. The other predator-prey relations are postulated and serve primarily for illustrative purposes.

figure 2. A signed digraph D_{A} and graph G_{A} of a system consisting o! a predation community based on sume segments of the trawl fishery in the Gulf of Thailand The numbered vertices are assumed to correspond to the following: 1) squids, 2) Leognathidae, 3) man, 4) Mullidae, and 5) Sciaenidae

A matrix $a_{i j}$ associated with the signed digraph D_{A} of Figure 2 is shown below:

0	0	1	0	0
0	-1	1	0	0
-1	-1	-1	-1	-1
0	0	1	-1	0
0	0	1	0	-1

Although it is possible to demonstrate directly whether the matrix is stable by determining if every eigenvalue of the matrix has a negative real part, this is computationally tedious, especially for the larger matrices. A graphic alternative prepared by Jeffries et al. (1977) is illustrated.
A graph C_{A} may be associated with the matrix $a_{i j}$. The vertices of C_{A} are the rows of $a_{i j}$ and there is an edge between rows i and i, if and only if $i \neq j$ and both
$\mathrm{a}_{\mathrm{ij}} \neq 0$ and $\mathrm{a}_{\mathrm{O}} \neq 0$. The graph C_{A} of the matrix illustrated above is shown on the right side of Figure 2

Let

$$
R_{A}=\left(i: a_{i j} \neq 0\right)
$$

In this example, the set R_{A} consists of the vertices 2, 3, 4, and 5. Now color the vertices of $C \therefore$ using two colors, white and black, is such a way that the following conditions are satisfied: 1) every vertex of R_{A} is black; 2) no black vertex has precisely one white neighbor; and 3) every white vertex has at least one white neighbor Such a coloring, if it exists, is called an R_{A} coloring of C_{A}.

A matching of a graph is a set of pairwise disjoint edges of the graph. If S is a set of vertices in a graph G, an S complete matching is a set, M, of pairwise disjoint edges of C, such that all vertices not covered by the edges in M are outside S. That is, $S=V \cdot R_{A}$.

Jeffries' theorem quoted in Roberts (1978) is as follows. An $n \times n$ real matrix A is sign-stable if and only if the following (onditions hold: 1) each loop in the signed digraph D_{A} is negative; 2) each cycle of length 2 (a 2-cycle) in D_{A} is negative; 3) D_{A} has no cycles of lengths larger than 2; 4) in every R_{A}-coloring of the graph G_{A}, all vertices are black, and 5) C_{A} has a $\left(V-R_{A}\right)$ complete matching.

In our example of Figure 2, an R_{A} coloring of C_{A} does not exist because criterion 2 of the black-white coloring is not met. Thus, condition 5 of Jeffries' theorem does not hold The simplest way to satisfy these criteria is to introduce self-regulation into the matri: by changing the first diagonal element from 0 to -1. It is assumed that this self-regulation would be achieved by increased fishing pressure on the squid resource. Other alternatives fo: sign stability were not considered due to the restrictive nature of Jeffries' theorem.

Conclusion

Although these applications of signed digraphs are considered very simple, they may help to introduce the use of signed digraphs in fisheries management. Ther also suggest possibilities for more realistic future studies with structural models. Since this report, Flake (1980) has added considerawiy to these possibilities.

References

Cearlock, LB 1977 Common properties and limitations of some structural modeling techniques Ph D Dissertation, Univ. of Washington, 90 pp
Flake, R.H 1980 Extension of Levins' loop analysis to transient and periodic disturbances Ecol Modelling 9:83-90
Gulland, J. A. 1976. Data requirements for management of fisheries and problems involved in obtaining them. In: Proc of the Intern Sem. on Fish. Res and Their Management in Southeast As:a, K. Tiews, ed, Cerman Foundation for International Development and FAO, pp 169-177.

Henderson. H F. 1976. Approaches to the assessment of fish resources in the inland waters of developing countries. In: Proc of the Intern Sem on Fish. Res and Their Management in Southeast Asia, K. Tiews, ed., German Foundation for Internationl Development and FAO, pp 89-94
Jeffries, C 1974 Qualitative stability and digraphs in model ecosystems. Ecology 55: 1465-1468.
Kane, J. 1971. A primer for a new cross-impact language - K SIM. Technological Forecasting and Social Changes 4: 129-142.
, Vertinsky, and W. Thomson 1973. K SIM: A methodology for interactive resource policy simulation. Water Resources Research 965-79
Lane, P, and R Levins $; y^{-T}$ The dynamics of aquatic systems. 2. The effects of nutrient enrichment on model plankton rommunities. Limnol Oceanogr. 22454.471
Levins, R. 1975 Evolution in communities near equilibrium In: Ecology of Species and Conımunities, Harvard Univ Press, Boston
Marr, I.C. 1973 Management and development of fisheries in the Indian Ocean | Fish. Res. Bd Can. 30(12): Pt 2 2312-2320.
Munro, G R, and Choc Kim Loy 1979. The economics of fishing and the developing world: A Malaysian case study The School of Comparative Social Sciences, University Sains Malaysia, Pulau Pinang
Ritiafsa, $S 1976$ Results of the studies on the status of demersal fish resources in th. Ciulf of Thailand from trawling surveys 1963-1972 in: Proc, of the Intern Soin on Fish K: and Their Management in Southeast Asia, K Tiews ad Cerman Foundation fur International Development and FAO, pp 198-223
Roberts, F§ 1976 Discrete mathematical models, with applications to sucial, biologiral and environmental problems Prentice-Hall, Englewond Clifs, N.I
1978. Graph theorv and its applications to problems of society CBMS-1... Regional Conference Series on Applied Mathematics 29, 122 pp.
Saila, S.B., and J.D. Parrish 1972 Exploitation effects upon interspecific relationships in marinc ecosystems Fish Bull, U S 70(2) 383-393
Sale, P. 1975 Patterns of use of space in a guild of territorial reef fishes. Mar. Bıol. 29:89-97.

Commentary

Saul B. Saila, Co-Editor

The following material represerits an attempt to abstract and list some of the relevent comments and observations made by various workshop participants during all the discussion periods and sessions of working groups. It has been condensed and edited from tape recordings taken during the workshop and from the notes of various workshop rapporteurs. The editors acknowledge with gratitude the active verbal dialogue by the participants and their valuable suggestions and comments. The editors assume full responsibility for the errors or omissions, which we believe are inevitable in an undertakitig of this nature. We also apologize for the cryptic nature of this section, which results from attempting to minimize redundancy. The authors of the various comments are identified to the extent possible, but the comments are not necessarily listed in the sequence in which they were made. Items listed without authorship were included if they were judged to have contributed to the session and to overall workshop objectives

1. Vincent Adebolu getha

A major 1 , blem in 11 wries management in Nigeria is government bureaucracy Another $: 1$ lack of transport for fisheries products. Still another is t_{11}. "Myt. .thl le of the fishermen themselves.

Nigeria is matme or fishery extension workers ana of public media, including television and radio, to provide some level of public education.
2. Ibrahim Mohammed (Malaysia)

In Malaysia there is a unique marketing system. A few hundred middlemen control the system, and all fishermen mi's work through thern. There are two or three fishing ports with proper facilities; otherwise, fisn are landed at the piers of the middlemen

There is considerable difficulty in obtaining accurate catch statistics. Boats are unloaded at the middlemen's facilities, on the beach, or at sea onto vessels from Singapore.

Enforcement is generally poor. Many trawlers are unregistered. The government has attempied to centralize landings, but the fishermen ignore the government's landing facilities because of threats from the middlemen. This situation may be prevalent in other countries. How can it be handled?

No taxes are levied on the fishermen. However, they are afraid to report their catches accurately because they might in time be taxed.

A government survey is being conducted on a) resources and research abilities; b) legal aspects (including the crossing over of fishermen from one state into the waters of another); c) fishery technology infrastructure;
d) marketing and postharvest loss, and e) socioeconomic. problems of the fishermen.

Question from Daniel Pauly. Malaysia is the only state with a program for shifting the artisanal fishermen out of fisheries to other forms of employment. This is believed to be a desirable practice. Answer. We are opening up new agricultural land in former jungle areas. The fishing villages tend to be closely \mathbf{k} nit cor.mmunities, with the children of artisanal fishermen going into fishing themselves, and with the power of the middlemen continuing strong in the villages. One problem Malaysia has is that it cannot develop large trawlers because these would compete with the nearly 80,000 artisanal fishermen
3. C. Winston Miller (Belize)

Belize has about 1,500 commercial fishermen, 1,400 of which are members of cooperatives. These cooperatives simplify the management problems

The more one interacts with the fishermen, the better the data obtained from them.

A real problem in Belize is that of enforcement, particularly with respect to the independent fishermen. Much of the enforcement effort is directed toward the middlemen

The cooperatives are allowed to export, but a small percentage of the lobster and conch are retained to be sold at low (subsidized) prices on the local market. The MSYs for lobster and conch are determined on a national basis, and then quotas are assigned to the various cooperatives.

Fishermen in Belize tend to concentrate on lobster and conch, and to ignore other species, such as finfish and mangrove oysters. Belize has no fishmeal plant

North of the capital are full-time fishermen; to the south are part-time fishermen, many of whom do not belong to the cooperatives

Question from David Stevenson. What criteria should you apply for improving small-scale fisheries management? What information do you as an administrator need from the biologists? Answer. We need information both on the biology of the fisheries and on cultural aspects of the fishermen.
4. Soloncr Cordeiro de Moura (Brazil)

Specific problems in Brazil related to the fisheries and to general ecosystem studies inclunde:
a. There is much emphasis on large-scale fishery research, very little work on the small-scale fishery.
b. Small-scale fisheries are scattered all along the coast; the types of operations vary and data collection is difficult.
c. Data analysis requires the training of people
d. The:e is a need tr change the behavior of investigators so that they spend less time un issues of academic interest, more on applied aspects of the fishery
e. There is competition for the same resource between large-scale fisheries and smal! 5 sculs 'isheries, especially with regard to shrimp and Iobeter
6. There is application of experience gained in large-scale fisheries to the small-scale fishery This type of application may not be valid, and more experience is needed in smail-scale work

5. V. Hongskul (Thailand)

There is a great need for information to guide management and investment decisions at the earliest stages of a fishery's developmen: Overexploitation can occur within a few years, and extensive data collection and analysis may take too long to provide timely answers Developing countries need specific advice on objectives and data reeeds.

Available models include simple models depending on biornass estimates, but more sophisticated models addressing multispecies interrelationships need more data and are less well develoned. Interactive models, dealing with predation and competition, are generally simulations with little or no biological explanatory value. Energy transfei (trophic level) models have received attention, but there has been littie success in modeling the complex relationships in the tropics

Caution should be exercised with meihodologies which are too "qu..ick and dirty" and lead to long-run policies which cause serious economic and social repercussions.

6. Henry Regier (Canada)

Empirical modeling should be considered an tid to advancing stock assessment Specifically, it is possible to focus on relationships between a) stock vields, and b) abiotic. and biotic environmental :uriables in homogeneous freshwater systems; One often-used indepencent variable is the MEI (morphoedaphic index), the total dissolves solids divided by mean depth. Other biotic variables which explain some variation include primary production and bottom standing crop. While this approach is a good first-order assessment, actual values fall as much as a factor of ± 2 from predictions.

Drainage basin size is a key variable in explaining river yields. Explanatory variables are chosen from those historically identified by biologists as important. Components of a community (e.g., predator-prey ratios) can be incorporated into this framework. Analogous work should be done in the environments of tropical small-scale fisheries.
7. Lee Anderson (U.S.A.)

A distinction between fish biology and fisheries management biology can be made, and the essence of the workshop and the nature of AID contributions to deveioping nations is broader than stock assessment and extends to formulation of management plans. Management is also concerned with the costs of harvesting fish, costs of management, sociocultural characteristics of resource users, etc

Most important in addressing fisheries management is the formulation of objectives, which should be operationally stated so that a) research may be directed toward achieving the objectives, and b) measures of success can be evaluated

Since objectives can conflict, it is important for managers to be willing to weigh criteria, or to choose to optimize one criterion given minimum acceptable constraints on the others

The ranking of sources of information for achieving objertives of management depends on the objectives and the socioeconomic environment. For example, prices are clearly important pieces of data because they give relative species values, but sociological data are more important in cultures where fish are not exchanged in the market Other data are important for regional development or balance of trade objectives

8. Bruce Rettig (U S.A.)

In choosing among alternative techniques for assessment, a diverse approach (best mix) is perhaps preferable Also, benefit-cost analysis of different assessment techniques would be useful because of the high opportunity costs of resources (eg, energy, human capital) used in stock assessment

9. Stephen Malvestuto (U.S.A.)

In designing a sample survey, it is critical to integrate into the design the support capabilities of the developing country Biological, hydrological, and cultural aspects must be considered in designing an effective and efficient sampling plan. All facets of assessment should be, as much as possible, done in cooperation with the local agency.
10. Donald Bevan (U.S.A.)

There is a general need for better fishery statistics; even in the U.S Pacific fisheries, estimates of effort are universally bad

11. Brian Rothschild (U.S.A.)

We need to understand the relationship between the information needed to manage small, medium, and large fisheries. Particularly, we are now concerned with a) variability in stock size (recruitment); b) multiple species; and c) how to link the biological stock considerations with economic and social considerations.

The research question is: Are we satisfied with the state-of-the-art? And, if not, what can we do about it? How can the developing countries participate?

Problem Areas and Discussions Related to Them

Problem

There is a notable lack of effective structure for information flow from fishery biologists to planners and policy makers

Discusision

Someimes administratois do not listen to the advice of scientists. In many instances, the adminisirators don't know what questions to ask of the scientisi.
In many cases, the scientist must provide both question and answer, but he must be careful to define those questions which are likely to be fruitful
Few of us like to disclose our ignorance by asking questions. An employer may even be loath to ask a question of his employee for fear of losing face. These problems of communication are deep, perhaps deeper than we realize.
Some improved mechanisms for a more effective information transíer ought to be considered

It is importan: that the fishery biologist be questioned (and listened to) by the policy maker early on in any decision making process
Effective communication between the fishery biologist and other professionals in a planning team before the inception of a program would be the ideal situation.

Problem

Economic and socio-cultural aspects of small-scale fisheries have been inadequately considered.

1. Economic Aspects
a. Th.e test of Title XII activities is the extent to which the well-being of small-scale fishermen and poor consumers is improved
b Data is generated from biological and economic concepts made operational. Whether good or bad, it, in turn, feeds into a decision-making process (rational to cautiously suboptimal).
c. Therefore, the process through which the data is transformed into information and information into decision-making, as well as the dataitself (from the capture sector and resource assessment), must be examined critically

Discussion

A model is an idealized expression of reality. Few are experts in more than one modeling approach. The right model will emerge in the market place of ideas over time.
Q. Do multispecies units like guilds present problems for the economists? A. Some. The value placed on the catch becomes clouded as the makeup of the catch changes with exploitation. These appear to be surmountable problems

2. Socio-Cultural Aspects

a. There are socio-cultural preconditions to utilizing the information available on site; e.g that held by fishermen
b. Focusing on the act of data collection, we see the need to (1) engender trust; (2) show clear intent: (3) indicate utility to fishermen: (4) use proper code (language), setting, vehicle, opinion leader, etc. For txample, research shows that the local taxonomies of species are complete, complex, and repeatable.

Discussion

Information from fishermen can be difficult to obtain and biased. However, there is a great amount of historical information held by fishermen; it is expedient to use it

Participants

Vincent Adebolu

Federal Department of Fisheries
Victoria Island
Lagos, Nigeria
Lee Anderson
Department of Resource Economics
College of Marine Studies
University of Delaware
Newark, Del 19711

Donald Bevan
School of Fisheries
University of Washington
Seattle, Wash. 98195
Edward B. Brothers
Langmuir Laboratory
Section Ecology and Systematics
Cornell University
Ithaca, N.Y. 14850
Soloncy Cordeiro de Moura
Director, Fishery Research and
Development Program
SUDEPE
Avenida W-3 Norte, Quadria 506
Bloco C
Brasilia 70000, Brazil

John A. Gulland
Chief, Marine Resources Service
Fishery Resources and Environment Division
Food and Agriculture Organization of the Uried Nations
Rome, Italy

Veravat Hongskul
Director, Marine Fisheries Laboratory
89/1 Sapan 「1, Yannawa
Bangkok 12, Thailand

Elmer Kiehl

Board for International Food and
Agricultural Development
Agency for International Development
Washington, D.C 20523

Karl F. Lagler
School of Natural Resources
University of Michigan
Ann Arbor, Mich 48104
Milton Lopez
Direccion Ceneral de Recursos Pesqueros y Vida Silvestre
Ministerio de Agricultura Y Ganaderia
San Jose, Costa Rica

Stephen P. Ma'vestuto
Tepartrnent of Fisheries and Allied Aquaculture
Auburn University
Auburn, Ala 36830

Nelson Marshall

Graduate School of Oceanography
University of Rhode Island
Kingston, R.I. 02881
G. Winston Miller

Fisneries Unit
Ministry of Trade, Industry, Cooperatives
and Consumer Protection
Belize City, Belize, Central America
Mohd Ibrahim b. Mohammad
University Pertanian Malaysia
Serdang, Selangor, Malaysia
John L. Munio
Dean, Faculty of Science
University of Papua New Cuinea
Port Moresby, Papua New Cuinea
James D. Parrish
Hawaii Cooperative Fishery Unit
University of Hawaii
2538, The Mall
Honolulu, Hawaii 96822

Daniel Pauly
International Center for Living Aquatic
Resources Management
MCC P.O. Box 1501
Makati, Matuo Manila
Philippines
Richard B. Pollnac
Department of Sociology and Anthropology
University of Rhode Island
Kingston، R.I. 02881

Henry Regier

Institute for Environmental Studies
Toronto, Ontario M5S 1A4, Canada

Bruce Rettig

Department of Resource Economics
Oregon State University
Corvallis, Ore. 97331
C. Richard Robins

Department of Bioiogy
Rosensteil School of Marine and Atmospheric Sciences
University of Miami
4600 Rickenbacker Causeway
Miami, Fla 33149
Philip M Roedel
Senior Fisheries Adviser
Agency for International Development
Washington, D.C. 20523
Brian Rothschild
Office of Policy Development
NOAA, Department of Commerce
Washington, D C. 20235
Saul B. Saila
Graduate School of Oceanography
University of Rhode Island
Kingston, R.I. 02881
Richard Shomura
Director, National Marine Fisheries Service
Laboratory
P.O. Eox 3830

Honolulu, Hawaii 96812
Hon. Arporna Sribhibhadh
Deputy Minister of Agriculture
Government of Thailand
Bangkok, Thailand
David K. Stevenson
International Center for Marine Resource
Development
University of Rhode Island
Kingston, R.I. 02881
John B. Suomala
Charles Draper Laboratory, Inc.
555 Technology Square
Cambridge, Mass. 02139
Jon C. Sutinen
Department of Resource Economics
University of Rhode Island
Kingston, R.I. 02881
Richard E. Thorne
School of Fisi,eries
University of Washington
Seattle, Wash. 98195

Fobert Wildman
Head, Division of Living Resources
National Sea Crani Program
iNOAA. Department of Comnerce
6010 Executive Blvd
Rockville, Md 2c3:2

Steering (ommittee

Donald Bevan
Elmer Kiehl
Philip M. Roedel

Rapporteurs

Lew Alexander

Department of Geography arid Marine Affairs, URI

Eric Anderson

Graduate School of Oceanography, URI
Nancy Sockstael
Department of Resource Economics, URI

Stanley Cobb

Department of Zoclogy, URI

Norman J. Wilimovsky
Institute of Resource Ecolog; University of British Colombia Vancouver V6T 1W5, British Columbia, Canada

Brian Rothschild
Sdul B. Saila
Robert Wildman

James Heltshe
Department Computer Science and Experimental Statistics, URI

Cindy Jones
Graduate School of Oceanography, URI
Phil Logan
International Center for Marine Resource Development, URI

Ernesto Lorda
Graduate School of Oceanography, URI

Staff

Walter Berry, CSO
Al Cloutier, ICMRD
Frank Crick, URI
John Hoenig, CSO
Karen Marti, GSO
Mery McNiff, GSO
Talbot Murray, CSO
Ann Neal, ICMRD

Sue Proulx, CSO
Jeff Rosen, EPA
Philip Sharkey, GSO
Lorrie Sullivan, INMFS
Hal Walker, GSO
Anne West, ICMRD
Debbie Westin, GSO
Betty Hayden, URI

[^0]: 11. ABSTRACT (950)
[^1]: Your global view together with your pioneering studies in fishery science have made you a leader in international efforts to provide more food for the hungry raillions of this world As Chief of the Fish Stock Evaluation Branch of the Food and Agriculture Organzzation of the United Nations, you organized the first comprehensive review of the marine fishery resources of the world Y ou have successfully combined your early mathematics background with your unerstanding of fish populations to produce scores of importan! scientific papers culminating in a highly regarded manual on fish stock assessment

 You have served as a marine resource adviser to developing nations, to the fishing industry of the developed nations, and to several international organizations and scientific bodies You have participated as lecturer at major universities of the world and bave directed fishery training centers in the third world
 Your unique ability to understand and communicate your findings on a host of major fishery resource problems has gained you worldwide recognition as a leader in fishery science. It is a privilege to confer upon you the hi. horary degree of Doctor of Marine Resource Development

[^2]: -The pertinent section from the first BIFAD Report (1977) reads
 The Jont Research Committee was instructed by the BIFAD to give intial priority to the development and implementation of the new collaborative research program authoized by Title XII Conceptually, this program rests on the facts that (a) there exist a number of agricultural and related problems which are common to the United States, other developed countries and the developing countries and (b) collaborative research involving US univernties investigating such problems and, as appropriate, researth institutions in the developing countries, other more developed countres and the international agat cultural research centers would result th the discovery of knowledge and information of great benefit to both the United States and the developing nations

 The IRC has worked intensively on the conceptualization, elaboration and implementation of this new program It constructed a working model for the program to be known as the Collaborative Research Support Program (CRSPs) The guidelines have been accepted and approved by both the BIFAD and AID

[^3]: *The "static" procedures are primarily applicable to estimating future yields in incipient fisheries The "dynamic" procedures are mostly for ongoing fisheries or for newly created fisheries where adequa!e catch, effort, and biological data exist or are obtainable.

[^4]: -The measure that gave best correlation of catch per unit effort with effort.

[^5]: *Most of the avail:-ble catch data are in pcunds of combined bottom fish species.

[^6]: *Also at the Pacific Science Congress, S S Amesbury reported on fishing vields ior areas in the Mariana Islands, but he had not at that time converted catch data to biomass yields

[^7]: *Given the high species diversity of tropical marine ecosystems and the degree of ecological interaction among species, however, it is questionable whether unit stock models adequately predict maximum yields for multispecies tropical fisheries. In fact, the unit stock concept itself may not apply to tropical species with highly restricted distributions (those species that inhabit coral reefs, for instance).

[^8]: "Yield is expressed on a "per recruit" basis when recruitment (the number of individuals entering the exploitable population per unit time? is unknown

[^9]: Reprinted from Interim Report of the ACMRR Working Party on the Scientific Basis of Determining Management Measures, FAO Fisheries Circular No. 718 FIR/C718.

